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Abstract—The effectiveness of coherent adiabatic passage in atomic systems with a closed interaction contour
was studied. The dependence of coherent adiabatic passage on the algebraic sum of initial exciting field phases
was demonstrated for the example of a double Λ-system of atomic levels. The conditions that should be met by
interaction parameters for the occurrence of effective coherent adiabatic passage at various atomic contour
phases were determined. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the past decade, much attention has been given to
coherent population transfer (coherent adiabatic pas-
sage) in atomic and molecular systems. The interest in
this phenomenon stems from both the unique properties
of adiabatic passage itself [1] and from the diversity of
applications of this effect in atomic physics that these
properties provide. For instance, coherent adiabatic
passage is a promising method for laser cooling below
the temperature determined by the recoil effect of
atoms [2] and for creating high-effectiveness atomic
wave packet splitters and developing atomic inteferom-
eters based on these devices [3, 4]. In addition, such a
passage in an atomic four-level system (“tripod” con-
figuration) has made it possible to demonstrate the fea-
sibility of atomic-wave lithography [5]. The use of
coherent adiabatic passage in the specified applications
is based on the high degree of population transfer
between the limiting states of atomic systems, on the
one hand, and the absence of population of intermedi-
ate states during the transfer (even in the case of the
exact resonance between light fields and atomic transi-
tions), on the other, if interaction parameters between
an atom and an optical radiation field satisfy certain
conditions.

In the simplest case of a three-level Λ-atom, the con-
dition that should be met by interaction parameters (the
so-called adiabaticity condition) is determined [6] by
the region of overlap of laser pulses (Fig. 1). If laser
pulses are bell-shaped, this region is determined by the
ratio between the Ω1, 2(t) Rabi frequencies of E1, 2(t)
delayed laser pulses (with optical frequencies ω1, 2 and
pulse delay time δ),

(1)1 ! Ω0δ,
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where Ω0 is the amplitude of laser fields. We assumed
that the laser pulse frequencies coincided with the cor-
responding atomic transition frequencies and the
sequence of pulses coincided with that shown in Fig. 1.
If inequality (1) is satisfied, the effectiveness of coher-
ent adiabatic passage reaches nearly 100%. As a result,
the whole population can be transferred from level |1〉
to level |2〉  during laser pulse action without populating
excited state |3〉  (Fig. 1).

Note that the absence of excited state population
during the interaction process and effective population
transfer are not characteristic features of coherent pas-
sage only. For instance, population transfer between the
|1〉  and |2〉  states induced by a π/2 pulse at light field
detunings much larger than the Rabi frequencies has
similar properties. This allows high-rate selection of
atoms to be performed in the field of two counterprop-
agating waves [7]. In contrast to population transfer by
a π/2 pulse, coherent adiabatic passage, however,
allows population to be effectively transferred also at
zero frequency detunings, and the effectiveness of this
transfer is almost insensitive to the shape of laser pulses
[8] [only meeting (1) is required].

Naturally, such remarkable properties of coherent
adiabatic passage stimulate studies of an increasingly
large number of atomic systems in which such a pas-
sage can occur. Recently, coherent adiabatic passage
with an interaction cycle closed by the optical field (a
double Λ-system, see Fig. 1) was considered in the con-
text of obtaining entangled quantum system states, which
play an important role in quantum teleportation [9]. It is
known [10, 11] that the special feature of all systems
with closed interaction cycles is the dependence of the
time evolution of population on some value Φ, called
the atomic contour phase (in the simplest case, this
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phase is determined by the algebraic sum of the applied
fields).

Note that, for the goals set in [9], it was sufficient to
consider the case of a zero atomic contour phase Φ = 0
and substantial frequency detunings of light waves. It
was shown in [9] that the conditions of effective coher-
ent adiabatic passage in three- and two-level Λ-systems
nearly coincided. At the same time, the special features
of precisely coherent adiabatic passage (in the sense
specified above) in closed systems was excluded from
consideration in [9]. These special features manifest
themselves in population transfer at a nonzero phase
value Φ under exact resonance conditions.

In this work, we show that both the effectiveness and
the very existence of coherent adiabatic passage in a
double Λ-system depend on phase Φ of the atomic con-
tour. For instance, for phase values close to zero and at
relatively low light field intensities, coherent adiabatic
passage effectiveness is close to that for a three-level
atomic system [6]. At the same time, at high light field
intensities, the coherent adiabatic passage state is
destroyed and the passage becomes incoherent even at
near-zero contour phases. However, at phase Φ = π, nei-
ther coherent nor incoherent passage occurs. In other
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Fig. 1. Coherent adiabatic passage in (a) three-level and
(b) double Λ systems. Shown in the bottom part of the fig-
ure is the sequence of light pulses necessary for effecting
coherent adiabatic passage in these systems (so-called
“counterintuitive pulse sequence”). For instance, in the
three-level system, state |1〉  is initially populated and the
sequence of light pulses is as follows: first, a laser pulse
with frequency ω2, which is in resonance with the |2〉–|3〉
transition, acts on the three-level system. The action of the
second optical pulse with frequency ω1, which is in reso-
nance with the |1〉–|3〉  transition, is shifted by delay time 2δ.
In the double Λ-system, state |1〉  is also initially populated,
but the first pulse consists of two frequencies ω2 and ω4,
which have the same envelope and are in resonance with the
|2〉–|3〉  and |2〉–|4〉  transitions of the double Λ-system. The
second optical pulse is shifted in time by 2δ and contains
frequencies ω1 and ω3 close to the |1〉–|3〉  and |1〉–|4〉  transi-
tion frequencies, respectively.
JOURNAL OF EXPERIMENTAL
words, atomic population transfer from one of the
lower double Λ-system levels to another is then forbid-
den no matter whether or not condition (1) is satisfied.
We also show that the effectiveness of coherent adia-
batic passage in a double Λ-system at a nonzero Φ
value is no longer determined by condition (1). We find
a new adiabaticity condition which takes into account
the dependence of passage effectiveness on the atomic
contour phase.

We wish to emphasize that we consider passage
under exact resonance conditions (that is, we assume all
detunings to be zero) between light waves and atomic
transitions in a double Λ-system. We nevertheless find
that effective passage in the system under consideration
occurs at atomic interaction contour phases close to
zero. This circumstance is spectacular evidence of the
special features of systems with closed interaction con-
tours as opposed to open systems with an even number
of states, for which coherent adiabatic passage states do
not exist [12, 13].

2. ADIABATIC SEQUENCE CONDITION

Let us find such a condition to be met by interaction
parameters (the so-called adiabatic sequence condition)
under which transfer between limiting double Λ-sys-
tem states occurs without populating intermediate
states (that is, coherently). For this purpose, consider
the time evolution of atomic populations. A description
of the time evolution of populations in a double Λ-sys-
tem in the absence of spontaneous relaxation is based
on the system of equations for nonstationary probabil-
ity amplitudes Ψm (m = 1–4),

(2)

Here, Hamiltonian H(t) in the resonance approximation
is defined by the matrix

(3)

and Y = {Ψ1, Ψ2, Ψ3, Ψ4}T is the column vector com-
posed of probability amplitudes Ψm of finding the atom
at time t in state m = 1–4. In Hamiltonian (3), we also
introduced the time-dependent Rabi frequencies

(4)

ih
∂Y
∂t

-------- HY.=

H t( )

0 0 Ω1 t( ) Ω1 t( )e iΦ–

0 0 Ω2 t( ) Ω2 t( )

Ω1 t( ) Ω2 t( ) 0 0

Ω1 t( )e iΦ– Ω2 t( ) 0 0 
 
 
 
 
 
 

,=

Ω1 t( ) Ω01
t ∆t–( )2

T2
--------------------– ,exp=

Ω2 t( ) Ω02
t ∆t+( )2

T2
--------------------– ,exp=
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and the atomic contour phase Φ = χ1 + χ2 + χ3 – χ4,
where χm = ξm – ζm and ξm and ζm are the phases of
induced dipole moments and the initial phases of light
waves, respectively. We assumed that the l–n transitions
(l = 1, 2 and n = 3, 4) in the double Λ-system were elec-
tric dipole transitions, whereas the |1〉–|2〉  and |3〉–|4〉
transitions were forbidden in the dipole approximation
(Fig. 1). The sequence of pulse actions was selected to
correspond to coherent adiabatic passage (counterintu-
itive pulse order), and each light pulse contained two
frequencies (see Fig. 1). A closed double Λ-system of
another type [12, 13], for which our calculations are
also valid, is shown in Fig. 2.

The solution to (2) can always be represented in the
form

(5)

with the initial condition Ψ(0) = un(0) on the
basis of instantaneous eigenfunctions un(t) of Hamilto-
nian (3),

(6)

Here, an(t) are the expansion coefficients and λn(t) are
the eigenvalues.

Consider slow (or adiabatic) changes in Hamilto-
nian (3); precisely such changes occur in the interaction
between the double Λ-system and two pairs of two-fre-
quency laser pulses of Gaussian form [Eq. (4)].
According to the adiabatic theorem [14], if the system
at t = –∞ is in eigenstate un(t = –∞) of Hamiltonian
H(t = –∞), then, at time t = ∞, the system continuously
transforms into eigenstate um(t = ∞) of Hamiltonian
H(t = ∞) provided the inequality

(7)

is satisfied. The expansion coefficients in (5) can be
taken to be an(t) = an(0) if (7) is met. To consider the
conditions of coherent adiabatic passage, the adiabatic
theorem can be reformulated as follows: if, at t = –∞,
the system is in eigenstate un(t = ∞) of Hamiltonian
H(t = –∞), then, at time t = ∞, the system remains in
eigenstate un(t = ∞) of Hamiltonian H(t = ∞) provided
(7) is satisfied. In other words, condition (7) guarantees
that the quantum system remains in the same quantum
state un. By um are meant the other eigenstates of the
Hamiltonian, and (7) is actually the condition of small-
ness of the transition probability from one eigenstate to
another compared with the difference of their energies.

To find the adiabatic sequence condition in the
explicit form, let us find the eigenvectors of Hamilto-
nian (3). The characteristic equation for determining
the eigenvalues of matrix (3) has the form

(8)

Ψ t( ) an t( )un t( )
i
h
--- λn τ( ) τd∫–exp∑=

an t( )∑

H t( )un t( ) λn t( )un t( ).=

um

dun

dt
--------⋅  ! 

λm λn–
h

--------------------

λ4 2 η2 1+( )λ2– 2η2 1 Φcos–( )+ 0,=
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where η(t) = Ω2(t)/Ω1(t). Solving (8) yields eigenvalues
λn(t) in the form

(9)

and the set of eigenvectors

is determined by the coefficients

(10)

where

Eigenvalues (9) and eigenvectors (10) of Hamilto-
nian (3) allow the adiabatic sequence condition [Eq. (7)]
in interaction with laser pulses of Gaussian form
[Eq. (4)] to be written explicitly for an arbitrary atomic
contour phase Φ value. To reveal the special features of
the double Λ-system, namely, the contour phase depen-
dence of the adiabatic sequence condition, consider the
two most important situations with Φ = 0 and Φ = π.

2.1. Zero Atomic Contour Phase Φ = 0

The coefficients of the eigenvectors [Eq. (10)] are
then

At r{±, –}, we obtain C2 = –tanθ and C3 = C4 = 0, and the
corresponding eigenvector is doubly degenerate. At

λ1 2 3 4, , , t( ) λ ±,±{ }=

=  1 η2 η4 2η2 Φ 1+cos+( )1/2±+[ ]
1/2

,±

un t( ) C1 1| 〉 C2 2| 〉 C3 3| 〉 C4 4| 〉+ + +=

C1 1, C2
r θ θcossin

R
-------------------------- 1 eiΦ+( ),= =

C3
θsin

R
----------- r2 θcos

2
1 eiΦ–( )–[ ] ,=

C4
θsin

R
----------- r2eiΦ θ 1 eiΦ–( )cos

2
+[ ] ,=

r ±,±{ }

=  1 θcos
4

2 θ θcos
2 Φcossin θsin

4
+ +( )

1/1
±[ ]

1/2
,±

R r r2 2 θcos
2

–( ), θtan
Ω1

Ω2
------.= =

C1 1, C2
2r θ θcossin

R
-----------------------------, C3 C4 θr2

R
----.sin= = = =
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Fig. 2. Different configurations of four-level closed systems
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r{±, +} = ±21/2, the coefficients are not so trivial, C2 =
 and C3 = C4 = ±2–1/2sinθ. As eigenvectors are

always determined up to an arbitrary factor, let us factor
out cosθ as a common factor from the first eigenvector
at Φ = 0 and sinθ from the remaining eigenvectors. As
a result, we obtain the following system of eigenvectors
of Hamiltonian (3) for Φ = 0:

(11a)

(11b)

According to (11a), eigenvector  is not related to
intermediate levels |3〉  and |4〉  during the time interval
of laser pulse action and coincides with the adiabatic
passage state for a three-level atom [6].

Although we consider zero frequency detunings of
light pulses from the |3〉  and |4〉  upper states, adiabatic
passage state (11a) exists in a closed system with an
even number of levels (that is, in the double Λ-system).
This can be treated as one more distinguishing feature
of atomic systems with a closed interaction contour,
because, according to [12], adiabatic passage states of
form (11a) do not exist in open systems with an even
number of states at zero detunings and intermediate
levels are always populated as a result of interactions.

Let us determine the adiabatic sequence condition in
the explicit form under the requirement that nonadia-
batic coupling between eigenvectors (11a) and (11b) is
weak; that is, condition (7) is satisfied. Substituting
eigenvectors (11a) and (11b) (with “+”) into (7) then
yields the adiabatic sequence condition in the form

(12a)

This condition can be transformed to

(12b)

where τ = t/T and δ = ∆t/T.
Condition (12b) differs from condition (1) used in

many works. Strictly, the adiabatic sequence condition
is precisely (12b) rather than crude estimate (1). The
matter is that we must average (12b) over the time inter-
val of overlap of pulses [1] and set δ = 1 [which, gener-
ally, substantially narrows the region of estimate (1)
applicability]. Only then can the result be written in
form (1).

Using (9) and (10), let us write the adiabatic
sequence condition for small deviations µ of the atomic
contour phase from Φ = 0,

(12c)

θcot

u1 2,
Φ 0=| 〉 θ 1| 〉cos θ 2| 〉 0 3| 〉 4| 〉+( ),+sin–=

u3 4,
Φ 0=| 〉 1

21/2
-------- θ 1| 〉cos θ 2| 〉sin 3| 〉 4| 〉+ +( ).–=

u1 2,
Φ 0=| 〉

dθ
dt
------  ! Ωeff Ω1

2 Ω2
2+( )1/2

.=

η δ τ,( ) 21/2 τ2 δ2
+( )exp

4δτ( )cosh
3/2

------------------------------ ! Ω0T ,=

η δ τ,( ) 1 3µ
4 4δτ( )cosh
-----------------------------+   ≤  Ω 0 T .                                 
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Averaging (12c) over the time interval of overlap of
pulses allows us to obtain the “global” adiabatic
sequence condition as distinguished from “local condi-
tion” (12c). According to (12c), the adiabatic sequence
condition is satisfied and effective coherent adiabatic
passage does occur if µ is small.

2.2. Atomic Contour Phase Φ = π
Consider the other limiting case. Coefficients (10)

of the eigenvectors are

We then obtain C3 = –C4 = ±2–1/2 at r{±, –} = ±21/2sinθ.
The coefficients are not so trivial at r{±, +}
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Let us transform (14a) to form (12b),

(14b)

This condition can never be satisfied because the left-
hand side of (14b) tends to infinity at 

 

τ

 

 = 0. Accord-
ingly, for atomic contour phases close to 

 

Φ

 

 = 

 

π

 

, there is
no condition under which coherent adiabatic passage
can exist.

3. NUMERICAL CALCULATION RESULTS

In this section, we numerically solve (2) to obtain
probability amplitudes 

 

Ψ

 

m

 

 (

 

m 

 

= 1–4) and determine
time-dependent populations of double 
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-system states
excited by a pair of two-frequency pulses with a time
delay (see Fig. 1).
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∞

 

 (that is, after the action of
light pulses) is shown in Fig. 3a [simple adiabatic
sequence condition (1) is satisfied]. This dependence
has a complex oscillatory character. For instance, for

C1 1, C2 0, C3 –C4
θsin

r
-----------.= = = =
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2
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 AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



COHERENT ADIABATIC PASSAGE IN ATOMIC SYSTEMS 5
1

2

(a)
1.0

0.8

0.6

0.4

0.2

0
0 0.5 1.0 1.5 2.0 2.5 3.0

î

(b)
0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 10 20 30 40
Rabi frequency Ω0

î

Fig. 3. (a) Dependences of the effectiveness of coherent adiabatic passage (final state |2〉  population after the action of laser pulses)
on atomic contour phase Φ for light pulse amplitudes Ω0 = 5 (1) and 10 (2); (b) the position of the first minimum as a function of
the amplitude of light pulses.
certain phase values, complete passage from state |1〉  to
state |2〉  is observed, whereas no passage at all occurs at
other Φ values. The number of oscillations of state |2〉
population determined by the atomic contour phase Φ
increases with the intensity of light pulses.

The dependence of the position of the first state |2〉
population minimum on the amplitude of light fields is
shown in Fig. 3b. One can see that the position of the
transfer minimum closely approaches zero phase Φ as
the intensity of pulses increases. This means that even
at comparatively low light pulse intensities, a small
change in the atomic contour phase causes a sharp
change in the degree of transfer in the system. For
instance, at a Φ ≈ 0 phase value, effective population
transfer occurs in the system (Fig. 4a). Shown in Fig. 4a
is coherent adiabatic passage when atomic contour
phase Φ equals zero and adiabaticity condition (12b) is
satisfied. The effectiveness of coherent adiabatic pas-
sage is then high, and the entire population is trans-
ferred from lower level |1〉  to another lower level |2〉
during the time interval of laser pulse action. The time
evolution of the populations in the double Λ-system is
then close to that observed in the simplest system of
three levels, in complete agreement with the results
obtained above.

Note also that the populations of the upper states |3〉
and |4〉  are close to zero during the time interval of laser
pulse action; therefore, such a transfer can indeed be
considered coherent adiabatic passage.

We stress once more that, in our problem, passage
coherence (that is, the absence of population of inter-
mediate states) is characteristic of zero light wave fre-
quency detunings. This is also a special feature of
closed systems, because, according to [12], population
of intermediate levels always occurs in atomic systems
with open interaction contours and an even number of
levels; population transfer is then incoherent.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The time evolution of the population of states of the
double Λ-system at a Φ = 0.3 atomic contour phase
value corresponding to the first state |2〉  population
minimum after the action of laser pulses, that is, at
t = ∞, is shown in Fig. 4b. It is seen that state |2〉
becomes slightly populated as laser pulses pass. After
the passage of pulses, the whole population in the sys-
tem is, however, equidistributed between the |3〉  and |4〉
upper states. The population transfer between states |1〉
and |3〉 and |4〉  then occurs “quasi-adiabatically,”
because the major population part always remains dis-
tributed between the |1〉 , |3〉 , and |4〉  states (the popula-
tion of state |2〉  is comparatively small) and Rabi oscil-
lations characteristic of fully nonadiabatic transfer pro-
cesses are absent.

Note also that, because the time evolutions of states
|3〉  and |4〉  are identical, we give for clarity the time
dependences of the total population of these states.

The time evolution of populations for a Φ = 0.6
atomic contour phase value corresponding to the state
|2〉  population maximum after laser pulse decay (t = ∞)
is shown in Fig. 4c. The transfer of population between
states |1〉  and |2〉  is then completely incoherent, because
intermediate states |3〉  and |4〉  are populated during laser
pulse action.

The behavior of state populations at a Φ = 0.9 phase
value corresponding to the second state |2〉  population
minimum is shown in Fig. 4d. Although level |2〉  is con-
siderably populated during the time interval of pulse
action, the final population of this state is close to zero
after laser pulse decay. If the passage of pulses is inter-
rupted at a certain time moment (t ≈ 3.8), all states of
the double Λ-system can be populated approximately
equally (see Fig. 4d).

The time evolution of the populations at Φ = π is
shown in Fig. 4e. The |2〉  level of the double Λ-system
then remains unpopulated during the action of laser
SICS      Vol. 96      No. 1      2003
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Fig. 4. Time evolution of populations in the double Λ-system of atomic levels for atomic contour phases Φ = 0 (a), 0.3 (b), 0.6 (c),
0.9 (d), and π (e); (1) population of initial state |1〉  and (2) population of final state |2〉;  is the sum of populations of intermediate
states |3〉  and |4〉 , arrows indicate Ω2 and Ω1 maxima at t = 3.2 and 4.2, respectively (T = 1.5). All values are in arbitrary units.

∑

pulses, and there is no population transfer of any kind
(coherent or incoherent). The whole population then
oscillates between state |1〉  and intermediate states |3〉
and |4〉 . Such a behavior of coherent adiabatic passage
is caused by the complete disappearance of coherence
between the |1〉  and |2〉  lower states of the double Λ-
atom at a Φ = π phase value. The region of phases in
which effective coherent adiabatic passage does not
occur narrows as the Rabi frequency increases. For Φ =
JOURNAL OF EXPERIMENTAL 
π phases, the effectiveness of any transfer is, however,
always close to zero.

4. CONCLUSION

In conclusion, let us formulate the most important
results of this work. We considered population transfer
between the lower levels of a closed double Λ-system
for arbitrary interaction contour phase values. We
AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003
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found the adiabatic sequence conditions for such a sys-
tem, that is, the conditions of the occurrence of effec-
tive coherent adiabatic passage from one of the lower
system levels to another under exact resonance condi-
tions between light waves and atomic transitions at
small contour phase values. It was shown that, at Φ =
(2n + 1)π phase values, the effectiveness of population
transfer of any kind is always zero irrespective of the
amplitude of light pulses and the delay time. This is a
consequence of the destructive interference of different
excitation channels. The dependence of the effective-
ness of passage on the atomic contour phase in princi-
ple can be exploited to record optical information in a
medium, because the equation for the phase contains
the initial phases of exciting fields. As a result, a change
in the phase of one of the optical fields changes the
effectiveness of coherent adiabatic passage, which can
be measured by probing field absorption at the corre-
sponding atomic transition.

ACKNOWLEDGMENTS

The authors thank S.G. Przhibel’skii for interest in
this work.

REFERENCES
1. K. Bergman, H. Theuer, and B. W. Shore, Rev. Mod.

Phys. 70, 1003 (1998).
2. T. Esslinger, F. Sander, M. Weidemuller, and

T. W. Hansch, Phys. Rev. Lett. 76, 2432 (1996).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
3. M. Weitz, B. C. Young, and S. Chu, Phys. Rev. Lett. 73,
2563 (1994); P. Marte, P. Zoller, and J. L. Hall, Phys.
Rev. A 44, R4118 (1991).

4. M. Ol’shanii, J. Vanicek, and M. Prentiss, Quantum
Semiclassic. Opt. 8, 655 (1996).

5. L. I. Plimak, Yu. V. Rozhdestvensky, M. K. Olsen, and
M. J. Collet, Phys. Rev. A 63, 023608 (2001).

6. M. Kasevich and S. Chu, Phys. Rev. Lett. 66, 2297
(1991); E. A. Korsunskiœ, D. V. Kosachev, B. G. Matisov,
and Yu. V. Rozhdestvenskiœ, Pis’ma Zh. Éksp. Teor. Fiz.
55, 313 (1992) [JETP Lett. 55, 311 (1992)].

7. U. Gaubatz, P. Rudecki, M. Becker, et al., Chem. Phys.
Lett. 149, 463 (1988); J. R. Kuklinski, U. Gaubatz,
F. T. Hioe, and K. Bergmann, Phys. Rev. A 40, 6741
(1989).

8. T. A. Laine and S. Stenholm, Phys. Rev. A 53, 2501
(1996).

9. R. G. Unanyan, B. W. Shore, and K. Bergmann, Phys.
Rev. A 63, 043405 (2001).

10. J. Oreg, B. W. Shore, K. Bergmann, and S. Rosenwaks,
Phys. Rev. A 45, 4888 (1992).

11. N. V. Vitanov and S. Stenholm, Phys. Rev. A 55, 648
(1997).

12. D. V. Kosachiov, B. G. Matisov, and Yu. V. Rozhdestven-
sky, J. Phys. B 25, 2473 (1992).

13. S. J. Buckle, S. M. Barnett, P. L. Knight, et al., Opt. Acta
33, 1129 (1986).

14. A. Messiah, Quantum Mechanics (Interscience, New
York, 1961; Nauka, Moscow, 1979), Vol. 2, p. 247.

Translated by V. Sipachev
SICS      Vol. 96      No. 1      2003



  

Journal of Experimental and Theoretical Physics, Vol. 96, No. 1, 2003, pp. 102–109.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 123, No. 1, 2003, pp. 120–127.
Original Russian Text Copyright © 2003 by Vasko, Korovin.

                                      

SOLIDS
Electronic Properties
Spin-Flip Transitions of Two-Dimensional Electrons
in Nonsymmetric Heterostructures

F. T. Vasko* and A. V. Korovin**
Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, 03028 Ukraine

*e-mail: ftvasko@yahoo.com
**avkorovin@rambler.ru; korovin@lab2.semicond.kiev.ua

Received June 6, 2002

Abstract—The absorption of far-infrared radiation due to electron transitions between spin-split states in non-
symmetric quantum wells excited by a plane-polarized electric field is considered. It is shown that a relative
contribution of the exchange renormalization of spin-flip transitions decreases as the concentration of two-
dimensional electrons increases. The shape of the absorption peak under resonance transitions is calculated for
the case when the line broadening is determined using scattering by static defects. The effect of the Coulomb
interaction on the shape of the peak is taken into account, and the suppression of spin-flip absorption due to
temperature growth is described. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Resonance intersubband transitions in quantum
wells are excited efficiently by an electric-field compo-
nent perpendicular to a 2D layer, whereas the compo-
nent polarized along the 2D plane is absorbed weakly
in n-type quantum wells (see Section 8.2 in [1]). This
fact is attributed to the selection rules of the dipole
approximation for a simple model with an isotropic
parabolic dispersion law. These rules of selection are
violated either in quantum wells in semiconductors
with ellipsoidal energy spectra [2] or when the variation
of the effective mass along the growth axis of a struc-
ture is taken into account [3]. In addition, the absorp-
tion of radiation polarized in the 2D plane occurs in
nonsymmetric heterostructures with spin degeneracy of
the energy spectrum removed, where spin-flip transi-
tions [4] under a planar electric field are allowed. This
mechanism was discussed 20 years ago while investi-
gating inversion layers in narrow-band materials [5].
Recent intense investigations of narrow-band InAs-
based quantum wells with a noticeable spin splitting of
the energy spectrum [6–8] have stimulated the study of
the absorption of far-infrared radiation due to spin-flip
transitions of 2D electrons in such structures. This pro-
cess and the interaction between spin-flip transitions
and 2D plasmons, which gives rise to spin–plasmon
oscillations, have recently been considered in [9]
within the self-consistent-field approximation.

In the present paper, we calculate the linear response
of nonsymmetric quantum wells to submillimeter-wave
radiation polarized in the 2D plane under spin-flip tran-
sitions of 2D electrons (the scheme of transitions is
shown in Fig. 1) with regard to the exchange renormal-
ization of such transitions. The specific features of the
effect of electron–electron interaction on the shape of
1063-7761/03/9601- $24.00 © 20102
the absorption peak are associated with the fact that a
depolarization shift is negligible (since the self-consis-
tent field vanishes due to the translation invariance of
the system in the 2D plane), while the exchange contri-
bution shifts the line, thus reducing the energy of tran-
sitions and appreciably changing the shape of the
absorption peak. The effect of collisions on the shape of
the absorption peak is discussed for the model of scat-
tering by static defects. The response depends on tem-
perature even for strongly degenerate electron states,
when the temperature is comparable with the spin-split-
ting energy.

In Section 2, we analyze a linearized quantum
kinetic equation for the spin-dependent high-frequency
component of the density matrix that takes into account
exchange contributions. The shape of the absorption
peak and its shift due to the exchange renormalization
are considered in Section 3. Section 4 contains conclu-
sive remarks and the discussion of the approximations
used.

2. LINEAR RESPONSE

Consider a linear response of electrons in a nonsym-
metric quantum well to an electric field of frequency ω
polarized in the 2D plane and described by the Fourier
component Eexp(–iωt). The electron states in the con-
duction band are determined by the following spin-
dependent matrix Hamiltonian (see [1]):

(1)

where m is the effective mass, p = p + [i(e/ω)Ee–iωt +

c.c.] is the longitudinal kinematic momentum,  are

π2

2m
------- ŝ vs p×[ ] ,⋅+

ŝ
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the Pauli matrices, and vs is a characteristic spin veloc-
ity that describes the efficiency of spin–orbit splitting of
the spectrum and is directed along z axis. Neglecting
the asymmetry of heteroboundaries, we can evaluate v s

as |e |F⊥ /(4mεg), where εg is the effective width of the
forbidden band of the quantum well in a homogeneous
electric field F⊥ . Such an estimate, the discussion of the
contribution of nonsymmetric heteroboundaries, as
well as relevant references, are presented in [10]. The
linearization of expression (1) with respect to a weak
field yields a Fourier component, proportional to e–iωt,
of the perturbation operator

(2)

Here arises the velocity operator v + [  × vs], which,
together with the ordinary term v = p/m, contains a
spin-dependent term. The induced current density is
determined by the expression

(3)

where n2D is the surface concentration of electrons, L2

is the normalization area, and Sp includes averaging
over the 2D momentum and summation over the spin
variable.

The addition to the operator of one-electron density

matrix  entering into formula (3) is determined by
the Fourier component, proportional to e–iωt, of a linear-
ized kinetic equation that takes into account the Cou-
lomb contributions of order e2 in the Hartree–Fock
approximation. The operator form of this equation is
given by formulas (3)–(5) from [11]. Restricting the
analysis to spin-flip transitions for the ground-state
electrons only, we calculate Jω by the formula

(4)

where trσ denotes the trace with respect to the spin vari-

able, while the addition of , proportional to e–iωt, to
the density matrix depends on the 2D momentum and
the spin variable (i.e., it represents a 2 × 2 matrix).
Using the results of [11], we obtain the following equa-

tion for :

, (5)

in which the (2 × 2) matrix  describes the equilib-

rium distribution and  is a linearized collision

i
e

mω
-------- p E⋅( ) i

e
ω
----ŝ vs E×[ ] .⋅+

ŝ

Jω i
e2n2D

mω
-------------E

e

L2
-----Sp v ŝ vs×[ ]+( )δρ,+=

〈

δρ

〈
Jω i

e2n2D

mω
-------------E

e

L
2

----- trσ v ŝ vs×[ ]+( )δ f p,
p

∑+=

〈

δ f p

〈

δ f p

〈

–iωδf p
i
"
--- "̂p δ f p,[ ] i

"
--- δhp f p

ˆ,[ ]+ + Îsc δf p( )=

〈 〈 〈 〈

f p
ˆ

Îsc δf p( )

〈

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
integral. In the case of scattering by static defects, the
right-hand side of formula (5) is expressed as (see [12])

(6)

where  ≡ exp[–i τ/"] is the electron evolution
operator. Below, we also use the Gaussian correlator

,

where lc is the correlation length determining the char-
acteristic scale of irregularities and w determines the
intensity of scattering.

The stationary Hamiltonian , which describes the
motion in the 2D plane and takes into account the spin–
orbit contribution and the exchange renormalization of
the spectrum (for a translation invariant system, there is
no self-consistent potential along the 2D plane), is
given by

(7)

Here, εp ≡ p2/(2m), the reference point for the energy is
the ground-state energy in the quantum well in the
absence of spin splitting described by the wave function
ϕz, and the summation is performed over all 3D wave
vectors Q = {q, q⊥ }. Formula (7) also contains a Cou-

Îsc δf p( )
1

"
2

----- τe λ iω–( )τ pd

2π"( )2
-----------------w p p1– /"∫d

∞–

0

∫=

× Ŝpτ
† δ f p1

δ f p–( )Ŝp1τ Ŝp1τ
† δ f p δ f p1

–( )Ŝpτ–{ } ,

〈〈〈〈
〈

Ŝpτ "̂p

w∆p w ∆plc/"( )2
/2–[ ]exp=

ĥp

ĥp εp ŝ vs p×[ ]⋅( )+=

–  v Q z ϕ z 
2 e 

iq
 

⊥
 

z
 

–
 d ∫ 

2
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lomb matrix element vQ ≡ 4πe2/(eQ2L3) with homoge-
neous permittivity e. Similarly, adding an exchange
term to operator (2), we obtain the following (2 × 2)
perturbation matrix that depends on the 2D momentum:

(8)

Since the contribution of ie(v · E)/ω drops out of the
commutators in the kinetic equation (5), the transitions
under consideration are spin-flip transitions. Taking

into consideration the equalities trσ[ , ] = 0 and

trσ[ , ] = 0, we obtain trσ  = 0 from Eq. (5), so
that the scalar component of the addition to the density

matrix vanishes. The equilibrium density matrix 
in Eq. (5) is rewritten as

(9)

where εF is the Fermi energy, fF(E) is the Fermi distri-
bution function with temperature T, and

Note that  drops out of the commutators in Eq. (5)
and the contribution to the spin-flip absorption is made
only by electrons close to the Fermi surface (if T = 0,

then  is replaced by –1 in the interval εp – v sp < εF <
εp + v sp and vanishes for other p).

Separating the factor  introduced by Eq. (9)

from , we seek a solution to (5) in the form  =

(  · Rp) , so that formula (5) gives the following
equation for the vector Rp:

(10)

The spin-dependent contributions to the renormaliza-
tion Hamiltonian of 2D electrons (7) and the perturba-
tion operator (8), marked by tildes in what follows, are
rewritten as

(11)

δhp i
e
ω
---- v ŝ vs×[ ]+( ) E⋅=

– v Q zϕ z
2e

–iq⊥ z
d∫

2
δ f p "q+ .

Q

∑

〈

〈

hp̂ δ f p

〈

δhp

〈

f p
ˆ δ f p

〈

f p
ˆ

f p
ˆ f F εF εp– ŝ vs p×[ ]⋅( )–( )=

=  f p
+( ) ŝ vs p×[ ]⋅( )

v s p
-------------------------------- f p

–( ),+

f p
±( ) f F εF εp– v s p–( ) f F εF εp– v s p+( )±[ ] /2.≡

f p
±( )

f p
–( )

f p
–( )

δ f p

〈
δ f p

〈

ŝ f p
–( )

–iω ŝ Rp⋅( )
i
"
--- h̃p ŝ Rp⋅( ),[ ]+

+
i
"
--- σhp

ŝ vs p×[ ]⋅( )
v s p

--------------------------------, ŝ Îsc R p( ).⋅=

h̃p ŝ vs p×[ ]
p1d

2πm
-----------M p p1– /" f p1

–( ) vs p×[ ]
v s p1

-------------------∫–
 
 
 

⋅=
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and

(12)

Here, we introduce the integral kernel

(13)

depending on the transfer of two-dimensional wave
vector q; to derive this expression, we performed inte-
gration with respect to q⊥  in general formulas (7) and
(8) and introduced the Bohr radius aB = e"2/me2. The
right equality in (13) applies to the two-dimensional
limit case qd ! 1 (d is the quantum-well width, which
determines the maximum of |z – z' |). The relaxation
term in the kinetic equation (10) is obtained from the
general expression (6). Restricting ourselves to small
spin-splitting of the spectrum near the Fermi energy,

which corresponds to the condition v s ! vF ≡ ,
we substitute

into formula (6) to obtain the following collision inte-
gral in (10):

(14)

where the contributions of spin-flip processes during
collisions are small with respect to the parameter v s/vF.

Substituting matrices (11) and (12) into (10), we
obtain the following vector equation for Rp:

(15)

where the inhomogeneous term is perpendicular to the

2D plane. Separating the planar, rp, and transversal, ,
contributions to Rp, we obtain the following system of
equations from (15):

δh̃p ŝ i
e
ω
---- vs E×[ ]

p1d
2πm
-----------M p p1– /" f p1

–( )Rp1∫–
 
 
 

.⋅=

Mq zϕ z
2 z'ϕ z'

2 e 1 z z'––

qaB

---------------- 1
qaB

---------≈d∫d∫=

2εF/m

Ŝpτ iεpτ /"–[ ]exp≈

Îsc δf p( ) f p
–( )ŝ 2π

"
------

p1d

2π"( )2
-----------------w p p1– /"∫⋅≈

× δ εp εp1
–( ) Rp1

Rp–( ) f p
–( )ŝ Îsc R p( ),⋅≡

〈

ωRp
2i
"
----- vs p×[ ] Rp×[ ]

p1d
2πm
----------- fp1

–( )M p p1– /"∫–




–

×
vs p1×[ ] Rp×[ ]

v s p1
--------------------------------------

vs p×[ ] Rp1
×[ ]

v s p
--------------------------------------– 

 




+ iÎsc R p( ) 2e
"ω
-------

vs p×[ ] E×[ ]
v s p

----------------------------------vs,=

rp
⊥

ωrp
2iv s

"
-----------prp

⊥ 2i
"
----- pd

2πm
----------- "

aB p p1–
----------------------- fp1

–( ) p1

p1
-----rp

⊥ p
p
---rp1

⊥– 
 ∫+–

=  i
2π
"

------ pd

2π"( )2
-----------------∫ w p p1– /"δ εp εp1

–( ) rp1
rp–( ),
AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



SPIN-FLIP TRANSITIONS OF TWO-DIMENSIONAL ELECTRONS 105
(16)

Here, the kernel of Coulomb contribution (13) is writ-
ten for the two-dimensional limit case.

The induced current (4) is expressed in terms of rp
by the formula

(17)

therefore, to describe the absorption due to spin-flip
transitions, one has to solve the system of integral equa-
tions (16) and calculate the real contribution to the
induced current (17).

3. THE SHAPE OF THE ABSORPTION PEAK

Using the energy–angle variables (ε, φ) such that the

vectors p = pεnφ with pε =  and nφ = (cosφ, sinφ)
determine the orientation of the 2D momentum, one
can easily verify that the vector function rp defined by
system (16) is oriented along the 2D momentum, i.e., rp =
nφ . As a result, we obtain the following system of equa-

tions for 

(18)

ωrp
⊥ 2iv s

"
----------- p rp⋅( ) 2i

"
----- pd

2πm
----------- "

aB p p1–
-----------------------∫–+

× f p1

–( ) p1 rp⋅( )
p1

-------------------
p r1p⋅( )

p
-------------------– 

  i
2π
"

------ pd

2π"( )2
-----------------∫=

× w p p1– /"δ εp εp1
–( ) rp1

⊥ rp
⊥–( )

2e p E vs×[ ]⋅( )
p"ω

--------------------------------------.+

Jω i
e2n2D

mω
-------------E 2e

pd

2π"( )2
----------------- f p

–( ) vs rp×[ ] ;∫+=

2mε

rε φ,
||

rε φ,
|| ⊥,

ωrε φ,
|| iωεrε φ,

⊥ 2i
aB

----- ε1 f ε1

–( )d

0

∞

∫+–

× ∆φd
2π

----------
rε φ,

⊥ ∆φcos rε1 φ, ∆φ+
⊥–

pε
2 pε1

2 2 pε pε1
∆φcos–+

-------------------------------------------------------------

0

2π

∫

=  iν ∆φd
2π

----------wε ∆φ, rε φ, ∆φ+
|| ∆φcos rε φ,

||–( ),

0

2π

∫

ωrε φ,
⊥ iωεrε φ,

|| 2i
aB

----- ε1 f ε1

–( )d

0

∞

∫–+

× ∆φd
2π

----------
rε φ,

||
rε1 φ, ∆φ+

||–( ) ∆φcos

pε
2 pε1

2 2 pε pε1
∆φcos–+

-------------------------------------------------------------

0

2π

∫

=  iν ∆φd
2π

----------wε ∆φ, rε φ, ∆φ+
|| rε1 φ,

||
–( )

0

2π

∫
2eEv s

"ω
---------------- φ.sin+
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Here, ωε = 2v spε/" is the frequency of a spin-flip tran-
sition for an electron with energy ε, ν = πρ2Dω/" is the
relaxation frequency in the case of short-range scatter-
ing, and the function ωε, ∆φ = exp[–(pεlc/")2(1 –
cos∆φ)/4] takes into account the finiteness of the corre-
lation length. Since the kernels of the integral sum-
mands (18) depend only on cos∆φ, the angular depen-
dence of solutions to (18) is determined by sinφ:

(19)

For the functions  thus introduced, we obtain the
system of integral equations

(20)

where the relaxation frequencies are given by (n = 1, 2)

(21)

These frequencies decrease as pFlc/" increases and

weakly depend on ε near the Fermi energy /(2m) =
εF (see Fig. 2). The Coulomb integral terms in Eqs. (20)
are expressed through the kernel

(22)

which diverge logarithmically for z = 1 (see Fig. 3).
The complex conductivity σω is expressed in terms

of  after a simple integration with respect to angle in
formula (17). Then, for the relative absorption ξω of a
2D layer, which is determined by the ratio of the energy
flux absorbed in the quantum well to that transmitted

through the 2D layer, ξω = 4πReσω/(c ), we obtain

(23)

For T ! εF, the function  is different from zero only
in a narrow region near the Fermi energy.

When a uniform broadening of the peak dominates,

we can neglect the energy dependence of  near the

rε φ,
|| ⊥, 2eEv s

"ω
----------------χε

|| ⊥, φ.sin=

χε
|| ⊥,

ω iνε
2( )+( )χε

|| iωεχε
⊥–

+
2i

aB pε
----------- ε1 f ε1

–( )A1

ε1

ε
---- 

  χε
⊥ χε1

⊥–( )d

0

∞

∫ 0,=

ω iνε
1( )+( )χε

⊥ iωεχε
|| 2i

aB pε
----------- ε1 f ε1

–( )d

0

∞

∫–+

× A1

ε1

ε
---- 

  χε
|| A2

ε1

ε
---- 

  χε1

||– 1,=

νε
n( ) ν ∆φd

2π
----------wε ∆φ, 1 ∆φcos

n
–( ).

0

2π

∫=

pF
2

An z( )
∆φd
2π

---------- ∆φcos
n

1 z 2 z ∆φcos–+
------------------------------------------------,

0

2π

∫=

χε
||

e

ξω
e2

c e
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4πρ2Dv s
2

"ω
---------------------- ε f ε

–( )Reχε
||

d

0

∞

∫= .

f ε
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χε
|| ⊥,
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Fermi energy. Thus, Eqs. (20) reduce to a linear alge-

braic system for  ≡ :

(24)

χF
|| ⊥, χεF

|| ⊥,

ω iνF
1( )

+ iωF–

i ωF ∆ω+( ) ω iνF
2( )+ 

 
 
  χF

||

χF
⊥

 
 
 
 

0

1 
 
 

,=

0.5

0 0.5

ν1, 2/ν

ε/εF

1.0

1.0

Fig. 2. Dimensionless relaxation frequencies versus energy
(see Eq. (20)) for the following values of the parameter
pFlc/": 0.5 (solid curve), 1 (dashed curve), and 2 (dotted
curve).

1

0 1

2

2 3

A1

A2

z

A1, 2

Fig. 3. Dimensionless functions A1, 2(z).
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where ωF = 2v spF/", the relaxation frequencies 

and  are determined by Eq. (21) with ε = εF, and the
exchange renormalization of the transition frequency is
defined by the expression

(25)

The relative absorption (23) of the 2D layer is

expressed in terms of  according to the equation (for

νeff ! )

(26)

so that we obtain a Lorentz absorption peak whose
width is determined by the frequency νeff =

/2. The maximum absorption corresponds

to the frequency  =  and is shifted
toward lower frequencies because of the exchange
renormalization of the spin-flip transition.

If the variation of the transition frequency in the
energy interval |ε – εF | < "ωF/2 and the integral terms
in (20) are comparable with νeff (or exceed the collision
broadening), one should consider the system of integral
equations (20). In this case, both the energy depen-
dence of the renormalized frequency  of the spin-flip
transition, which is introduced by

(27)

and the integral terms in Eqs. (20) attributed to the non-
local character of the exchange prove to be significant.
Thus, instead of algebraic system (24), one should con-
sider the equality 

(28)

Here, the functions  for zero temperature are

defined on the interval |ε – εF | < 2v spF because 

νF
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Fig. 4. The spectral characteristics of the absorption coefficient for T = 0 (a) for various concentrations n2D at "ν = 0.93 meV and

(b) for various broadening energies "ν at n2D = 1012 cm–2.
                   
vanishes outside this interval. Numerical solutions to
such a system were obtained by a direct method, while
the absorption spectra are obtained by integrating with
respect to energy in formula (23).

Figure 4 shows the spectra of the absorption coeffi-
cient at T = 0 (a) for variations in the electron concen-
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kT = 0.1 meV

Fig. 5. Suppression of the absorption peak with increasing
temperature for n2D = 1012 cm–2and "ν = 0.93 meV.
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tration n2D and (b) for various line broadenings "ν for a
fixed 2D concentration of n2D = 1012 cm–2. The calcula-
tions are performed for the case of short-range scatter-
ing with a carrier mobility of µ = 5.5 × 105 cm2/(V s)
and a spin velocity of 1.2 × 106 cm/s (borrowed from
the experimental data of [13]), which correspond to a
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Fig. 6. The energy of the absorption peak and its maximal
value (the inset) as functions of the 2D concentration.
SICS      Vol. 96      No. 1      2003



108 VASKO, KOROVIN
broadening energy of 0.93 meV and a transition energy
of "ωF = 4 meV. The peak is shifted toward lower ener-
gies as the concentration decreases and is suppressed as
the broadening energy increases; moreover, the shape
of this peak proves to be nonsymmetric. Figure 5
shows the suppression of absorption as temperature
increases (the results correspond to n2D = 1012 cm–2

and "ν = 0.93 meV); in this case, the shape of the
peak is also changed and the peak itself is shifted
toward lower energies, which is associated with a
decrease in the Coulomb contribution with increas-
ing temperature.

These results are summarized in Fig. 6, which dem-
onstrates the shift of the absorption line and the maxi-
mum absorption (in the inset) as functions of concen-
tration at zero temperature. The line shift proves to be

almost proportional to  (for comparison, the
dashed curve represents the spin-splitting energy)
because the exchange contribution is almost indepen-

dent of  due to weak dependence of the integral
term in formula (28) on pF. However, these integral con-
tributions substantially change the shape of the absorp-
tion peak; in contrast to the one-particle result, when
the absorption peak is steplike for small "ν [9], the
peak nearly always has a Lorentz shape. The broaden-
ing energy slowly decreases as the concentration
increases (from 0.8 to 0.7 meV for the variation of con-
centration from 0.25 × 1012 to 1.75 × 1012 cm–2); we do
not present this weak dependence here.

4. CONCLUSION

In this paper, we have considered the shape of the
absorption peak due to intersubband transitions excited
by an electric-field component parallel to the 2D layer.
Both the uniform broadening of the peak due to the
scattering by static defects and the exchange renormal-
ization of spin-flip transitions have been taken into
account. It has been shown that such renormalization
not only reduces the transition energy but also apprecia-
bly changes the shape of the peak. It has been estab-
lished that the absorption peak is rapidly suppressed as
temperature increases (when T becomes comparable
with the transition energy, but still T ! εF). Numerical
results are presented for typical parameters of nonsym-
metric InAs-based heterostructures.

Let us dwell on the main approximations used in
these calculations. Hamiltonian (1) of two-dimensional
electrons is represented in the effective-mass approxi-
mation, while spin-dependent phenomena are
described by the characteristic velocity vs, which can be
interpreted as a phenomenological parameter. These
approximations, just as the consideration of solely the
Coulomb contributions of order e2 in the linearized
kinetic equation (5) (see [11]), are generally accepted.

n2D

n2D
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The model of scattering by static defects that are char-
acterized by correlation length lc and determine the uni-
form line broadening can easily be generalized to the
case of elastic scattering by acoustic phonons (which
may be significant in GaAs-based heterostructures with
sufficiently high mobility). An additional contribution
to the uniform broadening also arises due to the direct
Coulomb scattering of electrons; however, this contri-
bution is of the order of e4 and does not exceed 0.1 meV
for the concentrations considered in this paper (see the
references to the calculations and the experimental data
in [14]). In addition, the use of uniform permittivity in
formulas (7), (8), and (23) presumes that the variation
of permittivity across a heterostructure is small and
that the surface phenomena are neglected. Finally, the
use of a two-dimensional approximation for Coulomb
kernel (13) and the assumption that the transition
energy, peak width, and temperature are small com-
pared to the Fermi energy is justified in heavily doped
quantum wells. Thus, the approximations made do not
impose considerable restrictions on our description of
the shape of the peak of spin-flip absorption as a func-
tion of v s, concentration, and temperature.

The results presented in this paper describe the
far-infrared-absorption peak due to spin-flip transi-
tions of 2D electrons, which can be investigated both
by spectral measurements and by measuring the
dependence of this peak on transverse voltage
(which modulates the spin velocity v s) or on temper-
ature. In addition, a similar description of the colli-
sion broadening and the exchange renormalization of
spin-flip transitions is needed for considering the
excitation of spin–plasmon 2D oscillations (see [9])
and spin-flip scattering processes.
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Abstract—An experimental investigation is performed of the crystal structure and magnetic and electrical

properties of anion-deficient compositions of  (0 ≤ x ≤ 0.30) which do not contain man-
ganese ions of different vacancies. It is found that all reduced samples are single-phase perovskites with
O-orthorhombic (x = 0, 0.05), rhombohedral (x = 0.10, 0.15, 0.20, 0.25), and cubic (x = 0.30) symmetry of the
unit cell. It is observed that systems of the compounds being treated experience a transition from a weakly fer-
romagnetic (x = 0) to a nonuniform ferromagnetic (0 ≤ x ≤ 0.10) state. An increase in the degree of nonstoichi-
ometry with respect to oxygen leads to the emergence of the antiferromagnetic orbitally disordered phase. For
compounds with x > 0.20, clearly defined properties are observed that are characteristic of cluster spin glass
with the freezing temperature of magnetic moments TF ~ 45 K. The maximal amount of the ferromagnetic com-
ponent is registered for x = 0.15. All of the reduced samples are semiconductors. As the substitution level
increases, the electrical resistivity (at room temperature) first decreases in magnitude (0 ≤ x ≤ 0.15) and then
increases (x > 0.15). The magnetoresistance of all reduced samples increases gradually upon transition to a
magnetically ordered state and reaches its maximal value at the liquid nitrogen temperature. A hypothetical
magnetic phase diagram is constructed for the system of anion-deficient compositions of

 (0 ≤ x ≤ 0.30) being treated. The investigation results contribute to understanding the
nature of 180-degree indirect superexchange interactions between ions of trivalent manganese. It is assumed
that the Mn3+–O–Mn3+ superexchange interactions are negative in the orbitally disordered phase in the case of
pentahedral coordination of Mn3+ ions. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Substituted Ln1 – xDxMnO3 manganites with a per-
ovskite structure (Ln = La, Pr, Nd, etc., and D = Ca, Sr,
Ba, etc.) have been attracting the attention of research-
ers for well over 50 years [1]. Compounds of this type
exhibit unique correlations between the chemical com-
position, crystal structure, and magnetic and electrical
properties [2]. The early investigations of these materi-
als were caused by the need for development and use of
dielectric ferromagnets of high spontaneous magneti-
zation for high-frequency applications, and later inves-
tigations were performed to study and use the so-called
“colossal” magnetoresistance (CMR) revealed in sub-
stituted manganites in the early 1990s [3]. Although the
nature of the physical processes occurring in mangan-
ites is still unclear, even today these compounds find
wide application. They are used in magnetic recording
for recording and readout, as solid electrolytes of fuel
cells, as catalysts, and as magnetic field sensors [4–6].

The conditions of preparation and magnetic and
electrical properties of ceramic samples in a series of
solid solutions of La1 – xDxMnO3 (D = Ca, Sr, Ba) were
1063-7761/03/9601- $24.00 © 20110
first reported by Jonker and Van Santen [1]. They
observed a correlation between the electrical conduc-
tivity and magnetization during substitution of bivalent
alkaline-earth ions for lanthanum manganite. It was
found that, in the calcium concentration range of 0.20 ≤
x ≤ 0.50, this compound becomes ferromagnetic and
exhibits metallic conduction at temperatures below the
Curie point. The magnetoresistance and other transport
properties for manganites were first described by
Volger [7], who demonstrated that the magnetoresis-
tance of La0.8Sr0.2MnO3 is negative with a peak some-
what below TC. Searle and Wang [8] were the first to
investigate the magnetic transport properties of single
crystals of a La1 – xPbxMnO3 (0.20 ≤ x ≤ 0.44) system.
They revealed metallic conduction below TC and a sig-
nificant negative magnetoresistance of about 20% in a
field of 1 T.

The initial compound LaMnO3 is an antiferromag-
netic semiconductor with a magnetic structure of the
A type [9]. A weak ferromagnetic component arises as
a result of Dzyaloshinsky–Moriya interactions. The
Neél temperature for this compound is approximately
003 MAIK “Nauka/Interperiodica”
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140 K. The presence of Jahn–Teller Mn3+ ions with the

electronic configuration  (S = 2), which enter into

stoichiometric La3+Mn3+ , causes the so-called
O'-orthorhombic symmetry of the unit cell of this com-
pound. The substitution of Ca2+ ions for La3+ ions leads
to the emergence of Mn4+ ions with the electronic con-

figuration  (S = 3/2). With the concentration of sub-
stituent ions of x ~ 0.10, a transition is observed from
the O'-orthorhombic symmetry of the unit cell to the
O-orthorhombic symmetry, which is explained by the
removal of cooperative static Jahn–Teller distortions [10].
At x = 0.20, a significant increase is observed in spon-
taneous magnetization and in the magnetic ordering
temperature, as well as a transition to metallic conduc-
tion below TC.

Barium-substituted manganites are studied much
less than compounds substituted by calcium and stron-
tium ions. This is partly due to the difficulty of prepar-
ing quality samples in a concentration range of substit-
uent ions [11]. In the case of calcium, a complete series
of solid solutions is produced by synthesis in air, while
in the case of strontium, the range of solubility is lim-
ited to x = 0.70. In order to obtain a complete series
(0 ≤ x ≤1) of solid solutions with strontium, a reducing
medium is required in which the synthesis must be per-
formed [12]. The solubility limit for barium ions was
found to be x = 0.45 [13]. This is due to the tendency of
manganese ions to pass to a tetravalent state by forming

hexagonal Ba2+Mn4+  in air. The uniform series of
manganites substituted by barium ions was recently
extended to x = 0.50 [14] using two-stage redox synthe-
sis. Moreover, a similar method was used to prepare
single-phase La1/3Ba2/3MnO3 perovskite, which has an
orthorhombic symmetry of the unit cell and exhibits the
metal–insulator transition at 230 K [15].

Of other manganites, the Ba-substituted ones attract
attention because they have a Curie point above room
temperature; for example, for La0.65Ba0.35MnO3, we
have TC = 362 K with a peak of magnetoresistance
observed in the vicinity of this point. The high value of
TC is attributed to the large mean ionic radius in the A
sublattice of the ABO3 perovskite structure [16]. The
phase transition temperatures close to room tempera-
ture render the materials being treated promising from
the standpoint of their practical uses.

The basic theory explaining the properties of substi-
tuted manganites is the theory by Zener of the so-called
double exchange [17, 18]. This theory is based on the
real transition of an electron from a half-filled eg-orbital
of an Mn3+ ion to a free eg-orbital of a Mn4+ ion. The
double exchange mechanism favors ferromagnetism
and a metallic type of conduction. A deviation from the
stoichiometric composition with respect to oxygen
causes a variation of the mean valency of manganese.
The removal of a single ion of oxygen from the crystal

t2g
3 eg

1

O3
2–

t2g
3

O3
2–
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lattice leads to the 2Mn3+  2Mn4+ transition. At

γ = x/2,  contains
only Mn3+ ions. In view of the foregoing, it is of inter-
est to investigate anion-deficient samples of

, whose magnetic and electrical
properties are defined by monovalent ions of Mn3+.

2. EXPERIMENT

Ceramic compositions of 
(x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) were prepared
using the conventional ceramic technology. La2O3 and
Mn2O3 oxides and, especially, pure carbonate BaCO3
were weighed in the desired cationic ratio (Ln : Ba : Mn =
[1 – x] : [x] : 1) and thoroughly mixed. The resultant
mixtures were ground in an agate mortar with an addi-
tion of a small amount of ethyl alcohol. Prior to weigh-
ing, lanthanum oxide was annealed in air at 1000°C for
2 h to remove moisture and carbon dioxide. Preliminary
roasting was performed in air at 1100°C for 2 h with
subsequent grinding. The final synthesis was performed
in air at 1550°C for 2 h. The chemical equation describ-
ing the preparation of compounds of initial composi-
tions has the following form:

(1)

During synthesis, the samples were placed on a plat-
inum substrate. In order to produce compositions with
the oxygen content close to stoichiometric, the samples
were quenched from 1000°C to room temperature. The
X-ray analysis of the reaction products was performed
using a DRON-3 diffractometer, under conditions of
Kα radiation of Cr at room temperature at angles in the
range of 30° ≤ 2θ ≤ 100°. A graphite monochromator
was used for filtering out the Kβ radiation of Cr. The
oxygen content was determined by thermogravimetric
analysis. According to our investigation results, the
samples synthesized in air in the range of 0 ≤ x ≤ 0.15
had an oxygen content somewhat above stoichiometric.
The excess oxygen decreased gradually with the con-
centration of Ba ions from δ ~ 0.11 (x = 0) to δ ~ 0 (x =
0.20). Samples with x = 0.25 and 0.30 were stoichio-
metric with respect to oxygen.

Anion-deficient compositions of 
(x = 0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30) were prepared
by the method of topotactic reactions. The samples
were placed into evacuated (P ~ 10–4 Pa) quartz
ampules along with a certain amount of metallic tanta-
lum, which was used as an oxygen absorber. Quartz
ampules were held at 850°C for 20 h with subsequent
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cooling to room temperature at a rate of 100 deg/h. The
chemical equation of reduction is as follows:

(2)

The oxygen content for reduced samples was deter-
mined by weighing prior to and after reduction, by the
variation of the mass. The chemical formula of reduced
compounds may be written as La1 – xBaxMnO3 – x/2 ± 0.01.

The magnetization was investigated using a com-
mercially available OI-3001 vibrating-coil magnetom-
eter in the temperature range from 4 to 300 K. The tem-
perature dependence of magnetization was measured
after cooling in a fairly weak magnetic field of 100 Oe
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Fig. 1. Powder X-ray diffraction patterns at room tempera-
ture for La1 – xBaxMnO3 – x/2 compounds of anion-deficient
compositions with x = 0.05 (a), 0.10 (b), 0.30 (c). The insets
demonstrate reflections of (a) 132 + 024 + 312 + 204,

(b) 21  + 211 + 11, and (c) 211.1 2
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(FC) and after cooling without a field (ZFC). The mag-
netic ordering temperature (Tmo) was defined as the
temperature of the FC-magnetization derivative mini-
mum (dMFC/dT). The value of spontaneous magnetic
moment (Ms) was determined by the field dependence
by extrapolation to zero field. The electrical resistance
was measured in samples sized 10 × 2 × 2 mm by the
standard four-point probe method in the temperature
range from 77 to 300 K. The magnetoresistance was
calculated in accordance with the formula

(3)

where MR[%] is the negative isotropic magnetoresis-
tance expressed in percent, ρ(H) is the electrical resis-
tivity in a magnetic field of 9 kOe, and ρ(0) is the elec-
trical resistivity in zero magnetic field. The direction of
electric current coincided with the longer side of the
samples. The magnetic field was applied in parallel
with electric current in the sample.

3. EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

According to the results of X-ray analysis, all of the
reduced samples of La1 – xBaxMnO3 – x/2 (x = 0, 0.05,
0.10, 0.15, 0.20, 0.25, 0.30) represent a single-phase
product with a perovskite structure (Fig. 1). The param-
eters were calculated on the assumption of the follow-
ing symmetries of the unit cell: O'-orthorhombic (O')
for x = 0, 0.05); rhombohedral (R) for 0.10 ≤ x ≤ 0.25;
and cubic (C) for x = 0.30. The parameters are given in
the table. According to Goodenough [19], the O'-ortho-
rhombic symmetry is caused by the cooperative static
Jahn–Teller effect. This effect is due to the presence of
Jahn–Teller ions (for example, high-spin Mn3+ or Cu2+)
in equivalent crystallographic positions. As soon as the
concentration of the Jahn–Teller ions becomes less than
90%, a transition is observed to the local dynamic
Jahn–Teller effect and, along with that, to O-ortho-
rhombic distortions of the unit cell. The true symmetry
of the unit cell in the case of O'- and O-orthorhombic
distortions is monoclinic [20]. However, we observed a
transition to rhombohedral distortions at x = 0.10. It is
known that the crystal lattice of perovskite may be dis-
torted as a result of two factors, namely, (i) the incon-
sistency of the size of cations to the size of the pores
they occupy and (ii) the Jahn–Teller effect. In the
former case, the transition to a minimum of free energy
is caused by cooperative rotation of oxygen octahe-
drons. In the latter case, distortions arise as a result of
removal of electronic eg levels of Jahn–Teller ions in
the octahedral field of oxygen anions [4]. Therefore, it
is possible that the size factor dominates over the Jahn–
Teller factor for Ba-substituted manganites, and the
concentration of oxygen vacancies γ = 0.05 is insuffi-
cient for removing Jahn–Teller distortions; as a result,
the O'  R transition is observed. It is interesting to
note that, as the concentration of substituent ions

MR %[ ] ρ H( ) ρ 0( )–[ ] /ρ 0( ){ } 100%,×=
 AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003
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increases, a gradual decrease is observed in the specific
(per cell) volume of the unit cell. It is known that La3+

and Ba2+ ions with a coordination number that is a mul-
tiple of 12 have effective ionic radii of 1.36 and 1.61 Å,
respectively [21]. Consequently, the substitution of
Ba2+ ions for La3+ ions must bring about an increase in
the unit cell volume. However, a reduction of this volume
is observed, which may be attributed to the decrease in
the coordination number of Mn3+ ions and to the emer-
gence of oxygen vacancies. The effective ionic radii of
Mn3+ for the octahedral and pentahedral types of symme-
try are 0.645 and 0.580 Å, respectively [21].

The La0.95Ba0.05MnO2.98 sample exhibits an increase
in the FC magnetization (Fig. 2) at a temperature below
150 K. This temperature is close to the Neél tempera-
ture and amounts to approximately 140 K for LaMnO3.
The ZFC and FC curves differ very strongly immedi-
ately below Tmo. The ZFC magnetization exhibits a
small peak in the neighborhood of Tmo and, after that, is
almost independent of temperature upon cooling. Such
a behavior is possible in the case of a high magnetic
anisotropy of the sample. The La0.90Ba0.10MnO2.95 sam-
ple has Tmo = 153 K. The ZFC and FC curves come to
differ from each other far below this temperature. The
ZFC magnetization reaches its maximal value at the
critical temperature TC = 138 K and then decreases
gradually. The transition to the paramagnetic state is
quite abrupt, which is characteristic of magnetically
homogeneous magnetic substances. The lowest
temperature, Tmo = 124 K, is exhibited by the
La0.85Ba0.15MnO2.93 sample.

The La0.80Ba0.20MnO2.90 compound (Fig. 3) is char-
acterized by an abrupt decrease in the ZFC curve below
Tcr = 60 K. The magnetic ordering temperature for this
composition is 137 K. Such a behavior of the ZFC mag-
netization is characteristic of the process of gradual
freezing of magnetic moments of randomly distributed
clusters. However, the transition to the demagnetized
state is rather abrupt. The most clearly defined proper-
ties of cluster spin glass are observed for the
La0.70Ba0.30MnO2.85 compound. The ZFC curve exhibits
a sharp peak in the vicinity of 45 K. We take this tem-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
perature to be the freezing temperature Tfr of magnetic
moments of clusters. For La1 – xBaxMnO3 – x/2 composi-
tions with x = 0.25, 0.30, the transition to the paramag-
netic state is very wide; therefore, we did not apply the
standard procedure for determining Tmo.
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Fig. 2. Temperature dependence of ZFC (light symbols) and
FC (dark symbols) magnetization in a magnetic field of 100 Oe
for anion-deficient compositions of (a) La0.95Ba0.05MnO2.98
and (b) La0.90Ba0.10MnO2.95. The insets demonstrate the
temperature dependence of the derivative of FC magneti-
zation.
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2

The type of symmetry and the unit cell parameters for samples of a La1 – xBaxMnO3 – x/2 (0 ≤ x ≤ 0.30) system of anion-defi-
cient compositions

Compounds Symmetry a, Å b, Å c, Å α V, Å3

LaMnO3 O'-orthorhombic 5.537 5.749 7.692 – 244.72

La0.95Ba0.05MnO2.98 O'-orthorhombic 5.524 5.675 7.802 – 244.58

La0.90Ba0.10MnO2.95 rhombohedral 3.939 – – 90.41° 61.13

La0.85Ba0.15MnO2.93 rhombohedral 3.938 – – 90.29° 61.09

La0.80Ba0.20MnO2.90 rhombohedral 3.938 – – 90.16° 61.07

La0.75Ba0.25MnO2.88 rhombohedral 3.937 – – 90.02° 61.03

La0.70Ba0.30MnO2.85 cubic 3.937 – – – 61.02
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Figure 4 gives the field dependence of magnetiza-
tion at a temperature of 6 K, obtained in the decreas-
ing field mode, for some reduced compositions of
La1 – xBaxMnO3 – x/2. The magnetization is not saturated
in fields of up to 16 kOe; therefore, it is quite difficult
to determine the magnitude of spontaneous magnetic
moment. The La0.95Ba0.05MnO2.98 compound exhibits
the Ms value equal to 0.81µB/Mn3+ ion. It will be
recalled that the Ms value of 4µB corresponds to a fully
ferromagnetic state (magnetic moment of Mn3+ ion).
One can see in Fig. 4 that, as the level of substitution
rises, Ms first increases to 3µB/Mn3+ ion (x = 0.10) and
then decreases to 0.20µB/Mn3+ ion (x = 0.30).

