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Abstract—We have made a new comparison of the positions of Cepheids and clusters in the LMC and
constructed a new empirical period–age relation taking into account all available data on Cepheids in
the LMC bar provided by the OGLE project. The most probable relation is logT = 8.50–0.65 logP ,
in reasonably good agreement with theoretical expectations. Numerous Cepheids in rich clusters of the
LMC provide the best data for comparing theories of stellar evolution and pulsation and the dynamical
evolution of clusters with observations. These data suggest that stars undergoing their first crossing of the
instability strip are first-overtone pulsators, though the converse is true of only a small fraction of first-
overtone stars. Several rich clusters with suitable ages have no Cepheids—a fact that is not understood
and requires verification. Differences in the concentration of Cepheids toward their cluster centers probably
reflect the fact that the clusters are at different stages of their dynamical evolution, with the Cepheids
in cluster coronas being ejected from the cluster cores during dynamical interactions between stars.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of Cepheids in open clusters of our
Galaxy was a very important milestone in recognizing
the nature of these stars, and made it possible to solve
the problem of the zero point of the period–luminosity
relation and provide a basis for the hypothesis that
Cepheids originate from main-sequence B stars. This
hypothesis predicts that there should exist a certain
relation between the periods of Cepheids and the ages
of clusters containing them. According to stellar-
evolution theory, stars of higher mass leave the main
sequence more rapidly and, due to their lower density,
pulsate with longer periods when in the instability
strip. Comparisons of the ages of several Galactic
clusters and the periods of their Cepheids led to the
first observational support for such a relation [1].

Much more certain results were obtained later,
taking into account numerous Cepheids in rich clus-
ters of the Magellanic Clouds. Some LMC clusters
contain up to a dozen or more Cepheids (compared to
the no more than three Cepheids observed in Galac-
tic clusters), making it possible to draw conclusions
about the real (“cosmic”) dispersion of the period–
age relation, since the scatter in the ages of cluster
stars of similar masses is small [2].

The amount of data available on LMC clusters
and their Cepheids has greatly increased in recent
years. Determinations of integrated color indices that
can be used to derive ages now exist for 624 clusters
and associations. Searches for Cepheids have been
conducted in several rich clusters. In particular, the
1063-7729/03/4712-1000$24.00 c©
results of the OGLE project, which have been pub-
lished in detail, have led to nearly exhaustive searches
for Cepheids (97% complete) and stellar clusters in
the LMC bar (as a byproduct of the main research
goal). This enables, for the first time, studies of the
spatial relations between Cepheids and clusters of the
same age, with no bias due to observational selection
effects.

Cepheid periods are the best age indicators for
single stars, and can be used to reconstruct the his-
tory and character of star formation in the region
of the galaxy in which they are located. For exam-
ple, Cepheids were used to establish the existence
of large stellar complexes in our Galaxy, and of an
age gradient across a spiral arm in the Andromeda
galaxy. OGLE data have recently shown the existence
of two regions in the eastern part of the LMC bar,
each with diameters of about 300 pc, one contain-
ing many Cepheids and many clusters (with their
Cepheids having the same age as Cepheids outside
clusters), and the other possessing a very high density
of Cepheids but only a few poor clusters. In the second
case, we may be dealing with the isolated formation of
massive stars [3].

Better knowledge of Cepheid ages and the dura-
tion of the Cepheid stage are required if such analyses
are to reach their potential. The time is now ripe for
a new comparison of data for LMC Cepheids and
clusters and the derivation of a new calibration of
the period–age relation. Apart from the appearance
of new observational data, this is now possible due
to progress in the development of stellar-evolution
2003 MAIK “Nauka/Interperiodica”
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theory and the appearance of new, improved methods
for the determination of cluster ages from integrated
color indices. In the current paper, we present a new
comparison of the spatial distributions of Cepheids
and stellar clusters in the LMC and derive the pa-
rameters of the period–age relation from theCepheids
in these clusters. We also discuss some questions
concerning the evolutionary stage of Cs Cepheids
and the dynamical evolution of clusters, based on the
presence of numerous Cepheids in LMC clusters and
their coronas.

2. NEW DATA ON LMC CEPHEIDS
AND CLUSTERS

It has recently become possible to determine the
ages for 600 fairly rich LMC clusters on a uniform
scale, based on the integrated UBV photometry
of [4]. An improved technique for determining cluster
ages from their integrated color indices was developed
in [5]. As in our paper [2], this technique uses a
combination of the U–B and B–V color indices,
calibrated using the colors of rich clusters with known
color–magnitude diagrams, enabling the derivation
of ages from theoretical isochrones.

Mateo et al. [6] undertook systematic searches
for Cepheids in a number of rich LMC clusters. In
particular, they found 14 Cepheids in NGC 2031 and
8 Cepheids in NGC 2136, but the complete results
of their study have not been published [7]. An impor-
tant outcome of this study is that it established the
absence of Cepheids in the rich clusters NGC 1711,
NGC 2025, and NGC 2041. This result was un-
expected, since these clusters’ ages and integrated
luminosities (and hence their masses) are within the
range of ages and luminosities of clusters having
numerous Cepheids (Fig. 1).

It is extremely important to understand the origin
of this anomaly. It is not ruled out that these clusters
are too dense and the amplitudes of their Cepheids
too low for their variability to be detected. Another
possible explanation is differences in the chemical
abundances of clusters with similar ages. In the case
of clusters whose ages correspond to the shortest
Cepheid periods, the loops of the evolutionary tracks
for stars with high metallicities are displaced to the
right, and may not penetrate the instability strip. The
first crossing of the instability strip is very short,
making the probability to observing a star during this
crossing very low.

The number of Cepheids that are possible mem-
bers of LMC clusters has increased considerably
thanks to the results of the OGLE project, which is
aimed at searches for microlensing effects in the LMC
bar. Pietrzynski and Udalski [8] have published a list
of 204 Cepheids located in clusters (with distances
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 1. Age–luminosity diagram for LMC clusters
from [5], with rich clusters containing many Cepheids
(filled squares) and clusters containing no Cepheids
(open squares) indicated. V magnitudes are plotted along
the vertical axis, while the parameter S (defined as a
combination of color indices [5]; bottom) and the cluster
ages (log T ; top) are plotted along the horizontal axis.

from the cluster centers not exceeding 1.5 cluster
radii). Some of these were discovered independently
in the EROS project [9]. In the LMC bar, 745 clusters
were found in the field covered by the OGLE project,
126 of them new; ages have been determined for
∼ 600 of these [10]. It is important that, in both [10]
and in the work of Girardi et al. [5], the cluster
ages were derived using the isochrones of Bertelli
et al. [11], based on stellar-evolutionmodels that take
into account mass loss by the most massive stars and
moderate convective overshooting [12].

Thus, extensive and homogeneous new material
has appeared, enabling the revision of the period–
age relation for Cepheids in clusters. This is surely
needed, since the old study by Becker et al. [13]
remains the only one in which a theoretical period–
age relation was obtained by comparing models for
stellar pulsation and stellar evolution.

3. THE OBSERVATIONAL PERIOD–AGE
RELATION

We aimed to impose the strictest possible selec-
tion of the cluster Cepheids, based initially on only
one criterion—the distance from the cluster center. A
direct comparison of the cluster ages and the periods
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Table 1. Cepheids in NGC 1943 = SL 430 = LMC 0411

OGLE
SC21

D P EROS GCVS-V OGLE
SC5

1 2 3 4 5 6

187792 0.0004 4.5298 3114

0.0006 3.2322 3056 12

187849 0.0010 3.2801 3064

187853 0.0011 3.3542 63

187788 0.0016 2.8141 3024

187786 0.0020 3.8599 3085

187856 0.0020 3.1673 3052 16

187797 0.0048 2.9730 3036 19

187840 0.0051 2.0150 4055∗

187818 0.0181 3.0704 V2287

187842 0.0213 2.8791

0.0403 2.7510 93

0.0415 2.6685 94
∗ FO type.
The columns give each Cepheid’s (1) designation in OGLE field SC21, (2) distance from the cluster center in degrees, (3) period in
days, (4) designation in the EROS project, (5) designation in GCVS-V, and (6) designation in OGLE field SC5 (partially overlapping
field 21).
of Cepheids found by OGLE [8] and located within
the areas covered by the clusters shows only a very
poor correlation. This is naturally explained by the
high density of the LMC bar, which means that many
field stars are found within the cluster area, and by
the fact that the faint clusters discovered during the
OGLE project were very poor and had uncertain age
determinations. Of the Cepheids suspected as cluster
members in [8], we decided to use only those belong-
ing to clusters containing at least two Cepheids, with
one of them situated within 0.5 of the cluster radius
from the cluster center.

Tables 1 and 2 present data on the Cepheids in
the two rich clusters NGC 1943 and NGC 1958,
located in the densest part of the LMC bar. Some
Cepheids in these clusters were discovered earlier
by the EROS project [9], and we have identified
these stars with those found in the OGLE project [8]
and contained in the General Catalog of Variable
Stars [14] (GCVS-V). Tables 1 and 2 show that
the OGLE data are the most complete. The clusters
display a large difference in their concentrations of
Cepheids; we will return to this problem below.
Further, using the AstroView code developed by
E.Yu. Efremov (the same code used to reduce the
OGLE data), we again compared the positions of
Cepheids included in the GCVS-V [14] and the po-
sitions of clusters with integrated magnitudes and
color indices in [4]. Nearly all the Cepheids identified
in this way with positions in or near clusters, were
previously known [2]; this is no surprise, since no
recent searches for variable stars were carried out in
the LMC, apart from inside the bar and a limited
number of clusters.

In the case of clusters located outside the LMC
bar, and therefore not included in the OGLE project,
we limited our analysis to Cepheids located within
0.02◦ (∼ 18 pc) of the cluster centers. We adopted
the data for these Cepheids from [7] and [15], and,
for those not present in these papers, from the
GCVS-V [14]. We did not include Cepheids with
small pulsation amplitudes and nearly sinusoidal light
curves (subtype Cs), since their evolutionary status is
not entirely clear and they obviously pulsate in the first
overtone (see below). Such stars are designated FO
(first overtone) in the OGLE catalog. The data on the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Table 2. Cepheids in NGC 1958 = SL462 = LMC 0457

OGLE
SC4

D P EROS GCVS-V

1 2 3 4 5

53518 0.001 5.5668 –

53527 0.002 7.6846 –

53528 0.002 9.3770 –

53796 0.005 1.2950∗ 3002

53463 0.005 5.3955 3132

53546 0.012 6.4060 3150 V2532

53514 0.013 5.9755 3145 V2524

176266 0.014 8.8019 3170

176263 0.019 6.8138 – V2558

53468 0.020 5.9356 3144 V2522

176307 0.021 2.9763∗∗ 4085

53552 0.023 5.2258 3130

53458 0.026 6.6196 3155 V2519

44867 0.035 7.1818 – V2542

45203 0.041 1.1591 –
∗ DM type (a double-mode Cepheid).

∗∗ FO type.
The columns give each Cepheid’s (1) designation in OGLE field SC4, (2) distance from the cluster center in degrees, (3) period in
days, (4) designation in the EROS project, and (5) designation in GCVS-V.
stars and clusters we used to derive the period–age
relation are collected in Table 3.

Two clusters located in the LMC bar and con-
taining Cepheids deserve special mention. According
to [16], two Cepheids are present within 0.02◦ of
the center of the double cluster NGC 1850, which
pulsate with the fundamental periods P = 18.66 days
(No. 17) and P = 8.56 days (No. 58). The positions
occupied by these stars in the cluster diagram ob-
tained in [16] show that the first Cepheid may belong
to a small young cluster located near the edge of the
core of NGC 1850 (this young cluster is designated
NGC 1850A in [4]), whereas the second Cepheid
belongs to the older cluster NGC 1850 itself; we used
the ages of the corresponding clusters for each of
these stars.

The age of NGC 1958 determined from the clus-
ter’s integrated color indices (more specifically, from
the parameter S derived from the color indices using
Fig. 10 in [5]) is 400 million years, which strongly
ASTRONOMY REPORTS Vol. 47 No. 12 2003
disagrees with the periods of the Cepheids concen-
trated toward the cluster and with the age determined
from isochrones (80–125 million years). Examining
Fig. 10 in [5], we find that the cluster is located in a
region of the two-color diagram in which the value
of S is very ambiguous, since the value of B–V is
anomalously large for the corresponding U–B. The
color–magnitude diagram for NGC 1958 [17] shows
that this anomaly may be due to the presence of an
unusually large number of red giants, some of which
are probably field stars; the presence of these stars
also leads to problems in the derivation of the cluster
age from this diagram. However, the Cepheids near
NGC 1958 are concentrated towards the cluster cen-
ter, and the three stars in the cluster core have periods
in the same range as those in the cluster corona. In
general, the distributions of Cepheids in the general
vicinity of the cluster and of their periods do not con-
tradict the presence of Cepheids in the cluster itself
as well (Fig. 2). According to the data of [17], the age
of NGC 1958 is from 80 to 100–125 million years,
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Table 3. Cluster ages and Cepheid periods used to derive relations (1)–(4)

Clusters present in OGLE catalogs [8, 10] Clusters not included in the OGLE project

OGLE Identification
logP
[days]

logT
[years]

Cluster
name

logP
[days] logT [years]

LMC0512 SL504 0.732 8.1 NGC1755 0.80 8.0
LMC0715 NGC2111 0.454 8.2 NGC1756 0.34 8.4
LMC0715 0.472 8.2 0.43 8.4
LMC0321 HS213 0.618 8.1 0.54 8.4
LMC0321 0.517 8.1 NGC1767 1.48 7.2
LMC0394 NGC1938 0.490 8.4 NGC1850 0.93 7.9
LMC0394 0.529 8.4 NGC1850A3 1.27 7.46
LMC0411 NGC1943 0.509 8.08 NGC1866 0.542 8.25

0.586 8.08 0.435 8.25
0.449 8.08 0.492 8.25
0.656 8.08 0.470 8.25
0.472 8.08 0.497 8.25
0.516 8.08 0.547 8.25
0.525 8.08 0.422 8.25
0.500 8.08 0.506 8.25

LMC0457 NGC19581 0.705 NGC2010 0.455 8.2
0.745 0.540 8.2
0.885 NGC2031 0.487 8.2
0.967 0.646 8.2
0.807 0.598 8.2
0.944 0.535 8.2

LMC0585 SL574 0.632 8.05 0.521 8.2
LMC0622 NGC2046 0.505 8.0 0.481 8.2
LMC0622 0.560 8.0 0.496 8.2
LMC0633 NGC2058 0.728 7.94 0.515 8.2

0.561 7.94 0.470 8.2
0.523 7.94 0.521 8.2
0.618 7.94 0.450 8.2
0.697 7.94 0.505 8.2
0.669 7.94 0.473 8.2
0.725 7.94 NGC2136 0.883 8.05

LMC0636 NGC20592 0.746 8.1 1.020 8.05
LMC0648 NGC2065 0.683 8.1 NGC2157 0.889 8.05

0.642 8.1 NGC2214 1.035 7.9
0.606 8.1 SL106 1.34 7.7
0.762 8.1 SL234 1.11 7.9
0.526 8.1
0.561 8.1

1 The age is 400 million years according to [4, 5] and 100 million years according to [10].
2 NGC 2059 was erroneously identified with LMC0632 in [10].
3 The average of the ages presented in [4, 5] and in [16] is given.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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with the latter value being obtained with the same
isochrones of Bertelli et al. [11] that were used by
Girardi et al. [5] to calibrate the integrated cluster
colors based on their ages. This value agrees well with
the age obtained in the OGLE analysis [10]. Thus,
there is a firm basis to reject the cluster age derived
from S or to exclude this cluster from consideration,
based on it’s location in the very densest region of
the LMC bar. We can now present the least-squares
fits of the empirical period–age relations obtained for
various determinations of the cluster ages.

(1) We obtain using the ages derived from the
integrated colors, adopting for the ages of clusters in
the bar the average of the integrated-color and the
OGLE ages (except for NGC 1958, whose age was
taken directly from the OGLE data [10])

log T = 8.531 − 0.683 log P. (1)

±37 ±57

(2) Performing the same fit excluding NGC 1958
yields

log T = 8.546 − 0.715 log P. (2)

±38 ±61

Solutions (1) and (2) are virtually identical, since the
logarithmic periods for the Cepheids inNGC 1958 are
close to themiddle of the range for our sample of LMC
Cepheids.

(3) The relation changes somewhat if we exclude
both NGC 1958 and NGC 1850A (and the 18-day
Cepheid that may be associated with this latter clus-
ter), and also restrict our analysis to rich clusters,
using only the ages derived from the integrated color
indices:

log T = 8.493 − 0.633 log P. (3)

±45 ±72

This most “cautious” solution excludes not only
NGC 1850A and NGC 1958, but also several poor
clusters in the bar that were discovered in the OGLE
project. However, it makes use of the OGLE data on
Cepheids in rich clusters of the bar.

(4) Finally, another cautious solution uses the
same data as solution (1), but does not include
NGC 1850A:

log T = 8.509 − 0.643 log P. (4)

±36 ±59

These four solutions are displayed in Fig. 3, which
shows that they depend rather strongly on the small
number of stars with the longest periods. However,
Fig. 4 demonstrates that, in contrast to NGC 1850A,
the cluster membership of two other long-period
Cepheids is beyond doubt. The Cepheid V0333,
which has a period of 30.3 days, is located between
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 2. Top: map of part of the LMC, with the positions
of Cepheids (crosses) and clusters (circles) in the vicinity
of NGC 1958 indicated. Middle: period distribution of
Cepheids in this region, excluding the immediate vicinity
of NGC 1658 (shaded grey on the map). Bottom: period
distribution for the Cepheids close to NGC 1958 (in the
grey-shaded area). The distributions are normalized, and
the logarithms of the period are plotted. The Cepheids
concentrated towards the cluster and located in its gen-
eral vicinity have similar period (age) distributions, but
the period range in the cluster is narrower. The left “tails”
of the distributions correspond to FO Cepheids. (This
figure was plotted using the AstroView code developed
by E.Yu. Efremov.)

the clusters NGC 1767 (=SL 123) and SL 123,
which have almost equal ages; V1040 is within
0.3◦ of these clusters, at the edge of SL 106. This
same region, corresponding to the OB association
LH8 [2], contains two other rich young clusters and
the Cepheid V0432, with a period of 36.8 days. Note
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Fig. 3. Different versions of the period–age relations (marked with numbers on the diagrams, see text for details). The
logarithms of the Cepheid periods and cluster ages are plotted.
that the 33-day Cepheid H40, which is located in the
outskirts of the rich cluster vdB0 in M 31, whose
age from integrated UBV photometry [18] is about
35 million years, shows a good agreement with all
four relations.

We can now compare our results with those re-
cently obtained by other authors who have used the
same age scale for the clusters. Using the most re-
liable LMC stars and cluster ages derived from in-
tegrated photometry, Efremov and Elmegreen [15]
obtained the period–age relation

log T = 8.492 − 0.509 log P, (5)

close to our relation (3).
Based on ages derived from theGeneva isochrones

using the color–magnitude diagrams of nine rich
LMC clusters and seven open clusters in our Galaxy
containing 37 Cepheids, Grebel and Brandner [19]
obtained the relation

log T = 8.5454 − 0.7302 log P, (6)

±8 ±5

close to our relation (2). Unfortunately, the details of
their study were not published. The low uncertain-
ties in this determination may provide evidence that
differences in the chemical compositions of young
stars in the Galaxy and in the LMC (whose metal
abundances are a factor of two to three lower than
those of the Milky Way) influence the parameters of
the period–age relation only weakly. In any case, we
can conclude that the “empirical” period–age relation
based on a modern age scale for the clusters that
takes into account moderate convective overshooting
is established with reasonable certainty.

4. THEORETICAL DETERMINATIONS
OF THE PERIOD–AGE RELATION

No theoretical determinations of the period–age
relation based on modern evolutionary models for
massive stars have been published, but we can obtain
a rough estimate from the models of Bono et al. [20]
for the chemical composition Y = 0.255 and Z =
0.01, which approximately corresponds to that of the
LMC. For this purpose, we adopted the sums of the
lifetimes of massive stars in the stages of hydrogen
and heliumburning fromTable 2 of [20] and compared
these with the periods of Cepheids (of the correspond-
ing masses) presented in Table 7 of that same paper
for the stage of the third crossing of the instability
strip, in which most Cepheids are located. This last
crossing (according to [20]) should correspond to an
age close to the end of helium burning. This yielded
the theoretical period–age relation

log T = 8.471 − 0.748 log P. (7)
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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This relation is close to the above empirical
relations, testifying at the very least to the self-
consistency of the computations of the evolution and
pulsation of massive stars presented in [20]. Note
that the analysis of [20] used the classical criterion
for the boundary of the convective zone, whereas we
have used cluster ages obtained taking into account
moderate convective overshooting. Apparently, the
approach used in [20] to compute the evolution of
massive stars compensated for the increase in the
ages of massive stars in models with convective
overshooting. As is noted in [20], the question of
whether it is necessary to take this overshooting into
account remains open. The observational data, even
for such a rich cluster as NGC 1866, likewise do not
permit us to draw definite conclusions [21].

The period–age relation we derived a quarter of a
century ago [2] (based mainly on LMC stars) was

log T = 8.16 − 0.68 log P, (8)

while the theoretical relation obtained at that same
time by Becker et al. [13] forX = 0.70 and Y = 0.02
can be written [13]

log T = 8.45 − 0.78 log P. (9)

Of course, we cannot completely rule out the possi-
bility that the excellent agreement between relations
(9) and (7) and the good agreement between (9) and
(1)–(4) have come about by chance; however, as a
minimum, we must reject both (8) and the relation

log T = 8.70 − 0.53 log P, (10)

derived in [22] after reestimating the ages for LMC
clusters using the first models with overshooting,
which led to a three-fold decrease in the ages of young
clusters.

The best hope for verifying the age scale of massive
stars derived from stellar-evolution theory is to com-
pare the corresponding ages to age estimates derived
from stellar-dynamical data in some way. We noted
earlier [23, p. 156] that the period–age relation (10)
was incompatible with the gradient of Cepheid peri-
ods (ages) detected in the S4 arm of the Andromeda
galaxy, since it implied that this part of the arm was
close to corotation. Recently, Dambis [22] also found
that the short age scale for young clusters that follows
from models with full convective overshooting was in
poorer agreement with the vertical motions of stellar
clusters and with density estimates for the disk of our
Galaxy.

