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Abstract—The resonance mechanism for the formation of galactic spirals is considered. Expressions are
derived for the resonance responses of disks with circular and nearly circular stellar orbits. The spiral responses
produced by the central oval-shaped structures (bars) available in many galaxies are shown to have the charac-
teristic properties of the spirals observed in these galaxies. In the most interesting case of a quasi-steady state,
the spiral responses possess a similarity property: the spiral thickness and inclination are proportional to the
mean size of an epicycle (an analog of the Larmor circle in plasma). © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Astronomical objects such as galaxies are investi-
gated by using models in the form of simple figures of
equilibrium: a flat layer, a cylinder, a sphere, a disk, and
an ellipsoid. The first two figures are unbounded at least
in one direction. These models share many common
features with homogeneous plasma. In particular,
appropriate plasma analogies can generally be found
for various kinetic effects in such systems [1, 2]. On the
other hand, the particle motion in the models of disks
and spherical or ellipsoidal systems is finite in all direc-
tions. The kinetic effects in such systems are attribut-
able to resonances between waves and orbital particle
motion. In plasma physics, such effects are studied, for
example, in connection with plasma instability in
closed magnetic traps: tokamaks, the Earth’s magneto-
sphere, and the like (see [3]).

The most important parameter of the wave whose
resonant interaction with galactic stars we will be inter-
ested in below is its frequency ω. If the gravitational
potential of the system under consideration admits a
complete separation of variables in the Hamilton–
Jacobi method [4], then the motion of stars is also char-
acterized by the frequencies

(1)

where i = 1, 2, 3; and H(J1, J2, J3) is the Hamiltonian of
the star expressed in terms of the actions J1, J2, and J3.
The condition of resonance between the wave and par-
ticles (stars) can then be written as

(2)

(l1, l2, and l3 are integers). Equation (2) is a special form
of the general resonance condition

(3)

Ωi
∂H
∂Ji

-------,=

ω l1Ω1 l2Ω2 l3Ω3+ +=

ωouter ωinner,=
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where ωouter is the frequency of the outer action on par-
ticles of the system under consideration (in the special
case of the greatest interest, ωouter is the frequency ω of the
wave excited in the system in one way or another), and 

is one of the possible inner frequencies of the orbital
particle motion.

If the outer force is produced by a satellite, then,
similar to Eq. (2),

where , , and  are the satellite oscillation fre-
quencies, and n1, n2, and n3 are its own set of integers.
The structures associated with this kind of resonances
are directly observed, for example, in Saturn’s rings as
so-called wave trains. These trains are the density
waves that decay as they propagate away from the res-
onances (see [5]).1 As another example with the general
resonance (3), we mention a Landau-type collision
term [7] for systems with finite particle motion [8]. This
collision term, which corresponds to pair interactions
of particles (a and b), contains the frequency δ func-
tions

These δ functions mean that particle a interacts only
with those particles b for which the resonance condition
is satisfied. The orbital motion of particle b may be said

1 This interpretation of the observed wave trains is supported, in
particular, by the proper correspondence of their localization (far-
ther from the planet than the resonance position) to the direction
of the density-wave group velocity (away from the planet) that
follows from their characteristic dispersion relation (see Eq. (1)
from [6]). The bending waves in resonance regions, which are
more difficult to observe, were also detected (see [5] for more
details); they are closer to the planet (relative to the resonance
positions), which is also in agreement with the direction of the
bending wave group velocity.

ωinner l1Ω1 l2Ω2 l3Ω3+ +=

ωouter n1Ω1
s n2Ω2

s n3Ω3
s ,+ +=

Ω1
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to produce a gravitational field fluctuating with fre-
quencies

with which the orbital motion of particle a must be in
resonance:

by contrast, the average effect of nonresonant interac-
tion proves to be zero.

Resonances show up most clearly and easily in disk
systems with nearly circular particle motion (spiral gal-
axies, planetary rings). The reason is that, in this case,
the resonances have a specific spatial localization (near
resonance circumferences), while, in general, the reso-
nance conditions define some sets in phase space,
which is naturally more difficult to study, in particular,
observationally.

Below, we restrict our analysis to spiral galaxies.
Many observable structures in galaxies, notably, rings
and spirals, are clearly associated with resonances.
They can be induced, for example, by satellites or cen-
tral bars (Fig. 1). In principle, galactic satellites act just
like planetary satellites. However, satellites appear to
be much less important for galaxies than for planetary
rings. Planetary rings are much older systems if the age
is measured in units of dynamical time, the revolution
time of a typical particle in a circular orbit. For plane-
tary rings, this age is about 1012 years, whereas, for spi-
ral galaxies, it is often only on the order of several tens
of galactic years. In particular, for this reason, even res-
onances of very high orders (e.g., those that correspond
to a 34 : 35 ratio of the revolution frequencies of a sat-
ellite and dust particles of a ring) have managed to
clearly manifest themselves in planetary rings; the gal-
axy lifetime is evidently not enough for this manifesta-
tion (see [5] for more details on a comparison of the
properties for various astrophysical disks).

Central bars (Fig. 1a) are encountered approxi-
mately in half of all spiral galaxies (this type of barred

ω l1
bΩ1

b l2
bΩ2

b l3
bΩ3

b+ +=

l1
aΩ1

a l2
aΩ2

a l3
aΩ3

a+ + ω;=

(a) (b)

1

2

3

44

3

2

1

Ω

Ωs

Ω

Ωb

Fig. 1. Possible ways of generating resonance spirals in gal-
axies: (a) by a central bar (1 is the bar rotating at angular
velocity Ωb, 2 is the galactic disk, 3 is the resonance circum-
ference, and 4 are the spirals); and (b) by a galactic satellite
(1 is the satellite rotating about the galaxy in its plane at
angular velocity Ωs, 2 is the galactic disk, 3 is the resonance
circumference, and 4 are the spirals). The disks rotate at
angular velocity Ω(r).
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galaxies is commonly designated as SB, to distinguish
them from normal SA spirals). Being within the galac-
tic disk, the nonaxisymmetric gravitational potential of
the bar strongly affects the motion of stars (especially
in the resonance regions that are closest to the bars),
producing spirals, rings, and other structures.

Here, our goal is to construct a linear theory of res-
onance galactic structures. Most of them are associated
with the density perturbations that arise from stellar
motions in the disk plane. Therefore, for the appropri-
ate resonances, we may set l3 = 0 in the general expres-
sion (2) for frequency ωinner (if Ω3 denotes the fre-
quency of the vertical z oscillations of the star; the disk
is assumed to be located in the x, y plane). The reso-
nance condition (2) can then be rewritten as

(4')

where the following notation is used: m is the azimuthal
wave number [we assume the perturbation to be
expanded in a Fourier series and consider one of the
harmonics proportional to exp(imϕ)]; l is the radial
index; Ω1 and Ω2 are the radial and azimuthal frequen-
cies, respectively. At a fixed m, the resonances are num-
bered by one l (positive, negative, or zero), and it is con-
venient to rewrite Eq. (4') [by dividing both sides of
Eq. (4') by m] as

(4'')

where Ωp = ω/m is the angular velocity of the wave in
an inertial frame of reference. If, for example, the per-
turbations are produced by a bar that rotates at angular
velocity Ωb, then Ωp = Ωb.

Here, we use the approximation of an infinitely thin
disk. Allowance for the finite thickness or, in other
words, for the particle motion along the third (z) axis is
a separate problem, which can be analyzed only numer-
ically. Since there are no systematic studies of this kind
as yet, we are unable to accurately predict the extent to
which the corresponding effects can alter the results of
a two-dimensional analysis. Note, however, that in the
available specially carried-out numerical experiments
(in the N-body approach), the evolutions of perturba-
tions in three- and two-dimensional disks usually
turned out to be almost indistinguishable. We may
allude, for example, to [9], in which a similar problem
of the formation of bars and their accompanying spiral
pattern is considered.

Note also that, in general, allowance for the finite
thickness is more important for a gaseous disk than it is
for a stellar one. The point is that the latter (in contrast
to the former) is collisionless; hence, it can, in princi-
ple, have a highly anisotropic pressure. In this case, as
suggested by observations, the mean thermal stellar
velocity along the z axis (cz) is always lower than that
in the galactic disk plane (cr). For our Galaxy,

ω mΩ2 lΩ1,+=

Ωp Ω2 lΩ1/m,+=

cz
2/cr

2 1/4,≈
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A LINEAR THEORY OF RESONANCE STRUCTURES IN SPIRAL GALAXIES 1139
but it can be easily imagined that there are also speci-
mens with much larger anisotropies among the great
variety of spiral galaxies. In essence, the only funda-
mental limiter here is fire-hose instability, but it grows
only under a very large anisotropy. Theory shows (see
[10] for a review) that a single stellar disk becomes
unstable only at2

Given the stabilizing role of the spheroidal galactic
components, the anisotropy required for instability
becomes even larger.

In the next section, we show (Subsection 2.2) how
the resonance condition (4") simplifies for disks with
nearly circular orbits. We also give the equilibrium distri-
bution functions of stars in such disks (Subsection 2.3)
and derive (Subsection 2.1) the laws of stellar motion in
the approximation needed for their subsequent use
(Subsection 3.1) in deriving expressions for the disk
resonance responses. These responses are then ana-
lyzed in detail (Subsection 3.2).

In conclusion, we discuss some of the fundamental
points related to our results.

2. EQUILIBRIUM OF AXISYMMETRIC
STELLAR DISKS

2.1. Nearly Circular Stellar Orbits
in an Axisymmetric Gravitational Field

In this section, our goal is to derive expressions for
the coordinates of a star, r(t) and ϕ(t), in a nearly circu-
lar orbit, to within quadratic terms in small deviation
δr = r – r0 of the current stellar radius r from the radius
r0 of the circular orbit that corresponds to angular
momentum L. We need these expressions below (in
Section 3) to analyze the responses of galactic disks
near the resonance circumferences.

Writing the equations of two-dimensional motion
for a star in an axisymmetric potential Φ0(r) in cylindri-
cal coordinates r and ϕ and eliminating ϕ using the
angular momentum conservation law

L =  = const,

we obtain

(5)

where

2 It is for this reason that fire-hose instability has long been consid-
ered to be of little interest in gravitating systems. This instability
has again attracted attention after it was shown in [11] (see also
[1, 2]) that it could account for the observed maximum oblateness
of elliptical galaxies. Elliptical galaxies are slowly rotating sys-
tems whose equilibrium is provided by an anisotropic pressure.
They are hotter in the rotation plane (compared to spiral galaxies)
and, hence, are more easily subjected to fire-hose instability.

cz
2/cr

2 1/10.≈

r2ϕ̇

ṙ̇ –
dΦ0

dr
---------- L2

r3
-----+

dW
dr
--------,–= =

W Φ0 L2/2r2+=
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is the effective potential energy.
We will seek a solution to Eq. (5) in the form of an

expansion in powers of δr = r – r0, the small deviation
of the current stellar radius r from the circular-orbit
radius r0:

(6)

where

(7)

the latter equation expresses an equality between the
gravitational and centrifugal forces. Once the radius
r(t) of the star has been calculated, its azimuth ϕ(t) can
be determined by solving the equation

Instead of the azimuthal velocity vϕ(t) in an inertial
frame of reference, it would be more natural to work
with the residual velocity

(8)

which is the deviation of vϕ(t) from the local [at the cur-
rent point r(t)] circular velocity: the velocities  and
v r are then the same, in order of magnitude; the func-
tion

denotes the angular velocity of the star in a circular
orbit of radius r. To derive the required equations for the
orbits, all the constants involved in solving the equa-
tions of motion must be expressed in terms of the initial
coordinates and velocities. Retaining the designations

for the latter, we write the orbit (so far in the first order
in δr) as

(9)

(10)

where

The linear (in δr) approximation described above is
commonly called (for historical reasons that date back
to Ptolemaeus!) epicyclic. The point is that, as can be

r t( ) r0 r1 t( ) r2 t( ) …,+ + +=

L2

r0
3

-----
dΦ0 r0( )

dr0
------------------;=

ϕ̇ L/r2.=

ṽ ϕ v ϕ t( ) r t( )Ω r t( )[ ] ,–=

ṽ ϕ

Ω r( ) L/r2=

r r t 0=( ), ϕ ϕ t 0=( ),= =

v r v r t 0=( ), ṽ ϕ ṽ ϕ t 0=( ),= =

r t( ) r κ0t( )
v r

κ0
-----sin 1 κ0t( )cos–( )

2Ω0

κ0
---------- 

  ṽ ϕ

κ0
------,+ +=

ϕ t( ) ϕ Ω0t
2Ω0

r0κ0
---------- 1 κ0t( )cos–( )

v r

κ0
-----–+=

+ κ0t( )
4Ω0

2

κ0
2r0

----------
ṽ ϕ

κ0
------,sin

κ0
2 = κ2 r0( ), κ2 r( ) = Φ0'' r( ) 3L2/r4, Ω0+  = Ω r0( ).
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1140 V. POLYACHENKO, E. POLYACHENKO
shown from Eqs. (9) and (10), the stars in a frame of
reference rotating with angular velocity Ω0 move along
azimuthally elongated small ellipses (Fig. 2); the same
ellipses that appear when describing nearly circular
planetary motions in the Solar System were called epi-
cycles. The vector

has the coordinates

where φ ≡ ϕ0 + Ωt, so the current stellar coordinates in
local Cartesian coordinates (x', y') (see Fig. 2) are

(11)

where k = (sinφ, –cosφ) and n = (cosφ, sinφ) are the
corresponding unit vectors. Calculations yield (α =
const is a constant phase)

(12)

i.e., the rotation in an ellipse (x '2/b2 + y '2/a2 = 1) with
the axial ratio

in the sense opposite to the main rotation of stars in the
disk (with an epicyclic frequency κ0). The original
expression for the square of the epicyclic frequency can
be easily transformed to

(13)

δr r r0–=

δr r1 φcos r0 δϕ( ) φsin– r1 φsin r0 δϕ( ) φcos+,( ),

x' δr k, y'⋅ δr n,⋅= =

x' –r0δϕ
2Ω0

κ0
---------- κ0t α+( ),sin= =

y' r1 a κ0t α+( ),cos= =

b/a 2Ω0/κ0=

κ2 4Ω2 r Ω2( )',+=

x

y

r

k

δrr0

Ω

0
y'

x'

Fig. 2. A schematic representation of epicyclic motion in a
disk with nearly circular particle motions. The disk angular
velocity is Ω(r). The current particle radius vector is r =
r0 + δr, where vector r0 uniformly rotates with angular
velocity Ω0 = Ω(r0). The tip of vector δr in a coordinate sys-
tem that rotates with velocity Ω0 describes a small ellipse
(epicycle) with an epicyclic frequency κ in the sense oppo-
site to the disk rotation.
JOURNAL OF EXPERIMENTAL
where

It follows from (13) that, at Ω' < 0 (this condition is
always satisfied), the ratio

i.e., the epicycle is actually elongated azimuthally.
As we already noted above, to calculate the

responses (in Section 3) requires equations for the stel-
lar orbits not in the epicyclic (linear in δr) approxima-
tion but in the next, post-epicyclic one, which also
include terms quadratic in δr. Omitting calculations
[which are naturally more cumbersome than those used
to derive the epicyclic formulas (9) and (10)], we give
the required equations for r(t) and ϕ(t):

(14)

(15)

(16)

(17)

where we slightly changed the meaning of δr and des-
ignated

(18)

(19)

(20)

Note that in the expression for ϕ(t) – ϕ we set off the
linearly increasing (with time) term (δΩ)t that appears
here, where δΩ denotes a nonlinear correction to the
azimuthal frequency of the star in a nearly circular
orbit:

Ω2( )' dΩ2

dr
----------.≡

b/a 2Ω0/κ0 1;>=

r t( ) r δr,+=

δr κ0t
v r

κ0
-----sin 1 κ0t( )cos–( ) 1

κ0
-----

2Ω0ṽ ϕ

κ0
----------------- 

 +=

+ 1 κ t( )cos–( )2Ωα
κ4

------------
2Ωṽ ϕ

κ
-------------- 

 
2

1 κ t( )cos–( )2Ωβ
κ4

-----------v r
2,+

ϕ t( ) ϕ– Ω0 δΩ+( )t δϕ,+=

δϕ
2Ω0

r0κ0
2

---------- 1 κ0t( )cos–( )v r–=

+
2Ω0

r0κ0
2

---------- κ0t( )
2Ω0ṽ ϕ

κ0
-----------------sin

+ κ t( )4Ω2α
κ5r

--------------
2Ωṽ ϕ

κ
-------------- 

 
2

κ t( )4Ω2β
κ5r

-------------v r
2,sin–sin

α µ
6Ω
-------

1
2
--- rΩ'' 2Ω'+( ) Ω

r
----,–+=

β µ
3Ω
-------, µ 1

2
--- κ2( )' 3κ2

r
--------– ,–= =

δΩ 3

2r
2

------- µ
rκ2
--------– 

  Ω
κ2
----- v r

2 2Ωṽ ϕ

κ
-------------- 

 
2

+=

=  
κ '
κ
---- Ω

rκ2
-------- v r

2 2Ωṽ ϕ

κ
-------------- 

 
2

+ .

Ω2 Ω δΩ.+=
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A LINEAR THEORY OF RESONANCE STRUCTURES IN SPIRAL GALAXIES 1141
As must be the case, δΩ = 0 for a rigidly rotating disk
in which Ω' = κ' = 0. Rigid rotation is provided by the
quadratic potential

in which the general orbit is known (see, e.g., [4]) to be
an ellipse centered on r = 0. Clearly, the star executes
two complete radial oscillations (irrespective of its
amplitude) in the time of a complete turn in such an
ellipse; i.e., in this case, the radial frequency Ω1 is twice
the azimuthal frequency Ω2:

For nearly circular orbits, this equality can be derived
from (13) at Ω' = 0 in the form κ = 2Ω . In the opposite
limiting case of a Coulomb potential Φ0, we obtain the
frequency correction δΩ from (20), which can also be
derived from Kepler’s third law:

2.2. Characteristic Oscillation Frequencies 
of Stars in Nearly Circular Orbits

Let us derive expressions for the oscillation frequen-
cies of stars in nearly circular orbits in a circular disk,
Ω1 and Ω2, from their definition (1). According to [4],
the actions J1 and J2 are given by

(21)

(22)

where pr =  and pϕ = L are the
corresponding generalized momenta; E and L are the
energy and angular momentum of the star (its mass is
assumed to be unity); and the minimum (rmin) and max-
imum (rmax) orbital radii are the roots of the equation

Equations (21) and (22) implicitly define the function
E(J1, J2). Differentiating (21) with respect to J1 and J2
yields the required frequencies in the form

(23)

where we denoted the integrals by

(24)

Φ0 Ω2r2/2 const,+=

Ω1 2Ω2.=

δΩ 3a2Ω0/2r0
2.–=

J1
1

2π
------ prdr∫°=

=  
1
π
--- r 2E 2Φ0 r( )– L2/r2– ,d

rmin

rmax

∫

J2
1

2π
------ pϕdϕ∫° L,= =

2E 2Φ0 r( )– L2/r2–

pr
2 2E 2Φ0 r( )– L2/r2– 0.= =

Ω1
∂E
∂I1
-------

π
I1
----, Ω2

∂E
∂I2
-------

I2

I1
----,= = = =

I1
rd

2 E W r( )–[ ]
---------------------------------,

rmin

rmax

∫=
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(25)

is the effective potential energy.
Clearly, the function W(r) has a minimum at the cir-

cular-orbit radius r0: W '(r0) = 0, i.e.,  = L2/  [this is
the condition (7) of equality between the centrifugal
and gravitational forces]. Representing W(r) near r = r0
by a parabola and calculating integrals (24) and (25),
we obtain

(26)

hence,

(27)

(28)
where we use the previously introduced notation for the
epicyclic frequency κ and angular velocity Ω of the star
in a circular orbit. Note that the limiting values (27) and
(28) for the characteristic frequencies of a star in a disk
could also be obtained from the epicyclic formulas (9)
and (10) of the preceding section, given that, by the
meaning of (23),

where Tr is the time in which r changes from rmax to rmin
and then back to rmax, and Tϕ is the time in which the
radius vector turns through 2π (the integral I2 is equal
to the angle ∆ϕ through which the radius vector turns in
time Tr/2 = I1).

Accordingly, the resonance condition (4") for nearly
circular orbits can be rewritten as

(29)

The following are the main three resonances in spi-
ral galaxies with special names: the corotation reso-
nance (CR) at which Ω = Ωp corresponds to l = 0; the
resonances that correspond to |l | = 1 are called Lind-
blad resonances. If we move from the corotation reso-
nance toward the galactic center, then the local angular
velocity will increase and we can eventually encounter
(but not always) a circle on which Ω exceeds Ωp by
κ/|m |. This resonance is called an inner Lindblad reso-
nance (ILR): l = –1 for it at m > 0. The other resonance
with |l | = 1 is located in the galaxy outside the corota-
tion radius (an outer Lindblad resonance, OLR). The
above resonances take place where the frequency with
which a star crosses the crests and troughs of the wave
potential, |ω – mΩ|, is either zero (i.e., the star is always
in phase with the wave) or equal to the oscillation fre-
quency of the star (κ) about a circular orbit). The reso-

I2
L rd

r2 2 E W r( )–[ ]
--------------------------------------;

rmin

rmax

∫=

W r( ) Φ0 r( ) L2/2r2+=

Φ0' r0
3

I1 π/ Φ0'' r0( ) 3L2/r0
4+ ,≈

I2 Lπ/ r0
2 Φ0'' r0( ) 3L2/r0

4+ 
  ;≈

Ω1 Φ0'' r0( ) 3L2/r0
4+≈ κ0,=

Ω2 L/r0
2≈ Ω0,=

Ω1 2π/Tr, Ω2 2π/Tϕ ,= =

Ω r( ) Ωp– lκ r( )/m.–=
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1142 V. POLYACHENKO, E. POLYACHENKO
nances of higher orders (than those listed above) are
dynamically less important. In addition, the outer reso-
nances often lie outside galaxies, while the inner reso-
nances lie close to the galactic nucleus; therefore, both
are of no importance in forming the main spiral pattern.

For |m | = 2, the inner and outer Lindblad resonances
in the Galaxy are roughly separated by the disk size; for
|m | ≥ 3, they all approach corotation.

For the observationally most interesting cases of
two-arm structures (m = 2) and for realistic rotation
curves Ω = Ω(r) (Fig. 3), there is always only one coro-
tation and one outer Lindblad resonance at which

i.e.,

In Fig. 3, the inner Lindblad resonances where
 = –κ(rILR) correspond to the intersections of

the Ω = Ωp straight line with the Ω = Ωpr ≡ Ω(r) – κ(r)/2
curve. As we see from the figure, there are several pos-

sibilities: (i) if Ωp > , then there are no inner Lind-

blad resonances at all; (ii) if Ωp < , then two reso-
nances emerge: internal ILR(r2i) and external ILR(r2e).

In conclusion, note that the condition for a Lindblad
resonance can also be interpreted as the condition of
equality between the wave frequency Ωp and the angu-
lar velocity of orbital precession; at m = 2, Ωpr = Ω2 –

Ω2/2 or  = Ω2 + Ω2/2 (=Ω ± κ/2 in the epicyclic
approximation); the precession velocity is equal to the
angular velocity of the rotating frame of reference in
which the orbit is closed (an ellipsoidal oval). Recall
that, for example, the stability theory for low-frequency
perturbations in gravitating systems is most naturally

ω* rOLR( ) ω mΩ rOLR( )–≡ κ rOLR( ),=

Ωp Ω rOLR( ) κ rOLR( )/2.+=

ω* rILR( )

Ωpr
max

Ωpr
max

Ωpr
+

0.2

0 6

Frequency

Radius

0.4

12 rOLRrCRr2er2i rm

Ω

Ω + κ/2

Ω – κ/2
Ωb

(2)

Ωb
(1)

Ωpr
max

Fig. 3. The main characteristic frequencies of stellar orbits:
Ω(r) is the angular velocity; Ω – κ/2 = Ωpr is the precession
velocity for nearly circular orbits; rCR is the corotation; r2i and
r2e are the inner Lindblad resonances; rOLR is the outer Lind-

blad resonance;  <  is the velocity of a slow bar;

 >  is the velocity of a fast bar.

Ωb
1( ) Ωpr

max

Ωb
2( ) Ωpr

max
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formulated [12] in the language of orbital precession
(rather than particle) velocities.

2.3. Equilibrium Distribution Functions of Stars 
in a Circular Disk in the Epicyclic
and Post-Epicyclic Approximations

The distribution function of a disk with circular par-
ticle orbits (which is also called a cold one) is

Accordingly, the distribution function of a stellar sys-
tem with nearly circular orbits can be represented as a
formal series of the δ functions of v r and vϕ and their
derivatives [1, 2, 13]:

(30)

Substituting expansion (30) into the equilibrium kinetic
equation

(31)

and setting the coefficients in the various combinations
of the derivatives of δ functions equal to zero, we obtain
the equalities

b1 = 0 (i.e., there is no radial flux,  = 0);

which corresponds to a certain relationship between the
radial (cr) and azimuthal (cϕ) stellar velocity disper-
sions, cϕ = crκ/2Ω , and the following general expres-
sion for the azimuthal stellar flux:

(32)

Accordingly, instead of (30), we have a general expres-
sion for the equilibrium distribution function of stars
with nearly circular orbits in the form

(33)

f 0 δ v r( )δ ṽ ϕ( ).∝

f 0 a1δ v r( )δ ṽ ϕ( ) b1δ' v r( )δ ṽ ϕ( )+=

+ b2δ v r( )δ' ṽ ϕ( ) c1δ'' v r( )δ ṽ ϕ( )+

+ c2δ' v r( )δ' ṽ ϕ( ) c3δ v r( )δ'' ṽ ϕ( ).+

v r

∂ f 0

∂r
--------

∂Φ0

∂r
----------

∂f 0

∂v r

---------–
v ϕ

2

r
------

∂ f 0

∂v r

---------
v rv ϕ

r
------------

∂ f 0

∂v ϕ
---------–+ 0=

c2 0 i.e., v rṽ ϕ 0=( );=

v r

c3 c1κ
2/4Ω2,=

b2 Πϕ
1

2Ωr
---------- rσ0cr

2( )'
κ2σ0

4Ω2
-----------cr

2– .= =

f 0 σ0 r( ) δ v r( )δ ṽ ϕ( )
1

2Ωrσ0
----------------–





=

× rσ0cr
2( )'

κ2σ0

4Ω2
-----------cr

2– δ v r( )δ' ṽ ϕ( )
1
2
---cr

2 r( )+

× δ'' v r( )δ ṽ r( )
1
2
--- κ2

4Ω2
----------cr

2 r( )δ v r( )δ'' ṽ ϕ( )+




.
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In general, we may arbitrarily specify the system surface
density σ0(r) and radial velocity dispersion cr(r) (which
must be small). The function Ω(r) can be calculated from
the equilibrium condition for a star in a circular orbit:

where the potential Φ0(r) is determined by the distribu-
tion of all masses in the galaxy, one of the components
of which (the flattest, disk one) we consider.

Let us derive the “spread” distribution function that
corresponds to (33),

(34)

where E and L are, respectively, the energy and angular
momentum of the star (per unit mass):

L = rvϕ; and r0 and % are the epycyclic integrals, which
can be determined as functions of E and L from the
equations [14]

(35)

(36)

We assume the deviations from circular orbits to be
small, i.e.,

An example of the distribution function (34) is the
generalized Schwarzschild distribution function

(37)

which was considered by Shu [14], where the functions
P(r0) and c0(r0) should be expressed in terms of the sur-
face density and radial velocity dispersion. The distri-
bution function (37) can be written in variables r, v r,
and  with the accuracy required for subsequent use
as follows:

(38)

Ω2r dΦ0/dr,=

f 0 E L,( ) F0 r0 %,( ),=

E
1
2
--- v r

2 v ϕ
2+( ) Φ0 r( ),+=

r0
2Ω r0( ) L, % E Ec r0( ),–= =

Ec r0( )
1
2
---r0

2Ω2 r0( ) Φ0 r0( ),+=

r0Ω
2 r0( )

dΦ0

dr0
----------.=

%  ! Ec , r r0–  ! r0.

F0 P r0( )
%

c0
2 r0( )

-------------– ,exp=

ṽ ϕ

F0 r v r ṽ ϕ, ,( )
2Ω
κ

-------
σ0

2πc0
2

-----------
v r

2 2Ωṽ ϕ

κ
-------------- 

 
2

+

2c0
2

-----------------------------------–exp=

× 1
σ0'

σ0
----- Ω'

Ω
----- κ '

κ
----–+ 

  1
κ
---

2Ωṽ ϕ

κ
-------------- 

 +




– Ω'
Ω
----- 2κ '

3κ
-------– 

  1

2κc0
2

-----------
2Ωṽ ϕ

κ
-------------- 

 
3





,

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where

(39)

denotes the residual azimuthal velocity. In (38), we
assumed that cr = c0 ≠ c0(r); this slightly simplifies the
calculations but is of no fundamental importance.

It is easy to verify that the distribution function (38)
actually belongs to type (37) with

This primarily requires finding a relation between r0 – r
and  by expanding the right-hand side of Eq. (39) in
powers of the small difference r0 – r:

(40)

Expanding the right-hand side of the equation

(41)

in powers of r0 – r and then substituting r0 – r from (40)
into the derived expression, we obtain after some trans-
formations

(42)

Finally, writing

by using (40) and representing the exponent in (37) as

we arrive at (38).
Calculating the azimuthal flux

ṽ ϕ
r0

2Ω r0( )
r

----------------- rΩ r( )–=

P r0( )
2Ω r0( )
κ r0( )

----------------
σ0 r0( )

2πc0
2

--------------.=

ṽ ϕ

r0 r–
1
κ
---

2Ωṽ ϕ

κ
-------------- 2Ω

κ4
-------

2Ωṽ ϕ

κ
-------------- 

 
2

.–≈

%
1
2
---v r

2 r0
4Ω2 r0( )

2r2
--------------------+=

–
1
2
---r0

2Ω2 r0( ) Φ0 r( ) Φ0 r0( )–+

%
v r

2

2
------

1
2
---

2Ωṽ ϕ

κ
-------------- 

 
2 1

2
---

2Ωṽ ϕ

κ
-------------- 

 
3 1
κ
--- Ω'

Ω
----- 2κ '

3κ
-------– 

  .+ +≈

P r0( ) P r( ) 1 r0 r–( )P' r( )+[ ]≈

≈ 2Ω
κ

-------
σ0

2πc0
2

----------- 1
σ0'

σ0
----- Ω'

Ω
----- κ '

κ
----–+ 

  1
κ
---

2Ωṽ ϕ

κ
-------------- 

 +
 
 
 

,

%

c0
2

----– 
 exp

v r
2 2Ωṽ ϕ

κ
-------------- 

 
2

+

2c0
2

-----------------------------------–exp≈

× 1 Ω'
Ω
----- 2κ '

3κ
-------– 

  1

2κc0
2

-----------
2Ωṽ ϕ

κ
-------------- 

 
3

–
 
 
 

,

Πϕ ṽ ϕF0 v rd ṽ ϕ ,d∫=
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we derive an expression for it that agrees with (33) (at
c0 = const).

The distribution function in the epicyclic approxi-
mation can be inferred from (38) if we retain only unity
in the entire expression in curly braces:

(43)

where

This (Schwarzschild) distribution function is most
commonly used both in theoretical studies (e.g., in the
stability theory for gravitating disks [15–17]) and in
reducing observational data and comparing them with
the theory. Clearly, the Schwarzschild distribution
function is an anisotropic Maxwell distribution func-
tion, but with a certain temperature anisotropy:

For our purposes, however, the purely Schwarzschild
distribution is not enough, and we will have to use a dis-
tribution function of the more general form (38).

3. RESPONSES OF GRAVITATING DISKS 
WITH A FINITE STELLAR
VELOCITY DISPERSION

3.1. Deriving Expressions for the Resonance Responses

The linearized kinetic equation can be written as
(see, e.g., [1, 2, 18])

(44)

where d/dt is the time derivative with respect to an
unperturbed stellar orbit in the phase space, and f1 and
Φ1 are the distribution-function and potential perturba-
tions, respectively.

For the distribution function (34), the right-hand
side of (44) can be transformed to

(45)

Writing the solution f1(r, v r, vϕ)exp(–iωt + imϕ) (ω is
the frequency) of Eq. (44) with the right-hand side (45)
as the path integral (see, e.g., [1, 2]) and integrating f1

f 0
2Ω r( )
κ r( )

--------------
σ0 r( )

2πc0
2

------------ –
v r

2

2cr
2

--------
ṽ ϕ

2

2cϕ
2

--------–
 
 
 

,exp=

cϕ
2 crκ

2/4Ω2.=

Tr

Tϕ
------

cr
2

cϕ
2

-----
2Ω
κ

------- 
 

2

.= =

d f 1

dt
--------

∂Φ1

∂r
---------- · 

∂ f 0

∂v
--------,=

∂Φ1

∂r
---------- · 

∂ f 0

∂v
--------

∂F0

∂%
---------

dΦ1

dt
----------=

+ iω* r0( )
∂F0

∂%
---------Φ1

2imΩ r0( )

r0κ
2 r0( )

-----------------------
∂F0

∂r0
---------Φ1.+
JOURNAL OF EXPERIMENTAL 
over velocities yields the perturbation of the surface
density σ1(r)exp(–iωt + imϕ):

(46)

where we designated

we assume that the functions r(t) and ϕ(t) represent the
unperturbed stellar orbit that has coordinates (r, ϕ) and
velocities (v r , v ϕ) at time t = 0 and that the equilib-
rium distribution function has the generalized
Schwarzschild form (37) at c0 = const. Thus, it is clear
that the proper passage to the limiting case of a cold
disk (c0  0) requires the expressions for r(t) and
(ϕ(t) – ϕ) calculated in the post-epicyclic approxima-
tion. Below, we also make this passage but without
expanding the resonance denominators.

Note that the post-epicyclic approximation for the
radius r(t) = r + δr was previously used by Shu [14] in
his theory of tightly wound spiral density waves, which
generalizes the theory of Lin and Shu [16, 17]; how-
ever, there are errors in Shu’s formulas for δr and the
relation between r0 and r.

Let us expand the function Φ1[r(t)] appearing in the
path integral in a Taylor series of powers of δr = r(t) –
r to within terms ~(δr)2:

(47)

accordingly, we also expand in powers of

the exponent:

(48)

σ1 r( ) v rd ṽ ϕ f 1d∫ 1

c0
2

---- v rd ṽ ϕd∫–= =

× F0 Φ1 r( ) iω* r0( ) Φ1 r t( )[ ]
∞–

0

∫+




---× –iωt im ϕ t( ) ϕ–[ ]+[ ] dtexp




+ v rd ṽ ϕ
2imΩ r0( )

r0κ
2 r0( )

-----------------------
∂F0

∂r0
---------d∫

× Φ1 r t( )[ ] –iωt im ϕ t( ) ϕ–[ ]+[ ]exp t,d

∞–

0

∫

ω* r0( ) ω mΩ r0( );–=

Φ1 r t( )[ ] Φ 1 r( ) δrΦ1' r( )
1
2
--- δr( )2Φ1'' r( );+ +≈

δϕ ϕ t( ) ϕ– Ω0 δΩ+( )t–=

–iωt im ϕ t( ) ϕ–[ ]+[ ]exp

=  –i ω* r0( ) mδΩ–[ ] t[ ] imδϕ[ ]expexp

≈ –i ω* r0( ) mδΩ–[ ] t[ ] 1 imδϕ m
2

2
------ δϕ( )2–+

 
 
 

.exp
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Clearly, these expansions may be used if the per-
turbing potential Φ1(r, ϕ) changes only slightly on the
epicycle length. The two mentioned ways of generating
resonance responses (by a bar or a satellite) satisfy this
condition.

It is convenient to represent the expression derived
from calculations for the surface density perturbation as

(49)

where

(50)

(51)

(52)

σ1 Σ1Φ1'' r( ) Σ2Φ1' r( ) Σ3Φ1 r( ),+ +=

Σ1 –
1

c0
2

---- v rd ṽ ϕF0 × 1
2
---ω* r( ) t –iω* r( )t( )expd

∞–

0

∫d∫=

× 1
2
--- 1 2κ t( )cos–( )

v r
2

κ2
------

+
1
2
--- 3 4 κ t( ) 2κ t( )cos+cos–( )

2Ωṽ ϕ

κ
-------------- 

 
2

,

Σ2 –
1

c0
2

---- v rd ṽ ϕF0 × iω* r0( ) t –iω* r0( )t( )expd

∞–

0

∫d∫=

× 1 κ0t( )cos–( ) 1
κ0
-----

2Ωṽ ϕ

κ0
-------------- 

  κ0t( )
v r

κ0
----- 2Ωα

κ4
------------+sin+

×
2Ωṽ ϕ

κ
-------------- 

 
2

1 κ t( )cos–( ) 2Ωβ
κ4

-----------v r
2 1 κ t( )cos–( )+

× 1 im κ0t( )
2Ω0

κ0
2r0

----------
2Ω0ṽ ϕ

κ0
-----------------sin+





– 1 κ0t( )cos–( )
2Ω0

κ0
2r0

----------v r




,

Σ3
1

c0
2

---- v rd ṽ ϕF0 × iω* r0( ) t –iω* r0( )t( )expd

∞–

0

∫d∫–=

× im κ0t( )
2Ω0

κ0
2r0

----------
2Ω0ṽ ϕ

κ0
----------------- 

  2Ω0v r

κ0
2r0

---------------- 1 κ0t( )cos–( )–sin




+ κ t( ) 4Ω2

κ2
---------- 

  α
κ3r
--------

2Ωṽ ϕ

κ
-------------- 

 
2

κ t( ) 4Ω2

κ2
---------- 

  β
κ3r
--------v r

2sin–sin

–
m2Ω2

κ4r2
------------- 1 2κ t( )cos–( )

2Ωṽ ϕ

κ
-------------- 

 
2

--+ 3 4 κ t 2κ t( )cos+cos–( )v r
2




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The integrals over t in (50)–(52) can be calculated
from the formulas

When integrating over velocities, one should first
keep in mind that the equilibrium distribution function
of a disk with nearly circular orbits satisfies the condi-
tions

(53)

(54)

It is also important to take into the fact that the azi-
muthal flux is

(55)

Properties (53)–(55), along with a specific expres-
sion for the flux Πϕ, were derived in the preceding sec-
tion.

Making the symmetrizing change

(56)

we obtain

(57)

(58)

+
1

c0
2

---- v rd ṽ ϕF0
mδΩ
ω* r0( )
---------------d∫

+
2imΩ

rκ2
-------------- v rd ṽ ϕ

∂F0

∂r0
---------d

r0 r=
t iω* r( )t–( ).expd

∞–

0

∫∫

t –iω* r0( )t( )expd

∞–

0

∫ 1
iω* r0( )–

---------------------,=

–iω* r0( )t( ) κ0t( )sinexp td

∞–

0

∫
κ0

ω*
2 r0( ) κ0

2–
---------------------------,=

–iω* r0( )t( ) κ0t( )cosexp td

∞–

0

∫
ω* r0( )

i ω*
2 r0( ) κ0

2–( )
----------------------------------.–=

v rF0 v rd ṽ ϕd∫ 0, v rṽ ϕF0 v rd ṽ ϕd∫ 0,= =

v r
2F0 v rd ṽ ϕd∫

2Ωṽ ϕ

κ
-------------- 

 
2

F0 v rd ṽ ϕ .d∫=

Πϕ ṽ ϕF0 v rd ṽ ϕ σ0

c0
2

Ωr
------- 0.≠≈d∫=

v r x
v r

c0
-----, ṽ r y

2Ωṽ ϕ

κc0
--------------,= =

F0 r v r ṽ ϕ, ,( )dv rd ṽ ϕ f 0 r x y, ,( )dxdy,=

f 0 r x y, ,( )
σ0

2π
------ x2 y2+

2
----------------– 

 exp=

× 1 ρy
σ0'

σ0
----- Ω'

Ω
----- κ '

κ
----–+ 

  1
2
---ρy3 Ω'

Ω
----- 2κ '

3κ
-------– 

 –+
 
 
 

,
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where ρ = c0/κ is the epicycle scale size. Simple calcu-
lations allow expressions (50)–(52) for Σ1, Σ2, and Σ3 to
be reduced to

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

All the functions that appear in (59)–(66) as the coeffi-
cients of the integrals are assumed to be calculated at
the resonance position r = rc. In all these formulas, we
must assume that

(67)

Σ1

σ0

2π
---------- y

y2e y
2/2–

ω*
2 r0( ) κ2 r0( )–

-----------------------------------,d

∞–

∞

∫–=
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2πρ
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∞–

∞

∫
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A
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------------
σ0'
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Ω
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  σ0

2π
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e y
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---------------d
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∞
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+
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rκ2
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κ
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2π
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------------------------------,d

∞–

∞
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2πρ
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∞
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σ0
----- 3Ω'

Ω
--------- mΩ'

ω*
----------– 3κ '

κ
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r
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and that, for example, near corotation,

(68)

δ = γ/m|Ω'(rc)|, and γ is the imaginary part of the fre-
quency: ω = mΩp + iγ, and Ωp is the angular velocity of
the wave.

To pass to the limit of a cold disk, we must expand
the resonance denominators in (59)–(66):

take into account the fact that

and calculate the emerging integrals over y. It is easy to
verify that passing to the limit yields the following
expression for σ1(r):

(69)

Here,

is the gravitational analog of the dielectric constant.
For a convenience of comparison, it is useful to

transform expression (69) to

(70)

As we see from (69), only the principal galactic res-
onances appear in the cold-disk approximation: corota-

tion (  = 0) and Lindblad (  = κ2) ones.
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Note that expression (69) can be directly derived
from the hydrodynamic equations with a zero pressure
(which corresponds to a purely circular motion of disk
particles). Indeed, linearizing these hydrodynamic
equations (written in cylindrical coordinates) yields

(71)

(72)

(73)

where v r1 and vϕ1 = vϕ – rΩ(r) are the perturbed veloc-
ities. We find from the last two equations that

(74)

(75)

Substituting (74) and (75) into (71), we obtain rela-
tion (69) between Φ1 and σ1 after some transforma-
tions. Note that this relation in the compact form (69)
was first given in [19].

Surprising as it may seem, nobody has ever per-
formed the passage to the limiting case of a cold disk
from a kinetic treatment (even the proper expressions
for orbits in the post-epicyclic approximation required
for this passage to the limit have not been derived).
However, we are interested in the effect of a small
velocity dispersion, which modifies the resonance
denominators. Being interested in the disk regions near
one resonance or another, we must separate the domi-
nant terms from (59)–(66).

A particularly simple expression for the surface-
density response is derived near the corotation reso-
nance:

(76)

The expression near the Lindblad resonances is much
more cumbersome:

(77)

where we designated

3.2. Disk Responses near the Principal Resonances

There is a variety of possible resonance disk
responses. However, we focus only on spiral responses
[although the other forms of resonance responses are
described by the same general expressions (76) and
(77) and can be easily obtained from them]. Spiral
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responses are most commonly encountered in galaxies.
At the same time, for example, rings often consist of
pairs of nearly circular half-turn spirals revealed in
high-resolution observations.

As was already noted above, a galactic disk is capa-
ble of responding to the action from a central bar or a
satellite in a resonant way (see Fig. 1). Our derived
expressions for resonance responses are suitable for use
in both cases, but below, for definiteness, we restrict
ourselves to a more detailed analysis of bar-generated
responses.

Let us first determine the disk responses obtained in
the limit γ  0; these are of particular interest,
because they correspond to quasi-steady states (see also
the Conclusion). For this passage to the limit, the reso-
nance denominators simplify as follows:

(78)

(81)

where

P means the principal value; recall also the previously
introduced (at the end of Subsection 2.2) notation for
the orbital precession velocities in the epicyclic approx-
imation:

For the response at corotation, we therefore have

(82)
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Fig. 4. Resonance disk responses at corotation (rc = 1). The disk rotates counterclockwise. The bar is oriented vertically. The degree
of blackening increases with perturbed surface density. (a) A universal spiral at ρ = 0.1; (b) a universal spiral at ρ = 0.2; (c) a cold-
disk response at γ = 0.05; and (d) a disk response at γ = 0.05 and ρ = 0.05.
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According to (82), the response σ1 expressed in
variables δr' and ϕ is a universal function (for a given
equilibrium model, i.e., in our case, at fixed ,
Ω'/Ω , and κ'/κ on the corotation circle). In particular,
the equation for the spiral that corresponds to maxi-
mum density (at each radius) is universal:

(87)

Accordingly, the changes in azimuth ∆ϕ along this spi-
ral are also the same when the amplitude A decreases by
a certain factor (because the amplitude is also a given
function of δr'). On the other hand, it follows from the
above analysis that the thickness of the spiral response
and the spiral inclination in real coordinates (r, ϕ) are
proportional to the epicycle size ρ. These properties of
the responses at corotation are illustrated in Figs. 4a
and 4b, where we assume that rc = 1 and take a model

σ0' /σ0

ϕ ϕ 0
c( ) δr'( ).=
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with the following values typical of spiral galaxies:

(88)

Similarly, at the external ILR, we obtain (retaining
the principal terms in the expression for the response)

(89)

where n is the exponent in the dependence

for the bar potential (n > 0, the bar is assumed to be ver-
tical), ncr = 4Ω/ ,

(90)

(91)

and we give expressions for the functions RL(δr') and
IL(δr') here only for the specific model (88):

(92)

(93)

The responses calculated from (90)–(93) for ρ = 0.1
and 0.2 are shown in Figs. 5a and 5b. In this case, the
rotation curve v 0ϕ = rΩ(r) is assumed to be flat: v 0ϕ =
const (which roughly holds for the most of the disk in
most spiral galaxies); for this rotation curve, ncr =

2  ≈ 2.82.

Here, we give no expressions for the responses at the
two remaining principal resonances (internal ILR and
OLR); the responses at the internal ILR calculated from
the corresponding formulas are shown in Figs. 6a and
6b; as for the responses at the OLR, they are similar to
the responses at the external ILR for n < ncr (Figs. 5a
and 5b). Note the following peculiarity of the responses
at the internal ILR: they have the form of leading spi-
rals; i.e., they unwind in the sense of galactic-disk rota-
tion (counterclockwise). In all the remaining cases (see
Figs. 4 and 5), the spirals are trailing ones: they seem to
follow the galactic rotation (see the Conclusion for
more details).

Let us now consider the responses of cold disks (ρ = 0).
Since this case has previously been studied [20, 21], we
restrict ourselves to several remarks pertaining to spiral
responses (to compare them with the responses in disks
with nearly circular, but not exactly circular, orbits).
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(1) Near corotation [ω* ≈ 0, i.e., Ωp = Ω(rc) and Ωp =
ω/2], we obtain from Eq. (69)

(94)

(95)

where  = dΩ/d . These formulas describe a two-

arm trailing (because  < 0; see Fig. 3) spiral. A typ-
ical response is shown in Fig. 4c; it refers to a simple
exponential-disk model,

[at σ0(0) = 1, rd = 1/2], and a flat rotation curve, Ω = V0/r
(V0 = 1); the bar rotates with an angular velocity Ωp

such that rc = 1. Note that to provide this rotation curve,
the disk must be within a sufficiently massive spherical
component (which is actually the case); the latter is
essentially not involved in perturbations in the disk
plane, because the orbits of its constituent stars are
highly eccentric.

Clearly, the maximum angular length of each arm is
π/2; the longest arms are obtained at small γ. Figure 4c
corresponds to the condition  (which
appears to be always satisfied). For the inverse inequal-
ity, we would have an unobservable arrangement of spi-
rals relative to the bar, which is derived from the arrange-
ment shown in the figure by counterclockwise rotation
through π/2. The intermediate cases 
describe a realistic pattern of spirals that go slightly
behind the bar and that branch off from it at an angle
smaller than π/2.

(2) Near one of the ILRs (r ≈ r2i or r ≈ r2e), Eq. (69)
gives

(96)

(97)

where

(for the assumed flat rotation curve, ncr = 2  ≈ 2.82).
It follows from these formulas that, at r ≈ r2e, the reso-
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Fig. 5. Resonance responses of a disk at the external ILR (rc = 1). The disk rotates counterclockwise. The bar is oriented vertically.
The degree of blackening increases with perturbed surface density. (a) A universal spiral at ρ = 0.1, n = 2, n < ncr , ncr = 2.82;
(b) a universal spiral at ρ = 0.2, n = 2, n < ncr; (c) a cold-disk response at γ = 0.05, n = 2, n < ncr; (d) a disk response at γ = 0.05,
ρ = 0.05, n = 2, n < ncr; (e) a cold-disk response at γ = 0.05, n = 3, n > ncr; (f) a disk response at γ = 0.05, ρ = 0.05, n = 3, n > ncr.
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Fig. 6. Resonance responses of a disk at the internal ILR (rc = 1). The disk rotates counterclockwise. The bar is oriented vertically.
The degree of blackening increases with perturbed surface density. (a) A universal spiral at ρ = 0.1, n = 3, n > ncr , ncr = 2.82;
(b) a universal spiral at ρ = 0.2, n = 3, n > ncr; (c) a cold-disk response at γ = 0.05, n = 3, n > ncr; (d) a disk response at γ = 0.05,
ρ = 0.05, n = 3, n > ncr; (e) a cold-disk response at γ = 0.05, n = 2, n < ncr; (f) a disk response at γ = 0.05, ρ = 0.05, n = 2, n < ncr.
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nance responses have the form of trailing two-arm spi-
rals shown in Figs. 5c and 5e (respectively, for positive
and negative ncr – n). The maximum length of each of
the spiral arms is π. It is reached at small γ when the spi-
rals themselves are nearly circular and the pair of spi-
rals forms a ringlike configuration. At r ≈ r2i, the reso-
nance responses (Figs. 6c and 6e) are similar to those
just considered but have two important distinctions.
The main distinction is that the spiral arms are now
leading (because  > 0 at r = r2i; see Fig. 3). The second
distinction (the reason is the same) is that, for r ≈ r2i,
the spirals branch off from the bar ends at n > ncr (and
lie on the bar ends at n < ncr); recall that the bar is
assumed to be oriented vertically. Note that the univer-
sal spirals for n > ncr and n < ncr also differ from each
other [in Figs. 5a and 5b (6a and 6b), these universal
responses are shown only for n < ncr (n > ncr)].

The disk responses at various resonances for γ =
0.05 and ρ = 0.05 are shown in Figs. 4d, 5d, 5f, 6d, and
6f; they were calculated from the general formulas (89)
and (90) for the equilibrium model described above. We
see from a comparison of Figs. 4c and 4a, 4b, 4d for
corotation (and similar figures for the other resonances)
that the principal effect of a stellar velocity dispersion
is an increase in the thickness of the spiral response and
in the degree of its opening; the latter takes place at ρ >
δ = γ/2|Ω'| for CR, ρ > δ1 = γ/2  for ILR, and ρ >

δ2 = γ/2  for OLR.

4. CONCLUSION

Below, we note some of the fundamental points
related to our analysis of the resonance generation of
galactic spiral arms.

(1) In general, the effect of a finite stellar velocity
dispersion (even if it is assumed to be small compared
to the circular velocity) on the galactic disk response is
difficult to take into account. So far, this problem has
been solved (in the analytical theory of Lin and Shu
[16, 17] only for tightly wound spirals. This theory
assumes the potential Φ1 as well as all other perturba-
tions (surface density σ1, distribution function f1, etc.)
to be proportional to eikr, where k is the wave number,
with

kr @ 1, dlnk/dlnr ! 1.

Thus, strictly speaking, the theory properly describes
the galactic disk responses only under the effect of mul-
titurn, tightly wound spirals.

Recall that the relation between the potential and
surface density perturbations that follows from the
Poisson equation,

Ωpr'

Ωpr'

Ωpr
+'

Φ1
2πGσ1

k
-----------------–=
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(which is also local in our approximation), can be used
to derive the standard Lin–Shu dispersion relation. It is
one of the basic relations in the modern theory of galac-
tic spiral patterns (see [6] for more details).

The Lin–Shu theory is definitely not applicable to
our problem of the disk response to the bar potential:
the bar potential can be described as the limiting case
that is opposite to the tightly wound spirals considered
by Lin and Shu. A general solution of the kinetic equa-
tion in our problem is difficult to find (if at all possible).
However, as we saw above, we can easily determine

how the resonance denominators 1/ , 1/( ),

and 1/( )
2
 in the cold-disk response are modi-

fied under the effect of a finite (though small) velocity
dispersion (separately for each of the principal reso-
nances).

We would specially note the quasi-steady-state spi-
ral responses derived in Subsection 3.2. If we measure
the width ∆r of the ring in which a spiral is concentrated
in units of mean epicyclic size ρ = c0/κ, then we obtain
a certain number for such a width (a different number
for each of the resonances: ∆r/ρ ≈ 2.5 for CR and
∆r/ρ ≈ 3.7 for ILR). This provides a simple method for
estimating the stellar velocity dispersion near the bar
ends. If, on the other hand, there is an independent esti-
mate of the velocity dispersion for a galaxy, then we
obtain a test to check the nature (resonant or nonreso-
nant) of the spirals adjacent to the bar.

(2) Noteworthy is the fact that, as follows from our
results, the amplitude of the disk response to the action
from the bar is virtually independent of the stellar
velocity dispersion. This is in conflict with the popular
(and, at first glance, natural) belief that the response
amplitude must always decrease with increasing veloc-
ity dispersion.

The apparent paradox can be explained as follows.
As was shown in the Lin–Shu theory [16, 17], to obtain
the response of a disk with a velocity dispersion cr to
the action from tightly wound spiral arms, the cold-disk
response must be multiplied by the reduction factor
^ν(k2ρ2), where k = 2π/λ is the radial wave number (λ
is the wavelength) and ρ = cr/κ is the epicycle size;
^ν(0) = 1, ^ν(x) < 1 for x > 0 and monotonically
decreases with increasing x; these properties of the
function ^ν(x) justify its name by showing that the
response amplitude must actually decrease with
increasing velocity dispersion. The function ^ν is
appreciably smaller than 1 at x ~ 1, i.e., at ρ ~ λ. Since
the wavelength λ in most normal spiral galaxies is much
smaller than the disk radius R, the inequality ρ > λ is eas-
ily achieved by stars with quite moderate velocity dis-
persions cr ! v 0 (where v 0 is the circular velocity).
Therefore, the effect of response reduction with
increasing velocity dispersion is easy to observe in this
case, and this is the source of the above popular belief.
However, for a bar, k  0 formally and k ~ 1/R actu-

ω* ω*
2 κ2–

ω*
2 κ2–
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001



A LINEAR THEORY OF RESONANCE STRUCTURES IN SPIRAL GALAXIES 1153
ally, so the effect of a velocity dispersion must become
noticeable only at ρ ~ R, i.e., cr ~ v 0. Consequently, in
our approximation of nearly circular orbits (cr ! v 0),
the response cannot significantly depend on the veloc-
ity dispersion.

Moreover, since the width of the bar-generated spi-
rals increases with velocity dispersion, we may say
that, in this sense, the larger the velocity dispersion, the
more pronounced the effect.

(3) Let us consider the disk responses near the inter-
nal ILR in more detail: they have the form of leading
spirals (see Fig. 6). Meanwhile, the trailing spirals are
natural and expected. For example, any (randomly gen-
erated) density perturbations in a differentially rotating
disk with a radially decreasing angular velocity Ω(r)
become such spirals: they are stretched by this differen-
tial rotation into segments of trailing spirals (see [6] for
more details). In addition, all the hitherto observed spi-
rals were trailing ones, at least in spiral galaxies with a
regular spiral patterns. Therefore, the recent discovery
[22] (see also [23]) of leading spirals in the central
region of the galaxy NGC 157 (they were revealed by
an analysis of its photometric measurements) came as a
great surprise. These spirals may be the disk response
at the internal ILR to a perturbation from the short bar
of NGC 157. The authors of the discovery [22] offered
a similar interpretation in which the observed leading
spiral was considered as the response of a cold (ρ = 0)
disk to a growing barlike perturbation with a small
increment γ; this possibility was previously explored
in [20, 21]. Thus, if the bar is inside the internal ILR,
then the resonance spiral pattern begins with a leading
spiral.

(4) Our results are also of interest in connection with
the long-discussed problem of the so-called antispiral
theorem that was first formulated by Lynden-Bell and
Ostriker [24] for a gaseous disk; later, it was also
proven for a stellar disk [25]. The theorem states that a
spiral shape cannot exist as a neutral oscillation mode
of a nondissipative gaseous or stellar disk.

This theorem is a corollary of certain symmetry of
the equations of motion (for gas or stars) in a gravita-
tional field Φ(r, ϕ). If we reverse the direction of time
and simultaneously reflect all motions in the meridional
plane, ϕ  –ϕ, then we arrive at a state where a per-
turbation with the opposite sense of spiral winding is
superimposed on the same axisymmetric background
(including the sense of rotation). Since the equations of
motion are symmetric relative to this transformation,
the oscillation frequencies in the original and trans-
formed states must be equal, and we have no grounds to
prefer one of them. In general, the corresponding solu-
tions to the equations for normal modes must be non-
spiral. However, if there are resonance stars in the sys-
tem, the arguments for the antispiral theorem are inap-
plicable. This comes as no surprise, because the
antispiral theorem is largely a reflection of the time
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reversibility of the equations of motion that is violated
by resonance stars.

The structures we considered in SB galaxies, which
include a bar and spiral arms, are the components of a
single mode; under certain conditions, one of these
components (spirals) may be assumed to be induced by
the other (bar). This approach seems most natural for
SB galaxies. In particular, one could hardly suspect the
existence of running spiral waves in these galaxies. The
corotation region can act as a generator, because there
are anticyclonic (or, occasionally, cyclonic) vortices
here (see [26] for the latter).

Because of the clear presence of spiral arms with a
certain sense of winding (most frequently trailing ones,
as in Fig. 1a), the question arises as to what causes the
inconsistency with the antispiral theorem. The simplest
cause could be instability of the mode under consider-
ation: at a sufficiently large instability growth rate γ, the
opening of the spiral arms can be significant even in a
cold disk (while, at small γ, the spirals are close to arcs
of circumferences, similar to the spirals in Figs. 4c–6c).
However, the assumption of strong instability for galac-
tic systems is not very reasonable: such instability must
have long been saturated (the available time margin is
more than enough). It would be more plausible to con-
sider quasi-steady states when γ is small or even γ 
0. In this case, however, as follows from the antispiral
theorem, spirals can appear only in the presence of res-
onances. This seems to have been the case in reality: the
bar ends lie near one of the principal galactic (corota-
tion or Lindblad) resonances. We saw that thermal stel-
lar motion “spreads” these resonances over rings with
widths of the order of several epicyclic radii. Spiral
arms, usually trailing ones (Figs. 4 and 5) but, occa-
sionally, leading ones (Fig. 6), are localized in these
rings.

(5) In principle, resonance responses can com-
pletely cover the entire variety of the spiral and ring
shapes observed in SB galaxies. Thus, a survey of pho-
tographs for SB galaxies from available atlases (for
example, in the well-known Hubble atlas) shows that,
in general, the trailing spiral arms that branch off from
the bar are clearly traceable over approximately half of
the turn around the center. This is similar to the reso-
nance responses in Figs. 4 and 5. On the other hand,
short nuclear bars, as we see from Fig. 6, can give rise
to leading spirals (provided that the bar is within the
internal ILR).

Note that the possible generation of spirals by a bar
is not a new problem. However, so far, almost exclu-
sively numerical (mostly N-body) methods have been
used to solve it, because it seemed that the problem was
too complex and could not be solved analytically.
Unfortunately, our analytic results are difficult to com-
pare with numerous N-body studies, because the latter
are not systematic.

(6) In conclusion, we note several ways of improv-
ing the theory proposed above.
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Its most evident drawback is that it disregards the
self-gravitation of a spiral response, although it can
occasionally be significant (for sufficiently massive
galactic disks). Now, we see no possibility of introduc-
ing the self-gravitation of a response in terms of the
analytical theory. The obvious idea of using the WKB
approximation for this purpose (in an iterative scheme)
proves to be untenable. The point is that, as may be
shown, the potentials of a sufficiently short, near circu-
lar spiral segment (which the resonance response is)
calculated from the formula of the WKB theory (i.e.,
Φ1 = –2πGσ1/|k |) and (numerically) from an exact for-
mula for the simple-layer potential differ severalfold
(by a factor of 2 to 4). For this reason, this improvement
apparently has to be made by numerical methods.

The finite galactic-disk thickness seems to be even
more difficult to rigorously take into account if, of
course, the use of N-body theories is not considered. As
a first step, we could try various formfactors on the
thickness, which are widely used in the stability theory
for a gravitating disk (see [1, 2] for details).
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Abstract—The interaction of a three-dimensional atomic system in a short-range potential with intense laser
radiation is investigated by the direct numerical integration of the nonstationary Schrödinger equation. The cal-
culations helped to discover a stabilization regime, which is interpreted as a result of forming a Kramers–Hen-
neberger atom “dressed” in a field. Dynamics of the energy spectrum of photoelectrons depending on the
increase of the laser field intensity is investigated, and conditions of a photodetachment of an electron from a
bound state of the Kramers–Henneberger potential are analyzed. These results reveal specific features of the
stabilization process of the three-dimensional system with a short-range potential compared to the similar pro-
cess in a system with a long-range (Coulomb) potential. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Substantial restructuring of the spectrum of the ini-
tial atomic system and the appearance of a qualitatively
new object—atom “dressed” in a field—is one of the
most interesting phenomena in the theory of interaction
of atomic and molecular systems with a strong laser
field. A variety of analytical and numerical approaches
to the investigation of this object properties have been
proposed; the greater part of these approaches is based
on the analysis of the phenomenon in terms of quasi-
energy and quasi-energy wave functions [1–4] and on
the concept of “dressed atom” states [5, 6]. One prop-
erty inherent in quantum systems interacting with
intense laser radiation is stabilization with respect to
ionization. The stabilization regime manifests itself in
that the ionization rate of the system, or the probability
of ionization per pulse, does not increase or even
decreases (beginning with a certain threshold value) as
the laser radiation intensity grows. At present, two sta-
bilization models (mechanisms) are most often dis-
cussed in the literature. These are the interference sta-
bilization of Rydberg atoms [7] and adiabatic stabiliza-
tion (by Kramers–Henneberger) [8, 9]. The latter is
based on the transformation of an atom in a strong field
into a Kramers–Henneberger (KH) atom whose stabil-
ity with respect to the ionization increases with laser
intensity. Stabilization of the initial atomic system is
directly related to the stabilization of the KH atom and
is caused by the adiabatic “flow” of a part of the popu-
lation of unperturbed atomic states into the correspond-
ing KH states and backwards on the fronts of the laser
pulse.

For one-dimensional systems, the existence of the
KH potential was proved in computer experiments, and
specific features of its energy spectrum are well studied
1063-7761/01/9306- $21.00 © 21155
in a wide range of intensities and frequencies of radia-
tion. In particular, it was shown in [10] that, under sin-
gle photon ionization in the case when the quantum
energy "ω exceeds the binding energy of the unper-
turbed atomic level Eb, it is physically justified to inves-
tigate the system dynamics in a strong field in terms of
the KH atom and its eigenstates, especially in the case
of a large difference in the ionization potentials of the
KH and unperturbed atoms.

However, in the case of three-dimensional systems
with a short-range potential, issues of choosing one or
another basis and the possibility of observing the KH
stabilization regime remain open, since recent studies
cast doubt on the very existence of stabilization. For
example, it is demonstrated in [11] that in the case of
strong fields the number of bound KH states not only
does not increase with laser intensity but can even
decrease, which leads to the absence of bound states in
the KH potential; as a result no KH stabilization can
occur. However, in our opinion, the rate of the appear-
ance (or disappearance) of bound states in the KH
potential depends on the atomic potential parameters.
Hence, the assumption that the number of bound KH
states in the three-dimensional case increases much
slower than in the one-dimensional case seems more
general.

On the other hand, the ionization of a three-dimen-
sional system with a δ potential was investigated ana-
lytically in [12]. It was shown that nonmonotonic
dependence of the ionization rate on laser intensity is
explained by the “channel closing ” due to the Stark
shift in the energy of the initial level and the continuum
boundary. No KH stabilization regime was discovered.
However, the applicability limits of this method in a
wide range of frequencies and laser radiation intensities
001 MAIK “Nauka/Interperiodica”
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remain not completely understood. In addition, we note
that the δ potential is characterized by a zero radius of
action; thus, it presents a special case among all short-
range potentials, since the threshold intensity for the
above-barrier ionization is infinitely large:

The purpose of this paper is to investigate the inter-
action of a three-dimensional atomic system character-
ized by a short-range potential with intense laser radia-
tion by direct numerical integration of the nonstation-
ary Schrödinger equation. On the basis of our
computations, we derive a dependence of the ionization
probability on laser intensity for various quantum ener-
gies and analyze the appearance of the stabilization
regime. In addition, we analyze the dependence of pho-
toelectron energy on laser radiation intensity. The
resulting data make it possible to observe the change of
the energy spectrum of the dressed atom with increas-
ing field and determine conditions under which the ion-
ization occurs from bound states of the KH potential.
Formation of the Kramers–Henneberger atom results in
violation of the initial spherical symmetry of the origi-
nal potential, which manifests itself in that, in a strong
field, photoelectrons escape chiefly in the direction per-
pendicular to that of the intensity of the electric field.

2. NUMERICAL MODEL

We numerically investigate the dynamics of ioniza-
tion of the model three-dimensional system with a
short-range centrally symmetric potential

(1)

where a = 0.5a0 and λ = 0.6 Å–1. The characteristic
width of this potential is aat ≈ 1.5 Å ≈ 3 a.u.; it has a
unique bound stationary s state with the energy Eb ≈
−3.73 eV and the wave function ϕb(r). Since the mag-
netic quantum number is preserved in a linearly
polarized field, the system’s wave function in our case
depends only on two space coordinates. In the cylindri-
cal reference frame (the z axis is directed along the
electric field vector), it satisfies the equation

(2)

where ε(t) is the envelope of the laser pulse and ω is the
radiation frequency.

Calculations of the ionization dynamics were per-
formed for radiation with the quantum energy "ω =
4−10 eV in a wide range of intensities for every value
of frequency. The shape of the pulse envelope was
assumed to be trapezoidal with smoothed fronts of

PBSI ∞.

V r( ) 1

a2 r2+
-------------------- λr–( ),exp–=

i
∂ψ
∂t
------- 1

2
--- 1

ρ
--- ∂

∂ρ
------ ρ∂ψ

∂ρ
------- 

  ∂2ψ
∂z2
---------+ 

 –=

+ V ρ z,( )ψ ρ z t, ,( ) zε t( ) ωt( )ψ ρ z t, ,( ),cos+
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duration τf = 5Tω and the plateau τpl = 10Tω (Tω is the
duration of the optical cycle):

(3)

The nonstationary Schrödinger equation was integrated
on a nonuniform two-dimensional mesh in the refer-
ence frame (ρ, z) with 960 × 480 nodes.

The wave function determined from Eq. (2) makes
it possible to calculate the population of the initial state
Wb at any moment in time

(4)

the probability of the system’s ionization

and the wave function

(5)

that describes the packet in continuum. The function
ψc(ρ, z, t) was used to obtain the pulse distribution
W(k) for the electron in continuum:

(6)

where

(7)

For a concrete value of the electron’s ejection angle
with respect to the vector of the electric field polariza-
tion θεk, we obtain from (7)

(8)

In particular, for the angles θεk = 0 and θεk = π/2, we
have

(9)

(10)

Since, after the termination of the laser pulse, the wave
packet in continuum is localized outside the potential’s
range, the pulse distribution of electrons can be easily
converted to the energy distribution

(11)

ε t( )

=  

ε0
πt
2τ f

--------, t τ f ,≤2sin

ε0, τ f t τ f τ pl,+≤ ≤
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------------------------------------------2 , τ f τ pl t 2τ f τ pl.+≤ ≤+sin







Wb C1 t( ) 2,=

C1 t( ) ψ ρ z t, ,( )ϕb ρ z,( )2πρ ρd z,d∫=

Wi 1 Wb,–=
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W k( ) ψ̃c k( ) 2,=

ψ̃c k( ) ψc r( ) ik– r⋅( )exp d3r.∫=

ψ̃c k θεk,( ) 2π ψc ρ z,( )J0 kρ θεksin( )∫=

× ikz θεkcos–( )ρdρdz.exp

ψ̃c k θεk, 0=( ) 2π ψc ρ z,( ) ikz–( )ρexp ρd z,d∫=

ψ̃c k θεk, π/2=( ) 2π ψc ρ z,( )J0 kρ( )ρ ρd z.d∫=

W E θεk,( )dE W k θεk,( )k2dk.=
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3. RESULTS AND DISCUSSION

3.1. Large Energy of the Field Quantum

Since the KH stabilization was traditionally investi-
gated for high-frequency laser radiation, the case when
the quantum energy substantially exceeds the initial
state binding energy is most important. Figure 1 shows
the remaining probability for the system to be in a
bound state as a function of the laser radiation for "ω =
10 eV; it was calculated by formula (4) at the moment
of the laser pulse termination. These data confirm the
appearance of the stabilization regime in the range of
intensities (2–30) × 1015 W/cm2; moreover, the maxi-
mal value of the residual population in the stabilization
regime is about 10%. An analysis of the first peak loca-
tion in the photoelectron spectrum testifies that it shifts
monotonically to the domain of large energies as the
field intensity increases (Fig. 2). This means that in the
presence of the field the initial level shifts upwards in
terms of energy, and this shift is greater than the shift of
the continuum boundary. Thus, as the field amplitude
increases, the electron escapes from a weaker bound
state, and this state is one of the KH atom states, which
is characteristic of the atom in a field. (Note that, for all
intensities under consideration, there exists a unique
bound state in the KH potential characterized by a pos-
itive parity that can be populated in the process of pulse
switching.)

To prove the fact that a KH atom appears in the field,
we calculated the photoelectron’s energy, assuming that
it is ionized from the KH potential, for various values
of the laser intensity. The results are also presented in
Fig. 2 (the solid curve); they are in good agreement
(within the accuracy of determining the peak locations)
with the electron energies found from the energy spec-
tra. Thus, we conclude that it is preferable to analyze
the dynamics of atomic systems in a wave field in terms
of eigenstates of the KH potential, the atom in a field is
a KH atom, and the stabilization discovered is a KH sta-
bilization.

Figure 3 presents the time dependence of the
squared absolute value of the projection of the desired
wave function on the bound KH state corresponding to
the laser pulse intensity on the “plateau” for various
intensity values. This magnitude characterizes the part
of population that is bound in the KH potential. In weak
fields, the population decays on the plateau. As the
intensity increases up to 2 × 1015 W/cm2, the rate of
decay increases and then decreases or the KH state is
even additionally populated at the pulse plateau. The
stabilization region on the curve Wb(P) corresponds to
the slowdown of the population decay rate or to addi-
tional population of the KH state. This is because a con-
siderable part of the population of KH states on the
trailing front of the pulse is “redistributed” to the pop-
ulation of the initial atomic state. Note that the stabili-
zation threshold Pth ≈ 2 × 1015 W/cm2 corresponds to
the situation when the characteristic value of the KH
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSIC
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Fig. 1. Probability of the nonionization of the system upon
the laser pulse termination as a function of laser intensity
for the quantum energy "ω = 10 eV.
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Fig. 2. Dependence of the first peak energy in the photoelec-
tron spectrum on laser intensity obtained by calculation
(dots) and under the assumption that the electron photoes-
capes from the KH potential (solid curve).
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Fig. 3. Time dependence of the squared absolute value of
the projection of the wave function ψ(ρ, z, t) on the bound
KH state corresponding to the laser pulse intensity on the “pla-
teau” for the following laser intensity values (in W/cm2):
(1) 1.6 × 1013; (2) 1.6 × 1014; (3) 1.6 × 1015; (4) 1.6 × 1016;
(5) 9.6 × 1016. Arrows point to the beginning and end of the
generation “plateau.”
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potential ae = ε0/ω2 is about the characteristic value of
the atomic potential aat ≈ 3 a.u.

The maximal value of the residual probability in the
stabilization regime is about 10%, and it corresponds to
ae ≈ 7 a.u. Such a small probability for the system to
remain in the bound state is explained by the existence
of a single bound KH state (up to ae ≈ 12 a.u.) in which
the population on the pulse plateau can be confined.
This situation is drastically different from the case of
one-dimensional systems for which the number of
bound KH states is considerably greater than unity at
ae @ aat.

On the basis of all available data, one can conclude
that, for high radiation frequency, the atomic system
interacting with laser radiation can be considered as a
KH atom, and the observed stabilization is easily
explained in terms of the KH potential and its stationary
states.

3.2. Quantum Energies Comparable
with the Initial State Binding Energy

The case of frequencies that cause ionization in the
vicinity of the threshold is most difficult for both ana-

10–2

0 2
Energy, eV

4 6 8 10 12 14

(b)

10–3

10–1

101

102

100

10–2

(a)

10–3

10–1

101

102

100

Probability

Fig. 4. The energy spectrum of photoelectrons ejected along
(filled circles) and perpendicular (empty circles) to the
polarization direction of the electric field of the wave at
"ω = 4 eV and for different values of P = 3 × 1013 (a) and
1014 (b) W/cm2.
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lytical and numerical analysis. Specific features of the
ionization of the system under such quantum energy
values first of all manifest themselves in the dynamics
of photoelectron spectra depending on the intensity of
laser radiation; this dynamics is characterized by the
following properties. Firstly, in the domain of weak and
moderate fields, the first peak in the photoelectron
spectrum moves in the direction of smaller energies
with increasing laser intensity; thus, at a certain magni-
tude of the intensity P* (P* ≈ 1014 W/cm2 for "ω = 5 eV
and P* ≈ 3 × 1013 W/cm2 for "ω = 4 eV), the “channel
closes” and the minimal number of quanta required for
ionization becomes equal to two. A typical photoelec-
tron spectrum is shown in Fig. 4a. The dependence of
the first peak location in the photoelectron spectrum on
laser intensity is shown in Fig. 5. The “channel closing”
manifests itself in a sharp peak on the dependence of
the nonionization probability on intensity in the vicin-
ity of P* (Fig. 6). This qualitatively agrees with the data
obtained in [12] about the decrease in the ionization
rate with the change of the multiphoton order of ioniza-
tion. Note that the lower the frequency, the more often

1

0 2 × 1014

Energy, eV

Intensity, W/cm2

2

3

4

4 × 1014 3 × 1015 5 × 1015

Fig. 5. Dependence of the first peak energy in the photoelec-
tron spectrum on laser intensity for "ω = 4 eV.
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Fig. 6. Probability of the system nonionization after the
laser pulse termination as a function of laser intensity for
the quantum energy "ω = 5 (1) and 4 eV (2).
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Fig. 7. Dependence of the mean electron coordinate (over the quantum state) on time under laser action for "ω = 4 eV. The intensity
of radiation is P = 3 × 1013 (a) and 3 × 1014 (b) W/cm2.
the multiphoton order can change; however, the first
channel closing is primarily caused by the Stark shift of
the initial atomic level, while the shift of the continuum
boundary can be neglected. Another specific feature of
the ionization under the condition of channel closing is
the change in the angular distribution of the probability
of the photoelectron ejection. Since the ionization is a
two-photon one due to Stark’s shift of the initial level,
the final states in continuum can have the values of the
orbital moment L = 0 and L = 2. As a result, the proba-
bility for an electron to escape perpendicularly to the
field increases (Fig. 4b). The occurrence of the perpen-
dicular ejection of electrons was also demonstrated in
[13] for the case when the number of absorbed photons
is greater than two. Moreover, for the initial 1s state, the
transverse ejection will manifest itself for even above-
threshold peaks.

Note that chiefly transverse ejection of electrons in
sufficiently strong fields was also observed for the fre-
quency "ω = 10 eV; this appears to be caused by the
increase in the probability of two-photon ionization
compared to the single-photon one as the radiation
intensity increases.

In strong fields, in addition to peaks characterizing
photodetachment of electrons from the original atom
(with regard for Stark’s shift of the atomic level and the
continuum boundary), a new structure of peaks appears
in the photoelectron spectrum. The energy of the first
peak in this case is near "ω, which can be interpreted as
the photodetachment of an electron from the KH poten-
tial, which contains a single weakly bound level, for
almost all intensities in the range under consideration
(see the right-hand part of the plot in Fig. 5). In addi-
tion, the new system of peaks is shifted upwards in
terms of energy as the laser intensity increases.

Thus, the energy spectra confirm the existence of
two fundamentally different systems describing an
atom in the presence of an external field. This is a
weakly perturbed atom characterized, in weak fields,
by Stark’s shift and channel closing, and an atom
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
restructured by a strong field, which is in essence a KH
atom. In addition, the transformation of a free atom in
a field into a KH atom occurs in fields that correspond
to the above-barrier ionization of the system εBSI. Simi-
lar conclusions were obtained as a result of the analysis
of one-dimensional system ionization with a short-
range potential by a low-frequency field [14]. More
precisely, a KH atom characterizing a negative ion in a
strong field appears only in fields with ε > εBSI.

It must be noted that in determining εBSI one must
take into account the shift of the original atomic level
with respect to the continuum boundary in the presence
of a laser field. For this reason, the intensity of the
above-barrier ionization of the system can be different
for different laser radiation frequencies. Since the stan-
dard method for determining εBSI (see [15]) can be com-
plicated in the three-dimensional case, one can use in
numerical calculations the coincidence criterion of the
mean quantum coordinate of the electron with the clas-
sical coordinate of the free electron in the electromag-
netic wave field. We estimated εBSI with regard for the
shift of the original level in the field on the basis of an
analysis of the time dynamics of the mean quantum
coordinate for various intensities. In the high-frequency
limit, the magnitude PBSI is approximately equal to 3 ×
1013 W/cm2, while in the case of the near-threshold ion-
ization ("ω = 4 eV) the intensity of the field that sup-
presses the barrier corresponds to much greater intensi-
ties and turned out to be PBSI ≈ 3 × 1014 W/cm2. Hence,
for "ω = 10 eV, the ionization is an above-barrier one
almost in the entire range of intensities, and the dressed
atom is essentially a KH atom. A substantial increase in
PBSI in the case of "ω ≥ Ii (here Ii = –Eb) is caused by a
considerable shift of the original level downwards with
respect to the continuum boundary, in contrast to the
high-frequency regime.

Figure 7 illustrates the time dynamics of the mean
electron coordinate (over the quantum state) for two
values of laser intensity. It is seen that, for weak fields
SICS      Vol. 93      No. 6      2001
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(Fig. 7a), the electron continues to be influenced by the
potential, and its motion is drastically different from
that of the classical free electron in the wave field. The
electron behaves almost freely in the wave field when
the intensity corresponds to the above-barrier ioniza-
tion of the system (Fig. 7b).

Thus, it was discovered that the KH ionization
regime occurs only in fields for which P > PBSI, and the
field magnitude that “suppresses” the barrier is signifi-
cantly different in the ranges "ω @ 1 and "ω ≥ 1 due to
different direction of the original atomic level shifts in
the field wave in these limiting cases. For this reason,
for "ω ≥ Ii, the atom behaves like a KH atom only in
sufficiently strong fields.

We also note that the appearance of a new structure
in the spectrum, which corresponds to the ionization
from the KH potential, is observed only for intensities
for which the dependence Wb has a stabilization regime
(Fig. 6). Although the observed stabilization is charac-
terized by a small value of the residual probability of
nonionization, it is caused by the formation of a KH
atom and by the increase in stability of KH states with
the field intensity. In order to prove this fact, we made
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Fig. 8. Distribution of the electron density at different
moments in time measured from the beginning of a rectangular
laser pulse in the case "ω = 5 eV and P = 2 × 1014 W/cm2.
At the initial moment in time, the system is in the stationary
state of the KH potential. The time moments are t = 0 (a),
3Tω (b), and 5Tω (c), where Tω is the duration of the opti-
cal cycle. The level lines correspond to the values 0.01 (1),
10–3 (2), 10–4 (3), and 10–5 (4).
JOURNAL OF EXPERIMENTAL 
special calculations with the initial state in the form of
a bound KH state.