The temperature dependences of electrical resistiv-
ity and magnetoresistance for reduced compositions of
La1 – xBaxMnO3 – x/2 with x = 0.05, 0.10, 0.20, and 0.30
are given in Fig. 5. All samples exhibit resistivity of the
activated type. No anomalies were observed on the
curve of the dependence of electrical resistivity in the
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for anion-deficient compositions of (a) La0.80Ba0.20MnO2.90
and (b) La0.70Ba0.30MnO2.85 . The inset demonstrates the
temperature dependence of the derivative of FC magneti-
zation.
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region of transition to the magnetically ordered state.
As the level of substitution rises, the electrical resistiv-
ity at room temperature first decreases in magnitude to
x = 0.15 and then gradually increases up to x = 0.30.
The least value of electrical resistivity at room temper-
ature is exhibited by the sample with x = 0.15, which is
characterized by a significant ferromagnetic compo-
nent. The magnetoresistance for all samples correlates
with the absence of any anomalies of electrical resistiv-
ity in the vicinity of the temperature of transition to the
magnetically ordered state and gradually decreases to
reach its maximal value at liquid nitrogen temperature.
Such a behavior of magnetoresistance is characteristic
of granulated film systems and polycrystalline samples
and is probably due to intergranular electric transport.
A maximal value of magnetoresistance of about 34% is
observed for the sample with x = 0.30.

The following reasoning helps us to understand the
nature of the magnetic processes occurring in reduced
samples of La1 – xBaxMnO3 – x/2. The double exchange
may be realized in a system with mixed valency of
manganese (Mn3+/Mn4+). The samples of the system
being treated formally contain only Mn3+ ions. There-
fore, we believe that for interpreting the magnetic prop-
erties, one must use the inferences of Goodenough’s
theory [22] for 180-degree indirect superexchange
interactions. The Mn3+–O–Mn3+ superexchange inter-
actions are anisotropic in the orbitally ordered phase
(positive in the (001) plane and negative along the [001]
direction) but isotropic in the orbitally disordered phase
(positive along all directions). As a result of realization
of the Jahn–Teller effect, antiferrodistortion orbital
ordering (ordering of  orbitals) is observed for

LaMnO3; therefore, the Mn3+–O–Mn3+ superexchange
interactions are antiferromagnetic. The small ferromag-
netic component is defined by the antisymmetric
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Fig. 4. Field dependences of magnetization at a temperature
of 6 K, obtained in the decreasing field mode for anion-defi-
cient compositions of La1 – xBaxMnO3 – x/2 with x = 0.05
(dark squares), 0.10 (light squares), 0.15 (dark circles), 0.25
(light circles), and 0.30 (light triangles).
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exchange of Dzyaloshinsky and Moriya [23]. In view
of these facts, we can conclude that LaMnO3 is a weak
ferromagnet (Fig. 6). Information about the phase
states of stoichiometric Ba-substituted manganites can
be found in [1, 24–27]. As the concentration of substit-
uent ions increases above the critical value x ~ 0.1, the
cooperative static Jahn–Teller effect is gradually
removed along with orbital ordering. Therefore, the
reduced compounds in the 0 ≤ x ≤ 0.10 range must
exhibit an increase in the ferromagnetic component, as
is observed experimentally. The removal of the cooper-
ative static Jahn–Teller effect is further promoted by the
emergence of oxygen vacancies [28]. The transition to
ferromagnetism apparently proceeds via the non-sin-
gle-phase magnetic state. The results of numerous
investigations demonstrate that this possibility may be
realized [29]. However, the process of decrease in the
coordination of manganese ions is superimposed on the
process of removal of orbital ordering. It is known that

Ca2+Mn3+  with a perovskite-like structure, inO2.50
2–
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Fig. 5. (a) Electrical resistivity and (b) magnetoresistance in
a field of 9 kOe as functions of temperature for anion-defi-
cient compositions of La1 – xBaxMnO3 – x/2 with x = 0.05
(dark squares), 0.10 (light squares), 0.20 (dark circles), and
0.30 (light circles).
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which the Mn3+ ion is in pentahedrons, is an antiferro-
magnet [30, 31]. Therefore, it is reasonable to assume
that the Mn3+–O–Mn3+ superexchange interaction for
pentahedral symmetry of manganese ions is antiferro-
magnetic, and the uniform ferromagnetic state for 0 ≤
x ≤ 0.10 cannot be realized for yet another reason,
namely, because of the emergence of oxygen vacancies
(Fig. 6). We believe that the compounds in this region
of compositions represent, from the magnetic stand-
point, a mixture of antiferromagnetic (orbitally ordered
and disordered) and ferromagnetic (orbitally disor-
dered) phases. For x > 0.10, the volume of the antifer-
romagnetic orbitally disordered phase starts increasing
significantly, which causes a reduction of spontaneous
magnetic moment. The competition in interaction
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Fig. 6. (a) Spontaneous magnetization and (b) tentative
magnetic phase diagram for a system of anion-deficient
compositions of La1 – xBaxMnO3 – x/2 (0 ≤ x ≤ 0.30); Fw
indicates a weakly ferromagnetic state, A + F indicates a
nonuniform magnetic state representing a mixture of anti-
ferromagnetic and ferromagnetic phases, SG indicates a
state similar to cluster spin glass, F + P indicates a nonuni-
form magnetic state in the case of which short-range ferro-
magnetic correlations are observed, and P indicates the
paramagnetic state. The light circles indicate the magnetic
ordering temperature, and the dark circles indicate the crit-
ical freezing temperature of magnetic moments of clusters.
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between antiferromagnetically and ferromagnetically
ordered clusters apparently leads to a state of the type
of cluster spin glass with a gradually decreasing freez-
ing temperature of magnetic moments of clusters. The
possibility of this is demonstrated by a clearly defined
peak on the curve of the temperature dependence of
ZFC magnetization. The gradual decrease in Tfr is
indicative of the decrease in the size of ferromagneti-
cally ordered clusters. A state of the type of cluster spin
glass is often observed in inhomogeneous magnetic
systems such as granulated Co–Cu and Co–Ag films
[32, 33]. In the systems, ferromagnetic granules are
implanted in a nonferromagnetic matrix. A significant
temperature interval below Tcr, where the ZFC curve
almost coincide with FC curve for compositions with
0.10 ≤ x ≤ 0.20, may be indicative of the existence of
short-range ferromagnetic correlations during transi-
tion to a demagnetized state; i.e., the ferromagnetic
ordering temperature is higher than the antiferromag-
netic ordering temperature. For compositions with
0.20 < x ≤ 0.30, the properties of cluster spin glasses are
defined the most clearly.

A simple model may be suggested for interpreting
the electric and magnetic transport properties. As the
concentration of substituent ions increases, the volume
of ferromagnetic clusters increases and brings about a
simpler displacement of charge carriers, as expressed
by the increase in resistivity for x ≤ 0.15. Outside the
ferromagnetic clusters, the distribution of spins over
directions is characterized by a lower degree of order
than that within these clusters. As the volume of antifer-
romagnetic (orbitally disordered) phase for x > 0.15,
the scattering of charge carriers by randomly distrib-
uted spins increases along with resistivity. In addition,
one must take into account the intergranular effect. The
diffusion coefficient for oxygen anions on the surface
of granules is an order of magnitude higher than that for
anions within the granules [34]; therefore, micro-
domains depleted in oxygen anions are formed on the
surface of granules during reduction. It is known that,
in the case of reduction, the size of granules is reduced
and their number increases [35]. So, the reduction
brings about predomination of the intergranular contri-
bution to electric transport and to an increase in resis-
tivity. The inference about the intergranular contribu-
tion to electric transport is further supported by the
behavior of magnetoresistance. The application of
external magnetic field causes an increase in the degree
of order for spins outside ferromagnetic clusters. This
brings about the emergence of magnetoresistance.
Thus, the increase in the degree of order must be the
higher, the lower the temperature and the lower the
degree of order of spins before the application of mag-
netic field. For this reason, the maximal magnetoresis-
tance is observed for a sample with the most clearly
defined properties of cluster spin glass (with x = 0.30)
at liquid nitrogen temperature.
JOURNAL OF EXPERIMENTAL 
4. CONCLUSION

We have performed an experimental investiga-
tion of the crystal structure and magnetic and elec-
trical properties of anion-deficient compositions of
La1 – xBaxMnO3 – x/2 (0 ≤ x ≤ 0.30) which do not contain
different-valency ions of manganese. It has been found
that all reduced samples are single-phase perovskites
with O'-orthorhombic (x = 0, 0.05), rhombohedral (x =
0.10, 0.15, 0.20, 0.25), and cubic (x = 0.30) symmetry
of the unit cell. As the concentration of substituent ions
increases, a gradual decrease in the specific volume of
the unit cell is observed. It has been found that the com-
pounds of the system being treated experience a transi-
tion from a weakly ferromagnetic (x = 0) to a nonuni-
form ferromagnetic (0 < x ≤ 0.10) state. An increase in
the degree of nonstoichiometry with respect to oxygen
leads to the emergence of the antiferromagnetic orbit-
ally disordered phase. The competition between anti-
ferromagnetic and ferromagnetic interactions brings
about the state of cluster spin glass. For compounds
with x > 0.20, clearly defined properties are observed
that are characteristic of cluster spin glass with the
freezing temperature of magnetic moments Tfr ~ 45 K.
The maximal value of the ferromagnetic component is
registered for the sample with x = 0.10. All of the
reduced compounds are semiconductors. As the substi-
tution level increases, the electrical resistivity of the
samples first decreases in magnitude at room tempera-
ture (0 ≤ x ≤ 0.15) and then increases (x > 0.15). The
magnetoresistance of all reduced samples increases
gradually upon transition to a magnetically ordered
state and reaches its maximal value at liquid nitrogen
temperature. A hypothetical magnetic phase diagram is
constructed for the system of anion-deficient composi-
tions of La1 – xBaxMnO3 – x/2 (0 ≤ x ≤ 0.30) being treated.
The experimental data may be interpreted using Good-
enough’s theory for 180-degree indirect superexchange
interactions. It is assumed that the Mn3+–O–Mn3+

superexchange interactions are negative in the orbitally
disordered phase in the case of pentahedral coordina-
tion of Mn3+ ions.
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Abstract—The magnetic field (0 ≤ B ≤ 32 T) and temperature (0.1 ≤ T ≤ 15 K) dependences of longitudinal
and Hall resistivities have been investigated for p-Ge0.93Si0.07/Ge multilayers with different Ge layer widths
12 ≤ dw ≤ 20 nm and hole densities ps = (1–5) × 1015 m–2. An extremely high sensitivity of the experimental
data (the structure of magnetoresistance traces, relative values of the inter-Landau-level gaps deduced from the
activation magnetotransport, etc.) to the quantum well profile is revealed in the cases where the Fermi level
reaches the second confinement subband. An unusually high density of localized states between the Landau lev-
els is deduced from the data. Two models for the long-range random impurity potential (the model with ran-
domly distributed charged centers located outside the conducting layer and the model of the system with a
spacer) are used to evaluate the impurity potential fluctuation characteristics: the random potential amplitude,
the nonlinear screening length in the vicinity of integer filling factors ν = 1 and ν = 2, and the background den-
sity of states (DOS). The described models are suitable for explanation of the observed DOS values, while the
short-range impurity potential models fail. For half-integer filling factors, a linear temperature dependence of
the effective quantum Hall effect plateau–plateau (PP) transition widths ν0(T) is observed, contrary to the
expected scaling behavior of the systems with short-range disorder. The finite T  0 width of the PP transi-
tions may be due to an effective low-temperature screening of a smooth random potential due to the Coulomb
repulsion of electrons. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The p-type modulation-doped heterostructures on
the basis of Si, Ge, and their alloys are of interest in
device physics, in view of Si-based chip technology for
fabrication of high-performance transistors, intrachip
optical interconnects, and possible applications in fiber-
optic telecommunications. Many quantum physical
aspects could be foreseen in investigations of this het-
erosystem because of specific features of the valence
band structure, which might be varied dramatically by
the extent of the hole confinement and uniaxial stress
arising from the lattice mismatch. Because the band
offset in the Ge–Si heterosystem is almost entirely
located in the valence band, the confinement of elec-
trons is hardly achievable and 2D conductance is
mainly due to holes.

Until now, the research has mostly been performed
on Si side compounds, like the Si/Si1 – xGex/Si quan-
tum well (QW), to be best compatible with the Si sub-
strate [1]. In this case, the hole conductivity is via the
Si–Ge alloy. In this paper, we present the results
obtained on a high-quality two-dimensional hole gas
(2DHG) realized in the heterosystems on the Ge side,

¶This article was submitted by the authors in English.
1063-7761/03/9601- $24.00 © 20118
in the p-Ge1 – xSix/Ge heterostructures with a small
amount of Si. In this case, the 2DHG is confined not in
an alloy with randomly distributed Ge and Si atoms
within the crystal lattice, but in a uniform Ge crystal
layer, which works towards a decrease in the number of
imperfections [2].

Much knowledge on the valence band properties can
be obtained under conditions of its magnetic field quan-
tization, especially in the case where it is spatially
quantized in addition. Some information on the intri-
cate Landau level (LL) structure of the valence band
can be obtained from the quantum cyclotron resonance
[2, 3]. This experiment yields distances between the
adjacent levels positioned in each series on the opposite
sides of the Fermi level. Similar probing of the LL dia-
gram within its cut by the Fermi level can be realized
by means of activation magnetotransport analysis under
the quantum Hall regime. Distances between the adja-
cent LLs are then extracted irrespective of their classi-
fication in certain series because there are no restric-
tions due to optical selection rules. Moreover, a detailed
scrutiny of the states distributed between the adjacent
LLs can be achieved from scanning them by the Fermi
level in experiments of this kind.
003 MAIK “Nauka/Interperiodica”
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The analysis of temperature dependence of the Hall
and longitudinal magnetoresistivity both in the plateau
and in the plateau-plateau transition regions allows
extracting such electron spectrum parameters as the
energy separation between adjacent LLs, the relative
fractions of localized and extended states, the density of
localized states, and the width of extended state bands.
Experimental reconstruction of the energy spectrum is
especially important for p-type systems with a complex
valence band spectrum, in which the LL picture is not
determined by only the cyclotron energy with a given
effective mass as for the n-type system with a simple
parabolic conduction band.

2. EXPERIMENTAL TECHNIQUE

A series of multilayered p-Ge1 – xSix/Ge (x ≈ 0.07) het-
erostructures differing in the Ge layer width in the
range dw = 12–20 nm and the hole density per single Ge
layer ps = (1–5) × 1015 m–2 were grown by hydride vapor
deposition on the Ge(111) substrate. The undoped Ge
buffer was grown first, followed by the undoped
Ge1 − ySey buffer and then by several undoped
Ge1 − xSix/Ge periods and a certain number of periods
with Ge1 – xSix barriers doped symmetrically with boron
in their central parts (having undoped spacers about 1/4
the barrier width on both sides of the barriers): see the
inset in Fig. 2 below. The relation between the Si con-
tent in the buffer (y) and in the multilayers (x) predeter-
mines the distribution of mismatch stress between the
Ge and Ge1 – xSix layers. The barriers are sufficiently
wide to avoid inter-Ge-layer tunneling. The low-tem-
perature hole mobilities are in the range 1–1.7 m2/(V s).
Double cross Hall bridges were fabricated by the pho-
tolithography and subsequent wet etching technique
and contacts attached by thermocompression. Hall and
longitudinal magnetoresistivities were measured on the
dc current in normal magnetic fields up to 12 T in the
steady regime and up to 32 T in ~10 ms pulses within
the temperature range 0.1 ≤ T ≤ 15 K.

3. GENERAL PICTURE 
OF LANDAU LEVELS DEDUCED

FROM THE QUANTUM HALL EFFECT

3.1. Manifestations of the Second Subband 
in ρxx(B) and ρxy(B) Experimental Traces

The simplest situation occurs for the narrowest Ge
layers with the lowest hole densities. In this case, the
QW profile approaches a rectangular shape and only
the lowest confinement subband is filled with holes.
Although the system of Landau levels in the valence
band is rather complicated [4] due to heavy and light
hole hybridization complemented by the effects of con-
finement and uniaxial stress (Fig. 1b), the experimental
recordings of the longitudinal and Hall magnetoresis-
tivities, ρxx(B) and ρxy(B), have a regular structure sim-
ilar to that observed in a simple nondegenerate conduc-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion band (Fig. 1a). The ρxy(B) traces contain plateaus
of the integer quantum Hall effect (QHE) at fundamen-
tal values ρxy = h/ie2, with i an integer, concomitant with
minima in ρxx(B), both kinds of peculiarities being reg-
ularly spaced in the reciprocal magnetic field and
monotonicallly damped with a decrease in the field.
The peculiarities correspond to i = 1, 2, 4, 6, …; i.e., the
even-numbered QH peculiarities dominate in weak
fields. This is analogous to a simple conductivity band
for small Zeeman splitting.
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Fig. 1. Comparison of the calculated LL picture and the
Fermi level motion (b) with the experimental recordings (a)
and deduced activation energies (c) for sample 1125a7.
Mobility gaps are estimated from (c) as twice the maximum
Ea(B) values.
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Fig. 2. Quantum Hall effect in different samples. Inset: a schematic valence band energy diagram of the samples studied.
Magnetoresistivities of an entirely different struc-
ture were detected for samples with wider Ge layers
and higher hole densities [5]. In Figs. 2 and 3, the Hall
and longitudinal magnetoresistivities are depicted for
the samples presented in the table. For the longitudinal
magnetoresistivity, the amplitudes of the traces are nor-
malized to the highest peak and in their positions are
normalized by scaling them versus the inverse filling
factor ν = psh/eB. The common feature of these five
samples is that, in spite of different QW widths and
hole densities, their traces contain plateaus in ρxy(B)
and concomitant ρxx(B) minima for i = 1 and 2. But the
structures of these curves differ significantly below the
plateau with i = 2.

For samples 1006, 1124, and 1125, the plateau with
i = 4 comes next on the low-field side after the plateau
with i = 2 and the other even-numbered plateaus domi-
nate. For the other two samples, 1123 and 1003, the pla-
teau with i = 3 comes next after the one with i = 2, the
plateau with i = 4 is missed, and the odd numbered pla-
teaux dominate. These features are even more pro-
nounced in the ρxx(B) curves (Fig. 3). To explain this,
we have calculated the Ge valence band energy spectra
quantized by both the magnetic field and the confine-
ment. The model of an infinitely deep rectangular well
JOURNAL OF EXPERIMENTAL
was used [4]. Examples of these calculations are pre-
sented in Figs. 1b and 4. The behavior of the Fermi
level is presented for extremely sharp LLs and constant
total hole densities.

The calculations show that, in sample 1006, the
Fermi level moves within the ground confinement sub-

ρ x
x,

 a
.u

.

6 4 3

1003

1123

1124

1006

0 0.25 0.50 0.75 1.00
1/v  = B/B1

i = 2

Fig. 3. Longitudinal magnetoresistivity of the samples
shown in Fig. 2 scaled versus the inverse filling factor.
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RECONSTRUCTION OF THE 2D HOLE GAS SPECTRUM 121
band. Its levels are grouped in pairs, similarly to the LL
picture for the conduction band with a small spin split-
ting. This is why the even-numbered peculiarities dom-
inate here.

Upon lowering the magnetic field, the Fermi level
approaches the lowest LL of the second subband (the
level marked with “*” in Figs. 1b and 4). In samples
1124 and 1125, it enters this LL, but this event does not
lead to significant changes in the experimental record-
ings (Figs. 1a, 1b).

The degree of the second subband involvement

increases with ps , and the samples in the table are
sorted in rows according to this parameter. As follows

from the calculations (Fig. 4), the value ps  ≈ 1.9 for
sample 1123 is sufficient for the Fermi level to rather
deeply penetrate the second subband; as a result, a sin-
gle step for i = 2 in the Fermi level motion between the
ground subband LLs is divided into two steps with i = 2
and i = 3. This is how the i = 3 peculiarity arises in the
experimental data.

Another consequence of the embedding of the addi-
tional level is that step no. 4 for sample 1123 no longer
corresponds to the transition at the distance of about the
cyclotron energy between the orbitally split spin cou-
ples of the ground subband; instead, it corresponds
either to the transition onto this additional level or, if
the embedded level is lower than the Fermi level, to the
transition within the spin split couples. In the latter
case, the numbers of observed peculiarities, i.e., the
corresponding integer filling factors, are merely shifted
one unit higher because of an additional level emerging
below the Fermi level (changing their numbers from
even to odd). In both cases, the energy distance for the
i = 4 peculiarity can become much smaller than the
cyclotron energy, leading to its disappearance. The cru-
cial role of the second confinement subband position
relative to the Fermi level is therefore evident. On the
other hand, this position is very sensitive to the width
and the shape of the QW, which should be reflected in
a high sensitivity of the structure of experimental
curves to diverse changes in the system. Indeed, in sam-
ple 1003 with parameters not strongly different from
those of sample 1123, a small peculiarity with i = 4 has
been detected. In the inset in Fig. 4, we show the evolu-
tion of magnetoresistivity of sample 1123 with a tilt of
the magnetic field from the normal to the sample plane.
The tilt introduces some changes to the LL picture that
revive the peculiarity with i = 4, initially absent.

3.2. Activation Magnetotransport 
in the Quantum Hall Mobility Gaps

It is now commonly accepted that the existence of
quantized plateaus in the ρxy(B) dependences with van-
ishing values of ρxx is caused by the existence of disor-
der-induced mobility gaps in the DOS of a 2D system.
When the Fermi level is settled down in the gap, the

dw
2

dw
2
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thermally activated behavior of ρxx (or σxx) is observed
due to the excitation of electrons to the narrow band of
extended states (with a width γ) near the middle of a
disorder-broadened LL.

As a rule, it is assumed that the delocalized states
have discrete energies E = EN separated by the (mobil-
ity) gap ∆ @ kBT, which leads to the expression [6–9]

(1)

where Ea = |EF – EN |. In the valence band of 2D Ge, a
nonlinear dependence of LLs on the magnetic field
results in the strong inequality ∆ @ kBT is not valid even
at fields as high as B ≈ 10 T, and a more general expres-

σxx

Ea

kBT
---------– 

  ,exp∝

Sample parameters

Sample µ, m2/Vs ps , 1015 m–2 , nm

1006-1 1.4 4.9 12.5 0.77

1124b3 1.0 2.8 20 (21.4) 1.28

1125a7 1.7 2.8 20 (22) 1.36

1123a6 1.4 3.4 20 (23.5) 1.88

1003-2 1.5 4.8 22 2.32

* In brackets, we present the corrected values obtained from our
analysis.
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Fig. 4. Radical changes in the structure of QHE due to
involvement of the second subband.
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sion must be used for the temperature-dependent con-
ductivity σxx(T):

(2)

Here, f(E) is the Fermi–Dirac distribution function, and
σ(E) is a partial conductivity at the energy E. For an
extremely narrow band of delocalized states (γ ! kBT),
Eq. (2) yields

(3)

where σ0 is on the order of the minimal metallic con-
ductivity.

In the structures investigated, the magnetoresistivity
was measured (Fig. 5) and the thermally activated con-
ductivity was found in the range T = (3–15) K for fixed
values of B in the quantum Hall plateau regions (see
Fig. 6). The solid curves correspond to expression (3)
with Ea and γ as fitting parameters (σ0 = 0.5e2/h). Devi-
ations of the experimental points from the calculated
curves for T < 3 K (connected by lines as guides to the
eye in Fig. 6) are explained by variable range hopping
among localized states at EF, which usually dominates
for sufficiently low T.

The activation energy Ea is presented in Figs. 1c and
7 as a function of B or the filling factor ν in the vicinity
of ν = 1, 2, and 4 for two of the investigated samples.
The activation energy achieves its maximum value

 at integer values of ν. The mobility gap width

estimated as ∆ = 2  is close to the energy separa-
tion ∆ ≈ |EN – EN' | between the adjacent LLs within
uncertainty on the order of γ. In a simple parabolic
band, the activation energy for the integer filling factor

σxx T( ) σ E( )
∂ f E( )

∂E
-------------- E.d∫=

σxx T( ) σ0
γ

kBT
---------∂ f E( )

∂E
--------------=

E Ea=
,

Ea
max

Ea
max

ρxx, kΩ

4
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0
4 6 8

B, T

T = 1 K
0.7 K
1.7 K
2.9 K

4.2 K
5.6 K
9.8 K
15 K

Fig. 5. Variations of the magnetoresistivity with the tem-
perature.
JOURNAL OF EXPERIMENTAL 
corresponds to half the cyclotron energy,  ≈ "ωc/2
[8, 9]. Because of a pronounced sublinearity in the B
dependence of the valence band energy levels (Figs. 1b
and 4) and the interference with the second subband
levels, estimations of the cyclotron energy from the
low-field Shubnikov–de Haas oscillations may strongly
contradict the inter-LL distances obtained from the
activation analysis in high fields. Thus, "ωc should be
about 10 meV at B = 10 T for samples 1124 and 1125
with the value m = 0.1m0 obtained from oscillations, while
we have found ∆ = (2.4–2.6) meV and ∆ = (1.8–2.2) meV
for ν = 1 and 2, respectively, from the activation con-
ductivity.

Considering that the mobility gap corresponds to
most of the inter-LL distance, leaving just an infinitesi-
mal part for the stripe of delocalized states in the mid-
dle of LLs, the values of mobility gaps thus obtained
can be compared with the calculated inter-LL dis-
tances. In comparison with a qualitative analysis of the
structure of experimental magnetoresistivity traces
described in the preceding paragraph, the activation
analysis yields a quantitative tool to probe inter-LL dis-
tances.

An example of such an analysis for sample 1125a7
is presented in Fig. 1, where the steps in the Fermi level
motion with the magnetic field due to jumps between
the calculated LLs are juxtaposed with both the experi-
mental recordings and the deduced activation energies.
While a pronounced step in EF(B) indicates only the
existence of QH peculiarities in ρxx(B) and ρxy(B), a
quantitative analysis can be done on the basis of the
deduced activation energies. Thus, we can note that if
the entire process were developed in the first subband,
then the i = 2 mobility gap would be about 30% wider
than that for i = 1 (Fig. 1b). The ratio of the gap for i = 2
to that for i = 1 is reduced by fitting the obtained activa-
tion energies when the second confinement subband is

Ea
max

σxx, e
2/h

0.3

0.2

0.1

0
0.1 0.2 0.3 0.4 0.5 0.6

1/T, K–1

Fig. 6. Activation behavior of the conductivity: B = (n) 8,
(r) 8.2, (,) 8.5, (m) 8.8, (s) 9.2, (j) 11.2 T.
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considered. We achieved the best coincidence for sam-
ple 1125 by taking the Ge layer width dw = 21.4 nm,
slightly higher than the nominal value of 20.0 nm.

Involvement of the second subband offers a possi-
bility of explaining the difference between the activa-
tion energies in samples 1125 and 1124 with nominally
similar parameters. For the latter sample, the ratio of
the mobility gap for i = 2 to the one for i = 1 is about a
quarter lower than for the former (Fig. 7, lower part). As
seen from the quantized structure of the 2D Ge valence
band in the upper part of Fig. 7, the decrease in the
mobility gap ratio in sample 1124 may be explained by
some lowering of the second subband (dashed lines for
LLs and Fermi energy in Fig. 7) due to an increase in
the Ge layer width. The necessary correction to the Ge
layer width is small, from 21.4 to 22.0 nm, due to a
strong (approximately quadratic) sensitivity of the sec-
ond subband energy to the layer width.

4. SCANNING THE DENSITY OF STATES 
BETWEEN AND WITHIN THE LANDAU LEVELS

The nature of the QHE is known to be closely
related to the electron localization phenomenon in 2D
disorder systems in quantizing magnetic fields. For the
QHE to exist, narrow bands of extended states must be
present close to the center of each of the Landau sub-
bands provided that all other states are localized [10, 11].
When the magnetic field values are in the plateau
regions, the system is in the localized regime and the
temperature dependence of the dissipative conductivity

σxx (and the resistivity ρxx ≈ σxx/ ) has an exponential
character, σxx(T)  0 as T  0 [7, 8]. If the mag-
netic field is in the plateau–plateau (PP) transition
region, the Fermi level passes through the narrow strip
of extended states at the Landau level center and the
system behaves as a metal with nonzero conductivity as
T  0 and a peaklike form of the σxx(B) dependence.

This section is organized as follows. The results for
the QHE plateau regions are presented in Section 4.1,
where the background density of localized states is
evaluated from the analysis of activated magnetoresis-
tivity. Two random impurity potential models are used
for evaluation of the impurity potential fluctuation
parameters, the random potential amplitude and the
nonlinear screening length in the vicinity of integer fill-
ing factors (FFs), In Section 4.2, the data for the QHE
PP transition regions are reported and the temperature
dependence of the width of the extended state band is
extracted and analyzed in terms of the theory of critical
phenomena. The effect of the Coulomb interaction on
smooth disorder potential screening is discussed.

4.1. The Density of States in the Mobility Gap

The DOS in mobility gaps can be evaluated from the
data on the activation energy Ea as a function of the LL
filling factor ν = n/nB (where n is the electron density

σxy
2
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and nB = eB/hc). The filling factor can be tuned by the
change in either the carrier density [6] or the magnetic
field [7–9]. We use the method of activated magnetore-
sistivity for the reconstruction of the 2D hole gas DOS
under quantizing magnetic fields in the p-Ge/Ge1 – xSix

system. The DOS was calculated taking thermal acti-
vation of both electrons and holes on adjacent LLs
into account [6, 12].

From the Ea(B) dependences, the density of localized
states in the mobility gap can be constructed as [8, 9]

(4)

In Fig. 8, we show the typical results for the mobility
gap DOS as a function of energy. Even in the middle of
the gap, the density of localized states was found to
have an unexpectedly high value, comparable to that for
two filled confinement subbands without the magnetic
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Fig. 7. Activation energies for sample 1125 compared with
the data for sample 1124 (bottom) and explanation of the
difference by the involvement of the second confinement
subband (top: solid lines for 1125 and dashed lines
for 1124).
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field, g0 = m/(π"2) ≈ 1 × 1015 m–2 meV–1. Moreover,
g(E) is practically independent of E in the overwhelm-
ing part of the energy interval between adjacent LLs:
g(E) = gc = (1–1.5) × 1015 m–2 meV–1 for ν = 1 and 2.
This result is consistent with those obtained for
AlGaAs/GaAs [8, 9] and InGaAs/InP [7] heterostruc-
tures and Si MOSFET structures [6] with n-type con-
ductivity.

Because all the short-range impurity potential mod-
els lead to an exponential drop in the DOS between
Landau levels, a clear picture of the DOS in the QHE
regime can be presented only in terms of the long-range
potential fluctuations in combination with the oscillat-
ing dependence of the DOS on the filling factor. This
idea was advanced in the early work by Shklovskii and
Efros [13] and was later developed in a series of works
by Efros et al. (see [14, 15] and references therein). In
a selectively doped heterostructure, the smooth random
potential is formed by fluctuations in the concentration
of remote impurities.

For a random potential V(r), which is smooth at the
scale of the magnetic length lB, the localization in the
QHE regime can be discussed in terms of semiclassical
quantization and percolation [16]. In the semiclassical
limit, the electron energy in the quantizing magnetic
field can be written as

(5)

where r0 is the oscillator center coordinate. A smooth
potential therefore removes the degeneracy in r0 and
makes the LL energy dependent on spatial coordinates.

An order of magnitude evaluation of the spatial
scale and amplitude of the random potential in
p-Ge/Ge1 – xSix heterostructures in the QHE regime can
be obtained from the analysis of the mobility gap DOS.

EN r0( ) "ωc N
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Fig. 8. The background density of states for sample 1124 as
deduced from the activation energy; E = 0 corresponds to
the middle of the energy interval between two LLs.
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Two models for the random impurity potential were
used.

(i) The model with randomly distributed charged
centers located within a thick layer close to the 2D elec-
tron (hole) gas [13], for which the relation between the
fluctuation amplitude F and scale L is

(6)

where β is a numerical coefficient (β ≈ 0.1 [14]), N is
the density of charged impurities (per volume), and κ is
the static dielectric constant.

(ii) The model of the system with a spacer: a con-
denser with the 2D electron (hole) gas as one plate and
randomly distributed charged centers as the other plate,
separated by a distance ds [14, 15]. In this case,

(7)

where C is the average impurity density (per area).
It can be seen from Eqs. (6) and (7) that, without

screening, the amplitude F diverges at large L. When
the filling factor is close to an integer (i), a very small
concentration of electrons δn ! nB can be redistributed
in space, and so-called nonlinear screening [13–15]
occurs (“threshold” screening [17]). For ν = i exactly,
the screening is realized only due to electrons and holes
induced by an overlap of the adjacent fluctuating Lan-
dau levels, and the random potential amplitude is there-
fore on the order of the corresponding LL gap.

For the investigated heterostructures, N ≈ 1023 m–3

(C = Nda ≈ 1015 m–2) and the mean distance between
impurities N–1/3 ≈ 20 nm is comparable to both the
width of 2D Ge layer dw ≈ 20 nm and the width of the
doped part of the sample da ≈ 10 nm. Thus, these mod-
els are not valid precisely, but are suitable to obtain a
range of random potential parameter values.

In the nonlinear screening regime, the respective
DOS in the middle of the mobility gap [13–15] of width
W ≈ 2 meV for the two models are given by

(i)

(8)

(ii)

(9)

Without any fitting parameter, we therefore obtain a
rather reasonable evaluation of the background DOS,
and the two models yield values close to each other. For
a random potential amplitude comparable to the mobil-
ity gap, F ≈ W, we obtain the nonlinear screening length
(the scale of optimum fluctuation) Lc ≈ 100 nm for
model (i) (see Eq. (6)) and Lc ≈ 40 nm for model (ii)

F L( ) βe2 NL
κ

-----------------,=

F L( )
e2 2πC

κ
-------------------- L

2ds

--------ln ,=

g
W
2
----- 

  4βe2N

κW2
---------------- 7.5 1010×  cm 2–  meV 1– ,≈=

g
W
2
----- 

  2 C
7Wds
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(see Eq. (7)). We see that, in both cases, the spatial scale
of fluctuations is substantially larger than the magnetic
length (lB ≈ 8 nm at B = 10 T), and therefore, the ran-
dom potential can indeed be regarded as a smooth one.

Therefore, order-of-magnitude evaluations of the
random impurity potential parameters for the
p-Ge/Ge1 – xSix heterostructures indicate that, in the
vicinity of integer filling factors ν = 1 and ν = 2 (i.e., in
the regions of QHE plateaux), a sharp broadening of LL
occurs. It is believed that, for a filling factor close to a
half-integer (the regions of the plateau–plateau transi-
tion), the potential fluctuations must be small because
of the effective (linear) electron screening [13–15].

4.2. The Width of the Extended State Band

The QHE regime can be regarded as a sequence of
quantum phase insulator-metal–insulator transitions
when the DOS of the 2D system in quantizing magnetic
fields is scanned by the Fermi energy. In accordance
with this concept, the transition regions between the
adjacent QHE plateaux, as well as the widths of the
appropriate ρxx(B) peaks, must become narrower as the
temperature approaches zero. In the theoretical frame-
work of scaling (see, e.g., [18] and references therein),
the width of the transition regions tends to zero as

(10)

where κ = 1/zν, ν = 7/3 is the critical index of localiza-
tion length, and z = 1 is the dynamical critical index.

The pioneer experimental study on low-mobility
InGaAs/InP heterostructures by Wei et al. [19] strongly
supports the power-law behavior in Eq. (10). The evo-
lution of the width of the ρxx peaks and of the inverse

maximal slope of the ρxy steps, , as a
function of the temperature, corresponds to (10) with a
nearly universal value of the exponent κ = 0.4 ± 0.04 for
several LLs. The scaling behavior with κ = (0.42–0.46)
was later reported for the QHE plateau–plateau transi-
tion in GaAs/AlGaAs heterostructures [20] and in
p-SiGe quantum wells [21] and for the QHE-to-insula-
tor transition in GaAs/AlGaAs [20] and InGaAs/InP
heterostructures [22].

In other series of experimental works, the universal-
ity of the exponent κ was questioned (see references in
review article [16]). For instance, the measured values
of κ increased from 0.28 to 0.81 with decreasing mobil-
ity in AlGaAs/GaAs heterostructures [23], or the values
of κ between 0.2 and 0.65 were obtained for six sub-
bands of Si MOSFETs [24].

In a recent work by Shahar et al. [25], a novel trans-
port regime distinct from the critical scaling behavior
was reported to exist asymptotically close to the transi-
tion at very low temperatures. Studying the QHE-to-
insulator transition in a variety of GaAs/AlGaAs and
InGaAs/InP samples at temperatures down to 70 mK,

δBi i 1+( )→ Tκ ,∝

dρxy/dB( )max
1–
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they found an exponential dependence of ρxx on the fill-
ing factor on both sides of the critical FF value νc (∆ν =
|ν – νc |),

, (11)

and emphasized that the effective transition width ν0(T)
appears to vary as αT + β rather than exhibit the Tκ scal-
ing behavior. This implies that, even at T = 0, the tran-
sition has a finite width unless a different conduction
mechanism takes over at even lower temperatures. The
authors noted that some of their In-GaAs/InP samples
were from the same growth as the sample in [19] and
that they also revised their own previous data for
GaAs/AlGaAs samples [20].

To estimate the width of the band of delocalized
states in our Ge/Ge1 – xSix samples, we have analyzed
the magnetoresistance data in the transition region
between the first and the second QHE plateaux in two

ρxx ∆ν/ν0 T( )–( )exp=
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Fig. 9. Hall conductivity for sample 1124b3 (a), plotted as a
function of filling factor ν and scattering parameter s (b).
The latter is derived from the σxy data shown in (a).
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ways. First, we used the description of σxy(B) depen-
dences in terms of the so-called scattering parameter [26]

(12)

For the 1  2 plateau–plateau transition, the scatter-

s ∆ν/ν0 T( )–( ).exp=
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Fig. 10. (a) A log–log graph of ν0(T) in Eq. (12) plotted
against T. (b) The same as (a) plotted using a linear graph.
Solid lines are the best fit.
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max
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ing parameter can be extracted as [21, 27]

(13)

The other way that we used was to find the maximum
slope of (dρxy/dB)max in a transition region and to draw
its inverse in reliable units against the temperature as
in [19].

In Figs. 9a and 9b, we show the σxy(B) and s(ν)
dependences for one of the investigated samples,
1124b3. Figures 10a and 10b depict the ν0(T) depen-
dences extracted in accordance with Eq. (12) in a log-
log graph and on a linear scale. It can be seen from
Fig. 10a that the data cannot be satisfactorily described
by a power law ν0  Tκ (it is not a straight line on the
log–log plot). On the other hand, the data are much
more compatible with the linear dependence

(14)

with α = 0.076, β = 0.027, and β/α = 2.8 K (Fig. 10b).
Qualitatively, the frontal treatment of the data by the

inverse maximum slope of ρxy(B) yields the same but
slightly less accurate result in Eq. (14) with β/α = 2.6 K
for sample 1124b3 and β/α = 2.3 K for sample 1123a6
(Fig. 11).

As pointed out in [25], the ratio β/α defines a tem-
perature T* that is found to be characteristic of
the material system. Thus, T* turned out to be close to
0.5 K for InGaAs/InP samples and 50 mK for
GaAs/AlGaAs samples [25]. It can be seen that the
characteristic temperature is about 2.5 K (2.3–2.8 K)
for Ge/GeSi samples studied here.

In the theoretical work by Pruisken et al. [28] and in
the experimental work by van Schaijk et al. [22], it is
emphasized that short-range random potential scatter-
ing is essentially important in studying scaling phe-
nomena because the long-range potential fluctuations
dramatically complicate their observability. In their
opinion, the linear behavior (ν0 = αT + β) is semiclas-
sical in nature and should be observed at finite T and in
samples with predominantly slowly varying potential
fluctuations.

The simplest and most natural reason for the linear
ν0(T) dependence, namely, the thermal broadening of a
quantum critical phase transition, is suggested and con-
firmed by calculations in the work by Coleridge and
Zawadzki [27]. It is shown there that the thermal broad-
ening not only yields a linear increase in ν0(T) but also
leads to a temperature-dependent increase in the σxx

peak height as the temperature is lowered. This was
observed in their experiment.

There is nothing about the temperature dependence
of the ρxx (or σxx) peak value in the work by Shahar
et al. [25]. But we observe a linear ν0(T) dependence in
Ge/GeSi samples within the temperature interval where
the peak values of σxx undoubtedly decrease with low-

σxy 2 s2– / 1 s2+( ).=

ν0 T( ) αT β+=
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ering T (Fig. 12). Then, we are not in the conditions of
thermal broadening, in contrast to the experiment in [27].

We believe that the answer to the main question
about the finite width of QHE transitions as T  0 can
be found in the works treating the effect of Coulomb
interactions on the screening of smooth disorder poten-
tials [29–31]. The theory involves screening within the
Thomas–Fermi approximation appropriate for a
smooth disorder.

The effect of the electron—electron interaction
manifests itself in that the regions of the third kind
occur in the sample in addition to the local areas of
filled and empty LLs present in the noninteracting sys-
tem. The new “metallic” regions are those where the
local electron density is between zero and that of the
filled LL. The percolation description must then be
revised because the metallic region percolates through
the sample over a finite range of magnetic field near the
critical value. We therefore expect the transition
between Hall plateaus to have a finite width in filling
factors even in the low-temperature limit.

It is notable that the value of ν0(T  0) gives an
empirical estimate of the fraction of extended states in
the total number of states per magnetic quantum level
nB = eB/hc.

We have ν0(T  0) = 0.08 for the 0– LL in sample
1124b3 (see Fig. 10b). It can be seen that a tiny fraction

ρxx, kΩ/h

5

4

3

2

1

0
6 8

B, T

1124b3
0– peak

0.65 K

4.2 K

0.14 K
2.7 K

1.1 K

Fig. 12. The 0–  value for sample 1124b3 at different

temperatures.

ρxx
peak
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of states are extended, i.e., most of them are localized,
as they should be in the QHE regime.

5. CONCLUDING REMARKS

Scanning the quantized valence band of the Ge lay-
ers by the Fermi level in the quantum Hall regime
yields opportunities to reconstruct the Landau level pat-
tern of the band, including the levels at the bottom of
the second confinement subband, to feel the shift of the
second subband introduced by tiny changes in the QW
profile. Furthermore, this experimental approach
allows going beyond the model of delta-shaped LLs
and investigating the distribution of localized and
extended states throughout the entire LL picture in
detail.

In selectively doped p-Ge/Ge1 – xSix heterostructures
investigated here, the main scattering mechanism for
quasi-2D holes in Ge quantum wells at low tempera-
tures is the scattering on remote ionized boron impuri-
ties located at Ge1 – xSix barriers. The fluctuations in the
density of randomly distributed remote impurities act
as a source of the smooth disorder potential causing
localization effects in the quantum Hall regime. Screen-
ing of this disorder assumes a very different character
depending on the value of the filling factor. When the
Fermi level is near the center of the Landau subband
(half-integer filling factors), electrons are free to adjust
their density and screening of random potential is
good, but when it lies in the mobility gap between LLs
(nearly integer filling factors), they cannot, and screen-
ing is poor.

We could explain the unusually high values of the
background DOS obtained from the analysis of ther-
mally activated magnetoresistance in the QHE plateau
regions in the vicinity of ν = 1 and ν = 2 only in the
framework of disorder potential, smooth at the scale of
the magnetic length. In the models with nonlinear
screening of a long-range random impurity potential,
we obtain a reasonable estimate both for the density of
localized states and for the spatial scale of potential
fluctuation, which actually turns out to be rather large
compared with the magnetic length.

On the other hand, for half-integer filling factors, the
linear temperature dependence of the effective QHE
plateau–plateau transition width ν0(T) = β + αT is
observed in our Ge/Ge1 – xSix samples in contrast to the
scaling behavior inherent to systems with a short-range
disorder. This result is in accordance with the data of
recent experimental work [25] for other semiconductor
systems. It is tempting to consider the finite width of the
QHE transition, even as T  0, as a consequence of
an effective screening of smooth random potential due
to the Coulomb repulsion of electrons [29–31].
SICS      Vol. 96      No. 1      2003
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Abstract—The properties of the spin system in the FCC lattice described by the Heisenberg model (s = 1/2)
with antiferromagnetic interactions between the nearest neighbors were studied. It was shown within the frame-
work of spin-wave theory that long-range antiferromagnetic order was absent because of frustration of
exchange coupling and transverse quantum spin fluctuations. The system was in the quantum spin liquid state.
A method for describing it within linear second-order theory with self-consistently calculated parameters was
suggested. It was proved that the ground spin liquid state was singlet. The thermodynamic properties of the spin
liquid in the whole temperature range and the character of spatial spin correlations, which had alternating signs
and a finite correlation length, were determined. The theory was constructed based on the method of two-time
Green temperature functions. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION: A CRITERION
OF ANTIFERROMAGNETISM 

IN THE FCC LATTICE

A system of localized spins is described by the
Heisenberg model with the Hamiltonian

(1)

defined on an ideal lattice with periodic boundary con-
ditions. Here, f are the coordinates of lattice sites, J(R)
are the exchange integrals at intersite distance R, and

R, sf = ( , , ) is the spin operator on site f. For
three-dimensional systems, Hamiltonian (1) is largely
used to describe long-range magnetic order. The exact
first-order equation of motion (" = 1) is linearized (the
Tyablikov splitting) as

(2)

on the assumption that 〈 〉  ≠ 0. Equation (2) is the base
equation of spin-wave theory at various regular

exchange J(R) distributions and mean 〈 〉 values. To
describe collinear antiferromagnetic states, subsystems
A (N/2 sites a with spins “upward,” N is the number of
sites) and B (N/2 sites b with spins “downward”) are

introduced. We then have 〈 〉  = ,  = – , where

 = (T) and T is the temperature in energy units.
Of special interest is the FCC lattice with exchange

antiferromagnetic interactions between the nearest
neighbors: J(D) = –J, J > 0, where D are the vectors con-

H
1
2
--- J R( )sf sf R+ ,⋅

f R,
∑–=

J R( ) J R–( ), J 0( ) 0,= =

sf
+ sr

– sf
z

iṡf J R( ) sf R+
z〈 〉 sf

+ sf
z〈 〉 sf R+

+–( )
R

∑≈

sf
z

sf
z

sa
z s sb

z s

s s
1063-7761/03/9601- $24.00 © 20129
necting z1 = z = 12 nearest neighbors. There are four
types of ordering in the FCC lattice [1]. For any of
them, frustrated (energetically unfavorable) exchange
J-couplings always arise. For instance, for antiferro-
magnetic order of the first type characterized by alter-
nating ferromagnetic xy planes with spins upward and
downward, that is, antiferromagnetically coupled
planes, all four J-couplings in these planes are frus-
trated. The remaining eight (interplanar) antiferromag-
netic couplings are, however, normal, and the effective

molecular field is ±4  (“plus” sign for spins upward
and “minus” for spins downward). Stabilizing such an
antiferromagnetic structure requires taking into
account at least ferromagnetic exchange between next-
nearest neighbors, J(a) = K, K > 0, where a are the vec-
tors connecting z2 = 6 next-nearest neighbors (|a | = a is

the FCC lattice parameter, and |D | = a/ ).

Lines [2, 3] showed that antiferromagnetic order
could only exist at K ≠ 0 in a quantum spin system with
Hamiltonian (1) in the FCC lattice. This conclusion is
valid for the first (K > 0) and third (K < 0) types of
ordering. In any event, the  = (λ) order parameter
and the TN(λ) Neél temperature are functions of the λ =
|K|/J ratio and vanish at λ = 0 (K = 0). Apart from frus-
trations, this phenomenon is related to the substantial
role played by transverse quantum spin fluctuations,
which, at λ = 0, destroy long-range antiferromagnetic
order. Note that the antiferromagnetic state “survives”
in the system of classical spins [4, 5].

The conclusion on the absence of antiferromagnetic
order at K = 0 also follows from work [6]. The authors
considered a primitive cubic cell with antiferromag-
netic interactions J1 and J2 for the nearest and next-
nearest neighbors, respectively (s = 1/2), and intro-

Js

2

s s
003 MAIK “Nauka/Interperiodica”



130 KUZ’MIN
duced the p = J2/(J1 + J2) parameter. At J1 = 0, we nearly
have the FCC spin lattice, and antiferromagnetic order
is absent in this limit (p = 1).

To summarize, it follows from [2, 3, 6] that long-
range antiferromagnetic order is absent in the FCC lat-
tice for quantum spins with antiferromagnetic
exchange J only between the nearest neighbors. What is
the state of such a system? Below, we suggest the con-
cept of a spin liquid.

2. QUANTUM SPIN LIQUID

We continue our consideration of a system with
Hamiltonian (1) and total spin operator S taking into
account antiferromagnetic exchange interactions J only
between the nearest neighbors,

(3)

In the absence of stabilizing factors, there is no antifer-
romagnetic FCC lattice state. Let us therefore analyze
the spin system with dimensionless Hamiltonian (3) as
a quantum spin liquid.

We define the spin liquid as a system without sym-
metry loss and without long-range magnetic order in
which

(1) spin correlation functions are isotropic,

(4)

and only depend on the modulus of distance r = |r |; in
addition, K0 = 1 (the sum rule);

(2) the mean values for an arbitrary spin component
on lattice sites and for an arbitrary total spin operator
component are zero,

(5)

where α = x, y, z or +, –, z;
(3) the mean values of the products of spin operators

on an odd number of different sites are zero,

(6)

Here and throughout, the symbol 〈…〉  denotes thermo-
dynamic averaging at temperature τ = T/zJ and over the
ground state wave function at τ = 0.

The whole collection of the properties of the spin
liquid, namely, its ground state, the excitation spectrum,
and the thermodynamic properties, should be described
based on Hamiltonian (3) and postulates (4)–(6). Note
that postulate (6) was introduced for the first time by
this author in [7]; the corollaries to it will be considered

h
H
zJ
-----

1
2z
----- sf sf D+ , S⋅

f D,
∑ sf , s

f

∑ 1
2
---.= = = =

1
N
---- sf

xsf r+
x〈 〉

f

∑ 1
N
---- sf

ysf r+
y〈 〉

f

∑=

=  
1
N
---- sf

zsf r+
z〈 〉 1

4
---Kr,≡

f

∑

sf
α〈 〉 0, Sα〈 〉 0,= =

sf
αsm

β sn
γ〈 〉 0, f m n.≠ ≠=
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below. It will be shown that the ground state is singlet
and has a total spin of S = 0, which is equivalent to the
equality

(7)

The properties of the spin liquid state are largely
determined by the spatial and temperature dependences
of the Kr(τ) spin correlation functions. The spin liquid
state energy per bond in J units is

(8)

where K|D | = –K1 (K1 > 0) is the correlator between the
nearest neighbors.

To describe the state of the spin liquid, we use the
Fourier transforms of the spin operators

(similarly for all the other operators), where vectors q
belong to the first Brillouin zone of the FCC lattice, and
we introduce the Fourier transform of the correlation
function

(9)

with the obvious property K(q) = K(–q). Calculations
of K(q) are performed by the method of two-time Green
temperature functions [8]. Because the correlators are
isotropic, it suffices to calculate the retarded commuta-
tor Green function

(10)

where ω is the dimensionless spectral variable used to
determine K(q) by the spectral theorem,

(11)

where J(q, ω; τ) is the spectral intensity.

S2〈 〉 τ 0= 0.=

ε H〈 〉
1/2( )zNJ

-----------------------
3
4
---K1,–= =

sα q( ) 1

N
-------- eiq f⋅ sf

α

f

∑=

K q( ) e iq r⋅– Kr

r

∑=

=  4 sz q( )sz q–( )〈 〉 2 s+ q( )s– q–( )〈 〉 ,=

Kr
1
N
---- eiq r⋅ K q( )

q

∑=

sz q( ) sz q–( )〈 〉〈 〉 ω G q ω,( ),≡

1
4
---K q( ) sz q( )sz q–( )〈 〉 J q ω; τ,( ) ω,d

∞–

∞

∫= =

J q ω; τ,( ) eω/τ

eω/τ 1–
----------------- 1

π
---– 

 =

× Im sz q( ) sz q–( )〈 〉〈 〉 ω i0+ ,
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3. EQUATIONS OF MOTION 
AND THE GREEN FUNCTION OF LINEAR 

SECOND-ORDER THEORY

The theory of spin liquids is based on equations of

an order not lower than second because 〈 〉  = 0, and,
in contrast to spin-wave theory, first-order equations
can not be linearized. The exact equations of motion
have the form (" = 1)

(12)

(13)

where

(14)

The second-order equation takes into account the kine-
matic properties of the spin operators on one node.

Let us truncate the chain of linked equations at the
second step by linearizing the Rf operator, which con-
tains the products of the spin operators on three differ-
ent nodes. We suggest the following linearization
scheme:

(15)

where α|n – m| are the parameters that introduce correc-
tions into the splitting (linearization). This scheme is a
simple generalization of the linearization procedure
applied in [6, 7, 9–11]. Using (15), we obtain

(16)

The sum over D' in the first term is

(17)

sf
α

iṡf
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where indices 1, 2, 3, and 4 denote the coordination
zones with the corresponding 
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distances. The lin-
earized 

 

R

 

f

 

 operator can now be written as

(18)

where the 

 

D

 

' 

 

≠ D restriction is removed in the second
term.

The above transformations allow us to replace the
exact equation (13) by the linearized one,

(19)

which, after the Fourier transform, takes the form

(20)

Here,

(21)

Using the notation

(22)

we can write

(23)

Applying the Fourier transform to equations of
motion (12) and (13) yields the following equations for
the Green functions:
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where

(24)

Using the i (q) ≈ (i (q))lin approximation [see (20)],
we obtain the Green function of linear second-order
theory in the form

(25)

Its spectral intensity (11) is

(26)

By the spectral theorem, the one-time average is

or

(27)

Equation (27) shows that the suggested version of
spin liquid theory contains three unknown parameters,
which are functions of temperature, namely, the modu-
lus of the correlator between the nearest neighbors
K1(τ), the “stiffness” parameter of the excitation spec-
trum λ(τ), and the pseudogap in the spectrum D(τ). All
these parameters should be calculated self-consistently
from three equations (see below). Note in advance that,
because –1/3 ≤ Γq ≤ 1 in the Brillouin zone of the FCC
lattice, we can conveniently separate the limiting spec-
trum point (–1/3) and write the D parameter as

(28)

which is necessary for satisfying the Ωq ≥ 0 or Eq(δ) ≥
0 condition.

4. THE SELF-CONSISTENCY EQUATION

Using the definition of spatial correlators Kr

[Eq. (9)], we obtain the system of equations

(29)
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Ṁ Ṁ

G q ω,( )
Aq

ω2 Ωq
2–

-------------------.=

J q ω; τ,( ) eω/τ

eω/τ 1–
-----------------

Aq

2Ωq
----------=

× δ ω Ωq–( ) δ ω Ωq+( )–[ ] , Ωq 0.≥

sz q( )sz q–( )〈 〉 1
4
---K q( )≡

=  J q ω; τ,( ) ωd

∞–

∞

∫
Aq

2Ωq
----------

Ωq

2τ
------coth=

K q( )
K1

λ
------

1 Γq–
Eq D( )
---------------

λEq D( )
2τ

-------------------.coth=

D 1/3 δ, δ+ δ τ( ) 0,≥= =

K0 1
1
N
---- K q( )

q

∑ K1

λ
------ I0 δ τ,( ),= = =

K1
1
N
---- Γq–( )K q( )

q

∑ K1

λ
------ I1 δ τ,( ),= =
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where

(30)

Equations (29) have the formal solution (the arguments
of the functions are omitted)

(31)

Note that the D = 1/3 + δ parameter [see Eq. (28)] is
written as a complex combination of unknown correla-
tors and splitting parameters. Calculating them sepa-
rately is meaningless. For this reason, we further calcu-
late the δ value as one of the most important character-
istics of the system, which describes correlations in an
“extended” cluster. We cannot, however, determine δ
from (31) and will therefore use the method of
moments [7] to calculate it self-consistently.

Let us define and exactly calculate the first three
moments,

(32)

These calculations are performed using the rules of the
multiplication of operators on one node and the defini-
tions of K1 = –K|D| and Ktot [see Eq. (30)]; importantly,
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by virtue of condition (6), only the first term of the Rf

operator [Eq. (14)] contributes to the 〈Rf 〉  mean.

Based on the spectral theorem, the one-node mean
can be represented as

(33)

where the J(q, ω; τ) spectral intensity generally corre-
sponds to the exact Green function G(q, ω). It follows
from (33) that

(34)

Above, we calculated approximate Green function
(25). The corresponding J(q, ω; τ) spectral intensity is
given by (26). It follows that

(35)

Let us impose the requirement that exact equations (34)
should be satisfied in the linear second-order theory
under consideration. The M0 zero moment is given by
the equation that precisely reproduces the sum rule
K0 = 1. It is easy to see that substituting (35) into (34)
to obtain M1 leads to an identity. Substituting (35) into
(34) to determine M2, however, yields

(36)

Using the exact expression for M2 [Eq. (32)] and solu-
tions (31), we obtain the equation for self-consistently
calculating gap parameter δ,

(37)

It follows that consistent linear second-order theory is
based on the observance of the sum rule K0 = 1, the def-
initions of the K1 and Ktot correlators [Eqs. (29)], and
the requirement of the exact second moment value,
which leads to (37). Equation (37) plays an important

sf
z

sf
z t( )sf

z 0( )〈 〉 e
iωt–

J0 ω( ) ω,d

∞–

∞

∫=

J0 ω( ) 1
N
---- J q ω; τ,( ),

q

∑=

M0 J0 ω( ) ω, M1d

∞–

∞

∫ ωJ0 ω( ) ω,d

∞–

∞

∫= =

M2 ω2J0 ω( ) ω.d

∞–

∞

∫=

J0 ω( )
K1

4λ
------ 1

N
---- eω/τ

eω/τ 1–
-----------------

1 Γq–
Eq

--------------
q

∑=

× δ ω Ωq–( ) δ ω Ωq+( )–[ ] , Ωq λEq.=

M2

λK1

4
----------P δ( ),=

P δ( ) 1
N
---- 1 Γq–( )Eq

Ωq

2τ
------.coth

q

∑≡

P δ( )
I2 δ( ) I1 δ( )/12+

2I1
2 δ( )

---------------------------------------, δ δ τ( ).= =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
role. Indeed, it makes the theory of spin liquids inter-
nally closed, and there appears a possibility of self-con-
sistently calculating all system parameters.

The sums over the Brillouin zone in the equations
for In and P will be written in terms of integrals with the
density of states D(ε). The D(ε) density of states that
corresponds to the isoenergy surfaces Γq = ε in the FCC
lattice should satisfy the exact relations

(38)

The D(x) density of states was approximated as

(39)

where

In selecting this approximation, we were first and fore-
most guided by the logarithmic divergence of D(ε) at
ε = –1/3 and the fulfillment of integral equations (38),
because self-consistency equations (31) and (37) are
also integral.

Combining (31) and (37) yields the system of three
equations for self-consistently calculating the spin liq-
uid parameters,

(40a)
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(40c)

Here,
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5. THE GROUND STATE

Consider the properties of the spin liquid at τ ≡ 0
(the hyperbolic cotangent equals one). The In and P
integrals only depend on δ(0), and K1 = I1/I0 monotoni-
cally decreases as δ(0) increases and has a maximum at
δ(0) = 0. Equation (40c) at τ ≡ 0 is an equation with
respect to δ(0) and has the solution δ(0) = 1.04 × 10–3 ≠
0. We therefore have the following characteristics of the
ground state of the system:

(42)

In addition, I0 = 3.026, I2 = 0.212, α1 = 3.256, and P =
0.442.

Solution (42) being available, it is pertinent to make
some comments on the method for linearizing (15). It is
known that, in first-order theory, the linearization
(Tyablikov splitting) is performed without any correct-
ing factor (the correcting factor is taken to be one). With
αi set equal to one in the second-order theory under
consideration, equations (29) have no solutions of any
kind. If all αi = α are equal, we can, without invoking
the method of moments, obtain the gap parameter in the
form

This equation has the solution δ*(0) = 0.0435 at τ = 0,
and we obtain

Clearly, this variant gives a substantial loss in the
ground state energy compared with (42). Note also that
the singlet state energy obtained by applying the
method of moments [7] to the spin liquid in a square lat-
tice is ε0 = –0.352, which is lower than the energy of the
antiferromagnetic state at τ = 0.

Let us show that the ground state is singlet (total
spin S = 0). We will introduce the function (the mean of
the square of the total spin of the system referred to one
spin)

(43)
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which can be expressed via the Fourier transform of
correlation function (27) at q = 0. At τ ≡ 0, it follows
from (27) that K(0) = 0 and S2(0) = 0, which proves the
singlet character of the ground state in conformity
with (7). On the other hand, (43) can be treated as the
limit

(44)

From this equation, we again obtain K(0) as τ  0 (a
singlet). At τ ≠ 0, triplet excitations, however, arise in
the system, which results in S2(τ) ≠ 0. Equation (44)
will be used to analyze the temperature properties of the
spin liquid.

6. CALCULATIONS 
OF THE THERMODYNAMIC PROPERTIES 

OF THE SPIN LIQUID

System (40) was solved numerically. A t value was
set, and δ was found by (40c). At these t and δ(t), the I0,
I1 = λ, K1 = I1/I0, and α1 = 2I0I1 integrals and tempe-
rature τ = λt were calculated. As a result, all the param-
eters found numerically were functions of temperature
τ = T/zJ (z = 12).

The calculated temperature dependence of the δ(τ)
gap parameter is shown in Fig. 1. In the low-tempera-
ture region, δ(τ) grows almost as a power function of τ,
δ(τ) ∝ τ 2 according to our data. However, already at τ ≥
0.5, the δ(τ) parameter virtually coincides with its
asymptotic value 4τ.

The temperature dependence of the λ(τ) stiffness
parameter of the excitation spectrum with the asymp-

totic behavior λ(τ) ∝  1/  is shown in Fig. 2.

It is known that the thermodynamic properties of a
system are determined by its excitation spectrum. The
temperature evolution of the spectrum

is shown in Fig. 3; it was obtained by self-consistently
calculating the λ(τ) and δ(τ) parameters. The spectrum
is gapless and acoustic; that is, Ωq ∝  q as q  0 (as
with phonons or antiferromagnetic magnons). The
mean excitation energy (recall that all the energy
parameters of the system are reduced to the dimension-
less form through dividing by zJ) is

(45)
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This is an increasing function of temperature, which

reaches “saturation” at τ > 2; that is,   0.2.

The temperature behavior of the K1(τ) modulus of
the correlator between the nearest neighbors is shown
in Fig. 4. At τ ≥ 0.5, its temperature dependence is close
to asymptotic, K1(τ) ∝  1/τ. According to the calcula-
tions, the dimensionless heat capacity

(46)

Ω

c τ( ) ∂ε τ( )
∂τ

-------------
3
4
---

∂K1 τ( )
∂τ

-----------------–= =

δ
0.4

0.3

0.2

0.1

0 0.06 0.12 0.18
τ

Fig. 1. Dependence of gap parameter δ on dimensionless
temperature τ = T/zJ at low temperatures.

Ωq
0.4

0.3

0.2

0.1
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q

1
2

3

4

5

Fig. 3. Temperature evolution of excitation spectrum
Ωq(τ) in the [001] direction at self-consistently calculated
δ(τ) and λ(τ) parameters: (1) τ = 0, λ = 0.56, and δ = 0.0032;
(2) τ = 0.05, λ = 0.518, and δ = 0.0172; (3) τ = 0.1, λ =
0.385, and δ = 0.091; (4) τ = 0.2, λ = 0.23, and δ = 0.47; and
(5) τ = 1.0, λ = 0.1, and δ = 3.68.
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has a form similar to that of the heat capacity of a two-
level system (Schottky anomaly), namely, it has a max-

imum at τ ≈ 0.1 ≈ /2 and the c(τ) ∝  1/τ2 asymptotic
behavior. In the low-temperature region, it, however,
exhibits the behavior of a power function, c(τ) ∝  τ3.

Magnetic susceptibility. The dynamic susceptibil-
ity of a spin system in dimensionless units is deter-
mined by the equation [8]

Ω

χαβ q ω,( ) sα q( ) sβ q–( )〈 〉〈 〉 ω.–=

λ

0.5

0.4

0.3

0.2

0.1

0 1 2 3
τ

Fig. 2. Temperature dependence of spectrum stiffness
parameter λ(τ).

