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Abstract—We consider the development of inhomogeneity in the isothermal collapse of protostellar clouds.
The initial and boundary conditions correspond to the classical statement of the problem on the contraction of
a homogeneous cloud from a given volume. A centered rarefaction wave is shown to propagate from the outer
boundary of the cloud toward its center at the first collapse stage. Analysis reveals two possible regimes of iso-
thermal collapse, depending on the relationship between the rarefaction wave focusing time t* and the cloud
free-fall collapse time tff . For cold clouds, t* = tff and the rarefaction wave is not reflected. In this case, as time

elapses, the cloud collapse becomes self-similar with the characteristic density profile ρ ~ r–2. In hot clouds,
t* < tff and the focusing can take place before the formation of an opaque core. Since the velocities of the rar-

efaction wave along and across magnetic field lines in a magnetized cloud are different, its front assumes a
shape elongated along magnetic field lines. Depending on the initial conditions, based on analytical estimates,
we investigate various possible scenarios for the collapse of magnetic protostellar clouds. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

At the initial stages of collapse (supersonic gasdy-
namic contraction under self-gravity), a protostellar
cloud is transparent to its intrinsic infrared radiation.
Therefore, the cloud temperature is constant with a
high accuracy over a wide density range. Studying the
isothermal collapse of protostellar clouds is an impor-
tant astrophysical problem, because the characteristic
profiles of the velocity, density, and other quantities that
determine the basic parameters of protostars with
accretion disks are formed precisely at this stage.

The emerging flow pattern is determined by two
dimensional parameters—the cloud temperature T and
the gravitational constant G. If the statement of the
problem contains no other dimensional constants, then
the flow is self-similar [1]. Similarity solutions for the
problem of isothermal collapse were considered by
many authors [2–6]. These similarity solutions were
used to take into account the effects of slow rotation [7]
and weak magnetic field [8] based on perturbation
theory.

Consider the problem of the collapse of an isother-
mal protostellar cloud in the classical statement on the
contraction of an initially homogeneous cloud from a
given volume (see [2]). Under these initial conditions,
the subsequent evolution of the cloud can be treated in
terms of the piston problem (or the more general Rie-
mann problem of the decay of an arbitrary discontinu-
ity), where the gas self-gravity acts as the piston. The
1063-7761/03/9602- $24.00 © 0165
discontinuity decays to form a centered rarefaction
wave at the boundary of the cloud that propagates
toward its center [9]. Thus, the rarefaction wave front
separates up the entire mass of the collapsing gas into
two parts. In the inner region, the density is uniform
and, hence, the matter collapses freely (there is no pres-
sure gradient). In the outer region, a nonuniform den-
sity profile is formed behind the rarefaction wave front.

For spherically symmetric isothermal clouds, the
law of motion of the rarefaction wave front and the cri-
terion that separates the two types of flow were found
in [10]. This solution was generalized to rotating iso-
thermal clouds by Tsuribe and Inutsuka [11]. They
showed that the rarefaction wave front surface in rotat-
ing clouds is flattened along the rotation axis. This is
because the gas velocity in the equatorial plane is lower
than its velocity along the rotation axis due to the cen-
trifugal force. In this case, the speed of propagation of
the weak discontinuity through the gas is equal to the
isothermal speed of sound cT , as in a nonrotating cloud.

Here, we consider the evolution of the rarefaction
wave in collapsing magnetic nonrotating protostellar
clouds. In the next section, this problem is considered
for a spherically symmetric isothermal cloud with no
magnetic field. In the third section, we analyze the evo-
lution of the rarefaction wave and the various types of
flow for a collapsing isothermal magnetized protostel-
lar cloud. In the Conclusions, we present our main
results.
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2. SPHERICALLY SYMMETRIC COLLAPSE

Consider the gravitational contraction of a spheri-
cally symmetric isothermal cloud from a given volume.
Assume that at the initial time, the cloud matter is uni-
formly distributed over a sphere of radius R0. The pres-
sure in the cloud is related to the density by the equation
of state for an ideal gas at constant temperature:

(1)

where cT is the isothermal speed of sound, 5 is the uni-
versal gas constant, and µ is the molecular weight. The
initial statement of the problem can be treated in terms
of the standard gasdynamic piston problem (see,
e.g., [12]), in which the gas self-gravity acts as a kind
of a piston.

At the first contraction stage, a centered rarefaction
wave emerges and propagates from the boundary of the
cloud toward its center. The boundary R between the
inner region and the rarefaction wave region moves
through the gas with the speed of sound cT . Given the
gas motion, the equation for the coordinate R of the
weak discontinuity can be written as

(2)

where v  = v(R, t) is the gas velocity at the rarefaction
wave front.

Since the rarefaction wave is immediately adjacent
to the region of freely collapsing gas, the velocity v  can
be determined from the solution of the problem of free-
fall collapse (cloud contraction under self-gravity with-
out a pressure gradient and other forces). Let us change
to dimensionless variables:

(3)

where ρ0 is the initial density in the cloud and

(4)

is the characteristic time scale. The flow of gas in the
inner region is described by the relations (see, e.g., [1])

(5)

where the parameter η varies between 0 and 1. The
value of η = 1 corresponds to the free-fall collapse time

(6)
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The dimensionless time τ is related to η by

(7)

In the dimensionless variables, Eq. (2) transforms to

(8)

where r = R/R0 and the dimensionless parameter

(9)

is the ratio of the speed of sound cT to the characteristic

gas flow velocity R0/t0. Note that α = , where M0 is
an integral analog of the Mach number. In this case,

(10)

where

(11)

is the initial ratio of the scalar pressure integral

to the absolute value of the cloud gravitational energy
Eg . Using (7), we can rewrite Eq. (8) as

(12)

Integrating this equation yields

(13)

The solutions obtained for various values of α are
shown in Fig. 1.

It is easy to determine the critical value α* that sep-
arates the two types of solution (see [10]). Since the

maximum value of the function arcsin η in the 
range under consideration is equal to π/2, we can obtain

(14)

The following value corresponds to the critical param-
eter α*:

At small α < α* (cold clouds), the second factor
in (13) is always positive in the range 0 ≤ η ≤ 1. There-
fore, the root of the equation r(η) = 0 that determines
the focusing time (the time at which the radius of the
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rarefaction wave front is zero) is equal to 1. This
implies that the rarefaction wave front for such clouds
is focused at the time t* = tff . In this case, as time

elapses, the collapse of a protostellar cloud passes to a
self-similar regime, because the initial density in the
cloud ceases to affect the distributions of quantities in
the rarefaction wave region immediately adjacent to its
front as the central density increases. The flow in this
region “forgets” the initial conditions. Therefore, in the
course of time, the solution will be determined only by
two dimensional constants—the speed of sound cT and
the gravitational constant G. The density and velocity
distributions in this region will be determined by stan-
dard self-similar profiles (see, e.g., [4]), ρ ∝  r –2 and
v  ∝  –r –1. It should also be noted that for the values of
α under consideration, an opaque core is formed in the
central region before the focusing time t* and the sub-

sequent evolution cannot be considered in terms of the
isothermal approximation. After the formation of the
opaque core (protostar), the flow of gas in the shell
probably passes into an accretion regime with the char-
acteristic density and velocity profiles ρ ∝  r –3/2 and
v  ∝  –r –1/2.

For large α > α* (hot clouds), the rarefaction wave

is focused at the center in a time shorter than the cloud
free-fall collapse time tff . After the reflection of the
weak discontinuity from the center, a nonuniform den-
sity profile is formed in the cloud. As a result, a pressure
gradient significantly affects the subsequent collapse.
This case can correspond to the quasi-static contraction
of hot clouds or clouds supported by a turbulent pres-

R/R0
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0 0.2 0.4 0.6 0.8 1.0
t/tff

α = 0.26
0.5
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Fig. 1. Rarefaction wave front coordinate versus time for
various values of α.
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sure. For α > α*, we derive the following expression for
the rarefaction wave focusing time from (13):

(15)

The inferred function t*(α) is shown in Fig. 2 (solid
line). Note that at large α, this function reaches its
asymptotic limit

(16)

3. THE EFFECT OF A MAGNETIC FIELD

Consider a nonrotating protostellar cloud threaded
by a uniform magnetic field. In this case, a centered fast
MHD rarefaction wave propagating toward the cloud
center emerges at the first collapse stage. In the inner
region, the magnetic field is uniform (and, hence, force-
free) and varies with time as B ∝  ρ2/3. The boundary R
of the rarefaction wave front can be determined from
the solution of the equation

(17)

where

(18)
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Fig. 2. Rarefaction wave focusing time t*, ⊥  in the trans-

verse direction versus α for various values of αm .
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is the fast magnetosonic velocity, θ is the angle between
the magnetic field vector B and the normal vector n at
a given point of the front surface, and

(19)

is the Alfven velocity.

Since the angle θ is zero or π along magnetic field
lines, the longitudinal velocity of propagation of the
rarefaction wave boundary through the gas is

(20)

In the transverse direction, θ = ±π/2 and the boundary
moves through the gas with the velocity

(21)

Note that u|| < u⊥ . Thus, at a given time, the surface of
the rarefaction wave front in a magnetic cloud has a
shape elongated along magnetic field lines that is simi-
lar to the shape of prolate ellipsoid of revolution.

Consider the transverse motion of the rarefaction
wave front. Using (21), we can rewrite Eq. (17) in
dimensionless form:

(22)

where the dimensionless parameter α is defined by rela-
tion (9) and the parameter

(23)

is the ratio of the characteristic velocities B0/

and R0/t0. Note that αm = , where  is an inte-
gral analog of the Alfven Mach number. In this case,

(24)

where εm is the initial ratio of the cloud magnetic
energy to the absolute value of its gravitational energy.

Changing from the dimensionless time τ to the vari-
able η using formula (7), we can transform Eq. (22) to

(25)

Integrating this equation yields the expression

(26)
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where the function

(27)

It should be noted that the function ϕ(η, q) increases
without limit as η  1 for any positive value of q.
Therefore, the rarefaction wave focusing time in the
transverse direction t*, ⊥  is always shorter than tff . In

Fig. 2, the rarefaction wave focusing time t*, ⊥  in the

transverse direction is plotted against α. Different
curves in the figure correspond to different values of
αm . The focusing time is seen to decrease sharply with
increasing αm .

The longitudinal motion of the rarefaction wave
front cannot be determined analytically, because the
pressure gradient affects the dynamics of the gas flow
immediately adjacent to the rarefaction wave region.
However, for qualitative estimates, we can assume that
in this case, the gas velocity in Eq. (17) can also be
determined from the solution of the problem of free-fall
collapse. Thus, for the longitudinal direction, we obtain
the equation

(28)

where

(29)

If αm ≥ α (a strong magnetic field), then w(η) =

αm/ , implying that in this case, the rarefaction
wave front in the longitudinal direction always moves
with the Alfven velocity. Integrating (28) yields

(30)

The derived law of motion does not depend on αm . The
focusing time is defined by the expression

(31)

Consider αm < α. The function
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(33)

(34)

The value η1 corresponds to the time

(35)

At this time, the Alfven velocity at the rarefaction wave
front is equal to the isothermal speed of sound.

Assume that the focusing occurs before the time t1.
In this case, the longitudinal velocity of the rarefaction
wave front is always equal to the isothermal speed of
sound cT . This regime takes place under the following
conditions (a weak magnetic field):

(36)

For intermediate magnetic field strengths,

the focusing occurs after the time t1. In this case, the
rarefaction wave front initially moves with the speed of
sound and, after t1, with the Alfven velocity.

Let us discuss the solutions obtained. In the limit of
weak magnetic fields (αm  0), the derived expres-
sions for r(η) in the longitudinal and transverse direc-
tions transform into the solution for the spherically
symmetric case (13). This corresponds to the kinematic
approximation where the magnetic field is so weak that
the electromagnetic force is negligible compared with
the gravitational force and the pressure gradient. In this
limit, the magnetic field acts as a passive admixture and
its configuration can be calculated independently from
the induction equation using a given velocity field.

The focusing time t* decreases with increasing
magnetic field strength. Even for moderately strong
magnetic fields (αm ≈ 0.1), the electromagnetic force
begins to affect the collapse dynamics. This effect can
manifest itself, for example, in a small delay between
the longitudinal focusing of the rarefaction wave and its
transverse focusing. Under the electromagnetic force,
the collapsing cloud itself (the rarefaction wave region)
assumes a shape flattened along magnetic field lines. It
should be particularly emphasized that the shape of the
rarefaction wave surface does not coincide with the
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shape of the central flattened condensations formed at
late cloud collapse stages.

For sufficiently strong magnetic fields, intense
MHD waves resulting from the reflection of the fast
magnetosonic rarefaction wave that arrives at the center
must be generated at the isothermal collapse stage of
protostellar clouds. This conclusion was first drawn by
Dudorov and Sazonov [13] from numerical simulations
of MHD collapse in the one and a half dimensional
approximation. We also observed such effects in two-
dimensional numerical computations of the collapse of
magnetic protostellar clouds [14]. In some cases (large
α), the unloading of matter in the central region can
probably even be accompanied by bipolar plasma ejec-
tion parallel to the initial magnetic field. This conclu-
sion is directly corroborated by two-dimensional
numerical computations.

Figure 3 shows two-dimensional numerical simula-
tions of the collapse of a magnetized protostellar cloud.
The initial parameters correspond to α = 0.245 and
αm = 0.283. This figure shows the distributions of the
logarithm of density in cylindrical coordinates r and z
in the cloud for four consecutive times: 0.468tff ,
0.755tff , 0.870tff , and 1.044tff . The panels correspond-
ing to the first three times demonstrate the evolution of
the MHD rarefaction wave at the initial collapse stages
when its characteristic shape elongated along magnetic
field lines is formed. The last panel corresponds to the
time after the rarefaction wave focusing. Through the
focusing and reflection of the rarefaction wave front,
the central region of the cloud assumed the shape of a
thin disk.

For strong magnetic fields, the focusing time is so
short that at the time when the rarefaction wave is
reflected from the center, the cloud matter does not gain
enough kinetic energy to generate MHD waves capable
of affecting the collapse dynamics. In this case, after
the reflection of the rarefaction wave, the cloud passes
into a state of quasi-magnetostatic contraction with a
relatively small density difference from the periphery to
the center. In this state, the cloud evolves not on the
dynamic scale but on the diffusion scale. The latter is
determined by turbulence dissipation and by ambipolar
and ohmic magnetic field diffusion.

Note the significant difference between the patterns
of evolution of the rarefaction wave in nonmagnetic
rotating and magnetic nonrotating clouds. In the former
case (see [11]), the centrifugal force causes the collaps-
ing gas to slow down in the central region of uniformly
contracting gas in the transverse direction with respect
to the symmetry axis. The velocity of propagation of
the weak discontinuity through the gas is equal to the
speed of sound cT . As a result, the rarefaction wave
assumes a shape flattened along the rotation axis. For a
magnetic nonrotating cloud, the magnetic field remains
forcefree in the inner region. Therefore, the electro-
magnetic forces have no effect on the gas velocity
(kinematics). However, the velocities of propagation of
SICS      Vol. 96      No. 2      2003
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Fig. 3. Distribution of the logarithm of density and the evolution of the MHD rarefaction wave in a collapsing magnetized protos-
tellar cloud for various times. The initial parameters correspond to α = 0.245 and αm = 0.283.
the weak discontinuity through the gas in a magnetic
cloud along and across magnetic field lines are differ-
ent. As a result, the surface of the MHD rarefaction
wave front assumes a shape elongated (rather than flat-
tened) along magnetic field lines. In the region of the
rarefaction wave itself, the cloud assumes a flattened
shape under the electromagnetic force.

4. CONCLUSIONS

Our main results are as follows.

The dynamics of the spherically symmetric collapse
of isothermal protostellar clouds in the classical state-
ment of the problem of cloud contraction from a given
volume is characterized by the formation of a centered
rarefaction wave at the outer boundary at the initial time
and by its subsequent propagation toward the cloud
center. The front of this wave separates the cloud into
two regions. In the inner region, the matter is homoge-
JOURNAL OF EXPERIMENTAL 
neous and collapses freely. In the rarefaction wave
region, a nonuniform density profile is formed.

The rarefaction wave focusing time is determined
by the dimensionless parameter α (9). In cold clouds
(α ≤ α* ≈ 0.26), the rarefaction wave is focused at the
time t* = tff . In this case, the characteristic self-similar

density, ρ ∝  r–2, and velocity, v  ∝  –r–1, profiles are
formed in the rarefaction wave region immediately
adjacent to the front. Initially, this is a narrow region,
but it expands as the central density increases. After the
separation of an opaque core (a protostar), the gas
motion in its vicinity passes into an accretion regime
with the characteristic density profile ρ ∝  r–3/2.

In hot clouds (α > α*), the focusing takes place
before the free-fall collapse time (t* < tff). After the
reflection of the weak discontinuity from the center, a
nonuniform density profile is formed in the cloud and a
pressure gradient significantly affects its subsequent
AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003
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collapse. Since the collapse of such clouds is apprecia-
bly slower, this case can correspond to the quasi-static
contraction of hot clouds or clouds supported by turbu-
lent pressure.

The effect of magnetic field causes the velocities of
the weak discontinuity along and across magnetic field
lines to differ. As a result, the surface of the rarefaction
wave front assumes a shape elongated along magnetic
field lines similar to the shape of an prolate ellipsoid of
revolution. This conclusion suggests that the patterns of
evolution of the rarefaction waves in magnetic nonro-
tating and rotating nonmagnetic collapsing protostellar
clouds significantly differ. In a nonmagnetic rotating
cloud, the surface of the rarefaction wave front assumes
a shape flattened (not elongated) along the rotation axis.

The dynamics of the rarefaction wave in a magnetic
cloud is described by two dimensionless parameters, α
and αm (23). For nonzero values of αm , the rarefaction
wave is always focused in the transverse direction in
time t*, ⊥  < tff , although this difference can be negligibly

small for weak magnetic fields. The focusing time t*, ⊥

decreases with increasing magnetic field strength.

In the longitudinal direction, the rarefaction wave is
also always focused in time t*, || < tff . In this case, how-

ever, t*, || > t*, ⊥ . The pattern of longitudinal motion of

the rarefaction wave front significantly depends on the
relationship between α and αm .

If αm ≥ α (a strong magnetic field), then the weak
discontinuity moves in the longitudinal direction with
the Alfven velocity. As the initial magnetic field
strength decreases until a time t1 (35), the isothermal
speed of sound cT at the rarefaction wave front can
exceed the Alfven velocity. As a result, the rarefaction
wave front will propagate through the gas in the longi-
tudinal direction initially with the velocity cT and sub-
sequently, starting from time t1, with the Alfven veloc-
ity. This scenario takes place if conditions (36) are sat-
isfied. In hot clouds (α > α*) with a weak magnetic
field, the rarefaction wave front can propagate through
the moving gas in the longitudinal direction with the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
velocity cT from the very beginning until the focusing
time. In all cases, the focusing takes place before the
free-fall collapse time tff .

Note that all our main conclusions drawn from ana-
lytical calculations are in good agreement with numer-
ical simulations of the collapse of protostellar clouds in
the sesqui- and two-dimensional approximations.
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Abstract—Several hydrogen-free liquid low-temperature fluoropolymers are investigated from the point of
view of their possible use as the material for walls of ultracold neutron traps with low losses. Viscosity was mea-
sured in the temperature range 150–300 K, and neutron scattering cross sections were measured in the temper-
ature range 10–300 K and in the neutron wavelength range 1–20 Å. Some conclusions are made for their pos-
sible ultracold neutron bottle properties. Quasi-elastic neutron reflection from the surface of a viscous liquid is
considered in the framework of the Maxwell dynamic model. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The goal of present-day investigations of free neu-
tron decay is to reach a precision better than 0.1% for
parameters of the V–A theory of neutron beta decay via
measurement of the asymmetry of neutron decay and
the neutron lifetime. Neutron lifetime measurements
are necessary for determining the fundamental cou-
pling constants of weak interactions. Additionally, it is
an important parameter in astrophysical calculations
concerning the creation of nuclei in the early stage after
the Big Bang, including the abundance of helium in the
Universe, the number of species of light stable neutri-
nos, and solar neutrino flux calculations.

An improvement by almost an order of magnitude in
the accuracy of measuring the neutron lifetime has been
achieved in recent years [1]. This progress was reached
entirely due to the application of ultracold neutron
(UCN) storage in closed volumes. A review of neutron
lifetime measurements up to 1990 was published by
Schreckenbach and Mampe [2] (see also the review by
Pendlebury [3] on wider fundamental applications of
UCNs). For a recent review of investigations of free
neutron decay see [4, 5]. The most precise measure-
ments of neutron lifetime were carried out with very
low surface temperature beryllium and solid oxygen
traps [6], or with traps covered with Fomblin oil [7–10].

The experiments with very cold (near 10 K) beryl-
lium UCN traps led [11, 12] to the observation of sur-
prisingly large UCN losses in the traps, exceeding the-
oretical predictions by two orders of magnitude. At
room temperature, the wall losses exceed theoretical
ones by an order of magnitude [12]. The reason for this

¶This article was submitted by the author in English.
1063-7761/03/9602- $24.00 © 0172
anomaly is not yet understood and is a serious impedi-
ment to further significant progress in the precision of
neutron lifetime measurements by this method.

The losses of UCNs stored in traps with walls cov-
ered with solid oxygen [6, 12] or cooled graphite [13]
also exceed those calculated according to cold-neutron
transmission cross sections by two to three orders of
magnitude.

Application of the hydrogen-free perfluoropoly-
ether (PFPE) oil (Fomblin) was first proposed by
Bates [14] and was tested for neutron lifetime measure-
ment in [15]. Fomblin has the chemical formula
CF3(C3F6O)n(OCF2)mOCF3, with m/n = 20–40 and a
molecular weight near 3000 [16].

The UCN losses caused by Fomblin wall collisions
in a large UCN trap (volume up to 72 l) were around
20% (at 10°C) and 10% (at 4°C) of the beta decay
in [15] and subsequent experiments [7, 8] and were the
most important source of systematic errors when cor-
rections for these losses were made. There were plans
[17] to continue neutron lifetime experiments with an
upgraded installation in the same way as in [7, 8].

Careful measurements of UCN losses in Fomblin
traps with the aim of obtaining the UCN energy depen-
dence of the loss coefficient were performed in [18]. In
the expression for the UCN loss probability averaged
over the isotropic angular distribution,

(1)

where E is the neutron energy and V is the boundary
potential of the trap, the experimental UCN reduced loss
coefficient η was found to be η = 2.35(0.10) × 10–5 for
Fomblin oil and η = 1.85(0.10) × 10–5 for Fomblin
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grease at 21°C. It is interesting to note that these values
of the measured UCN loss coefficient η in Fomblin are
significantly lower than the limiting anomalous loss coef-
ficient ηanom = 3.3 × 10–5 in beryllium traps at 10 K [12].
At a lower temperature of Fomblin, 4°C, the loss coef-
ficient was as low as η = 1.3(1) × 10–5, the best one ever
obtained experimentally and 2.5 times lower than the
anomalous loss coefficient in experiments [12]. We use
the standard formalism for the complex potential U
describing the UCN interaction with walls,

(2)

where m is the neutron mass, Ni is the number of nuclei
in a unit volume of the wall material, bi is the coherent
scattering length on a bound nucleus of the wall, and
σ is the cross section of inelastic processes for neutrons
with wavelength λ; this formalism allows calculating
the part of the wall loss coefficient attributed to neutron
capture in Fomblin, which is as low as 3.6 × 10–7 (the
experimental value ReU = 106.5 neV [19] was used in
this calculation). This implies that the main component
of UCN losses is the inelastic scattering. For Fomblin,
a strong dependence of UCN wall losses on tempera-
ture was observed: the losses decrease by about 3% as
the temperature is lowered by 1°C [7]. This requires a
very good wall temperature uniformity over the trap
surface for precision measurement of the neutron life-
time. However, the use of Fomblin at lowered tempera-
tures proved unpromising in view of crumbling of the
Fomblin surface in solid and near-solid states [7, 9],
resulting in a significant increase in UCN losses. The
authors of [7] found that below 0°C, Fomblin oil
becomes too viscous for respraying over the wall
surface.

However, for a liquid Fomblin surface, contrary to
solid surfaces, the difference between the measured
UCN loss coefficients and the ones calculated from
transmission measurements is not large.

Except for the indication [7] that transmission mea-
surements with λ = 60 Å neutrons at 20°C Fomblin
agree with the cross section of UCN losses within a fac-
tor of 1.5, there is no (to the author’s knowledge) quan-
titative experimental information on neutron inelastic
scattering in PFPE; the possibility of calculating it suf-
fers from uncertainties about the dynamics of thermal
motion in this liquid polymer. It is interesting to com-
pare the total inelastic UCN cross section in PFPE
extracted from [7, 18] in accordance with Eq. (2) and
extrapolated to the thermal point in accordance with the

inverse-velocity law  = 8.65 b (≈0.51 b per atom
of PFPE) with the experimental data for a “similar”
compound, Teflon (CF2)n [20]. For the lowest neutron
energy used in these measurements, 0.376 meV, at
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which the elastic coherent scattering effects are
believed to be negligible (below all the Bragg peaks in
the cross section measured in [20]), the cross section
per atom extrapolated to the thermal point is 0.63 b,
which satisfactorily agrees with 0.51 b.

In [21], it was proposed to try low-temperature liq-
uid wall chambers for storing UCN. This proposal was
prompted by publication [22], which reported on new,
recently synthesized, fully fluorinated compounds
whose physical properties are promising from the
standpoint of using them in liquid-wall UCN traps.
These new compounds—perfluorinated poly formalde-
hydes—have a large liquid range and good low-temper-
ature properties. Their formula is C4F9(OCF2)nC4F9.
Depending on the number n (between 6 and 10), the
boiling temperature of this polymer varies between 125
and 200°C; the melting point is between –145 and
−152°C.

There is hope that at lower temperatures—in the
vicinity of the melting point (e.g., –100°C)—inelastic
upscattering, which is believed to be the most important
component of UCN losses upon collisions with cham-
ber walls, decreases by several times. Corrections for
the UCN loss when inferring the neutron lifetime from
the UCN storage data correspondingly decrease.

It is not yet clear to what extent the recently
observed [23] small UCN cooling and heating during
storage in Fomblin traps is an important component of
UCN losses from liquid-wall traps.

The lack of any information on the dynamical prop-
erties of this new compound (as well as for Fomblin)
only allows a very approximate estimate of gain in
UCN losses (a UCN upscattering cross section) with
decreasing temperature from 10 to –120°C. It is
assumed in this estimate that dynamical properties of
PFPE and this new polymer are similar, and the
frequency distribution is described by the Debye
model. From the known specific heat of Fomblin,
0.24 cal/(g grad) [24], the Debye temperature of Fomb-
lin can be calculated in the standard way as 750 K; it in
turn allows calculating the UCN upscattering cross sec-
tion in the incoherent approximation. The result of this
calculation is that the upscattering cross section
decreases by five times from room temperature to
−120°C, and changes by 0.7% per 1°C at room temper-
ature. The latter figure is four times lower than was
reported [7], and our estimate therefore seems to be a
lower bound of the possible decrease of UCN upscat-
tering with decreasing temperature.

To our regret, we were unable to obtain this sub-
stance [22] at our disposal, but it turned out that low-
temperature fluoropolymers with similar properties are
produced in Russia.1 

1 The investigated substances were produced by the Perm Branch
of the Russian Scientific Center of Applied Chemistry and by the
State Scientific Institute for Organic Chemistry and Technology,
Moscow.
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The goal of this work was to investigate several pos-
sible low-temperature fluoropolymers that are candi-
dates for a low-temperature liquid-wall UCN bottle.
Viscosity as a function of temperature was measured,
because viscosity determines the temperature range at
which the liquid wall can be used practically, and cold
neutron cross sections were measured as a function of
temperature.

2. VISCOSITY
AND NEUTRON CROSS-SECTION 

MEASUREMENTS

Viscosity was measured with the simplest possible
method, that of a “sinking ball” [25]. The results are pre-
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Fig. 1. Viscosity of various liquid fluoropolymers as a func-
tion of temperature: 1—Fomblin; 2—POM-310; 3—POM;
4−7—several other liquid fluoropolymers with a different
chemical content.
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Fig. 2. Time-of-flight spectrum of neutrons diffracted from
the stack of artificial fluorophlogopite at a Bragg angle of
45°. Numbers indicate the order of diffraction.
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sented in Fig. 1. As can be seen, POM-310 and POM pos-
sess the most promising properties. They are the mixtures
of complex fluoropolyoxymethylenes with the general
formula CF3O(CF2O)n(CF2CF3O)m(OCF2CF2O)lCF3
with n : m : l = 65.8 : 3.1 : 0.2 and a molecular weight
of 4883 for POM-310; and n : m : l = 30.3 : 1.5 : 0.2 and
a molecular weight of 2354 for POM.

It can be seen from Fig. 1 that the viscosity of the
most promising liquids, POM and POM-310, at –90°C
is close to the viscosity of Fomblin at a temperature
near 0°C, at which it can still be used in experiments on
neutron lifetime measurement [8, 15]. This means that
from the experimental standpoint, they are appropriate
for similar use as in experiments [7].

Neutron cross section measurements were per-
formed at channel 6B of reactor IBR-2. The main goal
was to measure the total cross sections at the lowest
possible energies in a wide temperature range that
would allow the upscattering part of the cross section
from these measurements to be inferred. This can be
used to estimate possible UCN losses in storage exper-
iments.

In view of an overwhelming flux of delayed thermal
neutrons in the direct-beam time-of-flight spectrum be
low a neutron energy of about 1 meV, diffraction from
the stack of mica (artificial fluorophlogopite [26, 27])
with a lattice parameter of 9.97 Å for the (001) plane
was used for neutron monochromatization. A signifi-
cant suppression of the delayed thermal neutron com-
ponent in the diffracted neutron beam was achieved in
this way. The spectrum of neutrons diffracted from the
stack of mica (a thickness of about 1.8 mm) is shown in
Fig. 2.

The total cross sections were measured at several
Bragg angles of neutron diffraction from mica, from
45° to 83.5°. In Fig. 3, we show the total neutron cross
section three room-temperature fluoropolymers as a
function of neutron wavelength. Strong coherent
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Fig. 3. The total neutron cross section of liquid fluoro-
polymers at 290 K as a function of neutron wavelength:
1—Fomblin; 2—POM-310; 3—POM.
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effects can be seen in a wide wavelength range up to the
largest wave length reached in these measurements,
20 Å. This behavior is similar to that of the cross sec-
tion for another well-known solid fluoropolymer,
Teflon. Our measurements of the total cross section for
Teflon agree well with the previous one [20].

To obtain the value of the upscattering probability
for UCNs in traps with walls covered with these liquids,
the measurements of the total neutron cross section
were performed in a wide temperature range from 290
down to 10 K and in a wavelength range from 1 to 20 Å.
In Figs. 4 and 5, we show the temperature dependence
of the total cross section of long-wavelength neutrons
for Fomblin and POM-310. The cross section for POM
(not shown) is close to the cross section for POM-310.

In the temperature range of interest (200–300 K)
and with a wavelength larger than 10 Å, upscattering is
a strongly dominant component of inelastic scattering
(for neutron energies of En ! kT). At low temperatures
(10–100 K), the cross section is independent of temper-
ature and is one of entirely elastic scattering. The
upscattering cross section can therefore be obtained
after subtracting this elastic component from the total
cross section. In Fig. 6, we show the result of this oper-
ation for a neutron wavelength of 20 Å. It is seen that in
these measurements, we did not reach the neutron
energy range where the upscattering cross section
behaves according to the inverse-velocity law because
of a strong coherent in elastic contribution (at T ≥
100 K) in a wide range of wavelengths around 10 Å.
Measurements of the total cross section these sub-
stances at room temperature for neutrons in the wave-
length range 200–800 Å demonstrated good agreement
with the inverse-velocity-law dependence of the cross
section and yielded coincident results with the present
measurements at 20 Å for the value of the upscattering
cross section extrapolated to the thermal point at room
temperature [28].

At large wavelengths, the upscattering cross section
as a function of temperature can be taken as a starting
point for calculating the possible upscattering contribu-
tion to the UCN loss in liquid-wall traps.

From the upscattering cross section 3 b/atom for
Fomblin at λ = 20 Å and room temperature, it follows
that Imb = σ/2λ = 0.75 × 10–17 cm, which leads to a loss
coefficient of η ≈ 1.25 × 10–5 (the mean value of the real
part of the scattering length for Fomblin was calculated
as Reb ≈ 5.9 F). The experimental value η = 2.35 × 10−5

[18] inferred from UCN storage experiments is almost
twice the value inferred from the transmission data of
the present measurements. Some additional loss pro-
cesses possibly occur when UCNs are reflected from
the liquid surface—due to some hydrogen contamina-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tion of the surface that increases the probability of
upscattering, or a significant influence of quasi-elastic
scattering (small heating [23]) due to the surface exci-
tation of a viscous liquid [29].
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Fig. 4. The total neutron cross section of Fomblin versus
temperature for a neutron wavelength of 14.1 A.
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Fig. 5. The total neutron cross section of POM-310 versus
temperature for several neutron wavelengths.
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Fig. 6. The upscattering neutron cross section for POM-310
versus temperature obtained as a result of subtracting the
elastic scattering contribution from the total cross section.
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Upscattering cross sections for other liquid fluo-
ropolymers are close to the Fomblin one. Most impor-
tant is the temperature behavior of the cross section for
low-temperature liquids. It follows from Fig. 6 that at a
temperature around 190 K, where viscous proper ties
are appropriate for experiments with a UCN bottle, the
upscattering cross section at wavelength 20 Å is
0.5−0.6 b. For the expected UCN loss coefficient due to
upscattering at this temperature, this gives η ≈ 2 × 10−6.
This figure is an order of magnitude lower than the
experimental one for Fomblin [8, 18]. We can therefore
hope to decrease the UCN loss correction in the neutron
lifetime experiment approaching a value of 3 × 10–4 for
the precision neutron lifetime measurements.

3. INFLUENCE
OF QUASI-ELASTIC UPSCATTERING

It was shown in [29] that another possible source of
UCN losses in liquid-wall traps—small neutron heating
during collisions with the walls [23]—can be explained
as a result of neutron interaction with thermal surface
excitations of the liquid surface. Quantitative experi-
mental data on UCN quasi-elastic scattering on liquid
surfaces are scarce: the differential probability of scat-
tering as a function of the incident UCN energy and of
the change in energy has not yet been measured; the
integral probability is known very approximately
because absolute calibration of the detecting apparatus
is difficult and the range of integration over the incident
and final neutron energy is not determined precisely. It
is possible, however, to determine the parameters of the
dynamic model of a viscous liquid with some precision
using even this scant information.

First, it is easy to show that in typical experimental
situations of interest to us, the capillary wave contribu-
tion to a small UCN change in energy is insignificant.
For practical needs, the viscosity range of liquid poly-
mers used for UCN storage is between one and tens of
poise, and the surface tension of our liquids is about
20 din/cm2. As is well known [30, 31], capillary waves
are not damped when the dispersion curve ω =

q3/2 for capillary waves lies above the line ω =
(2η/ρ)q2. Here, ω is the frequency of surface oscilla-
tions, σ is the surface tension, η is the viscosity, q is the
surface wave vector, and ρ is the density of the liquid.
The critical wave vector qc = σρ/4η2 (about 0.4 cm–1 at
η = 5 Ps) corresponds to the critical capillary fre-
quency ωc = σ2ρ/8η3. It is as low as 1 s–1 and outside
measurement capacity in any neutron experiments.
The capillary waves in the energy range of our interest,
0.1–100 neV (105 ≤ ω ≤ 108 s–1), are strongly over-
damped.

σ/ρ
JOURNAL OF EXPERIMENTAL 
However, at small time scales (t ≤ 10–5 s), viscous
liquids demonstrate elastic properties: they deform
under the influence of an external force, and shear
stress then relaxes with a characteristic time of τ. Vis-
coelastic properties can be described introducing [32]
the complex viscosity via the Maxwell formula

(3)

which is simply the Fourier transform of the exponen-
tial time dependence of elastic deformations in a vis-
coelastic liquid.

As shown in [33, 34], taking elastic properties into
account leads to significant variability of the spectrum
of surface fluctuations: the spectrum of capillary waves
is suppressed and narrowed, and energy dissipation of
surface vibrations is increased at the expense of arising
at higher frequencies of the wave motion of a phonon
nature. These elastic effects prevail totally in the fre-
quency range of interest.

To find the effect of surface fluctuations on UCN
quasi-elastic interaction with a liquid surface, we use
the results of [35] for the dynamic structure factor of a
viscous liquid,

(4)

where  is the mean squared surface fluctuation
with wave vector q and frequency ωq. The structure fac-
tor is given by

(5)

where the surface-mode dispersion relation [31, 33, 36–
38] is D(q, ω) = 0, with

(6)

Here, ν(ω) = η(ω)/ρ is the kinematic viscosity; the
complex frequency-dependent viscosity η(ω) in Eq. (3)
crosses from the viscous behavior at low frequencies to
the elastic behavior at high frequencies with η0 = Gτ
[32, 35] and

(7)

In expressions (5)–(7), kB is the Boltzmann constant,
T is the temperature, σ is the surface tension, ρ is the
density, τ is the liquid-polymer stress relaxation time,
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and G is the frequency-independent shear modulus of
the polymer network.

In this simple Maxwell model, the surface dynamics
of the liquid and the interaction of neutrons with the liq-
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Fig. 7. Results of calculations of the probability (per 1 neV)
of quasi-elastic upscattering of a neutron with an energy of
50 neV, incident at an angle of π/4 on the surface of the
room-temperature liquid with a surface tension of
20 din/cm2. The model of a liquid with a complex viscosity
was assumed (Eq. (3)) with τ = 10–3 (a), 10–5 (b), 10–6 (c),
10–7 (d) and 10–12 (e); η0 = 0.3 (1), 1.0 (2), 3.0 (3), and
10.0 Ps (4).
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uid surface are determined for any (q, ω) by four
parameters, T, ρ, G, and τ.

The probability of quasi-elastic reflection of neu-
trons from liquid surface fluctuations is given by [29]

(8)

In Fig. 7, we show typical results of calculations
according to Eq. (8) for the probability of quasielastic
upscattering of a neutron with an energy of 50 neV,
incident at the angle π/4 on the surface of the room-
temperature liquid with a surface tension of 20 din/cm2.

Apart from the possibility (very restricted in view of
the lack of experimental information mentioned above)
of a quantitative comparison of the calculated probabil-
ities with the experimental data [23], it is now possible
to infer some parameters of the dynamic model of a liq-
uid. It follows from the recently measured [39] viscos-
ity dependence of quasi-elastic upscattering from the
Fomblin surface demonstrating a close proportionality
of the upscattering probability to the inverse viscosity,
at least in the viscosity range between 0.5 and 15 Ps. A
detailed analysis of the calculated (Eq. (8)) probability
of UCN upscattering as a function of stress relaxation
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Fig. 8. The probability (per 1 neV) of quasi-elastic upscat-
tering of a neutron with an energy of 50 neV incident on the
liquid surface at an angle of π/4 with a change in energy of

∆E = 50 neV as a function of inverse viscosity ; each

curve for constant τ = 10–3 (1), 10–5 (2), 108 (3), 10–7 (4),
and 10–8 s (5). 
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time τ and shear modulus G shows that this proportion-
ality is observed only in the τ range (1–3) × 10–7 s and
the G range 106–108 din/cm2. This behavior is demon-
strated in Fig. 8, showing the probability of quasi-elas-
tic upscattering of a neutron with an energy of 50 neV
incident on the liquid surface at an angle of π/4 with a
change in energy of ∆E = 50 neV as a function of the

inverse viscosity ; each curve corresponds to a con-
stant τ. A similar picture is observed when the probabil-
ity of upscattering is presented as curves of constant G.

Computational analysis shows that the data for the
probability of UCN quasi-elastic scattering on a liquid
surface as a function of incident neutron energy and
energy transfer allow determination of the Maxwell
model dynamic parameters of a viscous liquid.

The author wishes to thank V.V. Nitz for his kind
introduction on the use of channel 6B of reactor IBR-2
and for valuable consultations; V.G. Simkin for help in
the viscosity measurements; G.F. Syrykh, who pre-
sented the author with mica samples; and A. Steyerl,
B.G. Erozolimsky, and P. Geltenbort for their interest in
this work and discussions.
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Abstract—We consider the problem of fixing the phases of Bogoliubov coefficients in quantum electrodynam-
ics such that the vacuum–vacuum amplitude can be expressed via them. For a constant electric field and parti-
cles with spins of 0 and 1/2, this is done starting from the definition of these coefficients. Using the symmetry
between electric and magnetic fields, we extend the result to a constant electromagnetic field. It turns out that
for a constant magnetic field, it is necessary to distinguish the in- and out-states, although they differ only by a
phase factor. For a spin-1 particle with a gyromagnetic of ratio g = 2, this approach fails and we reconsider the
problem using the proper-time method. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Even if the electromagnetic field does not create
pairs, virtual pairs lead to the appearance of a phase in
the vacuum–vacuum amplitude. This makes it neces-
sary to distinguish the in- and out-solutions even when
it is commonly assumed that there is only one complete
set of solutions as, e.g., in the case of a constant mag-
netic field. The in- and out-solutions then differ only by
a phase factor, that is, in essence, the Bogoliubov coef-
ficient. In terms of the in- and out-states, the propagator
takes the same form as for pair-creating fields.

We use the solutions with conserved quantum num-
bers and do not consider radiation processes. Then the
events in a cell with quantum numbers n are indepen-
dent of the events in cells with different quantum num-
bers. In other words, we work in the diagonal represen-
tation. Knowledge of the Bogoliubov coefficients is
sufficient for obtaining the probability of any process in
the external field (disregarding the radiation processes)
[1–3], but the real part of the action integral W that
defines the vacuum–vacuum amplitude,

(1)

is not directly expressed via Bogoliubov coefficients.
At the same time, some effects related to ReW are
observable. Thus, the Lagrange function + of a slowly
varying field determines the dielectric permittivity and
magnetic permeability of the field [4, 5].

The Lagrange function of a constant electromag-
netic field was obtained in [6–8] in the one-loop
approximation and in [9] in the two-loop approxima-
tion. Studying a model of particle production, De Witt
noted that ReW can be expressed via Bogoliubov coef-

0out 0in〈 〉 eiW , W x4 +,d∫= =

¶This article was submitted by the author in English.
1063-7761/03/9602- $24.00 © 20180
ficients with the natural choice of their phases [10]. Our
purpose is to choose these phases such that ReW can be
expressed via them. We show that for the constant elec-
tric field and particles with spins 0 and 1/2, the natural
choice would be sufficient if it were not for the neces-
sity of making renormalizations. For a vector boson
with the gyromagnetic ratio g = 2, the situation is more
complicated even for a constant electric field.

We note that the transition amplitude for an electron
to go from an in-state to an out-state is equal to unity.
To show this, we write the Bogoliubov transformations
and the relation between 〈0n out | and 〈0n in | [2] (where n
is the set of quantum numbers)

(1')

where

Here, an in( ) is the particle (antiparticle) annihila-
tion (creation) operator, an in|0n in〉  = 0, and similarly for
the out-states; |0n in〉  is the vacuum state in the cell with
the quantum number n, c1n and c2n are the Bogoliubov
coefficients, and the asterisk denotes complex conju-
gation.

The third relation in (1') implies Eq. (28) below, and
the first relation implies that

Using this relation and the anticommutator

an  out c 1 n a n   in c 2 n * b n  in
+

 ,–=  

b

 

n  out
+

 c 2 n a n  in c 1 n * b n   in
+

 ,+=

0

 

n  out 〈 | 0 n  in 〈 | c 1 n * c 2 n a n  in b n  in –  ( ) ,=

c1n
2 c2n

2+ 1.=

bn  in
+

an   in
+

 c 1 n * 
1–

 a n  out
+

 c 2 n b n   in +  [ ] .=              
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{an' out, } = δn', n, we find [2]

(1'')

The Pauli principle prohibits virtual pair creation in the
state occupied by the electron. Therefore, even the
phase of the scattering amplitude remains unchanged.
In particular, c2n = 0 for the constant magnetic field, but
we cannot assume that c1n = 1 without violating Eq. (1'')
and Eqs. (28), (29) below because W ≠ 0 [4, 5]. In other
words, even if c2n = 0, the in- and out-vacua are differ-
ent. (This is in contrast to the remark after Eq. (15)
in [10].) The Bogoliubov coefficient c1n must therefore
be coordinated with the vacuum–vacuum amplitude.
For the constant electromagnetic field, we represent the
action integral as a sum over the set of quantum num-
bers n,

Then Wn define the phase of the Bogoliubov coefficient
(in general, complex).

In Sections 2 and 3, starting from the definition of
the Bogoliubov coefficients, we consider the phase fix-
ing for particles with respective spins of 0 and 1/2. In
Sections 4–6, we reconsider the problem using a more
general proper-time method for spins 0, 1/2, and 1.

2. SCALAR PARTICLE
IN THE CONSTANT ELECTROMAGNETIC FIELD

For a set of wave functions with conserved quantum
numbers n, the Bogoliubov transformation is given by

(2)

where

and +ψn (+ψn) is the positive-frequency in- (out-) solu-
tion, and similarly for the negative-frequency states.

We are free to choose the phase of c1n by redefining
ψn. Indeed, if we substitute

then Eq. (2) and the propagator [2, 11]

(2')

retain their form in terms of the redefined quantities.

an  in
+

0n  out 〈 | a n  out a n  in
+

 0 n  in | 〉 

=  

 

c

 

1

 

n

 

*

 

1–

 

0

 

n   out 0 n   in 〈 〉 1.=

W d x4 + x( )∫ ΣnWn.= =

ψ+ n c1n ψ+
n c2n ψ–

n,+=

ψ– n c2n* ψ+
n c1n* ψ–

n,+=

c1n
2 c2n

2– 1=

ψ± n e if± ψnew
± n , ψ±

n e if+− ψ± new
n ,= =

c1n ei2 f c1n
new,=

G0 x x',( ) iΣnc1n* 1–
ψ+

n x( )+ψn* x'( ), t t'>

ψ– n x( )–ψn* x'( ), t t'<



=
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For definiteness, we assume that the particle charge
is 

 

e

 

' = –

 

e

 

, 

 

e

 

 = 

 

|

 

e

 

|

 

. For a constant electric field, we then
have [2] (

 

n

 

 = (

 

p

 

1

 

, 

 

p

 

2

 

, 

 

p

 

3

 

), 

 

A

 

µ

 

 = –

 

δµ3Et)

(3)

We note that in a weak electric field, |c2n | is exponen-
tially small and can be neglected. The in- and out-states
then differ only by a phase factor. The same must be
true for the magnetic field, where c2n = 0 exactly and
ln  is to be determined.

The amplitude of probability that the vacuum in the
state n remains vacuum is [2]

(4)

The total vacuum–vacuum amplitude is

(5)

As we see below,  must be replaced by  in (4)

and (5). This is the renormalization of . From (3),
we have

(6)

As shown in [2], the vacuum–vacuum probability

 obtained from (5) and (3) agrees with the
Schwinger result [8]. This implies that ImW0 is cor-
rectly given by (5) and (3). To find ReW0, we first con-
sider the asymptotic representation (see Eq. (1.3.12)
in [12])

(7)

(Letting k range to ∞, we can say that the right-hand
side of (7) represents the left-hand side in a certain
sense exactly; the information encoded in the right-

c1n
2π

Γ 1
2
--- iκ– 

 
----------------------- –

πκ
2

------ i
π
4
---+ 

  ,exp=

c2n –πκ i
π
2
---– 

  , κexp
m2 p1

2 p2
2+ +

2eE
------------------------------.= =

c1n*

0n   out 0 n   in 〈 〉 c 1 n * 
1–

 .=

0out 0in〈 〉 c1n* 1–

n

∏ e
iW0,= =

W0 W0n, W0n

n

∑ i c1n* .ln= =

c1n* C1n
*ren

c1n*

c1n*ln
1
2
--- 2π πκ

2
------– iπ

4
-----– Γ 1

2
--- iκ+ 

  .ln–ln=

0out 0in〈 〉 2

Γ 1
2
--- iκ+ 

 ln iκ iκ( )ln 1–[ ] 1
2
--- 2πln+=

+
B2k 1/2( )

2k 2k 1–( )
-------------------------- iκ( )1 2k– .

k 1=

∑
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hand side can be decoded [13].) From (6) and (7), it fol-
lows that

(8)

This asymptotic expansion contains only the imaginary
part of  or only the real part of W0n. It can be seen

from (8) that, as the first step, we must pass from  to

(9)

in order to have   0 as κ  ∞ (i.e., as E 
0). Because charge renormalization is necessary, we
must make the second step and introduce

(10)

In other words, we also let  contain the term
with k = 1 in (8). We then have the asymptotic represen-
tation

(11)

Summing (11) over n as

(12)

and making renormalization [8], we obtain the correct
asymptotic representation for Re+0,

(13)

To simplify formulas and minimize confusion with T in
Eq. (50), we often set L = T = 1 in expressions like (12).
In addition, we drop the Maxwell part of the
Lagrangian in what follows (E2/2 in this case).

We now show that expression (9) can be brought to
the form suggested by the proper-time formalism,

(14)

c1n*ln

=  i κ κ 1–ln( ) π
4
---

1–( )kB2k 1/2( )

2k 2k 1–( )κ2k 1–
---------------------------------------

k 1=

∑+ +– .

cln 1n*

cln 1n*

Cln 1n* cln 1n* i κ κ 1–ln( ) π
4
---++=

Cln 1n*

Cln 1n*ren
cln 1n* i κ κ 1–ln( ) π

4
--- 1

24κ
---------+ + .+=

Cln 1n*ren

Cln 1n*ren
i

1–( )kB2k 1/2( )

2k 2k 1–( )κ2k 1–
---------------------------------------.

k 2=

∑–=

p3 L3d

2π( )3
--------------, p3 eET ,d∫∫

k

∑

Re+0
1
2
---E2 eE( )2

16π2
-------------

1–( )kB2k 1/2( )

k k 1–( ) 2k 1–( )κ0
2k 2–

-----------------------------------------------------,
k 2=

∑+=

κ0
m2

2eE
----------.=

Cln 1n* 2πln η η 1–ln( ) Γ 1
2
--- η+ 

 ln–+≡ F η( ),–=

F η( )
1
2
--- θd

θ
------e 2ηθ– 1

θsinh
-------------- 1

θ
---– 

  , η
0

∞

∫ iκ .= =
JOURNAL OF EXPERIMENTAL 
Differentiating (14) with respect to η and using
Eq. (2.4.22.5) in [14], we see that the results in the left-
and the right-hand sides coincide. In addition, both
sides have the same asymptotic behavior as η  ∞.
We therefore have

(15)

Next, we note that the term i/24κ in (10) can be writ-
ten as

(16)

and therefore,

(17)

Here, R(θ) is a “regulator.” It is independent of the
quantum numbers n and is the same as in the proper-
time representation of the Lagrange function [8].

We now consider the case where a constant mag-
netic field is collinear with a constant electric field.
Then

(18)

and we assume that R(θ, τ) can be obtained by the same
reasoning as in [8] (or simply taken from [8]),

(19)

Integrating over p3, we obtain (see (12) with T = 1)

(20)

Cln 1n* 1
2
--- sd

s θsinh
---------------- –is m2 p⊥

2+( )[ ] 1 θsinh
θ

--------------– ,exp

0

∞

∫–=

θ eEs, p⊥
2 p1

2 p2
2.+= =

i
24κ
---------

1
12
------ θe 2iκθ– ,d

0

∞

∫–=

Cln 1n*ren 1
2
--- sd

s θsinh
---------------- is m2 p⊥

2+( )–[ ] R θ( ),exp

0

∞

∫–=

R θ( ) 1 1
θ
--- θ

6
---– 

  θ.sinh–=

Cln 1n*ren
E H,( )

1
2
--- sd

s θsinh
----------------

0

∞

∫–=

× is m2 eH 2l 1+( )+[ ]–{ } R θ τ,( ),exp

τ eHs, l 0 1 …,, ,= =

R θ τ,( ) 1 1
θτ
------

1
6
---H2 E2–

EH
------------------+ 

  θ τ,sinsinh–=

τ eHs, θ eEs.= =

p3 Cln 1n*ren
E H,( )d∫ 1

2
---eE

sd
s θsin
-------------

0

∞

∫–=

× is m2 eH 2l 1+( )+[ ]–{ } R θ τ,( ).exp
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In this expression, we can turn the electric field off,

(21)

To remove the integration over p3, we write the factor

s–2 as s–3/2s–1/2 and note that 1/  must arise from the
integration over p3,

(22)

Therefore,

(23)

(Substituting s  –it, we see that expression (23) is
purely imaginary.) From here, or from (21), we obtain

(24)

which agrees with [8, 9]. Relation (39) below was used
here, and the sum over l was performed with the help of
the formula

(25)

3. AN ELECTRON
IN THE CONSTANT ELECTROMAGNETIC FIELD

The Bogoliubov transformation is given by

(26)

p3 Cln 1n*ren
E 0= H,( )d∫

=  
1
2
--- sd

s2
----- is m2 eH 2l 1+( )+[ ]–{ } R 0 τ,( ),exp

0

∞

∫–

R 0 τ,( ) 1 1
τ
--- τ

6
---+ 

  τ .sin–=

s

1

s
------

eiπ/4

π
--------- p3 is p3

2–( ).expd

– ∞

∞

∫=

Cln 1n*ren
E 0= H,( )

eiπ/4

2 π
---------- sd

s3/2
-------

0

∞

∫–=

× is m2 eH 2l 1+( ) p3
2+ +[ ]–{ } R 0 τ,( ).exp

i Cln 1n*ren
E 0= H,( )

n

∑ i
p2d

2π
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p3d
2π
--------∫∫=

× Cln 1n*ren
E 0= H,( )

l 0=

∞

∑ +0=

=  –
eH

16π2
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s2 τsin
--------------- ism2–( )R 0 τ,( )exp

0

∞

∫
L T 1= =( ),

iseH 2l 1+( )–[ ]exp
l 0=

∞

∑ 1
2i eHs( )sin
----------------------------.=

ψ+ n c1n ψ+
n c2n ψ–

n,+=

ψ– n –c2n* ψ+
n c1n* ψ–

n,+=
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where

For the constant electric field, we have

(27)

These Bogoliubov coefficients are independent of the
spin state index r = 1, 2.

As in the scalar case, we start with the relations [2]

(28)

and

(29)

It follows from (27) that

(30)

The asymptotic expansion for Γ(iκ) is

(31)

(see Eq. (8.344) in [15] or Eq. (6.1.40) in [16]).
From (30) and (31), we obtain

(32)

(33)

As in the scalar case, we find that

(34)

c1n
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∏ e
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(35)

Equation (2.4.22.6) in [14] was used to verify (34) (cf.
the text before Eq. (15)).

The generalization of (35) to the presence of a con-
stant magnetic field is straightforward. We rewrite it as
(x = θ = eEs)

(36)

where n = (p1, p2, p3, r); l = lmin, lmin + 1, …; lmin = 0 for
r = 1, lmin = 1 for r = 2, and R(θ, τ) can be taken from
the Lagrange function [8, 9] (τ = eHs),

(37)

Integrating over p3 using the second equation in (12),
we find

(38)

The subsequent integration over p2 is performed using
a formula similar to (12) [2],

(39)

To sum over r and l in (36), we use the formula

(40)

that follows from (25). In agreement with the Lagrange
function for the constant electromagnetic field [8, 9],
we therefore have

(41)

C1n
*ren

ln
1
2
---–=

× xd
x

-----e 2iκx– 1 1
x
--- x

3
---+ 

  xtanh– x.coth

0

∞

∫

C1n
*ren

E H,( )ln
1
2
--- θd

θ
------

0

∞

∫–=

× is m2 2eHl+( )–[ ] R θ τ,( ) θ,cothexp

R θ τ,( ) 1 1
θτ
------ E2 H2–

3EH
------------------+ 

  tanτ θ.tanh–=

p3d
2π
-------- C1n

*ren
ln∫ eE

4π
------ θd

θ
------

0

∞

∫–=

× is m2 2eHl+( )–[ ] R θ τ,( ) θ.cothexp

p2d∫ eHL.=

e 2iseHl–

lmin

∞

∑
r 1=

2

∑ i eHs( )cot–=

C1n
*ren

ln
n

∑ i
e2EH

8π2
------------- θd

θ
------

0

∞

∫=

× ism2–( )R θ τ,( ) θ τ L T 1= =( ).cotcothexp
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Returning to (38), we can switch the electric field
off,

(42)

Here, l are given in (36). As in the scalar case,
using (22), we obtain

(43)

where n = (p1, p2, p3, r), l = 0, 1, 2, … for r = 1, and l =
1, 2, … for r = 2.

In the subsequent sections, we give a heuristic deri-

vation of  not resorting to , but using the
proper-time method. The main problem occurring here
is that renormalizations must be made. We know how to
renormalize + as a whole, but we must renormalize the
contribution to it from a particular state n. To do this,
we assume, as before, that the regulator is independent
of n.

4. SCALAR PARTICLE

We take the vector potential of a constant electro-
magnetic field in the form

(44)

but start with the particle in a constant magnetic field,
E = 0 in (44). The propagator with coinciding x and x'
is given by (see, e.g., [11])

(45)

In accordance with (1), we must integrate +0 and hence

p3d
2π
-------- C1n

*ren
ln∫ 1

4π
------ sd

s2
-----

0

∞

∫–=

× is m2 2eHl+( )–[ ] R 0 τ,( ),exp

R 0 τ,( ) 1 1
τ
--- τ

3
---– 

  τ .tan–=

C1n
*ren

ln E 0= H,( )
eiπ/4

2 π
---------- sd

s3/2
-------

0

∞

∫–=

× is m2 p3
2 2eHl+ +( )–[ ] R 0 τ,( ),exp

C1n
*ren

ln c1n*

Aµ δµ2Hx1 δµ3Et,–=

G0 x x E 0 H,=,( ) i
eH
π

-------
p2d

2π
--------

p3d
2π
-------- p0d

2π
--------

∞–

∞

∫
∞–

∞

∫
∞–

∞

∫
l 0=

∞

∑=

× s
Dl

2 ζ( )
l!

------------- is m2 eH 2l 1+( ) p3
2 p0

2–+ +[ ]–{ } ,expd

0

∞

∫

ζ 2eH x1
p2

eH
-------+ 

  .=
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G0(x, x) over d4x. The integration over x1 is done using
the formula

(46)

Integrating over p0 and x1, we obtain

(47)

As noted in [3] (see Eq. (2.12) therein), it follows from
Schwinger results [8] that for a scalar particle (boson),

(48)

This implies that +0 can be obtained from (47) by
inserting –1/s in the integrand. Also inserting the regu-
lator from (21), we obtain

(49)

For the constant electromagnetic field described by
vector potential (44), we now insert the expressions for
the wave functions in (2') (see [2] with the modifica-
tions for e' = –e = –|e |) and use relation (93) in [11] (or
a relation similar to (96) below). We then find

(50)

ζ Dl
2 ζ( )d

∞–

∞

∫ 2πl!,=

or x1Dl
2 ζ( )d

∞–

∞

∫ π
eH
-------l!.=

x1G0 x x,( )d

∞–

∞

∫ 3πi/4( )exp

2 π
----------------------------

p2d
2π
--------

p3d
2π
--------

∞–

∞

∫
∞–

∞

∫=

× sd

s
------ is m2 eH 2l 1+( ) p3

2+ +[ ]–{ } .exp

0

∞

∫
l 0=

∞

∑

–i
∂Wb

∂m2
---------- x4 Gb x x,( ),d∫=

or Wb i m̃2 x4 Gb x x m̃2,( ).d∫d

m
2

∞

∫–=

iW0 E 0= H,( ) i+0 E 0= H,( )=

=  
πi/4( )exp

2 π
-------------------------

d p2

2π
--------

∞–

∞

∫
p3d

2π
--------

∞–

∞

∫ sd

s3/2
-------

0

∞

∫
l 0=

∞

∑
× is m2 eH 2l 1+( ) p3

2+ +[ ]–{ } R 0 τ,( )exp

=  
p2d

2π
--------

p3d
2π
-------- C1n

*ren
L T 1= =( ).ln

l 0=

∞

∑
∞–

∞

∫
∞–

∞

∫–

G0 x x E H,,( )
e3πi/4

2 πeE
-----------------

p2d
2π
--------

p3d
2π
-------- eH

π
-------

Dl
2

l!
------ 2

l 0=

∞

∑
∞–

∞

∫
∞–

∞

∫=

× θd

2θsinh
--------------------- –2iκθ i

T2

2 θcoth
-----------------– 

  ,exp

0

∞

∫

θ eEs, T 2eE= = t
p3

eE
------– 

  .
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Integrating over x1 (see (46)) and t, we obtain

(51)

Passing from G0(x, x) to +0 is realized by inserting the
factor –1/s in the integrand in (51). Also inserting the
regulator R(τ, θ), see Eq. (19), we obtain

(52)

5. SPINOR PARTICLE

We first consider the electron in the constant mag-
netic field, E = 0 in (44). The squared Dirac equation
can be brought to the form

(53)

where ζ is the same as in (45). We see that Z can be
written as

(54)

and f1 and f2 must satisfy the equation

(55)

We choose f1 = Dl – 1(ζ) and f2 = Dl(ζ) in order that  =
2eHl in both cases. The solutions of the Dirac equation
are obtained as the columns of the matrix [2],

(56)

where  = γµΠµ, Πµ = –i∂µ + eAµ .

x1 tG0 x x E H,,( )d

∞–

∞

∫d

∞–

∞

∫ i
2
---

p2d
2π
--------

p3d
2π
--------

∞–

∞

∫
∞–

∞

∫=

× sd
eEs( )sinh

------------------------- is m
2

eH 2l 1+( )+[ ]–{ } .exp

0

∞

∫
l 0=

∞

∑

W0 E H,( ) i
p2d

2π
--------

p3d
2π
-------- C1n

*ren
ln

l 0=

∞

∑
∞–

∞

∫
∞–

∞

∫=

=  
i
2
---

p2d
2π
--------

p3d
2π
-------- sd

s θsinh
----------------

0

∞

∫
l 0=

∞

∑
∞–

∞

∫
∞–

∞

∫–

× is m2 eH 2l 1+( )+[ ]–{ } R τ θ,( ).exp

d2

dζ2
-------- ζ2

4
-----–

p0
2 p3

2–
2eH

-----------------
1
2
---Σ3–+

 
 
 

Z 0,=

Σ3
σ3 0

0 σ3 
 
 

,=

Z diag f 1 f 2 f 1 f 2, , ,( )=

× i p2x2 p3x3 p0t–+( )[ ] ,exp

d2

dζ2
-------- ζ2

4
-----–

p0
2 p3

2–
2eH

-----------------
1
2
---+−+

 
 
 

f 1 2, 0.=

p⊥
2

m iΠ̂–( )Z ,

Π̂
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Using the γ matrices in the standard representation [4],
we have

(57)

In terms of ζ, we obtain

m iΠ̂–

=  

m Π0+ 0 Π3– –Π1 iΠ2+

0 m Π0+ –Π1 iΠ2– Π3

Π3 Π1 iΠ2– m Π0– 0

Π1 iΠ2+ Π3– 0 m Π0– 
 
 
 
 
 
 
 

.
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(58)

Also using the relations

(59)

we find (with the exponential factor in (54) omitted for
brevity) 

Π1 iΠ2+ i 2eH
ζd

d ζ
2
---– 

  ,–=

Π1 iΠ2– i 2eH
ζd

d ζ
2
---+ 

  .–=

ζd
d ζ

2
---+ 

  Dl ζ( ) lDl 1– ζ( ),=

ζd
d ζ

2
---– 

  Dl ζ( ) Dl 1+ ζ( ),–=
(60)m iΠ̂–( )Z

m p0+( )Dl 1– ζ( ) 0 p3Dl 1– ζ( )– il 2eHDl 1– ζ( )

0 m p0+( )Dl ζ( ) –i 2eHDl ζ( ) p3Dl ζ( )

p3Dl 1– ζ( ) il 2eHDl 1– ζ( )– m p0–( )Dl 1– ζ( ) 0

i 2eHDl ζ( ) p3Dl ζ( )– 0 m p0–( )Dl ζ( ) 
 
 
 
 
 
 
 

.=
Choosing the second and the first columns as ψ1 and ψ2
(with the subscripts 1 and 2 indicating spin states) and
normalizing them, we obtain

(61)

(62)

l = 0, 1, 2, … .

As can be seen from (62), l actually begins with
unity in this state. The negative-frequency solutions –ψn

are obtained from (61) and (62) by the substitution
q  –q. We note that Eqs. (61) and (62) differ from

ψ+ 1 Nn

0

m p0+( )Dl ζ( )

il 2eHDl 1– ζ( )–

p3Dl ζ( )–

eiq x⋅ ,=

Nn
eH
π

------- 
 

1/4 1

2 p0 p0 m+( )l!
----------------------------------,=

p0 m2 2eHl p3
2+ + , q x⋅ p2x2 p3x3 p0t,–+= =

n p2 p3 l r, , ,( ), ζ 2eH x1
p2

eH
-------+ 

  ,= =

ψ+ 2 Nn l

m p0+( )Dl 1– ζ( )

0

p3Dl 1– ζ( )

i 2eHDl 1– ζ( )

eiq x⋅ ,=
Eq. (10.5.9) in [4] because the authors there assumed
the charge of a spinor particle to be positive.

Having obtained the wave functions, next we find
the contribution to +1/2 from each state ψn. For the field
that does not create pairs, the propagator has the stan-
dard form

(63)

In the standard representation, we have

(64)

From (61) and (64), we find

(65)

Integrating over x1, we obtain, see (46),

(66)

G1/2 x x',( ) iΣn

ψ+ n x( )+ψn x'( ), t t'>

– ψ– n x( ) ψ– n x'( ), t t',<



=

ψn ψn*β.=

β I 0

0 I– 
 
 

, I 1 0

0 1 
 
 

.= =

tr+ψ1 x( ) ψ+ 1 x( )

=  Nn
2 m p0+( )2

p3
2–[ ] Dl

2 ζ( ) 2eHl2Dl 1–
2 ζ( )–{ } .

x1tr+ψ1 x( )+ψ1 x( )d

∞–

∞

∫ m

p0
-----,=

p0 m2 2eHl p3
2+ + , l 0 1 …  .  , ,= =
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From (62), we obtain, similarly,

. (67)

For the negative-frequency states, we must substi-
tute p0  –p0. We can then write

(68)

incorporating both lines in (63). It thus follows
from (63) and (66)–(68) that

(69)

where l = 0, 1, … for r = 1 and l = 1, 2, … for r = 2. We
next use the analogue of (48) for the electron,

(70)

where Tr means the integration over d4x and the trace
over spin indices; we set VT = 1 as above. Because

(70')

we see that W1/2 can be obtained from (69) by inserting
the factor 1/2ms in the integrand. We therefore find

(71)

This is in agreement with (43) and (29). To check this
result, we integrate over dp2/2π with the help of (39),
over dp3/2π with the help of (22), and use (40). Then, as
expected, we obtain

(72)

see Eq. (47) in Chapter 1 in the last reference in [9] for
E = 0.

Passing over to the constant electromagnetic field
described by vector potential (44), we use γ matrices in
the spinor representation because both α3 and Σ3 are

x1tr+ψ2 x( )+ψ2 x( )d

∞–

∞

∫ m

p0
-----, l 1 2 …, ,= =

1

p0
--------

eiπ/4

π
--------- sd

s
------ is m2 2eHl p3

2+ +( )–[ ] ,exp

0

∞

∫=

x1trG1/2 x x,( )d

∞–

∞

∫ e3iπ/4

π
-----------m

sd

s
------

0

∞

∫
n

∑=

× is m2 2eHl p3
2+ +( )–[ ] ,exp

W1/2 i m̃TrG1/2 x x m̃,( ),d

m

∞

∫=

i m̃m̃ –ism̃2( )expd

m

∞

∫ e ism
2–

2s
------------,=

+1/2 Σn
e3iπ/4

2 π
------------ sd

s3/2
-------

0

∞

∫=

× i m2 2eHl p3
2+ +( )–[ ] R 0 τ,( ).exp

+1/2 E 0= H,( )
eH

8π2
-------- sd

s2
-----

0

∞

∫=

× ism2–( )R 0 τ,( ) τ ,cotexp
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then diagonal. The squared Dirac equation has the form

(73)

with Πµ defined in (56). Hence,

(74)

In terms of ζ and T (see (45) and (50)), we obtain the
equation

(75)

for f1 and f2 and, similarly,

(76)

for f3 and f4. From these equations, it follows that

(77)

Solutions of the Dirac equation with γ matrices in the
spinor representation are obtained as the columns of the
matrix

(78)

In terms of χ, we have

(79)

Π2 m2 g+ +( )Z 0,=

g e
H iE–( )σ3 0

0 H iE+( )σ3 
 
 

,=

Z diag f 1 f 2 f 3 f 4, , ,( )=

× i p2x2 p3x3+( )[ ] .exp

2eH –
ζ2

2

∂
∂ ζ2

4
-----

1
2
---±+





+ 2eE
T2

2

∂
∂ T2

4
-----

i
2
---+−+ m2+





f 1 2, 0=

2eH –
ζ2

2

∂
∂ ζ2

4
-----

1
2
---±+





+ 2eE
T2

2

∂
∂ T2

4
-----

i
2
---±+ m2+





f 3 4, 0=

Z+ diag Dl 1– ζ( )D–iκ 1– χ( ) Dl ζ( )D iκ– χ( ),,{=

Dl 1– ζ( )D iκ– χ( ) Dl ζ( )D–iκ 1– χ( ), }
× i p2x2 p3x3+( )[ ] ,exp

χ eiπ/4T .=

m iΠ̂–( )Z

=  

m 0 Π0 Π3+ Π1 iΠ2–

0 m Π1 iΠ2+ Π0 Π3–

Π0 Π3– –Π1 iΠ2+ m 0

–Π1 iΠ2– Π0 Π3+ 0 m 
 
 
 
 
 
 
 

Z .

Π0 Π3± e iπ/4– 2eE
χ∂

∂ χ
2
---± 

  ,–=

χ eiπ/4T .=
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Also taking (58), (59), and the relations

(80)

into account, we find four columns of the matrix (m –

i )+Z,

(81)

Here and below, exp[i(p2x2 + p3x3)] is dropped for brev-
ity. We let +ψ1 (+ψ2) denote the fourth (first) column

multiplied by the normalization factor  ,

(82)

We next consider the positive-frequency solution
of (73) as t  –∞,

(83)

where τ = –e–iπ/4T. In terms of this variable, we have

(84)

Similarly to (80), we find

(85)

Π0 Π3+( )Dν χ( ) e iπ/4– ν 2eEDν 1– χ( ),–=

Π0 Π3–( )Dν χ( ) e iπ/4– 2eEDν 1+ χ( )=

Π̂

mDl 1– ζ( )D–iκ 1– χ( )

0

e iπ/4– 2eEDl 1– ζ( )D iκ– χ( )

i 2eHDl ζ( )D–iκ 1– χ( )–

,

0

mDl ζ( )D–iκ χ( )

il 2eHDl 1– ζ( )D iκ– χ( )

eiπ/4κ 2eEDl ζ( )D–iκ 1– χ( )

,

eiπ/4κ 2eEDl 1– ζ( )D–iκ 1– χ( )

i 2eHDl ζ( )D iκ– χ( )

mDl 1– ζ( )D–iκ χ( )

0

,

–il 2eHDl 1– ζ( )D–iκ 1– χ( )

e–iπ/4 2eEDl ζ( )D–iκ χ( )

0

mDl ζ( )D–iκ 1– χ( )

.

N+
n N+

n l( )

N+
n

πκ
4

------– 
  l!2eE( ) 1/2– eH

π
------- 

 
1/4

N+
n l( ).exp=

Z+ diag Dl 1– ζ( )Diκ τ( ) Dl ζ( )Diκ 1– τ( ),,{=

Dl 1– ζ( )Diκ 1– τ( ) Dl ζ( )Diκ τ( ), } ,

Π0 Π3± eiπ/4 2eE
τ∂

∂ τ
2
---+− 

  .–=

Π0 Π3+( )Dν τ( ) eiπ/4 2eEDν 1+ τ( ),=

Π0 Π3–( )Dν τ( ) –eiπ/4ν 2eEDν 1– τ( ).=
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Using these relations, we obtain the four columns of the

matrix (m – i )+Z in (78) and (83),

(86)

Using the fourth and the first columns again, we have

(87)

(88)

where +Nn = +Nn/ , see (82).

We note that –Z (–Z) can be obtained from +Z (+Z) by
the substitution χ  –χ (τ  –τ). To obtain –ψ func-
tions from the corresponding +ψ functions, we also

change the sign of  in the columns in addition to

Π̂

mDl 1– ζ( )Diκ τ( )

0

e iπ/4– κ 2eEDl 1– ζ( )Diκ 1– τ( )

i 2eHDl ζ( )Diκ τ( )–

,

0

mDl ζ( )Diκ 1– τ( )

il 2eHDl 1– ζ( )Diκ 1– τ( )

eiπ/4 2eEDl ζ( )Diκ τ( )

,

eiπ/4 2eEDl 1– ζ( )Diκ τ( )

i 2eHDl ζ( )Diκ 1– τ( )

mDl 1– ζ( )Diκ 1– τ( )

0

,

–il 2eHDl 1– ζ( )Diκ τ( )

e iπ/4– κ 2eEDl ζ( )Diκ 1– τ( )

0

mDl ζ( )Diκ τ( )

.

ψ+ 1 x( ) N+ n

–il 2eHDl 1– ζ( )Diκ τ( )

e iπ/4– κ 2eEDl ζ( )Diκ 1– τ( )

0

mDl ζ( )Diκ τ( )

=

× i p2x2 p3x3+( )[ ] ,exp

ψ+ 2 x( ) N+ n l

mDl 1– ζ( )Diκ τ( )

0

e iπ/4– κ 2eEDl 1– ζ( )Diκ 1– τ( )

i 2eHDl ζ( )Diκ τ( )–

=

× i p2x2 p3x3+( )[ ] ,exp

κ

2eE
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these substitutions; this is because of the relations
(see (79) and (80))

(89)

Thus,

(90)

(91)

and, similarly, for –ψ1 and –ψ2.

We note in passing that the wave functions for the
electron in a constant electric field were written in [2]
using γ matrices in the standard representation. Acting
on these functions by the operator

we obtain the solutions in the spinor representation.
The taking of the magnetic field into account is realized
by the substitutions

for r = 1. For r = 2, we must replace l by l – 1 in these
substitutions.

The electron propagator is given by

(92)

where  = ψ*β, n = (p2, p3, l, r) for the constant elec-

Π0 Π3+( )Dν χ±( ) e–iπ/4ν 2eEDν 1– χ±( ),+−=

Π0 Π3–( )Dν χ±( ) e–iπ/4 2eEDν 1+ χ±( ).±=

ψ– 1 x( ) N– n

il 2eHDl 1– ζ( )D–iκ 1– –χ( )–

–e iπ/4– 2eEDl ζ( )D–iκ –χ( )

0

mDl ζ( )D–iκ 1– –χ( )

=

× i p2x2 p3x3+( )[ ] ,exp

ψ– 2 x( ) N– n l

mDl 1– ζ( )D–iκ 1– –χ( )

0

–e iπ/4– 2eEDl 1– ζ( )D–iκ –χ( )

i 2eHDl ζ( )D–iκ 1– –χ( )–

=

× i p2x2 p3x3+( )[ ] , N– nexp N+
n,=

U
1

2
------- I I

I I– 
 
 

,=

i p2x2( )exp 1 p1 i p2– p1 i p2+, ,{ } eH
π

------- 
 

1/4

× 1

l!
------- Dl ζ( ) il 2eHDl 1– ζ( ) i 2eHDl 1+ ζ( ),–,{ }

G1/2 x x',( ) i c1n* 1–

n

∑=

×
ψ+

n x( )+ψn x'( ), t t',>

– ψ– n x( )–ψn x'( ), t t',<



ψ
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tromagnetic field, and  is given in (27), where  =
2eHl in the expression for κ, see (69) and (95). In the
spinor representation,

(93)

and therefore,

Using (81), (82), and (87), we now obtain

(94)

Integrating over x1, we obtain, see (46),

(95)

For r = 2, we obtain the same expression, but with l =
1, 2, ….

We next multiply (95) with i/  according to (92)
and use the relation (see Eq. (93) in [11] with –iκ 
–iκ + 1/2)

(96)

and the relation obtained from this by the substitution
iκ  iκ + 1.

We now discover from (95) and (96) that

(97)

c1n* ρ⊥
2

β 0 I

I 0 
 
 

,=

a1 a2 a3 a4, , ,( )β a3 a4 a1 a2, , ,( ).=

tr ψ+
1 x( ) ψ+ 1 x( )( ) eH

π
-------

me–πκ/2

l! 2eEκ
---------------------=

× Dl
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Integrating this expression over t, we obtain

(98)

For r = 2, we have the same expression, but with l =
1, 2, ….

Taking the remark after Eq. (70') into account and
inserting the regulator R(θ, τ) into the integrand, we
obtain the contribution to +1/2 from the state n = (p2, p3,
l, r). Summing over l and r (see (40)) and integrating
over dp2/2π and dp3/2π (see (39) and (12)), we obtain,
in agreement with (41), that

(99)

We finally note that for H = 0, we have

(100)

instead of (98). Inserting 1/2ms and R(θ, 0), we see that
this agrees with (35) and (29).

6. VECTOR BOSON

The propagator and the effective Lagrange function
for the vector boson with the gyromagnetic ratio g = 2
in a constant electromagnetic field were obtained by
Vanyashin and Terentyev [17]. In another form, the
propagator was found by the author [11]. In the latter
paper, there is a misprint in Eq. (73), where the argu-
ment of sin and cos should be 2τ, not τ. In addition, the
statement that the divergence term in the expression for
the current in Eq. (38) makes no contribution is not true
when the magnetic field is present; this, however, is of
no consequence because the expression was used only
for the normalization of wave functions.

The results of Vanyashin and Terentyev imply that
relation (48) in the present paper also holds for the vec-

tor boson if we take Gb = . Using (48), we can repro-
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duce the expression for 
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 in [17] starting from our
propagator. Indeed, our result for

(101)

can be written in a simpler form if we note that
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We can then integrate the term in square brackets
in (101) by parts,
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where we discarded a divergent term independent of 
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. Expression (101) is therefore equivalent to
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 in the integrand, we obtain Eq. (21)
in [17]; we agree with the subsequent formulas in that
paper.

Returning to our present problem, we note that for a
constant electric field,  is independent of the polar-
ization state of the vector boson and is the same as in
the scalar case [11]. Nevertheless, Im
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useful in obtaining . Resorting to the proper-
time method, we find that the problem is more difficult
than in the previous cases. As seen already from (101),
the dependence on 

 

m

 

2

 

 is more complicated here and the
contributions from the electric and magnetic fields are
not factorized in the proper-time integrand. For these
reasons, we here consider only the constant magnetic
field.
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It follows from [11] that for the spin states r = 1, 2, 3,

(105)

(106)

(107)

Integrating the expressions in (105)–(107) over x1 with
the help of (46), we obtain 1/2|p0 | in all three cases, but

(108)

The vector boson propagator is given by [11]

(109)

We see from (68) and (48) and the above results that the
contribution to +1 from the state with the quantum
numbers n = (p2, p3, l, r) is

(110)

The sum over r and l is performed using the formula

(111)
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that can be obtained from (25). To integrate over dp2/2π
and dp3/2π, we use (39) and (12). Inserting R(τ), we
then obtain

(112)

In accordance with [17], R(τ) is defined as

(113)

This implies that

(114)

From (110), we therefore have

(115)

where l is given in (108). Substituting τ  –it and

rotating the integration contour, we see that  is
real, as it should be for the magnetic field.

7. CONCLUSION 

We have shown how the renormalized phase of the
vacuum–vacuum amplitude in quantum electrodynam-
ics can be expressed via the properly fixed phases of the
Bogoliubov coefficients; a nonzero phase of the former
indicates nonzero phases of the latter. In general,
knowledge of the Bogoliubov coefficients alone is
insufficient for obtaining the phase of the vacuum–vac-
uum amplitude. Additional information is needed.
Thus, in the case of constant magnetic and electromag-
netic fields, we have used the symmetry between the
electric and magnetic fields in the Lagrange function.
In the case of a vector boson, the knowledge of the
Bogoliubov coefficients is not useful in fixing their
phases. Resorting to the proper-time method shows that
the expressions for the phases are in general more com-
plicated than that for lower-spin particles. For this rea-
son, we have presented the results only for the constant
magnetic field, where they turned out to be as simple as
expected.

W spin1 n,

n

∑ eH

16π2
----------- sd

s2 τsin
---------------

0

∞

∫–=

× ism2–( ) 3 4 τsin
2

–( )R τ( ).exp

3 4 τsin
2

–
τsin

------------------------ 3 1
τsin

---------- 1
τ
---– τ

6
---– 

 

– 4 τsin τ–( ) 3 4 τsin
2

–
τsin

------------------------R τ( ).=

R τ( ) 1
τsin

3 τsin
2

–
--------------------- 3

τ
---

7
2
---τ– 

  ,–=

R τ( ) τ  ! 1

29
120
---------τ4.=

i C1n*ren
ln i

eiπ/4

2 π
---------- sd

s3/2
-------

0

∞

∫–=

× is m2 eH 2l 1+( ) p3
2+ +[ ]–{ } R τ( ),exp

C1n*ren
ln
SICS      Vol. 96      No. 2      2003



192 NIKISHOV
ACKNOWLEDGMENTS
I am grateful to V.I. Ritus for discussions that led to

the appearance of this paper.
This work was supported in part by the Russian Foun-

dation for Basic Research (project nos. 00-15-96566 and
02-02-16944).

REFERENCES
1. N. B. Narozhny and A. I. Nikishov, Yad. Fiz. 11, 1072

(1970) [Sov. J. Nucl. Phys. 11, 596 (1970)].
2. A. I. Nikishov, Tr. Fiz. Inst. im. P.N. Lebedeva, Akad.

Nauk SSSR 111, 152 (1979) [J. Sov. Laser Res. 6, 619
(1985)].

3. A. A. Grib, S. G. Mamaev, and V. M. Mostepanenko,
Vacuum Quantum Effects in Strong Fields (Énergoatom-
izdat, Moscow, 1988).

4. A. I. Akhiezer and V. B. Berestetskiœ, Quantum Electro-
dynamics, 3rd ed. (Nauka, Moscow, 1969; Wiley-Inter-
science, New York, 1965).

5. V. B. Berestetskiœ, E. M. Lifshitz, and L. P. Pitaevskiœ,
Quantum Electrodynamics, 3rd ed. (Nauka, Moscow,
1989; Pergamon, Oxford, 1982).

6. W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
7. V. Weisskopf, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.