5. REMARKS ON CEPHEID EVOLUTION

Clusters containing several Cepheids, including
someCsCepheids, enable us to investigate the evolu-
tionary stage of this subtype of Cepheid. Cs Cepheids
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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the AstroView code. NGC 1767 and SL 123 are towards
the top, near the middle of the image.

have almost sinusoidal light curves and small pulsa-
tion amplitudes. They also have lower temperatures
than ordinary Cepheids. Many years ago, we sug-
gested that Cs stars are in the stage of the rapid first
crossing of the instability strip after leaving the main
sequence [24].

Some stars of this type indeed show rapid period
increases. Their period distribution is biased towards
shorter periods, consistent with the fact that the loops
of the evolutinary tracks on which most Cepheids
should be situated begin to penetrate (and, for longer
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Table 4. Cepheids in NGC 2058 = SL 614 = LMC 0633

OGLE
SC16

D P Mode V I GCVS-V

1 2 3 4 5 6 7

172383 0.001 5.3392 FU 15.59 14.78 V3628

172455 0.001 1.9726 FO 15.89 15.29

172460 0.001 3.3406 FU 15.99 15.25

172450 0.002 2.1231 FO 15.96 15.31

172459 0.003 2.0879 FO 15.89 15.28

177774 0.003 4.9764 FU 15.50 14.76

177777 0.003 4.6769 FU 15.48 14.79

177823 0.004 1.9179 FO 16.03 15.42

172447 0.005 3.6438 FU 15.83 15.15

172435 0.007 2.2710 FO 15.96 15.28

177773 0.010 4.1465 FU 15.93 15.05

177781 0.012 5.3454 FU 15.58 14.80

235480 0.012 2.0455 FO 16.04 15.37

The columns give each Cepheid’s (1) designation in OGLE field
SC16, (2) distance from the cluster center in degrees, (3) period
in days, (4) pulsation mode, (5) mean V magnitude, (6) mean I
magnitude, (7) designation in the GCVS-V.

periods, cross) the instability strip only for masses
corresponding to periods of about 3 days or longer.

However, the discovery of numerous Cs Cepheids
in the LMC bar during the OGLE project [25] repre-
sented strong evidence against this hypothesis. The
theory predicts that the first instability-strip crossing
should be an order of magnitude shorter than sub-
sequent crossings, in agreement with the fraction of
Cs stars among Cepheids in the Galaxy; however,
there are only a factor of two fewer Cs stars than ordi-
nary Cepheids in the LMC. Like most other authors,
Udalski et al. [25] consider low-amplitude stars to
be pulsating in the first overtone, and designate them
FO. In the log P range from 0.5 to 0.6, there are
four times as many FO Cepheids as stars pulsating
with the fundamental period (FU) (cf. Fig. 6 in [25]).
Udalski et al. [25] also confirmed that the luminosity
of FO stars with a given period is higher than that of
FU stars by a factor that exactly corresponds to the
ratio of the first-overtone period to the fundamental
period (0.72). Thus, the problem of the nature of
Cs Cepheids could be considered essentially solved;
however, there remain some puzzling data.

In LMC clusters, the Cepheids classified as FO
stars in the OGLE project also have the shortest
periods in a given cluster. If their masses were all ap-
proximately equal, the difference of the periods of the
stars pulsating in the first overtone should have disap-
peared after multiplying these periods by 1/0.72—the
ratio of the fundamental period to the first-overtone
period. But this is not the case. The periods of the
majority of the FO stars remain the shortest in their
clusters after this “reduction to the FU period.” It is
tempting to explain this by suggesting that the loops
of the evolutionary tracks of lower-mass cluster stars
do not yet penetrate the instability strip.

Thus, in the first-crossing hypothesis, the differ-
ence in the periods of the ordinary (FU) and Cs
(FO) Cepheids could be explained if the latter have
systematically lower masses, so that Cs stars are at
an earlier stage of evolution. Then, the difference in
the ages of the FO and FU stars in a single cluster
should correspond to the difference between the times
their progenitors left the main sequence minus the
time spent by the higher-mass Cepheids in the red
supergiant phase, after the first and second crossings.
In this way, we can compare the evolution scales on
the main sequence and after leaving it [26]. Of course,
this assumes that all the stars in a cluster form nearly
simultaneously, at least within some range of similar
masses. The observed dispersion of the periods of the
FU Cepheids in a single cluster usually does not ex-
ceed 0.2 dex, in agreement with this hypothesis, since
this value is approximately equal to the theoretical
difference between the Cepheid periods for different
instability-strip crossings.

Note also that, in NGC 2058 (Fig. 5), which con-
tains a very large number of FO/Cs stars (six), the
periods of these stars increase, on average, with in-
creasing color index, as is expected if they are mov-
ing from left to right in the color–luminosity dia-
gram at a rate determined by their mass (period).
We can see from Table 4, which contains data on
the Cepheids in NGC 2058, that the positions of the
FU Cepheids in the color–magnitude diagram trace
a continuation of their evolutionary track, which is
obviously possible only if the age dispersion for the
massive stars in the cluster is small. Moreover, this
part of the track generally resembles the correspond-
ing part of the theoretical evolutionary track for a
5M� star with Y = 0.255 and Z = 0.01 presented by
Bono et al. [20], whereas it follows from Table 7 of
[20] that the Cepheid periods for these parameters
are 1.8 days for the first and 3.4 days for the second
crossing, close to the observed periods of the FO and
FU Cepheids in NGC 2058. However, there are equal
numbers of these two types of Cepheids in the clus-
ter, whereas the theoretical durations of the corre-
sponding instability-strip crossings differ by an order
of magnitude. If the theory is unable to consider-
ably increase the duration of the first instability-strip
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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crossing, we can propose that all Cepheids pulsate in
the first overtone during the first crossing, although
most FO stars are in different stages of evolution.
This also agrees with the fact that far from all Cs stars
demonstrate rapid period increase, but nearly all such
stars have low amplitudes and sinusoidal light curves.

6. CONCENTRATION OF CEPHEIDS
IN CLUSTERS

Finally, let us briefly discuss differences in the
concentrations of Cepheids towards the centers of
their clusters for clusters for which exhaustive studies
have been carried out. What could be the origin of
such differences for clusters with approximately the
same ages and masses? They are especially strong
for NGC 1958 (Fig. 6) and NGC 1943 (Fig. 7), in
the center of the LMC bar. Recall that the stars in
question are massive (3–12M�), and that Cepheids
(along with red supergiants) are the most evolved and
hence the most massive stars in their parent clusters.
Dynamical segregation by mass should lead to their
concentration in the cluster cores. This is often, but
not always, the case. Toomany Cepheids are encoun-
tered in the coronas of clusters in our Galaxy [1], and
this is also true for the LMC.

Turner [27] noted that the number of Cepheids in
the coronas of Galactic clusters was a factor of 1.4–
2.4 higher than in the cluster cores, and explained this
by suggesting that, in the cluster cores, there could
be many binaries that were so close that their compo-
nents could not reach the size of supergiant Cepheids.
Another explanation is also possible, however. Brandl
and Chernov [28] note that, in addition to being con-
centrated toward the center, the most massive stars
of R136, the central cluster of 30 Dor, are also present
2–3 pc from the center. They suggested that the most
probable explanation is the ejection of such corona
stars from the dense core during dynamical interac-
tions between the most massive stars, which were
initially rapidly concentrated in the cluster core.

This same mechanism may be responsible for the
high fraction of Cepheids, and probably also of red
supergiants, in cluster coronas, as is observed, for
example, for NGC 2100 in the LMC. The degree of
concentration of massive stars towards cluster cen-
ters varies strongly in different LMC clusters [29, 30].
For example, in their study of the structure of six
rich LMC clusters, de Grijs et al. [30] found that
they could be subdivided into three pairs, with the
ages, metallicities, and distances from the center of
the LMC being the same for each pair, but with the
core radii of the two clusters in a pair being very
different. We observe essentially the same effect in the
pair consisting of NGC 1958 and NGC 1943. de Grijs
et al. [30] concluded that the differences between the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 5. Cepheids (crosses) and clusters (circles) near the
eastern end of the LMC bar. NGC 2058 is to the upper
right and NGC 2065 to the lower left. Cs Cepheids are
plotted as small crosses. The image is from the DSS,
and the map was plotted using the OGLE data with the
AstroView code.

initial mass functions of the two clusters in the pairs
they studied were not large, and could not give rise to
the large differences in their core radii. It is possible
that these pairs, like our clusters with Cepheids, were
caught at different stages of their dynamical evolu-
tion that are characterized by different core densi-
ties. Depending on the initial conditions (first of all,
the initial fraction of binary systems [31, 32]), these
stages could well be different even for clusters with
similar masses and ages. It was shown in [31] that
the dynamical evolution of a cluster, accompanied by
the departure of up to half of the massive stars from
the cluster core, could last from 10 to 50 million years
for clusters containing 1000–10 000 stars. It seems
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Fig. 6. Positions of Cepheids (crosses) in NGC 1958 (in
the center) and in its nearest vicinity. The image is from
theDSS, and themap was plotted usingOGLE data with
the AstroView code.

very likely that precisely such differences in the rates
of the dynamical evolution can explain the strong
central concentration of Cepheids toward the core
of NGC 1943, slightly less strong concentration in
NGC 2058, still weaker concentration in NGC 2065,
and very weak concentration in NGC 1958 (Figs. 5
and 6). All these clusters are located within the fields
studied in the OGLE project, and the completeness
of discoveries of their Cepheids can be considered
exhaustive (according to [25], it is at least 96%).

Before the OGLE results were published, it was
believed that the concentration of Cepheids in the
region of NGC 1958 was the result of chance pro-
jection; however, three OGLE Cepheids fall exactly
in the core region. Nevertheless, apart from the
discrepant age determinations for this cluster (see
above), the high number of Cepheids in this not very
rich cluster remains enigmatic. We suggested that
the presence of three Cepheids in the Milky Way’s
poor cluster NGC 7790 could be understood if its
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Fig. 7. Concentration of Cepheids towards NGC 1943.
The image is from the DSS, the map was plotted using
OGLE data with the AstroView code.

age corresponds to the time when the loop ends of
the Cepheids’ evolutionary tracks (where the star’s
motion along the track is the slowest) is within the
instability strip [23]. However, the Cepheid periods
in NGC 1958 (6–9 days) are much longer than
in NGC 7790 (4.5–5 days). This may be due to
differences in chemical composition that influence
the positions of the track loops; alternatively, it may
be that, in the case of the Cepheids in NGC 1958,
which is located in the densest part of the LMC bar,
we really are dealing with a chance projection. The
structures and chemical compositions of the LMC
clusters containing several Cepheids each, as well of
those having no Cepheids at all, despite their suitable
age and richness, deserve a detailed study.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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7. CONCLUSIONS

The period–age relation for Cepheids based on
their membership in stellar clusters can be considered
quite firmly established. The theoretical relation needs
further improvements. It is possible that both the
chemical composition and differences in the details
of the evolutionary-track computations for massive
stars influence this relation only weakly. The reason
for this is not clear; some sort of mutual compensation
of times and periods is possible. Further refinements
of the evolutionary tracks of massive stars and their
lifetimes within the instability strip are also needed;
the period distribution of Cepheids cannot be cor-
rectly translated into their age distribution without
normalization to these lifetimes.

The numerous Cepheids in rich LMC clusters
provide the best data for comparing theories of stellar
evolution and pulsation with observational results. It
would be especially interesting to distinguish which of
the observed characteristics of Cepheids (apart from
evolutionary variations of their periods [33]) might
characterize particular crossings of the instability
strip. The large relative number of Cs Cepheids
contradicts the hypothesis that these stars are un-
dergoing their first crossing, though the character-
istics of the Cepheids in NGC 2058, with half of
its Cepheids belonging to this type, are consistent
with this hypothesis. Nevertheless, it is difficult to
imagine why the theory would predict a rate of stellar
evolution during the first crossing that was much too
high. It is possible that all Cepheids undergoing their
first crossing are first-overtone pulsators, whereas
the converse is not true: most FO stars are actually
in other evolutionary stages. This is also consistent
with the fact that not all Cs stars demonstrate a
rapid evolutionary increase in their periods [33]. Long
series of observations of the sort needed to establish
the presence of evolutionary period variations have
been accumulated for only a few stars in our Galaxy.
Frequently, claims of period variations based on
differences between derived periods are unfounded,
as the differences are due purely to uncertainties in
periods derived from a short series of observations.

It is important to understand whyCepheids are not
present in several rich clusters of suitable ages. New,
even more careful searches for Cepheids in such clus-
ters may be needed. The differences in the concen-
tration of Cepheids toward cluster centers may come
about because the clusters are in different stages
of their dynamical evolution. This hypothesis agrees
with recent theoretical results indicating that massive
stars can initially rapidly settle toward the cluster
center, after which some of them may be ejected
into the cluster corona in the course of dynamic in-
teractions between stars in the dense cluster core.
The core density and the efficiency of stellar dynamic
ASTRONOMY REPORTS Vol. 47 No. 12 2003
interactions can vary rapidly and repeatedly due to
gravithermal oscillations that arise during the clus-
ter’s evolution [34].

It is an interesting possibility that Cepheids,
whose ages and masses can be determined with
the highest accuracy achievable for single stars, can
be used not only to reconstruct the star-formation
history of stellar complexes, but also as test particles
in studies of the dynamic evolution of clusters.
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Abstract—Wepresent results of two-dimensional hydrodynamical simulations of mass transfer in the close
binary system β Lyr for various radii of the accreting star and coefficients describing the interaction of the
gaseous flow and the main component (primary).We take the stellar wind of the donor star into account and
consider various assumptions about the radiative cooling of the gaseous flow. Our calculations show that
the initial radius of the flow corresponding to our adopted mass-transfer rate through the inner Lagrange
point (L1) of (1–4)×10−5M�/yr is large: 0.22–0.29 (in units of the orbital separation). In all the models,
the secondary loses mass through both the inner and outer (L1 and L2) Lagrange points, which makes
the mass transfer in the system nonconservative. Calculations for various values of the primary radius
show a strong dependence on the coefficient fv that models the flow–primary interaction. When the radius
of the primary is 0.5, there is a strong interaction between the gas flow from L1 and the flow reflected
from the primary surface. For other values of the primary radius (0.1 and 0.2), the flow does not interact
directly with the primary. The flow passes close to the primary and forms an accretion disk whose size is
comparable to that of the Roche lobe and a dense circum-binary envelope surrounding both the disk and
the binary components. The density in the disk varies from 1012 to 1014 cm−3, and is 1010–1012 cm−3

in the circum-binary envelope. The temperature in the accretion disk ranges from 30 000 to 120 000 K,
while that in the circum-binary envelope is 4000–18 000 K. When radiative cooling is taken into account
explicitly, the calculations reveal the presence of a spiral shock in the accretion disk. The stellar wind
blowing from the secondary strongly interacts with the accretion disk, circum-binary envelope, and flow
from L2. When radiative cooling is taken into account explicitly, this wind disrupts the accretion disk.
c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

β Lyr is a well studied eclipsing binary of spectral
type B(6–8)I + B(0–3)V with an orbital period of
12.9 day, discovered by J. Goodricke in 1789. Since
that time, thanks to its high brightness, it has been
very carefully studied for some 200 years. Observa-
tional studies have been especially intense in the last
30 years, in the X-ray, UV, optical, radio, and IR.

β Lyr is usually considered to be a close binary
system in which the less massive star (the secondary
or donor star) is losing mass through the inner La-
grangian point at a rate close to 10−5M�/yr, result-
ing in the formation of an optically thick envelope
around the primary. It is possible that this envelope
enshrouds the entire system. This envelope is usu-
ally considered to have the form of an accretion disk
rotating around the primary (the model of Hubeny
and Plavec [1]). Currently, there are two models for
the envelope of β Lyr. The first was suggested by
Wilson [2], and envisions a massive dense disk in
the form of a prolate ellipsoid. In the second model,
suggested by Hubeny and Plavec [1], the envelope
forms an accretion disk whose vertical structure is
1063-7729/03/4712-1013$24.00 c©
in hydrostatic equilibrium. In contrast to the model
of Wilson, the disk in the Plavec–Hubeny model has
negligible mass, obeys Keplerian motion, and has the
overall form of a torus. Its height (thickness perpen-
dicular to the orbital plane) grows with distance from
the main component. Comparing models with obser-
vations and carrying out geometrical modeling of the
radiating area of the primary, Hubeny and Plavec [1]
concluded that the disk radius is about 25 solar radii
and the disk height about 6 solar radii.

Wilson and Terrell [3] critically examined the
Hubeny–Plavec model and suggested their own
alternative model for the accretion disk. Hubeny
et al. [4] discussed the criticism of Wilson and
Terrell [3] and suggested a strategy for new studies
of β Lyr. Harmanec et al. [5] proposed that most
of the emission in the Hα and HeI λ6678 Å lines
forms in jet-like structures moving perpendicular
to the orbital plane. Their attempts to model the
observed light curve of β Lyr led Linnell et al. [6] to
conclude that it is not possible to describe theUV and
optical observations using a single set of parameters.
Recently, Linnell [7] suggested a two-temperature
2003 MAIK “Nauka/Interperiodica”
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model for the accretion disk that describes the UBV
and OAO2 photometric data well.

The generally accepted rate of mass transfer
through the inner Lagrangian point in β Lyr is close
to 10−5M�/yr (see, e.g., [7–9]).

Only one paper concerning numerical modeling of
the mass transfer in the β Lyr system has been pub-
lished: Bisikalo et al. [9] present the results of three-
dimensional hydrodynamical simulations of this mass
transfer. Bisikalo et al. [9] restricted their computa-
tional domain to the Roche-lobe of the primary and
took radiative cooling into account implicitly, via vari-
ation of the specific heat. These calculations showed
that the matter that is transferred from one com-
ponent to another forms an accretion disk without
a hot spot. Moreover, the matter that flows around
the primary collides with the original stream, forming
a shock wave. A jet-like structure is formed above
the orbital plane in the region of the shock, but the
velocity of the gas in these jets is much lower than is
observed [9]. A torus-like envelope (halo) forms above
the accretion disk and primary. These computations
also showed that the results were not influenced by
the assumed density at L1.

Thus, some important steps in studies of the pro-
cesses involved in the mass transfer in β Lyr have
been made. However, a more accurate description of
the physical processes influencing the mass transfer
is necessary if we wish to describe the mass transfer
not only qualitatively, but also quantitatively, includ-
ing the formation of the flow at L1, radiative cooling,
the interaction of the stream with the atmosphere of
the primary, the the influence of the stellar wind from
the secondary.

The aim of the current paper is to investigate
the influence of these physical processes on the for-
mation of gaseous envelopes in the β Lyr system
via two-dimensional (2D) hydrodynamical computa-
tions, varying the radius of the primary (since it is not
known precisely) and the rate of mass transfer.

2. DESCRIPTION OF MASS TRANSFER
IN CLOSE BINARY SYSTEMS. INITIAL

MODEL. MODEL OF THE BINARY
AND BOUNDARY CONDITIONS

Our approach to describing mass transfer in close
binary systems is based on two assumptions: (1) in-
stead of applying the model of Lubow and Shu [10],
we determine the structure of the stream at L1 by
computing the formation of the stream in the vicinity
of L1; (2) we use the model atmospheres of Ku-
rucz [11] to obtain an initial model for the structure
of the secondary in the vicinity of L1. Our model for
the formation of the stream at L1 is described in detail
in [12]. We believe that our approach enables us to ac-
curately take into account the properties of the mass
transfer in any close binary. This is especially true of
long-period systems like β Lyr, where the donor star
has a very large radius, and hence an extended atmo-
sphere, which should, in turn, result in the formation
of a streamwith a large radius in the vicinity of L1. The
distribution of the pressure gradient in the vicinity of
L1, and hence the radius of the stream at this point,
influence the structure of the envelopes that form due
to the motion of the stream inside the Roche lobe of
the primary and the interaction of the stream with this
star. If the stream has a large radius, it may interact
with the atmosphere of the primary even if this star
does not have a large radius, for example, of the order
of 0.1 (throughout, we use units of the semimajor
axis of the orbit). The parameters of the stream at
L1 probably likewise influence the dimensions of the
stream and envelopes in the z direction.

We shall apply two schemes for taking into ac-
count the radiative cooling of the gas—implicit and
explicit—and compare the results. The radiative cool-
ing is taken into account implicitly by imitating the
radiative losses by reducing the adiabatic index in
the equation of state for an ideal gas, as in [9, 13].
We explicitly take into account radiative losses by
computing the radiative cooling for an optically thin
plasma that is in ionization equilibrium; this method
is described in detail by Cox and Daltabuilt [14].
This radiative-cooling model was first used in the
hydrodynamical calculations of Blondin et al. [15].
We took into account self-absorption in the optically
thick gas layer by multiplying the radiative cooling by
the optical path in the envelope in the z direction. The
interaction of the stream and primary was modeled
by computing the fraction of the gas that is accreted
by introducing a special coefficient fv that determines
the velocity at the surface of the primary: this velocity
is equal to fv × V , where V is the velocity at the
interface with the primary. We used the values fv =
0.1 and 0.5, in order to estimate the influence of this
coefficient on the results of the computations.

In our model for the binary system, the compo-
nents have circular orbits around the common center
of mass of the system, a gravitational Roche model is
applied, and we assumed synchronous rotation of the
components. We also assumed that the gas was ideal
and, for simplicity, composed purely of hydrogen.

We used the model atmospheres of Kurucz [11]
with Teff = 10000 K and log g = 2.5 to construct the
initial model for the secondary in the vicinity of L1. We
assumed that the contours of equal pressure inside
the Roche lobe of the secondary coincide with the
equipotential contours of the gravitational field of the
binary. Outside the Roche lobe of the secondary, the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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contours of equal pressure are parallel to this Roche
lobe [12].

We applied the following boundary conditions. At
the outer boundary of the computational region, the
gradients of physical quantities are equal to zero (en-
abling a free outflow of gas through this boundary).
Deep inside the Roche lobe of the secondary and at its
surface, the physical quantities remain equal to their
initial values.