K1

0.18

0.12

0.06

0 0.6 1.2 1.8
τ

Fig. 4. Temperature dependence of the correlator modulus
between nearest neighbors K1(τ); system energy ε(τ) =
−(3/4)K1(τ).
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In the spin liquid state under consideration, we have

because of the isotropic character of the correlation
functions. According to (24) and (25), the expression
for the static susceptibility (ω = 0) has the form

(47)

It follows from (47) that

(48)

(49)

where Q1 ≡ X = (0, 0, 2π) and Q ≡ W = (π, 0, 2π) are the
special points of the FCC lattice Brillouin zone at
which  =  = –1/3. Because δ(0) ≠ 0 in the spin
liquid, (49) does not diverge as τ  0, which is evi-
dence of spin liquid stability with respect to short-wave
perturbations corresponding to the Q1, 2 wave vectors
and of correlation length finiteness.
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4
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0
–0.3 0 0.3 0.6 0.9

τ

Fig. 5. Temperature dependence of reciprocal susceptibil-
ity χ–1; at τ > 0.5, the χ–1(τ) function virtually reaches its
asymptotic value with the Curie paramagnetic point
Θ = 1/3.
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Compare susceptibility (48) with the longitudinal
thermodynamic susceptibility. By definition [8], it is
given by

(50)

where sz(0) is the operator Fourier transform at q = 0.
As 〈sz(0)〉  = 0 in the spin liquid state, it follows from the
isotropic character of the spin correlators that

(51)

where the S2(τ) function is given by (43). A comparison
of expressions (50) and (51) with (48) shows that the
longitudinal thermodynamic susceptibility coincides
with the dynamic susceptibility at ω = 0 and q = 0;

that is, (τ) = χ(τ). In addition,

(52)

The χ–1(τ) reciprocal susceptibility calculated
numerically is shown in Fig. 5. This function has a min-
imum at τ ≈ 0.2 and becomes close to the χ–1(τ) ≈ τ + Θ
function already at τ ≥ 0.5; here, Θ = 1/3 is an analog of
the paramagnetic Curie point for antiferromagnets. The
S2(τ) function calculated by (52) is shown in Fig. 6. The
α1(τ) parameter rapidly reaches its asymptotic value
(one) at τ ≥ 0.5.
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Fig. 6. Low-temperature behavior of the S2(τ) ≡ N–1〈S2〉
function, where S is the total spin operator of the system;
asymptotically, S2(τ)  3/4.
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7. INTERPRETATION OF THE RESULTS

In the region of maximally low temperatures, the
coth(x/2) = 1 + 2n(x) representation, where n(x) is the
Bose distribution function, can conveniently be used.
The spectrum in this region is acoustic (proportional
to q), and the parameters in this region therefore behave
as power functions,

(53)

As the energy of the system is ε = –(3/4)K1, the heat
capacity of the spin liquid in this region,

(54)

is similar to the heat capacity of Debye phonons (or
antiferromagnetic magnons).

At temperatures τ ≥ τ0, where τ0 =

λ(0)(2/ )  is the excitation energy at the
boundary (ε = –1/3 or q = Q1, 2), the thermodynamic
properties of the system become more complex,
because this region also contributes to the temperature
dependence of the parameters. Initially, the quadratic
dependence of δ predominates, but, at τ > 1, the depen-
dence becomes linear.

Asymptotic behavior (tttt  ••••). The coefficients
of the asymptotic behaviors of all the functions when
correlations disappear can be determined analytically
using the following obvious physical conditions:

(1) S2(τ)  3/4; 3/4 is the value of the square of
the spin on a lattice site.

(2) α1(τ)  1; that is, the uncoupling parameter
for noncorrelated spins becomes equal to one.

The first condition leads to the Curie law for suscep-
tibility (52),

On the other hand, the other (equivalent) definition of
susceptibility [Eq. (48)] gives

when both conditions are satisfied. For the Curie law to
be obeyed, it is necessary that

(55)

Asymptotically, the integrals take the form
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This result and properties (38) of the density of states
give

(56)

As I1 = λ [according to self-consistency equation (40a)],
it follows from (56) that λ2 = 1/8zτ; that is,

(57)

To summarize, the behavior of the thermodynamic
characteristics of the system (spin liquid) as τ  ∞ is
as follows:

(58)

8. SPATIAL CORRELATIONS
IN THE SPIN LIQUID

By definition,

The general equation for the spatial correlation func-
tions [see (14) and (34)] has the form

where the g ≡ K1/λ and δ parameters are functions of
temperature.

Consider the character of spatial correlations in the
ground (singlet) spin liquid state. At τ ≡ 0, we have

(59)

The determination of Kr at arbitrary r is a technically
complex computational problem because the summa-
tion (integration) is over the first Brillouin zone, which
has a fairly complex form in the FCC lattice [12].
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First, note that Eq. (43),

is evidence that spatial correlation functions are alter-
nating in the ground singlet spin liquid state and cancel
each other when the summation is performed.

It follows from (59) that the largest contribution to
the formation of spatial correlations is made by those
Brillouin zone regions in which Γq  –1/3; that is, by
the neighborhoods of points Q1 = (0, 0, 2π) and Q2 =
(π, 0, 2π) and other points with similar symmetry pro-
perties.

The neighborhood of point Q1. Set q = Q1 + p,
where |p| = p ! 1. In this region,

(60)

and the Fourier transform of the correlation function is
anisotropic and has a singular direction (z). Then,

(61)

The integration is performed in the spherical coordi-
nates over a sphere of small radius p0 (the r vector is
directed along z axis),

where A2 = r2κ2. At large r values, the integral is [13]

As a result, we obtain the following asymptotic behav-
ior:

(62)

where ξ is the correlation length. As δ(0) ≈ 10–3 and z =
12, we have ξ ≈ 8.95; that is, approximately nine lattice
parameters or 12–13 distances between the nearest
neighbors. It follows from these estimates that short-
range order is fairly well established in the spin liquid.
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The cothx ≈ 1/x approximation can be used at high
temperatures to obtain

(63)

[recall that, asymptotically, α1(τ)  1 and δ(τ) 
4τ]. We then have

where vB is the volume of the Brillouin zone. As previ-
ously, the neighborhoods of the points at which Γ = –1/3
are assumed to make the major contribution to the inte-
gral. In the neighborhood of point Q1, we have

(64)

As opposed to Can(r), the  function contains a
linear term rather than a root in the denominator. The
integration by the method specified above gives

(65)

The ξ = 1/κ correlation length becomes small under

high-temperature conditions (ξ ∝  1/ ). As a result,
virtually the only remaining correlations are those
between the nearest neighbors.

It follows that spatial correlations in the main direc-
tions oscillate with a Q1 · r = 2πr period and decay fol-
lowing the behavior of the Can(r) function.

9. CONCLUSION

Let us summarize the results obtained in this work.
In systems with frustrated exchange interactions

between the nearest neighbors (as in the FCC lattice),
quantum fluctuations of transverse spin components
become substantial and can destroy the Ising antiferro-
magnetic state in the absence of additional stabilizing
factors (exchange between the next-nearest neighbors
or anisotropy).

In the absence of a long-range order in the FCC lat-
tice, the system is in the spin liquid state. This state is
characterized by an isotropic spin correlation function
(Hamiltonian symmetry is not destroyed), and the
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-----------------.d

p0( )
∫=

Can* r( )

Can* r( )
p0

2

2π( )2
-------------r

z zcosd

z2 κ2r2+
---------------------

0

∞

∫≈

=  
p0

2

2π( )2
-------------r

π
2κr
---------e κ r– e κ r– .∝

τ
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ground state of the spin liquid is singlet (the total spin
of the system is S = 0), in conformity with the quantum-
mechanical classification of states according to the total
spin value.

We described the spin liquid within second-order
theory by the method of Green functions. A method for
self-consistently calculating spin liquid parameters,
namely, the parameter of excitation spectrum stiffness
λ, the modulus of the spin correlator between the near-
est neighbors K1, and the gap parameter δ, as functions
of the temperature was suggested. The spin liquid
energy (in units of exchange parameter per bond) is ε =
−(3/4)K1, and the ground state energy is ε0 = –0.133.
The δ ≠ 0 parameter plays an important role. It pre-
serves the translational invariance of the principal lat-
tice in the spin system, determines correlation length

ξ = 1/ , and leads to the Curie law for the magnetic
susceptibility of the spin liquid at high temperatures.

The spin liquid has a short-range order similar to the
antiferromagnetic order with alternating spin correla-
tion functions. The behavior of reciprocal susceptibility
is also close to that characteristic of antiferromagnets
(even to the existence of the paramagnetic Curie point).

The antiferromagnetic state can compete with the
spin liquid state if there are stabilizing factors. The con-
clusion can be drawn that systems with a long-range
magnetic order transform into the spin liquid state at
temperatures above critical.
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Abstract—The electronic structure of graphitic nanoparticles is investigated within a gauge field-theory model.
The local and total densities of states (DOS) near the pentagonal defects (disclinations) are calculated for three
geometries: sphere, cone, and hyperboloid. It is found that the low-energy electron states have a rather specific
dependence on both the energy and the distance from a disclination line. In particular, the low-energy total DOS
has a cusp that drops to zero at the Fermi energy for disclinations with the Frank index ν < 1/2, while a region
of a nonzero DOS across the Fermi level is formed for ν = 1/2. The true zero-mode fermion state is found for
the graphitic hyperboloid. The appearance of an enhanced charge density near the Fermi level for nanocones
with a 60° opening angle (180° disclination) is predicted. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Carbon nanoparticles, which are expected to have
important implications for the development of elec-
tronic devices, flat panel displays, nanoswitches, etc.,
have recently received great attention from both exper-
imentalists and theorists (see, e.g., reviews [1, 2]). The
high flexibility of carbon allows producing variously
shaped carbon nanoparticles: nanotubes, fullerenes,
cones, toroids, graphitic onions, and nanohorns. Partic-
ular attention has been given to the peculiar electronic
states due to topological defects that have been
observed in different kinds of carbon nanoparticles by
scanning tunneling microscopy (STM). For example,
STM images with fivefold symmetry (due to pentagons
in the hexagonal graphitic network) have been obtained
in the C60 fullerene molecule [3]. The peculiar elec-
tronic properties at the ends of carbon nanotubes
(which include several pentagons) have been probed
experimentally in [4, 5]. Recently, the electronic struc-
ture of a single pentagon was revealed on an atomic
scale by STM in [6], where the enhanced charge den-
sity at the pentagon, which was located at the apex of
the conical protuberance of the graphitic particle, was
experimentally clarified.

By its nature, the pentagon occurring in a graphite
sheet is a topological defect. Actually, as mentioned
in [7], fivefold coordinated particles are orientational
disclination defects in the otherwise sixfold coordi-
nated triangular lattice. Moreover, disclinations are
generic defects in closed carbon structures, fullerenes,
and nanotubes, because, in accordance with Euler’s
theorem, these microcrystals can only be formed with

¶This article was submitted by the authors in English.
1063-7761/03/9601- $24.00 © 20140
the total disclination 4π. According to the geometry of
the hexagonal network, this implies the presence of
twelve pentagons (60° disclinations) on the closed
hexatic surface.

We note that graphitic cones are of special interest
because they can contain a single pentagon at the apex,
in contrast to twelve pentagons in fullerene molecules
and nanotubes. This fact makes nanocones attractive
for experimental study of peculiar electronic states due
to topological defects that were theoretically predicted
in [8, 9]. In particular, analysis within the effective-

mass theory shows that a specific  ×  superstruc-
ture induced by pentagon defects can appear with the
wave functions decaying as r–1/5 [8]. Recently, this pre-
diction was experimentally verified in [6]. A recent
study [10] within both tight-binding and ab initio cal-
culations shows the presence of sharp resonant states in
the region close to the Fermi energy. The strength and
position of these states with respect to the Fermi level
were found to depend sensitively on the number and
relative positions of the pentagons constituting the con-
ical tip. In particular, a prominent peak occurring just
above the Fermi level was found for the nanocone with
three symmetric pentagons (which corresponds to a 60°
opening angle or, equivalently, to a 180° disclination).
On the other hand, the continuum model suggested
in [9] predicts apical enhancement of the density of
states (DOS) at the Fermi energy (EF) in the vicinity of
the apex for cones with 120° disclinations.

It is interesting to note that the problem of specific
electronic states at the Fermi level due to disclinations
is similar to that of the fermion zero modes in topolog-
ically nontrivial manifolds. In field theory, zero modes
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were found to play an important role in understanding
anomalies [11] and charge fractionalization that results
in unconventional charge–spin relations (e.g., paramag-
netism of charged fermions) [12]. As mentioned
in [12], this finding has been experimentally verified in
trans-polyacetylene chains for one spatial dimension.
The Dirac equation for massless fermions in three-
dimensional space–time in the presence of a magnetic
field was found to yield N – 1 zero modes in the N-vor-
tex background field [13]. As we have shown in [14],
the problem of the local electronic structure of fullerene
is closely related to Jackiw’s analysis [13]. We note that
the field-theory models for Dirac fermions in a plane
and on a sphere [15, 16] were invoked to describe the
variously shaped carbon materials. More recently, the
importance of the fermion zero modes was discussed
in the context of high-temperature chiral superconduc-
tors [17–19] and fullerene molecules [16].

Investigation of the electronic structure requires for-
mulating a theoretical model describing electrons on
arbitrary curved surfaces with disclinations taken into
account. An important ingredient of this model can be
provided by the self-consistent effective-mass theory
describing the electron dynamics in the vicinity of an
impurity in graphite intercalation compounds [20]. The
most important fact found in [20] is that the electronic
spectrum of a single graphite plane linearized around
the corners of the hexagonal Brillouin zone coincides
with that of the Dirac equation in (2 + 1) dimensions.
This finding stimulated formulation of some field-the-
ory models for Dirac fermions on hexatic surfaces to
describe the electronic structure of variously shaped
carbon materials: fullerenes [14, 15], nanotubes [21],
and cones [9, 22].

In this paper, we study the problem of electron states
in carbon nanostructures for three geometries: sphere,
cone, and hyperboloid. We note that, in our approach,
the gauge theory of disclinations on fluctuating elastic
surfaces [23] is basically used. More specifically, we
formulate the Dirac equation on a curved surface with
a flux due to a pentagonal apical disclination repre-
sented by an Abelian gauge field. Both the local and the
total density of states are calculated in each case. Spe-
cial attention is given to the correct inclusion of the spin
connection for fermions. Actually, our analysis shows
that the spin connection leads to a redefinition of wave
functions but leaves Dirac equations unchanged. In
other words, the spin connection does not influence the
electron spectrum, but affects the DOS.

The paper is organized as follows. The general for-
malism for studying electron states in the curved two-
dimensional background is presented in Section 2. We
formulate a field-theory model for Dirac fermions on
hexatic surfaces of an arbitrary geometry with both
electrons and disclinations taken into account. The flux
due to the pentagonal defect is represented by an Abe-
lian gauge field within a self-consistent gauge model. In
Section 3, we apply the model to the problem of elec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tron states in the fullerene molecule. We calculate the
local and the total DOS and study zero-energy elec-
tronic states. In Section 4, we consider two arbitrary
geometries for the description of nanocones, conical
and hyperbolical. The results obtained are compared
with other approaches. Section 5 is devoted to conclud-
ing remarks.

2. GENERAL FORMALISM

Our consideration is based on the effective-mass
theory that was applied in [20] to study the screening of
a single intercalant within a graphite host, with a two-
dimensional approximation used for the description of
the graphite host. The effective-mass expansion is
equivalent to the k · p expansion of the graphite energy
bands around the K point in the Brillouin zone when
the intercalant potential is equal to zero. In fact, there
are two degenerate Bloch eigenstates, Ψ1, 2(K, r) at K,
and the electron wave function on a graphite lattice can
therefore be approximated by

where k = K + k. Keeping the terms of the order of k
in the Schrödinger equation results in a secular equation
for the amplitudes f1, 2(k), which after diagonalization
finally yields the two-dimensional Dirac equation [20]

(1)

Here, γµ are the Dirac matrices that in 2D reduce to the
conventional Pauli matrices, the energy E is measured
relative to the Fermi energy, and the two-component
wave function ψ ∝  (f1, f2)T represents two graphite sub-
lattices. As mentioned in [20], the k · p approximation
essentially amounts to replacing the graphite bands by
conical dispersions at the Fermi energy.

For our purpose, we need a generalization of Eq. (1)
incorporating both a disclination field and a nontrivial
background geometry. A possible description of discli-
nations on arbitrary two-dimensional elastic surfaces is
offered by the gauge approach [23]. In accordance with
the basic assumptions of this approach, disclinations
can be incorporated in the elasticity theory Lagrangian
by introducing a compensating U(1) gauge field Wµ. It
is important that the gauge model admits vortexlike
solutions for wedge disclinations [23], thus represent-
ing a disclination as a vortex of elastic medium. The
physical meaning of the gauge field is that the elastic
flux due to rotational defect, which is directly related to
the Frank vector (see Section 3), is completely deter-
mined by the circulation of the Wµ field around the dis-
clination line. In the gauge theory context, the disclina-
tion field can be straightforwardly incorporated in (1)
by the standard substitution

Ψ k r,( ) f 1 k( )eik r⋅ Ψ1 K r,( )= f 2 k( )eik r⋅ Ψ2 K r,( ),+

iγµ∂µψ r( ) Eψ r( ).=

∂µ ∂µ iWµ.–
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Within the linear approximation to gauge theory of
disclinations (which amounts to the conventional elas-
ticity theory with linear defects), the basic field equa-
tion that describes the U(1) gauge field in a curved
background is given by

(2)

where the covariant derivative Dµ := ∂µ + Γµ involves
the Levi-Civita (torsion-free, metric compatible) con-
nection

(3)

with gµk being the metric tensor on a Riemannian sur-
face Σ with local coordinates xµ = (x1, x2). For a single
disclination on an arbitrary elastic surface, a singular
solution to (2) is found to be [23]

(4)

where

(5)

with εµk = eµk being the totally antisymmetric tensor
on Σ, e12 = –e21 = 1. We note that Eqs. (2)–(5) self-con-
sistently describe a defect located on an arbitrary sur-
face [23].

To describe fermions in a curved background, we
need a set of orthonormal frames {eα} for the metric
gµν; local SO(2) rotations act on the frames as

It then follows that

where  is the zweibein, with the orthonormal frame
indices being α, β = {1, 2} and the coordinate indices
µ, ν = {1, 2}. As usual, to ensure that physical observ-
ables are independent of a particular choice of the
zweibein fields, a local so(2)-valued gauge field ωµ
must be introduced. The gauge field of the local
Lorentz group is known as the spin connection. For the
theory to be self-consistent, the zweibein fields must be
chosen to be covariantly constant [24],

which determines the spin connection coefficients

DµFµk 0, Fµk ∂µWk ∂kWµ,–= =

Γµλ
k  := Γµ( )λ

k 1
2
---gkl ∂glλ

∂xµ---------
∂gµl

∂xλ----------
∂gµλ

∂xl
-----------–+ 

  ,=

Wk νεkλ DλG x y,( ),–=

DµDµG x1 x2,( ) 2πδ2 x1 x2,( )
g

------------------------------,=

g

eα eα' Λα
βeβ, Λα

β SO 2( ).∈=

gµν eµ
αeν

βδαβ,=

eα
µ

$µeν
α  := ∂µeν

α Γµν
λ eλ

α– ωµ( )β
αeν

β+ 0,=
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explicitly,

(6)

Finally, Dirac equation (1) on a surface Σ in the pres-
ence of the U(1) external gauge field Wµ is written as

(7)

where ∇ µ = ∂µ + Ωµ with

(8)

being the spin connection term in the spinor represen-
tation.

3. SPHERICAL FULLERENE MOLECULES

Variously shaped fullerene molecules appear in the
process of graphite vaporization. The more spherical of
them is the C60 molecule, also nicknamed the “bucky
ball.” Others are either slightly (as C70, whose shape is
more like an elliptical deformation) or remarkably
deformed. We are interested here in the C60 molecule
and in its spherical generalizations like the C240 and
C540 molecules.

3.1. The Model

To describe a sphere, we use the polar projective
coordinates

where R is the radius of the sphere. In these coordi-
nates, the metric tensor becomes

(9)

and therefore,

Nonvanishing coefficients of connection (3) are given by 

and the general representation for the zweibeins is

ωµ( )αβ eν
α Dµeβν.=

iγαeα
µ ∇ µ iWµ–( )ψ Eψ,=

Ωµ
1
8
--- ωµ( )αβ γα γβ,[ ]=

x1 r x2 ϕ ; 0 r ∞, 0 ϕ 2π,<≤<≤= =

grr
4R4

R2 r2+( )2
-----------------------, gϕϕ

4R4r2

R2 r2+( )2
-----------------------,= =

grϕ gϕ r 0,= =

g := det gµν
4R4r

R2 r2+( )2
-----------------------= .

Γ rr
r 2r

R2 r2+
----------------, Γϕϕ

r– r
R2 r2–

R2 r2+
----------------,–= =

Γ rϕ
ϕ 1

r
--- R2 r2–

R2 r2+
----------------,=

er
1 eϕ

2 2R2 ϕcos

R2 r2+
----------------------, eϕ

1 er
2–

2R2 ϕsin

R2 r2+
---------------------,–= = = =
AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



ELECTRONIC STRUCTURE OF CARBON NANOPARTICLES 143
which in view of Eq. (6) gives

(10)

The following solution to Eqs. (4) and (5) can be easily
found:

Locally, it describes a topological vortex on the Euclid-
ean plane, which confirms the observation that disclina-
tions can be viewed as vortices in elastic media.

The elastic flow through a surface on the sphere is
given by the circular integral

Generally, there are no restrictions on the value of the
winding number ν apart from ν > –1 for topological
reasons. But if we take the symmetry group of the
underlying crystal lattice into account, the possible val-

ωr
12 ωr

21 0, ωϕ
12 ωϕ

21–
2r2

R2 r2+
---------------- =: 2ω.= = = =

G r, Wrln 0, Wϕ ν , r 0.≠= = =

1
2π
------ Wdr∫° ν .=
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ues of ν become “quantized” in accordance with the
group structure (e.g., ν = 1/6, 1/3, 1/2, … for the hexag-
onal lattice). We note that the elastic flux is character-
ized by the Frank vector w, |w| = 2πν, with ν being the
Frank index. Thus, the elastic flux is “classical” in its
origin; i.e., there is no quantization (in contrast to the
magnetic vortex). In some physically interesting appli-
cations, however, vortices with a fractional winding
number have already been considered (see, e.g., the dis-
cussion in [17]). We also note that a detailed theory of
magnetic vortices on the sphere has been presented
in [25].

In 2D, the Dirac matrices can be chosen as the Pauli
matrices, γ1 = –σ2 and γ2 = σ1; Eq. (8) then reduces to

(11)

As a result, the Dirac operator

on the two-sphere becomes

Ωϕ iωσ3.=

$̂ := iγαeα
µ ∇ µ iWµ+( )
(12)$̂ $̂
† r2 R2+

2R2
----------------

0 e iϕ– –∂r

i∂ϕ ν+
r

---------------- ω
r
----+ + 

 

eiϕ ∂r

i∂ϕ ν+
r

---------------- ω
r
----–+ 

  0
 
 
 
 
 
 
 

.= =
In proving that the operator  is Hermitian, we use
that in the presence of a metric,

For massless fermions, σ3 serves as a conjugation
matrix, and the energy eigenmodes are symmetric with
respect to E = 0:

The generator of the local Lorentz transformations  ∈
SO(2) takes the form –i∂ϕ, and the generator of the
Dirac spinor transformations ρ(Λ) is

The total angular momentum of the 2D Dirac system is
therefore given by

which commutes with operator (12). Consequently, the
eigenfunctions are classified with respect to the eigen-

$̂

∂r
† ∂r–

1
2
---∂r g.ln–=

σ3ψE ψ E– .=

Λα
β

Σ12
i
4
--- γ1 γ2,[ ] 1

2
---σ3.= =

Lz –i∂ϕ
1
2
---σ3,+=
values of Jz = j + 1/2, j = 0, ±1, ±2, … and are to be
taken in the form

(13)

As follows from Eq. (12), the spin connection term
can be taken into account by redefining the wave func-
tion as

(14)

which reduces eigenvalue problem (7) to

(15)

where

ψ u r( )eiϕ j

v r( )eiϕ j 1+( )
 
 
 
 

.=

ψ ψ̃ R2 r2+ ,=

∂rũ
j ν–( )

r
----------------ũ– Ẽṽ ,=

∂rṽ
j 1 ν–+( )

r
-------------------------ṽ–– Ẽũ,=

Ẽ
2R2E

R2 r2+
----------------.=
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3.2. Extended Electron States

The general solution to (15) is not available, unfor-
tunately. But because we are mainly interested in elec-
tronic states near the disclination line, we can restrict
our consideration to the case of small r. In this case, a
solution to (15) (with (14) taken into account) is found
to be

, (16)

where

and A is a normalization factor. Therefore, there are two
independent solutions with η( ) > 0 and η( ) < 0. We
note that the respective signs “±” in (16) correspond to
states with E > 0 and E < 0. As already noted, σ3 serves
as the conjugation matrix for massless fermions and the
energy eigenmodes are symmetric with respect to
E = 0. We can therefore consider either case, for
instance, E > 0.

The important restrictions come from the normal-
ization condition

(17)

From (16), it follows that A2 ∝  E. On the other hand, the
integrand in (17) must be nonsingular at small Er. This
imposes a restriction on possible values of j. Namely, for
η,  > 0, we obtain j – ν > −1/2, and for η,  < 0, we
have j – ν < –1/2. It follows that possible values of j do
not overlap at any ν.

In the vicinity of a pentagon, the electron wave func-
tion is given by

(18)

In particular, in the leading order, we obtain

Because the local density of states diverges as r  0,
it is more appropriate to consider the total density of
states on a patch 0 < r ≤ δ for small δ, rather than the
local quantities. For this, we must integrate the electron

u

v 
 
 

A
Jη 2Er( )
Jη± 2Er( ) 

 
 

=

η j ν–( ), η± j ν– 1+( ),±= =

η η

u 2 v 2+( ) g x1d x2d∫ 1.=

η η

u

v 
 
  E1/2 η+ rη ,

E1/2 η+ rη
 
 
 
 

.∝

Ψ
E, ν 0,=

E1/3r 1/6– , ν 1/6,=

E1/6r 1/3– , ν 1/3.=





∝
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density over a small disk |r| < δ. (We recall that r and ϕ
are stereographically projected coordinates on the
sphere.) The result is

(19)

For the defect-free case (ν = 0), we obtain the well-
known behavior of the total DOS in the δ disk given by
D(E, δ) ∝  Eδ2 (in accordance with the previous analysis
[20]). For ν = 1/6, 1/3, 2/3, 5/6, the low-energy total
DOS has a cusp that drops to zero at the Fermi energy.
Most intriguing is the case where ν = 1/2 and a region
of a nonzero DOS across the Fermi level is formed.
This implies local metallization of graphite in the pres-
ence of a 180° disclination. In the fullerene molecule,
however, there are twelve 60° disclinations, and there-
fore, the case ν = 1/6 is actually realized.

3.3. Zero-Energy Modes

An interesting issue to be addressed is the existence
of zero-energy modes. For the two-sphere, this problem
can be solved exactly (see [13, 14]). Namely, for E = 0,
Eq. (15) reduces to

(20)

We can construct self-conjugate solutions  and

, where

(21)

The normalization condition

(22)

yields

(23)

where l = j – ν for u0 and l = –(j – ν + 1) for v 0. Finally,

D E δ,( )

Eδ( )δ, ν 0,=

Eδ( )2/3δ, ν 1/6 5/6,,=

Eδ( )1/3δ, ν 1/3 2/3,,=

δ, ν 1/2.=







∝

   ∂ r u  ̃ 0 
j ν – ( )

 
r

 ---------------- u ˜ 0 – 0,= 

∂

 

r

 

v

 

˜

 

0

 

–

 

j

 

1

 

ν

 

–+

 

( )

 

r

 

-------------------------

 

v

 

˜

 

0

 

– 0.=

ũ0

0 
 
 

0

ṽ 0 
 
 

ũ0 Ar j ν– , ṽ 0 Ar j ν– 1+( )– .= =

ψ0
2 g rd ϕd∫ 1=

2πA2 4R4r2l

R2 r2+
----------------r rd

0

∞

∫ 1,=

A2 πηsin

4π2R2 1 η+( )--------------------------,=
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for u0 and

for v0. We note that the restriction –1 < j – ν < 0 serves to
avoid divergence in (22). In the defect-free case (ν = 0),
this yields no zero modes on the sphere. We note that
this agrees with the general observation that the Dirac
operator can have no zero modes on a manifold with an
everywhere positive Ricci scalar curvature 5. Indeed,

we easily find that  = ∆ + 5/4, where the Laplace–
Beltrami operator ∆ has nonnegative eigenvalues [26].

For the two-sphere, 5 = 1/R2, and therefore,  > 0.
In the case where ν = 1/6, in which we are interested

here, the only possible value of j is j = 0, and therefore,
u0 ∝  r–1/6 and v 0 ∝  r–5/6 near the disclination line. Thus,
our analysis shows that two normalizable zero modes
can exist on the sphere in the presence of a disclination
vortex. We note that this conclusion agrees with [15]
(where a different continuum model was formulated)
and differs from [13, 14], where either u0 or v 0 was
found to be normalizable. The reason is that, in [13, 14],
the external gauge field was assumed to be well-
behaved at the origin. In this paper, we admit singular
solutions as well.

The total density of states on the patch 0 < r ≤ δ
becomes

(24)

It follows that this behavior differs from (19) and there-
fore allows recognizing the zero-eigenvalue states in
experiment.

4. NANOCONES

A conelike structure (an exposed surface) is formed
when a pentagon is introduced into a graphite sheet.
There are two possible scenarios for modeling nano-
cones. First, the cut-and-paste procedure can be accom-
plished in which the pentagon is constructed in the hex-
agonal network by cutting out a 60° sector from the
graphene sheet (a single layer of graphite). In this case,
we have a real cut with the consequent departure from
the flat surface. Pentagonal defects in cones can there-
fore be considered as apical disclinations, and the open-
ing angle is directly connected to the Frank index of the
disclination. Because of the symmetry of the graphite
sheet, only five types of cones can be created from a
continuous sheet of graphite. The total disclinations of
all these cones are multiples of 60°, corresponding to
the presence of a given number (n) of pentagons at the
apices. It is important to mention that carbon nano-
cones with the cone angles of 19°, 39°, 60°, 85°, and

A2 πηsin

4π2R2 1 η–( )--------------------------–=

$̂
2

$̂
2

D δ( )
δ1/3, ν 1/6 5/6,,=

δ2/3, ν 1/3 2/3,,=

δ, ν 1/2.=





∝
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113° have been observed in a carbon sample [27]. We
note that these angles might correspond to 300°, 240°,
180°, 120°, and 60° disclinations in graphite, respec-
tively. Disks (n = 0) and one-open-end nanotubes
(n = 6) have also been observed in the same sample [27].
This case was theoretically studied in [9, 10, 22]. At the
same time, cones with the apex angles of 30°, 50°, and
70° have also been found [28, 29]. These angles are for-
bidden within the above scenario. In [28, 29], the
appearance of such cones was explained in terms of the
open cone model.

Second, a single disclination on a finite graphite
sheet is known to be buckled to screen its energy, thus
leading to a curved hexagonal network [7]. In this con-
text, the pentagon in graphene can result in a curved
conelike structure. The most appropriate conelike fig-
ure is the hyperboloid. We note that this agrees with a
suggestion made in [1] that nonsymmetric fullerenes of
a special form can serve as nucleating centers for the
nanocone. We consider both these scenarios below.

4.1. Cone Geometry

4.1.1. The model. In the polar coordinates (r, ϕ) ∈
R2, a cone can be regarded as the embedding

with a and c being the cone parameters. From this, the
components of the induced metric can easily be
obtained as

(25)

The opening angle of the cone, θ, is determined by

Because the cone itself appears when one or more sec-
tors are removed from graphene, all possible angles are
divisible by π/3. Therefore, the Frank index of the api-
cal disclination can be specified by

At ν = 0, we obtain a flat graphene sheet (θ = π). For
convenience, we introduce the parameter

such that

and

Nonvanishing coefficients of connection (3) are now
given by

r ϕ,( ) ar ϕcos ar ϕ cr,sin,( ),

0 r 1, 0 ϕ 2π,<≤< <

grr a2 c2, gϕϕ+ a2r2, grϕ gϕ r 0.= = = =

θ/2( )sin a/ a2 c2+ .=

ν 1 θ/2( ).sin–=

ξ 1 c2/a2+=

θ/2( )sin 1/ ξ=

1/ ξ 1 ν .–=

Γϕϕ
r r

ξ
--, Γ rϕ

ϕ– Γϕ r
ϕ 1

r
---.= = =
SICS      Vol. 96      No. 1      2003



146 OSIPOV et al.
The general representation for the zweibeins is found
to be

er
1 a2 c2+ ϕ , eϕ

1cos ar ϕ ,sin–= =

er
2 a2 c2+ ϕ , eϕ

2sin ar ϕ ,cos= =
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which in view of Eq. (6) gives

(26)

The external gauge potential is then Wr = 0, Wϕ = ν, and
the Dirac operator on the cone takes the form

ωr
12 ωr

21 0,= =

ωϕ
12 ωϕ

21– 1 1/ ξ  =: 2ω.–= =
$̂ $̂
†

0 e iϕ– –
∂r

a2 c2+
-------------------- 1

ar
----- i∂ϕ ν ω+ +( )+

 
 
 

eiϕ ∂r

a2 c2+
--------------------

1
ar
----- i∂ϕ ν ω–+( )+

 
 
 

0

.= =
Making the substitution

we reduce the eigenvalue problem in Eq. (7) to

(27)

where  = aE.
4.1.2. Electron states. In contrast to the previous

case of the two-sphere, the cone is essentially a flat
manifold (the scalar curvature 5 = 0 everywhere on the
cone, except at the origin), and as a result, (27) allows
an exact solution. Namely, the general solution to (27)
is found to be [22]

(28)

where

As earlier, we consider the case where E > 0. Normal-
ization condition (17) now becomes

(29)

The normalization factor can be extracted from the

ψ ψ̃rα , α ξω,= =

∂rũ
ξ

r
------- j ν–( )ũ– Ẽṽ ,=

∂rṽ
ξ

r
------- j 1 ν–+( )ṽ– Ẽũ,=–

Ẽ ξ

ũ

ṽ 
 
 

Ar α– Jη Ẽr( )

Jη± Ẽr( ) 
 
 
 

,=

η ξ j ν– 1/2+( ) 1/2–( ),±=

η ξ j ν– 1/2+( ) 1/2+( ).±=

2π ξa2A2 Jη
2 Ẽr( ) Jη

2 Ẽr( )+( )r rd

0

1

∫ 1.=
asymptotic formula for Bessel functions at large argu-
ments. Indeed,  – η = 1 in our case, and therefore,

Substituting this in (29) yields

Clearly, (29) must be nonsingular at small r. This
imposes a restriction on possible values of j. For η,  > 0,
we obtain j > –1 (i.e., j = 0, 1, 2, …), and for η,  < 0,
we have j < –2ν (j = –1, –2, … at ν < 1/2).

We are interested in the electron states near the apex
of the cone. As follows directly from (28), the wave
functions behave as

(30)

for small r. In the leading order, we obtain

In particular, we obtain

Finally, the total density of states on the patch 0 <

η

Jη
2 Jη

2 2/πẼr for  Ẽr @ 1.+

A2 E
4a
------.=

η
η

u

v 
 
  E1/2 η+ rη ,

E1/2 η+ rη
 
 
 
 

∝

Ψ E 1 2ν–( )/2 1 ν–( )r ν / 1 ν–( )– .∝

Ψ
E, ν 0,=

E2/5r 1/5– , ν 1/6,=

E1/4r 1/2– , ν 1/3.=



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∝
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r ≤ δ is given by

(31)

It should be stressed that, according to (31), a spe-
cific behavior of D(E, δ) occurs only for ν = 1/2, where
D ∝  E0δ. This prediction of our model agrees with a
finding in [10], where the prominent peak just above the
Fermi level was found for the nanocone with three sym-
metric pentagons (180° disclination). In the leading
order, it follows from (31) that

(32)

As can be seen, the extended states with a nonzero den-
sity of states at EF appear only at ν = 1/2. This conclu-
sion disagrees with the results obtained in [9], where a
nonzero DOS at EF was found to occur at ν = 1/3. We
now comment on this disagreement briefly. There is an
important point where our consideration differs from [9].
Our model is based on the gauge-theory approach
where defects on an elastic curved surface are described
by an Abelian gauge field. As a result, the flux due to
pentagonal apical disclination (elastic vortex) is explic-
itly incorporated into the Dirac equation. On the other
hand, the model in [9] treats the appropriate boundary
conditions for electron states resulting from the cut-
and-paste procedure. In that approach, the gauge field
carries information about the boundary conditions. In
fact, both models are similar but not identical, which is
exemplified by the different predictions.

To examine the electron states at the Fermi energy,
we return to (27) and set E = 0. The solution reads

(33)

where  = j – ν + 1/2. A simple analysis shows that, for
j = 0, both u0 and v 0 are normalizable on the cone of a
finite size. Both solutions are singular. For ν = 1/6, we
obtain

For any other j, either u0 or v 0 is found to be normaliz-
able and the solutions become nonsingular. As before,
the total DOS can be considered for singular states. It is

D E δ,( )

∝ 
E 1 2ν+( )/ 1 ν–( )δ ν 2+( )/ 1 ν–( ), η η 0,>,

E 1 2ν–( )/ 1 ν–( )δ 2 3ν–( )/ 1 ν–( ), η η 0.<,



D E δ,( )

Eδ2, ν 0,=

E4/5δ9/5, ν 1/6,=

E1/2δ3/2, ν 1/3,=

δ, ν 1/2.=







∝

u0 Ar–1/2 j̃ ξ+ , v 0 Br–1/2 j̃ ξ– ,= =

j̃

u0
2 r 1/5– /a2, v 0

2 r 9/5– /a2.∝∝
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
easy to find that D ∝  δ1/5 for u0 and D ∝  δ9/5 for v 0. This
result differs from [8], where, although in a different
framework, the states on a finite cone with a single-pen-
tagon defect have been found at the Fermi energy (these
states decay away from the apex as |ψ|2 ∝  r–2/5). At the
same time, our study confirms the principal conclusion
in [8, 30] that the states contributing to the nonzero
DOS at the Fermi energy exhibit a power-law behavior
for a single-pentagon defect. We also note that there are
no zero-energy electronic states on a single disclination
in monolayer graphite of an infinite length (a  ∞).
We emphasize that this conclusion agrees with the
results of numerical calculations in [30], where the
local density of states at the Fermi level was found to
be zero for five-membered rings (pentagons). We
also note that, for ν = 1/2, D ∝ δ  for both u0 and v 0.

4.2. Hyperboloid Geometry

4.2.1. The model. The upper half of a hyperboloid
can be regarded as the embedding

From this, the components of the induced metric can be
obtained as

(34)

which yields

(35)

for the nonvanishing coefficients of the connection. In
a rotating SO(2) frame, the zweibeins become

(36)

which, in view of Eq. (6), gives the spin connection
coefficients

(37)

and therefore,

(38)

The external gauge potential is then Wχ = 0, Wϕ = ν,
and the Dirac operator on the hyperboloid takes the
form

χ ϕ,( ) a χsinh ϕcos a χsinh ϕsin c χcosh, ,( ),

0 χ ∞ , 0 ϕ 2π.<≤<≤

gχχ a2 χcosh
2

c2 χsinh
2

, gϕϕ+ a2 χsinh
2

,= =

gϕχ gχϕ 0,= =

Γχχ
χ a2 c2+( ) 2sinh χ

2gχχ
---------------------------------------,=

Γϕϕ
χ a2 2sinh χ

2gχχ
-----------------------, Γϕχ

ϕ– Γχϕ
ϕ χcoth= = =

eχ
1 gχχ ϕ , eχ

2cos gχχ ϕ ,sin= =

eϕ
1 a χ ϕ , eϕ

2sinsinh– a χ ϕ ,cossinh= =

ωχ
12 ωχ

21 0,= =

ωϕ
12 ωϕ

21–
1
2
--- 1 a χcosh

gχχ

------------------–  =: ω,= =

Ωϕ iωσ3.=
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$̂

0 e iϕ– –
∂χ

gχχ

----------- 1
a χsinh
----------------- i∂ϕ ν ω+ +( )+ 

 

eiϕ ∂χ

gχχ

-----------
1

a χsinh
----------------- i∂ϕ ν ω–+( )+ 

  0

.=
It can be verified that  = .

The substitution

reduces the eigenvalue problem in Eq. (7) to

(39)

where

4.2.2. Electron states. To study electronic states on
the hyperboloid, we must analyze Eqs. (39). Because of
the nonvanishing scalar curvature, the general solution
to the Dirac equation on the hyperboloid (as well as on
the sphere) is not available and we are forced to simplify
the problem. Fortunately, we are interested in the behav-
ior of the electron states near the apex and can therefore
consider only the case of small χ. We then obtain

(40)

with the obvious solutions

As can be seen, this is exactly the case of a sphere,
which should not be surprising, because these two man-
ifolds are locally diffeomorphic. Evidently, the total
DOS on a finite hyperboloid is the same as on the
sphere (see (19)).

We now consider the zero-energy modes, setting
E = 0 in (39). The general solution is found to be

(41)

where

$̂ $̂
†

ψ̃ ψ χsinh=

∂χũ χ b2+coth
2

j̃ ũ– Ẽṽ ,=

∂χṽ χcoth
2
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  ∂ χ u  ̃
j

 
˜

 χ --- u ˜–  Ea v ˜ ,= 
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˜–

 

Eau

 

˜ ,=

ũ A EaχJ j ν– Eaχ( ),=

ṽ A EaχJ j ν– 1+ Eaχ( ).=

ũ χ( ) A k χ ∆+cosh( )2k ∆ χcosh–
∆ χcosh+
-------------------------

j̃ /2

,=

ṽ χ( ) A k χcosh ∆+( )2k ∆ χcosh–
∆ χcosh+
-------------------------

j̃ /2–

,=
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An important restriction comes from the normalization
condition (see (17)) which on a finite hyperboloid

yields  > –1/2 for u(χ) and  < 1/2 for v(χ). We see

that, for –1/2 <  < 1/2, both u(χ) and v(χ) are normal-
izable simultaneously. For the zero-energy mode, the
total DOS on a finite hyperboloid is found to be the
same as on the sphere (see (24)).

Although the local electronic structures are similar
on the hyperboloid and the sphere, there is a principal
global distinction. We consider an unbounded hyperbo-
loid (full locus). In this case, additional restrictions at
the upper limit of the integral in (17) must be taken into

account. We obtain –1/2 <  < –1/2k for u(χ) and 1/2k <

 < 1/2 for v(χ). Therefore, either u(χ) or v(χ)
becomes normalizable on the hyperboloid of infinite
volume. We see that, as c/a  0, a normalizable solu-
tion does not exist. In fact, the hyperboloid then
becomes a plane. Consequently, our results are in
accordance with the planar case. The total density of
states on an infinite hyperboloid for a variety of defects
is as follows:

(42)

We note that normalizable zero-energy states do not
exist for the defect with ν = 1/2 nor for the defect-free
case ν = 0. The most important conclusion from our
consideration is that there is a possibility for the true
zero-mode fermion state on the hyperboloid. As we
have shown, the normalized zero-mode states on both
the sphere and the cone exist only for a finite system
size and disappear in the infinite-size limit. For an infi-
nite hyperboloid, a normalized zero-energy electron
state can exist in the presence of a disclination flux.

5. CONCLUSIONS

We have formulated a gauge field-theory model
describing electron states on graphitic nanoparticles.
The topological nature of the pentagonal defect is
found to markedly modify the low-energy electronic

k 1 b2+ , ∆ 1 k2 χsinh
2

+ .= =

j̃ j̃

j̃

j̃

j̃

D δ( )

δ1/3, ν 1/6, c/a 5/2,>=

δ2/3, ν 1/3, c/a= 2 2,>

δ2/3, ν 2/3, c/a 2 2,>=

δ1/3, ν 5/6, c/a 5/2.>=







∝
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structure. In particular, the total density of extended
states has a rather specific dependence on both the
energy and the distance from the disclination line. We
have found that the low-energy total DOS has a charac-
teristic cusp at the Fermi energy for any disclinations
with ν < 1/2. In particular, this finding suppresses the
extended electron states with a nonzero DOS at EF in
the fullerene molecule with ν = 1/6. For zero-mode
states, the total DOS on the patch 0 < r < δ behaves as
δ1/3. A similar behavior is found for a graphitic hyper-
boloid. There is, however, a principal distinction due to
the possibility for the true zero-mode fermion state to
occur on the hyperboloid. Namely, the normalized
zero-energy electron state can exist even on an infinite-
size hyperboloid.

We have shown that the local and the total DOS at
the apices of nanocones are strongly dependent on the
pentagon concentration. In particular, our model pre-
dicts anomalous behavior of D(E, δ) only for ν = 1/2
(three pentagons at the apex), where D ∝  E0δ; that is,
the enhanced charge density at EF is located at the apex
of the cone at a 60° opening angle. This implies local
metallization, thus suggesting some important applica-
tions of nanocone-based structures in microelectronic
devices. First of all, such a remarkable increase of the
DOS must provoke the corresponding enhancement of
the field emission current, thereby decreasing the
threshold voltage for emitted electrons. We note that
this conclusion agrees well with the results in [10],
where the prominent peak appearing just above the
Fermi level was established in a nanocone with three
pentagons at the apex. It was proposed that such pecu-
liar nanocones are good candidates for nanoprobes in
scanning probe microscopy and excellent candidates
for field-emission devices. As was also mentioned
in [10], the nanocones with free pentagons at the tip
have the highest probability of nucleation and are fre-
quently observed [27]. It is expected that localized
states at the Fermi level may give rise to materials with
novel electronic and magnetic properties. We hope that
our predictions will motivate further measurements of
electronic properties of graphitic nanoparticles.
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Abstract—An exact solution is obtained to the problem of the spectrum of holes, described by the Luttinger
Hamiltonian, in a quantum well of finite depth under arbitrary uniaxial stresses in the well and the barrier. Con-
ditions for the topological transitions accompanied by the variation in the connectivity of the isoenergetic sur-
face are found. It is shown that, for certain values of model parameters, the effective mass of holes in the
ground-state subband of size quantization becomes negative. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An important role in the application of modern
methods of band-structure engineering to the develop-
ment of new types of heterostructures is played by qual-
itative ideas about the specific features of the formation
of the charge-carrier energy spectrum with regard to
size quantization. For nondegenerate states in the con-
duction band, these ideas are rather trivial and are
reduced to the results of an exactly solvable problem on
the bound states of an electron in a quantum well of
finite depth [1]. A more complicated situation occurs in
the valence band due to the mixing of light- and heavy-
hole states under nonzero values of the transverse
quasimomentum of charge carriers (in the plane of the
quantum well). The simplest model describing this phe-
nomenon is the Luttinger Hamiltonian, which takes
into account the band that is split off due to spin–orbit
interaction. An exact solution to the problem with the
Luttinger Hamiltonian for a quantum well with infi-
nitely high barriers was obtained by Nedorezov [2] and
improved in [3, 4]. In recent years, there has been con-
siderable interest in strained heterostructures, which is
primarily attributed to numerous engineering applica-
tions of these structures [5]. The use of the deformation
potential as an additional control parameter opens new
possibilities for developing heterostructures with pre-
scribed properties. The growth of various types of
strained heterostructures (that are compressed or
stretched in the plane of the quantum well) allows one
to alter the forbidden band and the effective density of
states and thus to control the radiation wavelength and
the threshold current in semiconductor lasers [6, 7] and
enhance the sensitivity of detectors in electrooptical
modulators [8]. The application of strained layers
enables one to increase the mobility and concentration
of charge carriers in the channel of a field-effect transis-
tor with modulated doping [9] and to enhance the effi-
ciency of the emitter and increase the band transport
factor of a heterojunction bipolar transistor [9]. The
1063-7761/03/9601- $24.00 © 20150
Nedorezov solution in the case of a strained quantum
well was generalized in [10]. The basic principles of the
hole spectrum of real semiconductor systems with dif-
ferent Luttinger parameters in the well and the barrier,
with a finite height of the potential barrier, and with
regard to stresses were established in [11] by numerical
calculation, where the authors used analytic expres-
sions for the eigenfunctions of the Luttinger Hamilto-
nian. A variety of results of numerical calculations of
the energy spectra of holes in size-quantized semicon-
ductor heterostructures have been expounded in mod-
ern monographs and textbooks [7, 12–14].

In the present work, we obtain an exact solution for
the energy spectrum of holes, described by the Lut-
tinger Hamiltonian, in a quantum well of finite depth
under the assumption that the Luttinger parameters in
the well and the barrier are identical, while elastic
stresses in the well and the barrier may be different. The
relations obtained show that, in certain parameter
domains of the system, the effective mass of holes in
the ground-state subband Eh1 of size quantization
becomes negative, while the isoenergetic surface
becomes multiconnected; these phenomena can mani-
fest themselves differently in experiments. Actually, we
deal with a new mechanism of topological transition in
the energy spectrum [15].

The paper is set up as follows. In Section 2, by
example of a model problem of a quantum well with
infinitely high barriers, we establish the main factors
that determine the details of the energy spectrum of
holes in size-quantized heterostructures, in particular, a
relation between the transverse effective mass (with
respect to the quantization axis) and the sequence order
(in energy) of the subbands of size quantization. In
modern literature [7, 13, 14], one usually applies vari-
ous approximations to the qualitative interpretation of
the results of numerical calculations, which reduce to
neglecting the warping of the bulk dispersion law. We
show that neglecting the warping may lead to a loss of
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important features of the transverse dispersion law of
holes. In Section 3, we obtain an exact solution to the
model problem of the spectrum of holes in a quantum
well of finite depth, find conditions for the topological
transitions accompanied by variation of the connectiv-
ity of the isoenergetic surface, and construct topologi-
cal diagrams that determine the boundaries of the exist-
ence domains of multiconnected isoenergetic surfaces
as a function of stresses in the well and the barrier. We
show that the presence of stretching deformations in the
quantum well is favorable to the topologically nontriv-
ial structure of the energy spectrum. In Section 4, as an
example of the realization of topological transitions in
specific physical systems, we present the results of
numerical calculations, carried out by the envelope-
function method, of the energy spectrum in strained
InP/InGaAs and GaAs/SiGe heterostructures. Possible
experimental manifestations of topological transitions
are discussed in Section 4 and in the Conclusion.

2. MIXING OF LIGHT AND HEAVY HOLES, 
WARPING, AND SIZE QUANTIZATION 

IN A QUANTUM WELL WITH INFINITELY
HIGH BARRIERS

Consider an isolated symmetric quantum well of
width L. Suppose that the plane of the well is perpen-
dicular to axis z. To describe the effects of size quanti-
zation, we apply the effective-mass (envelope-function)
approximation. The Luttinger Hamiltonian for enve-
lope functions, which describes the subbands of heavy
holes, is given by (" = 1)

(1)

where

U(z) is the potential of the heterostructure (U(z) = U0
for the barrier and U(z) = 0 in the well); m0 is the mass
of a free electron; and γ1, γ2, and γ3 are the Luttinger

H z( )

=  
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parameters, which, generally speaking, are different for
the well and the barrier. Hamiltonian (1) is expressed

on the basis of the eigenfunctions  of angular
momentum. Everywhere below, we refer to the band
corresponding to the projection of momentum 3/2 (1/2)
onto axis z for kx = ky = 0 as the band of heavy h (light l)
holes.

The energy spectrum of Hamiltonian (1) in the bulk
of semiconductor (U(z) = const) is well known:

(2)

In addition to the Kramers degeneracy, each energy
level (2) is degenerate in the states of light and heavy
holes. A distinctive feature of energy spectrum (2) is the
warping, which disappears when γ2 = γ3.

The size-quantized energy spectrum of nondegener-
ate (disregarding the Kramers degeneracy) bands (the
conduction band of widely used semiconductors) can
be obtained directly from the expression for the bulk
dispersion law. To this end, one should substitute the
quantized values of the longitudinal quasimomentum,
which correspond to the motion along the size-quanti-
zation axis and are determined by the matching condi-
tions of the wave functions and their derivatives at the
heterointerfaces, into the expression for the bulk disper-
sion law [7, 12, 14]. In this case, each quantized value
of the longitudinal quasimomentum kn corresponds to
its own subband En(k⊥ ) of size quantization that
describes the dependence of energy on the transverse
quasimomentum k⊥  (corresponding to the motion in the
plane of the well). When quantizing degenerate states (2)
of the valence band of widely used semiconductors, the
mixing of heavy- and light-hole branches at finite
values of the transverse quasimomentum considerably
complicates the calculation of the size-quantized
spectrum.

When the transverse quasimomentum is equal to
zero, Hamiltonian (1) is diagonal, the states of light and
heavy holes are decoupled, and their longitudinal
quasimomenta are quantized independently. In this
case, the problem of quantizing the longitudinal quasi-
momentum is reduced to determining the spectrum of
nondegenerate states in a quantum well of finite
depth [1]. If we neglect the difference between the
effective masses (Luttinger parameters) in the well and
the barrier, then the size-quantized longitudinal quasi-
momenta of light and heavy holes coincide (knh0 = knl0 =
kn0; the effective mass is not included in the condition
of size quantization [1]), and the edges of the subbands
are determined by the bulk effective masses:

(3)

This relation implies that the first subband of size quan-
tization for heavy holes is higher in energy than the first
subband of light holes.

Y3/2
3/2± 1/2±,

Eh l, –P Q2 L 2 M 2+ + .±=

Enh l0,
kn0

2

2mh l,
------------–

γ1 2γ2+−( )kn0
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2m0
-------------------------------.–= =
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Table 1.  Calculation of transverse effective masses mh1, 2 (11) for the first two subbands of heavy holes for various semicon-
ductors. Parameters ν, mh, mhr, and mh⊥ 0 are defined in (5), (3), (4), and (8), respectively. The last column contains references
to the sources of the values of γ1, 2, 3

Material ν m0/mh m0/mhr m0/mh⊥ 0 m0/mh1 m0/mh2 Reference

Si 1.45 3.44 4.61 –11.3408 3.47929 4.68684 [14]

GaP 1.64 3.07 4.54 –48.0206 –0.010403 7.03924 [16]

GaP 2.75 2.24 5.18 –3.25551 4.06544 11.9147 [14]

AlAs 2.55 2.12 4.58 –2.79707 3.65245 8.73729 [16]

AlAs 2.30 2.09 4.13 –3.21162 3.25151 6.75966 [14]

AlP 2.47 1.93 4.06 –2.33254 3.26109 7.20948 [16]

AlSb 2.7 2.8 6.37 –3.41378 5.08869 13.5452 [16]

AlN 2.92 0.98 2.39 –2.2217 1.76406 7.29171 [16]

GaN 3.56 1.17 3.42 –1.42 2.71259 22.8286 [16]

GaAs 3.88 2.86 9.04 –3.46228 7.1656 224.439 [16]

GaAs 4.17 2.65 8.95 –3.06429 7.1139 –155.477 [14]

Ge 4.51 4.85 17.6 –5.25372 14.0416 –102.141 [14]

InP 4.40 1.88 6.68 –1.58875 5.39928 –45.4664 [16]

InP 4.92 2.12 8.36 –2.62692 6.61613 –27.9207 [14]

InN 5.2 1.2 4.98 –1.34595 3.96514 –12.5272 [16]

GaSb 5.31 3.74 15.83 –4.76623 12.5128 –38.0669 [14]

GaSb 5.7 4 18.1 –4.87872 14.3526 –33.9338 [16]

InAs 12.33 3 28.5 –1.37294 23.1966 –8.71673 [16]

InAs 12.43 2.93 28.04 –2.89337 22.5455 –10.4123 [14]

InSb 17.32 3.8 50.3 –2.39355 40.7622 –10.4437 [16]

InSb 17.46 3.8 50.72 –4.12938 40.7881 –12.4159 [14]
An interesting feature of the energy spectrum En(k⊥ )
of size-quantized systems, which was revealed as early
as in the first calculations for quantum wells [3], is the
fact that the effective mass in the transverse dispersion
law of the first subband of size quantization (the sub-
band of heavy holes) is less than the effective mass of
the next subband. This phenomenon is called a mass
reversal in the literature [7, 13, 14]. Various arguments
have been used to qualitatively validate this phenome-
non, which ultimately reduce to the rejection of off-diag-
onal terms in the Luttinger Hamiltonian (1) [7, 13, 14].
In this case, we obtain the following expression for the
transverse dispersion law:

(4)

i.e., formula (4) indeed implies that the coefficient mul-
tiplying the square of the transverse quasimomentum in
the expression for the energy of heavy holes is greater
than the corresponding term in the expression for light
holes. However, the reversed masses in (4) that result

Enh l, k ⊥( ) Enh l0,
k ⊥

2

mh lr,
-----------–=

=  Enh l0,
γ1 γ2±( )k ⊥

2

2m0
--------------------------;–
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from such a manipulation depend neither on the geo-
metrical parameters of a size-quantized heterostructure
nor on the number of the subband; they do not repro-
duce the real situation even qualitatively. Table 1 dis-
plays the results of the exact solution [2, 3] (which is
discussed below) for the effective mass of transverse
motion for the first two subbands of size quantization
for heavy holes (mh1, 2, the sixth and seventh columns in
Table 1) and for the first subband of light holes (ml1,
the sixth column in Table 2) for thin films of various
materials (quantum wells with infinitely high barriers).
For comparison, the fourth column presents the numer-
ical values of reversed masses mh, lr (4). For the materi-
als in the upper part of the table (Si-like materials), the
effective mass of light holes is indeed greater than the
“transverse” mass of heavy holes. However, the numer-
ical values of transverse masses mh, l1 have nothing to
do with the values of reversed masses. For most mate-
rials from the upper part of Table 1, the transverse
effective masses of light holes are negative. For the
materials from the lower part of Table 1 (Ge-like mate-
rials), the transverse masses of light holes prove to be
less than those of heavy holes. It can easily be shown
that, for the materials presented in the lower part of
Table 1, the second subband of size quantization for
AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003
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Table 2.  Calculation of transverse effective masses ml1 (11) for the first subband of light holes for various semiconductors.
Parameters ν, ml , mlr , and ml0 are defined in (5), (3), (4), and (8), respectively

Material ν m0/ml ⊥ 0 m0/mlr m0/ml ⊥ 0 m0/ml1 Reference

Si 1.45 5 3.83 19.7808 1.71036 [14]

GaP 1.64 5.03 3.56 56.1206 –7.02045 [16]

GaP 2.75 6.16 3.22 11.6555 –5.45039 [14]

AlAs 2.55 5.4 2.94 10.3171 –2.84356 [16]

AlAs 2.30 4.81 2.77 10.1116 –1.38447 [14]

AlP 2.47 4.77 2.64 9.03254 –1.89515 [16]

AlSb 2.7 7.56 3.99 13.7738 –5.40956 [16]

AlN 2.92 2.86 1.45 6.0617 –4.54101 [16]

GaN 3.56 4.17 1.92 6.76 –18.7366 [16]

GaAs 3.88 11.1 4.92 17.4223 –213.816 [16]

GaAs 4.17 11.05 4.75 16.7643 165.876 [14]

Ge 4.51 21.85 9.1 31.9537 122.365 [14]

InP 4.40 8.28 3.48 11.7488 53.3047 [16]

InP 4.92 10.44 4.2 15.1869 37.2528 [14]

InN 5.2 6.24 2.46 8.78595 18.066 [16]

GaSb 5.31 19.86 7.77 28.3662 55.421 [14]

GaSb 5.7 22.8 8.7 31.6787 53.005 [16]

InAs 12.33 37 11.5 41.3729 29.1383 [16]

InAs 12.43 36.41 11.3 42.2334 29.0831 [14]

InSb 17.32 65.8 19.3 71.9935 138.109 [16]

InSb 17.46 66.36 19.44 74.2894 135.703 [14]
heavy holes lies higher in energy than the first subband
for light holes. In other words, as follows from (3), the
relation

(5)

or

holds for these materials. The transverse effective mass
of the second subband of heavy holes in these materials
is always greater than the effective mass of the first sub-
band. Thus, an exact statement is that the reversal of
transverse masses occurs for the first and second sub-
bands of size quantization with respect to energy (the
effective mass of the first subband is lower than that of
the second) rather than for the subbands of light and
heavy holes. Note that, according to calculations, the
transverse effective masses of all subbands substan-
tially depend both on the film thickness (the width of
the quantum well) and on the subband number, and are
not even qualitatively reproduced by formula (4).

It should be noted that the rejection of off-diagonal
terms in Hamiltonian (1), which leads to relations (4),
is not justified even formally because the coefficient γ3,

ν
mh

ml

------ 4>=

γ1
10
3
------γ2<
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to which the off-diagonal terms in (1) are proportional, is
greater than the coefficient γ2, which determines the dif-
ference between the effective masses of light and heavy
holes, for all widely used semiconductors [14, 16].
Moreover, rejecting the off-diagonal terms, we lose
information on such a significant feature of the bulk
spectrum as warping. At the same time, the contribution
of the off-diagonal terms of the Luttinger Hamiltonian
to the size-quantized spectrum can easily be taken into
account in perturbation theory if one assumes that the
ratio

(6)

is a small parameter. Expanding (2) in terms of param-
eter (6), we obtain

(7)

where we have the following expression for the “bare”
transverse effective mass mh, l ⊥  0:

(8)
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When γ2 = γ3 (in the absence of warping), the bare trans-
verse masses coincide with the bulk masses mh, l (3).
The reversed masses (4) are obtained from (8) if we set
the Luttinger parameter γ3 equal to zero. It is clear that,
up to the second-order terms in k⊥  in energy, this is
equivalent to the elimination of the off-diagonal terms
from the Luttinger Hamiltonian.

As was pointed out by the authors of [17], the bare
transverse effective mass of heavy holes is negative in
many semiconductors with a sufficiently large ratio of
parameters γ3 and γ2 (see Table 1). This is a direct con-
sequence of the warping in the bulk dispersion law for
heavy holes. At the same time, the bare effective mass (8)
is different from the transverse effective mass observed
in the experiment since formula (8) does not take into
account the dependence of the quantized quasimomen-
tum kn on the transverse quasimomentum k⊥ , which
results from the mixing of light- and heavy-hole
branches at finite k⊥ . Let us represent this dependence
as follows:

(9)

Here, the second term on the right-hand side is called a
phase shift because it determines the variation in the
phase of a wave function under the variation of the
transverse momentum. With regard to the phase shift,
the expression for the effective mass of transverse
motion of holes is rewritten as

(10)

where (m0/mh, l ⊥  0) is the variation of the effective mass
of transverse motion associated with the phase shift.

To determine the phase shift, one has to solve the
eigenvalue problem for Hamiltonian (1) with regard to
the matching condition on the boundaries of the quan-
tum well. In a quantum well with infinitely high barri-
ers, the matching condition is reduced to the vanishing
of the wave function on the boundary. For a given value
of energy, Luttinger Hamiltonian (1) has eight linearly
independent solutions (including the states that differ in
the direction of the longitudinal quasimomentum
±knh, l) that form a basis. Therefore, the boundary con-
ditions in the well with infinitely high barriers lead to a
system of eight homogeneous linear equations for the
expansion coefficients of the wave eigenfunction over
this basis. This problem was solved for the first time by
Nedorezov [2] (in [2], an error was made in sign while
substituting specific values of the Luttinger parameters;
this error was corrected in [3]). A solution for the trans-
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verse effective mass (in which a phase shift is taken into
account) is given by [2, 3]

(11)

where mh, l are the bulk effective masses of heavy and
light holes (3), mh, l ⊥  0 are the bare transverse effective
masses (8), and the parameter ν is defined in (5). The
second term on the right-hand side of (11) determines a
contribution associated with the phase shift to the effec-
tive mass. The calculated effective masses of different
semiconductors are presented in Tables 1 and 2.

Formula (11) shows that, for the ground-state sub-
band of size quantization (n = 1), the phase shift makes
a positive contribution to the inverse transverse effec-
tive mass of heavy holes (because ν > 1) and a negative
contribution to the effective mass of light holes for Si-
like materials (ν < 4), in which the second subband in
energy is the ground-state subband of light holes.

For Ge-like materials (ν > 4), the second subband in
energy is the subband of heavy holes with n = 2, and
formula (11) shows that the contribution of the phase
shift to the inverse transverse effective mass for this
subband is negative. Thus, it is the dependence of the
momentum of size quantization on the transverse quasi-
momentum (the phase shift in our terminology) that
accounts for the basic principles determining the value
of the transverse effective mass in various materials.

Qualitatively, the physical reason for the positive
sign of the phase shift αh of the quasimomentum of size
quantization (an increase in kz with increasing k⊥ ) for
the ground-state subband of size quantization can be
interpreted as follows. When k⊥  ≠ 0, a wave correspond-
ing to the branch of light holes with the same energy as
that for heavy holes but with lesser kz is coupled to the
wave corresponding to the branch of heavy holes. The
standing-wave condition (the condition of constructive
interference) requires that a certain average momentum
of coupled states should be on the order of the momen-
tum kz0 defined by the interference condition in the
absence of mixing of the light- and heavy-hole
branches (for k⊥  ≠ 0). When k⊥  = 0, the quasimomentum
kh0 = kz0, while kl0 < kz0. The coupling of a wave with
lesser quasimomentum (kz0) to the wave with kh0 = kz0
decreases their mean effective momentum. Therefore,
for the effective mean momentum to remain on the
order of kz0 as the momentum k⊥  (which determines the
degree of mixing) increases, the quasimomentum kh

should also increase with k⊥ . This trend will weaken if
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we make kh and kl closer to each other, for example, by
moving the branch of heavy holes downward and the
branch of light holes upward along the energy axis due
to a stretching stress applied to the system.

A similar result is obtained by reducing the barrier
height. In this case, the momentum kh0 of size quantiza-
tion decreases [1] and the difference between kh0 and
kl0, as well as the phase shift, also decreases. This
mechanism of suppressing the phase shift can be
strengthened by applying a compressing stress that
increases the barrier height for light holes and
decreases it for heavy holes. The following section is
devoted to solving the problem of size quantization of
the energy spectrum of the Luttinger Hamiltonian for a
quantum well of finite depth in a strained heterostruc-
ture.