14 (6), 39 (1936).
8. J. Schwinger, Phys. Rev. 82, 664 (1951).
JOURNAL OF EXPERIMENTAL
9. V. I. Ritus, Zh. Éksp. Teor. Fiz. 69, 1517 (1975) [Sov.
Phys. JETP 42, 774 (1975)]; Zh. Éksp. Teor. Fiz. 73, 807
(1977) [Sov. Phys. JETP 46, 423 (1977)]; Tr. Fiz. Inst.
im. P. N. Lebedeva Akad. Nauk SSSR 168, 52 (1986);
Issues in Intense-Field Quantum Electrodynamics, Ed.
by V. L. Ginzburg (Nova Science, Commack, 1987),
p. 3.

10. B. S. De Witt, Phys. Rep. C 19, 227 (1975).
11. A. I. Nikishov, Zh. Éksp. Teor. Fiz. 120, 227 (2001)

[JETP 93, 197 (2001)].
12. Y. L. Luke, Mathematical Functions and Their Approxi-

mations (Academic, London, 1975; Mir, Moscow,
1980).

13. R. B. Dingle, Asymptotic Expansions: Their Derivation
and Interpretation (Academic, London, 1973).

14. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev,
Integrals and Series, Vol. 1: Elementary Functions
(Nauka, Moscow, 1981; Gordon and Breach, New York,
1986).

15. I. S. Gradstein and I. M. Ryzhik, Tables of Integrals,
Sums, Series, and Products, 4th ed. (Gostekhizdat, Mos-
cow, 1962; Academic, New York, 1980).

16. Handbook of Mathematical Functions, Ed. by M. Abra-
mowitz and I. A. Stegun (National Bureau of Standards,
Washington, 1964; Nauka, Moscow, 1979).

17. V. S. Vanyashin and M. V. Terentyev, Zh. Éksp. Teor. Fiz.
48, 565 (1965) [Sov. Phys. JETP 21, 375 (1965)]. 
 AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003



  

Journal of Experimental and Theoretical Physics, Vol. 96, No. 2, 2003, pp. 193–201.
From Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 123, No. 2, 2003, pp. 224–232.
Original English Text Copyright © 2003 by Bytev, Kuraev, Shaikhatdenov.

                                    

NUCLEI, PARTICLES, 
AND THEIR INTERACTION
(Quasi)elastic Large-Angle Electron–Muon Scattering 
in the Two-Loop Approximation: 

Contributions of the Eikonal Type¶

V. V. Byteva, E. A. Kuraeva,*, and B. G. Shaikhatdenova,b

aJoint Institute for Nuclear Research, Dubna, Moscow oblast, 141980 Russia
bDepartamento de Física, Cinvestav del IPN, 07000 México D.F., Mexico

*e-mail: kuraev@thsun1.jinr.ru
Received October 16, 2002

Abstract—A part of the eikonal-type contributions to the eµ large-angle high-energy scattering cross section
is considered in a quasielastic experimental setup. In addition to virtual corrections, we examine inelastic pro-
cesses with emission of one and two soft real photons and soft lepton and pion pairs. Virtual photon contribu-
tions are given within a logarithmic accuracy. Box-type Feynman amplitudes with leptonic and a hadronic vac-
uum polarization insertion and double-box ones are considered explicitly. Wherever appropriate, the analytic
expressions obtained are compared with those predicted by the structure function approach. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

The need for evaluating radiative corrections at the
two-loop order is dictated by experimental data on
observables for a collider calibration process of elec-
tron–positron scattering that has reached an impressive
level of accuracy. Inspired by this, we consider as our
ultimate goal the determination of the second-order
radiative corrections to the cross section of Bhabha
scattering. At the same time, because the task of two-
loop calculus is rather involved, it appears easier to
consider the electron–muon scattering first, despite dif-
ferent masses of interacting particles. The latter process
is also important in itself because it forms a background
to the rare processes, in particular those violating the
lepton number (for more details, see [1] and references
therein). Improving theoretical predictions on its
observables could therefore impose more stringent
bounds on the physics beyond the standard model.

The aim of this investigation is to calculate the next-
to-leading order contributions to the large-angle elec-
tron–muon high-energy cross section,

(1)

in a quasielastic experimental setup,

(2)

where ε, , and  are the energies of the initial and
scattered leptons in the center-of-mass reference frame

e
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¶This article was submitted by the authors in English.
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and the Mandelstam variables are much larger than the
squared mass of any particle involved in the process.
The quantity ∆ε indicates the energy resolution of
detectors that are supposed to track final particles. In
the leading logarithmic approximation, the cross sec-
tion is that of the Drell–Yan process [2],

(3)

where

(4)

In the above expression, the quantities $(xi , ρt) are the
nonsinglet structure functions that satisfy the renormal-
ization group (RG) evolution equations. Their expan-
sion in the leading logarithmic approximation

can be written as
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Fig. 1. Box-type graphs with a vacuum polarization insertion.
In a quasielastic setup, it is appropriate to use only the
δ part of the splitting function 3(n)(x), denoted by

(x):

(6)

The structure function then becomes

(7)

Because the structure function approach outlined is
capable of providing only the leading logarithmic cor-
rections, we need to explicitly calculate the so-called K
factor entering Eq. (3) in the one- and two-loop approx-
imations.

Broadly speaking, the radiative corrections to the
differential cross section in the adopted mass regular-
ization scheme are of two types. The first ones are those
arising from the virtual photon emission up to the sec-
ond order of perturbation theory, which requires calcu-
lating, among others, the real two-loop Feynman ampli-
tudes. They suffer from infrared divergences, which are
regularized by assigning the photon a negligibly small
mass λ that is set to zero at the end of the calculations.
Contributions of the second type come from the emis-
sion of soft real photons and charged particle pairs.

The general structure of the correction to the cross
section can be represented as a sum of three types: ver-
tex, eikonal, and decorated box type. Each of them con-
tains virtual and real soft photon contributions, is free
of infrared divergences, and preserves the structure of
the leading log correction predicted on the basis of RG
ideas through the contributions of individual diagrams
containing up to the fourth power of the large logarithm
ρt at the two-loop order. In this regard, we recall that in
our previous paper [1], it was shown that the vertex
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contributions already provide a result consistent with
the RG approach. Because the first-order radiative cor-
rections coming from box-type diagrams are given in
our previous work devoted to evaluating of vertex-type
contributions [1], we here concentrate on the investiga-
tion of some eikonal box-type diagrams at the second
order of perturbation theory. In the case of elastic pro-
cesses, they correspond to graphs with one, two (box
diagram), and three (double-box diagram) virtual pho-
tons mediated between interacting leptons. Box-type
graphs with a vacuum polarization insertion of either of
the virtual exchange photons into the Green function
must also be taken into account (see Fig. 1). A single
soft photon approximation must be applied to the one-
loop corrected Feynman amplitudes in order to obtain
another set of contributions. Finally, the emission of
two soft photons (pairs of charged particles) must also
be taken into account at this order. 

We briefly describe the contents of the paper. In Sec-
tion 2, we consider the vacuum polarization effects in
box-type Feynman amplitudes with lepton ( , )
and pion (π–π+) pairs running a loop. Also in this sec-
tion we consider the corresponding contribution com-
ing from a soft lepton pair and a soft charged pion pair
production with one soft photon emission (see Fig. 2)
associated with the one-loop self-energy amplitudes of
the virtual exchange photon. In Section 3, the results of
evaluation of the corrections corresponding to a single
and double soft photon emission (see Fig. 3) and to a
square of box-type diagrams are presented; they are fol-

µµ ee

Fig. 2. Soft lepton and pion pair production.

Fig. 3. Sample diagrams pertaining to double soft photon
emission. 
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lowed by brief concluding remarks. In Appendix A, we
present a set of scalar integrals for box-type diagrams
with a vacuum polarization insertion. In Appendix B,
we give some details of the derivation of radiative cor-
rections coming from the squared box-type diagrams
and all the integrals encountered during the calculation.

2. BOX-TYPE DIAGRAMS 
WITH A VACUUM POLARIZATION INSERTION

Vacuum polarization effects in the box-type Feyn-
man amplitudes can be taken into account by replacing
one of the photon propagators by the vacuum polariza-
tion insertion (see [3]). In the case where leptons with
mass µ run a loop, it is given by

(8)

and for a pion–antipion pair in the loop, it is

(9)

Here, the quantity M is the invariant mass of the had-
ronic jet produced in single-photon annihilation of a
lepton pair and 5(M2) is the known experimental input
ratio [4]. For the matrix element squared, we then
obtain

(10)

for the vacuum polarization induced by leptons, and

(11)

for the hadronic vacuum polarization contribution.
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The quantity S(s, t, M2) is universal, irrespective of the
virtual pair running a self-energy loop, and is given by

(12)

where

(13)

Using the set of scalar, vector, and tensor box-type inte-
grals given in Appendix A, we can express the quantity
S(s, t, M2) through several basic integrals,
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In the opposite limit, the result is found to be

(17)

For the leptonic vacuum polarization with a mass of

(where both cases µ = me , mµ are taken into account),
further integration leads to the following expression
within logarithmic accuracy:

(18)

To finalize this result, we must remove infrared
divergences. For this, the interference between the soft
photon emission tree-level amplitudes and those bear-
ing a leptonic vacuum polarization insertion must be
taken into account, with the result

(19)

where ∆ is given in Eq. (2), c = cos  is the cosine
of the scattering angle in the center-of-mass reference
frame and the dilogarithm function is defined by the
standard formula
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Next, we must consider the contribution coming
from the soft lepton pair production with the total pair
energy not exceeding ∆ε (2µ ! ∆ε ! ε). This can be
read off, e.g., from [5],

(21)

The final logarithmically accurate result for the total
correction given by the leptonic vacuum polarization
and the soft ,  pair production is then takes the
form (see Eqs. (18), (19), (21))
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This expression is seen to contain only a next-to-lead-
ing term (of the order of α2ρt) and to be free of infrared
divergences.

We now consider the soft pion pair production with
the total pair energy below ∆ε and the invariant mass
squared M2 bounded as

(23)

The corresponding contribution to the differential cross
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production, which refers to pairs created by virtual pho-
tons emitted from the electron line and the muon line,
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We first perform the invariant pion pair phase space
integration,

(25)

Upon rearranging the phase volume,
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the right-hand side of Eq. (24) can be recast in the form
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The final result is then given by
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Obviously, the contribution coming from the box-type
diagrams with the hadronic vacuum polarization cannot
be obtained in analytic form because of the presence of
the quantity 5(M2).
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and the quantity ω is the soft photon energy. Using the
known results for interference of Born- and box-type
elastic amplitudes (see Appendix B), we discover that
in the soft photon approximation, the single soft photon
emission contribution is given by

(30)

In the case of the emission of two soft photons with the
total energy not exceeding ∆ε, we have

(31)

Finally, from the evaluation of the squared box-type
graphs in Appendix B, we infer the logarithmic contri-
bution

(32)

where the coefficients are given by

4. SUMMARY
This paper is devoted to determining part of the sec-

ond-order radiative corrections to the cross section of
the process of large-angle quasielastic eµ scattering,
namely, those corresponding to eikonal box-type dia-
grams. For box-type diagrams with a vacuum polariza-
tion insertion, we obtain the formulas in Eqs. (16), (17),
and (28), which imply that the contributions coming
from the interference between the tree-level diagram
and those (bearing a vacuum polarization insertion)
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with straight and crossed “legs” become, in fact, equal
when we exchange s  u (with accuracy up to terms
on the order of π2) and alternate the overall sign of the
contribution. This is indeed a manifestation of the well-
known symmetry relation between amplitudes corre-
sponding to different channels of a given reaction.

The main results of this work are analytic formulas
given in the logarithmic approximation, but intermedi-
ate formulas presented to a power accuracy allow at
least a numerical evaluation of the impact of subleading
terms on the overall value of the corrections. For exam-
ple, in Section 2, we obtain two limiting cases of the
leptonic vacuum polarization contribution, for a small
(Eq. (16)) and large (Eq. (17)) lepton pair invariant
mass M with constant accuracy.

As a consistency check of the calculation, the auxil-
iary infrared parameter λ is expected to completely
cancel in the final results. Within the gauge invariant set
of amplitudes considered in Section 2, we show that,
integrating over v and then adding the contribution
given by the soft lepton pair production, we indeed
obtain a result free of infrared divergences (Eq. (22)).
The structure of this correction is in agreement with the
RG predictions and does not contain large logarithms
raised to a power higher than two, but the same cannot
be done for the contributions calculated in Section 3
because the analysis there is in fact incomplete. We also
give the expression for the cross section of soft pion
pair production (Eq. (28)). Here, we cannot explicitly
show the cancellation of the occurrence of leading or
next-to-leading logarithms when the expression is com-
bined with the corresponding virtual correction. This is
because of a partially nonanalytic form of the expres-
sion for the radiative corrections caused by the hadronic
vacuum polarization insertion.

In Section 3, we examined the contribution coming
from squared box-type diagrams (see Eq. (32)) sup-
plied by the corresponding one and two soft photon
emission contributions with the explicit expressions
given in Eqs. (30) and (31). To complete the picture, we
must take the radiative corrections caused by genuine
two-loop eikonal-type amplitudes into account. Keep-
ing in mind the validity of the RG approach in the lead-
ing logarithmic approximation and the effect of cancel-
lation of large logarithms in the expression for the low-
est order radiative corrections to eikonal-type diagrams
(see [1]), we expect the interference between them and
the Born-level amplitude to completely cancel when
added to the contributions in Eqs. (30)–(32). An explicit
evaluation of them will be the subject of a forthcoming
paper.
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APPENDIX A

In this appendix, we give a set of scalar integrals
encountered in dealing with box-type diagrams with a
vacuum polarization insertion in one of the exchange
virtual photon propagators. Clearly, in this case, we
need integrals with a virtual exchange photon endowed
with a mass M. In evaluating vector and tensor inte-
grals, we therefore use the technique presented in
Appendix B with the only change that all scalar inte-
grals with three (Iijk) and four (I) denominators are
replaced by the following:

(1) in the case of a large mass M (M2 @ s ~ –t),

(A.1)

(2) in the opposite limit –t @ M2, we must use the
integrals
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APPENDIX B

Here, we give the details of the box–box contribu-
tion calculation. First of all, we must distinguish three
cases: two box squares with straight and crossed legs
and one case with the interference of amplitudes with
crossed and straight legs.

To calculate the contributions, we must evaluate ten-
sor, vector, and scalar integrals with four and three
denominators. We first consider the integral for the box
with straight legs. The vector integral can be written as

(B.1)

where quantities (1), (2), and (4) were defined in (13),
and we use the notation m = me , M = mµ, and (3) is k2 –
2kq + t with
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To consider the tensor integral, we use the algebraic
method,

(B.5)
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and q, we obtain a system of algebraic equations,
whence the quantities aij are expressed through the sca-
lar integrals
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(B.8)

and Iijk and I are determined above. For crossed legs in
a box-type diagram, we must evaluate the integrals
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For the tensor integral, we have

(B.12)
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(B.15)

and Iijk and I are determined above. The other integrals,
I13, I14, and I34 are given in (B.8).

With all these integrals, we can straightforwardly
obtain the final result for the squared box-type dia-
grams. With the intention of realizing subsequent
numeric calculations, we give it in the form where all
terms not enhanced by large logarithms are retained,

(B.16)
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For completeness, we here present a formula for the
interference of a tree-level and a box-type diagram
amplitude,

(B.17)

Adding to this expression the contribution arising from
the up–down interference of a soft photon emission by
electron and muon lines, we arrive at the expression for
the radiative corrections given in Eq. (16) in [1].
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Abstract—The influence of a strong field resonant to the Raman transition on the behavior of the Stokes har-
monic in saturated two-wave stimulated Raman scattering is theoretically considered based on the description
of a gas of three-level atoms by medium density matrix equations. The vibrational mode of energy redistribution
between laser and scattered radiation, threshold with respect to the resonant field intensity, is predicted. The
action of optical fields on the absorption and amplification of the resonant field in a Raman medium is
described. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that, in simple quantum systems
involved in resonant interactions with two stationary
laser radiation fields, linking up a third field whose fre-
quency is equal to the difference of the frequencies of
these two fields introduces a qualitatively new interac-
tion factor, namely, the relation between wave phases.
This factor can have a substantial influence on the dis-
tribution of level populations and nonlinear interfer-
ence effects that act on the absorbing ability of the sys-
tem and the shape of absorption and spontaneous emis-
sion lines. It has, for instance, been shown in [1] that, in
the absence of radiative and collisional relaxation, pop-
ulation distribution and absorption in three- and four-
level systems are sensitive to the summed phase of the
fields. Based on this sensitivity, the atomic interferom-
etry method has been suggested. The use of phase rela-
tions under the conditions of ring composition of fields
in the problem of deep cooling of atoms, which are
modeled by the W-scheme of levels, allows more sub-
stantial coolings to be attained [2, 3]. It is shown in [4]
that the distribution of populations in a three-level Λ-
system that interacts with three resonant fields can vary
in a wide range depending on the summed phase and
field value at the forbidden transition. This effect is
observed under intensities of the order of or larger than
saturation intensities and results in noise pollution of
absorption and spontaneous emission lines caused by
fluctuations of field phases.

Phase relations under the ring composition of fields
should also influence the conditions of nonresonant
nonlinear interactions of optical fields with atoms and
molecules. One of such processes is the generation of
the Stokes harmonic in two-wave stimulated Raman
scattering in the presence of a strong field whose fre-
quency is resonant to the transition responsible for scat-
1063-7761/03/9602- $24.00 © 20202
tering. The interaction of a field with a Raman transi-
tion can be magnetodipole, quadrupole, or electrodi-
pole because of the removal of parity selection rules as
a result of intramolecular interactions or the presence of
external constant fields. We will for definiteness con-
sider magnetodipole interactions, because the solutions
to the electro- and magnetodipole interaction problems
are identical up to the initial notation (the magnetic
dipole moment and magnetic field strength are replaced
by the corresponding electric quantities), whereas the
quadrupole interaction problem should be solved sepa-
rately. One of the possible and easily implementable
methods for closing stimulated Raman scattering is
two-photon resonance at the Raman transition fre-
quency.

The most significant consequences of linking up the
resonant field should be expected for nonlinear interac-
tions of optical fields with atoms (molecules) [4].
Therefore, generally, we must consider saturated stim-
ulated Raman scattering in a strong resonant field.
Here, saturation is understood as both leveling of
atomic populations during scattering by one atom (sat-
uration proper) and various parametric, Raman, and
interference processes [5, 6], which are related to the
higher orders of the expansion of macroscopic polariza-
tion in powers of field amplitudes, that simultaneously
come into effect.

The purpose of this work was to analyze the influ-
ence of a strong field resonant to the Raman transition
on the generation of the Stokes component of saturated
two-wave stimulated Raman scattering and to deter-
mine the character of damping and amplification of the
resonant wave in the presence of two intense optical
waves. In other words, we consider the nonlinear mix-
ing of three waves caused by their ring composition
under stimulated Raman scattering conditions.
003 MAIK “Nauka/Interperiodica”
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So far as we know, no consistent theory of saturated
stimulated Raman scattering has been suggested,
although an approach to exact calculations of the non-
linear susceptibility of a three-level system involved in
resonant interactions with three fields has been formu-
lated in classic monograph [5]. Namely, in [5], station-
ary equations for the medium density matrix in the gen-
eral case of three strong fields were obtained and used
to classify the types of possible nonlinear processes,
and several conditions that controlled the ratio between
these types were obtained for the particular case of a
single strong optical field. Phase relations were not
taken into consideration in [5]. For this reason, we
present a detailed elaboration of this approach, which is
also described in monograph [6] in general terms. The
approach is based on analytical calculation of polariza-
tion and magnetization nonlinear with respect to the
field with the use of the equations for the medium den-
sity matrix (gas of three-level atoms) for the case of
three strong fields. We use the simplest stimulated
Raman scattering model, according to which the pre-
dominant scattered radiation component is the first
Stokes harmonic, whereas the generation of the anti-
Stokes and higher Stokes harmonics and also back scat-
tering are suppressed under certain experimental condi-
tions. The determination of these conditions and calcula-
tions of the total spectrum of harmonics is a separate top-
ical problem, which has repeatedly been handled by
theoretical and experimental physicists (e.g., see [7–9]).
In addition, in what follows, the laser radiation pulse
width is assumed to far exceed the medium transverse
relaxation time, which allows calculations of stimu-
lated Raman scattering to be limited to analyzing the
development of the process in space.

2. NONLINEAR MEDIUM RESPONSE

In conformity with the accepted stimulated Raman
scattering model, the field interacting with three-level
atoms is written as

(1)

Here, E1(z), ω1, ϕ1 and E2(z), ω2, ϕ2 are the amplitudes
of the electric fields and the frequencies and amplitudes
of laser (1) and Stokes (2) radiation; H(z), ω3, and ϕ3
are the amplitude of the magnetic field and the fre-
quency and phase of radiation resonant to the Raman
transition; and kj are the corresponding wave numbers.
Note that the last equality in (1) is only approximately
satisfied under wave mismatching conditions; this cir-
cumstance will be taken into account when necessary.

An atom (molecule) is represented by a three-level
system whose states 1 (lower) and 2 are involved in the

% t z,( ) E1 z( ) Ψ1 E2 z( ) Ψ2,cos+cos=

* t z,( ) H z( ) Ψ3,cos=

Ψ j ωjt k jz– ϕ j, j+ 1 2 3,, ,= =

ω3 ω1 ω2 0, k3>– k1 k2.–= =
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Raman transition, whereas the higher level (3) is the
excited electronic state level that makes the major con-
tribution to the Raman scattering tensor. The equations
for the medium density matrix in the model of relax-
ation constants corresponding to homogeneous line
broadening have the form

(2)

Here, ρj are the populations of levels j = 1, 2, and 3;
ρ31 and ρ32 are the off-diagonal elements of the density
matrix (up to the polarization factor) of the allowed
nonresonant 1–3 and 2–3 transitions; ρ21 is the polar-
ization of the 1–2 forbidden Raman transition; d1 and d2
are the dipole moment matrix elements of the 1–3 and
2–3 transitions, respectively; µ is the magnetic dipole
moment matrix element of the 1–2 transition; ωij are the
natural frequencies of the j–i transitions; γ and Γ, Γ1,
and Γ2 are the collisional diagonal and off-diagonal

relaxation constants, respectively; and  and  are
the equilibrium populations of levels 1 and 2. The
relaxation scheme accepted in (2) corresponds to the
situation in which fairly many levels are situated close
to levels 1 and 2, and collisional population transfer
from the working transition levels predominantly
occurs to neighboring states. Radiative relaxation is
considered to be insignificant compared with colli-
sional relaxation and is ignored.

The sought medium response containing both linear
and nonlinear components without the expansion of the
latter in powers of field amplitudes is polarization P and
magnetization M,

(3)

where N is the density of atoms interacting with radi-
ation.

ρ̇1 γ ρ1 ρ1
0–( )+ 2Re

i d1%ρ31 µ*ρ21+( )
"

-----------------------------------------------,=

ρ̇2 γ ρ2 ρ2
0–( )+ 2Re

i d2%ρ32 µ*ρ21–( )
"

-----------------------------------------------,=

ρ1 ρ2 ρ3+ + 1, ρ1
0 ρ2

0+ 1,= =

ρ̇31 Γ1 iω31+( )ρ31+

=  
i
"
--- d1% ρ1 ρ3–( ) d2%ρ21 µ*ρ32–+[ ] ,

ρ̇32 Γ2 iω32+( )ρ32+

=  
i
"
--- d2% ρ2 ρ3–( ) d1%ρ21

* µ*ρ31–+[ ] ;

ρ̇21 Γ iω21+( )ρ21+

=  
i
"
--- % d2ρ31 d1ρ32*–( ) µ* ρ1 ρ2–( )+[ ] .

ρ1
0 ρ2

0

P NSpρ̂d̂ , M NSpρ̂µ̂,= =
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We assume that laser pulses are sufficiently wide
and gas pressure is sufficiently high for the Doppler
broadening of lines to be ignored. The transition
from (2) to the stationary equations can then be per-
formed by separating the “fast” dependences of the
polarizations on time and coordinate in the standard
way [5],

(4)

Substituting (4) into (2) and introducing the notation

(5)

and the natural simplifying assumptions

, (6)

we obtain

(7)

The system of stationary equations (7) describes the
exact one-photon resonance of external field G with the
Raman transition and is valid under the following con-
ditions:

(1) the “rotating wave” resonance approximation
holds,

(2) the inequality |2ω21 – ω31 | @  is satisfied for
unequally spaced levels;

(3) hyper-Raman scattering is absent, |2ω1 –

ω2 − ω31 | @ , |2ω2 – ω1 – ω32 | @ , or

|∆ − ω21 | @ ;

ρ31 R1e
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ε
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(4) parametric processes initiated by magnetic field
are absent, (µH)2/(2"∆)

 

2

 

 

 

!

 

 1;

(5) stimulated Raman scattering is quasi-resonant,

 

∆

 

 < 

 

ω

 

1, 2

 

;

(6) the higher Stokes and anti-Stokes scattering har-
monics are absent.

If the corresponding frequency detunings in condi-

tions (1)–(3) are assumed to be equal to the  Rabi
frequencies, the optical field intensities at 

 

δ

 

 

 

≥

 

 100 cm

 

–1

 

and 

 

d

 

1, 2

 

 = 1 D are limited by the inequality

Here, 

 

c

 

 is the velocity of light and 

 

"

 

 is the Planck con-
stant. If the magnetic dipole moment is on the order of
one Bohr magneton (

 

µ

 

B

 

), condition (4) at the same
intensity values is satisfied if 

 

∆

 

 

 

≥

 

 1 cm

 

–1

 

. Note that lim-
itation (5) is not strict, because if it is violated, the nec-
essary taking into account of complex conjugate expo-
nents in (4) leads to equations that can be reduced to (7)
by redefining the 

 

d

 

1, 2

 

 and 

 

∆

 

 values. The strictest limita-
tion is the last one, according to which (7) is only appli-
cable if stimulated Raman scattering field intensities
are of the order of saturating intensities. Nevertheless,
in spite of this limitation, it is expedient to obtain a for-
mally exact solution to (7) in which all three fields are
assumed to be strong, because such a solution gives a
compact form of the representation of wave equations
and allows trends of saturating stimulated Raman scat-
tering to be correctly described.

It follows from (5) and (7) that the dimensionless
electric and magnetic field amplitudes or dimensionless
Rabi frequencies 

 

V

 

1, 2

 

 and 

 

G

 

, if they equal one, deter-
mine the intensities of stimulated Raman scattering sat-
uration and magnetic field 

 

G

 

 absorption saturation at
the Raman transition in a natural way,

Assuming that 
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–10

 

4

 

 cm

 

–1
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 = 0.1 cm
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, 

 

d
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 =
1 D, and 
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 = 0.93 

 

×

 

 10

 

–20

 

 CGS units, we obtain

 = 0.3–3 GW/cm  
2

  and  I  
H

  = 50 MW/cm 
2

 . It follows
that, formally, system (7) gives a correct description of
the process under consideration under typical experi-
mental conditions at intensities 1–2 orders of magni-
tude higher than saturation intensities. In reality, the
intensities of pumping and of the Stokes harmonic

should not exceed  to prevent the generation of the
higher harmonics, but field 

 

G

 

 can be arbitrary within
the limits specified above.

V1 2,
0

I1 2,
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E
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In the accepted notation, the sought polarization and
magnetization [Eq. (3)] have the form

(8)

The exact algebraic solutions to (7) are somewhat
cumbersome (the complete solutions to analogous
equations for level populations at arbitrary frequency
detunings can be found in [4]). For this reason, we will
use simpler approximate solutions written accurate to
O(ε3). Numerical calculations show that these solutions
give errors less than 1% for dimensionless field ampli-
tudes V1, 2, G < 10,

(9)

Note that, in this approximation, the sum of the pop-
ulations of two lower levels is exactly equal to one at
arbitrary field intensities, and the higher level remains
unpopulated. An analysis of the exact solution shows
that the higher level can only be populated at much
higher field intensities. Note also that the imaginary
parts of the polarizations of optical transitions respon-
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sible for the nonlinear mixing of fields are equal to
within a factor. It is shown in the next section that the
Manley–Rowe theorem [10] is satisfied thanks pre-
cisely to this circumstance. Generally, the exact solu-
tion does not give such an equality, and this theorem is
therefore violated at ultimately high intensities.

Importantly, the polarizations of the allowed and
forbidden transitions [Eq. (9)] contain interference
terms in the form of the products of field amplitudes
raised to the first power and factors depending on the
summed phase Φ in the numerators and denominator D.
It follows that nonlinear interference effects can be con-
trolled under the ring composition of fields by varying
field phases.

Equations (8) and (9) give a solution to the problem
of a nonlinear medium response at a definite point in
space (for one atom). We will use them in the problem
of Raman mixing of waves to trace the development in
space of the generation of the Stokes harmonic and the
absorption or amplification of the resonant wave.

3. WAVE EQUATIONS 
FOR SLOW AMPLITUDES

The generation of stimulated Raman scattering in
the presence of a variable magnetic field is described by
the wave equations

(10)

Performing standard transformations, which include
the substitution of (8) and (9) into (10), the neglect of
small second derivatives of field amplitudes with
respect to the coordinate, and the equating to zero of the
sums of the coefficients of cosΨj and sinΨj, j = 1–3, we
obtain algebraic equations for wave numbers kj and a
system of three first-order differential equations for the
coupled electric and magnetic field amplitudes. An
analysis of (9) for the real parts of the polarizations,
which determine wave numbers, shows that, for arbi-
trary field intensities, the contributions to the polariza-
tions nonlinear in field values are limited from above by
a value on the order of the linear contribution to the
polarization. For this reason and because fine effects
related to the intensity dependence of refractive indexes
are beyond the scope of this paper, we will restrict our-
selves, to the linear approximation, to optical polariza-

tions, namely,  ≈ εV1, 2 , and ignore the disper-
sion of the resonant wave. This leads to the following
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simple equations for wave numbers kj and refractive
indexes nj in terms of the parameters introduced above:

(11)

Note that writing the refractive index in terms of
the d (effective dipole moment) and ∆ (effective pump-
ing frequency detuning from the electronic transition
frequency) three-level model parameters allows the
polarizability of the molecule (Raman scattering ten-
sor), which is α = d2/"∆ in terms of our approach, to be
estimated. Indeed, (11) gives α ≈ (n – 1)/2πN. Substi-
tuting N = 2.5 × 1019 cm–3, which corresponds to atmo-
spheric conditions, and n – 1 ≈ 3 × 10–4 [11] (the nitrogen
molecule) into this result yields α ≈ 1.9 × 10–24 cm3. This
is close to α = 1.76 × 10–24 cm3 obtained from the data
on Raman scattering (radiation wavelength 0.366 µm)
by the 2331 cm–1 nitrogen vibrational mode [12]. At
d = 1 D, the latter value gives the effective detuning ∆ =
2860 cm–1. The stimulated Raman scattering saturation
intensity is then estimated as

at Γ = 0.1 cm–1.

If energy dissipation is ignored, the equations for the
coupled dimensionless field amplitudes obtained
from (10) as described above have the form

(12)

Wave mismatching caused by nonzero wave detun-
ing δk = k1 – k2 – k3 ≠ 0 is taken into account in (12) and
(7) via replacing the summed phase of the waves at the

k1 2,
ω1 2, n1 2,

c
-------------------, n1 2,

2 1
4πNd1 2,

2

"∆
--------------------ρ1 2,

0 ,+≈≈

k3 k1 k2.–≈

IE c"Γ
2πα
---------- 0.86 GW/cm2= =

dV1

dζ
---------

1
2
---V2F1 V1 V2 G, ,( ),–=

dV2

dζ
---------

1
2q
------V1F1 V1 V2 G, ,( ),–=

dG
dζ
-------

p
2
---F2 V1 V2 G, ,( ),–=

F1
1
D
---- V1V2 G Φcos V1

2 V2
2–( ) Φsin+[ ]+{ } ,=

F2
1
D
---- G V1V2 Φcos V1

2 V2
2–( ) Φsin–[ ]+{ } ,=

ζ Qz, Q
4πNd1

2ω1

cn1"∆
----------------------- ρ1

0 ρ2
0–( ),= =

q
d1

2ω1n2

d2
2ω2n1

-----------------, p
µ2ω3∆n1

d1
2ω1Γ

---------------------.= =
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entrance to the medium by coordinate-dependent phase
Φ1,

(13)

It follows from (12) that, at positive Q and F1, 2, the
amplitudes of laser radiation field (V1) and low-fre-
quency field (G) decrease while the amplitude of scat-
tered radiation (V2) increases as z grows. The opposite
situation arises in a medium with population inversion,

in which  <  and Q < 0. The parameters of (12) are
on the order of Q ~ 10–104 cm–1, q ~ 1.0–1.2, and
p ~ 10–4–1 at ω1 ~ 104–105 cm–1, ω3 ~ 102–103 cm–1,
∆ ~ 102–104 cm–1, Γ = 0.1 cm–1, d1 ≈ d2 ~ 10–18 CGS
units, µ/d1 ~ 10–2, and N = 2.5 × 1019 cm–3. Clearly, if
p ! 1, field G is virtually not absorbed and can be
treated as a set parameter influencing the generation of
stimulated Raman scattering. The generation is then
only determined by the first two equations from (12).
Further, we consider both cases, p ! 1 and p ~ 1. Under
typical experimental conditions, δk is 1–5 cm–1 [13].

Let us introduce the dimensionless intensities of
pumping (index 1) and Stokes (index 2) waves, W1, 2 =

. The first and second equations in (12) give the
integral of motion (the Manley–Rowe equation)

(14)

As mentioned in the preceding section, (14) holds
within the framework of the accepted approximation of
moderately high intensities irrespective of whether or
not the resonant field is considered set. It follows
from (14) that 0 ≤ W1 ≤ U and 0 ≤ W2 ≤ U/q. The last ine-
quality sets limits to the maximum Stokes wave intensity
at large distances when energy is redistributed from the
pumping to the Stokes wave, W2(z  ∞) = U/q.

Because of the strict equality (14), it is sufficient to
trace the behavior of the Stokes wave only. Taking into
account (14) and the limitations on the W1 and W2
intensities specified above, let us introduce phase vari-
able Θ, which simultaneously determines the behaviors
of pumping and scattered waves,

(15)

As a result, (12) takes the final form

(16)
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0 ρ2
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4. ANALYTIC SOLUTIONS TO (16)

Let us obtain simple solutions to (16) for several
particular cases in the approximation of a set resonant
field G(p = 0) and for coupled waves (p ≠ 0).

(A) p = 0, G ! 1, |q – 1 | ! 1. Let the dimensionless
Stokes wave intensity be expanded in powers of the
small G and |q – 1 | parameters to first-order terms,

(17)

Solutions to (15) and (16) for W2 of type (17) are

(18)

The formula for W0 in (18) coincides up to the deno-
tations with the expression for Stokes radiation [6],
which takes into account pump depletion under unsat-
urated stimulated Raman scattering conditions. This
formula contains only a different amplification factor K
value; according to [6], K = U in [6] (in our notation).
Equation (18) shows that the direct consequence of the
saturation effect is an increase in amplification factor K
to its maximum value Kmax = 1/2 as the summed inten-
sity of pumping radiation and Stokes wave U increases
to Umax = 1; further, K decreases as 1/U. It can be shown
using (7) that a decrease in K as U increases is caused
by a shift of the Raman transition lines induced by the
dynamic Stark effect for optical fields. As a result, stim-
ulated Raman scattering goes out of resonance. This
circumstance should be taken into account in selecting
the optimal laser radiation power at which the length of
its maximum transformation into the first Stokes har-
monic is the smallest.

D = 1 q1
2
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The formula for W0 in (18) shows that, in the
absence of a resonant field and at q = 1, the Stokes wave
intensity monotonically increases to its limiting value
U as dimensionless coordinate ζ grows from zero
toward positive values. In a medium with population
inversion (Q < 0), W0 monotonically decreases from its
initial value at z = 0 to zero as z increases (ζ then
changes toward negative values). The influence of q
deviations from 1 and of field G on W2 [Eq. (17)] is
shown in Fig. 1. The role played by the Wq contribution
reduces to a decrease in the limiting energy transfer
from the pumping to the Stokes wave to U/q at large z.
The WG component alternates and depends on the
summed phase of the waves Φ. These corrections are
maximum for media without population inversion.

Note that the representation of the Stokes wave
intensity in form (17) and (18) is sufficient for describ-
ing many experimental situations because it takes into
account stimulated Raman scattering saturation, and
the admissible G < 0.1–0.2 values correspond to fairly
large (~5–10 MW/cm2) resonant field intensities.

(B) p = 0, cosΦ = 0, q = 1. We will use the denota-
tions sinΦ ≡ σ = 1 (Φ = π/2), –1 (Φ = –π/2, 3π/2, …).
The first equation from (16) has an exact solution at
G = const. Taking into account (15) and the notation
introduced above, we obtain

(19)

W2
U 1 X s X 1–( )+ +[ ] 2

2s X2 1– s X2 1+( )+[ ]
-------------------------------------------------------,=

X
s 2σG η 1–+

s 2σG η 1+–
------------------------------------- sUζ

2 s2 U2+( )
------------------------- ,exp=

s 1 4G2+ .=

W
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0.5
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ζ

1

2
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4

56

Fig. 1. Dependences of (5, 6) Stokes wave intensity W2 (17)
and its components (1) W0, (2) Wq, and (3, 4) WG on dimen-
sionless length ζ for summed phase values Φ = (3, 5) 0 and
(4, 6) π/2; U = 1, q = 1.15, G = 0.1, and η = 0.1.
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The W2 Stokes signal [Eq. (19)] is a monotonic
function of the coordinate, similar mainly to (17).
Unlike (17), (19) is, however, valid at large (in terms of
the accepted approach) resonant field intensities. The
most important differences from the situation with
small G values [from the W0 function given by (18)] are
those in the limiting Stokes wave intensities at large
lengths and in the effective amplification factors.
Namely, the limits of energy transfer into the Stokes
harmonic are determined by the equation

(20)

If G @ 1, it follows from (20) that, no matter what
the sign of ζ, the limit for energy transfer decreases two
times in comparison with the situation when field G is
absent. A new qualitative feature is the possibility of
resonant field-induced energy transfer from laser to
scattered radiation in a medium with population inver-
sion. At small G, such a transfer is directly proportional
to the set field intensity, W2 = UG2.

The effective amplification factor similar to (18),
Keff , can be defined for (19) as

(21)

Its maximum value is 1/2, as with low fields G
[Eq. (18)]. As opposed to K from (18), Keff (21), how-
ever, reaches a maximum at larger U values, Umax = (1 +
4G2)1/2. In other words, the resonant field impedes stim-
ulated Raman scattering saturation.

(C) sinΦ = 0, q = 1. Set cosΦ ≡ σ = 1 (Φ = 0,
±2π, …), –1 (Φ = ±π, ±3π, …). At p = 0 (constant G),
the first equation from (16) takes the form

(22)

Equation (22) has an analytic solution, which is,
however, transcendental with respect to the sought Θ(ζ)
function. It is, however, easy to see that the numerator
and denominator in (22) are cancelled if the equality

(23)

is satisfied. As a result, the solution to (23) gives a lin-
ear dependence of phase Θ on the coordinate,

(24)

It follows that the intensity of the Stokes wave is an
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2
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oscillating function of the coordinate in both normal
medium and medium with population inversion (ζ < 0),

(25)

This nontrivial result (space-periodic energy redis-
tribution between pumping and scattered radiation
waves) is caused by nonlinear interference of polariza-
tions in the atom, which is strongest at |cosΦ| = 1. The
effect is present at arbitrary, including low U, intensi-
ties. Equation (23) sets the boundary of resonant field G
intensities above which oscillations begin. It follows
that periodic energy transfer between pumping and
Stokes waves is a threshold phenomenon. Numerical
calculations, however, show that threshold (23) is
smoothly smeared as the intensities of stimulated
Raman scattering fields decrease and is virtually absent
at U < 0.05. The behavior of the threshold resonant field
amplitude Gthr as a function of U is approximated by the
equation

(26)

obtained in numerical calculations.

It follows from (25) that the shortest period of oscil-
lations corresponds to low field intensities U ! 1 and
equals 8π. At high intensities U @ 1, the period of oscil-
lations (8πU) linearly increases as the intensity grows.

If the fields are coupled (p ≠ 0), Eqs. (16) in the
approximation that we use have the integral of motion

(27)

Here, the Θ angular variable is a linear function of the
“controlling” resonant field G. Substituting the Θ(G)
dependence that follows from (27) into the second
equation from (16) allows a transcendental solution to
this equation to be obtained at small amplitudes G ! 1.
It follows from this solution that, because of the inter-
ference effect, the resonant field at large distances does
not decay completely but obeys the equation

(28)

It follows that the influence of stimulated Raman
scattering on resonant field absorption under the condi-
tions under consideration reduces to interference-
induced blooming of the medium.

(D) U ! 1, |G |. At p = 0 and low laser and scattered
radiation (unsaturated stimulated Raman scattering)
intensities, a solution to (16) similar to that given in (C)

W2
U
2
---- 1 σζ

4 1 U2+
----------------------- Θ+ 

 cos– .=

Gthr 10 1/ 0.48 2.36U+( )–=

Θ 2σG
p

-----------+ const Θ1≡ Θ0
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p
-------------.+= =
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σpU Θ1sin

2 p UcosΘ1–( )
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also leads to an oscillatory dependence of waves on
the distance, because the threshold with respect to
field G (23), (26) is then obviously exceeded,

(29)

(30)

Oscillations exist at cosΦ ≠ 0; their frequency is a
linear function of amplitude G at small G values and is
inversely proportional to the amplitude at G @ 1.

The wave mismatch effect on spatial oscillations is
taken into account by (13). In the approximation that
we use, (16) at δk ≠ 0 and constant G reduces to

(31)

The solution to (31) is

(32)

This solution determines the oscillating behavior of the
Stokes wave under the combined influence of the initial
phase difference Φ and wave detuning δk. As δk  0,
(32) transforms into (29). It follows from (32) that the
ratio between the periods of oscillations of the two
specified types, ζΦ and ζκ , is given by

(33)

at κζ  ! 1.

According to (33), the R value can change in a wide
range, from R ! 1 to R @ 1, and the ratio between the
ζΦ and ζκ periods is determined by particular experi-
mental conditions.

Note that (29), (30), and (32), which give a very
structurized oscillatory dependence of the Stokes har-
monic intensity on the coordinate, can be used in quan-
titative studies of the phase relations between the waves
introduced into the system. In other words, they can be
used to develop a technique implementing the atomic
interferometry method suggested in [1].

Next, consider loss-free field G amplification in a
medium with population inversion at p ≠ 0. According to
the first equation for the Θ angular variable from (16),
the derivative of Θ with respect to the coordinate tends
to zero as 1/G at fairly high fields G (G @ 1). It follows

Θ G Φcos
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that phase Θ becomes constant, and an increase in the
G2 resonant field intensity is determined only by the
second equation from (16), which, in the case under
consideration, coincides with the loss-free transfer
equation in an amplifying medium with saturation [14],

(34)

At G @ 1, (34) gives the dependence of amplifica-
tion linear in the coordinate (lethargic),

(35)

which is caused by the saturation effect for the resonant
field at the Raman transition. Note that nonlinear inter-
ference effects can in certain situations cause a still
slower root dependence of the intensity on length [15].

5. NUMERICAL CALCULATIONS

Equations (16) for coupled waves contain six
parameters, namely, ζ, U, G (or p), Φ, q, and η. We will
trace the development of generation in space by deter-
mining W2(ζ) and G(ζ). For this purpose, (16) will be
numerically solved depending on the U, G, and Φ prin-
cipal parameters. The q and η parameters will be fixed
in all calculations, q = 1.15 and η = 0.1.

First, consider Stokes wave generation in the pres-
ence of resonant field G constant over the length (p = 0,
Figs. 2–4). The calculated W2(ζ, G) dependences for
two summed Φ phases are shown in Fig. 2. In confor-
mity with the analysis performed in the preceding sec-
tion, an oscillatory dependence of the Stokes harmonic
intensity on the distance is observed at zero phase Φ
(Fig. 2a). The threshold character of the effect and an
increase in the period of oscillations as G increases [see
Eqs. (23) and (25)] are clearly seen. Note the symmet-
rical character of the oscillatory behavior of W2(ζ) in
normal (ζ > 0) and inverse (ζ < 0) media. The role
played by resonant radiation at Φ = π/2 (Fig. 2b) largely
reduces to providing a possibility of energy transfer
from laser to scattered radiation in a medium with pop-
ulation inversion as opposed to an inversion-free
medium. The transfer effectiveness increases as G
grows [see (20)]. Figure 2c illustrates a decrease in and
smearing of the threshold for oscillations as the inten-
sity of stimulated Raman scattering waves decreases.

The W2(ζ, U) dependences at fixed G for two Φ
phase values Φ = 0 and Φ = π/2 are shown in Figs. 3a
and 3b. Figures 3a and 3b correspond to analytic
cases (C) and (B) considered above, respectively. In
Fig. 3a, the period of oscillations at small U is exactly
equal to the period calculated by (30) with G = 0.794
and q = 1.15 selected to construct this figure. Close
agreement is also observed between the boundary of
oscillations calculated by (26) and the U ≈ 1 value

dG2

d ζ
---------

pG2

1 4G2+
-------------------.=

G2 p ζ
4

---------,=
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Fig. 2. Dependence W2(ζ, G) in the approximation of fixed field G (p = 0) for (a) Φ = 0 and U = 1, (b) Φ = π/2 and U = 1, and
(c) Φ = 0 and U = 0.1; q = 1.15 and η = 0.1.
determined from Fig. 3a. The symmetrical character of
the plots shown in Fig. 3b along the U coordinate is
determined by the character of the dependence of the
effective amplification factor Keff (21) on the summed
JOURNAL OF EXPERIMENTAL
intensity of optical fields, which is one of the manifes-
tations of stimulated Raman scattering saturation.

The dependence of Stokes harmonic intensity on the
summed phase of waves is shown in Fig. 4. A compar-
 AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003
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Fig. 2. (Contd.)
ison of the shapes of the dependences corresponding to
various U values shows that the oscillatory generation
mode is most obvious at low U = 0.1 (Fig. 4a) and
absent at large U = 10 (Fig. 4b). This is related to the
threshold character of the arising oscillations and cor-
responds with the qualitative analysis of this effect per-
formed in Section 4.

Next, consider the mixing of three waves under the
conditions of strong coupling of the optical and reso-
nant fields by selecting p = 1. We will solve two coupled
equations (16) to trace Stokes wave W2(ζ) intensity and
field G(ζ) damping (or amplification in a medium with
population inversion) depending on the summed wave
intensity U and phase Φ at a fixed initial amplitude
value G(0) ≡ G0 = 10–0.1 = 0.794.

The dependences of the Stokes wave intensity and
resonant wave amplitude on summed intensity U are
shown in Fig. 5 for two phase values Φ = 0 and π/2.
According to Fig. 5a, the behavior of the Stokes signal
at low U < 1 sharply changes compared with the case of
a constant G amplitude; namely, oscillations com-
pletely disappear in the ζ > 0 region, whereas in a
medium with population inversion (ζ < 0), their period
increases and becomes irregular. This behavior is
explained by rapid damping of amplitude G, which
decreases below the threshold for the arising of oscilla-
tions, in the region of positive ζ values, see Fig. 5c. In
contrast, the resonant field grows stronger in the region
RNAL OF EXPERIMENTAL AND THEORETICAL PHY
of negative ζ values, which, in agreement with (30),
decreases the frequency of oscillations. At a Φ = π/2
phase value, there are much fewer changes in the
behavior of W2 and G compared with the case of a con-
stant G value (cf. Figs. 5c and 3b), because, as follows
from (9), interference effects responsible for oscilla-
tions are then suppressed. A definitely different behav-
ior of W2(ζ) is observed for a medium with population
inversion at U ≈ 1 because of a sharp change in the
behavior of G(ζ) (Fig. 5d) induced by the saturation
effect.

The phase picture, which at the same time illustrates
the action of nonlinear interference of polarizations, is
shown in Fig. 6 for the optimal U = 1 value. According
to Fig. 6a, the special feature of Stokes harmonic gen-
eration at ζ > 0 is the absence of complete energy trans-
fer from laser to scattered radiation at phase Φ = π. In a
medium with population inversion, the oscillatory
mode alternates with monotonic variations in the
Stokes radiation intensity under phase changes. Of
great interest is the absorption of field G at ζ > 0
(Fig. 6b). As follows from the calculations, field ampli-
tude G at large distances ζ > 0 becomes negative and
does not decay in the limit of large lengths at the Φ = 0,
π, and 2π phase values, at which interference effects are
the strongest. It follows that, in conformity with (28),
we observe interference-induced medium blooming at
the Raman transition frequency for these phase values.
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Fig. 3. Function W2(ζ, U)/U for Φ = (a) 0 and (b) π/2; p = 0, G = 10–0.1, q = 1.15, and η = 0.1.
Numerical calculations show that an increase in res-
onant field intensity G2 in a medium with population
inversion weakly depends on the phase and is almost
linear in the coordinate at low intensities U < 1. The
JOURNAL OF EXPERIMENTAL 
coordinate dependence of dimensionless intensity G2

averaged over phases and U < 1 values is approximated
by the equation G2 = –(0.247 ± 0.001)ζ, which is in close
agreement with (31) if the equality p = 1 is fulfilled.
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Fig. 4. Dependence W2(ζ, Φ)/U for U = (a) 0.1 and (b) 10; p = 0, G = 10–0.1, q = 1.15, and η = 0.1.
In conclusion, let us analyze the situation character-
ized by strong fluctuations of coupled wave phases. We
assume that random phase Φ is uniformly distributed
over the [0, 2π) interval. Calculations of the phase-
average dependences of Stokes and resonant wave
intensities on the summed intensity of optical waves
URNAL OF EXPERIMENTAL AND THEORETICAL PHY
and on the coordinate show that, for an inversion-free
medium, the situation with phase fluctuations that we
are considering is close to the Φ = π/2 case (Fig. 5c);
that is, nonlinear interference effects are suppressed as
a result of averaging over phases. However, in a
medium with population inversion, no complete inter-
SICS      Vol. 96      No. 2      2003
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Fig. 5. (a, c) Relative Stokes wave intensity W2(ζ, U)/U and (b, d) consistent field absorption (amplification) G(ζ, U) as functions

of total intensity U for phases Φ = (a, b) 0 and (c, d) π/2; p = 1, G0 = 10–0.1, q = 1.15, and η = 0.1.
ference suppression occurs and the behavior of the
phase-average Stokes wave is closer to the Φ = 0 case
(Fig. 5a). As has been mentioned above, the depen-
dence of the averaged resonant field intensity on the
JOURNAL OF EXPERIMENTAL 
coordinate is linear for a medium with population
inversion at U < 1 and nonlinearity only comes into
effect at high optical field intensities. The effect of
interference-induced inversion-free medium bloom-
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Fig. 5. (Contd.)
ing then disappears because of strong phase fluctua-
tions. The mean-square deviations, which characterize
noisiness of the Stokes and resonant waves, are mini-
mum in a narrow ζ region close to zero, where energy
transfer is maximum, and amount to about 30% at low
U < 1 values for the Stokes wave and at large U > 1
RNAL OF EXPERIMENTAL AND THEORETICAL PHY
values for the resonant field.

6. TWO-PHOTON ABSORPTION

The ring interaction of fields considered in Sec-
tions 2–5 can be achieved in the stimulated Raman
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Fig. 6. Influence of the summed phase of waves and related nonlinear interference effects on (a) Stokes signal intensity W2(ζ, Φ)

and (b) resonant field amplitude G(ζ, Φ) in a medium without population inversion at p = 1, G0 = 10–0.1, U = 1, q = 1.15, and η = 0.1.
scattering scheme at vibration-rotation transitions in
molecules or at excited forbidden transitions in atoms
in the visible and infrared spectral regions. In certain
instances, in particular, for alkali metal vapors, the ring
composition of fields can be more conveniently
effected by two-photon absorption at the transition
from the ground to the first excited S state. The corre-
sponding generalization of the results will be given
JOURNAL OF EXPERIMENTAL 
based on (2) and field representation in the form

(36)

% t z,( ) E j z( ) Ψ j,cos
j 1=

3

∑=

Ψ j ωjt k jz– ϕ j, j+ 1 2 3,, ,= =

2ω3 ω1 ω2, 2k3– k1 k2.–= =
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Here, index j = 3 refers to the field that acts at the
Raman transition; the other notation is as introduced
previously.

Instead of (4), we assume that

(37)

in the transition from (2) to stationary equations.
The substitution of (37) into (2) and the elimination

of R13 and R23 from the system of equations yields sta-
tionary equations for the density matrix similar to (7),

(38)

where all denotations are retained except

(39)

In addition, we explicitly introduce sign σ =  of
effective detuning ∆ = ω31 – ω1 into (38), because the
main perturbing state 3 in alkali metals is the lower p
level situated below the first excited s level. As previ-
ously, wave detuning in (38) and in wave equations is
performed by redefining phase Φ (13), where δk = k1 –
k2 – 2k3.

The differences between (38) and (7) are as follows.
The meaning of the G parameter is changed; for two-
photon absorption, this parameter is proportional to
field intensity E3 rather than the field amplitude. The
interference of polarizations R1 and R2 directly caused
by the resonant field is absent [in (38), the correspond-
ing equations are only coupled through r]. The iβG
phase term in the multiplier in the left-hand side of the
equation for polarization r at the forbidden transition,
which is absent in (7), is present in (38); this term
describes the field shift of the line caused by the differ-
ence of dipole moments d1 and d2.
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The nonlinear polarization P [Eq. (3)] components
for fields 1–3 expressed through the forbidden transi-
tion polarization are

(40)

The exact solution to (38) with respect to r has the
form

(41)

Using (40) and (41) and denotations (12), (13), and
(15) introduced in Section 3, we obtain equations simi-
lar to (16) that determine the intensities of three cou-
pled waves,

(42)

As ω3 ~ ω1, |∆| ≥ |∆1 |, and d1 ~ d2 for atoms, we have
p ≥ 1, which results in strong coupling of the waves.

Let us analytically consider the case of low Raman
scattering field intensities, U ! 1, G, taking into
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account that p ≥ 1. In this approximation, Eqs. (42)
reduce to

(43)

(44)

Equation (43) is independent of fields participating
in stimulated Raman scattering and is the Bouguer–
Lambert law for two-photon absorption taking into
account its saturation (it seems, performed for the first
time). As opposed to one-photon absorption, for which
radiation intensity in the saturation mode is given by a
transcendental equation, the solution to (43) for two-
photon absorption is a simple algebraic function of
coordinates,

(45)

For a medium without population inversion (ζ > 0),
hyperbolic attenuation of intensity as a function of
length follows from (45) at x2 @ B2,

(46)

Equation (46) coincides with formula (12.8) from [6]
obtained for unsaturated absorption. Under the condi-
tions of strong two-photon absorption saturation, when
G2 @ 1/(4 + β2), intensity G linearly lowers as distance
increases,

(47)

Interestingly, two-photon absorption saturation
obeys the same attenuation law [Eq. (47)] as that for
unsaturated absorption (or absorption at small lengths)
[cf. (12.9) from [6]). Formally, this is explained by
large c1 values in (45) at both G0 @ 1 and G0 ! 1. The
transition from one of these limiting cases to the other
is accompanied by sign reversal of c1, which deter-
mines the transformation of (45) from (46) to (47). As
with stimulated Raman scattering, the physical mecha-
nism of this feature of two-photon absorption satura-
tion is related to radiation detuning from resonance
with the transition as a result of the dynamic Stark shift
of levels.
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In a medium with amplification (ζ < 0), intensity G
grows linearly as length increases, cf. (35),

(48)

The solution to (44) with the use of (45) is

(49)

Substituting Θ determined by (49) into (15) for
wave detuning δk = 0 gives the W2(ζ, G0, Φ, p, q, β, η)
function. According to (48), (49), and numerical calcu-
lation results, its special features are spatial oscillations
in media with population inversion, similar to those
shown in Fig. 5a but, as opposed to them, regular and
structurized nonmonotonic behavior depending on ζ,
Φ, and G0 at ζ > 0. In particular, at the ζ = ζext extremum
point, where

(50)

the dependence on Φ, β, and G0 can exhibit a peak or a
dip or, at this point, W2(ζ) can experience the largest
change. Such a transformation provides possibilities
for solving the inverse problem of quantitatively deter-
mining the parameters present in W2. For instance, if
we know the β and G0 values, we can use experimental
W2(ζ) dependences to measure the difference of wave
phases Φ and thereby perform atomic interferometry
[1]. The values to be determined can also be the relative
difference of dipole moments β [Eq. (39)] and dimen-
sionless intensity G0 at the entrance to the medium,
which depends on effective intraatomic parameters d1,
d2, and ∆1.

7. DISCUSSION AND CONCLUSIONS

The description of stimulated Raman scattering
closed by resonant radiation with the use of a simple
three-level atomic model and the complete system of
kinetic equations for the density matrix allowed us to
trace the action of saturation and nonlinear interference
of polarizations induced by three interacting fields. The
special feature of interference in the scheme of the ring
composition of fields is its dependence on the relation
of phases at the entrance to the medium.

The effects considered above can be observed by
recording the intensity of the Stokes or pumping wave
as a function of Raman interaction length (or of gas
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pressure in the absorbing cell) or by measuring the
transmission of radiation resonant to the Raman transi-
tion. The first variant corresponds to stimulated Raman
scattering experiments (the Stokes wave can then be
generated in the scattering process) and active Raman
scattering measurements, when three collinear waves
are present at the entrance to the medium and the inten-
sity of pumping can be low.

The most significant manifestations of interference
are length-periodic redistribution of energy between
pumping and Stokes radiation waves, that is, spatial
oscillations controlled by the difference of wave
phases, and medium blooming at the Raman transition
frequency. As stimulated Raman scattering is by its
nature a process nonlinear in field, the oscillations of
optical waves arise when they have low intensities.
Accordingly, the optimal conditions for the occurrence
of spatial oscillations are weak Raman scattering fields
(U ! 1, G) and resonant field intensity comparable with
saturating intensity, G ~ 1. This corresponds with usual
active Raman scattering spectroscopy conditions. Note
that oscillations can also be observed at low fields
G ! 1 if G @ U. As follows from (30), the G value is
limited from below by the oscillation period propor-
tional to 1/G, which should not exceed values of about
30 cm accessible to observations. Numerical estimates
given below show that precisely such conditions exist
in molecular gases.

An increase in the pumping field intensity sup-
presses oscillations and qualitatively changes the situa-
tion because of sequential generation of the higher
Stokes and anti-Stokes harmonics, which effectively
occurs at U ≥ 1. Equations (7), (16), (38), and (42)
should then be modified to take into account the higher
scattering harmonics in field representations (1) and
(36). In particular, the addition of the second Stokes
and first anti-Stokes harmonics complicates phase
dependences; namely, in addition to phase Φ (5), sev-
eral other combinations of initial field phases appear in
stationary equations (7). It follows that, under stimu-
lated Raman scattering saturation conditions (U ≥ 1),
the developed theory is only applicable at small Raman
interaction lengths ζ < U + 1/U, at which the higher
scattering harmonics are still absent. At the same time,
there are no limitations on field value G at U ! 1,
because this field then does not cause the generation of
the higher harmonics, and its role reduces to the initia-
tion of interference phenomena depending on the
summed phase of waves Φ.

The feasibility of observing spatial oscillations and
medium blooming will be discussed based on the
experiment [16] in which infrared radiation at the ν =
0  ν = 1 dipole-forbidden vibrational transition in
hydrogen was generated under the conditions of bihar-
monic pumping in a constant electric field. We will also
obtain estimates for the experimental conditions of
two-photon absorption by potassium vapor reported
in [17].
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
In [16], a CASR (coherent anti-Stokes Raman scat-
tering) spectrometer was used. Pumping at frequency
ω1 (λ1 = 532 nm) was effected using the second neody-
mium laser harmonic with a 12 mJ pulse energy and a
10 ns pulse width. A dye laser generated radiation at
frequency ω2 (λ2 = 683 nm) with a 1 mJ pulse energy;
this radiation provided Raman resonance ω1 – ω2 = ω21.
At the exit from the cell, into which focused collinear
beams with frequencies ω1 and ω2 were directed, coher-
ent radiation with frequency ω3 (λ3 = 2.4 µm) was
recorded. Voltage creating constant electric field Ec of 0
to 45 kV/cm was applied to capacitor plates in the cell
filled with hydrogen up to a 10 atm pressure.

For definiteness, set H2 pressure equal to 8 atm, Ec =
40 kV/cm, and the diameter of focused beams to 2 mm.
Dipole moment d3 induced by the constant field at the
ω21 transition can be estimated at d3 ≡ µ ≈ 10–22 CGS
units based on the results obtained in [18]. The colli-
sional width under these conditions is Γ = 0.014 cm–1

[18]. Infrared radiation power was not reported in [16];
we assume that this power at the entrance to the cell
was 25 kW. Radiation was generated in cesium vapor as
a result of stimulated Raman scattering [19]. In agree-
ment with the estimates made above, we put ∆ = 3 ×
103 cm–1 and d1, 2 = 1 D.

Using the accepted parameter values and (5) and
(12), we obtain the estimates p = 0.5 × 10–3, q = 1.3, Q =
240 cm–1, W1 = 0.05, W2 = 0.004, and G = 1.5 × 10–3.
As p ! 1, field G can be considered constant over
length (G = G0). Decreasing W1 and W2 to satisfy the
condition U ! G, we obtain case (D), Section 4. Equa-
tion (28) allows us to estimate of the period of spatial
oscillations, z0 ≈ 2πq1/2/GQ = 20 cm, which is a value
convenient for observations.

Next, let us estimate the period of oscillations
related to wave detuning δk (13). The δk value at a
8 atm hydrogen pressure is 0.6 cm–1 [13], and the
period z1 = 2π/δk = 10 cm. These estimates show that
spatial oscillations caused both by interference of
waves determined by their initial phases and by wave
mismatch can be observed under the specified condi-
tions. Note that the nonmonotonic behavior of the
Stokes harmonic intensity as a function of the Raman
interaction length and oscillations related to wave
detuning have been predicted in [17] based on the the-
ory developed for nonsaturating fields.

It follows from (28) and the W1, p, and G0 values
accepted above that the relative blooming value
G(z  ∞)/G0 equals 10%, which is quite a measur-
able value. The z∞ length of the attainment of this value
can be estimated at z∞ ~ (20–50)/Q ~ 0.1–0.2 cm; that
is, the blooming mode is established virtually as soon
as the waves enter the medium.

As mentioned in [16], molecules that can also be
studied using this experimental scheme are N2, CO2,
H2O, CO, etc.
SICS      Vol. 96      No. 2      2003
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The experimental situation in potassium vapor con-
sidered in [17] presupposes two-photon absorption of
radiation of wave length λ3 = 951 nm at the 4s–5s tran-
sition and stimulated Raman scattering with λ1 =
455 nm, λ2 = 10.6 µm, and frequency ω1 close to reso-
nance with the 4s–5p transition. Dye lasers, CO2 and
Ti3+ : Al2O3 lasers, and an LiNbO3 parametric light
oscillator [20] can be used as radiation sources. The
parameter values reported in [17] are I1 = 2.5 ×
107 W/cm2, I3 = 2.5 × 108 W/cm2, I2 = 10–6I1, where
Ij (j = 1, 2, 3) are radiation intensities at transitions 1–3,
and δk = 1.25 cm–1 at a 15 Torr potassium vapor pres-
sure, which corresponds to temperature 772 K [21].

Calculations of effective dipole moments d1 and d2
and frequency detunings ∆ and ∆1 are performed on the
assumption that the perturbing levels are the np potas-
sium levels with n = 2–8. Generalizing (2) to the situa-
tion with many perturbing states gives

(51)

where index j denotes np levels and indices 1 and 2
refer to the 4s and 5s states, respectively.

The d1j and d2j values in (51) were calculated from
the known oscillator strengths [22, 23] and the formulas
that determine their relation to dipole moments taking
into account the degeneracy of levels [24]. The level
positions were found from the Grothrian diagrams [25].
The calculated values were d1 = 13 D, d2 = 23 D, ∆ =
−35510 cm–1, and ∆1 = 7102 cm–1.

Set Γ = 2.8 × 109 s–1, which corresponds to a pres-
sure of 15 Torr and a broadening factor of 30 MHz/Torr.
From this value and the values specified above, we
obtain estimates for all the significant model parame-
ters, namely, β = –1.3, p = 8.8, q = 6.8, Q = 7.4 cm–1,
W1 = 0.4, and G = 36. It follows that strong coupling of
waves (p > 1) considered in Section 6 and strong two-
photon absorption saturation can be achieved in potas-
sium vapor. Extremum coordinate (50) then substan-
tially depends on phase Φ and varies from fractions of
a centimeter to dozens of centimeters.

The estimates made above are evidence of the feasi-
bility of experimentally studying the effects predicted
in this work in molecular gases and metal vapors. In our
opinion, such studies as a variant of active Raman scat-
tering spectroscopy based on the ring composition of
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fields and their phases offer promise for quantitative
determination of the dipole moments of forbidden and
allowed transitions and other parameters of atoms and
molecules and for studying the phase characteristics of
radiation. A comparison of experimental results with
theory variants in which a field interacts with the Raman
transition by the magnetodipole and electric quadrupole
mechanisms would allow conclusions about the relative
contributions of these interaction types to be drawn and
magnetic dipole and electric quadrupole moments,
which are rarely reported in the literature, to be mea-
sured. These interactions to a great extent determine rich
spectra of lines corresponding to weakly allowed micro-
wave and infrared transitions in molecules; as a rule,
these spectra are not taken into account in inverse molec-
ular spectroscopy problems [26].

A promising variant of handling the problem with
the ring composition of fields is the use of stimulated
Raman scattering at a dipole-allowed transition, whose
possibility was experimentally proved in [27] for the
example of potassium atoms. Fairly intense quasi-reso-
nant stimulated Raman scattering was generated as a
result of magnetodipole and electric quadrupole inter-
actions (predominantly quadrupole interactions). As
the Raman transition is allowed, it can easily be satu-
rated by external resonant radiation, which would allow
us to thoroughly trace the effects of nonlinear interfer-
ence of polarizations and saturation. Our main interest
is, however, the elucidation of the physical characteris-
tics of the interaction (absorption and scattering) of
high-power nonresonant radiation under conditions
when electric and magnetic field intensities of one light
wave simultaneously participate in these processes.
Such processes are described based on the field vector
potential. There are, however, contradictions not com-
pletely resolved for nonresonant fields interacting with
quantum systems modeled by a limited number of
states [28–30]. For instance, the cross sections of pro-
cesses calculated with the Hamiltonian of atom–field
interactions represented in terms of the vector potential,
on the one hand, and of field amplitudes and the multi-
pole expansion, on the other, are strongly different at
substantial detunings from the resonance. This funda-
mental problem has not been solved completely, and
conducting the corresponding experimental studies
along with testing different theoretical variants should
clarify the situation to a certain extent.
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Abstract—A new method is developed for the description of transfer and scattering of a time-dependent laser
pulse, which is based on a hierarchy of Bogoliubov–Born–Green–Kirkwood–Yvone (BBGKY) equations for
reduced density matrices. The systems of equations are obtained for the atomic and photon density matrices and
the correlation operator in the second-order Born approximation. The system of equations describes stimulated
and spontaneous scattering of laser radiation in an optically thin medium, where reabsorption of spontaneous
radiation can be neglected. The method proposed in the paper yields for the first time the correct expressions
for nonstationary resonance fluorescence spectra, which do not give the negative values for fluorescence inten-
sity. The expressions obtained for the resonance emission spectra coincide in limiting cases with those obtained
within the framework of the quantum regression theorem. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The spectra of resonance fluorescence excited by a
strong resonance laser wave have been extensively
studied for many years. These studies attract interest
because of a variety of interference and nonlinear
effects, which are important both for a general theory
and various applications.

The simplest phenomenon, in which, however, most
of these effects can be observed, is scattering of light by
a two-level atom. Weisskopf and Wigner [1, 2] were
among the first to consider this problem. They showed
that the fluorescence spectrum of a two-level system
excited by a weak monochromatic field is determined
by coherent Rayleigh scattering. In this case, a weak
intensity of pump radiation is determined by a small
ratio of the Rabi frequency of exciting radiation to the
radiative relaxation constant or to the detuning from the
resonance. In strong fields, spontaneous radiation in the
form of two side components is added to the central
coherent component of scattered radiation, resulting in
the well-known Mollow triplet [3]. It was shown in
paper [3] that the spectrum of light scattered by an
atomic system in the case of radiative relaxation has a
symmetric shape irrespective of the detuning of the
exciting field. Further studies [4, 5] showed that the
spectrum could become asymmetric due to collisions,
the center of gravity of the triplet being shifted to the
transition frequency. Note that the results obtained in
papers [3–5] were confirmed experimentally [6–8].
Further studies were developed in many directions and
were devoted to the investigation of scattering of bihar-
monic [9, 10] and polyharmonic [11] fields, the analysis
1063-7761/03/9602- $24.00 © 20222
of cooperative effects in a dense medium [12, 13], the
study of scattering of light in multilevel media [14], etc.

However, analysis of the transient spectra of reso-
nance fluorescence of a medium excited by a short laser
pulse and the study of the spectra taking into account
the influence of cooperative fields still involve substan-
tial difficulties. At present, there are two alternative
approaches for solving these problems. The first
approach, which is most popular [3], is based on the
quantum regression theorem (see, for example, review
[15]). According to this approach, the spectrum of a
random process is determined, under certain assump-
tions, with the help of the Fourier transform of the auto-
correlation function [15]:

(1)

where the angle brackets 〈…〉  denote the autocorrela-
tion function of two operators; and σ+(t) and σ–(t) are
the creation and annihilation operators, respectively, for
an atomic system in the Heisenberg representation. The
explicit form of the autocorrelation function is deter-
mined with the help of the quantum regression theorem.
This theorem was first used for the calculation of spon-
taneous emission spectra by Lax [16]. It is necessary to
discuss in detail the conditions and assumptions at
which this approach can be used [15]. They are as fol-
lows: (i) the system under study should be Mark-
ovian—in other words, further behavior of the system
is determined by its current state; (ii) the system is sta-
tionary, i.e., invariant with respect to the time shift, so
that the transition probability should not depend explic-
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itly on time; (iii) the system is linear—in other words,
a response of the system subjected to an external force
should be linear in this force; (iv) the system should be
reversible in time, at least from the macroscopic point
of view; (v) a random quantity fluctuates near the equi-
librium state; (vi) individual variations in random quan-
tities are sufficiently small for the Fokker–Planck con-
dition to be satisfied; and (vii) fluctuations of a random
quantity are caused by the action of a random force (the
Langevin approximation).

Further investigations showed that some restrictions
imposed on the system properties, at which the
approach based on the Fourier transform of the autocor-
relation function is valid, can be weakened. However,
the essence of these restrictions did not change.
Namely, the system should be Markovian and quasi-
stationary. In other words, the spectrum of a random
process can be determined at times that are much longer
than the time of the system relaxation to the equilibrium
state, and a change in the action of external forces also
should occur during a time that is much longer than the
relaxation time. The system should be quasi-linear,
when the smallness of a nonlinear component allows
one to seek the solution in the form of a series using
perturbation theory.

Note that these conditions are not satisfied, as a rule,
for most problems of quantum optics. The duration of
laser pulses is substantially shorter than the times of
radiative relaxation and collision decay. Most modern
lasers operate in the range of parameters N @ 1, where

N = n  is the number of carriers in a volume on the

order of , λL = 2πÂL is the wavelength of laser radi-
ation, and n is the concentration. In this case, coopera-
tive fields play a substantial role, which violates the lin-
earity of the system. When high-power femtosecond
lasers are used, nonlinear dynamic relaxation can also
occur [17], during which the system is no longer Mark-
ovian. The nonlinear relaxation of femtosecond pulses
in semiconductors was studied theoretically and exper-
imentally in papers [18–20].

Note that the transient spectra of resonance fluores-
cence were analyzed with the help of the quantum
regression theorem using the expression for the so-
called “physical spectrum” [22–27]. It was obtained in
paper [22] and depends on a finite width of a detector.
Note that the authors of paper [23] understood the
drawback of this approach.

Note that the calculation of spontaneous emission
spectra with the help of quantum regression theorems
also involves purely phenomenological problems. The
spectra are analyzed “from top to bottom”: first, we
postulate the nature of the process based on some phe-
nomenological or other considerations (in our case, the
radiative relaxation of atomic populations) and then
calculate the spectrum of spontaneously emitted pho-
tons from the dynamics of this process. Within the

ÂL
3

ÂL
3
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framework of this approach, the relationship between
the initial Hamiltonian, describing the interaction of an
atom with a quantized radiation field, and phenomeno-
logical equations for atomic populations and radiative
relaxation constants is not obvious.

An alternative approach to the analysis of resonance
fluorescence spectra is the solution of equations for the
Scully–Lamb atom–field density matrix [29]. This
method was first used by Baklanov [30] for calculating
fluorescence spectra in a strong field. The method was
further developed by Sargent et al. In papers devoted to
the multiwave interaction [31–33], we also used this
method for studying reabsorption of spontaneous emis-
sion [34], nonlinear dynamic relaxation [35], and anal-
ysis of quantum interference [36, 37]. This method has
a substantial advantage over the quantum regression
theorem because it allows one to obtain simultaneously
radiative relaxation constants and fluorescence spectra
without using any additional assumptions [38]. How-
ever, a direct application of the method of the atom–
field density matrix for analysis of resonance fluores-
cence spectra excited by short laser pulses leads to a
paradoxical result according to which there exist spec-
tral regions where the fluorescence intensity is nega-
tive. Note also that the introduction of a cooperative
field requires the use of a phenomenological procedure.

In this paper, we attempt to eliminate the contradic-
tions appearing in the study of transient spectra of res-
onance fluorescence and to develop a unified method
describing transient scattering of resonance radiation in
a two-level system. We solved this problem by using a
hierarchy of statistical Bogoliubov–Born–Green–Kirk-
wood–Yvone (BBGKY) equations for reduced density
matrices [39, 40] with the help of the apparatus of
coherent states [41–43]. Note that a hierarchy of statis-
tical Bogoliubov equations was used in [39] (see also
references therein) in the study of Bloch equations for
semiconductor lasers and analysis of collisions in the
field of a monochromatic wave. The Bogoliubov chain
was also used in conjunction with the Glauber–Sudars-
han representation for deriving the equation for a field
density matrix in the problem of micromaser genera-
tion [44].

The paper consists of seven main sections. In Sec-
tion 2, we describe and substantiate the approximation
used in the paper. In Section 3, nonstationary stimu-
lated (Rayleigh) scattering of radiation is analyzed and
its relation with cooperative fields is studied. Section 4
is devoted to the derivation of equations describing non-
stationary spontaneous emission spectra. In Section 5,
we discuss the influence of the measuring process and
boundary conditions on the spectral properties. In Sec-
tion 6, we perform a passage to the limit from the
obtained equations, describing transient spectra, to the
results obtained with the help of the autocorrelation
function. Section 7 is devoted to analysis of the tran-
sient spectra of resonance fluorescence excited by a cw
field with a phase interruption and to a comparison of
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the results with theoretical and experimental studies
[26, 27].

2. THE APPROXIMATION USED

Consider the interaction of a resonance electromag-
netic (laser) wave with a medium of nondegenerate
two-level atoms, which is resonant with the 1  2
transition (Fig. 1). We use in the paper the following
assumptions.

The exciting field is nonmonochromatic, and the
envelope of a laser pulse is nonstationary in time. We
assume also that the rate of the envelope variation is
rather low, ωLtp @ 1 (where ωL is the carrier frequency
of the laser pulse and tp is the characteristic duration of
the pulse) and that the rotating-wave and resonance
approximations are valid. We used a unified quantum
description of the exciting field and scattered radiation.
We did not consider polarization characteristics. All the
fields are treated as scalar quantities, and polarization
variables are omitted in the equations.

We use a collisionless approximation, assuming,
however, that the density of atoms in the medium is
arbitrary. We will also consider the region of parame-
ters N @ 1, when cooperative fields play a substantial
role. The interaction of an electromagnetic wave with
an ensemble of two-level atoms will be analyzed using
a lumped model. We assume also that N atoms located

in a volume on the order of  interact with the electro-
magnetic field without the phase shift caused by the
delay. Within the framework of this approximation, we
neglect the longitudinal dipole–dipole interaction
because the energy of this interaction in the lumped
model is infinite. Note that the contribution of the
dipole–dipole interaction results in the collision decay
of atomic polarization, which we assume weak, and
also in the shift of atomic levels [28], which is insignif-
icant for our study.

The Hamiltonian of the system describing in the
dipole approximation the interaction of N atoms

ÂL
3

∆21

ωL
ω21

|2〉

|1〉

Fig. 1. Energy level diagram of a two-level atom.
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located in a volume on the order of  with the laser
field has the form (in units of 1/")

(2)

Here, Ha is the Hamiltonian of the unperturbed atomic
system, where ω21 is the transition frequency, and |j 〉
and 〈 j | (j = 1, 2) are the projection operators of the cor-
responding state; Hf is the Hamiltonian of the quantized

radiation field, where  and  are the creation and
annihilation photon operators, and ωk is the frequency
of photons with the wave vector k. Hereafter, the sym-
bols “*” and “+” denote complex and Hermitian conju-
gation, respectively.

The operator Vaf describes the interaction of an atom
with a mode of the quantized field, where

is the coupling constant of the interaction, where ||µ21 ||
is the transition dipole moment and W is the quantiza-
tion volume.

Let us discuss in detail the quantum representation
of the laser field that we use in the paper. Within the
framework of classical description, the strength of the
field of a time-dependent laser pulse has the form

(3)

where P(t, r) is the pulse envelope and θ(t) is the phase
of the laser field. By expanding E(t, r) in (3) in the field
modes, we obtain

(4)

where |Rk | and θk determine the amplitude and phase of
the field in the k mode. The quantum analog of such a
representation is well known [42]:
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H Ha

N

∑ H f

k

∑ Vaf ,
k

∑
N

∑+ +=

Ha ω21 2| 〉 2〈 | , H f ωkâk
+âk,= =

Vaf igk 2| 〉 1〈 | âkeik r⋅ 1| 〉 2〈 | âk
+e ik r⋅––( ).=

âk
+ âk

gk µ21
2πωk

"W
-------------=

E t r,( ) 2P t r,( ) ωLt θ t( )–( ),sin=

E t r,( ) 2 Rk ωkt θk k r⋅––( ),sin
k

∑=

Rk P t r,( )

W

∫∫=

× i ωL ωk–( )t θ t( )– k r⋅+( )[ ] drdt,exp

θk
Rk Rk*+

2 Rk
-------------------

 
 
 

,arccos=

E t r,( ) αk Êk αk〈 〉
k

∑=
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(5)

The density matrix  of the photon field of laser radi-
ation has the form

where |αk〉  is the coherent state. Assuming that atoms of
the medium and laser radiation do not interact with
each other and are not correlated at the initial instant,
the equation of motion for the atom–field density
matrix can be written in the form

(6)

where ρa is the density matrix for an atom.

3. RAYLEIGH SCATTERING 
AND COOPERATIVE FIELDS

In this section, we consider stimulated Rayleigh
scattering and show its relation to cooperative fields.
For this purpose, it is convenient for the resonance
approximation using the transformation

(7)

where I is the unit operator and ∆21 = ω21 – ωL is the
detuning of the laser wave from the resonance. In
Appendix A, we present the properties of the creation

and annihilation operators  and , respectively, and
of the operators of a coherent state D(αk) and D+(αk),
which are used many times below. Assuming that νk =
ωk – ωL and taking into account (A.5), Eq. (6) can be
written in the form

=  2
2πωk

"W
------------- αk ωkt θk k r⋅––( ),sin

k

∑

Êk i
2πωk

"W
-------------=

× âk –iωkt ik r⋅+( )exp âk
+ iωkt ik r⋅–( )exp–( ),

Rk
2πωk

"W
-------------αk.=

ρ f
L

ρ f
L αk| 〉 α k〈 |

k

∏ ,=

i
dρ
dt
------ H ρ,[ ] , ρ 0( ) ρa 0( ) αk| 〉 α k〈 | ,

k

∏
N

∏= =

ρ i ωL 2| 〉 2〈 | 1/2( )∆21I ωLâk
+âk+ +( )t–( )ρ 1( )exp=

× i ωL 2| 〉 2〈 | 1/2( )∆21I ωLâk
+âk+ +( )t( ),exp

âk
+ âk

i
dρ 1( )

dt
----------- H 1( ) ρ 1( ),[ ] ,=

ρ 1( ) 0( ) ρa 0( )
N

∏ αk| 〉 α k〈 | ,
k

∏=
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(8)

At the first stage, we will obtain the operator of interac-
tion of two-level atoms with the laser field. The main
idea of this transformation is to exclude the laser field
from the initial conditions for the atom–field density
matrix. The density matrix, obtained by solving the
equation with a changed Hamiltonian, will describe a
state of the system, which will contain only the atoms
of the medium and the field of scattered radiation. The
required transformation has the explicit form

(9)

By using relations (A.5), the Hamiltonian of the system
can be written in the form

(10)

where the operator Va describes the interaction of a two-
level atom with the laser field:

(11)

Hamiltonian (10) has the form of a usual Hamilto-
nian [38, 42] for the interaction of a laser field with a

H 1( ) Ha
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two-level system when the laser field is described clas-
sically. Note that the field of quantized radiation in
Eq. (10) in a vacuum state at the initial instant of time.
Therefore, the field density matrix obtained by solving
Eq. (10) and taking the trace over atomic variables will
be the density matrix of scattered radiation. Note, how-
ever, that this matrix is not a density matrix if the direc-
tion of observation is close to the propagation axis of a
laser beam. This matrix can be calculated by perform-
ing a transformation inverse to (9).

At the next stage, we will analyze the equation for
atom–field density matrix (10) using a hierarchy of
BBGKY equations [39] for reduced density matrices.
In this section, we will use the Hartree–Fock approxi-
mation, which neglects the second- and higher order
correlations [39]. By using such an approximation of
total Eqs. (10), we neglect the radiative decay of
excited states of the atoms and reabsorption of sponta-
neous emission and analyze only stimulated (Rayleigh)
scattering of radiation. Taking into account Hamilto-
nian H(2), the system of BBGKY equations, consisting
of two equations for the atomic and photon density
matrices, has the form

(12)

Here, the square brackets […] f and […]a are the traces
of the commutators for photon and atomic variables,
respectively; ρa and ρf = ρf (k) are the one-particle den-
sity matrices for a two-level atom and a mode of the
photon field, respectively. The initial conditions are
kept invariable during the following transformations,
unless otherwise specified.

Note that a hierarchy of BBGKY equations in the
approximation used here consists of the Bloch equation
for a two-level atom in the field of a laser wave with the
term [Vaf, ρaρf] f, which takes into account the influence
of scattered radiation on the atom, and the wave equa-
tion for the field written in the Schrödinger representa-
tion. The component [Vaf, ρaρf]a of the equation repre-
sents a quantum description of the medium polarization
induced by the laser field.