The mass of the secondary was set equal to 2M�,
and the mass of the primary to 12M� [16]. Two nu-
merical grids were used for the computations. The
main grid covers the space in the vicinity of the binary
from −1.5 to +2.5 (along the x axis) and from −2.5
to +2.5 (along the y axis), with the number of cells
in this grid being 275 × 285. The second grid covers
a larger space: from −9 to +17 along the x axis and
from −19 to +19 along the y axis, with the number
of cells being 475 × 585. The large grid enables us to
follow the motion of gas that departs from the system.

The computations covered 12 to 19 orbital peri-
ods, to ensure that a steady state of the system was
established (we assumed that the system attains this
steady state when the rates of accretion and mass loss
by the system become constant in time).

To compute the mass transfer in the close binary,
we solved the non-stationary Euler equations using
the “large-particle” method of Belotserkovskiı̆ and
Davydov [17]. We applied a version of the method
that uses artificial viscosity in the first step and has
second-order accuracy in space and time. The sim-
plicity of the organization of the computations in the
large-particle method enables the use of personal
computers for the solution of nonstationary problems
in the numerical hydrodynamics of close binaries.

3. MODELING OF MASS TRANSFER
IN β Lyr AT A RATE OF 10−5M�/yr

3.1. Computations with Implicit Account of
Radiative Cooling

3.1.1. Primary radius equal to 0.5, fv = 0.5fv = 0.5fv = 0.5 and
0.10.10.1. Figure 1 (fv = 0.5) and Figure 2 (fv = 0.1) show
contours of equal density and temperature and the
velocity field for the steady-state solution obtained
for this case. The radius of the stream at L1 is 0.2
(the model of Lubow and Shu [10] gives a radius of
0.17 for the same mass-transfer rate). Due to the
large radius of the primary, the mass transfer results
in the Roche lobe of the primary being filled with
gas, and the formation of an almost contact binary
system. A comparison of Figs. 1 and 2 shows that
an almost symmetric envelope forms when fv = 0.1
(90% of the matter is reflected by the primary). When
fv = 0.5 (50% of thematter is reflected by the primary
ASTRONOMY REPORTS Vol. 47 No. 12 2003
and 50% is accreted), an asymmetric envelope forms,
with themaximum density occurring at orbital phases
0.65–0.75. In both cases, the stream reflected by
the primary interacts with the stream flowing from
L1, resulting in the formation of a high-temperature
region between the primary and L1. The temperature
in this area can reach 2×105–3×105 K.

As we can see in Figs. 1 and 2, none of the shock
waves that are characteristic of close binaries with
compact objects [18, 19] arise in the computational
region. The only exception is shock III (our notation
for labeling the shocks coincides with that of Bisikalo
et al. [18, 19]). The computations also show that
the system loses essentially no mass from the stream
flowing from L1. Matter from the secondary flows out
through L2, forming a stream of matter that leaves the
system. Thus, the system loses mass mainly through
L2. The rate of mass flow through L2 is about 40%
of the rate of flow through L1. Close to the orbital
plane, the stream from the vicinity of L2 expands
and is twisted under the action of the Coriolis force,
resulting in the generation of a stellar wind that is
typical of binary systems. We also believe that the
thickness of this wind in the z direction grows with
distance from the system. Thus, the secondary loses
mass simultaneously through both libration points,
L1 and L2, and, due to the flow from L2, the mass
transfer in the system is nonconservative.

To trace the generation of the binary wind via the
stream from L2, we carried out computations using a
large spatial grid. The results of these computations
are presented in Fig. 1c, which shows contours of
equal density. We can see that the stream expands
rapidly in the radial direction and generates a nearly
homogeneous wind in the orbital plane. The velocity
of the wind in the radial direction at the edge of the
computational region is about 50–100 km/s, and the
wind density is of the order of 1011cm−3.
3.1.2. Primary radius equal to 0.2 and fv = 0.1fv = 0.1fv = 0.1.

The contours of equal density and temperature and
velocity field are shown in Fig. 3. The stream is now
much more extended, since it moves in the larger
Roche lobe of the primary. At the same time, the
stream radius contracts by a factor of three to four
compared to its radius at L1 as it moves through this
lobe, unlike the stream in the model of Lubow and
Shu [10]. In this set of computations, the stream im-
pacts the primary tangentially (the edge of the stream
grazes the primary), resulting in the formation of a
dense disk around the primary and of a less dense and
prominent outer envelope surrounding the disk and
both components of the system. As in the previous
cases, at the outer boundary of the envelope, the gas
motion is opposite to the rotation of the binary.

In this case, several shock waves form in the
computational region. Shock I forms due to the
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Fig. 3. Same as Fig. 2 for R1 = 0.2 and fv = 0.1.
interaction of the gas moving inside the Roche lobe
of the primary and the upper edge of the stream.
Shock V forms in the reverse flow of gas from L3 to
L1. Shock VIII forms due to the interaction of the gas
from the accretion disk with the gas from the outer
envelope (close to orbital phase 0.25).

3.1.3. Primary radius equal to 0.1 and fv = 0.1fv = 0.1fv = 0.1.
Figure 4 shows the lines of equal density and tem-
perature and the velocity field in the computational
region. The radius of the stream at L1 is 0.22. Due
to the small radius of the primary, the stream does not
impact the surface of this star, instead passing a short
distance from it, of the order of the star’s radius. The
stream moving inside the primary Roche lobe forms
a pronounced accretion disk (the number density in
ASTRONOMY REPORTS Vol. 47 No. 12 2003
the disk is of the order of 1012–1013 cm−3), and some
of the matter also flows into the circumstellar enve-
lope, where the gas rotates opposite to the rotation
of the binary system. The matter flowing from the
stream into the circumstellar envelope interacts with
the stream at its outer edge (at orbital phases near
0.75) and forms shock V. As in the case with R1 =
0.2, shock I forms at the outer edge of the stream.

3.2. Models with Explicit Account of Radiative
Cooling

3.2.1. Primary radius equal to 0.5 and fv = 0.5fv = 0.5fv = 0.5
and 0.10.10.1. The contours of equal density and tem-
perature and the velocity field are shown in Fig. 5
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1.0

0.5

0

0.5

1.0

0.5 0 0.5 1.0 1.5 2.0 2.5

 

X

Y

 

0.5 0 0.5 1.0 1.5 2.0 2.5

 

X

 
(‡) (b)

 

II

III

IV

I

Fig. 5. Same as Fig. 2 for R1 = 0.5 and fv = 0.5 with radiative cooling explicitly taken into account.
(fv = 0.5) and Fig. 6 (fv = 0.1). The radius of the
stream in the vicinity of L1 remains the same: 0.22.
The explicit account of radiative cooling drastically
changes the appearance of the envelopes in the close
binary and makes their structure more complex. Only
the asymmetry of the envelope for fv = 0.5 and its
symmetry for fv = 0.1 remain. It is striking that the
libration points L4 and L5 become more prominent.
The minimum of the density and temperature in the
envelopes is near these points. We can also see that
the stream reflected from the surface of the primary
interacts with the stream moving from L1. As in the
previous case, this results in the formation of a region
of high temperature between L1 and the surface of
the primary. Computations of the mass transfer in
an almost contact system with explicit account of
radiative cooling show an appreciable increase in the
temperature and density gradients in the envelopes,
especially at their outer edges. The velocities in the
outer envelope remain modest, and the envelopes are
close to hydrostatic equilibrium. The stream of matter
from L2 is preserved.

We can see the system of shocks typical for the
envelope of an almost contact binary in Figs. 5 and
6. Shock I propagates along the upper edge of the
stream to the surface of the secondary and further to
the right edge of the stream flowing from L2. Shock II
forms in the vicinity of L4, close to the surface of
the primary. This shock arises due to the collision of
the gas that is rotating around the primary and the
gas that is close to the outer border of the compu-
tational region and moves opposite to the rotation of
the system; it resembles shock II in a close binary
with a compact object. Also present in the system
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 6. Same as Fig. 5 for R1 = 0.5 and fv = 0.1.
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Fig. 7. Same as Fig. 5 for R1 = 0.2 and fv = 0.1.
are shock III, which forms below the line connecting
the centers of the objects in the vicinity of L5, and
shock IV, which is located below the primary. Figure 6
shows shock V, which forms during the motion of the
gas from L3 to L1.

3.2.2. Primary radius equal to 0.2 and fv = 0.1fv = 0.1fv = 0.1.
The lines of equal density and temperature and the
velocity vectors are shown in Fig. 7. A more complex
stream and envelope are formed in this case as well.
First and foremost, the stream flowing near the
primary expands, probably due to the decrease of
the temperature in neighboring regions (the stream
expands under the action of its own radial pressure
gradient). Some fraction of the stream forms a com-
pact, dense accretion disk, but a considerable part of
the stream departs in the direction of orbital phases
ASTRONOMY REPORTS Vol. 47 No. 12 2003
0.7–0.8 and forms an envelope. Some of the stream
and disk material flows out in the direction of L3, then
in the direction of L1, generating shock IV, which
has a very high temperature (∼ 70 000–80 000 K).
Such gas motions are apparently typical when ra-
diative cooling is explicitly taken into account (it
may be that an excess pressure from the disk gives
rise to these outflows). In the rest of the space
around the binary components, the temperature is
∼ 4000–18 000 K in the outer envelope (in very
good agreement with the two-temperature model of
Linnell [7]) and ∼ 30 000–100 000 K in the accretion
disk. We can see in Fig. 7 that the spiral shock II
appears (in the notation of Bisikalo et al. [18]). This
wave apparently forms when the matter from the
disk interacts with the matter of the circumstellar
envelope. The parameters of this shock are maximum
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Fig. 9. Same as Fig. 2 for R1 = 0.1, fv = 0.1, and Ṁ = 4×10−5M�/yr.
at the outer boundary of the computational region,
where the interaction is most intense. Shock VIII
bounds the accretion disk from the outside, and forms
due to interaction of the disk gas with the gas of the
outer envelope.
3.2.3. Primary radius equal to 0.21 andfv = 0.1fv = 0.1fv = 0.1.

The lines of equal density and temperature and the
velocity field are shown in Fig. 8. As for the com-
putations for other primary radii, a large number of
shocks form in this case. Figure 8 shows that the
stream moving inside the primary Roche lobe also
flows close to the primary, as in the case of implicit
account of radiative cooling, but this stream now
expands considerably, its edge slightly grazing the
surface of the star. The origin of this expansion is the
radial pressure gradient.

Figure 8 also shows that the stream from L1 is
bounded on two sides by shocks (shock I in [18,
19]). As the stream spreads, the matter that initially
moved toward L3 turns toward the direction of L1,
moving opposite to the rotation of the system. When
this matter encounters the gas of the outer envelope,
shock V forms, which turns toward the direction of
orbital phase 0.9 under the action of the Coriolis force.
The stream expanding near the primary spreads into
a broad range of orbital phases from 0.25 to 0.6, and
forms a large, dense accretion disk and a dense outer
envelope (the number density in this envelope is of
the order of 1011–1012 cm−3, while that in the disk
is ∼ 1012–1013 cm−3). At phases close to 0.25, the
accretion disk is bounded by shock VIII, which forms
when the gas of the disk interacts with the gas of the
outer envelope moving in the opposite direction. With
the given parameters of the stream, we can see a very
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 10. Same as Fig. 9 with radiative cooling explicitly taken into account.
strong spiral shock II, which is much more prominent
than in the case R1 = 0.2. This shock has a complex
structure and, originating in the disk, extends to the
region of L3. There is a stream from the vicinity of L2

(it is still nonconservative), which is bounded by the
shock that forms due to the interaction of the stream
gas with the gas of the outer envelope.

4. MODELS FOR A MASS-TRANSFER RATE
OF 4 × 10−5M�/yr WITH EXPLICIT

AND IMPLICIT ACCOUNT OF RADIATIVE
COOLING (R1 = 0.1)

If radiative cooling is taken into account implicitly,
the radius of the stream for a mass-transfer rate of
Ṁ = 4×10−5M�/yr is 0.29. The contours of equal
temperature and density and velocity field at the end
of the computations are shown in Fig. 9 (implicit
radiative cooling) and Fig. 10 (explicit radiative cool-
ing). Figure 9 shows that the powerful streammoving
inside the Roche lobe of the primary considerably
(by a factor of two to three) reduces its radius and,
without passing close to the primary as it does in
the case of a lower mass-transfer rate, forms a dense
accretion disk around the primary. This dense disk
(1013–1014 cm−3) moves the stream even further
from the primary, to a distance comparable to the
radius of the star. Thus, the stream moving in the
Roche lobe of the primary forms a very powerful disk
whose radius is approximately equal to the radius of
the lobe and an outer envelope whose density is of
the order of 1012–1013 cm−3. The interaction of the
stream with the accretion disk occurs without the
formation of a hot spot, but with the formation of a
hot line; i.e., the stream does not impact the disk, but,
on the contrary, the accretion disk impacts the edge
of the stream.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
Figure 9 shows that no prominent system of
shocks forms when radiative cooling is taken into
account explicitly. This is apparently due to the
specific properties of the stream’s motion inside the
Roche lobe of the primary in this case. We can see
only the rather weak shock I at the upper edge of
the stream, close to the primary, and another shock
that bounds the stream from L2; as in all the previous
cases, this latter stream makes the mass transfer in
the system nonconservative.

If radiative cooling is taken into account explic-
itly with the same parameters for the system, many
more shocks form, even compared to models with
the same parameters but a lower mass-transfer rate
(Fig. 10). First and foremost, the stream moving
inside the Roche lobe of the primary expands and
grazes the surface of the star. The origin of this ex-
pansion is the same—the action of the radial pressure
gradient. Figure 10 shows that the stream from L1

is bounded on two sides by shocks (shock I). The
matter that spreads from the stream also forms a
shock (shock V), which is deflected in the direction of
orbital phase 0.9 under the action of the Coriolis force.
Figure 10 also shows that the stream that expands
close to the primary spreads in the direction of orbital
phases from 0.25 to 0.75, and forms a large accretion
disk (which nearly fills the primary Roche lobe) with
a number density of close to 1013–1014 cm−3 and a
dense outer envelope with a number density of the
order of 1012 cm−3. The accretion disk is bounded
at phases near 0.25 by shock VIII, which originates
due to the interaction of the disk and outer enve-
lope, which are moving in opposite directions. With
the given parameters of the system, we can see a
very strong spiral shock II, which is more prominent
than in the case R1 = 0.2. This shock has a complex
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structure and, originating in the disk, extends to the
vicinity of L3.

Figures 9 and 10 show that there is a stream of
matter from the vicinity of L2, which is bounded by the
shock that forms due to the interaction of the stream
with the outer envelope. As in the previous cases, this
stream from L2 makes themass transfer in the system
nonconservative.

5. MODELS TAKING INTO ACCOUNT
THE STELLAR WIND OF THE SECONDARY

In this set of computations, we took into account
the stellar wind from the secondary. Based on the
component masses, it would seem more appropriate
in the first instance to take into account the stellar
wind of the primary. However, due to the presence
of the accretion disk in the system, this wind would
probably flow only above and below the orbital plane,
since the accretion disk will hinder the motion of the
wind in the orbital plane. Hence, this wind will have
an effect only in three-dimensional computations. On
the other hand, nothing prevents the formation of a
stellar wind from the secondary and its initial outflow
in the orbital plane. Thus, such a wind can influence
the results of two-dimensional computations.

We took the wind velocity to correspond to the
velocity in the model of Barlow and Cohen [20], Ṁ =
5×10−13L1.2M�/yr, expected for a star with a mass
of 2M�. Thewind velocity was determined as follows.
We first determined the velocity of the wind from
the secondary using the asymptotic formula and the
parameters of the system. We then derived the den-
sity at the outer boundary of the model atmosphere
corresponding to the secondary and the density at the
position in the wind where the velocity attains the
value V∞. Using this density and V∞, we could then
find the velocity of the wind of the secondary. In our
computations, the wind velocity is about 80 km/s at
a distance of 1.2 (1.0 corresponds to the mean radius
of the secondary Roche lobe); this corresponds to the
very weak wind of such a moderate-mass star. The
mass-transfer rate in this set of computations is also
4 × 10−5M�/yr.

We continued our computations over 17 orbital
periods to ensure that a steady-state was attained
in the computational region. The contours of equal
density and temperature and the velocity field at the
end of the computations are shown in Fig. 11 (with
radiative cooling taken into account implicitly) and
Fig. 12 (with radiative cooling taken into account
explicitly). The initial radius of the stream is 0.28
(the change of the radius compared to the previous
set of computations is due to the effect of the stellar
wind on the formation of the stream: this wind slightly
suppresses the formation of the stream at L1).
As Figs. 11 and 12 show, with such a high mass-
transfer rate, the stellar wind only weakly influences
the structure of the stream at L1 and its motion inside
the Roche lobe of the primary. The only appreciable
difference is that, due to the action of the stellar wind
in the vicinity of L1, the stream retains its overall
structure, but is oriented along a larger angle to the
line of the component centers. This results in a small
shift in the direction of the stream as it moves inside
the Roche lobe of the primary. As in the previous
case, the stream forms a powerful accretion disk and
circumstellar envelope. Figure 11b very clearly shows
shock I (the hot line) at the edge of the stream and
shocks III and IV, which are parallel to the surface of
the secondary in the region where the donor wind is
formed. Figure 11 shows that the stellar wind imme-
diately manifests itself via the appearance of a system
of shocks that are generated by the interaction of the
wind with the envelopes of the binary system.We label
these shocks with Roman numerals starting from X,
to distinguish the shocks due to the interaction of the
stellar wind with the envelopes of the binary system.

As Fig. 11 shows, if radiative cooling is taken into
account implicitly, the wind is confined on all sides by
the accretion disk, outer envelope, and stream from
L2, and moves in this restricted area. The interaction
of the stellar wind with the accretion disk results in
the formation of shock X, which bounds the wind from
the side of the accretion disk. The interaction of the
stellar wind with the stream from the vicinity of L2

results in the formation of shock XI. The interaction of
the wind with the outer envelope (near orbital phases
0.6–0.9) generates shock XII. Thus, three shocks
are generated by the interaction of the wind with the
gas flows in the binary system. In addition, Fig. 11b
shows shocks III and IV in the region where the stel-
lar wind flows from the atmosphere of the secondary.

The motion of the wind and its interaction with the
envelopes changes markedly when radiative cooling
is taken into account explicitly. In this case, the wind
from the secondary is not confined by the envelopes
(since the temperature in them is considerably lower),
and the wind dominates in the space around the
binary components. The velocity of the wind in the
region where its formation is completed remains close
to 80 km/s, but it now fills almost the entire space
between the binary components.

Figure 12 shows that the formation of the stream
is not substantially changed compared to the pre-
vious sets of computations. However, the stream is
appreciably compressed by the wind in the vicinity
of L1, and its motion inside the Roche lobe of the
primary differs from the case with explicit account for
radiative cooling. The stream splits near the primary,
with the bulk of the stream moving in the direction of
orbital phases 0.65–0.85, while, after moving around
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 11. Same as Fig. 9 including the stellar wind of the secondary.
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Fig. 12. Same as Fig. 9 with explicit account of radiative cooling and including the stellar wind of the secondary.
the primary, the remainder interacts with the stellar
wind flowing above the line of component centers.
The system of shocks changes. Most importantly, the
new shock XIII appears, which originates in the wind
itself and is due to the interaction of different parts
of the wind under the action of the Coriolis force.
This shock forms both below and above the line of
component centers, and the Coriolis force curves its
motion in the direction opposite to the rotation of the
binary. Shock XI has the same position as in the case
with implicit account of radiative cooling. Shock XII,
which originates due to the interaction of the wind
with the stream (its lower edge), is very indistinct and
stretched.

As the velocity vectors in Fig. 12 clearly show,
there is virtually no accretion disk around the primary.
It is essentially swept out by the stellar wind, and
we can see that the spiral shock II in this version of
ASTRONOMY REPORTS Vol. 47 No. 12 2003
the cooling is formed by the interaction of the wind
with the stream, which moves around the primary
and ends up above the line of component centers,
in the region of orbital phases 0.3–0.4. Thus, as in
the computations with explicit account of radiative
cooling and without stellar wind, the spiral shock II
forms; but, in this case, when there is no accretion
disk, this shock is due to the interaction of the wind
and the stream from L1.

6. DISCUSSION

We have carried out two-dimensional hydrody-
namical computations of the mass-transfer in the
β Lyr binary system for various sets of parameters of
the system, both explicit and implicit account of ra-
diative cooling, various assumptions about the char-
acter of the interaction of the stream and the primary,
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and with and without including the stellar wind from
the secondary. Thus, our computations represent a
study of the influence of various physical processes
and adopted parameters of a close binary system on
the mass transfer in the system. The main results
are summarized in the Table, which shows that the
structure of the envelopes that form as a result of the
mass transfer depends very strongly on the adopted
model assumptions. First and foremost, the results
depend on the radius of the primary.

When the primary radius is large, R1 = 0.5, the
stream from L1 flows almost without any deflection,
and therefore impacts the center of the star. As a
result, only a circumstellar envelope is formed, with-
out an accretion disk. The formation of an envelope
whenR1 = 0.5 depends strongly on the coefficient fv:
when fv = 0.5, an asymmetric circumstellar envelope
forms, while the envelope is symmetric relative to
various orbital phases when fv = 0.1. For this radius,
shocks essentially do not form if radiative cooling is
taken into account implicitly, while four shock waves
form when cooling is taken into account explicitly.

When the radius of the primary is R1 = 0.2, the
stream’s interaction with the star is tangential when
radiative cooling is taken into account implicitly,
while the stream impacts the edge of the star in the
case of explicit account of radiative cooling. As a
result, a compact, dense disk and extended envelope
with a complex system of shocks form in both cases.

When the radius of the primary is R1 = 0.1, when
radiative cooling is taken into account implicitly, the
stream does not interact with the star, and forms a
dense disk around the star, comparable in size to
the primary Roche lobe, and an extended, dense en-
velope with a small number of shocks. If radiative
cooling is taken into account explicitly, the stream’s
interaction with the star is tangential, and a large,
dense accretion disk and extended, dense envelope
with a complex system of shocks are formed. The
dense accretion disk deflects the stream from the line
of component centers even more, and the interaction
of the stream with the disk produces a hot line instead
of a hot spot.