3. SIZE QUANTIZATION OF THE HOLE 
SPECTRUM IN A STRAINED QUANTUM WELL 

OF FINITE DEPTH
Consider a strained heterostructure consisting of a

quantum well and symmetric barriers of finite height.
Let ζ and η be the shifts of energy levels due to
mechanical stresses in the well and the barrier regions,
respectively. Suppose that the stresses do not break the
spatial symmetry of the system and that they are identi-
cal in the left and right barriers. To take into account
these stresses, we have to make the following change in
the variable Q in the well and the barriers:

(12)

For notational convenience, introduce the normalized
stresses

(13)

In a quantum well of finite depth, in addition to the
boundary conditions imposed on the wave functions,
one should take into account the conditions imposed on
the derivatives of these functions. The dimensions of
the Hamiltonian and the corresponding matrix of
boundary conditions can be reduced by applying the
basis transformation of Broido and Sham [18], which
guarantees that the matrix elements of the momentum
pz vanish. Later, this transformation was generalized to
a 6 × 6 Hamiltonian [19, 20]. On the new basis, the
Hamiltonian is reduced to a block-diagonal form whose
elements are two identical 2 × 2 Hamiltonians:

(14)
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where M is defined in (1). Everywhere below, we will
use boundary conditions of conventional form that
guarantee the continuity of flow across the heterointer-
faces at z = 0 and z = L:

(15)

where the flow operator  is given by [12]

(16)

Here, ( , k⊥ ) is Hamiltonian (14) and the subscripts
l, r, and w refer to the left and right barriers and the
quantum well, respectively. Possible deviations from
standard boundary conditions (15) and related physical
phenomena were considered in [21].

Expanding the matrix of boundary conditions over
the basis of eigenfunctions of Hamiltonian (14), we
obtain the following expression that determines the
energy spectrum of holes in the quantum well of finite
depth:

(17)

where

φi is the phase of the appropriate coefficient, and E is
energy. In the limit of small k⊥ , the pairs of coefficients
c and  (c = {u, v, s, t}) satisfy the following relation:
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In the limit as U0, q  ∞, formula (17) reduces to the
spectrum formula from [2, 10].

Expression (8) for the bare (without taking into
account the phase shift) effective masses of the sub-
bands of heavy and light holes with regard to stresses is
rewritten as

(18)

As we discussed above, the third term in this expression
is related to the warping of the bulk spectrum. Owing to
the coefficient (1 – ζh, l) in the denominator of the third
term, positive stresses ζh, l increase the contribution of
warping, whereas negative stresses, conversely, reduce
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this contribution. Moreover, for sufficiently large
stresses, the coefficient 1 – ζh, l may change the sign of
the contribution of warping to the effective mass.

Taking into account the stresses and the phase shift,
we obtain the following expression for the effective
masses of the subbands of heavy and light holes:

(19)

For a barrier of finite height when k⊥  ! kz0, formula (17)
yields the following expression for the coefficient αh, l
in (19) that determines the phase shift and the sign of
the effective mass:
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,

where

The first term on the right-hand side of (20) comes from
the dependence of the barrier height on the transverse
quasimomentum, which arises in the presence of
stresses even when the Luttinger parameters of the well
and the barrier are identical. The second term on the
right-hand side is attributed to the dependence of the
phases φc in the arguments of sines on the left-hand side
of (20) on the transverse quasimomentum and vanishes
when the barrier height tends to infinity. The last term
on the right-hand side of (20) represents the Nedorezov
contribution [2] modified for finite values of the barrier
height and stresses. In a well with infinitely high barri-
ers, the phase shift αh for heavy holes is always positive
and compensates for the contribution of the term asso-
ciated with the warping to the effective mass. In this
case, conversely, the phase shift and, accordingly, the
contribution of light holes to the inverse effective mass
is negative. As a result, the effective mass of transverse
motion for light holes in the quantum well may become
greater than that for heavy holes. However, within the
limits that admit analytic investigation, coefficient αh is
positive and its contribution to the effective mass of
transverse motion is greater than the contribution of the
negative third term on the right-hand side [10]. For

φl h, kl h, L 2
kl h,

ql h,
--------.arccot–=
arbitrary values of the parameters, formula (20)
requires numerical analysis.

Figures 1 and 2 represent the topological diagrams
of the subbands of light and heavy holes in the plane (ζ,
η) for a model structure for various widths of the quan-
tum well. The values ζ, η > 0 correspond to compres-
sion along the axis and stretching in the plane of the
heterostructure. According to (1), (13), and (14), a
stress of any sign moves the subbands of light and
heavy holes in opposite directions in energy: under
stretching in the plane of the quantum well, the sub-
bands of heavy holes move downward and the sub-
bands of light holes move upward in energy, whereas,
under compression, the situation is opposite. Under
sufficiently large positive stresses in absolute value
(axial compression or stretching in the plane), the first
subband of light holes becomes the ground-state sub-
band and lies higher in energy than the first subband of
heavy holes. The barrier height for heavy (light) holes
is determined by the parameter

(21)

Consider the characteristic domains of topological dia-
grams in greater detail.

The boundary of the existence domain for the first
subband of heavy holes is specified by the conditions
Uh = 0 and kh1 = qh1 = 0. When Uh < 0, the quantities
kh and qh are purely imaginary and the wave function

Uh l, U ζ η .±+−=
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Fig. 1. Topological diagram for the first subband of heavy holes in the plane ζ, η for a model structure as a function of the width of
the quantum well: L = (a) 50, (b) 75, (c) 100, and (d) 125 Å. The barrier height is 30 meV, and the Luttinger parameters are γ1 = 7.0,
γ2 = 2.5, and γ3 = 3.5.
contains components that do not decay as z  ±∞.
Near this line, the parameter Uh (21), which deter-
mines the barrier height for heavy holes, is small.

Since   0 (13), the major contribution to coeffi-
cient αh is made in this domain by the second term in
curly brackets in (20). After simple manipulations, we
obtain the following expression for the phase shift αh:

while the effective mass of the first subband of heavy

holes with regard to   0 is equal to the bare
mass (18):

(22)

Near the boundary of the existence domain of the
first subband of light holes (the line kl1 = 0, ql1 = 0), the
barrier height Ul (21) for light holes serves as a small

ζh
1–

αh
1
ζh

-----
3γ3

2

2γ2 γ1 2γ2–( )
-------------------------------- 0,–≈

ζh
1–

m0

mh⊥
--------- γ1 γ2.+=
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parameter. In this case, we have the following expres-
sion for the phase shift αl:

while the effective mass of the first subband of light
holes is equal to

(23)

Thus, near the boundaries kh1 = qh1 = 0 and kl1 = ql1 = 0
of the existence domains of the subbands, the trans-
verse effective masses are positive and independent of
stresses in the well and the barrier.

Near the second boundary of the existence domain
of the subbands of heavy and light holes, we have

for Figs. 1 and 2, respectively. This case is of interest
because the effective mass of the first subband of heavy
holes in Fig. 1 is negative for ql1  0. After simple

α l
1
ζ l

----
3γ3

2

2γ2 γ1 2γ2+( )
--------------------------------- 0,–≈

m0

ml⊥
-------- γ1 γ2.–=

ql1 +0, qh1 +0
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Fig. 2. Same as in Fig. 1 for the first subband of light holes.
manipulations, we obtain the following expression for
the phase shift in this approximation:

In the general case, one cannot obtain a simple expres-
sion for the effective masses of the first subbands of
heavy and light holes. Numerical calculations show
that, for all compound semiconductors [14], there exists
an interval of values (ζ, η) near the boundary ql1 = 0 in
which the effective mass of the first subband of heavy
holes is negative. It should also be noted that there exist
combinations of parameters (γ1, γ2, γ3) such that there is
no such interval for negative effective masses mh1;
namely, when γ3  γ2, i.e., in the spherical approxi-
mation, the effective mass of the first subband of heavy
holes is positive near the boundary ql1 = 0. An increase

αh l,
3γ3

2

2γ2
2

--------
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---------------------=

×
ηh l, ζh l,+
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------------------------------±

 
 
 

.
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in the ratio γ3/γ2 first gives rise to a domain of negative
effective masses mh and then results in an expansion of
this domain.

Consider the domain of topological diagrams near
the dashed line kl1 = kh1. The relation between the quasi-
momenta kl and kh for k⊥  = 0 is described by the equa-
tion

In this case, exact values of the quasimomenta and the
normalized stresses are given by

The examination of the last coefficient in square brack-
ets in expression (20) for the phase shift shows that it is
proportional to a small quantity (1 – ζl, h) near line
kl = kh. Thus, all three terms in curly brackets in (20) are
proportional to the small parameter 1 – ζl, h , while the
phase shift itself has a singularity,

(24)

kl
2 γ1 2γ2+( ) kh

2 γ1 2γ2–( ) 4m0ζ .+=

kh l,
m0ζ
γ2

---------, ζh l, 1.= =

αh l,
1

1 ζh l,–
----------------,∝
AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



TOPOLOGICAL TRANSITIONS IN SIZE-QUANTIZED HETEROSTRUCTURES 159
in (19), this singularity is compensated for by the third
term associated with the warping of the bulk spectrum.
It also follows from (24) that the phase shift changes its
sign on the line kl = kh. To the left of this line, the phase
shift is positive for heavy holes and negative for light
ones, whereas, to the right of this line, it is negative for
heavy holes and positive for light ones. Figures 1 and 2
show that the effective masses of the first subbands of
heavy and light holes in this domain may either be pos-
itive or negative.

The point of intersection of the curves ql1 = 0 and
kl1 = kh1 in Fig. 1 is of interest. At this point, the phase
shift vanishes, while the effective mass of the first sub-
band of heavy holes is given by

i.e., it exactly coincides with the bare effective mass (8)
of the subband of heavy holes in the absence of stresses
and depends only on the Luttinger parameters. As we
have already noted, this mass is negative for all widely
used compound semiconductors.

The characteristic feature of Figs. 1 and 2 is the
presence of intersection lines of the edges (k⊥  = 0) of
various subbands of heavy and light holes under the
variation of stress for large L: the intersection of the
subband Eh1 with El2, and the intersection of the sub-
band El1 with Eh2, Eh3, and Eh4. As the width L of the
quantum well increases, the conditions for the intersec-
tion of subbands under the variation of stresses in the
structure are weakened because the energy separation
between two neighboring subbands decreases and the
number of subbands increases. When ζ > 0 (axial com-
pression or in-plane stretching), the bottom of the
potential well for light holes lies higher by 2ζ in energy
than the bottom of the potential well for heavy holes,
while the depth of the potential well increases for light
holes and decreases for heavy holes. Therefore, as the
stresses ζ increase, the subbands of light holes move
upward in energy, while the subbands of heavy holes
move downward; the number of subbands of heavy
holes decreases, while that of light holes increases.
Under negative stresses, ζ < 0, the situation is diametri-
cally opposite: the height of the potential barrier
decreases for light holes and increases for heavy holes;
the subbands of heavy holes move upward in energy,
while the subbands of light holes move downward.

The intersection of energy subbands substantially
affects the phase shifts (20) and, consequently, the
effective masses (19). Indeed, consider the first term of
the last cofactor in (20):

This term has a singularity at φl, h = 2πn, where n is an
integer. Hence, at the intersection line of energies Eh, l1

m0

mh

------ γ1 γ2

3γ3
2

γ2
--------;–+=

1 φl h,cos+
kl h, φl h,sin
--------------------------

φl h, /2( )cot
kl h,

--------------------------.=
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and even energies El, hn, the phase shift αh, l has a singu-
larity of the form

For the first subband of light holes, to the right of the
lines Eh2 and Eh4 (see the family of curves in Fig. 2), the
phase shift has a singularity αl  –∞ and, to the left,
a singularity αl  ∞. Hence, the effective mass ml has
a singularity ml  –0 to the right and a singularity
ml  +0 to the left of these lines. Similarly, for the
first subband of heavy holes, to the right of the lines El2
(see the family of curves in Fig. 1), the phase shift has
a singularity αh  +∞ and, to the left, a singularity
αh  –∞. Hence, the effective mass mh has a singu-
larity mh  +0 to the right and a singularity mh 
−0 to the left of these lines.

Consider the effect of the width L of the quantum
well on the characteristics of the first subband of heavy
holes. As L increases, the quasimomentum kh decreases,
while the quasimomenta qh and ql increase. Therefore,
the boundary ql1 = 0 moves to greater values of stress η
(see Fig. 1). Another consequence of the decrease in the
quasimomentum kh with increasing the width of the
well is the shift of the line kl1 = kh1 considered above to
the left. As we noted above, the parameter ζh > 1 is
greater than 1 to the right of this line. A numerical anal-
ysis shows that, for large ζ, the phase shift αh changes
insignificantly under the variation of L, while the third
term in the bare effective mass (19) is positive and, con-
versely, sharply decreases as L increases. Thus, it is the
decrease in the bare effective mass (19) for large ζ that
is responsible for the expansion of the region of nega-
tive effective masses mh.

In the case of the first subband of light holes, the
basic factor that determines the effect of the width L of
the quantum well on the parameters of the topological
diagram and the transverse effective mass is the depen-
dence of the phase shift, whose contribution to the
effective mass (19) for light holes is several times
greater than for heavy holes, on the width L of the well.

The condition

is satisfied at the intersection line of the first subbands of
heavy and light holes. In this case, it follows from (20)
that, when approaching this line, the phase shifts αh, l
tend to infinity and the inverse masses tend to zero.
Therefore, in the expansion of dispersion relation (17)
in powers of k⊥ , one should take into account the terms

of higher order than ; this requires a numerical anal-
ysis. Appropriate calculations for real strained hetero-
structures are presented in the next section.

The line of intersection of the first subband of light
and the second subband of heavy holes is characterized
by the fact that a conical point arises in the dispersion

αh l, πn( ).cot∝

kh0 kl0=

k ⊥
2
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law; in this case, the first term in the expansion of a
quasimomentum is linear in k⊥ :

Calculations yield the following expression for the
expansion coefficients αh, l at the intersection of the nth
subband of heavy holes and the mth subband of light
holes:

The emergence of a conical point at the crossing of
subbands of different parity has been pointed out
in [10] while analyzing the dispersion law for a strained
quantum well with infinitely high barriers, and in [22],
where (k ) perturbation theory has been developed for
the hole spectrum of a quantum well of finite depth.

Summarizing, we can formulate the main character-
istic features of the topological diagrams in the follow-
ing form. The line ql, h = 0 specifies the boundaries of
the existence domain of localized states. To the left of
the line Eh10 = El10 (Eh, ln0 = Eh, ln(k⊥  = 0)), the subband
Eh1 lies higher in energy than El1, whereas, to the right
of this line, this subband lies lower. On the line kh = kl,
the phase shift has a singularity (ζh = ζl = 1); in the
expression for the effective mass (10), this singularity is
compensated for by an appropriate singular term in the
bare effective mass (8). On this line, the phase shift
changes its sign. To the left of this line, the phase shift
is positive for heavy holes and negative for light ones.
The shaded domains in the diagrams correspond to neg-
ative effective masses of transverse motion (10). In
these domains, each subband has four extrema situated
in the 〈110〉  directions and the isoenergetic surfaces
near the extrema of the subbands are quadruply con-
nected. The negative sign of the bare effective mass (8)
associated with the warping in the bulk dispersion law
is primarily responsible for the sign reversal of the mass
of heavy holes, whereas the sign reversal of the effec-
tive mass of light holes is attributed to the negative sign
of the phase shift. In Figs. 1 and 2, the values of param-
eters for which the ground-state subband of size quan-
tization has a negative effective mass correspond to

kh kh0 αhk ⊥ , kl+ kl0 α lk ⊥ .+= =
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cross-hatched regions near lines Eh10 = El10 (this is the
subband Eh1 to the left and El1, to the right). In a narrow
interval of parameter values in the vicinity and to the
left of the line Eh10 = El10 in the shaded domain of the
diagram in Fig. 2, subband Eh1 has five extrema (one
extremum at the center of the Brillouin zone and four in
the 〈110〉 directions). In this domain, subbands Eh1 and
El1 exhibit anticrossing behavior. On line Eh2 = El1 on
the diagram of Fig. 2, which corresponds to the cross-
ing of the first subband of light holes and the second
subband of heavy holes, a conical point arises at the
center of the Brillouin zone in the energy spectrum.

We can draw the following main conclusion from
the analysis of the topological diagrams of model sys-
tems in Figs. 1 and 2. There exist parameter domains in
strained heterostructures in which the ground-state sub-
band of size quantization has a negative effective mass.
To analyze the possibility of existence of negative
effective masses and multiconnected isoenergetic sur-
faces in real strained heterostructures, one should take
into account the difference between the Luttinger
parameters in the well and the barrier. This problem
requires numerical calculations that are described in the
next section.

4. TOPOLOGICAL TRANSITIONS 
IN STRAINED HETEROSTRUCTURES 

OF GROUP IV SEMICONDUCTORS 
AND A3B5 COMPOUNDS

Strained layers are widely used in modern optoelec-
tronic and transistor heterostructures. In field-effect
transistor heterostructures, stresses are the inevitable
price that one has to pay for increasing the band offset
in a heterojunction in order to increase the concentra-
tion of charge carriers in the quantum well and for using
materials that have lower effective masses and higher
mobilities than the substrate material. In bipolar tran-
sistor heterostructures, where one uses variable-com-
position materials in order to develop a spatial gradient
of the band-gap energy, stresses also arise as a concom-
itant phenomenon and do not play an independent role.
Conversely, in laser heterostructures and radiation
detectors, stresses represent an important parameter
that determines the configuration of the subbands of
size quantization of light and heavy holes and the effec-
tive density of states, which determines the amplifica-
tion and absorption factors of a structure associated
with interband transitions [7].

In recent years, considerable progress has been
made toward the development of intersubband quantum
cascade lasers [23, 24]. One of the problems faced
when designing such devices is a competition between
photon recombination and intersubband phonon relax-
ation. Upon emitting phonons, charge carriers are accu-
mulated in the minimum of the lower subband. This
fact impedes the development of inverse population and
requires special measures to remove the charge carriers
AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003
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Fig. 3. Dispersion laws of the first subbands of heavy (Eh1) and light (El1) holes in the symmetric InP–InxGa1 – xAs–InP structure
for various compositions of the material of the well: x = (a) 0.2, (b) 0.3, and (c) 0.4. At k = 0, (a) El1 > Eh1, (b) El1 = Eh1, and (c) El1 <
Eh1. The thick lines represent the results of calculations with nonsymmetrized boundary conditions [20], and the thin lines represent
similar results for symmetrized boundary conditions [12, 26]. The solid and dashed curves represent the dispersion laws in the direc-
tions 〈100〉  and 〈110〉 , respectively. The width of the well is L = 35 Å.
from the lower subband, which substantially compli-
cate the design of the device. In the preceding section,
we showed that, under certain relations between the
parameters of a system, the minima of the ground-state
subband of size quantization of holes are displaced
from the center Γ of the Brillouin zone to the region
with finite values of the wave vector. This creates favor-
able conditions for the development of intersubband
hole-population inversion because, after radiative
recombination at point Γ, the holes, scattered by
phonons, move away from the recombination domain
to the side minima of the subband.

Among known strained heterostructures, systems in
which a quantum well is in a compressed state have
found the widest application. These are, in particular,
GaAs–InxGa1 – xAs and Si–GexSi1 – x heterostructures.
However, the layers grown under stretching stresses
exhibit more perfect morphology than the layers grown
under compressing stresses [25]. Stretching stresses in
a quantum well can be attained in systems based on
phosphorous-containing compounds. Consider an
InP−InxGa1 – xAs–InP heterostructure. When x > 0.53,
the quantum well is in the compressed state, whereas,
when x < 0.53, it is in the stretched state. Numerical cal-
culations were performed within the standard envelope-
function method for Hamiltonian (1). Both symme-
trized [12, 26] and nonsymmetrized [20] boundary con-
ditions, which differently take into account the discon-
tinuity of the Luttinger parameters on the heterobound-
ary [27], were used in the calculations. The following
Luttinger parameters were taken for the well and the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
barrier: γ1 = 6.98, γ2 = 2.06, and γ3 = 2.93 for GaAs;
γ1 = 20.0, γ2 = 8.5, and γ3 = 9.2 for InAs; and γ1 = 5.08,
γ2 = 1.60, and γ3 = 2.1 for InP [16]. The band offsets and
the Luttinger parameters of the ternary compound were
calculated by the Wegard rule using a linear interpola-
tion of appropriate parameters for InP–InAs and
InP−GaAs heterojunctions [16]. Figure 3 displays the
evolution of the dispersion law for the first subbands of
heavy (Eh1) and light (El1) holes near the line of topo-
logical transition Eh1 = El1 as the stress ζ in the well
increases. On this line, the effective mass changes its
sign at the point Γ, and, hence the connectivity of the
isoenergetic surface is changed. Note that the disper-
sion of the side maximum of the subband of light holes
in the plane kxky is weakly pronounced and, actually,
there is a loop of extrema in the system with a singular-
ity in the density of states. Figures 4 and 5 show two-
dimensional dispersion laws for the first two subbands
of size quantization for x = 0.2 (Fig. 3a) and x = 0.4
(Fig. 3c).

Another example of a heterostructure with stretch-
ing stresses in the quantum well is given by a GaAs–
SixGe1 – x–GaAs system. Both the Luttinger parameters
and the band offsets are calculated by the Wegard rule.
The following Luttinger parameters are taken for the
well and the barrier: γ1 = 6.98, γ2 = 2.06, and γ3 = 2.93
for GaAs [16]; γ1 = 4.22, γ2 = 0.39, and γ3 = 1.44 for Si;
and γ1 = 13.35, γ2 = 4.25, and γ3 = 5.69 for Ge [14]. The
dispersion laws for the first subbands of heavy (Eh1) and
SICS      Vol. 96      No. 1      2003
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light (El1) holes near the line Eh1 = El1 are depicted in
Fig. 6.

The Luttinger Hamiltonian does not take into
account the contribution of a band that is split off due
to the spin–orbit interaction. One should expect that, at
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Fig. 4. Two-dimensional dispersion laws for the first sub-
bands of heavy, Eh1 (a), and light, El1 (b), holes in the sym-
metric InP–In0.2Ga0.8As–InP structure (symmetrized
boundary conditions). The width of the well is L = 35 Å.
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least when the intersubband energy separation is less
than the energy of the spin–orbit interaction, the results
of our calculations will not significantly differ from the
results of more accurate calculations involving a 6 × 6
Hamiltonian.
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The scheme, described above, for the development
of inverse population in the hole subbands is based on
the fact that the radiative recombination and the accu-
mulation of charge carriers due to the phonon relax-
ation occur in different domains of the k space. This
condition is fulfilled when the effective mass is nega-
tive in the second (in energy) subband, rather than in the
lower subband of size quantization. As follows from the
results of Sections 2 and 3, the situation when the effec-
tive mass is negative in the second subband of size
quantization is typical for most (including unstressed)
heterostructures. However, it should be noted that, to
efficiently implement the mechanism described, the
energy separation between the subbands of size quanti-
zation must be greater than the energy of an optical
phonon to guarantee fast intersubband relaxation. In the
heterostructures, considered in this section, that are
characterized by a negative effective mass of the
ground-state subband of size quantization, this condi-
tion is not fulfilled and intersubband relaxation occurs
via acoustic phonons. At the same time, when the effec-
tive mass is negative for the second (in energy) subband
of size quantization, the energy separation of the sub-
bands can easily be controlled by varying the width of
the quantum well. The investigation of the conditions
for the development of the intersubband inverse popu-
lation of holes requires a careful numerical analysis of
the kinetics of nonequilibrium charge carriers and
deserves special consideration. In view of deep interest
in silicon-based sources of coherent electromagnetic
radiation, the investigation of Si–GexSi1 – x systems is of
special importance.

CONCLUSION

In this paper, we have established the basic princi-
ples of the formation of the energy spectra of holes in
size-quantized heterostructures. We have shown that
the details of the transverse (with respect to the quanti-
zation axis) dispersion law are determined by the com-
petition of two factors, the warping in the bulk disper-
sion law and the dependence of the quantized (longitu-
dinal with respect to the quantization axis) momentum
on the transverse quasimomentum. In unstressed het-
erostructures, the second (in energy) subband of size
quantization in deep quantum wells has, as a rule, a
negative effective mass. In this work, we have obtained
an exact solution for the energy spectrum of holes,
described by the Luttinger Hamiltonian, in a quantum
well of finite depth with regard to stresses in the well
and the barrier. On the basis of the exact solution, we
have demonstrated that, for a certain relation between
the parameters of a system subject to stretching
stresses, the ground-state subband of size quantization
in the quantum well can also have a negative effective
mass. A variation in the parameters of the system in
unstressed heterostructures gives rise to topological
transitions accompanied by variation in the connectiv-
ity of the isoenergetic surface.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Together with the population inversion of the hole
subbands mentioned above, the sign reversal of the
mass of transverse motion may also have other experi-
mentally observable consequences. The variation in the
connectivity of the isoenergetic surface can be detected
in cyclotron-resonance experiments. It should be
expected that, at sufficiently low temperatures, elec-
tron–electron interactions will lift the fourfold degener-
acy of energy minima by developing a certain long-
range ordering, similar to the lifting of intervalley
degeneracy in inversion layers [28]. In this situation,
the instability will additionally increase due to the pres-
ence of the van Hove singularity in the density of states,
which is associated with a variation in the topology of
isoenergetic surfaces. Recently, the possibility of using
artificial heterostructures for the development of condi-
tions that guarantee the implementation of one or
another mechanism of superconductivity has been dis-
cussed [29, 30]. In view of this fact, the situation with a
variation in the topology of the spectrum described in
this paper is of interest for verifying the conditions
under which the superconductivity mechanisms associ-
ated with a singularity in the density of states are imple-
mented.
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Abstract—The results of theoretical investigation of propagation of electromagnetic wave pulses in nonlinear
dielectric plates, taking into account the dispersion introduced by the plate to the maximum possible extent, are
presented. The investigation is aimed at obtaining the shortest possible pulses of electromagnetic waves. Pulse
compression is based on the collapse of electromagnetic waves in transparent dielectrics with electronic non-
linearity. The integral equation for describing the pulse compression is derived, and conditions under which a
pulse is compressed relative to time and one of the transverse coordinates are determined. Numerical simulation
shows that quite short (on the order of a few femtoseconds) pulses can be obtained in this way. © 2003 MAIK
“Nauka/Interperiodica”.
1. Pulse compression is one of the basic methods of
increasing radiation power. For this purpose, use can be
made of the collapse [1–3] of electromagnetic waves in
transparent nonlinear cubic dielectrics with permittivity

where εl and ∆εn are the linear and the nonlinear parts
of permittivity, the latter being proportional (in the
steady state) to the intensity,

E being the electric field amplitude. In order to obtain
short pulses, collapse must be caused by a nonlinearity
with a short relaxation time tr . This is observed for elec-
tronic nonlinearity, which is self-focusing as a rule with
coefficient ∆εn > 0. This nonlinearity ensures the com-
pression of the field structure along coordinates perpen-
dicular to the direction of pulse propagation. Pulse
compression along the longitudinal coordinate is possi-
ble only for a dispersion for which the condition

holds, where k is the modulus of the wave vector at the
carrier frequency ω. However, dispersion in dielectrics
is such that temporal compression occurs only at fairly
long waves, e.g., in quartz at a wavelength of λ ≥
1.35 µm in vacuum. However, pulse compression in
three dimensions (two spatial coordinates and one tem-
poral coordinate) occurs so that the energy of the self-
compressing part decreases with the pulse duration
even at such wavelengths. Such a property is not

ε εl 1 ∆εn+( ),=

∆εn E 2,∝

∂2k

∂ω2
--------- 0<
1063-7761/03/9601- $24.00 © 20019
observed for a collapse in two dimensions (one spatial
and one temporal coordinate), but this may take place
during the propagation of electromagnetic waves in
planar single-mode waveguides, when the field struc-
ture is fixed relative to the coordinate perpendicular to
the waveguide plane. Waves propagating in plane
dielectric plates exhibit approximately the same prop-
erties. In this case, “material” dispersion of the dielec-
tric is significant in the long-wave part of the optical
range. It turns out that the dispersion of propagating
waves becomes “collapsing” for the optimal choice of
the plate thickness up to wavelengths shorter that λ ~
0.7 µm. In this communication, we present the results
of a theoretical study of propagation of electromagnetic
wave pulses in nonlinear dielectric plates, in which the
dispersion introduced by a plate is taken into account to
the maximum possible extent. First, we formulate the
integrodifferential equation for describing pulse com-
pression and determine the conditions under which a
pulse is compressed in time and along one of the trans-
verse coordinates. Then we describe and discuss the
results of numerical simulation, indicating that short
pulses (on the order of a few femtoseconds) can be
obtained in this way.

2. Following the approach used in [4], we obtain the
equation describing the propagation of wave packets in
a dielectric plate of thickness T; we assume that the y
axis is perpendicular to the plane of the plate, a wave
propagates along the z axis, and the midplane of the
plane coincides with the xz plane (Fig. 1). In such a
plate, in the linear approximation, localized TE and TM
waves can propagate. We confine our analysis to the TE
waves. The structure of the electric field of such a wave
in the case when it is independent of coordinate x is
shown in Fig. 1 (we have only one component Ex). The
003 MAIK “Nauka/Interperiodica”
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propagation constant h for such waves can be deter-
mined from the equation [5]

(1)

where k = ω/c, c being the velocity of light in vacuum.
Equation (1) takes into account the dispersion of per-
mittivity of the dielectric as well as the dependence of
εl on frequency (wavelength in vacuum), which is
defined by the semiempirical formulas [6]

(2)

where A1, …, A6 are the coefficients in the formula for
dispersion and λ is the wavelength in vacuum in
micrometers. This dependence contains the normaliza-
tion frequency

ff =  ≈ 3 × 1014 Hz,

at which the wavelength in vacuum is 1 µm, its wave
vector being kf = ωf/c.

We assume that the dependence of the field structure
on the y coordinate can be described by a single local-
ized mode, which is true if the plate thickness is smaller
than the wavelength in vacuum or is equal to it for con-
ventional values of permittivity εl ≈ 2.1–2.5.

Let us consider the evolution of a wave packet with
the propagation vector components kx and hz. If we
know the dispersion characteristic of one of the types of
waves,

(3)

h2 k2– εl
k
k f

----- 
  k2 h2–=

× εl
k
k f

----- 
  k2 h2T

2
---– 

  ,tan

εl A1 A2λ
2 A3λ

2– A4λ
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8–+ + + + +=

=  A1 A2
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 
2
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 
2–
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 
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Fig. 1. Dielectric plate.
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we find, repeating the arguments used in [4], that the
evolution of the electric field Ex of such a packet can be
described (in the absence of nonlinearity) by the inte-
gral relation

(4)

where

and h(ω) is the solution to Eq. (1). Introducing the nota-
tion

and passing to the field amplitude with the help of the
formula

where hc is the constant of wave propagation at the cen-
tral frequency ωc, we can write Eq. (4) in the form

(5)

We describe the nonlinear component of permittivity
by the equation [1, 7] taking into account the nonlinear-
ity relaxation time,

(6)

where ε' is the nonlinearity coefficient. Applying the
approach used in [7], we obtain the following expres-
sion from ∆εn from Eq. (6):

(7)

Integrating this equation by parts and retaining the first
two terms in the small parameter (relaxation time), we
obtain the nonlinear permittivity component in the form

(8)

In order to describe the propagation of packets in a non-
linear cubic dielectric, we use this expression, sup-
plementing equality (5) with a term approximately
equal to

∂Fx

∂z
---------

i

2π( )2
------------- h2 ω( ) kx

2–∫∫–=

× ∆[ ] Ex t ' x',( )dt ' x' ω kx,dddexp

∆ ω t kx x t ' x', , , , ,( ) i ωt kxx–( ) i ωt ' kxx'–( )–=

LEx
1

2π( )2
------------- h2 ω( ) kx

2
–∫∫=

× ∆ ω t kx x t ' x', , , , ,( )[ ] Ex t ' x',( ) t 'dx' ω kxdddexp

A0 Ex ihcz iωct–[ ] ,exp=

∂A0

∂z
--------- –iLA0 ihcA0.+=

d∆εn

dt
------------

∆εn

tr

--------+
ε' E 2

tr

------------,=

∆εn
t
tr

--- 
  ε' E2 t0

tr

---– 
 exp t0.d

0

t

∫exp=

∆εn ε' E2 tr
d ε' E2( )

dt
---------------------.–=

C A0
2 tr td

d
C A0

2– 
  A0.
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According to [9], the value of coefficient C is given by

if the amplitude A0 corresponds to the average density
of the dielectric. This leads to the following equation
describing the propagation of a pulse:

(9)

Let us pass to the frame of reference z , comoving
with the pulse, in accordance with the formulas

where

Using the expression

where  = ω – ωc, we reduce Eq. (9) to the form

(10)

Note that the presentation of the nonlinear permittivity
component in form (8) formally coincides with the
description of weak nonlinear dispersion, which was
proposed in [8]:

where the asterisk denotes complex conjugation and tr, 1
and tr, 2 are certain constants characterizing a given sub-
stance, which can be regarded as purely imaginary and
identical. Equation (10) can be used for describing
pulses with duration of the envelope comparable with
the nonlinearity relaxation time.

3. We will estimate the pulse parameters using the
paraxial approximation, in which the time spectrum of
the pulse ∆k/kc ! 1, where kc = ωc/c, and its width in

C
3hcε'

8
------------,≈

∂A0
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--------- iLA0– ihcA0+=
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d
dt
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ω
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the x direction, which is equal to 2ax, is considerably
larger than the wavelength:

The integral operator in Eq. (10) in this case can be rep-
resented in the form

We pass to the dimensionless variables

(11)

and omit in Eq. (10) the terms describing the nonlinear-
ity relaxation. In this approximation, Eq. (10) becomes
parabolic:

(12)

2ax @ λ c
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Fig. 2. Dependence of parameter D on the relative thickness
of the plate for different values of λc/λf = 0.8 (1), 1.0 (2),
and 1.2 (3).
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The characteristic properties of solutions to Eq. (12) are
well known [1]. Their behavior depends considerably
on the sign of the coefficient

For the pulse compression problem, the negative value
of D, for which the solution to Eq. (12) has the form of
a collapse, is of special importance. The dependence of
coefficient D on the thickness of a quartz glass plate [6]
for several values of the ratio of the carrier frequency ωc

to frequency ωf are shown in Fig. 2. It can be seen from
the figure that there exists a range of plate thicknesses
for which D is negative and, hence, the pulse is com-
pressed. As the frequency increases, this region
becomes narrower and vanishes for a wavelength
shorter than 0.7 µm in vacuum. The minimal value of
coefficient D corresponds to a plate thickness approxi-
mately equal to the wavelength in vacuum at the carrier
frequency.

Equation (12) has a homogeneous solution of the
form

(13)

which is an analog of the “Townes” beam propagating
in space [1]. It describes a pulse propagating in the
direction of the ζ axis without changing its shape. The
cross section of such a pulse by the ξτ  “plane” is an
ellipse. The ratio of the beam “width” 2aτ in the τ direc-
tion (pulse duration multiplied by the velocity of light)
to the beam width 2ax in the x direction is

In accordance with the results of calculations, the
“duration” of such a pulse (in wavelengths) for the min-
imal value of D is an order of magnitude smaller than
its transverse dimension.

The energy of such a pulse is defined as

(14)

where Pcr is the critical power of self-focusing and χy ≈
 is the y component of the dimensionless wave

number inside the plate. In expression (14), we disre-
gard the pulse energy outside the plate. In the regimes
of interest for pulse compression, this energy is small.
We can write the following order-of-magnitude esti-
mate for the pulse energy:

D
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In accordance with the theory of instability of plane
waves in self-focusing media, a uniform distribution
splits approximately into pulses with the structure of a
homogeneous beam, each of which is compressed in
the approximation of Eq. (12) to zero length.

4. It is interesting to analyze the change in the pulse
structure in the framework of a more exact equation
(10) taking into account dispersion in a wide range of
angles and frequencies [4]. We integrated Eq. (10)
numerically for beams with a small energy excess over
the critical value. Introducing the dimensionless coeffi-
cients

,

we obtain Eq. (10) in dimensionless form:

(15)

where χ(ωw, Tw, K) is the root of the equation

(16)

α = ωctr.
It is more convenient, however, to carry out the

numerical solution in the variables

in which a beam of form (13) would have a circular
cross section. In these new variables, Eq. (15) assumes
the form

(17)
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AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



ON COMPRESSION OF ELECTROMAGNETIC PULSES IN DIELECTRIC PLATES 23
accordingly, approximate equation (12) assumes the
form

(18)

We solved the system of equations (16), (17) using
one of the simplest versions of the splitting method [10]
in the L × L square in variables ξbτ using an N × N mesh.
In the version of the method used by us, this corre-
sponds to computations in variables κxωw in a square of
the size

It follows from this formula that an increase in the num-
ber of intervals in the ξbτ space corresponds to an
increase in the bands of both temporal and spatial fre-
quencies.

The results of calculations for L = 628 and N = 160
are given below. The frequency band used lies at the
boundary of the region in which formula (2) is valid for
describing the permittivity dispersion.

5. Let us consider the results of computations for a
wavelength of λc = 1 µm and a quartz plate thickness of
T = 1 µm. The initial function had the Gaussian form:

with parameter 2a ≈ 181 (2ax(0) ≈ 20 µm), which cor-
responds to the pulse duration ti ≈ 9 fs (at half the
amplitude) for the parameter D chosen in accordance
with Fig. 2.

The behavior of the field at the peak of the pulse as
a function of the longitudinal coordinate ζ is shown in
Fig. 3. Curve 1 characterizes the increase in the peak
value in the case when Eq. (18) is solved in the paraxial

approximation for the initial value  = 0.003, which
corresponds to W/Wcr ≈ 2.25. In accordance with the
prevailing concepts of collapse in the (1 + 2) space, the
field turns to infinity at a certain point. The peak value
corresponds to “computer” infinity and, hence, charac-
terizes the accuracy of computations. Curve 2 illus-
trates the behavior of the peak for a pulse described by
Eq. (17) for W/Wcr ≈ 2.25 and zero relaxation time. The
pulse is compressed to a slightly larger duration than
that attained in the paraxial approximation. Rigorous
inclusion of linear dispersion in this problem changes
the pulse structure at the compression stage, but the
compression ratio turns out to be so large that the min-
imal duration is smaller than the initial wavelength at
the carrier frequency. It can be seen that instability
develops in the descending branch of the pulse. The
introduction of a finite relaxation time limits the

D
∂2Ab

∂ξb
2

-----------
∂2Ab

∂τ2
----------- 2i

∂Ab

∂ζb

---------– Ab
2Ab+ + 0.=

∆κ x δωw× 2π
L

------N 
 

2

.=

Ab ξb τ 0, ,( ) A0
ξb

2 τ2+

2a2
----------------–exp=

A0
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increase in the amplitude the most strongly. This is illus-
trated by curve 3 in Fig. 3.

Figure 4 shows the change in the pulse structure
with time for three different states ζb, i (i = 1 corre-
sponds to the starting point, i = 2 corresponds to coor-
dinate ζb at which the amplitude is doubled, and i = 3

1

2

3

30

3.6 4.0 4.8 5.2 5.6
ζb × 10–5

Ab(0, τm, ζb)/Ab(0, 0, 0)

25

20

15

10

5

0
4.4

Fig. 3. Dependence of the amplitude at the peak of a beam
with W/Wcr ≈ 2.25 on coordinate ζb: paraxial approximation
(1), total dispersion, tr = 0 (2), and total dispersion, tr = 3 ×
10–15 s (3).

1

2

3

1.0

–400 –200 200 400
τ

Ab(0, τ, ζb,i)/Ab(0, τm, ζb,i)

0.8

0.6

0.4

0.2

0
0

Fig. 4. Time variation of the pulse structure with W/Wcr ≈
2.25 and with relaxation time tr = 3 × 10–15 s for ζb, 1 = 0
(1), ζb, 2 = 390020 (2), and ζb, 3 = 455500 (3).
SICS      Vol. 96      No. 1      2003



24 VLASOV, KOPOSOVA
corresponds to coordinate ζb at which the amplitude is
tripled).

In the latter case, the pulse duration becomes equal
to the wavelength. The maximum value is attained for a
certain value of dimensionless time τm depending on
longitudinal coordinate ζb. It is displaced in the forward
direction relative to the origin of the reference frame;
i.e., it propagates at a velocity slightly exceeding the
group velocity. The pulse becomes asymmetric in time:
its leading front becomes steeper. The spatial structure
of the pulse in this case remains smoother than in
Fig. 5, where the amplitude structure of the beam is
shown as a function of the transverse coordinate for
three values of longitudinal coordinate ζb.

As the pulse propagates further (ζ > ζb, 3), it acquires
high-frequency modulation with a period smaller than
the period of the carrier wave due to the development of

1

2
3

1.0

–400 –200 200 400
ξb

Ab(ξb, τm, ζb,i)/Ab(0, τm, ζb,i)

0.8

0.6

0.4

0.2

0
0

Fig. 5. Dependence of the pulse structure with W/Wcr ≈ 2.25

and with relaxation time tr = 3 × 10–15 s on the transverse
coordinate for ζb, 1 = 0 (1), ζb, 2 = 390020 (2), and ζb, 3 =
455500 (3).
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instability. For this reason, the electromagnetic pulse
can be compressed to times smaller than the period of
oscillations at the carrier frequency. A correct descrip-
tion of this process requires a more rigorous inclusion
of nonlinearity, its dispersion, and its saturation; in par-
ticular, harmonic generation must be taken into
account.

ACKNOWLEDGMENTS

The authors are grateful to V.I. Talanov for fruitful
discussions.

This study was supported by the Russian Founda-
tion for Basic Research (project no. 00-15-96772) in
accordance with the program Nonlinear Dynamics and
Solitons of the Presidium of the Russian Academy of
Sciences.

REFERENCES
1. S. N. Vlasov and V. I. Talanov, Wave Self-Focusing (Inst.

Prikl. Fiz. Ross. Akad. Nauk, Nizhni Novgorod, 1997).
2. V. E. Zakharov, Zh. Éksp. Teor. Fiz. 62, 1745 (1972)

[Sov. Phys. JETP 35, 908 (1972)].
3. A. Silberberg, Opt. Lett. 15, 1282 (1990).
4. V. V. Bakhanov and V. I. Talanov, in Near-Surface Layer

of the Ocean. Physical Processes and Remote Sounding
(Inst. Prikl. Fiz. RAN, Nizhni Novgorod, 1999), Vol. 1,
p. 81.

5. L. A. Vaœnshteœn, Electromagnetic Waves, 2nd ed. (Radio
i Svyaz’, Moscow, 1988).

6. Physical Quantities. Handbook, Ed. by I. S. Grigor’ev
and E. Z. Meilikhov (Énergoatomizdat, Moscow, 1991).

7. A. V. Grudinin, E. M. Dianov, D. V. Korobkin, et al., Tr.
Inst. Obshch. Fiz. Akad. Nauk SSSR 23, 3 (1990).

8. V. I. Bespalov, A. G. Litvak, and V. I. Talanov, in Pro-
ceedings of 2nd All-Union Symposium on Nonlinear
Optics (Nauka, Novosibirsk, 1968), p. 428.

9. Y. Codama and A. Hasegava, IEEE J. Quantum Electron.
23, 510 (1987).

10. G. I. Marchuk, Methods of Splitting (Nauka, Moscow,
1988).

Translated by N. Wadhwa
 AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



  

Journal of Experimental and Theoretical Physics, Vol. 96, No. 1, 2003, pp. 25–33.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 123, No. 1, 2003, pp. 32–41.
Original Russian Text Copyright © 2003 by Mironov.

                 

NUCLEI, PARTICLES, 
AND THEIR INTERACTION
Squeezed States of Light as Self-Similar Structures
V. A. Mironov

Institute of Applied Physics, Russian Academy of Sciences,
ul. Ul’yanova 46, Nizhni Novgorod, 603950 Russia 

e-mail: fraiman@appl.sci-nnov.ru
Received August 15, 2002

Abstract—A new approach to investigating a broad class of dynamic states for a quantum oscillator is sug-
gested. It is based on an invariant transformation of the equation to a new time determined by the quantum dis-
persion of the corresponding state. The squeezed states of a quantum system generated by the ground-state
wave function are constructed. In coordinate representation, these states are described by a self-similar wave
function localized near a classical trajectory. The statistics of the squeezed state of light is analyzed in the sin-
gle-mode approximation. The parametric excitation of squeezed states for a quantum harmonic oscillator is
considered. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of light with a reduced level of quantum
fluctuations (nonclassical light) is still a pressing prob-
lem of quantum optics. Apart from other applications
[1, 2], unremitting interest in the corresponding states
of light stems from the prospects of using them in mod-
ern information systems, in which the squeezed states
are basic [3].

The state of a system in which the dispersion of the
distribution of one of the canonical variables is smaller
than that in the ground (vacuum) state is called a
squeezed state. Although the basic concepts are simple,
the statistical properties of the squeezed state of light
are difficult to analyze (see, e.g., [1]). The single-mode
approach essentially deals with the class of dynamic
solutions for a quantum harmonic oscillator that mini-
mize the uncertainty relation. Squeezed single-mode
states are created from an unsqueezed (generally vac-
uum) state using the transformation of canonical vari-
ables or by the Stoller unitary operator. Being created
from a vacuum state, the squeezed state is clearly a fun-
damentally quantum state.

The formal procedure for constructing a squeezed
state of light makes this object an exotic structure. On
the other hand, nonclassical light is generally excited in
dynamic quantum parametric processes. This forces us
to look at the problem of the squeezed states of light
from a slightly different perspective and to consider the
dynamic procedure for constructing such states.

Here, we suggest a new approach to investigating
the squeezed states of light based on invariant canonical
transformations of the equations for a quantum har-
monic oscillator to a new time. By considering the sys-
tem evolution in the new time determined by the
squeezed-state dispersion, we can construct (and
excite) the corresponding states using a dynamic invari-
ant transformation. These states are described by the
1063-7761/03/9601- $24.00 © 20025
dynamic self-similar distributions that are the ground-
state wave functions in the proper (nonuniform) time.
In Section 2, we suggest two invariant dynamic trans-
formations (squeezing and passage to an oscillating
frame of reference) of the equations for a quantum
oscillator and construct the self-similar solutions gener-
ated by the ground-state wave function. In Section 3, by
sequentially using these transformations, we find the
self-similar structures that describe the squeezed coher-
ent states of the system and study the spectrum of these
states. In Section 4, we consider the parametric excita-
tion of squeezed states.

2. FORMULATION OF THE PROBLEM: 
INVARIANT TRANSFORMATIONS

The Hamiltonian of a quantum harmonic oscillator,

,

with a time-dependent frequency ω(t) specifies the fol-
lowing equations of motion for the Heisenberg opera-
tors:

(1)

2.1. Squeezing Transformation

Let the evolution of the coordinate, , and momen-

tum, , operators in the new time τ be described by
equations of the same type,

, (2)

with the same commutation relation

Ĥ p̂2 ω2 t( )q̂2+( )/2=

dq̂
dt
------ p̂,

d p̂
dt
------ ω2 t( )q̂.–= =

Q̂

P̂

dQ̂
dτ
------- P̂,

dP̂
dτ
------- Ω2Q̂–= =

P̂ Q̂,[ ] i–=( ).
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It is easy to see that the unitary transformation of the
canonical variables

(3)

reduces Eqs. (1) to Eqs.(2) if the scale b(t) varies as

(4)

Here, we use the following notation for the derivatives:

The new evolutionary variable τ is related to the old
variable t by

(5)

First, note the following. The above transforma-
tion (3)–(5) differs markedly from the invariant trans-
formations commonly used in quantum theory in that it
contains the transformation of the evolutionary vari-
able (5). Through this transformation, Eqs. (1) for an
oscillator with a variable frequency can be reduced, for
example, to the corresponding equation (2) with a con-
stant frequency, Ω = const. The scale parameter b(t)
relates the dispersions of the processes in the new and
old times. Thus, for the processes with a zero mean

(  =  = 0), we derive the following relations for
the dispersions of the canonical variables:

(6)

(7)

In other words, if the dispersion of the system coordi-

nate in some state (6) is equal to  (  =

b2(t) ), then the dispersion in the new (proper)
time (5), which is virtually determined by this state, is

. Of particular interest are the dynamic states of
the system that are the ground (vacuum) state in the
proper time (5). These are the squeezed states of the
system.

The nonlinear equation (4) for the scale parameter
is latently linear. It is convenient to represent its solu-
tion as

(8)

where u and v  are the two linearly independent solu-
tions of the equation for an oscillator

(9)

q̂ b t( )Q̂ τ( ),=

p̂ P̂ τ( )/b t( ) bt t( )Q̂ τ( )+=

btt ω2 t( )b+
Ω2

b3
------.=

bt
db
dt
------, btt

d2b

dt2
--------.= =

dτ dt

b2 t( )
------------.=

q̂〈 〉 Q̂〈 〉

q̂2〈 〉 b2 t( ) Q̂
2〈 〉 ,=

p̂2〈 〉 P̂
2〈 〉

b2
----------- bt

2 Q̂
2〈 〉 .+=

q̂2〈 〉 q̂2〈 〉

Q̂
2〈 〉

Q̂
2〈 〉

b u2 Ω2v 2/w2+( )1/2
,=

xtt ω2 t( )x+ 0=
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with the initial conditions

w is the Wronskian:

For a harmonic oscillator, ω = Ω = ω0 = const, the scale
parameter varies as

(10)

where the squeezing factor K = (bmax/bmin)2 character-
izes the modulation of the dispersion at double fre-
quency. This periodic variation of the dispersion
between its maximum,

,

and its minimum,

,

serves as evidence for a squeezed state of light.
To get a more detailed picture, we continue to ana-

lyze a quantum harmonic oscillator with a unit fre-
quency (ω = Ω = ω0 = 1). Consider the pseudoannihila-
tion operator

(11)

Using (3), we represent it in terms of the standard pro-
duction and annihilation operators

As a result, we obtain

(12)

Let us assume that the system described by the opera-

tors  and  in the new time τ is in the ground state
|0〉 . Acting on it by pseudoannihilation operator (12),
we derive the following relation for the corresponding
dynamic state |ψ〉 in real time:

(13)

Hence, for example, using the coordinate representa-

tion for the operators  and , we obtain the wave
function of the squeezed vacuum state

(14)

u 0( ) A, ut 0( ) B, v 0( ) 0, v t 0( ) 0;≠= = =

w uv t utv– const.= =

b t( ) K4 ω0tcos
2 1

K
---- ω0tsin

2
+ 

 
1/2

,=

bmax
2 t 0=( ) K=

bmin
2 t π/2ω0=( ) 1/ K=

Â
Q̂ iP̂+

2
----------------.=

â+ q̂ i p̂–( )/ 2, â q̂ i p̂+( )/ 2.= =

Â
1
2
--- b

1
b
--- ibt–+ 

  â
1
2
--- –b

1
b
--- ibt–+ 

  â+.+=

Q̂ P̂

b
1
b
--- ibt–+ 

  â ψ| 〉

+ –b
1
b
--- ibt–+ 

  â+ ψ| 〉 0.=

â â+

ψ 1

πb2
--------4 –

q2

2b2
--------

ibt

2b
------q2– 

  ,exp=
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where b(t) is defined by expression (10) with ω0 = 1. It
has a self-similar structure and can be obtained from the
Schrödinger equation with a parabolic potential by an
appropriate transformation to the self-similar variables
[η = q/b(t)].

Using the steady-state expansion of |ψ〉, we can
obtain the following recurrence relations for the proba-
bility amplitudes cn of the oscillator being at neighbor-
ing levels:

(15)

Hence, we derive the probabilities of the oscillator
being in the 2nth state

(16)

Naturally, this expression can be derived by expand-
ing (14) in terms of the steady-state eigenfunctions for
the quantum oscillator.

The mean number of the modes,

(17)

that form the squeezed vacuum state (16) is

(18)

Thus, the enrichment of the spectrum with increas-

ing squeezing factor follows the law  ~ . Note that
relation (13) corresponds to the standard definition of
the squeezed state of light [1]. However, because of its
structure, it also contains a simple description of sys-
tem dynamics (14).

2.2. Transformation to an Oscillating Frame
of Reference

Consider another invariant transformation. Let there
be a solution (t) of the classical equation for a har-
monic oscillator with ω0 = 1. Transform the canonical
variables

(19)

in Eq. (1) with ω(t) = 1. In (19),  is a unit operator.
Since the basic equation is linear, the evolution of the

new canonical variables  and  is clearly described
by the same Eqs. (1) with ω(t) = 1 if (t) and (t) are

b
1
b
--- ibt–+ 

  n 1+( )1/2cn 1+

+ –b
1
b
--- ibt–+ 

  n 1–( )1/2cn 1– 0.=

w2n c2
2n 2 2n( )!

22n n!( )2
------------------- K 1–

K 1+
----------------- 

 
2n K4

K 1+
-----------------.= =

n nwn,
n 0=

∞

∑=

n
1 K–( )2

4 K
------------------------.=

n K

x

q̂ t( ) Q̂ t( ) x t( ) Î ,+=

p̂ t( ) P̂ t( ) xt t( ) Î+=

Î

Q̂ P̂
x xt
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the coordinate and velocity of classical motion, respec-
tively.

In essence, transformation (19) is the transformation
of the quantum equations of motion (1) to the noniner-
tial (oscillating) frame of reference associated with a
classical trajectory. For the state pseudoannihilation

operator in the oscillating frame of reference  = (  +

i )/ , we obtain

(20)

If the quantum system in the oscillating frame of refer-
ence is in the ground state |0〉 , then the real state |ψ〉 is
described by the operator equation

(21)

i.e., the wave function is the eigenfunction of the
pseudoannihilation operator and, by definition,
describes the coherent states of the system [1]. In
energy representation, this equation can be easily
solved. As a result, we obtain the Poisson distribution
for the probability of the oscillator being in the nth
state, which is well known in quantum optics [1, 2, 4]:

(22)

where N is the number of photons in classical motion.
To conclude this section, we note the following. The

unitary transformation of the canonical variables (3) in
the Schrödinger equation (i.e., in coordinate represen-
tation),

, (23)

corresponds to a self-similar substitution of the form

(24)

It is easy to verify that the self-similar function S(q/b)
is described in the new time τ (5) by the Schrödinger
equation

(25)

where η = q/b(t). The dispersion b(t) of the wave func-
tion (24) is defined by Eq. (4). Using the steady-state
solution of Eq. (25) that corresponds to the ground state
of the quantum oscillator, we determine the dynamic
wave function (14) using (24).

Note that the passage to the self-similar function
(24), (25) for Ω = const is accompanied by an increase
in the symmetry of the system under consideration.
Equation (25) is invariant relative to a shift in nonuni-
form time (τ  τ + τ0) and, for Ω = 0, relative to trans-

Â Q̂

P̂ 2

Â â x t( ) ixt t( )+( ) Î/ 2.–=

â ψ| 〉 x t( ) ixt t( )+( ) Î ψ| 〉/ 2;=

wn
Nn

n!
------ N–( ),exp=

i
∂ψ
∂t
------- ∂2ψ

∂q
2

---------
ω2 t( )

4
-------------q2ψ–+ 0=

ψ = 
1

b t( )
--------------S q/b( ) i

bt

4b
------q2– 

  .exp

i
∂S
∂τ
------ ∂2S

∂η2
---------

Ω2

4
------η2S–+ 0,=
SICS      Vol. 96      No. 1      2003



28 MIRONOV
lation in the space of self-similar variable η (η 
η + η0).

The transformation of the wave function to an oscil-
lating frame of reference is given in [4].

3. SQUEEZED COHERENT STATES

Sequentially applying the above transformations
[squeezing (3) and passage to an oscillating frame of
reference (19)] extends the class of dynamic solutions
of the equation for a quantum oscillator.

3.1. Perfectly Squeezed States

Let us first consider the following possibility. We
first pass to an oscillating frame of reference (19) and
then make a squeezing transformation [q(t), p(t) 
Q(τ), P(τ)] according to (3)–(5). As a result, we obtain
a generalized transformation of Eqs. (1) to (2):

(26)

For simplicity, as above, we assume that ω(t) = Ω = 1.

For the pseudoannihilation operator  = ( (τ) +

i (t))/  in the proper time (5) determined by the
state dispersion, we derive

(27)

Assuming then that the transformed (in the oscillating
frame of reference and in the new time τ) state in the
vacuum state |0〉 , we arrive at the operator equation for
the corresponding dynamic state of the system |ψ(t)〉:

(28)

It is a generalization of (13) and (21) to a squeezed
coherent state. Here, it is important to note that the
squeezing transformation acts differently on the coordi-
nate and velocity of classical motion [see the right-hand
side of Eq. (28)].

In coordinate representation, the following expres-
sion can be easily obtained for the wave function of a

q̂ b t( )Q̂ τ( ) x t( ) Î ,+=

p̂
P̂ t( )
b t( )
---------- bt t( )Q̂ τ( ) xt t( ) Î .+ +=

Â Q̂

P̂ 2

Â
1
2
--- b

1
b
--- ibt–+ 

  â
1
2
--- –b

1
b
--- ibt–+ 

  â++=

– 1
b
--- ibt– 

  x ibxt+
Î

2
-------.

b
1
b
--- ibt–+ 

  â ψ| 〉 –b
1
b
--- ibt–+ 

  â+ ψ| 〉+

=  1
b
--- ibt– 

  x ibxt+ 
  2 Î ψ| 〉 .
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coherent squeezed state:

(29)

It describes a self-similar wave field localized near the
oscillating classical trajectory (t) of the center of
mass,

with frequency ω0 = 1. The dispersion b2 of (29) varies
with a double frequency [see (10)]. Obviously, the
spectral features of the coherent squeezed state are
determined by the phase difference between the oscil-
lations of the center of mass x(t) and the dispersion

parameter bt = 0, b(t) =  at t = 0.

The probability of the oscillator being in the nth
state can be obtained in energy representation by appro-
priately generalizing relation (15) to a squeezed coher-
ent state. It is easier to act by expanding (29) in terms
of the steady-state wave functions for the oscillator
(Hermitean function ψn). Calculating the coefficients of
this expansion,

yields

(30)

where x0 = (t = 0) and xt(0) = (t = 0) are, respec-
tively, the coordinate and velocity of classical motion
(the center of mass) when the squeezing transformation
is “turned on”; Hn is the nth Hermitean polynomial.
Note that such expressions can be found, in particular,
in [1, 4]. However, in contrast to the corresponding
relation in [1, 4], our expressions (30) are determined
by the classical system parameters and by the squeez-
ing factor. Thus, we can analyze in more detail the fea-
tures of the spectrum for a squeezed coherent state (30).

The following averaged characteristics of the distri-
bution wn = |cn |2 for the probability of the oscillator
being in the nth state are indicative:

(31)

ψ 1

πb2
-------- 

  1/4

=

× 1

b2
----- i

bt

b
----– 

  q x t( )–( )2

2
------------------------- ixtq+– .exp

x

x q q Ψ 2 q,d∫= =

K4

cn ΨΨn* q,d∫=

cn
2 2 K4

K 1+
----------------- 1 K–

1 K+
----------------- 

 
n

Hn

ix0 xt 0( ) K–

K 1–
---------------------------------

 
 
 

2

=

× 2nn!( ) 1– x0
2 xt

2 0( ) K+

K 1+
---------------------------------

 
 
 

,exp

x xt

n nwn, n2

0

∞

∑ n2wn.
0

∞

∑= =
 AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



SQUEEZED STATES OF LIGHT AS SELF-SIMILAR STRUCTURES 29
Details of calculating the spectral moments (31) for
distribution (30) are given in the Appendix. Here, we
present the following results. The mean of distribu-
tion (30) is

(32)

It is the sum of the corresponding mean numbers of
photons in classical motion (the mean for the Poisson
distribution), N, and in a squeezed vacuum state (18).

Based on the expression for the second moment and
(32), we can derive the relation

(33)

This relation is used in quantum optics [1] to describe
the deviations of the photon statistics from Poissonian
statistics.

Note that the squeezing transformation acts differ-
ently on the coordinate x0 and velocity xt(0) of the clas-
sical motion “dressed” by the quantum dispersion. This
circumstance leads to a number of features in the pho-
ton statistics. It is easy to derive a relation between K,
x0, and xt(0) that makes the right-hand side of expres-
sion (33) vanish. In this sense, the statistics is Poisso-
nian (∆ = 0). Depending on the sign of ∆, the photon
statistics of the squeezed coherent state can be super-
Poissonian (∆ > 0) and sub-Poissonian (∆ < 0). The lim-
iting case is realized, for example, if the squeezing
(K > 0) is turned on at a zero center-of-mass velocity of
classical motion [xt(0) = 0]. The corresponding states of
the wave system are defined as quadrature-squeezed [1].

If the squeezing is done when the coordinate is zero
(x0 = 0) and the velocity xt(0) is at a maximum, then ∆
can be less than zero (∆ < 0) for the number of photons

N = (0)/2 in classical motion:

(34)

The dispersion D =  –  of such a state for N @
K @ 1 is

i.e., it is appreciably smaller than the mean number of
photons (32). For this reason, it is called squeezed by
the number of photons [1].
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Consider the features of spectrum (30) for these two
types of squeezed states of the system for K > 1. In the
first case, [xt(0) = 0], using the asymptotic expression [6]

(35)

for 1 ! |x |2 ! n yields the expression

(36)

To simplify it, we used the Stirling formula for n! and
the condition of a strongly squeezed coherent mul-
tiphoton state N @ K @ 1.

Thus, the spectrum of a quadrature-squeezed state

(36) is a shifted Gaussian function that depends on .
Near the maximum (n* = N) and for n @ N, function
(36) behaves more smoothly than does the standard
Gaussian function of n. This causes an appreciable

increase in the dispersion of (36) compared with  to

N , which corresponds to (6).

In the second case, where the squeezing acts on a
system whose classical motion has a maximum velocity
(x0 = 0), the corresponding distribution (30) is defined
by Hermitean polynomials of a real argument. For K @ 1,
(30) simplifies to

(37)

The Hermitean polynomial Hn(x) reaches its maximum
at x2 ≈ 2n, i.e., in our case, for n* equal to the number
of photons in classical motion (n* = N). In this region,
the asymptotic behavior of Hn(x) for n @ 1 and x @ 1 is
determined by the Airy function [6]. As a result, we
obtain from (37)

(38)

where

Thus, distribution function (37) for the state
squeezed by the number of photons exhibits the follow-
ing behavior. For n < N, the increase of (38) is essen-
tially determined by the Airy function Ai(t). The
decrease of (38) for n > N is described by the exponen-
tial factor in (38). As a result, the two-scale distribu-
tion (38) localized near n = N has a combined disper-
sion, which we determined by using the method of
moments (33) and (32).
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3.2. A Generalized Coherent Squeezed State

There is also another possibility. We first perform
the squeezing transformation (3)–(5) and then pass to
an oscillating frame of reference (19) associated with a
classical trajectory. As a result, we obtain the following
transformation of the canonical variables:

(39)

where η(τ) and ητ(τ) are the coordinate and velocity of
classical oscillatory motion in the new time. As above,
ω = ω0 = Ω = 1. Repeating the same operations as in the
previous case yields the expression for the pseudoanni-
hilation operator:

(40)

Thus, the ground state of the system in the new time
τ is described by the operator equation

(41)

whence we derive the following expression for the
wave function in coordinate representation:

(42)

It has, at least outwardly, a more complex self-similar
structure than do (14) and (29). Expression (42)
describes the wave packet localized near a classical tra-
jectory:

(43)

Clearly, this is the same oscillating trajectory as that
for distribution (29),  = (t). This can easily be veri-
fied, because ηττ = –η, dτ = dt/b2, and b is the solution
of Eq. (4) for ω = Ω = 1. Thus, basically, distribution (42)
differs from (29) in that the parameters of the classical
trajectory dressed by it are determined by the disper-
sion of state (42).

Consider the spectrum (in Hermitean functions) of
wave function (42). It can also be directly obtained
from (41) by expressing  and  in terms of the pro-
duction and annihilation operators in the Fock repre-
sentation. However, it is easier to use the correspon-
dence between (42) and (29). As above, the oscillation
phase η(τ) is reckoned from the time when bt(t = 0) = 0
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and b(t = 0) = . As a result, we obtain for the prob-
ability of the oscillator being in the nth state

(44)

where η0 = η(t = 0) and ητ(τ = 0) = ητ(0). It can be
derived from (30) by the substitution

(45)

which is determined by modification (43) of the classi-
cal equation of motion. In other words, the difference
between (44) and (30) is that for the classical trajec-
tory (43), the initial conditions specify

(46)

which is determined by the quantum dispersion b(t). In
this sense, our transformations [squeezing and passage
to an oscillating frame of references x(t)] can be said to
commute.

To conclude this section, we note the following. The
system state (42) and (45) under consideration is a gen-
eralized coherent squeezed state [1]. The corresponding
expression (14) is given, for example, in [1] [see for-
mula (21.5.25)]. It is so cumbersome that the authors
refused to analyze this expression. The conclusions
reached when discussing the first two moments of the
photon distribution [formulas (21.5.26) and (21.5.28)]
were not very definitive either. In our approach, substi-
tution (45) in (32) and (33) does not result in an appre-
ciable complication:

(47)

(48)

Clearly, analysis of these expressions and the spectral
features of squeezed coherent states [quadrature-
squeezed (36) and squeezed by the number of photons
(38)] differs little from that described in the first part of
this section.

4. THE EXCITATION OF SQUEEZED STATES
The transformations of squeezing (3) and passage to

an oscillating frame of reference (19) basically reduce
the solution of a broad class of nonstationary quantum
problems to Eq. (9) with a variable frequency. Of par-
ticular interest in exciting squeezed states of light is the
study of resonance processes. Since the dispersion of
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the wave function in a squeezed state varies at the dou-
ble frequency of a reference harmonic oscillator, it
would be natural to use a parametric resonance to excite
such states. Consider the degenerate parametric down
conversion whose dynamics is described by the Hamil-
tonian

where ε ! 1.
As a result, we obtain Eq. (1) for a quantum oscilla-

tor with the frequency varying as

(49)

The choice of such a periodic function (sin2t) corre-
sponds to the phase relations used above. Let us first
consider the excitation of a vacuum state (14) and then
generalize the derived expressions to squeezed coher-
ent states.