Figures 8 and 9 illustrate the evolution of the system
state from a stationary state in the KH potential in the case
of a rectangular laser pulse for various laser intensities. If
the field is not very strong (P = 2 × 1014 W/cm2), the state
rapidly disintegrates, and only the part of the wave
packet that corresponds to the population of the initial
atomic state remains localized. These data show that
the evolution of the “atom + field” system must be char-
acterized in terms of the states of the unperturbed
Hamiltonian, and the KH potential and KH states are
unrelated to physical reality.

The situation in strong fields is quite different (see
Fig. 9). The data show that the system’s state remains
close to its initial state. This fact testifies that the
dressed atom is a KH atom, and KH states are prefera-
ble for describing the system dynamics.

Similar to the high-frequency case, the stabilization
threshold Pth corresponds to the values ae ~ aat (ae ≈
4 a.u. for "ω = 4 eV and ae ≈ 2.5 a.u. for "ω = 5 eV),
and the stabilization itself is associated with improved
stability of the bound KH states for P ≥ Pth.

A similar conclusion was made in the analysis of a
one-dimensional system ionization [10, 14]; however,
in the three-dimensional case, the residual probability
for the system to be in a bound state is rather small in
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Fig. 9. The same as in Fig. 8. The intensity of radiation is
P = 7 × 1015 W/cm2. The time moments are t = 0 (a), 5Tω (b),
and 10Tω (c).
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the stabilization regime and does not exceed 1% for
"ω = 4 and 5 eV. This fact is caused by a very slow
increase in the number of bound states in the KH poten-
tial (with increasing intensity) in the three-dimensional
case compared with a similar one-dimensional system.
For example, at ae = 18 a.u., only the second even KH
state manifests itself in our case, whereas the number of
even bound KH states for one-dimensional systems in a
similar case is about 10.1 This results in a substantially
smaller value of the residual population in three-dimen-
sional systems in the stabilization regime.

Breakdown of stabilization caused by the disappear-
ance of bound states in the three-dimensional KH
potential was studied in [11]. In our opinion, the rate of
increase (or disappearance) in the number of bound KH
states depends on parameters of the short-range poten-
tial.

3.3. System Ionization Rate and the Dipole Matrix 
Element of Transition to Continuum Depending 

on the Quantum Energy

The results presented in the previous sections show
that the system dynamics is different in the two limiting
cases "ω @ Ii and "ω ≥ Ii. Although in both cases we
have one-photon ionization, characteristic features of
the KH atom for near-threshold radiation frequencies
manifest themselves only in sufficiently strong fields
due to high threshold intensity of the above-barrier ion-
ization, which is caused by a considerable downward
shift of the initial level with respect to the continuum
boundary.

The difference of the shift directions of the peak
energy in the spectrum of photoelectrons in not very
strong fields for low and high frequencies can be qual-
itatively explained within the framework of perturba-
tion theory. The energy shift of the original level in the
wave field is determined as

(12)

and the polarizability α of the system with a single
bound state accurate to the second order of perturbation
theory is written as

(13)

where z1E is the dipole matrix element of transition to
continuum with account for the angular part and Eb is
the energy of the ground state. The sign of polarizabil-
ity determines the direction of the energy shift in the
wave field; this sign can be different only due to a non-
monotonic dependence of the matrix element z1E on the

1 Note that odd KH states are of no importance for the stabilization
regime, since they remain almost unpopulated when the laser
pulse is on.
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electron energy in continuum. Indeed, if dα/dE is posi-
tive in the neighborhood of the pole E = Eb + "ω, then
the domain for which α > 0 makes a greater contribu-
tion to integral (13); hence, the Stark’s level shift is neg-
ative. In the converse case dα/dE < 0, we have α < 0,
and the level energy will increase. In order to determine
|z1E|2, we calculated the dependence of the probability
of the initial level population on time in the range of
intensities corresponding to the domain where pertur-
bation theory is applicable. We found that this depen-
dence is exponential on the generation plateau:

(14)

Hence, the parameter Γi determines the ionization
width of the state.2 In relatively weak fields, the depen-
dence of the ionization width on radiation intensity
Γi(P) proved to be linear. Using the relationship of the
ionization width with the magnitude of the matrix ele-
ment |z1E|2

(15)

obtained by perturbation theory, we determined |z1E|2
for various radiation frequencies. The resulting depen-
dence |z1E|2 on electron energy in continuum is plotted
in Fig. 10; indeed, it shows an increase in |z1E|2 with
energy in the near-threshold domain. Such a depen-
dence of the matrix element is characteristic of negative
ions whose one-electron model is described by a short-
range potential [16].

Thus, the nonmonotonic dependence of the dipole
matrix element on electron energy in continuum
explains the specific features of the dynamics of the ini-
tial atomic state in the wave field in the near-threshold

2 Note that in the range of stronger fields, when perturbation theory
is inapplicable, the function Wb(t) is not exponential, and the
width Γi cannot be introduced.

Wb Γ it–( ).exp∝
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Fig. 10. Squared absolute value of the dipole matrix ele-
ment |z1E|2 as a function of the final state energy in contin-
uum.
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domain. These specific features are the formation of a
KH atom and the appearance of the stabilization regime
only in the domain of high radiation intensity.

4. CONCLUSION

Our calculations based on the direct numerical inte-
gration of the nonstationary Schrödinger equation for a
system with a short-range potential in a field of strong
laser radiation allow us to draw some general conclu-
sions.

For three-dimensional systems, as well as for one-
dimensional ones, there exists a range of laser radiation
parameters for which the stabilization regime is real-
ized. The cause of stabilization is the formation of a KH
atom, which characterizes a dressed atom, and in the
capture of the atomic population into bound KH states,
which become more stable with increasing field. A sub-
stantial difference in the dynamics of three-dimen-
sional and one-dimensional systems is in a consider-
ably slower increase in the number of bound KH states
with increasing radiation intensity in the three-dimen-
sional case, which results in a very small value of the
residual probability for the system to be in a bound state
in the stabilization regime.

Note that the stabilization threshold corresponds to
such intensities at which the characteristic width of the
KH potential is of order of magnitude of the unper-
turbed atomic potential characteristic width, and the
wave function of the stationary KH state is close to the
wave function of the unperturbed atom. This fact leads
to the explanation of the cause of stabilization in terms
of the unperturbed atom states. Stabilization is caused
by an increase in the probability of free–free transitions
and by the interference of the direct ionization ampli-
tudes and processes with a large multiphoton order
involving intermediate states in continuum [17].

Our results also make it possible to reveal specific
features of the ionization dynamics for systems with a
short-range potential compared to systems with a long-
range (Coulomb) potential. The nonmonotonic depen-
dence of the dipole matrix element z1E on electron
energy, even for a one-photon bond with continuum,
leads, in the case of a short-range potential, to the exist-
ence of a frequency range for which PBSI lies in the
domain of strong fields. Hence, the transition from the
free atom to the KH atom and the realization of the KH
JOURNAL OF EXPERIMENTAL
ionization regime occurs only in sufficiently strong
fields.
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Abstract—The angular distribution of radiation generated by a relativistic electron bunch penetrating through
a metal foil was experimentally measured at angles much greater than the characteristic angle γ–1. The experi-
ments showed that the emission at large angles exhibits an asymmetric angular distribution with a pronounced
maximum. The results of numerical calculations of the transient radiation of an electron bunch accelerated in a
microtron agree with the experimental data. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The simplest type of a transient radiation generated
by a relativistic particle escaping from a conductor per-
pendicularly to the surface was studied in sufficient
detail both theoretically and experimentally [1, 2]. As is
well known, the energy radiated by a particle is zero in
the direction of the particle motion, reaches maximum
at an angle of θm ≈ γ–1 measured from this direction (γ is
the relative energy of the particle), and gradually
decreases as the angle θ grows further. Power radiated
along the surface (i.e., for θ ≈ 90°) is lower by a factor
of γ2 as compared to the maximum value (radiated at
θm ≈ γ–1).

When an extended bunch of charged particles
crosses the conductor surface, the transient radiation of
this object, representing interference of the fields gen-
erated by a large number of particles, may significantly
differ from the radiation of a single charge. The differ-
ence is especially pronounced if the emission is mea-
sured at a wavelength comparable to the bunch size. In
connection with this, it should be noted that the tran-
sient radiation of bunches possessing finite dimensions
was theoretically studied by many researchers (see,
e.g., monograph [2]) who were interested predomi-
nantly in establishing the conditions under which the
radiation of a bunch containing N particles would be the
same as that of an effective point particle with a charge
of eN. This implied certain restrictions to the size of
bunches. In practice, an alternative problem formula-
tion can also be of interest: how the bunch size and the
particle distribution affect the angular distribution and
spectrum of the transient radiation. In this case, the
maximum coherency of radiation cannot be attained, in
a sense that the radiation intensity will not be N2 times
that of a separate particle.
1063-7761/01/9306- $21.00 © 1163
Below, we report on the results of experimental
measurements of the spatial distribution of the intensity
of radiation generated when a bunch of particles accel-
erated in a microtron penetrates through a metal foil. It
was found that the radiation of such bunches exhibits
the properties of both transient radiation and Vavilov–
Cherenkov radiation.

2. EXPERIMENTAL MEASUREMENTS
OF THE TRANSIENT RADIATION

Figure 1 shows a schematic diagram of the experi-
mental setup. The source of electrons was a microtron
operating in the first acceleration mode. The particles
acquired an energy of 7.4 MeV, with a total current of
40 mA in a 4-µs pulse. The electron bunch was
extracted from microtron via a magnetic channel with
an internal diameter of 8 mm. The electron beam
passed a 1.5-m-long transient space and penetrated
through a 100-µm-thick foil 1 on the microtron flange
to escape into atmosphere. Then, the extracted electron
bunch crossed foil 2 to produce radiation measured by
detector D. The detector was based on a silicon point
diode of the D404 type possessing sensitivity in several
bands within a 6–12 mm wavelength range. Situated in
the plane of the microtron orbit (xz plane in Fig. 1),
detector D could be positioned at various distances
from the beam axis z and moved parallel to this axis.

The second foil could be changed in size and moved
relative to the beam. These experiments were per-
formed with a 100-µm-thick copper foil with a length
of 300 mm and a height of 200 mm. In order to protect
detector D from the radiation generated in foil 1, the
second foil was bent at a right angle and positioned in
front of the microtron flange as depicted in Fig. 1. The
distance d from the beam axis to the bending line was
85 mm.
2001 MAIK “Nauka/Interperiodica”
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In this experimental configuration, the relative
energy was γ ≈ 15. Therefore, the critical angle corre-
sponding to a maximum intensity of the transient radi-
ation was

The angles θ at which the radiation was detected varied
from 45° to 90°, that is, were significantly greater than
θm. According to the theory [2], the transient radiation
intensity is proportional to

where β = v /c is the ratio of the charge velocity v  to the
speed of light c. Therefore, the intensity of radiation of
a single relativistic particle must gradually decrease by
half when the angle increases from 45° to 90°.

θm γ 1–= 3.5°.≈

θ2sin

1 β2 θ2cos–( )
2
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Fig. 1. Schematic diagram of the experimental geometry.
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Fig. 2. Experimental plots of the radiation intensity P versus
detector coordinate z for γ = 15, λ ≈ 8 mm, and various fixed
transverse coordinates x = 95 (1), 135 (2), and 165 mm (3).
JOURNAL OF EXPERIMENTAL 
Figure 2 shows the experimental curves of the radi-
ation intensity versus the detector coordinate z for var-
ious fixed transverse coordinates x. The measurements
were performed at a wavelength λ ≈ 8 mm, comparable
with the bunch size. As is seen from Fig. 2, the transient
radiation intensity distribution significantly differs
from that theoretically predicted for a single charge: the
experimental curve exhibits pronounced maxima at
large angles. For example, curve 1 shows a peak at x =
95 mm and z ≈ 20 mm, which corresponds to θ ≈ 70°.

Our experiments revealed another significant dis-
tinction of the transient radiation of a bunch from that
of a single electron: the angular distribution of the radi-
ation intensity at large angles in the former case is
asymmetric relative to the z axis. In other words, the
radiation intensities are different at two points with the
same z and opposite x, being significantly (5–8 times)
greater for positive x than for the equal but negative
coordinate.

The discrepancy between the observed angular dis-
tribution and that predicted by the theory is related to
the coherent character of the radiation. In the experi-
ments, the detector measures the radiation resulting
from interference of the waves emitted by all electrons
in the bunch, rather than radiation of a single electron.
It is this interference that accounts for such a big differ-
ence between angular distributions of the transient radi-
ation of an electron bunch and single electron. The
main factor determining the angular distribution of the
bunch is the mutual arrangement of emitting particles.

In order to explain the experimental results, we per-
formed numerical calculations of the charge distribu-
tion in the bunch accelerated in a microtron and the
angular distribution of the transient radiation generated
by this bunch.

3. NUMERICAL CALCULATION 
OF THE TRANSIENT RADIATION

The motion of charged particles in a microtron is
traditionally described using specially designed numer-
ical methods [3]. Experimental investigations of the
particle acceleration modes confirmed that these meth-
ods describe the process of electron capture and bunch
formation with sufficient precision. As is known [4], the
operation of a microtron depends on a number of
parameters, including the size and shape of the acceler-
ating cavity, position of the electron emitter, and ampli-
tudes of the accelerating high-frequency field and the
guiding magnetic field. For this reason, numerical cal-
culations must take into account the particular cavity
geometry and the microtron operation mode.

The cavity of the microtron in which the experi-
ments were performed possessed certain features influ-
encing the distribution of accelerated particles. The
cavity size was such that the accelerated beam current
excited a spurious high-frequency E011 mode. This led
to an increase in the electron capture coefficient and to
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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a change in the electron bunch size (due to the focusing
effect of the induced mode). The results of calculation
of the dynamics of particles accelerated in such a
microtron were reported in [5].

Figure 3 shows the spatial distribution of particles in
the bunch prior to penetrating through a foil. This dis-
tribution was obtained by numerically calculating the
dynamics of electrons in the acceleration mode
employed in our experiments. As can be seen from this
figure, the electron bunch exhibits rather sharp bound-
aries. In the transverse direction, the boundaries are
determined by the output channel diameter and the
transit path length, while, in the longitudinal direction,
the bunch size is determined by features of the phase
motion of particles in the microtron. In the microtron
operation mode employed, the longitudinal bunch size
in front of the foil was ≈9 mm, while the horizontal and
vertical dimensions were ≈28 and ≈4 mm, respectively.

The calculated spatial distribution of particles in a
bunch was used to determine the transient radiation of
the bunch penetrating through a metal foil. According
to the theory, the radiation spectrum of a charged parti-
cle crossing a plane metal–vacuum interface is
described by the relationship

(1)

where ω is the frequency, q is the particle charge, R is
the distance from the point of crossing the interface to
the point of observation, and ti is the time of particle
escape from the metal. The radiation field of the bunch
is a sum of the fields generated by individual particles.

We have calculated the transient radiation intensity

Pω ~  as a function of the longitudinal coordinate z
at a fixed coordinate x. The calculations were per-
formed for various radiation wavelengths λ. The results
of these calculations are presented in Fig. 4. Figure 4a
refers to the case of λ = 8 mm, at which the experimen-
tal measurements of the radiation intensity P depending
on the coordinate z were carried out (see Fig. 2, curve 1).
As can be seen, the results of calculations qualitatively
agree with experiment: the Pω(z) curve for x = 95 mm
exhibits a pronounced maximum at which the ampli-
tude is significantly higher than that at the same z for
x = –95 mm. However, there is some quantitative differ-
ence between theoretical and experimental data:
according to the calculation, the radiation intensity
maximum takes place at θ ≈ 60°, whereas the measure-
ments showed the peak at θ ≈ 70°. This discrepancy can
probably be explained by the fact that a model used for
calculating the electron motion did not take into
account some factors influencing the spatial distribu-
tion of electrons in the bunch. The point is that even
small changes in this distribution may significantly
affect the radiation characteristics.

Figure 4b shows a series of the Pω(z) curves calcu-
lated for the same x and various radiation wavelengths
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Fig. 3. A typical spatial distribution of particles in the bunch
prior to penetrating through a foil.
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Fig. 4. Numerically calculated plots of the radiation intensity P
versus detector coordinate z: (a) λ = 8 mm, x = 95 (1) and
−95 mm (2); (b) x = 95 mm, λ = 1 (1), 4 (2), and 12 mm (3). 
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λ. All curves are normalized to the maximum intensity
of radiation at a given wavelength for the coordinate z
varying from zero to 150 mm. These results indicate
that the intensity of radiation at large angles exhibits a
maximum in a broad range of wavelengths.

Figure 5 presents the angular dependence of the
radiation intensity Pω(θ) in the xz plane. In this calcula-
tion, the distance from the point of interface crossing to
the detector was taken equal to R = 100 mm. As can be
seen from this figure, the transient radiation of a bunch
detected at large angles relative to the direction of par-
ticle motion is characterized by a sharply asymmetric
profile. In addition to the peaks at θ = ±1/γ, there is a
pronounced maximum at θ ≈ 60°.

In interpreting the results, an important circum-
stance is that the bunch front is sloped with respect to
the velocity vector. In other words, the normal to the
front is not parallel to the velocity vector, the angle
between these directions being about 10°. Therefore,
various points of the front cross the foil surface at vari-
ous time instants. Note that the front–surface intercept
moves along the foil at a velocity exceeding the speed
of light. The size of the foil region from which the tran-
sient radiation is emitted varies with time. As can be
readily shown, the boundary of the emitting region
moves at a superluminous velocity. As a result, the pro-
cess exhibits the properties of both transient radiation
and Vavilov–Cherenkov radiation. Effectively, the
former radiation source moves along the normal to the
foil surface, while the Vavilov–Cherenkov radiation
source moves in the foil plane. Note that each individ-
ual particle in the bunch crossing the surface produces
only transient radiation, but the source of this radiation
moves at a superluminous velocity along the interface.
Interference of the waves emitted by all individual par-

0
90

P, rel. units

θ, deg
45 0 –45 –90

0.5

1.0

Fig. 5. The angular profile of the transient radiation inten-
sity Pω(θ) in the xz plane calculated for λ = 8 mm and R =
100 mm.
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ticles imparts the process directionality characteristic
of Vavilov–Cherenkov radiation.

In comparing the experimental results to classical
Vavilov–Cherenkov radiation, one must take into
account the experimental conditions. If the path length
L of the superluminous source along the surface were
sufficiently large, the radiation would be characterized
by a narrow directivity pattern typical of traditional
Vavilov–Cherenkov radiation sources. In our experi-
ments, the path length L of the superluminous source
along the surface was on the order of a few (3–4) wave-
lengths. In this case, the width ∆θ of the angular distri-
bution of the Vavilov–Cherenkov radiation is approxi-
mately given by the formula

(2)

where θ0 is the Cherenkov angle.

In addition, it must be taken into account that the
velocity of the superluminous source appearing in these
experiments is not constant because the bunch bound-
ary is not flat and the bunch density is not homoge-
neous. These factors additionally increase the angular
distribution width. As can be seen from the plots pre-
sented in Fig. 4, the angular distribution width
decreases with decreasing wavelength.

It should also be noted that the above features of
coherent radiation can be observed in the experiments
with relativistic beams on most of the linear accelera-
tors. The maxima of the radiation intensity at large
angles will be most pronounced in cases when the
transverse size of a bunch is greater than the longitudi-
nal size. Such bunches are obtained, for example, in the
accelerator of the Nuclear Physics Laboratory of
Tokhoku University (Sendai, Japan).

4. CONCLUSION

The angular distribution of intensity of the transient
radiation generated by a relativistic electron bunch
accelerated in a microtron was experimentally mea-
sured at a wavelength λ = 8 mm (comparable to the
bunch size) at angles much greater than the characteris-
tic angle θm = 1/γ. The experiments showed that the
coherent emission at large angles exhibits an asymmet-
ric angular distribution with a pronounced maximum at
θ ≈ 70° @ θm. Using the results of numerical calcula-
tions of the motion of electrons in a microtron, the spa-
tial distribution of particles in a bunch penetrating
through a metal foil was determined. Based on these
data, the angular distribution of the intensity of a coher-
ent transient radiation of the electron bunch was calcu-
lated. The results of these calculations qualitatively
agree with the experimental data.

∆θ λ
2L
------ θ0 θ0,cossin=
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Abstract—The contribution of the two-quantum photoeffect to the pulse amplitude distribution at the output
of a photomultiplier is considered. An expression generalizing the Mandel formula is derived that takes into
account the second-order photoeffect. The influence of a temporal and spatial coherency of the radiation field
on the photomultiplier count statistics is studied. Possible applications of the obtained results to determining
statistical characteristics of the optical fields are discussed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The two-quantum photoeffect was previously stud-
ied both experimentally and theoretically in connection
with the problem of determining the count statistics for
so-called two-photon photoelectron multipliers tubes
(PMTs) [1–4]. In these devices, the photocathode elec-
tron work function is too high for detecting single pho-
tons but allows an electron to be emitted from the cath-
ode when two energy quanta of the incident radiation
are simultaneously absorbed [1–4]. On the other hand,
Artem’ev [5, 6] demonstrated that the two-quantum
photoeffect may significantly contribute to the pulse
amplitude distribution at the output of a usual “one-
photon” PMT. It was established that pulses produced
upon absorption of the correlated photons at the PMT
cathode are characterized, on the average, by a twice
greater amplitude as compared to that of the one-pho-
ton response pulses; the two-photon response is
extremely sensitive to the degree of coherency of the
incident light.

In recent years, the interest of researchers in the
quantum-statistical analysis of optical radiation has
markedly increased in connection with the study of
nonclassical states of light fields (including squeezed
light [7]), with the development of quantum photome-
try [8], and with the commonly recognized importance
of taking the coherency into account in descriptions of
the collective states of quantum ensembles (e.g., super-
conductivity and Bose–Einstein condensation). In this
context, development of new highly sensitive methods
for measuring the photon statistics is of urgent impor-
tance.

We aimed at investigating the two-quantum photo-
effect in detail and assessing the possibility of using
this phenomenon in the study of coherence of the opti-
1063-7761/01/9306- $21.00 © 1168
cal radiation. The material is arranged as follows. Sec-
tion 2 describes the experimental setup and conditions.
The results of the measurements are presented in Sec-
tion 3. In Section 4, we analyze the pulse amplitude dis-
tribution at the output of a PMT (FEU-64) and describe
a theoretical model providing interpretation of the main
experimental data. Section 5 is devoted to application
of the model to an analysis of the whole body of exper-
imental results presented in Section 3. In Section 6, we
derive a generalized Mandel formula which takes into
account both one- and two-quantum photoeffect contri-
butions. In the Conclusion, we summarize the main
results and discuss possibilities of the further experi-
mental investigation of the photon statistics.

2. EXPERIMENTAL SETUP AND PROCEDURE

We have studied the photoelectric effect on an anti-
mony–cesium photocathode by measuring the distribu-
tion of pulse amplitudes at the output of a FEU-64 pho-
toelectron multiplier tube detecting light from sources
possessing various statistical properties. Figure 1 shows
a general schematic diagram of the experimental setup.
The light from a radiation source passed through a grat-
ing monochromator (MDR-6U) with a PMT (FEU-64
tube) at the output placed into a cooled housing to
reduce the dark noise level. The experiments were per-
formed using different light sources, including an
incandescent lamp with a ribbon emitting element (a
SI6-100 lamp power supplied from a stabilized power
unit) and a He–Ne laser (ILGN-104 type) generating a
set of He and Ne spectral lines (lasing at 6328 Å was
suppressed by detuning one of the resonator mirrors).

The above light sources are characterized by signif-
icantly different radiation coherence times. As is well
2001 MAIK “Nauka/Interperiodica”
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known, the spectral lines of neon in a He–Ne laser are
broadened as a result of the Doppler effect, with a typ-
ical linewidth amounting to 1700 MHz, corresponding
to a coherence time on the order of 0.2 ns. For an incan-
descent lamp, the coherence time can be estimated
using the spectral width of the monochromator exit slit
cutting a quasi-monochromatic spectral range from the
incident radiation. In our experiments, the exit slit
width was varied from 0.1 to 2 mm, which corresponded
to the coherence time changing from 1 to 0.06 ps (for an
MDR-6U monochromator with 1200-mm–1 gratings
and a 13-Å/mm dispersion).

For the convenient comparison of different sources,
the light intensities were leveled by a neutral filter with
variable optical density. In addition, the short-wave-
length radiation passing through the monochromator in
the second diffraction order of the gratings was elimi-
nated by using various spectral filters. The monochro-
mator entrance slit was illuminated in both single-mode
and multimode regimes. In the former case, the light
source was spaced 70 cm from the 100-µm-wide
entrance slit. The laser tube had an internal diameter
close to 1 mm, whereas the extended light source
(incandescent lamp) was diaphragmed with a 1-mm
aperture. As a result, the size of a coherently illumi-
nated spot in the entrance slit plane [9] was approxi-
mately equal to the entrance slit size. In the transverse
direction, the radiation was confined by the second slit
oriented at a right angle to and positioned immediately
in front of the entrance slit (to provide for the maximum
proximity of the slit planes). The size of the second slit
was also 100 µm. In the multimode regime, the
entrance slit was illuminated with the aid of a con-
denser.

The PMT (FEU-64) output pulses were amplified by
a preamplifier possessing a bandwidth of 300 MHz and
a gain coefficient of 20. The preamplifier was mounted
inside the cooled PMT housing. The preamplified sig-
nal was fed to a matched splitter with a bandwidth of
18 GHz which divided the signal between two identical
channels. In the first channel, the signal was amplified
by Ortec 9302 and 474 amplifiers, inverted, and fed to
a multichannel analyzer. In the second channel, the sig-
nal was analyzed using an Ortec 584 CF-discriminator,
the output pulses from which were detected by an Ortec
9315 photon counter.

The pulse amplitude distribution at the PMT output
is highly sensitive both to the character of illumination
of the photocathode surface and to instabilities in the
operation of electronic equipment. It is well known that
too intense an illumination of the photocathode and
sharp fluctuations in the level of high voltage supplied
to the PMT may lead to long-term (on the order of
hours and above) variations in the pulse amplitude dis-
tribution. In the course of long-time data accumulation
exposures, a certain distortion can be introduced by
slow drift in the parameters of the electronics. In order
to minimize the effect of such a drift, all the experimen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tal setup was switched on and trained for 1.5–2 h prior
to measurements. The influence of photocathode inho-
mogeneities and a scatter of the takeoff coefficient for
photoelectrons ejected from various cathode areas were
eliminated by gluing a diaphragm with an aperture of
2.5 mm onto the PMT entrance window, which
restricted illumination to a small central region of the
photocathode.

Using the two-channel measuring scheme described
above, it was possible to perform the photon count
experiments with a fast-response discriminator under
conditions of a permanent monitoring of the pulse
amplitude distribution. If the amplitude distribution
deviated in shape from the normal (which sometimes
took place, e.g., as a result of electric breakthroughs),
the data were rejected. The dark noise level of the
cooled PMT was as low as a few tens of counts per sec-
ond (cps) and, hence, did not significantly influence the
results of measurements.

3. EXPERIMENTAL RESULTS

Figure 2 shows a typical pulse amplitude distribu-
tion at a photoelectron multiplier tube output. In this
curve, we may separate the regions of dynode noise (I),
one-electron peak (II), and large-amplitude-pulse con-
tribution (III). The one-electron peak is separated from
the dynode noise by a dip, the level and position of
which will be characterized by a “contrast” parameter
K representing the ratio of the one-electron peak height
to the left-hand minimum level.

Figure 3 shows the pulse amplitude distributions
(plotted on the usual and logarithmic scales) measured
with a FEU-64 photomultiplier operated at various
intensities of the photocathode illumination with an
incandescent lamp. In the logarithmic plot (Fig. 3b), the
distributions were normalized to the one-electron peak
height, which provides for a convenient comparison of
the curve shapes. At small illumination intensities, the
distribution shows a clearly pronounced one-electron
peak. As the intensity grows, an additional “shoulder”
appears and rapidly increases on the right-hand wing,
while the one-electron peak position remains
unchanged. However, on further increasing the illumi-

1
2

3

4

5 6 7

8 9
10

11
12

Fig. 1. Schematic diagram of the experimental setup:
(1) light source; (2) aperture; (3, 4) neutral and spectral fil-
ters; (5) monochromator; (6) photoelectron multiplier;
(7) matched splitter; (8, 9) amplifiers; (10) multichannel
analyzer; (11) discriminator; (12) photon counter.
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nation intensity, the one-electron peak begins to shift
toward small amplitudes.

The additional shoulder in the amplitude character-
istic of the FEU-64 was originally observed by
Artem’ev [5, 6] and interpreted as a “two-electron”
peak arising due to the events whereby two electrons
are ejected from the photocathode upon simultaneous
absorption of two photons. This interpretation was
based on the fact that the shoulder is observed in the
region where the pulse amplitudes are approximately
twice as large as the one-electron peak amplitude. The
two-electron peak due to the simultaneous absorption
of photons follows simply from energy considerations.

A simple approach to verification of this concept
consists in establishing the dependence of the two-elec-
tron peak height on the illumination intensity. The
results of such measurements are presented in Fig. 4,
showing a plot of the photon count rate S2e2ph in the
region of the two-electron peak (Fig 2, region III) ver-
sus the photon count rate S1e1ph corresponding to the
one-electron peak. Since the latter value is proportional
to the illumination intensity, we may conclude that the
two-electron peak height is proportional, with a good
precision, to the square of the incident light intensity.
Thus, the quadratic relationship is indicative of a two-
photon nature of the two-electron peak. For conve-
nience, the one-electron one-photon and two-electron
two-photon maxima in the pulse amplitude distribu-
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Fig. 2. A plot of the pulse count rate S versus channel num-
ber Nch showing the typical pulse amplitude distribution at
a PMT output (on the usual and logarithmic scales) and
illustrating the one-electron peak “contrast” (K= Smax/Smin)
determination: (I) dynode noise; (II) one-electron peak;
(III) large-amplitude contribution (the curves are normal-
ized to maximum).
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tions are referred to below as the 1e1ph and 2e2ph
peaks, respectively.

The response of a one-photon photodetector (i.e.,
the number of counts in a one-electron peak) is propor-

tional to the average illumination intensity (T). The

(T) value as such does not bear information about sta-
tistical properties of the measured light, since these
properties depend on the second- and high-order
moments. Therefore, the 2e2ph peak is of considerable
interest from the standpoint of the photon statistics. The
number of counts of a two-photon photodetector over a

certain time interval T is proportional to (T), which is
the square of the light source intensity averaged over

the time T. The (T) value significantly depends on the
nature of the light source. Importance of the 2e2ph peak
for the photon statistics was correctly understood by
Artem’ev, but his statement that this peak arises only in
response to coherent light sources [6] and, hence,
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Fig. 3. The pulse amplitude distributions profiles on the (a)
usual and (b) logarithmic scales measured using a FEU-64
photomultiplier at various intensities of the photocathode illu-
mination with the light of an incandescent lamp (λ = 700 nm).
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allows correlated photons to be directly detected is (see
below) misleading.

Once the amplitude characteristics measured at var-
ious illumination levels have been considered, let us
turn to the spectral dependence of the pulse amplitude
distribution at the FEU-64 output. In order to study the
spectral dependence, the pulse amplitude distributions
were measured by illuminating a PMT with a quasimo-
nochromatic light beam obtained by passing the incan-
descent lamp radiation through the monochromator.
Figure 5 shows the pulse amplitude distributions mea-
sured under these conditions for various wavelengths.
As is well known, the sensitivity of the antimony–
cesium photocathode is maximal in the wavelength
range from 200 to 400 nm and drops rapidly when the
light wavelength increases above 400 nm.

In order to maintain the measurement accuracy on
an approximately constant level, we controlled the light
intensity with the aid of a neutral light filter so as to
obtain the same signal intensity (~104 cps) at the PMT
output for all wavelengths. Independent estimates
obtained using a photomultiplier of the XPH277 type
(with the spectral sensitivity range extended toward red
spectral interval) showed that the FEU-64 output signal on
a level of 104 cps at a wavelength of 800 nm could be
obtained using a light flux on the order of 7 × 107 pho-
tons/s. The main feature revealed by the data presented
in Fig. 5 is that the PMT response in the region of small
amplitudes exhibits a significant growth with increas-
ing light wavelength, which is manifested by a sharp
drop in “contrast” of the 1e1ph peak. A similar decrease
in the contrast is observed with increasing illumination
intensity (Fig. 6).

Finally, let us consider dependence of the PMT
pulse amplitude distribution on the illuminated cathode
area. This is an important relationship because the
2e2ph peak intensity is a nonlinear (quadratic) function
of the light intensity. The 1e1ph peak height depends
linearly both on the light intensity and on the illumi-
nated spot area. Therefore, the same 1e1ph peak can be
obtained with a large spot at low intensity and with a
small spot at proportionally high intensity. In other
words, the 1e1ph peak intensity depends only on the
total number of photons striking the cathode. The
2e2ph peak may behave differently: if we maintained a
constant number of photons in the light beam and var-
ied the cathode spot area, the intensity would increase
with decreasing spot size and, hence, the 2e2ph peak
height would grow relative to that of the 1e1ph peak
height. In that case, it would be necessary to perform
measurements with permanent control of the spot size
on the PMT cathode.

In order to study how the 2e2ph peak height depends
on the illuminated spot area, we measured the PMT
pulse amplitude distributions for various values of the
exit slit width of a monochromator illuminated with the
light of an incandescent lamp. Using a condenser lens
mounted in the cooled PMT housing, the exit slit image
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
was projected onto the photocathode. It was found that
the 2e2ph peak height grows by a quadratic law with
increasing spot area. In other words, the peak height is
proportional to the square of the number of photons in
the beam. As a result, the ratio of the 1e1ph and 2e2ph
peak intensities is independent of the illuminated spot
area on the photocathode and is determined only by the
number of photons in the beam.

0.5

0 100

S2e2ph, cps

S1e1ph, cps

1.0

1.5

2.0

200 300 400

Fig. 4. Experimental plot of the 2e2ph peak intensity versus
the illumination intensity (incandescent lamp); solid curve
shows the result of approximation by a quadratic function.

10–2

0 50

S

Nch

100 150 200

10–1

1

10–3

λ = 800 nm
λ = 775 nm
λ = 750 nm
λ = 700 nm
λ = 500 nm
λ = 380 nm

Fig. 5. Pulse amplitude intensity distributions for a PMT
illuminated with a quasimonochromatic light of various
wavelengths from an incandescent lamp. The one-electron
peak contrast decreases significantly with increasing wave-
length (the curves are normalized to maximum).
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Fig. 6. Plots of (a) the one-electron peak contrast and (b) the inverse contrast (approximated by a linear function) versus the illumi-
nation intensity (proportional to the count rate at the 1e1ph peak).
4. A MODEL DESCRIBING 
THE PHOTOMULTIPLIER PULSE 

AMPLITUDE DISTRIBUTION

A real photoelectron multiplier is a sufficiently com-
plicated device that may feature various processes
directly and indirectly influencing the output pulse dis-
tribution. In order to rationalize the obtained experi-
mental data, it is necessary to develop a theoretical
model correctly reflecting the main experimental
trends. Such a model can be based on the approach pro-
posed and developed by Prescott [10]. According to this
approach, the process of electron multiplication on the
PMT dynodes is considered as a Poisson process char-
acterized by an average secondary electron emission
coefficient µ. This allows a recurrent formula to be
derived for the generating function of the electron num-
ber distribution past M dynodes. Assuming (as an initial
condition) that a single electron arrives at the first dyn-
ode from the photocathode, we can determine a distri-
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Fig. 7. Pulse amplitude distributions for the 1e1ph and
2e2ph peaks calculated by the Prescott formulas with µ = 2,
b = 0.1, and M = 11. 
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bution of the probability for m electrons to be ejected
after the Mth dynode.

In order to take into account the PMT nonideality,
Prescott introduced a coefficient b that is much smaller
than unity for a good photomultiplier [10]. If the initial
condition is modified so that two electrons (rather than
one) are ejected from the photocathode, the Prescott
formulas must describe the pulse amplitude distribution
for the 2e2ph peak as well. The corresponding distribu-
tion profiles are presented in Fig. 7. In confirmation of
intuitive expectations, (i) the 2e2ph peak turns out to be
two times as wide as the 1e1ph peak, and (ii) the pulse
amplitude at which the distribution exhibits a maxi-
mum for the 2e2ph peak is two times that for the 1e1ph
peak. These properties of the distributions calculated
by the Prescott formulas agree well with the properties
of 1e1ph and 2e2ph peaks observed in experiment.
However, the experimental distribution obtained for the
FEU-64 is less asymmetric than that theoretically pre-
dicted. Therefore, the real peak amplitude distribution
can hardly be fitted to the Prescott formulas with rea-
sonable values of the model parameters.

Let us consider in more detail the region of small
pulse amplitudes to the left of the 1e1ph peak observed
in experiment. This region is traditionally related to the
PMT dynode noise. Investigations of the dynode noise
showed evidence of rather unusual properties [11], one
of which is the sensitivity toward PMT illumination.
This effect is conventionally explained by the probabil-
ity of electron escape from the dynode increasing as a
result of the dynode bombardment by electrons of the
avalanche, that is, by a “memory” of the previously
detected photon retained for a certain time. The mem-
ory trace can be sufficiently long, since an increase in
the dynode noise in some experiments was observed for
more than one day after intense illumination [11].

For constructing the model, let us assume that all
dynode noises are related only to the first dynode. This
simplifying assumption is in fact quite realistic. Indeed,
the average secondary electron emission coefficient of
the dynode amounts to approximately 3.5 (as can be
readily estimated from the amplitude of the one-elec-
 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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tron peak, taking into account that the FEU-64 contains
11 dynodes with equal voltages between these units).
Thus, one “noisy” electron ejected from the first dyn-
ode would give rise to an average output pulse ampli-
tude 3.5 times smaller than that of the 1e1ph peak. This
estimate provides for a correct scale of the dynode
noise amplitude. The noise in the second and subse-
quent dynodes leads to a noise pulse amplitude at least
3.5 times lower compared to that of the first dynode
noise, thus contributing to the distribution in the imme-
diate vicinity of the zero-energy channel. We will also
assume that the escape of more than one “noisy” elec-
tron from the first dynode has extremely low probabil-
ity after this dynode is bombarded with either one or
even two photoelectrons.

Under the above assumptions, the probability of
detecting N “noisy” dynode pulses with an amplitude
falling within the interval from x to x + dx over a time T
can be expressed as

(1)

where pD(x) is the probability density of the dynode
noise pulse amplitude distribution and PN(T) is the
probability of detecting N counts (pulses) over the time
T. The distribution of counts with an allowance for both
one- and two-quantum photoeffects is considered in
detail in Section 6. Here, we only note that the noise
pulses arise only during the detection of photons,
whereas the dark noise is ignored. Therefore, the prob-
ability of detecting a dynode noise pulse of a given
amplitude is a conditional probability, which is
reflected by formula (1).

Averaged over the time T, the number of dynode

noise pulses with a given amplitude (x, T)dx can be
expressed as

(2)

As demonstrated below (see Eq. (18)),

(2*)

where α1 and α2 are the efficiencies of the one- and

two-quantum photoeffects, and (T) and (T) are the
average intensity and average squared intensity.

5. DISCUSSION OF EXPERIMENTAL RESULTS

Now, we will attempt at explaining, within the
framework of the model described in the preceding sec-
tion, the whole body of the experimental data. As indi-
cated above, both 1e1ph and 2e2ph peaks observed in
the experimental distributions agree quite well in posi-

PND x T,( )dx PN T( )pD x( )dx,=

ND

ND x T,( )dx NPND x T,( )dx
N 1=

∞

∑=

=  NPN T( )pD x( )dx
N 1=

∞

∑ N pD x( )dx.=

ND x T,( )dx α1 I T( )T α2I2 T( )T+[ ] pD x( )dx,=

I I2
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tion and width with the one- and two-electron peaks in
the model based on the Prescott formulas. For small
light intensities, when the 2e2ph peak contribution to
the distribution is insignificant, the dynode noise level
must linearly depend (see formula (2*)) on the illumi-
nation intensity—and this is actually observed in exper-
iment. As the light intensity increases, the contribution
of the 2e2ph peak becomes significant (see curve 4 in
Fig. 3b) and the dynode noise grows faster than does
the 1e1ph peak, which accounts for deteriorated con-
trast of the latter peak. Note also that an analogous
decrease in the 1e1ph peak contrast is observed when
the photocathode is illuminated with light possessing a
750–800 nm wavelength. This fact can be seen in Fig. 5
and is clearly illustrated in Fig. 8, showing the contrast
as a function of the wavelength. This drop in the con-
trast can be readily explained using formula (2*), since
both α1(λ) and α2(λ)—the efficiencies of one- and two-
quantum photoeffects, respectively—depend on the
light wavelength λ. An increase in the relative contribu-
tion of the two-quantum photoeffect is evidence that
α1(λ) decreases more rapidly than α2(λ) with increas-
ing λ. Note that a difference in the efficiency of the one-
and two-quantum photoeffects was pointed out in [5, 6].

Based on the notions underlying formula (2*) and
on the analogy in variation of the pulse amplitude dis-
tribution with increasing illumination intensity and
light wavelength, we may suggest a method for evalua-
tion of the relative quantum efficiency of the two-quan-
tum photoeffect. Indeed, it can be shown (see Section 6)
that the average number of one- and two-electron
pulses with a given amplitude x is

(3)

(4)

N1e1 ph α1 I T( )T p1e1 ph x( )dx,=

N2e2 ph α2I2 T( )T p2e2 ph x( )dx.=

2

0
400

K
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Fig. 8. A plot of the one-electron peak contrast versus quasi-
monochromatic illumination wavelength for a constant total
(integrated over all channels) count rate of ~104 cps.
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Then, the contrast K of the 1e1ph peak is determined as
(5)K 1– ND xD( ) N1e1 ph+ xD( )
ND xmax1e1 ph( ) N1e1 ph xmax1e1 ph( )+ N2e2 ph xmax1e1 ph( )+
--------------------------------------------------------------------------------------------------------------------------------,=
where

It would be expedient to ignore the contributions of
dynode noise and 2e2ph pulses in the denominator in

xD
1
µ
---xmax1e1 ph.=
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comparison to the 1e1ph peak contribution, since usu-
ally

Then, we obtain

ND xmax1e1 ph( ) N2e2 ph xmax1e1 ph( ) ! N1e1 ph xmax1e1 ph( ).,
(6)

K 1– α1 I T( ) α2I2 T( )+[ ] T pD xD( ) α1 I T( )T p1e1 ph xD( )+

α1 I T( )T p1e1 ph xmax1e1 ph( )
-------------------------------------------------------------------------------------------------------------------------------=

=  
pD xD( ) p1e1 ph xD( )+

p1e1 ph xmax1e1 ph( )
-------------------------------------------------

α2

α1
----- I2 T( )

I T( )
-------------

pD xD( )
p1e1 ph xmax1e1 ph( )
----------------------------------------.+
For a stabilized light source, (T) = 2(T) and eventu-
ally we arrive at the formula

(7)

where the coefficients A and (α2/α1)B can be readily
determined in experiment. Note that the ratio α2/α1 is
wavelength dependent. Taking the dependence of K–1

on (T) for various λ, we obtain an expression for the
change in the relative quantum efficiency:

where λmax is the wavelength corresponding to a maximum
spectral sensitivity of a given PMT. This result is confirmed
by the contrast versus wavelength curve presented in Fig. 8,
which shows that the contrast drops for λ > 650 nm and
is constant (K = const) at lower wavelengths.

6. MANDEL FORMULA GENERALIZED 
TO TAKE INTO ACCOUNT BOTH ONE-
AND TWO-QUANTUM PHOTOEFFECTS

Using the well-known Mandel formula (see, e.g.,
[12]), it is possible to calculate the probability of detect-
ing a preset number of photons over the time interval T,
provided that a one-quantum mechanism of the photoef-
fect is operative in the detector. Let us consider how the
original Mandel formula for the probability Pn(t, t ') of
detecting n counts at the PMT output should be modified
if the two-quantum photoeffect plays a significant role in
addition to the one-quantum mechanism.

I2 I

K 1– A
α2

α1
-----B I T( ),+=

I

α2

α2
----- λ( )/

α2

α1
----- λmax( ),
 

Let us consider a PMT provided with the gate
opened at a time instant t and closed at t', so that the
light strikes the photocathode only within the time
interval T = t ' – t referred to as the count time. We
assume that the probability of exciting one photoelec-
tron during a negligibly small time interval dt' upon the
absorption of a single photon is proportional to the
instantaneous light intensity I, p1dt ' = α1Idt ', while the
absorption of two photons leads to the emission of two
photoelectrons with a probability of p2dt ' = α2I2dt '. As
will be shown below, it is the latter two-electron case
that frequently takes place in practice. Artem’ev [5, 6]
attributed the appearance of pulses with a double
amplitude (related to the two-quantum photoeffect) in
the amplitude distribution to the events in which two
electrons are simultaneously ejected from the cathode.

The fact that one-quantum and two-quantum pulses
differ in amplitude requires a certain specification of
the experimental procedure used for detecting these
pulses. Indeed, in the traditional count statistics, each
photoelectron emitted from the cathode yields a pulse
at the PMT output (provided the effective collection of
photoelectrons with a takeoff probability equal to
unity). However, this is no longer the case in our situa-
tion. The registration system may (i) measure the total
charge delivered to the anode during the count time T,
or (ii) count the total number of pulses, or (iii) measure
the amplitude distribution of pulses. Apparently, the most
detailed information will be gained in the latter case.

Taking into account all the above considerations, we
will separately consider two cases: first, when the total
number of photoelectrons emitted from the cathode is
detected and, second, when the total number of pulses
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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at the PMT output is counted without analysis of the
amplitude distribution. As will be demonstrated below,
this approach will allow us to study all other possible
experimental situations as well (for example, by taking
into account the two-quantum one-electron photoef-
fect, whereby the absorption of two photons leads to the
emission of a single photoelectron).

Let us denote by p0dt ' the probability that not a sin-
gle photoelectron is emitted from the cathode during
the time interval dt'. Then, by virtue of the complete-
ness of the space of elementary events taking place
within a negligibly small time interval dt', we may write
for the first case

(8)

Here, it is implicitly assumed, in accordance with
experimental practice, that

p2dt ' @ (p1dt ')2.

Taking into account that the detection process is contin-
uous in time, the integral probability Pn(t, t ' ) of detect-
ing n electrons over the time period T = t ' – t must obey
the following equation:

(9)

which yields

(10)

Obviously, the right-hand part of the equation for P1(t, t ')
must contain only the first two terms. In the simplest
differential equation describing P0(t, t ' ), we should
retain only the first term in the right-hand part:

(11)

The initial condition is that P0(t, t) = 1. A solution to
this equation is expressed as

(12)

where (t, T) is the average intensity and (t, T) is the
average squared intensity over the count time, which
are determined as

(13)

(14)

p0dt ' p1dt ' p2dt '+ + 1.=

Pn t t ',( ) Pn t t ', dt '–( ) 1 p1– dt ' p2dt '–( )=

+ Pn 1– t t ', dt '–( ) 1 p2dt '–( )p1dt '

+ Pn 2– t t ', dt '–( ) 1 p1dt '–( )p2dt ',

dPn t t ',( )
dt '

---------------------- p1 p2+( )Pn t t ',( ) Pn 1–+ t t ',( )p1–=

+ Pn 2– t t ',( )p2.

dP0 t t ',( )
dt '

---------------------- p1 p2+( )P0 t t ',( ).–=

P0 t T,( ) α1 I t T,( )– α2I2 t T,( )–[ ] ,exp=

I I2

I t T,( ) 1
T
--- I t '( ) t ',d

t

t T+

∫=

I2 t T,( ) 1
T
--- I2 t '( ) t '.d

t

t T+

∫=
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Here, by an average over the count time, we imply the
time-average for the optical field taken at the initial
time instant t and freely evolving over the count time T.
Since neither the field state at the time t nor the field
evolution with time is known, the quantities (t, T) and

(t, T) are essentially random values. Therefore, the
final distribution of the probability of detecting a preset
number of counts must be determined by averaging
over an ensemble of the optical fields with all possible
initial states. Assuming the process to be stationary and
ergodic, we omit the argument t in what follows.

As can be readily shown, a solution to Eq. (10) for
an arbitrary n can be written in the following form:

(15)

so that

(16)

and so on. A sum of all Fi(T) represents an expansion
into series for the exponent

which ensures that the sum of all probabilities Pi(T) is
unity. Note that the obtained probability distribution is
not of the Poisson type.

Now let us consider the second case, whereby the
detection system counts the total number of pulses over
the time period T not distinguishing between one- and
two-electron pulses. Denoting this total number of
counts by N and conducting considerations analogous
to those described above, we eventually arrive at the
following equation:

(17)

As can be readily seen, a solution to this equation is
provided by the Poisson distribution

(18)

where  = α1 (T)T + α2 (T)T. Note that this case also
describes the one-electron two-photon process, which
may contribute to the one-electron peak in the pulse
amplitude distribution. Note that the coefficients α2 for

I

I2

Pn T( ) Fn T( )P0 T( ),=

F0 T( ) 1,=

F1 T( ) α1 I T( )T ,=

F2 T( )
α1 I T( )T[ ] 2

2
------------------------------ α2I2 T( )T ,+=

F3 T( )
α1 I T( )T[ ] 3

3!
------------------------------ α1 I T( )T[ ] α 2I2 T( )T[ ] ,+=

α1 I T( )T α2I2 T( )T+[ ] ,exp

dPN t t ',( )
dt '

----------------------- p1 t '( ) p2 t '( )+[ ]–=

× PN t t ',( ) p1 t '( ) p2 t '( )+[ ] PN 1– t t ',( ).+

PN T( ) N
N

N!
-------= N–( ),exp

N I I2
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the one- and two-electron photoeffects may differ sig-
nificantly.

The Poisson distributions also describe the one- and
two-electron pulses detected over the time period T in
the important case when the PMT output pulses are
well separated with respect to amplitude and the space
of elementary events can be determined independently
for the pulses of each type. The average number of
pulses is

in the first case and

in the second case. The final expression for the photo-
response distribution function is obtained by averaging
over an ensemble of the optical fields with all possible
initial instantaneous intensities:

(19)

where the angle brackets denote averaging over the
ensemble.

7. CONCLUSION

Having considered the various detection schemes,
let us analyze the possibility of using the 2e2ph peak in
the investigations of photon statistics. Unfortunately,
the intuitive notion that the radiation of a light source
possessing a large coherence time must contain a
greater amount of photon pairs (and, hence, a larger
2e2ph to 1e1ph peak ratio) as compared to a source
with a shorter coherence time is misleading. The above
analysis indicates that the number of 2e2ph pulses
counted over a time interval T is determined by the
average square intensity of light over the same period.
The difference in the number of 2e2ph counts for two
stabilized light sources possessing equal average inten-
sities but different coherence times Tc1 ≠ Tc2 vanishes in
the limit

(see [13]). Since the coherence times of the great
majority of light sources do not exceed 1 ns, while the
data accumulation times in the experiments analogous
to those described above amount to hundreds of sec-
onds and above, no differences between the sources of
two types must be observed in the experiments.

This conclusion was thoroughly verified by compar-
ing the pulse amplitude distributions for the light
sources of two types possessing significantly different
coherence times. The measurements were performed
for a green neon line (5400 Å) and a quasimonochro-
matic radiation with the same wavelength obtained by
passing the light of an incandescent lamp through a
grating monochromator. It was found that the two dis-

N1e1 ph α1 I T( )T=

N2e2 ph α2I2 T( )T=

P̃ N T,( ) PN T( )〈 〉 ,=

Tc1 c2,

T
------------- 0
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tributions coincide to within the experimental accuracy.
Any comparison of two different light sources always
involves a risk of possible variation of some poorly
controlled parameters (such as the character of the pho-
tocathode illumination). An alternative approach to
checking for the sensitivity of the PMT pulse amplitude
distribution with respect to the light coherence is to
compare the distributions obtained using the same
source operating in the single-mode (coherent) and
multimode (incoherent) regimes. Such experiments
also confirmed coincidence of the pulse amplitude dis-
tributions in the two cases.

In order to reveal a nontrivial dependence of the
experimental results on the coherence time of a light
source, it is necessary to count the number of pulses
over a short period of time T (small time window), the
duration of which is comparable to the coherence time.
If the light intensity is not too high, so that the proba-
bility for more than one PMT pulse to fall within the
time window is negligibly small (since we are speaking
of a single spatial mode, this condition is valid with
large margins for the great majority of light sources
except for lasers), the average number of pulses
detected in a multiply repeated experiment with the
same time window is

As the time window decreases, T  Tc, the average

squared intensity (T) would significantly change:

(see [13]). Thus, using a series of experiments with the
same light source and the time window decreased from
T @ Tc to T ≈ Tc, it is possible to directly measure the
coherence time Tc value. Another possibility is offered

by comparison of different sources with close  and 
values but significantly different coherence times.
Modern electronic equipment can provide for a time
window as small as 100 ps and below, while the use of
a microchannel plate photodetector allows the pulse
front position to be determined to within 20 ps. This
makes it possible to employ light sources with coher-
ence times on the picosecond scale. Advantages of the
proposed method are (i) use of the same photomulti-
plier, (ii) the possibility of simultaneously determining

both  (2e2ph peak) and  (1e1ph peak), and (iii) the
fact that the results are independent of the light inten-
sity distribution in the illuminated cathode area.

Thus, we have studied the two-quantum photoeffect
and proposed a new method for measuring the quan-
tum-statistics properties of the light field. The experi-
ments were performed with an antimony–cesium pho-
tocathode, which allows the obtained data to be com-

P1 T( ) N T( ) α1 I T( ) α2I2 T( )+( )T .= =

I2

I2 T( ) I
2

T( )–

I
2

T( )
---------------------------------- 1 for T 0

I I2

I2 I
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pared to the results reported previously [5, 6].
Generalizing the well-known Mandel formula, the the-
oretical model developed in this study allows the whole
body of experimental data to be rationalized from a
common standpoint, which is very important for prac-
tical application of the obtained results.
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Abstract—A phenomenon of highly efficient cooperative energy transfer from Ho3+ and Tm3+ ions to two-par-
ticle (2Ce3+) cooperative acceptors in crystals of solid solutions of La1 – xCexF3 is revealed. The rates of coop-
erative energy transfer in Ho3+  2Ce3+, Tm3+  2Ce3+, and Tb3+  2Yb3+ systems are measured, as
well as their dependence on the magnitude of the matrix elements of donor transition. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The conventional mechanism of nonradiative
energy transfer takes place between two particles, i.e.,
a donor and an acceptor, only in the case of electronic
or electronic–vibrational transitions resonance, which
corresponds to nonzero value of the overlapping inte-
gral between donor fluorescence and acceptor absorp-
tion [1, 2]. This mechanism leads to a linear (with
respect to the acceptor concentration) dependence of
the quenching rate at the initial and kinetic stages of the
process [3–5]. At the same time, the possibility of coop-
erative transfer from one atom (ion) with a higher
energy to two atoms (ions) with a lower energy and vice
versa has been discussed by researchers in the field of
physics of electron [6] and spin [7–9] excitations of
activated crystals since the 1950s. In spite of numerous
attempts to detect and investigate such processes in
optics, only a few attempts may be regarded as success-
ful and reliable.

In the 1970s, due to the wide search for materials
and schemes for visible lasers, much effort was concen-
trated on the investigation of the up-conversion processes
[10–13], which resulted in detecting [14, 15] in highly
concentrated and strongly excited crystals the nonradia-
tive energy transfer from a pair of Yb3+ ions with an
energy of about 10 000 cm–1 each, acting as a coopera-
tive donor to a simple Tb3+ ion with an energy of about
20 000 cm–1, serving as an acceptor of energy. The
probability of such a cooperative process proved to be
very low [13], only 2.4 s–1, which is two–three orders of
magnitude less than the probability of radiative decay
of the levels involved. The quantum yield of this elegant
physical process turned out to be less than 1%, and the
process failed to find any practical application.
1063-7761/01/9306- $21.00 © 21178
In recent years, in the physics of activated laser
materials, one feels the need for moving from the near
infrared to medium infrared range [16]. In view of this,
the processes of splitting or multiplication of excita-
tions accompanied by a decrease in energy (with an
increase in the number of excitations) may be of special
interest; these processes were investigated theoretically
more than forty years ago.

The process of nonradiative cooperative quenching
or cooperative down-conversion was first described in
[17, 18], where the concentration dependence of the
neodymium Nd3+ impurity ions quenching in single
crystals of La1 – xCexF3 : Nd solid solutions was investi-
gated. The optical excitation energy is transferred from a
single Nd3+ ion with the energy of (4F3/2−4I15/2) donor
transition of 5000 cm–1 simultaneously to a pair of Ce3+

ions (cooperative acceptor) with twice lower 2F5/2−2F7/2

transition energy of approximately 2500 cm–1. The rate of
such a process in a self-activated crystal of CeF3 : Nd3+,

is much lower than the rates of conventional resonant
energy transfer (104 to 108 s–1) [19–21]; however, it
exceeds the up-conversion rate (2Yb  Tb) by almost
three orders of magnitude and competes with the radia-
tive decay rates for neodymium A(Nd) = 1300 s–1.
Therefore, the quantum yield of cooperative transfer
and down-conversion exceeds 50%, this being of con-
siderable interest from the standpoint of practical appli-
cations.

The relatively low value of the rate of the processes
of cooperative up and down-conversion (2D  A,
D  2A) may be associated with the small magnitude
of the electronic square elements of reduced matrix U(2),

W Nd 2Ce( ) 1500 s 1– ,=
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U(4), and U(6) of the respective donor transitions of ter-
bium and neodymium (10–3 to 10–2) treated in [16–18],
which are much smaller than the transition matrix ele-
ments of Yb3+ and Ce3+ (0.3 to 1). To realize higher
cooperative energy transfer rates, the process should
involve donor transitions with larger values of elec-
tronic reduced matrix elements. Having analyzed sev-
eral ions and transitions, we have selected the 3F4–3H6

transition of thulium ion (Tm3+) and the 5I7–5I8 transi-
tion of holmium (Ho3+), which are in good resonance
with the absorption of a cooperative pair acceptor
(2Ce3+), because the energy gap for the above-men-
tioned transitions is approximately twice as large as the
energy of 5F7/2–2F5/2 transition of Ce3+ (see Fig. 1). The
respective values of reduced matrix square elements for
the above-identified transitions for Tm3+ ion,

,

and for Ho3+ ion,

,

have the same order of magnitude as the values of the
reduced matrix square elements for Yb3+ and Ce3+ ions,

The investigated dependence of luminescence decay
time of Tm3+ and Ho3+ ions on the concentration of Ce3+

ions revealed the efficient cooperative energy transfer
processes Ho  2Ce and Tm  2Ce with the effi-
ciency exceeding 90% and the process rates of (0.8–2) ×
104 s–1, which are two orders of magnitude higher than
the radiative decay probabilities of respective transi-
tions.

2. EXPERIMENTAL RESULTS 
AND THEIR DISCUSSION

We have investigated crystals of solid solutions of
La1 – xCexF3 : Tm (0.5%) and La1 – xCexF3 : Ho (0.5%)
with different contents of Ce3+ ions (x = 0, 0.2, 0.4, 0.6,
0.8, 1.0) which substitute for the optically inactive La3+

ions synthesized by the Bridgeman–Stockbarger tech-
nique in a fluorinating atmosphere. As was pointed out
previously [17], the proximity of the ionic radii of La3+

and Ce3+ to one another provided for the invariability of
the lattice constant, the structure, and the optical prop-
erties of solid solution upon variation of x from zero to
unity.

The kinetics of luminescence decay of 3F4–3H6 tran-
sitions of Tm3+ ion and 5I7–5I8 transitions of Ho3+ ion
were measured upon excitation by broadband radiation

of a LiF crystal laser with  color centers with a gen-
eration maximum in the range of 1.12–1.16 µm, and
with a GGG : Nd3+ laser used as the pumping source.
The excitation was performed to a level located above

U 2( ) 0.249, U 4( ) 0.118, U 6( ) 0.608= = =

U 2( ) 0.0249, U 4( ) 0.1344, U 6( ) 1.5210= = =

U 2( ) 0.35, U 4( ) 0.69, U 6( ) 0.93.= = =

F2
–
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the test level (3H5 for Tm3+ and 5I6 for Ho3+) and related
to the luminescent level by fast multiphonon relaxation.
The luminescence was registered by an MDR-2 mono-
chromator and a liquid-nitrogen-cooled Ge : Au photo-
resistor. For kinetics with a long decay time, the lumi-
nescence signal was recorded also by a liquid-nitrogen-
cooled PbS photoresistor having a higher sensitivity for
wavelengths in the region of 2 µm and the response
time an order of magnitude longer. The scheme of the
measuring system including a high-speed (400 MHz)
Tektronix TDS-380 digital oscilloscope connected to a
personal computer, which allowed us to accumulate
and store the measured fluorescent signal with an
increase in the signal-to-noise ratio, is presented in Fig. 2.

0.2

0
3000

 Intensity

Energy, cm–1

0.4

0.6

0.8

1.0

1.2

4000 5000 6000

1 2

3

Fig. 1. The overlapping of luminescence spectra of transi-
tions of Nd3+, Ho3+, and Tm3+ donor ions with virtual
absorption spectrum of two-particle acceptors obtained
by the convolution of spectra of one-particle acceptors:
(1) luminescence spectrum of 5I7–5I8 transition of Ho3+

donor ion; (2) spectral region of luminescence of
4F3/2−4I15/2 transition of Nd3+ donor ion; (3) fluorescence

spectra of 3F4–3H6 transition of Tm3+ donor ion; (4)

absorption spectrum of 2Ce3+ two-particle cooperative
acceptor, obtained from the absorption spectrum of Ce3+

one-particle acceptor as a convolution of the form

.I ν2( ) I ν1( )I ν2 ν1–( ) ν1d
0

∞

∫=

GGG : Nd laser
LiF : F2 laser

Monochromator Registration system
Photodetector

Amplifier

TDS-380

PC

Sample

Fig. 2. The scheme of registration of luminescence decay
kinetics.
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Figure 3 gives examples of kinetics of luminescence
decay of Ho3+ and Tm3+ ions at different concentrations
x of Ce3+ ions. One can see that the decay time is
reduced drastically with an increase in x and, at the ini-
tial stage, are well described by an exponential law,
which corresponds to predictions and computer simula-
tion of the process of cooperative quenching [22].

Figure 4a demonstrates the measured dependence of
the initial time of decay τ(5I7) of the 5I7 level of Ho3+ ion
on the concentration x of Ce3+ ions. The corresponding
rates of cooperative energy transfer, calculated from the
measured decay times,

are indicated in Fig. 4b by filled dots. For convenience,
the graph of Fig. 4b is given on a log-log scale. The
dashed line in Fig. 4b corresponds to quadratic approx-
imation of the experimental data.

Figure 5a gives the measured decay time for the
level 3F4 of Tm3+ ion as a function of the concentration
x of Ce3+ ions. As in the previous case, the filled dots in

Wx Ho 2Ce( ) 1
τ x( )
---------- 1

τ 0( )
----------–=

0.1
0 0.2

Time, ms
0.4 0.6 0.8 1.0 1.2 1.4

0.2

0.4

0.6

1.0

0.8

x = 0.2

x = 0.4

x = 0.6

x = 0

(b)

0 0.5

I/I0

3.0
0.06

0.4

0.6

1.0
0.8

x = 0.4

x = 0.3

x = 0

(a)

1.0 1.5 2.0 2.5

0.08
0.1

0.2

Fig. 3. Measured kinetics of luminescence decay of (a) lev-
els 5I7 of Ho3+ ion and (b) levels 3F4 of Tm3+ ion in

La1 − xCexF3 crystals for different concentrations x of Ce3+ ions.
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Fig. 5b correspond to the values of the rate of coopera-
tive transfer,

calculated from the measured values of decay time of
the level 3F4 of Tm3+ ions, and the dashed line indicates
a quadratic approximation of the experimental data.
The experimentally obtained values of the quenching
rate fit well the quadratic dependence, W ∝  x2, whence
it follows that the process of quenching of Tm3+ and
Ho3+ ions by Ce3+ ions has a two-particle, cooperative
nature. Here, it must be emphasized that τ(x) and W(x)
were measured at the initial stage of the kinetics of
donor luminescence decay, where the conventional For-
ster energy transfer exhibits a linear dependence, W ∝  x
[2–5, 16–18]. The data on the quenching rates, of dif-
ferent rare-earth ions (donors) by Ce3+ ions are summa-
rized in the table for two values of the concentration of
Ce3+ ions (x = 0.4 and 1.0). One can see in the table that
the value of the rate of cooperative quenching in the
case of Tm  2Ce and Ho  2Ce processes
exceeds considerably the respective value for the case
of Nd  2Ce transition. This correlates with much
higher values of the reduced matrix square elements
U(2), U(4), and U(6), which define the line strength of the

Wx Tm 2Ce( ) 1
τ x( )
----------

1
τ 0( )
----------,–=

0 0.2 0.4 0.6 0.8 1.0

3 (a)

1

0.3

0.1

0.03

0.01

τ,
 m

s

LaF3 La1– xCexF3 CeF3

100
0.1

W
, s

–
1

Concentration of Ce3+, x
0.2 0.4 0.6 0.8 1.0

300

1000

3000

10000

30000 (b)

Concentration of Ce3+, x

Fig. 4. (a) The initial decay time τ of the level 3F4 of Tm3+

ion and (b) the cooperative quenching rate WTm → 2Ce as

functions of the partial concentration x of Ce3+ ions in a
La1 − xCexF3 crystal. The dots indicate the experimental
results, and the dashes indicate the quadratic approximation
of the experimental data.
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investigated transitions of Tm3+ and Ho3+ ions. It fol-
lows from the table that the energy efficiency of the pro-
cesses of quenching of Tm3+ and Ho3+ ions and of sen-
sitization of Ce3+ ions,

is close to 100% in both cases of the treated cooperative
transfer, Tm  2Ce and Ho  2Ce, and is even
somewhat higher than in the case of direct resonant
transfer Er  Ce [16]. The quantum yield of sensiti-
zation and down-conversion for the cooperative pro-
cesses of Tm  2Ce and Ho  2Ce is higher than
100% (~190%) as a result of sharing the excitation. An
analysis of the data given in the table enables one to
compare the rates of overall energy transfer Wx = 1 from
the donor to Ce3+ ions in the CeF3 lattice for three cases,
namely, when the Ce3+ ions act as one-particle accep-
tors, two-particle cooperative acceptors, and three-par-
ticle cooperative acceptors. Indeed, the matrix elements
of the 4S3/2–4F9/2 transition of Er3+ ion are close in mag-
nitude to the matrix elements of the 4F3/2–4I15/2 transi-
tion of Nd3+ ion. This comparison leads one to conclude
that the probability of transfer to two-particle coopera-
tive acceptors is two to three orders of magnitude lower
compared to conventional transfer to one-particle
acceptors,

η W x( )
W x( ) A+
----------------------- 100%× W x( )τ x( ) 100%,×= =

W1 Nd 2Ce( ) 5 10 3– W1 Er Ce( ).×=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The similar equality between the matrix elements of the
transitions 4I13/2–4I15/2 of Er3+ ions and transitions 5I7–5I8

of Ho3+ ions enables one to compare the probabilities of

100
0.1

W
, s

–
1

Concentration of Ce3+, x
0.2 0.4 0.6 0.8 1.0

200
400

1000

2000

4000

10000
(b)

0 0.2 0.4 0.6 0.8 1.0

10 (a)

4.0
2.0
1.0

0.4
0.2
0.1

τ,
 m

s

LaF3 La1– xCexF3 CeF3

Concentration of Ce3+, x

Fig. 5. (a) The initial decay time τ of the level 5I7 of Ho3+ ion
and (b) the cooperative quenching rate WHo → 2Ce as functions

of the partial concentration x of Ce3+ ions in a La1 − xCexF3 crys-
tal. The dots indicate the experimental results, and the dashes
indicate the quadratic approximation of the experimental data.
Table

Donor ion
(transition)

Reduced matrix 
square elements 

of donor electronic 
transition 

Acceptor

Reduced matrix 
square elements 
of acceptor elec-
tronic transition 

Rate of transfer W [s–1] and energy efficiency 
of sensitization

η = W(x)τ(x) × 100% for CeF3 

x = 0.4 x = 1

Er3+ U(2) = 0.0195 3Ce U(2) = 0.12 9.2 (9.2%) 1.2 × 102 (54%)
(4I13/2–4I15/2) U(4) = 0.11 U(4) = 0.41

U(6) = 1.43 U(6) = 0.86
Tb3+ U(2) = 0.0009 2Yb U(2) = 0.12 1.4 × 102 (14%)
(5D4–7F6) U(4) = 0.0008 U(4) = 0.41

U(6) = 0.0013 U(6) = 0.86
Nd3+ U(2) = 0 2Ce U(2) = 0.12 3.5 × 102 (19.9%) 1.5 × 103 (52%)
(4F3/2–4I15/2) U(4) = 0 U(4) = 0.41

U(6) = 0.0275 U(6) = 0.86
Tm3+ U(2) = 0.249 2Ce U(2) = 0.12 3.1 × 103 (94.3%) 2 × 104 (99.96%)
(3F4–3H6) U(4) = 0.118 U(4) = 0.41

U(6) = 0.608 U(6) = 0.86
Ho3+ U(2) = 0.0249 2Ce U(2) = 0.12 2.3 × 103 (96.8%) 8 × 103 (99.98%)
(5I7–5I8) U(4) = 0.1344 U(4) = 0.41

U(6) = 1.5210 U(6) = 0.86
Er3+ U(2) = 0 1Ce U(2) = 0.12 1.24 × 105 (89.3%) 2.7 × 105 (97.2%)
(4S3/2–4F9/2) U(4) = 8 × 10–5 U(4) = 0.41

U(6) = 0.0228 U(6) = 0.86
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cooperative quenching energy transfer to three-particle
acceptors with transfer to two-particle cooperative
acceptors,

whose probability likewise proved to be two orders of
magnitude lower. Note that, so far, we have not taken
into consideration the differences between the overlap-
ping integrals and between the lattice sums of the pro-
cesses being analyzed, which calls for additional inves-
tigations.

As a result of our detection of the heretofore
unknown anomalously high rates of cooperative pro-
cess (103 – 2 × 104 s–1), which are two orders of magni-
tude higher than the rates of radiative relaxation and
three orders of magnitude higher than the rates of coop-
erative up-conversion, the question arose of the need to
verify, using a more direct technique, the value of the
rate of cooperative process of 2Yb  Tb equal to W =
2.4 s–1 [13] (estimated from indirect data by Oster-
mayer and Van Vitert [15]).

We have experimentally measured the inverse pro-
cess of cooperative energy transfer (Tb3+  2Yb3+)
from one Tb3+ ion to a two-particle cooperative accep-
tor, namely, two Yb3+ ions in garnet crystals permitting
100% replacement of optically inactive Y3+ ions by
active Yb3+ ions without distortion of the crystal lattice.
The kinetics of luminescence decay of the level 5D4 of
Tb3+ ion were investigated in Y3Al5O12 : Tb (2%) and
Yb3Al5O12 : Tb (2%) crystals, which corresponds to
zero (x = 0) and 100% (x = 1) concentration of Yb3+

ions acting as cooperative acceptors. Yb3+ ions repre-
sent a peculiar kind of analog of Ce3+ ions in the series
of rare-earth elements. They also possess one optical
transition 2F5/2–2F7/2 on the 4f subshell with the same

W1 Er 3Ce( ) 1.5 10 2– W1 Ho 2Ce( ),×=

0.1

0 1

I/I0

Time, ms

1.0

2 3 4

τ = 0.95 ms

τ = 1.1 ms

YAG : Tb

YbAG : Tb

Fig. 6. Measured kinetics of luminescence decay of the
level 5D4 of Tb3+ ions in Y3Al5O12 and Yb3Al5O12 garnet
crystals.
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magnitudes of electronic square elements of the
reduced matrix as in the case of the 2F5/2−2F7/2 transi-
tion of Ce3+ ion,

The measuring scheme was similar to that given in
Fig. 2 and differed only in that a pulsed nitrogen laser
with a lasing wavelength of 337 nm was used to excite
the level 5D4, and the luminescence was recorded by a
FEU-79 photomultiplier. The measured fluorescence
decay curves are given in Fig. 6. One can see in Fig. 6
that the kinetics of luminescence decay are single-
exponential, with the respective lifetimes of τ(x = 0) =
1.1 ms and τ(x = 1) = 950 µs. The maximal rate of over-
all cooperative quenching, calculated from the mea-
sured lifetimes,

was approximately 143.5 s–1, which is much lower than
the rate of cooperative quenching W1(Ho  2Ce) and
W1(Tm  2Ce) but almost two orders of magnitude
higher than the theoretical estimate of the rate of coop-
erative up-conversion, W0(2Yb  Tb) = 2.4 s–1,
obtained in [13].

The physical meaning of the difference between the
rates of cooperative up and down processes with sum-
mation and splitting of excitation consists apparently in
the difference between the numbers of final states of the
system to which it changes as a result of cooperative
process. For a low concentration of impurity with a
high-frequency transition (Tb) and for a high concen-
tration of particles with low-frequency transitions (Yb),
there is only one final state in the case of up-conversion
of 2Yb  Tb, and the experiment in fact involves the
measurement of an elementary act of transfer which has
a fairly low probability (2.4 s–1) due to the smallness of
the matrix elements of the transition of Tb3+ ion (see
table). In the mode of down-conversion, the number of
final states of cooperative acceptors at high values of x
may considerably exceed unity and, for a crystal of
Yb3Al5O12 or CeF3 (x = 1), may reach several hundred
(the number of pair combinations of the acceptor ions
in the coordination spheres nearest to the donor).

3. CONCLUSIONS

Phenomena have been revealed of highly efficient
cooperative energy transfer from thulium and holmium
ions (donors) to two-particle cooperative acceptors
(cerium ions) in crystals of lanthanum–cerium fluorides
at rates of the order of 104 s–1, exceeding those of radi-
ative rates by several orders of magnitude. Nonlinear
(quadratic) laws of cooperative concentration quench-
ing Ho  2Ce and Tm  2Ce have been found
experimentally. The rate of cooperative quenching
energy transfer from a single Tb3+ ion to two-particle

U 2( ) 0.12, U 4( ) 0.41, U 6( ) 0.86.= = =

W1 Tb 2Yb( ) 1
τ x 1=( )
-------------------- 1

τ x 0=( )
--------------------–=
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cooperative acceptor, namely Yb3+ ions, in Yb3Al5O12
garnet crystals was measured. Rates of cooperative
energy transfer with multiplication of excitations have
been found which are two–three orders of magnitude
higher compared to the known rates of cooperative sen-
sitization and up-conversion.
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Abstract—Two types of instabilities emerging in dust-plasma systems with a spatial gradient of the macropar-
ticle charge are considered. It is shown that the change in the macroparticle charge is an effective mechanism
for exciting dust self-oscillations in a laboratory plasma. The results of experimental observations and an anal-
ysis of the conditions for the development of various self-oscillations of macroparticles in the strata of a dc glow
discharge are presented. © 2001 MAIK “Nauka/Interperiodica”.
The phenomena associated with the development of
instabilities in dissipative systems of interacting parti-
cles are important for various branches of science such
as plasma physics, biophysics, and astronomy. A labo-
ratory dust plasma is a wonderful experimental model
for studying instabilities in such systems. The dust
plasma consists of electrons, ions, neutral gas molecules,
and charged macroparticles of a micrometer size. Owing
to the high mobility of electrons, nonemitting dust parti-
cles acquire an equilibrium negative charge matching
with the parameters of the surrounding plasma. This
charge may be a function of time and the position of the
particle in a plasma with varying parameters.

A laboratory dust plasma is an open dissipative sys-
tem. The combined effect of dissipation and other pro-
cesses in such a plasma may lead to the emergence of
stable stationary structures of macroparticles (similar to
a liquid or a solid) as well as complex vibrational or
chaotic modes [1–6]. The formation of self-oscillations
in dust-plasma systems differs significantly from the
formation of oscillations in conservative systems since
such systems display dissipative energy losses, and
energy “pumping” with the help of some mechanisms
may also take place in them. One of the possible mech-
anisms that can convert the potential energy of an exter-
nal electric field into the kinetic energy of macroparti-
cles is associated with space–time variations of dust
charges [4–6]. Random charge fluctuations of macro-
particles which are always present in a dust plasma may
cause “anomalous heating” of the dust, but cannot
explain the self-excitation of regular self-oscillations of
macroparticles without additional sources compensat-
ing for dissipative losses. In this work, we will analyze
regular spatial variations of macroparticle charges
emerging due to inhomogeneity of the bulk plasma sur-
rounding a dust cloud, e.g., because of the gradients of
concentrations ne(i) or temperatures Te(i) of electrons
1063-7761/01/9306- $21.00 © 1184
(ions). Similar conditions are often realized in the
plasma of an inductive high-frequency or glow dis-
charge [7, 8].

Let us consider the motion of Np macroparticles
having the charge

where ρ = (x2 + z2)1/2 is the radial coordinate of a parti-
cle, in the electric field

of a cylindrical trap, taking into account the pair inter-
action between particles (Fint), the force of gravity
(mpg), the thermophoretic force (Fth ≡ Fth(ρ)), and the
Brownian movement of particles (Fbr):

(1)

Here, r is the distance between particles, mp is the mac-
roparticle mass, νfr is the coefficient of friction,

is the screened Coulomb potential with the screening
length D, and e is the electron charge. The external
force is defined by the relation

Z ρ y,( ) Z0 ∆Z ρ y,( ),+=

E ρ y,( ) iE y( )= jE ρ( )+

mp

d2rk

dt2
---------- Fint r( )

j

∑
r rk r j–=

=
rk r j–
rk ri–
-----------------

– mpνfr
drk

dt
-------- Fbr Fext.+ +

Fint r( ) eZ ρ y,( )
∂φD

∂r
---------,–=

φD
eZ ρ y,( )

r
--------------------= r

D
----– 

 exp

Fext i E y( )eZ ρ y,( ) mpg–{ }=

+ j E ρ( )eZ ρ y,( ) Fth+{ } ,
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(‡) (b) (c)

Fig. 1. Trajectories of macroparticles for the development of (a) type I and (b) type II instabilities in small dust clusters and (c) the
enlarged fragment of the trajectory of an individual particle in the case (b).
where

T and m are the temperature and mass of gas molecules,
λ is the thermal conductivity, and a is the radius of a
macroparticle. Thus, the force of interaction between
particles and the external force acting on a particle are
found to be functions of its coordinate. In the case when
the curl of these forces is not equal to zero, such a sys-
tem may do a positive work compensating the dissipa-
tive energy losses. This means that infinitesimal pertur-
bations emerging in the system due to thermal or other
fluctuations may increase. A detailed analysis of the
linearized equations (1) is presented in [6]. This analy-
sis proved that small perturbations in system (1)
increase in the following two cases: (1) in the absence
of the retrieving force (type I instability) and (2) in the
vicinity of a certain characteristic resonance frequency
ωc of the system, where the friction force does not sup-
press oscillatory motion (type II instability).