At the next step, using two successive transforma-
tions, we obtain in explicit form the solution of the
equation for the field density matrix. For this purpose,
we pass to the wave representation in the equation for
the field density matrix:

By changing variables, we can write the system of

i
dρa

dt
-------- Ha

r Va+ ρa,[ ]– Vaf ρaρ f,[ ] f– 0,=

i
dρ f

dt
--------- H f

r ρ f,[ ]– Vaf ρaρ f,[ ] a– 0,=

ρa 0( ) ρa
0, ρ f 0( ) 0k| 〉 0k〈 | .= =

ρ f –iH f
r t( )ρ f

1( ) iH f
r t( ).expexp=
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equations (12) in the form

(13)

Let us write explicitly the operator describing the polar-
ization of the medium:

(14)

where (ρa)12 and (ρa)21 are the nondiagonal elements of
the atomic density matrix. Because we use the lumped
model, the summation over N should be performed by
assuming that the radius vector r of atoms is equal to a

constant for the entire volume on the order of . Note
that, neglecting fluctuations in the medium density in
the dipole approximation, this assumption is exactly
valid. Taking this into account, we can represent the
polarization operator of the medium in the form

(15)

It follows from expression (15) that the operator expo-
nential exp(–iPf) is a coherent state [43] and is
described by the expression

(16)

In this case, the operator relations

(17)

are satisfied, which are analogous to (A.3).
By using equalities (17) and performing the trans-

formation

i
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Ṽaf igk 2| 〉 1〈 | âk –iνkt ik r⋅+( )exp[=

– 1| 〉 2〈 | âk
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+ iνkt ik r⋅–( ) ρ f
1( ),exp ] ,
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we reduce the system (13) to the form

(18)

By performing the summation over field variables (see
Appendix B), we can write the expression

 in the form

(19)

where γ is the radiative relaxation constant (see Appen-

dix B). The operator  describes the total contribution
of radiation scattered by atoms of the medium to the
equation of motion for atomic variables. Note that the
explicit form of the functions appearing in atomic pro-

jection operators in the operator  of the cooperative
field is completely determined by the method of intro-
ducing the medium polarization in the model. However,

the general structure of the operator  is preserved for
any method of polarization introduction and is deter-
mined by the fact that the polarization operator Pf is
linear in photon operators. Within the framework of the
lumped model that we use here, the physical meaning
of the operator of the cooperative field can be inter-
preted as follows. An atom located in a laser field pro-
duces an additional field, which is caused by the
induced polarization. In turn, the cooperative field is
determined as a direct sum of polarization fields pro-
duced by individual atoms. Operator (19) describes
the Lorentz field. Note that operator (19) was used in
paper [46] in the classical approximation. A similar
operator was obtained in paper [47] in the Heisenberg
representation by using the adiabatic exclusion of field
variables.

Note that operator  does not describe the Dicke
superradiance [48]. The contribution of this process
will be substantial only when all the dipole moments of

the atoms located in the volume on the order of  are
strongly correlated. This imposes the condition on the
possible value of the transverse relaxation constant,
γ2 ! Nγ, at which superradiance can be observed [49].
Note that the collision approximation used in our
paper is much weaker (γ2 ! γ).

i
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Using the expression for the operator of the cooper-
ative field and taking into account that

we have

so that system (18) can be written in the form

(20)

By performing transformations that are inverse to the
changes of variables, which we used in passing from
Eq. (12) to (20), and taking into account the properties
of the operators of the coherent state (A.3) and (A.5),
we can represent the density matrix of the photon field
of the observed radiation in the form

(21)

By using the transformation

we finally obtain

(22)

We can readily find from (22) the average value of the
field strength [42]
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In the last part of this section, we derive the equations
for stimulated scattering of radiation in the (t, r) space.
Note that, because we use the lumped model and dipole
approximation, the field density matrix in Eqs. (20) has

the region of definition on the order of . Therefore,
it is necessary to consider the dependence of the field
density matrix on the spatial coordinates ρf(t, r). Note
that the equation for the field density matrix written in
Eq. (18) represents the transfer equation for an electro-
magnetic field in vacuum, the photon-field density
matrix displaced by ndr having the form

(24)

where n = k/|k |, c is the speed of light, and 
describes the field that is external with respect to the
medium volume under study. By performing successive
displacements (ndr0, ndr1, …, ndri) in the space, we
obtain

(25)

where i is the iteration step. Taking into account that a
product of coherent states is the coherent state of their
sum multiplied by some phase (A.3) and assuming that
ndri  0, we finally obtain the field density matrix

(26)

Here, L = |r – r0 |, where r0 is the coordinate of intersec-
tion of a beam emerging from the point r and directed
along n with the boundary of the excited part of a two-
level medium. By using the expression for the field den-
sity matrix (26), we can write the system of equations,
describing stimulated scattering of radiation in the (t, r)
space in the form

(27)
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Frequency 
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 was substituted into expression (28)
because we used the resonance approximation in this
equation.

Let us analyze the structure of Eqs. (27) and (28).
Expression (28) for the electromagnetic field consists
of two separated components. The first component of
the field appearing at 

 

α

 

k

 

 describes the transfer and dif-
fraction of the laser field in vacuum. The second com-

ponent containing  has a more complicated structure
and describes the field of stimulated scattered radiation.
Note that expression (28) for the field at a given point
describes the contribution of scattered radiation from
the entire light cone 

 

r

 

 – 

 

ct

 

 < 0, including the field scat-
tered backward or to the side with respect to the direc-
tion of propagation of the laser beam. The Hamiltonian
of equation (27) for the density matrix also can be
divided into two main components. The first compo-

nent [  + 

 

V

 

a

 

, 

 

ρ

 

a

 

] is linear in atomic transitions and
corresponds to the classical Bloch equations for a two-
level atom in the field of the laser wave. The second

component [ , 

 

ρ

 

a

 

] describes the contribution of scat-
tered (cooperative) radiation to the acting field. Unlike
the first component, it is quadratic in atomic variables,
and this component is responsible for the appearance of
bistability in the system under study.

In concluding this section, we discuss briefly the use
of the term “stimulated Rayleigh (elastic) component
of scattered radiation” as applied to the process consid-
ered in this part of the paper. When the efficiency of a
process is proportional to the number of photons, the
process is usually called stimulated; on the other hand,
the Rayleigh or elastic component corresponds to scat-
tering of radiation without the frequency change. In our
case, these concepts are peculiarly mixed, because both
processes are described by the same equation (28) in
different limiting cases: stimulated scattering corre-
sponds to 
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t

 

) 

 

!

 

 

 

γ

 

 or 

 

R

 

(

 

t

 

) 

 

!

 

 

 

∆

 

, while Rayleigh scatter-
ing corresponds to 

 

t

 

  

 

∞

 

. In this case, in the satura-
tion regime upon excitation by short laser pulses, the
scattered radiation will be neither stimulated nor elastic
in the direct meaning of these terms. Its intensity is lim-
ited from above by the quantity 

 

|

 

N

 

γ

 

/2

 

ρ

 

21

 

|
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, and it will
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p
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contain a multicomponent structure. Below, we will use
the term “stimulated emission,” which is, in our opin-
ion, more appropriate and points out the fact that this
component of scattered radiation is caused by the
medium polarization induced by the laser field. Note
that scattered radiation of this type will exist after the
shutdown of the laser field during the relaxation of the
dipole moment of the medium to the equilibrium state.

4. RESONANCE FLUORESCENCE

In this section, we add to Eq. (12) the processes
describing the spontaneous decay of the upper level and
obtain the expressions describing the resonance fluo-
rescence spectrum of a two-level medium. As in Sec-
tion 3, we will use a hierarchy of the BBGKY equations
to obtain the corresponding equations [39]. We will
assume that the intensity of spontaneous emission is
weak and will neglect reabsorption of spontaneous
emission when analyzing the equations. Such an
approach has two substantial drawbacks. The first one
is that the total energy will not be conserved in the sys-
tem of equations obtained [39]. The second disadvan-
tage is that resonance fluorescence is considered as “a
post-process” and does not contribute to the constitu-
tive equations for a two-level medium, which may play
a substantial role in the analysis of radiation transfer in
an optically dense medium. However, these effects can
be neglected in optically thin media.

To obtain the expressions for the operator of the
radiative decay and spectrum of resonance fluores-
cence, we will use a hierarchy of the BBGKY equa-
tions, third-correlation inclusive and neglecting higher
order correlations. In this case, the equation for the sec-
ond correlation will give the spectrum of spontaneous
emission and the radiative decay rate in the equation for
the atomic density matrix. The equation for the third
correlation will give the radiative decay rate in the
equation for the second correlation, which will deter-
mine the radiative linewidth.

By using expression (10) for the Hamiltonian
obtained in Section 3, we will represent the system of
equations in the form

i
dρa

dt
-------- Ha

r Va+ ρa,[ ] Va f '' ρaρ f '',[ ] f ''–– Va f '' ga f '',[ ] f '' ,=

i
dρ f

dt
--------- H f

r ρ f,[ ] Va'' f ρa''ρ f,[ ] a''–– Va'' f ga'' f,[ ] a'' ,=

i
dgaf

dt
---------- Ha

r Va H f
r Vaf+ + + gaf,[ ]–

– Va'' f ρa''gaf,[ ] a'' Va f '' ρ f ''gaf,[ ] f ''–

=  Vaf ρaρ f,[ ] Va f '' ρag f f '',[ ] f '' Va'' f ρ f gaa'',[ ] a''+ +

+ Va f '' gaf f '',[ ] f '' Va'' f gaa'' f,[ ] a'' ,+
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(29)

Here, as in (12), ρa and ρf = ρf(k) are the one-particle
density matrices for a two-level atom and a mode of the
phonon field, respectively; gaf, gff ', and gaa' are the two-
particle operators; gaff ' and gaa'f are the three-particle
“correlation operators” of correlations of the corre-
sponding variables; and O(4) are the fourth-order terms
in ρ, which will be neglected. Taking into account that
at the zero instant of time the atoms of the medium and
the laser field are uncorrelated, the initial conditions
can be written in the form

(30)

Here, “0” denotes the zero operator of the appropriate
dimensionality. After the transformations of the system
of equations (29), repeating the changes of variables (17)
and (18), which we used in the derivation of the opera-
tor of the cooperative field, the system of Eqs. (29) will
take the form

i
dg f f '

dt
----------- H f

r H f '
r+ g f f ',[ ]– Va'' f Va'' f '+ ρa''g f f ',[ ] a''–

=  Va'' f ρ f ga'' f ',[ ] a'' Va'' f ' ρ f 'ga'' f,[ ] a''+

+ Va'' f Va'' f '+ ga'' f f ',[ ] a'' ,

i
dgaa'

dt
----------- Ha

r Ha'
r Va Va'+ + + gaa',[ ]–

– Va f '' Va' f ''+ ρ f ''gaa',[ ] f '' Va f '' ρaga' f '',[ ] f ''=

+ Va' f '' ρa'ga f '',[ ] f '' Va f '' Va' f ''+ gaa' f '',[ ] f '' ,+

i
dgaf f '

dt
------------- Ha

r Va H f
r H f '

r Vaf Va f '+ + + + + gaf f ',[ ]–

– Va'' f Va'' f '+ ρa''gaf f ',[ ] a'' ,

Va f '' ρ f ''gaf f ',[ ] f ''  = Vaf Va f '+ ρaρ f ρ f',[ ] Va f ' ρ f' gaf,[ ]+

+ Vaf ρ f ga f ',[ ] Vaf Va f '+ ρag f f ',[ ] O 4( ),+ +

i
dgaa' f

dt
------------- Ha

r Va Ha'
r Va' H f

r Vaf Va' f+ + + + + + gaa' f,[ ]–

– Va f '' Va' f ''+ ρ f ''gaa' f,[ ] f ''    V a '' f ρ a '' g aa ' f ,[ ] 
a

 
'' –

=  Vaf Va' f+ ρaρa'ρ f,[ ] Va' f ρa' gaf,[ ]+

+ Vaf ρaga' f,[ ] Vaf Va' f+ ρ f gaa',[ ] O 4( ).+ +

ρa ρa 0( ), ρ f 0k| 〉 0k〈 | ,= =

gaf 0, g f f ' 0, gaa' 0,= = =

gaf f ' 0, gaa' f 0.= =

i
dρa

dt
-------- Ha

r Va Va
p+ + ρa,[ ]– Va f '' ρaρ f '',[ ] f ''–

=  Va f '' Va f ''
p+ ga f '',[ ] f ''

,
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(31)

The initial conditions also have form (30). By solving
system (31), we will neglect the terms that are propor-

tional to gk , Ngk , , and (Ngk)2 and the higher power

i
dρ f

dt
--------- H f

r ρ f,[ ]– Va'' f Va'' f
p+ ga'' f,[ ] a''

,=

i
dgaf

dt
---------- Ha

r Va Va
p H f

r Vaf+ + + + gaf,[ ]–

– Va f '' ρ f ''gaf,[ ] f '' Vaf Vaf
p+ ρaρ f,[ ]=

+ Va f '' Va f ''
p+ ρag f f '',[ ] f ''

Va'' f Va'' f
p+ ρ f gaa'',[ ] a''

+

+ Va f '' Va f ''
p+ gaf f '',[ ] f ''

Va'' f Va'' f
p+ gaa'' f,[ ] a''

,+

i
dg f f '

dt
----------- H f

r H f '
r+ g f f ',[ ]– Va'' f Va'' f

p+ ρ f ga'' f ',[ ] a''
=

+ Va'' f ' Va'' f '
p+ ρ f 'ga'' f,[ ] a''

+ Va'' f Va'' f
p Va'' f ' Va'' f '

p+ + + ga'' ff ',[ ] a''
,

i
dgaa'

dt
----------- Ha

r Ha'
r Va Va

p Va' Va'
p+ + + + + gaa',[ ]–

– Va f '' Va' f ''+ ρ f ''gaa',[ ] f '' Va f '' Va f ''
p+ ρaga' f '',[ ] f ''

=

+ Va' f '' Va' f ''
p+ ρa'ga f '',[ ] f ''

+ Va f '' Va f ''
p Va' f '' Va' f ''

p+ + + gaa' f '',[ ] f ''
,

i
dgaf f '

dt
------------- Ha

r Va Va
p H f

r H f '
r+ + + +[–

+ Vaf Vaf
p Va f ' Va f '

p+ + + gaf f ' ] Va f '' ρ f ''gaf f ',[ ] f ''–,

=  Vaf Vaf
p Va f ' Va f '

p+ + + ρaρ f ρ f ',[ ]

+ Va f ' Va f '
p+ ρ f 'gaf,[ ] Vaf Vaf

p+ ρ f ga f ',[ ]+

+ Vaf Vaf
p Va f ' Va f '

p+ + + ρag f f ',[ ] O 4( ),+

i
dgaa' f

dt
------------- Ha

r Va Va
p Ha'

r Va' Va'
p H f

r+ + + + + +[–

+ Vaf Va' f+ gaa' f, ] Va f '' Va' f ''+ ρ f ''gaa' f,[ ] f ''–

=  Vaf Vaf
p Va' f Va' f

p+ + + ρaρa'ρ f,[ ]

+ Va' f Va' f
p+ ρa'gaf,[ ] Vaf Vaf

p+ ρaga' f,[ ]+

+ Vaf Vaf
p Va' f Va' f

p+ + + ρ f gaa',[ ] O 4( ),+

Vaf
p igk 2| 〉 1〈 |βk t( )eik r⋅ 1| 〉 2〈 |βk

* t( )e–ik r⋅–( ).=

gk
2
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terms, but will retain the terms of the type ,
because the former quantities are inversely proportional
to the quantization volume W and, when the gas density

is not too high, they are much smaller than γ ∝  .
Therefore, the terms in the left-hand sides of the equa-

tions containing the operators Vaf and  can be omit-
ted. Because we are solving system (31) by neglecting
reabsorption of spontaneous emission, the contribution

[Va''f + , ga''f]a'' from the right-hand side of the equa-
tion should be neglected in solving the equation for the
field density matrix, which gives ρf (t) ≡ |0k〉〈 0k |. As a
result, we can omit in the right-hand sides of all the
equations for the correlation operators gaf, gff ', gaa', gaa'f ,
and gaff ' the terms acting on the field density matrix ρf ,
whose contributions to the equations for ρa , ρf , and gaf

are either odd with respect to the corresponding creation

and annihilation operators  and  or contain only

components that are proportional to ( )2 and ( )2.

Our analysis showed that, under such assumptions,
system (31) can be considerably simplified and written
in the form

(32)

Note that system of Eqs. (32) has the form of a hierar-
chy of the BBGKY equations obtained within the
framework of the second-order generalized Born
approximation [39]. By analyzing the kinetic equations
of a plasma within the framework of this approximation,
the non-Markovian Landau equation can be obtained
with self-energy correction term [39].

By formally solving the equations for gaff '' and gaf ,
and substituting the solutions into equations for gaf and
ρa , respectively, we can obtain, using the approach sim-
ilar to the Wigner–Weisskopf procedure, the radiative
relaxation operator in a classical form (see Appendix C).
In this case, we neglected the effects of nonlinear
dynamic relaxation, which are determined by the ratio
of the Rabi frequency to the transition frequency
2R/ω21 [17, 35]. Note that nonlinear dynamic relaxation
can play a substantial role upon optical transitions

gk
2

k∑

gk
2

k∑
Vaf

p

Va'' f
p

âk âk
+

âk âk
+

i
dρa

dt
-------- Ha

r Va Va
p+ + ρa,[ ]– Va f '' ga f '',[ ] f ''= ,

i
dρ f

dt
--------- H f

r ρ f,[ ]– Va'' f ga'' f,[ ] a'' ,=

i
dgaf

dt
---------- Ha

r Va Va
p H f

r+ + + gaf,[ ]–

=  Vaf ρaρ f,[ ] Va f '' gaf f '',[ ] f '' ,+

i
dgaf f ''

dt
-------------- Ha

r Va Va
p H f

r H f ''+ + + + gaf f '',[ ]–

=  Va f '' ρ f ''gaf,[ ] .
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when the laser power density is on the order of
10 GW/cm2. The two-level approximation is not valid
under such conditions, and the model considered in the
paper cannot be used. By using the results obtained
in Appendix B, we can represent the system of equa-
tions (32) in the form

(33)

where ΓR[…] is the radiative relaxation operator [see
Appendix C (C.11)]. System of Eqs. (33) is Markovian.
This is explained by the fact that we have neglected
nonlinear dynamic relaxation, which led to the inde-
pendence of the relaxation operator of the prehistory of
the system development.

Assuming that the intensity of spontaneous emis-
sion is small, we can show that system of Eqs. (33)
includes the system of equations for the atom–field den-
sity matrix as a particular case [30, 38]. Indeed, because
we assume that the intensity of spontaneous emission is
small and neglect reabsorption of spontaneous emis-
sion, the resonance fluorescence spectra will be deter-
mined by the element ρf (1k, 1k) of the field density
matrix (where 1k is a state with one photon in a mode).
In this case, we should set ρf ≡ |0k〉〈 0k| in the right-hand
sides of equations for the field density matrix and the
correlation operator. Taking this into account, the
explicit form of the equation for ρf (1k, 1k) can be con-
siderably simplified by excluding the photon creation
and annihilation operators from the equation for the
correlation operator gaf and dividing it into two equa-
tions, as shown below. System (33) takes the form

i
dρa

dt
-------- Ha

r Va Va
p+ + ρa,[ ]– Γ R ρa[ ] ,=

i
dρ f

dt
--------- H f

r ρ f,[ ]– Va'' f ga'' f,[ ] a'' ,=

i
dgaf

dt
---------- Ha

r Va Va
p H f

r+ + + gaf,[ ]–

=  Vaf ρaρ f,[ ] Γ R gaf[ ] ,+

Γ R X[ ]
=  –iγ 2| 〉 2〈 |X X 2| 〉 2〈 | 2 1| 〉 2〈 |X 2| 〉 1〈 |–+( ),

i
dρa

dt
-------- Ha

r Va Va
p+ + ρa,[ ]– Γ R ρa[ ]– 0,=

i
dρ f 1k 1k,( )

dt
--------------------------- iNgk

2 F ν k t, ,( ),–=

i
dgk

+( )

dt
----------- Ha

r Va Va
p+ + gk

+( ),[ ]–

+ νkgk
+( ) Γ R gk

+( )[ ]– iρa 2| 〉 1〈 | ,–=
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The third and fourth equations of system (34) are
almost completely similar to the well-known equation
for the atom–field density matrix and the conjugated
equation, which were obtained by a different method
and were used in papers [30, 35, 38] to analyze the sta-
tionary spectra of resonance fluorescence and the func-
tion of reabsorption. The main formal difference in the
form of these equations is related to the consideration

of the contribution ,  from cooper-
ative fields. Note, however, that final results obtained
by solving these equations will differ substantially from
the results obtained in papers [30, 38]. This is explained
by two reasons. First, by the necessity of taking into
account the stimulated component of scattered radia-
tion and, second, by the definition of the quantity
treated as the fluorescence spectrum. The latter aspect
is related to the detection process, which will be dis-
cussed in the next section.

Note that the field density matrix, which was
obtained by solving (33), generally speaking, is not the
density matrix of observed radiation. When passing
from system of Eqs. (29) to (31), we excluded in fact
the field of stimulated scattered radiation having made
the change of variables. However, this field should be
taken into account in the analysis of the experimental
spectra. Taking into account the approximations used,
the equations for the nonzero components ρf (0k, 0k),
ρf (1k, 1k) of the photon matrix will take the form

(35)

By formally integrating the equation for ρf (1k, 1k), we
obtain

(36)

By using inverse transformations described in the
previous section, we can represent the observed field

i
dgk

–( )

dt
----------- Ha

r Va Va
p+ + gk

–( ),[ ]–

– νkgk
–( ) Γ R gk

–( )[ ]– i 1| 〉 2〈 |ρa,–=

ρa 0( ) ρa
0, ρ f 0( ) 0k| 〉 0k〈 | ,= =

g +( ) 3( ) 0( ) 0, g –( ) 3( ) 0( ) 0,= =

g +( ) 1k〈 |gaf 0k| 〉 , g –( ) 0k〈 |gaf 1k| 〉 ,= =

F νk k t, ,( ) 2〈 |gk
+( ) 1| 〉 1〈 |gk

–( ) 2| 〉 .+=

Va
p gk

+( ),[ ] Va
p gk

–( ),[ ]

ρ f 0k 0k,( ) 1,≡
dρ f 1k 1k,( )

dt
-------------------------- Ngk

2 F νk k t, ,( ),=

ρ f 1k 1k,( ) 0( ) 0.=

ρ f 1k 1k,( ) t( ) Ngk
2 F νk k τ, ,( ) τ .d

0

t

∫=
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density matrix in the form

(37)

If we analyze fluorescence in a direction that does not
coincide with the laser beam, we have αk = 0. By

neglecting the terms on the order of , expression (37)
can be written in the form

(38)

We assume that the intensity of scattered radiation in a
give mode is equal to the energy flux (neglecting the
vacuum energy) in this mode incident on a detector.
Such a definition is directly related to the photodetec-
tion probability [42] and seems to us the most conve-
nient. The energy flux in the chosen mode incident on a
detector is proportional to the Poynting vector:

(39)

We omitted in (39) the geometric factors, which are
insignificant in this case, and assumed that the quanti-
zation volume is L3.

Note that the intensity of the emission spectrum was
written in papers [30, 38] and our previous papers
[35−37] in the form

with the addition of the Rayleigh component of the
spectrum in the form of the delta function. This expres-
sion coincided in the limiting cases with theoretical and
experimental results obtained for stationary spectra [3, 8].
However, the analysis of transient spectra gave negative
intensities for some spectral components. This result
can be easily explained using expression (39) for the
emission spectrum. The values of the function

 determine the rate of change in the
number of photons in the given mode. These values can
be, generally speaking, negative. However, this func-
tion is not a probability for detecting (absorbing) a pho-

ρ f
n D αk βk' t( )+( ) 0k| 〉 0k〈 |∫




=

+ Ngk
2 F νk k τ, ,( ) τ 1k| 〉 1k〈 |d

0

t

∫ 



D+ αk βk' t( )+( ).

gk
4

ρ f
n D βk' t( )( ) 0k| 〉 0k〈 |D+ βk' t( )( )(=

+ Ngk
2 F νk k τ, ,( ) τ 1k| 〉 1k〈 | .d

0

t

∫
k

∏

Ik ρ f Îk

n

∑ ρ f
n Êk

n

∑ Ĥk× c2

W
-----nk"k= = =

=  
c
L
--- βk' t( )

2
Ngk

2 F νk τ,( ) τd

0

t

∫+
 
 
 

"ωk.

Ik
dρ f 1k 1k,( )

dt
--------------------------∝ Ngk

2 F νk k τ, ,( )=

Ngk
2 F νk k τ, ,( )
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ton of the mode with a detector. We will show in the
next section that these two quantities are identical in the
stationary case; however, their difference should be
taken into account in the case of transient spectra.

Let us discuss briefly the properties of expression (39)
for the intensity of scattered radiation. It consists of two
terms. They describe stimulated scattering of emission
and spontaneous emission, respectively. Note that the
term describing stimulated emission is proportional to

. However, in the case of low densities (n  ! 1),

it is proportional to  (n is the concentration) and is of
the same order of magnitude as the spontaneous emis-
sion term. This is explained by the fact that the value of
the average density cannot be used in the case of low

densities (n  ≈ 1). It is necessary to solve a series of
equations with N = 0, 1, 2, … and to sum up the results
according to their statistical weights, which are deter-
mined by the distribution function. The case N = 0 cor-
responds to vacuum, where neither scattering nor spon-
taneous emission appears. For N = 1, both the terms are
of the same order of magnitude, and the results
obtained in this case describe the behavior of scattered

radiation in a low-density medium. When n  @ 1, the
scattered emission dominates over spontaneous emis-
sion, and we can consider only the former emission.

Note that expression (39) for the emission intensity
cannot be considered as a final result because, as fol-
lows from a simple analysis, the intensity of fluores-
cence excited by a constant field should increase lin-
early with time. We will discuss this question in the
next section.

5. EFFECT OF A DETECTOR 
AND BOUNDARY CONDITIONS

ON THE RESONANCE FLUORESCENCE 
SPECTRA

An increase in the intensity of resonance fluores-
cence, which follows from expression (39), is not para-
doxical if we take into account that the procedure of
quantization of an electromagnetic field, which we
used, describes a resonator (the quantization volume)
with perfectly reflecting walls [38, 42]. Therefore, on
the one hand, the scattered radiation will not leave the
resonator volume, resulting in an increase in the num-
ber of photons in modes (36). On the other hand, this
radiation will be also absent to an observer. In this
sense, expression (39) describes only the energy flux in
a mode. To describe the emission spectra correctly, it is
necessary to define the boundary conditions describing
absorption of radiation in the resonator walls, which is
related either to detector operation or any other irre-
versible radiation loss. It is the photon flux absorbed at
the boundaries of the quantization volume that can be
detected by an observer.

N2gk
2

ÂL
3

gk
2

ÂL
3

ÂL
3
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The consideration of losses results in the appearance
of an additional term in Hamiltonian (2), which
describes the interaction of the quantized field with a
thermostat at zero temperature [43]:

(40)

where the constant κk determines mode losses. Since
we neglected reabsorption of spontaneous emission, we
can discard the component of the operator K[ρ], which

is proportional to , because it vanishes in this
approximation. This leads to the appearance of addi-
tional terms in equations for the field density matrix and
the operator gaf:

By performing the same transformations as in the pre-
vious section, we can represent system (34) and expres-
sion (39) in the form

(41)

(42)

We can readily show that this expression for the
emission intensity is limited and, for t  ∞, can be

K ρ[ ] i κk/2( ) âk
+âkρ   2–  a ̂ k ρ a ˆ k 

+ ρ a ˆ k 
+ a ˆ k +  ( ) , 

k

 ∑  –=

âkρâk
+

–iκk/2( ) âk
+âkρ f ρ f âk

+âk+( ),

–iκk/2( ) âk
+âkgaf gaf âk

+âk+( ).

i
dρa

dt
-------- Ha

r Va Va
p+ + ρa,[ ] Γ R ρa[ ]–– 0,=

i
dρ f 1k 1k,( )

dt
-------------------------- iκkρ f 1k 1k,( )–=

– iNgk
2 2〈 |gk

+( ) 1| 〉 1〈 |gk
–( ) 2| 〉+( ),

i
dgk

+( )

dt
----------- Ha

r Va Va
p+ + gk

+( ),[ ]–

+ νk iκk/2+( )gk
+( ) Γ R gk

+( ) 3( )[ ]– iρa 2| 〉 1〈 | ,–=

i
dgk

–( )

dt
----------- Ha

r Va Va
p+ + gk

–( ),[ ]–

– νk iκk/2–( )gk
–( ) Γ R gk

–( ) 3( )[ ]– i 1| 〉 2〈 |ρa,–=

ρa 0( ) ρa
0, ρ f 0( ) 0k| 〉 0k〈 | ,= =

g +( ) 0( ) 0, g –( ) 0( ) 0,= =

dβk' t( )
dt

-------------- – iνk κk+( )βk' t( ) Ngkρ21 t( ),–=

Ik κk βk' t( )
2∫




=

+ e
κkt–

Ngk
2 F νk k τ, ,( )e

κkτ
τd

0

t

∫ 



"ωk.
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written in the form

(43)

For κk  0, expression (43) for the emission intensity
coincides with the well-known Mollow spectrum
obtained using the atom–field density matrix [38].

By using the system of equations (41) and expres-
sion (42), we analyzed numerically both total reso-
nance fluorescence spectra and their separate compo-
nents corresponding to stimulated and spontaneous
emission. The calculations were performed using the
DUMKA program packet developed by a group of
V.I. Lebedev at the Institute of Atomic Energy, which
realizes stable explicit Chebyshev schemes with vari-
able time steps for solving stiff systems of homoge-
neous differential equations [50, 51]. We performed a
great series of calculations of the spectra of scattered
radiation in a broad region of possible values of param-
eters. We found that the resonance fluorescence spectra
calculated from (41) and (42) do not contain negative
radiation intensities. Figure 2 shows the total spectrum
of resonance fluorescence and the spectra of stimulated
and spontaneous emission obtained upon excitation of
a two-level medium by a short laser pulse with the
Gaussian profile

6. CALCULATION OF THE SPECTRUM
WITH THE HELP 

OF THE AUTOCORRELATION FUNCTION

Let us show that the emission spectrum calculated
using the formalism developed in previous sections is
identical to the spectrum calculated classically with the
help of the quantum regression theorem and the auto-
correlation function. Consider system (41), where the

right-hand side of the equation for  is writ-
ten using the trace over atomic variables:

(44)

The formal solution for the operator  in the integral
form is

(45)

Ik N gk( )2
"ωk=

× N ρa( )21 ∞( ) 2 κk

νk
2 κk

2
+( )

---------------------- F νk k ∞, ,( )+ 
  .

R t( ) R0 –t2/t p
2( ).exp=

ρ f
1( ) 1k 1k,( )

i
dρ f 1k 1k,( )

dt
-------------------------- iκkρ f 1k 1k,( )–=

– iNgk
2Spa 1| 〉 2〈 |gk

+( ) gk
–( ) 2| 〉 1〈 |+( ).

gk
+( )

gk
+( ) – iνk κk/2+( ) t τ–( )( )exp

0

t

∫=

× M̂ t τ,( )ρa τ( ) 2| 〉 1〈 |dτ ,
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where the operator  is the fundamental solution
of the equation

(46)

M̂ t τ,( )

i
dgk

dt
-------- Ha

r Va Va
p+ + gk,[ ] Γ R gk[ ]–– 0,=

gk 0( ) gk
0( ),=

gk t( )( ) ji Mijmn t 0,( ) gk
0( )( )nm,

mn

∑=
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Fig. 2. Transient scattering spectra of a Gaussian laser
pulse. The parameters are tp = 1, R0 = 12, ∆ = –2, γ = 2,
κk = 3, N = 3; (a) total resonance fluorescence spectrum;
(b) spontaneous emission spectrum; (c) stimulated emis-
sion spectrum. The laser pulse profile is shown at the left.
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By using (44) in the equation for ρf (1k, 1k) and formally
integrating it, we obtain

(47)

Note that, if we neglect the effect of a cooperative field,

then the operator  will also describe the funda-
mental solution of the equation for the atomic density
matrix. Taking this into account, the expression in
square brackets represents a two-dimensional correla-
tion function for a product of atomic creation and anni-
hilation operators [41]:

(48)

(49)

For t  ∞ and κk  0 in (49), we obtain a classical
expression for the spontaneous emission spectrum [41]:

(50)

Note that expression (49) for the spectrum has virtually
the same form as the expression for the spectrum of
nonstationary fluorescence obtained in paper [22], with
only the upper limit of the inner integral being different.

7. ANALYSIS OF TRANSIENT SPECTRA 
OF RESONANCE FLUORESCENCE

The first studies of nonstationary resonance fluores-
cence spectra were performed in the late 1970s. The
regime of “switching on” a cw laser field was mainly
studied. The early studies [52–54] have shown that the

Mijmn t τ,( ) Mijqp t 0,( )Mpqmn
1– τ 0,( ).

pq

∑=

ρ f 1k 1k,( ) –κk t τ1–( )[ ]exp

0

t

∫=

× –iνk κk/2–( ) τ1 τ2–( )[ ]exp

0

τ1

∫
× Spa 1| 〉 2〈 |M̂ τ1 τ2,( )ρa τ2( ) 2| 〉 1〈 | c.c.+[ ] dτ2dτ1.

M̂ t 0,( )

Spa 1| 〉 2〈 |M̂ τ1 τ2,( )ρa τ2( ) 2| 〉 1〈 | c.c.+[ ]

=  σ+ τ2( )σ– τ1( )〈 〉 ,

σ+ 0( ) 2| 〉 1〈 | , σ– 0( ) 1| 〉 2〈 | ,= =

ρ f 1k 1k,( ) 2Re κk t τ1–( )–[ ]exp

0

t

∫=

× iνk κk/2––( ) τ1 τ2–( )[ ] σ + τ2( )σ– τ1( )〈 〉 dτ2dτ1exp

0

τ1

∫ .

ρ f 1k 1k,( ) 2Re e
–iνkτ

σ+ t( )σ– t τ+( )〈 〉 τd
0

∞

∫ .
t ∞→
lim=
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nonstationary fluorescence spectrum will oscillate at
short times due to a change in the population of the
upper level at the Rabi frequency. However, the sym-
metric shape of the Mollow triplet will be conserved. It
was shown later theoretically and experimentally [26, 27]
that the nonstationary spectrum of spontaneous emis-
sion can have a substantially different shape, one of the
fluorescence peaks being suppressed when the field is
switched on. Such a behavior of an emitting atom is
possible if its initial state is prepared in such a way that
the atom will be only on one of the levels of a dressed
atom. It was shown [27] that such an atomic state can
be produced by changing the phase of a laser field at the
initial instant of excitation [55]. In this section, we will
use the equations describing transient spectra to gener-
alize the results obtained in [26] to the case of an arbi-
trary detuning from the resonance.

To prepare an atom in one of the states of a dressed
atom, we used the following excitation scheme [27]
(Fig. 3). During the time interval from 0 to tcr (tcr ≈
1/2R, where 2R is the Rabi frequency), the atom was in
a cw laser field, whose frequency coincided with the
transition frequency. At the instant of time tcr , the field
phase was changed abruptly by ±π/2. The abrupt
change in the phase resulted in changes in the wave
functions of the dressed states, the projection of the
wave function of the atom to one of the “new” states
being zero.

Let us use the same scheme for the case of a nonzero
detuning and determine the time and magnitude of a
change in the field phase. By neglecting spontaneous
decay and the influence of the cooperative field, we
obtain the evolution of the wave function of the atomic
system in our case:

(51)

where ψ(t) is the vector of the wave function of the
atomic system. By assuming for definiteness that the
initial phase of the laser field is purely imaginary, we
obtain the operators of the laser field

By using the explicit form of the operators , Va , and

ψ t( )
i
"
--- Ha

r Va
φ+( )t–exp=

× i
"
--- Ha

r Va+( )tcr– ψ 0( ),exp

Va R 2| 〉 1〈 | R 1| 〉 2〈 | ,+=

Va
φ R iφ( ) 2| 〉 1〈 |exp R –iφ( ) 1| 〉 2〈 | .exp+=

Ha
r
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, we can represent the evolution operator for an arbi-
trary phase of the field in the form

,

(52)

The explicit form of the evolution operator is

Va
φ

i
"
--- Ha

r Va
φ+( )t– 

 exp SφΛSφ
1–=

Sφ
1
J
--- c B–

B∗ c 
 
 

,=

Sφ
1– 1

J
--- c B

–B∗ c 
 
 

,=

Λ iDt–( )exp 0

0 iDt( )exp 
 
 

,=

A ∆/2, B iR iφ–( ),exp–= =

D A2 B 2+ ∆2/4 R2+ ,= =

C A D+ ∆/2 ∆2/4 R2+ ,+= =

J2 C2 B 2.+=
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ω21I2D I0 I0 I–2D

R Reiφ

tcr0 t

Fig. 3. Energy level diagram of a dressed atom and the
scheme of excitation of a two-level atom by a cw laser field
with a phase jump used in [27].
(53)
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(b) an atom is excited to the |–D〉 state by abruptly changing
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Taking into account the matrix expansion for the evolu-
tion operator, the equations for the amplitude and time
of the phase jump can be written in the form

(54)

Depending on the vector chosen, the system will
undergo a transition to the state |–D〉  or |+D〉  (Fig. 3).
By omitting cumbersome calculations, we present the
final result:

(55)

Note that an atomic system can undergo a transition to
any of the dressed states only for certain detunings of
the laser field. Namely, an atom can undergo a transi-

tion to the |+D〉  state if (–8/3)R ≤ ∆ ≤ (2 )R, and to

the |–D〉  state if (–2 )R ≤ ∆ ≤ (8/3)R.

Figure 4 shows the resonance fluorescence spectra
calculated for the excitation scheme described above.
Figure 4a corresponds to a cw laser field without the
phase interruption, while Fig. 4b corresponds to excita-
tion of the system to the states |+D〉  and |–D〉 . Note that
the spectra obtained for the pure states of the dressed
atom possess an important feature. They do not exhibit
oscillations at the Rabi frequency (unlike the spectrum
shown in Fig. 4a) and are in fact stationary for t ! γ.
This follows directly from the fact that the atom is in a
pure state of the dressed atom. Because the wave func-
tions of the atom for the states |+D〉  and |–D〉  have the
form

(56)

where S1 and S2 are the columns of the matrix S, one can
see that the atomic density matrix is time-independent.

Note that, unlike the case of the zero detuning [26],
the intensities of the side and central components of the
spectrum are not identical. Taking into account that the
atom is in a stationary state, we will use the explicit
form (56) of the wave function and expression (50).

1

0 
 
  0

1 
 
 

, Sφ
1–=

× i
"
--- Ha

r Va+( )tcr– ψ 0( ).exp

+D| 〉 Dtcr( )sin→ C2 R2+
2R

----------------------,=

φ π+( )cos
C2 R2–

2R2
------------------,=

D–| 〉 Dtcr( )sin→ C2 R2+
2C

----------------------,=

φcos
C2 R2–

2C2
------------------.=

3

3

ψ –D| 〉 t( ) –iD t tcr–( )( )S1,exp=

ψ +D| 〉 t( ) iD t tcr–( )( )S2,exp=
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After simple calculations, we obtain the intensities of
the side and central lines for the atom in the |+D〉  state,

(57)

and in the |–D〉  state,

(58)

Note that, although it seems that expressions (57) and
(58) are asymmetric with respect to the substitution
∆  –∆, the results are coincident when real values
are substituted. Taking into account the limitation
obtained for the ratio ∆/R, we can show that the maxi-
mum possible ratio of the intensities of the side and
central components is obtained for the |±D〉  state when

∆ = (±2/ )R, which gives I0 : I±2D = 1 : 3.
The asymmetry of transient spectra, which was

observed experimentally [27] when a cw laser field was
switched on, can be readily explained within the frame-
work of the above analysis. It is explained by the fact
that the expansion of the ground state in the states of the
dressed atom is not the same in the case of nonzero
detuning. Taking into account explicit form (51) of the
evolution operator, we represent the populations of the
upper pair of states in the form

(59)

It follows directly from (59) that the center of gravity of
the triplet shifts to the transition frequency during the
time of establishment of the equilibrium state.

8. CONCLUSIONS

We have studied the nonstationary resonance fluo-
rescence of a two-level atom and have developed a new
method for describing the transfer and scattering of a
time-dependent laser pulse, which is based on a hierar-
chy of Bogoliubov–Born–Green–Kirkwood–Yvone
equations for reduced density matrices. A system of
equations has been obtained in the Hartree–Fock
approximation, which describes stimulated scattering
of laser radiation in a medium. By using the apparatus
of coherent states for a lumped model, we obtained the
operator of a cooperative field. By using the change of
variables, we solved the wave equation in a local vol-

ume of the order of , obtained the spectrum of stim-
ulated scattering of radiation, and considered its influ-
ence on the transfer of a laser field.

At the next stage, using the second-order Born
approximation, we obtained the system of equations for
the atomic and photon density matrices and the correla-
tion operator. The system of equations describes stimu-
lated and spontaneous scattering of laser radiation in

I0 γρ22
C2

C2 B2+
------------------, I2D γρ22

B2

C2 B2+
------------------,= =

I0 γρ22
B2

C2 B2+
------------------, I 2D– γρ22

C2

C2 B2+
------------------.= =

3

ρ +D| 〉
C2

C2 B2+
------------------, ρ D–| 〉

B2

C2 B2+
------------------.= =

λL
3
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optically thin media, where reabsorption can be
neglected. The expressions for the nonstationary spec-
trum of resonance fluorescence were derived which
take into account contributions from spontaneous and
stimulated scattering of radiation. The necessity of con-
sideration of the boundary conditions for absorption of
an electromagnetic field during quantization is shown,
and their influence on kinetic equations is analyzed.
Note that it is the consideration of absorption of the
field in a detector in kinetic equations for the atomic
and photon density matrices that allowed us to derive
for the first time the expressions for nonstationary res-
onance fluorescence spectra, which have no negative
intensities.

The results obtained in the paper are compared with
the resonance fluorescence spectra calculated using the
quantum regression theorem. It is shown that, when a
cooperative field is neglected in a stationary case and
the relaxation constants of modes tend to zero, the spec-
trum represents the well-known Mollow triplet.

The transient spectra of resonance fluorescence
have been analyzed for arbitrary detunings from the
resonance in the regime of switching on of a cw field. It
is shown that, by changing abruptly the phase of excit-
ing radiation, the atomic system can be excited to one
of the states of a dressed atom. In this case, one of the
side components will be absent in the resonance fluo-
rescence spectrum. It is shown that at times that are
much shorter than the radiative relaxation time, the res-
onance fluorescence spectrum of the dressed state will
be stationary and no Rabi oscillations will be observed.
The ratio of the intensities of the two remaining fluores-
cence components is been found. It is shown that, for a
certain relation between the value of detuning from the
resonance and the laser-field power, the intensities of
the central and side components can achieve a ratio
of 1 : 3.

ACKNOWLEDGMENTS

The authors thank M. Bonitz, A.G. Leonov, and
D.I. Chekhov for discussions and comments. We also
thank V.I. Lebedev for his help in the use of the
DUMKA program package. This work was supported
by the Russian Foundation for Basic Research (project
no. 02-02-17153), by the support program for scien-
tific schools (project no. 00-15-96539) and young sci-
entists (project no. 02-02-06400), as well as by grant
no. 02-15-99309 of the President of the Russian Fede-
ration.

APPENDIX A

Properties of the Coherent-State Operator 

Recall briefly the properties of photon creation and
annihilation operators and the coherent-state operator,
which were used in papers [41, 43]. The general expres-
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sion for the coherent-state operator D(αk) has the form

(A.1)

The coherent state can be represented in the form

(A.2)

Let us present without the proof the properties of the
coherent-state operator [43]:

(A.3)

The coherent-state operators for different modes are
commutative:

(A.4)

When passing to the wave representation, the photon
operators are often transformed as

The creation and annihilation operators appearing in
the Hamiltonian are transformed as

(A.5)

Taking into account (A.5), a similar transformation for
the coherent-state operator can be written in the form

(A.6)

D αk( ) αkâk âk
+αk*–( )exp=
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+âkt( )âk –iωkâk
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=  âk iωkt–( ),exp

iωkâk
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APPENDIX B

The Cooperative-Field Operator

Here, we will obtain the cooperative-field operator
in the explicit form. We are interested in the expression
of type (19):

(B.1)

where the equation for βk(t) has the form

(B.2)

By formally solving the equation for , we obtain

(B.3)

Then, we substitute the result into (B.1), and taking into
account that

(B.4)

where

is the radiative relaxation rate, ∆L is the Lamb shift of
the level, and δ(t – τ) is the delta function, we obtain

(B.5)

APPENDIX C

The Radiative-Relaxation Operator 

In this section, we obtain the explicit form of the
relaxation operator for the atomic density matrix ρa .
The relaxation operator for the correlation operator gaf

Ṽaf
p ρ f ρa,[ ]

f

=  igk 2| 〉 1〈 |βk t( ) –iνkt ik r⋅+( )exp([
k

∑
– 1| 〉 2〈 |βk* t( ) iνkt ik r⋅–( )exp )ρ f ρa

– ρ f ρa 2| 〉 1〈 |βk t( ) –iνkt ik r⋅+( )exp(

– 1| 〉 2〈 |βk* t( ) iνkt ik r⋅–( )exp ) ] ,

dβk

dt
--------- Ngk ρa( )21 i νkt k r⋅–( )( ).exp–=
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can be obtained similarly. We are interested in the
explicit form of the expression,

(C.1)

in the right-hand side of the equation for the density
matrix ρa in (32). In this case,

(C.2)

where ρf (t) ≡ |0k〉〈 0k | because we neglected reabsorp-
tion of spontaneous emission. Let U(t) and C(t) be the
fundamental solutions of equations

(C.3)

Then, using the changes of variables of the type

and taking into account that the unitary transformation
does not change the operator trace, we can represent the
system (C.2) in the form

(C.4)

By using the result of the formal integration of the
equation for gaf , we obtain in the equation for the
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atomic density matrix

(C.5)

Because 

 

ρ
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t

 

) 

 

≡ |

 

0

 

k
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0

 

k

 

|

 

, the nonzero terms appearing
upon calculation of the operator trace over field vari-
ables will be proportional to the expressions

By performing a successive summation over

 

 k

 

 and inte-
gration over 

 

τ

 

, returning to the initial variables  

 

ρ

 

a

 

 and using (B.4), we obtain

(C.6)
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Abstract—A method for the generation of intense pulsed low-kinetic-energy molecular beams is described.
The method is based on the formation of a cold (≈77 K) pressure shock as a result of interaction between an
intense pulsed gas-dynamically cooled molecular beam with a solid surface. The pressure shock is used as a
source of a secondary beam for generating low-energy molecules. The suggested method was used to obtain
intense molecular beams of H2, He, CH4, N2, and Kr with kinetic energies lower than or equal to 10 meV and
H2/Kr and He/Kr molecular beams with kinetic energies of H2 and He molecules lower than 1 meV. The energy
(velocity) of molecules in low-energy beams can be controlled by varying the intensity of the initial beam or
temperature in the pressure shock. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION
Currently, molecular (atomic) beams [1], includ-

ing low-energy beams [2], in which the kinetic energy
of molecules (atoms) is much lower than their ther-
mal energy at room temperature, are extensively used
for scientific purposes. Intense molecular beams
[≥1020 molecules/(sr s)] with kinetic energies of one to
several tens millielectronvolts are used to study chemi-
cal reactions, elastic and inelastic collisions, and inter-
actions of molecules with the surface [1–3]. In recent
years, their use in experiments with trapping molecules
has been initiated [4, 5].

The most widely used technique for obtaining
intense molecular beams is their isolation with skim-
mers from gas-dynamically cooled jets produced by
pulsed nozzles [6]. The kinetic energy of molecules in
beams is determined by gas temperature T0 prior to
expansion through a nozzle,

(1)

where v  is the stationary flow velocity, m is the mass of
one molecule, γ = cp/cv is the ratio between the specific
heat capacities, k is the Boltzmann constant, and T is
the stationary temperature. If the gas is at room temper-
ature in the source, the kinetic energy of molecules in
the beam amounts to Ekin ≈ 50–60 meV (for a mono-
atomic gas) or Ekin ≥ 150–200 meV (for a gas of poly-
atomic molecules) depending on index γ.

It follows from (1) that gases should be cooled in gas
sources to obtain low-energy molecular beams. Cool-
ing pulsed sources of molecular beams to low tempera-
tures is, however, impracticable, because the materials
used in such sources (in particular, elastomers and plas-

1
2
---mv 2 γ

γ 1–
-----------k T0 T–( ),=
1063-7761/03/9602- $24.00 © 20241
tics) lose their elastic and plastic properties and become
brittle. In addition, gas pressure decreases as tempera-
ture lowers, which makes it difficult to generate gas-
dynamically cooled jets.

Low-kinetic-energy molecular beams (≤50 meV)
are usually obtained with the use of effusion sources,
which can operate both at room temperature and with
cooling gases within them to liquid nitrogen or, to pro-
duce He beams, liquid helium temperatures [2, 7]. The
kinetic energy of molecules in an effusion beam is
determined by the temperature of the gas in the source
(Ekin ≈ kT0). The intensities of molecular beams
obtained in such a way are, however, comparatively low
[≤1016–1017 molecules/(sr s)] [2]. In addition, the
spread of the velocities of molecules in these beams is
large, which additionally decreases their intensities.

At the same time, precisely beam intensities are the
determining factor in many experiments with molecu-
lar beams [1, 2, 6]. The development of methods for
obtaining intense beams of low-energy molecules is
therefore a very topical area. Recently [8], we sug-
gested a comparatively simple method for generating
such beams and obtained preliminary results. In this
work, we describe the suggested method in detail and
report the results of a thorough study of the generation
of intense low-energy molecular beams with controlled
kinetic energy in the range of one to several tens mil-
lielectronvolts.

2. EXPERIMENTAL SETUP AND METHOD

The suggested method for generating low-energy
pulsed molecular beams uses a pressure shock [9–11]
formed in the interaction between an intense pulsed
gas-dynamically cooled molecular beam (or flow) with
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Scheme of experiments.
a solid surface. The essence of the method is as follows
(see Fig. 1). An intense [≥1021 molecules/(sr s)] wide-
aperture (divergence ω ≈ 0.05 sr) pulsed molecular
beam fell on a copper cold conductor and a multichan-
nel plate attached to it, both cooled by liquid nitrogen.
The plate was made of duralumin, its thickness was L =
4 mm, and the diameter of channels in it was d0 =
0.5 mm. The channels were arranged according to the
close packing scheme. The distance between orifice
centers was 0.75 mm. The cold conductor contained a
hole in the form of a convergent cone. The diameters of
the cone of the entrance and exit were 11 and 9 mm,
respectively. The cold conductor was 8 mm thick. The
distance between the nozzle throat and the surface of
the multichannel plate was 70 mm. To prevent plate
operation in the “transparent” mode, it was tilted at a
small angle α ≥ d0/L ≈ 7° with respect to the incident
beam axis.

When an intense supersonic molecular beam falls
onto the cooled multichannel plate, a cold pressure shock
is formed in front of the plate and in its channels [12, 13].
The characteristic pressure shock dimensions are on the
order of the free path of molecules Λ [9, 10]. Such a
pressure shock is a convenient source for generating
intense secondary pulsed molecular beams [14–16]. If
Λeff ≥ d0 (Λeff is the effective mean free path of mole-
cules in the channels, Λeff > Λ [2]), the gas has sufficient
time to cool to the temperature of channel walls while
passing through the channels (approximately to liquid
nitrogen temperatures). As a result, a beam of low-
energy molecules is formed from the pressure shock.
The specified condition was almost always met in our
JOURNAL OF EXPERIMENTAL 
experiments. As a result, we were able to obtain intense
gas-dynamically cooled molecular beams with the
kinetic energy of molecules [Eq. (1)] determined by the
gas temperature in the pressure shock (≈77 K). If, how-
ever, gas pressure in the pressure shock was low and gas
dynamic flow could not form, the transition to the fol-
lowing off of effusion occurred, and the mean velocity
of molecules in the beam was close to the mean velocity
of molecules at nitrogen temperatures. Naturally, the
spread of molecular velocities in the beam then
increased.

We used a pulsed nozzle of the current loop
type [17]. The diameter of the orifice was 0.75 mm. The
time of opening was 70–100 µs at half-height depend-
ing on the composition and pressure of the gas above
the nozzle. Gas pressure above the nozzle varied in the
range 0.1−7 atm. The nozzle throat had the form of a
cone with a total aperture angle of 15°. The length of
the cone was 35 mm. The vacuum chamber in which
molecular beams were formed was evacuated to
approximately 1 × 10–6 torr by a turbomolecular pump.
The number of molecules flowing off from the nozzle
per pulse depended on the gas pressure above the noz-
zle and varied in the range of approximately 8 × 1015 to
2 × 1018 molecules/pulse in our experiments. The
method for measuring the number of molecules per
pulse was described in detail in [18, 19].

We studied the dependences of the intensity and
velocity of low-energy molecular beams on the inten-
sity and velocity of the initial beam and the gas temper-
ature in the pressure shock. We also measured the
spread of molecular velocities (the degree of gas cool-
AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003
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ing) in both beams. Measurements were performed by
the time-of-flight method based on using a pyroelectric
detector with a time resolution of about 3–5 µs as a
detector of molecular beams [20, 21]. The size of the
active pyroelectric detector element was 4 × 4 mm2. It
detected molecules propagating within the solid angle
determined by the size of its active element and the dis-
tance from the nozzle to the detector. The design of the
detector was described in detail in [22]. It could be
moved along the beam axis with the use of a mechani-
cal device. This allowed us to measure the time-of-
flight spectra of molecules at various distances from the
nozzle. These spectra were used to determine beam
velocities and the spreads of molecular velocities in the
beams.

3. RESULTS AND DISCUSSION

Experiments were performed with H2, He, CH4, N2,
and Kr molecular beams. In all of them, we observed
the generation of molecular beams with low velocities.
The dependence of the kinetic energy of a low-energy
He molecular beam on the gas pressure above the noz-
zle is shown in Fig. 2 (curve 1). For comparison, similar
dependences for the secondary beam generated when
the gas was not cooled in the pressure shock (T0 ≈
300 K) (curve 2) and for the initial beam (curve 3) are
also plotted. According to Fig. 2, the kinetic energy of
molecules in the low-energy beam noticeably
decreased and approached the mean energy of He
atoms at T ≈ 77 K, equal to approximately 6.6 meV as
the intensity of the initial beam (gas pressure above the
nozzle) lowered.

The dependences of the kinetic energies of He and
CH4 beams on the gas temperature in the pressure
shock obtained at a gas pressure of 2 atm above the noz-
zle are shown in Fig. 3. Note that, in the studied temper-
ature range, the kinetic energy of molecules decreased
somewhat faster rather than linearly as temperature
lowered, because, under our experimental conditions,
the gas pressure in the pressure shock (in the source of
the low-energy beam) also decreased as temperature
lowered, which caused an additional decrease in the
velocity of beams.

The table contains the results of measurements of
the mean velocities and energies of low-energy H2,
CH4, N2, and Kr molecular beams. The spreads of
molecular velocities in the beams are also given. For
comparison, similar data on the initial beams are
included. We obtained H2 molecular beams with a
kinetic energy of Ekin ≤ 6.9 meV and CH4, N2, and Kr
molecular beams with kinetic energies of Ekin ≤ 11.5,
≤9.9, and ≤7.1 meV, respectively. Note that the mean
velocity of Kr atoms in the beam was V ≈ 130 m/s.

We also performed experiments with H2/Kr and
He/Kr molecular beams (the pressure ratio was 1 : 5 in
both cases). At a gas pressure of 0.8 atm above the noz-
zle and a gas temperature of 77 K in the pressure shock,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the velocities of molecular beams were approximately
165 m/s, which corresponded to the kinetic energies of
H2 and He molecules in the beams Ekin ≤ 0.3 and
≤0.6 meV, respectively.

We also studied the feasibility of generating low-
energy molecular beams with the use of a convergent–
divergent cone of the type of the Laval nozzle cooled to
T ≈ 77 K. The cone was made of duralumin. The diam-
eters of the entrance orifice, waist, and exit orifice were
din = 13 mm, d0 = 2.5 mm, and dout = 6 mm. The total
cone length was 30 mm, and the length of the conver-
gent part was 24 mm. Note that precisely with the use
of the convergent–divergent cone of the Laval nozzle
type, intense secondary beams formed from the pres-
sure shock were obtained in [14–16]. To prevent the
transparent mode of cone operation, the cone was insig-
nificantly (by 1.5–2 mm) displaced with respect to the

Ekin, meV
100

10

1 Pressure, atm

1

2

3

He

Fig. 2. Dependence of the kinetic energy of the low-energy
He molecular beam on gas pressure above the nozzle
(curve 1). Curves 2 and 3 are similar dependences for the
secondary beam when gas in the pressure shock is not
cooled and for the initial molecular beam, respectively.
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Fig. 3. Dependences of the kinetic energy of He and CH4
molecular beams on gas temperature in the pressure shock.
Gas pressure above the nozzle is 2.0 atm.
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initial beam axis. In these experiments, we obtained He
and H2 molecular beams with mean velocities of mole-
cules equal to v  ≈ 640 and ≈1300 m/s, which corre-
sponded to the kinetic energies of He and H2 molecules
Ekin ≈ 8.6 and ≈17.8 meV, respectively. The intensities
of the beams were comparable with the intensities of
the beams obtained with the use of the multichannel

103
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 s
ig

na
l, 

m
V

Fig. 4. Dependences of pyroelectric detector signals for
(1) the initial He molecular beam and (2) the secondary
molecular beam when the gas is not cooled in the pressure
shock on gas pressure above the nozzle. The distances from
the nozzle to the detector and the multichannel plate are 143
and 73 mm, respectively.
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plate. With the cone, low-energy beams were, however,
generated at much lower initial beam intensities (at
lower gas pressures above the nozzle). For instance, the
He, H2, and CH4 low-energy beams were generated at
gas pressures above the nozzle of P ≤ 0.6, ≤0.4, and
≤0.3 atm, respectively. Indeed, the condition for gas
cooling given above (Λeff ≥ d0) was satisfied in experi-
ments with the cone at lower gas concentrations in the
pressure shock, because the diameter of the cone waist
was much larger than the diameter of channels in the
plate. At higher gas pressures above the nozzle, this
condition was not met. A gas within the cone then had
no time to cool to the temperature of cone walls. As a
result, high-kinetic-energy molecular beams were gen-
erated.

To compare the intensities of low-energy molecular
beams with the initial beam intensities, we studied the
dependences of the signals induced on the detector by
primary and secondary beams on the gas pressure
above the nozzle. Such dependences for the He molec-
ular beams are shown in Fig. 4. The distance between
the nozzle and the detector was 143 mm, and the dis-
tance between the multichannel plate and the detector,
about 73 mm. The figure shows that the signal gener-
ated by the secondary beam was 20–30 times weaker
than the signal generated by the primary beam at a gas
pressure above the nozzle P ≥ 1 atm. Taking into
account the difference of the distances between the
sources of primary and secondary beams and the detec-
tor, we find that the intensity of the secondary He
molecular beam was approximately two orders of mag-
nitude lower than the intensity of the primary beam.
The intensity of the low-energy He beam was still
lower, because a decrease in gas temperature (therefore,
Molecular beam velocity and energy measurements

Gas composition 
and pressure 

(atm) above the 
nozzle

Initial beam Low-energy beam

v, m/s Ekin, meV v /∆v v , m/s Ekin, meV v /∆v

H2

1.9 2950 91.7 8.5 1050 11.6 4.3

0.6 2620 72.4 4.2 810 6.9 1.3

CH4

2.0 1330 149.2 10.3 450 17.1 4.7

0.6 1250 131.8 4.5 370 11.5 2.1

N2

2.2 910 122.2 9.3 355 18.6 5.1

1.0 860 109.2 8.7 260 9.9 2.7

Kr

2.0 385 62.5 6.5 168 11.9 1.8

1.0 360 54.7 5.4 130 7.1
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in the gas pressure) in the pressure shock also caused a
decrease in the intensity of the beam.

The intensities of beams were determined by mea-
suring gas consumption in n nozzle pulses and the geo-
metric dimensions (extent and cross section) of the
beams (e.g., see [18, 19]). These measurements allowed
us to fairly accurately determine the intensities of the
beams [18, 19]. For instance, let us determine the inten-
sity of the He molecular beam from the measurement
results. It was found from the gas flow rate that the total
number of He atoms flowing off from the nozzle in one
pulse at a pressure of 2 atm above the nozzle was
approximately 7 × 1017. As the pulse width of the initial
molecular beam was about 100 µs and the beam diver-
gence was ω ≈ 0.05 sr, the intensity of the beam was
I1 ≈ 1.4 × 1023 molecules/(sr s). The intensity of the
low-energy He molecular beam under the specified
conditions was approximately 100–150 times lower;
that is, it equaled I2 ≈ 1021 molecules/(sr s). It follows
that the intensities of the low-energy molecular beams
obtained in our experiments were four to five orders of
magnitude higher than the intensities characteristic of
“standard” effusion beams.

The concentration of helium atoms in the initial
beam and in the pressure shock was estimated based on
measurements of the total number of molecules in the
beam and the beam volume. This method was described
in detail in [18, 19]. For instance, at a pulse width of
about 100 µs and a mean beam velocity of approxi-
mately 1750 m/s, the spatial extent of the He molecular
beam was approximately 17.5 cm. The cross section of
the beam on the surface of the multichannel plate was
about 2.4 cm2 (it was determined by the cone aperture
angle and the distance from the nozzle to the multichan-
nel plate). It follows that the volume of the beam near
the plate surface was Vb ≈ 42 cm3. At a gas pressure of
2 atm above the nozzle, the concentration of helium
atoms in the initial beam was therefore N1 ≈ 1.7 ×
1016 cm–3. The concentration in the pressure shock (N2)
was estimated from the relation for the limiting concen-
tration value in the normal pressure shock [9–11],

(2)

(see [23]). This gave N2 ≈ 7 × 1016 cm–3.

4. CONCLUSIONS

To summarize, the method described in this work
can be used to generate intense pulsed molecular beams
with kinetic energies of one to several tens millielec-
tron-volts. We showed that the energy of molecules in
beams can be controlled by changing the intensity of
primary beams or gas temperature in the pressure
shock. The intensities of low-energy molecular beams
obtained in our experiments were four to five orders of

N2/N1
γ 1+
γ 1–
------------, γ≈ 1.66=
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magnitude higher than the intensities of standard effu-
sion beams, from which low-energy molecules are usu-
ally obtained. In generating low-energy He and H2
molecular beams, liquid helium can be used to attain
deeper gas cooling in the pressure shock and obtain still
slower beams. Note in conclusion that using Kr or Xe
as carrier gases in the method described above allows
CO, N2, NO, and O2 molecular beams with kinetic
energies of Ekin ≤ 1–2 meV to be generated.

Lastly, note that slow pulsed beams have low spatial
extents. This is an advantage in certain experiments on
the excitation of molecules in beams by laser radiation.
At a small beam extent, virtually all molecules can be
excited or dissociated by high-intensity laser pulses,
which considerably increases the effectiveness of laser
radiation action on molecular beams [24, 25].
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Abstract—It is shown that the interaction of the Josephson degrees of freedom with states of condensate
motion can produce their equilibrium bound states. As a result of the appearance of these states, first, the tun-
neling splitting is significantly increased in double-well trapped condensates. Second, the bound states can real-
ize an absolute minimum of the thermodynamic energy for a sufficiently strong interaction. Transition to the
new ground state is a second-order phase transition. The existence of the bound state leads to an equilibrium
distortion of the condensate shape. This implies that the Josephson states can be detected by observing the
change in the condensate shape. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Since the discovery of two-component condensates
[1] and condensates in a double-well potential [2], the
phenomena caused by phase coherence of two conden-
sate modes attract considerable attention, both experi-
mental and theoretical (see, e.g., [3] and references
therein). In [2], spatial quantum coherence was
observed by means of an interference pattern in two
overlapping condensates. This interference pattern was
confirmed in [4] by numerical simulation of the Gross–
Pitaevskii equation. In [5], coherent oscillations of the
relative populations were observed in driven two-com-
ponent condensates with different internal states. As is
well known, a clear manifestation of phase coherence is
the Josephson effect. In numerous studies devoted to
the Josephson effect in systems of two condensates in
different internal states [5, 6] or in a double-well poten-
tial [7, 8], coherent Josephson oscillations are consid-
ered for various dynamical regimes caused by the com-
petition between tunneling and intracondensate interac-
tion (nonlinearity). In [7], the Josephson coupling
energy is calculated for small-amplitude oscillations in
a double-well potential. Damping effects due to the
normal currents at a finite temperature are estimated
there. In [8], it is shown that for a relatively weak inter-
action, the particle number oscillations between the
condensates are complete. They are suppressed when
the total number of atoms in the condensates exceeds a
critical value and the behavior of the system is gov-
erned by nonlinearity. Nonlinear Josephson-type oscil-
lations in the relative oscillations of driven two-compo-
nent condensates have been studied in [6]. Decoher-

¶This article was submitted by the author in English.
1063-7761/03/9602- $24.00 © 20247
ence effects and quantum corrections to mean-field
solutions have been considered in [11, 12]. In [13], the
damping effects of the Josephson current (even at zero
temperature) are derived within the functional integral
approach. A detailed treatment of the nonlinear classi-
cal dynamics of the condensates in a double-well
potential was given in [9, 10]. In [14], the quantum and
thermal fluctuations of the phase have been studied for
condensates in the double-well potential.

We emphasize that experimental observation of the
Josephson effect is difficult because the small energy
splitting associated with the Josephson coupling
implies that thermal and quantum fluctuations destroy
the phase coherence between two condensates even at
the lowest achievable temperatures [13, 14]. While the
energy splitting can be increased, e.g., by lowering the
barrier height, it then becomes comparable with that of
the motion states of the condensates.

However, the problem of the interaction between the
Josephson degrees of freedom and states of motion
(oscillations) of the trapped condensate has yet to be
analyzed. The present paper focuses on mechanisms of
increasing the tunneling splitting in a double-well
potential and of formation of the bound states of the
Josephson degrees of freedom with trap oscillations.
The mechanisms are generated by a sufficiently strong
interaction between the Josephson and oscillation
states. These mechanisms may be important for exper-
imental detection of the Josephson states. The consid-
eration proposed in the present paper is suitable for the
double-well trapped condensates and two-component
condensates in the same trap.

The results obtained in this paper are as follows.
003 MAIK “Nauka/Interperiodica”
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1. As is well known [3, 7, 14], the Gross–Pitaevskii
equations for two condensates with a weak Josephson
coupling have stationary solutions corresponding to the
lowest states with the eigenenergies ±EJ, where EJ is
the Josephson coupling energy. This implies that the
double-well condensates form a macroscopic two-level
subsystem with the tunneling energy splitting 2EJ  if the
dynamical Josephson oscillations of the particle num-
ber are disregarded. In what follows, it is shown that a
sufficiently strong interaction between the macroscopic
two-level subsystem and the condensate oscillation
results in their equilibrium bound state. The appearance
of the bound state generates an essential increase in the
tunneling splitting of the macroscopic two-level sub-
system.

2. In Sections 3–5, we consider the interaction
between anharmonic trap oscillations and the Joseph-
son degrees of freedom generated by the particle num-
ber transfer between two condensates. Nonlinear
dynamic oscillations of the particle number between
two condensates with the Josephson coupling are con-
sidered in [9, 10]. In the present paper, we derive the
quantized spectrum of the particle number generated by
the Josephson coupling in order to formulate the prob-
lem of the interaction between the Josephson and oscil-
lation degrees of freedom in an adequate manner. The
states of this spectrum represent a quantum analogue of
the nonlinear coherent Josephson oscillations consid-
ered in [10]. In what follows, the states of the quantized
spectrum are called the Josephson states. The spectrum
is highly nonequidistant and has a logarithmic singular-
ity in the density of states at an energy of 2EJ . We show
that any Josephson state can be realized by means of a
given initial disbalance of the particle number in two
condensates.

3. We consider the interaction between trap oscilla-
tions and the excited Josephson states corresponding to
a sufficiently large initial disbalance of the particle
number. We show that this interaction is responsible for
the formation of a bound state of  @ 1 oscillation
quanta with the Josephson state corresponding to the
initial disbalance of the particle number. In the Tho-
mas–Fermi approximation at µ @ ω0, where µ is the
chemical potential of the condensate and ω0 is the char-
acteristic frequency of the trap, h = 1 and the bound
state arises in the region of a sufficiently dense oscilla-
tion spectrum. In this region, the level separations are
small compared with the harmonic oscillation fre-
quency ω0. The equilibrium values of the oscillation
quanta and the initial particle number disbalance are
coupled self-consistently and can realize an absolute
minimum of the thermodynamic energy at a sufficiently
strong interaction. The thermodynamic average  ≠ 0
generates an equilibrium distortion of the condensate
shape. This allows detection of the Josephson states by
observing a change in the condensate shape.

nm

nm
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2. BOUND STATE 
OF THE MACROSCOPIC TWO-LEVEL SYSTEM

AND TRAP OSCILLATIONS

The Josephson coupling is realized for condensates
in a symmetric–asymmetric double-well potential
formed by two different traps with a barrier between
them [2]. The barrier is created by laser light, and its
height is directly proportional to the laser power and
can therefore be varied easily. The proposed mecha-
nism is also suitable for condensates in different inter-
nal states in the same trap. Experimentally, this may be a
superposition of two Rb87 condensates in the states [5, 6]

For a weak Josephson coupling, the basis states are the
self-consistent ground states in the two condensates,
separately. The wave function of a condensate with the
Josephson coupling is given by a superposition of these
states, namely,

where ψi(r) are normalized solutions of the Gross–
Pitaevskii equation,

with Ni and θi(t) being the particle numbers and phases
of each condensate.

As is well known [3, 7, 14], the Hamiltonian of two
condensates with a weak Josephson coupling is given by

(1)

where

µ ≡ µ1 = µ2 are the chemical potentials, N is the total
particle number, and φ = θ1 – θ2 is the relative phase of
the condensates. The quantities EC and EJ depend on
the total particle number N. In (1), the energy origin is
the mean-field total energy of the condensates, namely,
E0 ≡ µN. The variables ∆N and φ are canonical. The
equations of motion can be written in the Hamiltonian
form,

The lowest stationary solutions of these equations have
the eigenenergies Es, a = ±EJ corresponding to symmet-
ric (φs = 2πn, (∆N)s = 0) and antisymmetric (φa =
π(2n + 1), (∆N)a = 0) eigenfunctions.

Thus, the double-well trapped condensates form a
macroscopic two-level system with the tunneling split-
ting 2EJ , if we disregard the dynamical Josephson
oscillations of the particle number.

F 1 mF 1–=,=| 〉 F 2 mF 1=,=| 〉 .,

Ψ r t,( ) ψ1 r( )a1 t( ) ψ2 r( )a2 t( ),+=

ai t( ) Ni
1/2 t( )e

iθi t( )
, i 1 2,,= =

HJ E0– EC ∆N( )2 2EJ φ,cos–=

∆N N1 N2, EC– ∂µ/∂N ,= =

∂φ
∂t
------

∂HJ

∂ ∆N( )
----------------,

∂ ∆N( )
∂t

----------------
∂HJ

∂φ
----------.–= =
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In what follows, we showed that a sufficiently strong
interaction between the macroscopic two-level system
and the condensate oscillation is responsible for the for-
mation of their equilibrium bound state. In this state, a
definite equilibrium number of the oscillation quanta is
coupled to the two-level system.

The interaction can be realized by the following
mechanisms. First, the interaction can be implemented
if we allow the Josephson coupling energy to depend on
the atom displacement. The latter is generated by the
condensate oscillation. Second, the interaction can be
realized by applying a pair of traveling-wave laser
beams with the same Rabi frequency Ω and the wave-
vector difference q, for instance, in the x direction. The
one-dimensional condensate is considered for simplic-
ity. The pulse frequencies are chosen to be resonant
with the transition energy between the two stationary
Josephson states. A similar mechanism is used for the
detection of the motion states of a single, trapped, two-
level atom (see [15] and references therein) and N two-
level atoms in a trap [16].

In what follows, we assume that interaction gener-
ates the transition between the states |e, n'〉  and |g, n〉 .
Here, |e〉  and |g〉  are two Josephson states, and n and n'
are the numbers of oscillation quanta. The transition
matrix element can be written as

(2)

The operators  and  are the creation and annihila-
tion operators associated with the oscillation state and

σ+ = |e〉〈 g|. Each of two values N  = ±N, where σz =
|e〉〈 e| – |g〉〈 g|, corresponds to one of the two stationary
Josephson states. The quantity G is determined by the
specific mechanism inducing the interaction. If the
interaction is realized by applying laser beams, it fol-
lows that in the rotating frame, G = Ω and η =
q(2MNω0)–1/2 is the Lamb–Dicke parameter caused, for
example, by the center-of-mass motion of N atoms in a
trap with the characteristic frequency ω0.

We consider the classical states of motion of the
condensate. These states can be described in terms of

the complex amplitudes a*, a = n1/2 , where

is the average number of quanta in the coherent state
|a〉 . The variables n and ϕ1 are canonical. By the classi-
cal state of motion, we mean that its number of quanta
is very large, n @ 1. It is convenient to specify the rela-

tion between the amplitudes a, a* and operators , 
as a = N–1/2 . The commutator of a and a* is then equal
to zero with macroscopic accuracy,

G e n',〈 |σ+ iη â+ â+( )( )exp

+ σ_ –iη â+ â+( )( ) g n,| 〉 .exp

â+ â

σ̂z

e
iϕ1±

n a〈 | â+â a| 〉 a 2= =

â â+

â

a a∗,[ ] 1/N 0.=
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The Hamiltonian of the motion states can be written as
Ne(n).

The Hamiltonian of the interacting stationary
Josephson and oscillation degrees of freedom therefore
becomes

(3)

We are interested in the situation where the resonance
condition

(4)

is satisfied with an integer k. In this case, the Hamilto-
nian Hint can be represented as

(5)

Dynamical solutions generated by the Hamiltonian
of type (3), (5) have been studied in numerous papers
both for a single trapped atom, N = 1 (see, e.g., [15, 17],
and references therein), and for N atoms in a trap [16].
In the present paper, we focus on the equilibrium prop-
erties of the system described by Hamiltonian (3), (5).

We note that in order to determine the partition func-
tion Z(N; T) in what follows, we must have a macro-
scopic two-level system. The phase transitions within
the Dicke model, which corresponds to the case where
k = 1 in Eqs. (3) and (5), have been discussed in the con-
text of superradiance [18] and, recently, for exciton
condensation [19].

Substituting Hamiltonian (3), (5) in the expression

Z(N, T) = Sp  for the partition function, we obtain in
the case of the classical oscillation degrees of freedom

(6)

where β = 1/T; T is the temperature. Using the eigenen-
ergies

of Hamiltonian , we arrive at the following expres-

Ĥ Ne n( ) N
ε
2
---σz H int, ε

2EJ

N
---------.≡+ +=

k
de
dn
------ ε=

H int N gkσ
+ak gk*a∗ kσ–+[ ] ,=

gk G
ik

k!
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2Mω0
--------------- 

 
k /2
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e βĤ–
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∫=
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sion for the partition function:

(7)

The partition function in Eq. (7) has a maximum at

the value  ≡ , realizing a minimum of the func-

tion F(n). That is, the value (T) is determined by the
equation

(8)

and is the number of oscillation quanta per atom of the
two-level system. This quantity plays the part of the
order parameter of the system for T < Tc , where Tc is the
transition temperature to the state with  ≠ 0.

The new splitting E1 – E2 = ∆ε of the Josephson lev-
els depends on the temperature and is defined by the
expression

(9)

At T = 0, Eq. (8) becomes 

(10)

where we used

For a simple resonance with k = 1, the solution for
(T = 0) is given by

(11)

Z N ; T( ) ne βNe n( )– e
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e
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N

d
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=  n N –βε n( ) ∫
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cosh
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2 nm

nm
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n nm=
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2knm
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We used g1 = G(ql0) in accordance with Eq. (5). We
note that

A solution for  exists when the interaction is suffi-
ciently strong, that is,

(12)

This relation implies that the system in question under-
goes a quantum phase transition at the critical value
Gc = ε(ql0) of the interaction strength.

At G(ql0) @ ε, the tunneling splitting ∆ε(T = 0) and
thermodynamic energy Em of the system described by
Hamiltonian (3), (5) are determined by the expressions

(13)

Therefore, first, the splitting caused by the interaction is
much greater than the “unperturbed” splitting ε. Sec-
ond, the bound state realizes the absolute minimum of
the thermodynamic energy within the range g1 @ ε.

It is worth noting that the consideration proposed
above applies in the case when qr0 ! 1, where r0 is the
(typical) mean interatom spacing. The l0 value is the
characteristic size of the condensate. As a result, we
arrive at the relation

Transition to the state with  ≠ 0 is second-order

at k = 1. Imposing   0 at the transition tempera-
ture Tc , we obtain from (8) at k = 1 and |g1 | @ ε

(14)

It is interesting to discuss the solutions of Eq. (10)
for multiple resonances with k > 1. As can be easily
seen, the character of the ground state changes drasti-
cally at k ≠ 1. Already at k = 2, solutions of Eq. (10)
with  @ 1 are absent.

At k @ 1, Eq. (10) implies

(15)

We see that  ~ 1 and ∆ε ≈ ε at k @ 1, and therefore,
the effect of the interaction is negligible, unlike the
solution for a simple resonance with k = 1 obtained
above.

For a one-dimensional condensate, the appearance
of a state with  ≠ 0 corresponds to the center-of-mass
oscillation of N atoms with a displaced zero point. The
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“capture” of oscillation quanta by the macroscopic two-
level system can therefore be considered a mechanism
of the formation of the equilibrium coherent state of
motion.

In the general case, the nonzero value for the exist-
ence of  leads to an equilibrium distortion of the
shape of the condensate. The distortion is self-consis-
tently coupled to the tunneling splitting. In particular,
the stationary Josephson states can be detected by
observing a change in the condensate shape, and vice
versa.

A remark is in order. The quantities de/dn ≡ ω(n)
specify the level separations of the oscillation spec-
trum. They are independent of n for harmonic oscilla-
tions, where ω(n) = ω0 and for the states in the region
of a “dense” (semiclassical) oscillation spectrum. In
this region, the level separations ω(n) are small com-
pared with ω0 and, in addition, are a slowly varying
function of n, ω(n) ≈ ω ! ω0.

3. QUANTUM SPECTRUM 
OF THE PARTICLE NUMBER

The quantization of Hamiltonian (1) produces the
particle number spectrum in the Josephson potential
EJcosφ. As shown in what follows, any Josephson state
can be realized by means of a given initial disbalance of
the particle number. It is therefore interesting to obtain
the complete spectrum generated by Hamiltonian (1)
and to represent it as a function of the initial disbalance.

The Schrödinger equation for Hamiltonian (1) is
derived by the quantization rule

As a result, we obtain the Mathieu equation

(16)

For ε > 2EJ, this equation has a continuum spectrum.
The states of this spectrum correspond to classical
states with an unlimited phase change, –∞ < φ < +∞;
they are called the self-trapping states in [9, 10]. In the
region –2EJ < ε < 2EJ, Eq. (16) has a discrete spectrum.
It corresponds to the finite-motion region of Hamilto-
nian (1), where the relative phase changes within

for each ε. In the Josephson regime [3] at EJ @ EC , the
number of levels in a well is large and the discrete spec-

nm

∆N( ) –i∂/∂φ.

–EC
φ2

2

d

d
2EJ φrcos– Ψ εΨ,=

ε HJ E0.–≡

– ε/2EJ( )arccos φ ε/2EJ( )arccos< <
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trum is determined by the Bohr–Sommerfeld formula

(17)

where

(18)

and K(κ) and E(κ) are the complete elliptical integrals
of the first and second kind. The density of states ρd(εν)
follows from Eq. (17) and is equal to

(19)

The level separations in (17) are given by

(20)

At (EJ/EC)1/2 @ 1, we have the relation ωm ! 2EJ . The
quantity ωm determines the maximum splitting of the
levels in the Josephson well. In what follows, the states
with ν < νc are called libration states.

In the region ν ≥ νc , the ν(ε) dependence and density
of states are determined by

(21)

States (21) with ν > νc are called self-trapping states.

Equations (17) and (21) imply that

(22)

At the same time, it is easy to show that

and

At ν = νc , curve ε(ν) has an inflection point.
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Because the energy is conserved, the state with a
given value of ν can be realized by defining the initial
values of (∆N)0 and φ(0) as

Supposing that φ(0) = 0 we obtain the following rela-
tion between ν and (∆N)0:

(23)

Using Eqs. (22) and (23), we arrive at the expressions

(24)

Combining (19) and (21), we obtain the dependence

(25)

Therefore, a new logarithmic singularity appears at the
boundary separating the libration and self-trapping
spectra.

4. INTERACTION 
OF THE EXCITED JOSEPHSON STATES 

AND ANHARMONIC CONDENSATE 
OSCILLATIONS

In this and the next sections, we show that the spec-
trum of the system can change drastically due to the
interaction between excited Josephson states (22)–(24)
with sufficiently large values of ν and oscillations of the
condensate.

As in Section 2, two mechanisms can be proposed
for the realization of the interaction. First, the interac-
tion can be produced by a dependence of EC in Eq. (23)
on the atom displacements. The latter are generated by
the condensate oscillation. Second, the interaction can
be realized by applying a two-photon traveling-wave
laser pulse with a Rabi frequency of Ω . The pulse cre-
ates condensates with different particle numbers and
induces interaction of atom displacements with the
excited Josephson states corresponding to the particle

ε ν( ) EC ∆N( )0
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number disbalance created by the pulse. The general
description proposed in what follows is independent of
the specific mechanism producing the interaction.

The states of motion of the condensate are classical.
These states are defined in Section 2. For semiclassical

Josephson states with ν @ 1, the cν,  amplitudes can
be written as

It is convenient to rewrite ε(ν) and cν in terms of the
variable

Combining this inequality with the requirement that

we arrive at the conditions for the x values,

(26)

Using Eqs. (22) and (23), we find that

In the general case, the ν(x) dependence is implicit. It is
determined by Eqs. (17), (21), and (23). However, in
the particular cases of the libration (ε(ν) ! EJ) and self-
trapping (ε(ν) @ EJ) states, the relationships between ν
and (∆N)0 can be represented in a simple form, as can
be seen from (24). Using Eqs. (23) and (24), we arrive
at the following expressions:

(27)

(28)

For any mechanism producing interaction between
two subsystems, the interaction Hamiltonian can be
written in the form of a multiple Fourier series in ϕ1, ϕ2,

cν
*

cν ν1/2e
iϕ2.=

x
∆N( )0

N1/2
------------------ @ 1.=

x
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N
------------------ ! 1,=

1 ! x ! N1/2.
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H0 Nε0 n x,( )≡ N
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N
----- e n( ) ECx2+ +– ,=
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where αsf = 1/2, αl = 1, and k1 and k2 are integers. For
simplicity, we disregard the phase-independent interac-
tion. Using Eq. (28), we obtain

(30)

The constant g is determined by the specific mechanism
producing the interaction.