In all cases, the secondary also losesmass through
L2. The stream from L2 leaves the system, creating
a nearly homogeneous wind in the orbital plane. The
amount of matter lost from L2 is close to 40% of
the mass flowing through L1. When radiative cooling
is taken into account explicitly, the temperature in
the envelope is of the order of 4000–18 000 K, close
to values derived from observations [7]. If the stellar
wind from the secondary is taken into account, new
shocks form.When radiative cooling is taken into ac-
count explicitly, the stellar wind disrupts the accretion
disk. However, this result may be due to to the two-
dimensional nature of our computations.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
It is likely that, in three-dimensional computa-
tions, the wind that is reflected from the accretion
disk interacts with the wind from the primary above
and below the orbital plane. It is quite possible that
the jets observed in the system [5] are due to both
the interaction of the stream and accretion disk, and
interactions between the stellar winds in the system.
Thus, the presence of stellar winds changes signifi-
cantly the pattern of the gaseous flows in the β Lyr
system, making it muchmore complex. It is clear that
these winds must be taken into account if we wish to
obtain a realistic model of this system.

Considering all our computational results, we
conclude that the most realistic version of our com-
putations for the β Lyr system is the one that includes
the stellar wind of the secondary, takes into account
radiative cooling explicitly, and has a primary radius
equal to 0.1.

Bearing in mind the large radius of the stream in
the vicinity of L1, it would be worthwhile in the future
to carry out three-dimensional computations of the
mass transfer in this system based on the results of
these two-dimensional computations.

7. CONCLUSIONS

Our analysis of the results of our computations led
us to the following conclusions.

(1) The radius of the stream in the vicinity of L1

is about 0.22 for a mass-transfer rate of 10−5M�/yr
and about 0.29 for a mass-transfer rate of
4×10−5M�/yr.

(2) The motion of the stream in the Roche lobe of
the primary leads to the formation of a large accre-
tion disk with a number density of 1013–1014 cm−3.
Instead of a hot spot on the disk, a hot line forms at
the edge of the stream, together with a circum-binary
envelope with a number density of 1012–1013 cm−3.
Thus, instead of the stream impacting the disk, we
have a situation in which the disk impacts the stream.

(3) When radiative cooling of the moving gas is
taken into account explicitly, the stream expands near
the primary, in contrast to the predictions of themodel
of Lubow and Shu [10].

(4) The pattern of the interaction of the stream
and accretion disk (or primary) depends, apart from
the radius of the primary, on the rate of mass transfer
through L1. In the case of highmass-transfer rates (of
the order of 4.0×10−5M�/yr), the denser accretion
disk moves the stream away from the primary.

(5) The system of shocks that forms depends on
the treatment of radiative cooling. Shock I (the hot
line), which forms at the edge of the stream facing the
primary (in the direction of orbital phases 0.2–0.4) is
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present in all models, while the spiral shock II forms in
all models with explicit account of radiative cooling.

(6) In all the computations, the secondary loses
mass through two libration points—L1 and L2. The
flow through L1 is completely conservative, while the
flow through L2 is completely nonconservative. This
results in the outflow from the system of about 30%
of the matter lost by the secondary.

(7) When the stellar wind from the secondary is
taken into account, the shocks associated with the
interaction of the wind and envelopes that form due to
the outflow of matter through L1 and L2 dominate in
the system, with the exception of the spiral shock II,
which is present in models both with and without this
stellar wind.
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Abstract—We have modeled the mass transfer in the three semidetached binaries U Cep, RZ Sct,
and V373 Cas taking into account radiative cooling both implicitly and explicitly. The systems have
asynchronously rotating components and high mass-transfer rates of the order of 10−6M�/yr; they are
undergoing various stages of their evolution. An accreting star rotates asynchronously if added angular
momentum is redistributed over the entire star over a time that exceeds the synchronization time.
Calculations have indicated that, in the model considered, mass transfer through the point L1 is unable
to desynchronize the donor star. The formation of an accretion disk and outer envelope depends on the
component-mass ratio of the binary. If this ratio is of the order of unity, the flow makes a direct impact with
the atmosphere of the accreting star, resulting in the formation of a small accretion disk and a relatively
dense outer envelope. This is true of the disks in U Cep and V373 Cas. When the component-mass ratio
substantially exceeds unity (the case in RZSct), the flow forms a large, dense accretion disk and less dense
outer envelope. Taking into account radiative cooling both implicitly and explicitly, we show that a series of
shocks forms in the envelopes of these systems. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At certain stages in the evolution of close binary
systems, one of the stars fills its Roche lobe and starts
losing matter through the vicinity of the inner La-
grange point (L1). This matter carries away some of
the angularmomentum of the outflowing star (donor),
while the accretion of this matter onto the secondary
(accretor) adds angular momentum to this star. Due
to this, we should observe desynchronization of the
rotation and revolution of the components in some
close binaries at the end of or immediately after the
rapid mass-transfer phase of their evolution [1].
The modern theory of tidal interactions in de-

tached binaries with main-sequence components is
consistent with the observed parameters of many sys-
tems [2]. For components with both radiative and
convective envelopes, the theory provides formulas
that can be used to estimate the synchronization and
circularization time, or to determine a lower limit
for this time for a specific binary. On this basis, it
was concluded that the components of essentially all
semidetached binaries should be synchronized, and
their orbits circular. Since the semidetached phase
lasts 108 years in Algols, while their average syn-
chronization time is about 105 years, the number of
systems with asynchronously rotating components
should be slightly more than one thousandth of all Al-
gols. However, over the last ten years, the rotation of
the accreting components in more than 20 of several
1063-7729/03/4712-1027$24.00 c©
hundred well-studied Algol-type systems have been
found to be substantially asynchronous [3]. Some
semidetached systems withmassive components also
display asynchronous rotation. This number of Algol-
like systems with asynchronous rotation cannot be
explained purely by suggesting that these systems
have not yet become synchronized after the rapid
mass-transfer phase.
It is important to study Algol-like systems with

asynchronously rotating components in order to un-
derstand how to correctly calculate the transfer of
mass and angular momentum in the theory of bi-
nary evolution. We have modeled the mass trans-
fer in several semidetached systems that have the
maximummass-transfer rates observed for Algol-like
systems. It is possible that the current mass-transfer
rates are sufficient to maintain asynchronicity due to
accretion or mass loss through L1 in some semide-
tached systems with asynchronously rotating com-
ponents. To test this hypothesis, we carried out two-
dimensional hydrodynamical modeling of the mass
transfer in the orbital planes of three semidetached
systems: RZ Sct, U Cep, and V373 Cas. These sys-
tems have asynchronously rotating components, and
their high rates of mass transfer through the inner
Lagrange point could potentially bring about the ob-
served asynchronicity.
Table 1 contains the basic parameters of the sys-

tems. The first and second columns present the stud-
ied systems and spectral types of their components.
2003 MAIK “Nauka/Interperiodica”
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Table 1. Basic parameters of the studied systems

System Spectral type F Ṁ ,M�/yr P , days Macc,M� q Racc (A = 1)

V373 Cas B1(II–Ib)+0.5III 2 10−5–10−6 13.4 14 0.74 0.15

U Cep В7V+G8IV 8 10−6–10−7 2.49 3.6 1.49 0.18

RZ Sct B1Ib+A2IV 4 10−6 15.2 16.3 5.26 0.17
The third column contains the asynchronicity factor
for the accretor (for V373 Cas, for both the accretor
and donor); i.e., the ratio of the rotational and orbital
velocities of the star. The fourth column presents the
observed mass-transfer rates, the fifth column the
rotational period of the system, the sixth and seventh
columns the mass of the donor and the component-
mass ratio (accretor to donor), and the last column
the radius of the accretor. The observed characteris-
tics of the systems are as follows.

373Cyg is amassive eclipsing B1(II-Ib)+B0.5III
binary with an orbital eccentricity of 0.13. The system
displays variable Hα emission, providing evidence for
instability of the mass transfer from the donor. The
observation of polarization from the system is as-
cribed to the existence of a aspherical common enve-
lope. Evolutionary calculations yield a lifetime for the
system of the order of (7–8) × 106 yrs [4]. Both com-
ponents rotate asynchronously, with the rotational
velocity being twice the orbital velocity. The rotational
velocities of the components have been determined
from observations of the HeI λλ4388, 4471, 4922 Å
lines. The more massive star fills its Roche lobe and
loses mass through L1, suggesting that V373 Cas
has just started the first mass-transfer phase (case
A). To explain the asynchronicity of the rotation of
the components, Lyubimkov et al. [4] suggested that
the donor has not yet become synchronized (i.e., we
observe initial asynchronicity), while the accretor has
gained angular momentum due to the accretion.

RZ Sct is a massive long-period B1Ib+ A2IV
system. Its evolutionary status is similar to that of
Algol-like binaries; i.e., the system has undergone
the first mass-transfer phase, and the mass trans-
fer is currently proceeding on the nuclear timescale.
The system displays strong two-peakedHα emission,
confirming the presence of a disk envelope around the
accretor [5]. The angular velocity of rotation of the
accretor exceeds that of its orbital motion by a factor
of four. The rotational velocities determined from dif-
ferent spectral lines differ appreciably (183 km/s from
HeI λ4471 Å versus 282 km/s from MgII λ4481 Å
[6]). The descending and ascending arms of the pri-
mary minimum of the light curve display an asymme-
try due to absorption in the gas flow. The estimated
density in the flow is 1013 cm−3, with the mass-
transfer rate being about 6 × 10−7M�/yr [7]. Olson
and Etzel [6] proposed that the observed asynchronic-
ity of the rotation of the accretor is due to a high
mass-transfer rate in the system. The rate of change
of the system’s period is∆P/P = 2 × 10−6 [8].
The eclipsing binary UCep is classified as a typical

Algol with В7V+G8IV components. However, the
estimated mass-transfer rate in this system is of the
order of 10−6M�/yr, whereas the standard value for
Algols is 10−8–10−9M�/yr. The high mass-transfer
rate is the origin of all the photometric and spectral
peculiarities of this system—distortions of the light
curve and radial-velocity curve, the presence of ra-
dio and X-ray radiation, and variable Hα emission—
which indicate the presence of flows and an inhomo-
geneous accretion disk in the system. The rotational
angular velocity of the accretor exceeds its orbital
velocity by a factor of eight [9]. Burnett and Etzel
[10] suggest that the asynchronicity of the rotation
and revolution of the primary results from ongoing
accretion onto the star. The relative rate of change
of the system’s period ∆P/P is of the order of 10−5;
quasi-periodic variations of the period with a period of
about 12 years have also been noted [11].

2. HYDRODYNAMICAL MODELING
OF MASS TRANSFER IN CLOSE BINARIES

The mass-loss rates due to the stellar winds of
the components of these three systems do not exceed
10−7M�/yr, while the estimated mass-transfer rate
through L1 is of the order of 10−6M�/yr. Therefore,
we will neglect the loss of mass and angular mo-
mentum due to stellar wind. The degree of Roche-
lobe overfilling by the donor is determined by requiring
that the observed and calculated mass-transfer rates
through L1 be equal. Our approach to the modeling of
mass transfer in close binary systems is based on two
points:
(1) we derive the flow structure in the vicinity of L1

by modeling the formation of the flow in this region;
(2) the initial structure of the donor atmosphere

in the vicinity of L1 is specified by a Kurucz model
atmosphere [12], which makes it possible to take
into account the properties of the mass transfer in a
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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particular close binary, since the atlas [12] covers a
large range of atmospheric effective temperatures and
gravitational accelerations.
It is also important to adopt an approach of this

type because, according to the calculations of Lubow
and Shu [13], the flow structure in the radial direction
remains virtually constant as the flow moves toward
the accretor. Consequently, the initial structure of the
flow will be important when calculating the inter-
actions between the flow and the atmosphere of the
accretor. The use of our approach may also become
important for studies of systems in which the initial
flow structure differs dramatically from the model of
Lubow and Shu [13] (for example, for long-period
binaries).
To model the mass transfer in the close binaries,

we solved the nonsteady-state Euler equations us-
ing the “large particles” method developed by Be-
lotserkovskiı̆ and Davydov [14]. This method was
modified by introducing artificial viscosity that was
second order in space and time in the first stage
of the calculations. In practice, each time step took
around 2–3 s, and a steady state was reached after
300 000–500 000 steps. A detailed description of the
calculation technique is given in [15, 16].
Two-dimensional hydrodynamical modeling of

mass transfer in a close binary containing normal
stars without accurate calculation of the formation
of the flow through L1 was also carried out by Blondin
et al. [17] for β Per (taking cooling into account) and
by Richards and Ratliff [18] for β Per and ТТ Hyd.
Three-dimensional hydrodynamical modeling of the
mass transfer in β Lyr was performed by Bisikalo
et al. [19].

3. INITIAL MODEL AND THE BINARY
MODEL. BOUNDARY CONDITIONS

We used a standard model for the binary: the ro-
tation of the components about their axes was as-
sumed to be synchronized with their orbital revolu-
tion, the gravitation of the components was treated
in a Roche-lobe approximation, all rotational effects
(centrifugal and Coriolis forces) were taken into ac-
count, and the orbits of the components were as-
sumed to be circular. For simplicity, we also assumed
the gas to consist purely of hydrogen. We used both
implicit and explicit methods to take into account
radiative cooling in the moving gas. In the implicit
approach, the adiabatic index in the equation of state
for an ideal gas is decreased to 1.3–1.4. This method
was applied in [20, 21] to take into account radiative
cooling in hydrodynamical binaries. In the explicit
approach, the radiative cooling of an optically thin
plasma in ionization balance is directly calculated.
This technique is described in detail by Cox and
ASTRONOMY REPORTS Vol. 47 No. 12 2003
Daltabuilt [22]. Such a radiative-cooling model was
first applied by Blondin et al. [17].
The interaction between the flow and the atmo-

sphere of the accretor represents another difficult
problem when calculating the flow patterns in close
binaries with normal components. This interaction
occurs if the radius of the accretor exceeds 0.1 (here
and below, all dimensions are given in units of the
component separation). We described this interaction
using the coefficient fv, which decreases the gas ve-
locity at the surface of this star compared to adjacent
areas. For example, if the gas velocity in the vicinity
of the accretor is V , it will be fv × V at the stellar
surface. If this factor is zero, there is no accretion
onto the star (the boundary conditions correspond to
total reflection of the flow); if fv is unity, the boundary
conditions correspond to the total absorption of the
flow (free motion of matter through the boundary
of the accretor). Intermediate values imply partial
absorption of the flow. In our calculations, we set fv =
0.5. The initial model was specified as is described
by Nazarenko et al. [15]. The initial structure of
the flow inside the Roche lobe of the donor in the
vicinity of the inner Lagrange point was calculated
applying barotropic conditions; i.e., we assumed that
the contours of equal density and temperature and the
total potential of the binary coincided. Beyond this
lobe, the contours of equal density and temperature
are assumed to be parallel to the Roche-lobe surface.
The transition from the donor atmosphere to the
remainder of the computation domain was taken to
be continuous.
The boundary conditions in the computation do-

main were specified as follows. We specified the gra-
dients of physical parameters to be zero at the outer
boundary of the domain, enabling the free flow of
gas through this boundary. Physical parameters were
taken to have their initial values both deep in the
Roche lobe of the donor and at the Roche-lobe sur-
face.
The gas flow was calculated over 17–18 orbital

periods in order to ensure that a well established
steady state was reached in the computation domain.

4. CALCULATIONS TAKING INTO ACCOUNT
RADIATIVE COOLING IMPLICITLY

4.1. Model for U Cep

Recall that we modeled the overfilling of the Roche
lobe by the donor so as to obtain a mass-transfer rate
in the vicinity of L1 that was close to the observed
value, about 10−6M�/yr. This corresponds to the
position of the fifth layer of the atmosphere being at
L1 (the donor atmosphere consists of 10 layers in all),
with the degree of overfilling being equal to ∆r/r =
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Fig. 1. (a) Contours of equal density and velocity vectors
and (b) contours of equal temperature for U Cep with
radiative cooling implicitly taken into account.

0.04 in relative units. In the steady state, the density
and temperature at L1 are equal to 5×1015 cm−3 and
25 000 К. Figure 1 presents the calculated contours
of equal density and temperature and the velocity
field. We can see that the flow is not strongly de-
flected by the Coriolis force either at L1 or in the
course of its motion within the Roche lobe of the
primary (the deflection is 0.15), consistent with the
model of Lubow and Shu [13]. When fv = 0.5, the
flow reflected from the accretor forms two structures.
The gas that circulates around the accretor forms
the accretion disk, while the gas moving around both
components of the binary forms a very dense and
extended outer envelope. The number density in the
outer envelope varies in the interval 1010–1012 cm−3.
This comes about due to the almost head-on collision
between the flow and the atmosphere of the accreting
star. Figure 1 indicates that themorphology of the gas
motions in a close binary with normal components
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Fig. 2. Same as Fig. 1 for V373 Cas.

differs substantially from those in a system in which
the accretor is a compact object [21, 23]. A feature
in common for gas motions in systems with normal
components and with compact objects is a gas flow
from the disk to the point L3. Further, the gas moves
from L3 to L1 and around both components of the
binary, along the outer boundary of the computation
domain, in the direction opposite that of the binary’s
rotation. The bulk of the gas from the flow moves
into the outer envelope, resulting in the formation of
a small accretion disk. This contradicts observations,
which provide evidence for a quasi-steady-state ac-
cretion disk in the system. Since the results of the
calculations depend very strongly on the component-
mass ratio, which is known fairly well for U Cep, it is
possible that, in this case, the observations were in-
terpreted in the standard way, and the outer envelope
was taken to be part of the accretion disk.

The gas motions in U Cep give rise to a system of
shock waves, which are in many respects similar to
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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those in binaries with compact objects. Here, we use
the same notation for shocks as that of Nazarenko
et al. [16]. Figure 1 displays shock I, which origi-
nates during the collision between the gas moving
around the accretor and the gas flow moving from
L1. The spiral shock II is absent from the model for
this system. Shock III is located at orbital phases
0.05–0.15 (above the donor) and is formed during
the interaction of the gas reflected from the region of
shock I and the gas moving along the surface of the
donor. Shock IV is formed during the interaction of
the gas moving from L3 and the gas located in the
vicinity of the surface of the secondary. Shock V is
formed during the interaction of the gas moving from
L3 and the gas reflected from the outer boundary of
the flow. Thus, the gas-dynamical model for U Cep
predicts the formation of the same shocks as in bi-
naries with compact objects, with the exception of
shock II, which is not seen here for a natural reason—
it is situated near the surface of the accretor.

The mass transfer in U Cep leads to the formation
of high-temperature regions located in the zone of
the interaction between the flow and the accretor
atmosphere, and also near shock I near the accretor’s
surface. This region is believed to contribute substan-
tially to the observedHα emission [24]. Another high-
temperature region is part of the accretion disk close
to the surface of the accretor and shock V.

4.2. Model for V373 Cas

As was noted above, this system is at the be-
ginning of the first mass-transfer phase, so that its
component-mass ratio is smaller than unity. From a
hydrodynamical point of view, this implies that the
flow moves within the relatively small Roche lobe of
the accretor, resulting in an even more direct impact
of the flow onto the surface of the star than in the
previous case. A mass-transfer rate of the order of
10−6M�/yr is reached if L1 lies in the fourth layer of
the donor atmosphere and the degree of overfilling in
relative units is ∆r/r = 0.03. The temperature and
number density at L1 are 20 000 К and 1015 cm−3.
In the course of the interaction between the flow and
the atmosphere of the accreting star, the matter in
the flow is reflected from the stellar surface directly
back into the flow. Figure 2 presents the contours
of equal density and temperature and the velocity
field for V373 Cas. We can see that the gas from
the accretor immediately turns toward L1 along the
lower boundary of the flow, giving rise to the very
strong shock IV near the surface of the donor. Some
of the gas from the flow moves along the surface
of the accretor to L2 and then turns back to L1 in
the direction opposite to the system’s rotation. The
ASTRONOMY REPORTS Vol. 47 No. 12 2003
 

0.6

0.4

0.2

0

0.2

0.5 0 0.5 1.0 1.5

 

X

Y

 

III

III

 
(‡)

(b)

 

I

VI
IV

 

0.4

0.6

0.6

0.4

0.2

0

0.2

0.4

0.6

 

I

VI
IV

 

1.0

Fig. 3. Same as Fig. 1 for RZ Sct.

remainder of the gas flow circulates around the ac-
cretor and forms a small accretion disk with a number
density of 1012–1014 cm−3. The flow collides with
the gas moving around the accretor, resulting in the
formation of shock I. The gas at the outer boundary of
the computation domain moving opposite to the bi-
nary rotation collides with the gas from the accretion
disk, forming shock VIII. This last shock is similar
to shock II described by Bisikalo et al. [21, 23]. We
can see from Fig. 2 that shocks III and V are not
seen in this binary, probably due to the more direct
impact of the flow onto the atmosphere of the accretor
compared to the previous case.
Thus, the morphology of the gas motions in

V373 Cas is as follows: the system contains a small,
dense accretion disk and extended common envelope
surrounding the disk and both components of the
binary. High-temperature regions in the model for
V373 Cas are located in part of the accretion disk
very close to the accretor surface, and also near that
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parts of shock I that are close to the surface of the
accretor, in the region of shock IV below the donor,
and in the region of shock VIII.

4.3. Model for RZ Sct

The degree of overfilling of this binary in relative
units is ∆r/r = 0.035. In the steady state, the tem-
perature and number density at L1 are 56 000 К and
1015 cm−3. This yields a mass-transfer rate through
L1 of the order of 10−6M�/yr. Figure 3 presents the
resulting contours of constant density and tempera-
ture and the velocity field. We can see that the gas
morphology in this system is similar to that for UCep,
although the interaction between the flow and the
atmosphere of the accretor is substantially different.
In RZ Sсt, there is a grazing impact of the flow in the
disk of the star, due to the high component-mass ra-
tio. The deflection of the flow from the line joining the
component centers under the action of the Coriolis
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force is 0.23 (it is equal to 0.22 in the model of Lubow
and Shu [13] for this mass ratio). In this case, only
a small fraction of the gas from the flow is reflected
from the atmosphere of the accretor, resulting in the
formation of a large accretion disk and a less dense
outer envelope. As we can see from Fig. 3a, the flow
is attracted by the accretor, leading to an increase in
the area of the interaction between the flow and the
stellar atmosphere. As a result, an accretion disk with
a very inhomogeneous density distribution is formed.
The maximum density is reached at phases 0.65–0.7,
while the accretion disk is very extended at phases
0.25–0.35. The main difference from the behavior
seen for U Cep is the presence of a flow from L2 (an
L2 flow). In this binary, matter flows out from the
donor simultaneously through both L1 and L2, pre-
sumably due to the high component-mass ratio. As
in U Cep, there is gas in RZ Sсt that moves from L3

to L1 and subsequently along the outer boundary of
the computation domain, where it rotates opposite to
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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the rotation of the system. High-temperature regions
are located in the zone of interaction between the
flow and stellar atmosphere, as well as in part of the
accretion disk near its surface. All the matter flowing
from L1 is captured in the Roche lobe of the accretor
(conservative mass transfer), whereas all the matter
flowing from L2 leaves the system. The amount of
matter flowing from L2 is about 40% of the amount
flowing from L1. Thus, the mass transfer in RZ Sсt
is non-conservative. In the course of its subsequent
movement, the flow from L2 is deflected by Coriolis
forces and expands, producing a wind in a zone close
to the orbital plane, with a velocity of 100–300 km/s
in the radial direction. Such winds are characteris-
tic only of close binaries, and we have called them
binary-system winds. The shocks in RZSсt resemble
those in the other systems (I, III, IV); however, they
differ in the presence of shock VI, which is associated
with the shear interaction between the flow and the
stellar atmosphere.