In the case when Z0 @ ∆Z(ρ, y), the emerging type II
instability is determined by the condition

(2)

where

and γ0 is the displacement parameter [6]. Since the curl
of the macroparticle velocity V differs from zero,

relation (2) describes the emergence of a vortex flow
along a certain closed curve. The direction of this rota-

Fth
32
15
------ πm

8T
-------a2λ∂T

∂ρ
------,–=

ωc
4 γ0 βρg – βyFth/mp( )

Z0
----------------------------------------------- ,<

βρ
∂Z ρ y,( )

∂ρ
---------------------= , βy

∂Z ρ y,( )
∂y

---------------------,=

W curlV= 0,≠
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tion in a plane parallel to the gravity field for monotonic
spatial dependences E(ρ, y) and Z(ρ, y) can be deter-
mined from the sign of

For example, macroparticles fall to the center of the
dust cloud for Ω > 0 and ascend for Ω < 0.

Dispersive type II instability differs from dissipative
type I bifurcation in a strong dependence on the fric-
tional force whose suppression may give rise to the
development of perturbations with frequencies close to
a certain natural resonance frequency ωc of the system.
The criterion for the emergence of the type II instability
can be written in the form

(3)

In the case of strong dispersion, virtually only one
mode “survives” as a result of the evolution of the
type II instability, and the steady-state motion has the
form of a harmonic wave with a frequency close to the
bifurcation point of the system:

It should be noted, however, that collective wave move-
ments are possible only in the case of a synchronized
motion of individual particles in the dust cloud [6]. Fig-
ure 1 shows the results of numerical simulation of the
development of type I and type II instabilities for small
dust clusters (Np = 15) of charged particles.

Thus, the theoretical analysis and numerical simula-
tion show that various self-oscillations of dust may be
excited in a plasma with gradients of charges of macro-
particles. Using the proposed model, we will analyze
the conditions of excitation of self-oscillations observed in
the strata of a dc glow discharge (see Figs. 2–4). The
experiments were made with iron particles with an

Ω
gβρ

2   – βyFth/mp

Z0νfr
---------------------------------------= .

ν fr ωc Ω /2.< <

ωc Ω /2.≈
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(b)(‡)

Fig. 2. (a) Schematic diagram of convection of macroparticles in the stratum of a glow discharge and (b) the results of numerical
simulation.
average radius a ≈ 3.5 µm in argon with various dis-
charge currents I = 0.5–15 mA under pressures P = 0.1–
1 torr.

In the experimental conditions under consideration,
the frictional frequency can be written in the free-
molecular approximation, νfr[c] ≈ 30P [torr] [9], and
the equilibrium charge of dust particles can be pre-
sented in the form 〈Z〉  ≈ 7 × 103Te eV for ne = ni and
Ti ≈ 0.03 eV [10]. Assuming that the gas is cooled at the
discharge tube walls and that ∂T/∂ρ < 0.5 K/cm, we find
that, for I < 0.2 A and ρ < R/10 (here R = 3.25 cm is the
radius of the discharge tube) [11], the ratio

is much greater than unity for βρ > βy /10. Conse-
quently,

and the value of βy actually does not affect the evolution
of the self-excited motion. However, the effect of βyFth
may be significant for smaller particles as well as in the
case of an inductive HF or anomalous glow discharge
for which higher gradients ∂T/∂ρ of gas temperatures
can be observed.

Under the assumption that

the value of βρ is determined by the gradient of δn and
can be obtained from the balance equation for ion and

mpgβρ

βyFth
----------------

125 K/cm × βρ

βy∂T /∂ρ
------------------------------------=

Ω
gβρ

Z0νfr
------------,=

∂Te/∂ρ 0, δn ne ni ! ne ni n0,≈ ≈–= =

∆Z ρ y,( ) ! Z0 Z〈 〉 ,≈
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electron flows at the surface of a dust particle [9]:

(4)

Here,

For a diffusion-controlled discharge, the radial polar-
ization field is given by

(see [11]). The joint solution of the Poisson and diffu-
sion equations with Eq. (4) gives βρ > 0 and βρ/Z0 ≈
1.8D2/Rρ2 ≈ 0.005–0.5 cm–1 for ρ/D ~ 1–10. In this
case, the ratio

for ρ > D and D < 1000 µm. Thus, the condition

holds. It should be noted that the available experimental
approximations

of the radial electric field of a glow discharge also lead
to a decrease in βρ with increasing ρ [5].

Figure 2a illustrates the convection of macroparti-
cles observed in a dust cloud. The figure shows the
positions of particles in the cloud and the trajectories of
motion of three particles (the exposure time texp ≈ 4 s)

βρ
Z〈 〉

n0 1 e2 Z〈 〉 /aTe+( )
---------------------------------------------∂δn

∂ρ
---------.≈

δn –
divE ρ y,( )

4πe
--------------------------.≡

E ρ( )
Te

ene

-------
∂ne

∂ρ
--------–≈

2.4Te

eR
------------- R @ D( )∼

∆Z ρ y,( )
Z0

---------------------
1.8D2

Rρ
--------------– 5%<≈

∆Z ρ y,( ) ! Z0

φ ρ( ) ρα 1 α 2< <( )∝
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(‡)

(b)

Fig. 3. (a) Videorecording of acoustic vibrations of dust and (b) magnified fragment of trajectories of motion of individual particles.
obtained as a result of computer processing of video-
films of the experiment using a special program capable
of identifying the displacement of individual particles.
A more detailed description of the processing of video
recordings is given in [12].

The direction of dust rotation (see Fig. 2a) indicates
that Ω > 0 (βρ > 0). An experimental estimate of βρ can
be obtained from the measurements of the velocity V ≈
AΩ/2 of particles and the amplitude A of their rotation.
Thus, we obtain

where νfr ≈ 24 s–1 (P = 0.8 torr), which corresponds to
theoretical predictions. The results of numerical simu-
lation of the problem (1) with parameters close to
experimental values are presented in Fig. 2b (Np =
3000, texp ≈ 0.5 s). The mean kinetic values of particle
energy (〈K〉  ≈ 4.5 × 10–18 J) were close to the experi-
mentally observed values.

Longitudinal vibrations of dust are presented in
Fig. 3a. In spite of the fact that the collective motion of
dust is a wave motion, individual particles move in the
cloud in small-scale elliptical trajectories (Fig. 3b)
which are similar to those being simulated (see Fig. 1c).
It can be easily seen that self-oscillations are sup-
pressed at the boundaries of the dust cloud. This can be
due to the above-mentioned decrease in βρ in the radial
direction. The frequency of oscillations at the center of
the cloud was ω ≈ 45–50 s–1. Assuming that ω ≈
gβρ/2Z0νfr (3) and νfr ≈ 9 s–1 (P = 0.3 torr), we obtain
βρ/Z0 ≈ 0.8–0.9 cm–1. The difference between the
obtained value of βρ/Z0 and numerical estimates may be

βρ/Z0 2Vνfr/Ag= 0.012 cm 1– ,≈
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due to the possible losses of the plasma component at
macroparticles of the dust cloud, which may lead to an
increase in the electric polarization field E(ρ) (and,
accordingly, in the value of βρ.

The rotation of macroparticles in the upper part of
the dust cloud combined with oscillations or acoustic
vibrations at the base of the dust structure is typical of
glow discharge [8]. The proposed mechanism can eas-
ily explain such a combined motion only on the basis of
the assumptions concerning different changes in the
macroparticle charge in different regions of the gas dis-
charge. For example, the observed complex motion (see
Fig. 4) can be regarded as simultaneous development of
two different instabilities of types I and II for different
parts of the dust cloud. Assuming that

where

and l is the separation between the particles, we can
eliminate the unknown Te (Z0 ~ Te) and estimate k for
different parts of the cloud. This gives D ≈ 1000 µm for
the base of the dust cloud (k ≈ 0.8 and lp ≈ 800 µm). The
observed frequency of oscillations was ω ~ 30–40 s–1.
This leads to the following experimental estimate for
the gradient of particle charge:

The screening length D in the upper part of the cloud
(k ≈ 2, lp ≈ 450 µm) decreases to 225 µm. It should be

2πe2Z0 k–( )/l2exp E,≈

E 2.4Te/eR, k≈ l/D,=

βρ/Z0 2νfrω/g 0.27–0.37 cm 1–≈ ≈

νfr 4.5 s 1– , P≈ 0.15 torr.=
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Fig. 4. Combined self-oscillations of macroparticles in the stratum of a glow discharge.
noted that the obtained values of D are in good agree-
ment with the fact that the value of ne increases towards
the top of the cloud from 108 to 2 × 109 cm–3 for Te =
2 eV [11]. In the latter case, the ratio V/A ≈ 0.25 s–1

being measured for various amplitudes of rotation gives

Thus, the ratio βρ for various parts of the dust cloud is
not proportional to D2. This may be due to several fac-
tors, the most obvious from which is the development
of a type I instability (at the top of the structure) for
extreme particles of the dust cloud, for which the value
of γ0 is quite high and satisfies condition (2) [6]. On the
other hand, the development of a type II instability (at
the bottom of the structure) is determined by particles
from the interior of the dust cloud, where the value of
βρ is much larger (see above).

It should be noted that all kinds of self-oscillatory
motion of dust particles are also observed in experi-
mental generators of inductive HF discharges which
have inhomogeneous characteristics similar to those for
a glow discharge. We can mention two basic reasons
hindering the development of both types of instability
in a capacitive HF discharge. The first reason is deter-
mined by the inhomogeneity of the plasma, while the
second may be associated with the small number of
observed layers of macroparticles and, hence, with the
small displacement parameter γ0 (2). This can explain
the lack of experimental observations of vortex flows
under the normal conditions. Nevertheless, the forma-
tion of bulk dust clouds (for example, under micrograv-
itation conditions or upon the introduction of an addi-
tional electrode in the bulk of the plasma) leads to con-

βρ/Z0 2Vνfr/Ag 0.002 cm 1– .≈≈
JOURNAL OF EXPERIMENTAL
vection of macroparticles [1, 2]. The possible
manifestation of a type II instability in a capacitive HF
discharge is the evolution of self-oscillations for a one-
dimensional layer of macroparticles [3]. Any other
mechanisms proposed for explaining these oscillations
have not led to reasonable quantitative estimates so far
[3, 13].

The proposed mechanism for the emergence of dust
self-oscillations is attractive since it is capable of
explaining most of the effects (“anomalous heating” of
macroparticles, vortices, acoustic vibrations, and other
types of self-excited motion) observed in a laboratory
dust plasma without resorting to other mechanisms or
background energy sources. The formation of such
self-oscillations does not require considerable spatial
changes of dust charges because even a small charge
gradient in a dust cloud (~1%) may serve as an effective
source of the kinetic energy of macroparticles.
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Abstract—The kinetic equation including a small-scale collisional integral for the particles propagating in a
strong random and regular magnetic field [29] is solved by expanding the distribution function into series in
spherical harmonics of the particle momentum angles. Using methods of the quantum theory of the angular
moment [41], the equations for higher multipole moments of the distribution function in the space of momen-
tum angles are derived and solved in the stationary case for the galactic cosmic rays in interplanetary space. The
observed amplitudes and phases of the diurnal variation harmonics can be explained using the results of mea-
surements of the interplanetary magnetic field performed on board the Ulysses spacecraft [12–14] and other
satellites [45, 46] with an allowance for redistribution of the interplanetary and interstellar magnetic field lines.
The spatial structure of the convection and diffusion fluxes of the galactic cosmic rays is refined. Formulas tak-
ing into account a change in the Earth’s axis tilt relative to the direction toward the Sun are derived, which allow
the annual changes in contributions to the diurnal variation harmonics to be determined. The equation of diffu-
sion taking into account the 2nd harmonic is obtained, and the contribution of this effect to the relative particle
density in the cosmic rays in a spherically symmetric case is analyzed. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The propagation of charged particles in magnetic
fields is usually studied in the diffusion approximation
which takes into account only the first multipole
moment of the distribution function in the space of
momentum angles. However, in the presence of strong
variations in the particle concentration gradient N,
transport range Λ, magnetic field strength H, and mag-
netic field velocity u, one must also take into account
the higher multipole moments of the distribution func-
tion. An allowance for the higher moments of the distri-
bution function is important in describing the propaga-
tion of charged particles in a turbulent medium (in par-
ticular, in a turbulent plasma with strong intermittency),
in interplanetary and interstellar media, and in shear
flows, shock waves, and other plasma structures where
the diffusion approximation is violated [1–9].

The results of investigations of the interplanetary
plasma performed on board the Ulysses spacecraft in
the range of middle and high latitudes showed that the
heliomagnetosphere structure and the solar wind
parameters at these heliolatitudes in a solar activity
minimum differ from those corresponding to the com-
monly accepted notions [10–16]. Such a difference
may take place in a solar activity maximum as well.
Thus, there is a need for continuously monitoring the
parameters and configuration of the heliomagneto-
sphere. In circumterrestrial space, the heliomagneto-
sphere parameters can be determined using experimen-
1063-7761/01/9306- $21.00 © 21190
tal data on the diurnal variation harmonics of the cos-
mic ray intensity, provided the corresponding theory is
developed. The base concepts of such a theory are pre-
sented below.

We will analyze conditions for the formation of
higher moments of the distribution function of the
intensity of galactic cosmic rays in the inteplanetary
magnetic field and consider a relationship between
these moments and the diurnal variation harmonics.

The results of experimental investigations showed
that diurnal variations of the cosmic ray intensity in cir-
cumterrestrial space contain the first and higher har-
monics [3, 5–9, 17–24]. For the cosmic rays with E *
10 GeV, the observed diurnal variations exhibit a rela-
tive amplitude on the order of 1%, while the semidiur-
nal variations are on the order of 0.1%, and the 8- and
6-h variations amount to 0.03 and 0.01%, respectively.
These harmonics are related to the higher multipole
moments of the distribution function F(r, p, t) in the
space of momentum angles, where r is the coordinate,
p is the momentum, and t is the time.

Kuz’min et al. [8, 9] analyzed experimental data on
the 2nd harmonic of diurnal variations using the
method of acceptance vectors. It was found that the
contribution of the nth spherical harmonic of the distri-
bution function to the mth diurnal variation component

is proportional to the absolute value  of the corre-
sponding complex component of the acceptance vector.
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The contribution of second to first harmonic and the
modulation of harmonics on the passage to a geo-
graphic coordinate system taking into account the
Earth’s axis tilt were studied as well. Since the har-
monic amplitudes are close, the second to first har-
monic contribution can be significant.

A screening mechanism of the 2nd harmonic forma-
tion in the diurnal variations was developed [7, 9] using
an expansion of the intensity of cosmic rays (driven by
a regular magnetic field layer) with respect to the pitch
angle. An advantage of this model is the correct
description of a break appearing in the 2nd harmonic
spectrum when the Larmor radius of a particle coin-
cides with the regular magnetic field layer half-thick-
ness. Bieber et al. [21] pointed out that the 2nd har-
monic appeared in the pitch angle distribution of parti-
cles in the cosmic rays as a result of the adiabatic
focusing taking place during the propagation of parti-
cles in a regular component of the interplanetary mag-
netic field.

In addition, some researcher suggested a gradient
mechanism of the semidiurnal variation of cosmic rays
[9, 17], which is related to a symmetric particle concen-
tration gradient N(r, p, t) in the cosmic rays relative to
the helioequator plane. It was demonstrated that this
mechanism accounts for a rigid energy spectrum, thus
providing for a coincidence with experimental data on
the harmonics of diurnal variations of the moderate-
energy galactic cosmic rays. The 2nd spherical har-
monic was originally studied [9, 17] in terms of the
kinetic equation involving a model collisional integral
written in the approximation according to which the
phenomenological scattering cross section is trans-
formed from a coordinate system moving at the mag-
netic field velocity to an immobile coordinate system.

A consistent theory of diffusion of cosmic rays [1, 4,
25–29] employing the collisional integral in a small-
angle approximation [30, 31] was used to study equa-
tions for the 2nd harmonic and the related semidiurnal
variations. It was found that, for small values of the gra-
dients u, N, and Λ, the 2nd harmonic of the distribution
function is on the order of u2/v 2 (where u is the solar
wind velocity and v is the particle velocity), which is
significantly smaller as compared to the experimental
value. The 2nd harmonic of diurnal variations on the
order of 0.1% can be observed in the presence of a
strong spatial concentration gradient N(r, p, t), whereas
the radial gradients N considered in the above papers
were small. A significant contribution to the 2nd har-
monic can be provided by large transverse concentra-
tion gradients N observed in experiment [32– 34].

A magnetic-plug mechanism of the 2nd harmonic
formation was proposed [35–37] to explain a semidiur-
nal variation in the cosmic ray intensity with a maxi-
mum in the direction of the regular magnetic field
reported by Kane [18]. The interesting frequency spec-
tra of the 2nd harmonic peaks experimentally observed
with the aid of neutron monitors [18] revealed two pro-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nounced maxima on the background of a large number
of random peaks. The maximum at 3 h LT is oriented
perpendicularly to the regular magnetic field H0, while
the maximum at 9 h LT is parallel to H0 and related to
the shock wave propagation in circumterrestrial space.

Experimental data on the diurnal 2nd harmonic, the
dependence of a break in the 2nd harmonic spectrum on
the solar activity cycle, and the statistical properties of
the 2nd harmonic peak time and amplitude in 1965–
1992 were reported in [19, 20]. According to these data,
the 2nd harmonic maximum takes place at 3 h LT inde-
pendently of the solar activity phase, the average ampli-
tude is 0.05–0.1%, and the break energy is about 40 and
125 GeV at the solar activity minimum and maximum,
respectively. For energies below and above the break
value, the 2nd harmonic spectrum index is about 0.7
and 0.4, respectively.

Bieber et al. [21] analyzed the amplitudes and
phases of the 2nd and 3rd third harmonics of diurnal
variations of the cosmic rays intensity in the diffusion
approximation using a numerical solution of the Fok-
ker–Planck equation. Similarly to other investigations
employing this approximation, the analysis yielded a
2nd harmonic spectrum increasing with the rigidity.

Experimental investigations of the diurnal 3rd har-
monic were originally reported in [38–39] and contin-
ued in [22–24]. The corresponding maximum was
observed about 6 h LT, while the device geometry fea-
tures and the particle drift in the geomagnetic field may
shift the peak position to 8–9 h LT. The observations
were performed with the aid of neutron monitors. The
3rd harmonic formation was explained in terms of the
proposed “loss cone” mechanism. According to the
experimental data [24], the 4th harmonic of diurnal
variations has an amplitude of 0.014% at E ~ 10 GeV
with a peak at 3 h LT, is proportional to p1/2 for energies
below 100 GeV, and is zero at greater energies; the 1st,
2nd, and 3rd harmonic amplitudes for the particles with
E ~ 10 GeV were 0.5, 0.1, and 0.04%, respectively.

Based on the whole body of data reported in [7–24],
we may conclude that a characteristic feature of the
high-order harmonics of the diurnal intensity variation
is the p0.5–1 law for energies E below a certain truncation
level Ec ~ 50–130 GeV. Above this level, the 2nd har-
monic amplitude decreases smoothly, while the 3rd and
4th harmonic amplitudes sharply drop. It should be
noted that the diffusion approximation frequently used,
together with a certain iterative procedure [9, 17, 30,
31], for the calculation of higher harmonics yields the
spectrum of harmonics for the energies below Ec.

In this study, in contrast to the previous investiga-
tions, the higher moments of the distribution function
(from second to fourth) are calculated using the kinetic
equation of the consistent theory of diffusion of cosmic
rays [1, 4, 25–27] employing the collisional integral in
a small-scale approximation taking into account the
high-order approximations with respect to a random
magnetic field [28, 29]. Within the framework of this
SICS      Vol. 93      No. 6      2001
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approach, it is possible to use an arbitrary (rather than
only quadratic) relationship between the transport
range Λ and the absolute momentum p. A comparison
between theoretical and experimental results shows
that the higher moments of the distribution function of
the intensity of cosmic rays are determined primarily
by the gradients of various orders of the flux of cosmic
rays along the regular magnetic field. These gradients
are related to the configuration of a regular interplane-
tary magnetic field, the characteristics of the random
magnetic field, and the solar wind velocity.

2. EQUATIONS FOR MULTIPOLE MOMENTS
OF THE DISTRIBUTION FUNCTION

In order to derive equations for multipole moments
of the distribution function, we will use a kinetic equa-
tion with a small-scale collisional integral written in the
following form:

(1)

Here, we use the notation

and introduce an operator

facilitating subsequent calculations. Repeated Greek
tensor indices imply summation.

If the transport range Λ(p) is proportional to p2,
Eq. (1) takes into account low-order terms in the ran-
dom field. According to a formula for the small-scale
collisional integral StF [29, 40], an allowance for the
high-order terms in the random field makes the coeffi-
cient of diffusion in the momentum space a compli-
cated function of the eigenvalues of the square moment

operator . Nevertheless, we may still use an expan-
sion in spherical harmonics Ylm(ϑ , ϕ) of the momentum
p angles [41]. Below, we assume that an expression for
StF in Eq. (1) is valid for Λ ∝  pq, where q < 2. This
assumption is equivalent to taking into account the
high-order approximations with respect to the random
magnetic field, which allows the spectrum of diurnal
variations in the intensity of cosmic rays to be deter-
mined for sufficiently low energies.

t∂
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Let us write the collisional integral in the right-hand
part of Eq. (1) in the following form:

(2)

where dk are the cyclic components of the operator d,

(3)

dk are the complex conjugate cyclic components of d

[38];  are the Clebsch–Gordan coefficients [41];
Lk are the cyclic components of the moment operator;
and m is the particle mass. In Eq. (2) and below, the
operator d acts only upon the functions within the same
braces; the summation is implied over the repeated indi-
ces of the cyclic components. The first term in Eq. (2)
describes the dynamic friction in the momentum space,
the second term is related to the high-order approxima-
tions with respect to the random field, and the third term
refers to the particle diffusion in the momentum space.

The distribution function can be presented in the
form of a series in spherical harmonics in the space of
momentum angles,

where Flm are the multipole moments of the distribution
function. The formulas derived below will be used to
study the propagation of galactic cosmic rays with the
energies E * 10 GeV. For this reason, taking into
account the experimental data on the harmonics of diur-
nal variations of the intensity of cosmic rays and the
solar wind velocity, we will retain the terms on the
order of (u2/v 2)F00, (u/v )F00, F00, (u/v )F1m, F1m, F2m,
F3m, and F4m, rejecting all terms containing the (u/v)Flm

product for l ≥ 2 [3–9]. The particles possessing lower
energies are described in a different system of approxi-
mations (see [1]).
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Acting with operator dk upon the distribution func-
tion F(r, p, t), we obtain

(4)

where

Now let us transform the term {dαdαF(r, p, t)} in
Eq. (2). Using operator dk, we obtain the following
expressions for the components of this term:

(5)

Acting with the second operator of (3) upon (4), we
obtain

(6)
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Expressions (5) and (6) were derived using the formu-
las

obtained using the relationships taken from [41]. Tak-
ing into account only terms of the type (u2/v 2)F00,
(u/v)F00, F00, (u/v)F1m, F1m, F2m, F3m, and F4m in (5) and
(6), let us retain only the terms with l > 0 in the first
component and only the terms with l = 0, 1 in the third
component. For the above approximations, the sum in
(6) reduces to

(7)
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(8)

This relationship was derived using the formulas

where  are the 9j symbols obtained using

the relationships taken from [41]. Also employed were
the formulas for the 6j symbols, Racah coefficients,
9j symbols, and Fano factors [41]. Retaining only
terms of the type (u2/v 2)F00 in (8), we conclude that the
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contribution of this term to the collisional integral is
zero.

The last term in {dαdαF(r, p, t)} can be transformed
to

(9)

This relationship was derived using the relationships
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following from the formulas obtained in [41]. Since the
value of (9) is proportional to u2/v 2, we retain only
terms of the type (u2/v 2)F00 in this expression. This
yields

(10)

Using expressions (4)–(10), we eventually obtain
the following expression for {dαdαF(r, p, t)}:
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Now, let us determine the term

in Eq. (2). Since {dα|v – u|–1} is multiplied by {dαF(r,
p, t)} given by (4), we take into account only the first
two terms in u

 

/

 

v

 

 in 

 

|

 

v

 

 – 

 

u

 

|

 

–1

 

. Using Eq. (3), we obtain

Retaining only the first-order terms in 
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(13)

This relationship was derived using the formulas
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obtained using relationships for the sums of products of
the Clebsch–Gordan coefficients taken from [41].

The term related to a nonquadratic dependence of
the transport range Λ on p can be transformed as fol-
lows:

(14)

Expanding the left-hand part of Eq. (1) in spherical
harmonics and taking into account the differentiation
formulas from [41], we obtain

(15)

where

Substituting formulas (11), (12), (14), and (15) into
expression (2) for StF and into Eq. (1), we obtain the
latter equation written in terms of the expansion of the
distribution function in spherical harmonics. Multiply-
ing this equation sequentially by the first five spherical
functions Ylm(ϑ , ϕ) and integrating over the solid angle,
we obtain equations for the first five moments of the
distribution function.
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The first two of these equations are as follows:

(16)

(17)

A similar system of equations for the first two
moments of the distribution function with an arbitrary
dependence of Λ on p was previously obtained in [1,
25] (without taking into account the 2nd harmonic) and
in [30, 31] (with an allowance for the 2nd harmonic, but
only for a quadratic dependence of Λ on p).

In the consistent theory of diffusion of cosmic rays
[1, 30, 31], it is a usual practice to employ the quantities
N(r, p, t), J(r, p, t), and Mm(r, p, t) that are related to the
coefficients Flm by the expansion

Equations for the second, third, and fourth moments
of the distribution function are as follows:
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(18)

(19)

(20)

Equations (18)–(20) were obtained by ignoring terms
of the type (u/v)Flm with l ≥ 2. This implies that the
ratio R0/Λ must not be very small, R0/Λ * 0.1, a condi-
tion which is satisfied when the galactic cosmic rays
propagate in interplanetary space [42].

3. MULTIPOLE MOMENTS
OF THE DISTRIBUTION FUNCTION

AND DIURNAL VARIATION HARMONICS: 
DISCUSSION OF RESULTS

The solution of equations for the multipole
moments of the distribution function is facilitated by
passing to the fluxes, including the total flux j(r, p, t)
and the diffusion flux i(r, p, t), These fluxes have a
dimensionality of the particle number density in the
phase space:

An equation for the particle concentration N(r, p, t) can
be written in the following form:
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which is analogous to the expressions derived in [1, 25].
Note that, despite the fact that Eq. (21) does not explic-
itly contain higher moments of the distribution function
related to the 2nd and higher harmonics in the momen-
tum space, these higher moments enter into this equa-
tion implicitly via the diffusion flux i(r, p, t).

Let us ignore the term ∂j/∂t in Eq. (17), assuming
that the characteristic time of variation of the galactic
cosmic ray flux over the observation time is large (τ @
L/v ), and introduce the 2nd harmonic density

Then, the equation for the flux can be transformed as
follows:

(22)

Solving this equation with respect to the diffusion flux
i yields

(23)

where

(24)

In expressions (23) and (24), we have to take into
account the second moment fm because the experimen-
tal observations for galactic cosmic rays with an energy
of 50–100 GeV showed that the relative values of the
2nd and 1st harmonics can be comparable [8]. Higher
moments of the distribution function enter into the
equation (21) for N(r, p, t) via expressions for the sec-
ond moment and the fluxes (23) and (24).

Equations for the higher moments (second, third,
and fourth) will be considered in a coordinate system
with z || h0. This is related to the fact that formulas
obtained in an arbitrary coordinate system are rather
cumbersome (see Appendix 5 in [40]). Another reason
is that the angular dependence of h0 is conveniently
expressed through the Wigner D functions [41].

In equation (18) for the second moment of the dis-

tribution function, we neglect terms of the type ∂ /∂t

and . In the right-hand part of Eq. (18), we retain
only the first term involving ∇ nF1m. Experimental data
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on the transport range Λ, solar wind velocity u, and Lar-
mor radius R0 in the regular component of the interplane-
tary magnetic field H0 for particles with 10–100 GeV
energies showed that this term provides for the maxi-
mum contribution. Thus, Eq. (18) can be written in the
following form:

(25)

A solution to this equation is

(26)

Using this solution, we obtain the total term related
to the second moment of the distribution function:

In order to determine the terms entering into the
expression for F2, let us orient the x axis perpendicu-
larly to h0 and parallel to the helioequator plane, while
the y axis is directed toward the North Pole and perpen-
dicular to h0. In the coordinates, the second moment F2
is expressed as

(27)

where

(28)

and h0 ≡ h0z = 1; ϑ  and ϕ are the polar and azimuthal
angles in the spherical coordinate system.

As can be seen, the contribution due to the 2nd har-
monic (27) in the expression for N(r, p, t) can be
ignored. It is very convenient to analyze the observa-
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tions of diurnal harmonics from registrators receiving
radiation in the helioequator plane. Ignoring the Earth’s
axis tilt to the helioequator plane, as well as the annual
variations in this tilt, we can analyze the results of
observations from muon telescopes directed 30° south-
ward and (with somewhat worse results) from those ori-
ented in the vertical direction [8, 43].

According to the experimental data, R0/Λ ≈ 0.1 [42,
44]. Therefore, assuming that the currents and gradients
(N, R0, Λ, u) are not anomalous, the relative value of the
second moment in the zeroth approximation with
respect to R0/Λ is

(29)

In deriving this formula, we used an estimate

following from Eq. (21), and assumed that the flux gra-
dient ∂jz/∂z is sufficiently large (e.g., due to divergence
of the magnetic field lines).

Taking into account the convection flux, we can
express jz through the 1st harmonic amplitude,

and assume that

for particles with E = 10 GeV [1, 3–9]. As will be dem-
onstrated below, this assumption provides for the 2nd,
3rd, and 4th harmonics of diurnal variation of the galac-
tic cosmic rays and the 2nd and 3rd harmonic phases
coinciding with experiment. According to the experi-
mental data [45–47], the azimuthal component of the
regular interplanetary magnetic field is proportional to
1/r1.2 and the radial component is proportional to 1/r2,
where r is the radial distance to the Sun. Taking into
account that the particles are driven by the magnetic
field, we will assume that, to a first approximation, the
cosmic ray flux parallel to the regular magnetic field
and directed toward the Sun represents a projection of
the azimuthal flux. Another assumption is that the
radial fluxes—diffusion and convection—are mutually
compensating [4]. This yields the estimate δ2 ≈ 0.2%
(29) and gives the maximum of δ2(ϑ) at 3 h LT oriented
perpendicularly to the regular magnetic field—in
agreement with the experimental results [5, 18–23].

It was found [3, 18] that, besides the δ2(ϑ) maxi-
mum at 3 h LT corresponding to ∂jz/∂z > 0 in Eq. (29),
the experimental data indicate another maximum at 9 h
LT (related to the shock wave) corresponding to
∂jz/∂z < 0 in Eq. (29). The change in the sign of ∂jz/∂z
can be related to a change in the direction of either the

δ2 ϑ( )
F2

F0
-----

3
4
---Λ

N
----

z∂
∂

jz 2ϑ( ).cos–= =

div j
u
v
---- j

R0
-----  ! 

z∂
∂

jz,≈

jz
1
3
---δ1N ,=

jz 0.002N
1 a.u.

z
-------------, Λ 1 a.u.,≈–≈
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cosmic ray flux or the current gradient that may take
place when the Earth passes the regions of shock waves
or magnetic plugs.

Based on the experimental data gained in 1971–
1975 for cosmic rays with energies on the order of
50 GeV, it was demonstrated [43] that the jz maxima
took place in the 6th (jz < 0) and 12th (jz > 0) months,
coinciding with the 2nd harmonic peaks always
observed at 3 h LT. According to Eq. (29), the constant
time of the δ2(ϑ) maximum is related to a change in the
direction of decreasing flux density of the cosmic rays.
Taking in to account that the cosmic ray particles are
driven by the magnetic field, we may suggest that (in
1971–1975) the magnetic field lines near the helioequa-
tor plane converged (on the average) toward this plane
on one side of the Sun, while diverging on the other side
of the Sun.

Using formula (29) for the second moment, we can
refine the average mechanism of the 2nd harmonic for-
mation for the cosmic ray particles moving in the mag-
netic field. Propagating in a regular component of the
interplanetary magnetic field, these particles retain the

adiabatic invariant /H0. Assuming that the magnetic
field lines in the regular component of the interplane-
tary magnetic field diverge with increasing distance to
the Sun, the number of particles with the pitch angle π/2
in the cosmic rays propagating toward the Sun increases
and the δ2(ϑ) maximum is observed at 3 h LT. On the con-
trary, the number of such particles in the cosmic rays prop-
agating in the opposite direction decreases and the δ2(ϑ)
maximum corresponds to 9 h LT.

In Eq. (19) for the third moment , we will

neglect the terms /∂t and F4m, which are smaller

than  according to the experimental data [24]. Then,
Eq. (19) simplifies to

In the coordinate system with h0 || z, a solution to this
equation is as follows:

(30)

Substituting f m from (26), we can determine  in
terms of the current gradient j and the gradients of Λ
and R0. Using these  values, we can determine the
total term related to the third spherical harmonic:
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Taking into account that the galactic cosmic rays
propagating in interplanetary space obey the relation-
ship divj ≈ uj/vR0 and taking ϕ = 0 (i.e., assuming the
registrators to be oriented in the helioequator plane), we
obtain (to within the second-order terms in R0/Λ)

For particles with E = 10 GeV, we may neglect the

terms proportional to R0/Λ and  and obtain an
estimate for the relative value of the third moment:

(31)

Substituting

we find that ϑmax = π/3 and the maximum time is 5 h LT,
in general agreement with the experimental data [21–
24]. The relative amplitude of the 3rd harmonic for par-
ticles with the energies E = 10 GeV is on the order of
δ3 ≈ 0.025%. This estimate is somewhat smaller than
the values given in [21–24], but, taking into account a
large scatter of the experimental data, the agreement
can be considered as quite satisfactory.

In Eq. (20) for the fourth moment, we neglect the

terms ∂ /∂t and , which are apparently smaller

than  [24]. Then, Eq. (20) yields

(32)

In the coordinate system with h0 || z, a solution to this
equation is as follows:

(33)

Substituting  from (30) and f m from (26), we can

determine  in terms of the flux j. Using these values,
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we can determine the total term related to the fourth
spherical harmonic:

In the first approximation with respect to R0/Λ for ϕ =
0, this yields

(34)

In the zeroth approximation with respect to R0/Λ, the
relative value of the fourth moment is

(35)

The relative amplitude of the 4th harmonic for the par-
ticles with E = 10 GeV and the flux

can be estimated as δ4 ≈ 0.01%, in agreement with the
experimental data [24]. The phase of the 4th harmonic
estimated by formula (35) corresponds to a δ4(ϑ) max-
imum at 0 h LT, which was not reported in [24]. The
maximum in δ4(ϑ) at 3 h LT observed in [24] is attained
at

(36)

which corresponds to the flux

directed outward from the Sun. Such fluxes were
described in [43].

Phases of the higher harmonics δ2(ϑ), δ3(ϑ), and
δ4(ϑ) coinciding with the experimental data (i.e., at 3,
5, and 3 h LT) [21–24] correspond to the following flux
determined using the MATHCAD program package:

(37)

In this case, the estimate for δ1 ≈ 1% is somewhat
greater than the experimental value, while the ampli-
tudes of other harmonics (δ2 ≈ 0.2%, δ3 ≈ 0.03%, and
δ4 ≈ 0.01%) are close to the experimental results [21–
24]. The first positive term in (37) is mostly due to the
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projection of the convection flux directed radially out-
ward from the Sun and parallel to the solar wind veloc-
ity. In addition, this term contains a contribution due to
the radial diffusion component directed toward the Sun.
The second (negative) term is due to the projection of
the azimuthal diffusion flux of particles directed toward
the Sun along the lines of a regular interplanetary mag-
netic field; the power z in this term reflects the radial
dependence of the azimuthal component of the regular
interplanetary magnetic field [45–47]. This separation
of the fluxes into convection and diffusion is approxi-
mate, with the cross-term contribution being propor-
tional to the 2nd harmonic amplitude.

The above structures of the solar wind and the mag-
netic field in the heliomagnetosphere agree with the
concepts developed in [16] based on the direct mea-
surements of the interplanetary plasma and magnetic field
parameters performed by Ulysses spacecraft [10– 15].

Upon selecting the particle flux in the form (37), we
conclude that the first term produces the main contribu-
tion to the third-order gradient of the jz flux along z and
to δ4(ϑ), indicating the correct time of the δ4(ϑ) maxi-
mum at 3 h LT. The main contribution to the gradients
of lower orders of the jz flux along z and the δ2(ϑ) and
δ3(ϑ) values is from the second term, which also yields
correct times of the δ2(ϑ) and δ3(ϑ) maxima at 3 and
5 h LT, respectively.

Thus, according to the proposed mechanism of the
formation of the δ3(ϑ) harmonic and the δ4(ϑ) har-
monic, the terms with cos(3ϑ) in Eq. (31) and cos(4ϑ)
in Eq. (35) may contain either positive factors (corre-
sponding to the maxima at 1 and 3 h LT, respectively)
or negative ones (corresponding to the δ3(ϑ) and δ4(ϑ)
maxima at 5 and 0 h LT, respectively). The two maxima
in δ3(ϑ) were experimentally observed in [22], where
the neutron monitors showed the 3rd harmonic maxima
at 5 h LT for high solar activity and at 1 h LT for low
solar activity. We may suggest that the flux of cosmic
rays in the helioequator plane, contributing to the 3rd
harmonic, is directed toward the Sun during the high
activity period and outward from the Sun during the
low activity period. It should be noted that the Hall cur-
rent perpendicular to h0 does not contribute, even
despite a considerable magnitude, to δ2(ϑ), δ3(ϑ), and
δ4(ϑ) in this approximation [40].

In this study, in contrast to [30, 31], devoted to the
2nd harmonic, δ2(ϑ), δ3(ϑ), and δ4(ϑ) are believed to
appear mostly as a result of variations in the geometry
of the regular interplanetary magnetic field and the
related adiabatic focusing of the particle flux of cosmic
rays [21]. We consider the current jz as given; that is, we
believe that factors determining this current are outside
the scope of considerations concerning the harmonics
under study. This approach differs from the mechanism
of the 2nd harmonic formation considered in [30, 31],
where the flux j determined from the equation for the
1st and zeroth harmonics of the distribution function
 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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was substituted into the expression for δ2(ϑ). Thus, the
appearance of δ2(ϑ) in [30, 31] was related to the spatial
derivatives of zeroth to second order of the quantities u,
Λ, N(r, p, t) multiplied by the ratio u/v  (with the total
power of the gradients and the u/v  ratio equal to two).
Owing to the smallness of these factors, the δ2 value (on
the order of u2/v 2) obtained in [30, 31] was significantly
smaller as compared to the experimental values.

In deriving formulas (29), (31), and (35) for the har-
monics δ2(ϑ), δ3(ϑ), and δ4(ϑ), we ignored the higher
multipole moments of the distribution function. This
iterative procedure is based on the smallness of the 2nd,
3rd, and 4th harmonics of the diurnal variation relative
to the first harmonic. According to the experimental
data, each next higher harmonic is 2–5 times smaller
than the preceding one [24]. In this study, the equations
for multipole moments of the distribution function are
treated in a somewhat broader sense than was done in
[30, 31], since the lower moments in equations for the
higher harmonics can be preset, for example, from
experiment.

Let us consider the spectral energy characteristics of
the diurnal variation harmonics using the data for
1971–1975 as well as the previous data [22–24, 48].
Taking into account the experimental data on the 1st
harmonic [49], we assume jz/N ∝  const to be constant
and independent of p. Then, Eq. (31) yields

which approximately coincides with the existing
notions of the 2nd harmonic spectrum [9, 48] and is
close to the experimental data for cosmic ray particle
energies E < Ecr, where Ecr is a certain critical energy
determined at the point where the 2nd harmonic spec-
trum exhibits a break (the power of momentum p
becomes negative). For the screening mechanism, Ecr is
the energy of particles in the cosmic rays for which the
Larmor radius becomes equal to half of the regular
magnetic field layer thickness near the helioequator
plane. Note that this mechanism describes well the δ2
spectrum for particles with both E < Ecr and E > Ecr.

Using Eqs. (31) and (35) and assuming jz/N ∝  const,
we obtain the following estimates for the 3rd and
4th harmonics of the diurnal variation of cosmic rays
for E < Ecr:

. (38)

This spectrum is more rigid as compared to the experi-
mental data, according to which δ3 ∝  p and δ4 ∝  p0.5 for
E < Ecr [21–24]. The difference of the predicted δ2, δ3,
and δ4 spectra from the experimental results and the
inapplicability of this analysis to the case of E > Ecr is
apparently related to the fact that we employed an ana-
log of the diffusion approximation for the higher har-
monics. This approximation consists in ignoring a
higher harmonic in the equation for the given harmonic.

δ2 Λ p( ) p0.5–2,∝ ∝

δ3 Λ2 p( ) p1–4, δ4 Λ3 p( ) p2–6∝ ∝∝ ∝
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The applicability of the small-angle approximation,
even with an allowance for the higher approximations
with respect to the random magnetic field in the colli-
sional integral, is also not quite clear.

For E > Ecr, the Larmor diameter becomes greater
than the regular magnetic field layer thickness and the
amplitudes of δ2, δ3, and δ4 harmonics exhibit a sharp
drop. The formulas for δ2(ϑ), δ3(ϑ), and δ4(ϑ) harmon-
ics derived in this section can be refined using the gra-
dients of R0, Λ, and j. However, the lack of reliable
experimental data on these gradients hinders the use of
such additional refining terms in the formulas for δ2(ϑ),
δ3(ϑ), and δ4(ϑ).

The allowance for an arbitrary relationship of the
type Λ ∝  pµ (µ < 2) in the kinetic equation (1) yields
additional terms in Eq. (18) for F2m and, hence, in
related Eqs. (19) and (20) for F3m and F4m. However,
smallness of the ratios u/v  ~ 10–3 and R0/Λ ~ 10–1

allows these corrections in Eq. (18) to be omitted. This
implies that the equation for F2m without the last two
terms, as well as Eqs. (19) and (20) for F3m and F4m, is
valid for Λ ∝  pµ with µ < 2.

4. ANNUAL CHANGES IN THE DIURNAL 
VARIATION HARMONICS RELATED 

TO THE EARTH’S AXIS TILT

Let us take into account the tilt of the Earth’s axis
relative to the helioequator plane and the annual
changes in the phase and amplitude of the diurnal vari-
ation harmonics of the galactic cosmic rays. These
annual changes are related to the change in the Earth’s
axis tilt relative to the direction toward the Sun in the
plane of the neutral surface of the averaged large-scale
interplanetary magnetic field, which is assumed to
coincide with the helioequator plane. This implies that
we will ignore the terms on the order of 10–2 in the mul-
tipole moments. Apparently, these terms have to be
taken into account simultaneously with refining some
other conditions, for example, concerning the deviation
of the large-scale interplanetary magnetic field direc-
tion from the average one.

Mathematically, the problem reduces to separating
factors depending only on the direction of vector h0 in
each multipole moment Flm. The coordinate systems
used in this study coincide with those introduced in [3].
The transformation formulas employed below allow the
conversion of multipole moments (second to fourth) to
be described in a general manner and performed more
simply as compared to the method used in [3, 8]. All
calculations will be performed analytically, which
allows the influence of particular physical parameters in
each calculation stage to be followed more accurately and
the results of calculations with modified physical parame-
ters and distribution functions to be analyzed.

Let us conventionally assume h0 to be directed out-
ward from the Sun, the opposite case being readily
SICS      Vol. 93      No. 6      2001
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derived. Upon the coordinate system rotation, the func-
tion Flm transforms as described by the Wigner D func-
tions [41]:

(39)

where  are the multipole moments of the
distribution function multiplied by Ylm(ϑ '', ϕ'') in the
rotated coordinate system; α, β, and γ are the Euler
angles [41]. The coordinate system rotation will be per-
formed according to scheme A (see [41]). The transi-
tion from the coordinate system with the axis z || h0 to
the geographic system of coordinates x '', y", z" related
to the Earth is conveniently performed in two steps as
described in [3]. It is assumed that the regular interplan-
etary magnetic field is oriented at an angle of ϑ0 relative
to the direction toward the North Pole and at an angle
of ϕ0 relative to the direction outward from the Sun in
the helioequator plane.

In the first step, we perform the transformation from
the coordinate system with the axis z || h0 (x axis facing
the South Pole, y axis lying in the helioequator plane)
to the coordinate system with the z' axis directed toward
the North Pole (parallel to the Sun’s rotation axis) and
the x' axis directed radially outward from the Sun in the
helioequator plane.

The second rotation transforms the coordinate sys-
tem to that with the z" axis coinciding with the Earth’s
axis (tilted at an angle δ = 23.5° relative to the z' axis).
The x" axis is directed outward from the Sun and the y"
axis is perpendicular to the direction toward the Sun.

A matrix of the resultant complex rotation is as fol-
lows:

(40)

where ϑ0 and ϕ0 are the polar and azimuthal angles,
respectively, determining the direction of vector h0 in
the x', y', z system, and Φ is the angle determining the
direction of the axis of rotation of the z' axis by the
angle δ (Φ = –2πt/T, where T is the month number).
Using these definitions and the formulas from [41], the
Euler angles α, β, and γ can be determined from the fol-
lowing relationships:

(41)
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The function  in matrix (40) can be repre-
sented as a product of three factors, each depending on
a single Euler angle [41]:

(42)

where  are real functions derived in the explicit
form in [41] and in [40, Appendix 9].

The reverse transformations of the multipole

moments  from the geographic coordinate
system to the system with z || h0 are described by for-
mula (39) using the inverse Wigner D functions:

(43)

Using this method, the transition to reverse transforma-
tions is performed much more simply as compared to
the procedure employing Cartesian coordinates [3, 9].
Obviously, the sequential study of harmonics of the
diurnal variation in the intensity of cosmic rays should
be based on determination of the multipole moments

 from the experimental data in the coordinate sys-
tem x", y", z" followed by recalculation to the coordi-
nate system with z || h0 using the inverse Wigner func-
tions (43).

Upon solving the kinetic equation in the coordinate
system with z || h0 jointly with the transformation formula

(39) using the Wigner functions , we
obtain a solution to the kinetic equation (1) with an
arbitrary orientation of the regular interplanetary mag-
netic field h0(ϑ0, ϕ0). Using the above formulas, we can
find the annual changes in the amplitude and phase of
the 2nd, 3rd, and 4th harmonics of the diurnal variation
in the intensity of galactic cosmic rays, which are
related to the Earth’s axis tilt relative to the helioequa-
tor plane. For this purpose, let us assume that h0 is ori-
ented so as to make the angles ϑ0 = π/2 and ϕ0 = –π/4
in the coordinate system x', y', z' related to the Sun.

The 2nd harmonic of diurnal variations in the coor-
dinate system with z || h0 can be expressed in the form
of Eq. (29):

where

and a2 is the relative amplitude of the 2nd harmonic.
The constant term (independent of angles) appearing in
this representation yields a small contribution to the
isotropic component and is ignored. In the geographic
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coordinate system x", y", z", the 2nd harmonic of diur-
nal variations acquires the following form:

(44)

where f2 is a term independent of the angle ϕ'' and,
hence, not contributing to the diurnal variation harmon-
ics. The second term in (44) contributes to the 1st har-
monic of diurnal variations. The angles β0 and γ0 are as
follows (see Eqs. (A8.18) and (A8.19) in [40]):

(45)

The 3rd harmonic of diurnal variations in the coor-
dinate system with z || h0 can be presented in the form
of Eq. (31):

(46)

where

The contribution of 3rd to 1st harmonic will be ignored.
Using the formulas (39) describing the transformation
of multipole moments Flk(r, p, t), we obtain an expres-
sion for the 3rd harmonic in the geographic coordinate
system:

(47)

where f3 is a term independent of the angle ϕ'', which
makes only a small contribution to the isotropic compo-
nent and, hence, can be ignored. The second term con-
tributes to the 2nd harmonic, and the third term, to the
1st harmonic.

The 4th harmonic of diurnal variations in the coor-
dinate system with z || h0 can be presented in the form
of Eq. (35):
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N
4π
------ 3ϑ( ) F30Y30 ϑ ϕ,( ),≈cos–=
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4
5
--- 1

7π
----------N , a3–

1
16
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N
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z∂
∂ Λ

∂ jz
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  ,–= =

a3 0.>

F3'' ϑ '' ϕ'',( ) a3
N
4π
------ βsin

3
0 ϑ ''sin

3
3 ϕ'' γ0+( )( )cos– -–=

+ 6 β0sin
2 β0 ϑ ''sin

2 ϑ '' 2 ϕ'' γ0+( )( )coscoscos

+
3
5
--- β0 1 5 β0cos

2
–( )sin

---× 5 ϑ '' 1–cos( ) ϑ '' ϕ'' γ0+( ) f 3+cossin ,

F4 a4
N
4π
------ 4ϑ( )cos= F40Y40 ϑ ϕ,( ),≈
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where a4 > 0. With an allowance for all the approxima-
tions introduced in Section 3, we obtain

In this representation, the contribution of the 4th
harmonic to the 2nd harmonic is on the order of 0.1a4N,
and that to the isotropic component, on the order of
0.05a4N. Taking into account small accuracy of deter-
mination of the 2nd harmonic [18–24], these contribu-
tions can be ignored.

Using formulas (39) and (40) describing a transition
to the geographic coordinate system, we obtain

(49)

where the term f4 contributes only slightly to the isotro-
pic component of N and can be ignored. The second,
third, and fourth terms contribute to the 3rd, 2nd, and
1sr harmonics, respectively.

As can be see from the above formulas (44), (47),
and (49) for the 2nd, 3rd, and 4th harmonics, respec-
tively, the highest harmonics of diurnal variations in the
coordinate system with z || h0 contribute to the lower
harmonics because of the Earth’s axis tilt relative to the
helioequator plane. A change in the Earth’s axis tilt rel-
ative to the direction toward the Sun accounts for annual
changes in the relative contributions to harmonics.

An especially large contribution, on the order of a2,
is from 2nd to 1st harmonic. Taking into account close
values of the 1st and 2nd harmonics, this contribution
can be very significant [8, 27]. In addition, the phase of
diurnal harmonics changes by 0.15m" h (where m" is
the harmonic number) with a period of 0.5 year, and the
amplitude of diurnal harmonics is modulated with a
period of one year. The sign of the terms contributing to
some lower harmonics also exhibits a change with a
period of one year. A modulation of the uppermost har-
monics related to a change in the Earth’s axis tilt rela-
tive to the direction toward the Sun is rather small,
amounting to 1/5 (or less) of the higher harmonic
amplitude.

F40 a4
32

105 π
----------------N ,=

a4
3

335
---------Λ

N
----

z∂
∂ Λ

z∂
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∂ jz

∂z
------- 

 
 
  .–=

F4'' ϑ '' ϕ'',( ) a4
N
4π
------ β0sin

4 ϑ ''sin
4

4 ϕ'' γ0+( )( )cos=

– 8 β0sin
3 β0 ϑ ''sin

3 ϑ '' 2 ϕ'' γ0+( )( )coscoscos

–
4
7
--- β0sin

2
1 7 β0cos

2
–( ) 7 ϑ ''cos

2
1–( )

× ϑ''sin
2

2 ϕ'' γ0+( )( ) 8
7
--- β0 β0 3 7 β0cos

2
–( )cossin+cos

---× 7 ϑ ''cos
2

3–( ) ϑ '' ϑ '' ϕ'' γ0+( ) f 4+coscossin ,
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5. A DIFFUSION EQUATION
FOR THE PARTICLE CONCENTRATION

IN COSMIC RAYS WITH AN ALLOWANCE
FOR THE SECOND HARMONIC

It was of interest to derive the equation of diffusion
for the concentration of particles N(r, p, t) with an
allowance for the second multipole moment in the
expansion of the distribution function F(r, p, t) in series
with respect to the momentum angles. Previously [1,
42], this was done so as to take into account a small
anisotropic additive to the distribution function. How-
ever, the method of averaging used in [1, 42] was appli-
cable mostly to low-energy particles, for which the Lar-
mor radius in a regular magnetic field is small as com-
pared to the correlation length of the random magnetic
field (R0 ! Lc) and the particle motion is one-dimen-
sional. We will consider the case of R0 > Lc, in which an
allowance for the second harmonic corresponds to tak-
ing into account the following orders in the parameter
Λ/∆L1 (where ∆L1 is the characteristic scale of variation
of the system parameters for R0  ∞) or in the param-
eter R0/∆L1 for R0 < Λ.

In order to derive the required diffusion equation
taking into account the 2nd harmonic, it is convenient
to use Eq. (21). Note, however, that both right and left
parts of Eq. (21) contain terms of different order of
smallness. If we ignore the term ∂N/∂t, the remaining
term in the left-hand part is on the order of

which is related to the divergence of the H0 field lines
in the helioequator plane and to the effect of the mag-
netic field upon the charged particles. At the same time,
the total left-hand part is

which follows from the right-hand part of Eq. (21).
Thus, the right-hand part of Eq. (21) contains terms on
the order of 10–2–10–3 relative to the maximum terms in
the left-hand part of this equation. For this reason, we
substitute the diffusion current i into the term v divj
with an allowance for the 2nd harmonic given by for-
mulas (23) and (24), while using the same diffusion
current i without the 2nd harmonic correction in the
right-hand part (that is, we omit the second term in for-
mula (24) for qk).

It can be shown that the law of conservation of the
number of particles in this approximation is retained.
For this purpose we will use the method employed in
[1, 50], extending this approach to the case of an arbi-
trary dependence of Λ on p. Substituting the diffusion

v div j
cj

1 a.u.
-------------,∼

v div j
uj
R0
-----,∼
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current i into the right-hand part of Eq. (21) with
neglect of the 2nd harmonic and using the relationship

(50)

where εknm is the fully symmetric Levi-Civita unit ten-
sor and

(51)

we can represent the right-hand part of Eq. (21) in the
following form:

(52)

Substituting this expression into Eq. (21), multiplying
both parts by p2, and integrating over the entire momen-
tum space, we obtain

(53)

where

Taking into account data on the spectrum of cosmic
rays, we find that the right-hand part of Eq. (53) is zero
irrespective of the current substituted into the left-hand
part of this equation. As can be seen, the asymptotic

p
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spectrum of concentration for the cosmic rays N ∝  p–γ

is limited by the condition γ > 3.

Substituting into v divj an expression for the current
taking into account the 2nd harmonic according to for-
mulas (23) and (24) and expressing in (21) the 2nd har-
monic through the 1st one as in (26), we obtain the dif-
fusion equation in the coordinate system with z || h0:

(54)

where the coefficients bm are determined by the formula

with neglect of the second moment of the current. Thus,
we obtain a closed system of equations with respect to
N(r, p, t). Let us study a solution to this equation in a
simple spherically symmetric case for the particles of
cosmic rays of sufficiently large energies.

According to [5–9, 51, 52], a strong regular mag-
netic field with a wavy zero surface possesses a nearly
spherically symmetric shape. The zero layer thickness
is apparently very small. Therefore, the main contribu-
tion to a change in the concentration of cosmic rays
N(r, p, t) for E > 100 GeV is related to the regions of the
heliomagnetosphere at sufficiently high latitudes,
where the interplanetary magnetic field possesses a
spherically symmetric structure for high-energy parti-
cles [12, 16]. This approximation is even more valid
during the maximum solar activity [8], when the inter-
planetary magnetic field is even more “disordered.”

We will take H0 = 0 and assume that Λ = const and
u = const in the modulation region. Let us perform a
transformation from the Clebsch–Gordan coefficients
to the 3jm symbols by the formulas [41]

∂N
∂t
-------

xα∂
∂

v χαβ
∂N
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We use a relationship for the sum containing prod-
ucts of the 3jm symbols [41],

(55)

where  is the 6jm symbol [41], and represent

the right-hand part of Eq. (54) in the form 

where ∆ is the Laplace operator. The complete diffu-
sion equation (54) for N(r, p, t) in the spherically sym-
metric case is as follows:

(56)

Let us consider the stationary case and set

We also assume that the concentration of particles in
the cosmic rays at the boundary of the modulation
region at a distance r0 from the Sun is N0 and introduce
the quantities

The N/N0 ratio can be presented in the following form:

(57)

Substituting this expression into Eq. (56) and equating
the coefficients at equal powers of y', we can write a
solution to Eq. (56) with an allowance for u/v  ! 1.
Retaining only the first three terms in expansion (57),
we obtain
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(58)

As can be readily seen, the cosmic rays with E *

100 GeV are characterized by τ ! 1, and, hence, there
is no need in writing the following terms in this expan-
sion.

Making allowance for the 2nd harmonic increases
the relative particle concentration in the cosmic rays by an
amount on the order of the relative value of the 2nd har-
monic, which, for the spherically symmetric modulation
region and Λ = const, is on the order of u2/v2 [30, 31].

6. DISCUSSION OF RESULTS 
AND CONCLUSION

Using a kinetic equation with a small-scale colli-
sional integral taking into account higher approxima-
tions with respect to the random magnetic field and
applying methods of the quantum theory of the angular
moment [41], we have derived and solved the equations
for higher multipole moments of the distribution func-
tion in the space of momentum angles. The final formu-
las for the relative values of the higher moments were
obtained in the iteration approximation with a small-
ness parameter equal to the ratio of amplitudes of a
given higher harmonic and the preceding (lower) har-
monic. According to the experimental data [21–24],
this ratio typically varies from 1/5 to 1/2.

It was demonstrated that the experimentally
observed higher harmonics of diurnal variations of the
intensity of galactic cosmic rays can be explained by
changes in the total density of two fluxes of the cosmic
rays. The first is the diffusion flux of cosmic rays exhib-
iting adiabatic focusing in the divergent lines of a regu-
lar interplanetary magnetic field. This flux produces the
main contribution to the second and third harmonic of
diurnal variations and can form outside the space region
under consideration. The second is the radial convec-
tion flux of cosmic rays directed outward from the Sun,
which mostly contributes to the fourth harmonic of
diurnal variations.

The radial fluxes are mutually compensating, and
the resultant azimuthal flux yields the diurnal variation
at 18 h LT. This pattern is generally qualitative, since
the conditions of diffusion approximation for the galac-
tic cosmic rays are violated in circumterrestrial space.
The pattern is in agreement with the previously existing
notions and with the structure of fluxes derived from
experimental data on the spectrum, amplitude, phase,
and long-period changes in the 1st harmonic of diurnal

+
γ
3
--- 1 2γ

3
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  τ τ 0–( )2

× 2 τ0–
τ0

3
---- 1 2γ

3
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1–

× 3
γ 3–

6
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v 2
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 
1–

.
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variations of the galactic cosmic rays related to the
solar activity phase [3, 4, 8, 9].

It was shows that the galactic cosmic rays can fre-
quently be considered using the approximation of the
particles moving in a regular magnetic field. The radial
variation of the radial and azimuthal components of the
regular interplanetary magnetic field and the approxi-
mated spherically symmetric structure of the solar wind
velocity agree with the experimental data on the har-
monics of diurnal variations. The relative stability of
the observed amplitudes and phases of the higher har-
monics and a strong sensitivity of harmonics calculated
by formulas (29), (31), and (35) with respect to the rel-
ative amplitudes and radial dependence of the galactic
cosmic ray fluxes are evidence of a certain stationary
character of the cosmic ray fluxes in the heliomagneto-
sphere and of the presence of a turbulent zone in the
transition region between the heliomagnetosphere and
interstellar medium [53]. A sufficiently large radial
convection flux of cosmic rays near the Earth’s orbit is
indicative of an approximate validity of the conditions
of diffusion approximation in the radial direction, that
is, of the smallness of the transverse component relative
to the regular diffusion field, which can be related to the
anisotropy and fibrous structure of the random inter-
planetary magnetic field [3, 54].

Data on the variation of muonic activity at a depth
of 0 m, related to variations in the intensity of cosmic
rays with energies on the order of 50 GeV for the min-
imum solar activity period of 1971–1975 were reported
in [43]. It was demonstrated that the maxima of jz in that
period fall within the 6th (jz < 0) and 12th (jz > 0)
months, as well as the maxima in the 2nd harmonic
observed at the unchanged time of 3 h LT. The con-
stancy of the time of maximum in d2(θ) implies a
change in the direction of decrease in the density of
cosmic rays. Assuming the charged particles in the cos-
mic rays to be trapped in a magnetic field, we may sug-
gest that, on one side of the Sun, the magnetic field lines
near the helioequator plane converged on the average to
this plane, whereas, on the other side of the Sun, these
lines diverged on the scale of the order of 0.4 a.u. A pos-
sible reason for this can be the interaction between the
heliomagnetosphere and the magnetic field of the
Galactic, with redistribution of the interplanetary and
interstellar magnetic field lines [53]. The 3rd harmonic
maxima, determined from the results of observations
using neutron monitors [22] for the transverse (relative
to the regular magnetic field) scales on the order of
0.05 a.u., correspond to 5 h LT in the period of high
solar activity and 1 h LT during the low solar activity
period. Thus, we may suggest that, in the former case,
the cosmic ray flux producing a maximum contribution
to the 3rd harmonic was directed toward the Sun (that
is, the main contribution to the 3rd harmonic was
described by the second term in Eq. (37)). In the latter
case, the cosmic ray flux was directed predominantly
outward from the Sun and the main contribution to the
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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3rd harmonic was that described by the first term in
Eq. (37). This can be related to a change in geometry of
the regular interplanetary magnetic field.

A correct time of the maximum in the 4th harmonic
of diurnal variations in the intensity of galactic cosmic
rays is provided by the radial component of the convec-
tion current of cosmic rays directed outward from the
Sun.

As can be seen from the formulas (44), (47), and
(49) describing (in the geographic coordinate system)
the second, third, and fourth moments of the distribu-
tion function, the highest moment of the distribution
function in the system with z || h0 contributes, due to the
Earth’s axis tilt relative to the helioequator plane, to the
lower moments in the geographic coordinate system. A
change in the Earth’s axis tilt relative to the direction
toward the Sun accounts for the annual variations in the
relative contribution to the moments of the distribution
function and to the harmonics of diurnal variations.
Taking into account smallness of the angle between the
Earth’s axis and the direction perpendicular to the
ecliptic plane (δ = 23.5°), we can determine the charac-
ter of the main contribution to the moments of the dis-
tribution function in the geographic coordinate system.
According to this, the phase of the diurnal harmonics
exhibits a change on the order of 0.4 h with a period of
0.5 year and a small amplitude modulation with a
period of one year. The sign of the terms contributing to
some lower harmonics also exhibits a change with a
period of one year. A sufficiently large contribution to
the 1st harmonic is from the 2nd harmonic. A modula-
tion of the uppermost harmonics related to a change in
the Earth’s axis tilt relative to the direction toward the
Sun is rather small, amounting to 1/5 (or less) of the
higher harmonic amplitude.

We have derived a diffusion equation using a solu-
tion to the equation for the second moment of the dis-
tribution function in a system of coordinates with z || h0.
The new equation was solved in the stationary case for
a spherically symmetric field with H0 = 0. This approx-
imation is applicable to cosmic rays with energies
above 100 GeV in the period of maximum solar activ-
ity. An allowance for the second moment of the distri-
bution function in a spherically symmetric case leads to
an increase in the relative concentration of particles by
an amount on the order of the relative magnitude of the
2nd harmonic, which is on the order of u2/v 2 for Λ =
const in a spherically symmetric modulation region.
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Abstract—A classification of instabilities in spatially restricted systems is presented, which generalizes a clas-
sification considered in book [1]. It is shown that, if a system has no active boundaries and the waves are not
amplified in an infinite homogeneous medium, which corresponds to the absence of solutions of the dispersion
equation with the negative imaginary part of the wave vector at the real frequency, then only nonamplified insta-
bilities with a nonlocal resonance can be developed. The development of nonamplified instability is considered
in a spatially restricted system through which a flux propagates, when along with natural waves the excitation
of the waves of fluxes playing a key role in the development of the instability is taken into account. © 2001
MAIK “Nauka/Interperiodica”.
It is commonly accepted that an oscillator is an
amplifier with a feedback [2]. In the case of distributed
spatially restricted finite systems, the feedback is pro-
vided by a natural wave reflected from the system
boundaries, and the term “amplifier” means the ampli-
fication of at least one of the natural waves in the
medium. This means that the dispersion equation
D(ω, k) = 0 for natural waves in an infinite homoge-
neous medium has complex roots k = kν(ω) for real val-
ues of the frequency ω, some of the roots lying in the
lower part of the complex k plane. It follows from this
that a convective or absolute instability also takes place
in an infinite medium. An example for beam systems is
a well-known Cherenkov instability [3, 4].

Nevertheless, at least one more class of instabilities
exists in spatially restricted systems, when all the roots
k = kν(ω) are real for real ω; moreover, the branching
point of solutions kν(ω) lies on the real axis of the com-
plex ω plane. This excludes the development of global
instability in a finite system and of convective and abso-
lute instability in an infinite system [1, 5]. Moreover,
the increment of these instabilities is inversely propor-
tional to the system length L, i.e.,

Because the analysis of instabilities in a finite spatial
region was commonly performed by considering the
asymptotic form of the instability condition for L  ∞,
some instabilities encountered in finite plasma media
were simply ignored. In this connection, it is necessary
to generalize the adopted classification of instabilities
in finite systems presented in books [1, 4] and in origi-
nal paper [5]. First, we will study two-wave instabilities
and obtain criteria for treating an oscillator as an ampli-
fier with a feedback. Then, we will investigate, by the
example of four waves, a class of multiwave instabili-
ties, which do not fit in the conventional scheme, and

γω
+ L 1– .∝
1063-7761/01/9306- $21.00 © 21209
show that lasing at four waves is possible in a finite sys-
tem in the absence of wave amplification.

Consider a spatially restricted system in which
waves propagate along the z axis and undergo transfor-
mations at the boundaries z = 0 and z = L. Let us assume
that a linearized wave equation for the corresponding
homogeneous medium contains a polynomial of the
power N with respect to the spatial derivative ∂/∂z.
Then, the wave dispersion equation D(ω, k) = 0 deter-
mines the laws of wave dispersion:

In this case, the wave perturbations in a system of a
finite length can be represented as a superposition of
normal waves (ν = 1, …, N) in an infinite homogeneous
medium and of the transient field near the system
boundaries:

(1)

Here, the sum of decaying modes Bs is separated. These
modes determine the transient field near the boundaries
z = 0 and z = L for the case of transversely inhomoge-
neous systems and are neglected in the case of an infi-
nite system. As examples, we consider the cases when
a thin-wall tubular electron beam is injected into a res-
onator or a tubular plasma is contained in a resonator.
In these cases, the transient field near the boundaries
z = 0 and z = L is described by the second sum in (1),
where the index s numbers transverse wave numbers
k⊥ s. The consideration of these waves leads to the so-
called one-sided solutions [5]. Below, we will omit

kν kν ω( ), ν 1 … N ., ,= =

A t z,( ) Aν –iωt ikν ω( )z+[ ]exp
ν 1=

N

∑=

+ Bs

s

∑ –iωt iks ω( )z+[ ] .exp
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waves Bsexp(–iωt + iksz) in the dispersion equation for
a spatially restricted medium, by assuming that the sys-
tem is long enough and the modes Bs  decay so rapidly
that the amplitudes of these waves reflected from
another end of the system tend to zero in the vicinity of
the boundary under study. Mathematically, the condi-
tion for neglecting the modes decaying inside the sys-
tem is described by the inequality

(2)

which is assumed always valid below.
We will call the wave of the form exp[–iωt +

ikν(ω)z] specified by the branch kν(ω) propagating in a
certain direction if it decays for Imω  ∞ when z
changes in this direction. Thus, if we have Imω  ∞
for Imkν(ω)  ∞, then the wave propagates in the
positive direction along the z axis; if the former holds for
Imkν(ω)  –∞, then the wave propagates in the oppo-
site direction. We can show that, for waves close to har-
monic waves, this definition of the wave propagation
coincides with the definition using their group velocity.

Let us separate the waves into two groups: the group
of waves propagating in the positive direction along the
z axis (with the index “+”) and the group of waves prop-
agating in the opposite direction (with the index “−”).
At the boundaries z = 0 and z = L, each wave of one
group is transformed to a wave of the other group. We
assume that the corresponding diffraction problem is
solved, i.e., the transformation coefficients of waves

 are found taking into account the waves Bs of the
transient field. Then, the relation

(3)

will be valid at the boundary z = 0, which describes the

transformation of waves  into waves . Similarly,

the transformation of waves  into waves  at the
boundary z = L is described by the equation

(4)

Here, n+ + n– = N.
A system of homogeneous linear equations (3), (4)

has a nontrivial solution if its determinant is zero. This
yields the dispersion equation

(5)

for a spatially restricted system, which determines the
discrete spectrum of frequencies ω of the system.

min LImks{ }  @ 1,

Aν
±

Ap
+ T pj

in( )A j
–, p

j 1=

n
–

∑ 1 … n+,, ,= =

k j
– kp

+

kµ
+ kn

–

An
– ikn

–L( )exp Tnj
out( )A j

+ ik j
+L( ),exp

j 1=

n
+

∑=

n 1 … n–., ,=

det T jp
in( )T pn

out( ) i kn
+ kp

––( )L( )exp δjn–
p 1=

n
–

∑
 
 
 

0=
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In a particular case, a situation is possible when only

waves  and  are present in the system, i.e., N = 2.
If N > 2, we will separate, for ω lying in the upper part

of the complex plane, such waves  and  for
which the imaginary part of the difference is minimal,
i.e.,

(6)

We will call the state corresponding to excitation of

waves  and  “the ground wave state.” For each

wave state described by the term  in the expo-
nential factor, we will determine “the wave gap” ∆knp

with respect to the ground wave state, i.e., calculate the
value

(7)

If the system length L is large enough, i.e., if the ine-
quality

(8)

is fulfilled, then the term exp[i(  – )L] describing
the ground wave state is dominant in Eq. (5). Note that
the condition (8) is not equivalent to the condition (2).
The condition (8) may be simply invalid, or vice versa.
Thus, for resonance instabilities (for example, the
Cherenkov instability), the condition (8) is satisfied and
proves to be stronger than the condition (2). We will
assume that the condition (8) is satisfied. In this case,
Eq. (5) is substantially simplified and takes the form

(9)

Let us now classify possible instabilities described
by Eq. (9). For this purpose, consider the modulus of
Eq. (9):

(10)

If Im  > 0, then the exponential factor in
Eq. (10) is less than unity. In this case, the instability
can be developed only if 

i.e., if superreflection occurs from at least one of the
system boundaries. An example is the development of
acoustic vibrations in the Helmholtz resonator, with a
plane-parallel air flow moving over its open orifice [6].

If Im  < 0, then the exponential factor in
Eq. (10) is greater than unity. In this case, the instability
can be developed even in the presence of losses at the
system boundaries.

k1
+ k1

–

kn*
+ kp*

–

min Im kn
+ kp

––( ){ } Im kn*
+ kp*

––( ).=
Imω > 0

kn*
+ kp*

–

kn
+ kp

––{ }

∆knp Im kn
+ kp

––( )= Im kn*
+ kp*

––( ).–

Lmin ∆knp{ } 1>

kn*
+ kp*

–

Tn* p*
in( ) T p*n*

out( ) e
i kn*

+
kp*

––( )L
1.=

Tn* p*
in( ) T p*n*

out( ) Im kn*
+ kp*

––( )L–[ ]exp 1.=

kn*
+ kp*

––( )

Tn* p*
in( ) T p*n*

out( ) 1,>

kn*
+ kp*

––( )
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Consider the asymptotics L  ∞. Depending on

the sign of the difference Im , the exponen-
tial factor in Eq. (10) tends either to zero or infinity. For
this reason, Eq. (10) is satisfied for L  ∞ only under
the condition

(11)

Equation (11) written with respect to ω is a particular
case of Eq. (10), when the effect of the system bound-
aries is excluded. In fact, we have written the condition
for the development of instability in an infinite medium
and have taken the finite size of the system into account
through the reflected wave. Instabilities of this type
were called global [1, 4, 5].

Consider now the question of when the inequality

Im  ≤ 0 takes place for Imω > 0, i.e., when
the instability is developed in the absence of active
boundaries. Let the wave number has the form

for real ω (Imω = 0).
We assume that there is no aperiodic amplification

in the system, i.e., the condition

is fulfilled. Let the frequency be shifted to the upper
part of the complex plane:

Assuming that ω'' ! ω', we obtain for the wave packet

(12)

Here,

is the group velocity of the wave. The condition Imk <
0 of the spatial amplification of the wave takes the form

(13)

This relation shows that the amplification can occur in
the medium if the inverse dispersion wave with k = α/ω
and the group velocity v gr = –ω2/α < 0 propagates, or
the value of |k ''| is so large that the condition (13) is sat-
isfied for the negative right part.

Let the dispersion law (12) be satisfied for the waves

 and . Omitting the indices n* and p*, which are
now unnecessary, we can write

(14)

kn*
+ kp*

––( )

Im kn*
+ kp*

––( ) 0.=

kn*
+ kp*

––( )

k ω( ) k ' ω( )= ik '' ω( )+

k '' ω( ) ! k ' ω( )

ω ω'= iω''+ , ω'' 0.>

k ω( ) k ' ω'( )= i k '' ω''
v gr

--------+ 
  .+

v gr
dω'
dk '
--------

dk ' ω'( )
dω'

------------------ 
 

1–

= =

k ''
ω''
v gr

--------.<

kn*
+ kp*

–

k+ k–– k+' ω'( )= k–' ω'( )–

+ i k+'' k–''– ω'' 1

v gr
+

-------- 1

v gr
–

--------– 
 + ,
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which yields the required inequality

(15a)

Therefore, in the absence of active boundaries, the
instability is developed at two waves in a finite system
when the inequality (15a) is satisfied, the equality sign
corresponding to the development of global instability
with the increment

The appearance of the group velocity in the expression
for the increment is explained by the fact that the feed-
back in the system occurs with the group velocity
because the energy transfer by the wave proceeds at this
velocity. If no amplification occurs in the system but the
active boundaries are present, then Eq. (10) has a solu-
tion for

(15b)

In this case, the wave amplification takes place outside
the system under study. By expanding the system to
include the region where the amplification occurs, we
obtain the system with amplification.

Thus, the development of instability at two waves in
a spatially restricted system can occur if, along with the
condition (8), at least one of the conditions (15) is sat-
isfied. In this case, the instability is an amplifying insta-
bility with a feedback in the sense that at least one wave
is amplified in the system, while one or two waves real-
ize the feedback at the group velocity. All these insta-
bilities correspond to the conventional concept of an
oscillator as an amplifier with a feedback [2].

If both conditions (15) are not satisfied and there are
no more waves in the system except the two waves
under study, then the system will be stable with respect
to initial perturbations. If, however, there are more than
two waves in the system, the question about the system
stability cannot be solved based on criteria (15). More-
over, the wave gap ∆knp may prove to be small or com-
pletely absent, or the system will be so short that the
condition (8) is not satisfied in all the cases considered
above. Then, the two waves cannot be separated
according to the condition (6), and, therefore, Eq. (5)
cannot be reduced to the form (10). In this case, all

waves for which the expression LIm  has
approximately the same value enter Eq. (5) on equal
terms. The substitution of dispersion laws kν = kν(ω)
into Eq. (5) gives a transcendental complex equation
for ω. If the solution to this equation shows that ω has a
positive imaginary part (Imω > 0), then the system is
unstable. In this case, conditions (15) are not necessar-
ily satisfied; i.e., neither active boundaries nor inverse
dispersion waves nor local spatial wave amplification
(k" = 0) can be present in the system. This class of insta-

k+'' k–''– ω''+ 1

v gr
+

-------- 1

v gr
–

--------– 
  0.≤

ω''
k–'' k+''–

1/v gr
+ 1/v gr

––
--------------------------------= .

Tn* p*
in( ) T p*n*

out( ) 1.>

kn
+ kp

––( )
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bilities, which we will call “nonamplified” instabilities,
is beyond the conventional concept of an oscillator as
an amplifier with a feedback. In this case, the number N
of waves in the system can be arbitrary (N > 2).

The simplest and often encountered situation is the
case of four waves. This case is observed when a parti-
cle flux propagates through a system (for example, the
electron or ion beam stabilized in a magnetic field). We
assume that the flux propagates in the positive direction
along the z axis. Then, the three waves in the system
propagate in the flux direction (the natural wave of the
system with the wave vector k1 and two waves of the
beam with the wave vectors k3 and k4), and only one
reflected natural wave with k2 = k– propagates in the
opposite direction.

If at the right boundary z = L of the system the
waves A1, A3, and A4 propagating in the flux direction
are partially transformed to the counterpropagating
wave A2 and partially to the waves leaving the system,
this process can be written in the form

(16)

Equation (16) is a particular case of Eq. (5) for four
waves.

We assume that in the absence of the flux the system
medium is homogeneous (symmetric with respect to
the inversion z  – z). Then, the wave numbers of the
natural waves of the system without the flux have the
form k1, 2 = ±a, where a takes a discrete set of values
because the system (resonator) is finite. Because the
condition (8) is not fulfilled, no local resonance is
observed in the system, i.e., ω ≠ au where u is the flux
velocity. We assume that the flux density is so low that
the flux can be treated using perturbation theory. In this
case, we have for the natural waves of the system

(17a)

and for waves of the flux

(17b)

Here,

where ωb is a small parameter characterizing the unper-
turbed flux density. For charged particle fluxes, ωb is
the Langmuir frequency of flux particles, and a small
dimensionless parameter in this case is the ratio ωb/ω0,
where ω0 is the characteristic frequency of the system.
The presence of the particle flux in plasmalike media
results in the correction δε to the permittivity tensor,

which is proportional to /(ω – ku)2. The appearance

ik2L( )exp T2ν
out( )Tν2

in( ) ikνL( ).exp
ν 1=
ν 2≠

4

∑=

k1 2, a±= δk1 2,+

k3 4,
ω
u
----= δk3.±

δk1 O ωb
2( ), δk2 O ωb

2( ),= =

δk3 δk4– O ωb( ),= =

ωb
2
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of the flux expression ω – ku in the denominator follows
from the equation of motion for flux particles. As a
result, we obtain corrections δki in the dispersion law
for the wave from the perturbed part δε of the permit-
tivity tensor. Thus, if a homogeneous monoenergetic
electron beam is injected into an empty metal resonator
with a circular cross section, then

and

(18a)

(18b)

Here, k⊥  is the transverse wave number and

is the relativistic factor.