4.1. The Excitation of a Squeezed Vacuum State

In our approach, the problem of exciting a squeezed
state reduces to analyzing the equation for the disper-
sion of a quantum system

(50)

As above (8), the solution of this equation should be
represented (b2 = u2 + v 2) via the linearly independent
solutions u(t) and ν (t) of the oscillator equation

(51)

with the same initial conditions [u(0) = 1, ut(0) = 0,
v (0) = 0, v t (0) ≠ 0).

Hence, we derive the following expression for the
quantum-state dispersion b(t) for the parametric reso-
nance conditions under consideration:

(52)

where the increment of parametric instability is γ = ε/4.
Thus, dispersion (52) changes twice in the oscillator
period from its maximum value bmax = exp(γt) to its
minimum value bmin = exp(–γt). The squeezing factor

(53)

increases exponentially with time. Thus, the expression
for the quantum dispersion

(54)

retains its original form (10) with the squeezing fac-
tor K(t) increasing slowly (on the scale of the disper-
sion oscillation period) with time. In this approxima-
tion, the state wave function (14) and spectrum (16) are
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slowly evolving functions as the squeezing factor (53)
increases.

4.2.The Excitation of a Squeezed Coherent State

The wave function for a squeezed coherent state is
defined by two parameters: the dispersion and trajec-
tory of the center-of-mass motion. The quantum-state
dispersion is described by expression (54) with the
squeezing factor (53). The wave function (29) is local-
ized near the classical trajectory

(55)

The two linearly independent solutions of this equa-
tion in the same approximation as above (ε ! 1) are

(56)

(57)

Thus, two regimes are possible. In the first case, the
increase in the modulation depth of dispersion (54) is
accompanied by an increase in the amplitude of the
coherent component described by expression (56). The
growth of parametric instability of the center-of-mass
motion of the wave field (56) results in the excitation of
a quadrature-squeezed coherent state.

In the other case, the initial phase relation between
the oscillations of the center of the wave field (57) and
dispersion (54) are such that a state squeezed by the
number of photons is formed. This process is peculiar
in that the oscillatory center-of-mass motion (57) is sup-
presed as the amplitude of the quantum dispersion (54)
increases exponentially. As a result, the energy of the
coherent component decreases and, consequently, a
state more similar to a squeezed vacuum state is
excited.

4.3. Processes in Reverse Order 
of Transformations

Next, consider the application of the transforma-
tions in reverse order, i.e., (39), but for a quantum oscil-
lator with a variable frequency (49). In this case, the
wave function that describes a nonstationary squeezed
coherent state is localized, like (42), near the classical
trajectory

(58)

It follows from the method of constructing this
squeezed coherent state that the dispersion is described
by Eq. (50) and that η(τ) is the equation for a harmonic
oscillator

in the new time
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It is easy to see that (t) defined by relation (58) is the
solution to Eq. (55). In other words, (58) is a different rep-
resentation of the solution to steady-state equation (55)
via the solution to the equation for a harmonic oscillator
in the new time. Thus, as in the case of dynamic trans-
formation (39), the problem reduces to specifying the
initial conditions when solving Eq. (55), expressed in
representation (58) in terms of the initial quantum state
dispersion at time t = 0. The properties of the excitation
of a quadrature-squeezed state and a state squeezed by
the number of photons here are the same as those in
Section 4.2.

5. CONCLUSION

The procedure for obtaining the dynamic solutions
of the equation for a quantum oscillator outlined above
has a number of advantages over the commonly used
procedure [7–9]. Using invariant transformations of the
canonical variables and time ultimately reduces the
solution of the problem to a classical oscillator with a
variable frequency. As a result, the solution of the quan-
tum problem can be expressed in terms of the parame-
ters of a classical system. In particular, the solutions
generated by the ground(vacuum)-state wave function
correspond to squeezed states of the system. They are
self-similar in structure. In the new (nonuniform) time
determined by the state dispersion, the self-similar
solution matches the ground-state wave function. In our
approach, the distributions localized near classical
oscillatory motion (coherent state) correspond to
squeezed coherent states. The situation here is in many
respects similar to the Feynmann representation of
quantum mechanics in classical trajectories [10] sup-
plemented with a transformation of the evolutionary
variable. The clear structure of the wave function
allows us to easily analyze the conditions (phase rela-
tions between the invariant transformations) under
which quadrature-squeezed states and states squeezed
by the number of photons are realized and to consider
the parametric excitation of squeezed states for the
system.

In conclusion, we note the following. The suggested
dynamic transformations of the canonical variables are
a convenient tool for studying the applications of non-
classical light. Thus, for example, when considering the
interaction of squeezed coherent light with atoms, pass-
ing to the new time determined by the quantum disper-
sion reduces the problem in the new canonical variables
to the better studied problem of the interaction between
coherent radiation and matter.

Similar dynamic transformations of the canonical
variables also take place in the more complex case of a
quantum oscillator with dissipation [9] described by the
Hamiltonian

x

Ĥ 2F t( )–( ) p̂2/2exp ω2 t( ) 2F t( )( )exp q̂2/2.+=
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The corresponding generalization of transformations (3)
and (4) is

As above, operators (τ) and (τ) in the new time
dτ = dt/b2(t) describe a quantum harmonic oscillator (2)
with Ω = 1. Clearly, this circumstance appreciably sim-
plifies analysis of such a dissipative system.
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APPENDIX

To determine the moments of the photon number
distribution,

(59)

we use the relation [11]

(60)

If we use the notation

(61)

in (60), then we obtain an expression for the norma-
lization of distribution (59). In this notation, distribu-
tion (59) can be written as

(62)
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where

(63)

The normalization of distribution (59) is given by the
relation

(64)

To determine the first moment of distribution (62),

, (65)

we differentiate (60) with respect to z. Multiplying the
derived expression by z/g yields the following expres-
sion for the first moment:

(66)

Here, after the differentiation, we should set y = x*. By
transforming (66) using (61), we determine  =

(K, x0, xt(0)) in form (32).

Making the same operations [differentiating (66)
with respect to z and multiplying by z/g] yields the
expression for the second moment of (62)

(67)

Here, as above, we should set y = x* in the final expres-
sions.
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Higher order moments can be determined in exactly
the same way.
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Abstract—A nonperturbative method is developed for the calculation of cross sections of inelastic processes
in collisions between structured high-charge heavy ions moving at relativistic velocities and atoms. By structure
ions are meant partly stripped ions consisting of an ion nucleus and a number of bound electrons which partly
compensate the core charge and form the electron “coat” of the ion. The single ionization cross section of
hydrogen atom and single and double ionization cross sections of helium atom are calculated. It is demonstrated
that the inclusion of the extent of ion charge may bring about a marked variation of the respective cross sections
compared to ionization by point ions of the same charge and energy. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Numerous experiments performed in heavy-ion
accelerators involve the use of partly stripped ions of
high charges and energies (see, for example, [1–7] and
the references cited there). As a rule, the calculation
procedures describe such screened ions as point
charges. Relatively few papers are devoted to theoreti-
cal investigation of the processes of excitation or ion-
ization of target atoms by partly stripped ions, which
are described as extended charges with an electronic
structure. At the same time, it appears that one must
treat an incident ion as an extended structured particle
with the size on the order of electron shells of the ion
rather than as a point particle. The strong field of a mul-
tiply charged ion prevents one from applying perturba-
tion theory. Therefore, as a rule, the ionization cross
sections were calculated (see, for example, [8, 9]) using
the widely employed method of classical trajectories.
Quantum-mechanical nonperturbative treatment using
the sudden perturbation approximation was performed
by Yudin [10, 11]. He managed to derive only the
dependences of the ionization probability in a limited
range of impact parameters. In order to calculate the total
ionization cross section, one had to introduce a semiem-
pirical procedure of “renormalizing” the Born approxi-
mation. In [12, 13], where the eikonal approximation
was used, only the energy loss in collisions of relativistic
structured heavy ions with atoms was calculated. Inten-
sive theoretical and experimental studies are presently
underway (see, for example, [17–19]) into the processes
of the loss of electrons which belong to bombarding ions.

We used the eikonal approximation and the joining
method suggested in [14–16] to develop a nonperturba-
tive method for the calculating cross sections of the
processes of excitation or ionization of target atoms by
1063-7761/03/9601- $24.00 © 20034
partly stripped relativistic high-charge ions described
as extended charges. By way of example, the single ion-
ization cross section of hydrogen atom and single and
double ionization cross section of helium atom were
calculated. It has been demonstrated that the inclusion
of the extent of ion charge may bring about a marked
variation of the respective cross sections compared to
cross sections calculated for ionization by point ions of
the same charge and energy.

2. CALCULATION TECHNIQUE

According to [14, 15], the cross section of transition
of a nonrelativistic (prior to and after collision) N-elec-
tron atom, which is at rest at origin, from the |0〉  to |n〉
state upon collision with a relativistic ion moving at
velocity v  in the small-angle eikonal approximation has
the form (here and below, atomic units are used)

(1)

The scattering Coulomb potential U = U(X, b; {ra}) is
a function of both the ion coordinates R = (X, b) and the
positions of atomic electrons, whose coordinates are
denoted by {ra}; a = 1, …, N. We will follow [11, 20–22]
and write the Coulomb interaction of a partly screened
ion which contains Ni electrons in its shells and is
located at point R, with atomic electrons located at
points ra, in the form

(2)
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where λ is the screening parameter (effective ion size),
equal to

Here, we introduce the relative number of ion electrons,
ν = Ni/Z. The characteristic feature of collisions
between high-charge ions and atoms consists in that the
cross sections of inelastic processes are, as a rule, fairly
large and significantly exceed the atomic dimensions.
In view of this, we will assume that ra/R ! 1; then, the
integral in Eq. (1) may be rewritten as

(3)

where

(4)

As a result, Eq. (1) will take the form

(5)

Obviously, vector q has the meaning of momentum
transferred to atomic electrons upon collision with an
ion with the impact parameter b; Z* = Z(1 – ν) is the
visible charge of a partly stripped ion; and K1(x) is the
Macdonald function. The limiting values of q have a
transparent physical meaning: q  2Z(1 – ν)b/vb2 at
b  ∞, which corresponds to the scattering by a
screened ion of charge Z(1 – ν); q  2Zb/vb2 at
b  0, which corresponds to the scattering by a bare
ion of charge Z.

We will first treat a collision between a relativistic
structured multiply charged ion and a hydrogen atom.
In calculating the cross sections of inelastic processes,
we will follow [14, 15] and use the joining method,
which enables one to derive formulas for cross sections
in an analytical form. For this purpose, we will divide
the entire range 0 < b < ∞ of possible values of impact
parameter b into two regions corresponding to the small
and large impact parameters,

(6)

where

c being the velocity of light. In region A of small impact
parameters, the strong field of a high-charge ion cannot
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be included using perturbation theory; therefore, we
will calculate the cross section by formula (5). In
region B of large impact parameters, one can assume
the field developed by an ion to be weak, describe the
ion as a point charge Z*, and use perturbation theory for
the calculation of σn. We calculate σn in each of the
regions according to Eqs. (6) and add them together to
obtain the resultant cross section. In doing so, the
knowledge of the exact value of the boundary between
the regions is unimportant, because the dependence
of σn on the parameter b0 in any region turns out to be
logarithmic. This results in correct joining of the contri-
butions by adjacent regions, and, in the final result,
σn is independent of joining parameter b0. As a result,
the ionization cross section of a hydrogen atom may be
represented in the form (cf. [18])

(7)

where η = expB = 1.781, B = 0.5772 is the Euler con-
stant, ωi = 0.711 is the so-called [15] “mean” ionization
energy, λi = 0.283, and the coefficients αi are calculated
by the formula

(8)

Formula (7) is not dissimilar in aspect to the respective
formula given in [15] for the cross section of ionization
by point charge Z*. However, in contrast to the case of
point charge, in which αi = 3.264 is [15] a number inde-
pendent of the ion charge and velocity, in the case of
extended charge, by virtue of determining the trans-
ferred momentum by formula (4), αi turns out to be a
function of the ion velocity v  and the relative number ν
of electrons in the ion “coat.” Figure 1 gives the cross
sections of ionization of a hydrogen atom by partly
stripped U6+ ions (with the number of electrons Ni = 86
in the ion shells corresponding to the visible ion charge
Z

 

* = 6) calculated by formula (7). Although partly
stripped ions are frequently used in collision experi-
ments, no experimental data are available in the litera-
ture on the cross sections of ionization of atoms by rel-
ativistic structured heavy ions in the ranges of ion ener-
gies and charges of interest to us, in which the
corrections due to the extent of ion charge are signifi-
cant. However, because we describe the corrections due
to the ion charge extent by point particles relative to the
ionization cross sections, we found it necessary to give
(in Figs. 1–3) by way of illustration the experimental
data on the cross sections of ionization of atoms by
partly stripped ions in the ranges of ion energies and
charges for which, according to our calculation proce-
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dure, the cross sections of ionization by extended and
point ions are close to one another.

We will now consider the double ionization of a
helium atom. According to [14, 15], there is no need to
use the joining method for calculation of the respective
cross section. Therefore, the double ionization cross
section may be obtained directly from formula (5), in
which the integration is extended to the entire plane of
the impact parameter and has the form

(9)

Here, |0, 0〉  is the wave function of the ground state of
helium atom and |k1, k2〉  is the wave function of a
helium atom with two electrons in continuum with the
respective momenta k1 and k2; when integrating with
respect to these momenta in Eq. (9), one must take care
that the final states were not taken into account twice.
In calculations, the wave functions were represented in
the form of symmetrized products of hydrogen-like

σ2+

=  k1 k2,〈 | iq r1 r2+( )⋅{ } 0 0,| 〉exp 2dk1dk2d2b.∫∫∫

1000

100

10

0.1 1 10 100 1000 10000 100000

σi, 10–18 cm2

E, MeV/nucleon

Fig. 1. The cross section of ionization of a hydrogen atom
by partly stripped U6+ ions as a function of the ion energy.
The solid curve indicates the predicted cross section for an
extended ion, the dashed curve indicates the cross section of
ionization by a point ion for the same values of energy (per
nucleon) and charge, and the solid dot indicates the experi-
mental results of [5] (for C6+ + H collisions).
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one-electron wave functions with the same values of
the effective charge of the helium atom nucleus Za =
1.97 (according to [15], this value of effective charge
brings about good agreement with the experimental
data for double ionization of helium by bare relativistic
ion impact). The calculation results are given in Fig. 2.

The single ionization cross section of a helium
atom, which corresponds to one of the electrons getting
into any state of continuum and the other electron get-
ting into any state of discrete spectrum (or into any state
of the complete set of discrete and continuous spectra,
in which case one must deduct a contribution which
corresponds to finding two electrons in the states of a
two-electron continuum, i.e., in the states of double
ionization), is (cf. [15])

(10)

Here [15], Za = 1.37 is the effective charge of a helium
atom nucleus for one-electron ionization (according
to [15], this value of effective charge brings about good

σ1+ 16π Z*2

Za
2v 2

------------λ i

2α iv
2γ

ηZaZ*ωi

----------------------ln β2

2
-----– 

  2σ2+.–=

1000

10

1

1 10 1000 10000

σ2+, 10–18 cm2

E, MeV/nucleon

100

100

Fig. 2. The cross section of double ionization of a helium
atom by partly stripped Fe15+ ions as a function of the ion
energy. The solid curve indicates the predicted cross section
for an extended ion, the dashed curve indicates the cross
section of double ionization by a point ion for the same val-
ues of energy and charge, and the solid dot indicates the
experimental results of [6] (for Fe15+ + He collisions).
       
                     

Relative corrections for the cross sections σi, σ1+, and σ2+ and the relative contribution ξ to the ionization cross section by the
processes of excitation of the electron coat of ion

χ
Ion energy, 103 MeV/nucleon

0.01 0.05 0.1 0.5 1 5 10 50 100

χH 0.0774 0.3850 0.6304 1.3689 1.6067 1.6913 1.6214 1.4389 1.3682

0 0.0007 0.0025 0.014 0.019 0.022 0.021 0.018 0.017

0.0004 0.017 0.0473 0.1855 0.2406 0.2933 0.2974 0.2990 0.2991

ξ × 104 1.6 1.3 1.1 0.96 0.92 0.88 0.83 0.78 0.72

χHe
1+

χHe
2+
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agreement with the experimental data). We used for-
mula (10) to calculate the dependence of a single ion-
ization cross section of a helium atom in collisions with
Fe15+ iron ions on the ion energy, with the results qual-
itatively reproducing the previously described behavior
of the ionization cross section of a hydrogen atom.
However, the corrections proved to be minor because of
the considerable magnitude of the single ionization
cross section (see table). Therefore, we calculated the
single ionization cross section of a helium atom in col-
lisions with U15+ uranium ions with the same visible ion
charge Z* = +15 but with a much larger charge of the
nucleus and a larger number of bound electrons as com-
pared to Fe15+. The obtained dependence of the ioniza-
tion cross section on the ion energy is given in Fig. 3.

Because the effects of the ion charge extent proved
to be very appreciable, it appears necessary to discuss
the correctness of representing the field of the struc-
tured ion by the potential according to Eq. (2).

3. CHOICE 
OF INTERACTION POTENTIAL

Strictly speaking, the potential given by Eq. (2) may
be obtained as follows. We will introduce the potential
of projectile–target interaction V(r, r, R(t)), where
r denotes the set of coordinates of the target electrons,
r denotes the set of coordinates of the projectile elec-
trons, and R(t) is the distance between the projectile
and target nuclei in the rest frame of the target. Then,
the potential according to Eq. (2) is calculated by aver-
aging over the projectile electron coordinates r,

(11)

where ϕ = ϕ(r) is the wave function of the ground state
of the projectile electrons. If the Lenz–Jensen model
[23–25] (which refines [23] the Thomas–Fermi model)
is used to describe the distribution of the electron num-
ber density of the projectile, one can see in Fig. 4 con-
structed by the data of [22] that the potential according
to Eq. (2) is a good approximation for the averaged
potential according to Eq. (11).

In order to reveal the importance of the shell struc-
ture and the contribution by electron transitions
between the shells of an incident ion, one can formulate
a more general problem of the investigation of inelastic
processes simultaneously occurring in the target proper
and in the projectile. Consider a collision in which the
target makes a transition from the initial state |0〉  to the
final state |n〉 , while the projectile electrons change
from the initial state |0〉  into the final state |m〉 . The cross
section of such a process will be written as

(12)

where the expression (b) denotes the probability

U R; ra{ }( ) ϕ V r r R t( ), ,( ) ϕ〈 〉 ,=

σ0 n→
0 m→ P0 n→

0 m→ b( )d2b∫ 2π P0 n→
0 m→ b( )bdb,

0

∞

∫= =

P0 n→
0 m→
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of detecting the target and projectile in the final states |n〉
and |m〉, respectively, after collision with impact param-
eter b. The electron transitions occurring in the target and
projectile may be treated as independent processes.
Therefore, the probability of transition may be repre-
sented in the form (which is apparently a natural gener-
alization to the given case of the integrand in formula (5))

(13)

P0 n→
0 m→ ϕm r( )〈 | iq2 r j

j

∑⋅
 
 
 

ϕ0 r( )| 〉exp
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Fig. 3. The cross section of single ionization of a helium
atom by partly stripped U15+ ions as a function of the ion
energy. The solid curve indicates the predicted cross section
for an extended ion, the dashed curve indicates the cross
section of ionization by a point ion for the same values of
energy and charge, and the solid dot indicates the experi-
mental results of [6] (for Fe15+ + He collisions).
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0 0.2 0.4 0.6 0.8 1.0
q

Z1/3 λ

Fig. 4. The effective ion size λ as a function of the degree of
ionization q = Z*/Z, where Z* is the visible ion charge and
Z is the ion nucleus charge. The solid curve indicates the
screening parameter in the potential given by Eq. (2)
(Brandt–Kitagawa model [22]), and the dashed curve indi-
cates the ion size in the Lenz–Jensen model [23–25].
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where ϕ(r) and Φ(r) are the electron wave functions of
the projectile and target, respectively; and q1 and q2 are
the momenta transferred upon collision, with q1 having
the meaning of momentum transferred by the projectile
to the target electrons, and q2, that of momentum trans-
ferred by the target to the projectile electrons. There-
fore, one can use formula (12) to calculate the cross
sections of various inelastic processes which lead, upon
collision, to a simultaneous excitation of the electron
shells of the target and projectile. In order to determine
the contribution of electron transitions between the
shells of the bombarding ion, we calculated σ2, the
cross section of inelastic collision of hydrogen-like
Fe25+ iron ions (projectile) and He1+ helium ions (tar-
get) at which the ionization of the He1+ target occurs
with excitation of the Fe25+ target to any state of discrete
and continuous spectra, as well as σ1, the cross section
of the process in which the target is ionized and the pro-
jectile remains in the ground state. In order to estimate
the contribution by the processes of excitation of the
electron coat of the ion, we will introduce the relative
contribution ξ = (σ2 – σ1)/σ1. If ξ is much less than
unity, the contribution by the excitations of the electron
shells of the target may be ignored and the bombarding
ion may be treated as an extended charge. Our calcula-
tion of the values of ξ as a function of the kinetic energy
of the bombarding ion, the results of which are given in
the table (fourth line), reveals that, if we treat collisions
of heavy ions of visible charge Z* @ 1 with light atoms
or with ions of a nuclear charge much less than Z*, the
excitations of the electron coat of the projectile may be
ignored.

4. DISCUSSION OF THE RESULTS

Figures 1 and 2 are constructed on a logarithmic
scale, which enables one to cover a wide range of ion
energy but poorly reflects the details. Therefore, for
qualitative illustration of the effect of inclusion of the
extent of ion charge, we will introduce relative correc-
tions

where σi(point) is the cross section of ionization of a
hydrogen atom by a point ion of the same charge Z* as
the visible charge of an incident extended ion and at the
same relative velocity. Similarly introduced are the rel-
ative corrections for single and double ionization of a
helium atom,

Given in the table are the values of χ
H
 for U6+ + H col-

lisions, as well as of  and  for Fe15+ + He colli-
sions. One can see in the table that corrections to the

χ
H

σi σi point( )–
σi point( )

----------------------------,=

χ
He

1+ σ1+ σ point( )
1+–

σ point( )
1+

-----------------------------, χ
He

2+ σ2+ σ point( )
2+–

σ point( )
2+

-----------------------------.= =

χ
He

1+ χ
He

2+
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ionization cross section as a result of inclusion of the
ion charge extent may turn out to be significant. One
can see in Figs. 1–3 that, as the energy of the incident
ion increases, the effects of ion charge extent may bring
about a significant growth of the single and double ion-
ization cross sections compared to respective cross sec-
tions calculated for a point ion. Such a behavior is
apparent from physical reasoning: indeed, in collisions
with large impact parameters, atomic electrons interact
with an incident ion as with a point charge equal to the
visible charge of a screened ion (in our notation, Z*). As
to collisions with small impact parameters, atomic elec-
trons perceive an ion as a bare charge Z. All regions of
impact parameters contribute to the cross sections, and,
because Z is larger than Z*, atomic electrons effectively
interact with an ion whose charge exceeds Z*, this lead-
ing to an increase in cross sections that may turn out to
be significant in the case of Z @ Z*. In order to estimate
the effect of the ion charge extent, we will introduce the
effective radius r such that σi(point) = πr2. Then (based on
geometric reasoning, according to which an ion is treated
as a sphere of radius λ), a cross section in view of the ion
charge extent is to be estimated at σi ~ π(r + λ)2. For
λ2 ! r2 (in the cases treated by us, this inequality may
be taken to be valid for estimation purposes), one can
easily estimate the correction χ

H
 in terms of the pre-

dicted value σi(point) of the cross section of ionization by
the point ion and the effective ion radius λ,

Because λ in formula (2) is independent of the kinetic
energy of the ion, the relative correction χ

H
 increases,

while σi(point) decreases with increasing energy. One can
readily see that the figures and the data given in the
table demonstrate this particular behavior of cross sec-
tions, which is apparently common to the remaining
cross sections of inelastic processes that accompany
collisions of relativistic structured heavy ions with
atoms.
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Abstract—A 3D model is developed, which describes the propagation of an initiated high-pressure microwave
discharge in a linearly polarized wave beam. The equations for the electric field amplitude are solved self-con-
sistently with the set of equations of plasmochemical kinetics. Plasma structures of the experimentally observed
“snake” and “chain” types are obtained using this model. The calculation results enable one to determine the
conditions of formation of one or another spatial structure, as well as the parameters of the plasmoids being
formed. The results of calculation of the discharge propagation toward the radiation source are compared with
the available experimental data. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microwave discharges in electromagnetic wave
beams represent a relatively new phenomenon in the
physics of gas discharge; the investigation of this phe-
nomenon was given new momentum by the advent of
powerful microwave oscillators. Experimental investi-
gations of microwave discharges in prebreakdown
fields revealed that a complex spatially nonuniform dis-
charge structure is formed in high-pressure gases (ν @
ω, where ν is the transport frequency of electron colli-
sions and ω is the circular frequency of the field) [1–5].
In this way, the types of structures qualitatively vary
depending on the discharge conditions [4].

The ignition of a microwave discharge in prebreak-
down fields requires an initiator used to develop local
regions of above-breakdown field or an external preion-
ization source forming the plasma background. Usu-
ally, no external ionization source is present in an initi-
ated discharge, which distinguishes this discharge from
a non-self-sustained discharge. The initiating elements
are provided by metal needles, multipoint brushes,
metal–dielectric plates, and so on. As is observed by the
majority of researchers, in a steady-state mode of prop-
agation, the discharge structure and its other character-
istics do not depend on the type of initiator [1–4].

In [3–5] and in other papers, the possibility is
observed of a jumplike propagation of an initiated
microwave discharge toward the radiation source in the
form of dipole plasma channels oriented along the elec-
tric field vector (dipole mode of propagation). Figure 1
is a photograph (borrowed from [4]) of a discharge in
the kE0 plane (k is the wave vector, and E0 is the elec-
tric field of an incident wave). One can see that the
channel length, somewhat exceeding λ/2 (λ is the
microwave radiation wavelength), is always much
1063-7761/03/9601- $24.00 © 20040
greater than the channel radius. The dipole mode was
observed in the following range of values of reduced
field:

;

here, N is the concentration of molecules and (E/N)br is
the breakdown value of the field. The factor 0.65 exper-
imentally obtained for nitrogen and air varied little
upon transition to argon, helium, hydrogen, and CO2.

Figure 2 gives the rate of discharge propagation as a
function of the quantity (E/N)0, obtained in [4] for air at
λ = 4.3 cm. According to [3, 4], similar dependences
are observed for argon, helium, nitrogen, CO2, and
other gases. The kink on the curve of dependence of
velocity at (E/N)0 ≈ 0.65(E/N)br (for air, 0.65(E/N)br ≈
80 Td) may be attributed to the change of the mecha-
nism of discharge propagation. Also indicative of this
are the photographs which point to a significant varia-
tion of the discharge structure at (E/N)0 < 0.65(E/N)br
[4]. Note that, in accordance with Fig. 2, the velocity of
the discharge front motion at a fixed value of (E/N)0 in
the dipole mode depends little on the gas pressure. Sim-
ilar results were previously obtained in krypton at λ =
6.7 mm and P = 200–650 Torr [6] and in argon at λ =
4.3 cm and P = 100–735 Torr [7].

Two types of plasmoid arrangement were experi-
mentally observed during the discharge motion toward
the radiation source, namely, a “chain” and a “snake.”
The first type is characterized by successive lining up of
a chain of plasma dipoles spaced at a distance of
approximately λ/4 from one another. The chain was
formed in almost the entire range (specified above)
of values of the parameter (E/N)0 in all investigated
gases [3–5]. The snake arrangement of plasmoids may

0.65 E/N( )br E/N( )0 E/N( )br≤ ≤
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be most readily registered in the kB0 plane, in which the
discharge performs longitudinal and transverse diago-
nal jumps in the vicinity of the longitudinal direction
and moves generally toward the radiation source [3].
The sequence of production of plasmoids in an ideal
snake (propagating toward the radiation source in the
negative direction of the x axis) may be schematically
represented as

(

where Xj, Yj, and Zj are coordinates of the center of the
jth plasmoid. This type of motion was observed only in
molecular gases in a narrow transition region in the
range of fields of (E/N)0 ≈ (0.65–0.75)(E/N)br [3].

This suggested mechanism of jumplike propagation
of an initiated high-pressure microwave discharge is
based on the interference between the incident electro-
magnetic wave and that reflected from plasmoids. As a
result, regions of above-breakdown field arise, in which
the avalanche multiplication of electrons and the for-
mation of the next plasmoid begin. This recurring pro-
cess may be interpreted as the discharge motion toward
the radiation source. The propagation mechanism
described above may be a priori regarded as field ion-
ization mechanism (though, at late stages of channel
formation, the gas heating will naturally have its
effect).

A number of researchers (see the review [8] and
other papers) treated yet another mechanism of struc-
ture formation in a high-pressure microwave discharge
(ν @ ω), which brings about the stratification of an ini-
tially homogeneous discharge into individual plasma

X j Y j Z j, ,( ) X j dx– Y j dy± Z j, ,( )

X j 2dx– Y j Z j, ,( )

X j 3dx– Y j dy± Z j, ,( )

X j 4dx– Y j Z j, ,( ) …,

Fig. 1. An integral photograph of a “snake” structure [4].
Air, P = 100 Torr, (E/N)0 = 100 Td, λ = 4.3 cm. The micro-
wave radiation propagates from left to right.
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filaments oriented along the electric field vector [8].
This mechanism is based on the overheating ionization
instability. The time of discharge stratification is
defined by the characteristic time of heating and gasdy-
namic rarefaction of the plasma channel. Therefore, in
a wide range of discharge parameters, the field ioniza-
tion and overheating ionization mechanisms may be
separated as regards the time of development, because
the structure formation by the former of these mecha-
nisms occurs during pregasdynamic times.

Papers [9–11] deal with theoretical investigations of
the dipole mode of microwave discharge propagation.
Mnatsakanyan and Naœdis [9] treated a discharge in
krypton for the experimental conditions of [6] within
the model of plane plasma sheets. The calculated
dependences of the average rate of discharge propaga-
tion on gas pressure and (E/N)0 agree with the values
measured in [6] (the difference does not exceed a factor
of two–three). However, the maximal number density
of electrons and the width of plasma sheets in the cal-
culations were Ne = 1016 cm–3 and ∆ = 0.1 mm, respec-
tively, while the maximal number density of electrons

in the experiments did not exceed  = 1014 cm–3,
with a plasmoid radius of r = 0.25 mm. It must be
emphasized that the dipoles in the experiment were rep-
resented by relatively thin plasma filaments. The elec-
tromagnetic wave reflection from such filaments differs
significantly from its reflection from plasma sheets
(employed in the model); it is apparently this fact that
results in the above-mentioned difference between pre-
diction and experimental results.

In order to simulate the dipole mode of microwave
discharge propagation, one needs a description of the
electromagnetic wave interaction with a system of thin
plasma channels oriented along the electric field vector.
One of the questions to be answered by the simulation
results is whether it is possible to reach a degree of gas
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Fig. 2. The average rate of microwave discharge propaga-
tion as a function of the reduced field (E/N)0 in air [4]; P =
50 (j), 70 (s), and 100 (m) Torr.
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ionization (and, accordingly, a reflection coefficient) in
plasmoids such as to provide for the possibility of dis-
charge propagation in the entire range of values of the
reduced field of 0.65(E/N)br ≤ (E/N)0 ≤ (E/N)br. Thus,
these values of the degree of ionization must be reached
during the time of plasmoid formation τe,

(1)

where V is the average velocity of discharge front and
dx is the distance between plasmoids in the direction of
vector k.

It is the purpose of this study to perform a self-con-
sistent simulation of the electrodynamics and plasmo-
chemical kinetics of the dipole mode of microwave dis-
charge in air and to describe the main types of spatial
structures being formed and the conditions of their
emergence, as well as to determine the velocity of dis-
charge propagation and the parameters of the plasmoids
being formed.

2. DERIVATION OF THE INITIAL SET
OF ELECTRODYNAMIC EQUATIONS

Plasma channels (plasmoids) are located in the field
of a monochromatic linearly polarized electromagnetic
wave,

It is assumed that (i) the plasmoids are identical in
shape and represent ellipsoids of revolution extended
along the z axis in parallel with the electric field vector,
which have their centers in the xy plane (kB0 plane) and
semiaxes lzm > lρm; (ii) the plasma within the mth plas-
moid is distributed uniformly with nem = const; and
(iii) the plasmoid radius lρm is markedly less than the
distance between plasmoids and satisfies the condition

(2)

where αm = klρm. We will emphasize that Eq. (2) is real-
ized in all experimental investigations of microwave
discharges known to us.

First of all, we will derive equations describing the
electromagnetic wave scattering from a solitary plas-
moid.

We will align the plasma channel axis with the z axis
and place the channel center at the origin of the coordi-
nates. In the presence of axial symmetry in the distribu-
tion of plasma concentration, it is natural to perform the
investigation in cylindrical coordinates,

Under the effect of a plane linearly polarized elec-
tromagnetic wave, which has, in cylindrical coordi-

τe

dx

V
-----,=

Ev x t,( ) 0.5Ez x( ) iωt–( ) c.c.,+exp=

Ez x( ) E0 ikx( ).exp=

αm ! 1,

x ρ ϕ , ycos ρ ϕsin .= =
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nates, the electromagnetic field components

(3)

where (bρ, ϕ; ez) = (Bρ, ϕ; Ez)/E0 and Jm(x) is the Bessel
function of the mth kind, all field components with a
complete spectrum of azimuthal harmonics are excited
in the plasmoid. It is clear, however, that the degree of
the effect of higher harmonics (and, via these harmon-
ics, of the eϕ and bz components) on the reflectivity of
the plasma channel decreases with the radius of the lat-
ter. For example, in the limit of infinitely long filament
lz  ∞, we have

(see [13]); here, ez1 and ez0 are the complex amplitudes
of the first and zero harmonics, respectively. In this
paper, we will restrict ourselves to treating the case of
Eq. (2) and find the solution of the set of Maxwell equa-
tions only for zero harmonics of the bϕ, ez, and eρ com-
ponents.

The formal solution of the equation

(4)

as well as the expressions for  and  within the
plasmoid, can be written using the ez function (ρ = 0, z)
which is not yet known,

(5)

where

σ = e2ne/mν is the plasma conductivity,

One can use expressions (5) (which are valid both for
an ellipsoid and for any body of revolution) and deter-

ez J0 kρ( ) 2 imJm kρ( ) mϕ ,cos
m 1=

∞

∑+=

bρ ez ϕ , bϕsin ez ϕ ,cos= =

ez1 ρ lρ>( )/ez0 ρ lρ>( ) α2/4∼
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mine the ez(0, z) dependence to find the field at each
point of the plasma channel.

We write the formal solution to Maxwell equations
for ez(r) in an integral form and use Eqs. (5) to derive
the equation sought for ez(0, z),

(6)

where

δ(ϑ) is the delta function, and ϑ  =  – 1.

The expression for the complex amplitude of elec-
tric field outside of the plasma channel, made up by the

external field and the field (ρ, z) of a scattered axially
symmetric wave, has the form

(7)

where

and ez(0, z) is the solution to Eq. (6).

In describing the interaction between an electro-
magnetic wave and a group of plasmoids in equations
for the longitudinal profile of the field ezm(Xm, Ym, z)
within the mth plasma channel with the center at point
(Xm, Ym , 0), one must take into account the electric field
contribution from all of the remaining channels,

ez 0 z,( ) 1
ε
--- 1

iσ∗ L
2

------------ ξ ηξ 2 -----dd∫∫+
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×
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3

---------------------------------------------------------------------------------------------------
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where

ρ∗ mn = ρmn/lρn, z∗  = z/lzn, m = 1, ... , N, and N is the num-
ber of plasmoids. We assume in Eq. (8) that εm = 1 to
immediately derive expressions for the external field

(r) produced by a system of dipoles at point
(Xm, Ym, z).

We will dwell on a number of corollaries to the fore-
going equations and compare them with the previously
obtained results.

2.1. Relations (5) give the radial distribution of the
amplitude of electromagnetic field components. In the
case of Λ = σ∗ α2/4 @ 1 (for air and nitrogen, Λ ≈

ne 106/N0λ, where λ and lρ are in cm), the channel
radius significantly exceeds the skin depth and the field
in the internal region exponentially decreases toward
the center,

At Λ < 1 (this condition is realized in the majority of
experiments), the electric field amplitude varies weakly
over distances less than the channel radius.

2.2. At the potential stage in the β, Λ ! 1 limit, the
result of integration of Eq. (6) is the following expres-
sion for the complex amplitude:

(9)

Because ez(0, z) = const, we use Eqs. (5) to derive the
well-known result of [12],

2.3. In the lz  ∞ limit, the distribution of the
amplitude of a longitudinal electric field along the
plasmoid axis is uniform. Therefore, assuming that

+
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ez(0, η) = ecw = const in the integrands of formulas (6)
and (7), we find

(10)

(11)

where (x) is the Hankel function of the mth kind
corresponding to a diverging wave,

Expressions (10) and (11) were derived in [13] as a par-
ticular case of solving the problem on the scattering of
a plane linearly polarized electromagnetic wave from a
plasma filament of infinite length with a nonuniform
(over the radius and azimuth) distribution of the plasma
concentration.

2.4. The calculated dependence of the normalized
field amplitude |ec | at the center of a plasma channel on
the channel length is given in Fig. 3 for different values
of the parameters α and Λ. One can see that the reso-
nance pattern of these curves is the more pronounced,
the thinner the plasma channel is. As the parameter Λ
increases, the channel length, at which the first main
resonance of the amplitude of longitudinal electric field
and, accordingly, of the current density is attained,
increases to approach the value of 2lz = λ/2. The reso-
nance of the current density at 2lz = λ/2 for a thin
(|1/lnα| ! 1) metal dipole vibrator was obtained by
Leontovich and Levin [14]. This result may now be gen-
eralized to fit a plasma channel of finite conductivity.

ecw
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Fig. 3. The amplitude of electric field |Ec|/E0 at the channel
center as a function of the channel half-length lz/λ for dif-
ferent values of the parameters α and Λ: (1) α = 0.4, Λ = 0.4;
(2) α = 0.1, Λ = 0.4; (1') α = 0.4, Λ = 1.4; (2') α = 0.1,
Λ = 1.4.
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2.5. We will treat the reflecting properties of a plas-
moid and, first of all, identify the regions of spatial
localization of the maximal field amplitude. In these
regions (all other conditions being favorable), new chan-
nels may then arise to form the discharge structures
described in the Introduction. Consider formula (7).
When the distance from the plasmoid center to the

observation point (r = ) exceeds the maximal
characteristic size of the plasmoid (lz), the expression
for the field amplitude may be rewritten in the form

(12)

Here,

if Λ < 1.5, and 

where ψ(x, y, z) is the phase dependent both on the
plasma channel parameters and on the distance from
the observation point (0 < ψ < π).

The surfaces with (x, y, z) = 0, on which the

condition cosΨ = 1(| (x, y, z)| ≈ 1 + | (x, y, z)|) is
realized, are described by the following equation:

(13)

where

If 2n @ ψ/π, the surfaces with (x, y, z) = 0 are close
to the surfaces of paraboloids of revolution with the x
axis of symmetry and with vertexes at points Xn ≈
−nλ/2. In the case of n = 1, the (x, y, z) = 0 surface
may also be approximated by the respective paraboloid
of revolution; however, this may only be done in the kr @
1 region in which the ψ phase is already weakly depen-
dent on the coordinates of the observation point. In the
neighborhood of point (X1, 0, 0) (at which the absolute
maximum of the electric field amplitude |Ez|max ≡ E0Kref
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is realized and Kref is reflection coefficient of the chan-
nel) determined from the equation

the shape of the (x, y, z) = 0 surface is determined
by the coordinate dependence of the phase. It is obvious

that, in the region defined by (x, y, z) = 0, ampli-

tude | | exhibits no extrema (in particular, on the
x > 0 semiaxis).

Analysis of expression (13) reveals that the curve

(x, y) = 0 in the xy plane is markedly convex

toward the radiation source (y ≈ 2 ), while

in the xz plane, the curve (x, z) = 0 is almost paral-
lel to the z axis (x(z) ≈ x(0)) as long as |z | < λ/2. The
foregoing illustrates the experimentally observed ten-
dency of plasma channels to somewhat curve toward
the radiation source in the kB0 plane (xy plane) while
remaining parallel to the electric field.

2.6. Figure 4 gives graphs of the function Kref (Λ) for
α = 0.4 and different values of the half-length β of a
plasma channel. Similar dependences were obtained
for other values of dimensionless radius α in the range
from 0.2 to 0.4. An important result of these calcula-
tions is weak dependence of the reflection coefficient
Kref on α and β at α = 0.2–0.4 and β = 1.6–2.2, which
enables one to significantly simplify the model by
regarding the channel radius and length as the parame-
ters of the problem.1 Note further the rapid decrease in
the derivative dKref (Λ)/dΛ at Λ > 1. This indicates that,
by just increasing parameter Λ in the region of Λ > 1,
one cannot appreciably increase the reflection coeffi-
cient of the structure being treated (see below for more
detail).

Based on the foregoing and on Fig. 4, we will esti-
mate the lower limit of the range of values of parameter
(E/N)0, in which a discharge may propagate in the form
of a chain of dipoles,

(14)

Note that the estimate given by Eq. (14) agrees quite
well with the experimentally obtained relation (see the
Introduction).

2.7. Given in Fig. 5 for a chain structure is the

dependence of the distance  between plasmoids on

1 In application to the parameter β, this result may be illustrated by

Eq. (12) and Fig. 3: because Kref ≈ 1 + | (X1, 0, 0)| and | | ∝
|ec(β)|β, the product |ec(β)|β remains virtually unchanged in the
most steeply sloping region of β ≈ 1.6–2.2 of the function |ec(β)|.
As was revealed by analysis of Eq. (6) in the Λ ! 1, L @ 1 limit,
the field amplitude at the plasmoid center depends logarithmi-

cally weakly on the plasmoid radius; therefore, | | ∝  |ec(ln2/α)|.
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their length 2lz for different values of the dimensionless

radius α. One can see that the value of  appreciably
exceeds the dimension λ/4 at 0.3λ ≤ 2lz ≤ 0.4λ. If 2lz >
0.7λ, the curves group together in the vicinity of the

value of  ≈ λ/4. As the parameter α increases, the

distance  in the range of plasmoid length 2lz > λ/2
of interest to us increases. Comparison of these results

with the experimentally obtained values of 
enables one to restrict the treatment to the following
values of the effective radius and length of plasmoids:

(15)

These estimates agree with the respective data obtained
from photographs of microwave discharges. In what
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Fig. 4. The reflection coefficient of electromagnetic wave as
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follows, we will give the results of numerical calcula-
tions for the evolution of the main characteristics of
chain and snake structures at β = 2 and α = 0.25.

3. DESCRIPTION OF THE MODEL

The formation of a system of plasma channels was
investigated in a quasi-optical wave beam (∂(…)/∂x ! k),

(16)

the radius af of whose focus was a parameter of the
problem. The plasmoids were simulated by identical
ellipsoids of revolution extended along the electric field
and uniformly filled with plasma, with centers in the xy
plane (kB0 plane). The plasmoid length was taken to be
constant; i.e., it was assumed that the extension of the
arising plasma channel occurs during periods of time
much shorter than τe in Eq. (1). Channels with a fixed
number density of electrons were used as initiators.

Judging by the available photographs of discharges
(see Figs. 11 and 12 below), the formed plasmoids
markedly differ from ellipsoids of revolution and more
closely resemble ellipsoids with semiaxes lx < ly ! lz. In
view of this, the question arises of the possibility of
replacing such a plasmoid by an “effective” ellipsoid of
revolution. It has been demonstrated in [13] that, in
determining the field amplitude at the center of an infi-
nitely long plasma channel with a nonuniform profile of
electron number density,
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Fig. 6. The dynamics of the reduced field |E|/N in the fourth
(curve 1) and fifth (curve 2) plasmoids. (E/N)0 = 115 Td,
P = 100 Torr.
JOURNAL OF EXPERIMENTAL A
this channel can be replaced by a plasmoid with a uni-
form distribution of 

and an effective radius of 

The possibility of such a replacement is attributed to the
fact that the field amplitude both at the channel center
and outside the channel depends on the radius only in
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Fig. 7. The dynamics of the electron number density in the
fourth (curve 1) and fifth (curve 2) plasmoids. (E/N)0 =
115 Td, P = 100 Torr.
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terms of parameter Λ; it is this latter parameter that
must be replaced by

All of the foregoing holds also for a plasma dipole for
which

(17)

where the integration is performed over the entire area
taken up by the plasma. In the case of a homogeneous
plasma ellipsoid, we have

An analytical investigation of expressions (6) and (7) in
the limits of Λ ! 1 and lz @ lx, ly brought about a similar
result.

The following computational algorithm was
employed. Because of the electromagnetic wave scat-
tering by a system of plasmoids, local maxima of the
electric field amplitude were observed. At these max-
ima were placed the centers of new plasmoids which
were included in the scattering group. Then, the above-
described process was repeated. The number density of
charged particles within the next plasmoid was calcu-
lated at its center in conformity with the field; i.e., any
variation of the electron number density resulted in the
redistribution of the field amplitude in the entire space
and, consequently, affected the rate of ionization and
excitation of gas in all channels.

It was assumed that, under the conditions being
treated, the excitation and ionization of molecules in a
discharge are accomplished for the most part by elec-
tron impact from the ground electron state. The depen-
dences of the rates of respective processes on the value
of E/N and on the degree of vibrational excitation of
molecules were borrowed from [15, 16]. Note that the
data of [15] were obtained for discharges in a constant
electric field. However, a number of researchers (see
the review [16]) have demonstrated that the use of these
data at ν @ ω in application to microwave discharges is
justified given the proper choice of the effective rate of
electron–molecule collisions.

In the case of high energy contributions to gas, which
are realized under the conditions being treated, one must
expect a significant vibrational excitation of nitrogen
molecules. The presence of vibrationally excited mole-
cules brings about an increase in the number of high-
energy electrons and appreciable rise of the rates of pro-
cesses with thresholds exceeding the mean energy of
electrons. Dyatko et al. [17, 18] suggested the formula

(18)

Λeff Necπρeff
2∝ 2π Ne ρ( )ρ ρ.d

0

∞

∫=

ρeff lρ≡ 1
π
--- x y f x y 0, ,( )dd∫

S( )
∫ ,=

lρ ρeff≡ lxly, Λeff σ∗ lxly/4.= =

kvib

k0
-------- 

 log C
hω
Tv

-------– 
  /

E
N
---- 

 
2

exp=
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for describing this effect, where kvib is the constant of
the respective process, hω is the energy of vibrational
quantum, and Tv is the vibrational temperature of mol-
ecules. According to [17], C ≈ const for all electron pro-
cesses with high thresholds.

The equation

(19)

was solved for the electron number density. Here, νion
and νatt are the rates of ionization and attachment of
electrons, Qass and Qrec denote the contributions by the
reactions of associative ionization [19] and electron–
ion recombination, Qdet denotes all processes of elec-
tron detachment from negative ions (at O(3P) atoms,

dNe

dt
--------- Ne ν ion νatt–( ) Qass+=

– Qrec Qdet Qphoto+ +
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(E/N)0, Td

T
im

e,
 µ
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1
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Fig. 9. The time τe of formation of plasmoids in air as a
function of the reduced field (E/N)0: P = (n) 50, (d) 70, and
(j) 100 Torr, λ = 4.3 cm, data of [4]; P = 200 Torr (m), λ =
8.5 cm, data of [5]. The curves indicate the calculation
results for P = 100 Torr: (1) snake, (2) chain (λ = 4.3 cm); the
dash-and-dot curve indicates a chain structure (λ = 8.5 cm).
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(E/N)0 = 115 Td (curve 1) and 100 Td (curve 2); P =
100 Torr, λ = 4.3 cm.
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O2(a1∆g) molecules, and others), and Qphoto denotes the
formation of charged particles at the expense of the pho-
toionization processes. Similar balance equations were
written for all charged particles. Nine species of positive

and negative ions were taken into account, namely, ,

, , , NO+, O–, , , . A system of ion–
molecular reactions was used as the base [19].

In describing the ionization of unexcited air by UV
radiation of already formed plasmoids, the model of
Aleksandrov and Kochetov [20] was used. It was
assumed that the ionization occurred during the absorp-
tion by oxygen of the radiation of molecular bands of
N2 in the wavelength range λ = 98.0–102.5 nm. Then,
for the axisymmetric case, at a distance ρ from the plas-
moid being treated, we have

(20)

O2
+

O4
+ N2

+ N4
+ O2

– O3
– O4

–

Qphoto ρ( ) π 2+

8 2 χ1/χ2( )ln
----------------------------------≈

×
NeVdrξθ
1 P/P0+
---------------------

PO2
χ1ρ–( )exp

ρ/lρ( )2
-----------------------------------.

1 cm(a)

(b)

Fig. 11. A chain discharge structure in the kB0 plane. Air,
P = 100 Torr, λ = 4.3 cm; microwave radiation propagates
from left to right: (a) integral photograph of the structure
[4], (b) numerical calculation results.
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Here, Ne and Vdr denote the number density and drift
velocity of electrons in an emitting plasmoid, respec-
tively; θ is the average (in the given wavelength range)
number of ionizing photons produced by an electron per
unit path length; ξ is the mean probability of photoion-
ization; χ1 = 0.035 cm–1 Torr–1 and χ2 = 2.0 cm–1 Torr–1

are the coefficients of absorption by oxygen of radia-
tion with the wavelengths of 102.5 and 98.0 nm, respec-
tively [20]; and P is the gas pressure (the parameter
P0 = 30 Torr allows for the collisional quenching of
emitting states of nitrogen).

The dynamics of the gas temperature was described
by the equation

(21)

where Cv is the specific heat of gas at constant volume,
εv is the average amount of vibrational quanta per N2
molecule, τVT is the characteristic time of VT relaxation
of vibrational excitation of N2(v ), and Wr is the rate of
gas heating in chemical reactions.

Taken into account in describing the source of heat-
ing due to chemical processes were the reactions of pre-
association of highly excited electron states of oxygen
(which are populated either by electron impact or dur-
ing the quenching of excited states of N2), the reactions
of quenching of excited O(1D) atoms by nitrogen mol-
ecules, and others. The employed model of heating the
gas was described in detail in [21], where the results of
respective test calculations are also given.

Under the conditions being treated, the characteris-
tic time of gasdynamic expansion of a plasma channel
is several microseconds. At (E/N)0 = 80–90 Td, this
time may be comparable to the time of formation of the
next plasmoid. As is demonstrated by the results of our
model calculations, the gasdynamic processes have no
appreciable effect on the reflectivity of plasmoids,
though significantly affecting their ultimate parame-
ters. We investigated the possibility of describing the
dynamics of jumplike propagation of a discharge disre-
garding the overheating ionization instability mecha-
nism; therefore, the effect of gasdynamic processes was
ignored.

4. CALCULATION RESULTS

Characteristic curves reflecting the evolution of the
amplitude of reduced electric field E/N and of the elec-
tron number density in the fourth and fifth plasmoids at
(E/N)0 = 115 Td, P = 100 Torr, and λ = 4.3 cm for a
structure of the chain type are given in Figs. 6 and 7.
The spatial distribution of the field amplitude at t = 0,
which is the result of interaction between an electro-
magnetic wave and the plasma channel initiating the
discharge, is described in detail in Section 2.5. The ini-
tial number density of electrons in an arising plasma
channel is 104–106 cm–3 and is defined by the balance

Cv N
dT
dt
------

εv εv T( )–
τVT

------------------------- Wr,+=
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of the processes of photoionization (UV radiation from
the preceding plasmoid) and dissociative attachment to
oxygen molecules. The increase of Ne in prebreakdown
fields is largely associated with the increase in the con-
centration of O(3P) atoms on which the effective
detachment of electrons occurs. At Λ > 0.01 (Ne ≥
(4−6) × 1012), a redistribution of the field amplitude
occurs: the field in a plasmoid decreases because of
self-screening and the reflection coefficient increases.
The final value of the electron number density for the
values of the channel dimensionless radius klρ = 0.25 is
(2−4) × 1014 cm–3. In this way, the reflection coefficient
reaches the value of 1.24 and the field in the plasmoid
decreases to approximately 60 Td. A fairly dense
plasma is maintained under these conditions owing to
the reactions of associative ionization [22],

(22)

The main channel of the loss of charged particles at this
stage becomes the electron–ion recombination, because
the concentration of oxygen atoms already exceeds
1017 cm–3 (see Fig. 8) and the destruction of negative
ions proceeds at a much faster rate than their formation.

For the same conditions, Fig. 8 gives the results of
calculating the dynamics of concentration of O(3P)
atoms and metastable electron-excited molecules of

N2(A3 ) and N2(a'1 ) involved in reactions of asso-
ciative ionization (22). With t ≥ 1.4 µs, the rate of for-
mation of charged particles in reactions (22) exceeds
3 × 1020 cm–3/s.

According to Figs. 6 and 7, the time dependences of
the field amplitude and of the electron number density
in two successive plasmoids (in view of the time shift
by the constant quantity τe) are almost constant. Fig-
ure 9 gives the values of τe obtained by formula (1)
using the experimental data on the rate of propagation of
the discharge front at λ = 4.3 cm [4] and λ = 8.5 cm [5].
Note the very strong dependence of τe on (E/N)0 (for a

chain and a snake at λ = 4.3 cm, we have τe ∝  ), as
well as the fairly weak dependence of τe on the gas
pressure and on the wavelength of microwave radiation.

The same figure gives the results of calculating the
time of plasmoid formation for structures of chain and
snake types in a microwave discharge in air at P =
100 Torr and wavelengths of λ = 4.3 cm (solid curves)
and λ = 8.5 cm (dot-and-dash line). In calculations in
determining τe, the time reading started from the
moment when the field in the channel being treated
exceeded the breakdown value and terminated when the
coefficient of electromagnetic wave reflection from this
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channel turned out to be sufficient for reaching the
breakdown value of the field in the next plasmoid. The
calculation results for P = 100 Torr enable one to ade-
quately describe the respective experimental data.
However, the predicted dependence of τe on the gas
pressure (Pτe ≈ const) is stronger than that observed in
experiment. The reason for this difference is not yet
clear.

We attribute some disagreement between the
numerical simulation results and experimental data at
(E/N)0 = 115 Td (Fig. 9) to the violation of the condition
of “instantaneousness” of the channel extension, which
was mentioned previously in describing the model.
Note further that, in the case of a marked increase in
time τe of plasmoid formation (in the range of values of
(E/N)0 ≈ 90 Td for the chain mode and (E/N)0 ≈ 80 Td
for the snake mode), the approximation of invariability
of the plasma channel radius becomes invalid and the
need arises to take into account the evolution of the
effective channel radius.

In order to determine the degree of effect of the radii
of plasma channels on the time of their formation, cal-
culations were performed for different fixed values of
the parameter α = klρ = 0.2–0.3. The scatter of δτe

turned out to be relatively small,

which is a result of the weak dependence 

 

K

 

ref

 

(

 

α

 

) (Fig. 4).
In addition, the effect of the processes of photoioniza-
tion on 

 

τ

 

e

 

 was investigated. For this purpose, model cal-
culations were performed in which the rate of photoion-
ization given by Eq. (20) increased (or decreased) by a
factor of 5. Even so significant a variation of 

 

Q

 

photo

 

failed to bring about a marked variation of 

 

τ

 

e

 

.
Given in Fig. 9 for a snake structure are the results

of calculation of 

 

τ

 

e

 

 in a discharge with 

 

λ

 

 = 8.5 cm (dot-
and-dash curve). One can see that the time of plasmoid
formation increases with the wavelength of microwave
radiation: the less the value of reduced field (

 

E

 

/

 

N

 

)

 

0

 

, the
greater the increase in this time. The reason for this is
that, in the case of a constant dimensionless channel
radius 

 

α

 

, the reflectivity of the channel depends only on
the value of the parameter 

 

Λ

 

 proportional to the product

 

N

 

e

 

λ

 

. Therefore, for one and the same value of (

 

E

 

/

 

N

 

)

 

0

 

,
the maximal electron number density in plasmoids
proves to be lower in discharges with a longer wave-
length. As a result, both the production of atomic oxy-
gen (ensuring the destruction of negative ions) and the
formation of excited molecules participating in pro-
cesses of associative ionization are delayed.

Figure 10 gives the distribution of the electron num-
ber density in the region between the second and third
plasma channels at the moment of time 

 

t 

 

= 5 

 

µ

 

s for
(

 

E

 

/

 

N

 

)

 

0

 

 = 100 and 115 Td. The extreme points in the fig-
ure indicate the electron number density in the chan-
nels. Such distributions become steady following the

τe α  = 0.3( )
τe α  = 0.2( )
---------------------------- 1.2–1.3,≈
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formation of the next fourth plasmoid and hardly vary
after that. The increase in the gas temperature at so low
a concentration of background plasma in a field with a
decreasing amplitude does not exceed three degrees,
which prevents the overheating ionization instability
from developing in the interplasmoid space. The latter
fact indicates that the mechanism of structure formation
investigated by Vikharev et al. [8] and other researchers
is not realized under the given conditions (for the dipole
mode of microwave discharge).

It follows from Fig. 9 that plasma structures of two
types may exist in the field range of (E/N)0 = 85–115 Td.
The time of plasmoid formation in a chain (curve 2) is
longer than that in a snake (curve 1) because of the
higher reflectivity of the latter. The fact that only a
chain is experimentally observed in the region of their
competition (E/N)0/(E/N)br = 0.75–1 [4] is presumably
associated with the method of initiation of the given
discharge (see below).

We will dwell in more detail on the properties of dis-
charge structures being formed and conditions of their
initiation.

Figure 11a depicts an integral photograph (bor-
rowed from [4]) of a chain discharge structure in the

1 cm(a)

(b)

Fig. 12. A snake discharge structure in the kB0 plane. Air,
P = 100 Torr, λ = 4.3 cm; microwave radiation propagates
from left to right: (a) integral photograph of the structure
[3], (b) numerical calculation results.
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kB

 

0

 

 plane, and Fig. 11b gives the results of numerical
calculation of spatial distribution of relative radiation
intensity of a 2

 

+

 

 nitrogen system (N

 

2

 

(C3Πu) 
N2(B3Πg) + hν transition) [23]. The light-colored regions
lie within the isoline of relative intensity 0.2Imax. One can
see that the plasmoids are markedly curved towards the
source of microwave radiation. The semiaxial ratio in the
photograph approximately corresponds to the predicted
value of ly/lx ≈ 3–3.5(lρ ≡ ρeff ≈ 2lx). Note further that,
both in theory and in experiment, the line connecting
the channel centers is arranged at an angle to the wave
beam axis. The latter fact is associated with the trans-
verse shift of the initiating system from the axis of a
highly focused wave beam. At af > 3λ, this effect almost
fully disappears.

A chain structure exhibits approximately the same
reflectivity as a solitary plasmoid (the difference
between the values of the absolute maximum of the
amplitude Kref(Λ) is several percent (Fig. 4)). So insig-
nificant a difference is attributed to the rapid decrease
in the scattered wave amplitude (∝ 1/r) with increasing
distance from the axis of the reflecting channel. There-
fore, a solitary plasmoid may be regarded as the base
element of a chain structure.

The shift of initiating dipoles in the transverse (rel-
ative to vector k) direction brings about a significant
improvement in the reflectivity of a plasma system. We
performed calculations of the formation of plasma
structures in a wide wave beam (af  ∞) with two
identical initiators located on the y axis at a distance of
|∆Y | from each other. In this case, the location of the
region of maximum amplitude is, naturally, equidistant
from both reflecting objects. An increase in |∆Y | was
accompanied by an increase in the amplitude Emax to
the maximal value (reached at |∆Ymax | ≈ λ/2) followed
by a decrease in this amplitude. The plasmoids spaced
at a distance |∆Y | > λ from one another had almost no
effect on one another and reflected as solitary indepen-
dent objects. At |∆Y | = |∆Ymax|, the value of Kref(Λ) (Λ =
Λ1 = Λ2) was appreciably higher than the respective
value for a solitary channel. For example, given Λ = 1,
Kref ≈ 1.35 for a solitary channel and Kref ≈ 1.7 for two
spaced plasmoids.

Therefore, the reflectivities of a system of plasmoids
are appreciably improved if these plasmoids can be
spaced from one another in the transverse (relative to
vector k) direction. Time τe of formation of plasma
channels decreases accordingly, and the velocity of dis-
charge propagation increases.

Figure 12a depicts an integral photograph of a snake
structure in the kB0 plane, and Fig. 12b gives the results
of respective numerical calculation. Note approximate
agreement of the predicted orientation of channel cross
sections with their photographic image. When this

structure is realized, the (Λ) curve lies higher than
the respective curves for a solitary plasmoid and for a

K ref
sn( )
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chain structure. Therefore, the threshold of the dipole
mode of propagation of a microwave discharge is lower
in the case of a snake structure. Calculations revealed
that

.

The formation of a plasma structure of a certain type
depends primarily on the method of discharge initia-
tion. Indeed, by arranging the initiators in one or
another manner, we “impose” on the discharge, from
the very outset, the algorithm of its structure formation.
For example, if we use base elements of the chain or
snake type as the initiating group, we can only repro-
duce these plasma structures. If base elements of differ-
ent types are contained in the initiation region, the pat-
tern of the spatial structure realized in the discharge
will be defined by other factors (for example, by (E/N)0,
the parameter af, and others).

Note that these results do not contradict the experi-
mental data (referred to in the Introduction) that indi-
cate that the discharge structure is independent of the
type of initiator, because the majority of these data were
obtained for (E/N)0 ≤ 0.6(E/N)br and do not pertain to
the dipole structure zone. But most important is the fact
that the initiators employed in experiments contain no
“asymmetric” elements that must form the basic set for
structures of the snake type. Therefore, all of the initia-
tors used in [1–4] may be regarded to be of the same
type from the standpoint of structure formation.

Within their initiation regions, discharge structures
are fairly stable and regularly reproducible in calcula-
tions. For a discharge structure of the snake type, the
mean distance between plasmoids is

in the direction of discharge propagation,

in the transverse direction, and

for a chain (see Fig. 4). These values depend little on
the discharge parameters and agree with the experimen-
tal data of [3, 4]. If the initiator coordinates are other
than dx and dy, then, starting with some plasmoid
(whose number depends on the degree of initial mis-
alignment), the structure “arrives” at its characteristic
scales all the same. This inference also agrees with the
observation results of [1–4], which indicate that the
discharge characteristics depend little on the type of
initiator.

E/N( )0 min
sn( )

E/N( )br
------------------------ 0.6≈

dx
sn( )/λ 0.17≈

dy
sn( )/λ 0.4≈

dx
ch( )/λ 0.25–0.3≈
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So, in the range of

(E/N)0/(E/N)br = 0.6–0.7,

a discharge is capable of moving toward the radiation
source only in the form of a snake, and, in the range of

(E/N)0/(E/N)br = 0.7–1,

either one of the plasma structures may be realized. It
follows from Fig. 9 that the velocity of discharge prop-
agation must be determined by the discharge structure.
That is, as a result of using two different initiating ele-
ments, one can (all other things being equal) attain dif-
ferent rates of discharge propagation.

By varying the relative positions of two identical
initiators, we managed to identify three initiation
regions in the xy plane, which started a chain, a snake,
and a new structure consisting of three parallel chains.
We will omit the details and note only that, for the latter
structure to form, the initiating plasmoids must be
spaced in the transverse direction at a distance exceed-
ing λ. An initiating system with a small transverse
dimension (< 0.4λ/π) is capable of forming only a
chain structure.

5. CONCLUSION

We have developed a 3D model for describing the
propagation of an initiated high-pressure microwave
discharge in a linearly polarized wave beam. The sug-
gested model is used to self-consistently solve equa-
tions for the electric field amplitude and plasmochemi-
cal kinetics, as well as equations for the gas tempera-
ture and for the mean number of stored vibrational
quanta of nitrogen molecules.

The results of calculating the characteristic time τe

of formation of plasma channels agree with the avail-
able experimental data. The value of τe with a fixed
value of reduced field (E/N)0 depends little on the wave-
length of microwave radiation, which is also confirmed
by experimental data. However, the predicted pressure
dependence of the time of plasmoid formation is stron-
ger than the experimentally obtained dependence.

The developed model was used to obtain the exper-
imentally observed types of plasma structures formed,
namely, the snake and chain types. These discharge
structures are fairly stable and regularly reproducible in
calculations. The mean distances between plasmoids
both in a snake and in a chain depend little on the dis-
charge parameters and agree with the experimentally
measured values.

The reflectivity of a system of plasma channels
improves considerably if the plasmoids are spaced from
one another in the transverse (relative to the vector k)
direction. This is accompanied by an increase in the
rate of discharge propagation and by the extension of
the range of reduced electric fields (E/N)0 in which the
given discharge structure may exist.
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The investigation results enable one to determine
the conditions of formation of one or another spatial
structure, as well as the parameters of plasmoids being
formed. By varying the positions of initiators, the focal
distance af, and other characteristics of the discharge,
one can purposefully control the parameters of the dis-
charge structure and individual plasmoids in order to
attain the desired result.