5. EXPLICIT ACCOUNT OF RADIATIVE
COOLING

Themain result of our calculations with an explicit
treatment of radiative cooling is a very low tempera-
ture of the flow. The temperature in the computation
domain decreases to 1000 K (the lower limit of the
temperature in the radiative-cooling model used) ev-
erywhere except in the region of interaction between
the flow and accretor and part of the accretion disk
close to the surface of the accretor. Such substantial
cooling is due to the high gas density in the outer
envelope and disk (of the order of 1010–1013 cm−3),
which results in the radiation of nearly all the en-
ergy from the envelope. Figures 4–6 present contours
of constant density and temperature for the studied
systems when radiative cooling is taken into account
explicitly.

The morphology of the gas and interaction be-
tween the flow and the star are the same as in an
implicit treatment of cooling; i.e., the relationship
between the densities and sizes of the accretion disk
and the common envelope is the same. However,
the shapes of the accretion disk and outer envelope
are substantially different. The mass transfer in the
case of an explicit account of radiative cooling is
characterized by a clumpy structure of the accretion
disk and outer envelope, probably associated with the
Rayleigh–Taylor instability. A characteristic feature
of the formation of the envelopes with explicit account
of radiative cooling is the role of the Lagrange points
L4 and L5 (in V373 Cas and U Cep). The system of
shock waves that form and their origin are similar to
those for the case of implicit radiative cooling.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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To represent the matter distribution in the studied
systems, we determined the number of particles along
the line of sight as a function of the orbital phase
in steps of 5◦. The results are presented in Fig. 7,
which clearly shows the asymmetry of the envelopes
in U Cep and RZ Sct.

6. CONSERVATIVENESS OF THE MASS
TRANSFER

In the studied systems, the mass-transfer rate was
assumed to be of the order of 10−6M�/yr, close to
the observed value. The mass-transfer rates are the
same for both treatments of radiative cooling. The
mass transfer in V373 Cas and U Cep is nearly con-
servative: the ratios of the amount of matter flowing
from the system and that flowing fromL1 are β = 0.01
and 0.03, respectively. Due to the high component-
mass ratio in RZSct, L2 is located close to the surface
of the donor, resulting in an appreciable outflow of
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systems.
matter from this point, which is subsequently lost
from the system. In RZ Sct, β = 0.4, indicating that
the mass transfer is non-conservative. It is important
for the theory of binary evolution to determine the
parameter ψ = ∂(ln J)/∂(lnM), where J is the total
angular momentum of the system and M = M1 +
M2, since, along with β, this parameter appears in
the equation determining the amount of angular mo-
mentum lost by the system. Table 2 presents values
of ψ for the three systems. Given β and ψ, we can
determine the specific angular momentum βJ lost by
the system in the course of the mass transfer. This
parameter is also presented in Table 2 (in units of the
angular momentum of the system).

7. CALCULATION
OF THE ASYNCHRONICITY

OF THE ROTATION OF THE BINARY
COMPONENTS DUE TO ACCRETION

AND OUTFLOW FROM L1

Adopting the thickness of the disk in the z direc-
tion to be equal to the radius of the accreting star, we
can calculate the angular momentum gained by the
accretor over some time (for example, a year) in terms
of the momentum flux through the surface of the star.
In this case, we represented the accretor’s surface as
a cylinder with a height equal to the thickness of the
disk and a radius equal to that of the star. The time for
variations in the angular velocity of the accretor can
be calculated in two different ways:
(1) assuming that the added angular momentum

is redistributed over the entire star instantaneously;
(2) assuming that the added angular momentum is

initially redistributed only over the outer layers, then
slowly (on the evolutionary timescale) over the entire
star.
The calculations of the variations of the accretor’s

angular velocity were very similar in the two cases,
except that, in the second case, we used the angu-
lar momentum of the upper layers of the star rather
than the total angular momentum to determine the
variation timescale. If the flux of angular momentum
described above is known, we can obtain a new angu-
lar momentum for the accretor, and thus calculate the
change in the angular velocity of this star very easily,
assuming a constant rotational velocity inside the
star. We believe this approximation to be reasonable
since the observational values of Ṁ , and accordingly
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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ω̇, are known only to order of magnitude (more accu-
rate determinations are impossible given the current
state of both theory and observations). Thus, adding
the angular-momentum flux to the previous angular
momentum of the accretor (taking into account the
addedmass and themass–radius relation for binaries,
M∞R3.4, the radius varies as 1 + (Madd/Macc)−3.4,
whereMadd is the mass falling onto the star per year),
we will obtain the change of the accretor’s angular
velocity of rotation per year and, accordingly, the rota-
tional asynchronicity acquired by the accretor. When
dividing the new angular momentum into the new
moment of inertia of the accretor, we can estimate the
accretor’s moment of inertia using the radial density
distribution for a star of the given mass taken from
theoretical calculations of the internal composition of
stars [25]. In our approach to the redistribution of the
added angular momentum, we do not consider this
process in detail.

Variations of the rotational angular velocity of the
donor were calculated in the same way, except that
we calculated the new angular momentum of the
donor using the angular-momentum flux through the
vicinity of L1. The fourth column in Table 2 contains
the timescale for variations of the accretor’s angular
velocity for both cases of angular-momentum redis-
tribution. Table 2 also presents the synchronization
timescales for both the accretor and donor calculated
using the formula of Claret and Gimenez [2] (Col-
umn 2), the change in the donor’s angular veloc-
ity (column 3), ∆P/P (Column 5), ψ (Column 6),
the specific angular momentum of the matter lost
by the system βJ in units of the system’s angular
momentum (Column 7), and the mass-transfer rate
(Column 8). The timescales are given for variations of
the angular velocities of the donor and accretor by a
factor of two.
The ∆P/P values were calculated using the for-

mula of Tsesevich [26]. Table 2 indicates that, in all
three cases, the timescale for variations of the angular
velocity of the accretor is smaller than the synchro-
nization timescale only when the redistribution of the
accreted angular momentum over the star is slow.
Table 2 also provides evidence that the asynchronous
rotation of the donor in V373 Cas cannot be due to
the flow of matter through L1.

8. DISCUSSION

We have carried out two-dimensional modeling
of the mass transfer in three semidetached binaries
in various stages of their evolution. These systems
display asynchronous rotation of their components
and high mass-transfer rates. Since the systems are
semidetached, the theory of tidal interactions in close
ASTRONOMY REPORTS Vol. 47 No. 12 2003
binaries predicts that the rotation of their compo-
nents and their revolution should become synchro-
nized. One possible explanation for the asynchronic-
ity that has been put forth by some authors (see
Introduction) is a high rate of mass loss through
L1 by the donor and the subsequent accretion of
this matter onto the accretor. Our calculations have
shown that asynchronous rotation of the accretor can
be explained in this way only if the added angular
momentum is redistributed over the star over a time
interval exceeding the synchronization time. This can
occur for specific viscosities lower than 1010 cm2/s. It
is very difficult to estimate the viscosities of stars, or at
least upper limits for them. If we suppose that the vis-
cosity is related, for example, to turbulence, the spe-
cific viscosity will be of the order of Vs × ∆rs, where
Vs is the scale of the velocity and ∆rs is the spatial
scale of the turbulent inhomogeneity. Assuming Vs ∼
10 km/s and ∆rs ∼ 0.001 for the stellar radius, we
will obtain the specific viscosity 1014 cm2/s. In any
case, it seems unlikely that the stellar viscosity could
be lower than 1010 cm2/s. Consequently, we conclude
that accretion is not the origin of the asynchronous
rotation of the accretor, even if the redistribution of the
angular momentum is slow. Asynchronous rotation of
a mass-losing donor, likewise, cannot originate due
to the matter outflow through the L1 point. These two
conclusions mean that it is impossible to explain the
asynchronous rotation of the stars in these binaries
as a consequence of accretion or matter outflows.
Instead, we can consider the following possible ex-
planations of the observed asynchronicity of the ac-
cretor’s rotation.
(1) These systems are in a stage of their evolution

when synchronization after the first mass-transfer
phase is not yet complete; this is possible for RZ Sct
and U Cep.
(2) The rotational velocities determined for the ac-

creting stars correspond to the surrounding accretion
disk rather than to the star itself. This could be the
case for RZ Sct and U Cep. This is a likely explana-
tion since, for example, different rotational velocities
are found using different spectral lines in RZ Sct. Our
calculations indicate that the density in the disk is
close to that in the stellar atmosphere, supporting the
possibility that spectral lines are formed in the disk.
(3) The mass-transfer rate in a close binary is

estimated primarily from∆P/P , which is the result of
several processes in the system. This estimate yields
only a lower limit for this value, especially for sys-
tems with non-conservative mass transfer; therefore,
it may need to be increased by an order of magnitude.
In this case, the timescale for the redistribution of
the angular momentum over the star will be shorter
than the synchronization timescale, which could then
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Table 2. Parameters of mass transfer in the studied systems

System
Synchronization
time, 105 years

Donor
timescale,
105 years

Accretor
timescale,
105 years

∆P/P ψ βJ , 10−6 Ṁ ,M�/yr

U Cep 40.0 45.10 3.0 × 10−6 0.1 1.6 4.2 × 10−6

4.0 3.56 4.37

V373 Cas 12.0 900.00 −6.2 × 10−6 0.3 1.5 9.8 × 10−7

1.2 87.75 0.85

RZ Sсt 300.0 7900.00 1.5 × 10−6 4.2 0.8 2.1 × 10−6

31.2 258.78 17.48
explain the asynchronous rotation of the accretor in
U Cep.
Thus, in our model for the mass transfer in three

semidetached systems, the observed asynchronicity
of the components’ rotation cannot be unambigu-
ously explained by high mass-transfer rates, as
has been suggested in previous studies. It is even
more difficult to explain asynchronicity in other sys-
tems, whose primaries are rotating asynchronously
and which display substantially lower mass-transfer
rates. We consider the following two explanations for
asynchronicity in Algol-like systems to be the most
likely:
(1) the phase of rapid mass transfer finished rel-

atively recently (RZ Sct and U Cep) so that the
synchronization is not yet complete,
(2) the accretion disks in these systems are op-

tically thick, so that it is possible for spectral lines
to originate in these disks as well as at the stellar
surface.

9. CONCLUSION

Our two-dimensional hydrodynamical calcula-
tions of mass exchange in three semidetached bina-
ries have yielded the detailed pattern of the gas flows
and shock waves in these systems. This indicates that
the numerical technique used in our calculations does
not smear hydrodynamical details. The technique also
makes it possible to obtain results over a relatively
short time using personal computers, in contrast to
methods used in other similar calculations. For these
reasons, we believe we have obtained a reasonably
good gas-dynamical model for the mass transfer in
binary systems.
Overall, the flow of matter in the Roche lobe of the

primary in our calculations is similar to that in the
model of Lubow and Shu [13]; however, we have in-
cluded the influence of the Coriolis force in the vicinity
of L1. This influence is smaller in our model than in
the model of Lubow and Shu [13]. The interaction
between the flow and the surface of the accreting star
depends on the component-mass ratio, the radius of
the accretor, and the radius of the flow. In V373 Cas,
the component-mass ratio is close to unity, resulting
in a direct impact of the flow onto the atmosphere
of the accretor. In U Cep, the flow is deflected from
the line connecting the component centers, but only
slightly. In RZ Sct, the component-mass ratio ex-
ceeds unity, leading to a tangential interaction be-
tween the flow and the atmosphere of the accretor.
Summarizing the results of our modeling of mass

transfer in binaries, we can draw the following con-
clusions.
1. The morphologies of the gas motions are sim-

ilar for all three binary systems considered. Conse-
quently, we suggest that other interacting binaries
whose components are not compact objects (black
holes, neutron stars, or white dwarfs) also display
such morphologies. The flow moving from L1 collides
with the surface of the accretor and is reflected from
it. Due to this interaction, the flow ceases its motion,
and the gas is reflected from the surface of the star
and is splashed in various directions, resulting in the
formation of an accretion disk (in RZ Sct) and an
envelope surrounding both components of the system
(in V373Cas, UCep). In the case of a direct impact of
the flow on the surface of the star (i.e., for component-
mass ratios close to unity), the radius of the accretion
disk is small, while the common envelope is very
dense and extended. In the case of a grazing impact
of the flow on the stellar surface (for component-mass
ratios substantially exceeding unity), the accretion
disk is comparable to the size of the Roche lobe of the
accreting star, while the outer envelope is less dense
and extended. In the outer envelope, the gas moves
from the disk and from the flow toward L3, then back
to L1, and further rotates around both components in
the direction opposite to the system’s rotation. In the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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course of its interaction with the stellar surface, the
flow forms an almost cylindrical accretion disk (repro-
ducing the shape of the stellar surface), in contrast to
binaries with compact objects, where the flowmoving
around the compact star forms an elliptical disk with
a very complex structure.
2. Taking into account radiative cooling explicitly

yields a system of shock waves that depends on the
type of interaction between the flow and the stellar
surface:
(a) in the case of a grazing or indirect impact, we

obtain shocks I, III, IV, and V (RZ Sct and U Cep);
(b) when the impact of the flow with the stellar

surface is direct, the number of shocks is smaller,
since the flow is reflected from the surface at an angle
of almost 90◦, forming shocks I, IV, and VIII.
3. When radiative cooling is taken into account

implicitly, three high-temperature regions are formed:
(a) the region of interaction between the flow and

surface of the accretor above and below the flow (sur-
rounding the region of interaction between the flow
and the star), and part of the accretion disk near the
stellar surface, where the gas impacts and is reflected;
(b) the region where the gas moving from the disk

and flow toward L3 is reflected from the secondary
and interacts with the flow from L1 (the region of
shocks IV and V);
(c) the region where the gas surrounding both

components interacts with the accretion disk (at
phases 0.25–0.4).
4. The morphology of the gas in the systems varies

only slightly when radiative cooling is taken into ac-
count explicitly. In this case, the structure of the
gas may be clumpy, apparently due to the Rayleigh–
Taylor instability. When radiative cooling is taken into
account explicitly, the high-temperature region is the
zone of interaction between the flow and the surface
of the accretor. Thus, the overall gas motions in a
binary depend only slightly on the way in which the
radiative cooling is taken into account. Nonetheless,
we suggest that an explicit treatment is more correct.
5. The mass transfer in V373 Cаs and U Cep is

almost completely conservative; i.e., the ratio of the
amount of matter leaving the system to the amount
flowing from L1 is 0.01–0.02. In RZ Sct, the mass
transfer is non-conservative, and this ratio is equal
to 0.4.
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Abstract—An analysis of the angular structure of the radio galaxy 3C 234 at decameter wavelengths
based on data obtained on the URAN-1 and URAN-2 interferometers is presented. Four of the five model
components that describe the radio-brightness distribution at centimeter wavelengths are observed at
decameter wavelengths: two compact components and two neighboring extended components. The fifth,
undetected, component is the most extended, and encompasses the central region of the radio source,
including the nucleus of the galaxy. Self-absorption is detected in the compact components, whose angular
sizes are determined to be 0.27 ± 0.03′′ (northeast component) and 0.55 ± 0.05′′ (southwest component),
in agreement with direct measurements at centimeter wavelengths. Most of the decameter emission of the
radio galaxy is associated with its extended components. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The radio source 3C 234 is associated with an
optical galaxy with redshift z = 0.185 located at the
edge of a small group of galaxies. It is a classical FRII
steep-spectrum radio source. Its spectral index α at
frequencies above 1000MHz is 0.99 (S ∼ ν−α, where
S is the spectral flux density and ν the frequency of the
radiation). The angular structure of the source is fairly
complex, making it impossible to determine the radio-
brightness distribution with certainty usingmeasure-
ments at frequencies from 86 to 2695 MHz obtained
with radio interferometers capable of determining only
the amplitude of the visibility function γ as a function
of the baselineD in wavelengthsD/λ. It was possible
only to establish that the angular dimensions of the
radio galaxy are fairly large, of the order of several tens
of arcseconds, and that the source consists of no fewer
than two components, with their extent being much
larger in right ascension than in declination (see, for
example, [1]).

More detailed information about the radio struc-
ture of 3C 234 was obtained using supersynthesis
interferometers. For example, an approximate map
of the radio-brightness distribution at 1407 MHz
was determined, albeit with relatively low resolution
(23′′ × 47′′ in right ascension and declination, respec-
tively), in one of the earliest studies, carried out on
the one-mile Cambridge interferometer [2]. In that
map, the source consists of two bright and two less
bright compact components surrounded by a region
1063-7729/03/4712-1038$24.00 c©
of comparatively weak, extended emission. The bulk
of the radiation comes from the outer components
to the southwest and northeast, whose centers are
separated by 99′′ in position angle 65◦. The bright
components were estimated to be 15′′–20′′ in size,1
while the remaining components were less than 10′′–
20′′ in size. In other similar studies targeted primarily
at determining the fine structure of the source radi-
ation [3–7], the sizes and fluxes of the core and the
most compact components in the lobes were derived
at frequencies from 408 to 15 376 MHz. As a rule, the
extended lobes themselves were resolved.
The structure of 3C 234 has been determined

most fully via imaging using instruments such as
the Very Large Array. Many radio maps of 3C 234
from 1400–15 000 MHz have been made, with res-
olutions better than 0.3′′ in some cases. For example,
Alexander [8] presents maps with resolution 5.3′′ × 8′′
at five frequencies from 1.4 to 14.96 GHz obtained
with the VLA and the 5-km Cambridge interferome-
ter. Hardcastle et al. [9] present high-dynamic-range
images with resolutions of 0.3′′ and 2.3′′ obtained
using the VLA at 8.44 GHz; the latter image was ob-
tained using all the configurations of the VLA, which
made it possible to correctly represent the extended,
low-surface-brightness components with high angu-
lar resolution. The hot spots (compact features in

1 Here and below, the angular sizes of radio components are
given in terms of the full width at half maximum (FWHM)
for a Gaussian approximation to the brightness distribution.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Amplitudes of the visibility function γ̂ of ЗС 234
at various hour angles T0 measured by the URAN-1
interferometer at 25 MHz. The circles show the mean-
weighted data with the rms deviations ±σγ̂ . The solid
curve 1 shows the calculated dependence γp(T0) derived
from the 8440 MHz radio map of 3C 234 [9] for an
interferometer with the same baseline vector as for the
URAN-1 interferometer at 25 MHz. The dashed curve 2
shows the calculated dependence γp(T0) for the same
interferometer for the five-component model presented
in Table 1. The dotted curve 3 shows the calculated
dependence γp(T0) for the URAN-1 interferometer at
25 MHz for the optimal four-component model fit to the
data (Table 2).

the extended lobes) were also studied using the VLA
at 15 GHz with resolution 0.21′′ × 0.38′′, and the
magnetic fields in these features estimated [10].
Although radio interferometric observations were

carried out at 158 MHz [11] and 86 MHz [12],
not even the approximate structure of 3C 234 at
meter wavelengths has been established. The inte-
grated spectral index decreases to α = 0.85 below
1000 MHz, possibly testifying to changes in the
angular structure of the object at these frequencies.
No interferometric studies had been conducted at
decameter wavelengths. However, we expect sub-
stantial changes in the radio structure at such wave-
lengths due to the appreciable influence of cosmic
plasma on the radiation and propagation of the elec-
tromagnetic waves. It was therefore of considerable
interest to derive the angular structure of 3C 234 from
radio interferometric observations obtained at the
longest wavelengths possible using interferometers
located on the surface of the Earth.