We assume that neither the velocity nor the density
of the incident flux at the entrance boundary z = 0 is
perturbed. To satisfy this condition, we will assume that
the waves undergo mirror reflection from this bound-
ary, i.e., the waves do not leave the system through the
boundary z = 0. The condition of mirror reflection of the
waves can be written in the form

(19a)

The absence of the flux velocity perturbations gives [7]

(19b)

while the absence of the flux density perturbations
gives

(19c)

For low-density fluxes, when Bs = O , or for
transversely homogeneous systems, the transformation
coefficients have the form [7]

(20a)

(20b)

(20c)

ε||
ωb

2γ 3–

ω ku–( )2
-----------------------,–=

δk1 2,
k ⊥

2 γ 3–

2a ω au+−( )2
------------------------------ωb

2+−=

δk3 4,
ω
u
---- γ 5/2–

ω2 a2u2–
--------------------------ωb.=

γ 1 u2/c2–( ) 1/2–
=

kν Aν

ν 1=

4

∑ ksBs

s

∑+ 0.=

Aν

ω kνu–
------------------

ν 1=

4

∑ Bs

ω kνu–
------------------

s

∑+ 0,=

Aν

ω kνu–( )2
-------------------------

ν 1=

4

∑ Bs

ω kνu–( )2
-------------------------

s

∑+ 0.=

ωb
2( )

T12
in( ) 1 O ωb

2( ),+=

T32
in( ) αωb,=

T42
in( ) αωb.–=
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The transformation coefficients  can be repre-
sented in the most general form:

(21a)

(21b)

(21c)

Here, κ1 is the coefficient of reflection of the copropa-
gating wave from the plane z = L in the absence of the
flux and κb is transformation coefficient for flux waves.
As a result, we can write in the general form

(22a)

(22b)

(22c)

The quantities q, b, and F depend on the system geom-
etry and are functions of the frequency and wave num-
bers (see details in [7]). For example, if a homogeneous
monoenergetic electron beam is injected into an ideal
vacuum metal resonator of a circular section (without
ohmic and radiative losses, κ1 = 1), then

(23a)

(23b)

(23c)

By assuming that

we obtain the final expression for the dispersion insta-
bility equation linearized in a small parameter (~ωb/ω)

(24)

Here,

(25)

is the unperturbed part of the dispersion equation,
which determines the discrete set of values of the
unperturbed parameter a, 

(26)

and, hence, the discrete set of natural oscillations of the
system ω = ω(Rea). The imaginary part of the parame-
ter a determines the radiative losses:

(27)

T2ν
out( )

T21
out( ) κ1= g1ωb

2,+

T23
out( ) κb= gbωb

2,+

T24
out( ) κb gbωb

2.–=

T21
out( )T12

in( ) κ1= q1ωb
2,+

T23
out( )T32

in( ) bωb–= Fωb
2,+

T24
out( )T42

in( ) bωb= Fωb
2.+

b
ω
au
------

k ⊥
2 u2γ 1/2–

ω2 a2u2–( )3/2
--------------------------------,=

F 2
ω
au
------ ω2 a2u2+

ω2 a2u2–( )3
-----------------------------k ⊥

2 u2γ 3– ,=

q1 2F.–=

Lδk1 ! 1, Lδk2 ! 1, Lδk3 1,∼

$ a( ) $0 a( )≡ $1 a( )+ 0.=

$0 a( ) e iaL–= κ1eiaL–

a
πn
L

------=
1

2L
------ κ1arg

i
2L
------ 1

κ1
--------,ln––

γω
– dω

da
-------Ima–

1
2L
------dω

da
------- 1

κ1
--------ln .= =
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Here,

is the group velocity of the natural wave of the system.
Consideration of the flux perturbation gives the sec-

ond term $1(a) in the dispersion equation:

(28)

Here,

is the transit angle (phase) of flux particles. The pertur-
bation δω of the natural frequency of the system corre-
sponding to this term is

(29)

From this, we find the instability increment taking into
account the radiative losses:

(30)

If the system exhibits amplification, i.e., the condi-
tion (15a) is fulfilled, then a nonzero wave gap ∆knp

exists. In this case, beginning from some value of the
system length L*, the condition (8) will be fulfilled for
all L > L*. Therefore, in long systems with L > L*, two-
wave lasing will occur, which is described by Eq. (9).
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Indeed, for the system length L  ∞ in expres-
sion (30), we obtain the increment of the global insta-
bility

(31)

If all δki are real [in this case, only  can be
complex], then the condition (8) is not satisfied for any
lengths L, and the instability increment (decrement) is

(32)

If γω > 0, then a nonamplified instability appears in the
system because none of the conditions (8) and (15) are
satisfied for real kν = kν(ω) at Imω = 0. For L  ∞, the
increment of the nonamplified instability tends to zero,
and, therefore, this instability appears only in spatially
restricted media.

The systems can be divided into short and long ones
according to the value of Lδk3. In short systems, Lδk3 ! 1,
so that

As a result, both of the first terms in (32) are of the same
order of magnitude, and the increment in the system

without losses is γω ∝  ; i.e., it is proportional to the
flux density. Thus, if a homogeneous monoenergetic
electron beam is injected into an ideal vacuum metal
resonator of a circular section (without ohmic and radi-
ative losses), then the increment is

(33)

The condition for the instability development has the
form

(34)

γω
1
2
---v grIm δk2 δk1–( ).=

Tnp
out( )
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2L
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In long systems, when Lδk3 ≥ 1, the second term in
(32) has a higher smallness order over the parameter ωb

compared to the first term. For this reason, the expres-
sion for the increment in long systems is simplified to
be

(35)

The condition γω > 0 for the instability development in
long systems takes the form

(36)

One can see from (36) that the fulfillment of the ine-
quality strongly depends on the transit angle θ. In this
sense, we can say that nonamplified instabilities are
determined by the nonlocal resonance, which depends
on the flux parameters and linear dimensions of the sys-
tem. In addition, analysis of expression (36) shows that
the nonamplified instability develops in sufficiently
high-Q systems when

For an ideal resonator, the condition (36) is substan-
tially simplified:

(37)

We derived the expression for the increment γω
assuming an arbitrary dispersion law a = a(ω) for the
natural waves of the system. For this reason, the non-
amplified instability is universal in a sense that it is
manifested for waves with any dispersion law and non-
zero group velocity. Unlike resonance instabilities,
such as the Cherenkov instability, the nonamplified
instability can develop when the natural waves of the
system are not retarded. Some examples are excitation
of various whistles with resonators [6] (flutes, organ
tubes, etc.) and excitation of an acoustoelectric genera-
tor at electron-flux velocities lower than the sound
velocity in a ferroelectric. In electronics, this is excita-
tion of a monotron and generation of microwave radia-
tion on an oblique Langmuir wave in a plasma resona-
tor at plasma densities lower than the critical one, when
the resonance Cherenkov instability cannot develop
[8], as well as excitation of potential Langmuir waves
in a plane plasma layer upon continuous injection of a
monoenergetic electron beam [9].

The nonradiative instabilities, such as the aperiodic
Pierce instability [1], belong to the type of instabilities
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described above. The dispersion law in the most general
form can be written as

(38a)

(38b)

Here, the parameter η characterizing the flux is no
longer a small quantity, and v gr is the group velocity of
the beam waves. Under the condition ω < η, the phase
velocity of the slow beam wave is directed oppositely
to the flux, whereas its group velocity is directed along
the flux. Although in this case the slow beam wave
behaves as a wave with inverse dispersion, the condi-

tion (15a) is not satisfied because v gr > 0 and  = 0.

The potential wave k1 and two beam waves k3 and k4
propagate in the flux direction, while the wave k2 prop-
agates in the opposite direction, thereby performing a
feedback in the system. Let us introduce the notation

and rewrite Eq. (16) for this case in the form

(39)

This equation cannot be solved in the general case
because there is no small parameter in which the solu-
tion could be expanded. Because particular cases of
Eq. (39) were analyzed in detail in the literature (see,
for example, [10–12]), we will not consider them here.
Note only two important circumstances.

It is usually assumed that metal electrodes are
located at the boundaries z = 0 and z = L. At the bound-
ary z = L, more general conditions can be set without
the loss of the self-consistence. Assuming that a homo-
geneous dielectric with the permittivity

is located in the region z > L, we can obtain from the
boundary conditions for the field at z = L the coeffi-

cients , although in this case we can only condi-
tionally speak about the waves leaving the system. For
ε  ∞, we arrive at a particular case of mirror bound-
ary conditions on the metal.

Consider the asymptotics L  ∞ for very long sys-
tems. In this case, the second term in Eq. (39) can be
neglected under the condition ω'' > 0. The remaining
two terms will be of the same order of magnitude if the
increment is inversely proportional to the system
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length, i.e., if ω'' ∝  1/L. This means that this instability
is absent in an infinite system.

Therefore, a feedback amplifier is a particular case
of an oscillator. In plasmalike spatially restricted
media, there exists a broad class of instabilities that
cannot fit in conventional concepts. The conditions for
the development of these instabilities are determined by
a nonlocal resonance. This precludes the creation of
amplifiers operating on this type of instabilities; how-
ever, it permits the fabrication of a broad class of oscil-
lators.

In this paper, we have considered the multiwave
instability of a system with respect to the ground unex-
cited state in which the nonequilibrium is caused by the
flux. Therefore, we have not analyzed here parametric
instabilities in a finite space [13], such as stimulated
Raman scattering or stimulated Brillouin scattering.
The nonequilibrium in these processes is caused by the
nonlinear distortion of the unperturbed state in the pres-
ence of the pump wave with a large amplitude.
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Abstract—The parameters of Cun+ and Tan+ ions from the plasma of a vacuum spark with a voltage up to
2.5 kV and a current rise rate up to 2 × 1010 A/s are studied using the time-of-flight method. At the initial stage
of the discharge, bursts of beams of accelerated multiply charged ions from the cathode flame have been
detected. It is established that the charge state distribution and energy of a beam are controlled by the initial volt-
age U0 of the capacitor. Upon an increase in this voltage, the average charge of copper ions attains the value +9, and
the average charge of tantalum ions can be as high as +20, while the energy attains values of 150 and 350 keV,
respectively. It is found that the average energy of ions with charge Z increases in proportion to the charge and
is close to the energy eZU0 which would have been acquired by ions accelerated in the electric field of the dis-
charge gap. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, considerable efforts were made for
creating sources of multiply charged metal ions, which
are of interest for projects of heavy-ion accelerators
intended for research purposes, for solving material sci-
ence problems, and for medical applications. One of
such sources is a plasma emerging as a result of exposure
of a target to a high-power laser pulse, which makes it pos-
sible to obtain, for example, copper ions with a charge up
to +25 and an energy up to 130 keV [1].

Another promising source of ions is a vacuum spark
producing a high energy density liberated in the plasma
column, which is required for generating multiply
charged ions and characterized by a relatively low total
energy consumption and a simple construction. Indeed,
bursts of X rays emitted by hydrogen- or helium-like
ions of the cathode material (iron or titanium) from
micropinch structures formed in the plasma of a high-
current spark were detected even in early experiments
(see, for example, [2, 3]), but direct observations of
these ions have not been reported so far [4]. The
directly measured maximum charge of ions in the plas-
mas of various types of vacuum spark did not exceed +7
(W7+ [5], Cu7+ [6]), and the energy of ions attains values
of 10–15 MeV for the discharge gap voltage U0 =
300 kV [5].

In the present work, we report on the registration of
multiply charged accelerated ion beams of the cathode
material (Cun+, Tan+), generated at the initial stage of a
vacuum spark with relatively low values of current
amplitude (up to 10 kA) and capacitor energy (up to 7 J).
It will be proved that the charge state distribution and the
energy distribution of ions are close to the parameters
1063-7761/01/9306- $21.00 © 1216
observed in a laser plasma, while the typical values of
supplied energy are almost two orders of magnitude
lower. This indicates that a spark discharge can be used
in principle as an effective source of accelerated multi-
ply charged metal ions.

2. EXPERIMENTAL RESULTS

The experiments were carried out in a vacuum dis-
charge with a capacitor voltage U0 up to 2.5 kV. The
electrode system consisted of a copper or tantalum
cathode of diameter 1 mm and a plane grounded grid-
type anode separated by 9 mm from the end face of the
cathode and was placed in a chamber with a vacuum not
worse than (5–8) × 10–6 torr. In contrast to the high-
voltage discharges used in [5, 6], the discharge was ini-
tiated at the end face of the cathode through the break-
down over the surface of an insulator insert between the
cathode and the igniting electrode. The discharge cur-
rent was sustained by a capacitor (C = 2 µF) and was
measured by a Rogowki coil directly in the cathode cir-
cuit. The total inductance of the discharge circuit did
not exceed 40 nH. Before measurements, the cathode
surface was cleaned by “training” during 103 “shots,”
after which the variations of discharge parameters in
various shots did not exceed 20%.

The energy and charge state distributions of ions
were measured by the time-of-flight method with the
help of an electrostatic analyzer of the “plane capaci-
tor” type with an the energy resolution ∆E/E ≈ 2 × 10–2

and a time resolution of the registering circuit of about
40 ns. We used a microchannel plate as a detector of
ions. The gain of the plate was adjusted for different ion
2001 MAIK “Nauka/Interperiodica”
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charge states and impact energies using the data
obtained in [7]. The analyzer was placed behind the
grid anode and the drift gap so that the ions emitted by
the cathode flame and moving along the discharge axis
towards the anode were registered.

The time-of-flight method makes it possible to
determine the value of µ/Z (µ is the atomic weight and
eZ is the charge of an ion) for each species of ions with
an energy specified by the bias voltage at the analyzer
plate from the delay of the corresponding signal of the
detector. For fixed values of energy resolution of the
analyzer, the temporal resolution of the detecting cir-
cuit, and the duration of the ion emission, the resolution
α = Z/∆Z of the method in the charge states of ions is
determined by the time of flight through the gap
between the emission region and the detector. Under our
experimental conditions and for a gap length of 60 cm, the
limiting resolution for Cun+ ions was α(E) = 20; the cor-
responding value of Tan+ ions was α(E) = 30 in view of
their larger mass and, hence, lower velocity.

Figure 1a shows a typical oscillogram of the dis-
charge current in experiments with a copper cathode;
the corresponding signal from the analyzer for a fixed
value of E/Z is shown in Fig. 1b. The signal was pro-
cessed using the following procedure. Assuming that
the last peak in Fig. 1b corresponds to Cu+ ions (having
the maximum value of µ/Z = 64, i.e., the maximum time
of flight), we can determine the starting instant t1 for
these ions, which is marked by arrows in Figs. 1a and
1b. The values of µ/Z for the ions generating these
peaks can be determined from the delays of the remain-
ing peaks relative to t1. The obtained values of µ/Z = 32,
21, etc., can be naturally ascribed to Cu2+, Cu3+, etc.,
ions. This means that ions in all charge states are pro-
duced simultaneously. The time width of ion signals
corresponding to the duration of the emission process
amounts to ∆t ≈ 0.05–0.1 µs (for the given value of
E/Z = 2.1 keV). According to the results of measure-
ments, an increase in the energy of the ions being reg-
istered leads to a decrease in the value of ∆t, which
tends to the temporal resolution of the measuring cir-
cuit. It can also be seen from Fig. 1a that ions are pro-
duced at the initial stage of the discharge at t1 = 300–
400 ns after its beginning for a current approximately
equal to 3 kA, which is much smaller than the ampli-
tude value. The instant of ion emission was found to be
close to the instant of the maximum current rise rate.

It can be seen from Fig. 1b that a noticeable peak of
H+ ions was also registered in experiments in addition
to the peaks associated with ions of the cathode mate-
rial. In addition, ions of other light impurities desorbed
from the surface of the cathode and the insulator insert,
On+, Cn+, Nn+ (n = 1, 2), and having values of µ/Z close
to those for corresponding copper ions (e.g., Cu4+,
Cu5+, Cu8+, ions, etc.) may also contribute to the sig-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
nals. An analysis of the obtained results proved that
such ions make an insignificant contribution to the
charge composition of the beam.

Ion signals detected in various discharges for fixed
discharge parameters had a considerable spread in
amplitude; for this reason, these signals were averaged
for subsequent processing over a series of 12 dis-
charges. The averaged amplitudes of the signals corre-
sponding to ions of a given charge state and measured
for various values of E/Z were used for constructing the
energy spectrum of such ions. Figure 2a shows the ion
spectra obtained in this way for different charge states
of Cun+ for two values of the storage voltage U0. It can
be seen that a typical spectrum consists of a core in
which the main fraction of ions with energies not
exceeding a few kiloelectronvolts is concentrated and a
“tail” of accelerated ions whose fraction is a few per-
cent of the total number of particles and whose energy
can be as high as 150 keV. Another peculiarity observed
in Fig. 2a is a nearly linear increase in the maximum
energy of the ions being registered with their charge. In
addition, a comparison of spectra 1 and 2 obtained for
different values of storage voltage U0 shows that the
spectra of all ion components are broadened towards
higher energies upon an increase in this voltage.
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Fig. 1. (a) Oscillogram of the discharge current for a storage
voltage of 2.0 kV; (b) analyzer signal for energy E/Z =
2.1 keV of Cun+ ions.
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Z

A quantitative parameter characterizing the
observed features of the acceleration process is the
mean energy EZ of ions having a given charge, which
was obtained by integrating their energy spectrum. Fig-
ure 3a shows the dependence of EZ on the charge of a
JOURNAL OF EXPERIMENTAL
Cun+ ion for two values of the storage voltage, i.e., for
two initial voltages across the discharge gap. It can be
seen from the figure that the mean energy of ions
increases almost linearly with the charge over a wide
range of its variation.
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In order to find out whether the acceleration process
depends on the ion mass, we made similar measure-
ments with a tantalum cathode. In these experiments,
we observed Tan+ ions whose charge composition
turned out to be much wider than in the case of Cun+

ions. Tantalum ions in various charge states were also
produced simultaneously at the initial stage of the dis-
charge; the duration of this process was found to be
close to the corresponding value for Cun+ ions. Using
the procedure of signal processing described above, we
constructed the energy spectra of Tan+ ions at different
storage voltages. These spectra are shown in Fig. 2b. It
follows that the spectra for tantalum and copper ions
have similar structures. The maximum detected energy
of tantalum ions also increases with the charge almost
linearly, attaining a value of 350 keV for Ta+32 ions at a
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〈E
z/e

Z〉
, k

V

U0, kV
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3

2 3

Fig. 4. Energies per unit charge 〈EZ/Z〉  averaged over the

charge state distribution of Cun+ (r) and Tan+ (h) ions as
functions of the storage voltage. The equation of the straight
line is 〈EZ/Z〉  = eU0.
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storage voltage U0 = 1.5 kV. In addition, it follows from
Fig. 3b that, as in the case of Cun+ ions, there exists a
linear dependence between the charge state and the
mean energy EZ of various components of Tan+ ions, but
in a considerably wider range of charge states as com-
pared to copper ions.

Figure 3 also shows that the ratio EZ/Z for acceler-
ated ions is virtually independent of the charge state
and is determined only by the storage voltage. Under
the assumption that the mean energy EZ of ions is a lin-
ear function of charge Z, we approximated the experi-
mental results (Fig. 3) for each value of storage voltage
by a straight line plotted by the least squares technique.
The slopes of the straight lines give the values of energy
per unit charge 〈EZ/Z〉  averaged over the charge state
distribution. Figure 4 presents the results of data pro-
cessing for the entire range of the discharge parameters
and for both materials of the cathode. It can be seen
from the figure that the mean energy acquired by ions
as a result of acceleration is independent of the ion
mass and is close to the value of energy eZU0 which
would be acquired by ions in the case of direct acceler-
ation in the electric field of the discharge gap.

By integrating the energy spectra, we obtained the
charge state distribution of ion beams of tantalum and
copper for different values of storage voltage (Fig. 5).
It was mentioned above that the resolution of the
method used does not allow us to single out the signals
of tantalum ions with charges differing by unity in each
discharge in the range of high degree of ionization (Z >
+30). For this reason, the charge state distribution of the
ion beam in this region was plotted not for an individual
component, but for groups of unresolved components,
and demonstrates only the general tendency of ion dis-
tribution. It can be seen from the figure that the charge
state distributions of the beams of Tan+ and Cun+ ions are
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similar, but the maximum detectable charge of copper
ions is +19, while for tantalum it lies near +50. In addi-
tion, it can be seen that the range of the charge states of
the ions being detected becomes wider upon an
increase in the capacitor voltage.

An important parameter for estimating the effective-
ness of the ionization mechanism is the mean charge of
the ion beam, which can be obtained from the charge
distribution of ions. The dependence of this quantity on
the storage voltage is shown in Fig. 6 for both species
of ions. It can be seen that the mean charge of the cop-
per ion beam increases monotonically with U0, while
the mean charge of tantalum ions attains its maximum
value for U0 = 500 V and then remains virtually
unchanged.

3. DISCUSSION

The results of measurements show that the plasma
jet of a vacuum discharge produces beams of acceler-
ated multiply charged ions of the cathode material. The
obtained values of the ion charge are much higher than
those observed earlier in various types of vacuum spark
[6, 7]. Multiply charged ions can be produced only in a
plasma with a high electron temperature. The simplest
estimate of this temperature was obtained in the model
of ionization equilibrium from the relative concentra-
tions of ions with different charge states in the vicinity
of the peak of the distribution presented in Fig. 5a, i.e.,
for the major part of ions. The obtained value of Te ~
100 eV is the order of the temperature measured earlier
in the cathode jet of a laser-induced low-current vac-
uum discharge [8].

An important feature of the production of multiply
charged ions is the short-term “burst” nature of the pro-
cess. Ions are produced at the initial stage of the dis-
charge 400–600 ns prior to the attainment of the peak
value of current. The duration ∆t of this process is sev-
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Fig. 6. The mean charge state for cooper (1) and tantalum (2)
ions versus the storage voltage.
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eral tens of nanoseconds and is much smaller than the
time of the discharge current rise. This indicates a small
spatial scale δ of the ion production region, which can
be estimated using the measured value of ∆t: δ ≥ ∆tV ≈
6 × 10–2 cm (here, V = 1.2 × 106 cm/s is the velocity of
the cathode jet in spark discharges [9]).

It is well known that the vacuum discharge plasma
is generated in microscopic regions on the surface of
the cathode and expands towards the anode in the form
of a spatially localized cathode flame. The size of the
flame at the instant t1 of ion production can be esti-
mated at δ1 = t1V ≈ 0.4–0.5 cm, which is smaller than
the length of the discharge gap, but considerably
exceeds the scale δ of the ion production region. It fol-
lows hence that multiply charged ions are produced in
a local region of hot plasma in the front of the cathode
flame moving towards the anode, i.e., before the plasma
fills the discharge gap.

The reason for the formation of the local region in
the hot plasma may be compression by the intrinsic
magnetic field of the current. This phenomenon is well
known for high-current discharges for which the forma-
tion of such microscopic regions at the constriction of
the plasma filament due to the pinch effect was
observed at a late stage of the discharge for currents of
the order of 100 kA and higher [2, 3]. However, the
results of recent experiments [8] and theoretical calcu-
lations [10] indicate the possibility of formation of
microscopic structures with Te ~ 100 eV in a cathode
flame plasma at the initial stage of a vacuum discharge
for currents from hundreds [10] to several amperes [8].
The process occurs near the boundary of the plasma
cloud expanding into the vacuum, where the density of
the inhomogeneous plasma decreases and the magnetic
pressure becomes higher than the pressure in the
plasma even for such weak currents. Hence, we can nat-
urally assume that the pinch effect leading to local heat-
ing of the cathode flame plasma is possible in our case
also for currents of the order of several kiloamperes,
i.e., almost two orders of magnitude lower than in
“classical” systems. The necessary condition for this
effect is the formation of a plasma flame with a high
density gradient in its front. The formation of such a
flame is ensured by a high rate of the discharge current
rise, which is accompanied by the formation of corre-
sponding emission centers on the surface of the cathode
[9] and by a rapid increase in the plasma density in the
vicinity of the cathode.

Let us now compare our results with those obtained
in [6], where the ion composition of the plasma of a
vacuum spark with currents close to values typical of
our experiments (about 10 kA) was investigated. How-
ever, in contrast to our experiments, the measurements
were made for time intervals considerably exceeding
the time of filling of the discharge gap with the plasma
and led to the maximum charge +7 for copper ions,
which is much lower than the values obtained by us.
This indicates the important role of the inhomogeneous
 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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structure of the cathode jet in the production of multiply
charged ions at the initial stage of the discharge.

The characteristic feature of our experiments is that,
in contrast to the high-voltage discharge studied in [5],
the cathode flame moves towards the anode not in a
vacuum, but in the plasma generated by the igniter. The
experimental technique is similar to that used for a
laser-induced discharge [8] and ensures a high rate of
current rise (which is a necessary condition for the
emergence of the pinch effect in the jet) for a relatively
low voltage at the capacitor.

Let us consider the peculiarities of the process of
acceleration of multiply charged ions in the given
experiment. The above analysis proved that the produc-
tion and acceleration of ions occur at the front of the
cathode flame expanding into a vacuum. In this case,
the observed linear dependence of the mean energy of
ions on the charge in a wide range of its variation indi-
cates the electrostatic mechanism of acceleration of
ions in the self-consistent field emerging at the flame
front and directed oppositely to the external electric
field applied to the electrodes. Another important fea-
ture of the acceleration process is the closeness of the
mean energy of ion per unit charge 〈EZ/Z〉  to the energy
eU0 acquired by an electron in an external electric field.
These results are in qualitative agreement with the con-
clusions drawn on the basis of the model proposed in
[11], where ions at the front of the cathode flame are
accelerated by the electric field of the space charge of
an electron beam. The beam is emitted at the boundary
of the plasma flame and ensures the closure of the rap-
idly increasing current between the plasma boundary
and the anode. The energy of the ions is determined by
the energy of the electrons in the beam and is close to
E ~ ZeU0.

Let us now compare our results with the parameters
of the ions of the plasma formed as a result of exposure
of the target to a high-power laser pulse. The measure-
ments of the energy and charge distributions of ions of
the laser plasma were made using a technique similar to
that used in our experiments. In addition to the signals
from multiply charged ions of metals, a signal from H+

ions was registered, which was 5–10 times stronger
than the signals from ions of other light impurities
whose effect on the total charge distribution was disre-
garded in these experiments [12].

Ion beams in the experiment described above and
the ions of laser plasma have similar characteristics.
For example, the charge state distribution and the form
of its variation are the same for different materials of
the cathode (target), and the maximum detected values
of charge and energy of the ions of a given species are
close. The measurements also proved that the mean
charge of the copper ion beam increases monotonically
with the storage voltage, while the charge state distribu-
tion of tantalum ions remains virtually unchanged upon
the variation of the storage voltage (i.e., the energy sup-
plied to the discharge) in a wide range. The plasma
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
emerging as a result of irradiation of the tantalum target
by a high-power laser pulse also exhibits a relatively
weak dependence of the charge state of the ion compo-
nent on the pulse energy [12].

A structure of the energy spectra of ions similar to
that depicted in Fig. 2 was observed for multiply
charged ions of a laser plasma [1]. As in our experi-
ments, the maximum and mean energies of different ion
components were almost linear functions of their
charge states. In addition, the energy spectra of acceler-
ated ions, which were obtained as a result of computer
simulation of the expansion of a laser plasma bunch
into a vacuum [13], also have a structure similar to that
observed in the given experiment (i.e., a relatively cold
core and a hot “tail”). According to the existing models
of this process, plasma ions are accelerated by the elec-
tric field of charge separation, emerging at the plasma–
vacuum interface as a result of the departure of hot elec-
trons from the plasma [12, 14]. Thus, the mechanisms
of acceleration of ions in the current-free laser plasma
expanding into the vacuum and in the current-carrying
plasma of a vacuum spark are of similar origins.
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Abstract—A method for obtaining an intense secondary pulsed molecular beam is described. The kinetic
energy of molecules in the beam can be controlled by vibrational excitation of the molecules in the source under
high-power IR laser radiation. A compression shock (shock wave) is used as a source of secondary beams. The
shock wave is formed in interaction between an intense pulsed supersonic molecular beam (or flow) and a solid
surface. The characteristics of the secondary beam were studied. Its intensity and the degree of gas cooling in
it were comparable with the corresponding characteristics of the unperturbed primary beam. Vibrational exci-
tation of molecules in the shock wave and subsequent vibrational–translational relaxation, which occurs when
a gas is expanded in a vacuum, allow the kinetic energy of molecules in the secondary beam to be substantially
increased. Intense [≥1020 molecules/(sr s)] beams of SF6 and CF3I molecules with kinetic energies approxi-
mately equal to 1.5 and 1.2 eV, respectively, were generated in the absence of carrier gases, and SF6 molecular beams
with kinetic energies approximately equal to 2.5 and 2.7 eV with He (SF6/He = 1/10) and H2 (SF6/H2 = 1/10) as car-
rier gases, respectively, were obtained. The spectral and energy characteristics of acceleration of SF6 molecules
in the secondary beams were studied. The optimal conditions were found for obtaining high-energy molecules.
The possibility of accelerating radicals in secondary molecular beams was demonstrated. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Currently, molecular (atomic) beams [1, 2], includ-
ing high-energy beams [1], are extensively used in
research work. The kinetic energy of molecules
(atoms) in high-energy beams far exceeds their ther-
mal energy, which equals Ekin ≤ 0.05 eV at ≈300 K.
Intense [≥1020 molecules/(sr s)] beams of accelerated
molecules with kinetic energies in the range of approx-
imately one to several electronvolts are used in various
fundamental and applied studies (in studying chemical
reactions with energy barriers, elastic and inelastic col-
lisions, interactions of molecules with surfaces, etc.)
[1]. The most extensively used technique for the prepa-
ration of intense molecular beams is their isolation
from gas dynamically cooled flows with the use of
skimmers; the initial flows are generated by pulsed noz-
zles [2]. The most important characteristics of pulsed
beams are their intensity, duration, velocity, and the
spread of molecular velocities (the degree of gas cool-
ing).

The specified energy range is difficult to work with,
and we do not known a universal method for generating
the corresponding molecular (atomic) beams. There are
several techniques for obtaining such beams [1] (also
see [3, 4] and the references therein). Most of them are,
however, fairly complex (for instance, creating an opti-
cal breakdown or a radiofrequency or arc discharge
1063-7761/01/9306- $21.00 © 21222
inside a nozzle) and are only applicable to atoms, not
molecules. They were largely developed for generating
continuous beams.

Aerodynamic acceleration [5, 6] is used for this pur-
pose most frequently. Molecules to be studied are then
diluted with a lighter carrier gas (He, H2, etc.). Another
method involves heating molecules above the nozzle to
high temperatures (T0 ≈ 3000 K); also possible is a
combination of the two methods. Aerodynamic acceler-
ation is not very effective when the ratio between the
molecular weights of the gas to be studied and the car-
rier gas is small.

The energy of molecules in a beam generated by
heating the nozzle is determined by gas temperature T0
before expansion through the nozzle,

(1)

where v  is the steady flow speed, m is the mass of the
molecule, γ = cp/cv is the ratio of the specific heat
capacities, k is the Boltzmann constant, and T is the gas
temperature in the flow.

In [7], argon atoms diluted with helium were accel-
erated to several electronvolts in a continuous beam by
combining nozzle heating and aerodynamic accelera-
tion. In [8], continuous beams of xenon atoms diluted

1
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Fig. 1. Schematic of measurements. Secondary molecular beam formation with the use of a substrate with an orifice in the form of
a divergent cone.
with hydrogen (Xe/H2 = 0.23/100) with a kinetic
energy up to Ekin & 30 eV were generated.

Heating pulse nozzles to high temperatures is a
problematic approach, because the materials used in
such nozzles (in particular, elastomers and plastics)
decompose at high (T ≥ 200°C temperatures [2].
According to [9, 10], accelerated molecular beams can
be generated using vibrational excitation of molecules
by IR laser pulses in the hydrodynamic expansion
region at the exit from the nozzle. Accelerated SF6 and
CF3I molecular beams with kinetic energies approxi-
mately equal to 0.5 and 0.74 eV, respectively, were
obtained [10, 11]. Using this approach, however, offers
no possibility for obtaining high excitation energy den-
sities because of the arising of optical breakdowns at
nozzle beam-exit holes. In addition, these techniques
can only be used to accelerate a small fraction of mole-
cules in a beam.

It follows from the aforesaid that a promising tech-
nique for obtaining high-energy molecular beams
would be excitation of molecules by high-power IR
laser radiation inside a pulsed beam source itself, that
is, before the gas flows through the nozzle. Precisely
this possibility was used for the first time in the method
for generating secondary pulsed molecular beams sug-
gested in [12, 13]. Intense beams of accelerated SF6

molecules with kinetic energies up to Ekin & 1.5 eV
were obtained [13]. In this work, the suggested method
is described in detail, and the results of a more complete
study of acceleration of molecules in secondary pulsed
molecular beams induced by high-power IR laser radi-
ation are given.
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2. EXPERIMENTAL SETUP AND PROCEDURE 
FOR MEASUREMENTS

The source of a secondary molecular beam in the
suggested method is a compression shock (shock wave)
[14–16] formed in interaction between a pulsed gas
dynamically cooled molecular flow and a solid surface
[17, 18]. A schematic of the procedure is given in Fig. 1.
An intense [≥1021 molecules/(sr s)] wide-aperture
(divergence ω ≈ 0.05 sr) molecular beam (or flow) fell
onto a solid surface, a substrate with an orifice in the
center. A polished Dural substrate 7.5 mm thick was
used; the substrate was mounted at a distance of
x ≈ 60 mm from the nozzle. The orifice had the form of
a divergent cone with inlet and outlet diameters din ≈ 2 mm
and dout ≈ 5 mm. Orifice walls were polished.

When a primary beam fell on the substrate, a shock
wave was formed in front of it; gas density, pressure,
and temperature in the shock wave were substantially
higher than in the incident beam [19, 20]. According to
the estimates made in [19], the concentration of SF6
molecules in the shock wave varied from approxi-
mately 1016 to 5 × 1017 cm–3 depending on the intensity
of the primary beam. While the shock wave remained in
front of the substrate, the gas flowed through the orifice
into the high-vacuum part of the chamber. As a result, a
new secondary pulsed molecular beam was formed,
and its characteristics were different from those of the
primary beam. Secondary beams were also generated
with the use of hollow convergent truncated cones and
convergent–divergent cones of the Laval nozzle type in
place of a substrate with a cone orifice. The intensities
of secondary molecular beams generated in cones were
substantially (5–7 times) higher than those obtained
SICS      Vol. 93      No. 6      2001
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using the substrate. When the primary beam interacted
with a cone, a shock wave was formed inside the con-
vergent part of the cone.

Molecules in a shock wave are very simple to excite
(Fig. 1). When a cone was used to generate high-energy
beams, the convergent part of the cone was replaced by
a hollow truncated tetrahedral pyramid made of thin
NaCl plates transparent to CO2 laser radiation. This
allowed us to excite molecules inside the pyramid
directly prior to outflow from the secondary nozzle.
Multiphoton absorption of molecules in a strong IR
field [21] increased their internal (largely, vibrational)
energy. Subsequent vibrational–translational (V–T)
relaxation during gas expansion into a vacuum caused
energy transfer from vibrational to translational
degrees of freedom. As a result, molecules experienced
acceleration. It follows that IR laser-induced accelera-
tion of molecules can schematically be described by the
equation

(2)

where M and M* are molecules in the ground and vibra-
tionally excited states, respectively; v 0 and vL are the
velocities of molecules in the absence of excitation and
under pulsed laser excitation; and nhν is the energy
absorbed by one molecule from a laser pulse. Under the
conditions of our experiments, the concentration of
molecules in a shock wave in front of the surface was
fairly high (the pressure was on the order of one to sev-
eral Torr—see below). For this reason, both multipho-
ton excitation and V–T relaxation were comparatively
effective and substantially increased the velocity of
molecules in secondary beams. Gas heating in a shock
wave caused by deceleration (see below) also increased
the velocity of molecules in secondary beams.

Primary beams were generated by a pulsed nozzle of
the current loop type [22]. The hole diameter was
0.75 mm. The time of opening was about 40 µs (at half-
height). Gas pressure above the nozzle varied in the
range of approximately 0.1 to 7 atm. The nozzle cut had
the shape of a cone with an aperture angle of 15°. The
cone length was 35 mm. The vacuum chamber in which
molecular beams were formed was evacuated to about
1 × 10–6 Torr by a turbomolecular pump. The number of
molecules flowing from the nozzle during one pulse
depended on the gas pressure in front of the nozzle and
varied approximately from 3 × 1015 to 1.1 × 1017 mole-
cules/pulse in our experiments. A technique for mea-
suring the number of molecules in a pulse was
described in detail in [19, 20].

Vibrational excitation of molecules was created by a
TEA CO2 tunable laser. Pulse energy was up to 3 J. The
generation pulse consisted of a peak about 100 ns wide
at half-height and a tail about 0.6 µs wide containing
about 50% of the total pulse energy. Molecules were
excited in a shock wave directly before outflow from
the secondary nozzle. Laser radiation was slightly
focused onto the excitation zone by a NaCl lens with a

M v 0( ) nhν M* v 0( ) M v L( ),+ V–T
JOURNAL OF EXPERIMENTAL 
2-m focal length. The laser beam was directed parallel
with the surface (normally to the primary beam). The laser
spot size in the excitation zone was about 10 × 10 mm2.

Molecular beams were detected by a pyroelectric
detector with a 3–5 µs time resolution [23, 24]. The
active element of the detector was 4 × 4 mm2 in size.
Molecules flowing within the body angle determined
by the size of the detector active element and the dis-
tance from the beam source were recorded. The detec-
tor was described in detail in [25]. The pyroelectric
detector could be moved along the beam axis. This
allowed us to measure the time-of-flight spectra of mol-
ecules at different distances from primary and second-
ary beam sources [23]. The time-of-flight spectra were
used to determine the velocities of the beams and the
spread of the velocities of molecules within them. Our
experiments aimed at determining the characteristics of
secondary molecular beams and detecting high-energy
molecules in them.

3. RESULTS AND DISCUSSION

3.1. The Formation of Secondary Molecular Beams 
and the Determination of Their Characteristics

As mentioned above, obtaining a secondary molec-
ular beam requires that a shock wave be formed in front
of the surface when the primary beam falls on it. The
conditions of shock wave formation in interaction
between a pulsed gas dynamically cooled supersonic
molecular flow and the surface were studied in detail
for the examples of SF6 and CF3I molecular flows in [19,
20] and [26], respectively. It was found that no shock wave
was formed at low gas pressures above the nozzle (P ≤
0.2 atm for SF6), when the mean concentration of mole-
cules in the incident flow was N1 ≤ 3 × 1014 cm–3.

In our experiments, we used a molecular beam
source and a geometry of beam formation different
from those described in [19, 20, 26]. For this reason, to
create the conditions under which a shock wave was
formed, we had to measure the number of molecules
outflowing from the nozzle during one pulse (Nb) and
estimate the intensity of the primary beam. The proce-
dure for measuring Nb was described in detail in [19,
20]. The dependences of Nb on the pressure of SF6
above the nozzle are shown in Fig. 2 for two values of
the potential applied to the nozzle to open it Un. The Nb

value increases almost linearly at pressures ≤1 atm and
reaches saturation at high pressures. At an SF6 pressure
above the nozzle of 3 atm and Un = 3.2 kV, the number
of molecules in the beam was Nb ≈ 9 × 1016 cm–3. The
molecules flowed within a body angle of ω ≈ 0.05 sr
determined by the aperture angle of the nozzle cone
(α = 15°), and the intensity of the primary SF6 molecu-
lar beam per time ∆τb ≈ 100 ns was Ib ≥ 1021 mole-
cules/(sr s). Estimates of the mean concentration of
SF6 molecules in the primary beam are given in Sub-
section 3.3.
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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It was shown in [12, 13] that the primary molecular
beam only flowed through the cone at a low gas pres-
sure above the nozzle (pΣ ≤ 0.2 atm), when the intensity
of the primary beam was low and no shock wave was
formed in front of the surface [19, 20]. The primary
beam pulse narrowed as the pressure of the gas above
the nozzle increased, when a shock wave was formed in
the cone (in front of the substrate in Fig. 1). Simulta-
neously, a secondary beam pulse appeared and began to
sharply increase in amplitude.

At a comparatively high primary molecular beam
intensity [≥1020 molecules/(sr s)], the intensity of the
secondary beam is commensurate with the intensity of
the unperturbed primary beam (in the absence of a sub-
strate in its path). The dependences of the intensities of
the unperturbed primary beam (curve 1) and secondary
beams (curves 2 and 3) on the pressure of SF6 above the
nozzle are shown in Fig. 3. The secondary beams
described by curves 2 and 3 were generated using a
convergent cone (din = 11 mm, dout = 2.8 mm, total
length 32 mm) and a convergent–divergent cone of the
Laval nozzle type (din = 14 mm, d0 = 2 mm, dout = 7 mm,
total length 40 mm, convergent part length 30 mm),
respectively. The distance between the nozzle and the
detector was 143 mm, and the distance between the
cone waist and the detector was 79 mm. At an SF6 pres-
sure above the nozzle of p ≥ 1.0 atm, the pyroelectric
signal from secondary molecular beam 3 was larger
than that from the primary beam. This means that the
intensity of secondary molecular beam 3 was compara-
ble with the intensity of the primary beam, even consid-
ering an approximately quadratic dependence of the
pyroelectric signal on the distance between the beam
source and the detector.

The measured primary and secondary molecular
beam parameters are listed in Table 1. It was found
experimentally that the duration of the secondary
molecular beam, its velocity, and the spread of molecu-
lar velocities in it did not differ substantially from the
corresponding characteristics of the primary beam. As
expected, the largest difference was between the
spreads of molecular velocities. The spread of veloci-
ties was by 20–40% larger in the secondary beam. It
follows from the data given in Table 1 that a fairly sub-
stantial gas cooling occurred in the secondary beam
(the Mach number was M2 ≈ v 2/∆v 2 ≈ 5).

3.2. Acceleration of Molecules in Secondary Beams

The dependence of the velocity of SF6 secondary
molecular beams on the energy density of CO2 laser
radiation is shown in Fig. 4. Molecules were excited in
the beam source directly prior to outflow from the “sec-
ondary” nozzle (inside the hollow truncated tetragonal
pyramid made of NaCl plates and attached to the front
wall of the substrate with a conic orifice—see Fig. 1).
The laser was tuned to a frequency of 938.7 cm–1

(the 10P(26) laser line), which was in resonance with
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Table 1.  Measured parameters of primary and secondary molecular beams

Gas
composition

Pressure above 
nozzle, atm

Primary beam Secondary beam

v1, m/s ∆v1, m/s v1/∆v1 v2, m/s ∆v2, m/s v2/∆v2

SF6 6.2 480 77 6.2 447 87 5.1

SF6 5.0 560 62 9.1 476 82 5.8

SF6 3.0 545 88 6.2 517 133 3.9

SF6/H2 (1/10) 3.2 1130 97 11.6 1090 156 7.0

SF6/H2 (1/5) 3.0 1000 115 8.6 896 120 7.5

SF6/He (1/10) 3.0 940 85 11.1 1000 230 4.4

SF6/CH4 (1/10) 3.1 870 99 8.8 835 128 6.5

CF3I 4.6 417 53 7.9 405 57 7.1
the ν3 mode of SF6 molecules (ν ≈ 948 cm–1 [27]). The
mean velocity of molecules in the absence of laser exci-
tation was v 0 = 460 m/s; under laser excitation condi-
tions, it increased to vL > 1400 m/s.

The dependence of the kinetic energy of SF6 mole-
cules in the secondary molecular beam on the CO2 laser
exciting radiation frequency is shown in Fig. 5a. The
secondary molecular beam was formed in a cone
described above (the same as in Fig. 4). The SF6 pres-
sure above the nozzle was 5.8 atm. The laser radiation
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Fig. 5. Dependences of kinetic energy of SF6 molecules in
secondary molecular beams on exciting laser radiation fre-
quency: (a) SF6 molecular beam without a carrier gas and
(b) SF6/H2 = 1/10 molecular beam.
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energy density was approximately 3.9 J/cm2. The mean
kinetic energy of molecules in the absence of laser exci-

tation was  ≈ 0.163 eV. For comparison, the linear
absorption spectrum of SF6 in the region of ν3 vibra-
tions recorded in [28] at T ≈ 300 K is shown in the bot-
tom part of the figure. Our spectral dependence was
fairly broad. This was likely to be caused by a compar-
atively high pressure and a fairly high vibrational and
rotational temperature of SF6 in the shock wave (see
below). A maximum acceleration was observed when
molecules were excited by laser lines 10P(22)–10P(26)
(in the region of 940 cm–1). A small maximum at
931 cm–1 might be related to excitation of 34SF6 mole-
cules (ν3 ≈ 930.5 cm–1 [29]). The content of 34SF6 in SF6
with a natural isotopic composition, which was used in
our experiments, was about 4.2%.

A similar dependence obtained for an SF6/H2 (1/10)
molecular beam is shown in Fig. 5b. This spectral
dependence was much narrower, which was likely
caused by fairly fast vibrational–translational relaxation
of SF6 in the H2 carrier gas (see below, Subsection 3.5).
The vibrational temperature of SF6 in the shock wave
was much lower than under excitation of SF6 in the
absence of a carrier gas. The IR multiphoton excitation
spectrum was narrowed and displaced to the linear
absorption spectrum region [18]. As a result, the spec-
tral dependence of acceleration of molecules was also
narrowed.

The data obtained in accelerating SF6 and CF3I mol-
ecules in secondary molecular beams are listed in Table 2.
We generated SF6 molecular beams with kinetic ener-

gies of  ≈ 1.5 eV (vL ≈ 1400 m/s) in the absence of

a carrier gas and  ≈ 2.5, 2.6, and 2.7 eV in the pres-
ence of He, CH4, and H2 carrier gases, respectively.
These values were substantially higher than those
reported in [4, 10]. Note that the kinetic energies of SF6
obtained in [12] were somewhat lower than in [13] and
this work, because the cross-section size of the laser
beam in the excitation zone (in the shock wave) was

Ekin
0

Ekin
L

Ekin
L
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Table 2.  Experimental data on acceleration of SF6 and CF3I in secondary molecular beams

Gas
composition

Pressure 
above nozzle, 

atm

CO2
laser line

Energy
density, J/cm2

Mean velocity
of molecules, m/s

Kinetic energy
of molecules, eV

v0 vL

SF6 6.6 10P(26) 3.7 460 1400 0.163 1.5

SF6 3.0 10P(20) 3.7 474 1265 0.173 1.23

SF6 1.0 10P(20) 3.7 470 1155 0.17 1.05

SF6/H2 (1/10) 3.2 10P(20) 3.5 1090 1870 0.91 2.7

SF6/He (1/10) 6.0 10P(20) 3.7 1050 1800 0.85 2.5

SF6/CH4 (1/10) 5.0 10P(24) 3.7 1020 1835 0.8 2.6

CF3I 4.6 9R(12) 1.2 417 1065 0.18 1.2

Ekin
0 Ekin

L

smaller in the earlier experiments (≈8 × 8 mm2, [12])
than in this work. A laser pulse therefore excited a
smaller number of molecules. As a result, the kinetic
energy of accelerated molecules was also lower.

3.3. Estimation of SF6 Parameters in a Shock Wave

Briefly consider the parameters of SF6 in a shock
wave. Note that strongly nonuniform, nonequilibrium,
and nonstationary shock wave conditions and a large
number of processes that occur in shock waves consid-
erably complicate estimating the parameters of a gas in
a shock wave. Several techniques for estimating the
concentration and temperature of SF6 in a normal shock
wave were described in [19, 20]. These estimates were
based on using the parameters of a molecular flow
(beam) incident on the surface and gas dynamic equa-
tions. We will estimate the concentration and tempera-
ture of SF6 in a normal shock wave in front of the sur-
face under the conditions of our experiments. The SF6
concentration was probably higher in a shock wave
formed inside the cone than in that formed in front of
the surface.

The ratio between the concentrations of SF6 in a
shock wave (N2) and in the incident (primary) beam
(N1) can roughly be assumed to equal the ratio between
the incident beam extent (∆xb) and the shock wave front
width (∆xsh),

In our experiments, ∆xb ≈ 4.8 cm and ∆xsh ≈3 mm [19,
20]. Therefore, N2 ≈ 16N1. For instance, at a 3-atm pres-
sure of SF6 above the nozzle, the number of molecules
outflowing from the nozzle per pulse equaled Nb ≈ 9 ×
1016 molecules/pulse (see Fig. 2). According to the esti-
mates made in [19], the volume of the primary beam

N2

N1
------

∆xb

∆xsh

----------.≈
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was Vb ≈ 15 cm3. Therefore, N1 ≈ 6 × 1015 cm–3 and
N2 ≈ 9.6 × 1016 cm–3.

The largest N2 value can be found from pressure p2
in the shock wave (N2 = p2/kT2). Pressure p2 can be esti-
mated as

(3)

where mv 1N1 is the momentum of molecules in the
beam incident on the surface, Sb is the cross section of
the beam at the surface, and ∆τb is the duration of the
beam. Substituting the required characteristics of the
SF6 molecular beam [m = 146 × 1.67 × 10–24 g, v 1 ≈
4.8 × 104 cm/s, Nb ≈ 9 × 1016, Sb ≈ 3 cm2, ∆τb ≈ 10–4 s,
and T2 ≈ 600 K (see below)] yields p2 ≈ 38 mbar
(≈28.6 Torr) and N2max ≈ 5 × 1017 cm–3.

An increase in gas temperature (∆T) caused by
deceleration in a shock wave can be estimated from the
law of the conservation of energy for SF6 molecules in
an incident beam and a shock wave [20]. We assume
that the vibrational degrees of freedom of SF6 remain
unheated in a shock wave, which allows us to write

Substituting the required characteristics of SF6 beams
yields ∆T ≈ 635 K. On the other hand, although vibra-
tional–translational relaxation of SF6 molecules occurs
at a fairly low rate (pτV–T ≈ 150 µs Torr [30]), the vibra-
tional degrees of freedom of the molecule also experi-
ence heating at gas pressures of several Torr in a shock
wave, at least, in part. It is likely that, for this reason, ∆T
was smaller than the estimate just obtained. The trans-
lational and rotational temperatures of SF6 in incident
beams were T1, tr ≈ T1, rot ≤ 40 K [24]; it follows that, in
the shock wave, these temperatures were T2, tr ≈ T2, rot ≤
675 K. The vibrational temperature of SF6 in the inci-
dent beam was T1, vib ≤ 150 K [24]. In the shock wave,
it was likely to be higher.

mv 1N1 p2Sb∆τb,=

mv 1
2

2
---------- 3k∆T .=
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3.4. Estimation of the Fraction of Absorbed Energy 
Consumed in Acceleration

The literature data on the energy absorbed by SF6
molecules from the IR laser pulse field and the data on
acceleration of SF6 obtained in this work can be used to
estimate the fraction of the absorbed energy consumed
to accelerate molecules. As mentioned above, the pres-
sure of SF6 in the shock wave during its formation is
one to several Torr. At such pressures, all molecules in
the gas volume subjected to laser radiation participate
in absorption; that is, the fraction of excited molecules
equals one. The number of absorbed quanta per mole-
cule is 〈n〉  ≈ 25 when SF6 is excited by a 10P(16) laser
line and the energy density is Φ ≈ 3.5–4 J/cm2 [31]. The
mean energy absorbed by one SF6 molecule therefore
equals Eab = 〈n〉hν ≈ 2.94 eV [hν = 0.1176 eV is the
laser quantum energy at the 10P(16) line]. The kinetic
energy of accelerated SF6 molecule excited at the

10P(16) frequency is  ≈ 1.3 eV (see Fig. 5a). It fol-
lows that about 45% of the absorbed energy is con-
sumed to accelerate molecules. Note that some part of
the absorbed energy becomes lost in collisions of mol-
ecules with nozzle walls, some part is consumed in
heating the gas inside the shock wave itself, and some
part is likely to remain in internal degrees of freedom,
largely in the form of vibrational excitation. It follows
from the results listed in Table 1 that there is time
enough for the translational and rotational degrees of
freedom of SF6 to be cooled to T ≤ 50 K during gas
expansion. A substantial absorbed energy part is likely
to remain in vibrational degrees of freedom, because
vibrational–translational relaxation in SF6 (and CF3I)
molecules occurs at a fairly low rate,

Ekin
L

pτV–T

150 µs torr for SF6 30[ ] ,

350 100 µs torr for CF3I 32[ ] .±
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Fig. 6. Oscillogram showing time-of-flight spectra of CF3
radicals (peak 2) and accelerated and unaccelerated CF3I
molecules (peaks 3 and 4, respectively) in a secondary
molecular beam. The first peak corresponds to scattered
exciting laser pulse radiation.
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Note that the rate of this process substantially increases
in strong IR fields at high vibrational excitation levels
[33]. It also increases in some gases [30], for instance,

When these gases are used as carriers, vibrational–
translational relaxation in SF6 proceeds more effec-
tively than in pure gaseous SF6. As a result, molecules
are more effectively accelerated in secondary beams
(see Table 2).

3.5. Accelerated Radicals
in Secondary Beams

We studied the possibility of obtaining accelerated
radicals in secondary beams as a result of the dissocia-
tion of CF3I molecules. The time-of-flight spectrum of
CF3 radicals and accelerated and unaccelerated CF3I
molecules is shown in Fig. 6. The secondary molecular
beam was generated using a substrate with a conic ori-
fice to which a hollow tetrahedral pyramid made of
NaCl plates was attached. The pressure of CF3I above
the nozzle was 3 atm. When the primary beam fell on
the pyramid, a shock wave formed inside it. Molecules
in the shock wave were excited at a frequency of
1073.3 cm–1 [the 9R(12) laser line], which was in res-
onance with CF3I ν1 vibrations [34]. This frequency
coincided with the maximum of the spectral depen-
dence of the yield of IR multiphoton dissociation of
CF3I in a gas dynamically cooled flow [35]. The
energy density of exciting radiation was Φ ≈ 3 J/cm2 .
At such an energy density, the yield of CF3I dissoci-
ation was ≥80% [36, 37].

The time-of-flight spectrum of CF3 radicals was
recorded by exciting molecules at the very beginning of
shock wave formation. At long time lags between the
initial molecular beam pulse and the laser pulse, the
time-of-flight spectra of CF3 radicals and accelerated
CF3I molecules overlapped each other, and CF3 radicals
could not be observed in the time-of-flight spectra
recorded by the detection technique used in this work.
Note that the IR multiphoton dissociation of CF3I only
yields CF3 radicals and iodine atoms. Because of a
fairly large difference between the masses of the CF3
radical, the CF3I molecule, and the iodine atom, we
were able to record the time-of-flight spectrum of CF3
radicals. We measured the velocity of CF3 radicals and
the spread of radical velocities in the secondary beam,
which gave v 2 ≈ 800 m/s and ∆v 2 ≈ 120 m/s (the Mach
number equaled M ≈ v 2/∆v 2 ≈ 6). It follows that we
obtained an intense beam of cooled CF3 radicals with a
kinetic energy of Ekin ≈ 0.25 eV in our experiments. CF3
radicals were accelerated in the secondary beam

pτV–T

9.3 µs torr in H2,

41 µs torr in He,

30 µs torr in CH4.





≈
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because of an increase in gas temperature caused by
deceleration. CF3 radicals with a high kinetic energy
can be obtained by IR or UV dissociation of CF3I mol-
ecules accelerated in a secondary beam. For instance,
the IR dissociation of CF3I molecules accelerated to

 ≈ 1.2 eV yields CF3 radicals with Ekin ≥ 0.42 eV.
The dissociation of SF6 molecules accelerated to ≈ 1.5 eV
in the secondary beam yields accelerated SF5 radicals
with a kinetic energy of Ekin ≥ 1.23 eV.

4. CONCLUSION
The method described in this work can be used to

obtain intense molecular beams containing molecules
whose kinetic energy can be controlled by vibrationally
exciting them with the use of high-power laser pulses
inside the beam source itself. The intensity of second-
ary molecular beams and the degree of gas cooling in
them may be commensurate with similar characteristics
of primary beams. Convergent–divergent cones of the
Laval nozzle type provide optimal conditions for gener-
ating secondary molecular beams. Intense [≥1020 mole-
cules/(sr s)] SF6 and CF3I molecular beams with kinetic
energies approximately equal to 1.5 and 1.2 eV, respec-
tively, without carrier gases and SF6 molecular beams
with kinetic energies approximately equal to 2.5 and
2.7 eV with He (SF6/He = 1/10) and H2 (SF6/H2 = 1/10)
as carrier gases, respectively, were obtained. It was
shown that accelerated radicals could also be obtained
in secondary beams by the dissociation of molecules
under the action of high-power IR laser radiation in the
secondary source or in the beam itself. Note in conclu-
sion that the shortcoming of the suggested method for
generating high-energy molecular beams is likely to be
insufficient cooling of vibrational degrees of freedom
of molecules.
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Abstract—The stability of a poorly conducting fluid in a constant electric field of a horizontal capacitor is
investigated under a variable temperature gradient. It is assumed that free charge in the fluid is generated only
due to the nonhomogeneous conductivity of the fluid. The Floquet theory is used to determine the convection
thresholds. The instability boundaries and the characteristics of critical perturbations are determined. In addi-
tion to the synchronous and subharmonic responses to an external action, the instability can be attributed to qua-
siperiodic perturbations. The low-frequency limit of modulation is considered by an asymptotic method. The
critical electric Rayleigh number is represented as a function of inverse frequency and heating level. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The study of electrothermal convection is of interest
in view of a possible control of convection in liquid
dielectrics and a control of heat and mass transfer in
high-voltage devices. On the other hand, the effect of
electric fields on the motion of a fluid can be used for
designing electrohydrodynamic energy transducers that
directly transform the energy of the electric field into
the kinetic energy of a moving fluid.

An electric field may strongly affect the convective
motions of poorly conducting fluids due to the effect of
specific electroconvective instability mechanisms [1].
The dielectrophoretic mechanism of instability is asso-
ciated with the nonhomogeneity of the dielectric per-
mittivity. The effect of nonhomogeneous polarization
on the stability of a liquid dielectric in a constant elec-
tric field was investigated in the cases of a horizontal
[2] and vertical [3] capacitor. The other two instability
mechanisms are associated with free charge, accumu-
lated in the fluid, that is generated either due to the
charge injection or due to the gradient of conductivity
inherent in a nonuniformly heated fluid. The interaction
of the volume charge with the electric field results in the
motion of the fluid. The convection of poorly conduct-
ing fluids in a constant electric field due to the electro-
conductive mechanism was experimentally investi-
gated in [4, 5]. The injection of charge and the nonho-
mogeneous polarization of a medium were not
considered in the theoretical analysis [5, 6]. This
approach is justified because the threshold voltage
starting from which the injection mechanism of charge
generation in a fluid substantially influences the stabil-
ity of equilibrium is greater than the potential differ-
ence, used in experiments, across the boundaries of a
layer [7]. Moreover, the conductivity of the fluids used
1063-7761/01/9306- $21.00 © 1231
in experiments depends much more strongly on temper-
ature as compared with the dielectric permittivity.
Investigations revealed oscillatory modes of electro-
convection of a dielectric in a horizontal capacitor.
These modes were studied, and the effect of the elec-
tric-charge relaxation time on the dynamics of a con-
vective system was analyzed.

On the other hand, the presence of a modulated
parameter in a mechanical system strongly affects its
stability [8, 9] and can be used for controlling convec-
tive motions in various technological situations. Vibra-
tions, as well as variable electric fields or temperature
gradients, are important examples of periodic action on
mechanical systems and, in particular, on fluids. A clas-
sical example of changing the stability of equilibrium in a
vibration field is given by the Kapitsa pendulum [10].

The effect of temperature modulation at the bound-
aries of a fluid layer on its convective stability was ana-
lyzed in [11, 12]. Two types of critical perturbations
were revealed: the perturbations of the first type vary
synchronously with the external action, while the per-
turbations of the second type oscillate at a half fre-
quency. The parametric excitation of thermoelectric
instability under a thermal wave in liquid semiconduc-
tors or ion melts was investigated in [13]. The electro-
convective instability of a nonhomogeneously heated
dielectric fluid under a variable electric field was inves-
tigated in the cases when the charge generation in the
fluid is associated either with dielectrophoresis [14] or
with electric conductivity [15].

The present work is devoted to the study of instabil-
ity of a poorly conducting fluid in a constant electric
field under a periodic temperature gradient. In addition
to the synchronous and subharmonic responses to an
external action, the instability may be attributed to qua-
2001 MAIK “Nauka/Interperiodica”
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siperiodic perturbations. We show that resonance insta-
bility regions appear at frequencies related to the fre-
quency of neutral oscillatory perturbations of a poorly
conducting fluid in constant fields.

2. STATEMENT OF THE PROBLEM
Consider a poorly conducting fluid that fills a paral-

lel-plate capacitor. Assume that the plates with the
coordinates z = ±h (where h is the half-width of the
layer) are perfect heat and electric conductors. Suppose
that these plates are held at different constant potentials

and different temperatures varying by the law

Here, Θ is a characteristic scale of temperature, and η1
and η2 are relative amplitudes of the constant and vari-
able components of the temperature difference between
the boundaries. In our case, η2 varies continuously,
while η1 assumes two values: η1 = 0 for a variable tem-
perature difference and η1 = 1 for a modulation against
a constant background.

The electric force exerted on a unit volume of a fluid
can be expressed as [16]

(1)

Here, ε is the dielectric permittivity of the fluid, ρe is the
free charge of the unit volume, and E is the electric field
strength.

The last term in (1) has a gradient form and only
leads to the redefinition of pressure. The second
(dielectrophoretic) part of the electric field, which is
associated with the nonhomogeneity of ε, is unessen-
tial. This approach is justified in the case when the non-
homogeneity of conductivity due to the temperature
gradient is much greater than the nonhomogeneity of
dielectric permittivity. Here, we apply an electrohydro-
dynamic approximation, where electric effects are large
as compared with magnetic ones. For layers of thick-
ness less than 10–1 m, this approximation is justified if
the modulation frequency of the electric field is less than
109 rad/s and the conductivity of the fluid satisfies the
inequality σ ! 10–1 (Ω m)–1 [17]. For fluids with very
low conductivity, σ ~ 10–11–10–9 (Ω m)–1 (transformer
oil, capacitor oil, or corn oil), the role of induced mag-
netic fields proves to be really negligible in a wide
range of frequencies. We assume that the conductivity
of a fluid increases linearly with temperature,

where βσ is the conductivity temperature coefficient,
which is positive in general.

Below, we will use dimensionless variables based
on the scales of length (h), time (h2/ν), velocity (χ/h),

ϕ h±( ) U+−=

T h±( ) Θ η1 η2 Ωtcos+( ).+−=

f e ρeE=
1
2
---E2∇ε–

1
2
--- ∇ ρ ∂ε

∂ρ
------E2

 
  .+

σ σ0 1 βσT+( ),=
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temperature (Θ), pressure (ρlνχ/h2), potential (U), field
(U/h), and charge density (εU/h2) (here, ρl is the fluid
density and ν and χ are the kinematic viscosity and
thermal diffusivity of the fluid, respectively).

Neglecting the electric charge injection, electric
loss, and viscous dissipation [17], we obtain the follow-
ing dimensionless system of equations and boundary
conditions that describe the convection of a liquid
dielectric in constant gravity and electric fields and a
variable thermal field:

(2)

Here, v is velocity, p is pressure, T is temperature mea-
sured from a certain mean value, E and ϕ are the
strength and potential of the electric field, and ρ is the
free charge density.

System (2) involves the following dimensionless
parameters:

(3)

Here, Ra is the Rayleigh number (β is the thermal-
expansion coefficient of the fluid), Ge is an electric ana-
logue of the Galilean number, P is the Prandtl number,
Pe is the electric Prandtl number, and ω is the dimen-
sionless modulation frequency; the parameter S charac-
terizes the nonhomogeneity of conductivity. In poorly
conducting fluids that exhibit electroconvective phe-
nomena in experiments, βσ ≈ 0.03–0.058 deg–1 [5, 7]
and the condition S < 1 holds if the temperature differ-
ence does not exceed 10 degrees. The results of theoret-
ical investigations of electrothermal convection in con-
stant electric fields, obtained under the stronger condi-
tion S ! 1, show a good agreement with experimental
results [5, 7].

The problem formulated admits a quasi-equilibrium
solution where the fluid is at rest,

∂v
∂t
------

1
P
--- v∇( )v+ 

 

=  –∇ p ∇ 2v RaTe GeρE,+ + +

divv 0,=

P
∂T
∂t
------ v∇( )T+ ∇ 2T ,=

∂ρ
∂t
------

1
Pe
------div σE( ) 1

P
--- v∇( )ρ+ + 0,=

divE ρ, E ∇ϕ , e– 0 0 1, ,( )= = = ,

σ 1 ST ,+=

z 1: v± 0,= =

T η1 η2 ωtcos+( ), ϕ+− 1.+−= =

Ra gβΘh3/νχ , Ge εU2/νχρ l, P ν/χ ,= = =

Pe εν/h2σ0, ω Ωh2/ν , S βσΘ.= = =

v0 0,=
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while its other characteristics vary in space and time:

We will not need an explicit expression for pressure p0.
The time-dependent temperature distribution T0(z, t)
satisfies the one-dimensional heat equation and the cor-
responding boundary conditions:

T0 T0 z t,( ), p0 p0 z t,( ),= =

E0 0 0 E0 z t,( ), ,( ), ρ0 ρ0 z t,( ).= =
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(4)

The temperature distribution in the quasi-equilibrium is
determined by the superposition of a linear profile and
two thermal waves that propagate from the boundaries
toward the bulk of the fluid:

P
∂T0

∂t
---------

∂2T0

∂z2
-----------,=

z 1: T0± η1 η2 ωtcos+( ).+−= =
(5)

T0 η1z – η2 Ts ωtsin Tc ωtcos+[ ] , κ– Pω
2

-------,= =

Ts
κ 1 z+( )( )sin κ 1 z–( )( ) κ 1 z–( )( ) κ 1 z+( )( )sinhsin–sinh

2κ( )cos 2κ( )cosh–
-----------------------------------------------------------------------------------------------------------------------------------------------,=

Tc
κ 1 z+( )( )cos κ 1 z–( )( )cosh κ 1 z–( )( ) κ 1 z+( )( )coshcos–

2κ( )cos 2κ( )cosh–
---------------------------------------------------------------------------------------------------------------------------------------------------.=
Using the temperature distribution (5) and the
boundary condition for the potential ϕ, we can deter-
mine the field and free charge distributions in a fluid at
rest:

(6)

To analyze the stability of the base state, let us con-
sider its small perturbations. Upon eliminating the pres-
sure and the horizontal components of velocity, we rep-
resent the perturbations of the vertical component of
velocity v z, temperature ϑ , and charge density ρ as fol-
lows:

(7)

Here, w, θ, and ρ are the amplitudes, and k is the wave-
number. The vectors E0 and ∇ T0 are directed normal to
the boundaries; therefore, the problem is isotropic in
the plane of the layer, and one can direct the x axis
along the wavevector k.

The quasi-equilibrium field (6) represents a series

The first term E00 is the external field; it is independent
of S and characterizes the field between the conductive

E0 1 η1Sz+=
η2S

1 ω2Pe2+
------------------------ Ts ωPeTc+( )( ωtsin+

+ Tc ωPeTs–( ) ωtcos( ) O S2( ) ),+

ρ0 η1S
η2S

1 ω2Pe2+
------------------------ Tsz ωPeTcz+( )( ωtsin+=

+ Tcz ωPeTsz–( ) ωtcos( ) O S2( ) ),+

Tsz

∂Ts

∂z
--------, Tcz

∂Tc

∂z
--------.= =

v z w z t,( ) ikx[ ] , ϑexp θ z t,( ) ikx[ ] ,exp= =

ρ ρ z t,( ) ikx[ ] .exp=

E0 E00= SE01 O S2( )+ + .
plates in the absence of a fluid. All the other terms of the
series SE01 + O(S2) are associated with the redistribu-
tion of charge in the fluid,

which is generated due to the nonhomogeneous con-
ductivity of the medium. The associated perturbations
of the Coulomb force can be represented as

where E' and ρ' are the perturbations of the field and
charge density. The smallness of the parameter S allows
one to apply an induction-free electrohydrodynamic
approximation in which the electric field associated
with the redistribution of charge in the fluid is neglected
as compared with the external field [5]:

Substituting the perturbed fields into system (2) and
linearizing with respect to the perturbations, we obtain
the following amplitude problem:

(8)

where

Note that, despite the smallness of the temperature-
induced nonhomogeneity S of conductivity, the electric
analogue of the Rayleigh number B = GeS remains

ρ0 Sρ01 O S2( ),+=

Fk' Ge E00ρ' S E01ρ' E 'ρ01+( )+( ),=

Fk' GeE00ρ.=

∂∆w
∂t

----------- ∆2w Rak2θ– Bk2ρ,–=

P
∂θ
∂t
------ η1 η2 Tcz ωtcos Tsz ωtsin+( )+( )w ∆θ,+=

Pe
∂ρ
∂t
------ ∂θ

∂z
------ ρ,––=

z 1: w± 0, w ' 0, θ 0,= = = =

∆ ∂2/∂z2 k2.–=
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finite (the parameter Ge is large). If η2 ≠ 0, the system
has periodic coefficients; then, a dynamic excitation or
the suppression of electroconvection may occur.

The system of equations and boundary condition
(8), together with the time-periodicity conditions for all
variables, specify an eigenvalue problem for B or Ra as
functions of the remaining parameters. The boundaries
of the convective instability specified by the conditions
for the existence of periodic solutions to system (8) can
be determined by the classical Floquet method.

3. METHOD OF SOLUTION

Problem (8) for the modulation of arbitrary fre-
quency was solved by the Galerkin method. To approx-
imate the perturbations, we use the sets of spatial basis
functions with time-dependent coefficients:

(9)

The space bases were constructed from normalized
eigenfunctions of the amplitude problem for a fluid
layer at rest [18]. The fourth- and second-order eigen-
functions were used as the bases for approximating the
vertical component of velocity, the temperature, and the
charge density:

(10)

(11)

Substituting expansions (9) into (8) and orthogonal-
izing by the Galerkin method, we obtain K = 3M ordi-
nary differential equations in ar, bs, and ct:

(12)

w amwm, θ
m 0=

M 1–

∑ bmθm,
m 0=

M 1–

∑= =

ρ cm

∂θm

∂z
---------.

m 0=

M 1–

∑=

∆2wm µm∆wm, wm 1±( )– wm' 1±( ) 0,= = =

∆θm Pνmθm, θm 1±( )– 0.= =

∂ar

∂t
-------- µrar k2 RaEmrbm BDrmcm+[ ] ,

m 0=

M 1–

∑+–=

P
∂bs

∂t
-------- η1Esm η2 Ssm ωtsin Csm ωtcos+( )+[ ]

m 0=

M 1–

∑=

× am Pνsbs,–

Pe
∂ct

∂t
------- bt ct, r s t, ,–– 0 1 … M 1,–, , ,= =

Emr θmwr z, Drmd

1–

1

∫ wrθm' z,d

1–

1

∫= =

Ssm θsTsz z( )wm z,d

1–

1

∫=
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Equations (12) can be rewritten as

(13)

where the matrix L composed of the coefficients of ar,
bs, and ct from (12) is periodic with period 2π/ω and
u(t) is a K-dimensional vector function. The classical
Floquet theory [19] allows one to express any solution
to system (13) as

(14)

with the time-periodic (with period T = 2π/ω) vector
u0(t) (where γ is the Floquet multiplier and λ = λr + iλi

are characteristic exponents, which are generally com-
plex numbers). For various initial conditions

we obtain K linearly independent solutions (t). Sys-
tem (13) is integrated by the fourth-order Runge–Kutta
method. The fundamental solutions taken at the end of
the modulation period constitute K columns of a K × K
monodromy matrix whose eigenvalues represent the
Floquet multipliers. The values of the characteristic
exponents determine the stability of the base state of
quasi-equilibrium. If we arrange the exponents so that

then the base state is stable when Re(λ1) < 0. The con-
dition Re(λ1) = 0 determines the domain of periodic
solutions in the space of parameters B, η1, η2, Ra, P, Pe,
ω, and k. Here, the case

corresponds to subharmonic perturbations with the
period twice that of the external action. If

neutral perturbations vary synchronously with the
external force and their periods coincide. For a pair of
complex conjugate eigenvalues with unit modulus,

we have quasiperiodic neutral perturbations. For the
majority of solutions obtained, 24 basis functions were
used (M = 8). In the test computations carried out with
30 basis functions (M = 10), the variations in the con-
vection threshold were less than 1%.

Csm θsTcz z( )wm z.d

1–

1

∫=

∂ui

∂t
------- Lij ωt( )u j, i j, 1 … 3M, , ,= =

u t( )

ar

bs

ct
 
 
 
 

,=

u t( ) γu0 t( ) eλ tu0 t( )= =

ui
p 0( ) δip, p 1 … K ,, ,= =

ui
p

Re λ1( ) Re λ2( ) … Re λK( ),≥ ≥≥

Re λ1( ) 0, Im λ1( ) ω/2= =

Re λ1( ) 0, Im λ1( ) ω,= =

Re λ1( ) 0, Im λ1( ) 0,≠=
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4. LOW-FREQUENCY MODULATIONS

For small modulation frequencies ω, the modulation
period is greater than all characteristic times of the sys-
tem:

(15)

or, in a dimensionless form,

(16)

Since the computation time increases proportionally to
the modulation period T, the application of a numerical
method is inexpedient when ω  0; here, one can
apply the Wentzel–Kramers–Brillouin asymptotic
method [20] with a small parameter ω.

After rescaling time, τ = ωt, we use the matrix form
for the system of amplitude equations:

(17)

with the vector function

and the constant (A) and 2π-periodic in τ (N) operators

(18)

where f(τ) = η1 + η2(Tszsinτ + Tczcosτ).
Using the smallness of ω, we expand N, B, and the

solution u in series in ω:

(19)

where λ is a characteristic increment of perturbations
for the case of a slow quasistatic variation in the tem-
perature gradient (a 2π-periodic function of τ). The Flo-

T  @ max
h2

ν
----- h2

χ
----- ε

σ
---, , ,

ω ! min 1 P 1– Pe 1–, ,[ ] .

ω ∂
∂τ
-----Au Nu=

u

w

θ
ρ 

 
 
 

=

A
∆ 0 0

0 P 0

0 0 Pe 
 
 
 
 

,=

N

∆2 Rak2– Bk2–

f t( ) ∆ 0

0 ∂
∂z
-----– 1– 

 
 
 
 
 

= ,

N N0 ωN1 ω2N2 …,+ ++=

B B0 ωB1 ω2B2 …,+ ++=

u
1
ω
---- λ τ '( ) τ 'd

0

τ

∫ u0 ωu1 ω2u2 …+ + +( ),exp=

λ λ 0 ωλ1 ω2λ2 …,+ ++=
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quet stability boundary in the zeroth order in ω is deter-
mined from the integral condition

(20)

where λ0r is the real part of λ0. To solve the eigenvalue
problem in the zeroth order, we used the Galerkin
method with basis (9).

5. RESULTS

The poorly conducting fluids used in experiments
have sufficiently high Prandtl numbers, P ≥ 100. The
electric Prandtl number Pe depends not only on the
electrophysical parameters of a fluid but also on the
thickness of the layer. As an illustration, consider the
behavior of the fluid with the parameters P = 100 and
Pe = 0.04. First, let us discuss the onset of convection
in the absence of gravity (Ra = 0). In constant electric
and thermal fields, the instability is attributed to the
electroconductive mechanism and is associated with
the oscillatory mode. A convection threshold of B∗  =
2514.24 corresponds to a critical wavenumber of k =
2.354 and a frequency of ω0 = 1.256. The effect of the
modulation of the temperature gradient on the stability
of the quasi-equilibrium of η2 = f(1/ω) for fixed values
of k = 2.354 and B = 2510 is shown in Fig. 1.

In the absence of modulation, η2 = 0 (the abscissa),
the quasi-equilibrium of the fluid is stable. (The electric
Rayleigh number does not exceed its critical value, B < B∗ .)

λ0r B0 τcos,( ) τd

0

2π

∫ 0,=

2.0

1.5

1.0

0.5

0
0.2 0.4 0.6 0.8 1.0

(–1) (1)

1/ω

η2

Fig. 1. Modulation amplitude η2 as a function of inverse
frequency 1/ω for Ra = 0. The wavenumber is fixed: k =
2.354. In the absence of modulation, the system is stable.
The solid curves represent the stability boundaries for peri-
odic perturbations, while the dashed curves represent the
stability boundaries for quasiperiodic modes.
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The growth of the modulation amplitude gives rise to
increasing perturbations. The type of critical perturba-
tions depends on frequency. The first resonance domain
(–1) corresponds to the perturbations that are subhar-
monic with respect to the external action; its minimum
is at ω = 2.5 ≈ 2ω0 and corresponds to a modulation
amplitude of η2 = 0.151. The domain (+1) of synchro-
nous perturbations has a minimum of η2 = 0.170 at a
frequency of ω = 1.254 ≈ ω0. The effect of destabiliza-
tion in this domain is weaker. For moderate modulation
amplitudes, there exist domains of critical quasiperi-
odic perturbations between the domains of synchro-
nous and subharmonic responses to the external field.

The critical electric Rayleigh number Bm versus
inverse frequency 1/ω is presented in Fig. 2 (Ra = 0,
η1 = 1, and η2 = 1; the minimization is carried out over
the wavenumber k). The parametric excitation of con-
vection manifests itself when the relation between the
driving frequency and the frequency of the oscillatory
mode in a constant field is expressed as 2ω0/m with
integer m. Figure 2 represents the first two domains of
instability.

Consider the electrothermoconvective instability in
a static gravity field. Now, the behavior of perturbations
should be considered from the viewpoint of amplitude
equations (8) with Ra ≠ 0. In the absence of an electric
field (B = 0), the critical thermal Rayleigh number
determines the onset of convection under the heating
from below, Ram0 = 106.75, and corresponds to the ther-
mogravitational monotonic mode of instability [8]. The
rise of an electric field and its increase stabilize the
equilibrium, and the convection starts at larger values
of the Rayleigh number. Moreover, due to the specific

2600

2400

2200

2000

Bm

0 0.5 1.0
1/ω

Fig. 2. The critical electric Rayleigh number Bm versus
inverse frequency 1/ω for Ra = 0, η1 = 1 and η2 = 1. The
dot-and-dash curve represents the stability boundary for
subharmonic perturbations, the solid curve represents the
stability boundary for synchronous perturbations, and the
dashed curve is the same as in Fig. 1.
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electroconductive mechanism of instability, the electric
field gives rise to an oscillatory instability [5]. The
modulation of the field changes the stability map. The
critical electric Rayleigh number B versus Ra is shown
in Fig. 3 for several values of frequency: ω = 10, 2,
1.15, and ω  0 in the case of η1 = 1 and η2 = 1. The
domain of stability lies between the curves and the
coordinate axes. For the thermogravitational mode,
critical perturbations are synchronous with the modula-
tion of the temperature gradient. A decrease in the fre-
quency of the external field results in a monotonic
decrease in the boundary of the gravitational mode. The
threshold of the electroconductive mode varies non-
monotonically as frequency decreases. Quasiperiodic
perturbations remain critical for sufficiently large mod-
ulation frequencies (ω = 10).

At a frequency close to the doubled fundamental
frequency of the oscillatory system, ω = 2 ≈ 2ω0, a
competition between two types of oscillations at the
stability boundary leads to a break on the stability
boundary. The point of break corresponds to a change
in the character of neutral oscillations. When 0 < Ra <
80, the fluid responds to the variation in the temperature
gradient with synchronous oscillations, whereas, when
Ra > 80, it responds with subharmonic oscillations. At
a frequency of ω = 1.15, the stability boundary has
points of break that correspond to the transitions
between various types of perturbations, which differ
both in the spatial period and in the time behavior. At a
frequency of ω = 1.15, the parametric effect reduces the
stability threshold by a factor of almost two when Ra ~
150. The boundary ω  0 is calculated in the low-fre-
quency limit.

2500

2000

1500

1000

500

0 100 200 300 400 500
Ra

B

10

2

1.15

10; 2

ω → 0

Fig. 3. Stability maps on the plane (Ra, B) in a modulated
field for various frequencies of external action: ω = 10 (the
stability boundary for the thermogravitational mode is
marked by crosses), ω = 2, ω = 1.15, and ω  0. The dot-
and-dash, dashed, and solid curves are the same as in Fig. 2.
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Fig. 4. Neutral curves of electrothermal convective instability B(k); η1 = 1, η2 = 1, ω = 1.15. (a) Subcritical heating, Ra = 85, and
(b) supercritical heating, Ra = 200. The dot-and-dash, dashed, and solid curves are the same as in Fig. 2.
Figure 4a and 4b present the neutral curves B(k) for
a frequency of ω = 1.15 for two values of the Rayleigh
number. The boundary of instability consists of several
parts that correspond to different types of neutral per-
turbations. A synchronous response is observed in
domains +1; a subharmonic one, in domains –1; and a
quasiperiodic response, in domain C. Under subcritical
heating, Ra = 85 < Ram0 (Fig. 4a), the instability bound-
ary consists of two parts. The first part is a neutral curve
for subharmonic perturbations; the minimum of this
curve determines the critical Rayleigh number. The
second part of the neutral curve is generally quasiperi-
odic. However, a domain of synchronous perturbations
appears near k = 2.52 as a result of bifurcation. Under
supercritical heating, Ra = 200 > Ram0 = 106.7, the
topology of the neutral curves is changed (Fig. 4b).
Now, B(k) becomes a multivalued function and has a
minimum and a maximum. The domain of synchronous
perturbations moves down and expands. A new domain
of synchronous perturbations that are associated with
the thermogravitational mode appears near the
abscissa.