Interest has recently increased in investigations of the
effect of gas discharges on shock-wave processes [24–26]
with a view to reducing the intensity (Mach number) of
the latter processes. The use, for this purpose, of micro-
wave discharges of the type described herein appears to
be very promising, because, in the case of this highly
inhomogeneous discharge, the energy is absorbed only
in plasma channels that are highly heated as a result.
According to Artem’ev et al. [26], the presence of a sys-
tem of hot channels must contribute to effective
destruction of shock waves in the zone of discharge
action, as was observed by Grachev et al. [27].
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Abstract—Polarized Raman spectra of a γ-Li3PO4 single crystal are investigated at temperatures approxi-
mately up to 700 K. It is shown that vibrations of PO4 tetrahedrons and cations of the lithium sublattice can be
separated in the spectra. It is found that an increase in temperature leads to interference of one-phonon optical
modes of symmetry B2g and Ag, which is accompanied by antiresonance in a frequency range near 190 cm–1.
Numerical analysis of the spectrum in the region of interaction of optical modes reveals a strong temperature
dependence of the interaction constant, which is determined by anharmonic coupling of optical and acoustic
modes. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The high-temperature lithium phosphate γ-Li3PO4 is
a promising solid electrolyte with a high ionic conduc-
tivity [1]. Its vibrational spectra have been studied
insufficiently and only for multiphase ceramic [2] and
polycrystalline [3] samples in a limited frequency
region. It would also be interesting to study the effect of
anharmonic motion of (Li+) conduction ions, which is
intensified upon heating, on the vibrational spectra.

In this work, we analyze the Raman spectra of an
oriented γ-Li3PO4 single crystal, which is metastable at
room temperature [4], in various scattering geometries.
The observed spectral lines are assigned, in accordance
with the vibration symmetry types and with group-the-
oretical analysis, to (external and internal) vibrations of
isolated PO4 tetrahedrons, which are structural ele-
ments of the crystals, and cations of the lithium sublat-
tice. Temperature variations of the spectra enabled us to
detect the interference of one-phonon states, which is
manifested in the emergence of antiresonance and in
deformation of profiles of interacting lines, which is
typical of the resonance of a discrete level with a con-
tinuous spectrum. Numerical analysis of the spectra
reveals a strong temperature dependence of the con-
stant of interaction between one-phonon states.

2. GROUP-THEORETICAL ANALYSIS 
OF VIBRATIONS

The structure of γ-Li3PO4 is formed by isolated PO4
tetrahedrons linked via lithium tetrahedrons [4]. The
measurements of electron density distribution revealed
the covalent type of the P–O bonds in a PO4 tetrahedron
1063-7761/03/9601- $24.00 © 20053
and only a certain covalent component of the Li–O
bonds [5]. The space group of the crystal belongs to the

centrosymmetric rhombic group  (four structural
units in a primitive cell) [4]. Considering that eight Li
atoms occupy position C1; 4 Li, 4 P, and 8 O atoms
occupy position Cs(xz), and 8 O atoms are in position C1,
we can find the total vibrational representation [6]:

(1)

All the g modes are Raman active, while vibrations of
the classes B1u, B2u, and B3u are active in the IR absorp-
tion, except three acoustic modes (1B1u + 1B2u + 1B3u).

In view of the fact that PO4 tetrahedrons are isolated
and the P–O bonds are of the covalent type, it is expe-
dient in the complete representation (1) to single out the
vibrations of PO4 tetrahedrons and the vibrations of cat-
ions of the lithium sublattice. The vibrations of PO4 tet-
rahedrons can be divided into internal and external. Inter-
nal vibrations of the [PO4]3– ion (symmetry Td) include
the following four modes [7]: ν1(A1) at 970 cm–1, ν2(E) at
358 cm–1, ν3(F2) at 1080 cm–1, and ν4(F2) at 500 cm–1.
In view of dynamic interaction of the four PO4 tetrahe-
drons in the unit cell and due to the removal of degen-
eracy under the action of the static crystal field, these
modes in the γ-Li3PO4 crystal must split into the follow-
ing Raman active components [6]: ν1  Ag + B2g,
ν2  Ag + B1g + B2g + B3g, ν3, ν4  2Ag + B1g +
2B2g + B3g. External vibrations (translations and libra-

D2h
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Γ 14Ag 10B1g 14B2g 10B3g+ + +=

+ 10Au 14B1u 10B2u 14B3u.+ + +
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Fig. 1. Raman spectra of a γ-Li3PO4 crystal in a frequency range above 600 cm–1: (a) vibrations of symmetry Ag; (b) vibrations of
symmetries B1g, B2g, and B3g.
tions of a PO4 tetrahedron), which are Raman active,
can be classified as follows [6]:

(2)

Subtracting the vibrations of the PO4 tetrahedron from
complete representation (1), we obtain Raman active
types of vibrations, which must involve lithium atoms:

3. EXPERIMENTAL TECHNIQUE

The crystals of γ-Li3PO4 were grown by crystalliza-
tion from polycrystalline lithium orthophosphate from
solution in melt Li3PO4 : Li2MoO4 : LiF (mass ratio
50 : 34 : 16). A platinum rod was used as a crystalliza-
tion seed. After complete dissolution of lithium ortho-
phosphate in the melt (at 1030°C), the solution was
cooled to 990°C, after which crystallization was carried
out by cooling slowly (0.15 deg/h) to 950°C. Crystals
grown to a size of 2 × 5 × 7 mm were extracted from the
melt and cooled to room temperature.

Raman spectra of the crystal were obtained in the
standard 90° geometry with excitation by a line of
514.5 nm wavelength emitted by an argon laser and
with detection using a multichannel spectrometer oper-
ating in the range 50–1050 cm–1 and having a resolution
of 3.5 cm–1. Exciting and scattered radiation propagated
in our experiments along the crystallographic axes. For

Γ transl 2Ag B1g B2g B3g,+ + +=

     Γ 
libr

 A g 2 B 1 g B 2 g 2 B 3 g .+ + +=

ΓLi 5Ag 4B1g 5B2g 4B3g.+ + +=
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temperature measurements, a crystal was placed in an
oven whose temperature was maintained to within ±2 K
in a temperature range up to 700 K.

4. DISCUSSION OF RAMAN SPECTRA

Force constants of the Li–O bond correlate with its
length [8]. Considering that the average length of the
Li–O bond in a γ-Li3PO4 crystal is approximately equal
to 2 Å [4], we can expect that vibrations of lithium cat-
ions in the tetrahedral surrounding correspond to fre-
quencies from the range below 500 cm–1 [8]. Conse-
quently, in the frequency range above 500 cm–1, Raman
spectra can display only vibrations of the PO4 tetrahe-
dron. Moreover, taking into account the covalent nature
of the P–O bond, we can expect that the Raman lines
corresponding to vibrations of a PO4 tetrahedron are
more intense than the vibrations of Li–O. We used these
assumptions in interpreting the Raman spectrum of the
γ-Li3PO4 crystal.

Let us first consider the spectra in the frequency
range above 500 cm–1 (Fig. 1). Figure 1a shows the Ag

vibrational spectra for three tensor components αxx, αyy,
and αzz, which turned out to be different due to the
anisotropy of the crystal. The most intense line of fre-
quency 950 cm–1 must be assigned to vibration ν1
(according to both its intensity and the closeness to the
position of the line in the spectrum of a free [PO4]3–

ion). The pair of lines above 950 cm–1 (1022 and
1032 cm–1) can be assigned to the two expected vibra-
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Fig. 2. Raman spectra of a γ-Li3PO4 crystal in a frequency range below 600 cm–1: (a) vibrations of symmetry Ag; (b) vibrations of
symmetries B1g, B2g, and B3g.
                   
tions: ν3 (2Ag), while the pair of lines below 950 cm–1

(602 and 622 cm–1) can be assigned to ν4. The doublet
602–622 cm–1 cannot be assigned so unambiguously to
ν4 since frequency ν4 for a free ion is close to 500 cm–1.
When doing so, we proceeded from the relative intensi-
ties of the lines (the lines lying below 600 cm–1 are
weaker than the doublet) and the low probability of the
emergence of other lines in this spectral region. While
interpreting the spectra of vibrations B1g, B2g, and B3g

(Fig. 1b), we took into account the fact that these vibra-
tions must be close in frequency to the corresponding
Ag vibrations in ν1, ν3, and ν4. The results are compiled
in the table.

The identification of spectral lines below 600 cm–1

(Fig. 2) was complicated due to overlapping of lines
(and, accordingly, mixing of the forms of vibrations)
corresponding to internal vibration ν2 of a PO4 tetrahe-
dron with external vibrations of the PO4 tetrahedron
and vibrations of lithium cations.

While assigning lines to the ν2 vibration, we took
into account the fact that the intensities of these lines
must be higher as compared to other lines in the spec-
trum below 500 cm–1, and the lines must be close to
400 cm–1, i.e., the position of ν2 in the spectrum of a
free [PO4]3– ion. In addition, we can expect that the
widths of the ν2 lines are smaller than the widths of the
lines corresponding to vibrations of Li (in view of supe-
rionic motion of Li ions even at room temperature). In
the spectrum of Ag vibrations (Fig. 2a), we assigned the
intense line at frequency 388 cm–1 to the ν2 vibration. It
remains unclear, however, why this line predominates
in the spectrum of tensor components αxx and αyy, but is
practically absent in the spectrum of the αzz component.
We can assume that this is due to the structure of the
crystal in which PO4 tetrahedrons form chains along the
z axis, and neighboring chains are formed by tetrahe-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
                                              

drons oriented in opposite directions [4]. The most
intense lines at frequencies 381, 424, and 363 cm–1 corre-
sponding to symmetries B1g, B2g, and B3g (Fig. 2b) are
assigned to the ν2 vibration from the same consider-
ations as for symmetry Ag (see table).

The frequencies of the external vibrations of a PO4
tetrahedron are usually observed in the range below
250 cm–1 (e.g., in KH2PO4 [9]). According to group-
theoretical analysis (2), three modes of each type are
expected in the Raman spectra of external vibrations in
γ-Li3PO4. External vibrations are manifested most

Frequencies of spectral lines (in cm–1) of a γ-Li3PO4 crystal
and their classification

Frequency Classification Frequency Classification

Internal vibrations of PO4 tetrahedron

363 B3g

ν2

948 B2g ν1381 B1g 950 Ag

388 Ag 1022, 1032 Ag

ν3
424 B2g 1045 B1g

602, 622 Ag

ν4

1021, 1060 B2g

602 B1g 1031 B3g

602, 626 B2g

602 B3g

External vibrations of PO4 tetrahedron

140, 157, 219 Ag 136, 160, 217 B2g

138, 169, 218 B1g B3g

Vibrations of lithium ions

284, 327, 
360, 474, 489

Ag 336, 360, 
459, 485, 517

B2g

325, 358, 
399, 488

B1g 322, 455, 
487, 562

B3g
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clearly in the spectrum of Ag vibrations (z(xx)y geome-
try, Fig. 2a). This spectrum contains three low-fre-
quency lines at frequencies 140, 157, and 219 cm–1

(a weak line at a frequency of 169 cm–1 can be seen due
to the penetration of an intense line from the y(xy)z
geometry). A distinguishing feature of these lines is
that their width is small as compared to the lines with
higher frequencies and can be assigned, in all probabil-
ity, to external vibrations of the PO4 tetrahedron. Exter-
nal vibrations of other symmetry types (B1g, B2g, and
B3g) of the PO4 tetrahedron must lie in the same fre-
quency range (see Fig. 2b and table).

The remaining lines in the frequency range below
600 cm–1 (Fig. 2), except those assigned to vibrations of
the PO4 tetrahedron, must be associated with vibrations
involving Li atoms (see table).

5. TEMPERATURE MEASUREMENTS
AND INTERFERENCE 

OF ONE-PHONON STATES

The ionic conductivity in γ-Li3PO4 increases expo-
nentially with temperature and obeys the Arrhenius
law [1]. While heating the γ-Li3PO4 crystal approxi-
mately to 700 K, we did not observe any changes in the
spectra that could indicate a phase transition in this
temperature range; at the same time, all Raman lines
were broadened significantly (especially the lines cor-
responding to vibrations of lithium atoms) due to

680 K
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295
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50

25

0
100 200 300 400 500 600

Frequency, cm–1

Intensity, rel. units

Fig. 3. Raman spectra of a γ-Li3PO4 crystal in the scattering
geometry x(zx)y (vibrations of symmetry B2g) at different
temperatures.
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anharmonicity and experienced a low-frequency shift
upon an increase in temperature.

Here, we pay attention to the interaction of optical
phonons upon heating, which is manifested most
strongly in the x(zx)y geometry, in which the B2g vibra-
tions are active (Fig. 3). At room temperature, two
intense lines of symmetry B2g are observed in the fre-
quency range 170–380 cm–1 at frequencies 217 and
337 cm–1. As the temperature increases, line 337 cm–1

experiences a considerable temperature shift of fre-
quency (~0.09 cm–1/K), while the temperature shift of
line 217 cm–1 is much smaller (Figs. 3 and 4). The
width of the 337 cm–1 line increases from 17 cm–1 at
room temperature to 75 cm–1 at 680 K, the wings of the
line 337 cm–1 overlapping with the 217 cm–1 line, and
these lines experience interference at 570 and 680 K
(see Fig. 3). Interference is manifested in a change in
the shape of the 217 cm–1 line, which becomes asymmet-
ric and acquires a deep minimum (antiresonance) near
190 cm–1.

Such a shape of the band appears, for example, in
the case of a Fermi resonance of a discrete level with a
continuous spectrum [10] and indicates unambiguously
that the Raman tensor components of the discrete level
and continuous spectrum have opposite signs. However,
the interference in our case cannot be regarded as a Fermi
resonance since it occurs between one-phonon states.
Mixing of one-phonon states becomes possible [11] if
we take into account indirect coupling between optical

Frequency, cm–1

340

320

300

220

200
300 400 500 600 700

T, K

Fig. 4. Temperature dependence of the frequencies of inter-
acting modes: solid lines correspond to measured positions
of frequency and dashed lines correspond to the positions of
frequencies calculated disregarding the interaction.
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phonons via an anharmonic interaction of each optical
phonon with two acoustic phonons into which the opti-
cal phonons can decay. The interference of one-phonon
states was observed earlier during the interaction
between soft and hard modes in the Raman spectra of
AlPO4 [12] as well as in the hyper-Raman spectra [13]
and IR absorption spectra [14] of SrTiO3. If the positions
of interacting optical phonons νs and νh are not yet close,
as in our case (Fig. 4), the intensity of the Raman spec-
trum in the region of interaction of the phonons can be
described by the imaginary part of susceptibility [10, 13]:

(3)

where the subscripts s and h correspond to the “soft”
mode at 337 cm–1 and the “hard” mode at 217 cm–1,
Mi are the Raman tensor components (i = s or h), Gi =
(ν – νi – idi)–1 are Green’s functions of modes νs and νh

with a damping factor of 2di, γ is the interaction con-
stant for the modes, χi(ν) are the spectral distribution
functions for each mode disregarding the interaction,
and χsh(ν) is the interference term. The functions
Imχi(ν) are positive at all frequencies, while the sign of
Imχsh(ν) depends on the signs of Mi and, in addition, is
reversed between the frequencies νs and νh.

It was noted above that the shape of the spectra in
Fig. 3 indicates that the tensor components Ms and Mh

have opposite signs. The experimental spectra can also
be used for determining the damping factors for each
mode at any temperature. In order to fit the spectra cal-
culated by formula (3) to the experimental spectra, we
must determine interaction constant γ and the tempera-
ture dependence of Mi. Disregarding the interaction, we
could unambiguously determine the frequencies of
both modes νs and νh for given values of γ and Mi from
the coincidence of the peaks for the relative lines in the
calculated and experimental spectra. In the course of
fitting, we discovered the following circumstances.

In order to obtain an antiresonance in the spectra
near 190 cm–1 at 570 and 680 K, interaction constant γ
must be large (not smaller than 25 cm–1). If we assume
that γ has a constant value at all temperatures, the value
of Mh must be reduced by a factor of 2.5 (accordingly,
the intensity of the 217 cm–1 band must be reduced by
a factor of (Mh)2) upon heating from room temperature
to 680 K for a satisfactory fitting of the relative intensi-
ties of modes νs and νh. The spectra show that the inte-
grated intensity of the band at frequency 337 cm–1 (and,
hence, component Ms) remains virtually unchanged at
all temperatures after the inclusion of the occupancy
factor. On the other hand, if we assume that Mh is con-
stant at all temperatures, fitting requires a variation of
the interaction constant (its smooth increase with tem-
perature).

χ ν( ) χs ν( ) χh ν( ) χsh ν( )+ +=

=  
Ms

2

Gs
1– γ2Gh–

--------------------------
Mh

2

Gh
1– γ2Gs–

-------------------------
2γMsMhGh

Gs
1– γ2Gh–

----------------------------,+ +
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A γ-Li3PO4 crystal is transparent in the visible
range, and the Raman spectra excited by a line of
514.5 nm were obtained under nonresonant conditions.
For this reason, there are no grounds for such a strong
decrease in the intensity of the 217 cm–1 line upon heat-
ing as compared to other spectral lines. However, the
interaction constant may increase with temperature [11]
since the frequency of the 337 cm–1 mode decreases
significantly upon heating (see Figs. 3 and 4), and the
position of this mode relative to the two-phonon acous-
tic continuum responsible for the interaction between
modes νs and νh may change.

The result of fitting the theoretical spectra to the
experimental spectra for constant values of Ms and Mh

at all temperatures is shown in Fig. 5. In our calcula-
tions, we assumed that lines νs and νh had Lorentz pro-
files in the absence of the interaction. The line widths
were determined from the experimental spectra. The
parameters Ms and Mh were determined by fitting the
calculated spectrum to the experimental spectrum
obtained at room temperature under the assumption
that γ = 0. At other temperatures, parameter γ mainly
determined the relative intensities of the interacting
modes, while the optimal choice of νs and νh ensured
the coincidence of the peaks of the relevant bands in the
calculated and experimental spectra. With increasing
temperature, we had to increase the value of γ for fitting
the relative intensities of spectral bands (7, 13, 21, and
25 cm–1 at 370, 470, 570, and 680 K, respectively). The
choice of the value of γ = 0 at room temperature was
arbitrary. If we assume that γ = γ0 ≠ 0 at room tempera-
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Fig. 5. Comparison of calculated and experimental spectra
in the region of interaction between the modes 217 and
337 cm–1.
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ture, the values of γ at other temperatures must be
increased by γ0.

A satisfactory agreement between the calculated
and experimental spectra can be reached for tempera-
tures 295 and 370 K. At temperatures above 370 K, the
contribution from the intense 424 cm–1 line increases,
and a discrepancy between the calculated and experi-
mental spectra appears in the frequency range 200–
250 cm–1 (shown by the arrow in Fig. 5). We can assume
that, as in the case of Raman spectra for AlPO4 [12], an
additional band emerging in the frequency range
200−250 cm–1 upon an increase in temperature, i.e., for
νs approaching νh, is associated with two-phonon
acoustic states, which have been enhanced as a result of
resonance with the approaching vibration νs. This addi-
tional contribution, which was disregarded in fitting,
could also affect the interference in this frequency
range. It can be seen from Fig. 4 that the inclusion of
the interaction does not significantly change the posi-
tion of modes νs and νh below 500 K, and the difference
in these positions becomes noticeable only above
500 K due to a decrease in the separation between the
modes and an increase in the constant of interaction of
these modes.

We did not observe interference phenomena in the
spectra of vibrations B1g and B3g upon heating approxi-
mately to 700 K. The spectrum of Ag vibrations (in the
y(xx)z geometry) displayed an antiresonance in the
vicinity of 190 cm–1 due to the interference of phonons
with frequencies 219 and 284 cm–1. The 284 cm–1 line
was displaced upon heating towards lower frequencies,
broadened considerably, and overlapped with the
219 cm–1 line. However, the band profiles were less
reliable for numerical analysis in view of low intensi-
ties of the interacting modes.

Thus, we have described for the first time the Raman
spectra of a γ-Li3PO4 crystal in various polarizations,
which enables us to classify the observed spectral lines
according to the types of vibrations and to separate the
vibrations of PO4 tetrahedrons and of the lithium sub-
lattice. Temperature analysis of the spectra revealed the
interference of one-phonon states of the lithium sublat-
tice, associated with anharmonic interaction between
optical and acoustic phonons. The exponential increase
in the cation conductivity with temperature [1]
enhances anharmonic movements of lithium ions and,
JOURNAL OF EXPERIMENTAL
hence, the interaction between the optical phonons
associated with vibrations of lithium ions and acoustic
modes. Analysis of the spectra revealed a strong tem-
perature dependence of the constant of optical phonon
interaction, which can be assigned, in all probability, to
an increase in conductivity with temperature as well as
a change in the position of interacting modes relative to
the two-phonon acoustic continuum, which is responsi-
ble for the interaction of optical modes.
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Abstract—Effects of hybridization of 3d bands of iron with 3d bands of scandium and 4d bands of yttrium in
Sc1 – xYxFe2 cubic Laves alloys (0 ≤ x ≤ 1) are studied by the nuclear magnetic resonance method. The concen-
tration dependences of the lattice parameters a, saturation magnetization σ, and hyperfine fields at the 57Fe,
45Sc, and 89Y nuclei—as well as the 27Al impurity nuclei, whose atoms substitute iron atoms in the lattices of
these alloys—are measured. The “local” and “induced” contributions to hyperfine fields at the 57Fe nuclei are
separated and the magnetic moments at iron atoms are estimated. It is found that the hybridization effect
leads to the formation of magnetic moments at Sc and Y atoms (whose direction is opposite to the direction
of the magnetic moment at iron atoms) and is responsible for the ferrimagnetic structure in Sc1 – xYxFe2
alloys. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Alloys of iron with rare earth elements of the RFe2
type, which are know as Laves compounds, have been
objects of investigations for many years since these
alloys form the basis of many widely used magnetic
materials and are of interest for researchers engaged in
the study of interactions between atoms of iron and rare
earth elements. One of such interactions is the hybrid-
ization of 3d bands of iron atoms and 3d bands of scan-
dium atoms in these alloys (R = Sc), 3d bands of iron
atoms and 4d bands of atoms R = Y, Zr, Nb, Mo, and 3d
bands of iron atoms and 5d bands of atoms in Laves
alloys RFe2 (R = Ce–Lu) [1–7]. It was shown in [1–7]
that hybridization leads to the formation of magnetic
moments at Sc, Y, Zr, and Nb atoms, which are directed
oppositely to the magnetic moment of iron atoms, and
to the ferrimagnetic structure in such alloys. In the
Laves compound of iron with R atoms (Ce, Gd, Tb, and
Lu) containing 4f 5d electrons, the hybridization of 3d
bands of iron and 5d bands of R atoms leads to the for-
mation of an additional negative magnetic moment at
rare earth atoms (in addition to the magnetic moment
due to 4f  electrons [6, 7]). However, the experimental
facts confirming the emergence of negative magnetic
moments at R atoms are scarce. The magnetic moments
at rare earth atoms in RFe2 compounds (R = Y, Zr, Ce,
Lu) were detected and measured by the method of
polarized neutrons in [8–11], while the NMR method
was used for the same purpose in the case of R = Sc, Y,
Zr, Ce, Lu, Gd [12–15]. It was shown that, in accor-
dance with theoretical calculations, these alloys have a
ferrimagnetic structure, and the magnetic moments
µ(R) at R atoms, which were measured by these two
1063-7761/03/9601- $24.00 © 20059
methods, are in good agreement (if we take into
account the peculiar features of these methods). The
effect of hybridization of 3d bands of iron and d bands
of rare earth atoms in ternary Laves alloys with various
rare earth atoms (R1 – x )Fe2 has not been investigated

comprehensively. Only one publication [15] is devoted
to the study of the hybridization effects in Laves alloys
(Sc,Zr)Fe2 using the NMR method. It was proved that
negative magnetic moments are formed at lattice sites
occupied by scandium and zirconium atoms and their
concentration dependence was measured.

This work aims at an analysis of the hybridization of
3d bands of iron with 3d bands of scandium and 4d bands
of yttrium in Sc1 – xYxFe2 ternary Laves alloys with a
cubic structure in the concentration range 0 ≤ x ≤ 1. The
hybridization effect may lead to a change in the mag-
netic moments at iron atoms the emergence of magnetic
moments at rare earth atoms, and a change in the hyper-
fine fields at the nuclei, which are determined to a con-
siderable extent by the magnetic moments at magnetic
atoms. In order to detect this effect, we measured the
hyperfine fields (by the NMR method) at 57Fe, 45Sc, and
89Y nuclei as well as at 27Al impurity nuclei (with a con-
centration less than 1 at.%), whose atoms substitute
iron atoms in these compounds.

At present, the following information concerning
the (Sc,Y)Fe2 system is known from the literature.
Analysis of the electronic structure has proved that the
hybridization effect leads to the emergence of magnetic
moments at Sc atoms in ScFe2 (with a hexagonal struc-
ture of the MgZn2 type) [1, 4] and at Y atoms in
YFe2 [2−4], whose direction is opposite to the direction

Rx'
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of the magnetic moment µ(Fe) at iron atoms. For
ScFe2, it was found that µ(Fe1) = 1.54µB, µ(Fe2) =
1.60µB (there exist two nonequivalent crystallographic
states of iron in the ScFe2 compound with a hexagonal
structure of the MgZn2 type), and µ(Sc) = –0.52µB,
while for YFe2, µ(Fe) = 1.71µB and µ(Y) = –0.49µB.
The magnetic moments of iron and yttrium were also
measured by the method of polarized neutrons in the
YFe2 alloy: µ(Fe) = (1.77 ± 0.08)µB and µ(Y) =
(−0.67 ± 0.04)µB [8]. The magnetic moments at iron,
scandium, and yttrium atoms in ScFe2 (with a cubic
structure of the MgCu2 type) and YFe2 alloys were esti-
mated in [12–14] using the NMR method. For the
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Fig. 1. Concentration dependences of (a) lattice parameters a
at 293 K, (b) magnetization σ (77 K) (crosses correspond to
Sc1 – xYxFe1.97Al0.03 and circles to (Sc,Y)Fe2), and
(c) magnetic moment µf per structural unit of the com-
pound.
JOURNAL OF EXPERIMENTAL 
ScFe2 compound, it was found that µ(Fe) = 1.56µB and
µ(Sc) = –(0.97 ± 0.05)µB, while for YFe2, µ(Fe) =
1.71µB and µ(Y) = –(0.52 ± 0.05)µB.

2. SAMPLES AND MEASURING TECHNIQUE

Ingots of Sc1 – xYxFe2 and Sc1 − xYxFe1.97Al0.03
alloys weighing 5–7 g were made of high-purity metals
in highly pure argon atmosphere in an argon-arc fur-
nace. The ingots in the argon atmosphere were crushed
and pressed into pellets, after which they were
remelted. This procedure was repeated three times to
obtain homogeneous samples. The samples were not
subjected to thermal treatment to avoid the formation of
second phases in ScFe2 due to polymorphism, typical
of such alloys [16]. Yttrium was added to ScFe2 in
amounts ≥2 at.% to stabilize the cubic structure of
ScFe2 and to prevent polymorphic transformations in
this compound. The cubic structure of ScFe2 alloys was
also ensured by an excess of scandium (3.5 at. %) rela-
tive to the stoichiometric Sc concentration, which was
created during the manufacture of this alloy as
described in [16]. The specimens were in the form of
powders with a particle size less than 70 µm, which
were prepared in an argon atmosphere. The crystal
structure of the alloys and the lattice parameter were
measured using X-ray radiography at room tempera-
ture. The chemical and plasma-spectroscopic analyses
showed that the specimens had preset compositions to
within 0.2 at. %. The saturation magnetization σ was
measured at 77 K in magnetic fields up to 15 kOe on a
vibrating-coil magnetometer with a compensating coil.
The error in the measurements of σ was determined
from the spread in the values of magnetization mea-
sured on four specimens for each composition and was
less than 2%. The NMR spectra were measured at 4.2 K
by the pulsed NMR method from points in the fre-
quency range 10–130 MHz using an amplification
gauge in amplifier blocks and measuring the amplitude
of high-frequency pulses exciting an echo signal at each
point of the NMR spectrum. The experimental condi-
tions of the nuclear spin echo excitation and measure-
ment of the frequency dependence A( f ) of echo ampli-
tudes were such that A ∝  f 2.

3. EXPERIMENTAL RESULTS

Figure 1 shows the concentration dependences of
the lattice parameters a at room temperature, the satu-
ration magnetization σ at 77 K, and the magnetic
moments (per structural unit) µf , calculated from σ, for
(Sc,Y)Fe2 alloys. It can be seen from the figures that the
replacement of a scandium atom (with outer 3d14s2

electrons) by yttrium atoms (with outer 4d15s2 elec-
trons) with the same number of outer d and s electrons
in the system leads to considerable changes in the lat-
tice parameters a and the magnetic moments µf of the
compounds under investigation.
AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003
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Fig. 2. NMR spectra at the 57Fe nuclei (d) in alloys Sc1 – xYxFe2, at the 57Fe + 27Al nuclei (×), and at the 27Al nuclei (s) in
(Sc1 − xYx)Fe1.97Al0.03 alloys at 4.2 K: x = 0 (a), 0.1 (b), 0.3 (c), 0.5 (d), 0.7 (e), and 0.9 (f).
Figure 2 shows the NMR spectra at 57Fe nuclei in
these alloys at 4.2 K. The spectra of ScFe2 and YFe2

alloys are completely identical to analogous spectra
obtained in [17, 18] for the given alloys. The NMR
spectra of 57Fe nuclei in these compounds display two
peaks with an intensity ratio of 1 : 3, which are typical
of Laves iron-based alloys with a cubic structure and
are due to the existence of two magnetically nonequiv-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
alent states of iron atoms in a lattice of the MgCu2 type,
when the easy magnetization axis coincides with the
〈111〉 direction. For a low yttrium concentration in
ScFe2 or, conversely, for a low concentration of scan-
dium in YFe2, the NMR spectra of 57Fe nuclei are nar-
row; however, the spectra are broadened slightly in the
concentration range 0.2 < x < 0.8. It should be noted
that an iron atom in the first coordination sphere is sur-
SICS      Vol. 96      No. 1      2003
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rounded by six iron atoms, 6Fe, while the second coor-
dination sphere has six positions occupied by scandium
and/or yttrium atoms, i.e., 6(Sc,Y). Figure 3a shows
mean hyperfine fields H(Fe) at 57Fe nuclei in the
(Sc,Y)Fe2 system. These fields were determined from
the average resonance frequencies fav , which in turn
were estimated from the center of gravity of the spectra:

where P( f ) is the distribution of resonance frequencies
f  shown in Fig. 2.

Figure 2 also shows the NMR spectra measured in
the frequency range 20–32 MHz for (Sc,Y)Fe1.97Al0.03
alloys. In this frequency range, NMR signals from both
the 57Fe nuclei and the 27Al impurity nuclei are
observed; consequently, these spectra are formed by the
signal from the 57Fe nuclei as well as from the
27Al  nuclei. The NMR spectra in (Sc,Y)Fe2 and
(Sc,Y)Fe1.97Al0.03 alloys were recorded under identical
conditions of echo signal excitation; and echo ampli-
tudes were measured in microvolts with the help of a
calibrated rf pulse at each point of the spectrum. A com-
parison of the NMR spectra of 57Fe and combined spec-

f av f P f( ) f    P f ( ) f , d ∫  d  ∫  =                                     
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Fig. 3. Concentration dependences of (a) hyperfine fields at
57Fe nuclei, (b) at 27Al nuclei, and (c) induced contribution
Htr(Fe) calculated by formula (3) for (Sc1 – xYx)Fe2 alloys.
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tra from the 27Al and 57Fe nuclei shows that the NMR
spectra of the 27Al nuclei are much broader than the
NMR spectra of the 57Fe nuclei. The echo amplitudes
are normalized per gram of substance. Considering that
the echo excitation conditions were the same in the
measurements of the NMR spectra at the 57Fe nuclei in
(Sc, Y)Fe2 alloys and the combined NMR spectra at the
57Fe and 27Al nuclei in (Sc,Y)Fe1.97Al0.03 alloys and
assuming that absolute amplitudes of the echo were
measured in each case, the NMR spectrum of the 57Fe
nuclei in (Sc,Y)Fe2 alloys was subtracted from the
combined NMR spectra at the 57Fe and 27Al nuclei in
(Sc,Y)Fe1.97Al0.03 alloys to obtain the NMR spectra of
the 27Al impurity nuclei in the alloys under investiga-
tion. We assume here that aluminum impurity atoms in
an amount smaller than 1 at.% do not perturb the elec-
tronic and magnetic properties of the alloys as well as
the hyperfine fields at the 57

 

Fe nuclei in (Sc,Y)Fe

 

2

 

. Fig-
ure 2 also shows the NMR spectra of the 

 

27

 

Al impurity
nuclei, while Fig. 3b shows the concentration depen-
dence of the mean hyperfine fields, 

 

H

 

(Al), at the 

 

27

 

Al
nuclei in the Laves compounds investigated here. The

 

H

 

(Al) fields were determined from average resonance
frequencies estimated from the centers of gravity of the
spectra. It can be seen that the values of mean hyperfine
fields at the 

 

27

 

Al impurity nuclei whose atoms substi-
tute iron atoms in the cubic lattice increase with yttrium
concentration in the alloy. Aluminum impurity atoms
substituting iron atoms in a cubic lattice of the MgCu

 

2

 

type have the same surroundings as the iron atoms
themselves, i.e., 6Fe in the first coordination sphere and
6(Sc,Y) in the second sphere. The 

 

H

 

(Al) curve
describes the concentration dependence of hyperfine
fields induced by the magnetic moments of atoms in the
nearest coordination spheres at a site occupied by an
iron or aluminum atom.

Figures 4a and 4b show the NMR spectra of the 

 

89

 

Y
and 

 

45

 

Sc nuclei, respectively, in (Sc,Y)Fe

 

2

 

 compounds
at 4.2 K. It can be seen that the spectra of these nuclei
are narrow for a low yttrium concentration in ScFe

 
2

 
 for

small admixtures of scandium in YFe 2 . The NMR spec-
tra at the 

 

45

 
Sc and 

 

89

 
Y nuclei become broad for compo-

sitions with 0.2 < 

 

x 

 

< 0.8. Figure 5 shows the concen-
tration dependences 

 

H

 

(Sc) and 

 

H

 

(Y) of the mean
hyperfine fields at the 

 

45

 

Sc and 

 

89

 

Y nuclei in the
(Sc

 

1 

 

−

 

 

 

x

 

Y

 

x

 

)Fe

 

2

 

 alloys. These fields were also determined
from the average values of resonance frequencies. We
assume that the hyperfine fields at the given nuclei are
negative in accordance with the sign of the hyperfine
field at the 

 

45

 

Sc nuclei in ScFe

 

2

 

 [17] and at the 

 

89

 

Y
nuclei in YFe

 

2

 

 [18]. Our results show that when yttrium
atoms substitute scandium atoms in (Sc,Y)Fe

 

2

 

 alloys,
the absolute values of the hyperfine fields at the 

 

45

 

Sc
and 

 

89

 

Y nuclei decrease, while the values of these fields
increase at the 

 

57

 

Fe nuclei and at the 

 

27

 

Al impurity
nuclei whose atoms substitute iron atoms. It should be
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noted that scandium or yttrium atoms in the cubic lat-
tice of the RFe2 alloy contain 12Fe in the first coordina-
tion sphere and 4R (R = Sc, Y) in the second sphere.

4. DISCUSSION

Hyperfine fields at the nuclei of magnetic atoms
(e.g., at the 57Fe nuclei of iron atoms) contain three
main contributions (see, for example, [19]),

(1)

where Hcp(Fe) is the contribution to the hyperfine field
from the polarization of s electrons from inner shells of
an iron atom by the magnetic moment µ(Fe) of the iron
atom, Hs(Fe) is the contribution to the hyperfine field
from the polarization of the outer s electrons by the
magnetic moment µ(Fe) of the iron atom, and Htr(Fe) is
the contribution to the hyperfine field from the polariza-
tion of conduction electrons by the magnetic moments
of atoms in the nearest coordination spheres. Here,
Htr(Fe) = , where i is the number of the coor-
dination sphere, µi is the average magnetic moment of
magnetic atoms in the ith sphere, and Ni is the number
of magnetic atoms in the ith sphere (for details see, for
example, [14]). The first and second contributions to
the hyperfine field come from the iron atom at whose
nucleus the NMR is observed and are proportional to
the magnetic moment µ(Fe) of the iron atom itself; i.e.,

The hyperfine field at the nucleus of a magnetic atom is
usually represented as the sum of two contributions:

(2)

where Hloc(Fe) is the so-called local contribution to the
hyperfine field and P(Fe) is the field at the 57Fe nucleus
per Bohr magneton; P(Fe) are constants whose values
for some d elements are estimated in [19]. Formula (1)
usually contains two more small contributions, one of
which (Hdip) is associated with dipole effects and the
other (HLor) is associated with the Lorentz field. The
value of Hdip in cubic alloys is small. In our analysis, we
took into account the contribution from the field HLor.
This field was calculated by using the data on magneti-
zation σ (Fig. 1) and density of the alloys, which were
estimated from the lattice parameter a (see Fig. 1). The
field HLor varies from 2.1 to 2.3 kOe upon an increase
in the yttrium concentration in the alloys from x = 0 to
x = 1. In order to determine the effect of hybridization
of the d bands of iron with d bands of scandium or
yttrium in the Laves alloys under investigation, we
must estimate the magnetic moments µ(Fe), µ(Sc), and
µ(Y) at iron, scandium, and yttrium atoms from the
data on hyperfine fields and compare them with the val-
ues of µ(Fe) which could be observed at iron atoms in

H Fe( ) Hcp Fe( ) Hs Fe( ) H tr Fe( ),+ +=

aiµiNi∑

Hcp Fe( ) P1 Fe( )µ Fe( ), Hs Fe( ) P2 Fe( )µ Fe( ),= =

Hcp Fe( ) Hs Fe( )+ P Fe( )µ Fe( ) H loc Fe( ).= =

H Fe( ) H loc Fe( ) H tr Fe( ),+=
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the absence of hybridization (i.e., when µ(Sc) and µ(Y)
are equal to zero). Formula (2) implies that we would
be able to evaluate the local magnetic moment at iron
atoms from the experimental values of the hyperfine
field at the 57Fe nucleus if we could estimate the local
contribution Hloc(Fe) at the 57Fe nuclei to the experi-
mental hyperfine interaction H(Fe) in formula (2). This
is almost impossible at present, and researchers try to
estimate the second main contribution, Htr(Fe), to the
hyperfine field at the nucleus of a magnetic atom. Two
methods exist for estimating Htr(Fe) [14, 20]. The
method described in [20] requires knowledge of hyper-
fine fields at the impurity nuclei of the 3d atoms substi-
tuting iron atoms in each of the alloys investigated. The
second method is described in detail in [14]. It is shown
that, in order to estimate the value of Htr(Fe) in iron-
based alloys, it is sufficient to use hyperfine fields at
impurity nuclei of nonmagnetic atoms of aluminum or
copper if aluminum or copper atoms substitute iron
atoms in iron-based alloys, including Laves com-
pounds. We measured the hyperfine fields at the 27Al
impurity nuclei. According to [14], contribution Htr(Fe)
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Fig. 6. Concentration dependences of (a) average magnetic
moments µFe at iron atoms, calculated by the formula µf =
2µFe under the assumption that Sc and Y atoms have zero
magnetic moments (d) and magnetic moments µ(Fe) at iron
atoms, estimated from the local contribution Hloc(Fe) (j);
(b) average magnetic moments µ(Sc, Y) at lattice sites occu-
pied by scandium and yttrium atoms in (Sc1 – xYx)Fe2
alloys.
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can be estimated from the data on hyperfine fields
H(Al) at the 27Al impurity nuclei from the relation

(3)

where As(Fe) and As(Al) are the hyperfine interaction
constants for iron and aluminum atoms [21]: As(Fe) =
1780 kOe per s electron and As(Al) = 789 kOe per s
electron. Using the experimental values of hyperfine
fields H(Al) at the 27Al nuclei and formula (3), we esti-
mated the induced contributions Htr(Fe) and then the
local contributions Hloc(Fe) from formula (2). Consid-
ering that P(Fe) = –90 kOe [19], we determined the
local magnetic moments µ(Fe) at iron atoms in
Sc1 − xYxFe2 alloys; the values of these moments are
presented in Fig. 6a. It can be seen from the figure that
the substitution of yttrium for scandium in Sc1 – xYxFe2
compounds increases the magnetic moments µ(Fe) at
iron atoms from 1.60µB to 1.74µB. If we assume that the
only magnetic atoms in (Sc,Y)Fe2 alloys are iron atoms
(i.e., there is no hybridization, and the magnetic
moments at scandium and yttrium atoms are equal to
zero), then µf = 2µFe and the magnetic moments µFe at
iron atoms in the system of alloys under investigation
vary from 1.11µB (x = 0) to 1.48µB (x = 1) (see Fig. 6a).
It can be seen that the real values of µ(Fe) differ signif-
icantly from µFe which would be observed at iron atoms
in the absence of the hybridization effect.

Our experimental results show that the magnetic
moment µf per structural unit, as well as the absolute
values of hyperfine fields at the 57Fe nuclei and at the
27Al impurity nuclei whose atoms substitute iron atoms
in a lattice of the MgCu2 type, increases when scan-
dium is replaced by yttrium. Consequently, the increase
in the hyperfine field at the 57Fe and 27Al nuclei could
be explained by an increase in the magnetic moments at
iron atoms also in the absence of the hybridization
effect. If we assume that scandium and yttrium atoms
have zero magnetic moments, the hyperfine fields at the
45Sc and 89Y nuclei should also increase since these
atoms are surrounded only by magnetic iron atoms
from the nearest coordination spheres, and the hyper-
fine field at the 45Sc and 89Y nuclei would be deter-
mined only by the contribution Htr proportional to the
magnetic moments of iron atoms in the nearest coordi-
nation spheres. Our experiments show, however, that
the absolute values of the hyperfine field at the 45Sc and
89Y nuclei decrease significantly upon the substitution
of yttrium for scandium with increasing magnetic
moments at iron atoms. These results indicate that scan-
dium and yttrium atoms must possess magnetic
moments and, hence, the hyperfine fields at the 45Sc and
89Y nuclei must contain, in addition to the induced
fields Htr, significant local fields Hloc(Sc) and Hloc(Y)
due to the intrinsic magnetic moments µ(Sc) and µ(Y).

Systematic data on hyperfine fields at various impu-
rity nuclei of s and p atoms substituting R atoms in the

H tr Fe( ) H Al( )As Fe( )/As Al( ),=
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RFe2 Laves alloys have not been obtained either. This
does not allow us to estimate the main contributions to
the hyperfine field at the nuclei of R atoms in this (or
other) system of alloys of a rare earth element with iron.
However, we can estimate µ(Sc) and µ(Y) from the
experimental data on the magnetic moments µf and
from the local magnetic moments µ(Fe) at iron atoms
estimated above (see Fig. 6a) assuming that µf =
2µ(Fe) + µ(R) in RFe2 Laves alloys. The values of the
magnetic moments µ(Sc, Y) at the lattice sites occupied
by scandium and/or yttrium atoms calculated in this
way are shown in Fig. 6b. It can be seen that the mag-
netic moments µ(Sc, Y) are negative, i.e., opposite to
the magnetic moments of iron atoms. As the yttrium
concentration in the alloy increases, the absolute value
of µ(Sc, Y) in the alloy decreases from about 1 to 0.5µB .

Thus, our results proved that compounds
Sc1 − xYxFe2 (0 ≤ x ≤ 1) exhibit hybridization of the d
bands of iron with d bands of scandium or d bands of
yttrium. This effect leads to the formation of consider-
able magnetic moments at scandium and yttrium atoms
(these moments being directed oppositely to the mag-
netic moments of iron atoms) and the formation of a
ferrimagnetic structure in these alloys.
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Abstract—Various theoretical models (self-consistent field, local linearization, and percolation theory meth-
ods and an analytic solution of the linear problem for an ordered medium) for calculating the magnetostatic
properties of two-phase composites containing one ferromagnetic phase were considered. The concentration
and field dependences of the effective magnetic permeability were found. A method for determining the coer-
cive force and remanent magnetization as functions of the ferromagnetic phase concentration was suggested.
Numerical experiments were performed for composites with a periodic distribution of circular inclusions. The
results were compared with the analytically calculated effective magnetic permeability. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic properties of composites containing
ferromagnetic inclusions have been studied in many
experimental and theoretical works (e.g., see [1–6]).
They are of interest because the potentialities of pure
(single-phase, uniform, and homogeneous) materials
have to a substantial extent been exhausted. An impor-
tant role in creating new materials is played by macro-
scopically nonuniform media, whose properties can be
controlled in fairly wide ranges [7].

Composites with the required combination of prop-
erties not characteristic of pure phases can in certain
instances be synthesized depending on the structure,
the concentration, and the local properties of the
phases. Such materials are extensively used in various
electrotechnical applications. For instance, soft mag-
netic powder composites combining the ferromagnetic
properties of metal particles and elasticity of polymeric
(nonmagnetic) matrices are used as screening elements
in wideband communication systems.

The primary goal of a theoretical description of any
composite material is the determination of the depen-
dences of its effective properties on the concentrations
of the phases, the geometric characteristics of phase
distribution, and phase local physical properties.

In this work, we consider the effective properties of
two-phase composites one phase of which is ferromag-
netic, B = µ1(H)H, and the second one is some linear
medium, B = µ2H (this is usually a polymeric matrix
with µ2 = µ0 = 4π × 10–7 H m–1). In such composites [1],
complex nonlinear dependences of the response of the
whole sample to applied magnetic fields and sharp con-
1063-7761/03/9601- $24.00 © 200066
centration dependences of the effective coefficients
related to their percolation behavior are observed. The
specified peculiarities make calculations of the effec-
tive properties of a composite a very complex problem
of theoretical physics, which can be solved either for a
simple geometric arrangement of phases (layers or
ordered balls) or in certain approximations, whose
applicability limits are difficult to estimate.

Apart from the difficulties mentioned above, mag-
netic composites are characterized by at least two dis-
tinguishing features fundamental in character.

The first is specific nonlinearity of local magnetic
permeability (Fig. 1). Depending on the local magnetic
field strength, the magnetic permeability of the ferro-
magnetic phase can be of the order of, or much larger
than, the magnetic permeability of the nonmagnetic
phase. The permeability ratio (the nonuniformity
parameter) varies from about one to a thousand. Mag-
netic field values in a nonuniform medium can be sub-
stantially different in different regions, and nonunifor-
mity parameters are therefore also fairly different. This
means that, generally, such a two-phase medium can be
considered neither weakly nor strongly nonuniform.

In certain instances, we cannot ignore hysteresis in
the magnetic phase. It is shown below that a theoretical
description of such composites should include phenom-
ena similar to thermoelectric (that is, systems with two
thermodynamic forces, electric field and temperature
gradient, and two fluxes, current density and heat flow
density, should be considered).

Of the diverse structures of two-phase media which
are uniform in the mean, two structures will be consid-
03 MAIK “Nauka/Interperiodica”



        

THE EFFECTIVE PROPERTIES 67

                                                                                                  
ered. This is, first, a randomly nonuniform medium, in
which the arrangement of none of the phases can be
considered determining. A discrete model of such a
structure that ignores the shape of inclusions is a mesh
with nodes (or bonds) having the properties of the first
and second phases. Structures of the second type are
media with periodically distributed inclusions of one of
the phases in the matrix of the other. The phases cannot
then be considered geometrically equivalent; figura-
tively, black spheres in a white medium and white
spheres in a black medium do not transform into each
other under changes in concentration.

The effective properties of randomly nonuniform
media for which hysteresis can be ignored are consid-
ered in Section 2.1. A method for calculating the effec-
tive coefficients and coercive force of a randomly non-
uniform ferromagnetic composite is suggested in Sec-
tion 2.2. The effective properties of a two-dimensional
composite with periodically distributed circular inclu-
sions are studied in Section 3. For determining them,
we must solve Maxwell equations combined with mate-
rial balance equations for one unit cell and perform
averaging. The numerical simulation results are given
in Section 4. We use the finite element method, which
has recently become the main instrument in mathemat-
ical simulations of engineering and fundamental elec-
tromagnetism problems (e.g., see [8, 9]). The advan-
tages of the finite element method over alternative
numerical methods for solving partial derivative equa-
tions (finite difference and boundary element methods)
is the simplicity of modeling complex boundaries, sim-
ple generalization to approximations of higher orders,
effective discretization, and the use of sparse matrices.

2. RANDOMLY NONUNIFORM
DISORDERED MEDIA

2.1. A Ferromagnetic Phase 
with a Zero Hysteresis Loop

The most important characteristic of nonuniform
media is the effective kinetic coefficients. In the prob-
lem under consideration, these are effective magnetic
permeability µeff and effective reluctance λeff, which, by
definition, relate volume-average magnetic field
strength 〈H〉  to volume-average magnetic induction
〈B〉 ,

(1)

where 〈…〉  = V–1  denotes averaging over vol-

ume V. It is assumed that the averaging dimension (on
the order of V1/3) is in all directions many times larger
than the correlation radius; that is, self-averaging
occurs in such a system, and the effective kinetic coef-
ficient values do not depend on the particular realiza-
tion of a random distribution of phases.

The approximation that can most successfully be
used to calculate the effective kinetic coefficients in

B〈 〉 µ eff H〈 〉 , H〈 〉 λ eff B〈 〉 ,= =

… Vd∫
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nearly the whole concentration range, taking into
account the influence of inclusions of one phase on the
other, is the Bruggeman–Landauer self-consistent field
approximation (effective medium theory) [10, 11]. A
large number of effective medium theory variants can
be found in [12]. In the linear case, this theory gives a
good approximation for all concentrations and all ratios
between local kinetic coefficients except the immediate
vicinity of the percolation threshold at large nonunifor-
mity values. In the nonlinear case, this approximation is
inapplicable and should be generalized. One of such
generalizations is suggested in [13, 14] and applied to
power-type nonlinearity (so-called strong nonlinearity
[15, 16]).

Let us calculate λeff. According to the key approxi-
mation of the method suggested in [13, 14], local field
B within inclusions is considered independent of the
coordinates (this is only valid for elliptically shaped
inclusions and only when interaction between inclu-
sions can be ignored), and the λ value in the nonlinear
phase, λ1 = λ1(B), is replaced by constant λ1,

(2)

where averaging is performed over the nonlinear phase

volume, 〈…〉  = (1/V1) .

The second approximation is a replacement which,
in terms of the present work, has the form

(3)

The two-phase medium with coefficients λ1(B(r)) and
λ2 = 1/µ0 (the second phase is nonmagnetic) is replaced

by a two-phase medium with λ1( ) and λ2, that
is, a medium in which the local λ1 value is independent
of local field B = B(r). At a given external field 〈B〉 , the

λ̃1 λ1 B( )〈 〉 1,=

… Vd
V1∫

λ̃1 λ1 B( )〈 〉 1 λ1 B2〈 〉 1( ).=

B2〈 〉 1

µ(H)/µ0

200

100

0 2 4 6 8 10
H, kÄ/m

300

400

500

12

Fig. 1. Magnetic field dependence of relative permeability
in a nonlinear ferromagnetic phase; closed circles are per-
meabilities for a particular material, and the solid line cor-
responds to the analytic function (see Appendix) approxi-
mating the experimental values.
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whole first phase has the same coefficient λ1 =  deter-
mined by the 〈B2〉1 value.

It follows that, on the one hand, we can use the stan-
dard effective medium theory approximation to deter-

mine λeff of a two-phase medium with coefficients 
and λ2,

(4)

where p is the concentration of the ferromagnetic
phase. On the other hand, the 〈B2〉1 value can be found
using the equality〈B · H〉  = 〈B〉  · 〈H〉  (e.g., see [17]).
According to this equality,

where 〈…〉1, 2 denotes averaging over the first or second
phase. Eventually,

(5)

In the two-dimensional case, (4) is replaced by

(6)

Substituting (4) or (6) into (5) yields a nonlinear equa-
tion for determining 〈B2〉1. Using the obtained 〈B2〉1

λ̃1

λ̃1

λ eff
3D( ) 1

2
--- 3 p 2–( )λ̃1 1 3 p–( )λ2 ---+





=

+ 3 p 2–( )λ̃1 1 3 p–( )λ2+[ ]
2

8λ2λ̃1+




,

λ eff B〈 〉 2 pλ1 B2〈 〉 1 1 p–( )λ2 B2〈 〉 2,+=

B2〈 〉 1
B〈 〉 2

p
-----------

∂λ eff

∂λ̃1

-----------.=

λ eff
2D( ) 1

2
--- 2 p 1–( ) λ̃1 λ2–( )---





=

+ 2 p 1–( ) λ̃1 λ2–( )[ ]
2

4λ2λ̃1+




.

λ1(〈B〉)/λeff(p, 〈B〉)
1.0

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p

1 2 3

Fig. 2. Dependence of effective reluctance λeff on the ferro-
magnetic phase concentration at different values of mag-
netic induction 〈B〉  applied to the sample: (1) 0.15, (2) 0.2,
and (3) 0.5 T.
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value in (4) or (6), we obtain λeff as a function of exter-
nal magnetic field 〈B〉 , concentration, and nonlinearity
function parameters.

Similarly, for µeff, we have [18, 19]

(7)

(8)

where µ2 = µ0, and (5) is replaced by a similar equation
for 〈H2〉1, namely,

(9)

The dependence of (λeff /λ1)–1 on the concentration
of the ferromagnetic phase obtained as described above
is shown in Fig. 2. According to this figure, a sharp
change (increase) in λ at small 〈B〉  values occurs close
to the three-dimensional percolation threshold, which
equals 1/3 according to the effective medium theory
approximation. The concentration at which this
increase is observed shifts to the right as 〈B〉  increases,
which is likely to be an artifact of the method. We were
unable to find smooth solutions to the system of nonlin-
ear equations at 〈B〉  values higher than 0.5 T. Calcula-
tions of µeff in the three- and two-dimensional cases are
performed similarly, see [18, 19] for details. As with
λeff, the concentration dependence curve exhibits a
sharp increase in µeff. In contrast to the problem with
λeff, we were, however, able to find solutions to the
system of nonlinear equations for all applied field 〈H〉
values.

2.2. A Ferromagnetic Phase 
with a Nonzero Hysteresis Loop:
The Local Linearization Method

If the ferromagnetic phase has a nonzero hysteresis
loop, then, generally, neither local and nor effective
magnetic permeability can be determined unambigu-
ously. The local magnetic permeability ceases to be sin-
gle-valued because its value depends on the prehistory
of sample magnetization. The problem can therefore be
completely solved to determine the effective magnetic
permeability and its dependences on 〈B〉  and 〈H〉  only
if the magnetization “history” is known. However, even
then (for instance, the sample was first brought to tech-
nical saturation, after which demagnetization pro-
ceeded along the so-called back of the hysteresis loop,
see arrow in Fig. 3), there arises a nonstandard situation
with determining effective characteristics. Namely, B

µeff
3D( ) 1

4
--- 3 p 1–( )µ̃1 2 3 p–( )µ2+{=

+ 3 p 1–( )µ̃1 2 3 p–( )µ2+[ ] 2 8µ2µ̃1+ } ,

µeff
2D( ) 1

2
--- 1 2 p–( ) µ2 µ̃1–( )---=

+
1
2
--- 1 2 p–( )2 µ2 µ̃1–( )2

4µ2µ̃1+ ,

H2〈 〉 1
H2〈 〉
p

------------
∂µeff

∂µ̃1

-----------.=
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remains nonzero at H = 0, which is precisely the rema-
nent magnetization effect. We will describe a method
for calculating the effective coefficients of a composite
when one of the phases has a hysteresis loop. We will
also determine the dependence of coercive force Hc

(remanent magnetization Br) of the composite on the
ferromagnetic phase concentration and coercive force
hc (remanent magnetization br) in this phase.

For definiteness, let us call this method the local lin-
earization method. The method was earlier applied to
calculate the effective conduction of strongly nonlinear
composites [20].

The first approximation in the local linearization
method is the local linearization of the equation

(10)

for a certain induction  value (Fig. 3). Local nonlin-

earity (10) at B =  is replaced by the linearized depen-
dence

(11)

where

(12)

and

(13)

Next, we assume that field 〈H〉  is brought to values
corresponding to technical saturation of the ferromag-
netic phase and then decreases. It follows that the
medium is situated on the upper backward branch of the
hysteresis loop, if the hysteresis loop is considered in
the H (abscissa) and B (ordinate) axes.

In determining the effective coefficients for a system
obeying laws of type (11), which relate the local field to
the induction,

(14)

we must find the Λe value (in a sample with the prehis-
tory under consideration, this value equals the effective
coercive force Hc of the whole sample) and calculate λe

as for systems with a linear law, for instance, the effec-
tive medium theory law.

Formally, (14) means that a nonzero field exists in
the composite at a zero induction [〈B〉  = 0 in (14)]; that
is, there exists a factor different from 〈B〉  that sustains
the field. To determine Λe, let us draw an analogy
between (11) and a thermoelectric medium,

(15)

where α is the thermal electromotive force coefficient,
ρ is the specific resistance, κ is the specific heat con-
ductivity, and q = –κ∇ T is the heat flow. Law (15) is

H r( ) λ B( )B r( )=

B̃

B̃

H λd B̃( )B Λ B̃( ),+=

Λ B̃( ) H B̃( ) λd B̃( )B̃– λ B̃( ) λd B̃( )–[ ] B̃= =

λd B̃( ) dH B( )
dB

---------------
B B̃=

.=

H〈 〉 λ e B〈 〉( ) B〈 〉 Λ e,+=

e p j
α
κ
---q,–=
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valid at a low thermoelectric Q value (Tα2/ρκ ! 1,
where T is the temperature). A comparison of (15) and
(14) shows that these laws are similar if (α/κ)q = const
in each phase. As the α/κ ratio is independent of the
coordinates in both phases, the q value should also be
so. It is easy to see that this condition can only be satis-
fied if κ1 = κ2. Then,

q = const (16)

for the whole sample. This is the second approximation
of the local linearization method.

We assume that condition (16) is satisfied. Equa-
tions (11)–(14), which describe a nonlinear medium
after local linearization, then coincide with those for
the thermoelectric system up to the denotation changes

(17)

where ρe is the effective resistance of a thermoelectric
linear system with local relations (15),

(18)

According to the standard effective medium theory
model [21] (also see [22]), the ρe and αe effective coef-
ficients in the three-dimensional case are related as

(19)

where ρe is the effective specific resistance in a medium
with ρ1 = λd and ρ2 = λ2. In the effective medium theory
approximation, ρe is determined from the equation

(20)

Determining ρe by (20) and substituting it into (19), we
obtain αe. Substituting αe into (18) and taking into
account denotation changes (17) and the equalities Hc =
Λe and hc = Λ1 yields

(21)

where, according to (20),

(22)

and hc is the local coercive force in the ferromagnetic
phase.

–
α
κ
---q Λ1, –

α e

κ
-----q Λe,

ρ1 λd B̃( ), ρ2 λ2
1
µ0
-----, ρe λ e,=

e〈 〉 ρ e j〈 〉
α e

κ
-----q.–=

α e 3D( ) pα1

ρe 2ρ2+
ρe 2 p ρ2 ρ1–( ) ρ1+[ ]+
--------------------------------------------------------,=

p
ρe ρ1–

ρe 2ρ1+
-------------------- 1 p–( )

ρe ρ2–
ρe 2ρ2+
--------------------+ 0.=

Hc
3D( ) hc p

λ e 2λ2+
λ e 2 p λ2 λd–( ) λd+[ ]+
---------------------------------------------------------,=

λ e
3D( ) 1

2
--- 1 3 p–( )λ2 3 p 2–( )λd+{=

+ 1 3 p–( )λ2 3 p 2–( )λd+[ ] 2 8λdλ2+ }
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Let us substitute (21) and (22) into (14) and set  =
〈B〉 . Taking into account (1), we obtain

(23)

In the two-dimensional problem, (20) and (22) are
replaced by

(24)

(25)

and (21) and (23), by

(26)

(27)

The effective magnetic permeability µeff and rema-
nent magnetization Br are calculated quite similarly. We
will only give the results of these calculations:

(28)

(29)

(30)

(31)

B̃

λ eff
3D( ) p 2λ2 λ e+( ) λ λ d–( )

2 p λ2 λd–( ) 2λd λ e+ +
------------------------------------------------------- λ e.+=

p
ρe ρ1–
ρe ρ1+
---------------- 1 p–( )

ρe ρ2–
ρe ρ2+
----------------+ 0,=

λ e
2D( ) 1

2
--- 2 p 1–( ) λd λ2–( ){=

+ 2 p 1–( ) λd λ2–( )[ ] 2 4λdλ2+ }

Hc
2D( ) hc p

λ e λ2+
p λ2 λd–( ) λd λ e+ +
------------------------------------------------,=

λ eff
2D( ) p λ2 λ e+( ) λ λ d–( )

p λ2 λd–( ) λd λ e+ +
------------------------------------------------ λ e.+=

µeff
3D( ) pµe 2µe µ0+( ) µ µd–( )

2 pµe µd µ0–( ) 2µ0µe µdµ0+ +
------------------------------------------------------------------------- µe,+=

µeff
2D( ) pµe µe µ0+( ) µ µd–( )

pµe µd µ0–( ) µ0 µe µd+( )+
----------------------------------------------------------------- µe,+=

Br
2D( ) pbrµe µe µ0+( )

pµe µd µ0–( ) µ0 µe µd+( )+
----------------------------------------------------------------,=

Br
3D( ) pbrµe 2µe µ0+( )

2 pµe µd µ0–( ) 2µ0µe µdµ0+ +
-------------------------------------------------------------------------,=

H

~H B
B~

λd(B)
~

Fig. 3. Illustration for the local linearization method. For

each  value, a nonlinear H = H(B) dependence (solid line)
is replaced by a linear dependence (dashed line) that inter-

sects the H axis at the point λd( ). The arrow points to the
back of the hysteresis loop.

B̃

B̃
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where

(32)

(33)

(34)

br is the remanent magnetization in the ferromagnetic

phase, and it is taken that  = 〈H〉 , as in (23) and (27).

The dependence of coercive force Hc on the concen-
tration of the ferromagnetic phase with local coercive
force hc and the dependence of remanent magnetization
Br on the concentration of the ferromagnetic phase with
local remanent magnetization br are shown in Figs. 4a
and 4b, respectively.

2.3. Ferromagnetic Phase 
with a Zero Hysteresis Loop Close

to the Percolation Threshold

Let us return to the problem of calculating µeff in the
absence of a hysteresis. It should be clearly understood
that the generalization of effective medium theory
and the local linearization method used above to calcu-
late µeff contains several serious assumptions [for
instance, (3)], which are difficult to justify and whose
effect on the final result is not obvious. The use of the
percolation theory method is based on the percolation
structure model and does not require such assumptions
to be made.

As is shown below, the use of percolation theory
when local permeability nonlinearity is of the type
under consideration (Fig. 1) is only possible under very
strict limitations on the problem parameters. Although
the region of parameters for which the results of perco-
lation theory are valid is comparatively small, percola-
tion theory allows us to obtain dependences of µeff free
of assumptions of type (3) and thereby to show to what
extent these assumptions influence calculation results.

Calculations of µeff by percolation theory methods
will be performed using the percolation structure mod-
els [23–28] above the percolation threshold, below this
threshold, and at the percolation threshold proper (that
is, in the smearing region). Processes that occur in per-
colation structures are described in many works on per-
colation theory in terms of current passage. For this rea-
son, we will first obtain all equations in these terms and
then use an analogy between the problem of stationary
electric current density distributions j in a medium

µe
3D( ) 1

4
--- 3 p µd µ0–( ) 2µ0 µd–+[=

+ 3 p µd µ0–( ) 2µ0 µd–+[ ] 2 8µdµ0+ ] ,

µe
2D( ) 1

2
--- 2 p 1–( ) µd µ0–( )[=

+ 2 p 1–( ) µd µ0–( )[ ] 2
4µdµ0+ ] ,

µd
dB H( )

dH
---------------,=

H̃
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Fig. 5. Hierarchical percolation structure model. The main elements of the structure are (a) above the percolation threshold, a bridge
of high-conductivity phase resistances (black resistances) connected in series and (b) below the percolation threshold, an interlayer
of low-conductivity phase resistances connected in parallel.

Hc, A/m

240

120

0 0.2 0.4 0.6 0.8 1.0
p

(a)

360

480

600
Br, T

0.32

0.16

0 0.2 0.4 0.6 0.8 1.0
p

(b)

0.48

0.64

0.80

Fig. 4. Dependences of coercive force Hc (a) and remanent magnetization Br (b) on the concentration of the ferromagnetic phase
with (a) local coercive force hc = 600 A/m and (b) remanent magnetization br = 0.8 T.
               
with conductivities σ1 and σ2 (σ1 @ σ2) and the prob-
lem of stationary magnetic field B induction distribu-
tions in a medium with magnetic permeabilities µ1
and µ2 (µ1 @ µ2),

(35)

where E is the electric field intensity and ϕ and ψ are
the electric and magnetic field potentials, respectively.