We now assume that the term with the phase

which varies anomalously slowly with time, can be
dropped in sum (29). This can be done under two con-
ditions. The first condition is

(31)

or equivalently,

The second condition is

(32)

In writing this equation, we took into account that H0
and Hint are functions of a single dynamic variable, e.g.,

x. The quantity  defines the separation of levels of the
oscillation spectrum.

As is shown in what follows, condition (31) is
equivalent to the condition of the minimum of the func-
tion ε0(n, x) with respect to x. When the minimum
exists, it can provide the leading contribution to the
thermodynamic functions.

In addition, condition (31) implies that the phase 
is an approximate integral of motion if the dependence
on x near xm is ignored,

Inequality (32) implies that the width of the near-mini-
mum region is large at the characteristic interaction
variation scale. From Eqs. (31) and (32), we can see

that time changing the  phase is proportional to
(d2H0/dx2)m∆x, where ∆x is the variation of x near the xm

value. The maximum value (∆x)max specifies the width
of the near-minimum region such that

gk1k2

sf( ) N( ) gN
–1 k2/4+

,=

gk1k2
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The estimate for (∆x)max is given in what follows. Thus,
the leading term in sum (29) is given by

(33)

All the remaining terms in this sum are rapidly oscillat-
ing perturbations and are disregarded in this work. Here
and below, the index k in gk and φk denotes the set
k1r, k2r .

It can be easily shown that in addition to the energy

the system in question has the integral of motion

Owing to this, condition (31) is equivalent to that of the
minimum of ε0(n0, x) at xm for a given value of n0, as
mentioned above.

Using Eqs. (31)–(33), it is straightforward to write
the Hamiltonian

near the minimum to the first nonvanishing order in ∆x,

(34)

where

The terms with the derivatives of Hint are absent from
Eq. (34) because of condition (32).

Making use of the fact that

in the Thomas–Fermi approximation [20] (where a and
a0 are the scattering and oscillator lengths, respec-
tively), we can represent the range 1 ! xm ! N1/2 as

(35)

As is known [20], the relation (Na/a0) @ 1 is valid in the
Thomas–Fermi approximation, but N–1/2(Na/a0)2/5 ! 1,
and therefore, condition (35) (or equivalently, condi-
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tion (31)) specifies the region of the dense oscillation
spectrum, where  ! ω0. Here and in what follows, we
suppose that k1r = k2r = 1 for simplicity.

From Eq. (34), the value of (∆x)max can be esti-
mated as

Hence, condition (32) becomes

(36)

In what follows (see Eq. (49)), we show that the rela-
tion (36) is satisfied with macroscopic accuracy.

5. THE GROUND STATE

At a fixed value of n0, the leading contribution to the
partition function comes from the neighborhood of the
minimum at x = xm. The expression for Z(n0; xm; T) is

(37)

where I0(x) is the modified Bessel function. Equation (37)
implies that the free energy of the system is given by

(38)

Using Eq. (38), we obtain the equation for the 
value realizing the minimum of the free energy,

(39)

where I1(x) = . In addition to , the thermody-
namic average of cosφk can be determined from
Eqs. (37) or (38). This average is equal to

(40)

The order parameters  and  describe the

new coherent state. There is a bound state of the 
oscillation quanta and the Josephson state generated by

en'
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the initial disbalance of the particle number that corre-
sponds to the xm value. In addition, this state has an
equilibrium phase coherence factor of . The

 ≠ 0 value provides the equilibrium distortion of the
condensate shape. The above equations imply that the
shape distortion is self-consistently coupled to the xm

value defining the equilibrium initial disbalance of the
particle number.

At T = 0, the  value realizes the minimum of the
thermodynamic energy

(41)

To determine (T = 0), it is suitable to use the follow-
ing consideration. It is well known that the level sepa-
rations  are slowly varying functions of n within the
a dense (semiclassical) spectrum. We can therefore sup-
pose that  ≈ const ≡ ωb ! ω0. Under this assumption,

the xm value is independent of nm and the  is equal to

(42)

(It is worth noting that (∂2Em/∂ ) > 0.) Here and in

what follows, the notation  ≡ g(sf, l)(N) is used.
Taking into account Eq. (42), we readily obtain

(43)

The expressions for the energies imply, first, that we
obtain the minimum in the region of a sufficiently dense
oscillation spectrum that satisfies condition (35). The
minimum corresponds to the formation of a bound state
for the , xm values. Second, as can be seen from
Eq. (43), the absolute minimum of Em can be realized
within the ranges

(44)

These conditions are satisfied when the interaction
matrix elements g(sf, l)(N) are sufficient. We estimate the
condensate parameters required for the existence of the
absolute minimum. In the Thomas–Fermi approxima-
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tion, inequality g(sf)(N) @ EC is valid if the total particle
number is not very large, namely,

(45)

In turn, the relation g(l)2(N) @  is valid within the
range

(46)

where we use EJ = ΩN. Condition (46) is satisfied for
all admissible parameters if

We emphasize that the inequalities in the right-hand
side of Eq. (44) are much stronger than the condition
xm ! N1/2.

The transition to the state with  ≠ 0 and

 ≠ 0 is second-order. Requiring that  
0 at the transition temperature, we obtain from Eq. (39) 

(47)

The dependences of transition temperatures (47) on the
total particle number are given by

(48)

The transition temperature  therefore has macro-

scopic smallness in comparison with the  tempera-
ture. Along with conditions (45) and (46), this fact
implies that the libration Josephson state forms a bound
state with condensate oscillation rather than a self-trap-
ping state.

6. CONCLUSIONS

We have found that the interaction between the
Josephson and oscillation states results in a new coher-
ent ground state of the double-well trapped condensate.
There is a bound state of the  oscillation quanta and
the Josephson states. The latter are either two stationary
states forming the macroscopic two-level subsystem or
the excited Josephson states generated by the definite
initial disbalance of the particle number. Both the xm

value defining the disbalance and the tunneling splitting
Nε of the stationary Josephson states are self-consis-
tently coupled to the number of the oscillation quanta
entering the bound state.

We emphasize that the bound states arise near the
extremum points of the “unperturbed” spectrum of the
system. For a two-level Josephson subsystem, there is
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resonance between the “initial” tunneling splitting ε
and the oscillation frequency.

For the excited Josephson states in Sections 3 and 4,
a new coherent state forms in the neighborhood of the
minimum of the energy ε0(n0; x) if conditions (31), (32)
are satisfied.

The resonance and the minimum conditions specify
the type of the interaction between the Josephson and
oscillation states.

In addition, minimum condition (31) imposes sub-
stantial restrictions on the spectrum of the oscillation
states that can effectively interact with the Josephson
degrees of freedom. This condition implies that the
excited Josephson states can interact only with the
oscillation states having a sufficiently large density of
states (such that inequalities (35) are satisfied). For
instance, in an asymmetric double-well potential, the
energy ε(n) of its classical oscillation states has three
branches. Two branches have energies of ε1, 2(n) ≤ Vb ,
where Vb is the barrier height. There is a maximum at
ε1, 2(nmax) = Vb . The third branch has an energy of
ε3(n) ≥ Vb and a minimum at an energy of ε3(nmin) = Vb .
Therefore, the region of the dense oscillation spectrum
exists in the neighborhood of the top of the barrier.

A similar situation can occur for the stationary
Josephson states in Section 2. In the Thomas–Fermi
approximation, resonance condition (4) can be satisfied
within the range of the dense spectrum close to the top
of the barrier.

We emphasize that in both cases, the bound states of
the highly excited oscillation state and Josephson
degrees of freedom are formed. These states can realize
the absolute minimum of the thermodynamic energy, as
shown in Eqs. (13) and (43).

As shown in Section 4, condition (32) is realized
within range (36). Substituting the expressions for 

and  obtained above in (36), we find that this equa-
tion becomes

(49)

and is therefore satisfied with macroscopic accuracy.
The bound states exist at a sufficiently strong inter-

action determined by conditions (12) and (44). These
conditions are experimentally controlled by means of
either the interaction matrix elements G, g or the parti-
cle number N (see Eqs. (12), (45), and (46)).

For the stationary Josephson states in Section 2, the
mechanism proposed above provides a substantial
increase in the tunneling splitting that turns out to be
dependent on temperature. It is defined by (11). For the
excited Josephson states interacting with the anhar-
monic oscillation, two order parameters describe the
new ground state. These are the number  of the oscil-

nm

g1m

xm nm– sf l,( )
 ! 

g1m
sf l,( ) N( )
EC

--------------------- 
 

1/2

,

nm
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lation quanta entering the bound state and the phase
coherence factor in Eq. (40).

The second-order phase transitions to the states with
 ≠ 0 can be observed at T = Tc , where the transition

temperatures Tc are defined by Eqs. (14), (47), and (48).
We finally note that the appearance of bound states

generates an distortion in the equilibrium of the con-
densate shape specified by the  values in Eqs. (11)
and (42). This mechanism can provide experimental
detection of the Josephson states. The latter can be
observed by changing the condensate shape.
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Abstract—The variations in the electronic structure and the evolution of phase separation as a result of creation
of vacancies or excess of lanthanum in lanthanum manganites are studied on the basis of analysis of optical and
magnetic properties of LaxMnO3 epitaxial films (0.83 ≤ x ≤ 1.10) in the fundamental absorption range. The Kerr
effect, the temperature dependences of resistivity, optical density, and magnetoabsorption of light indicate the
charge and magnetic phase separation in the films. The fine structure observed in the spectrum is attributed to
spectral overlapping of electron transitions with charge transfer and geometrical resonances reflecting an inho-
mogeneous nanoscopic structure of the films, which strongly depends on stoichiometry and stresses emerging
during film deposition. It is shown that, in contrast to bulk polycrystals, the gradient of stresses over the film
thickness significantly affects the phase separation in the films. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In studying lanthanum manganites with a colossal
magnetoresistance, the main attention is paid to manga-
nites obtained by doping antiferromagnetic insulator
LaMnO3 (TN = 141 K) with divalent ions (Ba, Sr, Ca).
The creation of La deficit in LaMnO3, as well as doping
with Ca [1], gives rise to spontaneous magnetization
and elevates the Curie temperature (TC) up to 260 K. An
analysis of optical properties of polycrystalline lantha-
num manganites LaxMnO3 with a small La deficit in the
IR range reveals the existence of an insulator–metal
transition in the transmittance of light near TC despite
the semiconductor-type behavior of resistance ρ(T) in
the entire temperature range [2]. This proves the exist-
ence of inhomogeneous charge states leading to the for-
mation of highly conducting regions (metallic drops) in
the insulating matrix, i.e., charge separation of phases.
The Kerr effect observed in ferromagnetic regions [3]
indicates the magnetic separation of phases in lantha-
num manganite. Simultaneous analysis of optical and
magnetooptical properties of manganites, in particular,
(La0.5Pr0.5)0.7Ca0.3MnO3 epitaxial films [4], shows that
ferromagnetic regions are associated with magnetic
drops, which speaks in favor of the phase separation
model [5].
1063-7761/03/9602- $24.00 © 20257
In view of their high absorptance, polycrystalline
samples are not suitable for studying optical spectra in
the visible range, where optical transitions providing
information on the electronic structure are manifested.
The most appropriate objects for this purpose are films.
An analysis of optical and magnetooptical properties of
lanthanum manganite films provides information on the
behavior of charge carriers above and below the mag-
netic ordering temperature and makes it possible to
reveal changes in the electronic structure of LaMnO3

upon a deviation from the stoichiometric composition
and due to stresses emerging during film deposition in
view of epitaxy of the film on the substrate. The pres-
ence of charge and magnetic inhomogeneities in the
form of individual regions was visualized in
La0.67Ca0.33MnO3 films on LaAlO3 (LAO) substrates
[6]. The formation of inhomogeneous regions due to
structural distortions and/or deviations from the sto-
ichiometric composition must noticeably affect mag-
netic, electrical, and optical properties of the films. We
use here optical methods to study the changes in the
electronic structure and the evolution in phase separa-
tion as a result of creation of vacancies or excess of La
in LaxMnO3 epitaxial films. The experimental results
are discussed qualitatively on the basis of a theoretical
model assuming that the main contribution to the for-
mation of the optical response of manganites comes
003 MAIK “Nauka/Interperiodica”
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from transitions with charge transfer. The model takes
into account the inhomogeneous nanoscopic electronic
structure of the films, which is a consequence of phase
separation.

2. SAMPLES
AND EXPERIMENTAL CONDITIONS

Epitaxial films of LaxMnO3 (LXMO) with different
La/Mn concentration ratios (0.83 ≤ x ≤ 1.10) were
grown on LaAlO3 (001) substrates. The film thickness
was 200 nm; the thickness of a film with x = 0.83 was
30 nm. The methods of preparing the films, as well as
the conditions of their quality and thickness control, are
described in [7]. The optical density spectra of the films
in the temperature range 80–295 K were measured in
magnetic fields up to 0.8 T in the energy range 0.1–4.0 eV
on IKS-21 and KSVU-12 automated spectrometers.
The equatorial Kerr effect (TKE) was measured in the
energy range 1–4.5 eV in the temperature interval
20−300 K in magnetic fields up to 0.35 T. We measured
experimentally the relative change in the intensity of p
polarized light reflected from the film, δ = [I(H) –
I(0)]/I(0), where I(H) and I(0) are the intensities of
reflected light in the presence and absence of a mag-
netic field. The TKE measuring technique is described
in greater detail in [8]. The resistivity and magnetore-
sistance of the films were measured by the two-probe
method in the temperature range 75–300 K in magnetic
fields up to 0.8 T. Silver contacts were fixed by In solder
with the help of an ultrasonic solderer.

3. EXPERIMENTAL RESULTS

3.1. Kerr Effect 

Figure 1 shows the temperature dependences of the
TKE of LXMO films, reflecting the temperature depen-

TKE × 103

24

16

8

0

0 100 200 300
T, K

0.83 (30 nm) 0.83
0.85
0.90
0.93
0.95
1.00

x = 1.05

Fig. 1. Temperature dependences of TKE for H = 0.35 T and
E = 2.9 eV for LaxMnO3 films with different La deficits,
obtained during heating.
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dence of magnetization. An increase in lanthanum def-
icit elevates the phase-transition temperature TC , which
attains the value TC = 264 K for x = 0.83 (200 nm). In
addition, a considerable increase in the TKE is
observed for x < 0.95. An increase in the La concentra-
tion (x > 1) is accompanied by a shift in TC towards
lower temperatures and a decrease in the TKE. Small
values of TKE for the nominally stoichiometric compo-
sition LaMnO3 (LMO) and for films with x > 1.0 corre-
spond to the antiferromagnetic ground state of undoped
LaMnO3 [9].

The field dependence of the TKE for LMO is linear,
the slope decreasing with an excess of La (x = 1.05)
(see insets to Fig. 2). Such a form of the field depen-
dence of TKE also indicates that the magnetic ordering
is predominantly antiferromagnetic, especially for the
compound with x = 1.05. The relative changes in the
slopes of the field dependences of TKE for composi-
tions with x = 1.0 and 1.05 may indicate the presence of
a canted structure or the presence of a small number of
ferromagnetic regions in the antiferromagnetic matrix,
which is determined by stoichiometry. In the case of
samples with a considerable La deficit (x < 0.9), the
curves describing the field dependence attain saturation
even in weak field (e.g., at x = 0.85 for H ~ 1 kOe),
which is typical of ferromagnets. It should be noted
that, in contrast to samples doped with Ca and Pr [3],
we did not observe a hysteresis in the temperature
dependences of TKE for films with x > 0.95, measured
under cooling–heating conditions (Fig. 2). For samples
with x ≤ 0.95, temperature curves acquire a hysteresis.
Such a behavior indicates a considerable magnetic
inhomogeneity of these films as well as the presence of
ferromagnetic and antiferromagnetic components. A
comparison of these temperature dependences of TKE
for LXMO films with the temperature dependence of
the magnetic susceptibility of bulk polycrystals of the
same system [2] suggests that the more gently sloping
temperature dependences of TKE of the films are due to
peculiarities of the film state and are caused by the
stresses emerging during the film growth.

The spectral dependences of the TKE were mea-
sured for all the samples at temperatures for which the
TKE attains its peak value. The magnetooptical spectra
for films with various compositions (Fig. 3), as well as
for LaMnO3.11 polycrystals [10] (i.e., with cation defi-
cit), are characterized by two negative peaks and one
positive peak. The amplitudes of the peaks for the LMO
film are an order of magnitude smaller than the ampli-
tudes of bands in LaMnO3.11. With increasing La deficit
in the LXMO films, the amplitudes of the TKE peaks
increase and attain values typical of heavily doped
polycrystalline lanthanum manganites for x = 0.85. It
was established earlier [10] that the magnetooptical
activity of manganites with a perovskite structure in the
spectra range under investigation is associated with
transitions in octahedral complexes of Mn3+ and Mn4+
 AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003
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Fig. 2. Temperature dependences of TKE for LaxMnO3 films with different values of x, obtained in cooling–heating regimes for H =
0.35 T and E = 2.9 eV. The direction of temperature variation is indicated by arrows. The insets show the field dependences of TKE
for corresponding values of x.
ions. A shift in the spectral peak near 3 eV indicates that
the ratio of the magnetically active Mn3+ and Mn4+ ions
changes upon an increase in the La deficit. The increase
in the TKE amplitude for compounds with x ≤ 0.95
indicates that the volume of the ferromagnetic phase
increases. We have not detected a shift in the spectral
peak for an excess of La (e.g., for x = 1.05), but
observed a decrease in the amplitudes of the TKE peaks
as compared to the amplitudes for the LMO film. This
may be due to a decrease in the fraction of the ferro-
magnetic phase due to a decrease in the total concentra-
tion of Mn ions because an excess of La in a perovskite
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
lattice is structurally realized owing to the formation of
Mn vacancies.

3.2. Optical Absorption 

The optical density spectrum for a nominally pure
LaMnO3 film (Fig. 4) clearly displays a band at 1.7 eV,
which is also observed in the spectrum of a LaMnO3
single crystal (see inset to Fig. 4). For energies above
2.5 eV, all LXMO films exhibit an increase in the opti-
cal density, which corresponds to the edge of the
absorption band in manganites at ~5 eV (see, for exam-
SICS      Vol. 96      No. 2      2003



260 SUKHORUKOV et al.
ple, [11]). A wide spectral band at 1.7 eV has a fine
structure. Against the background of this band, we can
single out a number of bands centered at 1.12, 1.60,
2.00, 2.35, and 2.80 eV (Fig. 5).

With an excess of lanthanum (i.e., after the introduc-
tion of Mn vacancies), the fine structure is smoothed.
The introduction of La vacancies leads to a clearer
manifestation of fine structure bands, a change in the
intensity ratio of these bands, and a displacement of the
center of gravity of the wide band at 1.7 eV towards
lower energies. A film with a composition of La0.83MnO3
and a thickness of 30 nm displays a considerable
improvement in resolution of these bands at 295 K for
the same values of energy as for films with a thickness
of 200 nm (inset to Fig. 6). The emergence of these
bands is not associated with interference of light since
the film has a high absorptance in the visible range and
the interference condition for thin films is not satisfied
for the normal incidence of light.

Cooling of the films from 295 to 80 K changes the
spectrum, the change being different for LMO and for
films with 0.83 ≤ x ≤ 0.90. The LMO film displays a
shift of the edge of the band at 1.7 eV towards higher
energies (see Fig. 4), which is typical of semiconduc-
tors. LXMO films (0.83 ≤ x ≤ 0.90) exhibit an increase
in the optical density in the range of low energies E <
2.5 eV (Fig. 6). For films with x = 0.83, cooling leads to
a considerable increase in the optical density and
smoothens the fine structure (see Fig. 6). The difference
in the optical densities (absorptances) for a film with
x = 0.83 (200 nm) at two temperatures (80 and 269 K)
in the ferromagnetic region is proportional to the square
of the wavelength (in the spectral range from 2000 to
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Fig. 3. Spectral dependences of TKE for fields with differ-
ent La deficits, obtained at T = 50 K, H = 0.35 T. The inset
shows the curves for concentrations x = 1.00, 1.05, and 1.10
at T = 35 K.
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8000 nm). This indicates that the increase in absorp-
tance as a result of film cooling may be due to the emer-
gence of the contribution from free charge carriers. We
observed similar temperature variations in the spectra
of heavily doped La0.7Sr0.3MnO3 films [12] and attrib-
uted it to a redistribution of the spectral weight from the
region of fundamental absorption to the IR spectral
region in which the contribution from free charge carri-
ers shows up. The shape of the temperature dependence
of sample transmittance t in the IR spectral range gives
an idea of the behavior of charge carriers upon a transi-

D

0 1 2 3 4

E, eV
1 2 3

E, eV

K

295K

80K

Fig. 4. Optical density spectrum for a LaMnO3 film at two
temperatures. The inset shows the absorption spectrum for
a LaMnO3 single crystal.
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Fig. 5. Optical density spectrum for LaxMnO3 films with an
excess and deficit of lanthanum at T = 295 K. The curves
corresponding to compositions with x = 1.10, 1.05, 0.95,
and 0.90 are displaced along the ordinate axis for better
visualization.
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tion from the paramagnetic to the ferromagnetic region.
The energy of 0.14 eV corresponding to the optical
density minimum in front of the phonon spectrum
(Figs. 5, 6) for T > TC is a convenient point for investi-
gating the temperature behavior of the contribution
from charge carriers.

Let us compare the temperature dependences of
transmittance (Fig. 7a) and resistivity ρ (Fig. 8) of the
films. As a result of cooling of films with 0.95 ≤ x ≤
1.10, their transmittance increases monotonically as in
the case of an undoped LMO single crystal [13], which
is typical of semiconductors. However, an increase of
the lanthanum deficiency leads to the inverse pattern
even for x = 0.90: after the attainment of its peak value
near TC , the transmittance of a film decreases in spite of
continuous increase in resistivity in the temperature
range under investigation. A further increase in the lan-
thanum deficit (x ≤ 0.85) is accompanied by an insula-
tor–metal transition near TC , which can be seen from
the t(T) and ρ(T) curves (see Figs. 7a and 8). A similar
temperature dependence of transmittance (insulator–
metal transition below TC) was observed for LXMO
polycrystals with x ≤ 1 [2]. According to the ρ(T)
(Fig. 8) and t(T) (Fig. 7a) curves, films with x ≥ 0.95
exhibit no insulator–metal transition in the temperature
range T > 80 K under investigation. A higher value of ρ
for a film with x = 0.83 is due to difficulties involved

D
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E, eV

1 2 3 E, eV

D x = 0.83(30 nm)

x = 0.85

x = 0.83(200 nm)80K

293K
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80K
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80K

Fig. 6. Optical density spectra for LaxMnO3 films with x =
0.83 and 0.85 at two temperatures. The curves correspond-
ing to a composition with x = 0.83 are shifted along the ordi-
nate axis through a constant interval for convenience of
visualization. The inset shows the optical density spectra for
a thin film with x = 0.83.
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when the shape of the sample is taken into consider-
ation. An increase in the value of ρ and activation
energy for films with x > 1 near room temperature (see
table) indicates the presence of lanthanum and manga-
nese vacancies even in the nominally stoichiometric
LMO due to deviation from oxygen stoichiometry. For
x > 1, the number of manganese vacancies in the struc-
ture in fact increases. Both doping of lanthanum man-
ganite with bivalent ions and an increase in the concen-
tration of La vacancies (increase in the ion concentra-
tion ratio Mn4+/Mn3+) lead to an increase in the
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Fig. 7. (a) Temperature dependences of the optical transmit-
tance of LaxMnO3 films (0.83 < x < 1.10) for E = 0.14 eV.
The curves are displaced along the ordinate axis for better
visualization. The temperature dependence of transmittance
of a film with x = 0.83 and thickness 200 nm is denoted by
dark circles for H = 0 and by light circles for H = 0.8 T.
(b) Temperature dependences of magnetotransmittance of
the films for H = 0.8 T.

Table

Composition, 
x , K TMR, K TMT, K Ea, eV

0.83 264 267 268 –

0.85 180 190 184 0.112

0.90 126 125 126 0.125

0.95 – – <80 0.125

1.00 – – – 0.142

1.05 – – – 0.145

1.10 – – – 0.162

0.83 (30 nm) 100 – – –

TC*

(a)

(b)
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magnetic ordering temperature and the temperature
corresponding to the maximum film transmittance,
which is associated with it.

The application of a magnetic field reduces the
transmittance and shifts the t(T) curve towards higher
temperatures in analogy to the behavior of the ρ(T)
curve in a magnetic field. The magnetotransmittance
(MT) effect (relative change in the intensity of light
transmitted by the sample under the action of the mag-
netic field, ∆t/t = |(tH – t)/t |) emerging in this case is
similar to the magnetoresistance (MR) effect (inset to
Fig. 8). Figure 7b shows the temperature dependences
of the magnetotransmittance for films in a magnetic
field H = 0.8 T applied along the normal to the film sur-
face. The magnetotransmittance of the films attains its
peak value in the vicinity of the magnetic ordering tem-
perature. The maximum value of MT ~ 8% was
obtained for a film with x = 0.83 (200 nm). The magne-
totransmittance associated with free charge carriers is
practically absent in the region of fundamental absorp-
tion; for instance, the value of MT for a composition
with x = 0.85 amounts to less than 0.5% for an energy
of 3.0 eV.

For most compositions of LXMO films, the gently
sloping temperature dependence of the TKE indicates
that the films are magnetically inhomogeneous and
apparently consist of a set of ferromagnetic regions
with different Curie temperatures. In this case, it is
expedient to assume that the temperature  corre-
sponding to the minimum of the first derivative dM/dT
of magnetization with respect to temperature is the
effective temperature of magnetic ordering for an inho-
mogeneous film in accordance with the Landau theory.

TC*

ρ, Ω cm
107

105

103

101

10–1

10–3

10050 150 200 250 300

T, K

100 200 300
T, K

0

0.25

0.50

(ρ
0 

– 
ρ H

)/
ρ 0

 

x = 1.10

1.00
0.95
0.90
0.83
0.85

0.83
0.85

x = 0.90

Fig. 8. Temperature dependences of resistivity of LaxMnO3
films. Dark stars correspond to the temperature dependence
of the film with x = 0.90 for H = 0; light stars correspond to
H = 0.8 T. The inset shows the temperature dependences of
the magnetoresistance of films with x = 0.83 and 0.90 for
H = 0.8 T.
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The temperature  determined in this way for
[d(TKE)/dT]min = [dM/dT]min is close to temperatures
corresponding to the maxima of magnetoresistance and
magnetotransmittance (see table). The Curie tempera-
ture obtained by differentiating the curve M(T) mea-
sured on a SQUID magnetometer for a film with x =
0.90 coincided with  measured from the TKE.

4. DISCUSSION

Even for oxides with stoichiometric compositions of
transition 3d metals, the origin of low-energy electron-
hole excitations is one of the most important and dis-
putable questions in the physics of these strongly corre-
lated systems. It is generally accepted at present that the
most intense low-energy electronic excitations in
dielectric 3d oxides are associated with the electron
transfer from an oxygen anion to a cation of a 3d metal;
consequently, these materials are insulators with charge
transfer (CT). Unfortunately, a convincing interpreta-
tion of various absorption bands in the spectra of 3d
oxides has not been worked out as yet. For example,
wide bands in the optical conductivity spectra of
LaMnO3 with centers near 2.0 and 5.0 eV are attributed
by some authors [14, 16] to allowed electric-dipole CT

transitions of the types –  and –
(L is an electron of the ligand) to the eg or t2g state of the
3d cation, respectively. Other authors attribute the low-
energy band to various d–d transitions [11, 17] or CT
transitions involving Mn4+ ions [18].

In view of the ambiguity in the interpretation of
manganite optics, the well-known quantum-mechani-
cal cluster approach acquires special importance. This
approach enables us to include consistently all correla-
tion effects with the help of the well-developed appara-
tus of the theory of the crystal field and the field of
ligands [19]. Such an approach was used in [20] for the
classification and analysis of various CT states and
O2p–Mn3d CT transitions in [MnO6]–9 octahedra and
for a semiquantitative description of CT bands in
LaMnO3. According to [20], single-electron CT transi-
tions from odd purely oxygen t1u(σ), t1u(π), and t2u(π)
orbitals to the eg or t2g state of a 3d cation form 60 (!)
allowed electric-dipole transitions between the corre-
sponding multielectron configurations with energies in
a wide spectral range from 2.5 to 11 eV and a set of
dipole-forbidden transition from oxygen states a1g(σ)
and t1g(π) with a minimal energy of 1.7 eV t1g(π)–eg

transition). Thus, the low-energy spectral range of the
anomalously wide CT band in LaMnO3 is formed by a
series of CT transitions in a [MnO6]–9 octahedron with
increasing intensity, starting from the lower dipole-for-
bidden transition t2u(π)–eg with a peak at 1.7 eV, fol-
lowed by a weak dipole-allowed transition t1g(π)–eg

with a peak at 2.5 eV and a relatively more intense
dipole-allowed t1u(π)–eg transition with a peak at 3.5 eV.
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It should be noted that the theoretical model devel-
oped in [20] corresponds to nominally stoichiometric
LaMnO3. However, manganites, as well as many other
3d oxides, are characterized by deviations from stoichi-
ometry for all sublattices, including oxygen nonstoichi-
ometry with charge compensation by holes of the Mn4+

and/or O– type. The model calculations made in a recent
publication [18] show that a charge transfer with the
participation of such holes may lead to a noticeable
contribution to the low-energy optical response in a
range near 1.5 eV.

The interpretation of the optical response of nonsto-
ichiometric LaxMnO3 or doped manganites of the
La1 − xSrxMnO3 type is considerably complicated due to
the emergence of strong charge fluctuations and phase
separation presuming the presence of significant intrin-
sic electronic inhomogeneities. These nanoscopic inho-
mogeneities in the simplest approximation can be pre-
sented as a system of metal-like drops generated by
doping or vacancies, which are distributed in the insu-
lating matrix. The inhomogeneous texture of bulk crys-
tals may differ significantly from the texture of films,
for which the existence of a stress gradient over the film
thickness must be taken into account. It should be
emphasized that the optical properties of nonstoichio-
metric or doped manganites should be described taking
into account these inhomogeneities as one of the most
important factors of formation of the optical response.

The properties of nanoscopically inhomogeneous
media differ significantly in many respects from the
properties of homogeneous media. Their peculiarities
are manifested in optical and magnetooptical spectra in
the form of so-called geometrical resonances, viz.,
absorption peaks, which have no analog in homoge-
neous systems and reflect the discrete structure of the
excitation spectrum of intrinsic electromagnetic modes
of a small particle. Semiquantitative description of
these features is usually based on the theory of an effec-
tive medium [21, 22], which is an analog of the coher-
ent potential approximation widely used in the physics
of disordered systems and “operates” well when the
particle size is smaller than the wavelength of light. In
this case, intrinsic absorption of particles predominates
and scattering of light by particles is disregarded as a
rule. The effective permittivity εeff can be determined
from an expression of the type

(1)

where εi , pi , and Li are the permittivity, volume frac-
tion, and depolarization factors of particles of the ith
species, whose shape is assumed to be ellipsoidal;
angle brackets indicate averaging over orientations of
particles, their size, shape, etc.

Even in its simplest version, the theory of an effec-
tive medium successfully describes [23] the known

pi

εi εeff–
εeff Li εi εeff–( )+
----------------------------------------

i

∑ 0,=
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spectral dependences of the optical conductivity of
doped manganite La1 – xSrxMnO3 for various extents of
doping [16]. Nevertheless, the model of “homogeneous
metallic drops” (1) in an insulator is very simple and is
intended only for a semiquantitative description of
basic properties of an optical response of an inhomoge-
neous medium. In the general case, we can expect a
considerable spread in the shape, size, and internal
structure of inclusions (in particular, their Drude
parameters). Obviously, metal-like inclusions in an
insulator always have a certain transient boundary layer
with parameters that are not typical of the insulator or
the metal. All these factors may lead to a more complex
structure of geometrical resonance (its nonuniform
broadening or even “splitting”). One of the familiar
models of an effective medium that enables us to take
into account the inhomogeneous structure of inclusions
is the Sheng model of “two-layer” inclusions [24]. In
this model, instead of the permittivity of the ith compo-
nent of the mixture, the modified expression

(2)

is substituted into Eq. (1), where the indices “in” and
“out” corresponds to the core and shell of compound
particles, f being the ratio of the volumes of the inner
and outer shells.

In order to illustrate the role of electron inhomoge-
neity effects, we use the effective medium formalism
for describing the spectral and temperature depen-
dences of the optical density of nonstoichiometric man-
ganates, obtained by us for a thick La0.83MnO3 film.
Figure 9 shows the calculated spectral dependences of
optical conductivity σ = (ω/4π)Imε and optical density
D = ln(1/t) of this film, which is regarded as a system of
the dielectric manganite type with various concentra-
tions p of nanoscopic metal-like spherical inclusions
whose permittivity is described by the Drude formula:

The optical conductivity of the stoichiometric dielectric
manganite LaMnO3 (Fig. 9a) was simulated by a super-
position of Lorentzians with centers at ω1 = 2.3 eV,
ω2 = 5.0 eV, and ω3 = 6.5 eV, which successfully repro-
duces the experimental data obtained in [13–15]. The
calculated spectrum of the optical density of a
La0.83MnO3 film at 295 K (curve 1c in Fig. 9b) corre-
sponds to the simple model of homogeneous metallic
drops (1) with concentration p = 0.2, plasma frequency
ωp = 3.8 eV, relaxation rate γ = 1.3 eV, and ε∞ = 1.
Curves 1a and 1b correspond to a more realistic model
of inhomogeneous two-layer inclusions (2) with the
same total concentration, but consisting of a core with
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Fig. 9. Results of simulation of the high-temperature (T = 295 K, curves 1a and 1b) and low-temperature (T = 80 K, curve 2) optical
responses of a La0.83MnO3 film in the effective medium approximation with two-layer inclusions. (a) Calculated optical conduc-
tivity spectra with the quasimetallic phase volume p = 0.2 (curve 1a) and 0.7 (curve 2). The experimental results obtained for an
allied system La1 – xSrxMnO3 at 295 K [16] are shown for comparison (squares correspond to x = 0 and rhombi to x = 0.3).
(b) Calculated optical density spectra with a wide (1a) and narrow (1b) spectrum of inhomogeneity fluctuations. Curve 1c is the
spectrum calculated in the model of homogeneous inclusions. Squares and rhombi correspond to experimental results obtained for
a La0.83MnO3 film at 295 and 80 K.
volume fraction f = 0.3 and with relatively “good”
metallic properties (ε1∞ = 1, ω1p = 4.7 eV, and γ1 = 0.05
and 0.01 eV for curves 1a and 1b, respectively) and a
shell of a “poor” metal (ε2∞ = 2.5, ω2p = 3.0 eV, and
γ2 = 1.1and 0.7 eV for curves 1a and 1b, respectively).
In the case of an inhomogeneous two-layer inclusion, a
geometrical resonance existing for a “homogeneous”
inclusion “splits” into two. This effect is manifested
most clearly for relatively small values of effective
relaxation parameter γ, which also describes the struc-
tural distribution of the inclusion, i.e., the specific tex-
ture of the material. Curve 1a describes fairly well the
experimental data on the optical density of the film in
the high-temperature region, which enables us to use
the corresponding parameters as the initial parameters
for simulating the temperature and concentration
effects. In the general case, all parameters of a model
inhomogeneous electronic structure may obviously
exhibit a noticeable temperature dependence. If we
assume the existence of double exchange for metallic
inclusions, the ferromagnetic ordering below TC must
be accompanied by “metallization” with increasing
plasma frequency and volume fraction of inclusions at
the expense of replacement of the dielectric phase,
which is disadvantageous from the energy viewpoint.
The separation of these two effects (“electronic” and
“volume” effects in the effective medium model)
encounters certain difficulties and requires more
detailed experimental studies. For the sake of simplic-
ity, we confine our subsequent analysis to the volume
effect only. Curve 2 (Fig. 9b) was calculated for the
JOURNAL OF EXPERIMENTAL 
parameters p = 0.7, f = 0.65, ω1p = 3.2 eV, γ1 = 0.8 eV,
ε1∞ = 1, and ω2p = 1.9 eV, γ2 = 2.0 eV, ε2∞ = 1. In other
words, we assume a sharp increase in the volume frac-
tion of metallic drops; as a result, metallic properties for
curve 2 are manifested more clearly than for curves 1a
and 1b. It can easily be seen that curve 2 successfully
simulates the experimental optical density spectrum of
the film for T = 80 K, which enables us to consider the
volume effect as one of the most important factors
determining the temperature behavior of the low-
energy spectral response of doped manganites. The
spectral singularity in the vicinity of 0.2 eV, which is
clearly seen at room as well as nitrogen temperature,
may be due to allowed electric-dipole transitions with

charge transfer in the hole centers Mn , where,
according to estimates obtained in [18], the CT energy
is a small quantity on the order of 0.2 eV. It should be
noted that the optical response observed for a real inho-
mogeneous system might also be a complex effect of
overlapping of electronic transitions with geometrical
resonances. It is well known [22] that the interference
between geometrical and electronic resonances may
lead to a complex shape of the resultant absorption
spectrum and the TKE spectrum, which is quite sensi-
tive even to small changes both in the type of inhomo-
geneity and in the electronic transition. In particular,
the initiation of forbidden or weak allowed transitions
could be observed. The effects of interference of geo-
metrical and electron resonances in manganites can be

O6
8–
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manifested in the range 1.5–2.0 eV owing to the forbid-
den transition t1g(π)–eg with CT.

Thus, the model of an effective medium makes it
possible by and large to describe the main spectral fea-
tures of nonstoichiometric manganites as well as their
dependence on the vacancy concentration, temperature,
and the structure of electronic inhomogeneity as a
whole. A comparison of the optical response of nonsto-
ichiometric manganites LxMnO3 with the results of var-
ious experimental studies of the spectral response of
doped La1 – xSrxMnO3-type manganites based the sim-
ple model of an effective medium leads to very impor-
tant conclusions concerning the universal nature of
their electronically inhomogeneous state and, in addi-
tion, concerning the instability of the LaMnO3 system
in the formation of electronic inhomogeneity. Indeed,
the optical response of the entire wide set of LXMO
films under investigation in the mean IR range in the
region of interaction between light and charge carriers
directly indicates the existence of an electronic inho-
mogeneity of the type of metallic drops in an insulating
matrix. For example, a La0.9MnO3 film exhibits an opti-
cal response typical of the insulator–metal transition
(see Fig. 7a) in spite of the fact that the resistivity of this
film is high and is of the semiconductor type (see
Fig. 8). An increase in magnetoabsorptance for the
La0.95MnO3 film at T < 100 K (see Fig. 7b) indicates
that this film contains metallic drops. The size of the
drops, the volume occupied by them, and the spatial
pattern of inhomogeneity depend not only on the num-
ber of acceptors (La and Mn vacancies), but also on the
number of donors (oxygen vacancies) whose presence
leads to a partly compensated state [25].

It is noteworthy that the quantities of MT and MR
exhibit different dependences on the Curie temperature

of the films. A decrease in  leads to an increase in the
magnetoresistance of the films, which attains its peak

value of about 45% for a film with x = 0.90 (  = 125 K).
This composition is apparently close to the percolation
threshold. On the contrary, the magnetotransmittance

decreases with . Such a difference in the behavior of
MT and MR is due to the fact that the resistivity data are
averaged over the sample volume. Magnetoresistance is
low for small drops. When magnetotransmittance is
being measured, a change in the transmittance in indi-
vidual regions (drops) is observed. Above the percola-
tion threshold, the emergence of a simply connected
metallic region results in a strong magnetotransmit-
tance effect accompanying the insulator-metal transi-

tion near  (see Fig. 7b). At the same time, the MT
effect is quite sensitive for small-size drops. For exam-
ple, for a composition with x = 0.95, the MR effect is
absent even at T > 80 K, while the magnetotransmit-
tance for this composition is appreciable. However, the
MT peak is not attained for this composition, which

TC
*

TC
*

TC
*

TC
*
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means that an insulator–metal transition is possible at
T < 80 K. The temperature range in which metallic
drops exist coincides with the existence of TKE, i.e.,
with the ferromagnetic ordering; consequently, metallic
drops are ferromagnetic.

It can be seen from the temperature dependence of
TKE that the Curie temperature for a film with x = 0.83
having a smaller thickness (30 nm) is 100 K, which is
approximately one-third the value of TC for a thick

(200 nm) film of the same composition (  = 264 K).
This is probably due to a decrease in the volume and the
total fraction of ferromagnetic regions in a thin film
owing to high compressive stresses emerging in the
film–substrate system. In view of the small thickness
(30 nm) of the film with x = 0.83, magnetotransmit-
tance is not observed.

While comparing the optical properties of LaxMnO3
epitaxial films in the visible and IR regions with the
behavior of manganites of the La1 – xSrxMnO3 type, we
must emphasize once again the universal nature of the
phase separation and the properties of the inhomoge-
neous electronic structure in systems with nonstoichio-
metric compositions and with heterovalent doping. It
appears that the LaMnO3 system is unstable to the
emergence of fluctuations of the metallic ferromagnetic
phase, which is stabilized upon the formation of vacan-
cies in the La sublattice or upon heterovalent doping.

It was noted above that the formation of fine struc-
ture in the spectra for nonstoichiometric LXMO in a
fairly wide range with the center at 1.7 eV and the pecu-
liarities in its spectral, concentration, and temperature
dependences may be associates with the splitting of
geometrical resonances as well as with the interference
of geometrical and electron resonances. The fine struc-
ture of the wide band changes with the vacancy concen-
tration, temperature, and film thickness. The formation
of Mn vacancies for x > 1, when the system composi-
tion is apparently close to the stoichiometric composi-
tion, leads to smoothing of the fine structure (see
Fig. 5). On the contrary, an increase in the La vacancy
concentration is accompanied by a noticeable intensifi-
cation of the fine structure, accompanied by a gradual
displacement of the spectral center of gravity towards
lower energies in analogy to the effect of heterovalent
doping in the La1 – xSrxMnO3 system [16]. We believe
that the optical data obtained in the visible and near IR
ranges reflects both the effects of nonuniform broaden-
ing of a geometrical resonance up to its splitting into
several resonances, and the effects of spectral overlap-
ping of geometrical and electron resonances in fluctuat-
ing low-symmetry crystal fields, removing the forbid-
denness from the electronic CT transition t1g(π)–eg and
leading to splitting of degenerate initial and final states
of the MnO6 center. The low-symmetry crystal field in
LXMO films may also be due to inhomogeneity associ-
ated with deviations from the stoichiometric composi-
tion as well as the stresses emerging in the film because

TC
*
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of the difference in the parameters of the film and the
substrate. The most significant enhancement and reso-
lution of the fine structure are observed in a thin
La0.83MnO3 film (see inset to Fig. 6) whose thickness is
approximately equal to one-seventh of the thickness of
a thick film with a more smoothened spectrum. This
experimental fact appears quite natural if we take into
account a wider spectrum of fluctuations of electronic
inhomogeneities in the thick film as compared to the
thin film for which the stress gradient from the substrate
side is a selective factor narrowing the spectrum of
inhomogeneity fluctuations. In the simple model of
two-layer inclusions considered above, a decrease in
the effective relaxation parameters γ directly connected
with fluctuations in the insulator–metal system makes it
possible to simulate the transition from the thick to the
thin film (curves 1a and 1b in Fig. 9), which is accom-
panied by splitting of a nonuniformly broadened geo-
metrical resonance.

Thus, an analysis of the optical response of lantha-
num manganite films makes it possible to study not
only deviations from stoichiometry and the insulator–
metal volumetric balance, but also finer features of the
electronically inhomogeneous texture as well as the
effect of various external factors. An increase in the La
vacancy concentration leads not only to the emergence
of a fine structure against the background of a wide
absorption band at 1.7 eV, but also to a considerable
increase and displacement of the position of the main
TKE peak, indicating a change in the ratio of the num-
ber of magnetically active Mn3+ and Mn4+ ions.

It should be noted that the emergence of geometrical
resonances in an inhomogeneous system also leads to a
considerable modification of magnetooptical spectra
[26]. A detailed analysis of the TKE spectra for films of
nonstoichiometric manganites as nanoscopically inho-
mogeneous systems may become a subject of special
investigation.

5. CONCLUSIONS

Analysis of optical and magnetooptical properties
of LaxMnO3 epitaxial films with a deficit and excess of
lanthanum (0.83 ≤ x ≤ 1.10) in the visible and IR ranges
and their comparison with the behavior of the
La1 − xSrxMnO3 systems indicate the universal nature of
phase separation and properties of an inhomogeneous
electronic structure in a system with a nonstoichiomet-
ric composition and with heterovalent doping. It is
shown that the optical and magnetooptical responses of
the LaxMnO3 system are determined not only by the
nominal concentration of vacancies, but also depend
significantly on the internal nanoscopic metal–insulator
texture which, in turn, depends on the composition,
temperature, and thickness of the film. The spectral,
concentration, and temperature dependences of optical
density are interpreted quantitatively in the framework
of the theory of an effective medium. The fine structure
JOURNAL OF EXPERIMENTAL 
of the fundamental absorption band of LaxMnO3 has
been discovered and analyzed. The origin of the fine
structure is associated with the splitting of a geometri-
cal resonance and with the interference of geometrical
and electron resonances in an inhomogeneous system
with phase separation. A comparison of the optical
properties of LaxMnO3 films with different degrees of
nonstoichiometry (0.83 ≤ x ≤ 1.10) suggests that even a
compound with a nominally stoichiometric composi-
tion (x = 1.0) is a system unstable to the formation of
electronic inhomogeneities.
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Abstract—A quantum theory of conductivity is constructed for semiconductor objects such as quantum wells,
wires, and dots. The mean values of current and charge densities induced by a weak electromagnetic field are
calculated. It is shown that the mean values of current and charge densities consist of two parts, the first of which
is expressed in terms of the electric field and the second is expressed in terms of derivatives of the electric field
with respect to spatial coordinates. Appropriate expressions are derived for the conductivity tensor that depends
on coordinates; these expressions can be applied to any spatially inhomogeneous systems. The results obtained
can be used in the theory of secondary radiation from objects of reduced dimension in the cases of monochro-
matic or pulsed irradiation. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The growing interest in the experiments and theory
on the reflection and absorption of light by semicon-
ductor objects of reduced dimension such as quantum
wells, wires, and dots under pulsed light excitation (see,
for example, [1, 2]) revives the question of what form
of interaction between electrons and an electromag-
netic wave is more convenient—the one containing
vector potential A(r, t) or that with electric field E(r, t).

Paper [3] is devoted to the consideration of the same
question as applied to calculating the differential cross
section of inelastic scattering of light by infinite crys-
tals. In [3], it is shown that exact expressions for scat-
tering cross sections (that involve sets of exact wave
functions of electrons in a crystal) obtained with the use
of two different forms of interaction between electrons
and an electromagnetic wave coincide. However, the
set of exact wave functions of electrons in a crystal (that
accurately take into account, for example, the electron–
phonon interaction) is unknown; therefore, approxi-
mate methods are used for calculating cross-sections—
namely, one takes into account the lowest order elec-
tron–phonon interaction and does not take into account
all intermediate states of the electron system. In this
approximation, various forms of electron–light interac-
tion (those involving A or E) yield different results. The
authors of [3] assert that, in the case of nonresonant
scattering, the interaction containing E gives better
results (i.e., results closer to exact ones).
1063-7761/03/9602- $24.00 © 20268
We will construct a general theory of secondary
radiation of light by low-dimensional semiconductor
objects such as quantum wells, quantum wires, and
quantum dots. First of all, this theory should describe
the reflection and absorption of light by such objects, as
well as various types of light scattering (Raman and
Rayleigh scatterings). The theory must be applicable in
the cases of monochromatic as well as pulsed radiation.
We restrict the analysis to the linear approximation of
the intensity of exciting light. It follows from the afore-
said that the problems solved here are different from
those treated in [3], where the authors consider the light
scattering in bulk crystals. Therefore, the problem of
choosing the form of interaction (either in terms of A or
E) should be solved anew.

In the present paper, we calculate the mean densities
of current and charge induced by electromagnetic field
in the case of an inhomogeneous medium. This case
includes semiconductor objects of reduced dimension.
Having calculated the linear (in electric and magnetic
fields) contributions to the mean densities of current
and charge, we can determine these fields inside and
outside the semiconductor objects by solving the Max-
well equations. In this way, we can obtain expressions
for the fields that correspond to the light reflected from
and transmitted through an object. Such a procedure,
which takes into account all orders of interaction of
electrons with light, was carried out in [4], where the
intensities of reflected and absorbed light were calcu-
lated under monochromatic irradiation of a quantum
well of finite thickness. In the present paper, we derive
003 MAIK “Nauka/Interperiodica”
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an expression for the mean density of induced current
that was used in [4].

The operator of interaction of charged particles with
electric and magnetic fields is expressed in terms of the
vector A(r, t) and scalar ϕ(r, t) potentials. Therefore,
the mean densities of induced current and charge are
also expressed in terms of these potentials. However,
the application of these expressions is hampered due to
the contribution

to the mean density of current, where e and m are the
charge and mass of a particle, respectively, and ρ(r) is
the charge-density operator (see Section 4 below).
Therefore, we express the mean values of current and
charge densities in terms of electric and magnetic
fields. This is possible because all observable quantities
are expressed via the electric E(r, t) and magnetic
H(r, t) fields. Our task is to pass from expressions for
physical quantities containing potentials to expressions
containing the fields E(r, t) and H(r, t). In the present
paper, we consider the case of zero temperature T = 0.

The paper is organized as follows. In Sections 2–4,
we give an account of the statement of the problem and
introduce the operators of current and charge densities
and their averaged values over the ground state of the
system. In Sections 5–9, we solve the problem of
expressing these mean values in terms of electric field
and its spatial derivatives. Section 10 is devoted to the
elimination of diagonal matrix elements of operators ri

from the expressions of the mean values. In Section 11,
we present a general expression for the conductivity
tensor of an inhomogeneous system. In Sections 12 and
13, we consider the case of zero electric and constant
magnetic fields.

2. STATEMENT OF THE PROBLEM

Consider a system of N particles of mass m and
charge e in an arbitrary weak electromagnetic field
characterized by intensities E(r, t) and H(r, t). Let us
introduce vector A(r, t) and scalar ϕ(r, t) potentials in
terms of which the fields are expressed:

(1)

The fields are assumed to be classical. The gage of the
potentials A(r, t) and ϕ(r, t) is arbitrary. For the sake of
completeness, we assume that the system of particles is
placed in a constant magnetic field Hc , which may be
strong. This field corresponds to a vector potential
!!!!(r), so that

e
mc
------- 0 ρ r( ) 0〈 〉 Aα r t,( )–

E r t,( )
1
c
---∂A

∂t
------- ∇ϕ ,––=

H r t,( ) curlA.=

Hc curl!!!! r( ).=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The total Hamiltonian *tot is expressed as

(2)

where 3333i = –i"(∂/∂ri) is a generalized-momentum
operator [5, 6] and V(r1, …, rN) is the potential energy
that includes the interaction between particles and an
external potential. We have to take into account the
noncommutativity of 3333i with !!!!(ri) and A(ri, t) in (2).
Let us single out the energy U of interaction between
particles and electromagnetic field from (2) by includ-
ing the interaction with a strong magnetic field in the
total Hamiltonian:

(3)

(4)

where

(5)

and the following current- and charge-density operators
are introduced:

(6)

Our aim is to calculate the averaged (over the ground
state of the system) densities of induced current and
charge in a linear approximation with respect to the
external fields E(r, t) and H(r, t).

3. DEFINITION OF OPERATORS

In the Schrödinger representation, the charge-den-
sity operator ρ(r) does not contain components propor-

*tot
1

2m
------- 3333i

e
c
--!!!! ri( )

e
c
--A ri t,( )–– 

 
2

i

∑=

+ V r1 … rN, ,( ) e ϕ ri t,( ),
i

∑+

*tot * U ,+=

*
1

2m
------- pi

2

i

∑ V r1 … rN, ,( ),+=

pi 3333i
e
c
--!!!! ri( ),–=

U U1 U2,+=

U1
1
c
--- r3 j r( ) A r t,( )⋅( )d∫ d3rρ r( )ϕ r t,( ),∫+–=

U2
e

2mc
---------- r3 ρ r( )A2 r t,( )d∫=

j r t,( ) ji r t,( ),
i

∑=

ji r t,( )
e
2
--- δ r ri–( )vi viδ r ri–( )+{ } , vi

pi

m
----,==

ρ r( ) ρi r( ), ρi r( )
i

∑ eδ r ri–( ).= =
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tional to fields, while the current-density operator under
switched-on fields is expressed as

where

(7)

(8)

[F, Q] is the commutator of operators F and Q, and
hence,

(9)

In the interaction representation, we have

(10)

Now, we define the current- and charge-density oper-
ators in the Heisenberg representation. In [7, p. 82], it is
shown that the relation between the operator F(t) in the
interaction representation and the operator FG(t) in the
Heisenberg representation is expressed as

(11)

where the S matrix is defined as

(12)

Using (12), we find that additions, linear in the poten-
tials A(r, t) and ϕ(r, t), of current and charge densities
in the Heisenberg representation are equal to

(13)

The subscript “1” indicates the first order with respect

j r t,( ) ∆ j r( ),+

∆ j r( )
e
2
--- ∆viδ r ri–( ) δ r ri–( )∆vi+{ } ,

i

∑=

∆vi
i
"
--- U ri,[ ] e

mc
-------A ri t,( ),–= =

∆ j r( )
e

mc
-------ρ r( )A r t,( ).–=

ρ r t,( ) e
i*t /"ρ r( )e

i*t /"– ,=

j r t,( ) e
i*t /" j r( )e

i*t /"– ,=

∆ j r t,( )
e

mc
-------ρ r t,( )A r t,( ).–=

FG t( ) S 1– t( )F t( )S t( ),=

S t( ) S t ∞–,( ) 1
i
"
--- t1U t1( )d

∞–

t

∫–= =

+ i
"
---– 

  2

t2U t2( ) t1U t1( ) …,+d

∞–

t2

∫d

∞–

t

∫
U t( ) e

i*t /"
Ue

i*t /"– .=

j1α r t,( ) ∆ jα r t,( )
i
"
--- t' jα r t,( ) U1 t'( ),[ ] ,d

∞–

t

∫–=

ρ1 r t,( )
i
"
--- t' ρ r t,( ) U1 t'( ),[ ] .d

∞–

t

∫–=
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to the potentials A(r, t) and ϕ(r, t). Substituting (9) and
(5) into the last expressions, we obtain

(14)

(15)

4. AVERAGING OVER THE GROUND STATE 
OF THE SYSTEM

Consider the case of zero temperature and average
operators (14) and (15) over the ground state of the sys-
tem. In all calculations below, we will assume that there
are no charges and currents at infinity and that the fields
E(r, t) and H(r, t) vanish as t  –∞, which corre-
sponds to the adiabatic switching on of these fields.
In [7, p. 84], it is shown that, while averaging, one
should use the wave functions |0〉  of the ground state
without taking into consideration the interaction U. For
the averaged values of the current and charge densities,
we introduce the notations 〈0|j1(r, t)|0〉 and 〈0|ρ1(r, t)|0〉.
In (14) and (15), we change the integration variable t ' to
t '' = t ' – t. When averaging 〈0|… |0〉 , we take into con-
sideration that

(16)

where  is an arbitrary operator. We obtain

(17)

j1α r t,( )
e

mc
-------ρ r t,( )Aα r t,( )–=

+
i

"c
------ r'3 t' jα r t,( ) jβ r' t',( ),[ ] Aβ r' t',( )d

∞–

t

∫d∫

–
i
"
--- r'3 t' jα r t,( ) ρ r' t',( ),[ ]ϕ r' t',( ),d

∞–

t

∫d∫

ρ1 r t,( )
i

"c
------ r'3 t' ρ r t,( ) jβ r' t',( ),[ ] Aβ r' t',( )d

∞–

t

∫d∫=

–
i
"
--- r3 ' t' ρ r t,( ) ρ r' t',( ),[ ]ϕ r' t',( ).d

∞–

t

∫d∫

0 F̂ t( ) 0 0 e
i*t /"

F̂e
i*t /"– 0 0 F̂ 0 ,= =

F̂

0 j1α r t,( ) 0〈 〉 e
mc
------- 0 ρ r( ) 0〈 〉 Aα r t,( )

i
"c
------+–=

× r'3d∫ t' 0 jα r( ) jβ r' t',( ),[ ] 0〈 〉 Aβ r' t t'+,( )d

∞–

0

∫

–
i
"
--- r'3d∫ t' 0 jα r( ) ρ r' t',( ),[ ] 0〈 〉ϕ r' t t'+,( ),d

∞–

0

∫
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(18)

Thus, we have obtained expressions for the averaged,
over the ground state, current and charge densities in
terms of the vector and scalar potentials. However, the
averaged values of any quantities must be expressed
through measurable quantities—the fields E(r, t) and
H(r, t) and their derivatives. Below, we express the
quantities 〈0|j1(r, t) |0〉  and 〈0|ρ1(r, t) |0〉  in terms of
fields.

5. TIME DERIVATIVES OF MEAN DENSITIES
OF CURRENT AND CHARGE

Let us calculate the time derivatives of (17) and (18):

(19)

where the subscripts A and ϕ denote the contributions
of the vector and scalar potentials, respectively, which
are given by

(20)

(21)

(22)

0 ρ1 r t,( ) 0〈 〉 i
"c
------ r'3d∫=

× t' 0 ρ r t,( ) jβ r' t',( ),[ ] 0〈 〉 Aβ r' t t'+,( )d

∞–

0

∫

–
i
"
--- r'3 t' 0 ρ r( ) ρ r' t',( ),[ ] 0〈 〉ϕ r' t t'+,( ).d

∞–

0

∫d∫

t∂
∂

0 j1α r t,( ) 0〈 〉
t∂

∂
0 j1α r t,( ) 0〈 〉 A=

+
t∂

∂
0 j1α r t,( ) 0〈 〉 ϕ ,

t∂
∂

0 ρ1 r t,( ) 0〈 〉
t∂

∂
0 ρ1 r t,( ) 0〈 〉 A=

+
t∂

∂
0 ρ1 r t,( ) 0〈 〉 ϕ ,

t∂
∂

0 j1α r t,( ) 0〈 〉 A
e

mc
------- 0 ρ r( ) 0〈 〉

∂Aα r t,( )
∂t

---------------------–=
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(23)

Let us transform expressions (22) and (23), which con-
tain the scalar potential ϕ. We apply the identity

and then integrate by parts with respect to t '. We obtain

(24)

In the first term in the right-hand side of (24), we inte-
grate with respect to r ' and use the explicit expression (6)
for the operators j(r) and ρ(r). To calculate the second
term, we apply the continuity equation

(25)

which is valid for the operators defined in (10) with
regard to the constant magnetic field Hc. Next, we inte-

grate by parts with respect to  in this term, carrying
over the differentiation operation to the scalar potential
ϕ(r ', t + t '). As a result, we obtain

(26)

Adding up (20) and (26) and using (1), we obtain

(27)

Completely analogously, we obtain

(28)

Thus, we have expressed the time derivatives of the
mean densities of current and charge through electric
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fields, getting rid of vector and scalar potentials.

6. MEAN VALUES OF CURRENT 
AND CHARGE DENSITIES EXPRESSED

IN TERMS OF ELECTRIC FIELD

Integrating (27) and (28) with respect to time, we
obtain the following expressions for the mean densities
of current and charge:

(29)

here, we assume that Cα = C ' = 0, which corresponds to
the absence of induced currents and charges in the infi-
nite past.

Introduce the notation

(30)

Then, using (27)–(29), we obtain

(31)

(32)

Comparing (31) and (32) with (17) and (18), we can
see that the latter pair of equations differs from the
former by the absence of scalar potential and the
replacement of the vector potential A(r, t) by the vector
a(r, t) defined in (30). Thus, we have expressed the mean
values of induced current and charge densities through
the electric field alone. However, expressions (31) and
(32) cannot be applied without further transformations
when passing to a time-independent electric field since
the integration with respect to t in (30) leads to uncer-
tainty: the frequency ω in the denominator vanishes.
This also applies to the case of E = 0, H ≠ 0. We will
return to this case in Section 12.
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a r t,( ) c t'E r t',( ).d

∞–

t

∫–=

0 j1α r t,( )[ ] 0〈 〉 e
mc
------- 0 ρ r t,( ) 0〈 〉 aα r t,( )–=

+
i

"c
------ r'3 t' 0 jα r t,( ) jβ r' t',( ),[ ] 0〈 〉 aβ r' t',( ),d

∞–

t

∫d∫

0 ρ1 r t,( ) 0〈 〉 i
"c
------ r'3d∫=
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 ∫  a β r ' t ' , ( ).                         
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7. TRANSFORMATION OF EXPRESSIONS 
FOR THE MEAN DENSITIES OF CURRENT

AND CHARGE

Now, we pass to the expressions that explicitly cor-
respond to the interaction of electrons with a field of the
form

(33)

which, for example, was used by Kubo [8] in the case
of a coordinate-independent electric field E(t). Let us
transform expressions (31) and (32). Introduce ficti-

tious operators  and  that satisfy the rela-
tions

(34)

From (31) and (32), we obtain

(35)

(36)

Comparing fictitious operators (35) and (36) with real
operators (14) and (15), we conclude that, to pass from
the real to the fictitious operators, one has to set
ϕ(r, t) = 0 and replace the vector potential A(r, t) by
a(r, t), defined in (30).

We also introduce a fictitious operator of interaction
of particles with a field,

(37)

which differs from the operator U1

 

 defined in (5) by the
condition 

 

ϕ

 

(

 

r

 

, 

 

t

 

) = 0 and the replacement of 

 

A

 

(

 

r

 

, 

 

t

 

) by

 

a

 

(

 

r

 

, 

 

t

 

). Interaction (37) corresponds to the linear (in the
field) addition

(38)

to the current-density operator. It is obvious that (35)

Ũ1 e riβEβ t( ),
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and (36) can be rewritten as

(39)

(40)

which is analogous to (13), in which real operators are
replaced by fictitious ones. Let us transform (39) and
(40) so that the first term in the right-hand side of (39)
vanishes. The integrals of the form

in the right-hand sides of (39) and (40) can be rewrit-
ten as

(41)

if

(42)

where F(r, t) is an operator equal to jα(r, t) for (39) and
ρ(r, t) for (40); R(t) is an arbitrary operator in the inter-
action representation,

(43)

and RSch is the operator in the Schrödinger representa-
tion. One can show that, if

(44)

i.e., if the operator RSch does not contain momenta, then
the relation

(45)

holds, where

(46)

(47)

(48)
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ṘSch
i
"
--- * RSch,[ ]

∂RSch

∂t
-------------.+=
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It is also obvious that, under condition (44),

(49)

Thus, it is proved that, instead of , one can choose
any operator defined in (42) if RSch does not contain
momenta and, instead of (39) and (40), one can write

(50)

(51)

where

(52)

(53)

Substituting (42) and (52) into (50) and (51), we obtain

(54)

(55)

8. CHOICE OF THE OPERATOR RSch

Choose the operator RSch in the form

(56)

Then,
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∞–

t

∫–=

∆ j̃α r( )
e
2
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where

(58)

Let us calculate the terms in the right-hand sides of (54)
and (55) that contain R(t) and dR(t)/dt. We can show
that

(59)

In addition, we can obtain

(60)

where

(61)

Substituting (59) and (60) into the right-hand side of
Eqs. (54) and (55), we find that the terms that do not
contain the derivatives ∂aβ(r, t)/∂t or ∂aβ(r, t)/∂rα cancel
out. As a result, we have

(62)

(63)

Averaging the fictitious operators (62) and (63) over the
ground state, we obtain the required expressions for the
mean densities of induced current and charge.

Taking into account definition (30), we find that the
terms in the right-hand sides of (62) and (63) fall into
two categories; the first includes the terms that contain
electric field, while the second includes the terms that
contain the derivatives of this field with respect to coor-
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dinates. Therefore, it is convenient to represent the
mean values of (62) and (63) as

(64)

(65)

where

(66)

(67)

(68)

(69)

Thus, the problem of expressing the current and charge
densities, averaged over the ground state of the system,
in the linear approximation with respect to electric field
and its coordinate derivatives is solved.

9. TRANSFORMED FICTITIOUS OPERATOR
OF INTERACTION

To complete the picture, we define the form of the

fictitious operator of interaction  =  + .
Using (37) and (60), we obtain the following relations
in the Schrödinger representation:
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(72)

Integrating with respect to r in the right-hand sides
of (71) and (72), we obtain

(73)

(74)

Thus, the term  contains electric field, while

 contains the derivatives of electric field with
respect to coordinate and the integral with respect to
time. When the contribution of the terms containing the
coordinate derivatives of the electric field is small for
one or another reason,1 one can use expression (73).
This expression coincides with the formula for the
interaction of charged particles with a field [8] (see
also [9, 10]). Note that expression (70) for the fictitious

interaction can be rewritten in the following com-
pact form:

(75)

where daβ(ri, t)/dt is the total time derivative:

(76)

and

(77)

The interaction (70) corresponds to the following
linear (in the field) addition to the velocity:

(78)

1 Strictly speaking, the Maxwell equations imply that, if the elec-
tric field depends on time, then it also depends on coordinates;
i.e., the derivatives of the field components with respect to coor-
dinates are different from zero.
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Ũ1∂E/∂r

Ũ1
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which, according to (52), corresponds to the addition to
the current density

(79)

Passing to the interaction representation, we obtain the
first term in the right-hand side of (62).

10. ELIMINATION OF THE DIAGONAL 
ELEMENTS OF THE OPERATORS

OF PARTICLE COORDINATES

Let us return to expressions (64)–(69) for the mean
densities of induced current and charge for T = 0 that
were obtained in Section 8. Taking into account defini-
tion (58) of the operator d(r), as well as definition (61)
of the operator Yβγ(r), which can be rewritten as

(80)

we can see that these operators contain the particle
coordinates ri . However, the mean values 〈0|j1(r, t)|0〉
and 〈0|ρ1(r, t)|0〉  must be independent of the coordi-
nates ri . Let us transform expressions (64)–(69) so that
the latter property becomes obvious. Divide vector ri

into two parts:
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It is obvious that the matrix elements of operator ,
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change point readout of ri. Let us show that operators ri
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〈0|ρ1(r, t)|0〉  can be replaced by . Rewrite the mean
value 〈0|j1α(r, t)|0〉  as
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terms on the right-hand side of (83), we obtain

(84)

where we used the following expression for the total
time derivative:

(85)

while the derivative daβ(ri, t)/dt is defined in (76). Inte-
grating with respect to t' in the first term in the right-
hand side of (84) and calculating the commutator
[jα(r), aβ(ri, t)], we obtain
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i
"
--- r'3d∫=

× t' 0 jα r t,( ) dβ r' t',( ),[ ] 0 Eβ r' t',( ),d

∞–

t

∫

0 j1α r t,( ) 0〈 〉 II
e

mc
------- 0 dβ r( ) 0

daβ r t,( )
∂rα

-------------------- i
c"
------ r'3d∫–=

× t' 0 jα r t,( )Yβγ r' t',( )[ ] 0
∂aβ r' t',( )

∂rγ'
----------------------,d

∞–

t

∫

0 ρ1 r t,( ) 0〈 〉 I
i
"
--- r'3d∫=

× t' 0 ρ r t,( ) dβ r' t',( ),[ ] 0 Eβ r' t',( ),d

∞–

t

∫

JOURNAL OF EXPERIMENTAL 
(94)

where

(95)

(96)

Formulas (89)–(94) represent the main result of this
paper. We emphasize that the partitions (89) and (90) of
the mean values into two parts do not coincide with par-
titions (64) and (65).

The terms with subscript I will be called basic terms
since they do not vanish when the electric field is inde-
pendent of coordinates r. The terms with subscript II
contain the coordinate derivatives of the electric field.

11. CONDUCTIVITY TENSOR THAT DEPENDS 
ON COORDINATES

First, consider the main part of the density of
induced current, which is denoted by subscript I in (89).
Rewrite (91) as

(97)

where

(98)

and θ is a step function. Introduce the tensor

(99)

Here, the notation of vertical line is borrowed from [11].
Then, (97) can be rewritten as

(100)

where

(101)

0 ρ1 r t,( ) 0〈 〉 II –
i

"c
------ r'3d∫=

× t' 0 ρ r t,( ) Yβγ r' t',( ),[ ] 0
∂aβ r' t',( )

∂rγ'
----------------------,d

∞–

t

∫

d r( ) e riρ r( ),
i

∑=

Yβγ r( )
1
2
--- jiγriβ riβ jiγ+( )

i

∑ .=

0 j1α r t,( ) 0〈 〉 I

=  r3 t'lαβ r t r' t', , ,( )Eβ r' t',( ),d

∞–

∞

∫d∫

lαβ r t r' t', , ,( )

=  
i
"
---θ t t'–( ) 0 jα r t,( ) dβ r' t',( ),[ ] 0

σIαβ r' t' r t,,( ) lαβ r t r r'– t t'–, , ,( ).=

0 j1α r t,( ) 0〈 〉 I r'3 t'd

∞–

∞

∫d∫=

× σIαβ r' t' r t,,( )Eβ r r'– t t'–,( ),

σIαβ r' t' r t,,( )

=  
i
"
---θ t'( ) 0 jα r t,( ) dβ r r'– t t'–,( ),[ ] 0 .
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It is clear from (101) that the tensor σIαβ(r', t '|r, t) is
independent of t.

Now, we apply the Fourier transform. Let us write
the electric field as

(102)

where

(103)

(104)

(105)

Let us introduce the Fourier image of the tensor
σIαβ(r', t '|r, 0) with respect to the variables r' and t ':

(106)

Then,

(107)

(108)

(109)

Substituting (101) into (106), we obtain

(110)

In a similar way we can obtain the contribution of the
term with subscript II to the conductivity. Finally, we
have

(111)

(112)

Eα r t,( ) Eα
+( ) r t,( ) Eα

–( ) r t,( ),+=

Eα
+( ) r t,( )

=  
1

2π( )4
------------- k3 ωEα k ω,( )eik r⋅ iωt'– ,d

0

∞

∫d∫

Eα
–( ) r t,( ) Eα

+( ) r t,( )( )∗ ,=

Eα k ω,( ) r3 tEα r t,( )e–ik r⋅ iωt+ .d

∞–

∞

∫d∫=

σIαβ k ω r,( )

=  d3r' t'σd Iαβ r' t' r 0, ,( )e i– k r'⋅ iωt'+ .

∞–

∞

∫∫

0 j1α r t,( ) 0〈 〉 I

=  0 j1α r t,( ) 0〈 〉 I
+( )

0 j1α r t,( ) 0〈 〉 I
–( )+ ,

0 j1α r t,( ) 0〈 〉 I
+( ) 1

2π( )4
------------- d3k ωd

0

∞

∫∫=

× σIαβ k ω r,( )Eβ k ω,( )eik r⋅ iωt– ,

0 j1α r t,( ) 0〈 〉 I
–( ) 0 j1α r t,( ) 0〈 〉 I

+( )( )*.=

σIαβ k ω r,( ) i
"
--- d3r' t'θ t'( )e ik– r' iωt'+⋅d

∞–

∞

∫∫=

× 0 jα r( ) dβ r r'– t'–,( ),[ ] 0〈 〉 .

0 jα r t,( ) 0〈 〉 +( ) 1

2π( )4
------------- d3k ωd

0

∞

∫∫=

× σαβ k ω r,( )Eβ k ω,( )eik r⋅ iωt– ,

σαβ k ω r,( ) σIαβ k ω r,( ) σIIαβ k ω r,( ).+=
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The quantity σIαβ(k, ω|r) is defined in (110),

(113)

The conductivity tensor σαβ(k, ω|r) is independent
only of coordinates r when the system is spatially
homogeneous. When analyzing semiconductor objects
of reduced dimension, the dependence of the conduc-
tivity tensor on r is very substantial.

In our previous works [4, 12–14], we used for-
mula (91) for calculating the density of induced current.

12. TRANSITION TO EXPRESSIONS 
CONTAINING MAGNETIC FIELD

Up to now, we have not considered the case when
the electric field E is independent of time, in particular,
the case E = 0, H(r, t) = const. To consider the latter
case, we transform the expressions for the mean densi-
ties of induced current and charge, obtained at the end
of Section 8, by introducing into them magnetic field
H(r, t). To this end, we divide each of the quantities
〈0|j1α(r, t)|0〉∂E/∂r and 〈0|ρ1(r, t)|0〉∂E/∂r defined in (68)
and (69), respectively, into two parts as follows:2

(114)

(115)

where

(116)

2 Here, the superscripts “plus” and “minus” have nothing to do
with analogous superscripts in Section 11.

σIIαβ k ω r,( )
ekα

mω
-------- 0 dβ r( ) 0〈 〉=

–
ikγ

mω
-------- d3r' t'θ t'( )e ik– r' iωt'+⋅d

∞–

∞

∫∫
× 0 jα r( ) Yβγ r r'– t'–,( ),[ ] 0〈 〉 .

0 j1α r t,( ) 0〈 〉 ∂E/∂r

=  0 j1α r t,( ) 0〈 〉 +( ) 0 j1α r t,( ) 0〈 〉 –( )+ ,

0 ρ1 r t,( ) 0〈 〉 ∂E/∂r

=  0 ρ1 r t,( ) 0〈 〉 +( ) 0 ρ1 r t,( ) 0〈 〉 –( )+ ,

0 j1α r t,( ) 0〈 〉 ±( ) e
2mc
---------- 0 dβ r( ) 0〈 〉=

×
∂aβ r t,( )

∂rα
---------------------

∂aα r t,( )
∂rβ

---------------------± 
 

–
i

2"c
--------- r' t' 0 jα r t,( ) Yβγ r' t',( ),[ ] 0〈 〉d

∞–

t

∫d∫

×
∂aβ r' t',( )

∂rγ'
-----------------------

∂aγ r' t',( )
∂rβ'

-----------------------± 
  ,
SICS      Vol. 96      No. 2      2003



278 LANG et al.
(117)

First, we consider the contributions with the minus
sign. Let us return to the vector A(r, t) and scalar ϕ(r, t)
potentials. Taking into account definition (30) of vector
a(r, t) and the first formula in (1), we obtain

(118)

Substituting (118) into the right-hand sides of the
expressions for 〈0|j1α(r, t)|0〉 (–) and 〈0|ρ1(r, t)|0〉 (–), we
find that the contributions of the scalar potential ϕ van-
ish and that

(119)

(120)

Taking into account that H(r, t) = curlA(r, t) (the sec-
ond equality in (1)), we easily obtain

(121)

(122)

0 ρ1 r t,( ) 0〈 〉 ±( ) i
2"c
--------- r' t'd

∞–

t

∫d∫–=

× 0 ρ r t,( ) Yβγ r' t',( ),[ ] 0〈 〉

×
∂aβ r' t',( )

∂rγ'
-----------------------

∂aγ r' t',( )
∂rβ'

-----------------------± 
  .

a r t,( ) A r t,( ) c t'
∂ϕ r t',( )

∂r
--------------------.d

∞–

t

∫+=

0 j1α r t,( ) 0〈 〉 –( ) e
2mc
---------- 0 dβ r( ) 0〈 〉=

×
∂Aβ r t,( )

∂rα
----------------------

∂Aα r t,( )
∂rβ

----------------------– 
 

–
i

2"c
--------- r' t' 0 jα r t,( ) Yβγ r' t',( ),[ ] 0〈 〉d

∞–

t

∫d∫

×
∂Aβ r' t',( )

∂rγ'
------------------------

∂Aγ r' t',( )
∂rβ'

------------------------– 
  ,

0 ρ1 r t,( ) 0〈 〉 –( ) i
2"c
--------- r' t'd

∞–

t

∫d∫–=

× 0 ρ r t,( ) Yβγ r' t',( ),[ ] 0〈 〉

×
∂Aβ r' t',( )

∂rγ'
------------------------

∂Aγ r' t',( )
∂rβ'

------------------------– 
  .

0 j1α r t,( ) 0〈 〉 –( ) e
2mc
----------– H r t,( ) r×[ ] α 0 ρ r( ) 0〈 〉=

+
i

2"c
--------- r' t' H r' t',( ) r'×[ ] βd

∞–

t

∫d∫
× 0 jα r t,( ) jβ r' t',( ),[ ] 0〈 〉 ,

0 ρ1 r t,( ) 0〈 〉 –( ) i
2"c
--------- r' t'd

∞–

t

∫d∫=

× H r' t',( ) r'×[ ] β 0 ρ r t,( ) jβ r' t',( ),[ ] 0〈 〉 .
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Thus, we have expressed the quantities 〈0|j1α(r, t)|0〉 (–)

and 〈0|ρ1(r, t)|0〉 (–) in terms of a magnetic field.

Now, we transform expressions (116) and (117) for
the terms with the superscript “plus.” We will proceed
as follows. Consider, for example, (116). The right-
hand side contains

(123)

For jγ(r), we can easily derive the relation

(124)

Let us substitute (123) and (124) into the second term
in the right-hand side of (116); as a result, the latter
equation is decomposed into two parts that come from

∂Yγδ(r')/∂  and (r). In the first term, we integrate by

parts with respect to , while in the second, we inte-
grate, also by parts, with respect to t'. As a result, we
obtain

(125)

Using the relation

from (125) we finally derive

(126)

Yβγ r'( ) rβ' jγ r'( ).=

jγ r( ) ḋγ r( ) ∂Yγδ r( )/∂rδ.+=

rδ' ḋγ

rδ'

0 j1α r t,( ) 0〈 〉 +( ) 0 j1α r t,( ) 0〈 〉 +( )–=

–
e

mc
------- 0 ρ r( ) 0〈 〉 rβrγ

∂2aβ r t,( )
∂rα∂rγ

----------------------

+
i

"c
------ r'rβ' rγ' t' 0 jα r t,( ) jδ r' t',( ),[ ] 0〈 〉d

∞–

t

∫d∫

×
∂2aβ r' t',( )

∂rγ' ∂rδ'
------------------------ i

"c
------ r'rβ' t'd

∞–

t

∫d∫+

× 0 jα r t,( ) dγ r' t',( ),[ ] 0〈 〉
∂2aβ r' t',( )

∂rγ' ∂t'
------------------------.

c 1– ∂aβ r t,( )/∂t– Eβ r t,( ),=

0 j1α r t,( ) 0〈 〉 +( ) e
2mc
---------- 0 ρ r( ) 0〈 〉 rβrγ

∂2aβ r t,( )
∂rα∂rγ

----------------------–=

+
i

2"c
--------- r'rβ' rγ'd∫

× t' 0 jα r t,( ) jδ r' t',( ),[ ] 0〈 〉
∂2aβ r' t',( )

∂rγ' ∂rδ'
------------------------d

∞–

t

∫

–  
i
 
2
 
"
 ------ r ' r β ' r γ ' d  ∫  t ' d 

∞

 

–

 

t

 ∫ 0 j α r t , ( ) ρ r ' t ' , ( ) ,[ ] 0 〈 〉
∂

 
E

 
β 

r
 

'
 

t
 

'
 

,
 

( )
 

∂
 

r
 

γ
 

'
----------------------
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and, similarly,

(127)

Note that, in contrast to expressions (68) and (69), for-
mulas (126) and (127) contain only the second deriva-
tives of the vector a(r, t). The results obtained can be
expressed in the following symmetric form:

(128)

(129)

where

(130)

is a symmetric tensor.

13. THE CASE
OF A CONSTANT MAGNETIC FIELD

Consider the case when the magnetic field is con-
stant in time and space, H = const, and E = 0. Recall
that we have included a constant magnetic field in the
unperturbed Hamiltonian * (see Section 2). However,
here we do not include the field in the total Hamiltonian
but assume that it is so weak that one can restrict the
analysis to linear (in the field) contributions to the
induced current and charge densities. Since E = 0, the
contributions with the subscript E to the mean densities
vanish (see (66) and (67)). The contributions with the
subscripts ∂E/∂r are divided into two parts, which we

0 ρ r t,( ) 0〈 〉 +( ) i
2"c
--------- r'rβ' rγ'd∫=

× t' 0 ρ r t,( ) jδ r' t',( ),[ ] 0〈 〉
∂2aβ r' t',( )

∂rγ' ∂rδ'
------------------------d

∞–

t

∫

–
i

2"
------ r'rβ' rγ'd∫ t' 0 ρ r t,( ) ρ r' t',( ),[ ] 0〈 〉

∂Eβ r' t',( )

∂rγ'
----------------------.d

∞–

t

∫

0 j1α r t,( ) 0〈 〉 +( ) e
4mc
---------- 0 ρ r( ) 0〈 〉 rβrγ–=

×
rα∂
∂ ∂aβ r t,( )

∂rγ
-------------------

∂aγ r t,( )
∂rβ

-------------------+ 
  i

4"c
--------- r'rβ' rγ'd∫+

× t' 0 jα r t,( ) Ωβγ r' t',( ),[ ] 0〈 〉 ,d

∞–

t

∫

0 ρ r t,( ) 0〈 〉 +( ) i
4"c
--------- r'rβ' rγ'd∫=

× t' 0 ρ r t,( ) Ωβγ r' t',( ),[ ] 0〈 〉 ,d

∞–

t

∫

Ωβγ r t,( ) jδ r t,( )
rδ∂
∂ ∂aβ r t,( )

∂rγ
-------------------

∂aγ r t,( )
∂rβ

-------------------+ 
 =

+ ρ r t,( )
t∂

∂ ∂aβ r t,( )
∂rγ

-------------------
∂aγ r t,( )

∂rβ
-------------------+ 
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denoted by superscripts “plus” and “minus.” The parts
with the superscripts “plus” are equal to zero. This fact
can easily be verified by choosing the vector and scalar
potentials, for example, in the calibration [5],

, (131)

and by applying (118), (126), and (127).
Thus, the remaining contributions are those with the

superscripts “minus” defined in (121) and (122). Set-
ting H(r, t) = H and changing the variable t ' to t '' = t ' –
t, we obtain the following time-independent results:

(132)

(133)

The subscripts H in the left-hand sides indicate that H =
const and E = 0. In these expressions, we pass from
operators ri to operators , defined in (81). Applying a
method similar to that described in Section 10, we obtain

(134)

(135)

Note that the following relations hold:

14. CONCLUSIONS

Let us summarize the main results. Since the opera-
tor of interaction between charged particles and an
electromagnetic field is expressed in terms of potentials
A(r, t) and ϕ(r, t) rather than in terms of electric E(r, t)

A r( )
1
2
--- r H×[ ] , ϕ 0= =

0 j1α r t,( ) 0〈 〉 H
e

2mc
---------- H r×[ ] α 0 ρ r( ) 0〈 〉–=

+
i

2"c
--------- r'd∫ t'' H r'×[ ] β 0 jα r( ) jβ r' t'',( ),[ ] 0〈 〉 ,d

∞–

0

∫

0 ρ1 r t,( ) 0〈 〉 H
i

2"c
--------- r'd∫=

× t'' H r'×[ ] β 0 ρ r( ) jβ r' t'',( ),[ ] 0〈 〉 .d

∞–

0

∫

ri

0 j1α r t,( ) 0〈 〉 H
e

2mc
---------- H 0 d r( ) 0〈 〉×[ ] α–=

+
ie

2"c
--------- t' 0 jα r t'–,( ) H ri×[ ] βv iβ,[ ] 0〈 〉{ } ,

i

∑d

∞–

0

∫

0 ρ1 r t,( ) 0〈 〉 H
ie

2"c
--------- t'd

∞–

0

∫=

× 0 ρ r t'–,( ) H ri×[ ] βv iβ,[ ] 0〈 〉{ } .
i

∑

div 0 j1 r t,( ) 0〈 〉 H 0,=

rd∫ 0 j1 r t,( ) 0〈 〉 H 0.=
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and magnetic H(r, t) fields, the initial expressions for
the mean densities of induced current and charge are
also expressed in terms of potentials (see (17) and
(18)). However, expression (17) for the current density
is inconvenient because it contains a contribution pro-
portional to the mean value 〈0|ρ(r, t)|0〉  of the charge
density and this contribution is not small.