6. CONCLUSION

The problem of electroconvective instability of a
poorly conducting fluid in a constant electric field of a
parallel-plate horizontal capacitor is considered within
the framework of electrohydrodynamic equations
under nonstationary heating of the fluid. It is assumed
that the conductivity of the fluid depends linearly on
temperature, while the physical properties of the fluid
and electrodes are such that one can neglect the injec-
tion of charge and the nonhomogeneity of the polariza-
tion of the fluid. The boundaries of the instability
domains are determined. For the weightlessness case,
the amplitude of the critical modulation is obtained as a
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
function of frequency. In the presence of gravity, there
is an interaction between the thermogravitational and
electroconductive mechanisms of instability. The anal-
ysis is carried out for a Prandtl number of P = 100. For
greater Prandtl numbers, which are characteristic of
insulating oils, the fundamental frequency ω0 in the
unmodulated case decreases; however, the main fea-
tures of the parametric excitation of electroconductive
instability are preserved: (1) there is a competition
between subharmonic, synchronous, and quasiperiodic
perturbations, and (2) the first domain of the subhar-
monic response corresponds to a frequency of ω ≈ 2ω0,
while the first domain of the synchronous response cor-
responds to a frequency of ω ≈ ω0.
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Abstract—The structure and phase transitions of C60 crystals doped with lithium by injecting metal ions from
the superionic crystal–C60 single crystal heterojunction under electrodiffusion conditions are reported. The
sample experienced irreversible transitions resulting in the virtually complete disappearance of EPR signals and
MW conduction in the temperature range 320–370 K. In this temperature interval, a new C60 phase was formed;
the phase contained polymeric chains of C60 molecules along the crystallographic c axis and lithium clusters.
The structure of this phase was determined. Annealing at 620 K restored the EPR signal and, according to the
X-ray data, the initial cubic structure of pure C60. The X-ray pattern, however, contained additional diffraction
peaks, which was evidence of the presence of one more phase with a structure yet unknown. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Much attention has been given to studying the phys-
ical properties of fullerene intercalates containing
alkali metals (fullerides), first and foremost, because
some of them exhibit superconducting properties.
Under normal conditions, the initial fullerene C60 phase
has a face-centered cubic structure with an a = 14.16 Å
lattice parameter. Because of the presence of octahedral
voids, which form three-dimensional networks of chan-
nels extended along [111] crystallographic axes, a large
number of elements can be intercalated into the struc-
ture of the initial C60 crystal. Fullerene C60 molecules
can be added to atoms at their vinyl double bonds and
can form polymeric chains under the action of radiation
and pressure. Compounds of the general formula AxC60,
where A = K, Rb, and Cs, have been studied in much
detail [1]. The conduction properties of these com-
pounds change depending on x. For instance, A3C60
intercalates possess metallic conduction and experi-
ence a transition to the superconducting state as tem-
perature lowers [2, 3]. Compounds with x = 4, however,
are dielectric materials [4]. It is also well known that,
below 400 K, AC60 intercalates polymerize to produce
an orthorhombic structure [5–7] in which C60 mole-
cules form parallel charged chains.

Lithium fullerides have been studied less thor-
oughly. The special features of liquid- and solid-state
lithium intercalation are considered in [8]. The results
of studying the physicochemical properties of lithium
fullerides obtained by the liquid-phase technique are
described in [9]. LixC60 with 0 < x < 12 formed intersti-
1063-7761/01/9306- $21.00 © 21239
tial solid solutions. A further increase in the concentra-
tion of lithium caused the formation of lithium clusters;
C60 molecules formed polymeric chains in these sam-
ples. An X-ray study of freshly prepared samples
showed them to have a monoclinic structure. However
samples stored for some time were orthorhombic and
had lattice parameters a = 9.11 Å, b = 9.87 Å, and c =
14.76 Å.

Clearly, understanding processes that occur in AxC60
systems requires studying the behavior of C60 single
crystals at low degrees of doping them with alkali met-
als. Such samples are very difficult to obtain by usual
diffusion techniques because of their decomposition
into stable phases with integral x values. The corre-
sponding systems still remain virtually unstudied
because of the complexity of preparing them.

In [10], we developed and suggested a new
approach to controlled doping of C60 single crystals
with metal ions through injecting the ions from the
superionic crystal–C60 single crystal heterojunction by
electrodiffusion and studied the electronic properties of
the LixC60 single crystals prepared in this way. We
showed that the properties of the samples did not
change in time below 250 K, whereas the EPR and IR
reflectance spectra changed substantially as time
passed at T > 280 K; in particular, the EPR and MW
conduction signals virtually disappeared. At room tem-
perature, the properties of LixC60 crystals irreversibly
changed.

The purpose of this work was to determine the struc-
ture of C60 crystals doped with lithium and study the
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of heat capacity for (a) weakly doped (x ! 1) and (b) strongly doped (x ≥ 1) LixC60 samples
recorded during the first (curves 1) and second (curves 2) heatings.
phase transitions that occurred in the LixC60 system by
X-ray diffraction and calorimetrically.

2. EXPERIMENTAL

Fullerene C60 single crystals were grown at the Insti-
tute of Solid-State Physics, Russian Academy of Sci-
ences, by physical vapor transport (sublimation) under
controlled temperature gradient conditions in an evacu-
ated ampule at temperatures of 870 to 910 K. The initial
C60 sample was purified by chromatography. Traces of
the solvent were removed by repeatedly resubliming
the compound in a vacuum. The final product was no
less than 99.98% pure. Measurements were per-
formed using single crystals in the form of thin
plane-parallel plates with natural faceting. Faceting
planes corresponded to (111)-type planes. The plates
were 0.7–2 mm thick; the other two dimensions were
usually 2–4 mm.

Lithium ions were injected as follows. Electrodes
were mechanically clamped to opposite plane-parallel
(111) C60 single crystal faces. The cathode was a graph-
ite electrode. Used as the anode were two-layer
Li0.2WO3 | Li7SiPO8 electrodes that had a high ionic
(lithium cations) conduction and blocked the electronic
current component. As mentioned above, the use of
cells of the type

(+)|Li0.2WO3|Li7SiPO8|C60 crystal|Graphite|(–)

allowed us to inject lithium cations into C60 single crys-
tals and perform controlled doping of the samples. The
cell for doping was mounted in a vacuum thermostat.
The majority of experiments were performed at cell
voltages of 10–200 V and temperatures of 400–520 K.
Characteristic current flowing through the cell was of
the order of 2–20 µA. The duration of experiments var-
ied from 1 to 100 h. After electrodiffusion, the samples
were rapidly transferred to a quartz ampule and stored
at a liquid nitrogen temperature up to the time of mea-
surements. Calorimetric studies were performed on a
DSC-7 (Perkin Elmer) microcalorimeter in the temper-
JOURNAL OF EXPERIMENTAL 
ature range 77–500 K at a 20 K/min heating rate.
Freshly prepared samples were studied on an ENRAF
NONIUS CAD-4 diffractometer. After storage at room
temperature, the samples were ground into powder. The
X-ray diffraction data were obtained on a SIEMENS
D500 diffractometer. The structure of the samples was
determined from their X-ray powder patterns by the
Rietveld method using the RIETAN-98 program [11].

3. RESULTS AND DISCUSSION

As mentioned above, holding LixC60 at room tem-
perature caused radical changes in the IR reflectance
spectra of the samples and drastically decreased their
EPR signal and MW conduction. In [10], this phenom-
enon was explained by the formation of new phases or
compounds in LixC60 doped samples. To verify this
assumption and elucidate the nature of the phase transi-
tions, we performed a calorimetric study of C60 single
crystals doped with lithium.

Studies of weakly doped LixC60 samples (x ! 1)
showed that the temperature dependence of Cp recorded
when the sample was heated for the first time contained
heat release peaks at 220–250 and 320–370 K (Fig. 1a,
curve 1). Repeat (curve 2) and subsequent heatings
gave a single peak at 220–250 K. This was evidence
that irreversible changes occurred in the sample at 320–
370 K. Heat release at 220–250 K corresponded to the
well-known orientation phase transition in pure C60.
The presence of the corresponding peak was evidence
that some part of the sample remained in the initial state
after doping. Virtually no such peak was observed in
the temperature dependences of Cp recorded for heavily
doped LixC60 samples (Fig. 1b). This led us to suggest
that the formation of new phases occurred in the major
fraction of the sample. Calculations of the heat released
during heating the sample for the first time (curve 1)
gave ∆Q = 15.1 kJ/mol, or 0.16 eV per molecule. Irre-
versible transitions, however, only occurred in some
part of the sample, and the calculated heat effect value
(0.16 eV per molecule) was obviously underestimated.
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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The experimental ∆Q > 0.16 eV value per molecule was
evidence that a new phase or compound was formed in
doped LixC60 samples at 320–370 K. We deemed it
interesting to determine the crystal structure of this
phase.

A preliminary analysis of the diffraction data
showed that the phase formed at 320–370 K (for conve-
nience, this phase will be called phase II) was orthor-
hombic and had the parameters

The crystallographic axes of this orthorhombic cell (a,
b, c) were related to the crystallographic axes of the

cubic cell of pure C60 as a ≈ aC, b ≈ aC/ , and c ≈
aC/ , where aC is the period of the undoped phase
with distortions (1.04, 0.98, 0.91). Systematic reflec-
tion extinctions could be described by two space
groups, Immm and Pnnm. The low (virtually, at the
background level) intensity of the reflections permitted
for Pnnm and forbidden for Immm prevented us from
unambiguously determining the space group. We
selected the Pnnm group because the C60 molecule
could only then assume various orientations, whereas,
if the space group were Immm, its orientation would be
fixed. Note that the obtained orthorhombic cell param-
eters coincided with those reported in [9]. Note also
that our data coincided with the results reported in [12],
where the structure of the high-pressure phase of pure
C60 was studied. The characteristic c parameter value
was evidence that polymeric chains of C60 molecules
might be formed in the c direction [12–14].

The initial model for analyzing the structure of
phase II was based on the parameters reported in [12].
The positions of carbon atoms were somewhat changed
to place them on an ideal spherical surface. The Biso iso-
tropic temperature factors were set equal to 1.0 for all
carbon atoms. The parameters to be refined were the
lattice constants, the background, and the diffraction
line profiles. This gave the following results:

At this stage of analyzing the structure of phase II,
an important problem was to determine the orientation
of C60 molecules in the orthorhombic lattice. As C60
molecules formed chains in the c direction, the orienta-
tion of a molecule could be varied by rotating it as a
whole about axis c through some angle. We refined the
structure in calculations for a discrete set of C60 rotation
angles in the angle range 0 ≤ α ≤ 180°; the angle step
size was 5°. The initial orientation (α = 0) corresponded
to the arrangement of polymeric bonds in a plane paral-
lel to ab. The dependence of χ2 on α is shown in Fig. 2.
According to this figure, there was a global minimum in
the α range 20°–30°. This minimum corresponded to
the most probable orientation of C60 molecules.

a 14.74 Å, b 9.84 Å, c 9.09 Å.= = =

2

2

Rwp 3.67%, RB 1.36%,= =

χ2 Rwp/RE( )2 7.3.= =
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Another criterion for analyzing the orientation of
C60 molecules was the results reported in [15], where
the molecular form factor of C60 was studied. It was, in
particular, shown that diffraction lines with a large scat-
tering vector (SD > 2, where S is the scattering vector
and D is the diameter of the molecule) were most sen-
sitive to fullerene molecule orientations. For this rea-
son, checking refinement at large diffraction angles
could also be used to determine the most probable ori-
entation of C60 molecules.

In the further analysis, we used the α = 30° orienta-
tion. The Biso isotropic temperature factors (equal for all
carbon atoms) and the atomic positions were refined.
The x and y coordinates were fully determined by the
rotation angle of C60 molecules about the c axis, and
therefore only the z coordinates were varied. The final
diffraction picture is shown in Fig. 3. The final refined
parameters and the coordinates of atoms are listed in
Tables 1 and 2, respectively. The mean lengths of C–C
single and C=C double bonds were found to be 1.431
and 1.392 Å, respectively. The shortest intermolecular
distances were 9.09 Å along the [001] direction, 9.84 Å
along [010], and 9.96 Å along [111]. The value of 9.09 Å
for two neighboring C60 molecules (the [001] direction)
shows that molecules are linked by polymeric bonds in
this direction. The volume per molecule obtained in this

6

0 40°

χ2

α80° 120° 160°

7

8

9

10

Table 1.  Lattice parameters and final refinement parameters
(space group Pnnm)

a, Å 14.745(2) Rwp, % 2.47

b, Å 9.843(2) RB, % 0.79

c, Å 9.092(1) RE, % 1.36

V, Å3 1319.5(4) χ2 3.30

Fig. 2. Dependence of the χ2 parameter on the angle of rota-
tion of C60 molecules about the c axis.
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1242 DILANYAN et al.
work is compared with the corresponding characteris-
tics of the initial cubic crystal and the high-pressure
phase in Table 3. The volume of the unit cell decreases,
and this decrease is comparable with a similar effect
reported for the high-pressure phase (see [12]).

The results of our calorimetric and X-ray studies
correlate well with the earlier data on the evolution of

Table 2.  Structural parameters of the orthorhombic phase

Atom g x y z Biso

C1 1.0 0.2276 –0.1153 0.0 2.42(5)
C2 1.0 0.1178 0.3056 0.085(1) 2.42(5)
C3 1.0 0.0408 –0.0353 0.409(1) 2.42(5)
C4 1.0 0.2234 0.1103 0.078(1) 2.42(5)
C5 1.0 0.1208 0.1664 0.288(1) 2.42(5)
C6 1.0 0.1765 –0.6782 0.254(1) 2.42(5)
C7 1.0 0.2260 –0.0293 0.132(1) 2.42(5)
C8 1.0 0.1713 0.2073 0.157(1) 2.42(5)
C9 1.0 0.1228 0.0307 0.329(1) 2.42(5)
C10 1.0 –0.1805 0.2376 0.0 2.42(5)
C11 1.0 –0.0479 0.3449 0.081(1) 2.42(5)
C12 1.0 0.0358 0.2399 0.283(1) 2.42(5)
C13 1.0 –0.1275 0.1950 0.265(1) 2.42(5)
C14 1.0 –0.1299 0.2785 0.133(1) 2.42(5)
C15 1.0 0.0342 0.3258 0.164(1) 2.42(5)
C16 1.0 –0.0436 0.1746 0.336(1) 2.42(5)

Table 3.  Volume per C60 molecule

Symmetry Pnnm Pnnm Pm3m

V0, Å3 659.7 663.6* 711.6**

* High-pressure orthorhombic polymeric phase [12].
** Initial C60 cubic phase, a = 14.17 Å.
JOURNAL OF EXPERIMENTAL 
the EPR spectra of C60 doped with lithium [10]. It was
found [10] that, unlike the initial samples, which had
empty EPR spectra, C60 crystals doped with lithium
gave an intense EPR signal comprising several lines
with g factors close to 2.0. The principal lines always
present in the EPR spectra of doped crystals were
divided into three groups, X1, X2, and X3. Below 250 K,
the intensities of the EPR lines did not change as time
passed. At T > 280 K, the intensities of lines X1 and X2,
however, changed dramatically. This is qualitatively
shown in Fig. 4a, where spectrum 1 was measured
immediately after rapidly (for several minutes) cooling
the sample from 520 K (the sample was saturated with
lithium at 520 K) to room temperature. The spectra 2–4
were measured sequentialy with an interval of several
hours. The sample always occurred at room tempera-
ture. The evolution of the EPR spectra was explained on
the assumption of the occurrence of two simultaneous
independent processes:

(1) a decrease in the concentration of X1 centers (a
broad EPR line) caused by their transformation into X2
(a narrow EPR line);

(2) a decrease in the concentration of X2 centers
because of their transformation into EPR-inactive com-
plexes.

It can be suggested that centers X1 (a broad EPR
line) correspond to electrons in the conduction band of
a weakly doped region in LixC60 with x ! 1, whereas
centers X2 correspond to electrons on C60 molecules in
the newly formed phase. Process (1) of transforming
centers X1 into X2 is then likely to correspond to the for-
mation of the new phase at 220–250 K. Process (2)
leading to the disappearance of the X2 EPR signal is, we
believe, more complex. This process is likely to be
related to the formation of the new phase and to corre-
spond to the heat release peak of the heat capacity curve
at 320–370 K. This suggestion finds support in the
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observation that the EPR signal of LixC60 samples dis-
appears after heat release is completed.

To summarize, we found that a polymeric orthor-
hombic structure is formed in the temperature range
320–370 K. Polymeric chains oriented in the [0, 0, z]
and [1/2, 1/2, z] directions are rotated through α ≈ 30°
counterclockwise and clockwise, respectively. The
question arises whether or not lithium is present in this
structure. Clearly, the contribution of lithium to the
intensity of diffraction lines is insignificant (small scat-
tering cross section). For this reason, we did not take
lithium into account in structure refinement. A small
amount of lithium can be present in the structure, for
instance, in tetrahedral voids. The possibilities of such
a position order were considered in [6]. In addition,
lithium can be concentrated in regions of C60 polymer
chain beaks and can close chain termini. We, however,
believe that the most probable process in the specified
temperature range is the formation of an orthorhombic
polymeric C60 phase and lithium clusters (this also fol-
lows from the IR data reported in [9]). Such a sugges-
tion explains a strong decrease in the intensity of the
EPR signal.

Studies of polymerized phases of C60 crystals
formed in polymerization under high pressure showed
that polymeric phases were unstable at high tempera-
tures and their high-temperature annealing (620 K)
restored the initial monomeric C60 crystal phases. To
answer the question whether or not the polymeric ful-
leride phase described above was stable at T = 520–620 K,
we studied the influence of high-temperature annealing
on the properties of single crystals doped with lithium.

First note that annealing at 620 K restored the EPR
signal. By way of example, Fig. 4b contains the EPR
spectra of a LixC60 sample after prolonged storage at
room temperature (curve 1) and of the same sample
after annealing at 620°C for one hour. Clearly, anneal-
ing at T = 620 K restored the X1 and X2 EPR lines; the
appearance of these lines was evidence of polymeric
chain rupture in the orthorhombic structure of phase II.
However, note that the sample formed in annealing dif-
fered from freshly doped LixC60 samples: the concen-
trations of its EPR-active X1 and X2 centers changed
insignificantly as time passed.

According to the X-ray data, annealing at 620 K
restores the initial cubic structure with the a =
14.177(2) Å lattice parameter. The presence of addi-
tional peaks in the diffraction pattern is, however, evi-
dence of the formation of one more phase, whose struc-
ture is yet unknown. The positions of its diffraction
lines cannot be described using the parameters of the
orthorhombic lattice specified above (otherwise, the
presence of this phase might be explained by annealing
duration being insufficient for complete transition of
the polymeric orthorhombic phase into the cubic struc-
ture). It can be suggested that one more phase transition
occurs during heating (phase II') with the formation of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
a new structure and that traces of this phase are
observed in the diffraction pattern. It can also be sug-
gested that polymeric chain rupture that occurs during
annealing yields not only isolated C60 molecules but
also C60–C60 dimers (the II–II' transition). In addition,
lithium clusters can also participate in reactions with
C60 molecules or C60–C60 dimers at the temperature of
annealing. It follows that high-temperature annealing
results in the formation of LixC60 phases and restores
the initial cubic C60 phase. However, these are but sug-
gestions, and elucidating the nature of the unknown
phase requires more thorough experiments in situ.

In conclusion, several points should be mentioned
concerning the low-temperature phase (phase I). The
Laue pattern and the rotating-crystal X-ray photograph
of a C60 single crystal doped with lithium are shown in
Figs. 5a and 5b, respectively; the measurements were
taken at T = 170 K. The splitting of some cubic cell
reflections, for instance, of the (220)C, (311)C, and
(422)C reflections, is evidence that the introduction of
lithium causes a decrease in symmetry. Several unsplit
reflections were assigned to the cubic system with an
a = 14.11 Å parameter. The presence of cubic phase
peaks lends support to the data given above according
to which lithiun intercalation only occurs in some part
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Fig. 4. Transformation of the EPR spectra of (a) C60 crystal
doped with lithium by electrodiffusion and (b) LixC60 sam-
ple annealed at T = 620 K.
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(b)(a)

Fig. 5. (a) Laue pattern and (b) rotating-crystal X-ray photograph of a C60 single crystal doped with lithium by electrodiffusion
(T = 170 K, MoKα radiation).
of a sample. One of the problems that complicate the
determination of the structure of phase I is that of the
actual number of phases or structural states in this tem-
perature interval. The point is that several phase transi-
tions can occur during cooling samples from the tem-
perature of their synthesis; one of these transitions
occurs at 320–370 K. Currently, no information about
the behavior of the polymeric orthorhombic phase
described above at low temperatures is available. It can
be suggested that a very complex state including sev-
eral phases arises at T < 250 K. We believe that rapidly
cooling samples from synthesis temperatures to T < 250 K
would allow this problem to be solved.

4. CONCLUSIONS

To summarize, we
(1) studied the structure and phase transitions of C60

crystals doped with lithium by electrodiffusion;
(2) found that irreversible transformations occurred

in the samples at 320–370 K;
(3) found that these transformations only occurred

in some part of each sample and the size of this part
depended on the degree of doping;

(4) determined the structure of the new phase
(orthorhombic; space group Pnnm; lattice parameters
a  = 14.745 Å, b = 9.843 Å, and c = 9.092 Å; C60 mol-
ecules form polymeric chains along the crystallo-
graphic c axis);

(5) found that annealing at 620 K restored the EPR
signal.
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Abstract—Phase transitions in cerium have been studied by the electrical resistance method in the 15-GPa
pressure range at high temperatures. At pressures above 10 GPa, cerium represents a mixture of stable and meta-
stable phases, the composition of this mixture being dependent on the trajectory in the P–T plane that leads to
a given point. Transformations in both stable and metastable components of the mixture proceeding rather inde-
pendently display a complicated picture of phase transitions. It was assumed that only the α (fcc) and α' (α-U)
phases are stable at pressures above the well-known γ–α transition, the other phases being metastable. The pro-
posed bow-shaped equilibrium phase diagram includes an extremely wide hysteresis region, where stable and
metastable phases can coexist. The fcc α phase alone survives upon heating above 500°C at 15 GPa. © 2001
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

For a long time, cerium (Ce) has been a very attrac-
tive object for investigations in the field of high pres-
sure physics. In addition to the well-known, carefully
studied isostructural γ–α transition, Ce exhibits numer-
ous low-symmetry structures within a 12-GPa pressure
interval [1, 2]. In addition, the bowlike shape of transi-
tion lines on the phase diagram discovered many years
ago [3] and then verified [2] still looks very unusual.
One should also mention a long discussion regarding
the structures proposed for the so-called “underbow”
phases. This question was studied only recently [4, 5].
In addition, all the low-symmetry structures, including
the tetragonal (bct) one, are distortions of the fcc struc-
ture and are very close in energy to each other [6],
which may result in a confused picture of phase transi-
tions at pressures above 10 GPa. Thus, despite the
availability of modern powerful X-ray methods, the
phase diagram of Ce at pressures above 12–14 GPa at
room temperature and 9–10 GPa at elevated tempera-
ture still remained unknown.

At the beginning of our work, we only planned to
verify the phase diagram reported in [3] and investigate
the phase boundary between the α (fcc) and ε (bct)
phases above the hypothetical triple point in the region
of 8.5 GPa, but the results were really surprising. While
our results below 8–9 GPa were in good agreement
with the previously published data [2, 3], they was not
so above 9 GPa. Probably, this was a result of limited
experimental facilities employed in [1–3]. In any case,
the transition between the α (fcc) and ε (bct) phases has
not been studied at all. Some speculations about the
corresponding line position in [2] were based on the
analysis of the c/a ratio for the tetragonal phase; how-
ever, no experimental evidence for this transition was
presented. Unless data on the α–ε transition are avail-
1063-7761/01/9306- $21.00 © 1245
able, there is no ground to discuss the ε phase stability.
We studied this transition and came to a conclusion that
the ε phase is metastable just like the α'' phase. The ε
phase disappears upon heating above 500°C at pres-
sures above 12 GPa, converting into the α phase.

2. EXPERIMENTAL

The experiments under high pressure in the 15-GPa
range were performed in a specially designed apparatus
with a total high-pressure zone volume of 0.3 cm3. The
other experiments were carried out using the toroidal
devices [7] with a central recess of 15 and 25 mm in
diameter. The larger apparatus was used for experi-
ments in the 10-GPa range under hydrostatic or close to
hydrostatic conditions with precise pressure control. A
detailed description of the toroidal high pressure appa-
ratus, the design of a hydrostatic liquid-filled ampule,
and the experimental methods were presented in [8].
The only difference was in the pressure-transmitting
media used. Traditionally utilized petroleum ether
decomposes at high temperatures releasing hydrogen.
This medium can be used at temperatures up to 600°C
but only if the heating continues for several minutes and
the sample is not sensitive to hydrogen. Our experi-
ments involved long heating times during the pressure
cycles carried out at high temperatures. It was found
that even at 400°C and 3–8 GPa the samples absorbed
a large amount of hydrogen. As a result, the P–T param-
eters of the transitions were strongly changed, and even
some new transitions appeared. In the course of exper-
iments, it was established that polysiloxane (PES5) is
the most suitable liquid for our purposes. This medium
can serve up to 500°C without any chemical interac-
tions with Ce. Moreover, polysiloxane prevents the oxi-
2001 MAIK “Nauka/Interperiodica”
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dation of Ce during storage, mechanical treatment, prepa-
ration of the sample assembly, and even during the spot
welding of contacts. Thus, the ampules with two isolated
compartments filled with different liquids were used. Pol-
ysiloxane was used for the “hot” compartment, and a 4 : 1
methanol–ethanol mixture, for the “cold” one. The accu-
racy of pressure determination was better than 0.05 GPa.

The experiments at higher pressures were carried
out using two devices with the central recess 15 mm in
diameter. One of these was the classical device [8] tol-
erating a 12-GPa limiting pressure and usually
employed up to 10 GPa. The other device was specially
designed for this work by the authors. The point is that
the 12-GPa pressure range was insufficient for refining
the confused picture of phase transitions in Ce. The new
device reproducibly operates with a pressure–load char-
acteristic being linear up to 15 GPa. The details will be
published later. Both devices were calibrated against
the well-known transitions in Bi, Sn, Ba, Pb, and ZnS.
In addition, the calibration was checked against the
α−α '' transition in Ce [9] in each experiment. The esti-
mated accuracy of pressure determination in this pres-
sure was about 0.2–0.3 GPa. This value depends mainly
on the pressure variations caused by heating. In order to
avoid errors associated with possible chemical reac-
tions, MgO, pyrophyllite, and Teflon were used as pres-
sure media. The temperature was measured using a
chromel–alumel thermocouple calibrated at zero pres-
sure without any corrections for the pressure effect on
the thermal emf. A Ce ingot with a 99.99% purity
refined through the zone melting was placed at our dis-
posal by Prof. I.A. Smirnov (Ioffe Physicotechnical
Institute, St. Petersburg). The samples were cut from
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Fig. 1. The scheme of phase transitions in Ce. Black and
open small squares asterisks, and lines without symbols
correspond to the transitions under hydrostatic conditions;
other denote quasi-hydrostatic experiments, arrows show
the path in the P–T plane.
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the ingot and polished under droplets of polysiloxane in
order to obtain a rectangular shape and remove the
oxide traces. The typical size of the samples was 2 × 0.8 ×
0.5 mm3. The electrical contacts were made from Ni or
alumel wires 0.05 and 0.2 mm in diameter. The wires
were spot-welded to the sample for hydrostatic experi-
ments or simply pressed to it in the case of quasi-hydro-
statics. The electrical resistance was measured by the four-
point-probe ac technique using a lock-in amplifier. During
the experiments, the resistance was measured as a function
of continuously varying parameters (dT/dt = 0.25 K/s,
dP/dt = 0.03–0.1 GPa/min).

3. RESULTS AND DISCUSSION

More than 20 experiments with multiple pressure
and temperature cycles were carried out in the course of
this study. The results are presented in Fig. 1. The iden-
tification of phases and establishment of the correspon-
dence between resistance anomalies and transitions of
particular phases were carried out as follows:

(1) Below 9 GPa, the phase diagram has been well stud-
ied by X-ray diffraction [2, 4, 5], and we simply use this
information for establishing the correspondence between
resistance anomalies and particular phase transitions.

(2) Above 9 GPa, the situation is more complicated. It
is known that the ε (bct) phase appears at room tempera-
ture and a pressure of about 12 GPa [1]. The ε–α transition
was identified by the sign of the resistance anomalies,
which is opposite to that of the α'–α transition. This will
be discussed in detail below.

(3) Different transitions have different kinetics, and
this fact also was used for the identification of phases.

Below 9 GPa, our results concerning the α–α' tran-
sition are in good agreement with the results obtained
in [3]. At room temperature and on heating up to 200°C,
the α phase transforms into the α'' phase [9, 4, 5]. The
latter phase seems to be metastable and appears due to
kinetics reasons. This conclusion is based on the fol-
lowing facts: (i) the α'' phase irreversibly transforms
into α' upon heating, and (ii) the α–α'' transition exhib-
its a martensitic character and takes place in the hyster-
esis region of the α–α' transition. From the experimen-
tal standpoint, the term “martensitic” means that this tran-
sition is temperature-independent and time-independent,
i.e., the sample resistance r in the transition region does
not vary with time. The shape of the r(P) dependences and
the transition hysteresis are the same in the entire temper-
ature range where the martensitic transition takes place.
Thus, the phase diagram of Ce in this pressure range is
well established, and our results are in good agreement
with the previously published data [2–5]. However, it is
not the case in the region above 9 GPa.

It is well known that cerium transforms into the ε
(bct) phase above 12 GPa [1]. Let as consider this
P−T field more carefully. In order to obtain an under-
standable picture of phase transitions in this P–T
region, a number of sophisticated experiments have
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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been performed. A fragment of the scheme of these
phase transitions is shown in Fig. 2. In the small P–T
region, we have two lines of the ε–α' transitions (direct
and reverse), the line of the direct α''–ε transition, and
the line of the reverse α–α' one. This means that the
sample resistance displays anomalies corresponding to
each transition, with the anomaly amplitudes depend-
ing on the previous paths of the sample on the P–T
plane in the course of experiment. The only way to
understand the intricate picture of phase transitions in
Ce above 9 GPa is to assume that Ce is a multiphase
object in this pressure range. The phase transitions in
each component of the mixture proceed to some extent
independently in the sense that the resistance anomalies
are observed on each line. The anomaly amplitudes
behave in the following way: when one is large the
other is small and vice versa.
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Fig. 2. A fragment of Fig. 1 demonstrating the complicated
bundle of transition lines in the regime of phase mixture.
One squares and triangles refer to the α–α' transition under
hydrostatic and quasihydrostatic conditions.
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The examples of transitions between “pure” phases
are shown in Fig. 3, where part (a) corresponds to the
above discussed α–α ' transition below 9 GPa, and
part (b) illustrates transitions to the ε (bct) phase. Start-
ing from the α'' phase, the first temperature run shows
the α''–ε transition proceeding through the nucleation
and growth mechanism. The sample resistance in this
transition region is time-dependent, the r(T) curve
shape depending on the temperature growth rate. How-
ever, the reverse transition leads to the α' phase, which
was proved in a separate experiment. When releasing
the pressure at room temperature, the transitions from
the α' and α'' phases to the α phase take place at differ-
ent pressures, roughly at 3 and 5 GPa, respectively. In
our case, only the α'–α transition in the region of 3 GPa
was observed. The mechanism of the α'–ε transition
differs from that of the α''–ε transition. The resistance
in the α'–ε transition region is time-independent.
Therefore, the system exhibits one more martensitic
transition.

The transitions between “pure” phases in Ce take
place only under certain special conditions. The pres-
sure must not exceed 9 GPa for the α–α' transition, and
the temperature must be lower than 300°C at a pressure
higher than 10.5 GPa for the α'–ε transition. Some
examples of such transitions in a mixture of Ce phases
are presented in Fig. 4. At pressures exceeding 8.5 GPa,
the hysteresis of the α–α' transition starts to increase.
Then, additional resistance anomalies appear, and the
higher the pressure, the larger the amount of the ε phase
involved in the phase transitions.

An example of the “relatively pure” ε–α transition is
shown in Fig. 5. During this transition, the resistance
grows in contrast to the α'–α case, providing the oppor-
tunity to separate these transitions. The temperature
cycling before and after the transition showed different
r(T) behavior for the ε and α phases. As the temperature
decreased, the reverse ε–α' and α–α' transitions took
place. One more example illustrating transitions in the
regime of phase mixture is shown in Fig. 6. In this
experiment, the sample was pressurized to 15 GPa at
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Fig. 3. The examples of “pure” transitions: (a) transitions α''–α and α–α' below 8.5 GPa (the curves for 7.4 and 8.1 GPa are shifted
downward); (b) the transition to a tetragonal phase under some special conditions discussed in the text.
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room temperature, then heated to 200°C for removing
traces of the α'' phase, and then the first temperature run
was made. As can be seen, the α'–α and ε–α transitions
are well separated. The resistance anomaly amplitudes
are nearly equal, showing a large admixture of the α'
phase in P–T region well above that of the martensitic
α'–ε transition. The subsequent heating cycle displays
the absence of transitions. The α phase is retained even
at room temperature and transforms into the α' phase
only when the pressure decreases to 11.7 GPa.

Summarizing, one should say that such a sophisti-
cated scheme of phase transition with a very wide hys-
teresis region is a consequence of the fact that the ener-
gies of all structures under consideration are very close
to each other [6]. Of course, our work leaves a lot of
questions unsolved. Some of these are related to stabil-
ity of the ε (bct) phase and the lines of the α'–ε and ε−α'
transitions. The resistance anomalies corresponding to
these transitions become weaker and weaker at lower-
ing pressure and then disappear at all. Is this an indica-
tion of the ε phase metastability? Is it possible to bypass
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Fig. 4. The typical case of transitions in the mixture of
phases (only the mathematical treatment is capable of shed-
ding some light upon this confused picture). The top part
shows the plots of resistance versus temperature (the curves
for 9.5, 10.5, and 10.8 GPa are shifted downward); the two
bottom parts show the numerically calculated derivatives
plotted on an arbitrary scale.
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this transition at high temperature, retaining the α'
phase? A large amount of work should be done to clar-
ify the questions. We plan to do this in future.

Let us try to construct the equilibrium phase dia-
gram of Ce on the basis of available data. The α'' and ε
phases seem to be metastable. The α'' phase has already
been discussed. The case of the ε phase is more diffi-
cult. The α'–ε transition is clearly martensitic, and it
seems to disappear somewhere in the region of 10 GPa
and 170°C, but it takes place far below the middle line
between the α'–α and α–α' transitions. In addition,
there is a transition from the ε to α phase but there is no
reverse transition (perhaps, it takes place only below
room temperature?). With lowering pressure and tem-
perature, the α phase transforms directly to the α' phase
bypassing the ε phase, although with an extremely large
field of hysteresis. In our opinion, only the α (fcc) and
α' (α–U) phases are thermodynamically stable in the
P–T region under consideration.

The proposed equilibrium phase diagram of Ce is
presented in Fig. 7. At present, the bow-shaped line on
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the phase diagram is not so surprising as it was two
decades ago [3]. For example, the phase diagram of La
shows the same feature [10]. A rather unusual feature is
a very large hysteresis region at relatively high tempera-
tures. It looks like a “field of equilibrium” (of course, this
is impossible in thermodynamics) where the α, α', and ε
(and α'' at low temperature) phases of Ce can coexist, a rel-
ative composition of the mixture being dependent on the
trajectory in the P–T plane leading to a given state (i.e., on
the method by which this state was obtained).

4. CONCLUSION

The phase transitions in Ce at pressures up to
15 GPa and at temperatures above 500°C have been
studied. The part of the P–T diagram below 9 GPa is in
good agreement with the previously reported data [2–5].
At higher pressures, the ε–α transition has been stud-
ied. The reverse transition was not observed. Once
obtained, the α phase remains stable at room tempera-
ture and transforms into α' only when the pressure
decreases to 11.7 GPa. Thus, the ε phase seems to be
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Fig. 6. The special experiment at pressure up to 15 GPa
showing the presence of different phases far beyond the
transition to the ε (bct) phase (the transitions are well sepa-
rated). Only the α (fcc) phase is retained after heating above
500°C; the other phases are metastable. Arrow 1 indicates
heating in the first cycle; arrows 2 and 3 indicate heating
and cooling in the second cycle. The bottom part shows the
numerical derivatives of resistance.
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metastable. In addition, the extremely large field of hys-
teresis has been detected at pressures above 12 GPa. On
the basis of the experimental data obtained, a new phase
diagram of Ce has been constructed.
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Abstract—The magnetic and magnetoelastic properties of YbPO4 and YbVO4 crystals are investigated exper-
imentally and theoretically; the crystal field parameters are determined, as well as the magnetoelastic coeffi-
cients Bµ and total quadrupole coupling constants Gµ for all symmetry modes. It is found that, for H || [100], γ-
symmetric quadrupole interactions predominate and are responsible for a significant contribution to the third-
order susceptibility, magnetization, magnetostriction, and elastic constant. It is demonstrated that, in the
absence of an external field, these interactions do not lead to quadrupole ordering, because the respective defor-
mation susceptibility χγ is several times less than the critical value of 1/Gγ. The influence of an external mag-
netic field along different symmetry axes on the quadrupole effects and quadrupole interactions in Yb zircons
is investigated. It is demonstrated that, for H || [110], the susceptibility χγ increases with the field, so that in
a fairly strong field in the investigated crystals one can expect a γ-symmetric stimulated phase transition.
© 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rare-earth paramagnets with a tetragonal structure
of RXO4 zircon (X = P, V) are ideal for use in the inves-
tigation of the effects due to crystal field and quadru-
pole interactions and for validation of theoretical mod-
els. Systematic investigations reveal that the behavior
of the entire family of rare-earth zircons is described
within a unified approach using the crystal field param-
eters and the parameters of single-ion and pairwise
interactions, which vary systematically over the series
of rare-earth zircons [1, 2]. At present, it is safe to
assume that the presence or absence of quadrupole
ordering (Jahn–Teller cooperative effect) or, in a more
general case, of observed quadrupole effects for differ-
ent compounds of this family is due to the ratio between
the crystal field, which forms the spectrum and wave
functions of a rare-earth ion, on the one hand, and the
values of quadrupole coupling constants, on the other
hand. It is the splitting in the crystal field that defines
the presence in the spectrum of degenerate or quasi-
degenerate levels with high quadrupole moments,
which are essential for quadrupole ordering. As to the
values of total quadrupole coupling constants Gµ (µ =
α, γ, δ, ε), the main contribution to which for the family
of rare-earth zircons is made by single-ion magne-
toelastic interaction, these values vary systematically
over the series of rare-earth zircons in accordance with
the second-order Stevens parameter αJ [2]. Because the
quadrupole interaction constants Gµ of different sym-

metries vary over the series of rare-earth zircons as ,α J
2
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the strongest quadrupole effects are to be expected for
rare-earth ions with high values of αJ, such as Tb, Tm,
and Dy, for which spontaneous quadrupole ordering is
observed most frequently.

In the case of a Yb ion, the value of the parameter αJ

is also fairly high; therefore, for these compounds one
can expect, if not a phase transition, at least (provided
the necessary conditions in the spectrum of ions in a
crystal field are met) the quadrupole effects observed.
However, no systematic investigation of the magnetic
and magnetoelastic properties of Yb zircons and no reli-
able determination of microscopic interaction constants
on the basis of these properties have been performed up
to now. One can only note the investigation of γ-sym-
metric elastic constants in YbPO4, which reveals a soft-
ening of ∆Cγ(T)/Cγ(300 K) ~20% as the temperature
decreases to 4.2 K [3]. Studies of Raman spectra in
YbPO4 resulted in revealing the temperature-dependent
electron–phonon interaction which was an order of
magnitude higher than that for other rare-earth systems
[4]. The results of investigation of the Mössbauer effect
demonstrate that magnetic ordering occurs in YbPO4
and YbVO4 at temperatures of approximately 0.1 K [5];
the antiferromagnetic state in YbVO4 was investigated
by the NMR method [6].

This paper deals with the experimental and theoret-
ical investigation of the magnetic and magnetoelastic
properties of YbPO4 and YbVO4 zircons in a wide range
of temperatures and magnetic fields for the purpose of
determining the microscopic parameters of interactions
001 MAIK “Nauka/Interperiodica”
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and developing a complete pattern for the entire family
of rare-earth zircons.

2. SAMPLES AND MEASUREMENT PROCEDURE

We measured the magnetization and magnetostric-
tion curves for YbPO4 and YbVO4 crystals along sym-
metric [100], [110], and [001] directions in the temper-
ature range from 1.5 to 300 K and with steady magnetic
fields of up to 140 kOe. Crystals of Yb zircons were
grown by spontaneous crystallization from a solution in
a (PbO–PbF2)-based melt and had average dimensions
of 2 × 2 × 3 mm3. Very informative in the case of inves-
tigation of systems with strong magnetoelastic and qua-
drupole interactions is the nonlinear susceptibility, i.e.,
the term at H3 in the field expansion of the magnetic

moment M = χMH + H3 [7]. In order to determine
the first- and third-order magnetic susceptibility, the

magnetic data were represented in H/M =  + bM2

coordinates as a function of M2. The foregoing correla-
tions in fairly weak fields are linear; in this case, the
value of H/M for M2 = 0 gives the ordinary magnetic sus-

ceptibility , and the slope b of the straight line is

related to the nonlinear susceptibility as  = –b/( )
4
.

The positive value of b for the linearized depen-
dences H/M(M2) corresponds to the negative value of
the coefficient at H3, i.e., to the most commonly
encountered case of a magnetization curve with satura-
tion. The negative value of b is observed less frequently
and corresponds to a magnetization curve with a kink.
The positive nonlinear susceptibility may be due either
to Jahn–Teller correlations or to the effects of level
crossing in strong magnetic fields.

The magnetostriction was measured by miniature
cross-shaped sensors which enabled one to simulta-
neously investigate two deformation components. The
variation of the strain gage resistance ∆R/R during its
deformation was measured by a bridge circuit into
which a second strain gage (glued onto a diamagnetic
analog of the sample being investigated) was connected
to compensate for the variation of the strain gage resis-
tance due to temperature and magnetic field.

In what follows, the following contracted notation is

used for the variation of the length λij = . The
first subscript i corresponds to the measurement direc-
tion of the strain gage, and the second subscript j corre-
sponds to the field direction (i, j = a ≡ [100], a' ≡ [010],

b ≡ [110], b' ≡ , c ≡ [001]). The data were repre-
sented in the form of functions of the square of the field,
and different linear combinations of λij corresponded to
different normal deformation modes εµ. The range of
linearity of the curves εµ(H2) depends both on the tem-
perature and on the normal mode being investigated.

χM
3( )

χM
1–

χM
1–

χM
3( ) χM

1–

λα1α2α3

β1β2β3

110[ ]
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For measuring the fully symmetric α1 and α2 modes,
the strain gage was glued in the (100) plane such that its
directions of strain sensitivity were parallel with the
[001] and [010] axes. When γ- and δ-symmetric ortho-
rhombic modes were investigated, the strain gage was
glued in the (001) plane; in this case, the directions of
strain sensitivity were parallel with the [100] and [010]

or [110] and  axes.

3. THEORETICAL TREATMENT

The complete Hamiltonian for a single 4f ion
includes the crystal field Hamiltonian HCF and the Zee-
man term HZ describing the interaction between the
magnetic moment and external field H, as well as the
quadrupole interaction Hamiltonian HQT:

(1)

One can use the method of equivalent operators and
the molecular field approximation for pairwise quadru-
pole interactions to write these terms in the form (for
more detail, see, for example, [8])

(2)

(3)

(4)

In these expressions,  and  (n = 2, 4, 6; m = 0,
4; m ≤ n) are the crystal field operators and parameters;
αJ, βJ, and γJ are the Stevens parameters; gJ and µB are
the Lande g-factor and Bohr magneton, respectively;
and

are quadrupole moments. The quadrupole interaction
Hamiltonian includes both pairwise quadrupole inter-
action and single-ion magnetoelastic interaction; after
formal transformations, they reduce to the generalized
quadrupole interaction Hamiltonian HQT, in which the
quadrupole coupling constants

include contributions both from single-ion magne-
toelastic interaction Bµ and from pairwise quadrupole

110[ ]
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HCF α J B2
0O2

0= βJ+ B4
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0O6

0 B6
4O6

4+( ),

HZ gJµBH J,⋅–=

HQT Gα O2
0〈 〉 O2

0–= Gγ O2
2〈 〉 O2

2– Gδ Pxy〈 〉 Pxy;–

Pxy
1
2
--- JxJy JyJx+( ).=

On
m Bn

m

On
m〈 〉 i On

m i〈 〉 1
Z
---

Ei

kBT
---------– 

 exp
i

∑=

On
m O2

0= O2
2 Pxy, ,( )

Gµ GME
µ Kµ+ Bµ( )2

C0
µ------------- Kµ µ γ δ,=( )+= =
SICS      Vol. 93      No. 6      2001



1252 KAZEI et al.
interaction Kµ (  is the background elastic constant in
the absence of interactions). In the Hamiltonian HQT,
the terms are omitted which correspond to ε symmetry
and produce no contribution for the magnetic field ori-
entation in the basal plane or along the tetragonal axis.

In the presence of minor external action, analytical
expressions were derived in the perturbation theory
approximation for free energy and for different gener-
alized susceptibilities with the magnetic field orienta-
tion along symmetric directions in crystal [8]. For
example, the third-order magnetic susceptibility, i.e.,
the initial curvature of the magnetization curve,

(5)

depends on four single-ion susceptibilities (n = θ*/C,

C = N /3kB is the Curie constant). The single-ion

susceptibilities χ0 and  describe the slope and cur-
vature of the magnetization curve in the absence of any

interactions. The deformation,  = ∂ /∂εµ, and

quadrupole-field,  = ∂ /∂H2, susceptibilities
characterize the response of the quadrupole moments

 (  =  , , Pxy for µ = α, γ, δ, respec-
tively) to deformation and to the magnetic field and are
responsible for the softening of the respective elastic
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Fig. 1. The temperature dependence of the inverse magnetic
susceptibility of YbPO4 and YbVO4 crystals along the
[100], [110], and [001] axes. The lines indicate the depen-
dences calculated disregarding bilinear interactions for sets
of crystal field parameters M and N (dashed curves in the
inset) from the table.
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constant and for the behavior of magnetostriction in
weak fields,

(6)

. (7)

The anisotropic susceptibilities , χµ, and 
may be calculated given the rare-earth ion eigenfunc-
tions and energy levels, preassigned by the crystal field.
The description of the first-order magnetic susceptibil-
ity along the [001] axis and in the basal plane defines
the bilinear interaction factor θ*. The third-order mag-
netic susceptibility, magnetostriction, and elastic con-
stants produce different combinations of the coeffi-
cients Bµ and Kµ. Different experimental configurations
enable one to separately study the α, γ, and δ modes and
determine the respective coefficients of single-ion and
pairwise interactions. For example, one can use a com-

parison of the calculated curve 1/( )1/2 and the lin-
earized temperature dependence H/ |εµ|1/2 for magneto-

striction to derive the factors Aµ = Bµ/  and Gµ (see
Eq. (7)).

The interaction parameters for all symmetry modes,
determined as a result of magnetic measurements in rel-
atively weak fields, were then used to describe the prop-
erties in strong magnetic fields. The eigenvalues and
eigenfunctions required for the calculation of magneti-
zation and magnetostriction in strong fields were deter-
mined by way of numerical diagonalization of a com-
plete Hamiltonian in which α-, γ-, and δ-symmetric
quadrupole interactions dependent on the electronic
configuration were taken into account in a self-consis-
tent manner. The symmetrized magnetoelastic defor-
mations εµ (µ = α1, α2, γ, δ) are linearly related to the

quadrupole moments ,

(8)

where the factors Aµ were determined during measure-
ments in relatively weak fields.

4. EXPERIMENTAL RESULTS AND DISCUSSION

4.1. First-Order Magnetic Susceptibility 
and Refinement of Crystal Field Parameters

Experimental data on the initial magnetic suscepti-
bility χM(T), which is defined only by the state of rare-
earth ions in the crystal field and bilinear interactions,
are of interest because they may be used in determining
the crystal field. The magnetic susceptibility of investi-
gated YbPO4 and YbVO4 zircons is anisotropic along
and perpendicular to the tetragonal axis (Fig. 1); how-
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The crystal field parameters of rare-earth phosphate YbPO4 and vanadate YbVO4, obtained using the results of optical (L),
neutron (N), and magnetic (M) measurements, and Stark splitting of the ground multiplet Yb3+ in YbXO4 for the given crystal
field parameters

RXO4 Method Ref. , K , K , K , K , K E1, cm–1 E2, cm–1 E3, cm–1 E4, cm–1

Yb : YPO4 L(1) [9] 244 13 975 –62 –4 0 92 307 315

Yb : LuPO4 L(2) [9] 184 3 915 –63 –16 0 101 281 288

YbPO4 M 196 1 980 –62 –39 0 99 290 305

YbVO4 N [10] –154 77 1062 –84 –156 0 58 280 353

YbVO4 M –106 92 950 –103 –318 0 58 277 353

B2
0 B4

0 B4
4 B6

0 B6
4

ever, it remains isotropic in the basal plane, as one
would expect for tetragonal symmetry. For the entire
family of rare-earth zircons, the direction of the axis of
easy magnetization at high temperatures is defined by

the signs of the second-order crystal field parameter 
and Stevens parameter αJ. In accordance with the vari-
ation of αJ over the series of rare-earth elements for
phosphates with ions from Tb to Ho, the easy axis is the
tetragonal axis which changes for the basal plane for
phosphates with Tm and Yb. Exactly the opposite is the
situation in the case of rare-earth vanadates in which

the parameter  changes sign. The anisotropy of mag-

netic susceptibility ∆χ/  = ∆χ–1/  at high tempera-
ture in phosphate is twice that in vanadate, in accor-

dance with the value of the parameter .

One can see in Fig. 1 that, for both zircons at a tem-

perature above 150 K, the correlation (T) obeys the
Curie–Weiss law; however, the slopes of linear portions
for the c and a axes differ somewhat from one another.
This means that the crystal field effects at temperatures
of about 300 K still play an important part, and the
effective magnetic moment does not reach its value
µeff = 4.54µB for a free ion of Yb3+. As the temperature
decreases, the susceptibility along these two axes
increases monotonically, so that the anisotropy χM

remains moderate. The magnetic susceptibility along
the hard magnetization axis exhibits characteristic
kinks at 70 and 20 K, which are associated with the
variation of the population of excited levels when the
temperature decreases.

It is well known that, in the case of tetragonal sym-
metry, it is difficult to unambiguously determine a com-
plete set of parameters of the crystal field on the basis
of the magnetic properties alone. As a rule, more than
one set of parameters may be identified providing a
plausible description of magnetic properties within the
experimental error. Therefore, in determining the crys-
tal field in the case of tetragonal symmetry, it is abso-
lutely necessary to simultaneously employ spectro-
scopic data, the use of which often results in rendering
the problem uniquely determined. In addition, the sin-

B2
0

B2
0

χ χ 1–

B2
0

χM
1–
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gle-ion deformation susceptibility and single-ion qua-
drupole-field susceptibility, which define the behavior
of elastic constants and magnetostriction, enable one in
a number of cases to confirm or define more exactly the
crystal field.

The crystal field parameters  for a Yb3+ ion in the
phosphate matrix are known only for alloyed com-
pounds of Yb:LuPO4 and Yb:YPO4 [9]; they differ con-

siderably by the parameter  and by the position of
the first excited doublet (see table). The wave functions
and Stark splitting of the ground multiplet, obtained in
calculations involving these parameters, differ appre-
ciably from spectroscopic data for a concentrated com-
pound of YbPO4 (0, 99, 258 ± 12, and 347 ± 16 cm–1)
[3]. A detailed investigation of the electronic structure
of a rare-earth ion by the method of inelastic neutron
scattering [10] was performed for YbVO4, and the crys-
tal field parameters were determined, as well as the
wave functions and values of the components of the
g tensor, which proved to be comparable in magnitude
with those obtained previously for a dilute compound
[9]. These parameters, however, fail to provide a good
description of the experimentally obtained correlation

(T) along the hard magnetization axis (see the inset
in Fig. 1).

The crystal field parameters for Yb zircons were
refined on the basis of our data on the initial magnetic
susceptibility χM and all of the available spectroscopic
data using the FLEX optimization procedure [11]. The

space of the parameters  was used to search for all
solutions of the inverse problem for which the residual
sum on the array of experimental data was minimal and
did not exceed some value defined by the accuracy of
the employed data. Used as the input set of parameters
in the case of Yb phosphate was a set of crystal field
parameters for Yb:LuPO4 (see table), for which the cal-
culated temperature dependence χM(T) along the [001]
and [100] axes is closer to that obtained experimentally.
Because bilinear interactions with the parameter θ* ≈
0.1 K obtained by estimation using De Gennes’ for-
mula do not lead to any appreciable modification of the
magnetic properties, the parameter θ* was then

Bn
m

B2
0

χM
1–

Bn
m
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assumed to be zero. An optimal description of the
experimental data was obtained using the parameters M
given in the table. The set of crystal field parameters
determined by us is in good agreement with the param-
eters obtained in an analogous array of experimental
data for other rare-earth phosphates with ions from Tb
to Tm [2].

For YbVO4, the parameters obtained by us (the set of
M, see table) provide a description of the magnetic sus-
ceptibility that is closer to experiment (compare the
solid and broken lines in the inset in Fig. 1), and the mul-
tiplet splitting agrees well with the data of neutron mea-
surements [10]. Note that, for both Yb compounds, the
procedure stably produces a single minimum for differ-
ent initial conditions of search from the space region

(  ± ∆ ), where  denotes the average (for a
series of rare-earth phosphates or vanadates) values of

crystal field parameters, and the ∆ /  ratio does not
exceed 30%.

One can see that the most significant difference in
the crystal fields for two Yb zircons consists in that the

parameter  for vanadate is negative and almost twice
less in magnitude than the analogous parameter in
phosphate. Note further the somewhat underestimated

value of the fourth-order parameter  for Yb phos-

phate and some difference of the parameters  and 
for Yb vanadate from the average values over the series
of rare-earth zircons.
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Fig. 2. The temperature dependence of the third-order mag-
netic susceptibility of YbPO4 crystal along the [100], [110],
and [001] axes. The solid (dashed) curves indicate the
dependences calculated in view of (disregarding) quadru-
pole interactions for a set of crystal field parameters M (see

table) and Gγ = 170 mK. The inset gives the (T) depen-

dences for H || [100] on a larger scale.
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4.2. Third-Order Magnetic Susceptibility

The third-order magnetic susceptibility  along
the principal symmetric directions is given in Figs. 2
and 3 for Yb vanadate and Yb phosphate, respectively.

The behavior of  along the [100] axis is shown in
more detail in the insets in these figures. One can see
that, along the [001] and [110] axes, the susceptibility

 for both crystals is negative and well described by
the curves calculated using the crystal field parameters
determined above without any fitting parameters. Note
the somewhat poorer description of susceptibility along
the [110] and [001] axes for vanadate. The greater mag-

nitude of  along the [110] axis in experiment may
be attributed, for example, to the effects of misorienta-

tion (the  contribution from the [001] axis), because

the anisotropy of  at low temperatures in vanadate
is appreciably higher than in phosphate.

The experimentally obtained dependences (T)
along the [100] axis are nonmonotonic and of positive
sign in some temperature range. For their description,
one must take into account the contribution made by
γ-symmetric quadrupole interactions, which give a pos-

itive addition to the negative susceptibility  defined
by the crystal field (compare the solid and broken lines
in the figures and insets). This addition is comparable

with  because of the high values of the quadrupole-

field, , and deformation, χγ, susceptibilities corre-
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Fig. 3. The temperature dependence of the third-order mag-
netic susceptibility of YbVO4 crystal along the [100], [110],
and [001] axes. The solid (dashed) curves indicate the
dependences calculated in view of (disregarding) quadru-
pole interactions for a set of crystal field parameters M (see

table) and Gγ = 100 mK. The inset gives the (T) depen-

dences for H || [100] on a larger scale.
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sponding to γ symmetry (see Eq. (5)). For Yb vanadate

at H || [100], the susceptibility  defined by the crys-
tal field is positive even at low temperatures, and the

contribution to  by quadrupole interactions is much
lower than in the case of Yb phosphate.

4.3. Magnetostriction

As was already noted, in order to investigate the nor-
mal deformation modes εα1, εα2, εγ, and εδ, the magne-
tostrictive deformation was simultaneously measured
in parallel with and perpendicular to the external mag-
netic field applied along one of the symmetry axes
[001], [100], and [110]. Experiment reveals that the
sample length variations λij are quadratic in H up to
140 kOe at T > 30 K; at lower temperatures, this field
range is reduced.

Fully symmetric α mode. For a magnetic field ori-
ented along the [001] axis, the length variations λcc and

λac define the volume, εα1 = (λcc + 2λac)/ , and tetrag-

onal, εα2 = (λcc – λac), modes. The temperature
dependences of the initial slopes of magnetostriction
curves, (λcc + 2λac)/H2 and (λcc – )/H2, for Yb phos-
phate and Yb vanadate are given in Fig. 4. Because the
value of magnetostrictive deformation remains low
even at low temperatures, random errors of measure-
ment lead to some scatter of experimental data. In addi-
tion, the compensation of the strain gage magnetoresis-
tance starts acquiring a considerable importance. The
optimal compensation is attained when measurements
are performed using a standard strain gage glued onto a
diamagnetic analog of the sample being investigated,
for example, YPO4 for YbPO4. In other cases, the
incompletely compensated magnetoresistance of the
strain gage at T < 40 K leads to a systematic error of
measurement, as is seen in Fig. 4 for YbVO4. We
believe that this is why the values of the factors Aα1 and
Aα2 for Yb vanadate are somewhat underestimated (see
below).

For YbPO4, both modes exhibit similar temperature
dependences, for which the deformation changes its
sign in the neighborhood of 50 K. In the case of Yb van-
adate, the volume and tetragonal modes retain their sign
in the entire investigated temperature range. In the
absence of bilinear interactions, the calculated depen-
dences of initial slopes are defined by the expression

(9)

in which the constants Aα1 and Aα2 depend on the back-

ground elastic constants , , and  and on
the magnetoelastic coefficients Bα1 and Bα2. The calcu-
lation results demonstrate that the inclusion of Gα in
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Eq. (9) in the case of Yb zircons is of no importance. A
comparison with experiment gives values of the factors
Aα1 = –1.1 × 10–4 and Aα2 = 1.6 × 10–4 for phosphate and
Aα1 = –0.4 × 10–4 and Aα2 = 0.9 × 10–4 for vanadate.
Moreover, in accordance with experiment, the suscepti-

bility  is positive at high temperatures and changes
sign at a temperature below 50 K for phosphate and
remains positive for vanadate.

In order to determine the magnetoelastic coeffi-
cients Bα1 and Bα2 for YbPO4, use was made of values

of symmetrized elastic constants  = 17.3,  =

14.4, and  = 0.55 (in 105 K), which were recalcu-
lated proceeding from the experimental data of Nipko
et al. [3] (because of the absence of experimental data
for c13, it was assumed that c13 ≈ c12). In this manner, the
values of Bα1/αJ = –5.7 × 103 K and Bα2/αJ = 7.1 × 103 K

and the contribution  = 56 mK of magnetoelastic
interaction were found. Because the quadrupole com-

ponent  is other than zero even in the absence of
an external field, in the calculation of the initial suscep-
tibility, the α-symmetric magnetoelastic interactions
must be included during diagonalization of the Hamil-
tonian HCF + HQT. However, the calculation results have
demonstrated that the value of Gα ~ 50 mK does not
cause a variation of either single-ion susceptibilities
proper or their renormalization; therefore, in what fol-
lowed, the α-symmetric quadrupole interactions were
not taken into account (Gα = 0 K). The effect of the

parameter Gα ~ 50 mK on  along the [100] axis is
likewise negligible (Fig. 2). In view of the indetermi-
nacy of the coefficients Aα1 and Aα2 and elastic con-
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Fig. 4. The temperature dependence of α-symmetric mag-
netostriction of YbPO4 and YbVO4 crystals (inset) for a
magnetic field along the [001] axis experimentally obtained
(points) and calculated using the given parameters (curves).
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stants Cαi, no estimates of the magnetoelastic coeffi-
cients Bα1 and Bα2 are given here.

Low-symmetry γ and δ modes. The modes of
orthorhombic symmetry for two Yb zircons exhibit
common regularities at low temperatures. In the entire
investigated temperature range, the quadrupole-field

susceptibility  is positive both for YbPO4 and for
YbVO4; this provides for the positive values of magne-

tostriction εγ = (λaa – λaa')/ . The calculation results
demonstrate that, at temperatures below ~15 K, the
range of fields in which the magnetostriction is qua-
dratic in the field becomes narrow (less than 10 kOe);
as a result, it is difficult to experimentally determine the
initial derivative εγ/H2 in this range. A comparison of
the experimentally obtained and calculated temperature
dependences of inverse magnetostriction H/ |εγ|1/2

(Figs. 5 and 6) gives values of the factors Aγ = 3.2 × 10–4

and Aγ = 3.6 × 10–4 in phosphate and vanadate, respec-
tively. This gives the magnetoelastic coefficients Bγ/αJ =
13.9 × 103 K and Bγ/αJ = 14.2 × 103 for the background

elastic constants  = 1.36 × 106 K [3] and  = 1.24 ×
106 K (the data for TmVO4 were borrowed from
Melcher [12]). In this case, contributions of the magne-

toelastic coupling to the quadrupole constant  ~

142 mK and  ~ 163 mK are obtained for Yb phos-
phate and Yb vanadate, respectively. The inclusion of
pairwise quadrupole interactions with total constants
Gγ = 130 mK and Gγ = 100 mK leads to an increase in
magnetostriction and to an almost parallel shift of the
curve H/(εγ)1/2(T) in accordance with experiment. The
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value of Gγ ≈130 mK for YbPO4 is close to that derived
from the third-order susceptibility.

A characteristic feature of the magnetostriction εδ =

(λbb – λbb')/  for both Yb compounds is the change of
sign of deformation at low temperatures (Figs. 5 and 6).
The δ-symmetric magnetostriction, as well as the third-
order susceptibility, is not highly dependent on quadru-

pole interactions, because the susceptibilities  and
χδ are not high. The calculations involving the crystal
field parameters which describe well all of the proper-
ties discussed heretofore produce an appreciably higher
characteristic temperature of change of sign than that
observed experimentally. This difference cannot be
explained by the possible contribution by the γ mode
due to misorientation of the field and strain gage rela-
tive to the [110] axis, experimental systematic errors of
measurement (which are small in this temperature
range), and other factors.

An adequate description of δ-symmetric magneto-
striction for both Yb zircons can only be obtained using
another spectrum for Yb3+ ion, i.e., another set of crys-
tal field parameters that would differ considerably from
the set used to describe the neutron experiments and
initial magnetic susceptibility. For both Yb compounds,
the anomaly of δ-symmetric magnetostriction proved
to be most sensitive to the values of diagonal parame-

ters of the fourth, , and sixth, , orders. The search
for an alternative set, which allows a variation of the

parameters  and  within ±30% of their average

values, leads to the parameters  =  + ∆  and

2

χδ
2( )

B4
0 B6

0

B4
0 B6

0

B4
0

B4
0 B4

0

10

0
200

T, K
1000

20

30

40

H
/|

λ a
a 

– 
λ a

a'
|1/

2 , 1
06  O

e

Aγ = 3.6 × 10–4

Gγ = 100 mK
Gγ = 0

YbVO4Gδ = 0
Aδ = –2.8 × 10–3

Aδ = –2.9 × 10–3

10

200100

20

30

H
/|

λ b
b 

– 
λ b

b'
|1/

2 , 1
06  O

e

0

0
T, K

Fig. 6. The temperature dependence of inverse magneto-
striction, which correspond to γ and δ symmetry of YbVO4
crystal for a magnetic field along the [100] and [110] axes
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given parameters (curves). The dashed curves for the δ
mode indicate the dependences calculated using the alterna-
tive parameters of the crystal field.
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 =  + ∆ , which differ from the parameters of

sets M (see table) by the corrections ∆  and ∆ . The

corrections amount to  ≈  ≈ 20 K for both Yb
compounds. The examples of calculation of the curves
H/(εδ)1/2(T) using alternative sets of parameters are
given in the figures by dashed lines. These calculations
produce values of the factors Aδ = –2.4 × 10–3 and Aδ =
–2.9 × 10–3 and of the magnetoelastic coefficients
Bδ/αJ = –16.2 × 103 K and Bδ/αJ = –19.2 × 103 K (for

the background elastic constant  = 2.1 × 105 K) in
YbPO4 and YbVO4, which do not differ strongly from
the average values for the series of rare-earth zircons.

The experimental data for the δ mode indicate that
the second doublet must be located somewhat lower
than it follows from the results of neutron experiments,
which could be the case if the crystal field parameters
were temperature-dependent. One of the mechanisms
responsible for the temperature dependence of the crys-
tal field parameters may be the α-symmetric magne-
toelastic interaction. For example, in the case of

DyPO4, a variation of the quadrupole moment 
with temperature brings about a variation of the effec-

tive second-order parameter of the crystal field  =

 – Gα /αJ and a shift of the second doublet by
approximately 20 K [13]. For both Yb zircons, the mul-

tipole moments  and  are not low and have
clearly defined singularities in the desired temperature
range; these singularities may, in principle, bring about
a desired variation of the parameters (positive additions
for phosphate and negative additions for vanadate).

4.4. Elastic Constants

The results of investigation of magnetic susceptibil-
ity and magnetostriction were supplemented with the
analysis of the experimental results of Nipko et al. [3],
who used Brillouin light scattering to measure the tem-
perature dependences of all elastic constants (except for
c13) for YbPO4 and compared the results with the data
of Armbruster et al. [14] for LuPO4. In the temperature
range from 300 to 15 K, all elastic constants for YbPO4

(with the exception of Cγ) differ by not more than 2–
3%, and their behavior differs little from the behavior
of elastic constants for a nonmagnetic analog of LuPO4.
The constant Cγ exhibits a softening by approximately
20% (Fig. 7). Nipko et al. [3] describe the Cγ(T) depen-
dence within pseudospin formalism on the basis of two
lower doublets. Note, however, that Nipko et al. [3]
give inaccurate values of the parameters.

A more systematic description may be obtained within
the formalism of deformation susceptibilities χµ(T). The
calculation results demonstrate that, for YbPO4, the
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variation of χγ in the temperature range from 0 to 300 K
is one and a half to two orders of magnitude greater
than the variations of χδ and χε. The variation of χα has
an intermediate value and is approximately five times
less than that in the case of χγ. This correlates fully with
the experimental results of Nipko et al. [3], which are
indicative of the presence of the effect of substantial
softening only for the γ-symmetric elastic constant.

A plausible description of the curve Cγ(T)/Cγ(300 K)
within the experimental error on the basis of the calcu-
lated dependence χγ(T) may be obtained using different
sets of the parameters Bγ and Kγ (see Eq. (6)). The
choice of the optimal set of coefficients Bγ and Kγ was
performed employing additional data on the γ-symmet-
ric magnetostriction (which is quite sensitive to the
coefficient Bγ. It was assumed in the calculations that

the value of  defined by phonons increased by 2%
from 300 to 50 K and did not vary thereafter. As a
result, the coefficients Bγ/αJ = 14.4 × 103 K and Kγ =

−38 mK were obtained, satisfying the ratio Kγ/  ~
–0.25 and simultaneously describing the magnetostric-
tion and the temperature dependence of the elastic con-
stant within the experimental error (solid curve in Fig. 7).

The optimal agreement between the experimentally
obtained and calculated dependences Cγ(T) within the
crystal field parameters M (see table) may be attained
for values of the coefficient Bγ/αJ = 9.77 × 103 K and of
the pairwise quadrupole coupling constant Kγ = 347 mK,

which clearly fail to satisfy the ratio Kγ/  = –1/3.
Note that the alternative set of crystal field parameters,
which describes well the δ-symmetric magnetostriction
in phosphate, also provides a better description of the
contribution by the magnetoelastic interaction to the
elastic constant Cγ(T).
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Fig. 7. The temperature dependence of the elastic interac-
tion constant Cγ of YbPO4 and YbVO4 crystals experimen-
tally obtained (points, data borrowed from [3]) and calcu-
lated using the given parameters (curves). The inset shows the
dependences 1/χγ(T) at H = 0 (curves 1 and 2) and H = 300 kOe
along the [110] axis (curves 1' and 2').
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No experimental data on elastic constants are avail-
able for YbVO4; however, the results of deformation
susceptibility calculations indicate that for vanadate as
well one must expect a significant softening of the con-
stant Cγ. Figure 7 gives the calculated temperature
dependence of the elastic constant Cγ(T)/Cγ (300 K) with
the parameters Bγ/αJ = 14.2 × 103 K and Kγ = –54 mK
obtained during analysis of the magnetostriction data.

4.5. Magnetic and Magnetoelastic Properties
in Strong Fields

Investigations of the magnetic and magnetoelastic
properties of Yb zircons in weak fields reveal the
observed quadrupole effects for H || [100], namely, sig-
nificant contributions by quadrupole interactions to the

third-order susceptibility , magnetostriction, and
the γ-symmetric elastic constant. These interactions,
however, are not strong enough to lead to quadrupole
ordering which takes place if the condition 1/χγ ≤ Gγ is
valid, i.e., if the respective deformation susceptibility
reaches a critical value. One can see in the inset of Fig. 7
that, for YbPO4 and YbVO4, the inverse susceptibility
1/χγ at low temperatures is approximately 0.6 K, i.e.,
1/χγ is several times the value of the total quadrupole
coupling constant Gγ ~ 150 mK for these zircons.
Therefore, YbPO4 and YbVO4 remain in the above-crit-
ical state in the absence of external magnetic fields.

The external magnetic field changes the spectrum
and wave functions of a Yb3+ ion and brings the system
closer to the critical state; in so doing, the situation
depends strongly on the field orientation. The magnetic
field H || [100], which induces the deformation of the
same symmetry as the expected spontaneous one,
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Fig. 8. The field dependence of the magnetostriction, corre-

sponding to γ symmetry εγ = (λaa – λaa') of YbPO4 crys-
tal for a magnetic field along the [100] axis at T = 2 K and
T = 14 K. The inset gives the calculated dependences

εγ(H2).
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causes the emergence in the Hamiltonian HQT of γ-sym-
metric quadrupole terms. These terms bring about a
modification of the electronic structure of rare-earth
ions and additional contributions to the magnetic and
magnetoelastic properties. Figure 8 gives, by way of
example, the experimentally obtained and calculated
isotherms of γ-symmetric magnetostriction at T = 2 K
and 14 K for YbPO4. A comparison of the curves calcu-
lated in view of (solid curves) and disregarding (broken
curves) quadrupole interactions reveals that the contri-
bution by quadrupole interactions with the experimentally
obtained constant Gγ = 130 mK at low temperatures in the
field of 140 kOe reaches 15–20%. The experimental data
are described fairly well at temperatures above 10–15 K;
the reasons for divergence at lower temperatures (2 K) still
remain to be understood. Also given in the inset are the

calculated dependences εγ(H2), which demonstrate
that the range of quadraticity of magnetostriction is
reduced considerably at helium temperatures. Similarly,
for the magnetization curves M(H), quadrupole interac-
tions at helium temperatures in a field of 140 kOe produce
an additional contribution of approximately 10–15% in
both Yb compounds.

The situation is more interesting as regards the field
orientation H || [110], because the induced and expected
spontaneous deformations are characterized by differ-
ent symmetries. The electronic configuration of a Yb3+

ion in the field varies in such a manner that χγ increases
and the system approaches the critical state. For exam-
ple, in a field of 300 kOe, as is seen in the inset of Fig. 7
(curves 1' and 2'), the susceptibility χγ at helium tempera-
tures increases; it increases especially strongly in the case
of YbVO4. With such a tendency, χγ in a fairly strong field
will reach the critical value of 1/Gγ, and a γ-symmetric
stimulated phase transition will be realized in the sys-
tem. However, the results of calculations involving real
parameters of the crystal field and quadrupole interac-
tions demonstrate that the value of the critical field Hc

in which the condition 1/χγ(Hc) ≤ Gγ is valid for the first
time is fairly high (Hc > 1000 kOe for YbPO4 and Hc >
500 kOe for YbVO4) and hardly accessible for experi-
mental investigation. The situation described is similar
to that observed and experimentally investigated by dif-
ferent methods in a virtual Jahn–Teller compound
TmPO4 with respect to δ-symmetric stimulated qua-
drupole ordering [15].

5. SINGLE-ION MAGNETOELASTIC 
AND PAIRWISE QUADRUPOLE PARAMETERS

IN RARE-EARTH ZIRCONS

The investigation results enable one to determine all
magnetoelastic parameters for Yb zircons and, thereby,
obtain a full pattern for the entire family of rare-earth
vanadates and phosphates. Experiments in magneto-

striction directly produce the factors Aµ = Bµ/ ; in

2
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µ

 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001



CRYSTAL FIELD AND QUADRUPOLE INTERACTION EFFECTS 1259
order to determine the magnetoelastic coefficients Bµ,
one needs to know the background elastic constants

. It is only for some zircons that experimental data
on these constants are available in the literature,
obtained by different methods and revealing irregular
variations and/or considerable scatter over the series of
rare-earth zircons. Therefore, it makes sense to perform
a comparison, for different rare-earth zircons, of the
factors Aµ determined directly from experiment and to
recalculate the factors Bµ for background elastic con-
stants averaged over the series of rare-earth zircons.

For the fully symmetric α1 and α2 modes in YbPO4,
values of the coefficients Aα1 = –1.1 × 10–4 and Aα2 =
1.6 × 10–4 were obtained, comparable in magnitude and
exhibiting opposite signs. For YbVO4, the coefficients
Aα1 and Aα2 are of the same signs and comparable in
magnitude. The difference between the coefficients Aαi

for YbPO4 and neighboring TmPO4 (Aα1 = –3.2 × 10–5

and Aα2 = 4.7 × 10–5 [16]) is due to the difference
between the Stevens parameters αJ = 2/63 for a Yb ion
and αJ = 1/99 for a Tm ion. Therefore, in what follows,
the comparison is performed, over the family of rare-

earth phosphates, of the coefficients  = Aµ/αJ nor-
malized to the Stevens parameter αJ. The fairly high
values of fully symmetric coefficients Aα1 and Aα2 rep-
resent a characteristic feature of rare-earth zircons and
may cause unusual effects, for example, a variation in
the temperature dependence of the spectrum in the
magnetically disordered or quadrupole-disordered
phases.

For the orthorhombic γ mode, the constants  =

Bγ/αJ  = 10.2 × 10–3 and  = 11.4 × 10–3 were
obtained for Yb phosphate and Yb vanadate, respec-
tively. These values are comparable with the values of

 ~ 10 × 10–3 for a series of rare-earth phosphates [2]

and  ~ 12 × 10–3 for a series of rare-earth vanadates
[17, 18], obtained as a result of analysis of both magne-
tostriction and elastic constants. For the rhombic δ
mode, the factors  = Bδ/αJ  = –7.5 × 10–2 and  =
–9.2 × 10–2 were obtained for YbPO4 and YbVO4,
respectively. Note, however, that, because of problems
involved in describing the δ-symmetric magnetostric-

tion, the indeterminacy of values of the coefficients 
for Yb compounds may exceed somewhat that for other
zircons. The contribution by the magnetoelastic cou-

pling to the total quadrupole constant  for both
orthorhombic modes in ytterbium zircons proves to be
an order of magnitude higher than, for example, that in
the TmPO4 compound [2] because of the difference
between the Stevens coefficients for Yb and Tm ions.

C0
µ

A
µ

A
γ

C0
γ A

γ

A
γ

A
γ

A
δ

C0
δ A

δ

A
δ

GME
µ

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYS
Figure 9 gives the constants  and  obtained
previously for a series of rare-earth phosphates [2] and
rare-earth vanadates [18] supplemented by new data for
Yb zircons. One can see in the figure that all of the
obtained values are comparable in magnitude for rare-
earth zircons, and those for the δ mode are almost an
order of magnitude higher because of the much lower

value of the background constant  ≈ /5. More-
over, values of the magnetoelastic coefficients Bγ/αJ

and Bδ/αJ, recalculated with average elastic constants

 and , also prove to be comparable over the series
of rare-earth zircons and with one another.

Of interest is the ratio Kµ/  for the family of
rare-earth zircons, because this ratio contains informa-
tion about the importance of acoustic and optical
phonons in the mechanism of quadrupole interaction
between rare-earth ions. In the absence of contribution

by optical phonons, the value of Kµ/  = −1/3 was
obtained for the simplest model of a two-level system.
This ratio is valid with sufficient accuracy for the soft
δ mode in TmVO4, TbVO4, and TbPO4 compounds
exhibiting structural phase transitions and in HoVO4 in
the absence of structural transition. In the case of
DyVO4 which experienced a structural phase transition,
for the soft γ mode this ratio ranges, according to differ-
ent data, from –1.2 to +0.40. For TmPO4, a simulta-
neous analysis of experimental data on magnetostric-

tion and elastic constant leads to the value of Kδ/  ≈
−1/6. A similar analysis for neighboring (in the series of

rare-earth phosphates) YbPO4 gives the ratio Kγ/  =
−0.25; for YbVO4, the experimental data are described

fairly well at Kγ/  ≈ –1/3.
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The magnetic and magnetoelastic properties of Yb
zircons at H || [100] exhibit a number of observed qua-
drupole effects both in weak and in strong magnetic
fields. Quadrupole interactions are responsible for a
significant contribution to the third-order susceptibility,
magnetization, magnetostriction, and γ-symmetric
elastic constant. These interactions, however, are not
strong enough to bring about quadrupole ordering in
either YbPO4 or YbVO4, because the respective defor-
mation susceptibility χγ is several times less than the
critical value 1/Gγ. Experiment and theory reveal that,
in both Yb compounds, the contribution by quadrupole
interactions with the constant Gγ ≈ 150 mK to the mag-
netostriction and magnetization curves for H || [100] at
low temperatures in a field of 140 kOe reaches 15–20%.
For the field orientation of H || [110], the deformation
susceptibility χγ increases, so that in a fairly strong field
in YbPO4 and YbVO4 crystals one can expect a γ-sym-
metric stimulated phase transition.
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Abstract—We explain the linear growth of smooth solid helium facets by the presence of lattice point defects.
To implement this task, the framework of very general two-velocity elasticity theory equations is developed.
Boundary conditions for these equations for various surface types are derived. We also suggest additional exper-
iments the concept to justify. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The existence of two distinct states of a crystal sur-
face is well known: it may be either smooth or rough
(for a review, see [1]). A smooth surface is character-
ized by a long-range order and small fluctuations. On
the contrary, a rough surface behaves differently: it
does not exhibit a long-range order and its displace-
ment fluctuates heavily. These equilibrium properties
lead to different kinetic properties. While the rough sur-
face is usually supposed to grow easily (as described by
the growth coefficient), the smooth one is characterized
by the zero growth coefficient and grows with nuclei of
a new atomic layer (if the crystal has no dislocations).
In accordance with this mechanism, one should not
observe the linear growth rate if low overpressure is
applied. The reality is different: experiments [2] dem-
onstrate that a smooth helium surface free of screw dis-
locations grows linearly. This work is an attempt to
explain this behavior by the presence of lattice point
defects (vacancies). The idea is similar to that sug-
gested by Herring [3] and by Lifshitz [4] as an explana-
tion of the flow of polycrystals. It is quite simple: the
mass flux in bulk helium is attributed to the motion of
vacancies. This flux is the mass transfer through the lat-
tice. Therefore, if vacancies are allowed to be created at
the bottom edge of the sample (the boundary between
the crystal and the wall, see Fig. 1) and to be annihilated
at the top of it (at the smooth crystal–liquid interface),
then the crystal grows.