2. MEASUREMENTS AND DATA
REDUCTION

Our decameter-wavelength observations of 3C 234
were carried out using the URAN-1 and URAN-2
interferometers, with baselines of 42.3 and 152.3 km
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 2. Same as Fig. 1 for 20 MHz.

oriented nearly East–West [13]. The interference
fringes were formed by multiplying the signals of the
North–South arm of the UTR-2 radio telescope [14]
with the signals from the URAN-1 and URAN-
2 antennas. The UTR-2 antenna received only a
single linearly polarized signal, while the URAN
antennas received simultaneously two orthogonal
(when receiving from the zenith) linear polarizations.
This enabled us to correct for the Faraday effect—
rotation of the plane of polarization of the signals in
the ionosphere of the Earth and the cosmic plasma
through which the signals propagated—which is very
substantial at decameter wavelengths. The mea-
surements were conducted simultaneously at 25 and
20 MHz during nighttime in January and February
1996 andMarch 1999. The measurements yielded the
amplitude of the visibility function γ in an interval of
about ±2 hrs on either side of the culmination of the
source. Measurements were obtained at various hour
angles T0 in steps of 20 minutes. When processing
the recordings, we determined the mean visibility-
function amplitudes for each 20-minute interval. The
data obtained for each hour angle were averaged over
all days of the observations, and we determined the
mean-weighted observational values γ̂obs(T0) and
their errors σγ̂(T0).
We used the method described in [15] to calibrate

the interferometer data, using special digital noise
generators to imitate the response of the interferome-
ter to a point source. The calibration generators were
synchronized at all points in the interferometers using
GPS receivers.
The observational data for 3C 234 are presented

in Figs. 1–4. The circles show the mean-weighted
amplitudes of the visibility function γ̂obs as func-
tions of the hour angle at 25 MHz (Figs. 1, 3) and
20 MHz (Figs. 2, 4) for the URAN-1 (Figs. 1, 2) and
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URAN-2 (Figs. 3, 4) interferometers. The vertical
bars indicate the rms deviations taking into account
both the random scatter of the data points and sys-
tematic errors. In all cases, we can see oscillations in
the observational dependences γ̂obs(T0) demonstrat-
ing that the source likewise contains no fewer than
two widely separated compact features at decameter
wavelengths.
Because the URAN-1 and URAN-2 interferome-

ters did not provide very full coverage of theUV plane,
and also due to the absence of phase measurements,
we were not able to use standard imaging methods
based on calculating the two-dimensional Fourier
transforms of the complex visibility functions and it-
eratively refining the resulting radio maps. Therefore,
the most suitable method for deriving the angular
structure of the source was by fitting models of the
radio brightness distribution to the data and identify-
ing the model whose spatial-frequency spectrum was
in best agreement with the measured values γ̂obs. We
used sets of elliptical Gaussians with arbitrary orien-
tations for their position angles as the model com-
ponents. The model parameters were varied in order
to search for good agreement between the calculated
and observed dependences of the visibility-function
amplitude on the hour angle γ(T0). We adopted the
standard χ2 criterion as a measure of the agreement
between the calculated model and observations [16]:

χ2 =
N∑

i=1

[
γ̂obs,i (T0) − γcalc,i (T0)

σγ̂obs,i (T0)

]2

, (1)

whereN is the number of independent measurements
of the mean-weighted visibility-function amplitude
γ̂obs at different hour angles T0. The best model for
the radio-brightness distribution was taken to be that
corresponding to the minimum χ2, provided there
was a sufficiently high probability that it exceeded
Wp(χ2 > χ2

min), where p = N − 1 − p1 denotes the
number of degrees of freedom of the model and p1 is
the number of model parameters fit.
The method used to calculate γcalc(T0) and carry

out the model fitting on a personal computer are
presented in [17].
It is well known that the derivation of models

using only the visibility-function amplitudes can lead
to ambiguities in the solutions and requires a large
amount of computing time, especially if the structure
of the object is complex and the UV coverage is
not very complete. In addition, comparisons of the
resulting models with higher-frequency maps of the
radio source in order to determine variations in the
structure with frequency can be only qualitative. We
used the following algorithm to simplify the model-
fitting procedure and the derivation of quantitative
properties of frequency-dependent variations in the
source structure. We selected the simplest model that
could qualitatively describe the real radio-brightness
distribution observed in a higher-frequency map con-
volved with the resolution of the URAN interferom-
eters. We then used the resulting model as an initial
model when fitting our data to search for a suitable
model of the radio-brightness distribution at the lower
frequencies.
Of course, it is desirable to choose for this purpose

a map obtained at a long wavelength that is as close
as possible to our own, with resolution better than
that of the URAN-2 interferometer and with good
reproduction of the low spatial frequencies to which
the URAN-1 interferometer is sensitive. A qualitative
map of the source with a resolution of 2.3′′ adequate
for our purpose and good coverage of the UV plane
has been obtained only at 8.44 GHz [9]. However,
a comparison of maps with lower resolution [8] (ob-
tained in FITS format over the Internet) and the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 5. Best-fit model for the radio-brightness distribution of 3C 234 at 8440MHz (solid curves) and 25MHz (dashed curves)
superposed on the map of [9] (map included with the agreement of the authors).
map of [9] smoothed to the same lower resolution
showed that the source structure remains virtually the
same from 1.4 GHz to at least 8.44 GHz (within the
resolution of the URAN interferometers). The most
substantial variation is a relative decrease in the flux
density of the central compact component (core) of
the radio galaxy with decreasing frequency; however,
we can neglect this component due to the small value
of its flux density. Therefore, we used the map of [9]
with a resolution of 2.3′′, kindly provided by M. Hard-
castle, for our subsequent calculations.

3. FITTING OF MODELS
OF THE BRIGHTNESS DISTRIBUTION

The solid curves in Figs. 1–4 show the calculated
hour-angle dependences of the visibility-function
amplitudes that would be observed by the URAN-1
and URAN-2 interferometers if the radio-brightness
distribution of 3C 234 was the same at decameter
wavelengths as in the map of [9]. We can see in
these figures that, although the observational data
are in qualitative agreement with the calculated
dependences, there are clear quantitative differences
between them. For example, the URAN-2 data,
which are primarily sensitive to compact features in
the brightness distribution, testify to changes in the
relative fluxes of the compact components (the depth
ASTRONOMY REPORTS Vol. 47 No. 12 2003
of the modulation in the hour-angle dependence
is smaller at 25 MHz; Fig. 3). The 20-MHz data
(Fig. 4) indicate an even more appreciable decrease
in the interferometric responses to these components,
even with respect to the frequency of 25 MHz pos-
sibly associated with an increase in the sizes of the
components, or alternatively with a deviation of their
spectra from power-law relations. We determined the
changes in the brightness distribution at the lower
frequencies compared to the higher-frequency maps
using the following procedure.
(1) We identified regions in the map of [9] that

could be represented as individual Gaussian com-
ponents. Components 1 and 5 both have sizes of
2.3′′, and correspond to the brightness centers of the
southwest and northeast lobes of the radio galaxy
(these components are actually much smaller, but
were taken to be equal to the size of the synthesized
beam of the map). Components 2 and 4 represent the
parts of the southwest and northeast lobes adjacent to
the hot spots. Component 3 represents the extended,
diffuse emission around the core and the core itself.
The calculations demonstrated that this part of the
source was appreciably resolved even by theURAN-1
interferometer, and can be treated like a single com-
ponent. As was indicated above, the core itself makes
only a very small contribution to the total flux of the
source.
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(2)We then fit the parameters of the five-component
for the brightness distribution to obtain the best
agreement between the hour-angle dependences
γcalc(T0) and the analogous dependences calculated
above for the 8.44 GHz map.
The components of the fitted model with their

FWHM sizes are shown by the solid ellipses in Fig. 5,
and the corresponding parameter values are given
in Table 1. We can see that these components are
in reasonable agreement in both shape and position
with the parts of the map they are meant to describe.
Note that the flux densities of the best-fit model
components coincide with the flux densities from the
corresponding regions in the map to within several
percent, and the model dependences γcalc(T0), shown
by the dashed curves in Figs. 1–4, agree well with the
analogous dependences derived for the map.
We derived models for the radio-brightness distri-

bution of 3C 234 at decameter wavelengths that best
described the observational data in Figs. 1–4 using
the higher-frequency model as a first approximation.
Our calculations showed that even this method for
selecting the model does not provide an unambiguous
determination of its parameters due to the complexity
of the model compared to the incomplete UV cov-
erage of our observations. For example, the uncer-
tainties in the positions and sizes of the components
in declination are very large, since the baselines of
both interferometers are oriented East–West and the
hour-angle range (range of baseline variations) cov-
ered is small. The coordinates are determined much
more accurately in right ascension. The URAN-2
interferometer substantially resolves all the compo-
nents except for 1 and 5, enabling us to determine
the parameters of these components with good ac-
curacy, especially the separation between them in
right ascension and their flux ratio. We were not
able to simultaneously derive the parameters of com-
ponents 2–4, which were only partially resolved by
the URAN-1 interferometer. We used therefore their
positions obtained for the high-frequency model to-
gether with additional considerations about the char-
acter of the spectra of these components from 20 to
8440 MHz. The parameters of the resulting models
are presented in Table 2, using the same scheme to
number the components. The corresponding hour-
angle dependences γcalc(T0) are shown by the dotted
curves in Figs. 1–4. Note that the model param-
eters were fit separately for 20 and 25 MHz. The
model components are shown by the dashed ellipses
in Fig. 5.
In Tables 1 and 2,∆αi and∆δi are the coordinates

of the component centers in arcseconds relative to the
first (southwestern) compact component, Si/S0 are
the relative spectral flux densities of the components
(S0 =

∑
Si is the total spectral flux density of the
radio galaxy), ∆θimax and ∆θimin are the maximum
and minimum angular sizes of the components in
arcseconds, and ψ are the position angles of the major
axes of the components in degrees measured from
West.
The quantities χ2

min characterizing the agreement
between the calculated dependences γcalc(T0) for the
models in Table 2 and the observational data are 6.9
for the 20MHz data and 8.4 for the 25MHz data, with
the probabilities of exceeding them Wp(χ2 > χ2

min)
being 0.8 and 0.6, respectively.
The errors in the parameters for the low-frequency

models in Table 2 were calculated using the method
described in [17], and take into account both the
scatter in the observational data and the accuracy
with which the parameters can be determined given
the UV plane coverage. For example, the relative
insensitivity of the East–West baselines of theURAN
interferometers to the sizes and separations of the
components in declination is reflected by the relatively
large errors for these parameters presented in the
table. The errors in Table 1 for the model fitted to the
map reflect only the sensitivity of the model to varia-
tions of a given parameter for a specified variation in
the projected interferometer baseline.
The sizes of the compact components 1 and 5

measured at 8.4 GHz [9] and 15 GHz [10] are smaller
than the resolution of the URAN-2 interferometer,
even taking into account their broadening due to
scattering of the radio waves on inhomogeneities in
the interstellar and interplanetary plasma. Therefore,
they were not determined when fitting the model, and
Table 2 gives an upper limit for these sizes corre-
sponding to the synthesized beam of the map of [9].

4. ANALYSIS OF THE RESULTING DATA

The models for the radio-brightness distribution
we have obtained for the data at centimeter and de-
cameter wavelengths can be used to carry out both
qualitative and quantitative comparisons and deter-
mine variations of the structure of the radio galaxy
with frequency.
First, the coordinates of the centers of the compact

components at 8440MHz and at 25 and 20MHz vir-
tually coincide. The nominal differences do not exceed
the errors, and are probably associated with errors in
the measurements and error introduced by the data
reduction, as well as deviations of the real angular
distributions of the radio emission of the compact
components from symmetrical Gaussians. In Fig. 5,
the position of component 1 coincides with a compact
feature in the southwest lobe of the radio galaxy.
However, component 5 does not coincide with the
corresponding feature in the northeast lobe, in either
the low-frequency or the high-frequencymodels. This
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Table 1.Model radio-brightness distribution for ЗС 234 at 8440 MHz

Component ∆αi ∆δi Si/S0 ∆θimax ∆θimin ψ

1 0′′ 0′′ 0.29 ± 0.03 <2.3′′ <2.3′′ –

2 6.1 ± 0.8 −0.4 ± 1.0 0.14 ± 0.02 6.6 ± 3.4 3.9 ± 1.4 0 ± 30◦

3 37.3 ± 2.6 14.7 ± 5.4 0.31 ± 0.02 32.5 ± 6.9 15.6 ± 4.2 28.9 ± 36

4 83.7 ± 2.9 34.2 ± 4.6 0.15 ± 0.03 19.1 ± 7.8 6.5 ± 3.9 38.7 ± 30

5 99.4 ± 1.0 43.6 ± 1.1 0.11 ± 0.01 <2.3 <2.3 –

Table 2.Model radio-brightness distribution for 3C 234 at decameter wavelengths

ν, MHz Component ∆αi ∆δi Si/S0 ∆θimax ∆θimin ψ

20

1 0′′ 0′′ 0.22 ± 0.03 <2.3′′ <2.3′′ –

2 6.1 ± 4.0 −0.4 ± 13 0.33 ± 0.06 35.7 ± 6.0 9.2 ± 2.6 0 ± 40◦

4 83.7 ± 6.0 34 ± 20 0.4 ± 0.05 37.0 ± 10 10.9 ± 4.5 51.8 ± 25

5 96.3 ± 2.2 46 ± 14 0.05 ± 0.02 <2.3 <2.3 –

25

1 0 0 0.25 ± 0.03 <2.3 <2.3 –

2 6.1 ± 4.6 −0.4 ± 12 0.33 ± 0.06 29.6 ± 6.5 7.6 ± 2.8 0 ± 36◦

4 83.7 ± 3.5 34 ± 13.5 0.36 ± 0.05 37 ± 6.0 10.9 ± 2.6 51.8 ± 27.5

5 98.8 ± 1.3 45.6 ± 7.7 0.06 ± 0.02 <2.3 <2.3 –
is due to the complexity of the brightness distribution
in the regions of these features, which has not been
taken into account in our models.
Second, the fraction of the total radio flux den-

sity contributed by the compact components 1 and
5 falls off with decreasing frequency and, as will be
shown below, their low-frequency flux densities are
lower than predicted by an extrapolation from higher
frequencies assuming a power law with a constant
spectral index.
Third, the sizes of components 2 and 4 have grown

at decameter wavelengths by factors of two to four
compared to their sizes at centimeter wavelengths.
Their contribution to the total flux density grows
from 30% at centimeter wavelengths to nearly 70%
at decameter wavelengths, obviously indicating an
increase in the spectral indices of these components
with decreasing frequency.
Fourth, our most surprising result is the absence

of component 3, which represents the diffuse, ex-
tended regions of emission near the core of the radio
galaxy, in the models for the radio-brightness distri-
bution of 3C 234 at decameter wavelengths.
Let us compare the derived decameter-wavelength

flux densities of the components with their well
known spectral characteristics at frequencies above
1000MHz.We can use the maps of [8, 9] to derive the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
flux densities in regions of the source corresponding
to the model components and their spectra from 1.4 to
8.44 GHz. The ratios of the fluxes of the various com-
ponents remain virtually constant in this frequency
range; i.e., the spectral indices of the components
are all approximately the same, and are approximately
equal to the integrated spectral index of the source to
1000 MHz. The only exception is the core of the radio
galaxy. Using these data, our own measurements,
and other measurements taken from the literature
(those of [18] for the integrated flux densities and
those of [3–7, 19] for the flux densities of individual
components), we have constructed the integrated
spectrum of the source from 14.6 to 15 375 MHz
(solid curves in Fig. 6), as well as the radio spectra of
the southwestern (curve 1) and northeastern (curve 5)
components from 408 to 15 375 MHz. The numbers
labeling the spectra in Fig. 6 correspond to the com-
ponent labels in Tables 1 and 2. At frequencies below
408 MHz, where no data are available, proposed
continuations of the spectra are shown by dashed
curves. The asterisks and crosses denote our own
data presented in this paper.

We can see in Fig. 6 that our flux densities for
components 1 and 5 lie substantially below the de-
pendences extrapolated from the higher frequencies
assuming a constant spectral index. If we suppose
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Fig. 6. Spectral characteristics of the radio galaxy ЗС
234. S0 shows the frequency dependence of the total
spectral flux density of the radio galaxy, S0(ν) (the circles
show the data of [18] and the crosses the data of this
paper). Curves 1, 3, and 5 show the frequency depen-
dences of the spectral flux densities of the southwestern
compact component (upward triangles), the northeastern
compact component (downward triangles), and the cen-
tral extended component (dotted curve); the letters denote
the corresponding references (a = [3], b = [7], c = [8, 9],
d = [4], e = [5, 6]). The asterisks show ourmeasurements
of the spectral flux densities of the southwestern and
northeastern components.

that self-absorption is occurring in these compact
components, we can recalculate the spectra taking
this physical process into account.

In the presence of self-absorption, the frequency of
themaximum radiation νm and themaximum spectral
flux density Sm are given by the relations [20]

νm =

[
S1ν

α
1 H

1/2
⊥ (1 + z)1/2

τ0∆θ2

]2/2α+5

, (2)

Sm = S1

(
ν1

νm

)α 1 − e−τ0

τ0
, (3)

where S1 is the spectral flux density of the component
(in Jy) at frequency ν1 (in MHz), H⊥ is the com-
ponent of the magnetic field in the compact compo-
nent perpendicular to the direction of motion of the
relativistic electrons (in µOe), α is the spectral index
at high frequencies (ν � νm), z is the redshift of the
object, τ0 is the optical depth at frequency νm, and∆θ
is the angular size of the component in arcseconds.
The optical depth τ0 is determined by the condition
for an extrema of S(ν) [20]:

eτ0 = 1 +
2α+ 5

5
τ0. (4)

The frequency dependence of the radio spectral flux
density is given by the expression [20]

S (ν) = Sm

(
ν

νm

)5/2 1 − e
−τ0

(
ν

νm

)−α−5/2

1 − e−τ0
. (5)

We recalculated the spectra of the compact com-
ponents of ЗС 234 presented in Fig. 6 in accordance
with (5), with ν1 = 408 MHz, S1 = 6.33 Jy, α =
1, z = 0.185, H⊥ ≈ 210 µOe [10], and τ0 = 0.64 for
the southwestern component 1 and the same values
of α, z, τ0, and ν1 with S1 = 2.35 Jy, and H⊥ ≈
270 µOe [10] for the northeastern component 5. The
results, shown by the dashed curves, are in good
agreement with the derived component flux densities
for sizes of 0.55′′ ± 0.05′′ for the southwestern and
0.27′′ ± 0.03′′ for the northeastern component. These
values are in good agreement with the direct mea-
surements of [10] obtained using the VLA at 15 GHz,
which show the sizes of these two components to be
0.7′′ × 0.3′′ and 0.4′′ × 0.25′′, respectively.
The integrated spectral index is 0.99 at frequencies

above 1000 MHz and decreases to 0.85 at 1000–
25MHz. Supposing that this break is associated with
variations in the spectrum of component 3, which
is not observed at decameter wavelengths, we can
derive this spectrum by taking the difference between
the total flux density of the source and the flux densi-
ties of all the remaining components extrapolated to
the low frequencies using the spectral indices deter-
mined at frequencies above 1000 MHz. The result is
shown in Fig. 6 by the dotted curve 3. The contribu-
tion of this component to the total flux density of the
source becomes negligible below 400 MHz, and the
spectral behavior ofS0 is determined by the sum of the
flux densities of components 1, 5 shown in Fig. 6 and
2, 4 with each of these having a spectral index close to
unity right down to about 50 MHz. The contribution
of components 1 and 5 is reduced at lower frequencies
due to self-absorption. The spectra of components
2 and 4 are not shown in Fig. 6, and we note only
that their spectral indices, which are close to unity at
centimeter and possibly longer (meter) wavelengths,
increase at decameter wavelengths. As a result, these
two components provide about 70% of the total flux
density of 3C 234 at 20 and 25 MHz, as is noted
above.

5. CONCLUSIONS

Our investigations of the angular structure of
the radio galaxy 3C 234 using the URAN-1 and
URAN-2 radio interferometers show that the coor-
dinates of the hot spots in the extended lobes coincide
with their positions at shorter wavelengths. It is obvi-
ous that the same is true of the positions and position
angles of the elliptical Gaussians used to describe
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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the regions adjacent to the hot spots (components
2 and 4 in Fig. 5), although the sizes and relative
flux densities of the lobes grow appreciably. The
apparent sizes of the hot spots (taking into account
scattering on electron-density inhomogeneities in the
interstellar medium) are smaller than the resolution
of the URAN-2 interferometer. However, our derived
flux densities of these components indicate that there
is self-absorption in the hot spots. On this basis, we
derived the intrinsic sizes of these components, which
are in good agreement with direct measurements at
centimeter wavelengths. Note that features in the
spectra of radio sources associated with the influence
of plasma both in the source and along the line
of sight are very common at such low frequencies.
The analysis of such features provides unique op-
portunities to derive the intrinsic angular sizes of
compact components together with the parameters
of the plasma and magnetic fields in the source or the
interstellar medium.
Our analysis shows that the extended, low-surface-

brightness emission in the region of the core of the
radio galaxy, which provides an appreciable fraction
of the total flux density at centimeter wavelengths,
is absent at decameter wavelengths. It is possible
that this is, in fact, the origin of the change in the
integrated spectral index below 1000 MHz. This
tentative conclusion must be verified by direct mea-
surements of the source structure at decimeter and
meter wavelengths.
An extrapolation of the derived source structure

and the spectra of its components indicates that the
model radio-brightness distribution of 3C 234 will
contain only two components at frequencies ν <
20 MHz, corresponding to the extended components
2 and 4. If the spectral indices of these components
are preserved at lower frequencies, the integrated
spectral index may again grow.
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Original Russian Text Copyright c© 2003 by Barsukov, Tsygan.
Returning Positron Flux in the Polar-Cap Regions of a Radio Pulsar
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Abstract—An approximate method for calculating the returning positron flux in the polar-cap regions
of a radio pulsar is proposed. The pulsar is considered in the Goldreich–Julian model for a regime of
free-electron emission from the neutron-star surface in the region of open lines of the dipolar magnetic
field. Calculations have been done for the case when the dipolar magnetic moment is aligned with the
star’s rotational axis. The acceleration of primary electrons is assumed to occur near the neutron-star
surface on scales comparable to the transverse radius of the tube of open field lines. The generation of
electron–positronpairs by curvature radiation of the primary electrons is taken into account. A considerable
contribution to the returning flux is made by the region where the electric field is screened by the electron–
positron plasma. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the magnitude of the returning
positron flux in the polar-cap regions of open field
lines has not been definitely solved. The magnitude
of the returning flux in a pulsar flux tube was first
estimated by Fawley et al. [1]. Pal’shin and Tsygan
[2] later proposed a system of algebraic equations that
could be used to find the returning flux in a pulsar
for which the height of the upper plate (anode) of the
pulsar tube diode was large. In 2001–2002, Harding
and Muslimov [3, 4] considered in detail the effect of
the generation of electron–positron pairs on pulsar
electrodynamics, and estimated the magnitude of the
returning flux assuming an exponential decrease of
the longitudinal electric field. The electrodynamics of
a pulsar tube taking into account the birth of sec-
ondary electron–positron pairs was studied in detail
by Shibata et al. [5, 6] in a model with an “outer gap”
(in the region close to the light cylinder).

In this paper, we present a model that can be
used to find the magnitude of the returning flux in
the polar-cap regions of radio pulsars. We take into
account the contribution to the returning positron
flux made by the region in which the electric field is
screened by the electron–positron plasma. We com-
pare our results with those of other studies.