Therefore, our task has been to express the induced
densities in terms of the fields E(r, t) and H(r, t), which
can certainly be accomplished because the mean densi-
ties of current and charge are observable quantities.

As a result, we obtained formulas (31) and (32),
which contain the electric field alone. However, for-
mula (31) has the same shortcoming as (17): it contains
a contribution proportional to 〈0|ρ(r, t)|0〉 .

If we use an approximation in which the electric
field E(r, t) is independent of coordinates but depends
only on time, then the contribution proportional to
〈0|ρ(r, t)|0〉  can be removed if we introduce into the
expression for the mean current density the operators ri

of the coordinates of the ith particle using the relation
vi = (i/")[*, ri]. This method has actually been used
in [3], where the light scattering in bulk crystals is dis-
cussed. In Appendix A, we show that the same method
allows one to eliminate the concentration of charged
particles from the formula for the conductivity of bulk
intrinsic semiconductors at T = 0.

The same result is obtained if we express the inter-
action between particles and a field as –e  in
the approximation E(r, t) < E(t), as was done by Kubo
in [8].

However, the problem is complicated if we take into
consideration the dependence of electric field on coor-
dinates. Our aim has been to obtain such an expression
for the density of induced current that would reduce to
the Kubo formula when passing from E(r, t) to E(t), as
well as similar expressions for the density of induced
charge. For the case T = 0, this problem is solved in
Sections 7–9.

The essence of the method used consists in the fol-
lowing. The operator of interaction between particles
and a field, expressed in terms of electric and magnetic
fields, does not exist. However, we introduce a fictitious
interaction operator that yields correct results for the
densities of induced current and charge averaged over
the ground state of the system. This fictitious operator

 (37) is expressed in terms of the electric field E(r, t)
alone under the sign of time integral. Then, we apply

the transformation of interaction    that does
not change the values of the mean densities; however,
this transformation eliminates the contribution contain-
ing 〈0|ρ(r, t)|0〉  from the expression for the mean
induced density of current. As a result, we obtained
expressions (64)–(69) for 〈0|j1(r, t)|0〉  and 〈0|ρ1(r, t)|0〉
in which the principal terms contain the electric field,
while the additional terms contain the derivatives of

riβEβ t( )
i∑

U1
f

U1
f Ũ1
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E(r, t) with respect to coordinates. The transformed fic-

titious interaction  is also divided into principal and
additional parts. The former is equal to
−e , while the latter contains the deriva-
tives ∂Eα(r, t)/∂rβ under the sign of time integral.

In Section 10, expressions (64)–(69) for the mean
densities of induced currents and charges have been
transformed so that they do not explicitly depend on the
particle coordinates ri . This is the main result of the
present paper. In Section 11, we have obtained expres-
sions for the coordinate-dependent conductivity tensor
σ(k, ω|r) for spatially inhomogeneous systems.

In Section 12, we have passed from the expressions
for 〈0|j1(r, t)|0〉  and 〈0|ρ1(r, t)|0〉  that contain only elec-
tric field and its derivatives with respect to coordinates
to the expressions that contain the magnetic field H(r, t)
as well. This is necessary for analyzing the case H =
const, E = 0, which was considered in Section 13. In
Appendix B, we derive an expression for the operator
of total acceleration of a system of charged particles.
The acceleration is attributed to a weak external elec-
tromagnetic field. We have shown that the total acceler-
ation averaged over the ground state of the system can
be expressed in terms of electric and magnetic fields. In
the case of free particles, the result obtained reduces, in
the limit, to the correct result that contains a force due
to the electric field and the Lorentz force.

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foun-
dation for Basic Research (project no. 00-02-16904), the
ISTC program Physics of Semiconductor Nanostruc-
tures, and the federal program Integration.

APPENDIX A

Three Expressions for the Conductivity Tensor 
in the Case of a Spatially Homogeneous Medium

and a Coordinate-Independent Electric Field

Using formula (31) for the mean density of induced
current and taking into account the following relation
between Fourier components,

(A.1)

which follows from definition (30), we obtain

(A.2)

In the case of a spatially homogeneous system, the
tensor σαβ(k, ω|r) is independent of r. In the first term,

Ũ1

riβEβ ri t,( )
i∑

a k ω,( ) ic/ω( )E k ω,( ),=

σαβ k ω r,( )
ie

mω
-------- 0 ρ r( ) 0〈 〉δ αβ

1
"ω
------- r' t'd

∞–

∞

∫d∫+=

× e ik r'⋅ iωt'+– θ t'( ) 0 jα r( ) jβ r r'– t'–,( ), 0〈 〉 .
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we use the relation

(A.3)

where n is the concentration of charged particles; in the
second term, we integrate with respect to r and r' and
divide the result obtained by the normalized volume V0.
We have

(A.4)

where pi is the momentum operator defined in (4) with
regard to a strong constant magnetic field.

When the electric field E(t) is independent of coor-
dinates, we introduce the frequency representation

(A.5)

where

(A.6)

We also introduce the conductivity σαβ(ω|r) that enters
in the definition of the mean density of current

(A.7)

where the subscript “h” indicates that the electric field
is spatially homogeneous.

Using the results obtained in Section 11, we can eas-
ily show that

(A.8)

In the case of a spatially homogeneous medium and a
field E(t), from (A.4) and (A.8) we obtain

(A.9)

where Vα = (1/m)  is the operator of the total
velocity of charged particles. (A.9) is the first formula
for the conductivity tensor. To derive the two other for-
mulas, we apply the relation

(A.10)

0 ρ r( ) 0〈 〉 en,=

σαβ k ω,( )
ie2n
mω
----------δαβ

e2

4m2
"ωV0

------------------------ t θ t( )eiωtd

∞–

∞

∫
i j,
∑+=

× 0〈 | e
i*t /"

e
ik ri⋅–

piα piαe
ik ri⋅–

+( )e
i*t /"–{ } ,[

e
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where 

 

R

 

α

 

 = . Substituting (A.10) into (A.8), we
obtain

(A.11)

Let us integrate by parts with respect to 

 

t

 

. As 

 

t

 

  

 

∞

 

, 

  0

under the substitution of 

 

ω

 

 + 

 

i

 

δ

 

 for 

 

ω

 

 with 

 

δ

 

  0. We
also take into account that 

 

d

 

θ

 

(

 

t

 

)/

 

dt

 

 = 

 

δ

 

(

 

t

 

) and

(A.12)

Then, we obtain

(A.13)

where we used the notation

(A.14)

Formula (A.13) is the second expression for the con-
ductivity tensor. We stress that, when passing from
(A.9) to (A.13), the first term in the right-hand side of
(A.9) containing concentration 

 
n

 
 is canceled out.

When passing to the third expression, we use (A.10)
for the operator 

 
V

 

β

 
 in the right-hand side of (A.13). Fur-

ther, we proceed in the same way as when passing
from (A.9) to (A.13). Since the commutator [

 

D

 

α

 

, 

 

D

 

β

 

] =
0, we obtain the third formula,

(A.15)

For various systems, it is convenient to apply one of the
formulas (A.9), (A.13), or (A.15).

For free particles, when 

 

V

 

(

 

r

 

1

 

, …, 

 

r

 

N

 

) = 0 and 

 

H

 

c

 

 = 0,
the velocity operator 

 

V

 

 commutes with the Hamiltonian

 

*

 

free

 

 = 

 

m

 

. Using (A.9) and taking into account
that 

 

V

 

α

 

(

 

t

 

) = 

 

V

 

α

 

 and [

 

V

 

α

 

, 

 

V

 

β

 

] = 0, we obtain the following
well-known result:

(A.16)

When the excited states are separated from the ground
state by a gap, i.e., when the energy of these states is

 

E

 

n

 

 = 

 

"

 

ωn ≠ 0, it is more convenient to apply (A.13) or
(A.15). Using the exact wave functions |n〉  of the

riαi∑

σαβ ω( )
ie2n
mω
----------δαβ

e2

"ωV0
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∞

∫+=

× eiωt
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d
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d
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ie
"V0
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D eR.=
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III ω( ) ω

"V0
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v i
2
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----------δαβ.=
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excited states and calculating the time integral, we
express (A.15) in terms of the matrix elements of the
operator D:

(A.17)

whence it follows that, for systems with a gap,
σαβ(ω)  0 as ω  0 (we do not consider the case
of superconductivity). Systems with a gap in the energy
spectrum include bulk semiconductors without impuri-
ties and defects.

The conductivity tensor σαβ(ω) is related to the per-
mittivity tensor εαβ(ω) by the well-known formula

so that from (A.17) we obtain

(A.18)

Using the relations

between the matrix elements, from (A.18) we derive

(A.19)

If ω ! ωn , then the quantity χαβ is real and does not
depend on frequency ω; however, when ω ≈ ωn , this
dependence becomes strong and a nonzero imaginary
part of the tensor χαβ arises that determines the resonant
absorption of light at frequencies ω ≈ ωn . To calculate
this imaginary part, one should replace frequency ω by
ω + iδ, δ  0, assuming that the switching on of the
field is adiabatic or taking into account that the lifetime
of the system in state n is finite.

σαβ
III ω( )

iω
"V0
---------=

×
0 Dα n〈 〉 n Dβ 0〈 〉

ω ωn–
--------------------------------------------

0 Dβ n〈 〉 n Dα 0〈 〉
ω ωn+

--------------------------------------------–
 
 
 

,
n
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χαβ ω( )
1

"V0
---------=

×
0 Dα n〈 〉 n Dβ 0〈 〉

ωn ω–
--------------------------------------------
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ωn ω+

--------------------------------------------+
 
 
 

.
n

∑

0 Dα n〈 〉 ie/ωn( ) 0 Vα n〈 〉 ,=

n Dα 0〈 〉 – ie/ωn( ) n Vα 0〈 〉=

χαβ ω( )
e2

"V0
---------=

× 1

ωn
2

------
0 Vα n〈 〉 n Vβ 0〈 〉

ωn ω–
-------------------------------------------

0 Vβ n〈 〉 n Vα 0〈 〉
ωn ω+

-------------------------------------------+
 
 
 

.
n

∑
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APPENDIX B

Acceleration of a System of Particles

To obtain the operator J1(t) of the induced current of
a system of particles, we apply formula (14), which
contains vector and scalar potentials. Integrating with
respect to r and r', we obtain

(B.1)

where the notation

is used. Differentiating (B.1) with respect to time and
dividing by e, we obtain the operator W1(t) of the
induced total acceleration,

(B.2)

where Wα(t) =  and wiα(t) = dv iα(t)/dt. The
interpretation of the first two terms yields

(B.3)

where the notations

are used and Hc is a strong constant magnetic field
included in the basic Hamiltonian *. When passing

J1α t( )
e2

mc
------- Aα ri t( ) t,( )

i
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+
ie
"
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i

∑, ,d
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t
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e
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td
d
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+
i
"
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i
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"
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t

∫+
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i∑
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e

mc
-------
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----------------------------
e
m
----
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-------------------------
i

∑–
i

∑–=

+
e

2mc
---------- v iα t( )

∂Aβ ri t( ) t,( )
∂riα t( )

---------------------------
∂Aα ri t( ) t,( )

∂riβ t( )
----------------------------– 

 




i

∑

+
∂Aβ ri t( ) t,( )

∂riα t( )
---------------------------

∂Aα ri t( ) t,( )
∂riβ t( )

----------------------------– 
  v iα t( )





–
e

mc
------- 

 
2
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"
--- t' U1 t'( ) Wα t( ),[ ] ,d
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∫+
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∑
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from (B.2) to (B.3), we used the relation vi × vi =
(i"e/m2c)Hc , where the left-hand side is nonzero
because of the noncommutativity of various projections
of the velocity operator, for example,

(B.4)

The acceleration operator wi(t) of the ith particle is
equal to

(B.5)

Using (1), we can easily see that the expression in curly
brackets in (B.3) is equal to

Therefore, expression (B.3) is transformed into

(B.6)

It is obvious that the second term corresponds to the
Lorentz force, which is written with regard to the non-
commutativity of the operators vi and H(ri, t). The third
term, which is attributed to Hc , contains the addition
∆vi to velocity that is defined in (8) and is induced by a
weak electromagnetic field.

In the case of free particles,

(B.7)

and only the first two terms containing weak electric
and magnetic fields are preserved in the right-hand side
of expression (B.6).

However, if particles are not free, then operator (B.6)
cannot be expressed in terms of fields alone because the
last two terms contain vector and scalar potentials. The
mean value 〈0 |W1(t) |0〉  of the induced acceleration
must be expressed in terms of the fields alone, as we
will now prove. To this end, we calculate the mean
value 〈0 |W1(t) |0〉  by a different method and then check
if the two methods yield the same result. Using expres-

vi vi×[ ] z v ix v iy,[ ] i"e/m2c( )Hcz.= =
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---e
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sion (27), we integrate both its parts with respect to r.
We obtain

(B.8)

This expression contains electric fields alone. On the
other hand, averaging operator (B.6), we obtain

(B.9)

where

(B.10)

Let us transform (B.10). Integrating by parts, we obtain

(B.11)

(B.12)

(B.13)

Substitute the expression (5) for U1 into the right-hand
side of (B.12) and calculate the commutator. We obtain

(B.14)

In (B.13), we pass to t '' = t – t ' in the integrand and
partition the integral into two parts, the first of which
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contains a vector potential and the second, a scalar
potential:

(B.15)

(B.16)

(B.17)

We leave (B.16) unchanged for the present and apply
the relation

to (B.17). Then, we integrate by parts with respect to t'
and obtain

(B.18)

We calculate the commutator in the first term. To trans-
form the second term, we note that

(B.19)

Substituting (B1.9) into (B.18), we obtain
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Adding up (B.14), (B.16), and (B.20), we finally obtain

(B.21)

Substituting (B.21) into (B.9), we obtain

(B.22)

This expression coincides with formula (B.8) except
for the last term in the right-hand side of (B.22). How-
ever, we can show that this term is equal to zero.
Indeed,

(B.23)

because the operator * has only diagonal matrix
elements 〈0|*|0〉 . Thus, we have checked that the
results (B.8) and (B.9), obtained by different methods,
coincide.

Consider the case of free particles when condi-
tions (B.7) are satisfied. Then, Cα(t) = 0 and the penul-
timate term in the right-hand side of (B.9) also van-
ishes. Comparing (B.8) and (B.4), we find that the mean
Lorentz force must satisfy the relation
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(B.24)

where the subscript “free” indicates that conditions (B.7)
are satisfied. Let us verify (B.24) by direct calculation,
transforming the right-hand side. Since

*free =  

and v jα commutes with *free , we can write

then, the “bordering” 

exp(i*freet '/")… – exp(–i*freet '/")

is removed from the right-hand side of (B.24). We
denote the right-hand side of (B.24) by Ψα(t). After cal-
culating the commutator, it proves to be equal to

(B.25)

Note that the equality

holds, which is analogous to (B.23); therefore, Ψα(t)
can be rewritten as

(B.26)

which is equal to
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-------------------------------
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-------------------------------– 
  v iβ 0| 〉free,

Ψα t( )
e
2
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Using the Maxwell equation curlE(r, t) =
−(1/c)(∂H(r, t)/∂t) and calculating the integral with
respect to t', we find that Ψα(t) is equal to the left-hand
side of (B.24), which was to be proved.

Note that, when E = 0 and H = const, both sides of
Eq. (B.24) vanish. For the right-hand side, this result is
obvious; the left-hand side contains the matrix elements
〈0|v iβ|0〉  = (i/")〈0|[*, riβ]|0〉  = 0 because the operator *
is diagonal.
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Abstract—The idea of strong interaction within the same unit cell is used to establish the possibility of the
existence of ferromagnetic instability in a system with jumps between cations of transition elements. The phase
diagram of the existence of the ferromagnetic ordering as a function of the average number of holes (hd) in the
3d10 shell of transition elements is constructed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The exchange interaction of free electrons consid-
ered as a perturbation always leads to a negative correc-
tion, which corresponds to the tendency of electrons to
ferromagnetism.

When localized s-electrons are excited, strong Hub-
bard repulsion under a small density of electrons also
leads to a considerable increase of the spin part of para-
magnetic susceptibility; however, no ferromagnetism
phenomenon occurs in this case [1].

In this paper, we show that the strong interaction
amplitude is negative only for a limited interval of ener-
gies, which corresponds to a finite interval of d-hole
concentration.

The number of 4s-electrons per unit cell ns is actu-
ally used as an adjustable parameter. According to band
calculations, which are qualitatively confirmed by
experiments, this number does not exceed unity.

Using the electrical neutrality equation, we find that
the average number of 3d-holes hd per cell is less than
unity for Ni, lies in the interval 1 < hd < 2 for Co, and in
the interval 2 < hd < 3 for Fe.

For each of those intervals, we construct a magnetic
phase diagram and determine the temperature depen-
dence of the magnetic susceptibility in the paramag-
netic phase. We also explain the absence of ferromag-
netism in manganese and chromium, and in palladium
and platinum, for which 3 < hd < 5 and hd < 1, respec-
tively.

The computation of magnetic susceptibility is based
on the one-loop approximation using the seed semiel-
liptic density of states. The corresponding half-width is
the only energy parameter, since the Hubbard energy is
assumed infinite in all cases.
1063-7761/03/9602- $24.00 © 20286
2. GENERAL RELATIONS

Upon the diagonalization of the zero Hamiltonian,
which corresponds to nonoverlapping atomic states, the
creation and destruction operators are represented as an
expansion in terms of all possible transitions between
N- and (N + 1)-hole states:

(1)

Here, the indices α and β correspond to reverse transi-
tions s  m, i.e., β(m, s) = –α(s, m). The quantities

 are called fractional parentage coefficients and are
calculated below.

Equations for the average occupation numbers nm

are found from the definition of the temperature Green
function calculated for every pair of adjoint X-operators
(see [2]):

(2)

To calculate the single-particle Green function, we use
the simplest one-loop approximation of the self-consis-
tent field. In this approximation, the Fourier compo-

nents of the single-particle Green function  dif-

fer from the so-called virtual Green function 
only in the factors fβ. In turn, this virtual function satis-
fies the Dyson equation

(3)
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Here, (em – es) is the transition energy corresponding to
the transition number α and ω = T(2n + 1)π.

When the numbers of the single-particle transition
β(m, s) are given, every end factor fβ is equal (by defi-
nition) to the sum of average occupation numbers of the
initial and terminal states [3]. On the other hand, the
self-energy part in our approximation is a sum of prod-
ucts of the end factor by the generalized jump matrix
and the one-loop correction, which is independent of
the frequency and momentum:

(4)

The average values of the occupation numbers  of
the terminal states are found from the diagonal compo-
nent at β = –α:

(5)

Equations (4) determine all end factors f(α(s, m)) = ns +
nm that occur in the definition of the diagonal compo-
nents of the single-particle Green function, which, in
turn, is expressed in terms of various end factors.

In the one-loop approximation, the self-energy parts
are independent of the momentum and frequency. In the
simplified calculations conducted below, they prove to
be diagonal with respect to the transition number; i.e.,
Σα, β = δα, βΣα. If we consider only transitions between
high-spin N- and (N + 1)-hole states, then it is conve-
nient to use the projection of the spin of the (N + 1)-hole
state with the spin S = (N + 1)/2 instead of the indices α
and β (see, e.g., [4]). In this case, the fractional parent-
age coefficients squared are determined in terms of the
spin magnitude S and its projection M:

(6)

The average occupation numbers appearing in the
expression for the Green function (2) are also deter-
mined in terms of the magnitude of the total spin and its
projection. When a magnetic field is turned on, the
energy levels are split, which determines corrections to
the average occupation numbers.

The relationship between the variations of N- and
(N ± 1)-particle states can be expressed in terms of the
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mean value of the diagonal component of the Green
function at the zero value of the magnetic field:

(7)

In order to obtain equations for the end factors, we aver-
age the T-product of the destruction operator (1) by a
linear combination of adjoint X-operators with arbitrary

coefficients :

(8)

Here, we use the expansion of the annihilation opera-
tor (1) on the basis of the known fractional parentage

coefficients . Passing to the limit τ'  τ (τ' > τ),
we obtain equations for finding all (N + 1)-particle

occupation numbers :

(9)

Substitute expression (3) for the Green function into
this equation to obtain

(10)

Now, we explicitly calculate the sum in the right-hand
side over α:

(11)

To this end, we use the simplified expression for the
inverse Green function
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the elimination of the off-diagonal (with respect to the
indices α and β) components of the self-energy Σα,
which are independent of the frequency and quasi-
momentum in the one-loop approximation. The single-
particle energy Eα, which depends on the difference of
N- and (N + 1)-hole states, is assumed to be equal to the
sum of the chemical potential and the magnitude of the
spin splitting in the given magnetic field H:

(13)

Thus, we are interested only in the spin dependence on
the magnitude of the applied weak magnetic field,
which corresponds to the further possibility to deter-
mine the spin magnetic susceptibility and investigate
the possible occurrence of the ferromagnetic instability.

An explicit expression for the inverse Green func-
tion (12) makes it possible to find the desired sum over
the indices α in Eq. (11):

(14)

As a result, we find the explicit form of Eqs. (10):

(15)

Since the numerical coefficients γβ are arbitrary, the
number of independent equations in (15) (under the
given values of the fractional parentage coefficients gβ)
is equal to the number of possible values of β, which
equals the number of different transitions determined
by the initial expansion (1).

In the limit H  0, the end factors and one-loop
self-energy parts become independent of the transition
number β; i.e.,

Setting γβ = gβ in Eqs. (15) and passing to the limit as
H  0, we find an equation for the average (N + 1)-
hole states in the form

(16)
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fractional parentage coefficients with account for the
degeneracy order of the selected group of transitions:

g2 = .

In the absence of field, the end factor equals the sum
of occupation numbers of N- and (N + 1)-hole states;
therefore, the total number of holes is expressed in
terms of the integral function K by the equation

(17)

Here, the square brackets denote the integer part, and
the second relation can be written with regard for the
fact that in our approximation the end factor is a linear
function of the occupation numbers.

The system of equations (16), (17) determines the
relationship between the chemical potential, tempera-
ture, and density of holes n. For convenience of compu-
tations, we define the renormalized chemical potential
and the renormalized temperature:

(18)

Then, the integral function K depends on  and  as if
these variables were the temperature and chemical
potential of the ideal gas. Furthermore, using Eqs. (17),
we find the dependence of these parameters on the end
factor f0 and the average number of hole states n; then,
we use Eqs. (18) to obtain the true temperature and
chemical potential.

To find out how the spin magnetic susceptibility
depends on temperature and concentration, we set γβ =
gβ in the equations for the transitions that differ in the
value of the total spin projection at the terminal (N + 1)-
hole state. For other transitions with the same terminal
spin projection, we set γβ = 0 and then vary the right-
hand side of Eq. (15) with respect to the magnitude of
the magnetic field, end factors, and one-loop self-
energy parts:

(19)

The coefficients in this equation are calculated at the
zero external magnetic field:
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terminal state and the fixed collection of single-particle
orbital states. Using definition (6), we find

(21)

Considering all possible one-loop transitions from
high-spin (N + 1)-hole states to the states with a given
total spin S, we obtain several groups of transitions sat-
isfying definition (6). In this case, the sum of the
squared fractional parentage coefficients g2, for the
given total spin S of high-spin (N + 1)-hole states and
the given number κ of different orbital states, is found
in terms of the combinatorial factor

(22)

If the total number of orbital components κ is given,
one must generally consider various values of the total
spin from S = 1 /2 to S = κ/2.

The other equations for the variation of (N + 1)-hole
states are conveniently written with the use of auxiliary
coefficients γk satisfying the condition of orthogonality
to the set of different fractional parentage coefficients

(23)

Varying Eq. (15) with regard for these conditions, we
obtain 2S – 1 possible relations, which are independent
of the variation of the magnetic field:

(24)

Here, there is a new coefficient A, which has a singular-
ity at the zero energy of excitations:

(25)

The right-hand side of the system (20), (24) includes
variations of the average occupation numbers only
implicitly through the variations of the end factors.
Therefore, we must complement these equations with
relations that express variations of the average occupa-

tion numbers δ  in terms of the variations of the
end factors δfk .

These relations are easily obtained if we observe
that, in an external magnetic field, the variations of the
occupation numbers δnk corresponding to the given
projection of the spin k = Sz ≠ 0 differ from the variation
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of the occupation numbers corresponding to the same
state with the opposite spin projection only in sign.

Taking into account the relationship between the
number of the end factor k = Sz and the values of the
spin projection for N- and (N + 1)-hole states fk =

 + , we immediately find the desired rela-
tions

(26)

Here, p can take all integer values in the range from
zero to [S]. Therefore, relations (26) give the complete
solution to the problem of elimination of the variation
of all (N + 1)-hole occupation numbers from the left-
hand side of Eqs. (19) and (24).

In order to obtain equations for the variation of the
self-energy parts Σα , we represent this part as a sum of
two terms each of which contains the single-particle
Green function summed over momenta and frequencies
(see Fig. 1):

(27)

Here, Aα, β and Bα, β are given numerical matrices deter-
mined by the matrix elements of the kinematic interac-
tion characteristic of the given group of spin states. The

functions  are expressed in terms of the same sum

 as that involved in the calculation of the occu-
pation numbers:
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Fig. 1. One-loop self-energy parts. 
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Substitute expression (14) into this formula to obtain

(29)

Under a zero external magnetic field, the one-loop cor-
rections are independent of the transition number,
which yields an insignificant correction to the chemical
potential.

For the calculation of the variation Σ with respect to
the external magnetic field, we use the obvious equa-
tion

(30)

Furthermore, it is natural to define the numerical matrix

(31)

which is involved in the expressions of the variation of
the right-hand side of Eqs. (29) and (24):

(32)

Here, we introduced the components of the numerical
vector Rk =  that can be used to express
all other matrices:

(33)

Here, g2 =  differs from b2 =  only in the

factor ,

(34)

where S is magnitude of the spin of (N + 1)-hole states
and κ is the total number of distinguished orbital states.

Thus, given the numbers Sk, p and the coefficients
Dn , A, K, and Q, the system of equations (19), (24),
(26), (32) makes it possible to determine the variations
of all end factors and one-loop self-energy parts (see
Fig. 1).
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To determine the spin susceptibility χ, one should
find corrections to the spin magnetic moment:

(35)

where v 0 is the volume of the unit cell.
The linear combination of the variations of occupa-

tion numbers involved in the definition of the spin
moment must be expressed in terms of the variations of
end factors, which are determined from the system of
equations (19), (24), (26), (32).

In order to obtain the corresponding relation, we
first calculate an auxiliary sum using the definition of
end factors (6):

(36)

The last sum vanishes, because it is taken over all pro-
jections of the total spin pertaining to N-hole states. The
first and the third sums provide the correction to the
spin moment, and the second term can be written as the
sum of variations of the end factors by formula (26) at
p = 0:

(37)

As a result, we obtain the variation of the spin moment
in terms of the variations of the end factors:

(38)

Here and in what follows, we use another indexing of

the end factors:  = fS + 1 – n (n = 1, 2, …, 2S).
Equations (26), (35), and (38) enable us to use only

end factors and their variations as variables and then to
determine the susceptibility as a function of the renor-
malized temperature and chemical potential (see (18)).

To find the conditions for ferromagnetic instability,
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homogeneous system of equations obtained from
Eqs. (19), (24), (26), and (32) at δH = 0.

As a result, we find a relation between the renormal-
ized temperature and chemical potential, which can be
used to obtain the magnetic phase diagram in the vari-
ables concentration–temperature.

3. FERROMAGNETISM IN NICKEL

In the case of Ni, Pd, and Pt, the d-system resonates
between empty (ten-electron) and one-hole (nine-elec-
tron) states.

Consider the limiting case when the influence of the
crystalline field can be neglected compared to the width
of the hole conduction band. At the zero magnetic field
and an infinite Hubbard energy, we obtain by (17) the
state equation

(39)

Here, κ = 5 is the total number of the orbital one-hole
states and f is the end factor which is a linear function
of the average number of holes per the cell nh in the
absence of the magnetic field. The chemical potential µ
includes the sum of all one-loop self-energy parts,
which are independent of spin and orbital indices in the
absence of the magnetic field.

If a finite magnetic field is applied, it is convenient
to separate the spin and orbital parts and write the equa-
tion for the average number of holes that have a given
projection of the spin σ and of the single-particle orbital
moment:

(40)

Here, the end factors are equal to the sum of the average

number of empty, n0, and one-hole, , states, so that
their variation, which is connected with the variation of
the magnetic field, coincides with the variation of the

one-hole states: δ  = δ .

Equations for the one-loop self-energy parts have a
very simple form, since we assume, for simplicity, that
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the spectrum of energy excitations is diagonal with
respect to both the spin and orbital indices:

(41)

Here, the last term and the first term in the first sum can-
cel out, which corresponds to the zero scattering ampli-
tude of excitations with identical spin and orbital indi-
ces. In our representation, the single-particle Green
function is diagonal and the summation over the fre-
quency ωn = πT(2n + 1) yields the well-known Fermi
function

(42)

To find the conditions for ferromagnetic instability, it is
sufficient to determine the conditions for the appear-
ance of nonzero variations of the average occupation

numbers δ  at the zero variation of the magnetic field
magnitude H. Assume that the variations are indepen-
dent of the orbital variable m, but change sign when the
sign of the spin projection is changed:

(43)

The fact that the variation is independent of the spin
indices corresponds to the possibility of separating the
susceptibility into the spin and orbital parts and the fur-
ther separation of the singular part of the spin suscepti-
bility. It can be proved that the orbital instability does
not occur in the cubic lattice; therefore, below we do
not consider the dependence on the orbital indices.

The variation of Eqs. (40) and (41) yields

(44)

All the coefficients are determined in terms of the seed
density of states ρ0(e):
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Solving system (44), we find the susceptibility

(46)

where v s is the volume of the unit cell and µB is the
Bohr magneton. The condition for ferromagnetic order-
ing is found from the solvability condition for the
homogeneous system (44) at δH = 0:

(47)

(48)

The equation of state that relates the chemical potential
to the temperature is also expressed in terms of the
function K and a parameter κ that is interpreted as the
number of orbital components:

(49)

where κ is the degree of orbital degeneration.
In the limit T  0, these equations become much

simpler:

(50)

Since all the quantities here are expressed in terms of a
single parameter ν, we can substitute them into the con-

χ T( )
2κµB

2

v s

-------------δ f σ

δH
--------- 2κ

µB
2

v s

------= =

×
f D0–

1 K– f D1– 1 K–( )D1– f D0D2 D1
2–( )–

-----------------------------------------------------------------------------------------------------,

1 K– f 1 K–+( )D1 f D0D2 D1
2–( ),+=

1 K–
f D1

1 D1–
--------------- at T 0= .=

n 2κ fK , f 1 n 1 1
2κ
------– 

  ,–= =

K ρ e( ) e, fd D1

∞–

ν

∫ νρ ν( ),–= =

f
1

1 2κ 1–( )K+
----------------------------------, n

2κK
1 2κ 1–( )K+
----------------------------------.= =

~ ~
~~

T/ |t|
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Fig. 2. The phase diagram of nickel, palladium, and plati-
num. The ferromagnetic region is shaded. The arrow marks
the theoretical value of the transition temperature: Tc/|t| =
(627.4 × 2)/(3.78 × 11606) = 0.0286.

Ni 
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dition for ferromagnetic instability, one can calculate
the critical values corresponding to the domain of exist-
ence of ferromagnetism at T = 0.

In the model of semielliptic density of states, when

ρ(e) = 2 /π, we have the condition

(51)

For the given degeneration multiplicity κ, the last equa-
tion determines the critical value Kc corresponding to
the critical concentration nc = 2κKc/[1 + (2k – 1)Kc].

At κ = 1 or 2, the equations have no solutions
(see [5]). If κ = 5, we obtain two critical points Kc1 =
0.1161, i.e., nc1 = 0.5671, and Kc2 = 0.295, i.e., nc2 =
0.8071.

Thus, for the model of a semielliptic band, ferro-
magnetism occurs in the finite domain of concentra-
tions from nc1 = 0.56710 to nc2 = 0.8071 (see Fig. 2).

The theory proposed above gives a qualitative
explanation of the magnetic properties of Ni, Pd, and
Pt, which belong to subgroup 8. All of them have a
cubic unit cell of the fcc type. The total number of con-
duction electrons is ten, and the number of electrons on
the unfilled s-shell does not exceed unity. According to
band theory calculations, the number of s-electrons on
the unfilled shell is 0.81, 0.59, and 0.94 for Ni, Pd, and
Pt, respectively. Hence, we conclude that the number of
hole d-states (hd) is equal to 0.81, 0.59, and 0.94,
respectively. Therefore, the number of hole states of
nickel lies between hd for palladium and platinum. It is
natural to assume that the concentration of holes for Pd
and Pt is outside the domain in which there is the ferro-
magnetic instability. At the same time, the intermediate
value of hole concentration for Ni is within the domain
in which there is the ferromagnetic instability (see
Fig. 2, which illustrates the quantitative agreement
between the experimental and theoretical values of the
magnetic saturation moment).

4. FERROMAGNETISM IN COBALT

Consider the case when the system resonates
between the one-hole and two-hole high-spin states
with spin 1. Represent the variation of the two-hole
occupation numbers in terms of the variation of two end
factors. In accordance with (26), we have

(52)

These relations must be used for obtaining equations

1 e
2–

K
α αsin–

2π
---------------------, f D1

αsin
π

-----------,= =

1 K–

– 2κ 1–( )K2 2κ 2–( )K 2+ +
-----------------------------------------------------------------------

αsin
π

-----------.=

δnII
σ δ f k

σ

k 1=

2

∑= , δnII
0 0.=
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for the variation of end factors :

(53)

Here, we must use the values of the fractional parentage
coefficients (6) at S = 1 and notation (22):

(54)

which corresponds to the maximum possible number of
degenerate d-orbitals (κ = 2, 3, or 5).

Here and in what follows, we have

(55)

Two other equations are obtained from (24) with the
use of the additional orthogonality condition γ1b1 = −γ2b2:

(56)

Relations (52) make it possible to eliminate the varia-
tions of two-particle occupation numbers from the
equations, so that Eqs. (53) and (56) are written in the
form

(57)

(58)

Here, we used the condition γ1b1 = –γ2b2 and the reso-
nance coefficient A defined in (25).

The resulting equations at the zero corrections to the
self-energy parts δΣ determine the susceptibility and
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the boundary of the ferromagnetic instability in the
zero-loop approximation:

(59)

Now, the equation that connects the variations of the
occupation numbers also includes variations of the self-
energy parts (see Fig. 1).

Considering one-loop self-energy diagrams, one can
notice that the off-diagonal (with respect to the transi-
tion numbers (k, p = 1, 2)) self-energy parts vanish,
while all the diagonal elements are determined in terms
of integrals of Green functions with the given projec-
tion of the spin σ:

(60)

Here, κ is the total number of orbital components; in
our case, κ = 2, 3, or 5.

The quantities on the right-hand side are indepen-
dent of the number of the atomic state and, for the given
σ, differ in a factor proportional to the corresponding

fractional parentage coefficient squared:  = 1 or  =
1/2. We have

(61)

In the absence of the magnetic field, the functions C(σ)
are independent of the spin projection. Therefore, sub-
stituting them into (61), we find that in this limit, both
self-energy parts are reduced to a constant, which leads
to the correction to the chemical potential and is not
taken into account below.

Equations for δΣ are obtained in agreement with the
general relations (31)–(34). The numerical values of the

matrix  constructed in accordance with the definition
of the self-energy matrix using (60) and Fig. 1 has the
following form in the case under consideration:

(62)

The matrix  is represented in the form of the products
Uk, n = Rkbn/b2:

(63)

K 1 K–( ) f g2 1/3 K+( )D1.–
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Û 5 κ–( )/3     5 κ – ( ) /6 
κ

 

1–

 
( )

 

/3     κ 1– ( ) /6  
 
 

 
.=
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The operator  = Q(µ) , where Q is defined

in (33), and the matrix  has a zero sum of elements
in each row:

(64)

The inhomogeneous term is proportional to the two-

dimensional vector .
Let us write equations for the corrections to the end

factors for high-spin 3d-hole states when κ = 5. We
have

(65)

where

(66)

Equate the corresponding determinant to zero to obtain
an equation for finding the ferromagnetic instability
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Fig. 3. The phase diagram of cobalt. FM denotes the ferro-
magnetic regions, AFM denotes the antiferromagnetic ones,
CF is the mixed phase, and PM denotes the paramagnetic
regions; Tc/|t | = (1388 × 2)/(4.35 × 11606) = 0.05984.
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is satisfied, we have the equation

(67)

All the coefficients here depend on the position of the
chemical potential.

For the semielliptic band model, all quantities in the
equations are conveniently expressed in terms of the

parameter 

 

α

 

 = 

 

π

 

 + 2 :

(68)

The logarithmic divergence in the coefficient 
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(
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) at

 

µ

 

  0 in (67) is compensated for by the factor 

 

D

 

2

 

.
In accordance with the general formula (38), the

correction to the magnetic moment is expressed in
terms of a linear combination of corrections to the end
factors:

(69)

Calculating the last sum, we obtain the susceptibility

(70)

where the denominator has the form

(71)

The numerical solution of Eq. (67) determines the
domain of ferromagnetic instability (see Fig. 3)

(72)

In the zero-loop approximation, we find a narrower
domain of ferromagnetic instability, 1 < 
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 < 1.3946.
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Special properties of the phase diagram, which man-
ifest themselves in the region of positive values of the
chemical potential, are caused by the function A, which
(at T = 0) has a logarithmic singularity at the zero chem-
ical potential (i.e., at α = π). This singularity is compen-
sated for by the factor D2, which vanishes at the same
point. However, outside this point and at α ≠ 0, 2π, the
product AD2 is positive. This is the cause of the fact that
the system remains paramagnetic in a wide range of
concentrations except for the two narrow domains adja-
cent to the points corresponding to the critical values
α = 0 and π.

Another special feature of the system under consid-
eration is the possibility to change the sign of the mag-
netic susceptibility by setting to zero the numerator (N)
of the magnetic susceptibility. Thus, the susceptibility
is negative in a narrow domain. In the limit T = 0, the
width of the left part is zero and the right part of this
domain has a small finite width,

1.995 < hd < 1.999. (73)

In the region of high temperatures, the boundary of this
domain is defined by the vanishing condition for the
magnetic susceptibility. For low temperatures, the
boundary is determined by the condition of infinity of
the susceptibility. Hence, we conclude that the narrow
domain of negative susceptibility corresponds to the
antiferromagnetic phase. Inside this domain, the system
seems to be ordered as well, since it is adjacent to the
ferromagnetic phase and turns into infinity at the
boundary with this phase.

5. FERROMAGNETISM IN IRON

In this case, the system resonates between two- and
three-hole high-spin states. Accordingly, we write
equations for the three-hole occupation numbers. We
have from the general equations (19)

(74)

Here, we must use the numerical values of the frac-
tional parentage coefficients obtained from (6) for the
transitions to the three-hole states with the spin S = 3/2:

(75)
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Using the general relations (26), the variations of the
occupation numbers are expressed in terms of the vari-
ations of the end factors

(76)

Two additional equations are found from the orthogo-
nality conditions. For b3β3 = b1β1 and b2β2 = –2b1β1, we
have, in accordance with (24),

(77)

Setting β2 = 0 and b3β3 = –b1β1, we obtain

(78)

The coefficients K, Dk , and A are determined by the
same general formulas as in the preceding section.

Three equations for the diagonal self-energy parts
are written, in accordance with Fig. 1, in the form

(79)

Here,  = T  is the sum of prod-

ucts of the matrix elements of the transition matrix 

by the elements of the virtual Green function  for
the given spin projection and the given a-state (a = xy,
yz, zx, x2 – y2, 3z2 – r2).

Our next aim is to calculate the corrections δΣk pro-
portional to the magnetic field.

Three variations δΣ satisfy the general equations (32)
with the coefficients expressed in terms of the elements

of the matrix .

In turn, the matrices  and  are expressed in terms
of the coefficients of Eq. (79):

(80)
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For d-electrons, we have κ = 3, 4, or 5. The matrix  is

expressed in terms of the products Uk, n = Rk /2:

(81)

We have  = Q(µ) , where Q is defined in (33) and

Û

bn
2

Û
13 2κ–( )/6 13 2κ–( )/9 13 2κ–( )/18

1/2 1/3 1/6
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.=

F̂
0( )

Ŵ
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the sum of elements in every row of the matrix  =

 –  is zero:

(82)

In the particular case κ = 5, we must solve the system
of equations

Ŵ
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The coefficients here are expressed in terms of the inte-
grals of the Fermi distribution, and they depend on the
renormalized temperature and chemical potential:

T/ |t|
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Fig. 4. The phase diagram of iron. The ferromagnetic region
is shaded; Tc/|t | = (1044 × 2)/(4.82 × 11606) = 0.0373.
                            

(84)

Equate the determinant of this system to zero to find the
condition for ferromagnetic instability

(85)

To this equation, we add the equation of state in the
form

If T = 0, then D2D0 = , and all quantities appearing in
the equations in the model of the semielliptic band can be
represented in the form of general relations (68), which
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depend on the single parameter α; the total number of
holes hd can be expressed in terms of this parameter.

As a result, we obtain the phase diagram depicted in
Fig. 4.

The numerical solution of Eq. (84) yields αc =
2.6938 and Kc = 0.35826. Therefore, the ferromagnetic
instability is observed in a limited region of concentra-
tions of 2 < hd < hc = 2.4298. Outside this interval, the
state is paramagnetic [6].

In the zero-loop approximation, one can also obtain
a finite interval of concentrations in which there occurs
ferromagnetic instability: 2 < hd < hc0 = 2.339.

Thus, ferromagnetism exists in the entire region
from hd = 2 to 2.428. However, beginning with
hd = 2.26 and up to hd = 2.428, the instability due to
one-loop corrections disappears and there remains only
the instability caused mainly by zero-loop corrections.

This result concerns the ferromagnetism of volume-
centered α-iron, which has a magnetic saturation
moment equal to 2.2µB (see, e.g., [7]).

As for the nonferromagnetic phase of γ-iron, mea-
surements show that the number of electrons on the
d-shell is about 7.5, so that the number of holes is 2.5.

Therefore, the existence of ferromagnetism in
α-iron is explained by the fact that the number of hole
states (≈2.2) is within the interval of the ferromagnetic
instability. The absence of ferromagnetism in γ-iron is
explained by the fact that the number of holes on the
3d-shell, which is approximately equal to 2.5, exceeds
the critical value obtained both in the zero-loop and
one-loop approximation.

The qualitative conclusion about the possibility of
ferromagnetic ordering only for a limited interval of
concentrations is in agreement with both the zero-loop
and one-loop approximations.

To find the magnetic permeability, it is sufficient to
calculate the correction to the magnitude of the mag-
netic moment δm, which is a linear combination of the
variations of end factors (in accordance with (38)):

This linear combination is calculated using system (83),
which yields the susceptibility

(86)
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where v 0 is the volume of the unit cell, µB is the Bohr
magneton, and

(87)

Thus, we determine the inverse magnetic susceptibility
for the paramagnetic part of the phase diagram (Fig. 4).

In the case under consideration, the resonance coef-
ficient A disappears from the final formula (86), and the
numerator of the magnetic susceptibility is positive for
all values of the temperature and chemical potential.

6. THE DOMAIN 3 < hd < 4

This domain corresponds to the cubic phase of the
paramagnetic manganese, which goes to the antiferro-
magnetic phase with decreasing temperature. Never-
theless, this interval is of interest, because compounds
containing manganese cations manifest high-spin fer-
romagnetism.

To analyze transitions between high-spin three- and
four-hole states, we use the general relations (6) and (21):

(88)

This corresponds to the choice of the maximum possi-
ble number of degenerate d-orbitals (κ = 5).

The further consideration corresponds to the general
relations given in Section 2. The formula for suscepti-
bility is

(89)

where the denominator is expressed in terms of the
coefficients calculated for the paramagnetic phase:

(90)

In the limit T = 0, when  – D2D0 = 0, we find the con-
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Fig. 5. The phase diagram of high-spin manganese and chromium. FM denotes the ferromagnetic regions, AFM denotes the anti-
ferromagnetic ones, CF denotes the mixed phase, and PM denotes the paramagnetic regions.
dition for ferromagnetism

(91)

These equations are complemented by the equation
of state

(92)

The numerical solution of Eq. (91) yields a rather wide
interval of the ferromagnetic instability of 3 < nd <
3.318. In the zero-loop approximation, we find a
smaller interval of the ferromagnetic instability of 3 <
nd < 3.23497.

The calculation of the coefficients at a finite temper-
ature allows us to determine the Curie temperature in
the entire interval of concentrations where ferromag-
netism is possible (see Fig. 5).

7. THE DOMAIN 4 < hd < 5
The consideration follows the same scheme as that

for manganese.
First, we represent the variations of the average

occupation numbers , , and  in
terms of the variations of the five end factors:

(93)

These expressions are substituted into the equations for

the variations of the end factors .
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Furthermore, using (6) and (21), we calculate the
fractional parentage coefficients

(94)

which corresponds to the choice of the maximum pos-
sible number of degenerate d-orbitals (κ = 5).

The correction to the magnetic moment is written,
using (38), as a linear combination of the corrections to
the end factors:

(95)

Calculating this sum, we obtain the susceptibility

(96)

where the denominator is written as

(97)
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To construct the phase diagram as a function of the hole
concentration, these equations must be supplemented
with the equation of state

(98)

In the limit T = 0, when  – D2D0 = 0, the condition
for ferromagnetism is

(99)

The numerical solution of Eq. (99) yields a very narrow
domain of ferromagnetic instability of 4 < nd <
4.0008829. In the zero-loop approximation, a wider
domain of ferromagnetic instability of 4 < nd < 4.23 is
obtained.

The considerable difference between the phase dia-
grams of chromium and manganese is caused by the
function A. As has already been mentioned, this func-
tion has a logarithmic singularity at T = 0 and the zero
value of the chemical potential (i.e., at α = π). This sin-
gularity is compensated for by the factors D1 and D2,
which vanish at this point. Outside this point, the prod-
uct AD2 is positive, but not very large; however, in the
interval 4 < hd < 5, it is multiplied by a large factor
of 112.

Another specific feature of the system under study is
the possibility of sign reversal of the magnetic suscep-
tibility due to the vanishing denominator (N) of the
magnetic susceptibility.

At T = 0, there exists a rather wide domain of
4.00828829 < nd < 4.1935, in which the denominator is
negative.

Therefore, at T = 0, in addition to the regions of fer-
romagnetic (100) and antiferromagnetic instability

(100)

there exist regions with positive susceptibility (see
Fig. 5) characterized by a negative numerator and
denominator (D < 0 and N < 0):

(101)
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At finite temperatures, the latter domain is adjacent to
the antiferromagnetic domain (see Fig. 5) and the sus-
ceptibility becomes infinite at the boundary. Hence, we
intuitively conclude that there is an ordered mixed
phase inside this domain.

It follows from Fig. 5 that as the temperature
decreases, the system goes to the antiferromagnetic
state with a negative magnetic susceptibility rather than
to the ferromagnetic state.

As the temperature decreases further, the suscepti-
bility increases in absolute value, becomes infinite, and
than goes to a low-temperature mixed phase.

The cause of this phenomenon is a strong interaction
of antiferromagnetic type, which manifests itself in the
form of the resonance function A with a logarithmic
singularity at T = 0. The intensity of this interaction
depends on the magnitude of the total spin in the termi-
nal and the initial state. If the initial spin is zero, as is
the case for Ni, Pd, and Pt, there is no such interaction.
In the case of cobalt, it appears with a negative sign and,
therefore, manifests itself for large-energy excitations
in the nonferromagnetic domain (see Fig. 3).

In the case of high-spin iron and manganese, the
effect of resonance is insignificant. However, for chro-
mium, the resonance influence domain overlaps with
the domain of ferromagnetic instability, which actually
leads to the elimination of significant domains of ferro-
magnetic ordering.

8. CONCLUSIONS

The theory developed in this paper gives a qualita-
tive explanation of the magnetic properties of Ni, Pd,
and Pt belonging to subgroup 8. Therefore, the number
of hole states for nickel lies between hd for palladium
and platinum. One can naturally assume that the con-
centration of holes in Pd and Pt is outside the domain of
ferromagnetic instability, while the intermediate hole
concentration in Ni is inside this domain (see Fig. 2).

The examination of the phase diagram of cobalt,
iron, and manganese reveals a qualitatively different
situation. In this case, the system resonates between the
high-spin (magnetic) states, so that the system is ferro-
magnetic when the number of excitations with negative
amplitude of exchange scattering is small. As the Fermi
energy increases, the exchange scattering amplitude
changes sign so that the system ceases to be ferromag-
netic for every integer-valued interval of the hole con-
centration beginning with a certain critical value.

For cobalt, the observed value of the magnetic satu-
ration moment (1.7µB) is somewhat greater than the
critical value (1.59µB) obtained in this paper.

On the contrary, the critical value obtained for bcc
iron (2.46µB) exceeds the magnetic saturation moment
SICS      Vol. 96      No. 2      2003
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(2.2µB). Therefore, the observed number of hole states
belongs to the domain of ferromagnetic ordering.

For the nonferromagnetic phase of γ-iron and man-
ganese, the observed (antiferromagnetic) values of the
moment exceed the critical values obtained in this
paper.

Therefore, the presented model yields a quantitative
description of ferromagnetism in nickel and α-iron.

In addition, it provides a qualitative explanation of
the absence of ferromagnetism in palladium, platinum,
γ-iron, and in hypothetical (high-spin) phases of chro-
mium and manganese.

As for cobalt, a further elaboration of the model is
required aimed at its application to the hexagonal and
fcc phases with account for the particular single-parti-
cle density of states.
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Abstract—The internal and external surfaces of a percolation cluster, as well as the total surface of the entire
percolation system, are investigated numerically and analytically. Numerical simulation is carried out using the
Monte Carlo method for problems of percolation over lattice sites and bonds on square and simple cubic lat-
tices. Analytic expressions derived by using the probabilistic approach describe the behavior of such surfaces
to a high degree of accuracy. It is shown that both the external and total surface areas of a percolation cluster,
as well as the total area of the surface of the entire percolation system, have a peak for a certain (different in the
general case) fraction of occupied sites (in the site problem) or bonds (in the bond problem). Two examples of
technological processes (current generation in a fuel cell and self-propagating high-temperature synthesis in
heterogeneous condensed systems) in which the surface of a percolation cluster plays a significant role are dis-
cussed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interface between components participating in
physical and chemical processes plays an important
role in many cases. The areas of this surface are impor-
tant for heat and mass transfer processes, for chemical
reaction, etc. Components (phases) participating in
such processes may have either deterministic or ran-
dom structure. We will treat the latter case here. Perco-
lation theory [1] is one of basic models providing a cor-
rect description of geometrical properties of systems
with disordered structures. The main feature of such
systems is the possibility of a geometrical phase transi-
tion leading to the formation of an infinitely large (per-
colation) cluster (PC).

We will consider two examples of systems in which
the surface of the formed PC plays a significant role.
The first system of this kind is a fuel cell. The main part
of the fuel cell is a porous electrode. One of the basic
problems in the theory of porous electrodes is to deter-
mine conditions for gathering all participants of an
electrochemical process (viz., reagents, ions, electric
current (electrons), and a catalyst) on the well-devel-
oped internal surface of the electrode and for removing
useful products or byproducts of the electrochemical
reaction. It is important that the electrochemical pro-
cess extends over macroscopic distances (as compared
to the microscopic characteristic size of the porous
medium).

However, there exists a limitation associated with a
small velocity of fuel (gas) transport to the surface of
the electrode via an electrolyte. This limitation is due to
the diffusion mechanism of transport of gas molecules
in a liquid. At the same time, it is well known that the
main part of the current is generated in an individual
pore in the meniscus region, where the film of the elec-
1063-7761/03/9602- $24.00 © 20301
trolyte is thin enough for gas diffusion, while the elec-
tric resistance is still not high. Consequently, in order to
obtain a stronger current, the number of such menis-
cuses (gas (hydrogen)–electrolyte–electrode “three-
phase” boundaries) per unit volume must be as large as
possible. However, we must take into account the fol-
lowing circumstance: the electric circuit must be closed
for the ionic component of the current. This means that
a connected system of pores filled with electrolyte (per-
colation cluster) must exist in the electrolyte. It is this
cluster that plays the key role in the generation of cur-
rent. Drops of electrolyte insulated from all sides (finite
clusters) which may exist in the electrode make zero
contribution to the overall generation of current by the
fuel cell since the circuit is disconnected for the ionic
component of the current. All “favorable” electrochem-
ical reactions in this case occur most intensely near the
above-mentioned three-phase boundary. This means
that the electrochemical activity (generated current) is
proportional to the area of a given interface. The useful
interface between the three phases is, in turn, propor-
tional to the outer surface of the PC formed by pores
filled with electrolyte since it is only this surface that
participates in the continuous process of current gener-
ation. If, for example, gas “bubbles” are formed in the
PC, the surface of such bubbles, which is the internal
surface of the PC in this case, drops out of the process
of current generation after a certain time since the gas
required for the electrochemical reaction is no longer
supplied to these regions. Thus, the following optimiza-
tion problem appears: we must find the degree of satu-
ration of the porous electrode with electrolyte, for
which the area of the external surface of the percolation
cluster being formed has the maximal value. It should
be noted that the problem of distribution of a liquid in a
003 MAIK “Nauka/Interperiodica”
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porous body could be reduced to the problem of perco-
lation over bonds [2, 3].

By way of another example, we consider a self-
propagating high-temperature synthesis (SHS) in a het-
erogeneous condensed system (mixture of powders),
which is one of the most effective and practicable meth-
ods for obtaining a wide range of inorganic compounds
including intermetallides [4]. A number of phenomena
and effects which have been observed while studying
combustion processes in heterogeneous systems can be
explained only taking into account the random structure
of such systems [5–8]. We will briefly consider the
effect of geometrical contingency on the interface and
the processes in such systems connected with it.

In combustion reactions (except exothermal decom-
position of some compounds), the usual participants are
a fuel and an oxidizer, which must be mixed at the
molecular level for the reaction to occur. If the fuel and
the oxidizer are in the gaseous state, they can be mixed
prior to the reaction in many cases. If, however, the
components are in the condensed state, such a mixing
is practically unattainable. In this case, the interface
between the components becomes significant for the
reaction. In mixtures consisting of particles that are
infusible during combustion (e.g., Ta–C), the interac-
tion between these particles occurs through solid-phase
diffusion. Consequently, a mechanical contact of a
powder particle with at least one particle of the other
powder is required for the reaction to occur in such sys-
tems. The necessary condition for the propagation of
the reaction over macroscopic distances as compared to
the size of an individual particle is the presence of two
PCs formed by particles of the first and second species.
In this case, the maximum conversion of components
can be reached when the area of the contact surface
between these clusters has the maximum possible
value. It should be noted that, by definition, this surface
coincides with the external surface of a percolation
cluster. If one of the components melts during the com-
bustion of the components in the mixture (e.g., Ti–C or
Zr–C system), the mutual arrangement of particles
prior to the reaction is the major factor determining its
occurrence since a fused particle may spread only in a
small neighborhood of its initial position. If the fused
component is sufficient for filling the entire or almost
entire free space of a pore, the total surface of the per-
colated system, consisting of the PC surface and the
surfaces of all finite clusters formed by particles of the
infused component, will participate in the reaction. If,
however, the amount of fused component in the system
is small, the PC surface is the only factor determining
the reaction.

For a monodisperse mixture of powders, the geo-
metrical contingency can be modeled by the classical
problem of percolation over lattice sites. In this case,
the mixture of powders A and B is put into correspon-
dence with a space lattice in which each site is occupied
either by particles of species A with probability p, or by
JOURNAL OF EXPERIMENTAL 
particles of species B with probability (1 – p). Here,
p is the numerical fraction of A particles in the mixture,
which may be connected with the volume fraction of
these particles through the Scher–Zallen construction [9].
Then the problem of SHS optimization in heteroge-
neous condensed systems can be formulated as follows:
find the relation between the concentrations of initial
components of the mixture for which the corresponding
interface area and, hence, the degree of conversion have
the highest values. The choice of the surface whose
maximum area has to be determined in each specific
case was discussed above.

It is important to note that, if we are speaking about
the external surface of a PC, its maximum for one PC
can be attained only in the region in which a PC formed
by particles of the other species can exist. This condi-
tion is satisfied if pc ≤ pm ≤ 1 – pc , where pm is the point
at which the surface area has the maximum value and pc

is the percolation threshold. This inequality leads to the
condition imposed on the percolation threshold in the
simulating lattice: pc ≤ 0.5. In the 2D case, this condi-
tion is satisfied only for a triangular lattice (in the site
problem) and for a square lattice (in the bond problem)
and only at a single point, viz., percolation threshold
(pc = 0.5 [10]). However, in the 3D case, this condition
is satisfied for all regular lattices.

Some other circumstances indirectly confirming the
important role of interface in SHS are worth noting. It
was pointed out in a number of experimental publica-
tions [11–13] that many heterogeneous condensed sys-
tems do not exhibit complete conversion of components
in SHS processes. One possible reason is the statistical
inhomogeneity of such mixtures. For example, not
every particle has a particle of the other species as a
neighbor, even for well-mixed initial components taken
in stoichiometric proportion. It is impossible to obtain
a system in which particles of different species would
be arranged, for example, in staggered order. Particles
of a powder in a mixture with other particles always
have a certain tendency toward clusterization. For this
reason, some of such particles have no particles of the
other species among their neighbors; i.e., the interface
(contact surface) area of the reagents is much smaller
than the theoretically possible surface area of periodic
(staggered) packing. An excess of one of the compo-
nents in the reaction zone strongly decelerates the reac-
tion upon an increase in the conversion depth, ulti-
mately leading to incomplete conversion of the initial
components in an SHS process [14]. Another experi-
mental fact is also worth noting. It is well known that
SHS can be realized only in certain concentration limits
[11, 15]. If the concentration of one of the components
is lower than the threshold value, SHS cannot be initi-
ated at all. On the one hand, this is due to a decrease in
the degree of isothermality of the reaction as a result of
a decrease in the content of one of the powders. It was
mentioned in [11], however, that another possible rea-
son for this effect is a decrease in the contact area
AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003
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between the reagents, which becomes critical for a low
concentration of one of them. Moreover, the absence of
a PC made of particles of a component in deficit (which
may be required for the propagation of the reaction over
the entire sample) can also be responsible for the effect
in question.

Thus, this study aims at analysis of areas of inter-
faces in two-component heterogeneous systems on the
basis of percolation models.

2. ANALYTICAL TREATMENT OF THE SURFACE
OF A PERCOLATION CLUSTER

2.1. Site Problem 

Let us consider a space lattice and assume that a cer-
tain liquid can flow from one site to another along
tubes, which will be referred to as bonds. By introduc-
ing stochastic elements into this system in different
ways, we obtain the problem of percolation either via
lattice sites or via bonds. For example, in the site prob-
lem for a liquid percolating over the lattice, all bonds
are assumed to be penetrable for the liquid, while sites
are either overlapped or nonoverlapped (with a certain
probability). In the bond problem, all sites are penetra-
ble for the liquid, while part of the bonds are damaged.
It should be noted above all that we assume in these
problems that elements with different properties (occu-
pied or empty sites and penetrable or impenetrable
bonds) are distributed over the lattice absolutely at ran-
dom and, hence, the probability that an arbitrarily cho-
sen element possesses a given property is equal to the
fraction of such elements in the lattice and is indepen-
dent of the properties of neighboring elements. The
assumption concerning the randomness of the distribu-
tion implies that each site (bond) in a lattice is occupied
with the same probability p and is empty with probabil-
ity (1 – p), where p is the fraction of occupied sites
(bonds) in the lattice.

As a measure of the surface of any cluster in a per-
colation system, one of two quantities (perimeter or
“energy”) is traditionally used [16]. For example, in the
bond problem, the perimeter of a cluster is the number
of empty lattice sites, which do not belong to the clus-
ter, but are separated from the lattice sites belonging to
it by the length of a bond. The “energy” is defined as the
number of neighboring sites (pairs), one of which is
occupied (belongs to the cluster), while the other is
empty.

Let us prove that the PC surface indeed displays
extremal behavior. We consider a regular d-dimen-
sional lattice with coordination number z, in which the
fraction of occupied sites is equal to p. We assume that
a PC is formed on the lattice and the fraction of lattice

sites belonging to it is . This quantity simulta-P∞
s( ) p( )
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neously indicates the probability that an arbitrary site
belongs to the PC.

We consider a set of conditions under which an arbi-
trary lattice site can belong to the total perimeter of the
PC. First, the site in question must be empty (with prob-
ability (1 – p)); second, at least one of its z neighbors
must belong to the PC. We state that event Ωj has
occurred at an arbitrary site if any j from z sites neigh-
boring the given site belong to the PC (with probability

[ ] jz!/(j!(z – j)!), where z!/(j!(z – j)!) is the num-
ber of combinations of z sites taken j at a time), while
the remaining (z – j) sites are either empty or belong to

arbitrary finite clusters (with probability [1 – ]z – j).
It should be noted that we could multiply the probabil-
ities of elementary events corresponding to individual
sites owing to the above assumption concerning abso-
lute randomness of their distribution in the lattice. Then
the probability of occurrence of event Ωj is determined
by the formula

(1)

A site belongs to the PC perimeter (event D) if it is
empty and if any of events Ωj (for j varying from 1 to z)
has occurred at this site. Since events Ωj are pairwise
incompatible, the conditional probability is P(D/Ωj) =
1. Using the formula for total probability, we can write,
taking into account the relations derived above, the fol-
lowing relation for the PC perimeter per lattice site:

(2)

It is important to note that the relation obtained is
valid for any z. In the approach proposed here, this
quantity determines only the number of terms that must
be summed in Eq. (2). The application of the probabi-
listic approach is justified by the fact that the number of
lattice sites over which averaging is carried out is mac-
roscopically large. It should also be noted that the
perimeter S of large clusters near the percolation
threshold for d = 2 was investigated in [17, 18] using
the Monte Carlo method. In accordance with theoreti-
cal predictions [1], it was found that S = k(1 – pc)/pc for
large clusters, where k is the number of sites in a cluster.
It follows from formula (2) that, near the percolation
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threshold, when  is small, the PC perimeter is
defined as

Considering that z ≈ 1/pc , we see that formula (2) is in
good agreement with the results obtained by other
authors.

A similar expression can be obtained for the PC

“energy” . The expression will differ from that
for the perimeter in that the energy at a given site (at
which event Ωj occurs) is equal to j, which the contri-
bution to the perimeter after the occurrence of any event
Ωj is equal to unity. In the site problem, we have the fol-
lowing expression for the PC energy:

(3)

It should be noted that the total energy of a percola-
tion cluster was simulated numerically both for d = 2
[19, 20] and for d = 3 [21]; it was found that 〈E〉  ~ k in
both cases. It can be seen that formula (3) derived by us
is in perfect agreement with this result.

In the limit of an infinitely large system, the PC den-
sity tends to zero at p  pc + 0. Consequently, the
measure of the PC surface (perimeter or energy) must
also vanish at the percolation threshold. For p = 1, all
lattice sites belong to the PC; consequently the measure
of the PS surface must also be zero at this point. Since
the PC density is a continuous function on segment
[pc , 1] and a differentiable function on segment (pc , 1],
it follows from Eqs. (2) and (3) that the PC surface mea-
sure (perimeter or energy) must also be continuous and
differentiable on these segments.

Thus, the conditions of Rolle’s theorem are satisfied
for the PC perimeter (energy): it is continuous on

[pc , 1], differentiable on (pc , 1), and  = .
Consequently, there exists a point on the given seg-

ment, at which the derivative of function  van-
ishes. Since this function is nonnegative, this point is
the point of maximum.

The formulas for the perimeter and energy of the
entire system can be obtained similarly. For this pur-
pose, while deriving Eqs. (2) and (3), we must replace
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 by p; i.e., we require that, after the occurrence
of event Ωj , the corresponding sites may belong to the
PC or to arbitrary finite clusters. In this case, we have

(4)

(5)

These equations show that the total perimeter and
energy also exhibit extremal behavior. The maximum
value of total energy for any lattice is attained at point
pm = 0.5. At the same time, the maximum of the total
perimeter is attained at point pm = 1 – [1/(z + 1)]1/z; i.e.,
it depends on the type of the lattice (we have pm = 0.37
for z = 3, pm = 0.33 for z = 4, and pm = 0.28 for z = 6). It
should be noted that the results of our numerical exper-
iment confirm this conclusion.

The proposed approach can also be used for deriv-
ing formulas for the external perimeter and energy of a
PC. An arbitrary site belongs to the external PC perim-
eter if it belongs to a PC formed by empty sites (with

probability ) and if any of events Ωj defined
above has occurred at this site. Analogously to Eq. (2),
we obtain the following expressions for the external

perimeter  and external energy  of
the PC:

(6)

(7)

In the limit p  1, we have  = 0. Con-
sequently, it follows from Eqs. (6) and (7) that the PC
has only internal surface in this case. By virtue of rela-

tion  ≈ p, Eqs. (2) and (3) in this limit are trans-
formed into Eqs. (4) and (5), respectively. This means
that, for a large fraction of occupied sites, the surface of
the entire system virtually coincides with the PC sur-
face. These conclusions are also in perfect agreement
with the results of our numerical experiment.

2.2. Bond Problem 

In this problem, we analyze only the PC perimeter.
It should be noted that an unfilled bond connecting two
sites belonging to a cluster is counted twice in the
perimeter of this cluster [2].

Let us consider a periodic lattice of bonds with coor-
dination number z, in which the fraction of filled bonds
is equal to p. In order to avoid the multiple inclusion of

P∞
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Stot
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the same unfilled lattice bond in the PC perimeter, we
must consider an arbitrary lattice site (and not a bond)
and find the probabilities of relevant elementary events
for this site.

A bond adjoining an arbitrary lattice site belongs to
the total PC perimeter if it is unfilled and if at least one
of the bonds adjoining the same site belongs to the PC.
It should be noted that all the bonds adjoining the given
site and not belonging to the PC must be vacant by def-
inition in the bond problem. Then we can write the fol-
lowing expression for the average PC perimeter per lat-
tice bond, taking into account the fact that the lattice of
N bonds contains 2N/z sites:

(8)

Here,  is the connection function, or the fraction
of bonds belonging to the PC [2].

The existence of the maximum of the PC perimeter
on segment (pc , 1) can be proved in the same way as in
the site problem.

In the bond problem, the total perimeter of the entire
percolation system (including both the PC perimeter
and the perimeters of all finite clusters) per bond can be
determined in the same way as in the site problem by

substituting p for :

(9)

It should be noted that the expression for the total
perimeter of a percolation system obtained in [2] for the
bond problem coincides with Eq. (9).

The expression for the external PC perimeter can be
derived in the same way as Eq. (6) in the site problem.
It should be borne in mind that, in the case when a
vacant bond adjoining this site belongs to the PC of
vacant bonds, all other vacant bonds adjoining this site
belong to the given PC by definition. In this case, for
the external PC perimeter, we have

(10)

In the limit p  1, the surfaces behave as in the
site problem: expression (10) becomes equal to zero,
while Eq. (8) is transformed into Eq. (9).
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3. NUMERICAL EXPERIMENT

It is well known that a percolation cluster is a fractal
object over lengths smaller than the correlation length
ξ [1, 22]. In numerical simulation, this circumstance
may play a significant role. In the classical work [23],
the PC density ρ(L), i.e., the ratio of the number of PC
sites located in a rectangular region with a preset size L
to the total number of sites in the given region, was ana-
lyzed in the site problem on a square lattice for various
values of L. It was proved that ρ(L) strongly depends on
the relation between L and ξ. If L < ξ, the number of PC
sites increases in proportion to LD (D is the fractal
dimension of the PC), while the area (volume) of the
region obviously increases in proportion to Ld (d is the
topological dimension of space). Since D < d, the PC
density decreases with increasing L in this region. Over
lengths larger than the correlation radius, the PC
behaves as a homogeneous object, and its density in this
region remains unchanged. It is important to note that it
is this value of density that corresponds to an infinitely
large system. Finally, if the boundaries of the region in
question are at a distance smaller than the correlation
length from the lattice edge, the value of ρ(L) starts
decreasing upon an increase in L (see [23] for details).

In our numerical experiment, we employed an anal-
ogous method for studying the PC surface. It was found
that, in the region L > ξ, which is most interesting for
us, the surface measure (perimeter or energy) of the PC
is also independent of L (Fig. 1). It was the position of
the given plateau that was taken for the corresponding
measure of the surface in the given experiment. A dif-
ferent behavior was observed only for L < ξ: the densi-
ties of perimeter and energy in this region increased
with L. We assume that a superposition of several
effects takes place in this region. First, the fractal nature
of the PC affects the density of the surface. Second, an
empty site, which does not belong to the PC surface in
the “old” region, may have a neighbor belonging to the
PC in the “new” (increased) region. For small values
of L, this effect can make a noticeable contribution to
the increment of the PC perimeter and energy densities.
It should be noted that this increase in the density
should not be identified with any cluster and its fractal
dimension since all empty sites within a hypercube
with side L do not necessarily belong to the same clus-
ter of vacant sites.

In order to calculate the measures (perimeter and
energy) of the PC surface, we used the following algo-
rithm. A lattice of appreciable size (501 × 501 for 2D
problems and 151 × 151 × 151 for 3D problems) with a
preset fraction p of occupied sites (bonds) was filled
with the help of the standard procedure [24]. For each
site (bond), a pseudorandom number ζ distributed uni-
formly on interval [0, 1] was generated. If ζ ≤ p, the cor-
responding site (bond) was assumed to be occupied;
otherwise, it was regarded as free. Then a percolation
cluster connecting the left and right faces of the lattice
ICS      Vol. 96      No. 2      2003
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was found and marked. In order to find the external sur-
face of the PC formed by occupied sites, we also found
and marked a PC formed by empty sites (if such a PC
existed). Then, we counted the number of empty sites
(bonds) adjoining the sites (bonds) belonging to the PC
in the corresponding regions of the lattice. In order to
improve the accuracy of numerical simulation, we took
into account only the lattices for which the fraction of
occupied sites (bonds) differed by less than 0.0001 of
the preset value of p. In each of the four problems inves-
tigated by us here, we composed (5−10) × 103 histories
for each value of p, which ensured accuracy up to three
decimal places. The computer time of the central pro-
cessor using a dual-processor (2 × 800 MHz) PC Pen-
tium III exceeded 2000 h.

4. DISCUSSION

The site problem was analyzed numerically on
square and simple cubic lattices. The results of simula-
tion are presented in Figs. 2 and 3 and in Table 1. In
accordance with predictions made in Section 2, the PC
surface, as well as the surface of the entire system,
attains maximum values for a certain fraction of occu-
pied sites. In this case, the position of the maximum and
its absolute value depend to a considerable extent on
the measure of the surface (perimeter or energy) used
(see Table 1). Since the percolation threshold in the site

, m  〈ρP〉
, ♦  〈ρE〉
, •   〈ρS〉

〈ρ〉

ξ1

ξ2

0.9

0.7

0.5

0.3

5 10 25 100 250 500 L

Fig. 1. Average density 〈ρP〉  of a percolation cluster, its
average energy density 〈ρE〉 , and average perimeter density
〈ρS〉  as functions of size L of the domain of averaging in the
site problem on a 501 × 501 square lattice (pc ≈ 0.593, log–
log scale); ξ1 and ξ2 are correlation lengths for the corre-
sponding fractions of occupied sites: p – pc = 0.01 (n, e, s);
p – pc = 0.04 (m, r, d).
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0 1.0

E, S

pc

Fig. 2. Perimeter S and energy E of a percolation cluster as
functions of the fraction p of occupied sites in the site prob-
lem on a 2D 501 × 501 square lattice; e is the total perime-
ter of the percolation cluster, d is the perimeter of the entire
system, n is the total energy of the percolation cluster, and
+ is the energy of the entire system.
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0 1.0

 S

pc 1 – pc

Fig. 3. Perimeter S of a percolation cluster as a function of
the fraction p of occupied sites in the site problem on a 3D
simple 151 × 151 × 151 cubic lattice; n is the external
perimeter of the percolation cluster, e is the internal perim-
eter of the percolation cluster, and d is the perimeter of the
entire system.
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problem on a square lattice is pc = 0.59264721 > 0.5
[25], the entire PC surface is internal in this case (see
Fig. 2). For a simple cubic lattice, pc = 0.3116080 < 0.5
[26, 27]; consequently, the PC in this case has both
internal and external surfaces (see Fig. 3). In the region
in which the maximum value of the external surface of
the PC is attained, the internal surface is negligibly
small. It is interesting to note that, in the 3D case, the
internal PC surface also has a maximum, which is
always attained at point 1 – pc . In order to verify the
accuracy of the calculations made here, we estimated
the fractal dimension of the PC in the 2D problem from

0.8

0.6

0.4

0.2

0.2 0.4 0.6 0.8
p

1.0

0 1.0

S

pc

Fig. 4. Perimeter S of a percolation cluster as a functions of
the fraction p of occupied bonds in the bond problem on a
2D 501 × 501 square lattice; n is the total perimeter of the
percolation cluster, d is the perimeter of the entire system.
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the slope of the curve describing the PC density for L <
ξ. We obtained a value of D = 1.889 ± 0.004, which is
in good agreement with the exact result D = 91/48 =
1.8958 … [22].

The bond problem was also analyzed on square and
simple cubic lattices. The results of simulation are pre-
sented in Figs. 4 and 5 and in Table 2. The behavior of
surfaces in this case is qualitatively the same as in the

0.8

0.4

0.2 0.4 0.6 0.8
p

1.2

0 1.0

 S

1 – pcpc

Fig. 5. Perimeter S of a percolation cluster as a function of
the fraction p of filled bonds in the bond problem on a sim-
ple 151 × 151 × 151 cubic lattice; n is the external perimeter
of the percolation cluster, e is the internal perimeter of the
percolation cluster, and d is the perimeter of the entire sys-
tem according to the results of numerical experiment.
Dashed curves describe the same quantities calculated on
the basis of Eqs. (8)–(10) using the data of simulation for

the percolation cluster density .P∞
b( )

p( )
Table 1.  Total ( ) and external ( ) perimeters and total and external energies (  and ) of a percolation clus-
ter in the site problem: points of maximum pm and the values of these quantities at these points

Square lattice (d = 2) Simple cubic lattice (d = 3)

pm Value pm Value

0.625 ± 0.001 0.3397 ± 0.0001 0.406 ± 0.001 0.538 ± 0.001

– – 0.402 ± 0.001 0.535 ± 0.001

0.660 ± 0.001 0.819 ± 0.003 0.538 ± 0.001 1.42 ± 0.01

– – 0.501 ± 0.001 1.35 ± 0.01

S∞
s( ) S∞

s ext,( ) E∞
s( ) E∞

s ext,( )

S∞
s( )

S∞
s ext,( )

E∞
s( )

E∞
s ext,( )
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Table 2.  Total ( ) and external ( ) perimeters of a percolation cluster in the bond problem: points of maximum pm

and the values of perimeter at these points

Square lattice (d = 2) Simple cubic lattice (d = 3)

pm Value pm Value

0.558 ± 0.001 0.737 ± 0.001 0.382 ± 0.001 1.050 ± 0.002

– – 0.382 ± 0.001 1.050 ± 0.002

S∞
b( ) S∞

b ext,( )

S∞
b( )

S∞
b ext,( )
site problem. A difference is observed only in specific
numerical values.

The equations derived by us here were verified for
all four problems. For this purpose, the PC density was
calculated for sets {pi} and {1 – pi} and then numerical
results were substituted into corresponding equations.
The discrepancy between the surface measures (perim-
eters and energies) calculated in this way and the sur-
face measures obtained directly in the numerical exper-
iment did not exceed 10%. The perimeters obtained in
the above two ways in the bond problem on a simple
cubic lattice are compared in Fig. 5. It can be seen that
the maximum discrepancy takes place in the vicinity
of the percolation threshold, where size effects are
manifested most strongly. This allows us to attribute
the above discrepancy to the error of the numerical
experiment rather than to approximate nature of the
theory. We can expect that this discrepancy will be
reduced upon an increase in the size of the system
being simulated. For example, at large distances from
the percolation threshold, where size effects can be
neglected, the discrepancy between the surface mea-
sures calculated analytically and numerically is less
than 3%.

5. CONCLUSIONS

Thus, the theoretical and numerical analyses of the
surfaces of percolation systems revealed an interesting
effect, viz., extremal behavior of the external and total
surfaces of a percolation cluster. A similar behavior was
also observed for the total surface a percolation system.
The results of this study lead to the conclusion that the
analytic approach proposed for describing various sur-
faces in percolation systems is correct. The analytic
expressions obtained can be used for estimating the
position of the extremum of the corresponding surface
on lattices, which were not studied in this work. For
this purpose, we must know only the density of a per-
colation cluster as a function of the fraction of occu-
pied sites (bonds) on the corresponding lattice. The
latter quantity was studied in detail in [3, 28−30]. We
have also considered two examples of systems, viz., a
JOURNAL OF EXPERIMENTAL 
fuel cell and heterogeneous condensed systems (mix-
tures of powders), in which the discovered effect can
be used to optimize important technological processes
such as generation of electric current and self-propa-
gating high-temperature synthesis, respectively.
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Abstract—The first experimental study of the evolution of a coherent electron–hole (e–h) BCS-like state in
bulk GaAs at room temperature is presented. We explicitly demonstrate that the total spontaneous emission
from e–h pairs located within the conduction and valence bands approaches zero when the radiative recombi-
nation of the e–h BCS state occurs. This confirms that a vast majority of electrons and holes available are con-
densed at the very bottoms of the bands and form the BCS state. The average lifetime of this state is measured
to be around 300 fs. We also show that the coherence of electrons and holes of the BCS state is preserved for a
much longer time compared to the intraband relaxation time T2. © 2003 MAIK “Nauka/Interperiodica”.
Electron–hole (e–h) systems in semiconductors and
their interactions with resonant electromagnetic emis-
sion have been among the foremost topics in condensed
matter physics for a long time. One of the most notable
features of such systems is their ability to form macro-
scopic quantum states under appropriate conditions.
For instance, depending on the e–h density, the macro-
scopic quantum state can be either an excitonic Bose–
Einstein condensate or a cooperative e–h state that is
similar to the BCS state of the Cooper pairs in a super-
conductor [1]. Semiconductors, including quantum-well
structures and microcavity structures, which are highly
excited under optical emission, are generally considered
as the most promising candidates for observation of
these phenomena [2–5]. The number of publications
devoted to excitonic Bose condensates, their superfluid-
ity, excitonic insulators, and crossover from Bose con-
densation to BCS states rapidly increased [6–9].

In our recent papers [10, 11], we presented the first
experimental results from an investigation of the spec-
tral characteristics of the radiative recombination of a
transient BCS-like e–h state in bulk GaAs at room tem-
perature. Instead of optical pumping, we used a strong
current injection in a p–i–n semiconductor structure for
achieving very high e–h densities. The e–h concentra-
tions attained in our experiments were so high that the
average interparticle distance (34–58 Å) was about or
even smaller than the de Broglie wavelength of an e–h
pair in GaAs at room temperature. The latter is about
107 and 60 Å for the electron–light hole and electron–
heavy hole pairs, respectively. The collective pairing of
electrons and holes and their condensation were
responsible for the spectral features of the observed
emission, including a large spectral shift in the emis-

¶This article was submitted by the authors in English.
1063-7761/03/9602- $24.00 © 0310
sion line peak toward longer wavelengths. Fitting of the
optical spectra against some theoretical curves allowed
us to estimate order parameter ∆ of the e–h quantum
state (the e–h pairing gap), which proved to be about
2 meV [10]. We have also demonstrated that the order
parameter decreases from 2.1 to 1.2 meV with increas-
ing e–h density, whereas the Fermi energy of the quasi-
particles lies in the range from 4 to 8 meV [11]. The
latter values are much smaller than the Fermi energy
of electrons in GaAs (60–170 meV) at room tempera-
ture and carrier concentrations of (2–6) × 1018 cm–3

achieved experimentally.
It is obvious that in contrast to the normal BCS state

of the Cooper pairs, any e–h BCS-like state is essen-
tially unstable due to recombination of electrons and
holes. The radiative decay of the e–h BCS state should
exhibit basic features of the cooperative recombination
or superradiance of an ensemble of quantum oscilla-
tors. Some characteristics of the cooperative emission of
electrons and holes were reported previously [12–14].
Because the e–h BCS-like state possesses a macro-
scopic polarization and occupies a sizable portion of
the active region of a semiconductor structure, it should
explicitly display the coherent interaction of the recom-
bination emission field with e–h pairs of the BCS state.
By observing this coherent interaction, we can prove
that e–h pairs located at different parts of the structure
(or of the BCS state) have a common phase, i.e., that
they are coherent.

In this paper, we present additional experimental
results for properties of the transient e–h BCS-like
state. The main goal is to investigate the temporal
behavior and evolution of the cooperative state. The
observations are based on (a) direct measurements of
time-resolved spectra of the e–h BCS state recombina-
tion emission utilizing a streak camera and a mono-
chromator and (b) fringe-resolved second harmonic
2003 MAIK “Nauka/Interperiodica”
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generation (SHG) autocorrelation. The former method
allows us to find which part of the e–h ensemble occu-
pies which energy places in the bands and at which time
intervals. The latter technique allows measuring coher-
ent properties of the recombination emission.