The suggested crystal growth mechanism can be
explained as follows. Because the smooth crystal facet
(the top one in Fig. 1) cannot move with respect to the
lattice, it moves upward adhering to the lattice. Vacu-
ities appearing due to this at the bottom edge of the
crystal transform into lattice defects (ordinary vacan-
cies) and go up through (and faster than) the bulk
helium. They finally vanish in the liquid on the top
smooth surface of the sample. In other words, the crys-

¶This article was submitted by the authors in English.
1063-7761/01/9306- $21.00 © 1261
tal grows on the boundary between helium and the wall,
rather than on the smooth solid–liquid interface (which
nevertheless provides mass supply for the growth). It is
important to emphasize that this scenario can occur if
and only if the vacancies are allowed to emerge at the
bottom edge of the crystal. One can say that this bound-
ary is in some sense “atomically rough”—it can grow
new atomic layers. For this condition to be satisfied, the
wall surface must have a disordered shape or be slightly
tilted with respect to the basal planes of the crystal
(thereby forming a vicinal interface). This ensures that
the surface can play the role of a source or a sink of
vacancies. An atomically flat wall parallel to the basal
plane should, in contrast, behave like a normal smooth
surface—it is fixed to the lattice. This is because new
atomic layer nuclei must be created for the surface to
move.

This paper is organized as follows. In Sections 2 and 3,
we derive very general two-velocity elasticity theory
equations. They consist of conditions for the variables
of the conventional elasticity theory (including lattice
velocity) and equations for a macroscopic description
of the quasiparticle gas (including the quasiparticle gas
velocity).

Equations to be derived are similar to those of the
two-velocity superfluid hydrodynamics. In our equa-
tions, the lattice and excitation gas velocities replace
the superfluid and normal component velocities of the
two-fluid hydrodynamics. Similarly to the regular lin-
ear phonon hydrodynamics (see [5, § 71]), the probabil-

vg superfluid

4He crystal

silica wall

Fig. 1. Typical experimental layout.
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ity of Umklapp processes (which result in the noncon-
servation of the total quasimomentum in quasiparticle
collisions) is supposed to be low. In the low-tempera-
ture region considered here, this assumption is quite
reasonable. We also neglect dissipation here. This
means that our analysis is limited to the terms of the
first order in gradients.

The exact (nonlinear) hydrodynamics equations for
a superfluid can be derived (see [6]) from phenomeno-
logical considerations, using conservation laws. A con-
stitutive argument for this derivation is the statement
that the superfluid flow is potential. This is an intrinsic
property of the order parameter in a superfluid. This
condition is unavailable for a crystal (moreover, there is
no quasimomentum conservation relation in the nonlin-
ear description, see Eq. (15) below).

We deduce the two-velocity elasticity theory equa-
tions using a more general approach (see the paper by
Pushkarov and one of the authors [7], as well as [8] and
[9]). It is based on the kinetic equation description of
the quasiparticle dynamics. The realization of this tech-
nique per se, in a nonlinear situation in particular, is a
matter of considerable interest not only for a solid but
also for a superfluid (that this procedure is possible is
mentioned in [5, § 77]). With this technique, we find
exact expressions for all hydrodynamic variables and
their dependence (in terms of the quasiparticle energy
spectrum) on the relative velocity of components. It is
trivial to extend the equations obtained for the solid
dynamics to the simpler case of superfluid hydrody-
namics.

Boundary conditions for our equations depend on
the surface type; in Section 4, we thoroughly consider
three possibilities: rough (Section 4.1.1) and smooth
(Section 4.1.2) interfaces between solid and liquid
helium, and the rough boundary between solid helium
and the normal hard wall (Section 4.2.1). Finally, in
Section 5, we calculate the growth rate for the crystal.

2. DEFINITIONS

Following the principles in [7–9], we employ the
Euler approach to the lattice description. We thus intro-
duce three “node numbers” Nα (α = 1, 2, 3). They are
functions of space coordinates r and time t, Nα = Nα(r,
t). From now on, Greek indices (like α here) are used
for the “lattice space” components and Latin indices
(e.g., i in xi for the components of r) for the real space
components. Defining the reciprocal lattice vectors as 

we obtain the elementary lattice translation vectors aβ
as

aα ∂Nα /∂r,=

aαaβ δβ
α .=
JOURNAL OF EXPERIMENTAL
Taking the time derivative, we obtain the lattice veloc-
ity as

The elastic energy El of the lattice is a function of the
deformation. Moreover, because it depends not on the
spatial orientation of the infinitesimal sample (the
space is isotropic), but on the relative position of the

vectors, we can write El = El(gαβ), where gαβ = aαaβ

is a symmetric “metric tensor” of the lattice space.
We are now ready to describe quasiparticle degrees

of freedom. We do not specify the quasiparticle nature
at the moment (the quasiparticles can be phonons,
vacancies as in [9], or electrons as in [7]). All the equa-
tions written below imply the summation over all
branches of excitations; we do not explicitly write the
sum for brevity. Any quasiparticle should be character-
ized by its mass m (which is zero for phonons, positive
for electrons, and negative for vacancies), coordinate,
and momentum. Because quasiparticles exist in the lat-
tice background, the quasimomentum should be used.
The quasiparticle energy in the frame of reference of
the lattice e = e(aα(p – mw), gαβ) is a periodic function
of the quasimomentum p (with the periods 2π"aβ). In
laboratory frame of reference, we have the quasiparticle
energy (see [7])

We also use the variables k = p – mw and kα = aαk. Qua-
siparticle dynamics is determined by the Hamilton
function

We now introduce the distribution function f(r, p) (it is
also a periodic function of the quasimomentum p). Its
kinetics is governed by the Boltzmann equation

(1)

Using this distribution function, we can obtain macro-
scopic quantities, such as the mass density, 

where the angle brackets denote the integration over
quasimomentum space,

ρl is the lattice density, M is the mass of an elementary
cell, and n = 〈f 〉 .

We consider a quasi-equilibrium distribution func-
tion. The complete set of quantities conserved in quasi-
particle collisions consists of their mass (which is pro-
portional to their quantity for “real” particles like elec-
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trons and vacancies and is zero for phonons), energy,
and quasimomentum (in the low-temperature region,
Umklapp processes can be neglected). Consequently,
the most general quasi-equilibrium distribution is a
function of

where

The respective Lagrange coefficients T, v, and µ0
denote the temperature, the velocity relative to the lat-
tice, and the chemical potential of the quasiparticle gas.
For definiteness, we assume that the excitations are
Bose particles. The distribution function is then given
by

(2)

and1

We can now calculate other macroscopic parameters
with this distribution function. For the mass flux, we
have

(3)

where the mass flux with reference to the lattice is

Using J, we can write the mass conservation as

The number of real (massive) particles is also con-
served in the bulk, and we therefore have one additional
conservation law

Similarly, the energy density is given by

(4)

1 For further convenience, we also provide here the result of the
distribution function integration:

z
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This equation allows us to prove (and find) exact mac-
roscopic equivalents of the microscopic quantities
introduced above. The total energy density of the crys-
tal can be obtained via a Galilean transformation,

(5)

where E0 = E0(aα, S, ρ, K) is the energy in the frame of
reference of the lattice, with K = 〈kf 〉  characterizing the
quasimomentum density. A reasonable expression for
the E0 differential

(6)

can be obtained with the conventional definition of the
entropy density for the Bose gas,

Its differential is

Subtracting the differentials of (4) and (5), we obtain

(7)

We now transform the part of this equation related to
the lattice deformation:
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From (7), we finally obtain

(8)

where we introduced Pi = 〈pi f 〉  and

(9)

The terms in (8) are independent, and each of them
must therefore be equal to zero. That is,

(10)

3. EQUATIONS AND FLUXES

Here, we derive dynamics equations and thermody-
namic fluxes for the system. Neglecting dissipation at
this point, we assume that the entropy conservation law
is valid,

where the entropy flux Fi is determined by

We continue with the equation for the momentum
flux found in [7],

(11)

where

(12)

where we used definition (9) for Λik.
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Taking the appropriate equation for the energy flux
from [7], we have

(13)

where

To find the second term, we again use the distribution
function from (2),

For the energy flux, we finally have

(14)

This formula completes the list of the conventional
elasticity theory equations. An additional equation is
required to govern the quasiparticle degrees of free-
dom. We now find the time derivative of Pi. We multiply
Boltzmann equation (1) by pi and integrate over the
momentum space. We temporarily neglect Umklapp
processes, which are supposedly rare. If needed, dissi-
pation can be explicitly introduced into the final result.
In other words, the quasimomentum p is conserved in
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(normal) collisions, and the term involving the collision
integral is therefore zero. The left-hand side of the Bolt-
zmann equation gives

The first term can be transformed as
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Consequently,

(15)

The sought complete set of the two-velocity elasticity
theory equations consists of Eqs. (15), (13) (with Q
defined by (14)), and (11) (with Πij defined by (12)).

4. BOUNDARY CONDITIONS

We now turn to boundary conditions. They immedi-
ately follow from the conservation relations satisfied at
the interface. It is much easier to perform all transfor-
mations in the frame of reference of the interface itself.
All the velocities are therefore taken relative to the
boundary. Moreover, we simplify the problem by
restricting it to the one-dimensional case: all fluxes are
supposed to be perpendicular to the flat surface; we let
the z axis run along this direction. Because no curvature
is ascribed to the surface, we ignore capillary effects.
All calculations performed here are valid within the lin-
ear approximation. Naturally, boundary conditions
must depend on the type of the boundary and on the
type of the media on the other side of the interface. We
begin with the situation extensively discussed in the lit-
erature, the solid-liquid interface [1]. Because the pos-
sibility of the mass flux through the lattice is taken into
account, the results are different, however.

4.1. Solid-Liquid Interface

The liquid on the other side of the interface (being
superfluid) is characterized by the chemical potential

µL, normal and superfluid densities  and , normal

and superfluid velocities  and , temperature TL,
pressure pL, and the entropy density SL (see Fig. 2):

(16)

The superscript S indicates that the appropriate quanti-
ties refer to the solid. The first equation is the entropy
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growth condition and R is the surface dissipative func-
tion. The last three equations in (16) are simply the
requirements for the energy, mass, and momentum con-
servation for the surface, respectively. The surface dis-
sipative function must be a positive square form. Using
(16) and (10), it can be expressed as

We now recall that the solid-liquid boundary can be
either atomically rough or atomically smooth, depend-
ing on the temperature. The nature of the surface may
(or may not) impose certain restrictions on the dynam-
ics. For both types of the surface, the equation

(17)

is satisfied.
4.1.1. Rough surface. Employing the Onsager prin-

ciple, we obtain

(18)

The kinetic matrix  is positively definite.

RT L v S SS TS T L–( ) mSnS φS µL–( )+( )=

+ wS ES El
S– Λzz
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Λzz
S El
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+ η λ zz
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wS η mSnS φS µL–( ) SS TS T L–( )+( )=

+ ν λ zz
S ρS φS µL–( ) SS TS T L–( )++( ).
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Fig. 2. Solid–liquid boundary: fluxes in one dimension.
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Fig. 3. Solid–wall boundary: fluxes in one dimension.
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4.1.2. Smooth surface. A smooth surface implies
immobility of the interface relative to the lattice. That
is,

For the quasiparticle gas velocity, we then obtain a
restricted version of (18),

(19)

with the kinetic coefficient α > 0.

4.2. Solid-Wall Boundary

By a wall, we imply a macroscopically flat struc-
ture-less medium, in short, “concrete.” The “solid-
wall” boundary occurs between solid helium and some
normal rigid solid (silica in experiment [2]). A “con-
crete” wall is characterized by no mass flux in it (i.e.,
through the interface). The wall can supply an arbitrary
energy flux; we let Q denote the flux and TW the wall
temperature (see Fig. 3). A concrete wall is character-
ized by fewer variables than liquid, and the appropriate
equations are therefore somewhat simpler.

As for the solid-liquid interface, the actual boundary
conditions must depend on the microscopic pattern of
the surface. We can imagine a smooth basal plane of the
crystal adjacent to an atomically flat concrete wall. This
plane must stay at rest with respect to the wall because
its motion requires the creation of new atomic layer
nuclei. The plane is similar to the smooth solid–liquid
interface, and we can naturally say that such an inter-
face is smooth. The boundary condition is then given by

Another, much more interesting scenario is realized
if the interface is slightly tilted with respect to the basal
plane. Such planes may move by growing additional
nodes at the edge. This means that no restrictions are
imposed on the lattice velocity near the interface. In
other words, vacancies are allowed to freely appear and
vanish on the surface (in this sense, the surface is simi-
lar to a grid of dislocations arranged at the boundary of
the crystal that serve as sources or sinks for vacancies;
similar speculations can be found in [4] in explaining
polycrystal plasticity). We call this type of interface
“rough.” In this sense, the solid-wall boundary can be
either smooth or rough. The suggested growth mecha-
nism can be applied only to the rough boundary.

4.2.1. Rough boundary. Assuming the boundary to
be rough and using the same approach as for the liquid,
we write the conservation laws

wS 0.=

v S α mSnS φS µL–( ) SS TS T L–( )+( ),=

wS v S 0.= =

SS v S wS+( ) R Q/TW ,+=

wS ES El
S– Λzz

S+( ) v S TSSS mSnSφS+( )+ Q,=

v SmSnS ρSwS 0.= =
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Again, R is the surface dissipative function,

It must be positive, and for the quasiparticle velocity on
the surface we therefore have

(20)

where β > 0 is the surface kinetic coefficient.

5. THE GROWTH RATE

We now use the equations and boundary conditions
obtained above. The physical system discussed in what
follows is solid helium with elementary excitations rep-
resented by phonons and vacancies. We first introduce
a certain amount of friction between the quasiparticle gas
and the lattice. To obtain a physically sound result, we
again restrict our analysis to one dimension. Furthermore,
for simplicity, all our calculations are performed within
the linear approximation. We can write the quasimomen-
tum density (with the superscript S omitted) as K = ρKv,
where

(21)

Here, ΘD is the Debye temperature, c is the velocity of
sound in the crystal, and a is the lattice period. The last
equation is quite obvious. It follows from the fact that in
the low-temperature region, the quasimomentum is
mainly associated with phonons (the number of vacancies
is exponentially small). The result therefore coincides
with the one for the mass density (and the momentum den-
sity) of the normal component of the superfluid,

(see [10]).
To describe (rare) Umklapp events, we introduce the

appropriate relaxation time parameter τU. It is a “between-
Umklapp-collision time.” From (15), we then have

It is worth mentioning that τU may well depend on both
phonons and vacancies, despite the fact that the popula-
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion of vacancies is much lower than that of phonons.
For instance, if the vacancy energy band is sufficiently
narrow, the probability of Umklapp processes is signifi-
cantly higher for vacancies than for phonons. This might
overcome the low concentration of vacancies.

Interestingly enough, these formulas allow us to
obtain the growth rate for a smooth surface. The quasi-
particles playing the crucial role here (that of mass car-
riers) are vacancies, with their mass given by m = –mHe.

To estimate the rate, we write the temperature gradi-
ent as

where the subscripts 1 and 2 stand for the solid-wall
and the solid–liquid interfaces respectively (see Fig. 4).
Similarly, we write ∇φ  = (φ2 – φ1)/h for the chemical
potential. We now use boundary conditions (19) and (20),

∇ T
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Fig. 4. Crystal growth in one dimension.
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In other words,

where (using Eqs. (10) and (17))

In equilibrium,

and

If the liquid temperature and pressure change by ∆T and
∆p, we can write an equation for the growth rate v g,

(22)

where we used Eq. (6), the thermodynamic equality

for the liquid, and the obvious relation

We now consider this equation where the second
term in the right-hand side is equal to zero. This is a
usual scenario for heat conductivity measurements. The
heat flux Q = v TS can then be expressed as

where RK1 and RK2 are the Kapitza thermal resistances
on the solid–wall and solid–liquid boundaries and κ is
the heat conductivity of the crystal. Taking the inequal-
ities
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into account, we immediately obtain

As a result, the growth rate is given by

Strictly speaking, the last equality implies that thermo-
dynamic properties of the crystal mainly depend on
phonons, while the contribution of vacancies to the
effect under consideration is limited to the mass trans-
fer. The growth rate here depends on the overpressure
as well as on the temperature difference between the
liquid and the wall.

In the real experiment [2], the temperature is lower
than 100 mK. In this region, the phonon free path is
much longer than the experimental cell size and the
impact of phonons on the vacancy behavior is propor-
tional to a high power of the small ratio T/ΘD. Conse-
quently, as ΘD  ∞, we can consider the vacancy gas
as an independent component and neglect the influence
of phonons on it. The crystal growth is accounted for by
the presence of vacancies; hence, to estimate the
growth rate in the experimental situation, we can sim-
ply substitute the vacancy-only quantities for all vari-
ables in Eq. (22). Because it seems that there were
essentially no temperature gradients in the experiment,
we consider the isothermal case ∆T = 0.

The kinetic coefficients α and β are determined by
the vacancy annihilation probabilities in vacancy–sur-
face collisions. The vacancy gas velocity v  at the inter-
face should be expressed in terms of the accommoda-
tion coefficient W (which is the ratio of the number of
annihilated vacancies to the total number of incident
vacancies) as

(23)

where

is the difference between the incident and reflected dis-
tribution functions and

is the thermal velocity. Here, m* is the effective mass
near the bottom of the vacancy energy band. This mass
can be estimated from the energy band width ∆ as

The accommodation coefficient W, as any other
inelastic process probability in quasiparticle–surface

RK1
1

βTS2
------------, κ

τUTS2

ρK

---------------.= =

v g
mn

ρ TS2RK TS2h/κ+( )
------------------------------------------------- S∆T mn

ρ ρL–

ρ2
--------------∆p+ 

  .=

v
∆f
f

------VTW ,∼

∆ f fm∆µ/T∼

VT T /m*∼

m*  
"

2

a2∆
---------.∼
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interactions [11], is approximately the squared ratio of
the lattice period to de Broglie wavelength,

We can now compare Eqs. (23), (19), and (20). For the
coefficients, this yields

An estimate of the relaxation time τN characterizing
the normal (non-Umklapp) vacancy collisions can be
obtained from

where σ ~ a2 the vacancy-vacancy scattering cross sec-
tion. The Umklapp relaxation time is exponentially
longer, τU ~ τN exp(∆U/T), where ∆U < ∆ is a certain
energy specific to the vacancy Umklapp processes.

Using the obvious relation ρK = m*n, we proceed to
the growth rate. From Eq. (22), it follows that

Here, as an estimate, we set ρa3 ~ m and na3 ~
exp(−ε0/T), where ε0 is the bottom of the vacancy

energy band. For the facet mobility  = v g/∆p intro-
duced in [2], we have

(24)

6. CONCLUSION
Formula (24) provides a reasonable correspondence

between the theory proposed here and the experiment

W
a
λ
--- 

 
2 T

∆
---.∼ ∼

α β a
n"
------ T

∆
---.∼ ∼

τN
1

nσVT

-------------,∼

v g
m2n2 ρ ρL–( )

1/α 1/β m*n/τU+ +( )ρ3
------------------------------------------------------------∆p∼

∼ m2n2 ρ ρL–( )
∆/Tn"/a hm*n2a2VT ∆U/T–( )exp+( )ρ3

------------------------------------------------------------------------------------------------------∆p

∼ a4 ρ ρL–( )
"ρ

-------------------------
e0

T
---- 

  ∆
T
---exp

∆U

T
------– 

 exp
h
a
--- T

∆
---+ 

 
1–

∆p.

µ f*

µ f*
a4

"
-----ρ ρL–

ρ
--------------∼

×
e0

T
---- 

  ∆
T
---exp

∆U

T
------– 

  h
a
--- T

∆
---exp+ 

 
1–

.
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[2]. It suggests three main predictions to be verified in
further experiments.

1. The facet mobility has a maximum at some finite
temperature. If the temperature decreases below the
point of the maximum, the growth rate must also
decrease. Otherwise, if the mobility does not tend to
zero as the temperature tends to zero, this should be
considered as an indication of the presence of zero-
point vacancies (see [12]).

2. The observed growth rate depends on the height
of the sample.

3. The crystal grows at the boundary between the
solid and the wall. This fact can potentially be observed
experimentally using some small foreign object frozen
into the crystal in its upper part.
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Abstract—The shape of the interband absorption peak in quantum wells with uneven heteroboundaries is stud-
ied theoretically. Although the large-scale variations of the ground level in strongly doped structures are
screened, the energy of intersubband transitions remains inhomogeneous in the 2D plane due to unscreened
changes of the energy of an excited level. The equations for intersubband polarization are derived taking into
account the Coulomb contributions proportional to e2 and leading to a depolarization shift and the exchange
renormalization of the spectrum. The shape of the intersubband absorption peak is analyzed both in the local
approximation and taking into account the nonlocality of the response in the 2D plane. In the case of single-
layer irregularities of heteroboundaries, this mechanism makes the main contribution to the intersubband
absorption peak broadening for the far and intermediate IR range. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In spite of the fact that resonant intersubband transi-
tions have been studied actively during the last decade
[1–3], the shape of the absorption peak has not been
investigated in detail and the relative contributions of
various mechanisms of broadening remain unclear.
This is due to the fact that spectral studies in the IR and
submillimeter spectral ranges are rather complicated;
besides, the broadening is usually determined by the
competition between several mechanisms [4–7]. More-
over, the electron-electron interaction leading to a
depolarization resonance shift and to the exchange
renormalization of the spectrum noticeably affects
intersubband transitions (see the literature cited in [8, 9]).
The considerable influence of Coulomb effects on the
shape of the absorption peak in nonideal quantum wells
(QW) is also associated with the fact that large-scale
variations of the interband transition energy caused by
the variations of the width of nonideal QWs are not
screened even in heavily doped structures [10]. In an
analysis of the transport of 2D electrons filling the
ground state of 2D-inhomogeneous QWs, energy vari-
ations in this state are completely screened (we con-
sider the case when such variations are smaller than the
Fermi energy) so that large-scale inhomogeneities of
heteroboundaries become immaterial. However, in an
analysis of intersubband transitions, inhomogeneities
lead to a considerable absorption peak broadening
since the variations of the excited level energy (which
are stronger than in the ground state; see the diagram in
Fig. 1) remain unscreened. For a simple model of a QW
of width dx = d + δdx with high barriers, the interband
energy ε2x – ε1x = ε21 + δεx is defined by the relations
1063-7761/01/9306- $21.00 © 21270
(1)

Here, ε21 is the energy of an interband transition in an
ideal QW, δεx is the variation of the transition energy (x
is the coordinate on the 2D plane), m is the effective
mass, d is the average width of the QW, and δdx
describes its variation due to irregularities of hetero-
boundaries.

In this work, we consider the effect of unscreened
inhomogeneities of a QW on the shape of the interband
absorption peak. We will derive the equations for linear
corrections to nondiagonal (in the band number) com-
ponents of the density matrix, δf12(p, x) and δf21(p, x),
taking into account the Coulomb contributions propor-
tional to e2. Such contributions describe the high-fre-
quency correction to the self-consistent field as well as
the influence of exchange effects on intersubband tran-

εsx
sπ"/dx( )2

2m
------------------------ εs 1 2

δdx

d
--------– 

  ,≈ ≈

δεx 6ε1

δdx

d
--------.≈

ε2x

εF

ε1x

Fig. 1. Variations of energy ε21(x) of the intersubband tran-
sition along the 2D plane in a strongly doped QW.
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sitions. The inhomogeneity of the problem in the 2D
plane is taken into account in the semiclassical approx-
imation so that equations for δf12(p, x) and δf21(p, x) con-
tain the frequency (ε21 + δεx)/" of intersubband transi-
tions and conventional drift contributions proportional
to ∇δ fss'(p, x), while Coulomb contributions are deter-
mined by integrals over the p plane (Section 2). The
summation of such a system over 2D momenta gives a
chain of balance equations for the moments of the
response (Section 3). In the case of extreme long-wave
inhomogeneities (the local mode of the response, for
which we can disregard the drift contributions and con-
sider only the equation for intersubband polarization),
we arrive at a simple expression describing the nonuni-
form broadening of the absorption peak (Section 4).
The nonlocality of the response is taken into account
using power approximations for the kernels of the inte-
gral terms describing exchange contributions, which
enables us to express the intersubband polarization in
terms of a one-particle Green function. This function is
defined as a continual integral and describes (after aver-
aging over inhomogeneities) the transformation from
the Gaussian absorption peak to the Lorentzian shape
of the line with a smaller characteristic scale of inho-
mogeneities (Section 5). The last section is devoted to
approximations and concluding remarks.

2. SELF-CONSISTENT DESCRIPTION
OF RESPONSE

The linear response of a QW inhomogeneous in the
x plane, which is excited by a transverse electric field
E⊥ exp(–iωt) (polarized along the z axis) below r = (x,
z) is determined by the current density Jωxexp(–iωt):

(2)

Here, v ⊥  =  is the matrix element of the veloc-
ity, which is calculated for the |s〉  states described by
orbitals ϕsz (here and below, we take into account only
the pair of levels s = 1 and s = 2 between which transi-
tions take place), L2 is the normalization area, and the
factor 2 appears on account of summation over spins.
The linearized density matrix, which is nondiagonal in
the band numbers, is written here using the Wigner rep-
resentation in the variables describing the motion in the
2D plane:

Here,  is the correction to the density matrix, which
is proportional to exp(–iωt) and satisfies the operator
equation (see, for example, [11])

(3)

Jωx
2e

L2
------ v ⊥ δ f 12 p x,( ) δ f 21 p x,( )–[ ] .

p

∑=

2 v̂ z 1

δ f ss ' p x,( ) s δρ̂ s '= p x, .

δρ̂

iωδρˆ–
i
"
--- h̃ δρ̂,[ ] 1

"
--- δĥ ρ̂,[ ]+ + J δρ̂( ),=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
where  is the equilibrium density matrix and J( ) is
the linearized collision integral. The steady-state

Hamiltonian  appearing in relation (3) includes the

one-electron Hamiltonian  of a nonideal QW as well
as Coulomb corrections proportional to e2 (self-consis-
tent field and exchange contribution):

(4)

Here, summation is carried out over the 3D wave vector
Q = (q, q⊥ ), vQ = 4πe2/(eQ2L3) is the Coulomb matrix
element with permittivity e homogeneous across the
layer, and the trace also includes the summation over
the levels s = 1, 2. The contribution to the perturba-

tion operator  in Eq. (3), which is proportional to
exp(–iωt), can be written in the form

(5)

where the contribution from the self-consistent field is
expressed in terms of the induced density δnQ =

Sp[exp(iQ · r) ].

Approximating the collision integral by the relax-
ation frequency ν, we obtain the following system of
equations for δfss ',

(6)

in which v = p/m is the velocity of 2D electrons, fFp is
the spatially homogeneous Fermi distribution on the
ground level s = 1 (we consider the case of an unfilled
excited level), and the intersubband transition fre-
quency ω21(x, p) = ε21(x, p)/" takes into account the
random correction to the interleave energy described by
relations (1) as well as the exchange contributions:

(7)

The matrix elements of perturbation (5) can be written
in the Wigner representation in the form

ρ̂ δρ̂

h̃

ĥ

h̃ ĥ v Q e iQ r⋅– Sp eiQ r⋅ ρ̂( ) e iQ r⋅– ρ̂eiQ r⋅–[ ] .
Q

∑+=

δĥ

δĥ
ie
ω
----E⊥ v̂ ⊥=

+ v Q δnQe iQ r⋅– e iQ r⋅– δρ̂e
iQ r⋅

–[ ] ,
Q

∑

δρ̂

ω iν ω21 x p,( ) iv+ + + ∇ x⋅[ ]  + δ f 12 p x,( )
δh12 p x,( ) f Fp/"+ 0,=

ω iν ω21– x p,( ) iv+ + ∇ x⋅[ ]  + δ f 21 p x,( )
+ δh21 p x,( ) f Fp/" 0,=

"ω21 x p,( ) ε21= δεx+

– v Q 2 e iQ · r– ρ̂eiQ · r 2 1 e iQ · r– ρ̂eiQ · r 1–[ ] .
Q

∑
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(8)

where the Coulomb contributions are expressed in
terms of the factor

(9)

In the equality on the right-hand side, we carried out
integration with respect to q⊥ . Using such a notation,
we can write the frequency of intersubband transitions
introduced in Eq. (7) in the form

(10)

where ω21(x) = (ε21 + δεx)/" = ω21 + δωx takes into
account the inhomogeneity of the problem in the 2D
plane. The last term in relation (10) describes the
exchange renormalization of the intersubband transi-
tion frequency, which is a function of momentum p.

Further simplification is possible in the limiting 2D
case, when pF ! "/d and the kernels Mabcd(q) of the sys-
tem of equations under investigation can be presented
in the form

(11)

where aB is the Bohr radius and the characteristic length
Labcd has been introduced. It is convenient to introduce,

instead of δfss ', new unknown functions  defined as

(12)

As a result, the system of equations (6) can be trans-
formed to

δhss ' p x,( ) ie
ω
----E⊥

v ⊥ ss '( ), 21( )=

v ⊥– ss '( ), 12( )=
–

=  
p1d

2πm
----------- δ f ab p1 x,( )

ab

∑∫

× 2Mss 'ba 0( ) Msabs '

p p1–
"

----------------- 
 – ,

Mabcd q( ) e2m

πe"
2

------------ q⊥
a e

iq⊥ z–
b c e

iq⊥ z
d

q⊥
2 q2+

----------------------------------------------------d
 
 
 

∞–

∞

∫=

=  
1

aBq
--------- zϕazϕbz z 'ϕcz 'ϕ z 'd e q z z '–– .d∫d∫

ω21 x p,( ) ω21 x( )=
p1d

2π"m
---------------∫–

× f F p1
M2112

p p1–
"

----------------- 
  M1111

p p1–
"

----------------- 
 – ,

Mabcd q( )
δabδcd

aBq
--------------

Labcd

aB

------------,–≈

Labcd z z 'ϕazϕbzϕcz 'ϕ z 'd z z '– ,d∫d∫=

ψp x,
±

δ f 12 p x,( ) δ f 21 p x,( )± 2ie
"ω
--------E⊥ v ⊥ f Fpψp x,

± .=
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(13)

This system should be considered in the region |p| < pF.
The Coulomb contributions Ω(ψ±|p, x) in Eqs. (13) are
defined by integrals,

(14)

so that Eqs. (13) form a system of differential equations
in x (in first-order partial derivatives) and integral equa-
tions in p.

3. BALANCE EQUATIONS

In accordance with Eqs. (2) and (12), the induced

current density can be written in terms of  as

(15)

where the sum with the prime corresponds to summa-
tion inside the Fermi circle |p| < pF. The local conduc-

tivity σωx in Eq. (15) contains the factor  =

(2/L2) , whose dimension is equal to concentra-

tion divided by frequency. Relative absorption ξ(ω) of
a 2D layer (defined as the ratio of energy fluxes
absorbed in the QW and transmitted through the 2D
layer; see [2]) is introduced through the relation

(16)

where 〈…〉  denotes averaging over inhomogeneities in
the QW thickness. Carrying out the summation of
Eq. (13) over the p plane, we obtain the system of bal-

ance equations for ,

ω iν iv+ + ∇ x⋅[ ]ψ p x,
+

+ ω21 x( )ψp x,
– Ω ψ–|p x,( )+ 1,=

ω iν iv+ + ∇ x⋅[ ]ψ p x,
–

+ ω21 x( )ψp x,
+ Ω ψ+|p x,( )+ 0.=

Ω ψ+|p x,( )

Ω ψ–|p x,( )

p1d
2π"m
--------------- ψp x,

± ψp1 x,
±–( )

p pF<
∫=

× "
aB p p1–
-----------------------

L1212

aB

-----------+ 
  p1d

2π"m
---------------

p pF<
∫–

× ψp x,
± L1111

aB

----------- ψp1 x,
± L1122 2L1212–( )/aB

L1122/aB

–
 
 
 

,

ψp x,
–

Jωx i
2e( )2 v ⊥

2

"ωL2
-------------------------E⊥

'

p

∑ ψp x,
– σωxE⊥ ,= =

δnx
–

ψp x,
–

p
'∑

ξ ω( ) 4π
c ε
---------Re σωx〈 〉 e2

"c
------

8π v ⊥
2

εω
------------------Im δnx

–〈 〉 ,= =

δnx
±
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(17)

in which  denotes the summation over filled
states and the flux contributions

appear. The system of equations for  is obtained as a
result of summation of Eqs. (13) with weight v,

(18)

and acquires the following moments:

Here, we have used the smallness of anisotropy  in
the case of smooth inhomogeneities and retained only
the diagonal contribution in α, β while writing the next

mean . After summation of system (13) over the p
plane with weight v 2, we obtain the following equa-
tions for this contribution:

(19)

ω iν+( )δnx
+ i∇ x ix

+⋅ ω21 x( )δnx
–+ +

+
2

L2
----- '

p

∑ Ω ψ–|p x,( ) 2

L2
----- '

p

∑ 1,=

ω iν+( )δnx
– i∇ x ix

–⋅ ω21 x( )δnx
++ +

+
2

L2
----- '

p

∑ Ω ψ+|p x,( ) 0,=

1p
'∑

ix
± 2

L2
----- '

p

∑ vψp x,
±=

ix
±

ω iν+( )ix
+ i

2
--- ∇ xwx

+ ω21 x( )ix
–+ +

+
2

L2
----- '

p

∑ vΩ ψ–|p x,( ) 0,=

ω iν+( )ix
– i

2
--- ∇ xwx

– ω21 x( )ix
++ +

+
2

L2
----- '

p

∑ vΩ ψ+|p x,( ) 0,=

2

L2
----- '

p

∑ v αv βψp x,
± δαβwx

±

2
--------------.≈

ψp x,
±

wx
±

ω iν+( )wx
+ ω21 x( )wx

–+

+
2

L2
----- '

p

∑ v 2Ω ψ–|p x,( ) 2

L2
----- '

p

∑ v 2,=

ω iν+( )wx
– ω21 x( )wx

++

+
2

L2
----- '

p

∑ v 2Ω ψ+|p x,( ) 0,=
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where we have neglected the gradients

(2/L2)  of the next moments.

Let us now consider the Coulomb contributions to
the chain of equations (17)–(19). In the summation of
the integral term in Eq. (14) over p, the contribution
proportional to |p – p1|–1 is left out and we arrive at the
simple relation

in which the Coulomb corrections to frequencies have
the form

(20)

The last equality is written here after calculating Labcd

by formula (11) for the model of QW of width d with
high barriers, when L1111 ≈ 0.2d, L1122 ≈ 0.27d, and
L1212 ≈ –0.11d so that coefficients A± are equal to A+ ≈
0.29 and A– ≈ 0.063. In the system of equations (18),
there appear the Coulomb contributions

(21)

while system (19) contains the contributions

(22)

In these expressions, the integrals proportional to |p –
p1|–1 do not vanish and are expressed in terms of the
dimensionless functions S(p/pF) and R(p/pF).

The functions S(z) and R(z) in (21) and (22) are
defined by the integrals

(23)

v 2vψp x,
±

p
'∑

2

L2
----- '

p

∑ Ω ψ±|p x,( ) δω±δnx
±,=

δω±
εF

"aB

---------=

×
L1122 L1111– 2L1212–

L1122 L1111–

 εF

"
----- d

aB

-----A±.=

2

L2
----- '

p

∑ vΩ ψ±|p x,( )
εF

"
-----

L1212 L1111–
aB

----------------------------ix
±=

+
"

aB pF

------------ 2

L2
----- '

p

∑ ψp x,
± v F

p
p
---S

p
pF

------ 
  ,

2

L2
----- '

p

∑ v 2Ω ψ±|p x,( )

=  
εF

"
----- "

aB pF

------------ 2

L2
----- '

p

∑ ψp x,
± v F

2 R
p
pF

------ 
  L1212 L1111–

aB

----------------------------wx
±+

∫ –
3L1212 L1122–

L1212 L1122– 
 
 

δnx
± v F

2

2aB

--------- .

S z( ) xd

πz2
--------z2 x z⋅–

z x–
-------------------- S,≈

x 1<
∫=

R z( ) xd
π
------ z2 x

2–

z x–
-------------- –R rz2+≈

x 1<
∫=
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and are quite smooth (see the results of numerical cal-
culations presented in Fig. 2). These dependences can
be approximated by a constant and a parabola written in
the right equalities of Eqs. (23). The following numeri-
cal values of these parameters can be chosen with an
accuracy of about 5%: S ≈ 0.95, R ≈ 0.7, and r ≈ 1.35.
When such an approximation is used, the integral con-
tribution on the right-hand side of Eq. (21) can be

expressed in terms of  and  and the right-hand

side of Eq. (22) acquires the terms  and . Thus,
Eqs. (17)–(19) form an approximate closed system of
differential equations (17), (18) and algebraic equations
(19). These equations contain the random correction
δωx to the transition frequency, which is responsible for
the absorption peak broadening.

4. LOCAL APPROXIMATION

Let us first consider the case of extremely smooth

inhomogeneities, when the flux contributions ∇ x ·  in
Eqs. (17) can be neglected. This leads to the simple

algebraic system for ,

(24)

where n2D is the concentration of 2D electrons, and the
frequencies  = ω21 + δω– and  = ω21 + δω+ have
been introduced. The solution of system (24) can easily
be determined, and it remains for us to calculate the

average . However, such an averaging in the gen-
eral case is quite cumbersome and we will confine our
analysis to the shape of the curves near resonance. In
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± wx
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±

δnx
±

ω iν+ ω̃21 δωx+

ω21 δωx+ ω iν+

δnx
+

δnx
–

n2D

0
,=

ω̃21 ω21

δnx
–〈 〉

–0.8

0
z
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0
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0.8
S

R

Fig. 2. Functions S(z) and R(z) defined by formulas (23); the
dashed curves correspond to the approximations used for
closing the balance equations.

S, R
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this approximation, it is convenient to diagonalize first
the non-Hermitian matrix

using the nonunitary transformation

(25)

in which the parameters

and

have been introduced. The result of diagonalization has
the form

(26)

where Ω21 =  is the resonance transition fre-
quency. For a small displacement of the peak, we have

with coefficient A ≈ 0.18 calculated for the model of a
QW with high barriers, which was used for deriving
Eq. (20). We can now carry out a similar transformation
for matrix

and for the inhomogeneous part of Eqs. (24) by writing
the system of equations for

For frequencies close to Ω21, only the resonance com-
ponent Px is large in such a column, which satisfies the
equation

(27)

Here, we have introduced the energy detuning δε =
"(ω – Ω21) and the energy of uniform broadening γ =
"ν as well as the random potential ux = K"δωx (param-

eter K = (  + )/2 is close to unity for
the small Coulomb renormalization of the intersubband

transition energy, δω± ! ω21). The function 
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ω21 0

Λ̂ η η̃–

η η̃
, Λ̂ 1– 1

2
--- 1/η 1/η
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,= =
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ω21 0
Λ̂ 1– Ω21– 0

0 Ω21
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ω21ω̃21

Ω21 ω21≈ A
εF

"
----- d
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-----+
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δωx 0
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.
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δnx
–
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appearing in Eq. (16) can be expressed in terms of Px in

accordance with relation  ≈ –"Px/2 .

Substitution of the solution of Eq. (27) into relation
(16) gives the relative absorption

(28)

In order to average this expression over the random
potential ux, it is convenient to use the relation

In this case, ux appears in the exponent and, hence, the
average over the variations of the QW thickness can be
obtained using the relation

where  is the mean square variation of the interband
energy (1). As a result, the relative absorption is given
by the formula (which can also be written in terms of
the probability integral of a complex argument)

(29)

where we have introduced the characteristic energy of

nonuniform broadening, Γ = 6Kε1 /d, corresponding
to the mean square variation of the QW width equal to

. The last equality gives the asymptotic forms for
dominating collision or nonuniform mechanisms of
broadening, for which a Lorentzian of a Gaussian peak
is realized. Figure 3 illustrates the transformation of the
line shape between these limiting cases upon an
increase in the ratio Γ/γ. Here, the maximum value
ξmax = ξ(δε = 0) of relative absorption has also been
introduced:

(30)
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where the function G(z) describing the decrease in the
peak height upon an increase in its width is expressed
through the probability integral Φ(z).

The numerical estimate of the value of Γ for the
parameters of GaAs QW corresponding to the spectral
region of 10 µm in the case of monolayer variations of

heteroboundaries (  ≈ 2.5 Å) gives a line width of
approximately 10 meV, which is in accord with a num-
ber of measurements (see Chapter 8 in [2] and [12]).
Recent measurements [5, 7] of smaller peak widths (of
the order of a few millielectronvolts) became possible
owing to a higher quality of heteroboundaries (for

which  ≈ 1 Å). These measurements also demon-
strate a noticeable decrease in the value of Γ upon an
increase in the QW width, which agrees with the results
of our analysis. A similar estimation for an InAs QW
with the parameters corresponding to the spectral
region of 5 µm gives a value of Γ of the order of
30 meV, which corresponds to the results obtained
in [6]. The measurements of emission in the submilli-
meter spectral region [13–15] give line widths of the
order of several millielectronvolts, which also con-
forms to the expression for Γ presented by us here (in
these numerical estimates, it was assumed that the
energy 3ε1 is close to the energy of the transition
between energy levels). Although a detailed analysis of
the shape of the peak requires additional self-consistent
calculations and special measurements, a satisfactory
agreement of the simple expression for Γ with the
experimental results demonstrates a significant role of
nonuniform broadening in the experiments [5–7] and
[12–15].

δd

δd

0.2

0 2.5

ξ(δε)/ξmax

δε/γ
5.0 7.5

0.4

0.6

0.8

1.0

1

2
3

0.5

É/γ = 0

Fig. 3. Transformation of the shape of the absorption peak
upon an increase in the contribution of nonuniform broad-
ening (the values of Γ/γ are given on the curves); the func-
tion G(z) from Eq. (30), describing the decrease in the peak
height upon its broadening, is shown by the dashed curve.
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5. NONLOCAL BROADENING MODE

Let us now consider the case of finite values of cor-
relation length lc, for which the flux contributions to the
formation of the intersubband absorption peak must be

taken into account and the equations for , , and

 must be analyzed. Substituting approximations (23)
into the right-hand sides of (21) and (22), we can write
Eqs. (18) and (19) in the form

(31)

(32)

where we have introduced the parameters

as well as the renormalization frequencies

(33)

and "∆ω = εF(L1212 – L1111)/2aB. The substitution of the
solution of Eq. (32) into Eq. (31) and the subsequent
substitution of the solution of Eq. (31) into Eq. (17)

give a closed system of equations for .

Confining our analysis to the resonance approxima-
tion, we will henceforth disregard small random correc-
tions in nonresonance contributions while writing the
solutions of Eqs. (31) and (32) and assume that the
value of ω is close to Ω21. As a result, we obtain the fol-

lowing system of equations for the functions  deter-
mining the intersubband polarization:

(34)
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which differs from system (24) only in the emergence
of a nonlocal (proportional to ) contribution deter-
mined by the tensor

(35)

Further, we carry out the transformation of Eq. (25) and
separate the resonance component of system (34),
which leads to the equation

(36)

generalizing Eq. (27) by taking into account the nonlo-
cal contribution with the effective mass

(37)

(here M = "/2_11) along with the random potential
ux ∝  δωx.

It is convenient to write the solution of Eq. (36) by
introducing the Green function of this equation in
accordance with

(38)

(  ≡ –i"∇ x). Substituting now  = –"Px /2  into
relation (16), we obtain the following expression for
relative absorption:

(39)

The Green function introduced into Eq. (38) in the stan-
dard manner can be written in terms of the continual inte-
gral. In this integral, we carry out averaging over the ran-
dom potential and separate a rectilinear trajectory along
the interval (x, x') (see [16]). As a result, ξ(δε) can be
expressed in terms of the continual contour integral,

(40)
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which is independent of x. Here, u = x – x' and we have
used the Gaussian correlation function

with the correlation length lc and the characteristic

energy  = Γ/K (the broadening Γ was introduced into
Eq. (29); henceforth, K will be replaced by unity).

In order to estimate the contributions of deviations
from the rectilinear trajectory to the continual integral
(40), we use the method of the optimal trajectory.
According to [16], such a trajectory corresponds to the
minimal variation of action in the exponent in Eq. (40)
and can be determined from the Euler–Lagrange equa-
tion

(41)

This equation must be solved with the initial conditions
xτ = 0, t = 0. The right-hand side of Eq. (41) can be esti-

mated by using the inequality |xW(x)| ≤ lc , which
gives a simple upper estimate for xτ (see analogous cal-
culations in Appendix B in [17]). The maximum devia-
tion of the optimal trajectory from the rectilinear trajec-

tory, , takes place for τ = t/2. Thus, we can disre-
gard the deviations from the rectilinear trajectory while
writing the correlation function in Eq. (40) if the fol-
lowing inequality is satisfied:

(42)

After substituting the continual integral into Eq. (40),
we obtain the expression for the relative absorption for
free motion in the form of a multiple integral:

(43)

It should be noted that time intervals of the order of
"/γeff are significant for calculating Eq. (43); here γeff
determines the resulting peak broadening.

For large-scale variations of the QW width, for
which
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the term in Eq. (43) describing the nonuniform broad-

ening assumes the form exp[–( t/")2/2]; here, the
energy εc has been introduced for estimating the drift
contributions to the peak broadening. After elementary
integration with respect to u, relative absorption is
given by the simple integral (29) with respect to time.
Thus, the inequality εc ! γeff defines the limits of appli-
cability of the local approximation discussed in Section 4.
Such a dependence is also valid in the tails of the
absorption peak under the condition εc ≤ |δε| so that the
Lorentzian spectrum is always realized for high detun-
ing energies.

In the opposite limiting case εc @ γeff of small-scale
inhomogeneities, a more detailed analysis of the shape
of the central part of the peak is required, where |δε| ≤
εc. Since only small quantities |x – x ' | make a contribu-
tion to the term in Eq. (40) proportional to t2, the rela-
tive absorption is transformed to

(44)

where the direction of the time axis is changed and the
dimensionless variable s is introduced instead of dis-
placement u. The term in the exponent proportional to

 can be replaced by unity under the condition

(45)

where Γsr is the characteristic energy of broadening in
the case of small-scale inhomogeneities. In the limiting
case (45), the absorption peak is of the Lorentzian type
with a uniform collision broadening γ. If, however, the
inequality opposite to (45) is realized, the integration in
Eq. (44) should be carried out numerically.

Figure 4 shows the dependences of relative absorp-
tion on δε/γ for various values of the ratio γ/Γsr. For
large values of this parameter, a conventional Lorentz-
ian peak of half-width γ is realized. As the value of γ/Γsr
decreases, the peak becomes slightly asymmetric and
its half-width is of the order of Γsr; the value of ξ(δε)
also varies slowly in the vicinity of the peak. Such a
shape of the peak is better approximated by the sum of
two Lorentzian contributions with noticeably different
half-widths than by a Lorentzian or Gaussian curve
with any parameters. A more complex approximation
for the absorption peak determined by formula (44) can
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be obtained by presenting  as the sum of the asymp-

totic forms for t  0 and for large times (in this
region, the integral is evaluated by the steepest descent
technique). As a result, ξ(δε) is given by the sum of the
Lorentzian peak of half-width γ and a correction with a
half-width of the order of γ + Γsr, which decreases in
proportion to |δε|–3/2.

The characteristic energy εc determining the condi-
tions of applicability of small-scale inhomogeneities as
well as energy Γsr can be expressed in terms of the mass
introduced in Eq. (37). For a GaAs QW of width 100 Å
and with an electron concentration 5.6 × 1011 cm–2, we
obtain M ≈ 1.7m so that we have εc ≈ 3meV for values
of lc approximately equal to 200 Å (for which the con-
ditions lc > d, aB are still observed). Using the nonuni-

form broadening Γ = 3 meV corresponding to , we
obtain from Eq. (45) Γsr ≈ 4.4 meV. For such parame-
ters, εc only becomes equal to γeff; i.e., the conditions of
the applicability of the short-wave limiting case are

observed for decreasing  and lc. In [5, 12], peaks
exhibiting a weak dependence on temperature and hav-
ing a shape close to the Lorentzian were observed; the
broadening of such peaks is associated with hetero-
structure irregularities. Since the mobility in the sam-
ples investigated in [5, 12] did not correlate with the
line width, the contribution from irregularities to uni-
form broadening (which is significant for lc ≤ "/pF) can
be regarded as small so that the broadening mechanism
described above (and corresponding to the condition
lc ≥ "/pF) is realized.
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Fig. 4. Relative absorption (in the units of  =

(e2/"c)(4πv ⊥ n2D/ Ω21)("/γ))) for various values of γ/Γsr
indicated on the curves.
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6. CONCLUSIONS

The results obtained in this work demonstrate a sig-
nificant contribution of large-scale unscreened varia-
tions of intersubband transition energy to the absorp-
tion peak broadening. Such a broadening mechanism
may dominate not only in the far, but also in the inter-
mediate IR region. Upon a decrease in the correlation
length of inhomogeneities, the nonlocal response mode
is realized and the Gaussian shape of the line is trans-
formed into the Lorentzian shape.

Let us briefly discuss the approximations used in the
present work. The interband transition energy and its
variations due to irregularities of heteroboundaries
were estimated by using the simplest model of a QW
with high barriers, and the transition broadening due to
collisions were described by the phenomenological
relaxation frequency ν. Since the nonideality of the het-
erostructure changes the surface permittivity insignifi-
cantly, the exciting field E⊥  is assumed to be uniform in
the 2D plane. These approximations are generally
accepted and the main approximation used here is a
simple approximation of functions (23), which makes it
possible to close the chain of balance equations and to
carry out the description of the peak shape taking into
account nonlocal effects with the help of the standard
averaging of the continual integral. The applicability of
this approximation is based on the matching of the
results of numerical calculations presented in Fig. 2 and
approximation of functions (23). We also assume that
the inhomogeneities of the QW are smooth: the corre-
lation length lc is regarded as noticeably larger than aB

so that the variations of the ground state energy are
screened completely. The variations of the intersub-
band energy are assumed to be small as compared to the
Fermi energy, which allows us to confine our analysis
to the contribution of rectilinear trajectories while cal-
culating the integral (40). A numerical analysis of the
opposite limiting case of electron localization in a
weakly doped QW was carried out recently in [18]. An
analysis of the transition between small and large inho-
mogeneities requires special attention (a similar prob-
lem appears in the description of the shape of the exci-
ton absorption peak in a nonideal QW [19]).

In spite of the simplifications presented in Sec-
tions 4 and 5, our results describe a transition between
two modes of nonuniform and uniform broadening of
the interband absorption peak and give the line width
depending on the QW parameters and the nature of
inhomogeneity of the heteroboundaries. The numerical
estimates demonstrate a considerable contribution of
the proposed mechanism to the absorption peak broad-
ening. Such a broadening mechanism must be taken
into account not only in the description of the spectral
parameters of various devices (detectors and modula-
tors) for the far and intermediate IR range, but also in
the analysis of the resonance amplification of monopo-
lar lasers. This mechanism of broadening must also be
 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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manifested in inelastic scattering of light involving
intersubband transitions [20].
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Abstract—An analytic method is developed for studying the electrodynamic properties of Josephson junctions
biased with a sequence of delta-function pulses. Such investigations are of interest in connection with develop-
ing, on the basis of the Josephson effect, analog-to-digital converters and synthesizers producing signals of a
preset form with a fundamental precision. Analytic expressions are obtained that determine phase lock condi-
tions, the mean voltage across the junction, and the boundaries of Shapiro’s steps. The results obtained are pre-
sented in a graphical form for the cases of unipolar and bipolar bias of a junction. The results are discussed
and compared with those known from previous investigations. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Presently, Volt standard based on the Josephson
effect and intended for reproducing, with a fundamen-
tal precision, the unit of dc electric voltage at levels of
1 and 10 V have been created and are successfully oper-
ating in a number of metrological laboratories in lead-
ing countries worldwide [1–4], including Russia [5–7].
A array of Josephson junctions that contains 15 to 20 or
more thousands of junctions, depending on the fre-
quency of microwave bias and the nominal voltage to
be reproduced, form the hub of such devices.

Originally [8–10], such arrays were implemented
with the aid of superconductor–insulator–superconduc-
tor (SIS) Josephson structures, which are characterized
by a considerable junction capacitance and, as a conse-
quence, by a hysteresis in the current–voltage charac-
teristic [11, 12]. The electrodynamic properties of SIS
structures are described by the first-order nonlinear dif-
ferential equation {cf. Eq. (2.48) in [11] or with
Eq. (6.3.5) in [12]}

where the factor

takes into account dissipation and the interference
between the current of Cooper pairs and the quasiparti-
cle current in tunnel structures and α is a hysteresis
parameter. The parameter ε is small in general, so that
the contribution of the cosϕ term can be disregarded in
many cases of practical importance.

The success in creating the standards of dc voltage
gave impetus to undertaking efforts to develop devices
generating (synthesizing), with a fundamental preci-

αϕ̇̇ β ϕ( )ϕ̇ ϕsin+ + q t( ),=
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sion, an ac voltage [13–19]. For this, it is necessary to
have so-called overdamped (α ! 1) Josephson struc-
tures, whose current–voltage characteristic does not
possess a hysteresis. The electrodynamic properties of
such a Josephson junction can be described in terms of
a first-order differential equation [17–19].

Work on developing, on the basis of the Josephson
effect, programmable analog-to-digital converters and
devices synthesizing signals of a preset shape are being
performed in a number of centers that possess a consid-
erable technological potential for creating Josephson
structures, including those that employ superconduc-
tor–normal metal–superconductor (SNS) junctions (at
the National Institute of Standards and Technologies,
USA) [13] and those that employ superconductor–
insulator–normal metal–insulator–superconductor (SINIS)
junctions (at the Physikalische-Techninikalische Bunde-
sanstalt, Germany) [14].

It should be noted that, in contrast to SNS structures,
two-barrier structures of the SINIS type possess a finite
capacitance. In describing the electrodynamic proper-
ties of Josephson junctions manufactured on the basis
of SINIS technologies, it is therefore necessary, in gen-
eral, to take into account the term that involves the sec-
ond derivative. Nevertheless, experimental investiga-
tions of SINIS arrays operating in a frequency region
around 10 GHz that were manufactured at the Phys-
ikalische-Techninikalische Bundesanstalt and which
are intended for application in devices providing the
standard of ac voltage showed the absence of a hyster-
esis in their current–voltage characteristics (see, for
example, [6, 7]).

One possible method for generating an ac voltage of
a preset shape on the basis of the Josephson effect con-
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sists in varying the frequency of bias according to a spe-
cific law. If, however, sinusoidal microwave radiation is
used for bias, the admissible frequency range within
which the current–voltage characteristic of a junction
contains Shapiro’s steps is bounded, its width does not
exceed, as a rule, 10–15% of the central value.

In [15], it is stated that, if a sinusoidal microwave
voltage for bias a junction is replaced by a pulsed volt-
age, the width of Shapiro’s steps in the current–voltage
characteristic of a Josephson junction becomes virtu-
ally independent of the pulse-repetition frequency over
a wide range for all frequencies below some critical
value.

Devices that are intended for generating (synthesiz-
ing) an ac voltage of a preset shape and which are being
designed at present are based on forming the output ac
voltage by controlling, according to a specific digital
code, the frequency of repetition of electric pulses bias
the Josephson junction used [16].

In view of the importance of this approach, attempts
were made in [17–19] to study theoretically the electro-
dynamic properties of a Josephson junction biased with
a sequence of pulses having a specific shape. In the
present study, we propose a somewhat different
approach that makes it possible to describe a number of
radically new features in the behavior of a overdamped
Josephson junction biased with a sequence of delta-
function pulses. For the mathematical model of bias
pulses, we have chosen a delta function because a com-
paratively simple experimental realization of this
model is possible—this can be achieved, for example,
by differentiating an electric bias signal that has the
shape of a meander.

2. FORMULATION OF THE PROBLEM

As was indicated above and in [11, 12, 17–19], the
response of a overdamped Josephson junction of the
SNS or the SINIS type can be described in terms of the
first-order differential equation

(1)

where ϕ(t) is the phase of the order parameter and t =
ωcτ is a dimensionless time, with ωc = 2πKJRNIc being
a frequency characteristic of a specific junction. Here,
KJ = 483597.9 GHz/V is the Josephson constant, RN is
the normal resistance of the junction, and Ic is its criti-
cal current. The quantity q(t) on the right-hand side of
Eq. (1) is a periodic function having a period T and
describing the signal bias the junction. The period T is
defined here as the dimensionless quantity T = ωc/f,
with f being the dimensional pulse-repetition frequency
(the inverse of the dimensional pulse-repetition period).

ϕ̇ t( ) ϕ t( )sin+ q t( ),=
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If a Josephson junction is biased with a periodic
sequence of delta-function pulses, the function q(t) can
be represented in the form

(2)

where t0 is an initial instant of time (t > t0), 2πi1 = 2πI1/Ic

is the integrated amplitude of the pulses, and i0 = I0/Ic is
the constant component of the junction bias current
minus the component induced by the delta-function
pulses. It is worth noting that, upon averaging the right-
hand side of Eq. (2), there arises the expression i0 +
2πi1/T, which involves the term 2πi1/T. This term repre-
sents the mean current induced in the junction by the
bias pulses. The constant bias current i is preset by an
external power-supply unit. Since the microwave-bias
circuit contains, as a rule, a separating electric capaci-
tor, we will henceforth set i0 = i – 2πi1/T.

The mean voltage U across a Josephson junction is
given [11, 12] by

(3)

where τa is the time of averaging; in practice, this time
is usually much longer than the pulse-repetition period
f –1. In the presence of the phase lock effect [11, 12, 17–
19], which leads to the appearance of Shapiro’s steps in
the current–voltage characteristic of a junction, the
condition

(4)

holds at t  ∞ for τa  ∞ with µ(τa)  0. For suf-
ficiently long averaging times τa, Eq. (3) reduces to the
well-known Josephson relation KJU = kf, where k = 0,
±1, ±2… is the order of Shapiro’s step.

In order to construct a solution to Eq. (1) with the
right-hand side specified by Eq. (2), we make use of the
method proposed in [20]. Following this method, we
seek a general solution ϕ(t) to Eq. (1) in the form of the
sum

(5)

where ϕn(t) satisfies the relation

(6)

in the interval tn ≤ t < tn +T, tn = t0 + nT and vanishes for
other values of t > t0. In Eq. (6), j stands for an imagi-
nary unit; ϕ∗ (t) is a solution to the equation

, (7)

q t( ) i0= 2πi1 δ t t0– nT–( ),
n 1≥
∑+

U
1

2πK jτa

------------------ ϕ t0 ωcτa+( ) ϕ t0( )–[ ] ,=

ϕ t ωcτa+( ) ϕ t( )– 2πk
ωcτa

T
----------- 

  1 µ τa( )+[ ]=

ϕ t( ) ϕn t( ),
n 0≥
∑=

jϕn t( )[ ]exp jϕ* t tn–( )[ ]
1 CnF t tn–( )+
1 CnF t tn–( )+
------------------------------------exp=

ϕ̇* ϕ*sin+ i0=
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where the right-hand side i0 is a constant; Cn is a real-
valued constant; and F(t) is specified by the expressions

(8)

(note that the definition of P(t) differs from that used in
[20]). In addition, the functions ϕn(t) must satisfy the
matching conditions

(9)

which, together with Eq. (6), determine recursively the
entire sequence of the constants Cn and the required
solution ϕ(t), apart from an additive constant term (an
integral multiple of 2π).

For the phase lock effect, which leads to the appear-
ance of Shapiro’s steps in the current–voltage charac-
teristic, to occur, it is necessary and sufficient that the
condition

(10)

for n  ∞ be satisfied uniformly in the interval tn ≤
t < tn + 1. The existence of the limit in (10) is equivalent
to the condition of convergence of the sequence Cn, the
limit C = limCn satisfying a quadratic equation that will
be explicitly obtained below [Eq. (16)]. Accordingly,
the phase lock condition proves to be equivalent to a
condition that ensures the existence of a real-valued
solution to the aforementioned quadratic equation
(more precisely, there are generally two such solutions,
but only one of these corresponds to the limit of the
sequence Cn).

Thus, the problem specified by Eq. (1) with the
right-hand side in the form (2) has been reduced to
making use of the well-known [11, 12] analytic solu-
tion to Eq. (7) with a constant right-hand side on the
interval [0, T], whereupon it only remains to derive con-
ditions under which relation (10) is satisfied.

3. ANALYTIC SOLUTION

In order to analyze the behavior of the phase func-
tion within the framework of the above approach, we
must choose a solution ϕ∗  to Eq. (7). It is necessary to
consider the cases of |i0| > 1 and |i0| < 1 separately. First,
we consider the case of |i0| < 1, where it is convenient
to employ the obvious time-independent solution ϕ∗ (t) =
ϕ(∗ ), where the constant ϕ(∗ ) satisfies the equation

F t( ) Q t( )= jP t( ),+

P t( ) ϕ* t( )cos td

0

t

∫– ,exp=

Q t( ) P t( ) ϕ* t( )sin td

0

t

∫=

ϕn t( )
t tn 1+→ 0–

lim 2πi1+ ϕn 1+ tn 1+( ),=

ϕn 1+ t T+( ) ϕn t( ) 2πk–

ϕ
*( )sin i0,=
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which corresponds to the time-independent Josephson
effect [11, 12]. Let us note that, in the regions

where the time-independent solution is stable, the fol-
lowing relation holds:

Substituting the expressions for sinϕ(∗ ) and cosϕ(∗ )

into (8), we can derive, after a simple algebra, the fol-
lowing formula for the functional F:

(11)

In the case of |i0| > 1, Eq. (7) does not have time-
independent solutions. Suppose that i0 > 1 (the case of
i0 < 1 can be treated in a similar way). In the interval
0 ≤ t < T, that time-dependent solution which reduces to
a time-independent one for i0  1 + 0 can be repre-
sented in the form

(12)

which can be shown equivalent to expression (6.2.6)
from [12].

It is worth noting at this point that, if sinϕ∗  ≠ i0 and
if the function ϕ∗  satisfies Eq. (7), there is an explicit
formula that directly expresses F(t) in terms of ϕ∗ (t),

which reads

(13)

Together with formula (12), this yields

(14)

–π/2 2mπ+ ϕ *( ) π/2≤ ≤ 2mπ, m+ 0 1 2 …,,±,±,=

ϕ *( )cos 1 i0
2– 0.>=

F t( ) ϕ
*( )tan= 1 t ϕ

*( )cos–( )exp–[ ]

+ j t ϕ
*( )cos–( ).exp

jϕ* t( )( )exp j i0 1+
t
2
--- i0

2 1– 
 cos=

+ j i0 1–
t
2
--- i0

2 1– 
 sin

× i0 1+
t
2
--- i0

2 1– 
 cos j i0 1–

t
2
--- i0

2 1– 
 

1–

sin ,–

F t( )
ϕ* 0( )( )cos ji0 jϕ* t( )( )exp–+

i0 ϕ* 0( )sin–
------------------------------------------------------------------------------.=

F t( ) j
i0 1+

i0 1–
-----------------=

×
i0 i0

2 1– jt i0
2 1–( )exp–+

i0 i0
2 1– jt i0

2 1–( )exp+ +
---------------------------------------------------------------------.
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Taking into account relation (6), we can recast the
phase lock condition into a form that ensures the exist-
ence of a real-valued solution C to the equation

(15)

For |i0 | < 1, Eq. (15) reduces to a quadratic equation for
the constant C; that is,

(16)

where

The relevant discriminant has the form

(17)

For Eq. (16) to have a real-valued solution, it is neces-
sary and sufficient that the condition D ≥ 0 be satisfied.
It follows that the phase lock condition for |i0 | < 1 can
eventually be reduced to the inequality

(18)

In the case of |i0 | > 1, the relevant calculations are
similar to those presented above, but they are somewhat
more lengthy, since ϕ∗  is a function in that case rather
than a constant. For the discriminant, we obtain

(19)

jϕ* 0( ) jϕ* T( )–[ ]exp

× 1 jC–
1 jC+
--------------- · 

1 CF T( )+

1 CF T( )+
-------------------------- 2πji1( ).exp=

aC2 2bC c+ + 0,=

a 2 πi1( ) ϕ *( )
1
2
--- ϕ *( )( )Tcossinhtancos=

+ πi1( ) 1
2
--- ϕ

*( )( )Tcos– ,expsin

b
1
2
--- ϕ

*( )( )Tcossinh=

× πi1( )cos πi1( ) ϕ
*( )( )tansin+[ ] ,

c πi1( ) 1
2
--- ϕ *( )( )Tcos .expsin=

D
1
2
--- ϕ *( )( )Tcos πi1( )coscosh





=

– ϕ *( )( ) 1
2
--- ϕ *( )( )Tcos πi1( )sin





2

sinhtan 1.–

T
2
--- 1 i0

2– 
  πi1( )coscosh

–
i0

1 i0
2–

---------------- T
2
--- 1 i0

2– 
  πi1( )sinsinh 1.>

D
T
2
--- i0

2 1–cos πi1( )cos




=

–
i0

i0
2 1–

---------------- T
2
--- i0

2 1– πi1( )sinsin


 2

1.–
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This implies that, for |i0 | > 1, the phase lock condition
assumes the form

(20)

Equations (18) and (20) are convenient for analyzing
the regions in the parameter space that are character-
ized by the presence or the absence of the phase lock
effect. Such an analysis will be performed in the con-
cluding section of this article.

Let us now consider analytic expressions for the dis-
criminant D in the case where the Josephson junction is
biased by bipolar delta-function pulses of equal magni-
tude. In this case, the function q(t) has the form

(21)

The analog of Eq. (15), which actually describes the
jump in the phase at the instant of the pulse arrival,
gives two such jumps in the interval of duration T:
one at the instant t = 0, which is equivalent to the instant
t = T by virtue of periodicity, and the other at t = T/2.
Specifically, we have

(22)

(23)

where the constant C1 describes the limiting phase
function in the intervals [t0 + 2πm, t0 + 2π(m + 1/2)],
while the constant C2 corresponds to the intervals [t0 +
2π(m + 1/2), t0 + 2π(m + 1)].

For the above bias signal, the discriminant can be
represented as

(24)

T
2
--- i0

2 1– 
 cos πi1( )cos

–
i0

i0
2 1–

---------------- T
2
--- i0

2 1– 
  πi1( )sinsin 1.>

q t( ) i0 2πi1+=

× δ t t0– nT–( ) δ t t0– n
1
2
---+ 

  T– 
 – .

n 1>
∑

jϕ* 0( ) ϕ* T( )–[ ]exp
1 jC1–
1 jC1+
------------------ · 

1 C2F T( )+

1 C2F T( )+
----------------------------

=  2πji1( ),exp

1 C1F T /2( )+
1 C1F T /2( )+
--------------------------------- · 

1 C2F T /2( )+

1 C2F T /2( )+
--------------------------------- 2πji1–( ),exp=

D 4
πi1( )cos

2
i0
2–

1 i0
2–

-------------------------------- T
4
--- 1 i0

2– 
 2

sinh=

× T
4
--- 1 i0

2– 
  πi1( )2sin

1 i0
2–

---------------------- T
4
--- 1 i0

2– 
 2sinh–2cosh
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for |i0| < 1 and as

(25)

for |i0| > 1.

4. RESULTS AND DISCUSSION

The condition in (20), which determines, in the
space of the parameters T, i0, and i1, the boundaries of
the region where the phase lock effect occurs and, in
particular, the width of Shapiro’s steps in the current–
voltage characteristic of a Josephson junction in the
case of unipolar bias, can be reduced to a quadratic

equation in  and, further, to the form

(26)

which is convenient for the subsequent analysis and for
a comparison with expression (23) from [17]—the lat-
ter, albeit being close to (26) in form, differs from it.

It should be noted that, in the absence of the phase
lock effect, the voltage across the junction is given by

(27)

with the integer k being determined by the order of Sha-
piro’s steps on the right and on the left of the segment
considered in the current–voltage characteristic.
Expression (27), which is obtained from Eq. (3) by
varying the phase function at large values of the time
parameter, can be of use in analyzing the electrody-
namic properties of some types of SNS and SINIS
Josephson junctions and in determining their current–
voltage characteristics.

Let us now consider in greater detail some proper-
ties of a Josephson junction in the case of the bias cur-
rent given by Eq. (2). As the simplest implication of the
above relations, we will first examine the well-known

D 4
i0
2 πi1( )2cos–

i0
2 1–

-------------------------------- T
4
--- i0

2 1– 
 2

sin–=

× T
4
--- i0

2 1– 
 2

cos
πi1( )2sin

i0
2 1–

---------------------- T
4
--- i0

2 1– 
 

2

sin–

T /2( ) i0
2 1–( )tan

i0 πi1( )cos 1±
πi1( )sin

----------------------------------

T
2
--- i0

2 1– 
 tan

i0
2 1–

---------------------------------- 1,–=

U
2ωc

2πTKJ

----------------- T
2
--- i0

2 1– 
  πi1( )coscosarccos





=

–
i0

i0
2 1–

---------------- T
2
--- i0

2 1– 
  πi1( )sinsin πk+





,
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case [11, 12] where there is no pulsed component in the
bias signal (2)—that is, where i1 = 0. The discriminant
then takes the form

(28)

from which it follows that, for |i0 | < 1, there occurs the
phase lock effect reducing to the function ϕ(∗ ) asymp-
totically approaching a constant value. For |i0 | > 1, the
phase ϕ changes irregularly, but the limit of the mean
variation of ϕ over a large time interval exists and is

equal to . Thus, the current–voltage characteris-
tic of a Josephson junction consists of a horizontal seg-
ment U = 0 for |i0 | < 1 and hyperbolas

all of these being matched together. It is worth mention-

ing that the discriminant D vanishes at  =

. These are the points near which Sha-
piro’s steps arise when a small pulsed component with
pulse-repetition period f –1 = T/ωc is added to the bias
current. By way of example, we indicate that, in the
case of delta-function pulses of small amplitude i1
(more precisely, for 0 < 2πi1/T ! 1), Shapiro’s steps
occupy the i0 intervals

(29)

This illustrates the following well-known fact charac-
teristic of the current–voltage characteristics of over-
damped Josephson junctions [11, 12]: at a fixed bias
frequency, a higher bias current corresponds to a
greater number of Shapiro’s steps; with increasing bias
frequency, the Shapiro step characterized by a fixed
number is shifted toward greater values of |i0 |.

In accordance with expressions (18) and (20), the
regions where the phase lock effect is present or absent
in case of unipolar and bipolar bias signals are shown in
Figs. 1 and 2 (the regions where there is no this effect
are shaded). In Fig. 1a, one can see shrinking bent
shaded regions of funnel-like shape, which first become
discontinuous and then disappear. These regions repre-
sent gaps between neighboring Shapiro’s steps. In fact,
they persist to exist still further, but the code used to
plot them cannot depict this because their width
becomes too small.

D

T
2
--- 1 i0

2– 
 2

sinh , i0 1,<

T
2
--- i0

2 1– 
  , i0 1,>

2

sin–








=

i0
2 1–

U
ωc

2πKJ

------------- i0
2 1– , i0 1,>±=

i0
k( )

1 2πkT 1–( )2
+

1
2πk

T
--------- 

 
2

+
4πi1

T
----------– o i1( ) 1

2πk
T

--------- 
 

2

+ o i1( )+,+ 
  .
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Fig. 1. Regions where the phase lock effect occurs and regions where this effect does not occur (shaded) in the problem specified
by Eqs. (1) and (2). The results are presented in the plane spanned by the pulse-repetition period T and the constant component of
the bias current i, where (a) i = i0 + 2πi1/T for unipolar and (b) i = i0 for symmetric bipolar pulses. The amplitude of the bias pulses
is 2πi1 = (a) 1/3 and (b) 3/8.
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Fig. 2. Regions where the phase lock effect occurs and regions where this effect does not occur (shaded) in the problem specified
by Eqs. (1) and (2). The results are presented in the plane spanned by the constant component of the bias current i and the pulse
amplitude 2πi1 for (a) unipolar and (b) symmetric bipolar pulses. The pulse-repetition period is T = (a) 25 and (b) 5.3.
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From Fig. 1a, it can be seen that, from some value of
T, the widths of Shapiro’s steps of order zero and one
(minus one) are nearly independent of the pulse-repeti-
tion period. This relations was indicated in a number of
studies (see, for example, [18]). However, a pro-
nounced asymmetry with respect to the i = 0 axis is
observed in the case of unipolar bias.

At the same time, it can be seen from Figs. 1a and 2
that, at a fixed bias current, the number of Shapiro’s
step appears to be a multi-valued function of the bias
pulse repetition frequency—at i = const, there exists an
entire set of Shapiro’s steps characterized by different
values of the number k. This relations is also observed
in the case where a Josephson junction is biased with
symmetric bipolar pulses (see Fig. 1b).

In order to explain this relations, we examine Fig. 2a
(the case of unipolar bias with dimensionless period
T = ωc/f = 5.3), from which one can see that Shapiro’s
steps of numbers 0, ±1, and ±k correspond to bias pulse
amplitudes in the intervals –2π ≤ 2πi1 ≤ 2π,

 ≤ 2πi1 ≤ , and  ≤ 2πi1 ≤
, respectively.

According to Eqs. (18) and (20), the boundaries of
the phase lock regions in Figs. 1a and 2a are determined
by the quantity i0 = i – 2πi1/T. Moreover, these regions
(possibly, with the exception of the zeroth region)
undergo deformations and partly overlap or are
replaced in response to variations in T. This case of
interest calls for a dedicated consideration.

In order to perform a qualitative analysis of the cur-
rent–voltage characteristic of a junction biased with a
sequence of delta-function pulses, it is sufficient to take
two sections in Fig. 2a (for example, for unipolar bias)
with respect to the i and the i1 axis. In the U−i plane, it
is then necessary to depict regions corresponding to
Shapiro’s steps and regions where there is no phase
lock. The scale along the i axis is specified by the figure
itself, while the scale along the U axis is determined,
for each specific value of T, according to Eq. (3) or
Eq. (27).

In order to perform a full analysis of the current–
voltage characteristic of a Josephson junction subjected
to pulsed bias, we consider, in Figs. 1a and 2a, the
regions where there is no phase lock. Equations (18)
and (20) make it possible to draw some conclusions on
the positions and widths of the zeroth and the first Sha-
piro step: if the bias current i is constant and if –1 < i0 <
+1, there are finite segments (of width not less than
some minimal value) of the zeroth and the first Shapiro
step, the interval that separates them and which has the
boundaries

(30)

–2π 2π+− 2π 2π+− –2π 2πk+−
2π 2πk+−

i0 . πi1( )cos πi1( ) T
2
---– πi1( )sinexp2sin+−
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determining, in the first order, the upper boundary of
the zeroth and the lower boundary of the first Shapiro
step. Accordingly, the gap between these steps is esti-
mated as

This means that it is possible to make arbitrarily small
the region of transition from the zeroth Shapiro’s step
to the first one in the current–voltage characteristic of a
Josephson junction. Thus, the effect of transient pro-
cesses in devices whose operation is based on switch-
ing over the number k of Shapiro’s steps can be elimi-
nated completely or minimized, which opens radically
new possibilities in telecommunication technologies.

5. CONCLUSION

The method proposed in the present article makes it
possible to analyze the electrodynamic properties of a
Josephson junction biased with a periodic sequence of
delta-function pulses and to determine the corresponding
current–voltage characteristics. The results obtained along
these lines pave the way for new experimental investiga-
tions—for example, investigations aimed at developing
fast analog-to-digital converters and signal synthesizers
based on the Josephson effect [16].
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Abstract—The results are given of an experimental investigation of the spectral characteristics of cooperative
recombination of a high-density electron–hole plasma in GaAs. It is demonstrated that, under conditions of gen-
eration of high-power femtosecond pulses of superradiation, the properties of electrons and holes differ consid-
erably from their properties under conditions of lasing or regular spontaneous recombination. The peak of the
cooperative radiation line ("ω = 1.405 to 1.407 eV) is shifted inward into a (nonrenormalized) forbidden band.
It is located 20 meV lower on the energy scale than the lasing peak and more than 40 meV below the center of
the line of spontaneous recombination at the same pumping level. This corresponds to electron–hole condensa-
tion to the bottom of the bands. The properties of cooperative recombination may be defined by the pairing of
electrons and holes and by the formation of a short-lived coherent electron–hole BCS state. The estimated value
of the order parameter ∆ is approximately 2 meV. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The revealed and previously investigated mode of
superradiation (or cooperative spontaneous recombina-
tion) in semiconductor laser structures [1–3] enables
one to study high-density electron–hole (e–h) plasma
placed under entirely unusual conditions. Indeed,
thanks to the specific geometry of laser structure and to
the very high pumping rate, it is possible to attain, dur-
ing periods of time of several picoseconds, the level of
concentration of electrons and holes in GaAs, which is
several times higher than the lasing threshold of (1.5–
2.0) × 1018 cm–3. Under these conditions, the unsatur-
ated gain may exceed 103 cm–1.

It is well known [4–6] that the mode of superradia-
tion in a system of quantum oscillators consists of two
time phases of markedly different durations. First, a rel-
atively slow relative phasing of oscillators by electro-
magnetic field occurs, along with the formation of a
macroscopic dipole (macroscopic polarization of the
medium). The second phase is characterized by a fast
radiative recombination and collective radiation of a
high-power and short electromagnetic pulse. In the case
of a semiconductor medium, the duration of superradi-
ation pulses is in the femtosecond range [2].

It is obvious that the properties of a coherent ensem-
ble of e–h pairs may differ from the properties of a
plasma of electrons and holes unbound to one another.
In particular, their statistical parameters in an ordered
coherent system must be different from the parameters
of e–h plasma, say, in the case of spontaneous recombi-
1063-7761/01/9306- $21.00 © 21288
nation or in the lasing mode. Previous experiments [1–
3] have revealed that a coherent interaction between the
optical field and semiconductor medium under condi-
tions of superradiation, which showed up in the gener-
ation of a high-power femtosecond pulse, in coherent
beats of optical field with a terahertz frequency, in the
emergence of a doublet in the optical spectrum, and so
on, indeed takes place. The coherence of interaction
persisted for periods of time several times longer than
the transverse relaxation time T2. The mode of cooper-
ative radiation differs greatly from all dynamic modes
of semiconductor lasers (Q modulation, mode locking,
etc.) both qualitatively and quantitatively.

On the other hand, for quite a number of years dif-
ferent authors have been developing an approach to the
problem of interaction between an electromagnetic
field and an e–h system, which involves the pairing of
electrons and holes and the formation of quasiparticles
[7–10]. Given a low density of electrons and holes and a
fairly low temperature, their pairing apparently brings
about the formation of excitons. Under certain condi-
tions, the Bose–Einstein condensation of exitons is pos-
sible [11]. The paired electron and hole in the case of a
high density may be regarded as a cooperative e−h
state similar to the BCS state of Cooper pairs in a super-
conductor [9, 10]. It is the purpose of this study to find
out whether any variations of statistical distributions of
electrons and holes under conditions of superradiation
are observed. The question also arises whether the
unusual properties of the e–h system observed under
conditions of superradiation and listed above may be
001 MAIK “Nauka/Interperiodica”
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attributed to the pairing of electrons and holes and to
the formation of a coherent BCS-like e–h state. In addi-
tion, we will try to use the experimental data to evaluate
the order parameter ∆. Preliminary results pertaining to
the condensation of e–h pairs and to the formation of a
coherent BCS e–h state were published previously [12].