First, consider effective magnetic permeability cal-
culations for a randomly nonuniform system above the
percolation threshold pc (p > pc) and outside the smear-
ing region ∆. According to [24–28], the simplest perco-
lation structure model in a volume with characteristic
dimensions of the order of the correlation radius ξ,
which takes into account the finite µ2/µ1 ! 1 ratio (the
magnetic field “percolates” through the phases with
both large and small magnetic permeability values),

divB 0 div j 0,   rot  H 0 rot  E 0,= = = = 

B

 
µ

 

H j

 
σ

 

E

 

,= =

 

H

 

grad

 

ψ

 

E

 

– grad

 

ϕ ,–= =

µ1 H( ) σ1 E( ), µ2 σ2,
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consists of two elements (Fig. 5). In the “current” ter-
minology, the total current 

 

J

 

 that percolates through the
correlation volume passes (1) a bridge consisting of 

 

N

 

1

 

resistances of the high-conductivity phase connected in
series and (2) an interlayer consisting of 

 
N

 
2

 
 resistances

of the low-conductivity phase connected in parallel.
The voltage drops across the bridge, 

 
∆ϕ

 

1

 
, and the inter-

layer, 

 

∆ϕ

 

2

 

(=

 

∆ϕ

 

1

 

), are written via volume-average field

 

〈

 

E

 

〉

 

 as follows:

(36)

where 

 

∆ϕ

 

 is the voltage drop across the correlation vol-
ume. We assume that the voltage largely drops on the
main percolation structure elements, the bridge and the
interlayer. Let 

 

a

 

0

 

 be the minimum size in the system
(the characteristic size of nonuniformities). The local
fields on the bridge and interlayer can then be written as

(37)

E〈 〉 ξ ∆ϕ ∆ϕ 2 ∆ϕ1,= = =

E1

∆ϕ1

a0N1
------------, E2

∆ϕ2

a0
---------.= =
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Applying the Ohm law j1 = σ1(E1)E1 and j2 = σ2E2 and
using (36) and (37), we can write the currents passing
through the bridge and interlayer, J1 and J2, in the form

(38)

(39)

where the bridge cross section is taken to be  and the
field dependence of the second phase is omitted
because this dependence is linear (µ2 = µ0). As total cur-
rent J through the correlation volume is related to vol-
ume-average current density 〈 j〉  as J = 〈 j〉ξ 2, and as J =
J1 + J2, we obtain

(40)

Correlation length ξ increases as the system approaches
the percolation threshold (p  pc) by the law

(41)

where τ is the closeness to the percolation threshold and
ν is the critical correlation length index, ν = 0.9 in the
three-dimensional case. The numbers of elements in the
bridge and interlayer, N1 and N2, increase as pc is
approached by the laws

(42)

where, according to the percolation structure model
[23–28],

(43)

in the three-dimensional case, in which t = 2.0 and q =
0.7 are the critical conductivity indices above and
below the percolation threshold. Substituting (41)–(43)
into (40) yields

(44)

where the expression in square brackets is the effective
specific conductivity in the nonlinear case.

Passing to the notation of the problem of the relative
effective magnetic permeability and substituting
numerical critical index values, we obtain

(45)

The effective magnetic permeability of a fiber com-
posite across fibers (a two-dimensional problem) is

J1 a0
2 j1 a0

2σ1
ξ
a0
----- E〈 〉

N1
--------- 

  ξ
a0
----- E〈 〉

N1
---------,= =

J2 a0
2N2 j2 a0N2σ2ξ ,= =

a0
2

j〈 〉
a0

ξ
----- E〈 〉

N1
---------σ1

ξ
a0
----- E〈 〉

N1
--------- 

  a0

ξ
-----N2σ2 E〈 〉 .+=

ξ a0 τ ν– , τ p pc–( )/ pc,= =

N1 τ
α1–

, N2 τ
α2–

,= =

α1 t ν , α2– q ν+= =

j〈 〉 σ 1 E〈 〉 τ t 2ν–( )τ t σ2τ
q–+[ ]= E〈 〉 ,

µeff
3D( ) H〈 〉( ) µ1 H〈 〉 τ 0.2( )τ2 µ0τ

0.7– .+=
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calculated similarly,

(46)

where t2 = q2 = 1.33 and ν2 = 4/3.

The critical conductivity (t) and correlation length
(ν) indices are almost equal in the two-dimensional
case, whereas, at not superstrong fields, µ1 is much
larger than µ0. Equation (46) can therefore be approxi-
mately rewritten in the form

(47)

which means that the field dependence of  is iden-
tical to that for the pure phase and its dependence on the
closeness to the percolation threshold is identical to that
for a linear composite. Recall that (46) and (47) are
only valid in the region of the applicability of percola-
tion theory and outside the smearing region.

The determination of the effective properties of
magnetic composites by percolation theory methods
below the percolation threshold requires the introduc-
tion of the λ1(B(H)) = 1/µ1(H) function reciprocal to
µ1(H). Using the percolation structure models [28] and
performing calculations similar to those described
above, we obtain

(48)

for the three-dimensional case and

(49)

for the two-dimensional case. Equation (48) determines
the λeff(〈B〉) effective coefficient reciprocal to µeff(〈H〉).
As in standard (linear) percolation theory, the equations
for the effective coefficients above and below the per-
colation threshold are valid at |τ| ! 1, on the one hand,
and at |τ| > ∆, on the other. The latter condition means
that the second terms in (45), (46) and in (48), (49) are
much smaller than the first ones. It follows that the cri-
terion of percolation description applicability at p > pc

and outside the smearing region, for instance, for the
three-dimensional case, can, according to (45), be writ-
ten as

(50)

This condition can be rewritten in the form

(51)

µeff
2D( ) H〈 〉( ) µ1 H〈 〉 τ

t2 ν2–
( )τ

t2 µ0τ
q2–

,+=

µeff
2D( ) H〈 〉( ) µ1 H〈 〉( )τ

t2,=

µeff
2D( )

H〈 〉 τ q

µ0
------- λ1 B〈 〉 τ 2ν–( ) τ t–+ 

  B〈 〉=

H〈 〉 τ
q2

µ0
--------- λ1 B〈 〉 τ

ν2–
( ) τ

t2–
+ 

  B〈 〉=

µ1 H〈 〉 τ 0.2( )τ2 µ0τ
0.7– .>

k1 H〈 〉 τ( ) 1,>
 AND THEORETICAL PHYSICS      Vol. 96      No. 1      2003



THE EFFECTIVE PROPERTIES 73
where

(52)

Similarly, for the two-dimensional case, we have

(53)

One more condition of the applicability of percola-
tion theory follows from the requirement of a strong
nonuniformity of the local properties of the phases.
Only when nonuniformity is substantial can the bridge
(p > pc) and interlayer (p < pc) be percolation structure
elements that determine the critical behavior of the
effective coefficients. At very strong fields, the µ1(H)/µ0
ratio tends to one (the medium becomes uniform) and
the condition under consideration therefore means that
the local field in the first phase should not be smaller
than some H* value such that µ1(H*)/µ0 @ 1. This con-
dition is most important for the field in the bridge, H1 =
〈H〉τ t – ν(D – 1) [see (37)] (D = 2 or 3 for the two- or three-
dimensional case, respectively). It follows that the sec-
ond condition of the applicability of the percolation
approach can be written in the form

(54)

where

(55)

Next, consider the behavior of the effective mag-
netic permeability at the percolation threshold itself;
that is, in the smearing region. The smearing region can
be found by equating the first and second terms in (45)
and (46) or in (48) and (49). It is easy to see that all vari-
ants give (as they must) the same ∆ value. The equation
for ∆ can therefore be written as

(56)

The ∆ smearing region value in the nonlinear problem
should and does depend on 〈H〉 . Solving (56) and sub-
stituting the result (∆) into the main term in (45) and
(46) yields µeff in the smearing region,

(57)

To compare the results obtained within percolation the-
ory and by the methods of [13, 14] and the local linear-
ization method, consider the dependence of µeff on 〈H〉
above the percolation threshold (Fig. 6). Numerically
solving nonlinear equation (56) for the selected µ1(H)
dependence (see Fig. 4) gives ∆ ≈ 0.1 at 1000 < 〈H〉 <

k1
3D( ) H〈 〉 τ( ) µ1 H〈 〉 τ 0.2( )τ2.7/µ0.=

k1
2D( ) H〈 〉 τ( ) µ1 H〈 〉 τ

t2 ν2–
( )τ

t2 q2+
/µ0.=

k2 H〈 〉 τ( ) 1,<

k2 H〈 〉 τ( ) H〈 〉
H∗
----------τ t ν D 1–( )– , D 2 3.,= =

µ1 H〈 〉∆ t ν D 1–( )–( )∆t q+ /µ0 1, D 2 3.,= =

µeff H〈 〉∆( ) µ1 H〈 〉∆ t ν D 1–( )–( )∆t,=

D 2 3.,=
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4000 A/m. The ∆ value increases from 0.1 to 0.15 as 〈H〉
changes from 4000 to 12000 A/m. Figure 6 shows that
the results obtained by all three methods for τ = 0.3
qualitatively coincide. The wavy behavior of µeff is
likely to be an artifact of the local linearization approx-
imation in this region of parameters.

3. NONUNIFORM ORDERED MEDIA

Structures with periodically distributed inclusions
are no less interesting objects. They have been exten-
sively studied both theoretically [29–34] and experi-
mentally (e.g., see [6]).

Numerical calculations of local fields and effective
media with randomly arranged inclusions are virtually
impossible even in the linear case, because it is then
necessary to perform calculations for regions whose
dimensions exceed the correlation radius, that is,
regions containing a large number of inclusions. As
inclusions have a certain form (let it be the simplest
spherical form), the problem cannot be reduced to a
mesh problem; that is, the inclusions cannot be
replaced by a set of “shapeless” bonds and nodes,
because the shape of inclusions strongly influences the
field distribution and, therefore, conductivity. If the
inclusions are arranged periodically, it suffices to per-
form calculations for a single unit cell.

The dependence of the effective magnetic permeabil-
ity on 〈H〉 can be found using the solution [29] to the lin-
ear problem of the effective conductivity of a medium
with periodically arranged inclusions of a circular shape.
According to [29], the effective conductivity can be rep-
resented with an accuracy of 1% in the form

(58)σe σ1 α πR2

4a2
---------δ– 

  α πR2

4a2
---------δ+ 

 
1–

,=

µeff(〈H〉)/µ0

70

56

42

28

14

1.0 3.2 5.4 7.6 9.8 12.0

〈H〉 , kÄ/m

1

2 3

0

τ = 0.3

Fig. 6. Dependences of the relative effective permeability
on 〈H〉  above the percolation threshold, obtained at τ = 0.3
by (1) the percolation theory method, (2) the local lineariza-
tion method, and (3) the method suggested in [13, 14].
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where

(59)

(60)

R is the radius of circular inclusions with conductivity

σ2, 2a is the size of the unit (square) cell, and K(1/ )
is the complete elliptic integral of the first kind with

α 1
1
3
--- gR4( )2δ2–

1
63
------ gR4( )4δ2–=

–
9
5
--- δ2 4

5 11× 132×
-----------------------------+ 

  gR4( )6δ2,

δ
σ1 σ2–
σ1 σ2+
-----------------, g

1

20a4
-----------K4 1

2
------- 

  ,= =

K
1

2
------- 

  1.85407,=

2

µeff/µ0

1000

100

10

1
0 0.2 0.4 0.6 0.8 1.0

p

〈H〉 = 1000 Ä/m

Fig. 7. Differences in the concentration behavior of the rel-
ative effective permeability between ordered and random
media: the solid curve corresponds to theoretical calcula-
tions by the local linearization method with the use of the
effective medium approximation for a randomly nonuni-
form medium, ( ) numerical simulation results for ferro-
magnetic circular inclusions in a nonmagnetic matrix
(ordered medium), ( ) numerical simulation results for non-
magnetic circular inclusions in a ferromagnetic matrix and
field directed along the diagonal of the square (see Fig. 8)
(ordered medium), and ( ) numerical calculation results for
nonmagnetic circular inclusions in a ferromagnetic matrix
and field directed parallel to the side of the square (see
Fig. 8) (ordered medium).

〈H〉

〈H〉

a

R

Fig. 8. Applied field directions.
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modulus 1/ . The concentration of the high-conduc-
tivity phase (σ1) is p = 1 – πR2/4a2. Equation (58) for σe

is valid (a) in the whole range of high-conductivity
phase concentration variations 1 – π/4 ≤ p ≤ 1 at |δ| ≤
0.7, that is, at σ1/σ2 ≤ 5.67, and (b) in the concentration
range 0.291 ≤ p ≤ 1 at an arbitrary σ1/σ2 ratio.

We will repeat the calculations described in Sec-
tions 2.1 and 2.2 for the two-dimensional case, but the
effective medium theory approximation will every-
where be replaced by (58). Formula (6) is replaced
by (58) with the substitutions

Next, (8) is replaced by (58) with similar substitutions,

and (25) is replaced by (58) with the substitutions

Note that the use of the linear problem to determine
the effective properties in the nonlinear problem by the
local linearization method requires justification addi-
tional to that given above. The matter is that the struc-
ture of randomly distributed spheres (or circles) under
consideration possesses cubic symmetry on average,
and, as is well known [35], leaves for the conductivity,
which is a second-rank tensor, the only possibility of
degeneration into a scalar. Generally, this is not the case
in the nonlinear problem [36]. An especially spectacu-
lar example of the difference in nonlinear properties (in
the current–voltage characteristics) along and across a
mesh with periodically distributed nonlinear bonds is
given in [30]. The local linearization method and the
method suggested in [13, 14] that we use cannot
describe such a nonlinear “anisotropy.” More precisely,
they cannot be used to calculate the effective tensor of
a higher rank generally required to describe nonlinear
effective properties. In discussing the numerical exper-
imental results, we will consider the problem of differ-
ent properties for different applied field directions.
Here, we give the numerical simulation results (Fig. 7).
As is well known (e.g., see [12]), the effective medium
theory approximation for circular inclusions coincides
with the effective medium theory approximation for the
mesh problem. Precisely this makes it possible to deter-
mine the concentration dependences of the effective
coefficients in the whole concentration range. Real
media, for instance, media with circular inclusions,
have geometric limitations on the maximum concentra-
tion of inclusions. In media with a periodic arrange-
ment of circular ferromagnetic phase inclusions under

2

1
σe

----- λ eff, δ
1/λ̃1 1/λ2–

1/λ̃1 1/λ2+
---------------------------,

1
σ1
----- λ̃1.=

σe µeff, δ
µ̃1 µ2–
µ̃1 µ2+
-----------------, σ1 µ̃1,=

1
σe

----- λ e, δ
1/λd 1/λ2–
1/λd 1/λ2+
---------------------------, σ1

1
λd

-----.=
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µeff (〈H〉)/µ0
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Fig. 9. Numerical experiment. Nonmagnetic circular inclusions in a ferromagnetic matrix. Dependences of the relative effective
permeability on (a) external field 〈H〉  and (b) ferromagnetic phase concentration p at various external field 〈H〉  directions (see
Fig. 8); the solid line corresponds to local linearization calculations based on [29], solid circles are for the field directed parallel to
the side of the square (see Fig. 8), and crosses, for the field directed along the diagonal of the square (see Fig. 8).
consideration, the concentration of these inclusions
cannot exceed pmax = π/4 ≈ 0.785. Naturally, the con-
centration dependences of the effective magnetic per-
meability for two fundamentally different structures
(ferromagnetic inclusions in a nonmagnetic matrix and
nonmagnetic inclusions in a ferromagnetic matrix) do
not transform into each other.

4. NUMERICAL SIMULATION

For a composite with an ordered structure and for
some field 〈H〉  directions, symmetry considerations
allow the Maxwell equations to be solved in one (unit)
cell and the solution to be averaged over this cell. The
straight lines connecting the centers of four neighbor-
ing circles form a square with side a. We considered
two possible field directions (Fig. 8). Mean applied
field 〈H〉  is directed parallel to the side of this square in
the first case and along its diagonal in the second
(Fig. 8). In the first case, the cell side length is a/2 (the
potential difference is –〈H〉a/2 between the sides per-
pendicular to the direction of H), and, in the second, it

is a  (the potential difference is 〈H〉a ). The Max-
well equations were numerically solved using the
implementation of the finite element method described
in [37]. This program proved itself advantageous in
solving similar problems of magnetostatics for nonlin-
ear ferromagnets, for which it provided excellent agree-
ment with the experimental results [38]. The computa-
tions were performed on a standard personal computer.
The time of computations for given ferromagnetic
phase concentration p and applied field 〈H〉  was of 5 to
45 min depending on p and 〈H〉 .

Importantly, the medium under consideration with
air inclusions in a ferromagnetic matrix is only isotro-

2 2
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pic in the linear approximation. There is no isotropism
in the nonlinear case, and the field dependences of µeff

for the two selected applied field directions are differ-
ent, as is well seen from Fig. 9. Shown in this figure are
not only the results of theoretical calculations by the
local linearization method based on [29] but also the
numerical experimental results for nonmagnetic inclu-
sions at different field directions. We see that the differ-
ence between the field dependences of µeff (Fig. 9a)
amounts to 15% for different field directions and that
the local linearization method provides close (for an
analytic method) agreement with the numerical experi-
mental results (especially for the concentration depen-
dence of µeff, Fig. 9b).

µeff(p)/µ0

33

22

11

0
0.29 0.38 0.46 0.55 0.63 0.72 0.81

p

〈H〉 = 1000 Ä/m

Fig. 10. Dependence of the relative effective permeability
on concentration p of ferromagnetic circular inclusions; the
solid curve corresponds to theoretical local linearization
calculations based on [29], and the solid circles, to numeri-
cal experiment results.
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There is virtually no anisotropy for ferromagnetic
inclusions in a nonmagnetic matrix. The dependence of
the effective magnetic permeability on external field H
and its spatial orientation is then also vanishingly small.
The plots obtained in theoretical calculations by the
local linearization method based on [29] and in numer-
ical simulation of a system with ferromagnetic inclu-
sions are shown in Fig. 10.

5. CONCLUSION

It has been shown above that different approximate
methods give qualitatively identical and quantitatively
similar results (e.g., see Fig. 6). Different structures,
randomly nonuniform and ordered (with periodically
distributed inclusions), are described by fundamentally
different laws (see Fig. 7). The transition from the lin-
ear to the nonlinear case also increases differences; this
transition results in the appearance of anisotropy of the
effective properties (see Fig. 9a). The approximate ana-
lytic methods that we used in this work were based on
the well-known equations for the µeff and λeff effective
parameters in the linear case; they were in principle
incapable of describing the arising anisotropy of non-
linear properties. In the case under consideration, the
anisotropy of magnetic properties for periodically dis-
tributed nonmagnetic inclusions in a ferromagnetic
matrix (see Fig. 9a) and ferromagnetic inclusions in a
nonmagnetic matrix is insignificant.

It would be interesting to study the influence of a
weak disorder introduced by small displacements of
inclusion centers. This problem is, however, beyond the
scope of the present work and deserves special consid-
eration.

ACKNOWLEDGMENTS

The authors thank P.-M. Hui and D. Kalyon for
kindly providing reprints and V. Holod for his help in
fitting Eq. (A.1). One of us (A.A.S.) thanks H. ROSEN
Engineering GmbH for hospitality.

APPENDIX

The dependence shown in Fig. 4 is described by the
equation

(A.1)

where H is in A/m.
To obtain λ1(B), we must numerically solve the non-

linear equation

(A.2)

µ1 H( ) µ0 1 1.56993 106 5.39 10 4– H×( )tanh
H

-----------------------------------------------×+
=

– 257731
3.25 10 3– H×( )tanh

10 2– H
-----------------------------------------------

 ,

µ1 H( )H B,=
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find H(B), and set

. (A.3)

For analytic purposes, the curve obtained is approxi-
mated by the dependence

(A.4)

where B is in Tesla units.
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Abstract—Radiative and nonradiative lifetimes of bound excitons in GaSe with various binding energies are
measured by the magnetooptical method using time-resolution spectroscopy. It is shown that both the radiative
and nonradiative lifetimes of an exciton bound at an ionized center increase with the binding energy of an exciton
with a defect. Possible reasons for this dependence are considered. The results of calculations obtained in the
framework of the proposed model are in good agreement with experimental data. © 2003 MAIK “Nauka/Interpe-
riodica”.
1. INTRODUCTION

Radiative and nonradiative recombination of elec-
trons and holes determines to a considerable extent the
electric and optical properties of semiconductors. Crys-
tal lattice defects serve as effective centers of recombi-
nation of electrons and holes in semiconducting crys-
tals. For this reason, an analysis of the peculiarities of
electron–hole recombination at various types of centers
is of considerable importance. In particular, bound
excitons are effective centers for the electron–hole
recombination at low temperatures. It is radiative
recombination of electrons and holes in bound excitons
that determines to a considerable extent the optical
emission spectra of semiconductors in the region of
their fundamental absorption edge [1].

Bound excitons can be formed in crystals by various
types of impurity centers (excitons bound to neutral
donors or acceptors, excitons bound to ionized centers
or isoelectronic traps, etc.). An important characteristic
of a bound exciton is its binding energy with a defect.
In the optical spectrum of a semiconductor, this energy
determines the energy shift of the spectral emission
(absorption) line of a bound exciton relative to the
emission (absorption) line of a free exciton. This study
aims at analyzing the effect of the binding energy of
bound excitons on their radiative and nonradiative life-
times using as an example triplet excitons bound at ion-
ized centers (isoelectron traps) in a GaSe crystal. Tradi-
tional methods for measuring lifetimes of excitons from
an analysis of the kinetics of exciton luminescence
decay [2–6] do not provide direct information on their
radiative and nonradiative recombination lifetimes.1

1 These methods are used for determining the total lifetime of an
excited state.
1063-7761/03/9601- $24.00 © 20078
The estimation of these lifetimes involves the employ-
ment of additional indirect data. In our study, we mea-
sure the radiative and nonradiative lifetimes of bound
excitons using a new method [7] based on an analysis
of the afterglow spectra of triplet bound excitons in
GaSe in a magnetic field under conditions of their spin
sublevels anticrossing. In contrast to the traditional
approach, this method makes it possible to directly
obtain information on the radiative and nonradiative
lifetimes of an excited state.

2. EXPERIMENTAL TECHNIQUE

Gallium selenide crystals were grown by the Bridg-
man method and were not purposefully doped. The
samples for investigations were cut from ingots by
cleaving along the plane of crystal layers at right angles
to the optical c axis of the crystal. Exciton lumines-
cence was excited by radiation emitted by a copper
vapor pulsed laser with a pulse duration of τp = 20 ns.
The excitation density was about 200 W/cm2. Exciting
light with a photon energy of hνexc = 2.140 eV > Eg

(Eg is the forbidden gap of the crystal) was incident at a
small angle to the normal to the sample surface, and
radiation was detected in the direction of the normal
parallel to the c axis. The spectra were recorded using a
diffraction spectrometer supplied with a photon count-
ing system with a time resolution of about 30 ns. The
mean value of dark current in the photon counting sys-
tem was less than 1 pulse per second. In order to study
radiation at different instants of the lifetime of a bound
exciton, the pulse at the gate of the photon counting
system was delayed relative to the exciting pulse. Dur-
ing the experiments, the samples were kept in liquid
helium at 2 K. Magnetic fields were created by a super-
003 MAIK “Nauka/Interperiodica”
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conducting solenoid. The magnetic field was oriented
parallel to the optical c axis of the crystal.

3. EXPERIMENTAL RESULTS AND DISCUSSION

The emission spectrum of a GaSe crystal in the
region of the fundamental absorption edge is shown in
Fig. 1 (curve a) for the first 30 ns after an exciting pulse.
The same figure shows for comparison the emission
spectrum of the crystal 200 ns after the termination of
the exciting pulse (curve b). The comparison obviously
demonstrates a noticeable difference in the decay rates
for different spectral lines. The spectral line corre-
sponding to the shortest wave with a peak near hν =
2.108 eV is due to radiative annihilation of direct free
excitons, while lines α and β with peaks at the energies
2.096 and 2.089 eV correspond to the emission of trip-
let excitons bound at ionized centers (or isoelectron
traps) [8]. Line β is accompanied by an intense acoustic
wing whose peak is displaced to the long-wave region
approximately by 0.001 eV relative to line β (the acous-
tic wing for line α is manifested less clearly). It can be
seen from Fig. 1 that line β corresponding to a bound
exciton with a higher binding energy is characterized
by the longest decay time.

In a longitudinal magnetic field B ≥ 2 T (B || c || kphoton,
i.e., in Faraday geometry), the resonance absorption
lines α and β of bound photons split into doublets
whose components are strictly polarized according to
the right (σ+) and left (σ–) circular polarizations. In
weaker fields, the splitting of lines α and β is not
observed in view of their relatively large widths, but the
magnetic field dependence of the exciton emission
intensity under continuous excitation has a peak due to
the anticrossing of Zeeman sublevels of bound excitons
in a magnetic field [8].

In GaSe crystals, the orbital-nondegenerate state Γ4
of an exciton bound at an ionized center (or isoelectron
trap), as well as the ground state of a direct free exciton
[9], splits into two states (singlet and triplet) on account
of exchange interaction. In the case of free excitons, the
splitting ∆1 between these states amounts to 2 meV [9].
In the singlet state, the total spin of the electron and the
hole in an exciton is zero, and transitions to this state
are allowed for the light polarization E || c. Under our
experimental conditions (E ⊥  c), the singlet state is not
manifested.

Triplet excitons are characterized by the total spin
S = 1 and by the spin components Sz = 0, ±1 along the c
axis. Transitions to the state with Sz = ±1 are allowed for
the light polarization E ⊥  c; the state with Sz = 0 is opti-
cally inactive. In view of the crystal anisotropy, the
state with Sz = 0 is split from the states with Sz = ±1 by
∆ ! ∆1 [10]. The longitudinal magnetic field B || c splits
the level with Sz = ±1 into two sublevels with Sz = +1
and Sz = −1; radiation emitted from these sublevels has
right or left circular polarization, respectively. The
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
energy of the states of a triplet exciton in a longitudinal
field is described as

(1)

where gzz is the longitudinal component of the g factor
of the exciton and µ0 is the Bohr magneton. In accor-
dance with relations (1), the energies of states 2 and 3
in the field B = 2∆/gzzµ0 ≡ Bc become identical; i.e., the
corresponding energy levels intersect. However, a local
field acting on a bound exciton may cause mixing of the
exciton states |0〉  and |±1〉  [11]. In this case, anticrossing
of levels 2 and 3 is observed instead of their intersection
(Fig. 2). For B ≈ 2∆/gzzµ0, states 2 and 3 (i.e., states |−1〉
and |0〉) will mainly be mixed since the difference
between the energies of such states is considerably
smaller than the energy difference between states 1 and 3.
As a result of mixing, two new exciton states a and b are
formed instead of the two initial states 2 and 3 (Fig. 2).
States a and b are optically active in the light polariza-
tion σ–, as well as state 2, since state 3 is optically inac-
tive. Under steady-state excitation of the crystal by
light with hνexc > Eg, anticrossing of levels 2 and 3 is
manifested in the form of a peak on the magnetic field,
dependence , of the intensity of the σ– compo-

nent of radiation emitted by a bound exciton for B ≈ Bc.
(It can be observed that the manifestation of the anti-

E1 2, E0 0.5gzzµ0B, E3± E0 ∆,–= =
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Fig. 1. Exciton emission spectra for a GaSe crystal recorded
during the first 30 ns after the exciting pulse (a) and 200 ns
after the termination of the exciting pulse (b); T = 2 K.
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crossing of levels in the form of a peak on the magnetic
field dependence of the radiation intensity is typical of
various systems from atoms to crystals [11–13].) How-
ever, an analysis of the shape of the signal from anti-
crossing of energy levels of triplet bound excitons in the
afterglow spectra of GaSe crystals shows that the shape
of the signal varies significantly during the lifetime of
the excited state [7]. Figure 3 illustrates the variation of

 in the case of the emission of exciton α (0 ≤
B < 1 T, B || c || kphoton) for various delay times t relative
to the excitation pulse (the duration of the pulse at the
gate of the recording system was ∆t = 30 ns).

It can be seen from Fig. 3 that, for t ≈ 0, only a very
small peak can be noticed on the curve describing the

dependence  at B = 0.36 T ≡ . (For ∆t <

30 ns, the peak on the dependence  is practi-

cally unnoticeable.) As the delay time increases from 0
to 600 ns, the relative intensity of the peak at 0.36 T
increases sharply (the absolute intensity of the α line in
the afterglow spectra for B = 0 naturally decreases in
this case) so that a clearly manifested peak is formed on

the curve  in the region B =  (see Fig. 3).

Thus, in this interval of delay times, the dependence
 for a fixed t is similar to the magnetic field

dependence  of the intensity of the emission line

α in the case of continuous excitation of luminescence.
As the delay time increases further, the relative inten-
sity of the peak continues to increase, but a shallow dip
appears in the region of the maximum of the peak
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Fig. 2. Energy level diagram for a triplet exciton in GaSe in
a magnetic field B || c.
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(Fig. 3). A further increase in t leads to an increase in
the width and depth of the dip (Fig. 3) so that two well-
defined peaks appear on the curve  at t ≥ 1 µs,

and the separation between their maxima continues to
increase with t (Fig. 3). The emergence of a dip at B =

 on the magnetic field dependence of the intensity of
exciton radiation for large values of t can be explained
as follows. Since optical transitions from states a and b
are not resolved in the spectra, the signal being
recorded is the total intensity of exciton radiation in

these states:  = Ia(B, t) + Ib(B, t). For B = ,

the exciton lifetimes τa(B) and τb(B) in states a and b are
identical; the total lifetime τa(B) + τb(B) attains its min-
imum value in this case. Accordingly, the total popula-
tion of these states also attains its minimum value. As a

result, states a and b turn out to be depleted for B ≈ 
and for large values of t and do not make any significant
contribution to radiation, while the population of one of

these states for B <  and B >  remains quite high,

manifested in the form of two emission peaks at B < 

and B > . These symmetric relative to B = 
(Fig. 3); one peak corresponds to emission from state b
and the other to emission from state a. Thus, the shape
of the signal from anticrossing of energy levels at dif-
ferent instants of the lifetime of bound photons changes
significantly from nearly a complete absence of a signal
(at t = 0) to a complex shape with two peaks (for large
values of t). The behavior of the radiation intensity

 for exciton α with polarization σ– is similar to

the behavior of β exciton radiation under similar condi-
tions [7] and can be described in the above model of
anticrossing of spin sublevels of triplet bound excitons.

It was shown in [7] that a comparison of the experi-
mental and theoretical dependences  makes it

possible to determine a number of important parame-
ters of triplet excitons, including the radiative and non-
radiative lifetimes (τr and τnr, respectively). If the effec-
tive g factor of the α exciton is known from an analysis
of the Zeeman effect [8], all the remaining parameters
characterizing the energy structure and kinetic proper-
ties of a bound exciton can be determined indepen-
dently by comparing theory and experiment. Among
other things, such an analysis shows that the delay time
t' corresponding to the instant of dip formation for B =

 is determined only by the radiative lifetime of a trip-
let exciton: t' = 4τr. For given parameters of the energy
structure and a value of τr, the quantity τnr is in fact the
only fitting parameter determining the behavior of

 with time. The theoretical dependences

 corresponding to the best agreement between

theory and experiment are presented by solid curves in

I
σ– B t,( )

Bc'

I
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Fig. 3.2 Theoretical dependences in Fig. 3 were
obtained using the following parameters of the triplet
bound exciton α: τrα = 80 × 10–9 s, τnrα = 1.5 × 10–6 s,
other parameters characterizing the splitting of states
a and b (Fig. 2) being practically the same for excitons
α and β (this is confirmed by the magnetic resonance
data [10]). Thus, bound excitons α and β differ, as
regards the structure of energy levels, only in binding
energies. At the same time, the radiative and nonradia-
tive lifetimes τrβ = 125 × 10–9 s and τnrβ = 7 × 10–6 s of
the bound exciton β [7] differ noticeably from those for
the bound exciton α. We can assume that the noticeable
difference in the radiative and nonradiative recombina-
tion lifetimes is determined to a considerable extent
precisely by the difference in the binding energies of
excitons α and β.

Indeed, according to Rashba and Gurgenishvili [14],
the oscillator force fd of an optical electron transition to
the bound exciton state is defined as

(2)

where E is the binding energy of a bound exciton; fex is
the oscillator strength of a transition to the free exciton

state; the quantity κ –1 = "/  characterizes the
wave function of a bound exciton (it is assumed that the
forces of interaction of the exciton with a defect are short-
range forces of radius R0 and the wave function range for
a bound exciton is noticeably larger than R0 [14]); and
m is the effective exciton mass. The radiative lifetime

of a bound exciton is τr ~  [2]. Thus, the radiative
lifetime for bound excitons in a given semiconductor
(fex = const) must increase with their binding energy. It
was shown above that exactly the same situation is
obtained for the bound excitons α and β in GaSe. On
the basis of relation (2), we can write the ratio of radia-
tive lifetimes of two bound excitons with different bind-
ing energies in the form

(3)

In our case, the binding energy is E1 = Eα ≈ 12 meV for
exciton α and E2 = Eβ ≈ 19 meV for exciton β. Conse-
quently, the expected ratio of radiative lifetimes
τrα/τrβ = (12/19)3/2 = 0.5, which is close to the experi-
mentally obtained value τrα/τrβ = 0.65 ± 0.15.

2 It should be noted that, owing to the effect of anticrossing of spin
levels observed in a magnetic field and associated with the mix-
ing of optically active and optically inactive states, the lumines-
cence signal  can be reliably observed for delay times up

to 10 µs, while the luminescence intensity for B = 0 becomes
smaller than the detection threshold even for t ≥ 0.5 µs. Such an
increase in the time range for reliable observation of the lumines-
cence signal significantly increases the accuracy of determining
the lifetime of a bound exciton.

I
σ– B t,( )

f d κ 3– f ex E 3/2– f ex,∼∼
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------
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------- E1
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3/2
.= =
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We can assume that a dependence similar to rela-
tion (3) is also observed for nonradiative lifetimes of
excitons bound at ionized centers and isoelectron traps.
At low temperatures and low optical excitation density,
the nonradiative decay of an exciton bound at an ion-
ized center (or an isoelectron trap) is due to transition
of one of the charge carriers (e.g., an electron) forming
the exciton to a lower vacant electron energy level of
another defect, which can be quite shallow on account
of the energy of excitons α and β. The probability of
such a transition depends, among other things, on the
overlapping of the wave functions of the bound exciton
and the defect under investigation. If the concentration
of defects is quite high, the nonradiative lifetime of a
bound exciton is determined by the number of “appro-
priate” (containing the above-mentioned electron level)
defects in the crystal region where the wave function of
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Fig. 3. Magnetic field dependence of the radiation inten-
sity  of a triplet bound exciton α in polarization σ–

at different instants in the lifetime of the excited state (time
t is indicated in the figure), B || c || kphoton, T = 2 K. Dark
circles correspond to experimental values, and curves, to the
theoretical dependence.
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the bound exciton noticeably differs from zero. Denot-
ing by Nt the concentration of such defects, we can
write the dependence of the nonradiative lifetime of the
bound exciton on its binding energy in the form

(4)

The notation Nt(E) shows here that the concentration of
the defects that may participate in nonradiative decay of
a bound exciton is a function of the exciton binding
energy E. Indeed, it was noted above that the charge
carrier constituting the exciton can, as a result of non-
radiative decay, pass only to lower electron levels of
other defects (as a last resort, a transition may occur
without a change in the carrier energy). Consequently,
the higher the binding energy of a bound exciton, the
deeper must be the energy levels of the defects partici-
pating in the nonradiative decay of the exciton. Other
conditions being the same, we have

(5)

if E1 < E2. In the framework of the above model, we
obtain the following expression for the ratio of the non-
radiative lifetimes of the bound excitons α and β:

(6)

Since Eα < Eβ, the inequality Nt(Eβ)/Nt(Eα) < 1 holds in
accordance with relation (5); taking into account rela-
tion (3), we obtain the following inequality from rela-
tion (6):

(7)

Experiments give τnrα/τnrβ = (0.2 ± 0.1) < τrα/τrβ, which
is in accord with relation (7). The total lifetimes τi =

(  + )–1 (i = α, β) of the bound excitons α and β
calculated on the basis of the measured radiative and
nonradiative lifetimes of these excitons are also in com-
plete agreement with the experimental data presented
in Fig. 1.

It is interesting to note that in the case of excitons
bound at neutral donors or acceptors, for which the
Auger decay is the main mechanism of nonradiative
decay, the reverse (relative to excitons bound at ionized
centers) dependence of the nonradiative lifetime of
bound excitons on their binding energy is observed: the

τnr
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nonradiative lifetime decreases upon an increase in the
binding energy of the exciton at a center [4].

4. CONCLUSIONS

Thus, we directly measured the radiative and nonra-
diative recombination times for bound excitons of the
same type (excitons bound at ionized centers or isoelec-
tron traps) with different binding energies. To our
knowledge, these measurements were made for the first
time. It is shown that the radiative and nonradiative life-
times of an exciton bound at an ionized center (isoelec-
tron trap) increase with the binding energy of the exci-
ton. Possible reasons for such a dependence are con-
sidered.
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Abstract—We consider the propagation of an atomic beam in a quadrupole magnetic field under transverse
irradiation by a cooling laser field. The cooling laser field was chosen in the form of a two-dimensional σ+–σ–

configuration. We show that the sub-Doppler resonance in the radiation force can be used to reduce the diameter
of the atomic beam to a value on the order of 10 µm. We establish that the simultaneous transverse cooling and
compression of the atomic beam allow its phase density to be increased to values of the order of 10–4–10–3. The
dipole interaction of an atom with the cooling and compressing laser field in a quadrupole magnetic field is ana-
lyzed in terms of a simple (3 + 5)-level model atom. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
The compression of atomic beams to increase their

phase density has been of considerable interest in
recent years. One of the effective schemes is the com-
pression of an atomic beam by a cooling laser field in a
nonuniform magnetic field. Transverse cooling of an
atomic beam in a potential well produced by a magnetic
field causes the atomic oscillation amplitude in the
potential and, accordingly, the atomic beam diameter to
decrease. Previously, similar compression schemes
were experimentally studied for transverse Doppler [1]
and sub-Doppler [2] cooling of atomic beams. A deeper
compression can be achieved in principle through a sig-
nificant reduction in the beam temperature by using
sub-Doppler cooling.

Attaining a high atomic beam phase density is of
independent interest, because atomic beams are widely
used in precision physical measurements, and of spe-
cial interest in designing continuous-wave atomic
lasers. The existing experimental schemes for attaining
quantum degeneracy in atomic ensembles are known to
be based on the evaporative cooling method [3, 4]. This
cooling method can be applied to high-density atomic
ensembles with a large number of atoms and with a low
temperature. In all cases, the evaporative cooling
method has been applied to laser-precooled atomic
ensembles. All of the above three conditions in laser
cooling of atoms are difficult to satisfy: low tempera-
tures are reached at low atomic densities and, con-
versely, high densities prevent low temperatures from
being reached. Despite these difficulties, the method
has been effectively applied to atomic ensembles local-
ized in magnetic or optical dipole traps. The long life-
time of the trapped atoms (on the order of 100 s) allows
quantum degeneracy to be achieved even at a moderate
initial phase density.

An atomic ensemble in the beam regime is of inter-
est in that a continuous-wave atomic laser can be real-
1063-7761/03/9601- $24.00 © 20008
ized. However, quantum degeneracy in a beam is more
difficult to achieve because of the limited preparation
time of the atomic ensemble determined by the time of
flight. Thus, for the evaporative cooling method to be
applicable, the initial atomic phase density in the beams
must be higher than that in the traps. Here, we consider
a laser-cooling scheme that allows us to significantly
increase the atomic beam phase density and, thereby,
makes the subsequent evaporative cooling of the beam
atoms possible to attain quantum degeneracy.

The effect of a magnetic field on the sub-Doppler
cooling of atoms has previously been studied both the-
oretically [5–8] and experimentally [9, 10]. A magnetic
field was used in experiments to extract atomic beams
from magnetooptical traps [11–13]. The structure of the
one-photon Doppler and two-photon sub-Doppler reso-
nances in a magnetic field was investigated in [14, 15].
The multicomponent velocity distribution of the atomic
cloud produced by the one- and two-photon resonances
in a magnetooptical trap (MOT) was studied in [6, 7].
The authors of [6, 10] pointed out that under certain
conditions, a magnetic field could even suppress the
sub-Doppler cooling.

Here, our goal is to obtain analytical estimates for
the maximum possible compression of an atomic beam
in a nonuniform magnetic field and to estimate the
atomic beam phase density reached in the case of trans-
verse sub-Doppler cooling and compression.

We analyze the transverse compression of an atomic
beam in a quadrupole axisymmetric magnetic field on
which a cooling laser field was imposed. The laser field
chosen as a two-dimensional σ+–σ– configuration pro-
duces transverse sub-Doppler cooling of the atomic
beam, while the magnetic field produces a two-dimen-
sional potential well across the atomic beam axis. The
dipole interaction of the atoms with a nonuniform mag-
netic field and with a laser electric field is considered in
a simple (3 + 5)-level model atom with the total
003 MAIK “Nauka/Interperiodica”



        

MAGNETOOPTICAL COMPRESSION OF ATOMIC BEAMS 9

                                                                               
moments in the ground and excited states Fg = 1 and
Fe = 2. In order that our results be applicable to real
experimental schemes, the Lande g factors for the
ground and excited states are assumed to be arbitrary.
Our analysis reveals that the sub-Doppler resonances in
the radiation force can be used for the simultaneous
transverse cooling to sub-Doppler temperatures and the
effective compression of the atomic beam to a diameter
on the order of 10 µm.

2. THE COMPRESSION SCHEME
AND THE MODEL ATOM

The scheme for transverse sub-Doppler compres-
sion of an atomic beam in a quadrupole magnetic field
is shown in Fig. 1. In this scheme, four rectilinear cur-
rents I produce a magnetic field B = (Bx, By) near the
electromagnetic quadrupole configuration axis whose
components are defined by the standard relations [16]

(1)

Here, a is the magnetic field gradient on the quadrupole
magnetic configuration axis, which depends on the cur-
rents I and on the distance R from the configuration axis
to the currents.

The laser field was chosen in the form of two σ+–σ–

configurations directed along the y and z axes. Each σ+–
σ– configuration was composed of two counterpropa-
gating, circularly polarized laser waves. In the coordi-
nate system shown in Fig. 1, the electric field of the
laser σ+–σ– configuration directed along the y axis is

(2)

where

are the unit circular vectors that correspond to the quan-
tization y axis, k = ω/c is the magnitude of the wave vec-
tor, and ω is the laser field frequency. The first and sec-
ond terms in Eq. (2) describe the waves with σ+ and σ–

polarizations with respect to the quantization y axis,
respectively. The electric field of the laser σ+–σ– con-
figuration directed along the z axis in the coordinate
system with the quantization z axis is

(3)

By ay, Bz– az.= =

E y( ) = 
E0

2
----- e+

y i ky ωt–( )( )exp e–
y –i ky ωt–( )( )exp–[ ]

–
E0

2
----- e+

y i ky ωt+( )( )exp e–
y –i ky ωt+( )( )exp–[ ] ,

e±
y 1

2
------- ez iex±( )+−=

E z( ) E0

2
----- e+

z i kz ωt–( )( )exp e–
z –i kz ωt–( )( )exp–[ ]=

–
E0

2
----- e+

z i kz ωt+( )( )exp e–
z –i kz ωt+( )( )exp–[ ] ,
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where

are the unit circular vectors that correspond to the quan-
tization z axis. Similar to configuration (2), the first and
second terms in Eq. (3) describe the waves with σ+ and
σ– polarizations with respect to the quantization z axis,
respectively.

Below, we estimate the basic parameters of the com-
pressed atomic beam in a simple one-dimensional
interaction model (see Fig. 2a). In this model, the
atomic beam is compressed by the σ+–σ– configuration
that propagates along the z axis. When the quantization
z axis is chosen, this laser configuration induces the
optical transitions in a (3 + 5)-level atom, shown in
Fig. 2b. It should be immediately noted that all our esti-
mates are also valid for the one-dimensional compres-
sion of the σ+–σ– configuration propagating along the y
axis.

e±
z 1

2
------- ex iey±( )+−=

σ–

σ–

σ+

σ+

z y

x

R

1
2

3

(a)

4

3

σ–z

x

σ+
(b)

y

σ+ σ–

Fig. 1. (a) The scheme for laser sub-Doppler compression
of an atomic beam in a quadrupole magnetic field: 1 incom-
ing atomic beam, 2 outgoing atomic beam, 3 cooling laser
beams, 4 electric currents producing a quadrupole magnetic
field B. (b) The distribution of magnetic field B in the yz
plane and the positions of the cooling laser beams.

B
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10 BALYKIN, MINOGIN
3. BASIC EQUATIONS

For the interaction scheme under consideration, the
Hamiltonian can be written as

(4)

where the Hamiltonian H0 describes the quantized
atomic states in the absence of a magnetic field and the
second and last terms describe the dipole interaction of
an atom with the nonuniform magnetic field B = Bzez

and with the laser field E = E(z), respectively.
A natural approach to describing the atomic motion

in the chosen scheme is to use the atomic density matrix
in the Wigner representation, ρ = ρ(r, p, t). Below, we
assume the density matrix ραβ = 〈α|ρ|β〉 to be deter-
mined from the time-independent eigenfunctions of the
magnetic states α and β = |F, mF〉 . The energies  and

 of the atomic Hamiltonian proper,

correspond to these eigenfunctions.
For a laser field composed of plane monochromatic

traveling waves with a frequency ω close to the atomic
transition frequencies ωmn = (Em – En)/",

(5)

the equations of motion for the elements of the density

H H0 m B "
2/2M( )∆– d E,⋅–⋅–=

Eem

Egm

Ha H0 m B,⋅–=

E Ea i ka r⋅ ωt–( )( )exp[
a

∑=

+ Ea∗ i kar ωt–( )–( )exp ] ,

σ+ σ–

z

B

x

e–2
e–1

e0
e1

e2

σ–

σ–

σ–

σ+ σ+ σ+

g–1
g0

g1
ωg

ωe

(a)

(b)

Fig. 2. (a) The one-dimensional compression of an atomic
beam in the field of the laser σ+–σ– configuration propagat-
ing along the z axis. The magnetic field is directed along the
z axis and the atomic beam propagates along the x axis.
(b) Zeeman energy levels for the (3 + 5)-level atom in the
coordinate system with the quantization z axis for positive
Zeeman shifts, ωg > 0 and ωe > 0. The arrows indicate the

transitions induced by the σ±- and π-polarized laser waves.
JOURNAL OF EXPERIMENTAL
matrix in Wigner representation and in the rotating-
wave approximation can be written as [17, 18]

(6)

where dkl = 〈k |d |l 〉  are the matrix elements of the atomic
dipole moment operator. All four sums in Eqs. (6) are
assumed to include terms that correspond only to posi-
tive atomic frequencies,

The first, second, third, and fourth sums include,
respectively, the terms with frequencies

The first term in Eqs. (6) describes the contributions
from the radiative relaxation operator Γ.

Note that in Eqs. (6), we omitted the small magne-
todipole forces

which play no significant role in the dynamics of the
atom.

i"
t∂

∂ v
r∂

∂
+ 

  ρkl r p,( ) Ek El–( )ρkl r p,( )=

– dkm Ea⋅( )ρml r p
1
2
---"ka–, 

  ika r⋅ iωt–( )exp
a m,
∑

+ dnl Ea⋅( )ρkn r p
1
2
---"ka+, 

  ika r⋅ iωt–( )exp
a n,
∑

– dkm Ea∗⋅( )ρml r p
1
2
---"ka+, 

  –ika r⋅ iωt+( )exp
a m,
∑

+ dnl Ea∗⋅( )ρkn r p
1
2
---"ka–, 

  –ika r⋅ iωt+( )exp
a n,
∑

+ i" k Γρ r p,( ) l〈 〉 ,

ωpq

Ep Eq–
"

------------------ 0.>=

ωkm

Ek Em–
"

------------------ 0,>=

ωnl

En El–
"

---------------- 0,>=

ωmk

Em Ek–
"

------------------ 0,>=

ωln

El En–
"

---------------- 0.>=

fα ∂ α m B⋅ α〈 〉 /∂r,=
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MAGNETOOPTICAL COMPRESSION OF ATOMIC BEAMS 11
Below, the Zeeman shifts of the magnetic states are
considered in the simplest linear approximation in
magnetic field strength. For the ground-state sublevels,

(7)

for the excited-state sublevels,

(8)

Here, µB is the Bohr magneton; gg and ge are the Lande
g factors for the ground and excited states, respectively;
Fg = 1, mg = –1, 0, 1; Fe = 2, me = –2, –1, 0, 1, 2.

Below, we give Eqs. (6) for a (3 + 5)-level atom in
explicit form in the practically important case of
weakly saturated atomic transitions. In this case, it will
suffice to take into consideration the equations only for
the diagonal elements of the density matrix, for the
nondiagonal one-photon elements describing optical
coherences, and for one nondiagonal two-photon ele-
ment describing the coherence between the sublevels
g−1 and g1 of the ground state g. Concurrently, we elim-
inate the explicit dependence on time and coordinate
from the equations by the following simple substitu-
tions:

After these substitutions, the equations for the
atomic density matrix elements that describe the dipole
interaction of the (3 + 5)-level atom with the laser field
E = E(z) in a nonuniform magnetic field B = Bzez in the
approximation of weak saturation are

Fg mg –m B⋅ Fg mg,,〈 〉 µ BggBzmg;=

Fe me –m B⋅ Fe me,,〈 〉 µ BgeBzme.=

ρg 1– e 2–
σg 1– e 2–

iωt ikz+( ),exp=

ρg 1– e0
σg 1– e0

iωt ikz–( ),exp=

ρg0e 1–
σg0e 1–

iωt ikz+( ),exp=

ρg0e1
σg0e1

iωt ikz–( ),exp=

ρg1e0
σg1e0

iωt ikz+( ),exp=

ρg1e2
σg1e2

iωt ikz–( ),exp=

ρg 1– g1
σg 1– g1

2ikz–( ).exp=

td
d ρg 1– g 1–

iΩ σe 2– g 1–

–( ) σg 1– e 2–

–( )–( ) iΩ
6

------- σe0g 1–

+( ) σg 1– e0

+( )–( )+=

+ γ 2Φσ n( )ρe 2– e 2–

n( ) Φπ n( )ρe 1– e 1–

n( ) 1
3
---Φσ n( )ρe0e0

n( )+ + 
  n2 ,d∫

td
d ρg0g0

iΩ
2

------- σe 1– g0

–( ) σg0e 1–

–( )– σe1g0

+( ) σg0e1

+( )–+( )=
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(9)

+ γ Φσ n( )ρe 1– e 1–

n( ) 4
3
---Φπ n( )ρe0e0

n( ) Φσ n( )ρe1e1

n( )+ + 
  n2 ,d∫

td
d ρg1g1

iΩ σe2g1

+( ) σg1e2

+( )–( ) iΩ
6

------- σe0g1

–( ) σg1e0

–( )–( )+=

+ γ 1
3
---Φσ n( )ρe0e0

n( ) Φπ n( )ρe1e1

n( ) 2Φσ n( )ρe2e2

n( )+ + 
  n2 ,d∫

td
d ρe 2– e 2–

iΩ σg 1– e 2–

+( ) σe 2– g 1–

+( )–( ) 2γρe 2– e 2–
,–=

td
d ρe 1– e 1–

iΩ
2

------- σg0e 1–

+( ) σe 1– g0

+( )–( ) 2γρe 1– e 1–
,–=

td
d ρe0e0

iΩ
6

------- σg 1– e0

–( ) σe0g 1–

–( )– ρg1e0

+( ) ρe0g1

+( )–+( ) 2γρe0e0
,–=

td
d ρe1e1

iΩ
2

------- σg0e1

–( ) σe1g0

–( )–( ) 2γρe1e1
,–=

td
d ρe2e2

iΩ σg1e2

–( ) σe2g1

–( )–( ) 2γρe2e2
,–=

td
d σg 1– e 2–

iΩ ρe 2– e 2–

–( ) ρg 1– g 1–

+( )–( )=

– γ i ωg 2ωe– δ1–( )–( )σg 1– e 2–
,

td
d σg 1– e0

iΩ
6

------- ρg 1– g 1–

–( ) σg 1– g1

+( ) ρe0e0

+( )–+( )–=

– γ i ωg δ 1––( )–( )σg 1– e0
,

td
d σg0e 1–

–
iΩ

2
------- ρg0g0

+( ) ρe 1– e 1–

–( )–( ) γ i ωe δ1+( )+( )σg0e 1–
,–=

td
d σg0e1

–
iΩ

2
------- ρg0g0

–( ) ρe 1– e 1–

–( )–( ) γ i ωe δ 1––( )–( )σg0e1
,–=

td
d σg1e0

iΩ
6

------- ρg1g1

+( ) σg1g 1–

–( ) ρe0e0

–( )–+( )–=

– γ i ωg δ1+( )+( )σg1e0
,

td
d σg1e2

iΩ ρg1g1

–( ) ρe2e2

+( )–( )–=

– γ i ωg 2ωe– δ 1–+( )+( )σg1e2
,

td
d σg 1– g1

iΩ
6

------- σe0g1

+( ) σg 1– e0

–( )–( ) 2i ωg kv+( )σg 1– g1
.+=
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12 BALYKIN, MINOGIN
Above, we use the following notation for the density
matrix elements:

where k = kez and n is the unit vector that specifies the
direction of the spontaneous photon emission. The total
time derivative is

(10)

The Rabi frequency Ω and the spontaneous decay rate
of the upper magnetic sublevels 2γ are defined as

(11)

where ||d|| is the reduced matrix element. The main, δ,
and two Doppler-shifted, δ±1, detunings are given by
the relations

(12)

where v  = v z is the velocity component along the z axis.
The frequencies

(13)

define the Zeeman shifts of the magnetic sublevels,
which depend on the atom coordinate and which can
have any signs. The functions Φσ(n) and Φπ(n) define
the angular anisotropy in spontaneous emission:

(14)

where nz = cosθ is the component of the unit vector n
along the quantization z axis. The integration in the
radiation arrival terms is performed over the directions
of spontaneous emission specified by the unit vector n,
d2n = sinθdθdφ.

4. THE KINETIC EQUATION

The difference differential equations (9), which do
not include the explicit dependence on time and coordi-
nate, can be analyzed in a standard way [19]. If the
atom–field interaction time is much longer than the
spontaneous decay time, τint @ τsp = 1/2γ, then the
momentum width of the density matrix elements can be
assumed to exceed the photon momentum "k. This
assumption, which always holds below, allows the
atomic density matrix elements to be expanded in terms
of powers of the photon momentum "k. Considering
below the equations expanded in terms of sequentially
increasing orders of the photon momentum "k, we can

ρab a ρ r p t, ,( ) b〈 〉 ,=

ρab
±( ) a ρ r p

1
2
---"k± t, , 

  b ,=

ρab
n( ) a ρ r p n"k+ t, ,( ) b〈 〉 ,=

td
d

t∂
∂

v
r∂

∂
.+=

Ω
d E0

2 5"
--------------, 2γ Wsp

4
3
---

d 2ω0
3

"c3
----------------,= = =

δ ω ω0, δ 1±– ω ω0– kv ,±= =

ωg µBggaz/", ωe µBgeaz/"= =

Φσ n( )
3

16π
--------- 1 nz

2+( ), Φπ n( )
3

8π
------ 1 nz

2–( ),= =
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infer that the diagonal (ρaa) and nondiagonal (σab) den-
sity matrix elements are the functionals of the Wigner
distribution function w(r, p, t),

(15)

where α = –1, 0, 1 and β = –2, –1, 0, 1, 2.

The general structure of the functional dependence
can be directly determined from the structure of the
expanded equations:

(16)

where , , , …, , , , … are the
functions of momentum p (or velocity v = p/M), which
are determined by the solution procedure. By the defi-
nition of the distribution function (15), the unknown
diagonal functions satisfy the normalization conditions

(17)

(18)

(19)

Taking into account the structure of solution (16), we
can see from the expanded equations that the Wigner
function w(r, p, t) satisfies the closed equation. To
within the second order in photon momentum "k, the
closed equation for the distribution function is the Fok-
ker–Planck equation:

(20)

where i = x, y, z. The kinetic coefficients F and Dii in
Eq. (20) define the radiation force and the momentum
diffusion tensor:

(21)

w ρgα gα∑ ρeβeβ∑( ),+=

ρaa Raa
0 1

2
---"kRaa

1 …+ + 
  w=

+
1
2
---"k Qaa

1 …+( ) ∂w
∂ pz

-------- …,+

σab Sab
0 1

2
---"kSab

1 …+ + 
  w=

+
1
2
---"k Tab

1 …+( ) ∂w
∂ pz

-------- …,+

Raa
0 Raa

1 Qaa
1 Sab

0 Sab
1 Tab

1

Rgα gα

0 Reβeβ

0+∑ 1,=

Rgα gα

1 Reβeβ

1+∑ 0,=

Qgα gα

1 Qeβeβ

1+∑ 0.=

∂w
∂t
------- v

∂w
∂r
-------+

pz∂
∂

Fw( ) ∂2

∂pi
2

--------- Diiw( ),∑+–=

F "kΩ i Sg1e2

0 Se2g1

0– Se 2– g 1–

0 Sg 1– e 2–

0–+( )=

+
i

2
------- Sg0e1

0 Se1g0

0– Se 1– g0

0 Sg0e 1–

0–+( )

+
i

6
------- Sg 1– e0

0 Se0g 1–

0– Se0g1

0 Sg1e0

0–+( ) ,
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(22)

In these equations, the coefficients  and  take into
account the angular anisotropy in spontaneous photon
emission,

(23)

In explicit form, the angular anisotropy coefficients are

(24)

The force F and the diffusion tensor Dii can be
explicitly determined from the solution of the steady-
state equations that follow from the expanded equations
for the atomic density matrix elements considered sep-
arately in the zero and first orders in photon momentum

"k. The steady-state equations for the functions 

and , as well as for  and  in the case of
weakly saturated transitions, are given in Appendices A
and B.

5. FORCES ACTING ON AN ATOM

The radiation force that acts on an atom in the
scheme under consideration depends both on the veloc-
ity and on the coordinate of the atom. In the approxima-
tion of weak saturation, the one-photon optical pro-
cesses described by the coherences between the sublev-
els gα and eα ± 1 and the two-photon processes described
by the coherences between the ground-state sublevels
g–1 and g1 contribute to the force.

Below, we consider the radiation force in the practi-
cally important case of large negative detunings (–δ @ γ),
where the radiation force produces the deepest sub-
Doppler cooling of an atomic beam [20, 21]. Restrict-
ing our analysis to low velocities (kv  ! γ) and small
Zeeman shifts (|ωg |, |ωe | ! γ), we can derive the follow-

Dii "
2k2γ=

× α ii
σ Re 2– e 2–

0 1
2
---Re 1– e 1–

0 1
3
---Re0e0

0 1
2
---Re1e1

0 Re2e2

0+ + + + 
 

+ α ii
π 1

2
---Re 1– e 1–

0 2
3
---Re0e0

0 1
2
---Re1e1

0+ + 
 

+
1
2
---δiz"

2k2Ω i Tg 1– e 2–

1 Te 2– g 1–

1– Te2g1

1 Tg1e2

1–+( )---

+
i

2
------- Tg0e 1–

1 Te 1– g0

1– Te1g0

1 Tg0e1

1–+( )

+
i

6
------- Te0g 1–

1 Tg 1– e0

1– Tg1e0

1 Te0g1

1–+( ) .

α ii
σ α ii

π

α ii
σ Φσ n( )ni

2 n2 , α ii
πd∫ Φπ n( )ni

2 n2 .d∫= =

α xx
σ α yy

σ 3
10
------, α zz

σ 2
5
---,= = =

α xx
π α yy

π 2
5
---, α zz

π 1
5
---.= = =

Raa
0

Sab
0 Qaa

1 Tab
1
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ing approximate expression for the radiation force near
the axis of the compressing configuration (z = 0), which
reduces to the sum of the forces due to one- and two-
photon processes (Fig. 3):

(25)

where

(26)

is the dimensionless saturation parameter and

(27)

is the sub-Doppler resonance halfwidth for |δ| @ γ.
Under the same conditions, the force acting on a

static atom is also the sum of the forces due to one- and
two-photon processes (Fig. 4):

(28)

Recall that the Zeeman shifts ωg and ωe are propor-
tional to the z coordinate.

F 0 v,( )
25
11
------"kγGγ2

δ2
--------- 88/85( ) kv /µ( )2+

1 kv /µ( )2+
--------------------------------------------kv

δ
-------–=

–
60
17
------"kγ kv / δ

1 kv /µ( )2+
-----------------------------,

G
2Ω2

γ2
----------

1
10
------

d E0

"γ
------------- 

 
2

= =

µ 1
4
--- 17

33
------

Gγ2

δ
--------- 1

2
--- 17

33
------

Ω2

δ
------= =

F z 0,( )
5
11
------"kγGγ2

δ 3
---------–=

×
44/17( ) 3ωe ωg–( ) 8ωe 3ωg–( ) ωg/µ( )2

+

1 ωg/µ( )2+
----------------------------------------------------------------------------------------------------

–
60
17
------"kγ

ωg/ δ
1 ωg/µ( )2+
----------------------------.

F(0, v)/"kγ
0.0015

0.0010

0.0005

0

–0.0005

–0.0010

–0.0015
–50 –40 –30 –20 –10 0 10 20 30 40 50

kv /µ

Fig. 3. Radiation force versus velocity at z = 0, the detuning
δ = –10γ, and the saturation parameter G = 0.1 (solid line)
and 0.5 (dashed line). The sub-Doppler resonance line half-
widths µ = 0.18γ (solid line) and 0.90γ (dashed line) corre-
spond to the chosen detuning and saturation parameter.
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14 BALYKIN, MINOGIN
The broad parts of the velocity and coordinate
dependences of the radiation force are attributable to
the one-photon absorption (emission) weakly perturbed
by two-photon processes. In our case of large detunings
(|δ| @ γ @ µ), the broad velocity dependence originates
from the two resonances of one-photon absorption
(emission) located at the velocities kv res = ±δ. The
broad spatial dependence of the radiation force origi-
nates from the one-photon resonances related to the
Zeeman shift frequencies.

The narrow resonances in the field are attributable to
two-photon processes. For an atom that moves in a zero
magnetic field, i.e., at z = 0, the two-photon processes
are effective at two-photon resonance velocities

i.e., at velocities v  ≈ 0. For a static atom (v  = 0), the
two-photon processes are effective for

i.e., for ωg ≈ 0 or for z ≈ 0 (Fig. 4).

The characteristic velocity scale of the change in the
force due to the sub-Doppler resonance is determined
by the characteristic velocity v sD = µ/k, which for weak
saturation and for a large negative detuning is

(29)

The characteristic spatial scale of the change in the
force due to the sub-Doppler resonance is determined
by the length lsD on which the Zeeman ground-state

ω kv±( ) ω kv+−( ) 0,≈–

ω ωg±( ) ω ωg+−( ) 0,≈–

v sD
1
4
--- 17

33
------

Gγ
δ

-------γ
k
--.=

F(z, 0)/"kγ

0.002

0.001

0

–0.001

–0.002

–50 –40 –30 –20 –10 0 10 20 30 40 50

z/lsD

Fig. 4. Radiation force versus coordinate at a zero velocity,
the detuning δ = –10γ, and the saturation parameter G = 0.1
(solid line) and 0.5 (dotted line) for the Lande factors gg =
1/3 and ge = 1/2. The value of lsD defined by (30) was cho-
sen as the scale length.
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sublevel splitting is equal to the two-photon resonance
width. For weak saturation and for a large negative
detuning, the condition ωg = µ specifies the scale length

(30)

For definiteness, we estimate the degree of beam
compression for 85Rb atoms that interact with laser
radiation on the 52S1/2(F = 3) – 52P3/2(F = 4) dipole tran-
sition at the wavelength λ = 780 nm. In general, this
scheme is described by a (7 + 9)-level model atom.
However, since the higher order multiphoton processes
give small contributions to the radiation force, a simple
(3 + 5)-level model can be used to estimate the main
effects. For the optical transition under consideration,
gg = 1/3 and ge = 1/2. If, for example, we choose the satu-
ration parameter G = 0.5 and the detuning d = –10γ, then
the characteristic velocity interval is v sD = 2.1 cm s–1. For
a moderate magnetic field gradient, a = 10 G cm–1, the
characteristic spatial scale is lsD = 50 µm.

6. BEAM COMPRESSION

The radiation force (28) produces a potential well
across the atomic beam axis:

For large detunings (|δ| @ γ) and for the Lande factors
gg = 1/3 and ge = 1/2, this potential well is described by
the approximate expression

(31)

where we introduced the characteristic length on which
the Zeeman shift frequency is equal to the natural line
width,

(32)

The shape of the potential well (31) near the bottom is
determined by the two-photon sub-Doppler resonance
and its wings are determined by the Doppler resonance
(Fig. 5). At the magnetic field gradient a = 10 G cm–1,
the characteristic length for the transition in 85Rb with
the natural line halfwidth γ/2π = 2.95 MHz under con-
sideration is zm ≈ 2.1 mm.

The atomic oscillation frequency near the bottom of
the potential well where the sub-Doppler resonance is
effective is

(33)

lsD
"µ

µBgga
--------------.=

U z( ) F z 0,( ) z.d∫–=

U z( )
15
22
------"γGγ3

δ 3
--------- k

zm

-----z2 15
88
------"γG2γ3

δ 3
-----------kzm+≈

× 1
176
51
--------- δ

Gγ
------- 

 
2 z

zm

----- 
  2

+ 
  ,ln

zm
"γ
µBa
---------.=

ωv
γ
δ
----- 

 
1/2 40

17
------ λ

2πzm

------------γωr,=
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MAGNETOOPTICAL COMPRESSION OF ATOMIC BEAMS 15
where ωr = "k2/2M is the recoil frequency. At the same
detunings δ = –10γ and the magnetic field gradient a =
10 G cm–1, the oscillation frequency for the chosen
transition with the characteristic recoil frequency
ωr/2π = 3.8 kHz is ωv ≈ 400 Hz.