We use the same semiconductor structures and the
pumping technique as in our previous work; description
of them can be found elsewhere [10, 11]. The output
emission was monitored in the time domain using a sin-
gle-shot streak camera with a temporal resolution of
about 1.5 ps. Time-resolved optical spectra were also
detected by the streak camera. In this case, the emission
from the samples was initially collimated on a diffrac-
tion grating having 600 lines/mm. The beam deflected
at the third diffraction order was then focused on the
input slit of the streak camera. This allows us to observe
emission features in both time and frequency domains.
The technique is discussed in detail in the book [15].

Because a typical duration of superradiant pulses
from semiconductor structures lies in the femtosecond
range [13, 14], we also use the autocorrelation tech-
nique based on SHG for more precise pulse-width mea-
surements. This method has a femtosecond time resolu-
tion and permits measurements of both amplitude and
phase relationships of the emission under test with fem-
tosecond accuracy.

Figure 1 shows time-resolved optical spectra of a
GaAs/AlGaAs p–i–n structure in two typical regimes.
Laser emission can be generated from the structure
when current pulses with an insufficiently large ampli-
tude are applied on the amplifier sections and zero
reverse bias is applied on the absorber section of the
structure. A typical time-resolved optical spectrum of
lasing is presented in Fig. 1a. Here, a photograph taken
from the streak camera screen is shown. The lasing
starts from the relaxation oscillations (3–4 pulses in
front of the trace), which are quite typical of semicon-
ductor lasers. We note that the trace is quite narrow and
its center is located at the same place on the frequency
axis almost all the time. This means that the central
wavelength of the emission varies in time only slightly.
Individual modes of the spectrum are not resolved due
to a relatively poor spectral resolution of the diffraction
grating. The photon energy of the spectral peak is
around 1.424 eV. This value was measured separately
using a monochromator.

A completely different picture is observed when the
e–h BCS state is formed and femtosecond superradiant
pulses are generated as a result of its recombination.
Figure 1b corresponds to this regime. The broad verti-
cal stripe represents the ordinary spontaneous emission
of nonpaired electrons and holes, whereas the bright
spot on the left is the superradiant pulse due to the
recombination of the e–h BCS state. Because the peak
power of the superradiant pulse is typically more than
104–105 times larger than the spontaneous background,
its image on the picture is misshapen due to overexpo-
sure. It is clearly seen in Fig. 1b how the femtosecond
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
superradiant pulse develops from the spontaneous
emission. As the carrier density increases in time, the
spontaneous recombination of electrons and holes
occurs at lower and lower frequencies (photon ener-
gies) because of shrinkage of the bandgap. When the
carrier density is sufficiently high, the de Broglie wave-
lengths of individual e–h pairs start to overlap, the
quantum-degeneracy criterion is fulfilled [10], and the
e–h BCS-like state develops. The phasing of wavefunc-
tions of individual e–h pairs occurs via the common
electromagnetic emission. The macroscopic polariza-

(a)

Time

1.424 eV

2 ns

Frequency

(b)

Time

1.396 eV

2 ns

Frequency

1.451 eV

Fig. 1. Time-resolved spectra of (a) lasing and (b) spontane-
ous emission and superradiant pulse. The width of the spon-
taneous emission in Fig. 1b is so broad that its high-energy
tail is not shown due to the limited input aperture of the
streak camera.
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tion builds up at early stages of the leading edge of the
superradiant pulse.

Perhaps the most interesting feature of Fig. 1b is the
dark stripe across the spontaneous emission at the time
when the BCS state recombines. This implies that there
are almost no electrons or holes within the bands that
can recombine spontaneously. All the electrons and
holes are condensed at the very bottoms of the bands
and form the BCS state. During its radiative recombina-
tion, photons having the minimum possible energy are
emitted. This energy is 1.396 eV in our case, while the
peak of the spontaneous emission is at 1.451 eV. We
recall that the nonrenormalized bandgap in bulk GaAs
at room temperature is 1.424 eV.

We calculated the intensity of total spontaneous
emission from electrons and holes occupying energy
levels inside the bands and plotted it against time, pre-
sented in Fig. 2. It is clearly seen how the spontaneous
emission intensity almost approaches zero when the
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Fig. 3. Intensity autocorrelation of superradiant pulses.
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Fig. 2. Intensity of the spontaneous emission against time.
The position of the superradiant pulse is shown by the
arrow.
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e−h BCS state is built and recombines. Its temporal
position is shown by the arrow.

Such a dynamic behavior is completely different
from lasing or spontaneous emission. For example,
when lasing starts in a semiconductor laser structure,
the spontaneous emission power across the entire fre-
quency range clamps at the threshold level. It is not pos-
sible to achieve any dip in the carrier distribution or to
quench the spontaneous emission at neighbor frequen-
cies due to ultrafast intraband relaxation processes. On
the other hand, it is known [15] that in real semiconduc-
tor lasers, e–h pairs decohere rapidly with a typical time
of 10–100 fs. As a result, we find that for typical oper-
ating conditions, the ratio of the number of photons in
the sample to the number of e–h pairs is Nphoton/Ne–h ≈
10–5–10–4 [16], but in the superradiant state, the photon
field is linearly coupled to the order parameter and we
have Nphoton/Ne–h ≈ 1. This implies that when the e–h
BCS state recombines and photons are emitted from the
structure, very few e–h pairs should be left in the struc-
ture. That is exactly what we experimentally see as the
dark horizontal stripe in the middle of Fig. 1b.

Precise measurements of the pulse width of superra-
diant pulses allow us to estimate the typical lifetime of
the e–h BCS state. Figure 3 presents an SHG intensity
autocorrelation of superradiant pulses. Its full width at
half maximum (FWHM) is around 460 fs. This value
corresponds to the actual pulse width between 290 and
324 fs depending on the assumed pulse shape (Gauss-
ian, sech, or asymmetric exponential shapes) [15]. It is
noteworthy that the achieved pulse width of superradi-
ant pulses is an absolute record among all ultrashort
pulses generated by semiconductor lasers, including
mode-locked, Q-switched, and gain-switched devices.
The SHG trace exhibits a pedestal of 1.5–2.0 ps long,
which originates from instabilities of the pulse shape
and very large timing jitter. These are likely to be deter-
mined by intrinsic quantum-mechanical fluctuations of
initial conditions of both the photon field and e–h sys-
tem. Indeed, as noted in [7], the appearance of large
noise is strong evidence for the presence of coherence
in the e–h system. The noise amplitude is known to be
inversely proportional to the number of statistically
independent entities in an e–h system. Thus, large noise
observed experimentally implies that only a few enti-
ties exist in the macroscopically large regions where the
e–h BCS state is located.

Unlike the intensity autocorrelations presented in
Fig. 3, where all phase information is lost in averaging,
fringe-resolved or interferometric autocorrelations can
provide some information about phase relationships of
the emission under study. This technique enables us to
prove experimentally that different spatial regions of
the e–h BCS state are coherent or have the same or cou-
pled phases. First of all, we point out that all interfero-
metric autocorrelations of ultrashort pulses generated
by lasers have a single peak at zero time delay [15]. In
the case of mode-locked pulses, there are additional
AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003
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peaks with fringes separated by the cavity round-trip
time.

Figure 4 shows the experimental interferometric
autocorrelation of superradiant pulses from a semicon-
ductor structure where two regions with a very high e−h
density are formed. The separation between the nearest
parts of the regions was less than 10 µm. The total
length of the structure corresponds to a round-trip time
of about 3.1 ps. The coherent beating of the photon field
is clearly seen in Fig. 4. The shape of the trace resem-
bles the beating of two oscillators and suggests that the
coherency of interaction between the emission and dif-
ferent parts of the BCS state stays on for a few picosec-
onds while the pulse travels through the medium.
Indeed, the very beginning of the recombination pulse
induces a small macroscopic polarization while spread-
ing in the medium. This polarization acts as a source to
produce an additional photon field that in turn creates
more polarization. Dephasing processes prevent estab-
lishing the coherency of individual e–h pairs and the
formation of the macroscopic polarization, but if the
number of e–h pairs is sufficiently large, the optical
gain in the medium can overcome the dephasing [14]
and the phase transition of the e–h system into a coher-
ent BCS-like state can occur. In this case, the BCS state
occupies a sizable portion of the sample and its deex-
cited parts can then be reexcited by a coherent emission
from other regions of the cooperative state. This gives
rise to the coherent ringing observed in the output radi-
ation in the form of multiple peaks of the interferomet-
ric autocorrelation as presented in Fig. 4.

We have pointed out earlier [10] that e–h interac-
tions within the cooperative state do not affect the
coherence of individual electrons and holes, which is
quite similar to the Cooper pairs of a superconducting
BCS state. This means that relaxation processes must
be much slower compared to a system of noncorrelated
e–h pairs. If we suppose that e–h pairs of the BCS state
decohere at the same rate as in a normal bulk GaAs
(more than 1013 s–1), then we would not observe any
beating of the photon field on a picosecond scale as
shown in Fig. 4. The extremely long phase relaxation
time of electrons and holes of the BCS state can be
explained as follows.

In contrast to the Bose condensation of excitons,
which occurs spontaneously [6–9], the condensation of
e–h pairs and formation of the BCS state in our case is
caused by the resonant electromagnetic emission. The
presence of the absorber section in the semiconductor
structure results in the absorption of the emission trav-
eling through the structure at all wavelengths except for
a narrow region at the very bottom of the bands. In this
region of the longest possible wavelengths, we have
net gain. The radiative recombination of e–h pairs
leads to the generation of long-wavelength photons
that are amplified and in turn create e–h pairs. These
bound pairs are bosons and remain coherent with each
other and the optical field for some time. Because of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
very fast intraband relaxation, electrons and holes
from upper energy levels in the bands occupy the lev-
els at the bottom that happen to be free almost imme-
diately. At very high carrier concentrations (larger than
(3–4) × 1018 cm–3), all energy levels within the band
30–60 meV from the bottom are occupied by electrons.
This implies that there is no place within this band for
an electron of a bound pair if it becomes free and
becomes a fermion again instead of part of a boson.
That is why the bound pairs are stable at room temper-
ature. The number of such bound e–h pairs increases in
time as the optical field travels back and forth between
the facets of the crystal. Because the bosons originate
from the electrons and holes occupying the lowest possi-
ble energy levels, their kinetic energy is very low. This
explains the very small value of the Fermi energy of the
quasiparticles mentioned above (less than 8 meV). The
detailed explanation of this phenomenon is the task of
our forthcoming paper.

In conclusion, we present the first direct measure-
ment of the dynamics of a coherent e–h BCS state in a
semiconductor heterostructure at room temperature.
We demonstrate experimentally that almost all elec-
trons and holes are condensed at the very bottoms of the
bands when the BCS state is formed. The typical life-
time of the e–h BCS state is measured to be about
300 fs. The macroscopic size of the BCS state results in
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Fig. 4. Interferometric autocorrelation of superradiant
pulses illustrating the coherent interaction of the photon
field with e–h pairs of the BCS state. 
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the coherent interaction of the recombination photon
field with e–h pairs of the cooperative state on a pico-
second time scale, the coherence of individual electrons
and holes being unaffected by their collisions.

The authors would like to thank Yu.V. Kopaev for
critical comments and fruitful discussions.
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Abstract—The possibility of resonance double magnetic bremsstrahlung in the approximation of weakly
excited electron states in a strong external magnetic field is analyzed. The differential probability of this process
in the Breit–Wigner form is obtained. The probability of double magnetic bremsstrahlung (second-order pro-
cess of perturbation theory) is compared with the probability of magnetic bremsstrahlung (first-order process
of perturbation theory). © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

First-order quantum electrodynamic processes in a
magnetic field, in particular, magnetic bremsstrahlung
(synchrotron emission) have been well studied for quite
a long time. Their general relativistic theory has been
constructed and investigated, and the general form of
expressions describing these processes has been
obtained by numerous researchers and included in a
number of monographs [1–6]. In feasible experiments,
the values of magnetic fields are much less than that of
the critical field H0 = m2/e = 4.41 × 1013 G. In such a
field, charged particles (electrons, positrons) are in
highly excited energy states with quasi-continuous
energy levels n (n is the number of the Landau level). In
this case, the motion of particles is quasi-classical. Note
that it is to this approximation that the major part of the
available literature is devoted.

No less interesting is the case of electron motion in
a strong magnetic field, when an electron finds itself on
one of the lowest energy levels [7–9]. It is useful to treat
such problems, in particular, in studying the gas of elec-
trons and positrons of the highly magnetized magneto-
spheres of neutron stars.

In this approximation (weakly excited electron sta-
tes, strong magnetic field), we treat a second-order pro-
cess, namely, double magnetic bremsstrahlung.

For the first time, double magnetic bremsstrahlung
was treated in a quasi-classical (with respect to the elec-
tron motion) approximation in terms of solving an aux-
iliary problem: the emission of a photon by an electron
in an external field of Redmond configuration (plane
wave + magnetic field along the wave) with subsequent
expansion in terms of magnitude of the wave intensity
[10, 11]. Sokolov et al. [12] studied this process within
1063-7761/03/9602- $24.00 © 0315
the second Born approximation in the ultrarelativistic
limit. In the studies mentioned above, double synchro-
tron emission was studied in a region away from the
resonance process (away from the poles of the Green
function of an intermediate virtual electron).

We will demonstrate in this paper that resonance
double magnetic bremsstrahlung is possible when an
electron is in a weakly excited energy state and, at the
same time, emits photons with an energy equal to the
distance between Landau levels.

The best studied of the second-order processes in a
strong magnetic field is the process of photon scattering
by an electron [13–16]. We will use the results of these
studies, because both processes (photon scattering by
an electron and emission of two photons by an electron)
are described by similar expressions accurate within the
replacement of the initial photon by the final one.

2. CONDITIONS FOR INITIATION 
OF RESONANCES IN THE CASE 

OF WEAKLY EXCITED ELECTRON STATES
IN A STRONG MAGNETIC FIELD

The process of emission of two photons by an elec-
tron in a magnetic field is described by the Feynman
diagrams given in the figure. The wavy lines indicate
photons with four-momenta k1 = (ω1, k1) and k2 =
(ω2, k2), which do not interact with the external field.
The external solid lines indicate the exact solutions of
the Dirac equation for an electron in a uniform mag-
netic field with four-momenta p = (εl, 0, py, pz) and p' =

( ) (l and l ' are the numbers of the Landau
levels) [17], and the intermediate solid lines indicate
the electron Green function in an external uniform

εl'' 0 py' pz', , ,
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magnetic field. Note that these diagrams are similar to
the diagrams describing the process of photon scatter-
ing by an electron in a magnetic field, with the only
difference being that the initial photon in the process
of Compton scattering must be replaced by the final
one. Therefore, the amplitude of double magnetic
bremsstrahlung is obtained from the amplitude of
Compton scattering [14, 15] by the following repla-
cement:

(1)

This amplitude contains three delta functions which
correspond to the laws of conservation of energy and
projections of momentum onto the direction of the y
and z axes,

(2)

and the poles of the Green functions (intermediate
states) of the first and second diagrams are, respec-
tively,

(3)

(4)

where n1 and n2 are the numbers of the Landau levels of
the intermediate states of the first and second diagrams,
over which the summation is performed in the ampli-
tude in the general case, and h is the magnetic field in
the critical field units m2/e. For intermediate particles,
the four-momenta g and f (except for the x components)
are expressed in terms of the momenta of the initial and
final particles,

(5)

(6)

The laws of conservation according to Eqs. (2) in
view of the laws of dispersion impose the following

k k1–  = ω1– k1–,( ), k' k2 = ω2 k2,( ).

εl εl'' ω1 ω2, py+ + py' k1y k2y,+ += =

pz pz' k1z k2z,+ +=

g0
2 εgn1

2– g0
2

m2 2n1hm2 gz
2+ +( ),–=

f 0
2 ε fn2

2– f 0
2 m2 2n2hm2 f z

2+ +( ),–=

g0 εl ω1, gy– py k1y, gz– pz k1z,–= = =

f 0 εl ω2, f y– py k2y, f z– pz k2z.–= = =

Feynman diagrams for the process of emission of two pho-
tons by an electron in a magnetic field.

g = p – k1 f = p – k2

p pp' p'

k1 k2 k2 k1
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restriction on the frequency ω2 (in the frame of refer-
ence in which pz = 0):

(7)

where v and u are cosines of the angles between the
direction along the magnetic field and the directions of
photons ω1 and ω2,

(8)

We will treat the process in a strong external mag-
netic field, in the case of which individual Landau lev-
els of an electron are experimentally different
(ultraquantum approximation), which corresponds to
the condition

∆l = 1, (9)

where ∆l is the number of levels entering into final
states. The distance between the neighboring Landau
levels (cyclotron frequency of electron) is on the same
order as the photon energy. For example, for photons
with an energy on the order of 104 eV (X-rays), this
requirement is satisfied by magnetic fields H ~ 1012 G.
On the other hand, the magnetic field is taken to be
small compared to the critical field H0 = 4 × 1013 G,

(10)

The quantity h is the small parameter of the prob-
lem, and the energies εl and εl' of the initial and final
electrons take nonrelativistic values. Under these con-
ditions, expression (7) for ω2 takes the form

(11)

The conditions of resonance in the first Feynman
diagram imply that the pole according to Eq. (3) is zero,
which, after expansion in terms of h, gives the follow-
ing restriction imposed on the frequency ω1:

(12)

One can see in expression (12) that, in order to register
the resonance according to the first diagram, the detec-
tor registering one of the photons must be tuned to the
frequency defined by the integers l, n1 and the angle of

ω2
εl ω1 1 v u–( )–
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emission of this same photon. We substitute Eq. (12)
into expression (11) for ω2 to derive

(13)

It follows from Eqs. (12) and (13) that the frequen-
cies of emitted photons under resonance conditions are
equal, within the first power of the parameter h, to the
distance between the Landau levels of the electron and
vary only little with the angles of emission of photons,
u and v .

We equate expressions (12) and (13) to readily
obtain the resonance conditions for a process with
emission of two photons of similar frequency,

(14)

Conditions (14) imply that the energy level of an inter-
mediate electron is neighboring for the levels of the ini-
tial and final electrons, and the photons escape along
the direction of the magnetic field, with their frequen-
cies described by the expression

(15)

The resonance in the second diagram is realized
when expression (4) vanishes, whence follows the
restriction on the frequency ω2,

(16)

For expressions (16) and (11) to be equivalent up to the
second order of smallness with respect to h, the follow-
ing restriction is imposed on ω1:

(17)

Unlike the previous case (12), the resonance frequency
ω1r is defined by the angles of emission v  and u of both
photons. It is obvious that the resonance frequencies
given by Eqs. (16) and (17) are obtained from expres-
sions (12) and (13) by the simple replacement of
(ω1, v)  (ω2, u).

We equate the frequencies given by Eqs. (16) and
(17) to each other to obtain conditions which exactly
agree with those given by Eq. (14); in doing so, n1 = n2.
Therefore, in the case of photon emission along a field

ω2r n1 l'–( )hm 1
h
2
--- n1 l' n1 l'–( )u2+ +[–





=

---+ 2 l n1–( )v u ]




, n1 l'.>

l n1– n1 l'– 1, v u 1.±= = = =

ω1 2, hm lh2m.–=

ω2r l n2–( )hm 1 hl–
1
2
--- l n2–( ) 1 u2–( )+ ,=

l n2.>

ω1r n2 l'–( )hm 1
h
2
--- n2 l' n2 l'–( )v 2+ +[–





=

---+ 2 l n2–( )v u ]




, n2 l'.>
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of the same frequency, the resonance conditions are
simultaneously satisfied in both diagrams of the pro-
cess being treated.

The maximal variation of the frequency ω1, which is
resonant according to the first diagram (12), occurs
when the angle θ1 varies from zero to π/2 (with v  vary-
ing from unity to zero),

(18)

This quantity is equal to h2m within a factor of the order
of unity for weakly excited electron states. Of the same
order of magnitude is the variation of the second photon
frequency ∆ω2r , as well as the variation of these fre-
quencies under resonance conditions for the second
diagram.

The Landau level n (n1 or n2) of an intermediate
electron has nonzero width equal to the double total
probability of decay of intermediate state, i.e., the prob-
ability of single photon emission [14],

(19)

where α is the fine structure constant and µn is the spin
of intermediate state, which has a definite value under
resonance conditions (in [14], we used the approxima-
tion of the width 〈Γ〉  = 4(2n – 1)αh2m/3 averaged over
the spins of intermediate state). On comparing ∆ωr and
Γn , we see that, in the approximation according to (9)
and (10),

(20)

with the ratio Γn/∆ωr being independent of the magni-
tude of the field h and defined only by the numbers of
Landau levels of the electron.

We will determine the maximal interval of angles
∆θ1 of the first photon emission, which does not take
the process beyond the resonance region according to
Eq. (12),

(21)

(22)

For definiteness, we will assume that l = 2, n1 = 1, and
 = –1 (the process with the lowest energy electron

states). We will treat two limiting cases, namely, the
region of angles in the neighborhood of zero, θ < 0, and
in the neighborhood of θ < π/4. In the first case,

(23)

∆ω1r ω1r v 0= ω1r v 1=–=

=  h2m l n1–( )2/2 h2m.∼

Γn 2Wn
µn 4

3
---αh2m 2n 1– µn–( ),= =

Γn ! ∆ωr ! ωr,

ω1r v a
ω1r v b

– Γn1
,=

v a
2

v b
2– θ1a θ1b–( )sin θ1a θ1b+( )sin=

=  α
8 2n1 1– µn1

–( )

3 l n1–( )2
--------------------------------------.

µn1

v a
2 v b

2– ∆θ1
2≈ ∆θ1

2 11°,≈⇒
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and in the second case,

(24)

The estimates indicate that the resonance conditions of
the process are defined by the frequency of one of the
photons (the photon emitted by the initial electron) and
by the angle of its emission. When u is varied, the max-
imal variation of the frequency of the second photon
emitted by an intermediate electron (for the first dia-
gram according to Eq. (13)) also exceeds the resonance
width; however, this does not take the process out of the
resonance region.

3. PROBABILITY
OF MAGNETIC BREMSSTRAHLUNG 
UNDER RESONANCE CONDITIONS

As was observed above, the amplitude of the pro-
cess may be provided by the Compton scattering ampli-
tude [14] where replacement (1) has been made. The
Compton scattering cross section is equal to the product
of the square of the amplitude by the number of final
states divided by the flux j of initial photons and time T,

(25)

The tilde implies that replacement (1) has been made in
this expression. In the process of double magnetic
bremsstrahlung, in the final state one photon is added,
and the probability of such process per unit time is

(26)

where WD is the square of the amplitude of double mag-
netic bremsstrahlung. Because the squares of ampli-
tudes WC and WD are equal to each other, the ratio of the
differential probability given by Eq. (26) to the differ-
ential cross section given by Eq. (25) has the form

(27)

In the vicinity of resonance, the Compton cross sec-
tion is defined by a formula of the Breit–Wigner type,
in which the partial widths are replaced by the differen-
tial (with respect to the photon entrance (departure)
angle) probabilities of magnetic bremsstrahlung, dW/dv,
dW/du (probabilities of single photon emission) [15].
Replacement (1) in the expression for a cross section in
resonance according to the first diagram leads to the
replacement of d  (electron transition from level n1

v a
2 v b

2– ∆θ1≈ ∆θ1 2°.≈⇒

dσ̃C

WCVd3k2Sd2 p'

Tj 2π( )5
-------------------------------------.=

dWD

WDVd3k2Sd2 p'

T 2π( )5
-------------------------------------

Vd3k1

2π( )3
--------------,=

dWD

dσ̃C

-----------
ω1

2dω1dv

4π2
------------------------.=

Wn1 l,
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to level l) by d  (electron transition from level l to
level n1),

(28)

where Â = 1/ω1r, with ω1r preassigned by expression (12).
It is obvious that the probability of double magnetic
bremsstrahlung in resonance according to the first dia-
gram will have a form similar to that according to
Eq. (28) within a factor which may be easily deter-
mined using the ratio given by Eq. (27),

(29)

The probability of a process which is resonant in
accordance with the second diagram, dWD2, is given by
expression (29), in which the following replacement
must be made:

(30)

To complete the picture, we will write the explicit
form of the differential probabilities of single photon
emission by an electron at different values of the spin
projection of the latter in the initial and final states (the
plus and minus superscripts indicate the spin projection
in and against the field direction, respectively) [8, 9],

(31)

(32)

(33)

(34)

where

(35)

For a process occurring without reorientation of
spin, the intermediate electron spin is oriented in the

Wl n1,

dσ̃C

du
--------- πÂ

2

dWl n1,

dv
---------------

dWn1 l',

du
----------------

ω1 ω1r–( )2 Γ2/4+
--------------------------------------------,=

dWD1

dω1dv du
-----------------------

1
4π
------

dWl n1,

dv
---------------

dWn1 l',

du
----------------

ω1 ω1r–( )2 Γ2/4+
--------------------------------------------,=

l n1 l'.> >

v u, u v , n1 n2.

dWln
––

dv
------------- αmA

l
n
---η l n– 1– h2 1 v 2+( ),=

dWln
++

dv
------------- αmAη l n– 1– h2 1 v 2+( ),=

dWln
+–

dv
------------- αmA

l n–( )2

2n
-----------------η l n– 1– h3 1 v 2+( ),=

dWln
–+

dv
------------- αmA

l l n–( )2

8 l n– 1+( )2
------------------------------η l n– 1– h5=

× 1 v 2 1 6 l n–( ) 4 l n–( )2+ +[ ]+{

– v 4 2 l n–( ) 3 l n–( )2+[ ] v 6 l n–( )2+ } ,

A
l n–( ) l 1–( )!

2 n 1–( )! l n– 1–( )!2
--------------------------------------------------,=

η l n–( )2h 1 v 2–( )
2

-----------------------------------------.=
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same manner as are the spins of initial and final elec-
trons. This is associated with the fact that the probabil-

ities d /dv  and d /dv  contain a smaller power of

the small parameter h than d /dv  and, the more so,

than d /dv. So, if, in the initial and final states, the

spin is against the field, expression (29) has d /dv

and d /du in the numerator, and this means that the
spin of intermediate state is likewise directed against
the field.

Most probable are processes with the transition of
electrons to the neighboring levels such as l  n1, 2 =
l – 1  l ' = l – 2. The differential probability of dou-
ble magnetic bremsstrahlung by an electron with the
spin directed against the field (µ =  = µ' = –1) at the
point of resonance according to the first diagram in
view of the expressions for the probability of double
magnetic bremsstrahlung (31) and for width (19) has
the form

(36)

For a process of emission by electrons with the spins in
the field direction (µ =  = µ' = +1), the differential
probability in view of Eqs. (32) and (19) is

(37)

The expression for differential probability at the point
of resonance according to the first diagram, dWD2, is
derived from expressions (36) and (37) by way of
replacement v   u. However, the dependence on v
and u in the expression of probability of the process is
the same when the electrons make a transition to the
neighboring levels. Therefore, in this case, the proba-
bilities dWD1 and dWD2 coincide.

We will estimate the total probability of double
magnetic bremsstrahlung. The integration of expres-
sion (29) with respect to ω1 is trivial and equivalent to
multiplying the differential probability at the resonance
point according to Eqs. (36) and (37) by the width πΓ/2.
As was observed above, the resonance conditions
depend on the angles of photon emission, v  and u, and
the variation of these quantities may cause a variation
of the resonance frequencies ω1r and ω2r by a value
exceeding the resonance width. However, in the inte-
grand with respect to dω1, the variation of the angles
causes a variation of only the position of the resonance
range of integration. Therefore, integration with respect

Wln
–– Wln

++

Wln
+–

Wln
– +

Wln
––

Wnl'
––

µn1

dWD1 l l 2–, ,
––

dω1dv du
-------------------------

9l

28π l 1–( )
------------------------ 1 v 2+( ) 1 u2+( ),=

l 2 3 …  . , ,  =

µn1

dWD1 l l 2–, ,
++

dω1dv du
-------------------------

9 l 1–( )
28π l 2–( )
------------------------ 1 v 2+( ) 1 u2+( ),=

l 3 4 …  . , ,  =                                     
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to v  and u may be performed at the resonance point
proper. Because the conditions of resonances in the first
and second diagrams do not coincide (except for the
small range of v  ~ u ~ 1), the total probability is equal
to the double probability ∆WD1 (∆ indicates that the
probability is estimated within the resonance region,
because the employed expression (29) is invalid outside
of resonance),

(38)

In this formula, µ = 1 (–1) corresponds to a process with
electrons with the spin in the field direction (against the
field). For comparison, we will write the probability of
magnetic bremsstrahlung with the transition of an elec-
tron from level l to level l – 2, which is obtained by inte-
grating expressions (31) and (32) with n = l – 2,

(39)

We see that this expression is less than (38) by an order
of h. This means that, in the approximation (9), (10)
being treated, a second-order resonance process of per-
turbation theory exceeds a first-order process with the
same electron states.

It must be emphasized that the probability given by
Eq. (39) is not total. The most significant contribution
to the expression for total probability of magnetic
bremsstrahlung is made by the term corresponding to
the transition of an electron to the neighboring level
l  l – 1,

(40)

and this probability is twice that of double magnetic
bremsstrahlung.

Analysis reveals that, in the ultraquantum case,
when one can distinguish between individual Landau
levels of an electron, the inclusion of higher-order pro-
cesses of perturbation theory is important in approxi-
mation (9), (10) in calculating the probability of mag-
netic bremsstrahlung.
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Zeeman Effect for Holes in a Ge/Si System 
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Abstract—The tight binding approximation is employed to study the Zeeman effect for the hole ground state
in a quantum dot. A method is proposed for calculating the g factor for localized states in a quantum dot. This
method can be used both for hole states and for electron states. Calculations made for a Ge/Si system with
quantum dots show that the g factor of a hole in the ground state is strongly anisotropic. The dependence of
the g factor on the size of a germanium island is analyzed and it is shown that anisotropy of the g factor
increases with the island size. It is shown that the value of the g factor is mainly determined by the contribution
of the state with the angular momentum component Jz = ±3/2 along the symmetry axis of the germanium island.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of electronic states having a spin of
±1/2 with an external magnetic field us described by the
g factor characterizing the spin splitting of a free elec-
tron (g ≈ 2). The interaction with the lattice potential in
solids leads to a considerable difference in the g factor
from that for a free electron. As the system dimension-
ality decreases from 3D to 2D and lower, size quantiza-
tion effects lead to new changes in the g factor of charge
carriers. For example, quantization for electrons in a
low-dimensional system leads to a considerable renor-
malization of the value of the g factor [1] and to its
strong anisotropy [2]. The g factor contains numerical
information on the change in the band structure of the
semiconductor upon the reduction in its dimensionality.
For this reason, a large number of theoretical and exper-
imental studies are devoted to analysis of this parame-
ter. In some publications dealing with electron states,
consistent kp theories have been developed, which
make it possible to calculate the g factor in quantum
wells and superlattices [3] as well as in quantum dots
[4]. For hole states, the Zeeman effect has been studied
theoretically and experimentally for structures with
quantum wells [5–7].

Let us describe fundamental differences between
two-dimensional quantum wells and quantum dots,
which must lead to a change in the g factor. Wide quan-
tum wells in magnetic fields of energies smaller than
the quantization energy (or the energy of band splitting
caused by elastic stresses) can be treated in the approx-
imation of a bulk semiconductor to obtain values of g
factors for hole subbands directly from the exact form
of the 8 × 8 Hamiltonian in the kp theory: g|| = 6k, g⊥  =
0 for a heavy hole and g|| = 2k, g⊥  = 4k for a light hole
1063-7761/03/9602- $24.00 © 0321
(g|| and g⊥  are the g factor components parallel and per-
pendicular to the principal axis of the structure (z axis);
k and q are the Luttinger parameters, the latter parame-
ter being omitted in view of its smallness). In narrower
quantum wells, the uncertainty in momentum kz

increases, leading to a modification of the g factor for a
light hole due to admixture of states of the split-off
band and the conduction band (we assume here that z is
the growth direction of the epitaxial film) [7]. The
Lande factor for a heavy hole at the bottom of the band
practically does not change, since the heavy hole band
does not interact with the nearest bands. In narrow wells,
the g factors for light and heavy holes change due to the
effect of the barriers forming the quantum well [5].

In the case of quantum dots, a considerable renor-
malization of the g factor of hole states must be due to
the emergence of a quantizing potential not only to in
the growth direction, as in the case of 2D structures, but
to equally strong quantization in the lateral direction (in
the xy plane). This leads to uncertainty in kx and ky and,
hence, to a strong mixing of light and heavy hole bands
with the split-off band [8]. As a rule, this mixing is dis-
regarded in theoretical analysis of the Zeeman effect in
2D systems, since states at the bottom of the band,
where kx, ky = 0, are considered.

In quantum dots created on the basis of stressed het-
erostructures, the g factor may change significantly due
to inhomogeneity of strains within quantum dots. If we
compare a quantum dot with a quantum well grown in
the [100] direction, shear strains εxy, εxz, εyz leading to
mixing of light and heavy hole bands are absent in the
quantum well [8], while the quantum dot experiences
such strains.
2003 MAIK “Nauka/Interperiodica”
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Thus, in the case of quantum dots, quantization in
all three directions and strain inhomogeneity must lead
to a considerable change in the g factor of hole states
due to energy band mixing.

We propose a method of calculating the g factor for
hole states in quantum dots using the tight binding
approach. This method makes it possible to take into
account the specific form of a quantizing potential
(described not only by an analytic functions) and calcu-
late the g factor for a quantum dot of any shape and of
a small size comparable with atomic spacing. The pro-
posed method can be also applied for calculating the g
factor of electron states in quantum dots.

The paper has the following structure. In Section 2,
the method of calculating the g factor is described. The
g factor for hole states in germanium quantum dots in a
silicon matrix is calculated in Section 3. Strong anisot-
ropy of the g factor of holes is discovered, and the
dependence of the g factor of a hole on the quantum dot
size is established. The probabilities of Zeeman transi-
tions as functions of the magnetic field direction are
investigated. Section 4 is devoted to analysis of the
results obtained. The main effects determining the mag-
nitude of the g factor and its dependence on the island
size are revealed using a simplified model of noninter-
acting bands.

2. COMPUTING METHOD

This method is the evolution of the idea proposed by
us earlier in [9], where an atomistic approach was used
for calculating the g factor of the hole state in a quan-
tum dot. This approach involves the computation of the
angular momentum of a hole in an atomic orbital. How-
ever, as we pass to the limiting case of a bulk crystal,
this approach fails to provide values matching the bulk
value of the g factor. For this reason, we extend the
former approach by taking into account the angular
momentum of Bloch functions.

The Zeeman interaction of a particle having a mag-
netic moment M with a magnetic field H can be written
in the form

Magnetic moment M is connected with angular
momentum J through the relation

where µB is the Bohr magneton and g0 is the g factor
equal to 2 for particles with purely spin electron mag-
netism and to 1 for those possessing purely orbital elec-
tron magnetism.

We introduce the magnetic moment MQD of a hole
(electron) in a quantum dot, which is measured in units
of the Bohr magneton:

Ĥ –M̂ H.⋅=

M –g0µBJ,=

MQD – L 2S+( ),=
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where L and S are the orbital and spin components of
the magnetic moment. We write the Hamiltonian of
interaction with the magnetic field in the form

It follows from symmetry considerations that the
ground state in a quantum dot is doubly degenerate and
forms a Kramers doublet. The Zeeman interaction
energy for states of a Kramers doublet is given by

where  (α = x, y, z) are Pauli spin matrices and gαβ is
a tensor which has nine independent components in the
general case [10]. In most cases (except in low-symme-
try structures), we have gxy = gyx , etc., and off-diagonal
terms can be eliminated by an appropriate choice of the
x, y, and z axes (which are known as principal axes). In
these axes, the g tensor is characterized by three princi-
pal values gxx, gyy, and gzz .

In the first order of perturbation theory, the g factor
can be determined from the solution of a secular equa-
tion, which gives

(1)

where ψ and ψ* are the wave functions forming a
Kramers doublet for a given level and n is a unit vector
directed along the magnetic field. Consequently, in
order to calculate the g factor, we must find the matrix

elements of operator . To determine the matrix
elements, we must find wave eigenfunctions ψ and ψ*
for hole or electron states in a quantum dot. We assume
that the magnetic field is quite weak and does not sig-
nificantly change the waves functions of a hole (elec-
tron), which enables us to use wave eigenfunctions of
the unperturbed Hamiltonian for calculating the matrix
elements.

The wave eigenfunctions ψ and ψ* for hole states
were determined by us in [9], where the energy spec-
trum of holes in a quantum dot was calculated. For this
purpose, we used the tight binding model with basis sp3

[11]. In this model, each atom is supplied with a set of
orbitals s, px, py, and pz, and the dimensionality of the
vector of state of the system is equal to the number of
atoms multiplied by the number of orbitals per atom.
The interactions between nearest neighbors are taken
into account in the two-center approximation [12] as
well as the spin–orbit interaction [13]. Deformation
effects [14] are taken into account by introducing the
dependence of interatomic matrix elements of the
Hamiltonian on the orientation of relevant bonds [12]
and their length [15]. Vector |ψ〉 is determined using the
free relaxation method [16]. Each vector component
ψnN is the amplitude of probability of finding a particle
in the nth orbital of the Nth atom.

ĤQD H( ) µBM̂QD H⋅ µB L̂ 2Ŝ+( ) H.⋅= =

1
2
---µBσ̂αgαβHβ,

σ̂α

g 2 ψ n M̂QD⋅ ψ 2 ψ n M̂QD⋅ ψ∗ 2
+ ,=

M̂QD
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Since the vector of the state corresponding to a cer-
tain size quantization level is defined as a combination
of atomic orbitals, we must determine matrix elements

of operator  in the representation of atomic orbit-
als. Let us first define the orbital moment L. We can

ascribe to each diagonal matrix element 
the physical meaning of the angular momentum of a
particle on the corresponding nth orbital of the chosen
Nth atom in a quantum dot.

For a hole (electron) with coordinates (x, y, z)

located with probability  in the nth orbital around
the chosen Nth atom with coordinates (X, Y, Z), we can
write the angular momentum operator

where eαβγ is a unit antisymmetric tensor.
Using the rules for differentiating operators with

respect to time [17], we can express the momentum

operator  = m  in terms of Hamiltonian  and the
coordinate operator  = ( ):

where m is the mass of a free electron. Then the angular
momentum operator has the form

The obtained expression cannot be used directly for

determining the matrix elements  and

, since the wave functions ψ and ψ* have
been calculated in the tight binding approximation,
while operator  = ( ) of the hole (electron) coor-
dinates is meaningless in this approximation. For this

reason, we replace it by coordinate operator  =

( ) of the atom possessing the orbital,

(2)

Carrying out the substitution   , we lose a frac-
tion of the angular momentum associated with the
strongly oscillating Bloch wave function (which can be
referred to as the effective spin angular momentum
component) and have only a part of the angular
momentum associated with a smooth envelope of the
wave function of a hole (electron), viz., the orbital com-
ponent.

If we disregard the interaction between the nearest
energy bands, we must simply supplement Eq. (2) with
the effective spin component of the angular momentum
of a charge carrier in the corresponding energy band

M̂QD

ψnN L̂ ψnN

ψnN
2

L̂α
1
"
---eαβγ p̂βr̂γ,=

p̂ r̂̇ Ĥ0

r̂ x̂ ŷ ẑ, ,

p̂
im
"

------ Ĥ0r̂ r̂Ĥ0–( ),=

L̂α
im

"
2

------eαβγ r̂βĤ0r̂γ.=

ψ M̂QD ψ
ψ M̂QD ψ∗

r̂ x̂ ŷ ẑ, ,

R̂

X̂ Ŷ Ẑ, ,

L̂α
im

"
2

------eαβγ R̂βĤ0R̂γ.=

r̂ R̂
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(conduction band for electrons and valence band for
holes) in order to obtain the total moment MQD. How-
ever, the state of a hole (electron) in a quantum dot is
formed not only by states from the valence (conduc-
tion) band; neighboring bands also make a contribution
to the formation of the state. The nearest bands for hole
states are the split off (SO) band and the conduction
band (CB). For electron states, these are bands of heavy
holes (HH) and light holes (LH) as well as the split-off
band. The contribution from other bands is negligibly
small.

The wave function of a hole (electron) can be pre-
sented in the form

where coefficients A1, A2, A3, A4 depend on the position
of an atom in a quantum dot and reflect the contribu-
tions from the corresponding bands to the state of a par-
ticle in the quantum dot. Each wave function compo-
nent possesses its own effective spin and interacts with
the magnetic field in accordance with the following
expressions.

For a hole in the HH band, effective spin SHH is often
introduced for describing Zeeman sublevels [6]: spin
(SHH)z = –1/2 is ascribed to one of the sublevels with
Jz = –3/2, while spin (SHH)z = 1/2 is ascribed to the other
sublevel with Jz = 3/2. In this case, the Zeeman interac-
tion can be written in the form

(3)

where gHH is the g factor for a hole in the HH band. The
same can be done for a hole in the LH band: we ascribe
spin (SLH)z = –1/2 for the sublevel with Jz = –1/2 and
spin (SLH)z = 1/2 for the sublevel with Jz = 1/2. Then the
Zeeman interaction in the LH band has the form

(4)

where gLH is the g factor for a hole in the LH band.

For a degenerate valence band, the interaction with
the magnetic field at point Γ can be described in the
form [8]

where J is the effective angular momentum of a hole
(J = 3/2). We will use this expression in our subsequent
analysis, although expressions (3) and (4) can also be
used in principle.

The Hamiltonian of the Zeeman interaction in the
split-off band and in the conduction band can also be
expressed in terms of the corresponding effective spins
SSO and SCB . For a hole in the split-off band, we have

(5)

ψ| 〉 A1 R( )CB| 〉 A2 R( ) HH| 〉+=

+ A3 R( ) LH| 〉 A4 R( ) SO| 〉 ,+

Ĥ H( ) µBgHH ŜHH H⋅( ),=

Ĥ H( ) µBgLH ŜLH H⋅( ),=

Ĥ H( ) 2µB k Ĵ H⋅( ) q Ĵx
3
Hx Ĵy

3
Hy Ĵz

3
Hz+ +( )+[ ] ,=

Ĥ H( ) µBgSO ŜSO H⋅( ),=
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while for an electron in the conduction band, we have

(6)

where gSO is the g factor of a free hole in the split-off
band, gCB is the g factor in the conduction band, and

effective spin operators  and  are defined in
terms of the Pauli spin matrices , , and , acting

on the corresponding spin variables,  = /2.

The total energy of interaction with the magnetic
field taking into account the orbital moment L is given
by the sum

(7)

where  is defined by formula (2). It follows hence that

(8)

The final formula for calculating the total magnetic
moment has the form

(9)

Using now this expression, we can determine the

matrix elements  and  and
calculate the g factor by formula (1).

Ĥ H( ) µBgCB ŜCB H⋅( ),=

ŜSO ŜCB

σ̂x σ̂y σ̂z

Ŝα σ̂α

Ĥ H( ) 2µB k Ĵ H⋅( )[=

+ q Ĵx
3
Hx Ĵy

3
Hy Ĵz

3
Hz+ +( ) ]

+ µBgSO ŜSO H⋅( ) µBgCB ŜCB H⋅( ) µB L̂ H⋅( ),+ +

L̂

M̂QD( )α –[2k Ĵα 2qĴα
3

+=

+ gSO ŜSO( )α gCB ŜCB( )α L̂α].+ +

M̂QD( )α – 2k Ĵα 2qĴα
3

gSO ŜSO( )α+ +=

+ gCB ŜCB( )α
im

"
2

------eαβγ R̂βĤ0R̂γ+ .

ψ M̂QD ψ ψ M̂QD ψ∗

Si

5 ML

1.5 nm

1

2
x[110]

y[
–
110]

z[001]

Fig. 1. Schematic diagram of a typical quantum dot
(germanium island) in silicon: germanium island (quan-
tum dot) (1), germanium film (wetting layer) (2), and
monolayer (ML).

15 nm
15 nm
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3. CALCULATION OF THE g FACTOR
IN A Ge/Si SYSTEM WITH QUANTUM DOTS

Quantum dots in a Ge/Si system are formed during
heteroepitaxy of germanium on a Si(100) substrate
under certain conditions of transition from the 2D-layer
mechanism of germanium film growth to the 3D
growth. The typical size of islands in the familiar exper-
imental studies varied from 10 to 20 nm, their height
being 1–2 nm; consequently, the behavior of charge
carriers in these islands is determined by quantum size
effects [18]. The band offset existing in the Ge/Si het-
erosystem and deformation effects lead to the forma-
tion of a potential well in germanium for holes only.
The states in a quantum dot are mainly formed from the
states of the valence band, i.e., a superposition of states
|3/2, ±3/2〉 , |3/2, ±1/2〉 , and |1/2, ±1/2〉  (state |J, Jz〉  is
characterized by the angular momentum J and its com-
ponent Jz along the z axis, viz., growth direction;
Fig. 1). It follows from experimental results that a ger-
manium island can be regarded as a square pyramid
whose height h is an order of magnitude smaller than
the base side l (h/l ~ 1/10) [19]. In fact, an island is a
quasi-two-dimensional quantum object with a pre-
ferred symmetry axis z. The strain distribution in a
quantum dot [14] removes the degeneracy existing at
point Γ in the valence band. Since the crystal is sub-
jected to uniaxial extension along the z axis within the
island, states |3/2, ±3/2〉  of heavy holes are at the bot-
tom of the valence band [20]. Consequently, we can
expect that the contribution from heavy holes to the
ground state in a quantum dot is predominant. The
same conclusion can be drawn taking into account the
fact that the effective mass of heavy holes is larger than
that of light holes.

Let us consider the case when the magnetic field is
parallel to the growth direction (H || z). The energy of
interaction with the field is determined by the magnetic
moment component along the magnetic field, i.e., along
z. In order to calculate the g factor, we must know the

matrix elements of operators , , ( )z , ( )z ,

and .
Let us first demonstrate that g factor can be esti-

mated only from the wave function expansion in the
basis |J, Jz〉 , i.e., in the basis |3/2, ±3/2〉 , |3/2, ±1/2〉 , and
|1/2, ±1/2〉 . We will disregard the effect of the conduc-
tion band on the hole states in the Ge/Si system with a
quantum dot because the contribution from the states
of this band to the wave function amounts to only
about 0.5%.

The results of expansion of the wave function of the
ground state in a quantum dot having a size of l = 15 nm
and h = 1.5 nm are compiled in the table. The compo-
nent with Jz = ±3/2 constitutes approximately 84% of
the entire wave function. The remaining part corre-
sponds to the component with Jz = ±1/2. It can be seen
from the table that the state with the “up” spin, |↑〉  (the
state with the average angular momentum directed

Ĵ z Ĵ z
3

ŜSO ŜCB

L̂z
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Results of expansion of wave functions in the basis |J, Jz〉  for two spin sublevels |↑〉  and |↓〉  of the ground state in a germanium
island of height h = 1.5 nm and base side l = 15 nm

|J, Jz〉

|↑〉 83.67% 2.26% 4.7% 0.08% 1.17% 8.11%

|↓〉 0.08% 4.7% 2.26% 83.67% 8.12% 1.17%

3
2
--- 3

2
---, 3

2
--- 1

2
---, 3

2
--- –

1
2
---, 3

2
--- –

3
2
---, 1

2
--- 1

2
---, 1

2
--- –

1
2
---,
along the field) is mainly formed from components
with Jz = 3/2 and Jz = –1/2, while the |↓〉  state (the state
with the average angular momentum opposite to the
field) is formed by components with Jz = –3/2 and Jz =
1/2. The component with Jz = ±1/2 reflects contribu-
tions from states|3/2, ±1/2〉 , |1/2, ±1/2〉 , these contribu-
tions being almost identical and constituting about 8%
each. This means that the formation of the ground state
in a quantum dot is equally affected by the light hole
subband and the split off subband.

If the ground state of a hole in a quantum dot were
formed only by states with Jz = ±3/2, i.e., the |↑〉  state
corresponded to Jz = 3/2 and the |↓〉  state to Jz = –3/2,
the Zeeman splitting in a magnetic field H || z would be
determined by the expression

(10)

where 〈(MQD)z〉  and 〈Lz〉  are the mean values of the z
components of the magnetic and orbital moments in the
|↑〉  state.

In obtaining estimates, the term with q can be omit-
ted in view of its smallness (|q | = 0.06) [21]. If we take
into account the admixture of states with Jz = ±1/2,
expression (10) is transformed to

where a2, b2, c2, and d2 are the probabilities of values
Jz = 3/2, Jz = 1/2, Jz = –1/2, and Jz = –3/2 (for J = 3/2)
in the |↑〉  state, respectively, and e2 and f 2 are the prob-
abilities of the values Jz = 1/2 and Jz = –1/2 (for J = 1/2)
in the |↑〉  state, respectively. For a quantum dot of size
l = 15 nm and h = 1.5 nm, a2 ≈ 0.84, b2 ≈ 0.02, c2 ≈ 0.05,
d2 ≈ 0, e2 ≈ 0.01, and f 2 ≈ 0.08 (see table).

An estimate obtained disregarding the 〈Lz〉  term
gives the following value for the g factor:

E Hz( ) 2µB MQD( )z〈 〉 Hz=

=  2µBHz 2k
3
2
---× 2q

27
8
------× Lz〈 〉+ + 

  ,

E Hz( ) 2µBHz 2k a2 d2–( ) 3
2
---×





=

+ 2k b2 c2–( ) gSO e2 f 2–( )+[ ] 1
2
---× Lz〈 〉+





,

gzz 6k 0.82× 2k 0.03× gSO 0.07,×+–≈
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here, k = –3.41 ± 0.03 [21] and gSO = –10 ± 3 [22],
which gives |gzz | ≈ 15.86.

Calculating the g factor by formula (1) for the same
island size taking into account the orbital moment 〈Lz〉
and using the wave functions determined in the tight
binding approximation, we obtain |gzz | = 15.71.

A comparison with the bulk value of the longitudi-
nal g factor for a heavy hole, |gHH | ≈ 6k = 20.46, shows
that size quantization reduces the g factor, indicating
the suppression of the spin-orbit interaction due to an
admixture of the state with a smaller value of J (J = 1/2)
and a decrease in the effective angular momentum of
the particle.

In order to estimate the contribution of the orbital
moment, we calculated the g factor using formulas (1)

and (8), omitting in Eq. (8) all the terms except . As
a result, we obtained an order-of-magnitude smaller
value of g factor: |gzz | = 0.59. Thus, the g factor is
mainly determined by the effective angular momen-
tum J rather than by the orbital moment L.

We will give here the principal values of the g factor
for the ground state in a quantum dot of size l = 15 nm
and h = 1.5 nm, calculated by formula (1): |gzz | = 15.71
(in the growth direction [001]), |gxx | = 1.14 (in the [110]

direction), and |gyy | = 1.76 (in the [ 10] direction).

3.1. Dependence of g Factor on the Size 
of the Germanium Island 

The results obtained clearly demonstrate anisotropy
in the values of the g factor: gzz is an order of magnitude
larger than the values of gxx and gyy . Anisotropy
increases upon an increase in the island base for a con-
stant height (Fig. 2). This tendency can be explained by
the fact that the wave function of the ground state is
close in composition to the wave function |3/2, ±3/2〉  (to
a heavy hole state), in which the transverse components
of the g factor are close to zero [6].

We can assume that the wave function of the ground
state becomes closer and closer to the wave function of
a heavy hole as the size of the island increases, which
enhances the anisotropy of the g factor.

Indeed, according to the results of our calculations,
the contribution of the state with Jz = ±3/2 to the wave
function of a hole increases with the lateral dimension

L̂α

1
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of the island, and the wave function tends to “pure”
state |3/2, ±3/2〉  (Fig. 3). For example, as the lateral size
l of the island increases from 15 to 30 nm for a height
of h = 1.5 nm, the contribution from the component
with Jz = ±3/2 to the wave function of the ground state
increases from 83 to 86%. Anisotropy of the g factor
increases: the value of |gzz | increases to 17.0, while the
transverse components decrease to |gxx | = 0.91 and
|gyy | = 1.71. If we increase the island size to that where
the pyramid proportion is preserved (h/l = 1/10), the
anisotropy of the g factor becomes stronger. For exam-
ple, for l = 30 nm and h = 3 nm, the principal values of
the g factor are as follows: |gzz | = 20.99, |gxx | = 0.06, and
|gyy | = 1.1. It turns out that the contribution of the com-
ponent with Jz = ±3/2 to the wave function of the
ground state in this case increases to 90%, leading to
such a strong anisotropy.

The obtained dependence of the g factor on the
island size indicates the correctness of our approach.
Indeed, as the lateral size of the island increases, we
pass to the limiting case of a pseudomorphic stressed
germanium film. Inhomogeneity of strains typical of

~~ ~~

gxx, gyy, gzz
18

16

14
4

2

0
10 15 20 25 30

l, nm

1

2

3

Fig. 2. Dependence of the g factor of the ground state of a
hole on the lateral size l of a germanium island of height h =
1.5 nm: gxx (1), gyy (2), and gzz (3).

84

80

76
0 10 20 30

l, nm

Contribution of component with |3/2〉 , %

Fig. 3. Contribution of the component with Jz = ±3/2 to the
wave function of the ground state of a hole as a function of
the lateral size l of a germanium island of height h = 1.5 nm.
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quantum dots disappears. The uncertainty in kx and ky

for states at the bottom of the band becomes equal to
zero. All these factors suppress the interaction of the
HH band with other energy bands; as a result, the g fac-
tor of the ground state tends to the g factor of a heavy
hole, which is in accordance with our results.

3.2. Sharpness of Germanium Island Boundaries 

The above values of the g factor were obtained for
an island with sharp boundaries. If we take into account
diffuse boundaries of the island, which is always
observed in a real Ge island, these values will slightly
change.

The diffuse boundaries was taken into account as
follows: each atom in the crystal lattice was replaced,
with a probability of 2/3, by one of its four nearest
neighbors. As a result, we obtained a boundary with a
smooth variation in the composition of the substance
within three monolayers.

Taking into account the diffuse island boundaries,
we found that the transverse components of the g factor
change significantly (e.g., the value of |gxx | decreases
from 1.14 to 0.52 for an island with a lateral size of l =
15 nm, while the value of |gyy | decreases from 1.76 to
0.18. The longitudinal component |gzz | of the g factor
virtually does not change and amounts to 15.81. Conse-
quently, anisotropy of the g factor increases on account
of blurring of the heteroboundary. This is probably
associated with an effective increase in the island size.

3.3. Probability of Zeeman Transitions 

The probability of Zeeman transitions is directly
connected with the form of the wave function. For a
state with Jz = ±3/2 in a magnetic field H || z, induced
transitions between the Zeeman sublevels with Jz = 3/2
and Jz = –3/2 are forbidden by the selection rules, since
allowed transitions must satisfy the condition ∆Jz = ±1.
An admixture of a state with Jz = ±1/2 facilitates transi-
tions between the Zeeman sublevels of the ground state
in a germanium island. Consequently, the prohibition
imposed on Zeeman transition is released upon an
increase in the island size.

For an arbitrary direction h of the magnetic field, the
energy of interaction with the field is determined by the
angular momentum component along h. States |J, Jz〉
are transformed into states |J, Jh〉  as follows:

here, θ and ϕ are polar angles of vector h in the system
of coordinates x, y, z, and matrix R is connected to the
standard matrix of rotations [23] through the variation

J Jz,| 〉 J Jh,| 〉 RJz Jh

J θ ϕ,( ) J Jz,| 〉;
Jz

∑=

RJz Jh

J θ ϕ,( ) DJz Jh

J 0 θ ϕ–,–,( ).=
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In the particular case when θ = π/2 and ϕ = 0, the
magnetic field direction lies in the plane of the island
and coincides with the x axis. Let us consider a pure
state with Jz = 3/2. In the |J, Jz〉  representation, the wave
function of this state can be written in the form

where the squares of the coefficients (a2, b2, c2, and d2)
reflect contributions from the states with corresponding
values of Jz (a2 + b2 + c2 + d2 = 1). Under transformation

(π/2, 0), state  is transformed into

. It follows hence that the fraction of each

component with Jh = ±1/2 amounts to 3/8 of the entire
wave function. On the whole, they constitute 75%; i.e.,
the contributions from components with Jh = ±1/2 for
the direction of magnetic field H in the basal plane of
the area larger as compared to the case when H || z, and
the probability of Zeeman transitions increases. This is
also observed in the case when the wave function ini-
tially contains an admixture of state with Jz = ±1/2 as,
for example, for the ground state in the quantum dot in
question, where it amounts to 16%.

Let us consider some numerical estimates of the
probabilities of Zeeman transitions for different direc-
tions of the magnetic field.

The probability of an induced transition between
Zeeman sublevels is determined by the interaction of
the magnetic moment with oscillating magnetic micro-
wave field H⊥ cos(2πνt) (field H⊥  is perpendicular to the
constant magnetic field) and is proportional to the
squared matrix element of the magnetic moment com-
ponent µ⊥  of a particle in the direction of this field [24],

If the magnetic field direction is such that H || z, the
magnetic moment component µ⊥  lies in the island basal
plane and is proportional to the principal values of the

g tensor, gxx (direction [110]) and gyy (direction [ 10]).
In the particular case when the microwave field H⊥  is
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directed along [110], the transition probability P↑↓  is

proportional .

If the direction of the constant magnetic field is such
that H ⊥  z, the magnetic moment component lies in the
plane perpendicular to the basal plane; in the particular
case when the microwave field H⊥  is directed along
[100], this component is proportional to the principal
value of the g tensor: µ⊥  ∝  gzz. In this case, the transition

probability is P↑↓  ∝  .

It can be seen that, for gzz = 15.71, gxx = 1.14, and
gyy = 1.76, the probabilities of induced transitions for
two directions of the magnetic field (H || z and H ⊥  z)
differ approximately by two orders of magnitude. If, in
addition, we take into account a decrease in the trans-
verse components of the g factor due to diffuse bound-
aries (gxx = 0.52 and gyy = 0.18), the difference in the
transition probabilities for H || z and H ⊥  z will be more
than three orders of magnitude.

4. DISCUSSION

The results obtained show that the main factor deter-
mining the dependence of the g factor on the size of an
island is the change in the contribution to the wave
function of a hole from the component with Jz = ±3/2
upon a change in the island size.

The factors determining the relation between the
contributions from the components with Jz = ±3/2 and
±1/2 can be grasped from the following simplified
model disregarding the interaction between energy
bands. Let us consider separately the quantization of
the energy spectra of holes with Jz = ±3/2 and Jz = ±1/2.
In such a model, the deepest energy levels belong to
holes with Jz = ±3/2; in the range of excited states, the
levels of holes both with Jz = ±1/2 and Jz = ±3/2 are
present. In a more realistic model taking into account
the interaction between energy bands (e.g., the six- or
eight-band kp model or the tight binding model), the
energy range corresponding to excited states contains
some “mixed” states with comparable contributions
from both types of holes, while the range correspond-
ing to the deepest layers contains states formed mainly
by holes with Jz = ±3/2. Such a qualitative model is in
agreement with the results of our calculations.

Figure 4 shows the contribution from the component
with the momentum component Jz = ±3/2 to the wave
functions of states in a quantum dot of size l = 15 nm
and h = 1.5 nm. The results of expansion show that the
component with Jz = ±3/2 constitutes approximately
84% of the wave function of the ground state (E0 =
420 meV). For the first excited state (E1 = 377 meV),
the contribution from the component with Jz = ±3/2
decreases approximately to 79%. As the number of the
excited state increases, a tendency towards a decrease
in the component with Jz = ±3/2 is observed. For the

gxx
2

gzz
2
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Contribution of component with |3/2〉 , %

Fig. 4. Contribution of the component with Jz = ±3/2 to the
states of the discrete spectrum of a germanium island. The
energy of the state measured from the edge of the valence
band of silicon is laid along the abscissa axis. The island
size: height h = 1.5 nm and base side l = 15 nm.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. Wave function density distribution for the compo-
nent with Jz = ±3/2 (a, c, e, and g) and Jz = ±1/2 (b, d, f, and
h) (projection on the plane of the pyramid base) in the
ground (a, b), first excited (c, d), second excited (e, f), and
third excited (g, h) states of a hole in a quantum dot.
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ninth excited state (E9 = 303 meV), the contribution
from the component with Jz = ±3/2 amounts approxi-
mately to 60%.

The form of the wave function of the ground state is
determined by the separation between the ground
energy level and the states of holes with Jz = ±1/2,
which lie in the range of excited states in a quantum dot.

The data presented in Fig. 4 show that the depen-
dence of the contribution from the component with Jz =
±3/2 on the hole energy cannot be described by a
smooth function. In order to explain the step form of
this dependence, we analyzed the form of wave func-
tions separately for the components with Jz = ±3/2 and
±1/2. Figure 5 shows the wave functions for the compo-
nents with Jz = ±3/2 and ±1/2, forming the first four
states in the quantum dot. In the ground state, the com-
ponent with Jz = ±3/2, which constitutes 84%, is
s-shaped. However, the component with Jz = ±1/2,
which is admixed on account of interaction between
energy bands and constitutes approximately 16%, is
d-shaped. If we return to the simplified model and con-
sider separately the quantization of the spectra of holes
with Jz = ±3/2 and ±1/2, each of these two spectra con-
tain s-, p-, and d-shaped states, etc. (Fig. 6). Naturally,
the s-shaped state will be the lowest state in both spec-
tra, followed by p- and d-shaped states, etc. The extent
of admixture of a state with Jz = ±1/2 to a state with
Jz = ±3/2 is inversely proportional to the difference in
the energies of these states, i.e., to (E±3/2 – E±1/2)–1. It
follows from the data presented in Fig. 5 that the s state
from the spectrum of a hole with Jz = ±3/2 interacts
with the d state from the spectrum of a hole with Jz =
±1/2 and forms the ground energy level. In this case, the
contribution from the component with Jz = ±1/2 is

determined by the energy gap ∆E0 =  – . The
first and second excited states are formed by mixing the
p state from both spectra. In such cases, the energy gaps

∆E1 = ∆E2 =  –  coincide; consequently, the
contributions from the component with Jz = ±1/2 are
practically identical. The third excited state is formed
by mixing the d state from the spectrum of a hole with
Jz = ±3/2 and the s state from the spectrum of a hole
with Jz = ±1/2. In this case, the contribution from the
component with Jz = ±1/2 is determined by the energy

gap ∆E3 =  – ; i.e., the distance between
interacting energy levels is smaller, and the contribu-
tion from the component with Jz = ±1/2 is greater than
for deeper levels. Thus, we can establish a relation
between the energy gaps in all four cases (∆E0 > ∆E1,
∆E1 = ∆E2, and ∆E2 > ∆E3) and explain the dependence
of the contribution of the component with Jz = ±1/2 on

E 3/2±
s E 1/2±

d

E 3/2±
p E 1/2±

p

E 3/2±
d E 1/2±
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the number of the state in a discrete spectrum in a quan-
tum dot.

The interpretation for the next energy levels is com-
plicated on account of the fact that the wave functions
of these states have a complex form and cannot be clas-
sified as s-, p-, … shaped states.

Let us now consider the main effects determining
the variation of the relation between the contributions
of components with Jz = ±1/2 and ±3/2 upon the varia-
tion of the island size.

If the size of an island increases so that the propor-
tions between dimensions is preserved (h/l = 1/10), the
distribution and magnitude of strains in the island does
not change significantly; consequently, the splitting
between the HH and LH bands remains unchanged. The
size quantization energy decreases and amounts, for
example, to a few millielectronvolts for l = 100 nm and
h = 10 nm. As a result, the ground state in the spectrum
of a hole with Jz = ±3/2 shifts towards the bottom of the
potential well. Excited states are less sensitive to a
change in the island size since their localization radius
is larger, and the wave functions penetrate more
strongly under the barrier (into silicon surrounding the
germanium island). Consequently, the position of
energy levels for holes with Jz = ±1/2 changes more
weakly than for holes with Jz = ±3/2 upon an increase
in the island size. For this reason, the energy gap ∆E0
between the ground s state of a hole with Jz = ±3/2 and
the d state of a hole with Jz = ±1/2 increases. Accord-
ingly, the contribution from the component with Jz =
±1/2 to the ground state of the hole decreases, and the
wave function becomes closer to the state of a hole with
Jz = ±3/2. In this case, the main effect determining the
change in the relation between the components with
Jz = ±3/2 and ±1/2 is a confinement effect (decrease in
the size quantization energy).

If only the lateral size of the island increases, the
size quantization energy remains practically unchanged
since it is mainly determined by the height of the island.
However, an increase in the l/h ratio leads to an increase
in biaxial strain εzz – (εxx + εyy)/2 [25], leading to an
increase in the splitting between the HH and LH sub-
bands. In this case, the reason for the increasing energy
gap ∆E0 is a strain effect (change in strains in the
island).

The experimental value of the g factor for a hole in
quantum dots is usually a result of indirect measure-
ments. As a rule, the photoluminescence spectrum in a
magnetic field is analyzed [26–28], and the g factor of
a hole is calculated from the experimentally determined
g factor of an exciton (gex) and the g factor of an elec-
tron (ge) using the relation gex = gHH ± ge (the minus sign
is used for bright excitons, and the plus sign, for dark
excitons). In order to eliminate an additional systematic
error associated with the existence of exchange interac-
tion between the electron and the hole in an exciton,
a single hole in a quantum dot must be analyzed instead
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of a hole bound with an electron in an exciton complex.
For this purpose, an experiment involving tunneling of
a hole through a quantum dot in a magnetic field, simi-
lar to that proposed in [29] for an electron, can be made.
In this case, it is important to appropriately choose the
magnetic field direction, since it determines the Zee-
man splitting and the intensity of the Zeeman transi-
tions. For the H || z direction, Zeeman transitions are
forbidden. For H ⊥  z, the Zeeman splitting is small. For
this reason, it is expedient to carry out experiments in a
tilted magnetic field, when the Zeeman splitting is
strong enough and the intensity of induced transitions
is appreciable.

The method of calculating the g factor in quantum
dots proposed here will make it possible to compare
consistently the theory and available experimental data
on g factors of hole (electron) states in quantum dots
grown in various heterosystems, since its applicability
is not limited to quantum dots in the Ge/Si system.
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L. S. Lobanovsky* and I. O. Troyanchuk
Institute of Solid-State and Semiconductor Physics, National Academy of Sciences of Belarus, 

Minsk, 220072 Belarus
*e-mail: Lobanov@ifttp.bas-net.by

Received August 27, 2002

Abstract—The magnetoresistance effect in the SmCu3Mn4O12 compound with a perovskite-like structure is
investigated for the first time. It is found that an intragranular magnetoresistance effect shows up in
SmCu3Mn4O12 in the vicinity of the magnetic ordering temperature (TC = 376 K). In addition to this colossal
magnetoresistance, a giant magnetoresistance effect is also observed, which is associated with the scattering of
spin-polarized charge carriers by the granule boundaries. The giant magnetoresistance is comparable in mag-
nitude to the effect revealed in substituted lanthanum orthomanganites. However, the coexistence of intragran-
ular and intergranular magnetoresistance in manganese-containing perovskites was previously observed for the
concentration of tetravalent manganese ions in the range from 15 to 45%. The concentration of Mn4+ ions in
SmCu3Mn4O12 is 75%. © 2003 MAIK “Nauka/Interperiodica”.
The discovery of the effect of colossal magnetore-
sistance (CMR) in manganites with a perovskite struc-
ture stimulated the search for new magnetic materials
exhibiting this effect. Such materials are used in
devices for information storage and processing and in
radioelectronic equipment for conversion of magnetic
to electric signals. However, a decrease in resistance by
several orders of magnitude occurs in manganites in
strong magnetic fields (over 2 T) and is a property of
granules [1–3]. In order to attain significant magnetore-
sistive properties in weak external magnetic fields,
numerous researchers investigated the effect of dielec-
tric barrier tunneling of charge carriers [4–6]. The
Curie temperature of different compounds did not
exceed 150 K. It was recently revealed that A2FeMoO6

compounds (A = Ca, Sr, Ba) with a perovskite struc-
ture, while being ferrimagnets, demonstrated a high
magnetoresistance effect associated with tunneling of
charge carriers through the intergranular interlayer
[7–9]. Ba2FeMoO6 exhibited both intergranular (far
below the magnetic ordering temperature) and intra-
granular (in the vicinity of TC) magnetoresistive prop-
erties. In interpreting the presence of intragranular
magnetoresistance in these compounds, Maignan et al.
[8] proceeded from the binary exchange interactions
and high degree of spin polarization of the charge
carriers.

The intergranular magnetoresistance was also
revealed previously in ferrimagnetic polycrystalline
CaCu3Mn4O12 [10] containing no ions of trivalent man-
ganese. As is known [11, 12], AC3B4O12 compounds
crystallize into a perovskite-like structure with a double
1063-7761/03/9602- $24.00 © 20331
unit cell parameter. The unit cell parameter in these
compounds is doubled as a result of ordering of A ions
and C ions in the 1/3 ratio and because of the inclination
of oxygen octahedrons relative to the [100] crystallo-
graphic directions. However, no peak of intragranular
magnetoresistance was observed in the vicinity of the
Curie temperature (TC = 350 K) of CaCu3Mn4O12. This
behavior is probably associated with the absence of
manganese ions of different valences and, as a conse-
quence, with the absence of binary exchange interac-
tions used in describing the effect of colossal magne-
toresistance.

It is of interest to study the magnetoresistive proper-
ties of compounds from the ACu3Mn4O12 series, where
the A position is taken by an ion of suitable size with a
valence of other than two. During the introduction of
ions of different valences into the A position, the charge
is compensated by way of forming a mixed valence of
manganese ions in the B sublattice. With a trivalent
A ion, the ratio of manganese ions of different valences
in the B position will be Mn3+/Mn4+ = 1/3. In connec-
tion with this, we measured the magnetoresistive prop-
erties of Sm3+Cu3Mn4O12. In contrast to CaCu3Mn4O12,
the samarium-based compound exhibits a clearly
defined magnetoresistance effect in two temperature
ranges: a magnetoresistance characteristic of scattering
of charge carriers by the boundaries of neighboring
granules was observed at temperatures from 80 to
350 K; a peak of magnetoresistance associated with the
scattering of charge carriers by magnetic nonuniformi-
ties within granules was observed at temperatures close
to TC = 376 K.
003 MAIK “Nauka/Interperiodica”
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ACu3Mn4O12 compounds are characterized by a
high temperature of magnetic ordering [12] and are
potential candidates for use as magnetoresistive materi-
als operating at room temperature.

A SmCu3Mn4O12 sample was prepared from oxides
of the respective elements by the method of solid-phase
reactions with simultaneous exposure to high pressure
and temperature. In order to preclude the reduction
reaction, the sample in the process of synthesis was
insulated from the heater by nickel foil. Synthesis was
followed by X-ray diffraction analysis of the prepared
compound in Kα radiation of Cr using a DRON-3 dif-
fractometer with a view to determining the degree to
which the sample is monophase and to refining the unit
cell parameters. The magnetization was measured at
different temperatures using a vibrating-sample magne-
tometer. The data of dynamic magnetic susceptibility
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Fig. 1. An X-ray pattern of SmCu3Mn4O12, taken at room
temperature.

M, µB/structural unit
7.5

7.0

6.5

6.0

5.5

5.0

4.5

4.0

3.5
0 50 100 150 200 250 300

T, K

H = 20 kOe

Fig. 2. Temperature dependence of magnetization in
SmCu3Mn4O12, obtained in an external magnetic field.
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were obtained using a mutual induction bridge. The
standard four-point method was used to measure the
electrical properties and magnetoresistance. The mag-
netoresistance effect was measured in an external mag-
netic field of 0.9 T and determined as MR = ∆ρ/ρ =
100%(ρH = 0 – ρH)/ρH = 0.

The resultant SmCu3Mn4O12 compound was charac-
terized by the cubic symmetry of unit cell with an
ABO3 perovskite structure with double parameter a
equal to 7.296 Å (Fig. 1). The calculation and refine-
ment of the unit cell parameters were performed in the
Im3 spatial group (previously identified by Bochu et al.
[12]) for CaCu3Mn4O12.

Measurements of the dynamic magnetic susceptibil-
ity and magnetization revealed that SmCu3Mn4O12
exhibited a spontaneous magnetic moment below TC =
376 K. The temperature dependence of magnetization
had a maximum at 75 K. As previously found,
ThCu3Mn4O12 is a ferrimagnet with opposite ordering
of magnetic moments of copper and manganese ions
[13]. In view of the data of measurements of spontane-
ous magnetization, one should expect a similar order-
ing of magnetic moments of ions for SmCu3Mn4O12 as
well. The magnetization peak in the compound investi-
gated by us is apparently associated with the ordering
of magnetic moments of samarium ions in the direction
opposite to the overall magnetic moment of copper and
manganese ions, which leads to a decrease in the mag-
netization at temperatures below 75 K (Fig. 2). The
spontaneous magnetic moment measured at 5 K is
4.15 Bohr magnetons per structural unit. This value
corresponds to the assumption of antiparallel ordering
of overall magnetic moments of copper and samarium
ions in the A and C sublattices and of manganese ions
in the B sublattice of an AC3B4O12 structure.

More striking results, however, were obtained in
measuring the electrical properties and magnetoresis-
tance (Fig. 3). The electrical resistance was measured in
the temperature range from 77 to 425 K. Two intervals
with conductivity of different types may be identified on
the curve of temperature dependence of electrical resis-
tance. Below 300 K, the resistance of SmCu3Mn4O12
increases with temperature, while above that tempera-
ture, the compound exhibits a semiconductor depen-
dence of the behavior of electrical resistance on temper-
ature. Moreover, an anomaly is observed on the temper-
ature curve of electrical resistance in the vicinity of TC.

It is known [14] that substituted lanthanum ortho-
manganites in the magnetically ordered phase exhibit
conductivity of metallic type with the concentration of
Mn4+ ions ranging from 15 to 45%. Given this content
of Mn4+ ions, the metal–dielectric transition is observed
in the vicinity of the magnetic ordering temperature.
Above TC , these compounds are semiconductors. It was
recently demonstrated [15] that, in the case of
La0.82Sr0.18MnOz  (z < 3), the electrical properties stron-
gly depend on the conditions of synthesis. At a moder-
AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003
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ate temperature of synthesis, the intergranular inter-
layer of a polycrystalline sample of La0.82Sr0.18MnOz

may have a considerable effect on the electrical con-
ductivity. In this case, the Curie temperature of the
intergranular interlayer decreases due to the weakening
of exchange interactions on the granule boundary, and,
as a result, the temperature of the metal–insulator tran-
sition shifts toward lower temperatures. However, the
contribution by granules to the electrical properties
shows up as a peak on the resistance curve in the vicin-
ity of TC . The temperature dependence of the electrical
resistance of such compounds is a curve with two
peaks.

Apparently, the intergranular layer similarly affects
the transport properties in polycrystalline
SmCu3Mn4O12. Note, however, that the conductivity of
the metallic type below TC is observed in manganites at
a concentration of tetravalent manganese ions ranging
from 15 to 45%. As was mentioned above, the concen-
tration of Mn4+ ions in SmCu3Mn4O12 is 75%. In addi-
tion, as distinct from lanthanum manganites with a
bond angle close to 180°, the Mn–O–Mn angle in
AC3B4O12 structures is about 140°. It is customary to
assume that the foregoing facts cause a narrowing of the
conduction band in manganites. However, the order of
magnitude of the resistance of solid solution of
SmCu3Mn4O12 investigated by us is close to that of
La0.82Sr0.18MnOz (z ≈ 3). Possibly, this low value of
electrical resistance of SmCu3Mn4O12 is associated
with the conditions of synthesis, because samples pre-
pared by the method of solid-phase reactions under
high pressure are characterized by lower porosity.

The temperature dependence of magnetoresistance
of SmCu3Mn4O12 is more complex than the previously
observed effect in Fe3O4 and CrO2 [16, 17]. At temper-
atures much lower than the magnetic ordering temper-
ature, the magnetoresistance monotonically decreases
as the temperature increases. A similar temperature
dependence is predicted by theory [18]. However, in the
vicinity of TC , the magnetoresistance exhibits a peak of
up to 2.5% in a field of 0.9 T, which contradicts the the-
oretically expected behavior. Similar results were
obtained for polycrystalline ferrimagnetic compounds
of the Ba2FeMoO6 series [8].

In order to clarify in more detail the nature of this
phenomenon, we measured the field dependences of the
magnetoresistance effect at different temperatures. One
can see (Fig. 4) that, at low temperatures, the magne-
toresistance abruptly increases in weak magnetic fields
and is gradually saturated as the external magnetic field
increases. A different behavior is exhibited by the high-
temperature part of the magnetoresistance effect. The
magnetoresistance monotonically increases with the
external magnetic field. The observed features of the
behavior of resistance in the external magnetic field at
different temperatures indicate that these effects are of
different nature. One can infer that the magnetoresis-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tance effect consists of two contributions. At low tem-
peratures, the behavior of magnetoresistance reminds
one of the effect revealed by Kobayashi et al. [7] in
Sr2FeMoO6 double oxide with a perovskite structure.
Kobayashi et al. [7] observed that the magnetoresis-
tance of this kind shows up as a result of the effect of
the granule boundaries on the electrical properties of
compounds under the influence of external magnetic
field. The abrupt disappearance of the magnetoresis-
tance effect above TC is indicative of the effect of the
magnetic order on the magnetoresistance. In doing so,
a correlation in the behavior of magnetoresistance and
magnetization is observed in an external magnetic field
both at low temperatures and in the vicinity of the mag-
netic ordering temperature (Fig. 4, inset). Maignan et
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Fig. 3. Temperature dependences of electrical resistance
and magnetoresistance effect in SmCu3Mn4O12.
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al. [8] have demonstrated that the peak of magnetore-
sistance is a result of the decrease in the scattering of
charge carriers within the granules by magnetic fluctu-
ations under the effect of external magnetic field.

Note further that the peak of magnetoresistance in
substituted orthomanganites shows up at a concentra-
tion of Mn4+ of up to 45%. All compounds in the mag-
netically ordered phase are ferromagnetic in contrast to
ferrimagnetic SmCu3Mn4O12.

So, we have demonstrated that ferrimagnetic poly-
crystalline SmCu3Mn4O12 with a perovskite-like struc-
ture, prepared by the method of solid-phase reactions
under high pressure, exhibits the magnetoresistance
effect of two types, namely, (1) of the low-temperature
type, which shows up clearly in weak magnetic fields
and is a result of the scattering of spin-polarized charge
carriers by the boundaries of neighboring granules; and
(2) of the high-temperature intergranular type, which
shows up in the vicinity of the magnetic ordering tem-
perature (in our case, much higher than room tempera-
ture) and is associated with the scattering of charge car-
riers by magnetic fluctuations. SmCu3Mn4O12 is a
representative of a new family of high-temperature
magnetoresistive materials. From both the theoretical
and practical standpoints, it is important to perform
similar measurements for a number of ACu3Mn4O12
compounds with different ions in the A position. It is no
less important to measure the magnetoresistance effect
in the temperature range in which the ordering of mag-
netic moment of samarium ions is observed for a more
detailed understanding of the correlation between the
magnetic and electrical properties and magnetoresis-
tance of these compounds.
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Abstract—The effect of free carriers on the dispersion and damping of coupled phonon–plasmon modes is con-
sidered in the long-wave approximation. The electron and phonon scattering rate, as well as Landau damping,
is taken into account. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

After the pioneering paper by Migdal [1], the effect
of electron–phonon interactions on the phonon disper-
sion has been continually debated. The problem was
how to explain that the many-body approach based on
the Fröhlich Hamiltonian gives a strong phonon renor-
malization. For instance, the sound velocity is renor-
malized on the order of phonon–electron coupling λ,
which is on the order of unity. It follows that the
phonon–electron system can be unstable. The phonon
softening caused by the electron–phonon interaction
has been discussed in many papers. All these results
contradict the Born–Oppenheimer conception [2],
according to which light electrons must adiabatically
follow the slow lattice vibrations. Therefore, the
phonon renormalization should involve a small nonadi-

abatic parameter , where m and M are the elec-
tron and ion masses, respectively.

The discrepancy was resolved by Brovman and
Kagan [3]. They demonstrated the shortcomings of the
Fröhlich model. Employing the adiabatic approxima-
tion, they found that there are two terms in second-
order perturbation theory which compensate each
other, making the result small in terms of the nonadia-
batic parameter.

Recently, Alexandrov and Schrieffer [4] again
obtained a strong phonon renormalization and pre-
dicted extremely large dispersion of optical phonons
(on the order of the Fermi velocity) because of coupling
with electrons. The large phonon dispersion is typical of
the theory [5] using the Frölich Hamiltonian. Reizer [6]
pointed out the importance of the screening effects
accompanying the longitudinal optical modes, but non-
physical renormalization still remained in his results.
For the first time, the screening of the Coulomb field in
optical vibrations was treated by Gurevich et al. [7].

Only the phonon frequencies were calculated in [4,
6, 7], while no results were available for the attenuation

m/M

¶This article was submitted by the author in English.
1063-7761/03/9602- $24.00 © 20335
of optical phonons. The collisions of electrons with
each other, with defects and phonons were ignored.
Besides the electron collision rate γ, the natural phonon
width Γnat was also disregarded. The natural phonon
width is caused by the anharmonic processes of phonon
decay into two (or more) phonons. Note that the colli-
sion processes determine the conductivity and the
dielectric permittivity, that is, the electrodynamics of
the electron–phonon system. In the optical range, the

collision rates γ, Γnat ~ ωO are small compared to
a typical phonon frequency ωO and they give the widths
of the plasmon and phonon resonances. Experimental
studies of this resonances provide information about
isotope compositions and quality of semiconductor
materials.

Using the Boltzmann equation for electrons and the
equation of motion for phonons, we calculated [8] the
frequency shift and the width of optical phonons in
metals. We take into account all the aforementioned
features: the electron–phonon interactions of different
types, the Coulomb screening, and the collision rates of
electrons and phonons. We find that dispersion and
damping of the longitudinal modes can be correctly
described if we neglect the direct electron–phonon
interaction λ and retain only the screening and the col-
lision rates γ, Γnat. It should be emphasized that, in the
semiclassical approximation (when the phonon
momentum transfer to electrons is small compared to
the electron momentum), the method of the Boltzmann
equation is completely equivalent to the diagram tech-
nique. The corresponding equations can be formulated
as equations for the electron and phonon self-energies.
In any case, we must properly incorporate adiabatic
approximation and screening.

Experimentally, it is convenient to investigate the
effect of free carriers on the phonon modes by varying
the carrier density, that is, by using doped semiconduc-
tors or superconductors (see, e.g., recent work [9], car-
ried out on the HTSC compound Nd1.86Ce0.14CuO4 + δ
using IXS). In this paper, the results obtained in [8] are
extended to the case of small free-carrier densities,

m/M
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when the electron plasma frequency ωep can be on the
order of the phonon frequency ωO and the coupled
phonon–plasmon modes can exist. We consider the
screening as well as the collision effects γ and Γnat,
focusing on the width of the phonon–plasmon modes.
We essentially simplify the problem, ignoring the direct
electron–phonon interaction (terms with λ) and assum-
ing that, first, the electron system is degenerate and,
second, the momentum transfer k is small compared to
the Fermi momentum pF.