2. ELECTRIC FIELD IN A FREE-EMISSION
REGIME

We will use here the results of Muslimov and
Tsygan [7], who constructed an electrodynamic model
for a pulsar including general relativistic effects. They
1063-7729/03/4712-1046$24.00 c©
found the electric potentialΦ using the Poisson equa-
tion

div
(

1
α
∇Φ
)

= −4π(ρ+ ρeff), (1)

where ρeff = 1
4πcdiv

{
1
α

(
1 − k

η3

)
[[Ω × r] × B]

}
is

the Goldreich–Julian charge density, ρ is the charge
density of the particles escaping from the neutron-
star surface, α

√
1 − ε/η, ε = rg/a, rg = 2GM/c2 is

the gravitational radius of the neutron star, r is the
radial coordinate in the Schwarzschild metric, a is
the neutron-star “radius,” η = r/a, kεβ, β = I/I0 is
the star’s moment of inertia in units of I0 = Ma2, Ω
is the angular-velocity vector of the neutron star’s
rotation, and B is the magnetic-field intensity.

In the case of a dipolar field and in the absence of
the generation of secondary particles, ρ and ρeff are

ρ =
ΩB0

2πc
1
αη3

f(η)
f(1)

[
A(ξ) cos χ+

3
2
D(ξ) sinχ cosφ

]
,

(2)

ρeff =
ΩB0

2πc
1
αη3

f(η)
f(1)

×
[(

1 − k

η3

)
cosχ +

3
2
H(η)θ(η)ξ sinχ cosφ

]
,

where A(ξ) and D(ξ) are functions of the variable ξ
only, χ is the angle between the magnetic moment
and the rotational axis,B0 is the field at the magnetic

pole, θ(η) = θ0

√
η f(1)

f(η) , θ0 = arcsin
√

a
RLCf(1)

is the

magnetic latitude at the stellar surface of the last open
2003 MAIK “Nauka/Interperiodica”
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magnetic line crossing the light cylinder, RLC = c/Ω
is the radius of the light cylinder,

f(η) = −3
(η
ε

)3
[
ln
(

1 − ε

η

)
+

ε

η

(
1 +

ε

2η

)]
,

H(η) =
1
η

(
ε− k

η2

)
+
(

1 − 3
2
ε

η
+

1
2
k

η3

)

×
[
f(η)

(
1 − ε

η

)]−1

,

and the Poisson equation is

1
η2

∂

∂η

(
η2∂Φ

∂η

)
+

1
α2η2θ2

[
1
ξ

∂

∂ξ

(
ξ
∂Φ
∂ξ

)
(3)

+
1
ξ2

∂2Φ
∂φ2

]
= −4π

ΩB0

2πc
a2 1
α2η3

f(η)
f(1)

×
{[

1 − k

η3
+ A(ξ)

]
cosχ+

3
2
[ξθ(η)H(η)

+ D(ξ)] sinχ cosφ

}
.

Here and below, we use the corotating system of
coordinates (t, η, ξ, φ) introduced in [7], where t is
the time coordinate, the coordinates x1 ≡ η and ξ vary
along and across the field lines (ξ = 0 corresponds
to the flux-tube center, and ξ = 1 to the last open
magnetic line), and φ is the azimuthal angle.

In accordance with the Goldreich–Julian model
and with the free emission of charges from the surface,
the following boundary conditions are imposed on the
potential Φ:

Φ|η=1 = 0,
∂Φ
∂η

∣∣∣∣
η=1

= 0, (4)

Φ |ξ=1 = 0, Φ|ξ=0 bounded.

Tsygan [8] considered the electrodynamics of a
pulsar-tube diode in the presence of an upper plate
(anode) at height zc ≡ ηc − 1. By definition, it is as-
sumed that at this height

E|| ≡ −1
a

∂Φ
∂η

= 0. (5)

In particular, Tsygan [8] gave the solution of (3) for
the case zc � 1:

Φ(z, ξ, φ) = Φ0

[
6k
α2

cosχ
∞∑
i=1

2
kiJ1(ki)

(6)

× F (z, γi)J0(k̃iξ) +
3θ0

α2
H(1)δ(1) sin χ cosφ

×
∞∑
i=1

2
k̃iJ2(ki)

F (z, γ̃i)J1(k̃iξ)

]
,
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where

F (z, γi) =
1
γ2

i

[
1
2
εi(eγiz + e−γiz − 2) + z

− 1
γi

(1 − e−γiz),
]
,

εi =
2
γi

γizc + (γi + 1)(e−γizc − 1)
(γi − 1)(eγizc − 1) − (γi + 1)(e−γizc − 1)

,

Φ0 = (Ωa/c)B0a, γi = ki/θ0

√
1 − ε, γ̃i = k̃i/θ0 ×√

1 − ε, ki and k̃i are the roots of the equations
J0(ki) = 0 and J1(k̃i) = 0, respectively, and z ≡ η −
1 everywhere.

In the case θ0 ∼ zc � 1, we can rewrite (6) for an
axisymmetric pulsar (χ = 0) as

Φ(z, ξ) = Φ06kθ2
0

[
1
4
z(1 − ξ2) (7)

−
√

1 − εθ0

∞∑
i=1

Φ̃i(z)J0(kiξ)

]
,

where

Φ̃i =
2

k4
i J1(ki)

1 − e−γiz

1 + e−γizc

[
1 + e−γi(zc−z)

]
. (8)

If zc � θ0, the solution (6) becomes

Φ =
Φ0

1 − ε
z2
(zc

2
− z

3

) [
3k cosχ (9)

+
3
2
ξθ0H(1)δ(1) sin χ cosφ

]
,

which corresponds with the solution of Beskin [9] for
χ = 0 to within the factor 1/(1 − ε)f(1).

Pal’shin and Tsygan [2] proposed the following
system of equations to find the returning flux for long,
thin tubes:

ρeff(1) + ρe(1) + ρ+(1) = 0, (10)

ρeff(ηc) + ρe(ηc) + ρ−(ηc) = 0,

where ρ+ is the charge density associated with the
returning flux of positrons, ρ− = −ρ+ is the charge
density created by secondary electrons that has be-
come uncompensated due to the return of some frac-
tion of the positrons, and ρe is the charge density
created by the primary electrons. In [2], this system
of equations was derived from the condition that the
longitudinal electric fields at the neutron-star surface
and at the upper plate of the diode be approximately
equal to zero (η = ηc). In particular, for an aligned
pulsar with a dipolar magnetic field, the solution of
these equations becomes [2]

ρ+(1)
ρeff(1)

=
k

2
1

1 − k

(
1 − 1

η3
c

)
. (11)
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3. MAIN ASSUMPTIONS

We used the following model for the pulsar flux
tube.

(1) The tube is treated in the framework of the
Goldreich–Julian model, and the diode is located at
the neutron star’s surface (a polar-cap model).

(2) We assume that the tube is axisymmetric (in
particular, aligned, χ = 0) and stationary.

(3) The pulsar operates in a regime with free elec-
tron emission from the neutron-star surface.

In accordance with the diode structure proposed
by Arons and Scharlemann [10], we choose the cur-
rent of the primary electrons such that the longitudi-
nal electric field vanished at a height of zc = ηc − 1.
In the absence of generation above this boundary, the
longitudinal field changes its sign, and the potential
begins to decrease to zero and lower. We choose
the height zc so that the birth of pairs slightly lower
occurs at a rate that is sufficient for the resulting
negative charge due to the returning positrons to
maintain the potential growth, so that the field itself
would tend to zero.

We believe that a different choice of zc is probably
not compatible with the condition of stationarity. If
we choose a value of zc that was too large, the mass
production of electron–positron pairs would begin in
the region of strong electric field. This would result
in the return of more than one positron per primary
electron, blocking the emission of primary electrons
from the neutron-star surface; essentially, the pulsar
flux tube would then no longer be in a stationary
state. On the other hand, if the value of zc is too
low, the number of positrons born will be insufficient
to support the electric field via their return; the field
above zc will change its sign, and the electric potential
Φ will begin to decrease. We suppose that this mode
will likewise not be stationary, because low-energy
secondary electrons will accumulate in the resulting
potential well.

As is seen from the results obtained, the electric
field decreases approximately exponentially nearly to
zero a small distance above zc; this is directly associ-
ated with the rapid growth of the rate of generation of
electron–positron pairs by curvature-radiation pho-
tons, and coincides fully with the results of Harding
and Muslimov [3]. However, since zc ∼ 0.02–0.03 for
the pulsars considered, we should make the following
qualification. The point is that the main reason the
electric field drops to zero and below is the posi-
tive charge provided by ρeff. For such low diodes, an
increase of ρeff at the height zc already provides a
reversal of the electric-field sign and the onset of the
decrease in the electric potential. On the other hand,
the main change of ρeff takes place between z = 0.1
and z = 1 (at greater heights for orthogonal pulsars,
up to the light cylinder). It is obvious that the electric
field must be maintained in this region, as well.

If the electric field is maintained in this region
(as at low heights) by the returning positron flux,
then, in spite of its extreme weakness, the field will
also be nonzero in this region, requiring the return
of about k/2 positrons per primary electron. Hence,
the main provider of the returning flux is precisely the
zone in which the electric field is virtually completely
screened.

In this connection, we assume that the growth
of ρeff is compensated by the return of secondary
positrons up to heights of the order of
ηf = 4

√
2k/ sin2 θ0.

4. ELECTRIC FIELD OF THE DIODE TAKING
INTO ACCOUNT PARTICLE GENERATION

Let us now take into account the effect of the
generation of electron–positron pairs on the electro-
dynamics of the pulsar tube.We will use the approach
described in [1]; a similar approach was used in [6].

First, we note that, in the zone where there is no
generation of secondary particles and the positrons
in the returning flux have become relativistic, there
will be no changes in Eq. (3) except for the constant
A, which will now describe the total flux of electrons
and positrons. It is obvious that the condition of the
free emission of charges from the surface E‖ = 0 will
also remain unchanged (if the number of returning
positrons per primary electron is less than unity, then
we can always provide an excess negative charge
near the surface by increasing the supply of electrons
from the stellar surface, which is necessary for the
existence of the electron flux from the neutron-star
surface in the free charge-emission regime).

Let q(x) positrons and electrons be born per unit
volume per unit time with the spectrum df/dΓ, where

Γ = 1/
√

1 − v2
‖/c

2 is the gamma factor of the lon-

gitudinal motion of a particle (v‖ is the velocity of
the particle along the magnetic field). Because the
magnetic field is strong, particles born on a given
magnetic-field line will remain on that line. We as-
sume that the electron–positron pairs are born mov-
ing upward, away from the star. In particular, this is
the case for pairs born by curvature-radiation photons
generated by the primary electrons. After their birth,
the upward-moving positrons gradually decelerate,
and some fraction of them stop and begin to move
downward after having reached a certain height. In
contrast to the positrons, the electrons will accelerate
and always escape to infinity.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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In this case, the total electric-charge density cre-
ated by the secondary electrons and positrons will be

ρs =
√
γ11ρ̃+ (

√
γ11 −

√
hg1)

1√−gρ0, (12)

where

ρ̃ =

η∫
1

dηy

√
γ(y)
γ(x)

q(y)

∞∫
1

df

dΓ
(y,Γy) (13)

×


 Γ√

Γ2 − 1
− Γ−√

Γ2
− − 1


 dΓ

+

η∫
1

dηy

√
γ(y)
γ(x)

q(y)

1+U∞−U(x)√
h∫

1

df

dΓ
(y,Γy)

×
(

Γ√
Γ2 − 1

− 1
)
dΓ −

η∫
1

dηy

√
−g(y)
−g(x)

q(y)

×

√
h+U(x)−U(y)√

hy∫
1

df

dΓ
(y,Γy)


 Γ−√

Γ2
− − 1

+ 1


 dΓy

+

+∞∫
η

dηy

√
−g(y)
−g(x)

q(y)

1+U∞−U(y)√
hy∫

1

df

dΓ
(y,Γy)

×


 Γ+√

Γ2
+ − 1

− 1


 dΓy,

ρ0 =

+∞∫
1

dηy

√
−g(y)q(y)

1+U∞−U(y)√
hy∫

1

df

dΓ
(y,Γy)dΓy.

In these formulas,

Γ− = Γ+ +
2√
h(x)

(U(x) − U(y))

=

√
h(y)
h(x)

Γy +
U(x) − U(y)√

h(x)
,

Γy(Γ) =

√
h(x)
h(y)

Γ +
U(x) − U(y)√

h(y)
,

Γ+(Γy) =

√
h(y)
h(x)

Γy −
U(x) − U(y)√

h(x)
,

U = eΦ/mc2, U∞ = eΦ∞/mc2 is the potential on a
given magnetic-field line as η → +∞, gik is the met-
ric space–time tensor, γαβ is the space
ASTRONOMY REPORTS Vol. 47 No. 12 2003
metric, h = g00, g = det(gik), γ = det(γαβ), and
gα = −g0α/g00. We have used the notation y =
(ty, ηy, ξy, φy), x = (t, η, ξ, φ) and integrated along
the curves (ty = t, ξy = ξ, φy = φ), which by defini-
tion coincide with the field lines.

Note that the ρ0 term describes the flux of rela-
tivistic positrons arriving from infinity, which, below
the the generation zone, coincides with the returning
positron flux. In this case, since g1 = 0 for an axisym-
metric pulsar in the given coordinate system, there are
no differences in the η dependence of the charge den-
sity for a relativistic flux from the stellar surface and
a relativistic flux from infinity to the pulsar surface.
Thus, the additional term with ρ0 simply renormalizes
the flux of primary electrons.

As a result, the Poisson equation becomes

div
(

1
α
∇Φ
)

= −4π(ρs + ρe + ρeff), (14)

where ρe is the charge density due to the primary
electrons.

We use the conditions (4) as boundary conditions,
also imposing on the potential Φ the condition

Φ → Φ∞ for η → +∞. (15)

This last condition was proposed in [3]; it ensures that
the solution will automatically satisfy the requirement
E‖ → 0 for η → +∞.

Let us make some simplifying assumptions.
(1)We neglect cross terms in the Laplacian (which

arise from the non-orthogonality of the chosen coor-
dinate system).

(2) We assume that the secondary electrons move
at the speed of light everywhere, and that the sec-
ondary positrons before and after the turning point
also move at the speed of light.

(3) We assume for simplicity that the spectrum
of the born particles df/dΓ is constant along a
magnetic-field line; we adopt for this spectrum the
actual spectrum generated by the curvature-radiation
photons at height 1.5zc.

(4) We neglect the effect of the gravitational red-
shift on the energy of the electrons and positrons.

(5) Since the relative increase of the primary flux
due to the returning positron flux is a small quantity
of the order of k ∼ 0.15, we neglect the change of the
rate of generation of electron–positron pairs, since
this correction will be insignificant near zc owing to
the rapid growth of q(x), and, at greater heights, the
value of q(x) affects the solution only weakly.

The equations then become

1
η2

∂

∂η

(
η2 ∂Φ

∂η

)
+

1
α2η2θ2

1
ξ

∂

∂ξ

(
ξ
∂Φ
∂ξ

)
(16)
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= −4π
ΩB0

2πc
1

α2η3

f(η)
f(1)

(
A(ξ) + I(U) + 1 − k

η3

)
,

I(U) = −2

η∫
1

dηy

√
γ(y)q(y)

1+U(x)−U(y)∫
1

df

dΓ
(Γy)dΓy.

Since we consider below only rapidly rotating pul-
sars with strong magnetic fields, then, in accordance
with the results of [3, 4, 11], we can neglect the gener-
ation of electron–positron pairs by photons generated
during the inverse Compton scattering of thermal ra-
diation from the neutron-star surface on the primary
electrons. In this connection, q(x) denotes the rate of
generation of electron–positron pairs from curvature-
radiation photons.

5. SOLUTION OF THE EQUATIONS

Let us divide the flux tube into three parts:
(1) the diode zone (the multiplication factor is less

than 0.001);
(2) the transition layer;
(3) the screening zone (the multiplication factor is

greater than 1).
In the diode zone, the rate of particle generation

is extremely low, and we will accordingly assume
that, in this zone, the field at a given ξ coincides
with the solution (7) for a vacuum diode at some
height zc; each ξ will have its own height zc. Note
that this assumption is automatically fulfilled when
we can neglect the effect of the transverse part of the

Number density of positrons in the returning flux, height of
the upper diode plate, and temperature at the neutron-star
surface

ξ n+/nB, 10−2 zc, 10−2 T, 106 K

B0 = 0.1Bcr, P = 100 ms

0.3 7.00 3.6 7.2

0.5 7.03 3.3 6.7

0.7 6.97 3.4 6.2

B0 = 0.5Bcr, P = 300 ms

0.3 6.96 3.4 7.8

0.5 7.0 3.1 7.3

0.7 6.93 3.2 6.9

B0 = 0.09Bcr, P = 33 ms

0.3 7.25 2.2 9.0

0.5 7.27 2.0 8.3

0.7 7.27 1.9 7.8
Laplacian on the potential. Below, we will designate
the solution (7) continued to the region z ≥ zc by a
constant potential along the field lines Φ0(z, ξ):

Φ0(z, ξ) = Φ(z, ξ) for z ≤ zc, (17)

Φ0(z, ξ) = Φ(zc, ξ) for z ≥ zc,

where Φ(z, ξ) is the solution of (7).
With regard to the transition layer and screening

zone, we note that the total potential drop along a
field line is only a few percent of the potential drop
in the diode zone. This means that we can use the
transverse part of the Laplacian of the potential Φ0

in place of the transverse part of the Laplacian of
Φ (moreover, for diodes at low heights, this is small
compared to ∂2Φ/∂η2). Thus, the problem becomes
one-dimensional. Moreover, in the screening zone,
the electric field along the field lines becomes so small
that we can treat the longitudinal part of the Lapla-

cian
1
η2

∂

∂η
η2 ∂Φ

∂η
as a small perturbation compared to

the large terms in the right-hand side of (16).
We set the natural conditions of the continuity of

the potential Φ and of its derivative with respect to η
at the zone boundaries, and assume the continuity of
the electric charge density.

Thus, the problem reduces to the following:
—in the diode zone, to using the already known

analytical solutionΦ0(z, ξ) with the free parameter zc;
—in the transition layer, to the solution of the

boundary-value problem for the one-dimensional
equation

1
η2

∂

∂η

(
η2 ∂Φ

∂η

)
+

1
α2η2θ2

1
ξ

∂

∂ξ

(
ξ
∂Φ0

∂ξ

)

= −4π
ΩB0

2πc
1

α2η3

f(η)
f(1)

(
A(ξ) + I(U) + 1 − k

η3

)
;

—in the screening zone, to the solution of the
algebraic equation with respect to U = eΦ/mc2 at
each point

−4π
ΩB0

2πc
1

α2η3

f(η)
f(1)

(
A(ξ) + I(U(η)) (18)

+ 1 − k

η3

)
=

1
α2η2θ2

1
ξ

∂

∂ξ

(
ξ
∂Φ0

∂ξ

)
.

6. RESULTS

The table lists the obtained number densities of
positrons of the returning current at the neutron-star

surface n+ in units of nB =
ΩB0

2πec
1
α

and the heights

of the diode upper plate zc for some values of the
field B0 (in units of Bcr = 4.41 × 1013 G) and pulsar
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 1. Potential Φ(z, ξ) versus z in units of eΦ/mc2 for ξ = 0.5, B0 = 0.1Bcr, and P = 100 ms. The potential is measured
from its value at infinity in panels (b) and (c) and from the potential at the stellar surface in panel (a). The lower curves in (a)
and (b) represent the potential Φ0(z, ξ).
period P . Everywhere we used the value k = 0.15
when obtaining these results. The temperature T of
the neutron-star surface in regions of open field lines
was estimated from the formula σT 4 = n+ceΦ(zc, ξ),
where σ is the Stefan–Boltzmann constant.

Figures 1 and 2 show the resulting potential
Φ(z, ξ) as a function of z for ξ = 0.5, B0 = 0.1Bcr,
and P = 100 ms, and for ξ = 0.5, B0 = 0.5Bcr, and
P = 300 ms. The regions shown in Figs. 1b and
2b correspond approximately to the transition layer
and to the beginning of the screening zone; Figs. 1c
and 2c present the variations of the potential Φ in
the bulk of the screening region, where virtually
all of the returning flux is formed. Figure 3 shows

the secondary-particle spectrum
df

dΓ
(Γ) we used to

calculate the run of the potential for ξ = 0.5, B0 =
0.1Bcr, and P = 100 ms.

These results confirm that the system of equa-
tions (10) can also be used to find the returning flux
in pulsars in which the height of the upper plate
is low. However, the value of ηc must then be set
equal to +∞, instead of the height of the onset of
the screening zone. The differences of these equations
from the solution (11) are mainly due to the difference
of ρ+ ρeff from zero at the neutron-star surface and
our neglect of the perpendicular component of the

Laplacian
1

a2η2θ(η)2
1
ξ

∂

∂ξ
ξ
∂Φ
∂ξ

in the second of these

equations.
We found that, with the assumptions made, the

returning flux is virtually independent of the spectrum
ASTRONOMY REPORTS Vol. 47 No. 12 2003
of
df

dΓ
and the pair-generation rate q(x) in the screen-

ing zone. Thus, the returning current is determined
mainly by the parameters in the transition layer. In
this case, the screening-zone potential difference that
gives rise to the returning flux depends strongly on
the shape of the spectrum and, as is fairly obvious, is
equal to order of magnitude to the gamma factor of
the secondary particles at the peak of their spectrum.

Concerning our neglect of the contribution to
the density ρs made by nonrelativistic secondary
positrons, we note that, to give birth to a pair in a
strong magnetic field, it is sufficient for a photon to
acquire a small angle Ψ between the wave vector k
and the vector B; this results in the birth of positrons
with large longitudinal gamma factors Γ ∼ 1/Ψ. In
this connection, the velocity of the positrons born
in the screening zone virtually coincides with the
speed of light. Taking into account the nonrelativistic
secondary positrons born in the transition layer (it is
precisely these that make up the bulk of the returning
flux) at heights above the point of their birth for the
case of sufficiently high and smooth spectra affect the
result very weakly; this agrees with the result obtained
by Harding and Muslimov [3].

In the general case, the nonrelativistic nature of
the positrons results in the appearance of an addi-
tional positive charge, which must also be compen-
sated by the creation of a negative charge via the re-
turn of positrons. As a result, taking this into account
in the stationary case can only lead to an increase of
the returning flux.
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When analyzing the results obtained, we found
that the regime of large values of η ≥ ηf , where ηf =√

42k/ sin2 θ0 for a dipolar magnetic field, requires

more detailed study. At these heights,
∂ρeff

∂η
changes

its sign and ρeff begins to supply an additional neg-
ative charge, which must also be compensated to
keep E‖ small. We believe that, in this region, the
compensation can be achieved only by the presence
of a medium of positrons at rest; the appearance at
lower heights of a medium of electrons at rest seems
to us improbable. (With the presence of a medium
near the transition layer, the latter would result in
returning fluxes close to those obtained in [1, 6].) The
point is that we could not obtain a solution satisfying
the necessary boundary conditions at a point below
ηf assuming that there are no discontinuities in the
charge density (in particular, we assume the continu-

ity of
∂2Φ
∂η2

) and that the force acting on this medium

from the beam of secondary particles is not too great
[5].