Let us now estimate the parameters of the com-
pressed atomic beam. For a negative detuning (δ < 0),
radiation force (25) reduces to the frictional force

with the coefficient of friction β, which at large detun-
ings (|δ| @ γ, Ω) is proportional to the recoil frequency:

(34)

The velocity dependence of the momentum diffu-
sion tensor also includes the two-photon sub-Doppler
resonance localized at zero velocity. For our purposes,
it will suffice to use the diffusion coefficient Dzz at zero
velocity and zero coordinate, D0 = Dzz(0, 0). This value
of the diffusion coefficient, together with the coefficient
of friction β, determines the atomic temperature near
the quadrupole configuration axis according to the
steady-state solution of the Fokker–Planck equation:

At large detunings (|δ| @ γ, Ω), the momentum diffu-
sion coefficient D0 is estimated as

(35)

Accordingly, the transverse velocity distribution of the
atomic beam near the quadrupole configuration axis is
described by the Maxwellian distribution with the char-
acteristic temperature

(36)

The spatial distribution is described by the Boltzmann
distribution

(37)

Since the potential has the form (31), the beam size
near the bottom of the potential well depends only on
the saturation parameter G and on the characteristic
length zm. For the chosen Lande factors, the beam width
is estimated as

(38)

For detuning δ = –10γ, saturation parameter G = 0.5,
and magnetic field gradient a = 10 G cm–1, the temper-
ature is 3 µK and the beam size is 18 µm.
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It should be particularly emphasized that the above
estimates are also retained for the beam compression
along any other direction. Thus, in describing the com-
pression of an atomic beam along the y axis, substitut-
ing the laser field (2) for field (3) in the basic equations
does not change the above estimates. The estimates of
the compression for any other directions include addi-
tional geometrical factors on the order of unity.

The widths of the velocity and spatial distributions
determined above can be used to estimate the phase
density of the compressed atomic beam. We give an
estimate of the dimensionless phase density [22]:

(39)

where Na is the number of atoms in the beam and
(∆r∆p)3 is the phase volume occupied by the atoms. In
the case of an atomic beam, it is convenient to express
the phase density in terms of the mean atomic density
na and to separate out the widths of the atomic momen-
tum distribution along, ∆pl, and across, ∆ptr, the beam
axis:

(40)

The atomic density in the magnetic system under
consideration is limited by the dipole–dipole atomic
interaction, by the repulsive potential produced by scat-
tered laser radiation, and by the attractive potential pro-
duced by the absorption of laser radiation. All these fac-
tors were studied in reasonable detail, because they
play an important role in magnetooptical traps [23–26].
The most important factor is the reabsorption of pho-
tons inside the atomic ensemble. Multiple photon reab-
sorption causes the frictional and compressing forces to

Λ
Nah3

∆r∆p( )3
--------------------,=

Λ
nah3

∆ pl ∆ ptr( )2
--------------------------.=

U/"γ
10
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4

2

0
–40 –20 0 20 40

z/lsD

Fig. 5. The potential well for an atom at the same parame-
ters as in Fig. 4.
SICS      Vol. 96      No. 1      2003



16 BALYKIN, MINOGIN
decrease. A characteristic feature of an axisymmetric
magnetic system is its small cross section. This circum-
stance shows that the atomic medium can remain opti-
cally transparent in the transverse direction at a rela-
tively high density. A standard estimate for the atomic
density na = 1/σ∆z (where σ is the resonance absorption
cross section) and available data on the atomic density
in magnetooptical traps show that the maximum atomic
density in the beam is limited to a value on the order of
na = 1012 cm–3. If we take the realistic Doppler value of
∆pl = Mγ/k for the width of the longitudinal momentum
distribution and the sub-Doppler value that corresponds
to the temperature of 3 µK for the width of the trans-
verse momentum distribution, we then obtain Λ = 5 ×
10–4 for the 85Rb atomic beam phase density.

7. CONCLUSION

Our analysis shows that the sub-Doppler resonances
in the radiation force allow atomic beams to be com-
pressed to values on the order of several tens of
microns. Such a significant compression is, naturally,
possible for slow atomic beams where the time of flight
of the atoms is enough for the atomic temperature to be
reduced to the sub-Doppler value.

Thus, we found that an atomic beam in a nonuni-
form magnetic field could be compressed to a diameter
on the order of several tens of microns and the phase
density could be increased to a value on the order of
10−4–10–3. Such a high expected atomic phase density
in the compressed beam enables the subsequent evapo-
rative cooling of the atoms down to quantum degener-
acy for a realistic length of the magnetic trapping sys-
tem [27]. In turn, the realization of this possibility may
allow a continuous-wave atomic laser to be produced.

APPENDIX A

Below, we give the system of equations that defines

the steady-state values of the functions  = Nα,

 = nα, and  = cab:

(A.1)

Rgα gα

0

Reα eα

0 Sab
0

Nα∑ nα∑+ 1,=

iΩ ce 2– g 1–
cg 1– e 2–

–( ) iΩ
6

------- ce0g 1–
cg 1– e0

–( )+

+ γ 2n 2– n 1–
1
3
---n0+ + 

  0,=

iΩ
2

------- ce 1– g0
cg0e 1–

– ce1g0
cg0e1

–+( )

+ γ n 1–
4
3
---n0 n1+ + 

  0,=
JOURNAL OF EXPERIMENTAL 
(A.2)

Equations (A.2) were derived from Eqs. (9) considered
in the zero order in photon momentum. Normalization
condition (17) was written as the first equation of sys-
tem (A.1).

APPENDIX B

Below, we give the system of equations for the func-

tions  = Qα,  = qα, and  = tab:

(B.1)

iΩ ce2g1
cg1e2

–( ) iΩ
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(B.2)
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Equations (B.2) were derived from Eqs. (9) considered
in the first order in photon momentum. The first equa-
tion of system (B.1) is normalization condition (19).
The quantity f = F/"kγ is the normalized force.
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Abstract—The spin system of many new promising materials, such as high-temperature superconductors,
fullerenes, fullerides, or manganites with colossal magnetoresistance, consists of localized spins (s-spins of
impurity paramagnetic centers) and delocalized spins (e-spins of charge carriers). The two sorts of spins are
coupled by exchange interaction, which leads to coupled precession of the corresponding magnetizations.
When the materials mentioned above are investigated by EPR methods, the measured longitudinal (T1) and
transverse (T2) relaxation times provide the most valuable information. However, the presence of inhomoge-
neous broadening of the EPR of s-spins often makes it difficult to measure T2, while small values of T1 do not
allow one to measure it by conventional methods. Atsarkin and colleagues [4, 7, 8] proposed a new version of
the method for measuring T1 by longitudinal response signals induced in a longitudinal spin coil (oriented along
the constant magnetic field) under low-frequency modulation of the microwave power, which saturates the EPR,
even though very weakly. Earlier, the results obtained in experiments on measuring the longitudinal response
for samples containing interacting s- and e-spins were interpreted using formulas for an individual sort of spins.
In this paper, the magnetization of s- and e-spins that precess under the condition of relaxational coupling is
considered, which is characteristic, for example, of fullerides. The complete EPR susceptibility is represented
in a form that makes it possible to determine the origin (from s- or e-spins) of two Lorentzians, each of which
is characterized by one of the normal decay rates of two coupled oscillators (i.e., of precessing transverse mag-
netization components). The common EPR line analytically decomposed into those Lorentzians, and special
factors take into account the influence of the other sort of spins on the amplitude of the signal generated by the
sort under consideration. Similarly to the EPR absorption signals, the expressions for the longitudinal response
are decomposed into parts originating from s- and e-spins, and each part is proportional to the form factor of
one of the modes (s- or e-like). The qualitative comparison shows good agreement with experimental data in
terms of EPR and longitudinal response in a fulleride. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

New materials, such as high-temperature supercon-
ductors, fullerenes, fullerides, or manganites with
colossal magnetoresistance, which exhibit interesting
and promising (from the practical point of view) mag-
netic and electric properties [1, 2], have been success-
fully investigated by EPR methods [3, 4]. In these mate-
rials, there are usually several types of paramagnetic
centers, which are coupled by spin–spin interactions
with each other. In conducting systems, these are, first
of all, charge carriers (electrons and holes) (which are
usually denoted as e-spins) and localized paramagnetic
centers of impurities or the host lattice (s-spins). The
fulleride RbC60 in the polymer phase is an example of
such a material. Here, the role of localized spins with
S = 1/2 is played by the torn ends of polymer chains.

From the viewpoint of understanding the nature of
phase transitions in such materials, investigation of
their internal fluctuating magnetic fields is of major
interest. Information about their amplitudes and corre-
lation times is obtained by measuring the time of longi-
1063-7761/03/9601- $24.00 © 20083
tudinal (T1) and transverse (T2) spin relaxation. The
transverse relaxation time is usually measured by the
EPR linewidth; however, the existing inhomogeneous
broadening often conceals the contribution of fluctuat-
ing fields, and small values of the longitudinal relax-
ation time (10–10–10–7 s) are impossible to measure by
the conventional method of registration of the EPR sig-
nal recovery time after its stationary saturation.

In studies [5, 6], a technique was suggested for mea-
suring such small time intervals by longitudinal
response signals induced in a longitudinal coil (ori-
ented along the constant magnetic field) under low-fre-
quency modulation of microwave power, which satu-
rates the EPR, even though very weakly. This technique
was improved and used for measuring the times T1 and
T2 for various materials [7–10]. However, the results for
samples containing interacting s- and e-spins were
interpreted using formulas obtained in [4–6] from the
Bloch equations for one sort of spins. At the same time,
long-term experimental and theoretical studies of the
EPR in metals with paramagnetic impurities [11] show
003 MAIK “Nauka/Interperiodica”
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that the exchange interaction of s- and e-spins in these
materials leads to two clear-cut specific features in the
precession of magnetizations. The first feature is
related to the dynamic shift of unperturbed (partial) res-
onance frequencies of s- and e-spins. The second one,
which is most important for our purposes, is related to
the shift of partial decay rates, i.e., with the change in
the width of EPR lines. Evidently, these properties of
magnetization precession must affect the behavior of
longitudinal magnetization components, whose motion
induces longitudinal response. Therefore, the further
development of the longitudinal response method in
systems with interacting s- and e-spins requires theoret-
ical investigation of longitudinal response signals with
regard for the s–e coupling. Such an investigation is the
purpose of this paper.

The EPR of two sorts of coupled spins in metals
with paramagnetic impurities was studied on the basis
of the Bloch–Hasegawa equations in [11, 12]. In those
papers, the spectra of coupled precessing transverse
magnetization components (i.e., the frequencies and
widths of EPR lines) were thoroughly studied, and the
EPR susceptibility was numerically calculated for cer-
tain particular samples. Since the investigation of EPR
saturation was not the purpose of studies [11, 12], the
evolution of longitudinal magnetization components
was not considered.

In contrast to study [11], we compute the complete
EPR susceptibility in a form that makes it possible to
determine the origin (from s- or e-spins) of each of the
two Lorentzians into which the common EPR line is
analytically decomposed. Each of these Lorentzians is
characterized by one of the normal decay rates of two
coupled oscillators (i.e., of precessing transverse mag-
netization components). Special factors, which include
the amplification and attenuation factors of EPR sig-
nals, contain complete information about the influence
of the other sort of spins on the amplitude of the signal
under consideration.

However, interpretation of the experiments on the
longitudinal response requires consideration of satura-
tion effects, i.e., the nutation of magnetization vectors
relative to the z axis. Thus, we face the problem of
matching the coupled precession of transverse magne-
tization components of two sorts of spins with coupled
evolution of their longitudinal components. This prob-
lem must be solved under the conditions when all com-
ponents of the two magnetizations vary due to the effect
of an external modulated saturating microwave field
and the inherent relaxation processes.

Assuming that the coupling between s- and e-spins
is purely relaxational (which is the case in the majority
of experimental situations), we change the variables so
as to ensure that the disentangled equations in the new
variables be characterized by normal decay rates
(widths of EPR lines). Then, we complement equations
for slow amplitudes of the normal transverse magneti-
zation components with equations for individual longi-
JOURNAL OF EXPERIMENTAL 
tudinal components; this will provide a basis for con-
sidering nutation in the spin system. In the process of
nutation, there appears a kind of relaxation resonance
between the external low-frequency periodic action on
the spin system (modulation of the microwave power
that saturates the EPR) and the natural motion of mag-
netization components under the influence of relaxation
processes. As this takes place, time-dependent correc-
tions to the stationary values of individual magnetiza-
tions appear.

The computed sum of individual in-phase and out-
of-phase corrections decomposes into the sum of signals,
which are proportional to the form factors of two EPR
modes and are characterized by two sets of transverse
and longitudinal normal decay rates. These are the decay
rates measured when the longitudinal response is
observed by the techniques developed in [7–10].

The first attempts to implement the program
described above were made in [13]. In this paper, we
solve the problem more consistently, thus creating a
theoretical basis for extending the longitudinal
response method to the case of relaxationally coupled
s- and e-spins, which is especially important for study-
ing promising new materials.

The results are qualitatively compared with experi-
mental data concerning the EPR and longitudinal
response in a fulleride.

2. STATEMENT OF THE PROBLEM
AND COMPUTATION OF THE EPR 

ABSORPTION SIGNAL IN A COUPLED SYSTEM 
OF s- AND e-SPINS

Consider the spin system of a sample containing
localized (s) spins (S = 1/2) and delocalized (e) spins
coupled by the exchange interaction

(1)

where Ssi is the localized spin occupying the ith lattice
site and Sej is the delocalized spin. The sample is in the
constant magnetic field H0 || z and in the variable field
Hx = 2H1cosωt oriented along the x axis; s- and e-spins
possess Zeeman energy; in addition, e-spins possess
kinetic energy. In experiments, we often encounter the
situation (see [7, 8]) with no dynamic shifts in the fre-
quencies of the s- and e-spins precession. Below, we
consider precisely this case. We also assume that the
g-factors of s- and e-spins are equal. Then, the preces-
sion frequencies of s- and e-spins are equal, and the
coupling between the corresponding magnetizations is
purely relaxational. Due to the huge predominance of
the kinetic energy of e-spins over the Zeeman energies
of s- and e-spins, there is no distinguished direction in
such a system [14]; therefore, the Bloch–Hasegawa
equations, which describe the evolution of s- and e-spin
magnetization, are characterized by the isotropy of the

Hex 2J SsiSejδ Ri R j–( ),
i j,
∑–=
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relaxation behavior of the x, y, and z components of the
magnetization vectors of s- and e-spins; in what fol-

lows, they are denoted by .

For convenience, we pass, in the original Bloch–
Hasegawa equations [11] for the transverse magnetiza-
tion components, to second-order differential equa-
tions, while leaving the equations for longitudinal com-
ponents in the form of first-order differential equations.
Thus, we have

(2)

(3)

where ω0 is the common Larmor frequency of s- and e-
spins,

 coincides with  for the homogeneous broaden-
ing of the EPR of both sorts of spins with S = 1/2, and

 coincides with . However, this coincidence is
violated in the presence of inhomogeneous broadening
or the fine structure of localized spin EPR. We will take
into account the inhomogeneous broadening of s-spins
in final formulas, which implies a change in the trans-

verse partial decay rate , but not a change in the lon-

gitudinal relaxation of ; therefore, it seems reason-
able to distinguish by special notation the quantities
describing the decay rate of transverse magnetization
components and, on the other hand, the relaxation rates
of longitudinal components.

Furthermore,  and  are the kinetic coeffi-
cients, which describe the coupling of the s- and e-sys-
tems (for metals, they are conventionally called the
Korringa and Overhauser relaxation rates). When the
g-factors of spins are equal, they are connected by the
relation Tse/Tes = χs/χe [11], where χs and χe are the
static susceptibilities of the s- and e-spins, respectively.

 and  are the relaxation rates of the s- and e-
spins to the lattice.

It follows from these equations that the precession
of magnetizations in the transverse plane is an oscilla-
tory motion of two relaxationally coupled oscillators.
The motion of coupled longitudinal components in the
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absence of inhomogeneous broadening and the fine
structure of EPR has a relaxation rate equal to the decay
rate of the transverse components.

We assume that the constant magnetic field is
strong; i.e, the Larmor frequency is much greater than
all decay rates. Then, the coupled relaxation motion is
slow, and we can pass to slow amplitudes (see [15]):

(4)

where ω is the frequency of the variable field

(5)

Applying transformations (4), (5) to Eqs. (2), we
obtain the following equations describing the evolution
of coupled complex transverse slow amplitudes:

(6)

The equations for the longitudinal magnetization com-
ponents are slow by their nature.

In order to compute the spectrum of decay rates of
motion in the transverse plane, we seek the solution of
system (6) in the form

(the quantities of decay rate ω'' have the dimension of
frequency). Substituting this expression into Eqs. (6),
provided that there is no variable field, we discover that
the transverse slow amplitudes have the spectrum of
decay rates, which is given by solutions to the equation

(7)

These solutions are transverse normal decay rates 

and  [16] (the index t takes plus or minus values:

 is the normal decay rate that is greater than the

largest transverse partial decay rate, and  is the one
that is less than the smallest transverse partial decay
rate). These are precisely the widths of EPR lines
observed in experiments in the linear case (when the

Ms e,
x 1

2
---M̃s e,

x
t( )e iωt– c.c.+=

=  
1
2
--- us e⊥, t( ) iv s e⊥, t( )+( )e iωt– c.c.+

=  us e⊥, t( ) ωtcos v s e⊥, t( ) ωt,sin+

M̃s e,
x

t( ) us e⊥, t( ) iv s e⊥, t( ),+≡

M̃
˙

s e,
x t( )  ! ω0M̃s e,

x
t( ) ,

Hx 1
2
---H̃

x
e iωt– c.c., H̃

x
+ 2H1.= =

M̃
˙

s
x ωδ''M̃s

x ωα''M̃e
x

i ω ω0–( )M̃s
x

–+ + i
gsµB

"
-----------H1Ms

z,–=

M̃
˙

e
x ωγ''M̃e

x ωβ''M̃s
x

i ω ω0–( )M̃e
x

–+ + i
geµB

"
-----------H1Me

z .–=

M̃s e,
x

ms e,
x e ω''t–=

ω'' ωδ''–( ) ω'' ωγ''–( ) ωα''ωβ''– 0.=

ω t( )''

ω t–( )''

ω +( )''

ω –( )''
SICS      Vol. 96      No. 1      2003



86 FOKINA, KHUTSISHVILI
longitudinal magnetization components are equal to
their equilibrium values).

The system of differential equations (3)–(6) exhibits
the saturation effect, and its general solution seems
impossible to be written explicitly. To solve it, we first
extricate the equations for transverse slow amplitudes.
For this purpose, we make the following linear transfor-
mation:

(8)

where the quantities

(9)

are the amplitude distribution coefficients at the fre-

quencies  and  [17]. If we specify the relax-
ation oscillator that has the greater partial decay rate,
then the quantities k(t) and k(–t) acquire the known mean-
ing. For example, if the e-system has the greater partial
decay rate, then

where ηe – enh is the amplification factor [13, 18] of the
transverse slow amplitude of s-spins and ηe – suppr is the
suppression factor of the transverse slow amplitude of
e-spins. If, on the other hand, the s-system has the
greater partial decay rate, then

Substituting (8) into Eqs. (6) with a driving force,
we obtain disentangled equations for the new variables:
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Since these equations are disentangled, the new vari-
ables are normal (i.e., mode variables). Equations (10)
indicate that the t-mode is s-like and the (−t)-mode is e-
like. This implies that, in the absence of relaxation cou-
pling (  =  = 0), the normal decay rates  and

 turn into the partial decay rates  and  of
s-spins and e-spins, respectively.

The imaginary part of the dynamic susceptibility
(the EPR absorption signal) can be found by the for-
mula (see [19])

(12)

where  and  are the stationary values of the
mode Bloch absorption signals in the linear case, when
the longitudinal magnetization components do not dif-
fer from their equilibrium values. As a result, we have

(13)

where

(14)

If we pass to the conventional amplification–attenua-
tion factors in (14), then (13) will coincide with expres-
sion (8) in [13] obtained using Green’s function.

3. THE LONGITUDINAL RESPONSE SIGNAL
IN A COUPLED SYSTEM OF s- AND e-SPINS

In order to compute the longitudinal response sig-
nal, we complement Eqs. (10) with Eqs. (3) for the indi-
vidual longitudinal magnetizations, which are slow
variables by their nature. To relate the evolution of indi-
vidual longitudinal components with the evolution of
two transverse modes, we substitute transformation (8)
into the equations for the longitudinal magnetization
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components. As a result, we have the system consisting
of Eqs. (10) and the equations

(15)

We stress that Eqs. (10) and (15) are exact when assum-
ing a strong magnetic field (ω0 is much greater than all
decay rates). These equations describe the EPR satura-
tion in the system of exchange-coupled s- and e-spins
under an arbitrary magnitude of the interaction between
them.

In order to compute the signals registered by the lon-
gitudinal coil under the modulation of the microwave
field power, we set

in the resulting equations. Here, a"2(gµB)–2 is the
squared amplitude of the microwave field that saturates
the EPR, b/a is the modulation depth of the correspond-
ing microwave power, and the modulation frequency Ω
is much less than ω0.

As in studies [5, 6], we assume that the modulation
leads only to small time-dependent corrections to the
stationary values of longitudinal components:

The response in the longitudinal coil, a part of which is
in phase with the modulation and the other part is
shifted by π/2 in phase, is due to the sum of these time-
dependent corrections:

(16)

where us, e and v s, e are Bloch-type longitudinal ampli-
tudes.

In what follows, we assume that one of the follow-
ing constraints holds: (i) the modulation frequency Ω is
much less than all decay rates for arbitrary detuning of
the microwave field frequency relative to the resonance
frequency of spins; (ii) the EPR detuning is small com-
pared to linewidths for arbitrary frequency modulation.
Then, we can get by with second-order differential
equations for ms, ez(t). Under the condition of weak EPR
saturation, we obtain the following coupled second-
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order differential equations for the time-dependent cor-
rections:

(17)

where

for the other notation see Section 2.
Substitute expression msz, ez = e–kt into

Eqs. (17) and equate the determinant of the resulting
algebraic equation to zero to obtain the following secu-
lar equation for the characteristic decay rates of cou-
pled time-dependent corrections to the stationary val-
ues of the longitudinal magnetization components
caused by modulation of the microwave power:

(18)

Solutions of this equation have the form
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(the last two solutions solve the equation obtained by
equating the expression in square brackets in (18) to

zero). Note that the quantities  include decay
rates of the transverse magnetization components and

 include the relaxation rate of longitudinal
components. If there are no causes for breaking the
isotropy of the relaxation behavior of the longitudinal

and transverse magnetization components, then  =

 and  = . The quantities k1, k2, k3, and k4 yield
the “relaxation spectrum” of longitudinal “oscillators.”
Thus, the longitudinal response signal must have singu-
larities at the modulation frequencies that are equal to
those decay rates. We stress that the use of the term
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“oscillator” for the longitudinal magnetization compo-
nents is justified by the fact that, in the course of the
observation of longitudinal response, the longitudinal
components vary periodically under the effect of the
periodic driving force (modulation of the microwave
power that saturates the EPR).

Now, we take into account the fact that the localized
spins in metals are usually spectrally inhomogeneous.
For the first time, this fact was taken into account while
calculating the EPR signal of a coupled system of s-
and e-spins in the study [20]. In that paper, every s-spin
was assigned an individual resonance frequency and
the kinetic equations included, along with the magneti-
zation of e-spins, the spectral magnetization density of
s-spins as a dynamic variable. In the calculation of the
EPR signal, the integration was performed over all res-
onance frequencies of s-spins. The technique for calcu-
lating the EPR spectrum proposed in [20] was used to
estimate spectra in [7, 8]. These spectra were in good
agreement with the two Lorentzians obtained by the
numerical decomposition of the EPR intensity.

The approach to the allowance for inhomogeneous
broadening proposed in [20] is the most consistent one.
However, this model is very cumbersome, and we try to
take into account the inhomogeneous broadening in a
simplified way. More precisely, we add the inhomoge-

neous width to  in Eqs. (10) for the transverse mag-
netization components (but not in Eqs. (15) for longitu-
dinal components). Note that due to the competition
between the Korringa relaxation and the distribution of
localized spins in resonance frequencies, the magnitude
of the effective inhomogeneous width in the case of a
strong s–e coupling (see the criterion below) differs
from the width of this distribution (see Appendix).

The quantity u + iv  obtained with the allowance for
the inhomogeneous broadening using expressions (16)
and (17) and multiplied by Ω and the instrumental fac-
tor A gives the complex longitudinal response signal,
i.e., the voltage measured at the ends of the longitudinal
coil

It has the form

(20)
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where

(21)

Formula (20) is the main result of the present paper.
This result is valid for arbitrary coupling of s- and
e-spins and is exact under the assumption that the
detuning or (and) the frequency modulation is small
compared with the decay rates.

Note that, for Ω ! , , when (20) is valid for
arbitrary detunings, expression (21) becomes simpler:

(22)

In the absence of inhomogeneous broadening, one
must take into account the equality  = 
(which becomes automatically true in this case) in (20);
in addition, the fractions in both terms in (20) turn into
unity. We also note that in the total absence of coupling,
both the EPR signal and the longitudinal response sig-
nal are sums of the contributions of individual s- and e-
spins, and these contributions are equal to the corre-
sponding expressions for the one sort of spins obtained
in [3, 8].

We analyze the result obtained using the metal–
insulator transition in the polymer linear phase of the
fulleride RbC60 as an example [3, 7, 8]. It was shown
in [7] that this transition, which occurs when the mate-
rial is cooled below Tc = 55 K, is accompanied by a
sharp attenuation of the relaxation coupling between
the spin subsystem of localized paramagnetic centers
formed by torn polymer bonds (s-spins) and conduction
electrons (e-spins). As a result, there occurs the transi-
tion from the situation of a “relaxation-dominated bot-
tleneck” [11] (T > 55 K) to the intermediate s–e cou-
pling (T < 55 K) and, finally, to isolated spin sub-
systems at even lower temperatures. The coupling of s-
and e-subsystems is quantitatively characterized by the
“connectedness” parameter [17], which in our case of
relaxationally coupled oscillators can be determined as

(23)

where δ* is the effective width of the distribution of
localized spins in resonance frequencies (see below). It
is seen from (23) that parameter σ is determined by the
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sorts of spins to the difference of their partial decay
rates coupling.

Consider the case when the connectedness is weak
for longitudinal magnetization components, i.e., σ ! 1.
In this case, the inhomogeneous width δ*, which
appears in transverse normal decay rates, coincides

with the width ( ) of the s-spin distribution in reso-
nance frequencies (see Appendix). Then, assuming that

 <  + , we have the following expressions for
the normal EPR decay rates:

(24)

(the normal longitudinal decay rates are obtained from

(24) if we set  = 0 there).

The EPR signal is a sum of two terms:

(25)

Every term is proportional to (i) the equilibrium mag-
netization of the sort of spins that produces this term;
(ii) the Lorentzian that is characterized by the corre-
sponding normal decay rate (the EPR linewidth); (iii)
factors that contain the complete information about the
influence of the other sort of spins on the amplitude of
the observed sort.

The longitudinal response signal is approximately
written as
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dinal response signal is determined by the first term
in (26) with σ = 0.
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peratures greater than Tc [7], then normal decay rates of
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the slow transverse amplitudes are approximately writ-
ten as

(27)

where the effective inhomogeneous width δ* appearing
in the normal decay rate of the s-like mode is related to
the width of the distribution of s-spins in spin packets
as (see formula (A.10) in the Appendix)

The comparison of expressions (27) with the partial
decay rates shows that, in the case of strong connected-
ness, the larger normal decay rate is much greater than
the larger partial one and the smaller normal decay rate
is much less than the smaller partial one.1 In the case of
strong connectedness, a narrow EPR line is observed,
which corresponds to the mode that is due to the sort of
spins with a smaller partial decay rate (“weak” mode).
Because of the effect of s–e coupling, the EPR line-
width of this mode becomes even smaller, and the
amplitude increases. For the second mode, which arises
from the sort of spins with a greater partial decay rate
(“strong” mode), the amplitude is significantly attenu-
ated by the s–e coupling; therefore, this mode is not
observed. Since

regardless of which individual spin system has the
smaller partial decay rate, the EPR signal comes from
the combined equilibrium magnetizations and has the
form of a line of a narrow transverse mode:

(28)

A similar combination of magnetizations in the narrow
line also occurs for the longitudinal response signal
(when calculating the longitudinal response signal, we

assume that δ* ! , which is in agreement with the
condition of the relaxation-dominated bottleneck effect
(σ @ 1) under inhomogeneous broadening):

(29)

Using formulas (28) and (29), we easily find the ratios
that were experimentally measured in [4, 7–10] (we

1 This situation is similar to the presence of a great dynamic shift
of the NMR frequency in magnets, which was thoroughly studied
in [21].
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write them out for the case of small modulation fre-
quencies):

(30)

Note that in experiments with a fulleride [7–10], the
major contribution to the integral EPR intensity was
made by the narrowed and enhanced e-like mode. The
magnitude and temperature dependence of its width
correspond to the narrow normal decay rate, which is
obtained from (7) both above and below Tc; this is also
supported by computer analysis for the particular case
of the fulleride. This implies that the characteristic time
measured from the ratio V/U (30) for the narrow line
corresponds to the normal decay rate of the narrow e-
like “longitudinal oscillator” (i.e., this is the effective
time of e-spins, T1).

For the intermediate connectedness, the general for-
mulas (20) should be used to calculate the longitudinal
response signals.

4. CONCLUSIONS

For samples containing localized (S = 1/2) and delo-
calized spins with purely relaxational coupling, we
have calculated both the EPR signal and the longitudi-
nal response (which is registered by a longitudinal coil)
to the modulation of the microwave power saturating
the EPR. The EPR signal analytically decomposes into
two Lorentzians with normal decay rates of relaxation-
ally coupled transverse magnetization components.
Equations for the corresponding mode variables along
with equations for individual longitudinal magnetiza-
tion components are derived. These equations describe
the saturation effect in the coupled system of s- and e-
spins.

Equations for longitudinal coupled “relaxation
oscillators” that are affected by external low-frequency
periodic action (modulation of the saturation factor)
and by natural relaxation processes are obtained. Lon-
gitudinal response signals analytically decompose into
two parts that are derived from s- and e-spins, and each
of them is proportional to the form factor of one of the
modes (s- or e-like). The longitudinal response signals
are analyzed for various cases of s–e-spin coupling.
The effect of inhomogeneous broadening of s-spins is
taken into account.

The results are in good qualitative agreement with
experimental data concerning EPR and longitudinal
response reported in [7–10].

V
U
---- Ω

ω L –=–( )''
------------------ 1

ω L –=–( )''

2ω t –=–( )''
--------------------+ 

  ,≈

U
χESR''
---------- 2Ab"

gµB

-------------- Ω
ω L –=–( )''
------------------.–≈
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APPENDIX

Here, we analyze in more detail the issue of
broadening of the EPR spectrum of s-spins, which
can be caused by microscopic inhomogeneities of the
crystal structure, superfine fields of neighboring
nuclei, and the like. Take into account that the distri-
bution of resonance frequencies of s-spins caused by
these factors leads to breaking the correlation of their
Larmor precession, while the relaxation by the Kor-
ringa mechanism encourages this correlation. There-
fore, the issue of the correction describing the inho-
mogeneous broadening requires special consider-
ation. For this purpose, we use the Kubo–Tomita
relaxation function [22] (a similar technique was
used in [23]). To analyze the results of the competi-
tion mentioned above, we assume that e-spins form a
thermostat, and we represent the complete magneti-
zation of s-spins in the form

where  is the magnetization of the set of s-spins
correlated by the Korringa relaxation mechanism and
ρn is the density of the distribution of magnetization in
those groups. The distribution is assumed to be uni-
form. Then, ρn = N–1, where N is the number of groups.

The equation of motion for  has the form

(A.1)

Here, ωn =  + i  is the complex frequency of 
precession whose imaginary part, in the isothermal

case, is the Korringa relaxation rate  and the distri-

bution width of spin packets, , is considered as a

source of fluctuations;  are kinetic coefficients,
which have, under our assumptions, the form

The correlation function is given by the expression
(see [23])

(A.2)

Ms
+ ρnMsn

+ ,
n

∑=

Msn
+

Msn
+

Ṁsn
+

–iωnMsn
+ knn'Msn'

+ .
n'

∑–=

ωn' ωn'' Msn
+

Tse
1–

δs
0

knn'

knn' δs
0/N .=

Φn t( )
M̃sn

+
t( )M̃sn

–
0( )〈 〉

M̃sn
+

0( )M̃sn
–

0( )〈 〉
--------------------------------------,=
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where

(A.3)

and the angle brackets denote the equilibrium average.
The integration of Eq. (A.1) yields

(A.4)

The iteration of expression (A.4) on /  up to the
second order inclusive yields

(A.5)

or the equivalent expression

(A.6)

For infinitely small time values, the latter expression is
reduced to

(A.7)

For finite time values much less than , expres-

sion (A.7) is a good approximation if  ! 1.
Since

expression (A.7) is true for  ! . Since the fulfill-
ment of this inequality assists in the fulfillment of the
weak coupling condition, it is evident that, under weak
coupling, the inhomogeneous width coincides with the
square root of the second moment of the distribution of

s-spins in packets; i.e., it is equal to .

On the other hand, it is known from nonstationary
perturbation theory that the long-term behavior of the
relaxation function is exponential with the correlation

time  such that ηnt ! 1. Therefore, we can write the
approximate relation

(A.8)

This follows from (A.6) under the condition  @ 

for large time values (in this case, for t ~  @ Tse).

M̃sn
+

Msn
+ iωnt( )exp=
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+

t( )M̃sn
–
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+

0( )M̃sn
–

0( )〈 〉=

–
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0

N
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Φn t( ) 1 ηnt.–≈

Tse
1– δs

0

δs
0( )

1–
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The corresponding value of ηn obtained by calculating
the integral in (A.6) is given by the formula

(A.9)

which yields the following estimate of the effective
inhomogeneous width of s-spins under the relaxation-
dominated bottleneck effect (the conditions under
which this effect takes place are consistent with the

condition  @ ):

(A.10)

Note that this expression is obtained by the reasoning
similar to that used in [24] for deriving the effective
inhomogeneous width of nuclear spins in the presence
of both nuclear spin waves and dynamic shift of the
NMR frequency in the case when this shift is consider-
ably greater than microscopic inhomogeneities of local
fields on the nuclei. In contrast to the situation dis-
cussed in [23–25], here, the role of the dynamic fre-

quency shift is played by the quantity . We believe
that this is quantity (A.10) that determines the effective
width of the inhomogeneously broadened line added to

 in the expression for the width of the s-like mode
under the relaxation-dominated bottleneck effect. Note
that this quantity coincides with the result obtained
in [4, 20] by other techniques under the same condi-
tions (see Section 3). 
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Abstract—The effects of resonance and nonresonance interactions between electrons and spherical structures
with spatial periodicity in the radial direction (clusters) were studied. It was shown analytically and by numer-
ical calculations that the δl phase shift of the wave function, which arises in resonance electron scattering by
such a periodic structure of a fairly large radius r0, was not small even at a small ratio between the U0 amplitude
of the periodic potential and scattered electron energy E (ε0 = U0/E ! 1) and equaled |δl | = π/4 (modulo π). This
phase shift corresponded to the limiting case of a large Born parameter for the cluster, ξ0 = r0U0/"v  @ 1, where
v  is the characteristic velocity of the electron. The effect of nonresonance electron scattering by a periodic
potential whose spatial period was incommensurate with the Brillouin wavelength of the scattered electron was
considered analytically. The effect of nonresonance scattering was shown to be of a higher order in the ε0 ! 1
parameter than resonance scattering. The cross section of electron scattering by a cluster was calculated,
which allowed the conductivity of a medium containing clusters to be estimated. © 2003 MAIK
“Nauka/Interperiodica”.
1. In recent years, the electron transport properties
of quasicrystalline films have been discussed in terms
of the possibility of resonance electron scattering by
cluster structures of the Al–Cu–Fe and Al–Pd–Re types
[1, 2]. According to [2], strong scattering of electrons
by such structures is possible if the Brillouin wave-
length of scattered electrons coincides with the charac-
teristic spatial scale of the cluster in the radial direction
or is multiple to it. Because of the absence of strict peri-
odicity in such clusters, the resonance between the
electron wavelength and suitable characteristic lengths
is considered in [1, 2]. In [1], an analogy between reso-
nance interactions in quasi-crystals and phenomena in
crystals in which resonance interaction creates an
energy gap in the spectrum is directly stated. As follows
from [2], such scattering would be able to considerably
decrease the electron conduction of films in which clus-
ter structures arise [3–5]. There are experiments [3–5]
describing the conductivity of films which substantially
decreases after the annealing of the amorphous phase
and its transition to the quasi-crystalline phase possess-
ing high symmetry according to the X-ray data [3]. All
these results suggest a possibility of effects related to
resonance electron scattering by an onion-shell-like
local ionic arrangement, where successive atomic
shells form spheres embedded into each other. In this
work, we make an attempt to give a calculational and
analytical counterpart to the qualitative physical con-
siderations contained in [1, 2] and construct a model for
1063-7761/03/9601- $24.00 © 20093
calculating electron scattering in media with cluster
structures. Below, clusters with spherical-periodic
order (SPO) are considered.

The general theoretical concepts described above
imply that low medium conductivity in the presence of
cluster structures can be related to electron scattering
by cluster structures with a high degree of ordering in
the radial direction. Let medium conductivity Σ be esti-
mated by the modified Drude formula for solids [6–8],

(1)

Here, ne is the concentration of electrons, m is the mass
of the electron, and τ is the characteristic time of elec-
tron scattering by a cluster structure. We have

where nc is the number of clusters in unit volume, σ is
the cross section of electron scattering by a cluster, v  is
the velocity of electrons, and angle brackets denote
averaging over the velocity distribution of electrons.

Below, we estimate cross section σ for elastic reso-
nance scattering of electrons by a cluster. The velocity
v  of electrons corresponds to the Fermi limit in the
medium under consideration [9] because of the low
temperatures at which measurements are taken [4].

2. In this section, we give some estimates for spher-
ical clusters. As the first step in understanding reso-
nance effects, we consider electron scattering by a clus-

Σ e2neτ /m.=

τ 1– nc σv〈 〉 ,=
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ter structure with SPO. The characteristic potential
energy related to ions in such a structure will be esti-
mated by the Poisson equation for electric field Er in the
cluster,

(2)

where Z is the charge of the ion, ni is the concentration
of ions, and the cluster is assumed to have spherical
symmetry.

Let ions be arranged locally on equidistant spherical
shells with distances ∆ between the shells. Equation (2)
then gives the following estimate for potential energy
amplitude U:

(3)

Here, ions with the characteristic density ni are
arranged on the surface of a sphere of radius R and the
coefficient η < 1 corresponds to the neutralization of
the ionic charge by conduction electrons [10].

If N atoms are distributed over a sphere of radius R,
the mean density of ions is given by

(4)

Let us introduce the surface density of ions,

(5)

The potential energy can then be written as

(6)

In (5), radius R is actually the number of the spherical
surface.

It will be seen from further estimates that the E > U
inequality, where E is the kinetic energy of the electron,

(7)

holds for electron scattering by a cluster structure.
Therefore, the inequality

(8)

is valid under resonance conditions. Here, a is the Bohr
radius,

(9)

3. Consider electron scattering by a separate cluster
whose U(r) potential is a periodic function of radius r.
In accordance with general theory, the wave function

1

r2
----

r∂
∂

r2Er 4πe Zni ne–( ),=

U
4π
3

------Znie
2∆2η .∼

ni N R( )/4πR2∆.∼

ν N R( )

4πR2
------------.≡

U
4π
3

------Ze2∆νη .∼

E
1

2m
------- 2π"

λ
---------- 

 
2

,=

n2 λ2

∆2
----- πa

ν∆3η
-------------, n< 1 2 …, ,= =

a "
2/Ze

2
m.=
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that corresponds to scattering by a center has the
asymptotic form [11, 12]

(10)

where z is the direction of the initial motion of electrons
and θ is the angle made by axis z and the direction of
motion of scattered particles.

The exact equation for such a function is given by
the series [11, 12]

(11)

where Pl(cosθ) are spherical functions and the Rkl func-
tion satisfies the Schrödinger equation

(12)

and, at large r, has the asymptotic

(13)

Phase shifts δl determine the total cross section of scat-
tering by the scattering center,

(14)

Clearly, potential energy U(r) in (12) is the sum of
the potential energies of separate ions, which are Cou-
lomb centers in nature and are situated on spherical sur-
faces. Taking into account spherical symmetry assumed
above, we will, however, treat the U(r) function as some
smooth periodic function of r devoid of Coulomb
potential singularities. This corresponds to the
approach based on the method of orthogonalized plane
waves in the theory of solids [13], where the wave func-
tions of electrons scattered by an ionic lattice are
orthogonal to the wave functions of bound electrons
and are insensitive to Coulomb potential singularities.
For this reason, we use a periodic function free of Cou-
lomb singularities to represent potential energy U(r);
this function is nonzero at r ≤ r0,

(15)

and is zero at r > r0. Here, r0 is the radius of the cluster.
Let us introduce the function y = rRkl and the new

variable x = kr. We can then rewrite (12) in the form

(16)
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where ε = ε0 ≡ U0/E at x ≤ x0, ε = 0 at x > x0, and primes
denote the differentiation with respect to x. Here, λ =
2∆, which corresponds to the resonance condition for
n = 2 [see (8)] (here, ∆ coincides with the Friedel wave-
length λFr [2]).

As follows from (6)–(8), the ε0 ~ 4∆3νη/πa value is
expressed via the universal ν function. In a cluster
atoms are onion-shell-like radially ordered around any
ad-atom, and it follows from (5) that, in the vicinity of
the central ad-atom, ν ~ 1/4π∆2 and the estimate ε0 ~
∆η/π2a is valid. Usually, ∆ is of the order of several a;
this gives ε0 < 1, which is in agreement with the E > U
inequality given above.

Note that the ionic core potential is positive, but,
because of the presence of the neutralizing electronic
background, the mean potential U value for the cluster
in (2) is zero.

At l = 0, (16) is a particular case (for ϕ = π) of the
equation

(17)

which transforms into the Mathieu equation at ϕ = 0
[14, 15].

Further, we consider (17) at ε < 1. This equation
describes above-the-barrier scattering of electrons by a
radially periodic cluster structure at l = 0. Equation (17)
is a Mathieu-type equation, and, because the ε value is
predetermined by the physical characteristics of the
problem, solutions to (17) are not periodic. A theory
studying aperiodic solutions to the Mathieu equation is
described in [15] in the general form. Equation (16)
actually generalizes the Mathieu equation to l ≠ 0.
Below, phase shift calculations by (16) are performed
both numerically and analytically by expanding solu-
tions to (16) in series in the εx parameter.

4. We studied (16) and (17) numerically and analyt-
ically for several ε0 < 1 values in a wide range of dimen-
sionless cluster radius x0 variations, which corre-
sponded to above-the-barrier electron scattering by a
spherical structure with a periodic potential. This scat-
tering was related to the resonance between the spatial
period of the structure and the Brillouin wavelength of
scattered electrons.

The mathematical statement of the problem for (16)
and (17) was as follows. At x = x0, the “external” solu-
tion of the form y = sin(x + δl – lπ/2) and its derivative
were sewed together with the solution to (16) [or (17)]
in the interval 0 ≤ x ≤ x0 under the additional condition
that y = 0 in the center of the cluster x = 0 [11, 12],

(18)

These boundary conditions allow the solution to (16)
and (17) and the δl phase shift to be found.

y'' 1 ε 2x ϕ+( )cos+[ ] y+ 0,=

y x0( ) x0 δl lπ/2–+( ),sin=

y' x0( ) x0 δl lπ/2–+( ),cos=

y 0( ) 0.=
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First, consider the solution to (17) for l = 0. The δ0
phase calculated for l = 0 as a function of dimensionless
cluster radius x0 at two ε0 values is shown in Fig. 1. The
calculations were performed for the ε0 = 0.5 and 0.1
values at x0 > 100. The δ0 phase experienced rapid
oscillations under these conditions and, in addition,
monotonically changed (decreased or increased) start-
ing with the δ0(x0 = 0) = π value, which corresponded
to wave reflection in the center of the cluster. The phase
shift increased as x0 grew, which corresponded to
strengthening of the effect of electron scattering by the
cluster. The whole array of data obtained in the numer-
ical calculations can be fairly closely approximated by
the formula [16]

(19)

The results of numerical calculation are shown by
thick lines in Fig. 1; thin lines are the δ0 phase values cal-
culated by (19) at ϕ = 0 and ϕ = π for fi ≡ fi(cos2ϕ, ε0) = 1
corresponding to the ε0 = 0.1 and 0.5 values. The results
of calculations by (19) closely agree with the numerical
calculation data. Equally close agreement was obtained
for ϕ = π/2. At intermediate ϕ values, fi somewhat dif-
ferent from one should be taken into account in (19).

The main feature of (19) is the universal phase shift
value for scattering corresponding to large cluster
dimensions x0 @ 1. A comparison of the results of
numerical calculations and calculations by (19) shows
that this phase shift, which to high accuracy equals π/4
(modulo π), weakly depends on ε0 at a fairly large x0
value and remains unchanged even at ε0 ! 1. It follows
from (19) that such a δ0 phase value is formed along the
x0 ~ 3π/ε0 length. This is a consequence of spatial reso-
nance between the Brillouin electron wavelength λ =
2π/k and the ∆ spatial period of the cluster.

5. In item 4, we showed by numerical calculations
that, in the x0 = kr0  ∞ limit (r0 is the geometric size
of the cluster), the δ0 phase shift at a zero angular
momentum equals π/4 (modulo π). Estimating the total
scattering cross section, however, requires the determi-
nation of phase shifts δl for l ≠ 0. For electron scattering
by a cluster, the characteristic impact parameter r0 then
corresponds to [11]

(20)

For this reason, the cross section at x0 @ 1 is determined
by the limiting lmax ≈ x0 value. Here, we give the results
obtained in calculations by (16) with boundary condi-
tions (18) at l ≠ 0. The calculations show that the abso-
lute values of phase shifts for modulo π coincide in

δ0 π f 1
π
16
------ε0 2x0 ϕ+( )sin+=

– f 2
π
4
--- ϕ

x0ε0

π
----------.tanhcos

l
r0mv

"
-------------≈ kr0

mv
k"
-------- x0.= =
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Fig. 1. Dependence of phase shift δ0 on the radial size of the structure, x0 = kr0, for two different ε0 = U0/E values at ϕ = 0, π in
(17) for electron scattering by a periodic structure.
magnitude for all l in the asymptotic case of x0 @ 1. The
phase shift values can be approximated by the equation

(21)

By way of illustration, phase shifts δl for the first sev-
eral l values are shown in Fig. 2. The only difference in
phase shift formation is that increasing l increases x val-
ues at which the asymptotic is attained. This means
that, at l @ 1, cross section σ (14) with δl given by (21)
becomes

(22)

In view of the estimate obtained above (lmax ≈ x0), this

gives the scattering cross section σ = 2π , which cor-
responds to the “optical” approximation at a large Born
parameter ξ value [11],

(23)

Note that, although the obtained expression for the
cross section of electron scattering by a periodic struc-
ture coincides with the scattering cross section for an
absorbing sphere, this cross section is the sum of the
terms that describe resonance electron scattering by a
periodic cluster structure at different l, and the problem

δl π 1–( )lπ
4
---.+≈

σ 2πr0
2lmax

2 /x0
2.≈

r0
2

ξ0

r0U0

"v
-----------

U0

E
------

r0mv
"

------------- ε0l @ 1.≈∼=
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cannot initially be stated as the problem of scattering by
a “hard” sphere.

Set cluster radius r0 ~ 10–5 cm and characteristic
electron velocity v  ≈ 3 × 107 cm/s, which corresponds
to the Fermi energy for a conduction electron density
on the order of 1021 cm–3 [3]. Equation (1) for conduc-
tivity then takes the form

Σ[CGS units] ≈ 2.5 × 1010ne/nc . (24)

The conductivity on the order of 300 (Ω cm)–1 observed
in [4] corresponds to 2.7 × 1014 CGS units. Such a con-
ductivity can be attained if the number of electrons per
cluster ne/nc is on the order of 104.

6. Next, let us theoretically justify (21) for l ≥ 1. For
this purpose, write differential equation (16) in the inte-
gral form

(25)

where Jν and Nν are the Bessel and Neumann func-
tions [17].

y x( ) C0 xJl 1/2+ x( )=

– επ
2
--- xJl 1/2+ x( ) x' 2x'( ) x'Nl 1/2+ x'( )y x'( )cosd

0

x

∫

+ επ
2
--- xNl 1/2+ x( ) x' 2x'( ) x'Jl 1/2+ x'( )y x'( ),cosd

0

x

∫
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Fig. 2. Dependence of phase shift δl for the first six l values on the radial structure size x0 = kr0 at ε0 ≡ U0/E = 0.1.
The solution to (16) at ε = 0 has the form

,

which satisfies the condition y(0) = 0. It follows
from (25) that the terms proportional to ε can be signifi-
cant at ε ! 1, because the actual expansion parameter
is εx. For this reason, generally, an infinite series in
powers of εx should be taken into account in (25).

Integral equation (25) will be used to demonstrate a
simple technique for obtaining the most significant,
nonoscillating contribution to phase shift δl. For this
purpose, we will sequentially substitute the expression
for y into the right-hand side of (25) to obtain an
increasing number of chains of multiple integrals of an
arbitrary order with respect to the ε parameter. Among
such chains of multiple integrals of order p, a single
chain only containing the squares of cylindrical func-
tions in the integrands corresponds to the nonoscillating
contribution. Using the asymptotics of cylindrical func-
tions for large x to calculate the multiple integrals, we
can obtain simple expressions for the coefficients of Jν
and Nν in the y(x) solution in the vicinity of x = x0.

It is easy to see that one of the expressions,

y x( ) C0 xJl 1/2+ x( )=

g1 x( ) xJl 1/2+ x( )Nl 1/2+ x( ), g2 x( ) xJl 1/2+
2 x( ),= =

g3 x( ) xNl 1/2+
2 x( ),=
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multiplied by cos2x appears in the chain of sequential
integrations in each of the integrals. Clearly, given the
p order in ε, the unique chain of multiple integrals
where the integrands contain only the quadratic expres-
sions in Jl + 1/2(x) or Nl + 1/2(x) should be taken into
account in calculating the nonoscillating contribution

to phase shift . A consideration of such chains of
multiple integrals in each successive order p in ε shows
that, because of different signs of the integral terms

in (25), the Nl + 1/2(x) term multiplied by (–1)(p – 1)/2

appears for odd powers of ε (p = 2q + 1), and the

Jl + 1/2(x) term multiplied by (–1)p/2 appears for even
powers of ε (p = 2q). As the unperturbed solution

to (25) is Jl + 1/2(x), the x (x) factors prevail in
the integrands of the multiple integral having

Nl + 1/2(x) as a factor, whereas equal numbers of

x (x) and x (x) multipliers appear in the

multiple integral at the Jl + 1/2(x) function. Note that,
in the asymptotic case x @ l ≥ 1, the

(π/2)x (x)cos2x product gives the multiplier

(−1)l + 1/4, and the (π/2)x (x)cos2x product gives
the multiplier (–1)l/4.

The integration of sequential powers of x in calcula-
tions of the nonoscillating contribution gives 1 / p!, and the

δl

x

x

x Jl 1/2+
2

x

Jl 1/2+
2 Nl 1/2+

2

x

Jl 1/2+
2

Nl 1/2+
2
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98 GORDEEV et al.
common term at arbitrary p is therefore (–1)lp(εx/4)p/p!.
Clearly, the (–1)lp multiplier should be taken into
account only for odd p; we then have (–1)lp ≡ (–1)l. It
turns out that all the nonoscillating terms contain the

Jl + 1/2(x) function without the (–1)l multiplier and

the Nl + 1/2(x) function multiplied by (–1)l.

Combining the numerical coefficients and signs of
the nonoscillating terms obtained in sequential integra-
tions yields

(26)

Using the asymptotic equations for cylindrical func-
tions [17] in the region x @ l ≥ 1, we can recast (26) as

(27)

Here, the nonoscillating phase shift part is

(28)

The oscillating phase shift part of δl contains the ε0 ! 1
smallness and is not taken into account in this formula.

Two points should be mentioned. First, it was

assumed that x @ l in the derivation of (28) for . At
the same time, in the summation in (14), the asymptotic
phase shift value up to l ≤ x was used. A consideration
of asymptotic equations for cylindrical functions at l ≤
x shows that the passage to this limit is continuous and
the inaccuracy under consideration only weakly influ-
ences the summation result. Secondly, it follows from
the form of the nonoscillating  function (27) that
the modulus of the  function exponentially grows
as the cluster boundary is approached. This can create
the impression that the shape of the boundary substan-
tially influences the effect under consideration. It is,
however, easy to show that the δl phase shift value is
formed in the x < x0 region, where boundary shape
effects on the phase shift are negligible.

Note that the expression for  transforms into (21)
in the x  ∞ limit. The calculations performed above
show that (28) also describes the case l = 0. For δ0, how-
ever, we use (19) given in [16], especially since the
obtained approximation to δ0 does not strongly differ

from the equation for  at l = 0 (the largest discrepancy
between these functions at ε0x/4 ~ 1 does not exceed 3%).

x

x

y x( ) C0 xJl 1/2+ x( )
ε0x
4

--------cosh=

– 1–( )lC0 xNl 1/2+ x( )
ε0x
4

--------.sinh

y x( ) C0
2
π
---

ε0x
4

--------cosh
2 ε0x

4
--------sinh

2
+ 

 =

× x l
π
2
---– δl+ 

  .sin

δl 1–( )l ε0x
4

--------.tanharctan=

δl

y x( )
y x( )

δl

δl
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Equation (16) is a generalization of the usual
Mathieu equation to l ≠ 0. Here, nonperiodic solutions
to this equation are used.

7. It was assumed above that the resonance term cor-
responding to the potential in (15) is cos2x. Exact res-
onance is, however, only attained for particles from a
very narrow energy range. For this reason, below we
consider electron scattering by a potential that does not
satisfy the resonance condition. Here, we calculate the
phase shift for the potential containing the cos(λx) non-
resonance term, where λ is an irrational number and,
hence, resonance is absent in all orders. This is, of
course, an idealization to a certain degree, but such an
approximation can be used to calculate the nonreso-
nance contribution to scattering averaged over spatial
oscillations in all orders in the ε parameter.

The assumption introduced above will be used to
calculate the phase shift only for l = 0 to obtain infor-
mation about the magnitude of the corresponding
effect. We assume that an arbitrary number of multipli-
ers of the form of cos(λx) trigonometric functions with
irrational λ and of the form of sin(sx) and cos(sx) trigo-
nometric functions with integer s are always averaged
independently over space. Let us calculate the scatter-
ing effect in this approximation using an integral repre-
sentation of y(x) similar to (25) but for l = 0. Because of
the nonresonance character of scattering, it is expedient
to write the integral representation of the solution accu-
rate to terms on the order of ε2,

(29)

We must at once note that, in the nonresonance
approximation, one power of x only arises from two
sequential integrations, and the expansion parameter is
therefore ε2x in this case. Indeed, a power of x only
appears when two sequential integrals, apart from

y x( ) C0 x ε x x' x' λ x'( )coscosd

0

x

∫sin–sin=

× C0 x'sin ε x' x'' x'' λ x''( )y x''( )coscosd

0

x'

∫sin–

+ ε x' x'' x'' λ x''( )y x''( )cossind

0

x'

∫cos

+ ε x x' x' λ x'( )cossind

0

x

∫cos

× C0 x'sin ε x' x'' x'' λ x''( )y x''( )coscosd

0

x'

∫sin–

+ ε x' x''d

0

x'

∫ x'' λ x''( )y x''( )cossincos .
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obligatory cos(λx), contain integrands of two essen-
tially different types: sinxcosx or cos2x (sin2x). In the
approximation under consideration, the sin2x and cos2x
multipliers give contributions equal within the sign. It
is easy to see that only the second part of the expression
for y(x), which is proportional to cosx, corresponds to a
nonzero contribution in the approximation quadratic in
ε in (29).

Calculations of higher even orders in ε require
sequentially substituting expressions for y(x) into the
right-hand side of (29). To simplify calculations of the
same type, each chain of multiple integrals will be sym-
bolically characterized by multipliers sinx or cosx of
sequential integrals. In calculating the chain starting
with sinx and giving a maximum number of powers of
x in averaging over space, it is necessary to select the
following sequences of trigonometric functions preced-
ing the integrals,

sinx, cosx or cosx, cosx (30)

within the block corresponding to the second order in ε.
In calculating the block starting with the cosx multi-
plier, other sequences of trigonometric functions pre-
ceding the integrals should be selected, namely,

sinx, sinx or cosx, sinx. (31)

Note that the sinx multiplier, which is last in sequences
(31) in the block of the lowest order in expansion (29),
does not correspond to any integral. All the other sinx
multipliers in sequences (30) and (31) have a minus
sign by virtue of (29).

It should be stressed that the number of terms dou-
bles each time in passage to the next order in ε2. To
show this, let us introduce the matrix notation for each
second-order block taking into account the signs deter-
mined by (29). The initial block second order in ε then
corresponds to the matrix

(32)

and the block fourth order in ε, to the sequence of
matrices

(33)

The minus sign preceding the sequence of matrices (33)
is taken from the –sinx multiplier preceding the fourth-
order term in (29).

(Specially note that, here and throughout, multiply-
ing the matrices makes no sense!) The obtained matrix
structure (32) allows calculations to be performed in
the second order in ε. In each block, the first integration
should change sin[(2 ± λ)x] into cos[(2 ± λ)x] with sign
change or cos[(2 ± λ)x] into sin[(2 ± λ)x] without sign
change. This causes the appearance of terms quadratic

xsin– xsin

xcos xsin 
 
 

,

xsin– xcos

xcos xcos 
 
  xsin– xsin

xcos xsin 
 
 

.–
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in trigonometric functions, which are then averaged
over space as a result of the integration.

It follows that one row of matrix (32) corresponds to
the term

(34)

where the appearance of the multiplier 1/2 is caused by
averaging of the squares of trigonometric functions.

As has been mentioned above, two matrix rows
cause doubling of the result, and the multiplier 1/2
present in (34) therefore disappears. This occurs in cal-
culating each block because of the presence of two
rows in the corresponding matrix.

Taking the aforesaid into account, we find that cal-
culations corresponding to the sequence of matrices
(33) give the following result:

(35)

where the multiplier 1/2 appears because of the repeat
integration in x.

We therefore arrive at the conclusion that the sec-
ond-order contribution is the multiplier preceding cosx,
and the fourth-order contribution is the multiplier pre-
ceding sinx. It is easy to see that this rule remains valid
in higher orders and cosx and sinx will be preceded by
terms of the form ε2(2q + 1) and ε4q, respectively, where q
is a natural number.

Let us apply these rules to calculate the sixth-order
contribution in ε, which precedes cosx. It is easy to see
from (29) by applying sequential iterations that a struc-
ture of sequential chains of multiple integrals is formed,
which can be represented by the following sequence of
matrices:

(36)

Here, the minus, which corresponds to sinx preintegral
multipliers in the leftmost matrix, is placed before the
sequence of matrices to restrict calculations to the
introduction of only two matrices. Calculations similar
to those performed previously yield

(37)

The obtained sequence of matrices (36) suggests the
idea that calculations of the contribution of arbitrary
order p in ε2x reduces to a consideration of only two
basis matrices, which strictly alternate and form a
sequence of p matrices. It can be proved that this rule is
also valid for higher orders. The calculations show that
each basis matrix gives the –ε2x/[4(4 – λ2)] multiplier.
Sequential integrations in x increase the power of x by

1
2
---ε2

x
16
-------- 4

4 λ2–
--------------,–

1
2
--- ε2x

4 4 λ2–( )
----------------------

2

,–

xsin– xsin

xcos xsin 
 
  xsin– xcos

xcos xcos 
 
  xsin– xsin

xcos xsin 
 
 

.–

1
6
--- ε2x

4 4 λ2–( )
----------------------

3

.
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one, and calculations of the contribution of order p in
the ε2x parameter give the 1/p! multiplier.

The summation of the terms of all orders in the ε2x
parameter taking into account their signs gives the fol-
lowing final result:

(38)

It follows that the equation for the nonresonance
phase averaged over fast spatial oscillations gives a value
of a higher order in the ε0 ! 1 parameter as compared to
the resonance phase.1 In addition, averaging the equa-
tion obtained for the nonresonance phase over the dis-
tribution of electron velocities causes mutual compen-
sation of the contributions of electrons with opposite
shifts with respect to the resonance energy. Naturally,
there is no exponential growth of the amplitude of the
wave function.

8. It should be emphasized that the effect under con-
sideration of the formation of a resonance phase shift
on periodic potential U cannot be obtained from the
well-known formula for the phase shift δl of the wave
function at large l @ 1 values [11, 18],

(39)

where r* is the root of the radicand.

Clearly, if function U(r) decreases at infinity more
slowly than 1/r, phase δl becomes formally infinite
(actually indeterminate!) and cannot be calculated for
the U(r) potential given by (15) that we are considering.
At the same time, it has been shown above analytically
and by numerical calculations that, asymptotically, at
x0 @ 1, all δl values are finite and determined by (21).
As follows from numerical calculations for (17), which
is a Mathieu-type equation, the asymptotic phase δ0
value does not change as ε0 decreases, and the forma-
tion of this phase shift occurs at distances of the order
of x0 ~ 1/ε0. It follows from the character of nonperiodic
solutions to the Mathieu equation that the phase shift is
formed as a result of the accumulation of small reso-
nance effects on sequential periods and is related to
parametric resonance [15]. Precisely the infinite series
in powers of εx forms a nonperiodic Mathieu-type func-
tion, which ensures a certain finite value of the resultant
phase shift δl. Of course, our reasoning refers to the
spatial resonance between the Brillouin wavelength and
the cluster structure period. Calculations of δl for (16)
at l ≠ 0 show that, in the x0  ∞ asymptotic limit, the
absolute value of the phase shift (modulo π) is a univer-

1 Note that, according to the results of calculations, the fast spatial
oscillations of the nonresonance phase possess a significant
amplitude.

y C0 x
ε0

2x

4 4 λ2–( )
----------------------– .sin=

δl
mU r( ) rd

"
2 k

2
l 1/2+( )2/r2–

--------------------------------------------------,

r*

∞

∫–=
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sal constant. As follows from analytic calculations, the
δl phase shift is formed precisely in the region where
the radicand in (39) is negative. It follows that (39) is
inapplicable to clusters with potential (15), because cal-
culations of phase shift δl in the quasi-classical
approach exclude the major contribution of the large
x0 ~ l region.

9. Let us briefly discuss the results obtained above.
In [8], the characteristic relaxation time τ is identified
with the characteristic time of resonance electron scat-
tering by a cluster. This characteristic time is essentially
determined by the nc number of clusters in unit volume.
Clusters of size on the order of 10–5 cm [1, 19], which
have been selected above, contain about 3 × 107 atoms,
and there are less than 10–3 electrons per atom, as is typ-
ical of icosahedral crystals [20]. We stress that, in this
work, the concentration of clusters (nc) is a free param-
eter. The properties of thin films, however, differ insig-
nificantly from those of quasi-crystalline large-sized
samples [1]. Such films offer advantages for preparing
samples and measuring their properties and allow the
transition from the amorphous to icosahedral phase to
be easily performed. The icosahedral phase can there-
fore in both cases be treated as a system of strongly
interpenetrating clusters; that is, the whole quasi-crys-
talline sample can be considered as consisting of clus-
ters representing elementary structures. The nc value
should then be selected consistently. The characteristic
cluster size can be fixed by a disturbance of spatial
symmetry or inelastic collisions [1]. Importantly, elas-
tic scattering should be predominant, which is attained
at very low temperatures of about several K [1, 21].

It follows from the above analytic calculations that
the modulus square of the wave function |ψ|2 exponen-
tially increases to the cluster boundary when electrons
experience resonance scattering by a periodic cluster.
This results in exponential electron density localization
at the cluster boundary,

(40)

where ξ(r) = rU0/"v  is the Born parameter depending
on the coordinate.

The δl phase value obtained is, however, insensitive
to the shape of the cluster boundary, because the δl

value is already formed at x ~ 3π/ε0; that is, far from the
cluster boundary.

Because the E > U inequality is valid for typical
cluster structures, the suggested method can be used to
calculate resonance electron scattering close to the
Fermi surface for a structure consisting of clusters with
a small potential amplitude U0 but large size r0. This
can result in electron localization in quasi-crystals with
predominant elastic scattering, which manifests itself
by the metal–dielectric transition. The suggested
method for calculating the cross section of scattering
offers an alternative to the commonly used methods for
calculations, in particular, in determining the conduc-

ψ r( )
2

eξ r( ),∝
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tivity of quasi-crystals with the use of approximants [20].
Indeed, if the limiting δl value is formed already at x ~
3π/ε0, considering approximants of a substantially
larger size makes no sense.

10. We showed that strong above-the-barrier reso-
nance electron scattering by spherical structures peri-
odic along the radius occurs even at a small ratio
between the potential energy of the periodic cluster and
the incident electron energy, ε = U/E ! 1, because of
the resonance between the Brillouin wavelength of
electrons and the spatial period of the cluster. Phase
shifts δl for such resonance scattering were obtained
both analytically and by direct numerical calculations.
For a zero electron angular momentum, l = 0, a formula
for the phase shift was suggested. This formula fairly
accurately reproduced the calculation results at a small
ratio between the potential energy of the cluster and the
kinetic energy of electrons for various cluster sizes. The
approximation suggested in [16] was in complete
agreement with analytic calculations. It was shown
that, under these conditions, the universal phase shift
value was π/4 (modulo π) for fairly large clusters.
Phase shift values for l ≠ 0 were found, and the cross
section of electron scattering by such clusters was cal-
culated. The cross section values obtained offer a pos-
sibility of estimating electron gas conductivity in a
medium filled by clusters with structures periodic along
their radii. The conductivity values that follow from (24)
do not contradict the experimental conductivity values
reported in [4, 5], the number of conduction electrons
per cluster being ne/nc ~ 104.

Preliminary calculations show that potential U(r)
periodicity disturbances, phase “breakdown” in the
expression for the U(r) potential (15), decrease the
phase shift in scattering. Phase shift calculations for
clusters with the U(r) potential structure corresponding
to quasi-crystals can be performed by a method similar
to that described above. However quantitatively, the
suggested approach can only be compared with experi-
mental data after a consideration of electron scattering
by self-similar clusters.
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