2. ASYMPTOTIC EXPRESSIONS
FOR THE DIELECTRIC FUNCTION

Let us find the limiting expressions of the dielectric
function

(1)

Here, the ion contribution (first term) is assumed dis-
persionless, while we are interested in the wave vectors
which are small in comparison to the Brillouin zone
size. This term has a pole and a zero at the frequencies
of the transverse and longitudinal phonons, respec-
tively. The natural phonon width iΓnat/2 is added to ω;
the high-frequency ion permittivity is denoted by ε∞.

The second term in Eq. (1) is the electron contribu-
tion to permittivity for k ! pF, written [8] with the help
of the Boltzmann equation in the collision rate approx-
imation. In Eq. (1),

and the angular brackets

denote averaging over the Fermi surface with the den-
sity of states ν0. For the isotropic case, the density of
states on the Fermi surface is ν0 = m*pF/π2 and m* is the
effective electron mass.

Let us rewrite the electron contribution as

(2)

where  =  is the Thomas–Fermi parame-
ter. For the isotropic Fermi surface, we can carry out the
integration

ε k ω,( ) ε∞
ω2 ωLO
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2– iΓnat+
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–
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2 SFd
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Separating the imaginary and real parts, we obtain

(3)

The imaginary part, known as the Landau damping,
is pronounced at kvF > |ω + iγ|:

(4)

In the range of γ < ω – kvF ! kvF, we have

(5)

For a small kvF ! |ω + iγ|, the expansion in
 gives

(6)

Here, the k-independent term represents the Drude con-
ductivity. The electron plasma frequency is given by the
integral over the Fermi surface

The limiting expressions (4)–(6) are also valid for
an arbitrary Fermi surface, but the constant vF has dif-
ferent values. In Eq. (4), this is an average velocity on
the belt v ⊥  k, the velocity in the limiting point v || k in
Eq. (5), and the squared velocity averaged over the
whole Fermi surface in Eq. (6). We do not consider the
cases when the Fermi surface has flat or cylindrical
pieces.

3. FREQUENCY AND DAMPING 
OF PHONON–PLASMON MODES

The frequencies of the longitudinal phonon–plas-
mon modes are determined by the equation ε(k, ω) = 0.
In the absence of the electron and phonon collisions
(γ = Γnat = 0), we obtain with the help of Eqs. (1) and (6)

1
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the biquadratic equation. It gives the frequencies of the
coupled phonon–plasmon modes at k = 0:

(7)

These frequencies (related to the ωTO) are shown in
Fig. 1 (left panel) as functions of the electron density,
namely, ωpe/ωTO. The upper dashed line begins at ωLO
and tends to the electron plasma frequency ωpe. The
lower frequency (solid line) starts as ωpeωTO/ωLO and
then approaches ωTO. In other words, observing the lon-
gitudinal phonon mode in the optical range and adding
electrons, we see a transition of the longitudinal
phonon frequency from ωLO to ωTO. This is a result of
the Coulomb screening.

Since both the collision rates γ and Γnat in the optical
range are small in comparison to ωO, the damping of
the phonon–plasmon modes can be added to their fre-
quencies, ω = ω± – iΓ±/2. Using Eqs. (1) and (7), we
find at k = 0

The behavior of damping as a function of the electron
density is shown in Fig. 1 (right panel) for the ratio
γ/Γnat = 3. We see that the variation of the width corre-
sponds to the type of modes: for a low electron density,
the solid line represents mainly the electron plasma
mode and the dashed line is associated with the longi-
tudinal phonon. The character of modes reverses at high
electron densities.

Now let us consider the dispersion of the coupled
phonon–plasmon modes. When the wave vector k
increases, the upper mode (see Fig. 2 and Eq. (5))
approaches the asymptote ω = kvF:

The lower mode drops into the domain kvF > ω (dashed
curve), where the Landau damping (4) appears:

(8)

Here, the ion plasma frequency is .
In the imaginary part, we should replace ω with the fre-
quency ω– defined by the real part. It should be empha-
sized that a large dispersion arises under the conditions
k0vF @ ω and k0 < pF . Then, at k < k0, the frequency
changes from ωTO to ωLO. Again, this is the effect of
screening.
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In the general case, the frequency and the damping
of the phonon–plasmon modes can be found by numer-
ically solving the equation ε(k, ω) = 0. Of particular
interest is the function Im[–1/ε(k, ω)], since it gives the
intensity of the inelastic Raman or X-ray scattering,
where ω and k have the sense of frequency and momen-
tum transfer, respectively. The plots of the intensity
obtained with the help of Eqs. (1)–(3) are shown in
Figs. 3–5 for the case of a large electron density (ωpe >
ωTO). The peak at ω/ωTO = 2.6–2.7 corresponds to the

plasmon excitation; note that ωpe = k0vF/  for the
quadratic electron dispersion.
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Fig. 1. Frequencies (in units of ωTO, left panel) and widths

(in units of Γnat, right panel) of the phonon–plasmon modes
at k = 0 as functions of the free carrier density (i.e., of the
electron plasma frequency in units of ωTO). We set the ratio
of the LO and TO frequencies in the absence of the free car-

riers ωLO/ωTO = , and the ratio of the electron and

phonon damping γ/Γnat = 3.
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Fig. 2. The dispersion of phonon–plasmon modes for metal-
lic (ωpe > ωTO, left panel) and semiconductor (ωpe < ωTO,
right panel) carrier densities. The straight dashed lines sep-
arate the domain kvF > ω, where the Landau damping
exists; the dashed curves represent strongly damped modes.
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In the domain of ω/ωTO < 1, there is a phonon peak
(see left panel of Fig. 1 and Eq. (7)). Because of the
screening, its frequency is smaller than ωLO. For a small
k (Fig. 3), the intensity of the phonon peak is 50 times
smaller than the plasmon peak intensity. For larger k
(see Fig. 4), the broad continuum ω < kvF appears on
the low-frequency side of the phonon peak. Here, the
dielectric constant ε(k, ω) has a noticeable imaginary
part (4) arising from the electron–hole excitations. The
intensity of the phonon peak decreases, and its line
shape becomes asymmetric, similarly to the Fano reso-
nance. Finally, the phonon peak broadens, being
immersed in the electron continuum (see Fig. 3c and
Eq. (8)).

For a relatively small electron density ωpe < ωTO, the
intensities are shown in Figs. 6–8. Now the phonon
peak is observed approximately at ω/ωTO = 1.5. This

yields ω = ωLO, since we set ωLO/ωTO = . There are
also the plasmon peak and the electron–hole contin-
uum. In Fig. 6, the plasmon peak is broader than the
phonon peak, since we set γ/Γnat = 3. The plasmon peak
becomes still broader in Fig. 7 because of the neighbor-
ing electron continuum at ω < kvF . It disappears com-
pletely in Fig. 8.

4. CONCLUSIONS

We have shown that the width of the longitudinal
phonon–plasmon modes increases with increasing free
carrier density because the mode frequency approaches
the region kvF > ω, where the electron–hole excitations

2
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exist. Detailed experimental studies can clarify the
comparative role of different mechanisms of the
phonon shift and damping in metallic and doped semi-
conductor materials at various electron densities.
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Abstract—Quantum algorithms that speed up their classical counterparts are proposed for the following prob-
lems: recognition of eigenvalues with a fixed precision, recognition of molecular and electronic device struc-
tures, and the finding of thermodynamic functions. We mainly consider structures that generate sparse spectra.
These algorithms require a time from about the square root to the logarithm of the time of the classical ana-
logues, and they provide exponential savings in memory for the first three problems. For example, the time
required for distinguishing two devices with the same given spectrum is about the seventh root of the time of
the direct classical method, and about the sixth root for the recognition of an eigenvalue. Microscopic quantum
devices can therefore recognize molecular structures and physical properties of environment faster than large
classical computers. © 2003 MAIK “Nauka/Interperiodica”.
1. ELECTRONIC DEVICES
AND QUANTUM COMPUTATIONS

1.1. Statement of the Problem 
and Outline of the Paper 

The aim of this paper is to build effective quantum
algorithms for problems of the following types:

(1) given a quantum gate array generating a unitary
operator U and a complex number ω, to determine
whether it is an eigenvalue of U with a fixed precision;

(2) to recognize the structure of an unknown elec-
tronic or molecular device given only access to its func-
tion.

The first problem is an important intermediate step
in solving the second.1 We consider them sequentially.

Recognition of eigenvalues. This problem is
closely related to finding the eigenvalue distribution or
density of states (DOS), i.e., the energy levels E0 < E1 <
… and the dimensions of the corresponding subspaces
d0, d1, …. The DOS plays a key role in calculating ther-
modynamic functions given by

(1)

for some values a(j) such that the summands rapidly
converge to zero. For example, this expression gives the

F a j( )d j

E j

kBT
---------– 

 exp
j

∑=

¶This article was submitted by the author in English.
1 A straightforward calculation shows that the simulation of evolu-

tion generated by a given Hamiltonian up to a time instant τ with
a fixed accuracy requires the number of steps on the order of τ2

on a quantum computer. This means that all results of this paper
can be generalized to arbitrary quantum systems.
1063-7761/03/9602- $24.00 © 20340
partition function Q if all a(j) = 1, the average energy if

and the entropy if

Having an efficient method of finding dj , we would
be able to obtain thermodynamic functions and to
determine important properties (e.g., heat capacity) of
an environment consisting of such molecules. The best
known classical method of finding the DOS was pro-
posed by Hams and Raedt in [1]. Their method requires
the time on the order of given by the dimension N of the
space of states and the memory of the same order
(whereas the direct method of calculating eigenvalues
requires a time on the order of N3). The first quantum
algorithm for this problem proposed by Abrams and
Lloyd in [2] requires the same O(N) time and logarith-
mic memory. The method proposed in the present work
requires a time on the order of that given by the square
root of the classical one and memory on the order
of ln2N.

The idea of our approach is as follows. We use a
combination of the Grover search algorithm (GSA) and
the Abrams and Lloyd method [2], which reveals eigen-
values and the universal quantum function of applica-
tion App. The Abrams and Lloyd method of revealing
eigenvalues is based on the application of U controlled
by ancillary qubit α as

a j( ) E j/Q=

a j( )
kB

Q
-----

E j

kBT
---------– 

  /Qexp 
  .ln–=

Ucond x α,| 〉
Ux α,| 〉 if α 1=

x α,| 〉 if α 0.=
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We note that it is a direct generalization of Shor’s trick,
which can be obtained if U is a multiplication by a
given integer modulo q [3].

Recognition of device structures. We separate two
versions of this general problem: recognition of molec-
ular structures and recognition of electronic circuits.

If we want to determine a molecular structure, it is
natural to assume that its functionality is given as the
spectrum of its Hamiltonian, e.g., the set of its energy
levels. It is therefore required to find a quantum system
whose Hamiltonian has a given spectrum.

The problem of recognition of electronic circuits is
stated differently. An electronic device is considered as
a source of electromagnetic fields that can control some
quantum system Q. Let such a field induce evolution of
a system with Hamiltonian H in the time frame δt. We
then have the correspondence

(electronic device)  (Hamiltonian, δt).

The evolution of the quantum system Q induced by this
Hamiltonian can be represented as a unitary transfor-
mation:

Given a device C and a time instant t, we can then asso-
ciate with it some unitary transformation UC . We
assume that we have recognized a circuit C if we have
found some circuit C1 such that UC =  with high
accuracy. We write U instead of UC for the circuit C that
we want to recognize. In fact, we solve a more general
problem where the tested device C can be used as a
black box acting on n qubits as a function UC such that
if x is an input; then UC |x〉  is the result of its action on
this input. The tested device can contain its own quan-
tum memory and can be entangled with Q in the course
of performing the transformation U, but this entangle-
ment must then be eliminated. The existence of such an
entanglement implies that this case cannot be described
by the Hamiltonian of the system Q. For simplicity, we
assume that the unknown circuit is built from elemen-
tary functional elements taken from some fixed set. The
next natural assumption is that the size of the circuit is
limited by some constant c such that the circuit is some
unknown combination of c functional elements. We let
% denote all circuits of length c. We can encode such
C ∈  % by a string [C] of ones and zeroes such that the
decoding procedure is easy and we can immediately
recreate a circuit given its code. We can therefore look
through all circuits by looking through their codes. The
same coding can be built for electronic devices.

A straightforward solution of the problems is clear.
For the problem of recognition of molecular structures,
all we need is to be able to recognize eigenvalues of the
transformation generated by a given circuit. Each
eigenvalue of a unitary operator has the form e2πiω,
where ω is a real number from [0, 1) called the fre-

U
i
h
---Hδt– 

  .exp=

UC1
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quency. In what follows, the spectrum is meant to be the
set of all frequencies. Let all the frequencies be grouped
near points of the form l/M, where M is not very large
and l = 0, 1, …, M – 1. We assume that the acceptable
precision of the recognition of frequencies is 1/M. Hav-
ing an algorithm for eigenvalue recognition, we can
apply it repeatedly in constructing spectra generated by
all possible circuits, and thus find the sought for circuit
with the given spectrum. If we need to recognize a cir-
cuit of an electronic device, we can examine all possi-
ble circuits taken in some order. Examination of one
circuit means that we run it at all possible inputs one
after another and compare the results with the corre-
sponding result of the action of the tested device.

For the problem of the recognition of molecular
structures, our method requires a time on the order of
the sixth root of the time of the direct classical method,
whereas saving memory is exponential. For the prob-
lem of the recognition of electronic circuits, our
method gives at least square-root time saving in the
case where the classical counterparts exist (this is the
narrow formulation where the tested device generates a
classical mapping). However, the advantage can be
greater in the general case. For example, we can distin-
guish between two devices with the same spectrum in
the time about the seventh root of the time of the brute
force method.

To recognize devices at the quantum level, we must
be able to store and perform operations on codes of dif-
ferent circuits. This possibility is based on the existence
of a quantum analog of the universal Klini function.
This is a unitary operator App such that for all quantum
devices C and all inputs x,

We assume that for a wide range of quantum devices C
with c particles, C can be encoded as an integer [C] in
time O(c) such that the quantum complexity of App is
also O(c).

We here consider a particular case of the problem
where all eigenvalues of U are known a priori or can be
obtained in advance. This restriction is not very con-
straining. To illustrate the tasks that can be solved by
the proposed method, we consider several examples of
the problem of recognition of an electronic device
whose spectrum is known.

Recognition of quantum algorithms is designed as
subroutines. Such an algorithm must restore the input if
we apply it twice. Computing a function f, it acts as

|x, b〉   |x, b + f(x) mod2〉 .

All known quantum algorithms can be represented in
this form. For such quantum algorithms, the unitary
transformation U has only two eigenvalues, 1 and –1.
Given a controlling device for such an algorithm
(which can also include classical elements and ancil-
lary qubits), we can quickly recognize its construction.

App x C[ ],| 〉 UCx C[ ],| 〉 .=
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Alternatively, we can quickly find a quantum or classi-
cal algorithm for a given task.

We consider the “classical” particular case of the
recognition problem where U maps each basic state to
a basic state, which means that the matrix of U consists
of ones and zeroes and in addition U equals U–1. Here,
the evident recognition strategy takes the number of
steps on the order of card(%). In this case, the problem
can be reformulated as finding such t that some given
predicate A(t, s) is true for all s. This is the problem of
verification of logical formulas. Its quantum solution in
a time about the square root of the classical time based
plainly on Grover’s trick was proposed in [4]. This
method is inapplicable in the general case, where UC is
an arbitrary involutive unitary transformation, e.g.,
such that U = U–1. This general case is precisely the
subject of this work. Here, we cannot recognize a cir-
cuit as easily as in the “classical” case because it is dif-
ficult to compare two quantum states UC |x〉  and U |x〉 .

The general idea of our approach to the recognition
of arbitrary electronic devices is as follows. We include
the device C whose structure we want to recognize into
the classical controlling part of a quantum computer.
We consider the main system of n qubits. The tested
device then generates a unitary transformation on this
system. We then find the eigenvectors of U using Ucond
by the above method and compare them with the eigen-
vectors of circuits from % choosing a circuit that gives
the best approximation. Here, GSA is used at the last
step and at the several intermediate steps.

The sparse spectrum assumption. In this paper,
we mainly consider circuits generating sparse spectra.
This means that the spectra of the operators UC are
designed such that the frequencies are assembled in
groups and the minimum distance between frequencies
from the different groups is greater than 1/M and the
maximum distance between frequencies in the same
group is less than 1/L. In the problems of eigenvalue
and molecular structure recognition, we require that
L = 16M, which is not very restricting. In the problem
of recognition of electronic devices, we assume that
L @ M, which is a stronger limitation. A spectrum is
called sparse if M = const as N  ∞. Our algorithms
show best performance for sparse spectra.

Spectra that are not sparse are called dense. For
dense spectra, our methods give less advantage over the
classical algorithms (see Section 3.6). An example of a
dense spectrum is given by ωk = k/N, k = 0, 1, …, N – 1.
Similar problems for dense spectra require additional
investigations.

We write ω' ≈ ω iff ω' and ω belong to the same
group. For simplicity, we also assume that for each
group of frequencies, there exists a number of the form
l/M positioned between some two frequencies of this
group, where l is an integer less than M.
JOURNAL OF EXPERIMENTAL 
1.2. Abstract Model of a Quantum Computer:
“Plug and Play” Technique 

To build algorithms recognizing circuits, we need an
abstract model of a quantum computer. A quantum com-
puter consists of two parts, quantum and classical. The
classical part exactly determines what unitary transfor-
mation must be performed on the quantum part at each
time instant and therefore plays the role of a controller
for the quantum part. These unitary transformations are
of two types: working transformations, which our com-
puter performs itself, and query transformations, which
are induced by a tested device, U or Ucond.

We can suppose that the quantum part Q consists of
nuclear spins or interacting dipoles (or some other
quantum two-level systems) and the classical part is a
source of electromagnetic fields determining the evolu-
tion of the quantum part. The general form of the state
of the quantum part is

where the basic states e0, …,  are simply strings of

ones and zeroes of the length ν > n; this length is the
size of the quantum part that can contain some auxiliary
qubits in addition to the input for U, N = 2n is the num-
ber of all classical input words for U, and

The classical part determines when the tested device
is to be “switched on” (this usually occurs many times)
and when the result of the computation is to be
observed. Observation of a state χ gives every basic
state ei with the corresponding probability |λi |2.

The problem of recognition of electronic devices
presumes the so-called “plug and play” technique,
where the tested device is applied only as a black box.
If query transformations are only U, then our model
evidently satisfies the requirements of the plug and play
technique, where we classically control switching the
tested device. An implementation of Ucond in the frame-
work of this technique is not so easy because it requires
a quantum control on applications of the device.2 

It is nevertheless possible to implement Ucond in the
framework of the plug and play technique. This prob-
lem requires additional investigations; here, we simply
presume that it is possible. This difficulty does not exist
in problems of eigenvalue and molecular structure rec-
ognition. Here, we can manage without oracles because

2 This would evidently be possible provided we have access to the
internal details of our device and can simultaneously control their
work at the quantum level, but this assumption contradicts the
plug and play technique.

χ λ iei,
i 0=

2
ν

1–

∑=

e
2

ν
1–

λ i
2

i 0=

2
ν

1–

∑ 1.=
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having an explicit form of a quantum gate array that
realizes the universal function of application App, we
can control its actions in each element at the quantum
level separately and simultaneously, thereby imple-
menting Ucond.

Let every basic state be partitioned as

where each register  is in turn partitioned into a

place for the argument, places for time instants, and
places for the corresponding frequencies. A complex

index  contains one or two integers, and the length of
ei is therefore a polynomial in c and n of at most second
degree.

2. OBTAINING NEW ALGORITHMS
FROM BASIC QUANTUM TRICKS

2.1. GSA and the Amplitude Amplification 

The GSA proposed in [5] is one of two basic quan-
tum tricks. It is used for quickly obtaining a quantum
state  given the inversion  along this state. The

inversion along some state  is defined by

We also assume that  acts as the identity if  does not
exist. A typical situation is where a state is unknown but
the inversion along it can be performed easily. For
example, let  be a solution of the equation f(x) = 1
with a simply computable Boolean function f. The
inversion  can then be implemented by modulo-2
addition of f(x) to an ancillary qubit initialized by

This transformation maps the state

to the same state with the sign “+” or “–” depending on
whether the equality f(x) = 1 is satisfied. The transfor-
mation is unitary and can easily be performed given a
device performing f. All sequential transformations in
our formulas are applied from right to left.

The GSA is a sequential application of the transfor-

mation G =  to a randomly preset state . If we

apply this transformation O( ) times, where N is the
dimension of the main space, then observation of the
quantum part yields  with a visible probability,

ei place for code C[ ] R
1

R
2

… R
l

, , , ,| 〉 ,=

R
l

i

a Ia

a

Ia x| 〉
x| 〉 if x a⊥

a| 〉 if x– a.=



=

Ia a

a

Ia

0| 〉 1| 〉–

2
------------------.

 x
0| 〉 1| 〉–

2
------------------,

IaI
0̃

0̃

N

a
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whereas finding  without a quantum computer would
have required a number of steps on the order of N.

A minor difficulty is that here we do not exactly
know the time instant t at which the iterations must be
terminated in order to make the probability of error
negligible, as required in applying the GSA as a sub-
routine. The following simple trick helps.

We define the number B = B(N) such that 1/B is the

average value of |〈a | 〉| for  uniformly distributed on
a sphere of radius 1 in the space of inputs. A straight-

forward calculation shows that B = O( ). Let
GenArg j be operators generating arbitrary vectors 
from the space of inputs belonging to independent uni-
form distributions, j ∈  {1, 2, …, k}, and let
GenTimeArg j be operators generating time instants tj

from independent uniform distributions on integers
from the segment [0, B]. We arrange k copies of two
working registers, for the input and for the storage of a
time instant, and apply the corresponding operator

to each register. If  exists, the probability of obtaining
 observing any single register is at least one-fourth

(see [6]) and the probability of obtaining any other
fixed state is negligible because our operators GenArg j

generate independent uniformly distributed samples. If
 does not exist, which implies that  is the identity,

then the probability of obtaining any fixed state is neg-
ligible. We let  denote the contents of the jth register
for the argument in the resulting state. We consider the
following criterion: if at least one-fifth of , j = 1, 2,

…, k, coincide, we decide that  is this value, other-

wise  does not exist. We now calculate the error prob-
ability of this criterion. Let K be the number of those j
for which  = . By the central limit theorem, the
probability that the fraction

belongs to the segment [α1, α2] converges to

Straightforward calculations then show that the proba-
bility that K ≤ k/5 is on the order of

a

0̃ 0̃

N
a j

I
0̃
Ia( )

t j GenArg jGenTime j

a
a

a Ia

a j

a j

a

a

a j a

k/4( ) K–

k/4( ) 3/4( )×
-----------------------------------

1

2π
---------- e

x
2
/2–

x.d
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∫

e
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xd
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∞

∫
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for α1 on the order of . To make the error probability

on the order of 1/ , it therefore suffices to choose k
on the order of n = . This method can be used not
only for the GSA but also for other algorithms. If the
probability of obtaining the correct result for each of
the k registers is some positive number p independent of
the dimensionality, then to make the error probability
1/N1, it suffices to choose k on the order of . In
what follows, we use this simple trick without specially

mentioning it and let  denote simultaneous opera-
tions of the same type on all working registers. We
assume that all ensembles generated by the different jth
copies of operators are taken from independent distri-
butions.

We use the standard norm

on operators in a Hilbert space. Given an operator A, we
let Ae denote an operator such that ||A – Ae || ≤ e. In what
follows, we use the above method requiring copies of
registers, thereby raising the accuracy of our operators
to the required level. When we must repeat an operator
T times, the required accuracy of one application must
be 1/T and, as shown above, it can be ensured by only
linear cost in memory. Instead of A, we therefore
always use Ae, where e = O(1/T), whenever an operator
A must be repeated T times; we do not explicitly indi-
cate this in the notation.

2.2. Revealing the Eigenvalues 

The second basic quantum trick is used for revealing
eigenvalues of a given unitary operator U. We define an
operator revealing frequencies in accordance with [2].

Let M = 2m and L = 2p. We determine frequencies of
unitary operators within 1/L, where L is the number of
applications of U required for revealing frequencies
with this accuracy, which means that the accuracy 1/M
is sufficient to distinguish the eigenvalues of U. For the
recognition of eigenvalues, we set p = m + 4, and there-
fore, L = 16M.

We let (0.l)p denote the number from [0, 1) of the
form l/L. Let the operator U have the eigenvalues

, where the frequencies ω0, ω1, …, ωN ' – 1 are dif-
ferent real numbers from [0, 1). Let Ek be the space
spanned by all eigenvectors corresponding to ωk. An
arbitrary vector with a length of 1 from Ek is denoted
by Φk. Every state ξ therefore has the form

k

N
Nlog

N1log

⊗ j

A Ax
x  = 1
sup=

e
2πiωk

ξ xkΦk.
k 0=

N ' 1–

∑=
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Let N' be some integer and Ω = { } be some set
of integers from {0, 1, …, L – 1}, 0 ≤ i ≤ M – 1, 0 ≤ k ≤
N ' – 1; ε, δ > 0. We set

or |( )p – ωk – 1| ≤ ε}.

Definition 1. A transformation W of the form

is called a transformation of type Wδ, ε if for all k and ξ,

Thus, δ is the error probability of obtaining the cor-
rect frequencies ωk by observation of the second regis-
ter and ε is the precision of the frequency approxima-
tions.

Definition 2. A unitary operator R is called reveal-
ing frequencies of U if R belongs to the type  for

any K ∈  {1, 2, …, L}.3

The key here is the quantum version of the Fourier
transform (QFT), defined by

We also need the following generalization Useq of the
operator Ucond:

This is the result of a sequential applications of U to the
main register. To implement this operator by means of
Ucond, we perform the following cycle. For an integer
counter j ranging from 1 to the maximum value L – 1 of
a, we apply U iff j ≤ a. One cycle then consists of Ucond
with a properly prepared controller and the resulting

operator is .

We define the operator revealing frequencies by

where quantum Fourier transformations are applied to
the second register.4 It was proved in [7] that Rev is a
transformation revealing frequencies. We now need
more. For a redistribution of amplitudes xk , we also
need the transformation Rest cleaning the second regis-
ter. The ideal candidate for this role would be Rev–1, but

3 In what follows, we use this notion only with K = 16.
4 As in [2], the first QFT can be replaced by the Walsh–Hadamard

transform because it is equivalent to the QFT on a zero ancilla.

ω̃k i,

Lε
k Ω( ) i : 0.ω̃k i,( )p ωk– ε≤{=

0.ω̃k i,

W  : ξ 0
m 4+,| 〉 λ i k, Φk ω̃k i,,| 〉

i 0=
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∑
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∑

λ i k,
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i Lε
k Ω( )∈

∑ xk
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1 2δ–( ).≥
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L
----,

QFTL : s| 〉 1

L
------- 2πisl/L–( ) l| 〉 .exp
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L 1–

∑
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it requires the application of U–1, which is physically
unrealizable given only the device fulfilling U, except
in evident cases where, e.g., U = U–1. We can use this
simplest definition of Rest only in the case where we
are given a circuit implementing U (e.g., gate array)
because U–1 is then accessible for us as well as U. How-
ever, if C is given only as a black box, the restoring
operator must be defined separately.

We find the operator restoring the ancilla in the form

Rest = RevD,

where D is some operator of turning. Given some inte-

gers  of the form q/L, where q is an integer,  ≈ ωk ,
we can define the operator D of turning by

where

It was proved in [7] that

which implies that the restoring operator thus defined
indeed restores zeroes in the second register after the
action of Rev if L is sufficiently large. To create these
good approximations, we apply a slightly more general
construction. We set

where the operator Enh calculates an integer function
h(l) giving a good approximation (0.h(l))p of frequen-
cies within 1/L given their rough approximation (0.l)m

within 1/M and places them into the ancilla;  rotates
each eigenvector by an appropriate angle

and the last application of Enh cleans the ancilla. The
operator Enh is accessible given good approximations
of eigenvalues. Our operator Rest therefore restores
zeroes in the ancilla within 1/L.

We can reach accuracy 1/L for all operators of Rest
type that are less than 1/t, where t is the number of all
steps in the computation; this accuracy can be guaran-
teed with  = p registers. We emphasize that this
difficulty with the eigenvalue precision arises only
when U–1 is inaccessible, as in the problem of recogni-
tion of electronic circuits in Section 3.4, where we must
choose L @ M.

The operators Rev and Rest can be built in the form
of a quantum gate array using the universal quantum
Klini function App, where the code [C] of a circuit gen-
erating U is a part of the input. We write the operator U
corresponding to these two operators as a superscript.

ω̃k
L ω̃k

L

D Φk l,| 〉 2πi L 1–( )δk l,–( ) Φk l,| 〉 ,exp=

δk l, ω̃k
L 0.l( )m.–=

RestRev χ 0,| 〉 χ 0,| 〉–( ) 7M/L,<

D Enh D̃ Enh,=

D̃

D̃ Φk| 〉 2πi M 1–( ) 0.h l( )( )p 0.l( )p–( )–[ ]exp Φk,=

Llog
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3. RECOGNITION PROBLEMS

3.1. Obtaining Eigenvectors and Recognition
of Eigenvalues 

Our assumption about a sparse spectrum is now
stated as L = 16M = const. Because Rev reveals fre-
quencies, it belongs to the type W1/16, 1/M . By definition
of Wδ, ε, this implies that Rev gives a state

where seven-eighths of the probability are concentrated
on the pairs i, k such that (0.ωi, k)m is close to ωk . This
implies that we can obtain eigenvalues with a high
probability by observing the second register; the first
register then contains the corresponding eigenvector.
This procedure for obtaining eigenvectors was pro-
posed in [2, 8]. Its first disadvantage is irreversibility.
Observing a state, we lose the complete information
about it; we cannot use this state again, which is very
important for building nontrivial quantum algorithms.
The second disadvantage is that this procedure gives a
random eigenvector when it is typically required to
obtain the eigenvector corresponding to a given fre-
quency.

We consider a good approximation  of some fre-
quency ω written as a string of p of its sequential binary

digits and let %ω = { , …, } be a basis of the sub-
space Eω of eigenvectors corresponding to all frequen-
cies ω' ≈ ω. We now build the operator Stateω that con-
centrates the bulk of the amplitude on some superposi-
tion of the corresponding eigenvectors

For this, we apply the GSA. Let

be some randomly chosen vector from the main space
with all eigenvectors in the second sum corresponding
to frequencies ω' ÷ ω. Our target state is the vector

where

λ i k, Φk ω̃k i,,| 〉 ,
i 0=

M 1–

∑
k 0=

N ' 1–

∑

ω̃L
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ω Φl

ω

λ jΦ j
ω

j 1=

l
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a| 〉 µ jΦ j
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s
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The vector is therefore of length 1 and is directed along
the projection of  to the subspace Eω.

Let A be some set of vectors. We let IA denote the
operator that changes the sign of all vectors in A and
leaves all vectors orthogonal to A unchanged. Our aim
is to obtain the operator  constrained to the two-

dimensional subspace S( , ω) spanned by the vectors
| 〉 and Eω( ).

Let Revj and Restj be jth copies of the respective
operators Rev and Rest acting on the corresponding
places of the jth register. We let lj denote the string
contained in the place for the frequency of the jth reg-
ister. Set

It follows that Signω changes the sign iff

for at least a half of all j.5 Applying the argument at the
end of Section 2.1, we conclude that the actions of 

and  restricted to S(a, ω) differ by less than 1/2O(v );
this difference can therefore be made very small with
only a linear growth of memory. We thus omit the tilde
from our notation.

We define

where the respective operators GenArg and GenTime-
Arg generate the pair , [C] and the time instant t, with
C being a gate array implementing . Here, the actions

of  are implemented by the universal function of

application App. The result ξ = St | 〉 of its action on 
is then close to Eω( ). Indeed,

(see [6]). The average value of |〈 |Eω( )〉| with the uni-
formly distributed probability of choosing  and t over
all space and the time frame [0, B], respectively, is on

the order of 1/ . Therefore, if t is randomly chosen
from the uniform distribution over 1, 2, …, B, then the
average value of |〈Eω( )|ξ〉|2 is not less than one-fourth.
Of course, it would be much more convenient to obtain

5 We could choose any fixed ρ: 1/8 < ρ < 7/8 instead of 1/2. Indeed,

 thus defined would change the sign of all  ∈  Eω. If  ⊥
Eω, the probability of obtaining ω in observing the frequency
from Rev is less than one-eighth.

a

IEω

a
a a

ĨEω ⊗ Rest j Signω⊗ Rev j.=
v

j
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j

0.l j( )p 0.ω̃L( )p– 1/L≤

ĨEω
a a

IEω
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=

+ IaIEω
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a a
a

N
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Eω( ) with the error probability converging to zero,
which is possible by the method described in Section 2.1.
Namely, we arrange h equal registers for the states χk,
k = 1, 2, …, h in the main space, the corresponding h
registers for the frequencies, and associate the variable
tk with each kth register. Let Stk be a pattern of the oper-
ator St acting on the kth register. We recall that the oper-
ators GenArgk and GenTimeArgk generate independent
distributions for different k = 1, 2, …, h. We now define

(2)

Applied to zero initial state, this operator gives a state

χ1 χ2 … χh , and the average value of
|〈Eω(χk)|χk〉|2 is close to some number not less than one-
fourth with the vanishing probability of error. This also
implies that if we then apply the corresponding opera-

tors Rev1 Rev2 … Revh revealing frequencies to
this state, then the main part of the amplitude of the
resulting state χ is concentrated on the basic states for
which at least 5/32 of all registers for the frequencies con-
tain numbers l such that6 

On the other hand, if ω is not a frequency, the probabil-
ity of obtaining such a basic state vanishes because the
distributions generated by GenTimeArgk and GenArgk

are independent for different k.

The time complexity of this algorithm is on the

order of . The latter factor arises because of
copying the registers. We therefore have a solution of
the first problem of the recognition of eigenvalues.

3.2. Finding Thermodynamic Functions 

Given the structure of the molecule of a gas, we con-
sider the problem of finding its thermodynamic func-
tion (1). Because the common term in this sum rapidly
converges to zero, it is sufficient to find the first several
summands. It is therefore sufficient to find the degree of
degeneracy of the subspace corresponding to the fre-
quencies ω' ≈ ω for any ω = l/M. Let E0 < E1 < … < Es

be energy levels of the molecule (the eigenvalues of its
Hamiltonian H).

The evolution operator in time frame t is then given by

6 We note that in this criterion, 5/32 could be replaced by any ρ
such that 0 < ρ < 1/4 × 7/8 = 7/32.

a

State
ω
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Adding the diagonal matrix rI with a constant r to the
Hamiltonian does not change the physical picture.
Choosing

we then obtain a unitary operator U whose frequencies
belong to the segment [0, 1). Thus, the problem is
reduced to the case considered above.

We assume that M is fixed and we must examine
only several frequencies close to 0. We can first recog-
nize all numbers of the form l/M that are frequencies
within 1/L. Let ω be such a number. We now show how
to find the degeneracy degree d of the corresponding
subspace. This is the dimension of the subspace Eω
spanned by the eigenvectors corresponding to frequen-
cies ω' ≈ ω. Our strategy is as follows. We build the
operator  of reflection along this subspace. Using a
counting procedure built in [6], we then evaluate the
time required for turning an arbitrary initial vector to

this subspace. This time is about , and we thus
find d. We fix some e > 0 and show how to obtain the
value of d within ed.

Let the operators  generate time
instants tj from independent uniform distributions on
the segment [0, [a]], where a is a nonnegative number.

For a from 1 to , we perform the following three-
step loop:

(1) apply the operator

(2) find the fidelity of the result, i.e., the number of
all j for which at least 7/8 – e of all k are such that
ωj, k ≈ ω; if the fidelity of this step is larger than at the
previous step, we proceed with the loop, otherwise
we stop;

(3) replace a with 4a/3.
If we finish the computation at step 2, the current

value of a is taken as a rough approximation of d from
above. We have 3a/4 ≤ d ≤ a. To find d more exactly, we
divide the segment [3a/4, a] into [1/e] equal parts by
points a0 < a1 < … < al and repeat the above procedure
sequentially for all ai . We thus determine d within
g(e)d, where g is a function rapidly converging to zero
with e. Thus, our algorithm finds d and thermodynamic
functions with an arbitrary relative error in the time

O( )M, where the constant depends on the admissi-
ble error. A more refined algorithm can be obtained if
we apply the method of counting in [9]. In that work,
the quantum Fourier transform is used analogously to
the Abrams and Lloyd operator Rev only in order to
find the time period of the function G |ξ, t 〉  = |Gtξ, t 〉 ,

r Es, t–
h

2πEs

------------,= =

IEω

N /d

GenTimeArg j
a

N

⊗ ⊗ Rev j k, IaIEω
( )

t jGenTimeArg j
a
GenArg j;

j k

N
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which is about . Their method gives an accuracy

on the order of , which implies that the relative error
converges to zero as d  ∞.

3.3. Recognition of Molecular Structures 

We now consider the problem of recognition of
molecular structures. Given the spectrum of a mole-
cule, we must recognize its construction. We have no
access to the device, but it is sufficient to find an arbi-
trary device generating this spectrum. To clarify the for-
mulation, we assume the following form of determin-
ing the spectrum. Given a set  = {w1, …, wQ} of num-
bers from [0, 1) of the form wi = li /M with li ∈  {0, 1, …,
M – 1}, we let F denote the subspace spanned by vec-
tors of the form |li 〉 , i = 1, …, Q. A spectrum S is deter-
mined by this set  if

(a) for each ω ∈  S, there exists its good approxima-
tion wi ∈  , |wi – ω| ≤ 1/L, and

(b) each wi ∈   is a good approximation of some
ω ∈  S.

We would obtain slightly different formulation of
the problem if we wished to find a circuit whose spec-
trum only contains one given set of frequencies and/or
does not contain other sets, or if we permit some more
general form of a sparse set for  instead of li /M.
These versions of the problem have similar solutions.

As above, we find the recognizing algorithm in the
GSA form

(3)

where  is an arbitrarily chosen vector from the space

spanned by codes of the circuits, t = O( ), where T is
the number of all possible circuits and  is the
reflection along all codes [C] such that Spectr(UC) is
determined by . It now suffices to build .

We choose Bf  = O( ) such that a randomly cho-
sen vector w ∈  F satisfies

with probability 0.99. Let GenFreq j and GenTimeFreq j

be the respective operators generating a linear combi-
nation of frequencies  ∈  F and a time instant tfreq, j ≤
Bf; all these objects are taken from the corresponding
uniform distributions over all possible values and the
code of the gate array generating the inversion along the
corresponding state . These operators generate
objects in the corresponding ancillary registers. We let
ωj be the frequency contained in the jth register (ini-
tially, ).

N /d

d

w

w

w

w

w

I
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w Icir w,

Q

w w1〈 | 〉 1/B f>

ω̃j

ω̃j

ω̃j
SICS      Vol. 96      No. 2      2003



348 OZHIGOV
We assume that the code of the circuit generating U
is fixed and define the operator  by

where  inverts the sign of states with “bad
frequencies” in the jth register; these are the values of
ωj of the form l/M, l ∈  {0, 1, …, M – 1} that either
belong to  and are not a good approximation of fre-
quencies ω ∈  Spectr(V) or do not belong to  but have
a close frequency

on all other frequencies, this operator acts as the iden-
tity. Application of the sequence preceding SignGood-
Freq concentrates the amplitude on bad frequencies.
We note that  can be implemented by a given code
by means of the quantum Klini operator App. The sub-
sequent application of SignGoodFreq inverts the sign
of a state depending on whether bad frequencies are
present. Namely, SignGoodFreq changes the sign for
codes [C] without bad frequencies and does nothing for
codes [C] with bad frequencies. The subsequent opera-
tors clean all ancillae. Therefore,  defined this way
inverts the sign of exactly those codes C for which
Spectr(UC) is determined by . We need to define two
types of operators: SignGoodFreq and .

With each ωj contained in the jth register, we asso-
ciate a family of registers enumerated by two indices j,
k and containing the frequencies ωj, k .

Definition 3. A family of all ωj, k is called good if the
following property is satisfied for at least 1/5 from all j:
for at least 1/10 of all k, ωj, k ≈ ωj ∈  .

The registers enumerated by different k for a fixed j
are designed for the application of the jth copy of the
operator Stateω defined in the previous section. Here, it

is given by . Each k corresponds to the operator
Stk in definition (2) such that each ωj, k is the frequency
obtained from the result of the action of Stk .

We first build the operator . We set

Icir w,
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j

j

IBadFreq w j, ,

w
w

ω Spectr V( ): ωj ω–
1
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---;≤∈
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w
IBadFreq w j, ,
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where the operator Sign' changes the sign of only states
with bad families of frequencies.

It was shown in the previous section that if a fre-
quency ωj is bad, we can only have ωj, k ≈ ωj ∈   for
the vanishing part of all k, and before Sign', almost the
entire probability is concentrated on bad families ωj, k;
therefore,  changes the sign.

If ωj is good, then it belongs to  and has a close
ω' ∈  S. It follows from the previous section that about
7/8 × 1/4 = 7/32 > 1/5 of all k satisfy ωj, k ≈ ω ∈   and
almost the entire probability before Sign' is concen-
trated on good families; therefore the sign is
unchanged.

Hence,  is defined correctly.

We set

where the operator Sign changes the sign of only states
with good families of frequencies. If a frequency ωj is
not bad, then about 7/8 × 1/4 = 7/32 of all k satisfy
ωj, k ≈ ωj ∈  . If a frequency ωj is bad, we can only
obtain ωj, k ≈ ωj ∈   for the vanishing part of k, as
shown in the previous section. Thus, SignGoodFreq
acts as required.7 

We now calculate the complexity of our algorithm

for recognizing a molecular circuit. The first factor 

immediately follows from (3). The next factor  fol-
lows from the definition of . Finally, the definition

of  gives the factor . The resulting com-

plexity is on the order of .

3.4. Distinguishing Eigenvectors of Two Operators
with the Same Eigenvalue 

We now consider the most difficult of our problems,
the problem of recognition of electronic devices. The
difficulty is that we need not find a circuit with a given
spectrum, but must simulate the action of a given cir-
cuit. We recall that we now assume that frequencies can
be determined within 1/L given their approximation
within 1/M, where L @ M.

As a first step, we consider the following problem:
given two operators U and V having the same eigen-
value ω, the difference between the corresponding

7 Again, we could take arbitrary ρ1: 0 < ρ1 < 1 instead of one-tenth
and ρ2: 0 < ρ2 < 7/32 instead of one-fifth in the definition of a
good family.

w

IBadFreq w j, ,

w

w

IBadFreq w j, ,

SignGoodFreq ⊗ State
ωj( )

1–
Rest j k,[ ]=

+ Sign⊗ Rev j k, State
ωj[ ] ,

j, k

j, k

w
w

T

Q
Icir w,

IBadFreq w, M N

M TNQn
2
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eigenvectors must be found. We let  and  be the
subspaces spanned by the eigenvectors of U and V cor-
responding to all frequencies ω' ≈ ω. (A particular case
is where ω is a frequency of U but not of V. Here,

 =  and our algorithm is applicable in this situa-
tion.) We omit the index ω from the notation. For
u ∈  LU, ||u || = 1, we set

which is the sine of the angle between u and the sub-
space LV, or the distance between u and this subspace;
we define µv for v  ∈  LV, ||v || = 1, similarly. We set

Then µU = 0 implies that U ⊆  V. If the dimensions of the
spaces LU and LV are equal, then µU = µV; if they are not
equal, e.g., dimLU > dimLV, then µU = 1. Let d = d(N) be
some function taking values in (0, 1]. We call these sub-
spaces d-distinguishable if one of µU , µV is not less than
d, or if one of the subspaces is empty and the other is
nonempty.

We construct a procedure that determines whether
these subspaces are the same provided they can be
either d-distinguishable or coincident. The smaller the
values the function d(N) takes, the more accurate our

recognition. Let LU ∩ LV = L0. Then LU = L0 ⊕   and

LV = L0 ⊕  . We note that if  ≠ , then for all vec-

tors from  of length 1, their distances from LV are

exactly µU, and the same is true for LV if  is not

empty. Let  be the linear subspace spanned by vec-

tors from  ∪  , and ProjAB be the projection of a
subspace B to a subspace A. If dimLU > dimLV, we have
the decomposition into a sum of orthogonal subspaces,

where  is the subspace in LU consisting of vectors

orthogonal to LV. Let  be defined symmetrically.
Then either

(1) LU = LV or

(2) dimLU = dimLV and L' ≠ , or

(3) dimLU > dimLV and  ≠ , or

(4) dimLU < dimLV and  ≠ .

Lω
U

Lω
V

Lω
V

0

µu min 1 u v〈 | 〉 2
– v L

V
v  = 1,∈{ } ,=

µU µu, µV
u U∈
max µv .

v V∈
max= =

LU'

LV' LU' 0

LU'

LV'

L'

LV' LU'

L
U

LU'' ⊗ Proj
L

U L
V
,=

LU''

LV''

0

LU'' 0

LV'' 0
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We define the main operator determining the equal-
ity of LU and LV by

(4)

where SignDif changes the sign of the main ancilla αdif
iff at least one ancilla in the list

contains 1, and each operator of the type Dif changes
the corresponding ancilla from  in the following
cases:

(1) dimLU = dimLV and LU ≠ LV,

(2) dimLU > dimLV and µV < ,

(3) dimLU < dimLV and µU < ,

(4) dimLU > dimLV and µV > , or LV = ,

dimLU < dimLV and µU > , or LU = ;

these operators do nothing if LU = LV. In view of sym-
metry, it is sufficient to define the Dif operators in the
first, second, and fourth cases. We note that the first
case, dimLU = dimLV, is the only nondegenerate case
and the corresponding definition of Dif is more diffi-
cult.

Definition of Difsame dim. We suppose that dimLU =
dimLV . Our first aim is to build an operator Inv that acts
as the identity if LU and LV are coincident and that acts
as IL' if they are d-distinguishable. We arrange the first
two ancillary qubits αU and αV that signal whether a
given state has the projection to LU or correspondingly,
to LV of a length of at least one-third. We consider the
operator

where Anc inverts the corresponding ancilla iff at least
nine-tenths of the copies for the respective frequencies
are equal to ω within 1/M. It coincides with the inverse
operator Check–1.

Let t be some random integer from the segment
[0, [2/d]]. We define the operator

(5)

of Grover’s type. Two subspaces LU and LV are said to

be almost orthogonal iff  ≤ 1/30 for some µ ∈

Difference Differ
1–
SignDifDiffer,=

Differ Difsame  dim Dif L U L V > Dif L U L V < =  
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L

V( )t
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{µU , µV}. If LU and LV are not almost orthogonal, then

given some a ∈   (a ∈  ), the average distance

between Turn t |a〉  and LU (LV) is at least one-half if LU

and LV are d-distinguishable and zero if these subspaces
are coincident. To distinguish the close location and
near-orthogonality cases, we build two operators,
Distort and Distclosed.

We first suppose that LU and LV are almost orthogo-
nal. Then αU = 1 implies that αV = 0. We introduce the
notation

Let  be a vector from the space of inputs. We note that
LU ≠ LV implies αU = αV for each  ⊥  L' because  then
belongs to the subspace spanned by L0 and the orthog-
onal subspace to LU ∪  LV. The first operator Distort does
nothing if αU = αV and changes the sign and special
ancilla αort if the projection of  to L(αU , αV) is less
than 1/30.

The second operator Distclosed acts as the identity if
αU = αV and changes the sign if the following condi-
tions are satisfied simultaneously:  ∈  L', LU and LV are
distinguishable, and αort = 0.

We set

where Re (Res) denotes

and the identity if αU = αV; Si≠ω changes the sign and
simultaneously inverts αort iff at least half the frequencies
ωj are such that |ωj – ω| > 1/M and αU ≠ αV. If we want
to clean the second ancilla after the action of Distort and
keep the sign change, we can use the operator

where S acts as Si but without changing the sign.

LU' LV'

L αU αV,( )
L

V
if αU 1=

L
U

if αV 1.=



=

a
a a

a

a

Distort ⊗ Res jSi≠ω⊗ Re j,=
j j

Rev
V

Rest
V( ) if αU 1, αV 0,= =

Rev
U

Rest
U( ) if αV 1, αU 0,= =

Distort
– ⊗ Res jS≠ω⊗ Re j,=

j j
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The second operator is defined by

where the operator  changes the corresponding
ancilla βj only in one of two cases:

(1) αU = 1 and at least a half of ωj, k are such that
|ωj, k – ω| ≥ 1/M, or

(2) αU = 0, αV = 1 and at least a half of ωj, k are such
that |ωj, k – ω| < 1/M.

The operator S' changes the sign iff one of αU , αV is
nonzero and at least 1/20 of all βj contain 1.

We consider the action of Distclosed following Check
on an input vector . We first consider the case where
LU ≠ LV, which implies that these subspaces are distin-
guishable.

If  ⊥  LU, LV, then αU = αV = 0 and Distclosed does
nothing.

If  ∈  L0, then αU = αV = 1 and all  do nothing
because for almost all j, about three-fourths of ωj, k are
close to ω, |ωj, k – ω| ≤ 1/M, and hence, S' and Distclosed
does nothing.

Let  ∈  L'. We prove that Distclosed changes the sign.
We decompose L' into the sum of orthogonal subspaces,

L' =  ⊕  , and let  denote the result of the

action of  on .

If a ∈  , then αU = 1 and for more than one-tenth

of all , the revealed frequencies are not close to ω
with a probability of about 3/4 × 9/10, and the sign is
therefore changed in accordance with case 1.

If  ∈  , then by the same reason we obtain the
change of sign in accordance with case 2. Hence,
Distclosed changes the sign for all  ∈  L'.

We can now define Inv as

For a ⊥  LU, LV, we have Inv |a〉  = |a〉  because Check
gives zero in the ancilla αU , αV , thereby depriving the
subsequent operators of the ability to change the state

Distclosed D1
1– …Dn

1–
S 'DnDn 1– …D1,=

D j GenTimeArg j( ) 1–
Turnt j

j( )
1–

=

+ ⊗ Rest j k,
U[ ] Sig≠ω

j ⊗ Rev j k,
U[ ] Turnt j

j
GenTimeArg j,

k k

j 1 2 … n,, , ,=

Sig≠ω
j

a

a

a Sig≠ω
j

a

LU' LU'
ort

a j

Turnt j

j
a

LU'

a j

a LU'
ort

a

Inv CheckDistort
–

DistclosedDistortCheck.=
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vector. If a ∈  L0, then Inv |a〉  = |a〉  because Distort does
nothing and Distclosed does nothing as well. Thus,

and

We are now ready to construct the operator
Difsame dim inverting the ancilla αsame dim iff LU and LV are
distinguishable. Let Gen generate the list y, [Iy], [CZ],
where [CZ] is the code of a circuit generating some uni-
tary operator Z = Z–1 whose only eigenvalues are 1 and
–1 (that is, its frequencies are 0 and 1/2), the space cor-
responding to frequency 0 is one-dimensional, and y is
a basic vector of this space. As usual, the index j means
that the corresponding vectors yj are taken from the uni-
form distribution on all possible vectors. We assume
that operators of the form Gen–1 are also accessible, and
we set

(6)

where each copy of Inv acts on the register where yj is
placed initially and Change makes the desired change
in the resulting qubit αsame dim if at least 5/32 of all fre-
quencies differ from 0 by more than 1/M.

The group  of the GSA type turns the vec-

tor yj generated by Genj substantially iff LU and LV are
d-distinguishable.

If LU = LV, then yj remains unchanged and at least
seven-eighths of all frequencies are close to 0.

If LU ≠ LV, then at least 7/8 × 1/4 = 7/32 of frequen-
cies for the result of the turn of yj are far from 0 because
they must be close to 1/2.8 

Definition of . We suppose that dimLU >

dimLV and µV < , and recall the decomposition

8 Thus, we could take any number ρ: 1/8 < ρ < 7/32 instead of 5/32
in the definition of Change.

Inv a| 〉 a| 〉 for a L',⊥=

Inv a| 〉 a| 〉 for a– L'.∈=

Difsame dim

=  ⊗ GenTimeArg j
1–
Gen j

1–
Inv j Iy j

( )
t jRest j

Z j[ ]

+ Change ⊗ Rev j

Z j Iy j
Inv j( )
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j

Iy j
Inv j( )

t j
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L

U
L

V>

2/3

L
U

LU'' Proj
L

U L
V⊕=
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into the sum of orthogonal subspaces with  ≠ .
We define the operator Dif very similarly to the previ-
ous case,

where the definition of  (which inverts ) is sim-

ilar to the definition of Distort with  playing the role
of L',

Here,  and  act as RevV and RestV only if
αU = 1; if αU = 0, they do nothing, and the operator

 changes the sign in only one case, if αU = 1 and at
least three-fourths of all frequencies ωk are far from ω:
|ωk – ω| ≥ 1/M. In the operator Dif, we therefore use a
set of ancillary registers enumerated by the pairs of
indices j, k.

For  ∈  , in view of the inequality µV <

, the operator  does not change the sign
because the fraction of all frequencies close to ω is then
7/8 × 1/3 = 7/24 > 1/4.

For  ⊥  , the operator  does nothing.

Definition of . We suppose that dimLU >

dimLV and µV > . The definition of Dif is similar
to the previous case but with the entire subspace LU

playing the role of L',

where

Here,  changes the sign if more than half the fre-
quencies are far from ω: |ωj – ω| > 1/M. The conditions

LU'' 0
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required for the operator Dif are satisfied because 7/8 ×
2/3 = 7/12 > 1/2 and can be checked straightforwardly.

We finally estimate the complexity of the procedure
constructed. The operator Turn in (5) requires the num-
ber of elementary steps on the order of

The operator Difference in (4) then requires the number

of elementary steps on the order of ,

that is, O( ). We note that there exists a similar
form of the operator Difference that does not act on the
resulting qubit αdif but changes the sign instead; such an
operator can be constructed similarly. We let it be
denoted by Differencesign and assume that its input con-
tains the frequency ω.

3.5. Recognition of Electronic Device Circuits 

We are now ready to consider the recognition of cir-
cuits. We assume that for every pair of circuits with the
transformations U1 and U2, the subspaces spanned by
the corresponding eigenvalues are either coincident or
d-distinguishable. We also assume that our coding pro-
cedure gives a one-to-one correspondence between cir-
cuits and the T basic states e0, e1, …, eT – 11 in the space
Hcir . The recognition procedure is denoted by Rec and
has the GSA form,

(7)

This operator acts on states of the form |χ〉, where the

basic states for χ are codes of circuits. Here,  ∈  Hcir is
chosen arbitrarily and IU inverts the sign of every code
whose circuit induces a given operator U. The imple-
mentation of  is straightforward, and all we need to

do is to construct IU.
We define IU as

where for every basic state C of the argument, Concfreq
generates some arbitrary distribution of the amplitude
on ancillary registers with Q basic states and then con-
centrates a substantial part of the amplitude on a fre-
quency ω for which LU and LV are distinguishable (if
such a frequency exists). The operator Difference j then
changes the resulting qubit for the jth copy iff these
subspaces are distinguishable on this frequency. The
next operator Sign changes the sign iff at least one fifth
of the resulting qubits αdif contain 1, e.g., iff U and UC

are the same operator. The subsequent applications of

Turncomplexity M 1/d .=

Turncomplexity N

M N /d

Rec I
0̃
IU( )t

, t O T( ).= =

0̃

I
0̃

IU ⊗ Concfreq j,
1–

Difference j[ ] Sign=

⊗ Difference jConcfreq j,[ ] ,

j

j
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Difference j to each copy of the register then clean the
corresponding resulting qubits and the inverse opera-
tors to Concj restore the initial state of the ancillary reg-
ister. The difference was constructed in the previous
section, and it only remains to construct Concfreq, j . This
transformation can be defined as

(8)

If U and UC are different, then their subspaces LU

and LV are d-distinguishable for some ω by our assump-
tion and Concj concentrates a substantially large part of
the amplitude over all j on some combination of such
values ω. Thus, we have constructed the required pro-
cedure Rec that gives the target code with a substantial
probability as the result of an observation of the register
for the code C. After the observation, we can verify the
fitness of the code C, which is found by a straightfor-
ward procedure. This procedure is similar to IU with a
single change: Sign is to be replaced by a change in a
special ancilla that can be observed after the procedure;
we thus determine whether the code C fits.

To find the complexity of our procedure Rec, we

note that the complexity  of Difference must

be multiplied by  following from (8) and by 
following from definition (7). The resulting complexity

is .

3.6. Advantages of the Recognition Algorithms 

Advantages of the proposed algorithms are their
high speed and small memory. In particular, the algo-
rithm for molecular structure recognition allows recog-
nizing molecular circuits using microscopic memory,
whereas classically this task requires exponentially
large memory. We now compare the proposed algo-
rithms with their classical counterparts; we omit loga-
rithmic multipliers.

1. Recognition of eigenvalues and finding ther-
modynamic functions. We fix some value of M that
determines the precision of the eigenvalue approxima-
tion. We first consider the case where the number of
ancillary qubits in a quantum gate array is small. By the
direct classical method, we must then construct the
matrix of the unitary transform induced by the gate
array. This requires an order of N3 steps and at least an
order of N2 bits. The known quantum algorithm given
by Travaglione and Milburn in [8], based on the
Abrams and Lloyd operator Rev, contains repeated
measurements of frequencies and therefore requires
time on the order of NM; for sparse spectra, it is of the
same order as for the Hams–Raedt algorithm and its
only advantage over the latter is exponential memory
saving.

Concfreq j, GenTimeFreq j
1–
GenFreq j

1–
=

+ DifferencesignIωj
( )

t j GenFreq j GenTimeFreq j.

Mn
2

N /d

Q T

Mn
2

TQN /d
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Our algorithm recognizes an eigenvalue in 
steps. This time for the sparse area of the spectrum is
about the square root of the time of the best known
algorithms. Here, the memory is on the order of g2

qubits (g is the size of the gate array), that is, about the
squared memory used in [2], but still exponentially
smaller than in classical methods. The proposed algo-
rithm therefore gives an essential speedup over the
known methods in the case where the number of ancil-
lary qubits in a given gate array is small (as in the case
of a molecular structure simulated by the gate array)
and the area of the spectrum is sparse. The same advan-
tage is possessed by the proposed method of finding
thermodynamic functions.

If the spectra are dense, we assume that M = N,
which means that eigenvalues differ by at least 1/N. The
time of our algorithm is then O(N).

We next consider the case where the number a of
ancillary qubits involved in the gate array simulta-
neously is greater than the length n of the input. The
direct classical method then requires more than 22a

steps and at least 2m bits, whereas our algorithm
requires only about g2n steps and gn2 memory and the
quantum speed-up can be more than the square root.

2. Recognition of molecular structures. We first
assume that the spectra are sparse. To be able to com-
pare our method with the evident classical algorithm,
we assume that the code of a molecular circuit of length
n is a string of ones and zeroes of this length. Therefore,
M = N. The next natural assumption that can also be
presumed for electronic circuits is that the sampling of
the code of a circuit from the uniform distribution
induces a sampling of all possible spectra from the uni-
form distribution. Then the number of all possible
choices of spectrum approximations (or parts of the
spectrum subject to the statement of the recognition
problem) within 1/L consisting of frequencies of the
form l/M is about 2M = N. This implies that M and Q
must be logarithmic in N in our assumption. Our
method therefore has the time complexity O(N). With
these assumptions, the time complexity of the classical
direct algorithm that examines all codes and calculates
the corresponding spectra is about N3 · N = N4, whereas
our algorithm requires a time of about N and logarith-
mic memory. The quantum time for this problem is
therefore about the fourth root of the time of the classical
direct method, and the quantum space is logarithmic.

If the spectra are dense, then Q and M are on the
order of N and our method requires a time of O(N2.5), to
be compared with O(N4) of the direct classical method.

3. Recognition of electronic devices. There are no
classical analogs of this problem in the general case.
We compare the two algorithms constructed above with
their classical and known quantum counterparts. We
first consider a single quantum recognition algorithm

NMn
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that can easily be deduced from the previously known
technique. This is the algorithm of recognizing a circuit
that realizes a classical involutive function of the form f:

Q  Q, f = f –1.

This task can be reduced to the search of y such that the
following logic formula is true: ∀ x A(x, y), where
A(x, y) is some predicate. Indeed, if we take Y(x) = U(x)
instead of A(x, y), where Y is a function whose code is
y, we obtain the problem of recognition of the circuit
generating U. The algorithm for such formulas, given in

[4], has time complexity on the order of . This
task is a particular case of our algorithm for involutive
devices and has the same complexity. In this particular
case, quantum time is on the order given by the square
root of the classical time. However, if we consider a
slightly more general, but still restricted, problem of the
recognition of involutive devices producing linear com-
binations of basic states (like quantum subroutines), the
advantage over the classical method of recognition
increases. For example, we consider the restricted prob-
lem where we must choose between two alternative
constructions of a tested device, inducing a nonclassi-
cal unitary transformation. The naive method of
observing the results of the action of the tested device
on the different inputs requires steps on the order of
(1/e)N3 to restore the matrix of the operator UC within

e. This e must then be less than  to give a vanish-
ing difference between operators in the Hilbert space.
Therefore, the time complexity of the naive method of
recognition is roughly N7/2. On the other hand, the
method proposed in Section 3.4 requires choosing d
that only converges to zero as N tends to infinity. The
time required by our method is therefore slightly more

than . We thus have almost the seventh degree
speed-up for the problem of distinguishing electronic
circuits generating transformations with nonclassical
matrices.

4. CONCLUSIONS

The main conclusion is that the molecular structure
and physical properties of environment can be quickly
recognized on the microscopic level, whereas the clas-
sical methods require much time and especially mem-
ory. The new algorithms of recognizing eigenvalues
with a fixed precision, recognizing the molecular struc-
ture, and finding thermodynamic functions give a qua-
dratic speed-up and an exponential memory saving
compared with the best classical algorithms. The new
method based on quantum computing was proposed for
fast recognition of electronic devices. By this method,
two devices with the same given spectrum can be dis-
tinguished in a time of about the seventh root of the
time of direct measurements. All these algorithms show

TN

1/ N

N
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significant potential advantages of microscopic-size
quantum devices compared to their classical counter-
parts with much larger memory. The advantages pertain
to intellectual tasks like recognition of the structure of
other devices and important properties of environment.
The proposed algorithms are constructed from the stan-
dard known subroutines; they have a simple structure
and are entirely within the framework of the conven-
tional quantum computing paradigm.
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Abstract—The semiclassical theory of the proximity effect predicts the formation of a gap Eg ~ "D/L2 in the
excitation spectrum of a diffusive contact between a normal metal and a superconductor (NS). Mesoscopic fluc-
tuations lead to the emergence of states localized anomalously in the normal metal and weakly linked with the
superconducting bank, creating a nonzero density of states for energies lower than Eg . In this review, the behav-
ior of the density of quasiparticle states below a quasi-classical gap is considered for various geometries of the
NS system (special attention is paid to SNS junctions) and for the problem of a superconductor with a low con-
centration of magnetic impurities, in which a similar effect is observed. Analysis is mainly carried out on the
basis of a fully microscopic method of the supermatrix σ model; in this method, a nonzero density of states
emerges due to instanton configurations with broken supersymmetry. In addition, the results of an alternative
approach proceeding from the idea of universality of the spectra of random Hamiltonians with the given sym-
metry are reviewed. In situations studied using both methods, the results are identical. They include the exact
expression for the mean density of states of an NS system in the vicinity of Eg . In the framework of 1D and 2D
σ models, the subgap density of states is determined with an exponential accuracy. The contacts with a poor
transparency of the NS interface are also considered. It is shown that the number of subgap states in the case of
low transparency is much greater than unity. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Mesoscopic properties of metals are manifested
when the coherence length of conduction electrons is
equal to the characteristic size of the sample [1]. These
properties are observed most clearly in small samples
and are hence accompanied by strong mesoscopic fluc-
tuations.

Superconductivity is another coherent (but not size)
effect. It is due to Cooper attraction between electrons.
Such an attraction leads to a rearrangement of the
ground state of the electron system and radically
changes low-energy properties of a metal. In modern
experiments, both these conditions can be satisfied
simultaneously, which leads to mesoscopic supercon-
ductivity. The most interesting and diverse effects are
observed for hybrid structures formed by supercon-
ducting and normal parts. In the mesoscopic limit, such
structures exhibit global coherence leading to phenom-
ena known as the “proximity effect.” These phenomena
are reduced qualitatively to superconductivity suppres-
sion in the superconducting parts and to the emergence
of certain superconducting properties in normal
regions.
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A typical example of such phenomena is the Joseph-
son effect. Cooper pairs tunneling through an insulating
layer partly preserve their coherence and, in this way,
can carry supercurrent through such a layer. If two
superconductors are linked via a normal metal region,
an effect of this type has a more complex microscopic
structure. In this case, Andreev reflection is a funda-
mental effect [2].

When an electron is incident on a superconductor–
normal metal interface from the side of the normal
metal, it cannot penetrate the superconductor since the
given energy corresponds to a gap in the spectrum of
the superconductor. However, Andreev reflection is
possible in this case: the electron is reflected from the
normal metal and becomes a hole, while a Cooper pair
starts moving in the superconductor. Alternately, this
process can be treated as tunneling of a Cooper pair
from the superconductor to the normal metal. Although
the attraction between electrons vanishes in this case,
their combined state is partly coherent. If the normal
layer is thin, such a pair may get in the second super-
conductor, carrying supercurrent in this way. The situa-
tion corresponds to a certain electron trajectory con-
necting two superconducting banks: an electron mov-
ing along this trajectory is transformed into a hole upon
Andreev reflection, the hole repeating the electron path
in the opposite direction, and the trajectory becomes
closed after the second Andreev reflection. Such trajec-
tories are allowed when they accommodate an integral
number of wavelengths, giving rise to Andreev states [3].
These states form a discrete spectrum and are arranged
symmetrically relative to the Fermi level (in the
absence of current).

It can be seen from this example that the proximity
of the superconductor changes the low-energy spec-
trum of the normal metal. Similar phenomena, which
are also associated with Andreev reflection, may also
occur in a simpler case of a single contact between a
superconductor and a normal metal. In this case,
Andreev states changing the spectrum of the normal
metal also appear in the normal region. These changes
are determined to a considerable extent by the classical
dynamics of electrons in the normal part of the contact.
If, for example, the normal region is rectangular in
shape and contains no impurities, electron trajectories
between two Andreev reflections existing in this region
can be infinitely long. This leads to the formation of
levels with an arbitrarily low energy and, hence to the
absence of a gap in the spectrum. However, the density
of states still linearly tends to zero as the Fermi energy
is approached [4, 5]. In the general case, this type of
spectrum appears when the classical dynamics of elec-
trons in the normal region is integrable.

The opposite limit of chaotic dynamics is realized,
for example, in the case of a high density of potential
(nonmagnetic) scattering centers (impurities). Under
such conditions, the motion of electrons is of the diffu-
sive type. However, a naive attempt to determine the
JOURNAL OF EXPERIMENTAL
form of the spectrum by analyzing the probability of
trajectories of various lengths leads to an erroneous
result [6]. Indeed, in the case of random motion, we can
always find infinitely long trajectories, but the spectrum
will have a gap. The reason for this error lies in the dis-
regard of quantum interference. As a matter of fact,
semiclassical diffusive trajectories are broken lines: an
electron is scattered successively by a large number of
impurities. For two sufficiently long trajectories, we
can always find an impurity in common. This means
that, in addition to the two corresponding Andreev
states, there exist at least two more states: an electron
moving along the first trajectory and experiencing scat-
tering by a common impurity passes to the second tra-
jectory, while a hole after Andreev reflection returns to
the first trajectory at the same impurity, and vice versa.
In view of quantum interference between the above
processes, low-lying Andreev levels cannot be
described in the naive language of simple trajectories.
An appropriate semiclassical technique is well known
[7, 8] and is based (in the diffusion case) on the Usadel
equation [9]. The result is reduced qualitatively to the
emergence of a gap in the density of states on the order
of "/τc , where τc is the characteristic time of diffusion
between two Andreev reflections [4, 10–12]. It is deter-
mined by the strength and concentration of impurities,
the size of the normal region, and the transparency of
the interface with the superconductor.

However, the semiclassical theory disregards mesos-
copic fluctuations. We can assume, on a qualitative level,
that the diffusion coefficient fluctuates, leading to a devi-
ation in the gap width in each specific sample from its
mean value. As a result of averaging over possible con-
figurations of impurities, the density of states decreases
sharply for a certain energy instead of vanishing, its
value being exponentially small for lower energies.

We can formulate the following general statement.
If the position of the spectrum edge is determined by a
fluctuating physical quantity, averaging over such fluc-
tuations leads to the emergence of a “tail” in the density
of states in the forbidden gap. This type of a tail was
considered for the first time by Lifshits for an ordinary
semiconductor [13]. At present, a large number of fluc-
tuation effects have been observed in various systems
(see, for example, [14–16]).

Disordered systems can be treated using a purely
phenomenological approach known as the random
matrix theory [17–19]. In the framework of this theory,
a Hamiltonian is a random matrix and different matrix
elements are regarded as uncorrelated (except the rela-
tion associated with additional symmetries of the
Hamiltonian). In the main order in the large dimension
of the matrix, the average density of states of a random
Hamiltonian is a “Wigner semicircle,”

where E0 is the bandwidth and δ is the mean distance
between energy levels at the center of the band.

ρ E( )〈 〉 δ 1– 1 E2/E0
2– ,=
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Owing to its universal nature, the random matrix
theory has found wide applications [20] for describing
spectral properties of mesoscopic systems. This is man-
ifested in the fact that, in spite of their difference at the
level of a microscopic Hamiltonian, the spectra of
mesoscopic systems with chaotic dynamics and the
spectra of random matrices with identical values of δ
are statistically identical. This was demonstrated for the
first time by Efetov [21] for a pair correlator of energy
levels of a diffusive metallic grain. In this case, both
systems are considered at a large distance from the
band edge, when the mean density of states can be
regarded as independent of energy.

The mean density of states in the Wigner–Dyson
ensemble near the band edge vanishes in the semiclas-
sical approximation in proportion to the square root.
When corrections are taken into account, an exponen-
tially decreasing tail appears in the semiclassical
approximation for energies |E | > E0. In the diffusive NS
system, the edge of the spectrum near the gap is also of
the root type. If we assume that the shape of the tail is
completely determined by the semiclassical behavior of
the density of states near the band edge (universality
hypothesis), the result of the random matrix theory can
be extended to the case of a diffusive NS system. This
was done in [22].

Another case when an exponentially small tail
appears in the density of states is a superconductor with
magnetic impurities. The presence of magnetic impuri-
ties suppresses superconductivity. If their concentration
is not very high, the gap in the spectrum becomes
smaller than in a superconductor without impurities,
but does not vanish. However, the impurity concentra-
tion may fluctuate in space; consequently the probabil-
ity of finding an energy level below the mean value of
the gap differs from zero. Such a tail in the density of
states was calculated in [23, 24] using the method of the
nonlinear supermatrix σ model.

Several methods have been developed for calculat-
ing electronic properties of systems with disorder. In
traditional statistical physics, the properties of a system
are mainly determined by the generating functional

Z[J] = . Various correlation functions,

including the density of states, can be expressed in
terms of logarithmic derivatives of this functional with
respect to sources J. If the system is disordered, all cor-
relation functions should be averaged over the disorder;
i.e., the mean value of lnZ is required. However, the
logarithm is a nonlinear function and its averaging is
complicated in the general case. One of the methods for
overcoming this difficulty, viz., replica trick, was pro-
posed in [25]. In this method, n copies (replicas) are
considered instead of a system. The generating func-
tional in this case is Zn. If the functional can be aver-
aged over disorder for an arbitrary value of n and an

e S Φ J,[ ]– DΦ∫
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analytic continuation in n to point n = 0 can be carried

out, the formula lnZ =  can be used.

However, the calculation of the generating functional
in the general form for an arbitrary number of the repli-
cas is often a complicated problem. This difficulty is
removed in the method of a supermatrix σ model [26].
The essence of this method lies in the addition to phys-
ical fields of the same number of Grassmann (anticom-
muting) fields. For an arbitrary action of the system, the
generating functional is equal to unity, and correlation
functions are defined by conventional variational deri-
vatives of this functional instead of logarithmic deri-
vatives.

The semiclassical approximation (Usadel equation)
corresponds to the evaluation of the generating func-
tional by the steepest descent method. The correspond-
ing saddle point of the action of the nonlinear σ model
is supersymmetric; i.e., it has the same form in com-
muting and Grassmann variables. An exponentially
small contribution from low-frequency mesoscopic
fluctuations corresponds to other (nonsupersymmetric)
saddle points, viz., instantons. Such a calculation was
made for the first time in [16] for the density of states at
a high Landau level in a 2D system in a magnetic field.
The applicability of the steepest descent method in the
vicinity of instantons was ensured by the large number
of the Landau level. In the case of diffusive NS systems,
the corresponding large parameter is the number of
conducting channels at the interface between the nor-
mal metal and the superconductor.

A generalization of the σ model for diffusive NS
systems was proposed in [27] and will be described
briefly below. In the same publication, it was pointed
out that the subgap density of states corresponds to
instantons in this model. The instanton configuration
responsible for the emergence of a tail in the density of
states in a homogeneous superconductor with magnetic
impurities [28] was determined in [23, 24]. Analysis of
instantons and calculation of the density of prelocalized
states in hybrid systems was carried out in [29]. It was
found, among other things, that the contribution to the
subgap density of states comes from two instantons.
For energies not very close to the threshold, one of
these instantons plays the major role, which makes it
possible to determine the density of states with an expo-
nential accuracy. In the case when the σ model becomes
effectively zero-dimensional (for not very low ener-
gies), the preexponential factor was also calculated; the
energy dependence of the density of states obtained in
this case was found to be the same as in the random
matrix theory. The applicability of these results is
ensured by a large conductance of the normal region.

We developed this method further in [30]. In partic-
ular, we managed to obtain an exact expression for the
density of states describing the entire transition region
above as well as below the critical energy without using

Zn 1–( )/n
n 0→
lim
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the instanton approximation. In this case also, the form
of energy dependence of the density of states is the
same as predicted phenomenologically by the random
matrix theory. We also considered a long one-dimen-
sional SINIS contact with nonideal interfaces between
the normal and superconducting parts. Poor transpar-
ency of the interfaces suppresses the proximity effect
and reduces the semiclassical gap. When the conduc-
tance of an interface becomes smaller than a certain
critical value, a transition to another class of universal-
ity occurs. The density of states increases as the inverse
root function as the energy approaches the threshold
from above. In the fluctuation region near the threshold,
this divergence is smoothed and transforms into an
exponentially decreasing tail described by an expres-
sion given in [30]. In contrast to all the cases mentioned
above, when the number of states in the region of the
fluctuation tail is on average of the order of unity, the
number of subgap states in the latter case is parametri-
cally large, and the tail is referred to as strong. In [30],
we wrote only the final result for an strong tail due to
lack of space. This gap will be made up for in this paper.

This paper is devoted to a review of the results
obtained in the framework of the nonlinear supermatrix
σ model for mesoscopic superconducting systems. The
structure of the review is as follows.

In Section 2, we first consider a semiclassical
approach to the evaluation of the density of states. The
properties of the semiclassical solution will be required
on a later stage for describing possible instantons of the
σ model. Then a brief derivation of the σ model for a
superconductor is considered. One of the main results
of this section is parametrization of the saddle manifold
and classification of possible instantons.

The problem of an NS system with absolutely trans-
parent boundaries is solved in Section 3. An exact
expression for the density of states near the spectrum
edge is derived. The application of the random matrix
theory to the problem of an NS contact is considered
briefly at the end of the section.

Section 4 generalizes the results to the case of a
boundary with an arbitrary transparency. A classifica-
tion of possible tails of the density of states is con-
structed depending on the transparency. The case of an
strong tail is analyzed separately.

S

–Lx/2 Lx/20 x

Ly

SN

Lz

Fig. 1. SNS junction of length Lx . Transverse dimensions
are Ly and Lz .
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Section 5 is devoted to a system that cannot be
described in the framework of the zero-dimensional σ
model. These are SNS junctions with a large transverse
size, for which the instanton radius is much smaller
than the size of the system. A superconductor with
magnetic impurities is also considered. At the end of
the section, the density of prelocalized states in an SNS
junction deep in the gap is calculated with a logarithmic
accuracy.

2. GENERAL THEORY

2.1. Semiclassical Approach 

Let us first consider a semiclassical method for cal-
culating the density of states in an NS system with
transparent boundaries. The Green function of the
superconductor provides information on fast oscilla-
tions of electrons forming Cooper pairs as well as on a
relatively slow motion of a pair as a whole. Averaging
the retarded Green function over fast modes in the dif-
fusive case leads to the Usadel equation1 [9]:

(2.1)

Here,  is a 2 × 2 matrix in the Nambu space, τi are
the Pauli matrices acting in the Nambu space, D is the
diffusion coefficient, and energy E is measured from
the Fermi level. In the angular parametrization  =
τzcosθ + τxsinθ, the Usadel equation has the form

(2.2)

We disregard the proximity effect in the superconductor
and fix ∆ = const in it, while in the region of the normal
metal, we assume that ∆ is equal to zero. If the size of
the normal region exceeds the superconducting coher-
ence length ξ, the gap in the spectrum is on the order of
the Thouless energy, which is assumed to be much
smaller than ∆; consequently, we can set θ = π/2 in the
superconductor.

In the normal region of the NS system, the Usadel
equation has the form

(2.3)

The boundary conditions require that θ = π/2 at the
interface with the superconductor (ideal interface) and
∇ nθ = 0 at the free boundary of the normal metal.

The density of states averaged over disorder can
be expressed as (ν is the density of states per spin com-
ponent)

(2.4)

1 We assume that the phase of the order parameter is equal to zero.

D∇ ĝR r( )∇ ĝR r( )( ) i τ zE iτ x∆+ ĝR r( ),[ ]+ 0,=

ĝR
2 r( ) 1.=

ĝR r( )

ĝ r( )

D∇ 2θ 2iE θsin 2∆ θcos+ + 0.=

D∇ 2θ 2iE θsin+ 0.=

ρ E r,( )〈 〉 ν Retr τ zĝ r( )( )=

=  2νRe θcos 2νIm ψ,sinh=
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where the substitution θ = π/2 + iψ has been made,
which transforms Eq. (2.3) into the following equation
with real coefficients:

(2.5)

By way of an example, we consider a one-dimen-
sional SNS junction of length Lx , which is depicted in
Fig. 1. In this case, Eq. (2.5) can be integrated easily,
which gives the expression for energy in terms of the
value of ψ at the middle of the junction:

(2.6)

This function is plotted in Fig. 2. It can be seen that the
quantity ψ is real (i.e., the density of states is zero) only
for energy values smaller than a certain threshold value
Eg = 3.12ETh . This is exactly the Thouless gap [10, 11].

The example of a 1D junction can be used to estab-
lish the following general properties of solutions to the
Usadel equation. Equation (2.5) has two real solutions
for E < Eg . We denote the smaller of these solutions by
ψ1(r) and the larger solution by ψ2(r). For E = Eg , these
solutions coincide: ψ1, 2(r) = ψ0(r). For E > Eg , the
Usadel equation has two complex solutions, from
which we choose the one leading to a positive density
of states. From physical considerations, we choose
ψ1(r) under the gap since ψ2(r) increases indefinitely as
the energy tends to zero. It will be shown below, how-
ever, that the solution with ψ2(r) is possible as a fluctu-
ation, which is responsible for a nonzero density of
states for energies E < Eg .

In the subsequent analysis, we will need a normal-
ized difference of the solutions to the Usadel equation
for energy tending to the threshold value (V is the vol-
ume of the normal region):

(2.7)

Function f0(r) satisfies a linear equation which can be
derived taking the limit in energy of the difference
between the Usadel equations for ψ1 and ψ2:

(2.8)

Expressions for density of states depend on the
system geometry only via the following two nume-

D∇ 2ψ 2E ψcosh+ 0.=

E
ETh

--------
ψd

ψ 0( ) ψsinh–sinh
-----------------------------------------------,

0

ψ 0( )

∫=

ETh
D

Lx
2

-----.=

f 0 r( )
ψ2 r( ) ψ1 r( )–

ψ2 r( ) ψ1 r( )–( )2 rd
V
-----∫

------------------------------------------------------.
E Eg→
lim=

D∇ 2 f 0 2Eg f 0 ψ0sinh+ 0.=
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rical parameters:

(2.9)

In particular, c1 ≈ 1.15 and c2 ≈ 0.88 for a 1D SNS junc-
tion (Fig. 1).

We will consider below a contact of an arbitrary
geometry (Fig. 3), assuming that it has only one char-
acteristic scale of length. In this case, the density of
states near the threshold can be determined in the
approximation of the zero-dimensional σ model (see
Subsection 3.2). In the case of a contact whose size
along the boundary with superconductors is much
larger than their separation, solutions in the form of an

c1
rd

V
----- f 0 r( ) ψ0 r( ),cosh∫=

c2
rd

V
----- f 0

3 r( ) ψ0 r( ).cosh∫=

E/ETh

3

2

1

0 1 2 3
ψ(0)

Fig. 2. Dependence of E/ETh on the value of ψ at the middle
of a one-dimensional junction (formula (2.6)). The maxi-
mum of the function corresponds to the threshold energy
value Eg ≈ 3.12ETh . Below the threshold, the Usadel equa-
tion has two solutions, one of which diverges as E  0.

S

N

S

S

S

Fig. 3. Contact between a normal grain and superconduc-
tors. The main results of Sections 2 and 3 were obtained in
the framework of the zero-dimensional σ model for a con-
tact of an arbitrary shape.
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instanton along the larger dimension also exist in addi-
tion to the two solutions to the Usadel equation
described above. This case requires separate analysis,
which will be carried out in Subsection 5.1.

2.2. Derivation of the σ Model 

In order to find instanton corrections to the semi-
classical density of states, we will briefly describe the
derivation of the effective supersymmetric field theory
(Efetov σ model [26]) for superconducting systems [27].
The states of an electron in a superconductor are
described by the Bogoliubov–De Gennes Hamiltonian,
which is a 2 × 2 matrix in the Nambu space:

(2.10)

We express the density of states in terms of the Green
function:

(2.11)

The Green function will be calculated using the
functional integral2 

(2.12)

where the action is defined as

(2.13)

In order to carry out subsequent averaging over dis-
order, we must get rid of the normalization integral in
the denominator of Eq. (2.12). For this purpose, we
introduce, in addition to field u, the Grassmann (anti-
commuting) field χ:

(2.14)

(2.15)

(2.16)

Field Φ is formed by four components and belongs
to the product of a Nambu space and a supersymmetric
Fermi–Bose (FB) space. After averaging over disorder,
we must write the effective action for slow modes in
〈ΦΦ+〉 . In addition, we must take into account slow
modes in the Cooper channel 〈ΦΦT〉  and 〈Φ*Φ+〉 . For

2 Symbol $u*$u must be interpreted as follows: $u*$u =

. Here,  are the expansion

coefficients of the kth component of vector u(r) in the orthonor-
mal basis of functions.