2. SAMPLES AND MEASUREMENT 
PROCEDURE

In the experiments, use was made of semiconductor
laser structures based on a GaAs/AlGaAs heterostruc-
ture, similar to those described previously [1–3]. The
heterostructures were grown on an n-GaAs substrate by
gas-phase deposition from organometallic compounds
(MOCVD). In the top, highly alloyed layer of p-GaAs,
a mesostructure 5 µm wide was etched to restrict the
spreading of the injection current in the lateral direc-
tion. Three sections were formed by photolithography
along the resonator axis. Two of these sections,
arranged at the crystal edges, had a common electric
contact and were pumped by current pulses with an
amplitude up to 0.8–1.0 A. Figure 1 is a photograph of
one of the structures. The lasing thresholds in analo-
gous structures with a single top contact did not exceed
100 mA. The duration of current pulses varied from 1
to 10 ns, and the pulse repetition rate ranged from
10 Hz to 14 MHz. The middle portion of the semicon-
ductor structure, which served as a saturable absorber,
was connected to a d.c. source. A blocking voltage in
the range from zero to −10 V was applied to this por-
tion. The total length of the structures was 250, 350,
and 450 µm. Laser crystals were placed on a special
massive copper coolant line, which provided for good
dissipation of heat from the active region. In spite of the
high amplitude of current pulses, the average current
through the structures did not exceed 10–15 mA.
Owing to this, the heating of the active region relative
to the coolant line was insignificant. All measurements
were performed at room temperature.

The spectral characteristics of radiation were inves-
tigated using an MDR-23 monochromator with a reso-
lution of less than 0.1 nm. The radiation dynamics were
studied using an IMACON-500 image converter cam-
era with a time resolution of 1.5 ps in the mode of
frame-by-frame scan. The limiting resolution of the
camera was measured with the aid of femtosecond laser
pulses. The procedure of recording second-order auto-
correlation functions during the second harmonic gen-
eration was used for more accurate measurement of the
optical pulse duration [2, 3]. The other details of the
experimental setup are given in [1, 2].

3. EXPERIMENTAL RESULTS

Figure 2 gives typical optical spectra of superradia-
tion pulses, obtained for different pumping levels in a
laser structure. The absolute magnitude of blocking
voltage in the absorbing region of the structure
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
increases in the figure, from top to bottom, from 4.2 V
(top curve) to 7.1 V (bottom curve). Note that, at volt-
ages below 4.2 V, the superradiation mode is less pro-
nounced and accompanied by lasing; as the voltage

100 µm

Blocking
voltage Current pulses

Fig. 1. A photograph of one of the investigated semiconduc-
tor structures.
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Fig. 2. Optical spectra of cooperative radiation for different
values of blocking voltage on the absorber.
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Fig. 3. Spectra of (1) lasing and (2) amplified spontaneous
radiation at a low excitation level. The arrow indicates the
position of the edge of nonrenormalized forbidden band.
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Fig. 4. Cooperative radiation pulses recorded by an image
converter camera.
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approaches zero, this mode disappears altogether. In
this case, only lasing is observed. One can clearly see
in Fig. 2 how the spectrum center shifts to the long-
wave region and its width decreases. The minimal value
of the photon energy at the spectrum center is
1.406 meV, and that at the long-wave edge, 1.395 meV.
The dotted line in the figure indicates the edge of the
forbidden band in pure GaAs at T = 300 K, disregarding
the narrowing of the band with an increase in the carrier
concentration. The total width of the spectra at the base
decreases from 20 meV to approximately 12 meV. The
minimal attained spectral width was less than 8 meV
(about 4 meV on half the amplitude). The shape of the
spectra is most often asymmetric, with a steeper long-
wave edge and a smoother short-wave edge, although,
in a number of cases with an especially small width of
the spectra (4–5 meV), their shape was almost symmet-
ric. When the voltage was fairly high, no superradiation
was observed. In this case, the electrons and holes
recombined spontaneously, the radiation intensity was
insignificant, and the optical pulse duration corre-
sponded to the pumping pulse duration (several nano-
seconds).

Given in Fig. 3 for comparison are typical spectra of
lasing and of regular spontaneous recombination of
electrons and holes in the structures being investigated
at a low pumping level. As usual, a lasing spectrum
consists of several longitudinal resonator modes, with
its center corresponding to the photon energy of 1.424 eV,
which is almost 20 meV higher than in the case of coop-
erative radiation. The center of spontaneous radiation
spectrum is located even higher on the energy scale
(1.432 eV); it is very wide, with its width on half the
amplitude being approximately kT.

In the time domain, the femtosecond optical pulses
given in Fig. 4 correspond to the optical spectra of Fig. 2.
Shown in Fig. 4 are three envelopes of cooperative radi-
ation pulses. The pulse duration on the screen slightly
exceeds the time resolution of the camera (1.5 ps),
which corresponds to the true pulse duration of less
than 1 ps. For precise measurements of the pulse dura-
tion, use was made of the standard procedure of obtain-
ing autocorrelation functions of intensity using the sec-
ond harmonic generation. This procedure, character-
ized by femtosecond time resolution, was used to
measure the true duration of superradiation pulses,
which was found to be in the range from approximately
300 to 600 fs depending on the geometry of the laser
structure and the conditions of excitation. Note that the
time of light travel from edge to edge of the crystal var-
ied from 4 to 6 ps depending on the length.

One can clearly see in Fig. 4 that the femtosecond
duration of cooperative radiation pulses is obtained
right away, as distinct from the conditions of mode
locking, when tens and hundreds of passes in the laser
resonator are required to obtain femtosecond pulses.
The product of the duration of superradiation pulses
into the width of their spectrum amounted to 0.6–0.9;
 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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i.e., these pulses, as well as the pulses of lasers with
locked modes, are in fact spectrally restricted. This
means that the spectrum width is restricted from below
by a value defined by the lifetime of cooperative state.

4. DISCUSSION

According to the experimental data given in the pre-
ceding section and obtained previously [1–3], we deal
with a situation in which a semiconductor has two sub-
systems (two ensembles) of electrons and holes. One of
these subsystems is involved in regular spontaneous
recombination with a low power and nanosecond dura-
tion, and the other subsystem recombines collectively
to form a high-power and ultrashort superradiation
pulse. The phase (intraband) relaxation transfers the
electrons and holes from the second to the first ensem-
ble. The radiative recombination of these two ensem-
bles is markedly spaced over the wavelength. Figure 5
gives spectra of cooperative radiation and regular spon-
taneous recombination for almost the same pumping
level (carrier density). The photon energy of the maxi-
mum of cooperative radiation spectrum is 1.406 meV,
while for spontaneous radiation it is 1.451 meV. An
analysis of the above-identified optical spectra reveals
that, prior to radiative collective recombination, the
electrons and holes in the second ensemble are con-
densed to the bottom of bands in a narrow energy range
(5–10 meV in the vicinity of the bottom of bands) and
possess a minimal energy.

The question may arise whether the observed spec-
tra are the result of cooperative recombination or of
stimulated emission of a high-density e–h plasma. This
is of considerable importance from the standpoint of
correct interpretation of the experimental results. In the
former case, the form and shape of spectra will be
directly related to the energy distribution of particles in
the condensate, and the approximation of spectra by the
formulas given below will have a physical meaning
[14–16]. In the latter case, the spectrum being recorded
will be the result of amplification of the initial spectrum
and will be distorted (modulated) by the spectral distri-
bution of the optical gain. In this case, as in the laser
mode, the spectral shape is not directly associated with
the level distribution of electrons and holes, and the
estimates of parameters of the e–h system (concentra-
tion, Fermi energy, etc.) lose their meaning. Much like
in [17], we have investigated the effect of the amplifica-
tion and reabsorption processes on the shape and posi-
tion of the maximum of e–h recombination spectrum. It
has turned out that, if we assume that we are dealing
with radiative recombination of an e–h plasma and its
subsequent amplification during propagation through-
out the sample, the spectral distribution of the gain
indeed strongly distorts the initial recombination spec-
trum. However, this distortion primarily affects the
spectral width: the spectrum narrows considerably,
with the position of the maximum remaining virtually
unchanged; i.e., no long-wave (as well as short-wave)
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
shift occurs. The same effect was detected by
Dneprovskiœ et al. [18]. Therefore, the sizable long-
wave shift of recombination line observed cannot be
attributed to amplification and reabsorption of radiation
in the bulk of the semiconductor. Furthermore, in this
case, the process of recombination would take up a
much longer time interval in the time domain (tens and
hundreds of picoseconds), and it would be impossible
to explain the emergence of femtosecond monopulses
given in Fig. 4.

We will now demonstrate that the radiation
observed cannot be attributed to the laser effect. Two
most important distinctions exist between the lasing
and the cooperative radiation observed by us. These
are, first, differences in the spectrum and, second, qual-
itative differences in the radiation dynamics. Indeed, an
absorbing region is located at the center of the semicon-
ductor structure; the absorption coefficient of this
region depends on frequency. When reverse bias is
applied to the absorber, the absorption edge shifts to the
long-wave region (Franz–Keldysh effect). Therefore,
the lasing with reverse biased absorption should have
occurred at the very edge of spectral distribution of gain
from the long-wave side. It is obvious, however, that, in
this region at the band bottom, the density of states
(and, accordingly, the gain) is many times less than at
the center of the laser line where the lasing usually
arises. Thus, resonator modes should have been
observed in the lasing spectrum, and the spectrum in
this case would have resembled the spectrum shown in
Fig. 3. The cooperative radiation spectra are continu-
ous, as one can readily see in Fig. 2.

Up to now, laser radiation dynamics have been very
well studied both theoretically and experimentally [13].
The initial period of the emergence of lasing is many
times longer than the time of the light passage past the
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Fig. 5. Optical spectra of (a) cooperative radiation and (b)
amplified spontaneous radiation for the same excitation
level and somewhat differing levels of blocking voltage on
the absorber.
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laser resonator (equal to 3–12 ps for our semiconductor
structures). In addition, it is always accompanied by
relaxation oscillation. Dynamic modes of a semicon-
ductor laser structure with three sections were studied
theoretically in [3]. It has been demonstrated that a
decrease in the initial (unsaturated) gain in the structure
by a factor of only three or four brings about a qualita-
tive variation in the radiation dynamics. In the case of
insufficiently high gain, laser structures emit regular
Q-switched pulses of characteristic duration of 20 to
30 ps. The dynamics and spectral behavior of Q-switched
lasers have been studied in detail (see, for example, [13]).
Therefore, the development of lasing at the long-wave
tail of the gain line would either bring about the mode
of Q modulation in the laser structure or relaxation
oscillation. This would be readily recorded in the
experiment, because both of these modes strongly dif-
fer qualitatively and quantitatively from the cooperative
radiation mode.

Therefore, it remains to assume that we are dealing
with the recombination of cooperative state as an inte-
gral whole. Its space dimension is approximately equal
to the product of the velocity of light in the medium by
the time of transverse relaxation (dephasing) and in our
case amounts to 20–40 µm. Further attributing to this is
the fact that the cooperative state is located in the vicinity
of the structure ends (see below) and its radiation immedi-
ately leaves the sample [3]. Furthermore, it is only the con-
centration of electrons and holes in a narrow energy range
that may provide for a high value of the gain necessary for
the criterion of observation of superradiation to be valid
[3]. Such a concentration is only possible under conditions
of condensation of e–h pairs.

We will estimate the critical density of e–h pairs neces-
sary for their condensation. Intensive studies of the con-
densation of electrons and holes (excitons) in semiconduc-
tors have been under way for quite a number of years [7,
11]. A system of electrons and holes of concentration n
goes over to the condensed state when the so-called crite-
rion of quantum degeneracy is valid [11],

(1)

where λD =  is the de Broglie wavelength
and M is the mass of an e–h pair. In GaAs, we have
me = 0.07m0 for electrons, mhh = 0.5m0 for heavy holes,
and mlh = 0.08m0 for light holes (m0 is the electron mass
in vacuum). In accordance with Eq. (1), a value of about
5 × 1018 cm–3 is obtained for the critical density at room
temperature if the pairs are formed by heavy holes. For
light holes and for a combination of light and heavy
holes, this value is several times smaller, and the con-
densation starts with pairs formed by electrons and
light holes. The experimentally obtained values of the
density of e–h pairs in the coherent cooperative state
are close to this value. The radiation of e–h condensate
during recombination, as well as the radiation of e–h
liquid, must be shifted to the long-wave region.

nλD
3 1,>

2π"
2/MkT
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In our case of high density and room temperature,
we are not dealing with excitons (the binding energy of
an exciton in bulk GaAs is about 4 meV, with the exci-
ton radius a0 ≈ 140 Å). With the density of e–h pairs in
the above-identified range being (2–5) × 1018 cm–3, the
mean distance between particles rs = (3/4πn)1/3 ranges
from 49 to 34 Å. Therefore, the coherent state of paired
electrons in this case must resemble the state of an
ensemble of electrons in a superconductor when the
characteristic dimension of Cooper pairs is many times
the mean distance between electrons (the pairs are
strongly overlapped in space).

As was already noted in the Introduction, some
authors [9, 10, 19] have indicated that under conditions
of high density, rs/a0 ≤ 1, the cooperative state of elec-
trons and holes may resemble the BCS state of Cooper
pairs in superconductors. Multiparticle interactions in
an e–h system result in the tendency for the electrons
and holes to pairing in the entire density range. In a first
approximation, pairs made up of two fermions behave
as bosons and are capable of condensation. In our case,
a decisive part in the pairing and in the setting up of
coherence in an ensemble of electrons and holes is
played by the electromagnetic field which is perma-
nently present in the semiconductor volume. Note that
the phasing of electrons and holes is preceded by the
bleaching of the absorber of semiconductor structure
by radiation propagating between the crystal faces.
Because of the smallness of the photon pulse (com-
pared with that of electrons and holes), the field pro-
duces and annihilates e–h pairs with zero total momen-
tum. Therefore, when correlations are induced by the
electromagnetic field, a coherent ensemble of particles
(cooperative state) with zero total momentum arises in
an e–h system at the initial stage of development of
superradiation from all electrons and holes. In so doing,
as was noted previously, in view of the presence of a
reverse biased absorber in the semiconductor, the cor-
relations (coherence) in the system are induced by
long-wave photons, because the optical absorption is
lower in the vicinity of the band edge. Because of the
very high gain and exponential rise of the phasing
coherent field towards the ends of the structure, the
cooperative state is highly inhomogeneous in space. It
is located mainly at both faces of the crystal. It is the
collective radiative decay of this coherent ensemble
that is observed experimentally in the form of a high-
power femtosecond pulse.

All particles in the collective state are paired, with
the pair size being many times the mean distance
between particles. Because the total momentum of each
pair is zero, as in the case of Cooper pairs, such a col-
lective state is referred to as a BCS-like e–h state [9, 10,
19]. By analogy, the e–h-BCS state must have a mini-
mal energy and the minimal possible quantum energy
must be observed during its recombination. This may
explain the observed strong long-wave shift of cooper-
 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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ative radiation compared both with lasing and with reg-
ular spontaneous recombination.

In order to obtain information about the parameters
of an e–h system, we used an approximation of cooper-
ative recombination spectra, analogous to that used to
estimate the concentration and temperature when
studying the luminescence of an e–h plasma and an e–
h liquid in semiconductors [14–16]. As is demonstrated
by the theoretical results of [9, 10, 19], the collective
state of e–h pairs is described by the density of states of
quasiparticles and by their level distribution, with the
exact form of the levels being determined by numerical
calculation. The energy spectrum of quasiparticles has
a gap ∆ whose size is restricted from above by the bind-
ing energy of an e–h pair (exciton). We will use the
results of these studies to approximate the observed
spectra of collective recombination.

It has been found that the spectra are well described
by simple convolution of the density of states of quasi-
particles, ρ, and of the occupancy functions of quasi-
particles, ν2, according to the formula

(2)

where  is the renormalized width of forbidden band
and I0 is a constant. The validity of this formula in our
case is defined by the following.

As is known, Fermi distributions in an e–h system
assume a steady state very rapidly, in times which are
only several times longer than the time between elec-
tron–hole collisions. In our case of a very high density,
the characteristic time between collisions is known to
be less than 10 fs. As is demonstrated by the theoretical
[3] and experimental [1, 2] results, the characteristic
time of cooperative radiation has values of hundreds of
femtoseconds, which considerably exceeds the relax-
ation time of Fermi distributions. In addition, under
conditions of collective decay of the system, the
moments of recombination of individual e–h pairs are
correlated, and all particles recombine almost simulta-
neously. This means that the dependence I("ω) will be
defined by the energy distribution of electrons and
holes in accordance with Eq. (2) and will not be dis-
torted by reabsorption and amplification in other
regions of the structure. Finally, the ultrashort lifetime
of the cooperative state implies the smearing-out of
energy levels and, accordingly, integration with respect
to energy. Indeed, in accordance with the uncertainty
principle, the energy level width is the greater, the
longer the time during which an electron or hole is at
this level. Because the cooperative state exists for only
several hundred femtoseconds, the width of individual
levels in bands may be quite appreciable (over 1 meV),

I "ω( ) I0 ρ E( )ρ "ω Eg'– E–( )
Eg'

"ω

∫=

× ν2 E( )ν2
"ω Eg'– E–( )dE,

Eg'
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which must be taken into account when approximating
the spectra by formula (2).

The density of states of quasiparticles, ρ(E), has a
singularity at point E = ∆ [20],

(3)

In order to eliminate the divergence, one must take into
account the width of energy levels. This can be done by
introducing the effective density of states. For a simple
Lorentz line shape, the effective density of states may
be written as [17]

(4)

where Γ is the effective level width, which is indepen-
dent of energy in the simplest case.

The quasiparticle distribution function ν2(E) is, as in
the case of Cooper pairs [21], very close to the Fermi
distribution and may be found by numerical methods
[10]. We approximated it by the following function:

(5)

where µ is the Fermi energy and the magnitude of the
gap ∆, generally speaking, depends on the quasimo-
mentum (energy) and must be calculated self-consis-
tently [9, 10, 19]. This calculation falls outside the
scope of this paper. We used the properties of the func-
tion ∆(k), namely, that the maximum of the function ∆0
is located at k = kF and ∆(0) = ∆(∞)  0, and approx-
imated it by the Lorentz function, with the Fermi quasi-
momentum corresponding to the chemical potential µ.

We used Eqs. (2)–(5) to approximate the experimen-
tally obtained spectra, as is shown in Fig. 6. The figure

ρ E

E ∆–
-----------------.∝

ρeff E( ) 1
π
---

ρ E( )dE1

π E E1–( )2 Γ2+
--------------------------------------,∫=

ν2 E( ) 1
2
--- 1 E µ–

E µ–( )2 ∆2 E( )+
---------------------------------------------– ,=

5

0
1.405

I, rel. units

"ω, eV

10

15

20

25

1.400 1.410 1.415 1.420

Fig. 6. A typical approximation of a spectrum of coopera-
tive radiation by formulas (2)–(5) at  = 1.4008 eV, µ =

7.3 meV, ∆0 = 2.53 meV, Γ = 1.7 meV.

Eg'
SICS      Vol. 93      No. 6      2001



1294 VASIL’EV et al.
gives one of the spectra; the experimental data are indi-
cated by the asterisks, and the approximation by formu-
las (2)–(5) is indicated by the continuous line. The
parameters of the curve include the gap ∆0, the Fermi
energy µ, the renormalized width of the forbidden gap

, and the level width Γ. One can see that the predic-
tion curve describes the experimental data very well.
Good agreement was obtained for all spectra of cooper-
ative radiation without exception. The predicted values
of the parameter ∆0 were in the range from 2.2 to

3.6 meV; the values of the parameter , from 1.400 to
1.405 meV; the values of the Fermi energy µ, from 3.5
to 7.4 meV; and the effective level width Γ for different
spectra varied from 0.7 to 2.3 meV. The estimated val-
ues of the concentration of electrons and holes agree
with the values experimentally obtained by measuring
the number of e–h pairs being pumped and the energy
of superradiation pulses. Note further that the values of
the parameter ∆0 decrease with an increase in the con-
centration of electrons and holes.

It is known that the scattering of Cooper pairs by
one another does not lead to the loss of coherence in the
ensemble [21]. In our case of cooperative e–h state, we
have a similar situation. It was experimentally found
that the coherent properties of interaction of electrons
and holes with an optical field were retained for anom-
alously long times exceeding many times the transverse
relaxation time T2 (which is less than 100 fs) [1, 2].
Moreover, the classical case of superradiation should
have been observed during times of obviously less
than 100 fs [6]. The experimentally observed coherent
beats with a frequency of over 1 THz lasting several
picoseconds [2] count in favor of the fact that, in the
collective state, the coherence persists for several hun-
dred femtoseconds, although the time between colli-
sions of particles in the ensemble is less than 10 fs. This
may be attributed to the fact that no loss of coherence
occurs during the scattering of electrons and holes
within the ensemble. In the case of collision with exter-
nal electrons and holes not included in the cooperative
state, the ensemble coherence also persists, because the
collective state apparently takes up the impact as an
integral whole, as a giant molecule of sorts. Because the
number of electrons and holes in the cooperative state
is very large (about 108 [2]) and the total mass is many
times that of a single electron (hole), the ensemble
coherence does not vary. In other words, the time of
phase relaxation of coherent ensemble must exceed the
time T2 and increase with the number of particles.

In conclusion, note that the e–h-BCS state, unlike
the regular state of Cooper pairs in a superconductor,
must be substantially unstable because of recombina-
tion of e–h pairs.

Eg'
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5. CONCLUSIONS
The cooperative state of electrons and holes, whose

radiative recombination is observed in the form of high-
power femtosecond superradiation pulses, possesses a
number of unusual properties. The spectral distribution
of this recombination corresponds to the condensation
of electrons and holes to the bottom of bands. The life-
time of the cooperative state is several hundred femto-
seconds. The experimentally obtained values of e–h
density are close to the critical concentration necessary
for the condensation of e–h pairs at room temperature.

The coherence in the cooperative state persists much
longer than the time of phase (intraband) relaxation
under normal conditions. Because the high-density
mode (rs < 1) has been attained experimentally, the
coherent collective state of electrons and holes is anal-
ogous to the BCS state of Cooper pairs in a supercon-
ductor rather than to the Bose condensate of excitons.
In our case, an important and decisive part in pairing
electrons and holes and inducing the coherence is
played by a resonance electromagnetic field. The value
of the parameter ∆0 (the gap in the energy spectrum of
quasiparticles), calculated by the approximation of optical
spectra of cooperative recombination, was 2–3 meV. It is
worthy of note that a BCS-like gap in a degenerate e–h
system must be less in magnitude than the binding
energy of an exciton (in our case, 4 meV) and must
decrease as the concentration increases [19]. The latter
quantity, in turn, is less than the width of observed spec-
tra of cooperative recombination, which is defined by
the lifetime of the cooperative state. This fact, in the
case when the energy levels are highly smeared out,
makes a direct observation of the energy gap in the
spectrum of electrons and holes very problematic.
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Abstract—The states of shallow acceptors in uniaxially deformed germanium are studied theoretically. A non-
variational numerical computational method is developed for determining the energy and wave functions of
localized states of holes in the acceptor field as well as the states of the continuous spectrum (including resonant
impurity states). The dependence of the energy of the lower resonant state on strain is studied. It is found that

this state is formed from the excited 4  state with a binding energy of 1.3 meV (in the absence of deformation)
and not from the ground state. The results presented in this work may be useful in the study of the conditions
for the generation of far IR radiation in deformed p-Ge, which involves optical transitions between resonant and
localized acceptor states. © 2001 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

In semiconductors with a diamond-like structure
(e.g., Ge and Si), the subbands of light and heavy holes
are degenerate at the center of the Brillouin zone. Con-
sequently, both these subbands make a contribution to
the expansion of the wave functions of states of a shal-
low acceptor in Bloch functions. In the case of a uniax-
ial deformation of the crystal, the splitting of light and
heavy hole subbands is proportional to the strain. The
energy of each acceptor state in this case is displaced
towards the subband whose functions mainly form the
wave function of this state. In the case of a large strain,
impurity states corresponding to the upper subband of
holes fall into the continuous energy spectrum of the
lower subband of holes (here and below, the hole
energy is counted in the “upward direction” from the
top of the valence band in the absence of deformation).
Thus, a resonant state is formed, whose wave function
has two (“localized” and “propagating”) components,
the latter being responsible for the interaction of the
state with the lower subband. The “localized” compo-
nent is formed from wave functions of the upper sub-
band, while the “propagating” component is formed by
states of the lower subband.

At the present time, such resonant states of shallow
impurity centers in semiconductors have become
objects of intense investigations. This is primarily due
to the discovery of stimulated long-wave IR radiation in
uniaxially compressed p-Ge in a strong electric field at
helium temperatures [1–3]. The electric field ionizes
shallow acceptors and heats the holes in the valence
bands. At a certain threshold pressure (P ≈ 4 kbar for
P || [111] and P ≈ 3 kbar for P || [001]), an abrupt
increase is observed in the intensity of long-wave IR
radiation emitted by the sample. The authors of [1–4]
1063-7761/01/9306- $21.00 © 1296
attributed this effect to the emergence of stimulated
emission during transition of holes from a resonant
state with inverse population to localized acceptor
states in the forbidden gap. The approximate estimates
of the position of resonant states were made during the
interpretation of stimulated emission spectra in [3, 4].
In the large strain limit, each split subband and the
impurity levels associated with it were analyzed inde-
pendently [3]. The spectrum of resonant states was
sought in the form of the spectrum of localized states of
an impurity in the vicinity of the simple anisotropic
band; the calculations were based on the variational
method. For small and intermediate strains, the model
of zero-radius potential was employed. In this model,
only one fourfold degenerate acceptor level exists in an
undeformed crystal [4]. However, as observed in [4],
such a model cannot claim a high accuracy in a quanti-
tative description of acceptor states in a deformed semi-
conductor since the zero-radius potential is a rough
approximation for the Coulomb potential.

In the present work, localized and resonant states of
shallow acceptors in uniaxially deformed Ge are calcu-
lated more accurately on the basis of the wave function
expansion in plane waves. This method makes it possi-
ble to determine the energies of acceptor states with an
error lower than 10%. A similar approach was applied
earlier for studying the resonant states of acceptors in
Ge/GeSi heterostructures, in which such states are
formed as a result of size quantization [5, 6].

2. COMPUTATIONAL TECHNIQUE

The energies and wave functions of holes in the field
of an acceptor were determined by solving the
Schrödinger equation in the effective mass approxima-
2001 MAIK “Nauka/Interperiodica”



        

RESONANT STATES OF SHALLOW ACCEPTORS IN UNIAXIALLY DEFORMED GERMANIUM 1297

                                             
tion. The Hamiltonian was chosen in the form of the
sum of the kinetic energy (Luttinger Hamiltonian), the
term describing the deformation effects, and the energy
of the Coulomb interaction with the charged acceptor
[7]. Following [6], we used the uniaxial approximation;
i.e., the dispersion relation for holes was assumed to be
isotropic in a plane perpendicular to the deformation
axis. For this purpose, we omitted the terms propor-
tional to γ2 – γ3 (γ1, γ2, and γ3 are the Luttinger parameters
[7]) in nondiagonal elements of the Luttinger Hamilto-
nian. It should be noted that the correction to energy asso-
ciated with the discarded terms is equal to zero in the first
order of perturbation theory. In the present work, we
present the results mainly for the uniaxial compression
along the [111] direction. In should be noted that as a
result of uniaxial compression, the subband whose states
have the total angular momentum component ±3/2 along
the deformation axis is displaced upwards relative to the
subband whose states have the component ±1/2 along this
axis (we are speaking of states with the momentum
directed along the deformation axis).

In the uniaxial approximation, the total angular
momentum component Jz along the deformation axis is
conserved and the acceptor spectrum is doubly degen-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
erate in the sign of this component (i.e., in ±Jz). It
should be noted that, in accordance with the group the-
ory, the spectrum of holes in the acceptor field in Ge
deformed along [001] or [111] must be doubly degen-
erate even if we take into account the anisotropy of the
dispersion relation for holes in a plane perpendicular to
the deformation axis. A “good” quantum number is also
the parity for the reflection relative to the plane perpen-
dicular to the symmetry axis [111] and passing through
the impurity center (when speaking of the parity of a
state in this section, we will mean precisely such a par-
ity, while in subsequent sections, conventional parity
relative to inversion is meant). The existence of this
integral of motion considerably simplified our calcula-
tions.

The wave function for holes in the field of acceptors
is sought in the form of an expansion in the eigenfunc-
tions of holes in the absence of an acceptor:

(1)

where

F r( ) kzd kd ⊥ CJ k⊥ kz n, ,( )∫∫
n 1=

2

∑=

× gn k⊥ kz z, ,( ) ik⊥ r⋅( ),exp
(2)

is the wave eigenfunction for even hole states, 
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is the wave eigenfunction for odd hole states, kz is the
component of the wave vector of a hole along the defor-
mation axis, k⊥  is the wave vector of a hole in a plane
perpendicular to the deformation axis, k⊥  is the modu-
lus of this vector, and α is the angle between vector k⊥
and the x axis. Here,
U  = γ1
1
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Fig. 1. Dependence of the probability density for the state of a hole in the field of an acceptor in germanium compressed along the
[111] direction on z (a) and ρ (b). The z axis is chosen along the direction of deformation. The pressure is 10 kbar. The solid curve
corresponds to the lower resonant state; the dashed curve, to the ground state of the acceptor; the dotted curve represents the “local-
ized” component of the resonant state, formed by the upper subband; and the dot-and-dash curve corresponds to a nonresonant even
state of the continuous spectrum with an energy of 100.8 meV (counted from the bottom of the lower subband); Jz = +1/2.
is the normalization coefficient,

is the dispersion relation for free holes for the two sub-
bands, ∆ is the subband splitting for kz, k⊥  = 0, associ-
ated with deformation (∆ < 0 for uniaxial compression).
It should be noted that the dispersion relation for the
lower subband (which corresponds to the minus sign) is
transformed into the dispersion relation for heavy holes
in the absence of deformation (∆ = 0). Thus, if the strain
tends to zero, the lower subband becomes the subband
of heavy holes and the upper subband is the subband of
light holes.

The dependence of coefficients CJ(k⊥ , kz, n) on angle
α in the uniaxial approximation has the form [5, 6]

(4)

where Jz is the total angular momentum component
along the deformation axis. Taking into account rela-
tion (4), we can derive the following expression for
determining CJ(k⊥ , kz, n):
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(5)

where E is the energy of the state of holes in the accep-
tor field

(6)

β is the angle between vectors k⊥  and , χ is the per-
mittivity of the semiconductor, and e is the electron
charge. It should be noted that the kernel of the integral
operator in the equation for CJ(k⊥ , kz, s) is symmetric
relative to the variables and V is a real quantity. This
allows us to solve Eq. (5) by diagonolizing the symmet-
ric real-valued matrix. Indeed, if the step in  is
smaller than the reciprocal Bohr radius, the integrand
varies over a step only slightly. In this case, the integral
can be presented as a sum in . The quantities CJ(k⊥ ,

kz, s) are small for values of  much larger than the

reciprocal Bohr radius. Consequently, the series in 
can be truncated without introducing a serious error.
Since the Bohr radius of the state of a hole in the field
of an acceptor in undeformed germanium is of the order
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Table 1.  Binding energies of some acceptor states in undeformed Ge, meV

States Jz = ±1/2 Jz = ±3/2 Jz = ±5/2 Theory [8, 9] Experiment
(boron) [10]

Ground state 9.65 9.23 – 9.8  [9] 10.800 

 (G-line) 4.5 4.7 – 4.58  [8] 4.6 

 (E-line) 3.05 3.3 – 2.9  [9] 3.25 

 (D-line) – 2.8 2.95 2.88  [8] 2.88 

Doubly degenerate 

(  or )

– 2.4 – – –

 (C-line) 2.2 – – 2.13   [8] 2.13 

1.55 1.49 – – –

1.33 1.29 – – –

1Γ8
+

1Γ8
–

2Γ8
+

2Γ8
–

1Γ7
+ 1Γ6

+

1Γ7
–

3Γ8
+

4Γ8
+

of 40 Å, we calculated the spectrum for pressures lead-
ing to splitting of subbands with energies lower than
10 meV, choosing the step in k⊥  as well as in kz equal to
2 × 10–3 Å–1. For large strains, it is expedient to choose
different values of steps in k⊥  and kz to improve the
accuracy of calculations used for studied resonant and
localized states. This is associated with a considerable
anisotropy of wave functions: the wave functions of
resonant states must be compressed along z, while
those for localized states must be extended along z. We
choose the steps in k⊥  in kz equal to 1.8 × 10–3 Å–1 and
1 × 10–3 Å–1, respectively, for localized states, and 1 ×
10–3 Å–1 in k⊥  and 2.3 × 10–3 Å–1 in kz for resonant states.

Thus, the problem of determining localized or delo-
calized states of an acceptor is reduced to diagonaliza-
tion of a finite-dimensional symmetric matrix (in our
calculations, the dimensionality of this matrix was
1000 × 1000).

The wave functions of acceptors have a complex
structure. Expansion (1) contains terms corresponding
to two different subbands. If the expansion of the wave
function of a certain acceptor state mainly includes the
envelopes of the wave functions of a certain hole sub-
band, we assume that such a state corresponds to this
subband. In a deformed material, the acceptor ground
state corresponds to the lower subband and lies below
its bottom. The energies of states corresponding to the
upper subband can be lower (localized states) or higher
(resonant states) than the energy corresponding to the
bottom of the lower subband. The localized states asso-
ciated with the upper subband become resonant states
upon an increase in the uniaxial strain of the crystal.

Figure 1 shows the spatial distribution of the proba-
bility density for the lower resonant (solid curve) and
localized ground (dashed curve) states of holes in the
field of an acceptor in germanium compressed along
the [111] axis. It was mentioned above that the wave
function of the resonant state has two components: the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
“localized” component formed by the upper subband
and the “propagating” component formed by the lower
subband. The dotted curve in Fig. 1 describes the prob-
ability density corresponding to the localized compo-
nent of the wave function of the resonant state. It can be
seen that the wave function of the resonant state is sim-
ilar to the wave function of the ground state at small dis-
tances from the impurity center and is a standing wave
along the z coordinate for large distances. Comparing
the wave function of a resonant state with the wave
function of a nonresonant state of the continuous spec-
trum (dot-and-dash curve in Fig. 1), we note that the
delocalized component of the given resonant state is
mainly formed by the waves propagating along the z
direction since the oscillations of the wave function of
this state in the ρ coordinate are manifested only
slightly.

3. RESULTS AND DISCUSSION

In order to verify the accuracy of the method, we
calculated the energies of the ground state and several
excited states of a shallow acceptor in undeformed ger-
manium, corresponding to different momentum com-
ponents along the symmetry axis. The results are pre-
sented in Table 1 (in our calculations, the uniaxial sym-
metry axis was chosen along the [111] crystallographic
direction). The first column of the table presents the
classification of states according to the types of repre-
sentations to which the functions of the determined
states in the germanium crystal must correspond. The
corresponding transitions in the absorption spectrum of
germanium are indicated for several states. Table 1 con-
tains the results of calculations made in [8, 9], which
can apparently be regarded at present as the most accu-
rate (fifth column). The sixth column contains the
results of experimental determination of the energy of
levels in Ge from [10].
SICS      Vol. 93      No. 6      2001
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It is well known that the ground state 1  of an
acceptor is fourfold degenerate. In calculations, the
uniaxial symmetry was used instead of the cubic sym-
metry. For this reason, the ground state calculated by us
turned out to be split. The binding energy of the state
corresponding to Jz = ±1/2 amounts to 9.65 meV, while
the binding energy of the state corresponding to Jz =
±3/2 is 9.23 meV. Thus, the splitting of the ground state

Γ8
+

Table 2.  Binding energies of some acceptor states in uniax-
ially compressed Ge (P || [100], P = 6 kbar)

Classification
of states

Binding energy, meV
(our calculations)

Binding energy, meV
(experiment [12])

1s 5.56 6.00 
2s 1.32 1.385 
2p ± 1 1.44 1.335 
2p0 0.9 0.889 
3p ± 1 0.621 0.613 

0 2

(a)

P, kbar
4 6 8

–8

–16

0

8

–8

–16

0

8 (b)

E, meV

Fig. 2. Pressure dependence of the energy of acceptor states
in germanium compressed along the [111] direction. The
solid curve corresponds to the acceptor ground state (Jz =
±1/2, even). (a) Ground state and several even excited states.
The dashed curves correspond to several states with the
same symmetry (Jz = ±3/2, even): the resonant “ground”
state and all excited states “emerging” from lower-lying lev-
els at zero pressure. (b) Resonant “ground ” state and sev-
eral localized odd states. The dashed curve corresponds to the
resonant “ground ” state. Dot-and-dash curves correspond to
odd localized states to which optical transitions from the lower
resonant state are allowed. The arrows indicate allowed transi-
tions from the resonant ground state, which may be present in
the emission spectrum considered in [3]. Dotted curves corre-
spond to the edges of hole subbands.
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associated with the “wrong” symmetry used in calcula-
tions amounts approximately to 5% of the ionization
energy. This is also holds for excited fourfold degener-
ate states (see Table 1).

It should be noted that the largest discrepancy
between the calculated and experimental results is

observed for the ground (1s type) state and for the 2
(2s type) state. The mismatching between the theoreti-
cal and experimental result is 12% for the ground state

and 7.5% for the 2  state, while for other excited
states the discrepancy between the calculated and experi-
mental values is within 4–5%. This can be explained by
the presence of a chemical shift [11] which is significant
for s-like states and is virtually absent for other states since
the wave function for the latter states has a node at the
point of location of an acceptor.

In order to verify the accuracy of the approach
developed in this work, we compare the results of our
computations with the experimental data on the impu-
rity photoconductivity of Ge strongly compressed
along the [100] direction [12] (Table 2). The pressure
amounts to 6 kbar, which corresponds to a subband
splitting of 36 meV.

It can be seen that the discrepancy between the the-
oretical and experimental results is smaller than in the
case of undeformed germanium: the mismatching does
not exceed 5% for all energy levels except the 1s state
(with a mismatching of 7.3%), in which the chemical
shift is significant.

In the case of uniaxial deformation, the fourfold
degeneracy of the levels is removed. The solid curve in
Fig. 2a shows the dependence of the ground state in
uniaxially compressed Ge on pressure in the [111]
direction. The ground state in deformed Ge is an even
state with the total angular momentum component Jz =
±1/2. Dashed curves in Figs. 2a and 2b correspond to
the energy of the resonant “ground” state and several
lower-lying states with the same symmetry (even states
with Jz = ±3/2). A comparison of the data presented in
Table 1 and Fig. 1 shows that the resonant “ground”
state originates from the excited state 4  with a bind-
ing energy of 1.3 meV (in the absence of deformation)
rather than from the ground state as in the model of
zero-radius potential (in which it appears in the contin-
uous spectrum for P ≈ 4 kbar) [3]. This is not surprising
since, like in an undeformed crystal, the 4  energy
level is the first state whose wave function is con-
structed mainly from the wave functions of light holes,
while the wave functions of all lower-lying levels
receive the main contributions from the states of the
subband of heavy holes. It can be seen, in particular,
that the upper state split from the ground energy level
does not experience anti-crossing and does not appear
in the continuous spectrum in contrast to what was
assumed earlier [3]. For large strains, this state passes
to the 3d±1 level in the model of a simple anisotropic

Γ8
+

Γ8
+

Γ8
+

Γ8
+
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band with an ionization energy of 0.7 meV. Thus, the con-
clusion drawn in [3]—according to which the minimum
pressure under which stimulated emission can still be
observed (P ≈ 4 kbar for P || [111]) is due to the affiliation
of the level split from the ground state of the acceptor to
the continuous spectrum—appears erroneous. Dot-and-
dash curves in Fig. 2b describe the pressure dependence of
the positions of the excited localized levels on which radi-
ative transitions from the resonant “ground” state are
allowed (odd states). The arrows indicated allowed transi-
tion from the resonant “ground” state, which might be
present in the emission spectrum considered in [3].

It should be noted that as the pressure increases, the
resonant state becomes more pronounced. We esti-
mated the width of this state for several values of pres-
sure. The width of the resonant “ground” state is
0.5 meV for P = 3 kbar, 0.4 meV for P = 4 kbar, and
0.3 meV for P = 6.85 kbar. The lifetime of this state should
increase accordingly. The emergence of emission under
pressures exceeding 4 kbar is probably due to an increase
in the lifetime of resonant states with pressure.

In conclusion, let us consider the effect of an electric
field on stationary and resonant states of acceptors in
deformed Ge. Since spectral studied of stimulated emis-
sion were carried out in an electric field of 3 kV/cm under
a pressure of 6.85 kbar (E || P) [3], we estimated the Stark
effect exactly for these conditions. The application of
the electric field has two consequences:

(1) It shifts all impurity states downwards, thus
reducing the separation between energy levels since
excited states have large orbits and experience a stron-
ger effect of the electric field.

(2) The electric fields renders all states resonant states
since the probability of tunnelling to the continuous spec-
trum becomes appreciable. The displacement of deep lev-
els can be estimated in perturbation theory; in this case, the
first-order correction is equal to zero. The second-order
correction for the ground state corresponding to the lower
subband amounts approximately to 1.6 meV (the ioniza-
tion energy of this state in zero electric field is 6.2 meV).
The corrections for excited states are much higher than
their ionization energies (the ionization energy of the 2p±1
state is 2.15 meV); i.e., perturbation theory is violated.
Thus, the spectrum of excited states associated with the
lower subband changes significantly upon application of
an electric field of 3 kV/cm.

The effect of the field on the resonant states associ-
ated with the upper subband is much weaker. The sec-
ond-order correction to the ground state is only
0.2 meV (the binding energy is 3.95 meV), while the
correction to the energy of 2p±1 state amounts to 0.9 meV
(the binding energy is 1.2 meV). Such a difference from
the states located under the lower subband appears
because the localization scale for the wave function of
the resonant state is smaller in the direction of the elec-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tric field than in the transverse direction, while the situa-
tion for localized states is the opposite (see Fig. 1). It
should be noted that since the electric field affects the
states belonging to the lower subband more strongly, the
lifetime of such states may turn out to be shorter than that
of the resonant states in zero electric field. This circum-
stance might be important for creating an inverse popula-
tion of impurity states in compressed germanium.
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Abstract—A model is proposed for describing the experimentally observed martensite and magnetic domain
structures in Heusler ferromagnetic alloys Ni2 + xMn1 – xGa. On the basis of this model, the field dependences
of magnetization and deformation of the alloys are calculated numerically and an expression for the maximum
attainable strains induced by external magnetic fields in these alloys is derived. It is shown that for small values
of the effective elastic modulus and demagnetizing factor of alloys, the strains induced by the magnetic field
may attain maximum possible values of approximately 5%, which are determined by lattice distortions as a
result of the martensite transition in fields of about 1 kOe. © 2001 MAIK “Nauka/Interperiodica”.
The experimental observation of structural and
magnetic domains in the martensite phase of
Ni2 + xMn1 – xGa Heusler alloys has been reported
recently. Structural and magnetic domains in
Ni2 + xMn1 – xGa single crystals and their behavior in
external magnetic fields of various orientations relative
to crystallographic axes were studied using micropho-
tography [1] and magnetic force microscopy [2]. The
strains induced by a magnetic field in Ni2 + xMn1 – xGa
polycrystals and single crystals were also measured
experimentally [3–5]. It was found that in fields
≤10 kOe, these strains may attain record-high values of
several percent (this effect can be referred to as colossal
magnetostriction). The experimental results also
proved that not only structural, but also magnetic
domains play a significant role in the colossal magneto-
striction effect in Ni2 + xMn1 – xGa alloys.

The effect of a magnetic field on structural and mag-
netic domains in Ni2 + xMn1 – xGa was investigated in
[6]; however, the specific experimentally observed
domain structure was not considered and the energy of
the ferromagnet was not calculated consistently either.

In the present work, we consider a model on a self-
consistent structure of martensite and magnetic
domains on the basis of the results of experimental
investigations [1, 2], a theoretical analysis of the phase
diagram of the Ni2 + xMn1 – xGa alloys [7], and the ther-
modynamic theory of domains [6]. The behavior of the
model in a magnetic field is studied and the strains
induced by the field in these alloys are calculated.
1063-7761/01/9306- $21.00 © 1302
Upon a transition from the high-temperature cubic
phase to the low-temperature tetragonal modification, a
Ni2 + xMn1 – xGa single crystal splits into martensite
domains of three types, each of which corresponds to
deformation (compression or extension) of the crystal
lattice along directions of the [100] type [8]. In a ferro-
magnetic crystal, structural domains in turn split into
magnetic domains. The direction of magnetization in
each magnetic domain coincides with the principal
crystallographic axis of the structural domain. An anal-
ysis of the experimental results [1, 2] shows that the
martensite and magnetic domain structures in
Ni2 + xMn1 – xGa can be described by the model pre-
sented in Fig. 1. The tree structure of magnetic domains
observed in [2], which is formed at the boundaries of
structural and magnetic domains, is disregarded in view
of the smallness of the volume occupied by these
domains.

Let us assume, for the sake of definiteness, that the
tetragonal axis in a structural domain of the first type
(see Fig. 1) is directed along the x axis. In domains of
the second and third types, tetragonal axes are directed
along the y and z axes, respectively. We also assume
that each structural domain splits into 180-degree mag-
netic domains.

Let us study the effect of an external magnetic field
directed along the x axis on the domain structure pre-
sented in Fig. 1. In zero magnetic field, all structural
domains have the same energy and, accordingly, the
volumes occupied by different types of domains are
2001 MAIK “Nauka/Interperiodica”
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identical. The application of the magnetic field
increases the volume occupied by the first type of
domains at the expense of domains of the second and
third types, which exhibit identical behavior relative to
the field in view of the symmetry of the model. The vol-
ume fractions of different types of domains in the pres-
ence of the field can be presented in the form

(1)

where f1 is the volume fraction of the first type of
domains, f2, 3 is the volume fraction of domains of the
second and third types, and α is a parameter taking into
account the change in the domain volume in a magnetic
field.

It follows from the phase diagram of a cubic ferro-
magnet in zero magnetic field that, upon a change in
temperature, it may pass to tetragonal phases with mag-
netizations along axes of the {001} type [7]. For exam-
ple, in a phase with mz = 1, i.e., M || [001] (m is the unit
vector along the magnetization vector M), the sponta-
neous deformation tensor has the form

(2)

where

and the variable e0 can be determined from the equation

in which a, b, and c are linear combinations of the elas-
tic moduli components of the second (cik), third, and
fourth orders, respectively, and Bi are the magnetostric-
tion constants. In the remaining two phases with mag-
netizations directed along the [100] and [010] axes, the
spontaneous deformation tensor can be obtained from
expression (2) through cyclic permutation of indices.
Thus, three tetragonal phases with the same energy may
exist in a ferromagnet; as a result, the crystal may con-
tain three types of structural domains. The first terms in
the expression for eik, which describe the change in
strain due to bulk magnetostriction, can be neglected as
compared to the effects associated with structural dis-
tortions of the lattice.

The substitution of the total energy for a cubic fer-
romagnet [6] into formula (2) leads to the following

f 1
1
3
--- α , f 2, 3+ 2
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exx 0 0
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expression for the energy of each type of domains in the
intrinsic crystallographic system of coordinates:

(3)

where K = B2e0/2 is the axial anisotropy induced by
magnetostriction, K1 is the first cubic anisotropy con-
stant, and H is the intrinsic magnetic field. The mea-
surements of magnetic anisotropy of Ni2 + xMn1 – xGa
alloys [4] proved that the axial anisotropy is much
stronger than the cubic anisotropy; for this reason, the
latter will be disregarded in the subsequent analysis.

Let us write the energy of the domain structure
under investigation (see Fig. 1) in the form

(4)

where Fe is the energy of the elastic subsystem, Fm is
the energy of the magnetic subsystem, and FZ is the
Zeeman energy.

We can write the energy of the elastic subsystem in
the form

(5)

where the angle brackets indicate averaging over vol-

ume and  is the tensor of effective elastic moduli of
the Ni2 + xMn1 – xGa alloy with the given domain struc-
ture [8]. The model of the domain structure presented in
Fig. 1 and taking into account Eq. (1) suggests that the

F
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Fig. 1. Model of martensite and magnetic domain structures
of the Ni2 + xMn1 – xGa alloy. Solid lines indicate the
domain walls between structural domains and dashed lines
show domain walls between magnetic domains. Arrows
indicate the directions of magnetization vectors in magnetic
domains; symbols + and d correspond to the direction of
magnetization in magnetic domains perpendicular to the
plane of the sample; the coordinate axes x and y coincide
with the crystallographic axes [100] and [010]; the z axis
([001]) is directed along the normal to the plane of the
figure.
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average values of the deformation tensor components
of the alloy can be written in the form

(6)

where  is the deformation tensor of the kth type of
domains, defined by formula (2). The substitution of
these strains into Eq. (6) leads to the following expres-
sion for the deformation tensor averaged over the sam-
ple volume (Fig. 1):

(7)

It should be noted that while writing the expression
for the averaged deformation tensor, we disregarded
bulk magnetostriction. The substitution of relation (7)
into Eq. (5) leads to the following expression for the
elastic energy of the domain structure under investiga-
tion:

(8)

where  =  – .
For the chosen direction of the external magnetic

field, the magnetization in the first type of domains is
parallel or antiparallel to the field, while in the second
and third types of domains, the magnetization is per-
pendicular to the field. For this reason, in the course of
magnetization, domains of the first type experience
only displacements of domain walls, while domains of
the second and third type experience only the rotation
of the magnetization vector. In this case, the anisotropy
energy and the Zeeman energy can be written in the
form

(9)

where the magnetization vector component along the
magnetic field has the form

(10)

and the intrinsic magnetic field has the form H = H0 –
4πN〈Mx〉, where H0 is the external magnetic field and N
is the demagnetizing factor; ψ is the angle between the
directions of the magnetization vector and the magnetic
field in domains of the second and third types; and M(1)

is the average magnetization in the first type of
domains. It can be written in the form

(11)

eij〈 〉 1
3
--- α+ 

  eij
1( )= 2

3
--- α– 

  1
2
---eij

2( ) 1
2
---eij

3( )+ 
  ,+

eij
k( )

eij〈 〉 6
4

-------
2e0α 0 0

0 e0α– 0

0 0 e0α– 
 
 
 
 

.=

Fe
9
8
---C̃e0

2α2,=

C̃ C̃11 C̃12

Fm
2
3
--- α– 

  K ψ, Fz
2cos H Mx〈 〉 ,–= =

Mx〈 〉 1
3
--- α+ 

  M 1( ) 2
3
--- α– 

  M0 ψ,cos+=

M 1( ) H0M0/Hc, H0 Hc,<
M0, H0 Hc,>




=

JOURNAL OF EXPERIMENTAL 
where the phenomenological parameter Hc corresponds
to the field in which the displacement of magnetic
domain walls in martensite domains of the first type is
completed.

Substituting Eqs. (8) and (9) into relation (4), we
obtain the following expression for the energy of the
domain structure depicted in Fig. 1:

(12)

The equilibrium values of parameters α and ψ for
the domain structure under investigation can be deter-
mined by minimizing expression (12) in these vari-
ables. This leads to the following equations for deter-
mining α and ψ:

(13)

Substituting the solutions of these equations into
expressions (7) for the deformation tensor and (10) for
the magnetization, we can determine the dependence of
these characteristics of the Ni2 + xMn1 – xGa alloy on the
magnitude of the applied magnetic field. The results of
numerical calculations of the field dependences of
magnetization, parameter α, and strain 〈exx 〉  for various

values of the effective elastic modulus  and the
demagnetizing factor N are presented in Figs. 2 and 3.
In our calculations, we used the following values of
parameters for the Ni2 + xMn1 – xGa alloy [3, 4]:

The results presented in Fig. 2 were obtained for N =
0.02 and Hc = 2000 kOe, while those in Fig. 3 corre-
spond to N = 0.5 and Hc = 2500 kOe. In our calcula-
tions, we also took into account the fact that the alloy
acquires the monodomain structure upon the attainment
of the value α = 2/3. In this case, the strain 〈exx 〉  ≈ 0.06,
which is determined by the ratio of the crystal lattice
parameters in the tetragonal phase (c/a = 0.94). A fur-
ther increase in the magnetic field does not lead to any
further deformation.
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Fig. 2. Field dependences of (a) magnetization, (b) volume fraction and induced strain for N = 0.02 and Hc = 2000 kOe for various

values of the effective elastic modulus  (in erg/cm3): 5 × 109 (1), 5 × 108 (2), 3 × 108 (3), and 5 × 107 (4); the symbols correspond
to experimental results obtained in [3].

C̃

Fig. 3. Field dependences of (a) magnetization, (b) volume fraction and induced strain for N = 0.5 and Hc = 2500 kOe for various

values of the effective elastic modulus  (in erg/cm3): 5 × 109 (1), 1 × 109 (2), 5 × 108 (3), and 3 × 108 (4).C̃
In fields H0 ~ Hc and H0 ~ H1 = Ha + 8πN〈Mx 〉 , where
Ha = 2K/M0, the field dependences of 〈Mx 〉 , α, and 〈exx 〉
acquire kinks. This can be explained as follows. For
H0 < Hc, the magnetization increases due to the dis-
placement of domain walls in structural domains of the
first type as well as due to the rotation of magnetization
vectors in structural domains of the second and third
types. For H0 = Hc, magnetic domains in structural
domains of the first type disappear altogether and a fur-
ther increase in the magnetization in fields Hc < H0 < H1

is associated only with the rotation of magnetization in
structural domains of the second and third types. In the
field H0 = H1, vectors M in structural domains of the
second and third type are completely reoriented to the
direction of the external magnetic field and the magne-
tization of the sample attains saturation.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
It follows from Figs. 2 and 3 that structural domains
also experience a rearrangement simultaneously with
the rearrangement of magnetic domains under the
action of the external field. As the magnetic field
increases, structural domains of the first type grow. For
H0 > H1, when the magnetization in structural domains
is the same, the Zeeman energies in them also become
identical. Since the motion of structural domain walls
under the action of the magnetic field occurs precisely
due to an increase in the Zeeman energy, a further
growth of structural domains of the first type at the
expense of domains of the second and third type
becomes impossible for H0 > H1.

The limiting value of the volume fraction α which
can be attained upon the saturation of magnetization
amounts to
SICS      Vol. 93      No. 6      2001
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(14)

while the corresponding value of strain 〈exx 〉  induced by
the magnetic field is expressed by the formula

(15)

Figures 2 and 3 show that for large values of the

effective elastic modulus , the values of αmax and
〈exx 〉max are smaller than the maximum values deter-
mined by lattice distortions. It follows from Eqs. (14)
and (15) that the necessary condition for the attainment
of maximum strains induced by a magnetic field in the
Ni2 + xMn1 – xGa alloys is that the elastic energy must be
of the order of the anisotropy energy. This can be
attained for small values of the elastic modulus in the
vicinity of the martensite transformation point.

It should be noted that Fig. 2 corresponds to the
sample magnetization in the plane of the plate, while
Fig. 3 corresponds to the sample magnetization in the
transverse direction. A comparison of Figs. 2 and 3
shows that the effect of colossal magnetostriction of the
Ni2 + xMn1 – xGa alloys is strongly anisotropic: the max-
imum strain of the sample for the sample magnetized in
the plane of the plate can be attained in much weaker
magnetic fields as compared to the case of magnetiza-
tion perpendicular to the plane of the plate. This result,
as well as the calculated field dependences of magneti-

zation and strain for N = 0.02, Hc = 2000 kOe, and  =
5 × 109 erg/cm3 (Fig. 2), is in good agreement with
experimental data [3–5].

αmax

2M0Ha

9C̃e0
2

-----------------,=

exx〈 〉 max

6M0Ha

9C̃e0
2

----------------------.=

C̃

C̃

JOURNAL OF EXPERIMENTAL
Thus, we have considered a thermodynamic model
describing the structural and magnetic domains in Heu-
sler ferromagnetic Ni2 + xMn1 – xGa alloys. On the basis
of the model, the field dependences of magnetization
and strain of the alloys have been calculated and the
expression for the maximum attainable strains induced
in these alloys by an external magnetic field has been
derived.
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Abstract—It is shown that there exists an infinite set of weakly collapsing solutions with zero energy. Zero
energy solutions are distributed along two lines in the space of parameters (A, C1). At large values of C1
(C1  ∞), the distance between the nearest points on every line tends to a finite limit. Along each of the lines,
the amplitude of the oscillating terms is exponentially small with respect to the parameter C1. © 2001 MAIK
“Nauka/Interperiodica”.
The nonlinear Schrödinger equation in which the
nonlinearity corresponds to effective attraction arises in
some physical problems [1, 2]. In the d-dimensional
space, this equation can be written in the form

(1)

where ψ is a scalar function and ∆ is the Laplace oper-
ator. Equation (1) has weakly collapsing solutions of
the form

(2)
where λ = l(t) is a parameter, ρ = |r |, and ϕ is a real
function. Weakly collapsing solutions were studied in
[1, 3, 4].

For every solution to Eq. (1), the total number of
particles and the total energy of the system are con-
served. These two conservation laws lead to the follow-
ing equations for the parameter ν and the functions λ
and χ [5, 6]:

(3)

where C and C1 are constants and t0 is the collapse
moment. It was shown in [5, 6] that the system of equa-
tions for ϕ and  is reduced to the single third-order
differential equation:

(4)

i
∂ψ
∂t
------- ∆ψ ψ 2σψ+ + 0,=

ψ r t,( ) λνϕ ρλ( ) iχ ρ t,( )( )exp ,=

νσ 1, χ ρ t,( ) χ0 t( ) χ̃ λρ( ),+= =

λ C

t0 t–
---------------, χ0 t( )

C1

2
------ t0 t–( ),ln= =

χ̃

Z''' Z''( )2

2Z'
------------

d 1–( ) d 3–( )
2y2

----------------------------------Z'––

–
1

C2
------ C1Z' y yZ' 2/σ d–( )Z+( )

4C2
------------------------------------------------–

–
1

8C4Z'
-------------- yZ' 2/σ d–( )Z+( )2 2 Z'( )σ 1+

y d 1–( )σ---------------------+ 0.=
1063-7761/01/9306- $21.00 © 21307
The functions ϕ and  are related to the function Z by
the simple equations

(5)

Our purpose is to investigate possible types of the
asymptotic behavior of solutions to Eq. (4). In this
paper, we restrict ourselves to the case d = 3, σ = 1,
which is the most interesting from the physical point of
view. Then, Eq. (4) is reduced to the form

(6)

The parameter C corresponds to the scaling transforma-
tion of Eq. (6):

(7)

Hence, we set C = 1 below.

There exists a single one-parameter family of solu-
tions to Eq. (6) satisfying the physical boundary condi-
tions at zero [5, 6]:

. (8)

In order to analyze the asymptotic behavior of the solu-
tion as y  ∞, we multiply both parts of Eq. (6) by Z'

χ̃

ϕ Z'

y d 1–( )/2
-----------------, χ'˜ yZ' 2/σ d–( )Z+

4C4Z'
----------------------------------------.–= =

Z''' Z''( )2

2Z'
------------

C1

C2
------Z'

2 Z'( )2

y2
--------------+––

–
yZ' Z–( )2

8C4Z'
------------------------ y yZ' Z–( )2

4C2
---------------------------+ 0.=

y Cỹ, Z CZ̃ ỹ( ).= =

Z y( ) Ay3 Ay5 C1

10
------

3
5
---A– 

  …+ +=
001 MAIK “Nauka/Interperiodica”
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and differentiate it with respect to y. As a result, we
obtain the equation

(9)

When y @ max(1, ), the right-hand side of Eq. (9)
can be neglected in the principal approximation. Then,
Eq. (9) becomes linear. In the asymptotic domain y 
∞, the general solution to this equation is

(10)

Formula (10) provides an expansion in powers of
1/y2. The four coefficients {B, B1, d1, d2} are related by
an equation that can be easily found by substituting (10)
into Eq. (6) (see also [7]):

(11)

4Z''' ' y Z' yZ''+( ) 8C1Z''– Z–+

=  
16 Z'( )2

y3
------------------ 24Z'Z''

y2
-----------------.–

C1

Z By
B1

y
----- 1

16C1

9y2
------------ …+ + 

  4

y2
---- 1 …+( )–+=

× d1
y2

4
---- 2C1 yln– 

 cos d2
y2

4
---- 2C1 yln– 

 sin+ .

B1 –2BC1

d1
2 d2

2+
B

----------------.–=

0 2 4 6 8 10 12

ϕ 8C1⁄

x y 8C1⁄=

0.5

0.4

0.3

0.2

0.1

Fig. 1. Functions ϕ/  at the points with a zero energy:

the dot-and-dash curve corresponds to (A, C1) = (0.644,
1.09) and the dashed curve corresponds to (A, C1) = (0.913,
4.41). The solid curve shows the limiting function ϕ0 =

 (Eqs. (34), 35), x = y/

8C1

Z0 x( )/x 8C1
JOURNAL OF EXPERIMENTAL
In order for the solution (8), (10), (11) to have zero
energy, it is necessary and sufficient that the condition

(12)

be satisfied. The coefficients d1 and d2 are analytic func-
tions of the parameters {A, C1}. Thus, only a discrete
set of the points {A, C1} with zero energy can exist. One
such point was numerically found in [3]:

{A, C1} = {0.644; 1.09}.

In addition to this point, there exist others correspond-
ing to zero energy. Here are some of them:

{A, C1} = {0.365; 3.113},

{A, C1} = {0.913; 4.41}, {A, C1} = {0.924; 5.89},

{A, C1} = {1.2619; 7.26}, {A, C1} = {1.435; 8.66},

{A, C1} = {1.689; 10.04}, {A, C1} = {1.907; 11.42},

{A, C1} = {2.137; 12.79}, {A, C1} = {2.362; 14.16}.

Below we show that the set of points {A, C1} with zero
energy is infinite and the points are located almost equi-
distantly on two curves (see Fig. 3). We also obtain an
analytical equation of these curves in the space {A, C1}.

First, we investigate the domain C1 @ 1. For this
purpose, consider the linear equation

(13)

With the help of the substitution

, (14)

Eq. (13) is reduced to the third-order equation

(15)

Equation (15) has the turning point

(16)

In the neighborhood of this point, we set

(17)

We consider four linearly independent solutions to
Eq. (13):

d1 d2 0= =

Z''' ' 2C1Z''–
1
4
---y Z' yZ''+( ) 1

4
---Z–+ 0.=

Z yφ, φ' ^= =

y^''' 4^'' 2C2 2^ y^'+[ ]–+

+
3
4
---y2^

1
4
---y3^'+ 0.=

y 2 2C1.=

y 2 2C1 t.+=
Z1 = y (an exact solution to Eq. (13));

(18)Z2

8C1 y2–

8C1

------------------------ ,

1

2 π 2C1( )1/4
------------------------------θ3 t( )–









=

before the turning point

in the neighborhood of the turning point,
 AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001



JOURNAL OF E

THE PROPERTIES OF WEAKLY COLLAPSING SOLUTIONS 1309

p
d

b

=

Z3

1

8C1 y2–( )
------------------------- 1

2
--- y1 8C1 y2–d

0

y

∫–
 
 
 

exp @@@@@@@@@@@@

πC1–( )exp

4 π 2C1( )1/4
------------------------------θ1 t( ) @@@@@@@@@@@@@@@@@@@–









=

before the turning point,

in the neighborhood of the turning point,

Z4

1

8C1 y2–( )
------------------------- 1

2
--- y1 8C1 y1

2–d

0

y

∫ 
 
 

exp @@@@@@@@,

πC1( )exp

4 π 2C1( )1/4
------------------------------θ2 t( ) @@@@@@@@@@.–









=

before the turning point,

in the neighborhood of the turning point.
In (18), the functions θ1, 2, 3 are defined as follows:

(19)

Solutions (18), (19) make it possible to pass turning
oint (17) and obtain a solution to Eq. (13) in the entire
omain y ≥ 0.

The general solution to Eq. (19) satisfying the
oundary condition at zero can be written in the form

(20)

θ1 t( )
i
2
---

t1d

t1
3/2

------e
tt1 t1

3

3 2C1

-----------------
 
 
 

exp∫–=

=  

2 πt, t @ 2C1( )1/6,

π 2
3
--- t 3/2 2C1( )1/4

 
 exp

t 2C1( )1/4
-------------------------------------------------------, t ! 2C1( )1/6,––









θ2 t( ) i
t1d

t1
3/2

------e
tt1 t1

3

3 2C1

-----------------
 
 
 

exp∫=

 

2 π
t 2C1( )1/4
--------------------- 2

3
---t3/2 2C1( )1/4

 
  , t @ 2C1( )1/6,cos

π
t 2C1( )1/4
------------------------ 2

3
--- t 3/2 2C1( )1/4– 

  , t ! 2C1( )– 1/6,exp–








θ3 t( )
1
2
---

t1d

t1
3/2

------e
tt1 t1

3

3 2C1

-----------------
 
 
 

exp∫=

=  

–2 π t 1/2, t ! – 2C1( )1/6,

π
t 2C1( )1/4
--------------------- 2

3
---t3/2 2C1( )1/4

 
  , t @ 2C1( )1/6.sin







Z A1 Z4 Z3– y

2 2C1

-----------------– 
 =

+ D1y D2Z2 D3Z3 D4Z4,+ + +
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where Z1, 4 are solutions (18), (19) to the linear equation
(13) and the functions D1–4 are expressed in terms of
integrals of the derivatives of Z:

(21)

Here,

(22)

In the domain y ! 1, we find

(23)

Dk
8

2C1

------------- y1Pk4
4 Z'( )2

y1
3

-------------- 6Z'Z''

y1
2

--------------–
 
 
 

.d

0

y

∫–=

P14 det

Z2 Z3 Z4

Z2' Z3' Z4'

Z2'' Z3'' Z4'' 
 
 
 
 
 

,–=

P24 det

Z1 Z3 Z4

Z1' Z3' Z4'

Z1'' Z3'' Z4'' 
 
 
 
 
 

,=

P34 –det

Z1 Z2 Z4

Z1' Z2' Z4'

Z1'' Z2'' Z4'' 
 
 
 
 
 

,=

P44 det

Z1 Z2 Z3

Z1' Z2' Z3'

Z1'' Z2'' Z3'' 
 
 
 
 
 

.=

P34 P44+
2C1

2
-------------y, D3 D4+= 96A2y3,=

D1
18A2y2

C1
-----------------, D2

12A2y3

C1
-----------------.–= =
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With the help of formulas (8), (20), (23), we find the
coefficient A1:

(24)

Equations that determine the points {A, C1} with a zero
energy follow from formulas (20) and (23):

(25)

In the principle approximation with respect to the

parameter , we find D4(∞) from Eqs. (21), (22):

(25a)

In the same approximation, the first equation in (25)
can be simplified and reduced to the form [8]

(26)

Assume that the inequality

(27)

holds. Then the function

(28)

is a solution to Eq. (9) in the domain y ! . It satis-
fies the boundary condition at zero for the function Z.
Assume that there exists a solution to Eq. (26) satisfy-
ing condition (27). Then, formulas (26) and (28) imply

(29)

Since 

(30)

Eq. (26) has two close solutions,

(31)

A1
12A

2C1

-------------.=

12A

2C1

------------- D4 ∞( )+ 0, D2 ∞( ) 0.= =

C1
2–

D4 ∞( )
2

2C1

------------- y 2C1y–( )expd

0

∞

∫=

× 4 Z'( )2

y3
-------------- 6Z'Z''

y2
--------------– .

6A y 2C1y–( ) Z'( )2

y2
----------- 3 2C1

2
y
---+ 

  .expd

0

∞

∫=

A
C1

6
------–  ! C1

Z'
C1

2
------y2 3y

C1

---------- A
C1

6
------– 

  C1y( )sin+=

C1

A
C1

6
------– 

  1
1

2 2
---------- te t– 3t 2+( ) t

2
------- 

 sind

0

∞

∫–




– o
A
C1
------ 1

6
---– 

 




0.=

1

2 2
---------- te t– 3t 2+( ) t

2
------- 

 sind

0

∞

∫ 1,=

6A C1,=
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which split only when the exponentially small terms
(with respect to C1) are taken into account. This fact is
proved below. Simultaneously, we find the next terms

(with respect to 1/ ) in Eq. (31).

Let us show that the amplitudes of the oscillating
terms are proportional to the amplitudes of the oscillat-

ing terms in the domain 1 ! y !  as y  ∞ with
an exponential accuracy with respect to C1. For this
purpose, we set

(32)

Using (32), Eq. (9) is reduced to the form

(33)

The equation

(34)

has a solution , which is regular at zero:

(35)

This corresponds to the point C1 = 6A. In the domain
x @1, we find that

(36)

is the general solution to Eq. (34). Numerical solution
of Eq. (34) yields values for the coefficients B and B1;
as a result, we have

(37)

We seek a solution to Eq. (33) in the form

(38)

The function  satisfies the equation

(39)

The homogeneous equation (39) has a single smooth
solution

. (40)

C1
2

C1

y 2 2C1x, Z 2 2C1( )5
Z̃ x( ).= =

x
4
--- Z'˜ xZ''˜+( ) 1

4
---Z''˜ 1

4
--- Z̃–

1

64C1
2

------------Z'''˜ '+–

=  
4

x3
----- Z'˜( )2 6

x2
-----Z'˜ Z''˜ .–

x
4
--- Z'˜ xZ''˜+( ) 1

4
---Z''˜ 1

4
--- Z̃––

4

x3
----- Z'˜( )2 6

x2
-----Z'˜ Z''˜–=

Z̃0

Z̃0
x3

48
------ x5

90
------– 2x7

2835
------------ ….+ +=

Z̃0 Bx
B1

x
-----+=

Z̃0 0.0156x
0.0039

x
----------------.–=

Z Z̃0 Z̃1, Z̃1  ! Z̃0 .+=

Z̃1

Z̃1''
x2

4
----- 1

4
---–

6

x2
----- Z̃0'+ 

  Z̃1'
x
4
---

8

x3
----- Z̃0'–

6

x2
----- Z̃0''+ 

 +

–
1
4
--- Z̃1

1

64C1
2

------------ Z̃1''''+
1

64C1
2

------------ Z̃0''''.–=

Z̃1
1( )

1 x2

3
----- …+ +=
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To obtain three other solutions in the domain x ! 1, we
make the change of variables

(41)

The function f satisfies the equation

(42)

Solving Eq. (42), we find

(43)

Thus, the homogeneous equation (39) has two smooth
solutions and two rapidly oscillating ones. For the rap-
idly oscillating solutions, the turning point lies in the
complex plane x at a finite distance from the real axis.
Therefore, the probability of the transition between the
two branches (rapid and slow) is exponentially small.
Thus, the problem is reduced to the construction of a

solution to Eq. (6) in the domain y !  that has no
rapidly oscillating terms. We present a procedure that
yields such a solution accurate to an arbitrary order

with respect to 1/ . 

The first approximation is chosen as

(44)

where A1 = o(1/C1). Substituting (44) into (6), we
obtain the following equation for Z1:

(45)

Integration of this equation yields

(46)

Here, if we set

(47)

then the function Z will contain no oscillating terms;
i.e.,

(48)

Z̃1 Z̃1
1( )

f .=

x

16C2
------------ f ''' '

x
2
--- f '' f '+ + 0.=

f 1' x 2 2C1x( ), f 2'sin 2 2C1x( ),cos= =

f 3' 16C1
2 x1x1 xx1–( )expd

x1
2 8C1

2+( )2
---------------------------------------.

0

∞

∫=

C1

C1
2

Z
C1

6
------ A1+ 

  y3 Z1,+=

Z1'''
2

y2
----Z1'

2
y
---Z1'' C1Z1'+–+ –

C1y4

18
----------- 3y2C1A1.–=

Z1' y
y3

18
------ y 3A1

1
3C1
---------– 

 +




–=

+
1

3C1
3/2

------------ C1y( ) 1 9A1C1–( )sin




.

A1
1

9C1
---------,=

Z
y3

6
---- C1

2
3C1
---------+ 

  y5

90
------.–=
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To obtain the next approximation, we use representa-
tion (48) for Z as the zero approximation:

(49)

Now, we obtain the following equation for Z1 from (6)
and (49):

(50)

Solving Eq. (50), we obtain the expression

(51)

for , which is similar to (46). The oscillating correc-
tion vanishes if the coefficient A1 is set to

(52)

In this approximation, the function Z is written as

(53)

The process described can be continued infinitely.
As a result, we construct a function Z that has no rap-
idly oscillating terms and is written in the form

(54)

where y = 2 x, and  is determined by formulas

(33) and (35). The first terms of the expansions of 

and  in powers of x are determined from Eq. (53):

(55)

Z
y3

6
---- C1

2
3C1
--------- A1+ + 

  y5

90
------– Z1,+=

A1 o 1/C1
3( ).=

Z1'''
2

y2
----Z1'

2
y
---Z1''– C1Z1'+ +

=  4y4

81C1
------------ y6

1620
------------ 2y2 C1A1

4
------------ 1

9C1
2

---------+ 
  .–+

Z1'
y

C1
------ y5

1620
------------ y3

27C1
------------ 2y

C1A1

4
------------ 2

9C1
2

---------+ 
 –+





=

+
2

C1

----------
A1C1

4
------------ 2

9C1
2

---------+ 
  C1y( )sin





Z1'

A1
8

9C1
3

---------.–=

Z
y3

6
---- C1

2
3C1
--------- 8

9C1
3

---------–+ 
 =

–
y5

90
------ 1 2

3C1
2

---------– 
  y7

11340C1
---------------------.+

Z y( ) 2 2C1( )5
=

× Z̃0 x( )
1

C1
2

------ Z̃1 x( )
1

C1
4

------ Z̃2 x( ) …+ + +
 
 
 

,

2C1 Z̃0

Z̃1 x( )

Z̃2 x( )

Z̃1 x( ) x3

72
------ x5

135
--------- …,+ +=

Z̃2 x( ) –
x3

54
------ … .+=
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Simultaneously, we obtain an expression for the coeffi-
cient A, which improves formula (31):

. (56)

Expansion (54) is an asymptotic series in C1. The right-
hand sides of (54), (56) include exponentially small
terms with respect to C1; they are associated with tun-
neling between branches in the linearized Eq. (9). By
virtue of Eq. (29), Eq. (56) must split into two equa-
tions. It follows from the above reasoning that the split-
ting magnitude is exponentially small with respect to
the parameter C1:

(57)

6A C1
2

3C1
--------- 8

9C1
3

--------- …+–+=

6A C1
2

3C1
--------- 8

9C1
3

---------– …+ + 
 –

=  DC1
1.25 βC1–( ).exp+−

0

–0.02

–0.04

–0.06

–0.08

–0.10

–0.12

χ′ 8C1⁄

x y 8C1⁄=
0 2 4 6 8 10 12

Fig. 2. Functions χ'/  at the points with a zero energy:

the dot-and-dash curve corresponds to (A, C1) = (0.644,
1.09) and the dashed curve corresponds to (A, C1) = (0.913,

4.41). The solid curve shows the limiting function  con-

structed on the basis of 0(x); x = y/ .

8C1

x0
'

Z̃ 8C1

4

0 2

C1

6A

8

12

16

4 6 8 10 12 14 16

Fig. 3. Asterisks denote zero-energy points in the plane (6A,
C1); the solid curves correspond to Eqs. (57) and (63). 
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The magnitude β is determined by the location of the
turning point and will be determined below. On the
curves determined by Eq. (57), the amplitudes d1, 2 are
exponentially small with respect to the parameter C1.
The oscillation correction to (54) in the domain y @

 consists of two terms (see (10)). The linear com-
bination of these terms, which goes to the function

sin( ) in the domain 1 ! y ! , can be elimi-

nated by a small shift (of order exp(–2βC1) in
Eq. (57). The second linear combination shifted by the
phase π/2 relative to the first one, which goes to

cos( y)) in the domain 1 ! y ! , appears only
due to the tunneling between the rapid and slow
branches in the linearized Eq. (9). With this combina-
tion, the amplitude is an oscillating function of the
parameter C1. Its zeros yield the states with zero energy.
Now, we find the period of this function and β.

The linearized Eq. (9) yields the “momentum” P(x)

(58)

where the function  is determined by formulas (33)
and (35). Let x* be the turning point at which the
“momentum” P(x) vanishes, i.e.,

(59)

Then, the action on the trajectory,

, (60)

determines the amplitude of oscillating terms in for-
mula (10) on the curves (57):

(61)

Each of the curves contains points {A, C1} correspond-
ing to zero energy. These points are located almost at
the same distance from each other with respect to C1
with the period

(62)

Numerical integration of Eqs. (34), (60) yields the fol-
lowing values for the constants β, β0, and x*:

(63)

Formula (54) entails an important inequality, which
holds along curves (57):

(64)

C1

C1 C1

C1
1 2⁄–

C1 C1

P2 x( ) 2C1 –1 x2 24

x2
------

∂Z̃0

∂x
---------+ + 

  ,=

Z̃0

P x∗( ) 0.=

3 4C1 x x
2 24

x2
------

∂Z̃0

∂x
--------- 1–+d

0

x∗

∫ C1 β0 iβ+( )= =

d1 2, C1
5/2 2βC1–( ).exp∼

δC1
2π
β0
------ 2.6.≈ ≈

β 0.712, β0 2.416,= =

x∗ 0.973 i 0.393.×+=

1

Z̃0 x( )
------------ Z y( )

2 2C1( )5
----------------------- Z̃0 x( )–

const

C1
2

------------.<
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Estimate (64) is uniform with respect to the coordinate
y. Hence, all zero-energy solutions are almost similar.

Figures 1 and 2 show the dependence of ϕ and χ' at
zero-energy points {A, C1} (0.644, 1.09) and (0.913,
4.41). Solid curves in Figs. 1 and 2 show the functions

ϕ0 and  constructed on the basis of .

Figure 3 shows zero-energy points in the plane (6A,
C1); solid curves correspond to Eqs. (57) and (63).

As the parameter C1 increases, the accuracy of
determining zero-energy points rapidly decreases.

Thus, there exist two curves in the plane {A, C1} on
which the amplitude of the oscillating term is exponen-
tially small. On these curves (see Eq. (57)), points cor-
responding to zero-energy solutions are almost equidis-
tant with respect to C1. All zero-energy solutions are
smooth and almost similar. The function ϕ correspond-
ing to these solutions slowly decreases with increasing

y in the domain y @ :

where B is determined by (36) and (37). It is unjustified
to assume that the solution corresponding to the point
{A, C1} = (0.644, 1.09) is distinguished among others,
and the instability development results in the formation
of this very solution. At the present time, the issue of
the probability of forming weakly collapsing solutions
remains unstudied. It is possible that the existence of
specific curves in the plane {A, C1} can be used both for
solving this problem and for stability analysis of
weakly collapsing solutions.