* τ z
p2

2m
------- µ– U r( )+ 

  τ x∆ r( ).+=

ρ E r,( )
1
π
---Imtr rGR r r; E,( ).d∫–=

π 1–
dReun

k( )
dImun

k( )
k 1 2,=∏n∏ un

k( )

GR r r'; E,( ) i
u r( )u+ r'( )e

6 u[ ]– $u∗ $u∫
e

6 u[ ]– $u∗ $u∫
------------------------------------------------------------,–=

6 u[ ] i ru+ r( ) E i0 *–+( )u r( ).d∫–=

Φ χ
u 

 
 

,=

GR r r'; E,( ) i u r( )u+ r'( )e
6 Φ[ ]– $Φ∗ $Φ,∫–=

6 u[ ] i rΦ+ r( ) E i0 *–+( )Φ r( ).d∫–=
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this purpose, we carry out an additional field doubling
[26] just now (following notation adopted in [31]):

(2.17)

We will refer to the obtained space as a particle–hole
(PH) space. Vector ψ consists of a particle (upper)
block and a hole block. We denote by σi the Pauli
matrix in the PH space and introduce the operation of
charge conjugation of supervectors and supermatrices:

(2.18)

Averaging over impurities in Eq. (2.15) leads to an
action of the form

(2.19)

where we have introduced notation Λ = σzτz . The
fourth-order term must be decoupled with the help of
the Hubbard–Stratonovich transformation. For this pur-
pose, we introduce an 8 × 8 matrix superfield Q. The
transformation leads to the following action:

(2.20)

The measure of functional integration over the new
field Q is determined from the supersymmetry condi-

tion,  = 1.

As a result, the integral over fields ψ becomes a
Gaussian integral and can be evaluated. However, there
is another difficulty lying in the fact that not all compo-
nents of ψ and  are independent. The introduction of
the PH space (formula (2.17)) has not resulted in the
addition of new variables; old variables have just been
regrouped. The action averaged over ψ has the form

(2.21)

This circumstance resulted in the emergence of coeffi-
cient 1/2 in front of the logarithm and necessitated the

ψ 1

2
-------

Φ
iτ yΦ∗ 

 
 

.=

ψ Cψ( )T , A CATCT ,= =

C τ x
iσy 0

0 σx 
 
 

FB

.–=

6 ψ[ ] i rd∫–=

× ψ Λ E i0+( ) p2

2m
-------– µ iτ y∆ r( )–+ 

  ψ ψψ( )2

4πντ
---------------+ ,

6 ψ Q,[ ] i r ψ Λ E i0+( ) p2

2m
-------–

d∫–=

+ µ iτ y∆ r( ) iQ
2τ
------+– 

 ψ πν
8τ
------strQ2+ .

–strQ2( )$Qexp∫

ψ

6 Q[ ] rstr
πν
8τ
------Q2





d∫=

–
1
2
--- σz E i0+( ) τ z

p2

2m
------- µ– 

 – τ x∆–
iτ z

2τ
------Q+ln





.
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imposition of the self-conjugate condition on Q:

(2.22)

The obvious saddle point of action (2.21) is Q = Λ.
The approximation of the σ model involves determining
a saddle solution which is a slow function of coordinates.
To this end, we assume that Q = e–iU/2ΛeiU/2 and retain in
the action the principal terms in gradients Q, in energy E,
and in the value of the order parameter ∆. The result of
such an expansion is the action of the σ model [27, 29]

(2.23)

and the expression for density of states assumes the
form

(2.24)

Here, we have introduced the following notation for the
matrix violating supersymmetry [26]:

(2.25)

2.3. Parametrization of the Q Matrix Manifold 

Supermatrix Q has a size of 8 × 8 and contains
32 complex commuting parameters and the same num-
ber of anticommuting (Grassmann) parameters in the
general case. Condition Q =  reduces the number of
these parameters by half. In accordance with the con-
struction of the σ model, matrix Q has the same struc-
ture of eigenvalues as Λ, 

Q = e–iU/2ΛeiU/2, 

which reduces the number of independent parameters
to eight complex and eight Grassmann parameters. In
this subsection, we construct parametrization of the
commuting part of the Q matrix.

The self-conjugate condition for Q leads to anti-
self-conjugate for U: U +  = 0. In addition, we
impose the natural condition {Λ, U} = 0, since only
such generators can “rotate” matrix Λ. In the absence of
Grassmann variables, matrices Q and U split into two
independent sectors (FF and BB). Charge conjugation
operates in different ways in these two sectors, leading
to their different topologies. Matrix U contains the fol-
lowing generators:

.

The FF sector is generated by four pairwise anti-
commuting generators. Consequently, it forms topolog-

Q Q.=

6 Q[ ] πν
8

------ rd∫=

× str D ∇ Q( )2 4iQ Λ E i0+( ) iτ x∆+( )+[ ] ,

Q2 1,=

ρ E r,( )〈 〉 ν
4
---Re str kΛQ r( )( )e

6 Q[ ]– $Q.∫=

k 1 0

0 1– 
 
 

FB

.=

Q

U

UFF: σx     σ y     σ z τ x     σ z τ y 

U

 

BB

 

:

 

σ

 

x

 

τ z     σ y τ z     σ z τ x     σ z τ y                           
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ically a 4-dimensional complex sphere S4. Generators
of the BB sector can be divided into two pairs in which
they anticommute, while commutativity holds between
pairs; i.e., the BB sector is the product of two two-
dimensional complex spheres. We choose spherical
angles in the form

(2.26)

(2.27)

An additional symmetry of manifold QBB is worth not-
ing: the matrix does not change under the simultaneous
inversion of both spheres: (θB, ϕB, kB, χB)  (π – θB,
ϕB + 

 

π

 

, 

 

π

 

 – 

 

k

 

B

 

, 

 

χ

 

B

 

 + 

 

π

 

). As a result, the BB sector is topo-
logically equivalent to the factorized product 

 

S

 

2

 

 

 

×

 

 

 

S

 

2

 

/

 

Z

 

2

 

.

The general requirement of the 

 

σ

 

 model conver-
gence imposes the condition of compactness on the FF
sector and noncompactness on the BB sector, which
reduces the number of independent variables to four
real variables in the FF and BB sectors.

Substituting matrix 

 

Q

 

 into Eq. (2.23), we obtain the
explicit representation of action in terms of the angles
introduced above:

(2.28)

Angles 

 

θ

 

 and 

 

ϕ

 

 in both sectors have the meaning of
the Usadel angle and the phase of the order parameter.
In order to determine the saddle configurations of this
action for zero phase difference at the contact, we can
immediately set  ϕ F

  =  ϕ 
B

  = 0. On the saddle solution,
angles 

 
χ

 

F

 

, 

 

B

 

 are independent of coordinates and are
completely cyclic: action is independent of 

 

χ

 

F

 

, 

 

B

 

.

QFF τ z θF σz kFcos[cos=

+ kF σx χF σy χFsin+cos( ) ]sin

+ θF τ x ϕF τ y ϕFsin+cos( ),sin

QBB σz kB τ z kB σx χBcos σy χBsin+( )sin+cos[ ]=

× τz θBcos σz θB τ x ϕBcos τ y ϕBsin+( )sin+[ ] .

6
πν
2

------ rd +FF +BB
–( ),∫=

+FF
D ∇θ F( )2 θFsin

2 ∇ϕ F( )2+[=

+ θFcos
2 ∇ kF( )2 θFcos

2
kFsin

2 ∇χ F( )2+ ]

+ 4iE θF kF 4∆ θF ϕF,cossin–coscos

+BB
D ∇θ B( )2 θBsin

2 ∇ϕ B( )2+[=

+ ∇ kB( )2 kBsin
2 ∇χ B( )2+ ]

+ 4iE θB kB 4∆ θB kB ϕB.coscossin–coscos
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Angle kF is also equal to zero on a saddle solution.
In the BB sector, it is convenient to carry out the substi-
tution of variables:

(2.29)

In terms of angles θF , α, and β, action has the simple
form

(2.30)

(2.31)

2.4. Saddle Points 

Variation of action (2.31) leads to Eq. (2.2). Thus, a
saddle point can be described by the Usadel equation in
each of the three variables (θF , α, and β). In accordance
with Subsection 2.1, the Usadel equation has two solu-
tions: θ1(r) and θ2(r). (The only exception is the situa-
tion when the contact size along the interface with
superconductors is much larger than their separation;
this case will be treated separately in Subsection 5.1.)
Since solutions θ1(r) and θ2(r) coincide for E = Eg , the
mode transforming θ1(r) into θ2(r) becomes softer near
the threshold. As a result, the functional integral over
Q(r) becomes an ordinary integral over supermatrix Q;
i.e., a transition to the zero-dimensional σ model
occurs.

Thus, in the zero-dimensional case, there exist 23 =
8 saddle solutions in all. If we choose solution θ1 in all
three variables θF , α, and β, we automatically obtain
θB = θ1, θF = θ1, and kB = 0; i.e., the FF and BB sectors
are identical. Expanding action (2.28) up to the second
order in fluctuations in the vicinity of such a saddle
point, we find that the superdeterminant of this qua-
dratic form is equal to unity, which is a direct conse-
quence of the FF–BB symmetry of the solution. The
functional integral (2.24) in this case is reduced
to (2.4). Thus, the semiclassical approximation can be
obtained from the σ model in the steepest descent
approximation in the vicinity of a supersymmetric sad-
dle point.

Higher orders of the expansion of action near a
supersymmetric saddle point correspond to perturba-
tion corrections to a semiclassical result. These correc-
tions were analyzed in [27], where it was shown that
their inclusion leads to renormalization of Eg . In this
case, the density of states below the renormalized value
of the gap vanishes as before. The average density of
states is found to be finite in the entire energy range
only if we take into account other saddle points (instan-
tons). In other words, we must use the second solution
of the Usadel equation in one or several variables θF , α,
and β.

θB
α β+

2
-------------, kB

α β–
2

-------------.= =

6 θF α β, ,[ ] 2S0 θF[ ] S0 α[ ]– S0 β[ ] ,–=

S0 θ[ ] πν
4

------ rd∫=

× D ∇θ( )2 4iE θcos 4∆ θsin–+[ ] .
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The density of states vanishes when Reθ1, 2 = π/2.
This equality is valid for both Usadel solutions for E <
Eg . How is it that an instanton may contribute to the
subgap density of states? As a matter of fact, a quadratic
action in the vicinity of an instanton saddle point con-
tains a negative eigenvalue; consequently, an imaginary
unity appears in the integral over fluctuations in the
vicinity of the instanton and, as a result, a nonzero den-
sity of states appears below the gap.

Let us consider instantons, which can appear in the
zero-dimensional case. First, we note the obvious ine-
quality

(2.32)

In order to obtain a positive action (2.30) at an instan-
ton, we must fix θF = θ1. It will be shown below (see
Subsection 3.2) that the saddle point θF = θ2 cannot be
attained by deforming the integration contour in the
variables of the FF sector under the condition of con-
vergence of the σ model. Thus, we are left with three
nonstandard saddle solutions in the BB sector: (α, β) =
(θ2, θ1), (α, β) = (θ1, θ2), and (α, β) = (θ2, θ2). At first
glance, the two first solutions break the symmetry in
angle χB . In actual practice, this symmetry is restored
due to the fact that there exists a full saddle ring con-
taining both these points. Different points of this ring
differ in angle χB . In particular, points (α, β) = (θ2, θ1)
and (α, β) = (θ1, θ2) can be obtained from each other by
changing angle χB by π. This ring will be referred to as
the first instanton. The third solution, (α, β) = (θ2, θ2),
is an isolated saddle point that will be referred to as the
second instanton.

Both instanton solutions can be presented in the
form

(2.33)

where

(2.34)

On the ring of the first instanton, we have

(2.35)

while on the second instanton we have

(2.36)

The instanton action can be easily determined in the
vicinity of the semiclassical edge Eg of the spectrum.
We make use of the fact that the two solutions of the

S0 θ1[ ] S0 θ2[ ] .>

Q0 e
iU0/2–

Λe
iU0/2

Λe
iU0,= =

U0
FF σzτ yθF,=

U0
BB σzτ yθB τ zkB σy χBcos σx χBsin–( ).+=

θF
π
2
--- iψ1 r( ), θB+ π

2
--- i

ψ1 r( ) ψ2 r( )+
2

--------------------------------,+= =

kB i
ψ2 r( ) ψ1 r( )–

2
-------------------------------, χB 0 2π),,[∈=

θF
π
2
--- iψ1 r( ), θB+ π

2
--- iψ2 r( ),+= =

kB 0.=
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Usadel equation coincide at the threshold: θ1, 2(r) =
θ0(r) = π/2 + iψ0(r). For E  Eg, their difference is
proportional to function f0(r) defined by formula (2.7).

In order to evaluate the action at an instanton, we sub-
stitute θ(r) = π/2 + iψ0(r) + igf0(r) into expression (2.31)
and expand it in g and dimensionless energy ε mea-
sured from the threshold,

(2.37)

This gives

(2.38)

The first term in the integrand vanishes in accordance
with the Usadel equation, and the second vanishes in
accordance with Eq. (2.8). Thus, we can represent S0 in
the form of a cubic polynomial in g:

(2.39)

Here, we have introduced the mean level spacing δ =
(νV)–1. The expression obtained has two extrema,

(2.40)

corresponding to two solutions to the Usadel equation
(g+ corresponds to solution θ2(r) and g– to solution
θ1(r)). Substituting these solutions into Eq. (2.30), we
obtain the following expression for the action of the
first instanton:

(2.41)

here, we have introduced the notation

(2.42)

For a planar junction (see Fig. 1), this quantity is of the
order of the dimensionless conductance of the normal

region:  ≈ 0.34GN, where GN = 4πνDLyLz/Lx .
In accordance with Eq. (2.30), action 62 of the sec-

ond instanton is twice as large as action 61 of the first
instanton. Consequently, their relative contribution to

ε
Eg E–

Eg

---------------.=

S0 θ[ ] S0 θ0[ ]=

+
πν
4

------ r 2g f 0 D∇ 2ψ0 2Eg ψ0cosh+( )---d∫
+ g2 f 0 D∇ 2 f 0 2Eg f 0 ψ0sinh+( )

– 4Egεg f 0 ψ0
2
3
---Egg3 f 0

3 ψ0cosh+cosh .

S0 θ[ ] const
πEg

2δ
--------- –2c1εg

c2

3
----g3+ .+=

g± ε̃, ε̃±
2c1

c2
--------ε,= =

61 S0 θ1[ ] S0 θ2[ ]–
4
3
---G̃ε̃3/2;= =

G̃
πc2Eg

2δ
--------------.=

G̃
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the density of states is determined by the value of 61.
For 61 @ 1, the contribution of the second instanton is
exponentially suppressed as compared to the contribu-
tion of the first instanton, which is also exponentially
small. This regime, which corresponds to energies dif-
fering considerably from the threshold value, will be
considered in Subsection 3.1. In the case of exact equal-
ity E = Eg, action 61 vanishes. For this reason, there
exists a fluctuating region in the vicinity of the thresh-

old, which is determined by inequality |ε| & ,
where 61 & 1, so that the contributions from both
instantons are of the same order of magnitude and,
hence, cannot be separated.

The exact solution taking into account both instan-
tons in the entire energy range will be given in Subsec-
tion 3.2.

2.5. Parametrization of Fluctuations 

In order to apply the steepest descent method with
the saddle point determined by us, we must evaluate the
integral over all possible fluctuations of the Q matrix in
the vicinity of the instanton. For this purpose, we
expand the action in the matrix form up to the second
order in the vicinity of the saddle and then propose a
parametrization diagonalizing the quadratic form of the
action.

We introduce matrix W describing fluctuations:

(2.43)

We must now substitute matrix Q expressed in terms of
W into action (2.23) and expand it up to the second
order in W. We assume that ∆ = 0 since we are going to
operate with this action only in the normal region. The
quadratic form of the action can be written as

(2.44)

Matrix W, as well as Q, contains eight commuting
parameters and the same number of Grassmann param-
eters. The complete parametrization of this matrix, in
which action (2.44) is diagonal, is given in Appendix A.
Quadruples a, b, c, d and m, n, p, q of real variables
parametrize the FF and BB sectors of matrix W, respec-
tively, while eight Grassmann variables (λ, µ, ζ, κ, η, γ,
ξ, ω) parametrize the anticommuting component of

G̃
2/3–

Q e
iU0/2–

e iW /2– ΛeiW /2e
iU0/2

,=

Λ W,{ } 0, W W+ 0.= =

6 2( )
W[ ] πν

8
------ rd∫=

× str D ∇ W( )2 D
4
---- ∇ U0 W,[ ] 2 2iEΛQ0W2–+ .
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matrix W. The quadratic part of the action in terms of
new variables assumes the form

(2.45)

Here, we have introduced operators  acting in
accordance with the rule

(2.46)

Operators  possess a discrete spectrum since fluc-
tuations occur in a bounded space of the normal region.

We denote the eigenvalues of operator  by

, where n runs through values from 0 to ∞. It
follows from Eq. (2.46) that the difference between the
first excited state and the ground state of any operator

 is on the order of  –  < Eg . The ground

state energy of operators  has the scale of Eg . The

ground state of operator  has zero energy, and its
eigenfunction is equal to sin((θ1 – θ2)/2) to within nor-
malization. Exactly at the threshold, for E = Eg , the

ground state energies of operators  and  are
also equal to zero. As we move away from the threshold

towards lower energies,  becomes positive and

 becomes negative. In the limit Eg – E ! Eg , the

inequality  ! Eg holds.

The spectrum of operators  determines the masses
%n of various fluctuations in the vicinity of instanton
saddle solutions. Depending on the value of these
masses, we can single out the following three types of
fluctuations.

(i) Zero modes. Strictly zero modes include Grass-
mann Goldstone modes restoring the supersymmetry
broken by a saddle solution (mode ζξ  for the first
instanton and modes ζξ  and κω for the second instan-
ton) as well as the Goldstone mode n restoring the sym-
metry of the first instanton in angle χB . Zero modes cor-

respond to the ground state of operator .

(ii) Soft modes. These include fluctuations of vari-
ables b, p, and q as well as mode κω (in the case of the

6 2( )
a2̂θFθF

+
a( ) b2̂θFθF

–
b( ) c2̂θFθF

+
c( )+ +=

+ d2̂θFθF

+
d( ) m2̂αβ

+
m( ) n2̂αβ

–
n( )+ +

+ p2̂ββ
–

p( ) q2̂αα
–

q( ) λ 2̂αθF

+
η( )+ +

+ µ2̂βθF

+
γ( ) κ 2̂βθF

–
ω( ) ζ 2̂αθF

–
ξ( ).+ +

2̂αβ
±

a2̂αβ
±

b( ) πν
8

------ ra r( )d∫=

× –D∇ 2 D
4
---- ∇α ∇β±( )2– iE αcos βcos+( )– b r( ).

2̂

2̂αβ
±

%αβ
±( )n/δ

2̂ %αβ
±( )1 %αβ

±( )0

2̂
+

2̂θ1θ2

–

2̂θ1θ1

–
2̂θ2θ2

–

%θ1θ1

–( )0

%θ2θ2

–( )0

%αβ
–( )0

2̂

2̂θ1θ2

–
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first instanton), which correspond to the ground states

of operators  and . If E  Eg , the mass of
soft modes tends to zero.

(iii) Hard modes. These modes have a mass on the
order of the Thouless energy and above, so that their
fluctuations are small in parameter Eg/δ ~ GN @ 1. This
inequality ensures the validity of the steepest descent
method. Hard modes include all eigenstates of opera-

tors  and excited states of operators .

3. CONTACT WITH IDEAL INTERFACES

We will consider a contact with ideal interfaces
between a superconductor and a normal metal. Let us
first consider a contact for energies close to the thresh-

old energy, but still differing from it,  ! (Eg –
E)/Eg ! 1, for which the approximation of the zero-
dimensional σ model is applicable. In this energy
range, the main contribution to the density of states
comes from the first instanton. The main exponent in
the expression for density of states is defined by for-
mula (2.41). We will now calculate the preexponential
factor and then construct a more complete theory, tak-
ing into account the contributions from the second
instanton. As a result, we will obtain an exact (natu-
rally, in the steepest descent approximation in hard

modes, which is controlled by parameter  @ 1)
expression describing the average density of states both
below and above the threshold energy, including the
entire fluctuation region. The form of the obtained
expression coincides with the predictions of the random
matrix theory for the edge of the spectrum, which may
serve as a microscopic substantiation of the hypothesis
put forth in [22].

3.1. Single-Instanton Solution 

In this subsection, we determine the contribution of
the first instanton to the average density of states. We
consider a region in the vicinity of the semiclassical
edge Eg of the spectrum, but outside the fluctuation

region:  ! ε ! 1, in which we can disregard the
contribution from the second instanton. According to
the classification given in Subsection 2.4, action (2.45)
at the first instanton (θF, α, β) = (θ1, θ2, θ1) has a zero
mode in variable n, a Grassmann zero mode ζξ , and soft
modes in variables b, p, q, and κω. All the remaining
modes are hard.

Inequality  @ 1 guarantees that, while integrating
over hard fluctuations, we can disregard the preexpo-
nential factor in formula (2.24). In this case, integration

2̂θ1θ1

–
2̂θ2θ2

–

2̂
+

2̂
–

G̃
–2/3

G̃

G̃
–2/3

G̃
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becomes trivial and gives the superdeterminant of the
quadratic form (2.45):

(3.1)

Here, the prime denotes elimination of the lowest
eigenvalue, and the equality follows from the estimate

 –  = O(ε) (inequality n > 0 holds for

eigenvalues %–) and from the asymptotic form  ∝
n2Eg, which is valid for n @ 1. Thus, hard fluctuations
make zero contribution to the density of states in the
limit in question.

It remains for us to consider soft and zero modes. It
should be noted that zero modes in variables n and ζξ
behave differently upon a deviation from the instanton
solution. The zero mode in variable n corresponds to
rotation through angle χB and remains massless for any
(not necessarily saddle) noncoinciding values of α and
β. On the other hand, the Grassmann zero mode ζξ
acquires a mass upon a deviation from the instanton
solution. Such a behavior is determined by the neces-

sity of satisfying condition  = 1, which

would be impossible if the Grassmann mode remained
a strictly Goldstone mode upon deviation from the sad-
dle solution.

Thus, in variables ζ and ξ, it is insufficient to confine
analysis to the quadratic action (2.45); it is necessary to
continue the expansion to the next order in fluctuations.
We can prove3

 that, in the third order, ζ and ξ are entan-
gled only with variable q. With respect to the remaining
soft modes b, p, and κω, we can take a Gauss integral,
making use of the fact that our analysis is carried out
outside the fluctuation region. The contribution from
commuting variables in the emerging superdeterminant
exactly cancels the contribution from Grassmann vari-
ables.

As a result, we are left with the integral with respect
to variables n, ζξ , and q. The eigenfunction of the cor-

responding operators  near the threshold is f0(r);
consequently, we can single out the coordinate depen-
dence: n = f0(r), etc. We must retain in the action the

term /δ originating from Eq. (2.45) as well

as the term proportional to  and removing degener-
acy of the Grassmann zero mode.

3 In fact, eigenvalue  is a function of both q and b (see for-

mula (A.4)). If, however, we take into account the term on the
order of bζξ  in the action, this will lead to the emergence of term

 in the preexponential factor of formula (3.5), which is not an
imaginary quantity as required and makes zero contribution to the
density of states.

det2̂θ1θ2

+
det'2̂θ1θ2

–

det2̂θ1θ1

+
det'2̂θ1θ1

–
--------------------------------------- 1 O ε( ).+=

%θ1θ2

±( )n %θ1θ1

±( )n

%αβ
±( )n

e S Q[ ]– DQ∫

%αθF

–( )
0

b̃q̃

2̂
–

ñ

q̃2 %θ2θ2

–( )0

ζ̃ ξ̃ q̃
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In order to calculate the minimal eigenvalue of oper-

ator  in the main order in deviation from the
threshold, we can use function f0, since it is an eigen-

function of operators  for E = Eg , which corresponds

to a zero eigenvalue. Substituting θ2 = π/2 + iψ0 + i f0

into formula (2.46) and expanding in , we obtain

(3.2)

In order to calculate the term proportional to  in the
action, it is sufficient to use expression (2.45), which

gives /δ; while calculating this term, we
must take into account the difference between angle α
and the instanton solution θ2 associated with fluctuation
of q. Using formula (A.4), we assume that α = θ2 –

i / f0. Expanding in  analogously to relation (3.2),
we obtain

(3.3)

Let us now calculate the preexponential factor in
Eq. (2.24). For the density of states averaged over the
volume, we must evaluate the integral

(3.4)

Here, we have singled out the imaginary constant that
makes zero contribution to the density of states.4 While
evaluating the preexponential factor (3.4), we have
omitted the Grassmann variables ζ and ξ, which are
thus retained only in the action. It can be proved that the
contribution from the omitted terms is small in param-

eter .

4 The coefficient of  is also imaginary; however, the subsequent
integration with respect to  (see relation (3.5)) will be carried
out along the imaginary axis; consequently, the density of states
will be due to the retained term.

2̂θ2θ2

–

2̂
–

ε̃
ε̃

%θ2θ2

–( )0

δ
------------------

πν
8

------ rd∫=

× f 0 –D∇ 2 2Eg ψ0 ε̃ f 0+( )sinh–[ ] f 0
G̃
2
---- ε̃.–=

ζ̃ ξ̃ q̃

ζ̃ ξ̃ %θ1α
–( )0

q̃ 2 q̃

%θ1α
–( )0

δ
-----------------

G̃q̃

4 2
----------.=

ν
4
--- rd str kΛQ( )∫ ν

2
--- r 2 θFcos α βcos+cos+[ ]d∫=

=  
iν
2
----- r 3 ψ0 ε̃ f 0–( )sinh[d∫–

+ ψ0 ε̃ q̃/ 2–( ) f 0+( )sinh ] const
ic1q̃

2 2δ
-------------.+=

q̃
q̃

ε̃
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Taking into account relations (3.2)–(3.4), we obtain
the following expression for the density of states:

(3.5)

In order to integrate with respect to the zero mode ,
we use relation (A.4):

(3.6)

For the convergence of the integral with respect to ,
we must choose the integration contour along the imag-
inary axis, which gives us the required imaginary unity.
Substituting the instanton action (2.41), we finally
obtain the density of states in the form

(3.7)

where quantities  and  are defined by formulas (2.37),
(2.40), and (2.42). Formula (3.5) describes the behavior
of the average density of states outside the fluctuation

regions for  ! ε ! 1.

We will also determine the density of states above

the threshold. In this region, we have  = i . We
do not need the instanton solution since the main con-
tribution to integral (2.24) comes from the neighbor-
hood of the supersymmetric saddle point θF = α = β =

θ1 = π/2 + iψ0 – f0. The integral over fluctuations
becomes equal to unity, and the preexponential factor
has the form

(3.8)

Two results for the density of states above and below
the threshold energy are “sewn together”: the values on
the left and right of the fluctuation region turn out to be
of the same order of magnitude:

(3.9)

Another characteristic property of the subgap den-
sity of states (3.7) is that the total number of energy lev-

ρ〈 〉 e
60–

Re
ñ q̃dd
π

------------ ζ̃d ξ̃
ic1q̃

23/2δ
-----------d∫=

× G̃
2
---- – ε̃q̃2 q̃ζ̃ ξ̃

2 2
----------+ 

 –exp

=  –
c1G̃

16πδ
------------e

–60Im ñd q̃q̃2 G̃
2
---- ε̃q̃2

 
  .expd∫

ñ

n 2i kBχBsin ψ1 ψ2–( )χB 2 ε̃ f 0χB,–= = =

ñ 2 ε̃χB, ñd∫– 4π ε̃.= =

q̃

ρ〈 〉
c1

δ
---- π

8G̃ ε̃
--------------

4
3
---G̃ε̃3/2– 

  ,exp=

ε̃ G̃

G̃
–2/3

ε̃ ε̃

ε̃

ρ〈 〉 ν
4
---Re rstr kΛQ( )d∫=

=  2νIm r ψ0 i ε̃ f 0+( )sinhd∫
2c1

δ
-------- ε̃ .=

ρ〈 〉
ε G̃

–2/3±∼

1

G̃
1/3δ

------------.∼
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els under the gap is independent of  and is of the
order of unity:

(3.10)

It will be shown in Section 4 that this property may be
violated for a contact with tunnel boundaries in the
limit of a so-called strong tail.

3.2. Exact Solution near the Threshold 

Let us now calculate the density of states taking into
account the second instanton. The result obtained will
be exact in the entire fluctuation region in the vicinity
of the critical energy.

It was proved above that hard modes make zero con-
tribution to the density of states. For this reason, in the
general case, we are left with eight quasi-zero modes
corresponding to the minimal eigenvalues of operators

: b, n, p, q, ζξ , and κω (as we seek an exact solution,
the division into zero and soft modes, which was made
for saddle solutions, becomes meaningless). We take
into account the coordinate dependence using the rep-
resentation n = f0(r), etc., and introduce, instead of

variables , , and , symmetric variables interpolat-
ing between the two solutions to the Usadel equation:

(3.11)

We must now expand the action up to cubic terms in
quasi-zero variables. Calculations similar to those used
while deriving Eqs. (2.39), (3.2), and (3.3) lead to the
following expression for action:

(3.12)

Eight extrema of this action (two for each of variables
u, v, and w) correspond to a supersymmetric saddle and
to different instantons. Analogously to relation (3.4),
we obtain the following expression for the preexponen-
tial factor:

(3.13)

We must now establish a correct measure of integra-
tion. The relation between variables u, v, w and , ,

 follows from relations (A.4). Since the measure of

G̃

1 ρ E( )〈 〉 Ed

0

Eg

∫
Eg

G̃δ
------- 1.∼ ∼ ∼

2̂
–

ñ

b̃ p̃ q̃

α π
2
--- iψ0 iu f 0, β+ + π

2
--- iψ0 iv f 0,+ += =

θF
π
2
--- iψ0 iw f 0.+ +=

6 G̃ ε̃ u v 2w–+( )
u3 v 3 2w3–+

3
---------------------------------–=

– ζ̃ ξ̃u w+
4

------------- κ̃ ω̃v w+
4

--------------– .

ν
4
--- rstr kΛQ( )d∫

ic1

2δ
------ u v 2w+ +( ).–=
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 AND THEORETICAL PHYSICS      Vol. 96      No. 2      2003



DENSITY OF PRELOCALIZED STATES IN MESOSCOPIC NS SYSTEMS 367
integration with respect to , ,  is trivial (see rela-
tion (A.5)), we conclude that

(3.14)

The integral with respect to the zero mode  is taken
analogously to the corresponding expression from (3.6):

 = 2π|u – v |. After integration with respect to  and

Grassmann variables, we obtain the following expres-
sion for the density of states:

(3.15)

Let us carry out the scaling transformation of the integra-

tion variables with a view to eliminate : (u, v, w) 

(2 )–1/3(u, v, w), and pass to new variables l = (u + v)/2
and m = (u – v )2/2. This leads to

(3.16)

where

(3.17)

At this stage, we must choose the contours of inte-
gration with respect to w and l. Integral (3.16) con-
verges if the contours of integration with respect to l
and w tend to infinity in hatched and light regions,
respectively (see Fig. 4). This, however, is valid only
when we can confine our analysis to the third-order
terms in w and l in the expansion of action. In a region
far from zero, convergence is determined by the prop-
erties of expression (2.31): the contour for w must tend
to infinity along the imaginary axis (compactness of the
FF sector), while the contour for l, along the real axis
(noncompactness of the BB sector). Nevertheless, the
main contribution to the integral comes from a neigh-

p̃ q̃ b̃

$Q
1
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-----dudv dwdñd ζ̃d ξ̃d κ̃dω̃.

ñ
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borhood of zero; consequently, we will take this inte-
gral with a cubic action within infinite limits by displac-
ing the contour for w to the left (C1 in Fig. 4). For l, we
have two alternatives: C2 and C3. A correct choice is
determined by the condition of positiveness of the den-
sity of states, which corresponds to contour C3 for l.

Integral (3.16) is evaluated in Appendix B. The
result of calculation is the following expression for the
density of states,

(3.18)

ρ〈 〉 1
∆g

----- –eAi2
e( ) Ai' e( )[ ] 2+=

+
Ai e( )

2
------------ 1 yAi y( )d

e

∞

∫–
 
 
 

,

C2

C3

C1

Fig. 4. Possible contours of integration with respect to w
and l. Correct choice corresponds to C1 for w and C3 for l.

〈ρ〉∆ g

0.5

0.4

0.3

0.2

0.1

0
–3 –2 –1 0 1 2 3

e

Fig. 5. Exact dependence (3.18) of the density of states 〈ρ〉
(in units of 1/∆g) on reduced energy e (3.17) (solid curve).
The size of the fluctuation region is on the order of unity.
The asymptotic form of the density of states above the gap
is given by expression (3.8) (dashed curve) and below the
gap, by expression (3.7) (dotted curve).
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where e is defined by the expression from (3.17). This
dependence is depicted in Fig. 5 together with the
asymptotic forms of relations (3.8) and (3.7).

The single-instanton approximation is valid in the
limit e @ 1. If we substitute into formula (3.18)
the  asymptotic expression for the Airy function,5 the
first two terms in the brackets cancel out and the inte-
gral is found to be much smaller than unity. As a result,
Eq. (3.18) exactly coincides with expression (3.7).

Functional dependence (3.18) coincides with the
predictions (formula (3.21) below) of the random
matrix theory for the spectral edge in the case of an
orthogonal ensemble [32]. Such a coincidence is not
surprising in view of the equivalence of the random
matrix theory and the zero-dimensional σ model [26]. In
the case under investigation, the σ model becomes zero-
dimensional in the vicinity of the threshold at the stage
of introducing quasi-zero-dimensional variables (3.11)
with a fixed coordinate dependence specified by func-
tion f0. The application of the random matrix theory for
NS systems will be discussed in greater detail in Sub-
section 3.3.

The results of this and preceding subsections are
valid in the case when the normal region has an arbi-
trary shape and is linked via ideal contacts to an arbi-
trary number of superconductors with identical phases
(see Fig. 3). It is only necessary that the approximation
of the zero-dimensional σ model be satisfied. The crite-
rion determining the effective dimensionality of the
problem in an important special case of a planar SNS
junction will be formulated in Subsection 5.1.

3.3. Method of Random Matrices 

The random matrix theory was proposed by Wigner
[17] in 1951 for describing properties of nuclear spec-
tra. The idea of this theory is that the statistical proper-
ties of the spectrum of a complex and unknown nuclear
Hamiltonian do not change upon replacement of all
matrix elements by random numbers. Dyson [18] and
Mehta [19] subsequently developed the random matrix
theory.

In the simplest case, the random matrix theory is
formulated for so-called Gaussian ensembles, for
which the Hermitian random N × N matrix H acquired
the statistical weight,

(3.19)

The average density of states for distribution (3.19) in

5 The asymptotic form of the Airy function for x  ∞ has the

form Ai(x) ~ .
1

2 πx
1/4

--------------------e
–2x

3/2/3

3 H( )
π2

2Nδ2
-------------trH2– 

  .exp∝
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the limit N  ∞ has the form of a Wigner semicircle,

(3.20)

vanishing for |E | > E0 ≡ (2/π)Nδ. In accordance with the
random matrix theory, the statistical properties of the
spectrum at the center of the band for |E | ! E0 are
determined only by the mean level spacing δ and by the
symmetry of Hamiltionian H (orthogonal, unitary, or
symplectic [19]).

In 1965, Gor’kov and Éliashberg [33] suggested that
the random matrix theory may be applied for describing
the statistical properties of energy levels in disordered
metallic grains. However, the theory remained phenom-
enological up to 1982, when Efetov [21] used the
supermatrix σ model for computing a pair correlator
R2(ω) = δ2〈ρ(E)ρ(E + ω)〉  of energy levels for a metallic
grain and proved that it coincides with the predictions
of the random matrix theory in the zero-dimensional
limit ω ! ETh . Subsequently, the universality hypothe-
sis, according to which local spectral properties of ran-
dom systems near the center of a band are determined
only by the symmetry of the Hamiltonian and not by its
microscopic properties, was proved for a wide class of
ensembles of random matrices [34].

In 1997, Altland and Zirnbauer [35] proposed a gen-
eralization of three standard Wigner–Dyson ensembles
to the case of mixed NS systems by introducing four
more symmetry classes, which take into account the
mirror symmetry of the Bogoliubov–De Gennes equa-
tions. However, they confined analysis only to systems
in which the average phase factor 〈eiφ〉  = 0, where φ is
the electron phase gained due to Andreev reflection pro-
cesses. Such a situation is realized, for example, in the
core of a superconducting vortex or in an SNS junction
with a phase difference of π. Under such a condition,
the proximity effect does not lead to the formation of a
gap in the spectrum of the normal region, but specific
superconducting correlations may appear for energies
very close to the Fermi energy (at “distances” on the
order of δ).

If, however, the superconducting order parameter
averaged over the system does not vanish, the density of
states is suppressed to zero on the Fermi surface, and a
gap is formed for E = Eg (in the semiclassical approxi-
mation). The states emerging near the gap cannot be
described with the help of the random matrix theory at
the center of the Wigner semicircle (3.20) even if we
use new symmetry classes [35]. In 2001, Vavilov et al.
[22] paid attention to the fact that the semiclassical den-
sity of states in NS systems near the threshold, as well
as the density of states for a Wigner semicircle, exhibits
identical (root) dependences on the distance to the
threshold. They were the first to propose, in this con-
nection, using the random matrix theory at the spectral

ρ E( )〈 〉 RMT
1
δ
--- 1 π2E2

4N2δ2
---------------– ,=
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edge for describing close-to-threshold states in NS sys-
tems.

The Wigner semicircle (3.20) describes the average
density of states far away from thresholds ±E0. Correc-
tions to it become significant at a distance of a single
energy level from the threshold, i.e., for |E | – E0 ~ ∆0,
where ∆0 = (δ2E0/2π2)1/3. In the forbidden gap |E | > E0,
a nonzero average density of states appears; in this case,

 ~ 1,

which means that almost the entire density of states out-
side the Wigner semicircle is ensured by fluctuations of
the position of the lowest energy level. Universal prop-
erties of the spectrum of random matrices near its edge
were investigated in [32]. In particular, the exact profile
of the average density of states near the threshold E =
E0 assumed the universal form in terms of the dimen-
sionless quantity x = (E – E0)/∆0:

(3.21)

where β = 1 or 2 for the orthogonal (unitary) class of
symmetry.

The applicability of the random matrix theory for
describing the edge of the spectrum in an NS system was
proved for the first time in [30] with the help of the
method of the supermatrix σ model. In the limit of the
zero-dimensional σ model, which is valid in a close neigh-
borhood of the threshold, we derived expression (3.18),
exactly coinciding with result (3.21) obtained for the
orthogonal symmetry.

4. CONTACT WITH TUNNEL INTERFACES

In this section, we consider an NS contact (Fig. 3)
with nonideal boundaries. As the transparency of the
interface decreases, quasiparticles stay for a longer
time in the normal region between two Andreev reflec-
tions; accordingly, the gap in the density of states
becomes smaller. In the tunnel limit, when the transpar-
ency of each channel between superconductors and the
normal part of the contact is low, a gap is formed at
energy Eg = GTδ/8π. In the vicinity of Eg , the semiclas-
sical density of states vanishes in accordance with the

law ; as the distance from the threshold increases,
it attains its maximum value and then decreases in

ρ E( )〈 〉 Ed

E0

∞

∫

ρ E( )〈 〉 1
∆0
----- –xAi2 x( ) Ai' x( )[ ] 2 ∫+=

+ δβ 1,
Ai x( )

2
------------ 1 yAi y( )d

x

∞

∫–
 
 
 

,

ε
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accordance with the law 1/  (see Eq. (4.30) below),
resembling more and more a BCS-type singularity.

The shape of the tail in this case also changes, but
the total number of quasi-localized states remains on
the order of unity as before. The pattern changes quali-
tatively for GT ! G1/4 (where G is the characteristic
conductance of the normal part of the contact, which
will be defined rigorously below). In this limit, the aver-
age number of energy levels in the region of the root
increase in the density of states above energy Eg is on
the order of unity, so that the entire region falls to the
domain of strong fluctuations. The number of subgap
states starts increasing simultaneously. This regime,
which will be referred to as an strong tail, will be con-
sidered in Subsection 4.4.

4.1. Action for the Boundary 

If the interface between a superconductor and a nor-
mal metal is ideal, matrix Q is continuous upon a tran-
sition from one region to another. If, however, the inter-
face is not ideal, the boundary conditions become more
complicated [36, 37]. These conditions can be taken
into account automatically if we supplement the action
of the σ model with an additional boundary term. It has
the form [26, 38]

(4.1)

Index i labels superconductors in contact with the nor-
mal region, and Ni is the total number of conducting
channels in the ith contact per spin component. For a
boundary of area S, the number of channels is N =
πνv 0S, where v 0 is the Fermi velocity; Γi is the trans-
parency of a channel, which is assumed for simplicity
to be identical for all the channels at the given interface;
Q(i) is the value of matrix Q in the normal region in the
vicinity of the ith contact; and QS is the value of matrix
Q in the superconductor. Expression (4.1) can be used
only if matrix Q(i) is constant along each interface. This
condition is satisfied automatically for a planar SNS
junction (see Fig. 1); in the general case (see Fig. 3), we
must require that the size of the contacts is small as
compared to the characteristic size of the normal
region.

In our parametrization, the separation of vari-
ables (2.30) is preserved as before and the expression
for S0 acquires an additional term,

(4.2)

where γi = Γi/(2 – Γi). Here, θ(i) is the value of angle θ
in the normal region in the vicinity of the ith contact. It

ε

6boundary
1
4
--- Nistr 1

Γ i

2
----–

Γ i

4
---- Q Q i( ),{ }+ .ln

i

∑–=

S0 θ[ ] πν
4

------ rd D ∇θ( )2 4iE θcos+[ ]∫=

–
1
2
--- Ni 1 γi θ i( )sin+( ),ln

i

∑
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was noted above that this value is independent of the
coordinates along the boundary. This allows us to use
the coordinate representation for the first term in the
action and the channel representation for the second
term. Henceforth, we will use the superscript “i” for
values of various fields in the vicinity of the ith contact.

The entire classification of instantons made in Sub-
section 2.4 is preserved. In the expansion in fluctua-
tions, we must supplement action (2.44) with the
boundary term:

(4.3)

Here, we have introduced the notation  =

W  and Ti = (2 – Γi – 2 )/Γi = γi –

2 /γi . Parametrization of W diagonalizing this
action remains unchanged (Appendix A), but operator

 also acquires a boundary term:

(4.4)

Thus, the inclusion of nonideality of the boundary
does not basically change the strategy of calculating the
density of states near the threshold. We can repeat all
calculations made for an ideal boundary in Section 3,
taking into account the boundary term in the action.
The only difference will be redefinition of functions
ψ1, 2 and f0 as well as constants c1, 2. The new definitions
have the form

(4.5)
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(4.6)

(4.7)

(4.8)

With these definitions, the results obtained in Subsec-
tions 3.1 and 3.2 are preserved.

It should be recalled once again that all formulas in
this subsection are valid only when functions ψ1, 2 and
f0 are constant at the boundaries with a superconductor.

4.2. Zero-Dimensional Action 

Here, we consider the case when the gradient terms
in action (4.2) have the meaning of a small correction.
Such a situation takes place either in the limit of tunnel
contacts Γ ≈ 2γ ! 1, or for contacts whose size is
smaller (Fig. 3) than the mean free path: Si ! l2. In the
latter case, diffusion in the normal part of the contact is
not necessarily required; the mean free path can be on
the order of the size of the system. Taking into account
the gradient terms as a small correction, we can deter-
mine the optimal coordinate dependence ψ(r) and
obtain a zero-dimensional action.

Thus, if ψ(r) changes in space insignificantly, we
can single out a large constant,

, (4.9)

and expand action (4.2) into a series up to the first order
in φ and to the second order in ∇φ ; in addition, we
expand the logarithm in the action up to the second
order in γ  (omitting an insignificant constant).
The validity of the inequality γ  ! 1 will be
proved below:

(4.10)

where we have introduced the total tunnel conductance
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of the contacts,

(4.11)

Disregarding the terms in the second and third lines
in Eq. (4.10) and varying the action in A, we obtain
8πE/(GTδ) = . The effect of the omitted terms
becomes significant for large values of A; in this case,
corrections to  are negative. This ensures the
emergence of a peak in the dependence of energy on A,
which determines the gap width. In the first approxima-
tion, we can assume that

(4.12)

In the framework of the approximation used by us here,
we can replace energy E in the fourth term in Eq. (4.10)
by Eg . Using also the fact that A is large, we can replace
the hyperbolic functions of A in the second and third
lines of Eq. (4.10) by P/2, where P = eA. As a result, we
obtain action in the form

(4.13)

We have also introduced here the dimensionless energy
measured from the edge of the gap:

(4.14)

Varying the obtained action with respect to φ, we
obtain the following equations:

(4.15)

These equations define function φ to within a constant
term since we have not fixed the constant in Eq. (4.9).
For the sake of convenience, we introduce the function
Φ(r) = 2Dφ(r)/Pv 0, which has the dimension of length
and satisfies the equations

(4.16)

Here, Si is the area of the ith contact. In such a form, the
compatibility of the equation and the boundary condi-
tions becomes obvious. Indeed, having integrating the
first equation over the volume and applying the Gauss
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theorem, we obtain  = 0, which
matches the boundary conditions on Eqs. (4.16).

Using Eqs. (4.16), we can simplify action (4.13),
which becomes now a function of P only:

(4.17)

This expression indicates once again that the arbitrary
constant in Φ is deprived of physical meaning. For sub-
sequent calculations, we require only one quantity
characterizing the geometry of the system and the prop-
erties of the junctions:

(4.18)

Let us consider some particular cases.
(i) One-dimensional junction. Let the normal

region be a rectangle of length L (see Fig. 1) and be
connected with two superconductors by identical junc-
tions with a transparency of 2γ ! 1 (for each junction).
In this case, the solution to Eq. (4.16) has the form
Φ(x) = –γx2/L, while parameter (4.18) becomes  =
Lγ/2l + γ ≈ Lγ/2l. Thus, the first term in the square
brackets in Eq. (4.18) can be neglected in comparison
with the second term. If a superconductor is fixed only
at one side, the corresponding parameter  becomes
twice as large:  = Lγ/l.

(ii) Two-dimensional junction. If the normal
region has the shape of a circle of radius R, bordering a
superconductor, then Φ(r) = –γr2/2R, and we ultimately
have  = 3Rγ/4l.

(iii) Three-dimensional junction. Similarly, if the
normal region has the shape of a sphere of radius R,
function Φ(r) is the same as in the previous case and the
result is  = 3Rγ/5l.

(iv) Zero-dimensional junction. By a zero-dimen-
sional junction, we assume a normal metal of an arbi-
trary shape, connected to superconductors by narrow
junctions (see Fig. 3). In this case, we can disregard the
second term in the square brackets of Eq. (4.18) as
compared to the first term; if all the channels have the
same transparency Γ, we have  = Γ/2. Indeed, if a
junction has a shape similar to that depicted in Fig. 3,

the main contribution to integral  comes

from regions in the vicinity of the superconductors. If
the distance r from the ith junction with the supercon-

ductor is much larger than the contact size (r @ ),
but much smaller than the size of the normal metal, we
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can approximately assume that |∇Φ|  ≈ Siγi/2πr2. The
integral of the square of this quantity is proportional to

 and can be disregarded in expression (4.18) pro-
vided that Si ! l2.

The value of  depends on the geometry of the sys-
tem and, in addition, is proportional to the “average”
transparency of a channel in a junction. The tunnel con-
ductance GT is also proportional to the transparency of
a channel. In order to analyze the behavior of various
parameters of the system upon a change in the resis-
tance of the junctions, we introduce a quantity describ-
ing the shape of the system only,

(4.19)

For a planar junction (see Fig. 1), it is proportional to
the conductance of the normal part: G = 12GN.

As a result, we obtain the zero-dimensional action

(4.20)

4.3. Classification of Tails 

Here, we consider various limiting cases of variation
of parameters  and ε, calculate the actions of instan-
tons, and construct a rough pattern of possible behavior
of the subgap density of states in various limiting cases.

By varying S0(P), we obtain the following equation6

6 For an ideal boundary, an analog of this equation was Eq. (2.6).

Si
3/2 γi

2

γ̃

G GT /γ̃.=

S0 P( ) Gγ̃
16
------- –εP

2
P
---– γ̃P2

4
---------+ .=

γ̃

~γ
1

γ*

0
–1

I

Ia
Fa

Fb

–ε* ε*0

II

IIa

IIb

1
ε

Fig. 6. Approximate “phase diagram” for possible energy
dependences of the density of states. Formula (4.25) corre-
sponds to regions I, (4.30) to Ia , (4.26) to II, and (4.44)
to IIa and IIb . The density of states in regions I, Fa , and II is
described by the universal formula (3.18) taking into
account relations (4.24). The total number of prelocalized
states in region IIb is large (see relation (4.46)). Parameters

ε* = G–1/2 and γ* = G–3/4.
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connecting P and ε:

(4.21)

The minimal value of ε is attained for P = P0 = 2

and is equal to 3 /2 ! 1. This quantity has a nonzero
value since the threshold energy Eg is in fact smaller
than G δ/8π. However, this correction is small and
should be taken into account only while deriving the
next formula.

For E < Eg , Eq. (4.21) has two real positive roots
P1, 2 corresponding to two solutions θ1, 2 to the Usadel
equation. These roots can be found by expanding
Eq. (4.20) in small parameters ε and δP = P – P0:

(4.22)

Here, we have taken into account in ε the correction

which was omitted in Eq. (4.14): ε = 1 – 3 /2 –
4πE/G δ. For our subsequent analysis, the accuracy of
expression (4.14) is sufficient.

Expansion (4.22) leads to the conclusion that two
solutions to the Usadel equation correspond to P1, 2 =

P0( ), while the exponent for the density of
states has the form

(4.23)

The same result can be obtained by comparing
expansions (4.22) and (2.39). To this end, we must first
establish the relation between g and δP. In the regime

 ! 1, function ψ0(r) differs from a constant insignifi-
cantly; for this reason, in the main order, we can assume
that f0(r) ≈ 1. Thus, δψ = g, and on the other hand, δψ =
δlnP = δP/P0. Equating the right-hand sides of
Eqs. (4.22) and (2.39) termwise, we ultimately obtain

(4.24)

If we substitute these constants into Eq. (2.41), we
again arrive at result (4.23). Using expressions (4.24), we
can generalize all results obtained in Subsections 3.1 and
3.2. In particular, for the density of states above the gap,
we obtain from Eq. (3.8)

(4.25)
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Similarly, we can determine the preexponential factor
for the density of states under the gap from Eq. (3.7):

(4.26)

The last two formulas are valid outside the fluctua-

tion region provided that |ε| @ G–2/3 , when we can
disregard the contribution of the second instanton as
compared to the first one. Figure 6 shows a rough
“phase diagram” of possible behaviors of density of
states for various values of  and ε. Formulas (4.25)
and (4.26) correspond to regions I and II, respectively.
Fluctuation region Fa lies between these regions. A uni-
versal expression for the density of states in the three
regions (I, Fa , and II) can be obtained from Eq. (3.18)
using Eq. (4.24) also.

Expansion (4.22) is valid if the energy differs from
the threshold energy insignificantly. The validity of this
expansion requires the fulfillment of inequality |δP | !
P0 or, which is the same, |ε| ! .

In the opposite limit  ! ε ! 1, the cubic parab-
ola approximation (4.22) is inapplicable, and we must
solve Eq. (4.21) to find P1, 2. In order to find the smaller
root (P1), we can disregard the last term, while the
second root (P2) can be found by disregarding the sec-
ond term:

(4.27)

Substituting these values into the expression for action
(first part of relation (4.22)), we obtain

(4.28)

Since S0(P1) ! S0(P2), the exponent for density of states
is determined by S0(P2) only:

(4.29)

The density of states with such an exponent corre-
sponds to regions IIa and IIb . The preexponential factor
for this regime will be obtained in the next subsection.

Formula (4.25) is also inapplicable in region Ia

above the gap. In order to determine the density of
states in this regime, we must solve Eq. (4.21) for a
large negative ε. In order to find pairs of complex con-
jugate roots, we can disregard the last term in

Eq. (4.21): P1, 2 = ±i . In this case, density of
states has the form

(4.30)
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δ
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Here, we have used root P1 since the density of states
must be positive.

As transparency  decreases, regions I and II
become narrower and vanish when  ~ G–3/4. The sin-
gle-instanton contribution to the density of states in this
case is described only by an exponential function with
exponent (4.29). It will be shown in Subsection 4.4 that
the total number of subgap states increases as the value
of  decreases below G–3/4 (region IIb). Such a behavior
will be referred to as an strong tail.

In the vicinity of the Fermi energy (ε = 1), a cross-
over to a non-zero-dimensional σ model takes place.
The corresponding density of states will be considered
in Subsection 5.3. This region is shaded in the figure.

It should be emphasized once again that a crossover
from one dependence to another takes place near the
boundaries of the regions, and the above formulas are
valid only in the bulk of the corresponding region.

4.4. Strong Tail 

Let us now consider the case when  ! G–3/4. It cor-
responds to region IIb in Fig. 6. The density of state was
determined with an exponential accuracy in the preced-
ing subsection. We will determine now the preexponen-
tial factor.

The fluctuation region for the case under study is so
large that the difference between functions ψ1 and ψ2
outside this region cannot be regarded as small, but
their dependence on coordinates is still weak. While
evaluating the Gaussian integral over hard modes, we
obtain, as in Subsection 3.1, the factor

(4.31)

where we have confined our analysis only to minimal

eigenvalues of operators  and , since higher
eigenvalues are mainly determined by the gradient term
and exhibit a weak dependence on energy as before.

However, we will start with determining the quanti-

ties  and , which will be required any-
way in subsequent analysis. For this purpose, we use
relations (A.4) and formulas (2.30) and (4.20):

(4.32)
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Analogous differentiation with respect to variable q
gives

(4.33)

The eigenvalue  corresponds to rotation of

angle χB and is equal to zero. We will calculate 
using perturbation theory. The corresponding eigen-
function differs insignificantly from a constant and can
be set equal to unity:

(4.34)

Here, we have used expression (4.18) for .

In the same way, we can also calculate , but
the perturbation theory correction to formula (4.32)
obtained in this case will be small, so we can assume
that

(4.35)

Thus, the contribution to the preexponential factor
from hard fluctuations can be reduced to

(4.36)

Subsequent calculations are similar to those from
Subsection 3.1. Fluctuations of soft modes of variables
b, p, and κω mutually cancel out, and we are left with
an integral with respect to variables n, ζξ , and q. The
pair of Grassmann variables7

 ζ, ξ appears in the action

in the form ζξ /δ. In order to evaluate this eigen-
value (which differs from zero when α ≠ θ2), we will

7 In Subsection 3.1, we used the notation ζ(r) = , etc.,

where the amplitude of fluctuations and their spatial profile are
separated explicitly. In the limit we are dealing with now, the nor-

malized eigenfunctions of operators , corresponding to the
lowest eigenvalues, differ from unity only slightly; consequently,

we may not distinguish between  and ζ within the required
accuracy.
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use the eigenfunction , which
assumes, after normalization, the form

(4.37)

Substituting this expression into formula (4.4), using
Eqs. (4.16) and (4.18), and carrying out cumbersome,
but elementary transformations, we obtain

(4.38)

Here, P2 stands not for the root of Eq. (4.21), but a vari-
able parametrizing angle α: α ≈ π/2 + ilnP2. The quan-
tity P2 satisfies Eq. (4.21) only for α = θ2; in this case,
expression (4.38) obviously vanishes. The same was
observed for ideal boundaries. At a saddle point, mode
ζξ  is zero, but its mass increases linearly upon a devia-
tion in variable q. In our case, this corresponds to a
deviation in P2:

(4.39)

Differentiating expression (4.38) with respect to P2 (we
must differentiate only the second term in the square
brackets), we obtain

(4.40)

Let us now calculate the preexponential factor in
Eq. (2.24) in our approximation. Analogously to
Eq. (3.4), we have

(4.41)

It remains for us only to determine the measure of
integration with respect to variable n corresponding
to the zero mode of rotation in angle χB. Using rela-
tions (A.4), we obtain, analogously to (3.6),

(4.42)
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We have now everything required for calculating the
density of states. Using relations (4.33), (4.36), and
(4.40)–(4.42), we obtain

(4.43)

Integrating along the imaginary axis, we finally obtain

(4.44)

This result describes the behavior of density of
states in regions IIa and IIb in Fig. 6. In region IIa , the
obtained dependence is matched with Eq. (4.26) for

ε ~ :

(4.45)

Matching in region IIb is more complicated. The
semiclassical density of states vanishes according to
root law (4.25) at the boundary of the gap, attains its

peak value for |ε| ~ , and then decreases in accor-
dance with inverse root law (4.30). As the transparency
of the boundary decreases, the size of the fluctuation
region increases, and this region covers the peak of the
density of states for  ~ G–3/4.

The density of states increases as we approach fluc-
tuation region Fb on both sides; consequently, there
must be no formal matching of these two dependences:
the peak of the density of states lies in the fluctuation
region.

Finally, let us estimate the total number of quasi-
localized states:

(4.46)

Thus, for  ! G–3/4, the number of states under the gap
becomes large, which explains the term “strong tail”
used in this case. These are apparently most suitable
conditions for experimental verification of the above
theory.

5. NONUNIVERSAL DENSITY OF STATES
In this section, we consider various cases in which

density of states cannot be described by the zero-
dimensional σ model. Subsection 5.1 deals with the sit-
uation when the instanton describing subgap states has
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a finite spatial size smaller than the size of the normal
part of the contact. Fluctuations near such an instanton
solution have a quasi-continuous spectrum, which con-
siderably complicates the calculation of the preexpo-
nential factor in the density of states. For this reason, all
results of this subsection (and the entire Section 5) will
be obtained with an exponential accuracy.

In Subsection 5.2, the problem of subgap states in a
superconductor with magnetic impurities is considered.
In contrast to the rest of the material, it deals with a spa-
tially homogeneous sample and not with a hybrid sys-
tem. Quasi-localized states appear owing to spatial
fluctuations of magnetic impurities. The problem of
subgap states in such a system was solved in [23, 24].
The results are derived, and their relation with quasi-
localized states in hybrid systems is demonstrated.

Subsection 5.3 is devoted to the density of states
deep in the gap in the vicinity of the Fermi energy. This
density of states cannot be described by the zero-
dimensional σ model either and will be determined
with an exponential accuracy.

5.1. Broad SNS Junction 

This and the next subsections are devoted to analysis
of a planar SNS junction (see Fig. 1). If the junction is
long (the exact criterion will be formulated later), the
results obtained in Subsections 3.1 and 3.2 are valid. It
should be recalled that the corresponding numerical
parameters have the following values in the given case:

c1 ≈ 1.15, c2 ≈ 0.88, Eg = 3.12ETh , and  = πc2Eg/2δ =

0.34GN. Here, ETh = D/  and GN = 4πνDLyLz/Lx =
4πETh/δ. In the case when the resistance of the contacts

is finite, we can use values (4.24) (naturally, if ε ! ).
The action of an instanton defined by formula (2.41)

is proportional to the conductance of the normal region
and increases with its sizes in the y and z direction par-
allel to the NS interfaces. Consequently, for large val-
ues of Ly and Lz , it is more expedient to form an instan-
ton with finite sizes along the y and z axes. In this case,
a loss appears due to gradient terms, but it is compen-
sated by the independence of action of the size of the
normal region for large values of Ly and Lz . It will be
shown below that the characteristic size of such a field
configuration depends on the closeness to the threshold
and is on the order of L⊥ (E) ~ Lxε–1/4.

We will calculate here the action of an instanton for
a quasi-two-dimensional and three-dimensional con-
tacts (one-dimensional and two-dimensional σ models,
respectively), when one or both transverse sizes exceed
L⊥ (E), and obtain a result for the subgap density of
states with an exponential accuracy. The power of
energy in the exponent will differ from the case of a
long one-dimensional junction.

In order to calculate the action for an instanton, we
repeat the arguments leading to formula (2.39), but

G̃

Lx
2

γ̃2/3
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assume that g is a function of transverse coordinates:
θ = π/2 + iψ0(x) + ig(r⊥ )f0(x):

(5.1)

This action has two obvious saddle points g = ±
independent of the transverse coordinates, as in the case
of the zero-dimensional problem. We retain for func-

tion θ1 the solution θ1 = π/2 + iψ0 – i f0 and seek a
solution for θ2 as a function of transverse coordinates.
For the sake of convenience, we introduce a function 
which describes the dependence of θ2 – θ1 on transverse
coordinates and, in addition, transform the variables to
the dimensionless form:8

(5.2)

In this case, action assumes the form

(5.3)

By varying this action, we obtain an equation for ,
which describes the shape of an instanton in transverse
directions:

(5.4)

Substituting the expression for the Laplacian into the
action again and integrating by parts, we finally obtain

(5.5)

(i) One-dimensional junction (Ly, z ! L⊥ ). When
the transverse sizes of the normal part of the junction
are small, the results obtained in Section 3 are valid. In
this case,  ≡ 1, the integral in Eq. (5.5) is equal to

LyLz/ , and we return to expression (2.41) or (4.23)
(in the case of tunnel contact). In this limit, the approx-
imation of the zero-dimensional σ model is applicable
and, hence, our previous results (3.7) and (4.26) for tun-
nel contacts are valid.

8 The value of L⊥  determined in this way is half the value used
in [29].
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g̃

L⊥
2

JOURNAL OF EXPERIMENTAL 
(ii) Two-dimensional junction (Lz ! L⊥  ! Ly). We
must solve Eq. (5.4) under the condition that  is a
function of y only. This equation describes a soliton of
the Korteweg–de Vries type; its solution is well known:

(5.6)

Substituting  into Eq. (5.5), we obtain the following
expression for density of states:

(5.7)

Here, the large dimensionless parameter in the expo-
nent, which determines the applicability of the steepest
descent method, is the dimensionless conductance per
unit area of the film of the normal metal connecting the
superconducting banks:  = 4πνDLz .

In the case of tunnel contacts, using Eq. (4.24), we
obtain

(5.8)

Here,  = LxΓ/4l ! 1.

(iii) Three-dimensional junction (L⊥  ! Ly, z). The
two-dimensional equation (5.4) cannot be solved ana-
lytically. We can only give the numerical result for inte-
gral (5.5):

(5.9)

The density of states can be written in the form

(5.10)

In this formula,  denotes the dimensionless conduc-
tance per unit area of the film, oriented parallel to the
superconducting banks:  = 4πνDLx .

For tunnel contacts, we obtain

(5.11)

where  = LxΓ/4l ! 1 as before.

The criterion determining whether or not the depen-
dence of an instanton solution on a transverse coordi-
nate should be taken into account is based on the com-
parison of L⊥  and Ly, z . Since the quantity L⊥  is itself a
function of energy, dimensions are “frozen out” as we
approach the threshold: a crossover occurs from the
two-dimensional σ model to the one-dimensional and
then to zero-dimensional model.
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5.2. Superconductor with Magnetic Impurities 

In this section, we consider quasi-localized states in
a superconductor with magnetic impurities. In the given
case, we are speaking of a macroscopically homoge-
neous system in contrast to all the cases considered
above (and below). The method of nonlinear σ model
for determining anomalously localized states in such a
system was developed in [23, 24].

A superconductor with magnetic impurities was
studied in detail in the mean field approximation in the
famous work by Abrikosov and Gor’kov [28]. Among
other things, they proved that superconductivity is sup-
pressed by magnetic impurities, the order parameter ∆
being larger than the gap Eg in the excitation spectrum.
Thus, the gapless superconductivity regime is possible,
when Eg = 0, while ∆ > 0. Following [23, 24], we will
consider, however, the case of a finite gap and will
determine the instanton correction to the density of
states under the gap with an exponential accuracy.

The introduction of magnetic impurities requires a
refining of the σ model. The Bogoliubov–De Gennes
Hamiltonian now contains an additional term describ-
ing scattering at magnetic impurities:9

(5.12)

Since magnetic impurities suppress superconductivity,
the order parameter ∆ appearing in Hamiltonian (5.12)
should be determined self-consistently. We assume that
the magnetic impurity concentration is quite low and
does not destroy superconductivity completely. In all
the formulas of this subsection, we assume that the
effect of impurities has already taken into account in ∆.

We assume that the random field S(r) in Eq. (5.12)
is delta-correlated and introduce the time τs of scatter-
ing by magnetic impurities in the standard manner:

(5.13)

Thus, our system has acquired another dimensionless
parameter,

(5.14)

The derivation of the σ model is generalized in a
trivial manner to the case of Hamiltonian (5.12). In this

9 The symbol  for the electron spin operator is supplied with a
hat to distinguish it from the Pauli spin matrices σi acting in the
PH space. The spin operator can be expressed in terms of Pauli
matrices as  = τzs.

ŝ

ŝ

* τ z
p2

2m
------- µ– U r( )+ 

  τ x∆ r( ) JS r( ) ŝ.⋅+ +=

JSα r( )JSβ r'( )〈 〉
δ r r'–( )δαβ

6πντs

---------------------------.=

ζ 1
τ s∆
--------.=
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case, action assumes the form

(5.15)

Here, the diffusion coefficient is determined by scatter-
ing by nonmagnetic impurities only. The Usadel equa-
tion can be derived without introducing complete
parametrization of matrix Q, but using a simple expres-
sion in terms of angle θ alone: Q = σzτzcosθ + τxsinθ.
Separating, as usual, the imaginary part θ = π/2 + iψ, we
obtain

(5.16)

Let us first consider homogeneous solutions to this
equation. As before, we have two such solutions for
energies below a certain threshold Eg . Omitting the gra-
dient term, we can write the equation in a form resem-
bling Eq. (2.6):

(5.17)

This equation has two solutions. The energy for which
these solutions coincide determines the gap width. The
maximum of the function on the right-hand side is
attained for  = ζ–1/3, which corresponds to

(5.18)

This remarkable result was obtained for the first time
in [28].

In the vicinity of the threshold, we can expand the
action in the dimensionless energy ε = (Eg – E)/∆ and in
the deviation of the angle ψ = ψ0 + g(r). As a result, we
obtain the following action for g(r):

(5.19)

Here, we have introduced the coherence length ξ =

. The obtained action is completely analogous to
expression (5.1). Thus, subsequent calculations just
repeat the preceding subsection and lead to the follow-
ing result [23, 24]:

(5.20)

Here, d is the effective spatial dimension of the super-
conductor, ν(d) is the d-dimensional density of states,

6 Q[ ] πν
8

------ rd∫=

× str D ∇ Q( )2 4iQ ΛE iτ x∆+( )
Qτ zs( )2

3τ s

--------------------–+ .

D∇ 2ψ 2E ψ 2∆ ψ 1
τ s

---- 2ψsinh+sinh–cosh+ 0.=

E
∆
--- ψtanh= ζ ψ .sinh–

ψcosh

Eg ∆ 1 ζ2/3–( )3/2
.=

S0 θ[ ] πν∆
4

---------- rd∫=

× ξ2 ∇ g( )2 4εζ 1/3– g 2ζ1/3 1 ζ2/3– g3–+[ ] .

D/∆

ρ〈 〉 δ 1– 16
3
------adπν d( )∆ξdζ–2/3–exp∼

---× 24 1 ζ2/3–( )
– 2 d+( )/4

ε 6 d–( )/4 .
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and the quantity ad =  was evaluated in Subsec-

tion 5.1 (function  satisfies the equation ∇ 2  =  –

). This quantity assumes the following values:

(5.21)

5.3. Low-Energy Limit 

In this subsection, we consider the range of energies
close to the Fermi energy. For such energies, the density
of states is suppressed the most strongly. As before, we
will seek a solution with an exponential accuracy; for
this purpose, we must solve the Usadel equation (2.2)
and calculate action (2.30) based on the solution.

Our calculations almost repeat the calculations
made by Muzykantskii and Khmelnitskii [39] (see
also [40, 41]), who applied the instanton method in the
diffusive σ model for determining the long-time
asymptotic form of conductance G(t) of a mesoscopic
sample. The saddle equation appearing in this case and
describing the instanton solution has the form D∇ 2θ +
iω  = 0 with the boundary condition θ = 0, where
the quantity ω defined by the self-consistency equation
[39] is inversely proportional to t. In the limit ω ! ETh ,
the nontrivial solution of this equation almost coincides
with solution ψ2 to Eq. (2.5) for an SNS junction for
E ! ETh . As a result, the actions of instantons in our
problem and in the problem solved in [39] turn out to
be identical.

We begin with a long planar SNS junction (see
Fig. 1). The difference ψ2 – ψ1 is not small for energies
E  0; consequently, we must solve Eq. (4.5)
directly. It should be noted that, as the energy
decreases, ψ1(0)  0, while ψ2(0)  ∞ (see Fig. 2).
This enables us to set ψ1 = 0 and to use the “triangular”
approximation for ψ2 [39],

(5.22)

which is based on the assumption that, for low energies,
we can disregard the second term in Eq. (4.5) almost in
the entire range of x except in the vicinity of zero. Sub-
stituting expression (5.22) into action (4.2), integrating,
and expanding the boundary logarithm, we obtain

(5.23)

Let us first consider ideal boundaries, for which we can
set A = 0. Carrying out the variation in B (considering

rd g̃3d∫
g̃ g̃ g̃

g̃2

a0 1, a1 36/5, a2 46.5, a3 262.≈≈= =

θsinh

ψ2 x( ) A B 1 2 x
Lx

---------– 
  ,+=

S0

πνDLyLz

Lx

----------------------=

× –B2 E
BETh

------------ A B+( )cosh Acosh–( ) 6γ̃ Acosh–+ .
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that B @ 1), we obtain

(5.24)

To a logarithmic accuracy, we obtain the following
equation for B:

(5.25)

Substituting this result back into Eq. (5.23), we find the
density of states,

(5.26)

where GN = 4πνDLyLz/Lx .

In the case of tunnel boundaries between a normal
metal and superconductors, we must vary Eq. (5.23) in
both variables in the limit A, B @ 1. This gives

(5.27)

Here, we have used the equality Eg = 6 ETh . To a log-
arithmic accuracy, we obtain the following solution:

(5.28)

In view of the smallness of E/Eg and , the first term in
action (5.23) predominates. In this case, the density of
states has form (5.26), as for a contact with ideal
boundaries. This is not surprising, since strongly local-
ized states, which are linked to the superconducting
banks very weakly, lie deep in the gap. The density of
such states exhibits a weak dependence on the proper-
ties of the boundary.

For low energy values, the result obtained becomes
inapplicable. As a matter of fact, the gradient of ψ2
tends to infinity, and the diffusion equation forming the
basis of the σ model disregards nonlocal (ballistic)
effects which become important in this case. The appli-
cability of the local theory requires the fulfillment of
the condition |∇ψ 2| ~ B/Lx ! 1/l, setting a limit on the
energy:

(5.29)

Let us now consider the two-dimensional case. For
the sake of simplicity, we assume that the normal region
has the shape of a disc of radius R and thickness Lz ,
connected to a superconductor along the entire bound-
ary. As in the previous example, ψ1 = 0. We write
Eq. (4.5) for ψ2 in polar coordinates, assuming that the

2B
EeB

2BETh

---------------.=

B
ETh

E
--------ln

Eg

E
-----.ln= =

ρ〈 〉 1
δ
--- –

GN

4
-------

Eg

E
-----ln

2

 
  ,exp∼

eB 6γ̃
ETh

E
--------B

Eg

E
-----B, eA B+ 4ETh

E
-----------B2.= = =

γ̃

B
Eg

E
-----, eAln

2
3γ̃
------

Eg

E
-----.ln= =

γ̃

E @ Eg

Lx

l
-----– 

  .exp
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radius is equal to unity and replacing the hyperbolic
cosine by the exponential:10 

(5.30)

This equation has the following solution:

(5.31)

where B must be chosen from the boundary condition
in (4.5).

If the boundary between the superconductor and the
normal metal is transparent, we must require that

ψ2(1) = 0. For E ! ETh , we obtain B = . As
before, disregarding the term with energy in Eq. (2.31),
we obtain the following expression for action:

(5.32)

The density of states is a power function of energy [39]:

(5.33)

In the case of a tunnel boundary, replacing the
hyperbolic sine in the boundary condition (4.5) by an
exponential, we obtain

(5.34)

In this equality, we have used the expression Eg =
4 ETh , which is valid in the two-dimensional case.
Thus, result (5.33) remains valid to a logarithmic accu-
racy in the case of the tunnel boundary also; i.e., the
resistance of the contacts does not affect the density of
states lying deep in the gap as in the one-dimensional
case.

For a two-dimensional SNS junction of a different
shape, the results will have the same order of magni-
tude, since only Eg depends on the longitudinal size,
and this will only change the general numerical factor
in the expression for the density of states.

Let us determine the region of applicability of the
result. The maximum gradient of ψ2 is attained in the

vicinity of the center, |∇ψ 2| ∝  /R, and must be

10 Here, ETh = D/R2.

ψ2''
ψ2'

r
------

E
ETh

--------e
ψ2+ + 0, ψ2' 0( ) 0.= =

ψ2 r( ) 2
B 8ETh/E

B2 r2+
--------------------------,ln=

E/8ETh

6 S0 θ2[ ]–
πνD

4
-----------R2Lz= =

× ∇ψ 2( )22πr rd

E/Eg

1

∫ 4π2νDLz

Eg

E
-----.ln=

ρ〈 〉 E
Eg

----- 
  4π2νDLz

∼ E
Eg

----- 
  πG

.=

B
1
2
--- E

γ̃ETh

----------- E
Eg

-----.= =

γ̃

Eg/E
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smaller than 1/l. Thus, the power dependence of density
of states is valid for

(5.35)

This condition is much more stringent than condi-
tion (5.29). In the three-dimensional case, the line of
reasoning similar to that used in this subsection is com-
pletely impossible since the corresponding condition
turns out to be too stringent. In this case, as well as in
the two-dimensional case, the subgap density of states
for energies lower than (5.35) can be found with the
help of the ballistic σ model [42] (see also [43]).

It should be noted that, after the substitution E 

, expressions (5.26) and (5.33) coincide (to within a
factor) with the distribution function 3(tφ) of the relax-
ation times for a corresponding mesoscopic system [44,
45]. The long-time asymptotic form of conductance can
be expressed in terms of this distribution function as

G(t) ~ 3(tφ). Evaluating the integral by the

steepest descent method, we obtain

for a one-dimensional system, which corresponds to the
substitution iω  GN/t in the Muzykantskii–
Khmelnitskii formalism. This explains the difference in
the energy scales in our problem and in the problem on
the asymptotic form of conductance. Results (5.26) and
(5.33) are transformed to the asymptotic expressions
[39] for G(t) via the substitution ETh/E  δt.

6. CONCLUSIONS

We have considered the density of quasiparticle
states in diffusive NS systems for energies close to the
semiclassical gap Eg ! ∆, appearing due to mesoscopic
fluctuations.

For a system with ideal contacts, exact expres-
sion (3.18) for the averaged density of states is
obtained in the framework of the zero-dimensional σ
model with a large parameter  ∝  Eg/δ @ 1 for ener-
gies E in the vicinity of Eg ~ ETh ~ D/L2. For ε = (Eg –

E)/Eg ≥ , the density of states decreases exponen-
tially (see Eq. (3.7)), which resembles to a certain
extent the behavior of density of states in semiconduc-
tors with impurities (the so-called Lifshits tail [13]).
The total number of states in the tail region is found to
be on the order of unity for a one-dimensional system;
i.e., the equation obtained for density of states has the
meaning of the probability of an anomalous location of
the lower energy level below Eg . The results are in per-
fect agreement with the phenomenological random
matrix theory [22] and make it possible to determine

E @ Eg
l
R
--- 

 
2

.

tφ
1–

tφe
t /tφ–

d∫

G t( )
GN

4
------- δt( )ln

2
– ,exp∼

G̃

G̃
–2/3
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the range of its applicability as well as the values of
microscopic parameters used in it.

For planar SNS junctions with a large transverse
size Ly, z ≥ Lxε–1/4 (see Fig. 1), analogous results were
obtained with an exponential accuracy (see relations (5.7)
and (5.10)). In view of the large area of the contacts, the
averaged (integrated) density of states has direct physi-
cal meaning in this case. The problem of the fluctuation
tail of the density of states in a superconductor with a
low concentration of magnetic impurities, which was
considered for the first time in [23, 24], is also found to
be formally similar.

Physical factors responsible for the emergence of
low-lying electron states in our problem are mesos-
copic fluctuations in the normal region of the contact,
which lead to the diffusion electron–hole (Andreev)
trajectories with a period larger than the characteristic
diffusion time L2/D. A similar effect is observed during
analysis of asymptotic forms of the distribution func-
tions for density of states, conductance, and relaxation
times for normal systems [44]. Due to mesoscopic fluc-
tuations of impurities, almost localized states can also
be found with an exponentially low probability in the
energy range corresponding to well delocalized states.
Such states ensure an anomalously slow relaxation of
current to its equilibrium value over very long times
(larger than the inverse mean spacing νV); i.e., such
states play the role of “electron traps.” Naturally, such
traps must appear in the problem of an NS system also,
since it is these traps that lead to the emergence of tra-
jectories diffusing between Andreev reflection for an
anomalously long time. A direct relation between
“anomalously localized states” and low-lying states in
an SNS junction follows from our results for the den-
sity of states in the low-energy range E ! Eg (see rela-
tions (5.26) and (5.33) for one- and two-dimensional

case, respectively). Upon the substitution E  ,
these formulas coincide (to within a normalization) with
the distribution function for relaxation times tφ of a
mesoscopic system [39, 44, 45].

We have also considered hybrid NIS structures with
a poor transparency of NS interfaces. Such systems can
be described by two characteristic parameters: the total
tunnel conductance GT between the normal and super-
conducting parts and the effective average transparency

 of a channel, which depends on the properties of the
contacts and on the system geometry (see Eq. (4.18)).
In the limit of a low effective transparency of a channel,

 ! 1, the semiclassical edge of the spectrum is dis-
placed towards low energies, Eg = GTδ/8π. The behav-
ior of the density of states above the threshold simulta-
neously changes qualitatively: as the energy decreases,
the density of states first increases as in the BCS theory,
〈ρ(E)〉 ∝ |ε| –1/2, and starts decreasing in accordance with

the law 〈ρ(E)〉 ∝  only for |ε| < .

tφ
1–

γ̃

γ̃

ε γ̃2/3
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In the limit  ! , the root region 〈ρ(E)〉 ∝ 
near the threshold disappears altogether: the semiclas-
sical number of states becomes smaller than unity in
this region. As a result, the subgap density of states,
which is determined by the zero-dimensional σ model
as before, cannot be described by formula (3.18) any
longer, but is given by expression (4.44). This is in
agreement with the relation between the root depen-

dence (〈ρ(E)〉 ∝ ) of the density of states above the
threshold and the applicability of the random matrix
theory in zero-dimensional systems, which was noted

in [24]. In the limit  ! , the tail becomes strong:
it contains many energy levels instead of one, as in the
case of transparent boundaries. In the intermediate

case,  !  ! 1, the asymptotic form (3.18) is real-
ized in the immediate vicinity of the threshold, while the

asymptotic form (4.44) is observed for  ! ε ! 1; the
number of subgap states in this case is on the order of
unity.
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APPENDIX A

Parametrization of W Matrix 

Matrix W contains eight commuting and eight
Grassmann parameters and satisfies Eqs. (2.43). We
denote real variables by a, b, c, d, m, n, p, and q. The
first four variables parametrize the FF sector, and the
last four, the BB sector of W:

(A.1)

(A.2)

Grassmann variables (λ, µ, ζ, κ, η, γ, ξ, and ω) param-
etrize the FB sector:

γ̃ GT
3– ε

ε

γ̃ GT
3–

GT
3– γ̃

γ̃2/3

WFF 1
2
--- –aσzτ x bσzτ y cσx– dσy+ +( ),=

WBB i
2
--- mσzτ x nσxτ z p

σyτ z σzτ y–

2
--------------------------+ +

=

– q
σyτ z σzτ y+

2
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(A.3)WFB 1
4
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0 λ µ– ζ κ–+    λ µ ζ κ + + +     0 
λ µ
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+ 0    0     λ µ ζ – κ –+
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–
 

ξ ω
 

+ + 0    0     γ η – ξ ω –+

0 –

 
γ η

 

–

 
ξ

 

–

 
ω

 

–    γ η – ξ – ω +     0  
 
 
 
 
 

 

.=
The anti-self-conjugate condition W +  = 0 makes
it possible to express the BF sector of W in terms of the
FB sector: WBF = iτxσx(WFB)Tσyτx.

We can establish a relation between commuting
parameters of W and fluctuations of angles in matrix Q.
This relation has the form

(A.4)

It should be noted that variable n at the first instanton
corresponds to the zero mode (rotation of angle χB).

In order to pass from integration over Q to integra-
tion over W, we must calculate the Jacobian of the cor-
responding transformation. However, this Jacobian is
equal to unity, which can easily be established from the
following equality:

(A.5)

APPENDIX B

Airy Type Integrals

In this section, we evaluate integral (3.16). Integra-
tion with respect to w can be carried out immediately
(contour C1 in Fig. 3). As a result, the density of states
will be reduced to the sum of two contributions:

(B.1)

(B.2)

W

a 2 θFδϕF, bsin 2δθF,= =

c 2 θFδkFcos χF π/2= ,=

d 2 θFδkFcos χF 0= ,=

m 2i θBδϕB, n  =  2 i k B χ B ,sinsin=  

p i

 

2

 

δβ

 

,

 

q i

 

2

 

δα

 

.= =

str dQ( )2 str dW( )2 da2 db2 dc2 dd2+ + += =

+ dm2 dn2 d p2 dq2 dλdη dµdγ+ + + + +
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C3

∫d

0

∞

∫=

× l3

3
--- ml el–+ 

  ,exp
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(B.3)

In order to calculate ρ1, 2(e), we use the following
approach. We first eliminate m from the preexponential
factor, expressing it in terms of ∂/∂l, then get rid of
derivatives by integrating by parts, express l in terms of
∂/∂m, and, finally, integrate with respect to m wherever
possible. As a result, the integral with respect to l
becomes trivial. Thus, we begin with ρ1(e):

(B.4)

Similarly, for ρ2(e), we have

(B.5)
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The integral with respect to l appearing in the expres-
sions for ρ1, 2 is given by

(B.6)

Substituting ρ1, 2 into expression (B.1) and using the
functional relations for the Airy functions, we arrive at
expression (3.18).
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