The integral of the total number of particles is diver-
gent for any weakly collapsing solution. A weak
decrease of the solution forces us to truncate the inte-
gral for sufficiently large y. Hence, the probability of
forming a state leading to collapse is drastically
decreased. For points in general position {A, C, C1},

χ0' Z̃0

C1

ϕ y( )
8C1 B

y
-----------------,∼
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there exists a set of parameters such that the deep min-
imum of ϕ is at y ~ 1 [5, 6]. One can hope that these
solutions will be realized in numerical simulation and
in real physical objects.
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Abstract—The dynamics of a system with three parametrically coupled waves with delayed feedback is con-
sidered. Results of the detailed numerical simulation of the onset of self-modulation, as well as complex
dynamic and chaotic regimes, are presented. The relation of self-modulation regimes with the formation and
propagation of solitons is investigated. It is discovered that as the pump parameter increases, the synchroniza-
tion of phases of the interacting waves, which is characteristic of stationary generation and periodic self-mod-
ulation regimes, is violated, and the system goes to a chaotic regime via intermittency. © 2001 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The study of spatio-temporal chaos in distributed
self-oscillatory systems is one of the most important
problems in modern nonlinear dynamics. In this paper
we consider the chaotic dynamics of a system consist-
ing of three interacting waves that propagate in a qua-
dratically nonlinear medium. Parametric instability
plays an important role in nonlinear optics, fluid
dynamics, plasma physics, and so on [1–3]. Amplifiers
and oscillators based on this phenomenon are exten-
sively used in radio, microwave, and optical bands [4–
6]. From the point of view of nonlinear dynamics, dis-
tributed parametric oscillators belong to the class of
distributed self-oscillatory systems with delayed feed-
back. It is well known that such systems can demon-
strate complex (including chaotic) oscillation regimes
(see, e.g., [2, 7, 8]). In [9], it was shown that a system
of parametrically coupled waves can demonstrate a
chaotic behavior. In that study, the problem of acousto-
optical interaction with regard for the reflection of the
acoustic wave from the boundaries was considered. In
our paper [10], the parametric interaction involving
counterpropagating waves, which ensures an internal
distributed feedback, was considered. It was discovered
that as the pumping amplitude increases, the stationary
oscillation regime becomes unstable and is replaced by
chaotic oscillations; moreover, the chaotic attractor
itself and the sequence of bifurcations preceding its
appearance are similar to some well-known finite-
dimensional models of nonlinear dynamics including
the Lorenz system [1, 2, 8].

However, by and large, the complex dynamics under
parametric interaction is poorly understood. For sys-
tems with concurrent waves, which are of particular
practical interest, no thorough investigations of self-
1063-7761/01/9306- $21.00 © 1314
modulation and chaotic regimes in a wide range of con-
trol parameters have been conducted. Even the scenario
of the onset of the chaotic regime remains unknown. Of
particular interest is the comparison of such a system
with other distributed self-oscillatory systems with
well-understood dynamics; these are oscillators based
on beam and plasma-beam traveling wave amplifiers
with external feedback [11–13], free electron lasers
[14–16], and microwave backward wave oscillators
[17–19]. In recent years, such systems have been stud-
ied and have been shown to demonstrate a rich set of
various dynamic regimes including the transition to
chaos by all known scenarios characteristic of finite-
dimensional dynamical systems [17, 18]. Thus, a
thorough study of the complex dynamics of wave
parametric interaction will be important for reveal-
ing general laws of chaotic behavior in distributed
self-oscillatory systems. Investigations of nonsta-
tionary oscillation regimes are also of considerable
importance since they make it possible to study
mechanisms of various secondary instabilities in
parametric oscillators. In addition, generation of
chaotic signals is of independent interest in relation
to their use in communication systems, information
processing, etc. (see, e.g., [20–23]).

The purpose of this paper is a detailed theoretical
treatment of the complex dynamics of a distributed
parametric oscillator with delayed feedback. In Section 2,
a model of the oscillator is discussed and basic equa-
tions of its dynamics are presented. The system under
study is a resonator filled with a quadratically nonlinear
substance in which three parametrically coupled waves
propagate. Self-excitation conditions and stationary
generation regimes on the principal mode are briefly
discussed in Sections 3 and 4, respectively. In Section 5,
2001 MAIK “Nauka/Interperiodica”
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results of numerical simulation are presented. Mecha-
nisms of the onset of self-modulation and chaos are
thoroughly investigated.

2. STATEMENT OF THE PROBLEM
AND BASIC EQUATIONS

Consider a system of three parametrically coupled
waves whose frequencies and wave numbers satisfy the
resonance conditions

For slowly varying complex amplitudes of the waves
A1, 2, 3, one can write the well-known system of equa-
tions [1–3]

(1)

(2)

(3)

where v 1, 2, 3 are group velocities and σ1, 2, 3 are real
nonlinear interaction coefficients. Equations (1)–(3)
describe the interaction of the high-frequency pump
wave (A3) with the low-frequency signal (A1) and idler
(A2) waves. We assume that v 1, 2, 3 > 0; i.e., all waves
propagate in the same direction, and σ1, 2, 3 > 0, which
means that waves with positive energy are considered.
In this case, the instability is convective (see [1–3]), and
to turn the system into a self-oscillatory one, feedback
is required, which can be realized by using reflections
from the boundaries of the system or at the expense of
an external circuit. We consider the simplest case of the
signal wave feedback. This case is described with the
help of the boundary condition

(4)

where R = ρeiψ is the complex feedback parameter, ∆t
is the delay time in the feedback circuit, and l is the
extent of the nonlinear medium. For example, in the
presence of reflections, we have

where R0, l are the complex reflection coefficients from
the left and the right boundaries, respectively. We
assume that the pump wave has constant amplitude on
the left boundary and the idler wave is absent. Then, the
boundary conditions for these waves have the form

(5)

ω1 ω2+ ω3,=

k1 k2+ k3.=

∂A1

∂t
--------- v 1

∂A1

∂x
---------+ σ1A2*A3,=

∂A2

∂t
--------- v 2

∂A2

∂x
---------+ σ2A1*A3,=

∂A3

∂t
--------- v 3

∂A3

∂x
---------+ σ– 3A1A2,=

A1 0 t,( ) RA1 l t, ∆t–( ),=

ρ R0Rl , ψ R0Rl( )arg= = 2k1l,–

∆t
l

v 1
------,=

A2 0( ) 0, A3 0( ) A0 const.= = =
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Let us introduce the dimensionless coordinate and
time

and the new dependent variables

Then, the original equations (1)–(3) are reduced to the
form (primes at the dimensionless variables are omit-
ted)

(6)

(7)

(8)

where

is the parameter interpreted as the normalized ampli-
tude of the pump wave at the entry of the system and the
parameter

characterizes the detuning of group velocities of the
interacting waves.

In terms of the new variables, the boundary condi-
tions (4), (5) have the form

(9)

(10)

where

is the dimensionless delay time. We set the initial con-
ditions

which corresponds to the oscillator excitation due to
small fluctuations of the idler and signal waves.

Thus, the model of the parametric oscillator under
study is a resonator (one-dimensional or annular) filled
with a nonlinear substance in which parametrically
interacting waves propagate. The eigenfrequencies of

ξ x
l
--, τ

v 1v 2 t x/v 2–( )
l v 2 v 1–( )

-------------------------------------,= =

A1'
σ3v 1

σ1v 3
------------

A1

A0
------, A2'

σ3v 2

σ2v 3
------------

A2

A0
------, A3'

A3

A0
------.= = =

∂A1

∂τ
---------

∂A1

∂ξ
---------+ α A2*A3,=

∂A2

∂ξ
--------- α A1*A3,=

1 u+( )
∂A3

∂τ
---------

∂A3

∂ξ
---------+ α A1A2,–=

α A0l
σ1σ2

v 1v 2
------------=

u
v 2 v 1 v 3–( )
v 3 v 2 v 1–( )
-----------------------------=

A1 0 τ,( ) RA1 1 τ, δ–( ),=

A2 0 τ,( ) 0, A3 0 τ,( ) 1,= =

δ
v 1v 2 ∆t l/v 2+( )

l v 2 v 1–( )
----------------------------------------=

A3 x 0,( ) 1, A1 2, x 0,( )  ! 1,=
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this resonator are easy to determine. Indeed, in the
absence of pumping, Eq. (6) for the signal wave takes
the form

Consider the excitation of the resonator by the har-
monic input signal A0exp(iΩτ). Here Ω is the detuning
of frequency from the exact resonance ω1. Then, we
have

instead of boundary condition (9). We seek the solution
in the form

As a result, we obtain

where θ = Ω(δ + 1) – ψ. The frequencies that maximize
the amplitude of the forced oscillations can be inter-
preted as the frequencies of the resonator’s eigen-
modes. They can be found from the condition cosθ = 1
and have the form

(11)

Thus, in our approximation, the spectrum of eigenfre-
quencies is equidistant and the distance between modes
is 2π/(1 + δ). It is clear that the resonance properties of
the system are the more pronounced, the larger ρ.

3. SELF-EXCITATION CONDITIONS

The linear theory of parametric oscillator has been
thoroughly studied (see, e.g., [5, 6, 24, 25]). Here we
present only the basic concepts that are necessary for
further presentation. First of all, we must determine the
gain G(Ω) of the parametric amplifier without feed-
back. Then, the condition of the oscillator self-excita-
tion is written in the form

At the first stage, when depletion of the pump has no
effect, we can set A3 = 1 and obtain the following lin-
earized system of equations from Eqs. (6), (7):

(12)

(13)

∂A1

∂τ
---------

∂A1

∂ξ
---------+ 0.=

A1 0 τ,( ) A0eiΩτ= RA1 1 τ, δ–( )+

A1 Â iΩ τ ξ+( )[ ] .exp=

Â
A0

1 ρ iθ–( )exp–
-----------------------------------=

=  
A0 i ρ θ/ 1 ρ θcos–( )sin( )arctan[ ]exp

1 ρ2 2ρ θcos–+
-----------------------------------------------------------------------------------------,

Ωn
2πn ψ+

1 δ+
--------------------= .

G Ω( )R 1.=

∂A1

∂τ
---------

∂A1

∂ξ
---------+ α A2*,=

∂A2

∂ξ
--------- α A1*.=
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Setting A1, 2 ∝  exp[i(Ωτ – κξ)], we find the dispersion
equation

with the roots

Hence, it is seen that the amplification band of the para-
metric amplifier is determined by the condition Ω2 <
4α2. In this frequency band, we have the pair of conju-
gate wave numbers

where

(14)

is the increment of parametric instability. Thus, solu-
tions to system (12), (13) can be represented as a super-
position of growing and decaying waves

The constants a± and b± can be determined from the
boundary conditions, which have the form

for the amplifier. Here A0 is the amplitude of the input
signal. Upon simple computations, we find that

Then, the gain factor is written as

With regard for the boundary condition for the signal
wave (9), we obtain the self-excitation condition in the
form

(15)

Ω κ–( )κ α 2,=

κ±
Ω
2
----= Ω2

4
------ α2– .±

κ±
Ω
2
----= iλ ,±

λ α 2 Ω2

4
------–=

A1 a+ λξ( )exp a– λξ–( )exp+[ ] iΩ τ ξ
2
---– 

  ,exp=

A2* b+ λξ( )exp b– λξ–( )exp+[ ] iΩ τ ξ
2
---– 

  .exp=

A1 ξ 0=( ) A0eiΩτ , A2* ξ 0=( ) 0= =

A1 A0 λξ( )cosh iΩ
2λ
------– λξ( )sinh iΩ τ ξ

2
---– 

  ,exp=

A2*
α A0

λ
---------- λξ( ) iΩ τ ξ

2
---– 

  .expsinh=

G Ω( )
A1 ξ 1=( )
A1 ξ 0=( )
----------------------- λcosh iΩ

2λ
------– λsinh iΩ

2
------– 

  .exp= =

1 ρ λcosh iΩ
2λ
------– λsinh i ψ δΩ– Ω

2
----– 

  .exp=
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This yields the value of the pump parameter α = αst and
the oscillation frequency.

It is obvious that the self-excitation is facilitated
when one of the eigenfrequencies of resonator (11) is
close to zero; indeed, for Ω = 0, the increment of the
parametric instability (14) attains its maximum λ = α.
Thus, the values ψ = 2πn are optimal. It is seen from
Eq. (15) that in this case the self-excitation condition
takes the simple form

(16)

On the contrary, for ψ ≈ 2πn + π, when the frequencies
of two adjacent modes are located at an equal distance
from the amplification band, self-excitation is ham-
pered. A numerical analysis of Eq. (15) shows that the
dependence of αst on ψ is rather weak. The oscillation
frequency is close to the frequency of the resonator’s
zero eigenmode:

In the region of adverse phases, self-excitation can
occur at the frequencies of two adjacent modes simul-
taneously.

4. STATIONARY GENERATION REGIMES

Solutions that describe stationary generation
regimes on the principal mode can also be analyzed
analytically. For simplicity, consider the case ψ = 0
(i.e., the parameter R is real and positive), which is the
optimal condition for self-excitation. In this case, the
oscillation frequency is zero. Assuming that the ampli-
tudes A1, 2, 3 in Eqs. (6)–(8) depend only on the coordi-
nate ξ, we obtain the system of ordinary differential
equations

(17)

Note that the parameter u does not appear in these equa-
tions; i.e., stationary solutions are independent of the
detuning of group velocities (under the adopted nor-
malization of variables). Solutions to Eqs. (17) in an
infinite medium are well known [1, 3]. In our case, we
must add the boundary conditions

Changing to real amplitudes and phases in Eqs. (17),
we have

It is easy to show (the details of the computations are
omitted, since they are similar to those used in [10])
that sinΦ = 0, where Φ = ϕ3 – ϕ2 – ϕ1; i.e., the phases

ρ αstcosh 1.=

Ω ψ
1 δ+
------------.≈

dA1

dξ
--------- α A2*A3,

dA2

dξ
--------- α A1*A3,= =

dA3

dξ
--------- α A1A2.–=

A1 0( ) ρA1 1( ), A2 0( ) 0, A3 0( ) 1.= = =

A j a je
iϕ j.=
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of the waves in the stationary regime are synchronized.
Furthermore, using the conservation law (the Manley–
Rowe relation [1–4])

and changing the variables

we obtain the pendulum equation

(18)

where z = αξ , with the boundary conditions (the lower
subscript denotes differentiation with respect to z)

(19)

Note that Eq. (18) describes a pendulum that has an
unstable equilibrium at the point θ = 0; hence, the sta-
tionary solutions we are interested in correspond to
rotational oscillations (idling motions).

Let us write the energy integral

for Eq. (18), where

is the total energy. Then, using the boundary conditions
(19), we find that

(20)

Thus, on the phase plane, stationary solutions corre-
spond to portions of the phase trajectories that begin at
the vertical axis and end on the curve determined by
Eq. (20). Since a1 = θz/2, this fact entails that the ampli-
tude of the output signal a1 (z = α) attains the maximal
value

(21)

at θ(α) = π, i.e., at z = T/4, where T is the period of the
pendulum oscillations. Using the well-known formula
for the period of oscillations (see, e.g., [26]), we find
the optimal value of the parameter α,

(22)

where K is the complete elliptic integral of the first
kind. Thus, as the pump parameter increases, the ampli-
tude of the output signal also increases until α exceeds
αmax. Then, the inverse process of energy transfer of the
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signal and idler waves to the pump wave starts, and the
amplitude of the signal decreases.

One also can find the spatial distribution of wave
amplitudes in the stationary regime. Writing the exact
solution for the rotational oscillations [26], with regard
for the fact that the pendulum has an unstable state at
θ = 0, we have

where dn(z; m) is the elliptic Jacobi function and

Thus, we find the dependence of the signal wave ampli-
tude on the coordinate

This relation must be considered in combination with
the boundary condition a1(0) = ρa1(1). For this reason,
we cannot find exact stationary solutions explicitly as
was done for the backward-wave oscillator in [10].
However, the equations can be solved graphically. This
approach is similar to the analysis based on the return
map proposed in [24]. In the case under consideration,
this map has the form

(23)

where an = a1 (ξ = 0 and τ = n(1 + δ)). The fixed points
of mapping (23) correspond to the amplitudes of the
stationary generation regime. This mapping is also use-
ful for the stability analysis of stationary regimes and
transient oscillation processes [24]. However, it does
not allow one to determine stability conditions. For this
purpose, it is appropriate to use direct numerical simu-
lation of nonstationary equations; results of such a sim-
ulation are presented in the following section.

5. RESULTS OF NUMERICAL SIMULATION
AND THEIR DISCUSSION

5.1. Onset of Self-Modulation

A numerical integration of the nonstationary equa-
tions (6)–(8) with the boundary conditions (9), (10) was
performed using a finite difference scheme of second-
order accuracy similar to that used in [10]. First of all,
we investigated the self-excitation of oscillations. The
results of computations (the threshold value of the
pump parameter and the oscillation frequency) are in
complete agreement with the theoretical results (see
Section 3). It must be noted that in the region of adverse
phases of the feedback parameter ψ ≈ π, self-excitation
can occur at the frequencies of two adjacent modes. The

ψz

2
-----

1
m
----dn z

m
---- K m( ); m+ 

  1 m2–

m2
---------------

1
dn z/m; m( )
----------------------------,= =
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1
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frequency of the stationary oscillation depends on the
boundary conditions; more precisely, the mode with the
greater amplitude “survives.” Such a picture is typical
of competition of strongly coupled modes [1].

As the system under study is distributed and is char-
acterized by a large number of control parameters, we
consider only the case ψ= 0 below. Recall that this cor-
responds to the situation when the signal wave carrier
frequency, for which the conditions of the three-wave
parametric resonance are satisfied exactly, coincides
with one of the resonator’s eigenfrequencies (11). In
this case, ast is determined by Eq. (16) and the funda-
mental frequency is zero. We also assume that the
group velocities of the pump and idler waves coincide;
i.e., the detuning parameter of group velocities is u = –1.
Such a choice of parameters corresponds to that used in
[9].

If the excess of the generation threshold is not very
large, single-frequency stationary oscillation regimes
are realized. At the first stage of the transient process,
the state sinΦ = 0 quickly settles; in this state, the wave
phases are synchronized. Then, the oscillation ampli-
tude stabilizes. Note that after the phases have been
synchronized, the wave amplitudes can be considered
real. The computed dependences of the output signal
amplitudes aout = a1 (ξ = 1) on the parameter α are pre-
sented in Fig. 1. They are in complete agreement with
the theoretical results (see Section 4). In particular, the
maximal value of the amplitude and the corresponding
value of α satisfy formulas (21) and (22).

As α increases, the single-frequency regime
becomes unstable and self-modulation is brought
about; i.e., periodic oscillation of the output signal
amplitude occurs. A pair of satellites, which are sym-
metric about the fundamental frequency, appear in the

0.5

0 1

aout

α
2 3 4 5

1.0

1.5

2.0

2.5

1

2
3

4

Fig. 1. Stationary generation amplitude as a function of α
for various ρ: ρ = 0. 9 (1), 0.7 (2), 0.5 (3), and 0.2 (4).
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spectrum. An analysis shows that self-modulation is
explained by the excitation of oscillations at higher
eigenmodes of the resonator. The values of self-modu-
lation frequencies Ωsm are rather close to the eigen-
mode frequencies (11). For small δ, the modes n = ±1
are excited; the frequencies of those modes are the clos-
est to the frequency at which the self-modulation insta-
bility increment is maximal. Computations show that
this frequency is about 2π. As δ increases, the eigenfre-
quencies (11) decrease. Hence, the instability incre-
ment decreases, and, as a result, the self-modulation
threshold αsm slightly increases. Conversely, the fre-
quencies Ω±2 approach the optimal value and the incre-
ment of these modes begins to increase. In the region
δ ≈ 0.8–0.9, two pairs of secondary modes are excited,

250 50 75 100
τ

0.5

1.0

1.5

aout

Fig. 2. Output signal aout amplitude as a function of time in
the course of the transient process: ρ = 0.2, α = 4.75, δ = 1.

τ

ξ

a1

Fig. 3. The spatio-temporal dynamics of the signal wave
amplitude in the periodic self-modulation regime. The val-
ues of the parameters are the same as in Fig. 2.
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so that the self-modulation at its beginning is quasi-
periodic. However, as α increases, one of the pairs of
secondary modes is suppressed in the competition pro-
cess and the self-modulations become periodic again.

For δ > 0.9, the second mode is under more favor-
able conditions than the first one; hence, the second
mode suppresses the first one (in this region, asm
slightly decreases). Figure 2 illustrates the mode com-
petition effect. It shows a typical picture of the transient
process (for δ = 1). At the first stage, the principal (zero)
mode quickly increases; then, the modes with n = ±1
are excited, which results in large oscillation of the
amplitude. Gradually, this oscillation is replaced by a
higher frequency one, which corresponds to the excita-
tion of the modes with n = ±2.

After the self-modulation threshold has been
exceeded, the transient process illustrated in Fig. 2 is
completed by forming a soliton-like pulse that periodi-
cally propagates along the system. Figure 3 illustrates
the corresponding spatio-temporal dynamics. A similar
behavior was described in [9]. Note that the onset of
self-modulation is hard, since the deep periodic modu-
lation regime is settled immediately. This regime is
strongly nonlinear and is characterized by the appear-
ance of a large number of harmonics with the self-mod-
ulation frequency Ωsm. For the chosen values of the
parameters, Ωsm ≈ 2π. Since the spectrum of the resona-
tor’s eigenmodes is equidistant, the higher harmonics are
close to the frequencies of the modes Ωn (n = 4, 6, …).
Thus, the self-synchronization of modes is realized,
which is also typical of other resonance oscillators [2,
15, 16]. Simultaneous excitation of a large number of
resonator modes with strongly coupled frequencies

0.2

0 2
Ω/π

4 6

0.4

0.8

1

2

3

40.6

1.0
aout

–2–4–6

Fig. 4. The parametric amplifier’s output signal amplitude
as a function of frequency at α = 5.0 and various amplitudes
of the input signal: A0 = 0.01 (1), 0.025 (2), 0.05 (3), and
0.1 (4).
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1

0
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50 100 150 200 250 τ

(‡)

Fig. 5. Temporal realization of the amplitude (a) and phase (b) of the output signal in the intermittency regime: ρ = 0.2, α =
5.2, δ = 1.
leads to the formation of a soliton. Such processes are
of practical interest in connection with the generation
of ultrashort pulses [27].

Computations show that a further increase in the
delay time δ gradually leads to self-modulation based
on modes with higher indexes; moreover, a greater
number of modes are excited. Clearly, this is explained
by condensation of the spectrum of the resonator’s
eigenfrequencies.

Using terminology common in the theory of distrib-
uted self-oscillatory systems [7, 11, 12, 14], the self-
modulation mechanism described above is called the
JOURNAL OF EXPERIMENTAL 
frequency or phase mechanism since the phase oscilla-
tion is dominant at the first stage of the instability
development (certainly, this does not mean that there is
no amplitude oscillation). The frequency mechanism is
characteristic of many distributed self-oscillatory sys-
tems such as beam and beam-plasma oscillators with
delay [11–13] and free electron lasers [15, 16]. Another
mechanism called amplitude is realized in the presence
of a steep decrease section on the amplifier gain charac-
teristic [7, 11, 12, 14]. The amplitude self-modulation
develops softly, and its period is close to the double
characteristic feedback time (for the system under con-
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001
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sideration, this time is 1 + δ). In the case of the fre-
quency mechanism, several eigenmodes of the oscilla-
tor are excited, whereas the amplitude mechanism is
associated with the modulation of a single mode.1 In
this case, secondary modes are excited before the
amplitude instability mechanism manifests itself. This
fact is strongly confirmed both by the frequencies of
self-modulation satellites and by the hard character of
their excitation. However, it must be noted that the syn-
chronization of phases is still established at the first
stage of the transient process, so that only amplitudes
oscillate. For this reason, the terminology adopted
seems not quite appropriate.

It is well known that the frequency mechanism man-
ifests itself when the gain–frequency characteristic of
the amplifier in the vicinity of the fundamental fre-
quency has a concave saddle-shaped form [7, 11, 12].
Figure 4 shows the results of computations for open
loop amplifier operating in the harmonic signal ampli-
fication mode A1(ξ = 0) = A0exp(iΩτ).

For small A0 (curve 1), the gain–frequency charac-
teristic is convex in a rather large region near the max-
imum, which falls on the exact resonance frequency
Ω = 0 and corresponds to the linear theory (Section 3).
As A0 increases, the amplitude of the output signal also
increases (curve 2) until it reaches the maximal possi-

ble value of , which corresponds to the total
energy transfer to the signal wave. Then, the inverse
process of pump regeneration on the fundamental fre-
quency begins, and the output signal decreases; on
adjacent frequencies, where the instability increment is

1 This instability could be approximately described by mapping
(23) for dan + 1/dan < –1.

1 A0
2+

2

0 0.2

α

ρ
0.4 0.6 0.8 1.0

2

3
4

6

1

Fig. 6. The map of dynamic regimes on the plane of control
parameters: 1 is the boundary of oscillation self-excitation;
2 is the boundary of self-modulation occurrence; 3 is the
boundary of the chaotic behavior onset via intermittency.
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smaller, this effect does not manifest itself yet. Thus,
the gain–frequency characteristic becomes concave
near Ω = 0 (curves 3 and 4), which confirms the fre-
quency mechanism of stability loss.

5.2. Violation of the Phase Synchronization 
and the Onset of Chaos

The regimes of periodic self-modulation described
above are stable in a certain range of variation of the
pump parameter α above the instability threshold.
However, as α increases, two solitons can occur that fit
within the system extent. Furthermore, the signal wave
amplitude is zero at certain points (a1(ξ) = 0), which
leads to the appearance of states with rapidly varying
phases. As a result, the phase synchronization is vio-
lated; i.e., sinΦ ≠ 0. Rapid phase oscillation leads to a
sharp decrease of the interaction efficiency, the ampli-
tude oscillation decreases, and the phase synchroniza-
tion recovers. Thus, at certain moments in time the
phase trajectory goes off the manifold sinΦ = 0 and
then returns to it. A similar behavior is characteristic of
a system with counterpropagating waves [10].

The behavior described above is illustrated in Fig. 5.
It shows temporal realizations of the output signal
amplitude and phase Φout = Φ(ξ = 1). Regions of
increasing amplitude oscillations, in which the phases
are synchronized, are clearly seen. In these regions, as
a soliton passes through the right-hand boundary of the
system, Φout changes jumpwise by π. Regions of irreg-
ular oscillation corresponding to violated phase syn-
chronization are also clearly seen. Thus, the oscillation
becomes chaotic, and the system goes to the chaotic
regime via intermittency. The spectrum of the output
signal becomes continuous even though it contains
well-defined components at the frequencies of the res-
onator’s eigenmodes. We note that the transition via
intermittency is also characteristic of systems consid-
ered in [11–13].

Since sinΦ ≠ 0 in chaotic regimes, one cannot
assume (as it was done in [9]) that the amplitudes of
interacting waves are real. For this reason, the chaotic
regimes described in [9] are generally unstable. Never-
theless, since the transient processes are rather long,
these regimes can be considered metastable. Possibly,
they can be realized under pulse pumping.

The overall picture is illustrated by a map of
dynamic regimes on the plane of the parameters ρ and
α shown in Fig. 6. In this figure, the boundaries of self-
excitation (see formula (16)), self-modulation, and
transition to chaos are depicted. However, it must be
stressed that in the regions of chaos there exist numer-
ous “windows” of regular behavior. A thorough study
of the structure of chaotic regimes is of independent
interest.
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6. CONCLUSION

The distributed parametric oscillator considered in
this paper provides a typical example of a distributed
delayed self-oscillatory system. It demonstrates a tran-
sition from single-frequency to multifrequency to cha-
otic oscillations as the nonequilibrium parameter
increases. In the present paper, the mechanism of the
onset of self-modulation is thoroughly studied. It is
shown that self-modulation is caused by the excitation
of one more or several more pairs of the resonator’s
eigenmodes with the indexes depending on the delay
time δ. This is the so-called frequency mechanism; it is
related to the appearance of a dip in the gain–frequency
characteristic of the amplifier in the vicinity of the fun-
damental frequency. The development of the instability
leads to the formation of a soliton-like pulse that peri-
odically propagates along the system. The onset of the
self-modulation is hard; i.e., strong oscillations of the
output signal appear immediately.

As the pump parameter increases, the system goes
to a chaotic regime via intermittency due to violation of
the phase synchronization; the phase synchronization is
violated due to the appearance of states with quickly
oscillating phases. A comparison with the results of the
studies [11–13] suggests that such a behavior is typical
for distributed self-oscillatory systems with the fre-
quency self-modulation mechanism; under the ampli-
tude mechanism, the transition to chaos usually occurs
according to Feigenbaum’s scenario [7, 11, 12, 17, 18].
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Abstract—The phenomenon of prebifurcational noise increase in nonlinear systems in the process of period-
doubling bifurcation is investigated. The study is conducted for a discrete system (quadratic mapping); how-
ever, many of the laws discovered apply to more general systems. Estimates of the fluctuation variance are
obtained both for the linear (away from the bifurcation threshold) and for the nonlinear mode (in the vicinity of
the bifurcation threshold). It is shown that the variance of forced fluctuations in the strongly nonlinear mode is
proportional to the root-mean-square of the noise intensity rather than to the variance. The possibility of mea-
suring the noise in nonlinear systems on the basis of the prebifurcational noise amplification factor is demon-
strated. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that the noise level in a system
increases when approaching the generation threshold
(the phenomenon of pregeneration noise increase [1]).
Similar phenomena might be expected near bifurcation
points. It was shown in [2–4] that weak signals can be
amplified when approaching the critical values of the
bifurcation parameter; this phenomenon is explained
by a decrease of the damping decrement (possibly,
down to zero at the critical point). It is clear that the pre-
bifurcation amplification of weak signals must be
accompanied by an increase of weak noise. This phe-
nomenon, which can be naturally called the prebifurca-
tion noise increase, was first analyzed in paper [5],
devoted to the analysis of noisy precursors of nonlinear
instabilities. Taking into account a similarity between
phase transitions and bifurcation transitions in nonlin-
ear systems [1], the prebifurcation noise increase phe-
nomenon can be considered as an analog of the ampli-
fication of fluctuations near the phase transition point.

In a linear approximation, the prebifurcation noise
was studied in [5] for three bifurcation types—saddle-
point bifurcation, bifurcation of the spontaneous sym-
metry violation, and period-doubling bifurcation. How-
ever, the linear theory developed in [5] does not take
into account nonlinear effects and predicts an
unbounded increase of fluctuations near the bifurcation
point.

The main purpose of the present study is to perform
a nonlinear analysis of the prebifurcation noise increase
1063-7761/01/9306- $21.00 © 21323
and estimate the variance of forced fluctuations exactly
at the bifurcation point. The analysis is performed for a
specific case of the period-doubling bifurcation in a dis-
crete system (a quadratic mapping); however, the fea-
tures of this phenomenon are characteristic of other
bifurcation types as well.

The paper is organized as follows. Section 2 con-
tains the statement of the problem. Sections 3 and 4
expand the linear and the nonlinear theory, respectively.
In Section 5, the variance of the postbifurcation noise,
i.e., the noise occurring after the transition through the
bifurcation point, is estimated. In Section 6, a new fea-
ture of the prebifurcation and postbifurcation noise is
discovered; this feature manifests itself in a quick tran-
sition through the bifurcation point. Then, discrete time
of the fluctuation stabilization ntrans is estimated, which
is inversely proportional to the root-mean-square value
of the fluctuation intensity. Estimates obtained in Sec-
tions 3–6 are illustrated in Section 7 by results of the
numerical modeling. Finally, Section 8 describes the
application of the prebifurcation noise increase phenome-
non to measuring weak noise in nonlinear systems.

2. STATEMENT OF THE PROBLEM

Consider the quadratic mapping

(1)

It is known that this mapping admits a period-doubling
bifurcation for the critical value of the control parame-

xn 1+ F xn( ), F xn( ) µ xn
2.–= =
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ter µc1 = 3/4 [6]. As the critical value µ = µc1 is reached,
the fixed point

(2)

of mapping (1) becomes unstable. Ultimately, the loss
of stability at the critical point causes the prebifurcation
noise increase.

Let us introduce a fluctuation fn into mapping (1)
and analyze the properties of the perturbed quadratic
mapping

(3)

Set

(4)

(5)

where λ = µc1 – µ is the “stability margin” in the vicin-
ity of the bifurcation threshold. Then, near the critical
point µ = µc1, the fixed point (2) can be represented in
the form

. (6)

Substituting (4) and (5) into Eq. (2), we obtain the per-
turbed mapping for the perturbation ξn = xn – (µ):

(7)

The purpose of this study is to estimate the variance

 and the mean square of the fluctuation  both
away from the bifurcation threshold (the linear mode)
and in its immediate vicinity (nonlinear mode).

3. LINEAR THEORY

Let us neglect the quadratic term  in the perturba-

tion ξn = xn – (µ) in (7) to obtain the linear equation

(8)

where

(9)

is the multiplicator of mapping (1) in the vicinity of the
fixed point (µ). The solution to the difference linear
equation (8) with the initial value ξ0 = 0 can be obtained
by the iteration method:

x µ( ) –
1
2
--- 1

4
--- µ++=

xn 1+ µ xn
2–= f n.+

µ µc1= λ– 3
4
--- λ ,–=

xn x µ( )= ξn,+

x µ( ) –
1
2
--- 1 λ–+=

1
2
--- 1 λ–( )≈ 1

8
---λ2 …++

x

ξn 1+ 2x µ( )ξn ξn
2– f n.+–=

σξ
2 ξn

2〈 〉

ξn
2

x

ξn 1+ γξn–= f n,+

γ 2x µ( )= 1 λ– λ2/4 …++≈

x
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(10)

The last formula can be written in the form

(11)

Assume that the functions fj and fk are independent;
i.e.,

(12)

where δjk is the Kronecker delta and  =  is the
variance of the fluctuations. Then, the mean square of

the fluctuations  is written as

(13)

In the stationary state (as n  ∞), the term γ2(n + 1) in
(13) can be neglected since |γ| < 1; as a result, the mean

square of the fluctuations  is written as

(14)

Using expansion (9), we can represent the mean square
of the fluctuations 〈ξ 2〉  near the bifurcation threshold
γ = γc = 1 in the form

(15)

It is seen from (14) and (15) that away from the bifur-
cation threshold, say for γ ≤ 1/2, the mean square of the
fluctuations 〈ξ 2〉  is comparable with the variance of the

external noise ; however, when approaching the
threshold γ = γc, fluctuations in the system increase
without limit.

4. ESTIMATES OF THE FLUCTUATION LEVEL 
WITH REGARD FOR NONLINEAR EFFECTS

Formulas (14) and (15) derived from the linearized
Eqs. (8) are inapplicable in the vicinity of the bifurca-
tion threshold (i.e., as γ  1 or, which is the same, as
λ  0). However, they allow us to obtain an estimate

ξ1 f 0,=

ξ2 γξ1–= f 1+ γ f 0–= f 1,+

ξ3 γξ2–= f 2+ f 2= γ f 1– γ–( )2 f 0,+

 

ξn 1+ f n= γ–( ) f n 1– γ–( )2 f n 2– … γ–( )n f 0.+ + + +

…

ξn 1+ γ–( )n k– f k.
k 0=

n

∑=

f j f k〈 〉 σ f
2δjk,=

σ f
2 f k

2〈 〉

ξn 1+
2〈 〉

ξn 1+
2〈 〉 γ–( )n k– f k

k 0=

n

∑
2

=

=  γ2 n k–( )σ f
2

k 0=

n

∑ σ f
2 1 γ2 n 1+( )–

1 γ2–
-------------------------.=

ξn 1+
2〈 〉

ξ2〈 〉 ξ n 1+
2〈 〉= n ∞→

σ f
2

1 γ2–
-------------.=

ξ2〈 〉
σ f

2

2λ
------, 2λ 1 γ2.–≈=

σ f
2
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of fluctuations at the bifurcation threshold (γ = 1, λ = 0)
using the following simple reasoning. In the linear
mode, the fluctuations ξn consist of a sum of a large
number of independent terms (11). Hence, by virtue of
the central limit theorem, the sequence ξn is nearly
Gaussian. This enables us to evaluate the fluctuation

part ηn =  –  of the nonlinear term  in Eq. (7)
using the Gaussian statistics. As a result, the standard
deviation ση = 〈η 2〉1/2 is estimated as

(16)

The smallness condition for the standard deviation
ση compared to the external fluctuations characterized
by the standard deviation σf has the form

(17)

Substituting the nonlinear estimate λ = λmin = σf/2 into
linear formula (15), we obtain the desired estimate of

the variance of fluctuations  in the vicinity of the
bifurcation threshold:

(18)

The ratio

(19)

is a natural measure of the prebifurcation fluctuation
amplification. According to (18), the maximum fluctu-

ation “amplification factor” Kmax = 〈ξ 2〉max/  is

(20)

For example, for  = 10–8, the amplification factor
Kmax can become as large as K ≈ 104. Such a large value
can make it possible to measure weak fluctuation
actions σf in various physical systems (see Section 8).

Another phenomenon associated with the prebifur-
cation fluctuation increase is a shift of the mean value
〈ξ〉  with respect to zero. The magnitude of this effect
can be determined by averaging Eq. (7):

This equation implies that the mean shift of the fixed
point from the unperturbed value (µ) in the close
neighborhood of the bifurcation point γ = 1 can be esti-
mated as

ξn
2 ξn

2〈 〉 ξ n
2

ση ξ2〈 〉≈ σ f
2 /2λ .∼

ση
σ f

2

2λ
------∼ σ f , or λ λ min≥

σ f

2
-----.∼≤

σξ
2

ξ2〈 〉 max
σ f

2

2λmin
------------ σ f .∼ ∼

K
ξ2〈 〉
σ f

2
----------=

σ f
2

Kmax
ξ2〈 〉 max

σ f
2

----------------- 1
σ f

-----.∼ ∼

σ f
2

ξ〈 〉 γ ξ〈 〉–= ξ2〈 〉 .–

x

ξ〈 〉 1
2
--- ξ2〈 〉

σ f
2

4λ
------.∼ ∼
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This is the shift of the mean value 〈ξ〉  from zero.
The maximum shift 〈ξ〉 max is attained at λ ~ λmin ~

σf/2:

(21)

Although the shift of the mean value is usually small
(about 0.5 × 10–3 for σf = 10–3), it can also indicate the
prebifurcation rise of fluctuations. Since 〈ξ〉 2 is small

compared to 〈ξ 2〉 , the variance  is almost equal to
〈ξ 2〉; i.e.,

This fact will be used in subsequent estimates.

5. FLUCTUATIONS AFTER THE TRANSITION 
THROUGH THE BIFURCATION POINT

For µ > µc1 = 0.75, system (1) undergoes a period-
doubling bifurcation. Stationary oscillations with the
period 2 are described (in the absence of noise) by the
system of two equations

(22)

Eliminating xn + 1 from (22) and equating xn + 2 to xn

(which corresponds to the period T = 2), we obtain the fol-
lowing equation for the fixed point (µ) of the 2-period
mode:

(23)

Denote by

(24)

the deviation of  from the fixed point (µ) (2) (for µ >
µc1, the latter becomes unstable); by

(25)

we denote the supercriticality factor, i.e., the excess of
µ over the bifurcation threshold µc. In terms of the vari-
ables δ and ν, Eq. (23) takes the form

(26)

and has a two-valued solution

(27)

which has the form of a typical bifurcation fork. In
terms of the original variables, this relation reads as

(28)

Using relation (27), we can estimate the extent of
the region of strong fluctuations to the right of the bifur-
cation point µc1. For this purpose, we use the following
reasoning. It was shown in Section 4 that the mean-

ξ〈 〉 max σ f /2.∼

σξ
2

σξ
2 ξ ξ〈 〉–( )2〈 〉= ξ2〈 〉≈ .

xn 1+ µ xn
2,–=

xn 2+ µ xn 1+
2 .–=

x̂

x̂ µ µ x̂2–( )2
.–=

δ x̂= x µ( )–

x̂ x

ν µ µc1–= 0>

δ2 ν δ– δ2–( )2
=

δ ν,±=

x̂± x= µ µc1– .±
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square value of fluctuations near the bifurcation point is

σξ ~ . Clearly, for σξ ≥ δ, external fluctuations fn

can move points from on branch of the bifurcation dia-

gram (27) to the other, for example, from  to  and
back. Thus, the vertical size of the fluctuation region
can be estimated as

(29)

By virtue of (27), the horizontal size of this region, νmin,
is estimated as

(30)

Estimates (29) and (30) conform with the previous esti-

mate (18) for  and estimate (17) for λmin.

As the supercriticality factor ν = µ – µc1 increases,
the variance of fluctuations decreases according to the
law

(31)

which is similar to (15). This variance decrease law for
the postbifurcation noise can be derived using the linear
theory much in the same way as it was done in Section 3
for the prebifurcation noise.

Note that the variances of fluctuations near the states

 and ,  and , respectively, are different.
Denote by Π± the values of the derivative of the map-

ping function f(x) = µ – x2 at the points :

Taking into account the fact that Π± is interpreted as the

slope of the tangents to f(x) at the points  and , we
obtain, for sufficiently small fluctuations,

As a result, we arrive at the estimate

(32)

which shows that fluctuations near the upper branch 
are always smaller than those near the lower branch.

6. WEAKENING OF THE AMPLIFICATION 
EFFECT ON QUICK TRANSITION 

THROUGH THE BIFURCATION POINT, 
AND THE FLUCTUATION SETTLING TIME

On a quick transition through the bifurcation point,
the fluctuation amplification effect must diminish;
indeed, fluctuations are not accumulated in this case. In

σ f

x̂+ x̂–

δ σξ σ f .∼ ∼

νmin δ2 σ f .∼ ∼

σξ
2( )max

σξ
2 σ f

2

2ν
------,=

x̂+ x̂– σ+
2 σ–

2

x̂±
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2
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Π+
------

x̂–

x̂+
-----= = 1 2

µ µc1–
x µ( )

---------------------,–≈

x̂+
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order to verify this fact, we interpret n in Eq. (13) as the
time over which the control parameter changes. For n =
1, (13) implies that

(33)

whereas for n = 2 we have

(34)

According to (33), when the bifurcation point is
passed very quickly (in a single step), no rise in the fluc-
tuations is observed. If the number of steps increases to

n = 2, then the fluctuations double; i.e., the variation 

is twice as large as the variation of the noise .

In order to estimate the fluctuation transient time
ntrans, we resort to formula (13), which gives the mean
square of the fluctuations after n iterations. By virtue
of (13), the fluctuations settle when γ2(n + 1) ! 1. If we
approximately replace γ by 1 – λ ≈ exp(–λ) for small
λ, then the inequality γ2(n + 1) ! 1 can be written as
exp[–2λ(n + 1)] ! 1, which yields the estimate

(35)

Away from the bifurcation threshold (µ = µc1), when
λ is comparable with unity, the time ntrans is about sev-
eral iteration steps. In the immediate vicinity of µc1, 2λ
is comparable with 2λmin ~ σf; as a result, the lower
value of the fluctuation transient time is estimated as

(36)

For example, for σf = 10–3, in order to estimate the

steady-state fluctuation variance , one must take a
sample consisting of not less than 1000 iterations; for
σf = 10–5, the sample length must be not less than
105 iterations.

7. RESULTS OF NUMERICAL MODELING

The system described in the preceding sections was
numerically investigated for the initial value of the con-
trol parameter µ0 = 0.2 and the final value µf = 0.9 with
the step ∆µ = 0.001. Such a choice of the range of vari-
ation for µ is explained by the location of the bifurca-
tion points of the quadratic mapping: the first period-
doubling bifurcation occurs at µ = µc1 = 0.75 and the
second at µ = µc2 = 1.25. Thus, the initial value µ0 was
taken below µc1 and the final µf above µc1 but below µc2.

σξ
2 σ f

2 ,=

σξ
2 σ f

2 1 γ4–

1 γ2–
------------- σ f

2 1 γ2+( )= = 2σ f
2 .≈

σξ
2

σ f
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2λ
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σ f
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σξ
2
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Fig. 1. The area of the fluctuation concentration (shaded) on the bifurcation diagram in the presence of noise with the standard devi-
ation σf = 5.7 × 10–3. Dashed lines correspond to the standard deviation σξ. The prebifurcation amplification of fluctuations is
observed near the bifurcation point µc1.
The random number generator produced uniformly
distributed independent (see (12)) fluctuations fn within
the interval [–β, +β]

(37)

For the uniform distribution (35), the variance of the

noise  is related to the parameter β as  = β2/3. The
use of other random number generators, for example,
normal ones, yielded qualitatively similar results.

The initial value x0 was always set to the fixed point
of the mapping (µ). For every value of µ, at least 1/σf

iteration steps of mapping (3) were performed (see Sec-
tion 6). To obtain more reliable results, the number of
iterations was set to 100/σf in the numerical experi-

ments; as a result, the fluctuation variance  was
determined with a relative error (100/σf)–1/2. For exam-
ple, for σf = 10–2, the relative error was 1%, while for
σf = 10–4 it was 0.1%.

w f n( )
1

2β
------, f n β,≤

0, f n β.>





=

σ f
2 σ f

2

x

σξ
2
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Figure 1 presents the bifurcation diagram of the qua-
dratic mapping (3) under the influence of noise with the
standard deviation σf = 5.7 × 10–3. The shaded area in
this diagram shows the location of fluctuations of the

perturbed values of (µ) and (µ). Dashed lines cor-
respond to the standard deviation σξ from the unper-
turbed values. Figure 1 illustrates all the specific fea-
tures of the problem described above. Away from the
bifurcation point µ = µc1, the variance of fluctuations

 is comparable with the variance of the external

action . While approaching the critical point, the

variance of fluctuations  first increases according to
Eqs. (14), (15), and takes the bounded value (20) just
before reaching the value µ = µc1. In this case, the max-
imal fluctuation amplification factor

is about 84, which is of the same order of magnitude as
estimate (20). Nonlinear effects play a determining role
in the interval |µ – µc1| ≤ σf ≈ 0.005.

x x̂±

σξ
2

σ f
2

σξ
2

Kmax

σξ
2( )max

σ f
2

-----------------∼
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Fig. 2. Dependence of the variance of fluctuations  on the control parameter µ in the vicinity of the critical point µc1 for the noise

intensity  = 3.3 × 10–5 (a) and  = 3.3 × 10–9 (b). The solid (dashed) curves to the right of the critical point correspond to

fluctuations near the lower (respectively, upper) branch of the bifurcation diagram.

σξ
2

σ f
2 σ f

2

Figure 2 shows the dependences of the variance of

fluctuations  on the control parameter µ for two val-

ues of the noise variance  = 3.3 × 10–5 (Fig. 2a) and

 = 3.3 × 10–9 (Fig. 2b). The curves on the plots are
not quite smooth, which is explained by the fact that the

sample used to determine  was finite; more precisely,

 shown in Fig. 2a was calculated using 104 iteration
steps, while 106 iteration steps were used for Fig. 2b. In

the vicinity of the critical point µc1,  drastically

increases compared to . For  = 3.3 × 10–5, the

amplification factor is Kmax ~ 102; for  = 3.3 × 10–9,

we have Kmax approximately 104. In the first case, 

attains the value ( )max ≈ 2.8 × 10–3; i.e., it differs from

the theoretical estimate ( )max ~ σf by a factor of 0.49.

In the second case, the maximal variance ( )max ≈
2.7 × 10–5, which differs from the estimate σf = 10–4 by
a factor of 0.47.

After the transition through the critical value µc1, the

variance of fluctuations  becomes a two-valued
function: for µ > µc1, the solid curve in Fig. 2 corre-
sponds to the lower branch of the bifurcation diagram

(the variance of fluctuations is ), and the dashed
curve corresponds to the upper branch (the variance is

). As would be expected on the basis of estimate
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(32), fluctuations near the upper branch  are always

less than those near the lower branch .
Figure 3 illustrates the dependence of the maximal

variance of fluctuations ( )max near the bifurcation
threshold on the mean-square fluctuation action σf. Points
on this plot can be approximated by the dependence

(38)

x̂+

x̂–

σξ
2

σξ
2( )max 0.5σ f ,≈

10–5

(σξ
2)max

σf

10–3

10–1

10–7 10–5 10–3 10–1

Fig. 3. Dependence of the maximal fluctuation variance

( )max on the standard deviation of the noise action σf.

The dashed line corresponds to estimate (18).

σξ
2
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which is in good agreement with the theoretical esti-
mate (18) (the latter is shown in the dashed line in Fig. 3).
Numerical computations show that formula (38) can be
used not only for the uniform distribution of the fluctu-
ation intensity fn, but also for the normal distribution.

For large noise, when the standard deviation σf is
close to unity, the fluctuation amplification factor K is
also close to unity; in this case, the nonlinear mecha-
nisms of bounding the noise variance are replaced by

the dependence  ~ , which is characteristic of lin-
ear systems.

8. ON MEASURING WEAK NOISE
A noticeable increase in the variation of fluctuations

 near the bifurcation threshold can be used as the
basis of a method for measuring weak noise in the sys-
tem under study. In contrast to the highly unstable pre-
generation noise, which appears due to sporadic transi-
tions of the system into the generation mode, the preb-
ifurcation noise is stabler and ensures more reliable
measurements. This is true not only for period-dou-
bling bifurcations, but also for many other bifurcation
types that do not involve a large increase in the oscillations
when transiting through the critical point as is the case for
Landau–Hopf bifurcations. Our approach is based on a

comparison of the maximal variation ( )max ~ σf at the

bifurcation point with the variation  ≈  away from

that point. An estimate of the noise variation  on the
basis of the mean shift 〈ξ〉 , which appears due to a sort
of detection of fluctuations on the nonlinearity of the
system, seems less reliable. The possibility of measur-

ing weak noise by measuring ( )max is limited by con-
dition (36) on the duration of measurements. According
to (36), the duration of the sample must be not less than
the transient time ntrans ~ 1/σf.

To complete the picture, we note that the transition
of a nonlinear system through the period-doubling
bifurcation presents one more possibility for estimating
the internal noise using the magnitude of the noise-
dependent hysteresis curve, which occurs when the

σξ
2 σ f

2

σξ
2

σξ
2

σξ
2 σ f

2

σ f
2

σξ
2
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critical point is transited in the forward and backward
direction [7].

9. CONCLUSIONS

In this paper, for a specific case of the period-dou-
bling bifurcation, we investigate the phenomenon of the
prebifurcation amplification of fluctuations, which is
similar in nature to the rise of fluctuations near phase
transition points. Analytic estimates of the prebifurca-
tion fluctuation amplification both away from the criti-
cal point and in its immediate vicinity are obtained.
These estimates are in satisfactory agreement with the
results of numerical modeling. On the basis of the phe-
nomenon under study, a method for measuring the vari-
ance of weak noise in nonlinear systems is proposed.
The applicability of this method is limited by the neces-
sity to perform rather long-term observations.
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Abstract—For the first time, cluster algorithms of the Monte Carlo method are used to investigate critical prop-
erties of microscopic models of real ferromagnetic gadolinium. On the basis of the finite-size scaling theory,
the critical exponents of the heat capacity α, magnetization β, susceptibility γ, and Fisher index η are calculated.
Specific features, character, and the degree of influence of two types of weak relativistic interactions on the crit-
ical properties of gadolinium models are determined when both these interactions are taken into account. It is
shown that cluster algorithms of the Monte Carlo method provide an effective tool for studying critical proper-
ties of complex models involving crossovers. © 2001 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The modern theory of phase transitions and critical
phenomena is mainly based on the ideas of scaling, uni-
versality, and renormalization group theory [1, 2]. On
the basis of these ideas, the majority of important
results of the modern phase transition and critical phe-
nomena theory were obtained, basic laws established,
relations between critical exponents and critical ampli-
tudes were obtained, equations of state were derived,
and the values of critical exponents and critical ampli-
tudes were calculated. The numerical values obtained
on the basis of renormalization group theory and
ε-expansion are believed to be the most accurate and
reliable among those available [3–6]. The current stage
in the study of phase transitions and critical phenomena
is characterized by the investigation of more complex
and realistic models [7–11]. The approach underlying
renormalization group theory faces considerable diffi-
culties when studying models that involve crossovers;
besides, it is not quite microscopic [6–12].

These facts and some other reasons led to the wide
use of Monte Carlo methods for studying phase transi-
tions [6–11, 13–16]. Quantitative analysis of the critical
region by Monte Carlo methods has become possible
only in recent years. At the present time, in terms of
accuracy, the results obtained by the Monte Carlo
method compare well with the results obtained by other
methods and sometimes outperform them [6, 13–16].

Naturally, this progress could not have been made
by increasing the power of computers without the use
of additional ideas and methods. Among them, one
must distinguish powerful cluster algorithms of the
Monte Carlo method [17–20], the use of ideas involved
in the theory of finite-size scaling (for the computation
1063-7761/01/9306- $21.00 ©1330
of critical parameters) [6, 21, 22] and histogram meth-
ods for the analysis of Monte Carlo data [14].

Until the present time, these algorithms and ideas
were applied only to the simplest first-order approxi-
mation models (the classical Ising and Heisenberg
models etc.). Much less attention was paid to more
complex and realistic models that admit crossover tran-
sitions.

Another important aspect of the investigation of
models of real magnetic materials by Monte Carlo tech-
niques consists in the possibility of comparing the
results of numerical simulation not only with theoreti-
cal but also with experimental data. This is especially
important when the results of laboratory investigations
of critical phenomena are contradictory and do not per-
mit an unambiguous answer to certain important ques-
tions.

We propose microscopic models of the real ferro-
magnetic gadolinium. These models are investigated
using cluster Monte Carlo algorithms; on the basis of
the finite-size scaling theory, the main static critical
exponents are calculated.

The interest in gadolinium models is explained by
the following reasons.

First, the critical behavior of gadolinium can be
influenced by weak relativistic interactions, such as
anisotropy and dipole–dipole interactions [5, 23–26].
Earlier, the efficiency of Monte Carlo cluster algo-
rithms in the investigation of models in which weak rel-
ativistic interactions are taken into account along with
strong exchange interactions (in such models, cross-
over effects can occur) has never been studied.

Second, in the models under study, both types of
weak relativistic interactions are simultaneously taken
into account on the background of each other and
 2001 MAIK “Nauka/Interperiodica”
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strong exchange interactions. To our knowledge, the
applicability and effectiveness of the finite-size scaling
theory in the study of such models has never been ver-
ified [6].

Third, the sensitivity and resolution of the Monte
Carlo method, as well as its capability of revealing the
influence of such weak factors on the critical behavior,
remain practically unstudied.

Fourth, the phase transition temperature Tc ≈ 293 K
of the rare-earth metal gadolinium is convenient for
laboratory experiments, and this metal has been thor-
oughly studied. However, laboratory investigations of
the critical properties of gadolinium do not provide a
complete and strict description of the gadolinium criti-
cal behavior [26, 27].

2. CRITICAL PROPERTIES OF GADOLINIUM

Gadolinium is a rare-earth metal with a close-
packed hexagonal structure. In the range of tempera-
tures 232 K < T < Tc ≈ 293 K, gadolinium demonstrates
simple ferromagnetic ordering. Magnetic and neutron
radiography investigations show that anisotropy in gad-
olinium is explained both by the single-ion and two-ion
mechanisms, while in the paramagnetic phase, it is
caused by the uniaxial anisotropy of the short-range
magnetic order [22–25]. On the one hand, gadolinium
is a uniaxial weakly anisotropic ferromagnetic; hence,
its critical behavior at temperatures close to Tc can be of
the Ising character. On the other hand, spherically sym-
metric distribution of the electron density and the
absence of the orbital moment lead to the isotropic
exchange interaction, which implies the Heisenberg
character of the critical behavior.

The static critical behavior of gadolinium was stud-
ied in a number of papers [25–35]. Measurements of
the heat expansion [25, 28], heat capacity [27, 29, 30],
magnetic properties [26, 31–34], and Mössbauer stud-
ies [35] conducted for various mono and polycrystal
samples helped determine a set of static critical expo-
nents α, β, γ, and δ. In [5, 26, 35], tables containing the
values of these exponents are presented. The compari-
son of these data with theoretical predictions obtained
in the framework of the three-dimensional Ising and
Heisenberg models shows their inconsistency. The val-
ues of the critical exponents of heat capacity α, heat
expansion a, and spontaneous magnetization β testify
that gadolinium is either a Heisenberg or isotropic
dipole magnetic. At the same time, the values of the
critical index γ are close to those characteristic of the
Ising model. The index δ complies neither with the pre-
dictions of microscopic theories nor with those of
molecular field theory.

An analysis of the available experimental data
shows that these inconsistencies can be caused by the
following reasons.

1. The methodology used to determine the expo-
nents [5, 26]. In the greater part of studies, the critical
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
exponents β, γ, and δ were determined by fitting the
experimental m–H–T data to the scaling equation of
state for magnetization, which assumes that the law of
similarity γ = β(δ – 1) is satisfied. In this case, the crit-
ical exponents must obey the laws of similarity involv-
ing the same exponents β, γ, and δ; however, individu-
ally their values can be inconsistent with the actual
asymptotic critical behavior.

2. In real crystals, there are always certain additional
interactions that perturb the original critical behavior.
For example, the presence of isotropic dipole interac-
tion in Heisenberg magnets results in the dependence of
the index γ on reduced temperature [26].

3. Experiments conducted on various gadolinium
samples showed that defects can substantially change
the critical behavior [27].

4. It turned out that the critical properties of gadolin-
ium, in particular, the width and height of the heat
capacity peak, depend on the sample preparation tech-
nique [27].

5. Theoretical estimates of the exponents are
obtained for static models with fixed magnitudes of the
geometric parameters of the lattice (angles, location of
atoms, etc.). However, when investigating real samples
in laboratory experiments, these magnitudes can vary;
as a result, the exchange parameters can also vary,
which sometimes leads to inconsistencies in the theo-
retical and experimental data.

Note that a thorough experimental investigation of
static critical properties of gadolinium were performed
in [26], where the exponents β, γ, and δ were deter-
mined. Specific features of the heat capacity behavior
were studied in [27]. The results obtained in this paper
show that the critical behavior of the heat capacity is
very sensitive to the sample preparation technique, its
purity, and chemical composition.

3. MODELS

When constructing models of gadolinium, one must
take into account the following features of this element:

(a) The distribution of the electron density is spher-
ically symmetric, and the orbital moment is nil.

(b) The energy of the magnetic crystallographic
anisotropy is much less than for other rare-earth ele-
ments.

(c) The isotropic dipole–dipole interaction can play
a substantial role in the critical region.

With regard for these features, the Hamiltonian of
the system can be written in the form

(1)

H
1
2
--- J Si S j⋅( )

i j,
∑–=

1
2
---Da Si

z( )2

i

∑–

– Dd m〈 〉 Si⋅( )
i

∑ ,
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where m is the magnetization, S is the classical three-
dimensional spin, |Si | = 1, the first term accounts for the
exchange interaction of each of the ions Gd3+ with its
nearest neighbors (J > 0), the second term accounts for
the one-ion anisotropy (Da), and the third term accounts
for the isotropic dipole–dipole interaction (Dd).
According to the data obtained on the basis of molecu-
lar field theory [23, 26, 36, 37], the parameters of
anisotropy Da and isotropic dipole forces Dd have the
values Da/J = 1.41 × 10–4 and Dd/J = 1.35 × 10–3. Note
that all the physical quantities are expressed in dimen-
sionless units.

Calculations were performed for cubic samples of
size L × L × L (L = 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30, 32) with periodic boundary conditions. In the
construction of the model systems, all magnetic and
crystallographic features of real gadolinium were taken
into account. To reveal the degree of influence of dipole
forces on the critical behavior, two gadolinium models
were considered. The Γ1 model took into account the
exchange interaction with the closest neighbors and the
uniaxial anisotropy, while the Γ2 model additionally
took into account the isotropic dipole–dipole interac-
tion. Earlier, cluster Monte Carlo algorithms were not
used for the analysis of the effect of weak relativistic
interactions of various types against the background of
strong exchange interactions and simultaneously
against the background of each other on the critical
behavior; the effectiveness and specific features of clus-
ter algorithms as applied to complex models involving
crossovers were not studied.

4. INVESTIGATION TECHNIQUES

Cluster Monte Carlo algorithms [17–28] proved to
be a very effective tool for the investigation of critical
phenomena in various systems and models [6, 15, 16,
38, 39]. The critical parameters calculated on the basis
of data obtained with the use of cluster algorithms are
very accurate and reliable [6]. Among all variants of
cluster Monte Carlo algorithms, the Wolf algorithm [17,
18] is the most effective. We used the following form of
this algorithm to investigate the models Γ1 and Γ2.

1. A direction of the unit vector r is chosen at random.
2. One of the spins of the lattice Si ∈  A, where A the

set of all lattice sites, is chosen at random; below, fol-
lowing [38], we will call this spin central.

3. A new direction of the spin RSi  , RSi = Si –
2(Si · r)r is specified. Actually, the operation R consists
in a specular reflection of the spin with respect to the
plane perpendicular to the vector r.

4. All nearest neighbors j of the chosen ith spin are
visited. The bond 〈ij〉  is activated with the probability

(2)

Si'

P 1 min 0 2Jβ r Si⋅( ) r Si⋅( ),[ ]{ } ,exp–=

β 1/kBT .=
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5. If the bond 〈ij〉  is activated, then the spin at the site
j changes its direction RSj  ; in this case, the spin
j is included in the cluster.

6. After checking all nearest neighbors of the spin i,
the first reversed spin j becomes central and the process
of establishing its bonds with the closest neighbors is
started. This process proceeds until the boundaries of
the system are reached.

Thus, the set of all reversed spins forms a “cluster.”
One and the same spin can be reversed only once; how-
ever, it can be multiply checked.

Note that the activation of a bond can be represented
as

where dU = dUj – dUi and U is the internal energy.

The initial configuration was chosen so that all spins
were arranged along the axis z. To guide the system to
the equilibrium state, 104 Monte Carlo steps per spin
were made (one Monte Carlo step per spin corresponds
to one reversal of the cluster), which is at least by a fac-
tor of 20 more than the nonequilibrium section even in
the vicinity of the critical point. Thermodynamic quan-
tities were averaged using the Markov chain of length
up to 3 × 106 Monte Carlo steps per spin. We note that,
for T ≈ Tc, the average size of the reversed cluster
increases with the size of the system L, which is quite
natural. At the same time, the relative size of the
reversed cluster gradually decreases with increasing L.
For example, for our models, if L = 8 (N = 512 spins),
a cluster contains 51 spins on average, which is about
10%. For a system with L = 32 (N = 32768 spins), a
cluster contains 796 spins on average, which is about
2.5%. Note that at T ! Tc, the relative average size of a
cluster is the same for all systems at a fixed tempera-
ture.

5. FINITE-SIZE SCALING

The theory of finite-size scaling proposed by Ferdi-
nand and Fisher in [21, 40] accounts for the influence
of the finite size of the system on its critical properties.
The ideas underlying this theory make it possible to
extrapolate the results obtained for finite-size systems
by the Monte Carlo method to the thermodynamic limit
N = L3  ∞ and have found wide application [6, 8, 9,
13–16, 39]. According to this theory, the free energy of
a sufficiently large system with periodic boundary con-
ditions at a temperature T close to the critical tempera-
ture Tc of the infinite system can be represented in the
form

(3)

S j'

P 1 min 0 dU,[ ]{ } ,exp–=

F T L,( ) L d– F0 tL1/ν( ),∝
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Fig. 1. Heat capacity (a) and susceptibility (b) as a function of temperature for the model Γ2 for N = 512 (h), 1000 (j), 1728 (s),
2744 (r), 4096 (n), and 5832 (d).

1

where t = |T – Tc|/Tc, Tc = Tc(L = ∞), and ν is the static
critical index of the correlation radius of the infinite
system (L = ∞). The shift of the “effective transition
temperature” occurs in accordance with the relation

(4)

where a is a constant. Relation (3) yields similar rela-
tions of the heat capacity, susceptibility, and spontane-
ous magnetization per spin:

(5)

(6)

(7)

where α, β, and γ are the static critical exponents for the
system with L = ∞ satisfying the hyperscaling equation
2 – α = dν = 2β + γ [1].

Equations (5)–(7) give an adequate description of
the critical behavior of infinite systems for t ! 1 as
L  ∞. The theory of finite-size scaling was success-
fully applied to a number of simple well-known models
(see [6]). However, the applicability of this theory to
models involving crossovers was tested only on a very
limited number of models [6, 8–10]. As far as we know,
models that admit several crossover transitions have
never been investigated by cluster Monte Carlo algo-
rithms with the use of finite-size scaling theory.

kBTc L( )
J

--------------------
kBTc

J
----------- aL 1/ν– ,+=

C T L,( ) Lα /νC0 tL1/ν( ),∝

χ T L,( ) Lγ/νχ0 tL1/ν( ),∝

m T L,( ) L β/ν– m0 tL1/ν( ),∝
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We call the reader’s attention to the following fact.
When calculating the critical exponents of susceptibil-
ity (γ) and magnetization (β), the relations

(8)

(9)

are used, which are derived from (6) and (7) at T = Tc.
However, the heat capacity cannot be described follow-
ing this scheme. For this reason, the following relation
is practically used to scale the heat capacity in the cal-
culation of the index α (see [6, 8–10]):

(10)

where a is a coefficient.

Equation (4) is also of little use in practice because
it yields an inaccurate value of Tc. The cumulant fourth-
order method proposed by Binder [41] is much more
accurate:

(11)

where m is the magnetization of the system of the linear
size L. This method makes it possible to determine Tc

up to a high accuracy. If the system undergoes a first-
order phase transition, then the energy of the system E
appears in (11) instead of m (see [6]). In the following
section, we demonstrate a high efficiency of this
method for models under study.

χ Lγ/ν∝ ,

m L β/ν–∝

Cmax L( ) Cmax L ∞=( ) aLα /ν,–=

UL 1
m4〈 〉 L

3 m2〈 〉 L
2

-----------------,–=
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6. SIMULATION RESULTS

To observe the temperature dependence of the heat
capacity and susceptibility, we use the fluctuation rela-
tions

(12)

(13)

where K = |J |kBT.
Figure 1 presents the dependence of the heat capac-

ity C and susceptibility χ on temperature for the more
complex model Γ2. Here and in what follows, the error
of the data does not exceed the size of the symbols used
in the figures. We note the well-defined maxima for sys-
tems of all sizes and the fact that these maxima corre-
spond to the same temperature up to the accuracy of
computations. It is seen that no dependence of Tc on L,
which would be expected from Eq. (4), is observed.
This proves the effectiveness of the method used to add
periodic boundary conditions and shows that many
parameters under study are saturated with respect to N.

C NK2( ) U2〈 〉 U〈 〉 2–( ),=

χ NK( ) m2〈 〉 m〈 〉 2–( ),=

Tc

0.65

0.60

0.55

3.10 3.15 3.20 3.25
kBT/|J|

UL

1 2 3 4

0.45

0.50

0.55

0.60

0.65

UL

5
kBT/|J|

Fig. 2. The cumulant UL as a function of temperature for the
model Γ2. The notation is the same as in Fig. 1.
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Since Fig. 1 illustrates the data for the lower part of the
investigated range of L, our results for greater values of
L are not less accurate and reliable.

In order to determine the critical parameters on the
basis of the finite-size scaling theory, one must first of
all determine the critical temperature Tc; for this pur-
pose, we used Binder’s cumulant method. According to
the finite-size scaling theory, all cumulants UL deter-
mined by formula (11) for systems of various sizes L
meet at the point Tc. Figure 2 depicts the dependence of
UL on temperature for the model Γ2. The inset in this
figure demonstrates the accuracy with which the critical
temperature can be determined. Similar computations
were performed for the model Γ1. Qualitatively, all spe-
cific features characteristic of Γ2 and shown in Figs. 1
and 2 are characteristic for Γ1 as well.

The analysis of data for susceptibility and magneti-
zation based on relations (8) and (9) allowed us to
determine the exponents β and γ. For this purpose, we
plotted the dependences m and χ on linear size L of the
lattice on the log-log scale (Fig. 3). For the model Γ1,
these plots are characterized by the ratios β/ν = 0.5081
and γ/ν = 1.9716. Assuming that (1) is the Heisenberg
Hamiltonian and setting ν = 0.706 [3, 4], we obtain β =
0.359(1) and γ = 1.392(1). These values of the expo-
nents are in good agreement with the theoretical data
obtained for the Heisenberg model: β = 0.368 and γ =
1.390 [3, 4].

Similar dependences for the model Γ2 yield the val-
ues β/ν = 0.5066 and γ/ν = 1.9233. Since the model Γ2
takes into account dipole–dipole interactions along
with the exchange one, it is useful to determine the
exponents both for ν = 0.706 (the Heisenberg model)
and for ν = 0.692 (the three-dimensional dipole model
[5]). Thus, β = 0.358(1), γ = 1.358(1) for ν = 0.706 and
β = 0.351(1), γ = 1.331(1) for ν = 0.692. It is interesting
to note that the value of γ for this model shifted in the
direction of the value corresponding to the three-
dimensional dipole model (γ = 1.37 [5]); at the same
time, β remained practically unchanged. This feature is
characteristic of the transition from the Heisenberg crit-
0.20
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L
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0.35

10 12 14 16 20 24 28 32
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8
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10.0
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1.0
0.8

χ

Fig. 3. Magnetization (a) and susceptibility (b) as a function of the linear size of the system for the model Γ1 at T = Tc: (a) β/ν =
0.50808, β = 0.35870; (b) γ/ν = 1.97164, γ = 1.39198.
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ical behavior with isotropic short-range forces to the
three-dimensional dipole model.

As has already been noted, when processing heat
capacity data, formula (10) rather than (5) is used in
practice. Our data for heat capacity show that the
dependence C(L) on the log-log scale is nonlinear (Fig. 4).
The approximation performed by the nonlinear least-
square method on the basis of Eq. (10) yields the value
of the critical index α = –0.115(2) for the model Γ1 and
α = –0.120(2) for the model Γ2. The recalculation of α
for the model Γ2 at ν = 0.692 (the dipole model) yields
α = –0.118(2), which coincides (within the accuracy of
computations) with the value obtained for ν = 0.706.

Sometimes, the critical index γ is determined using
the value χmax instead of χ(Tc). The values of γ deter-
mined in such a way for the models Γ1 and Γ2 are equal
to 1.379(1) and 1.366(1), respectively.

Our data can also be used to determine the Fisher
index η. Using the relation between the susceptibility χ
and the correlation radius ξ (see [16]),

(14)

and the relation between the critical exponents η = 2 –
γ/ν, we obtain

(15)

where C is a constant.

χ ξγ/ν,∝

χ/ξ2( )ln C η ξ ,ln–=

2.25

8

C/kB

L

2.50

2.75

3.00

10 12 14 16 20 24 28 32

Fig. 4. Heat capacity as a function of the system’s linear size
for the model Γ1 at T = Tc: α/ν = –0.16347 and α =
−0.11540.
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Fig. 5. χ/L2 as a function of the system’s linear size for the
model Γ1 at T = Tc; η = 0.04514.
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For systems of a finite size ξ = L, we obtain at T = Tc

(16)

The dependence of χ/L2 on L for the model Γ1 is shown
in Fig. 5. According to these data, the value of the
Fisher index is η = 0.045(5). It is seen from Fig. 5 that
the values obtained are well fitted by a line for small L,
which is also confirmed in other studies [16]. It is pos-
sible that the asymptotic critical regime for the correla-
tion radius ξ and susceptibility χ is attained already at
L ≥ 8. The value of η determined above is in a rather
good agreement with the data obtained on the basis of
field theory (η ≈ 0.033–0.038 [3, 4]) and by Monte
Carlo methods (η ≈ 0.027 [6, 16]). For the model Γ2,
we found that η = 0.048(5) coincides with the value for
Γ1 within the accuracy computations.

7. CONCLUSIONS

The investigation results of complex models of real
gadolinium obtained on the basis of the one-cluster
Wolf algorithm of the Monte Carlo method show that
this algorithm is very efficient. The use of this algo-
rithm in the vicinity of the critical point reduces the
computation time at least by an order of magnitude
compared to the classical one-spin Metropolis algo-
rithm while providing the same accuracy. This is espe-
cially important for the investigation of complex mod-
els in which crossover effects manifest themselves only
when a sufficiently rich statistics is accumulated and
highly accurate results are obtained.

Note that the isotropic dipole–dipole interactions
taken into account in the model Γ2 are only a weak per-
turbation factor on the background of strong exchange
interactions. No investigations of the influence of such
forces on the critical behavior with a simultaneous
account for another weak perturbation factor—the
uniaxial anisotropy—were earlier conducted by cluster
Monte Carlo algorithms. The effectiveness, efficiency,
and resolution of cluster algorithms in revealing these
factors have not been studied earlier. For this reason
and in order to compare the results with those obtained
by classical algorithms, all experiments were con-
ducted strictly following a unified methodology. Spe-
cific features revealed in the analysis of the model Γ2
demonstrate a high resolution of cluster Monte Carlo
algorithms.

The basic static critical exponents

calculated on the basis of the data obtained by the
Monte Carlo method with the use of the finite-size scal-
ing theory for the model Γ1 coincide (within the accu-
racy of computations) with the values predicted for the
three-dimensional isotropic Heisenberg model with
short-range forces; they also coincide with the values

χ/L2( )ln C η L.ln–=

α 0.115 1( ), β– 0.359 1( ),= =

γ 1.392 1( ), η 0.045 5( ),= =
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that were obtained by Monte Carlo methods for this
model.

For the model Γ2, the following set of index values
was obtained:

The comparison of the exponents for the models Γ1 and
Γ2 shows that changes greater than the accuracy of
computations occurred only in the index γ; for Γ2, γ
shifts closer to the value theoretically predicted for the
dipole model (in fact, γ coincides with the theoretical
value within the accuracy of computations). A similar
decrease of γ is characteristic of the change of the crit-
ical behavior from Heisenberg to dipole.

Our data also confirm that the finite-size scaling the-
ory can be used for the investigation of complex models
involving crossovers.

ACKNOWLEDGMENTS
This work was supported by the Russian Foundation

for Basic Research, project no. 01-02-16103, and by
the Commission of the Academy of Sciences for Sup-
porting Young Scientists.

REFERENCES
1. A. Z. Patashinskiœ and V. A. Pokrovskiœ, Fluctuation The-

ory of Phase Transitions (Nauka, Moscow, 1982, 2nd
ed.; Pergamon, Oxford, 1979).

2. S. Ma, Modern Theory of Critical Phenomena (Ben-
jamin, Reading, 1976; Mir, Moscow, 1980).

3. J. J. C. Le Guillou and J. J. Zinn-Justin, Phys. Lett. 46,
L157 (1985).

4. S. A. Antonenko and A. I. Sokolov, Phys. Rev. E 51,
1894 (1995).

5. I. K. Kamilov and Kh. K. Aliev, Static Critical Phenom-
ena in Magnetic-Ordered Crystals (Dagest. Nauchn.
Tsentr Ross. Akad. Nauk, Makhachkala, 1993).

6. I. K. Kamilov, A. K. Murtazaev, and Kh. K. Aliev, Usp.
Fiz. Nauk 169, 773 (1999).

7. A. K. Murtazaev, I. K. Kamilov, Kh. K. Aliev, and
V. A. Mutaœlamov, Zh. Éksp. Teor. Fiz. 117, 559 (2000)
[JETP 90, 488 (2000)].

8. A. K. Murtazaev, Fiz. Nizk. Temp. 25, 469 (1999) [Low
Temp. Phys. 25, 344 (1999)].

9. A. K. Murtazaev, I. K. Kamilov, and Kh. K. Aliev,
J. Magn. Magn. Mater. 204, 151 (1999).

10. A. K. Murtazaev, I. K. Kamilov, and K. Sh. Khizriev, Fiz.
Tverd. Tela (St. Petersburg) 43, 659 (2001) [Phys. Solid
State 43, 685 (1998)].

11. V. V. Prudnikov, S. V. Belim, E. V. Osintsev, and
A. A. Fedorenko, Zh. Éksp. Teor. Fiz. 114, 972 (1998)
[JETP 87, 527 (1998)].

12. G. A. Martynov, Usp. Fiz. Nauk 169, 600 (1999).
13. D. P. Landau, Physica A (Amsterdam) 205, 41 (1994).
14. A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44,

5081 (1991).

α 0.120 1( ), β– 0.368 1( ),= =

γ 1.358 1( ), η 0.048 5( ).= =
JOURNAL OF EXPERIMENTAL 
15. K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev.
B 48, 3249 (1993).

16. Ch. Holm and W. Janke, Phys. Rev. B 48, 936 (1993).

17. U. Wolff, Phys. Rev. Lett. 62, 361 (1989).

18. U. Wolff, Nucl. Phys. B 322, 759 (1989).

19. A. M. Ferrenberg and R. N. Swendsen, Phys. Rev. Lett.
61, 2635 (1988).

20. A. M. Ferrenberg and R. N. Swendsen, Phys. Rev. Lett.
63, 1195 (1989).

21. A. E. Ferdinand and M. E. Fisher, Phys. Rev. E 185, 832
(1969).

22. A. L. Tseskis, Zh. Éksp. Teor. Fiz. 106, 1089 (1994)
[JETP 79, 591 (1994)].

23. K. P. Belov, M. A. Belyanchikova, R. Z. Levitin, and
S. A. Nikitin, Rare-Earth Ferromagnetics and Antiferro-
magnetics (Nauka, Moscow, 1965).

24. V. M. Kuchin, V. A. Somenko, S. Sh. Shil’shteœn, and
Yu. B. Patrikiev, Zh. Éksp. Teor. Fiz. 55, 1241 (1968)
[Sov. Phys. JETP 28, 649 (1969)].

25. R. H. Child, Phys. Rev. B 18, 1247 (1978).

26. Kh. K. Aliev, I. K. Kamilov, and O. M. Omarov, Zh.
Éksp. Teor. Fiz. 94 (11), 153 (1988) [Sov. Phys. JETP 67,
2262 (1988)].

27. C. Bednarz, D. J. W. Geldart, and Mary Anne White,
Phys. Rev. B 47, 14247 (1993).

28. D. A. Doleisi and S. A. Swenson, Phys. Rev. B 24, 6326
(1981).

29. E. A. Lewis, Phys. Rev. B 1, 4368 (1970).

30. D. S. Simons and M. B. Salamon, Phys. Rev. B 10, 4680
(1974).

31. G. H. J. Wantenaar, S. L. Compbell, and D. N. Chaplin,
Phys. Rev. B 29, 1419 (1984).

32. P. Molho and J. L. Portosseill, J. Magn. Magn. Mater. 31-
34, 1023 (1983).

33. A. J. Saleh and N. H. Saunders, J. Magn. Magn. Mater.
29, 197 (1982).

34. P. Heller, Rep. Prog. Phys. 30, 731 (1967).

35. A. R. Chowdhury, C. S. Collins, and Ch. Hohenemser,
Phys. Rev. B 33, 6231 (1986).

36. S. V. Vonsovskiœ, Magnetism (Nauka, Moscow, 1971;
Wiley, New York, 1974).

37. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and
R. Z. Levitin, Orientational Transitions in Rare-Earth
Magnets (Nauka, Moscow, 1979).

38. O. A. Vasil’ev and L. N. Shchur, Zh. Éksp. Teor. Fiz. 117,
1110 (2000) [JETP 90, 964 (2000)].

39. W. Janke and K. Nather, Phys. Rev. B 48, 7419 (1993).

40. M. E. Fisher and M. N. Barber, Phys. Rev. Lett. 28, 1516
(1972).

41. K. Binder, Phys. Rev. Lett. 47, 693 (1981).

Translated by A. Klimontovich
AND THEORETICAL PHYSICS      Vol. 93      No. 6      2001


	1137_1.pdf
	1155_1.pdf
	1163_1.pdf
	1168_1.pdf
	1178_1.pdf
	1184_1.pdf
	1190_1.pdf
	1209_1.pdf
	1216_1.pdf
	1222_1.pdf
	1231_1.pdf
	1239_1.pdf
	1245_1.pdf
	1250_1.pdf
	1261_1.pdf
	1270_1.pdf
	1280_1.pdf
	1288_1.pdf
	1296_1.pdf
	1302_1.pdf
	1307_1.pdf
	1314_1.pdf
	1323_1.pdf
	1330_1.pdf