We conclude that the points where ρeff reaches its
maximum or minimum along field lines are important
for the electrodynamics of the pulsar. In particular,
the presence of these points enables us to obtain
solutions with the boundary conditions (4) and the

additional conditions E‖ = 0 and
∂2Φ
∂η2

= 0 at a cer-

tain height.

7. CONCLUSION

We have presented here a model that can be used
to derive the returning positron flux for an aligned
pulsar with an axially symmetric magnetic field; spe-
cific results are given only for a dipolar field. In this
connection, we can hardly expect these results to
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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coincide with the magnitudes of the returning fluxes
in real pulsars.

However, the proposed model demonstrates that,
for pulsars in which the height of the upper plate
is small, including the contribution of the screening
region to the returning flux increases this flux by a
factor of approximately 10 over previous estimates, in
particular, compared to the results of [3].

In the proposed model, we should not expect a
considerable decrease of the returning flux when con-
sidering unaligned pulsars. In particular, for an or-
thogonal pulsar (χ = π/2), a considerable contribu-
tion to the returning flux will be made by regions close
to the light cylinder. In addition, the light cylinder will
probably exceed in size the regions of the returning
flux for an aligned pulsar (this is readily derived from
(10) with χ = π/2 and values of aηc near the light
cylinder). Here, it is possible for the returning flux of
secondary positrons to be very close to the magnitude
of the flux of primary electrons, leading to a manifold
increase of the latter (this is necessary to support the
charge imbalance near the neutron-star surface).

Note that the model we have considered is not
consistent with the observations for the Vela pulsar
(in particular, the observed temperature of the polar
caps is lower than we have obtained; see the Table).
This probably implies that either this pulsar has an
appreciably non-dipolar field, or Ω · B < 0, or that it
operates in an outer-gap regime.
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Abstract—A series of yearly data on the concentration of radioactive carbon 14C in tree rings measured
at the Tbilisi State University in 1983–1986 and covering the time interval 1600–1940 is statistically
analyzed.We find evidence for a 22-year cyclicity in the intensity of Galactic cosmic rays (GCRs) during the
Maunder minimum of the solar activity (1645–1715), testifying that the solar dynamo mechanism contin-
ued to operate during this epoch. Variations of ∆14C on timescales of tens and hundreds of years correlate
well with the corresponding variations of the GCR intensity and solar activity, making radiocarbon a reliable
source of information on long-timescale variations of solar activity in the past. Short-timescale (<30 years)
fluctuations of ∆14C may be appreciably distorted by time variations not associated directly with solar
activity; probable origins of this distortion are discussed. c© 2003 MAIK “Nauka/Interperiodica”.
The analysis of solar activity (SA), its cyclicities,
and its terrestrial manifestations long attracted the
attention of scientists. The Sun is the main source
of energy in the solar system and the generator of
many processes in interplanetary space and on the
Earth. Therefore, multi-faceted studies of the nature
of solar activity are not only of great theoretical in-
terest, but are also important for purely applied prob-
lems. However, information about processes on the
Sun obtained from direct measurements provide in-
formation only about the current values of various SA
parameters, and reveal variations in these parameters
only on timescales comparable to the interval covered
by the observations. In the case of sunspot numbers
(Wolf numbers), this interval covers three centuries,
whereas, for most other SA parameters, it covers only
the last few decades.

At the same time, it is necessary to know the
behavior of the Sun on timescales of hundreds and
thousands of years for many practical purposes—
forecasting solar activity in the future, analyzing
the effect of solar activity on the climate of our
planet, etc. For such purposes, we must use indirect
sources of information about solar activity; one of
these is cosmogenic radiocarbon, 14C. Cosmogenic
14C is produced in the Earth’s atmosphere (mostly
in the stratosphere) by energetic Galactic cosmic
rays (GCRs), which are efficiently modulated by solar
activity; it is then oxidized to CO2, which takes part in
a number of geophysical and geochemical processes
(the global carbon-exchange cycle), and is ultimately
1063-7729/03/4712-1054$24.00 c©
stored in tree rings [1–3]. Thus, the variations of the
radiocarbon concentration in tree rings can reflect
either variations of the 14C production rate in the
atmosphere, i.e., variations in solar activity and the
geomagnetic field, or changes in the character of the
carbon cycle (climatic variations).

Studying solar activity over long timescales on
the basis of the 14C content in tree rings first began
in the USSR in 1965–1967, as part of the program
on astrophysical phenomena and radiocarbon studies
formulated by Konstantinov and Kocharov [4]. The
first long series of annual data on the radiocarbon
concentration in tree rings was obtained at the Tbilisi
State University (TSU) in 1983–1986 [5]. This data
series covers the years 1600–1940; data for 1600–
1700 were obtained fromwood samples from theWest
Ukraine (≈ 48◦ N), and for 1800–1940 from Kare-
lian samples (≈ 62◦ N). One of the main advantages
of the Tbilisi series is that it covers the Maunder
minimum (MM) of solar activity (1645–1715). This
period was an epoch of considerable attenuation of
solar activity, accompanied by an almost complete
absence of sunspots. In-depth and comprehensive
analyses of such abnormal periods, in particular, to
elucidate whether or not the short-timescale (11–
22 years) periodicity in solar activity persisted during
these epochs, are important for the clarification of the
nature of global SA minima and of mechanisms for
solar cyclicity and sunspot formation.
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Radiocarbon concentration measured at TSU (the light curve shows the initial series, and the bold curve the
long-timescale trend). (b) Local wavelet spectrum of the TSU series. The grey and black areas show regions above the 0.99
confidence level. (c) Normalized Fourier spectrum of the TSU series with the long-timescale trend subtracted. The dashed
curve shows the 0.95 confidence level (for red noise with α = 0.3).
This paper is dedicated to a statistical analysis of
the Tbilisi time series using the most modern mathe-
matical methods.

Figures 1a and 1b present the TSU radiocarbon
series and its local wavelet spectrum (using the Mor-
let wavelet). The significance of the features of the
wavelet spectrum was estimated using the method
described in [6]. The brightest feature in the Tbilisi se-
ries is a powerful quasi-two-hundred-year variation.
The spectral–temporal characteristics of the high-
frequency (< 30 years) part of the 14C spectrum can
be readily traced in Fig. 1b. We can see from this
figure that
ASTRONOMY REPORTS Vol. 47 No. 12 2003
(1) a significant 10–14-year periodicity has domi-
nated since the beginning of the 19th century,

(2) there are variations with a period of 6–10 years
in the second half of the 18th century,

(3) during the Maunder minimum, there is a vari-
ation of∆14C with a period of 15–24 years.

Thus, the results of the wavelet analysis of the
TSU data are in good agreement with the results
of the spectral–temporal analysis carried out by
Kocharov and Peristykh [7] using the moving pe-
riodogram method. There are some discrepancies
only during the Maunder minimum: the local wavelet
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Fig. 2. (a) Wolf numbers (dashed) and TSU radiocar-
bon concentration (solid), both smoothed over 25 points;
(b) radiocarbon concentrationmeasured at TSU (dashed)
and UW (solid), both smoothed over 25 points.

spectrum does not show the appreciable peaks in
the decade range visible in the spectral–temporal
analysis diagrams of [7]. The Fourier spectrum of the
high-frequency part of the Tbilisi series obtained by
subtracting the long-timescale trend from the initial
series (bold curve in Fig. 1a) is presented in Fig. 1c.
As we can see, the average power spectral density
over the entire interval 1600–1940 also displays
pronounced peaks with periods near 25 years and 10–
15 years.

Thus, our statistical analysis of the TSU series
suggests a rather efficient SA-associated modulation
of the radiocarbon concentration. It is quite natu-
ral to associate the 200-year variation of ∆14C with
the Suess quasi-two-hundred-year solar cycle, the
16–25-year periodicity with the quasi-twenty-two-
year Hale cycle, and the 10–15-year variations with
the Schwabe quasi-eleven-year cycle. To clarify this
question, we compared the TSU series with theWolf-
number record (the longest data series related to solar
activity) and the radiocarbon series of [8], obtained
at the University of Washington (UW; Seattle, USA)
using trees that grew in the northwest of the United
States (≈ 47◦ N).

Figure 2a presents the Wolf numbers and TSU
data smoothed over 25 years. The correlation coeffi-
cient between these smoothed series reaches −0.33
for the period 1700–1990. The significance of the cor-
relation, estimated using the statistical analysis de-
scribed in the Appendix, is 0.89. The correlation coef-
ficient for the Tbilisi andWashington series smoothed
over 25 years, presented in Fig. 2b, is 0.72 (the sig-
nificance is higher than 0.99). It is obvious that the
TSU∆14C series is fairly well anticorrelated with the
solar activity and well correlated with the 14C con-
centration in the UW series on timescales of several
decades and longer. This confirms the existence of
a clear connection between long-timescale changes
in the concentration of atmospheric radiocarbon and
corresponding variations in solar activity.

The short-timescale, or high frequency (T <
30 years), variations of the 14C concentration in the
Tbilisi data display a good negative correlation with
the Wolf numbers with a phase shift of five years
beginning in the middle of the 19th century (Fig. 3a).
In 1845–1930 (7–8 Schwabe cycles), the correlation
coefficient is −0.52 (with a significance higher than
0.99). The phase shift of five years is essentially
consistent with the time delay between the 11-year
variations of the GCR intensity and variations of the
14C concentration in the troposphere (two to four
years), estimated theoretically and experimentally in
[8–12]. The radiocarbon variations with 6–11-year
periods in the 18th century and the first half of the
19th century are weakly correlated with the 11-year
solar cycle. The high-frequency variations of∆14C in
the UW series do not show any appreciable correla-
tions with the corresponding radiocarbon variations
in the TSU series.

Figure 3b shows that some peaks of the 14C con-
centration in the UW series are positively correlated
with peaks of the TSU series, while some peaks are
negatively correlated, with the average correlation for
the entire interval 1600–1940 being close to zero.
Another feature of the short-timescale variations of
the 14C concentration in the TSU measurements
is their considerable amplitudes, which substantially
exceed the amplitudes of the corresponding ∆14C
variations in the UW series (see Fig. 3b). According
to [13], the peak-to-peak amplitude of the quasi-
twenty-two-year ∆14C variations during the Maun-
der minimum is close to 9%, and the amplitude of
the quasi-eleven-year variations in the 19–20th cen-
turies reaches 2.0–2.4%. Let us estimate the am-
plitude of the variations of the GCR intensity re-
quired to yield such strong variations of the tropo-
spheric radiocarbon concentration. We first determine
the amplitude of the required variations of Q, the rate
of generation of 14C in the atmosphere. It is known
that the carbon-exchange system suppresses high-
frequency variations of 14C concentration. The sup-
pression factor for the 11-year variations is approx-
imately 100, while that for the 22-year variations is
approximately 50 [9, 10]. This means that the 22-year
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Fig. 3. (a) Short-timescale variations of the radiocarbon concentration measured at TSU (dashed) and the Wolf numbers
shifted by five years (solid); (b) short-timescale variations of the radiocarbon concentration measured at TSU (dashed) and
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variations of the tropospheric radiocarbon concentra-
tion (amplitude 9 0/00) corresponds to variations of
the carbon generation rate in the atmosphere Q by
45%, while the 11-year variations (amplitude 2.0–
2.4%) correspond to a variation of Q by 200–240%.
It is now easy to estimate the change in the GCR
intensity required to cause such variations of Q. For
this purpose we use the formula [14]

∆I = −4.2 × ∆Q0.78,

where ∆I is in percent of 3854 m−2 s−1 sr−1, ∆Q is
in percent of 2.54 atm cm−2 s−1 (the average values
of I and Q in 1890), and I varies in the energy range
0.5–50 GeV. For ∆Q = 45%, this formula yields an
80% peak-to-peak variation in∆I.

Such powerful variations of the GCR intensity
could hardly have taken place during the Maunder
minimum. Indeed, Hoyt and Schatten [15] have
shown that fluctuations of the annual average number
of sunspot groups did not exceed two to four during
theMaunder minimum. This means that the diffusion
ASTRONOMY REPORTS Vol. 47 No. 12 2003
mechanism for the solar modulation of the cosmic-
ray intensity, which is associated with scattering on
magnetic-field irregularities and provides (30–40)%
variations of the GCR flux at epochs of normal solar
activity, was considerably weakened in 1645–1715.

Another mechanism for the modulation of the
GCR intensity in the heliosphere is associated with
the drift of particles in the interplanetary magnetic
field, which reverses its polarity every 22 years.
According to [16], at epochs of deep minima of solar
activity, the drift modulation can yield variations of the
GCR flux at energies of 0.5–50 GeV with amplitudes
of up to 15%. However, this is a factor of five lower
than the amplitude required to maintain the 9% vari-
ations of ∆14C. A still greater difference between the
theoretical and experimental values of the amplitude
arises for the 11-year ∆14C cycle in the 19th and
20th centuries. Estimates demonstrate that 11-year
variations of the 14C concentration with a peak-
to-peak amplitude of 2.0–2.4% should result from
approximately 300% variation of the GCR intensity.
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It is obvious that the short-timescale variations of the
radiocarbon concentration in the TSU series cannot
be due to fluctuations in the GCR intensity alone.

Thus, the high-frequency variations of∆14C in the
Tbilisi series

(1) are not correlated with the high-frequency ra-
diocarbon variations in the University of Washington
series,

(2) have very large amplitudes, which cannot be
explained by SA-modulated variations of the GCR
intensity.

The latter effect is especially pronounced for the
quasi-eleven-year cycle. This was discovered in 1983
by Akatova and Kocharov [17], who showed that the
very large amplitudes of the 11-year variations of
∆14C in tree rings and wines cannot be explained by
solar modulation alone.

Here, we should note that the character of terres-
trial manifestations of the 11-year solar cycle is often
poorly predicted by the theory. As one example, we
can cite a series ofmeasurements of the concentration
of cosmogenic 10Be in South Greenland ice obtained
by Beer et al. [18], covering the interval 1423–1985.
It is known that cosmogenic beryllium, which, like
radiocarbon, is produced in the Earth’s atmosphere
under the action of energetic cosmic rays, is a fairly
reliable indicator of SA variations. It was found in [19]
that the 11-year periodicity in the 10Be concentration
was also preserved during the Maunder minimum,
with its amplitude in this period being no smaller than
during epochs of normal solar activity. The maximum
annual average number of sunspot groups did not
exceed two to four in 1645–1715 [15]; i.e., they were
approximately a factor of 50 less than in a normal
Schwabe cycle. According to [20], the variations of
the sunspot group numbers at this time were not
cyclic.

Another example is the series of data on the con-
centration of the stable isotope of oxygen, 18O, in
Greenland ice obtained by Stuiver et al. [21]. This
isotope is known to be a good indicator of the re-
gional climate. Stuiver et al. [21] found an 11-year
periodicity of 18O in the 18th–20th centuries, which
is well correlated with corresponding variations of
the Wolf numbers and 10Be. However, the ampli-
tude of the 11-year cycle in δ18O turned out to be
1.54 0/00, whereas theoretical estimations yielded only
0.54 0/00, almost three times lower. It is obvious that
the quasi-eleven-year cycles demonstrate behavior
that cannot be accounted for by solar activity alone,
not only in the Tbilisi radiocarbon series, but also in
the beryllium and oxygen series. Therefore, some au-
thors have focused on climatic changes as a probable
additional source of variations at these frequencies.
Usoskin et al. [22] have attributed the strong 11-year
variations in the beryllium concentration during the
Maunder minimum to local climatic fluctuations not
related to solar activity.

Stuiver et al. [21] have indicated a possible am-
plification of the 11-year variations of 18O by decade-
scale variations in the ocean–atmosphere system and
in volcanic activity. Note that variations with peri-
ods close to 11 years are quite often revealed in re-
gional climatic parameters. For instance, according
to Pudovkin andMorozova [23], 11-year variations of
temperature, precipitation, and atmospheric pressure
were observed in Switzerland during the 18th–20th
centuries. In this connection, it is appropriate to con-
sider whether climatic factors can contribute consid-
erably to short-timescale variations of the radiocar-
bon concentration in the atmosphere. This problem is
also quite topical in connection with the 15–30-year
variations of ∆14C, apparently not related to solar
activity, that had already been found by Rivin [24] in
the Washington radiocarbon series.

Thus, we will consider to what extent such vari-
ations could be related to the regional climate. Ac-
cording to theoretical estimates [10, 25], the at-
mospheric concentration of 14C can be affected by
long-timescale (with periods of hundreds of years
and longer) global climatic variations. The effect of
shorter-timescale climatic changes should be weaker
[10]. The manifestations of local climatic effects
should be especially weak, since radiocarbon spends
only a few years in the atmosphere, and the time
for the mixing of the CO2 of the lower troposphere
in each hemisphere is only several months [26].
Nevertheless, definite evidence that the global and
regional climate affects the short-timescale variations
of the radiocarbon concentration in tree rings was
obtained in [13, 27]. In particular, Vasil’ev et al. [13]
detected a clear quasi-eleven-year cycle in the indices
of tree-ring growth for trees from the south of Karelia,
the region from which the wood for the second part
of the Tbilisi series (1800–1940) was taken. In [13]
the climatic factor was removed from the radiocarbon
concentration measured in [5] from the Karelian
dendrodata. This procedure was based on a simple
linear regression, and resulted in a considerable (no
less than one-third) decrease of the amplitude of the
11-year variation of∆14C.

Further evidence for the possible effect of the
local climate on the 14C concentration was obtained
by Damon et al. [28], who found an appreciable
correlation between the radiocarbon concentration
in the rings of trees that grew in the region of the
Mackenzie River and the local average air temper-
ature for May–August. Such evidence should not
be neglected, though the idea that there could be a
relation between the atmospheric radiocarbon and
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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regional climate does not completely match generally
accepted concepts about the carbon-exchange cycle.
If this hypothesis is correct and a significant regional
climatic component is indeed present in the high-
frequency fluctuations of the tropospheric radiocar-
bon, then the lack of a correlation between the short-
timescale variations of ∆14C in tree rings from the
northwest of the USA and the east of Europe (the
Carpathians, Karelia) can be explained in a natural
way.

Thus, if we accept the above supposition as a
working hypothesis, we can represent the 11-year
periodicity in ∆14C measured in [5] as a sum of os-
cillations: (a) the 11-year cycle in the rate of gen-
eration of atmospheric radiocarbon Q, directly con-
nected with the Schwabe cycle in the GCR intensity,
and (b) powerful decade-scale variations of atmo-
spheric 14C associated with corresponding variations
of the regional climate. The decade climatic oscil-
lations could, in turn, also be associated with the
11-year solar cycle. The GCR-driven 11-year varia-
tions of Q (direct solar modulation) are very clearly
phase-locked to the solar cycle. The phase link be-
tween the quasi-eleven-year climatic cycle and the
Schwabe cycle should not necessarily be constant
in time. For instance, it was shown in [23] that the
11-year cycles in temperature, precipitation, and at-
mospheric pressure are positively correlated with the
corresponding variations of the solar activity in some
periods, while they are negatively correlated in other
periods. Thus, the 11-year periodicity in ∆14C could
be either amplified and undistorted if the cycles in Q
and in the local climate stably coincide in phase, or
appreciably distorted and even weakened if the cycles
in Q and in the local climate have different phases.
It is reasonable to suppose that, in the experimental
series [5], the former case was realized in 1850–1940
and the latter in 1700–1850.

Recently, evidence has grown suggesting that the
GCR intensity is precisely the factor that is physically
transferring the effect of the Sun to the Earth’s cli-
mate [29–30]. If this is the case, the 14C variations in
the troposphere could be related to changes in solar
activity and the cosmic-ray flux through two chains.

(1) Variations of solar activity−→ variations of the
GCR intensity −→ variations of the 14C production
rate in the atmosphere −→ variations of the 14C con-
centration in the troposphere.

(2) Variations of solar activity−→ variations of the
GCR intensity −→ variations of the global and re-
gional climate−→ variations of the 14C concentration
in the troposphere.

Of course, in this case, too, short-timescale
fluctuations of the tropospheric radiocarbon contain
information on the corresponding variations of the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
GCR flux; however, this information is not direct,
and is mediated to a considerable extent by poorly
understood climatic factors. Such information could
be suitable for qualitative conclusions—for example,
about the presence in a signal in a specified interval of
variations with a definite period—but is not suitable
for quantitative analyses (the amplitude of variations,
phase coupling of the signal with other data series,
etc.). In the hypothesis under consideration, the
considerable increase in the period of high-frequency
variations of ∆14C during the Maunder minimum
(up to 15–24 years) can be considered evidence
for 22-year variations of the GCR intensity in this
interval, though any quantitative estimates of this
effect based on the data of [5] are unlikely to be very
reliable. However, even the qualitative conclusion
that there was a 22-year modulation in the GCR
intensity during the Maunder epoch is extremely
important.

Since the Hale solar magnetic cycle is usually as-
sociated with the activity of the dynamo mechanism,
its preservation in 1645–1715 indicates that the solar
dynamo continued to operate at that time, and that
solar convection did not cease. This demonstrates the
fundamental character of the solar dynamo. In this
case, it is reasonable to explain the deep Maunder
minimum of solar activity as a superposition of the
minima of several long-timescale cycles [31]. How-
ever, we must also note that available information
about the time behavior of the solar activity dur-
ing the Maunder minimum is quite contradictory.
Radiocarbon measurements carried out at the Ioffe
Physicotechnical Institute [14] confirm the presence
of 22-year variations of the GCR intensity during the
Maunder minimum.

The interpretation of the UW experimental series
is not unambiguous. In their analysis of these data,
Stuiver and Braziunas [8] noted a possible 11-year
cycle during the Maunder minimum, while Peristykh
and Damon [32] concluded that 22-year variations
dominated in 1630–1720, and Ogurtsov and Vasil’ev
[27, 33] found a 16-year periodicity in the UW se-
ries for 1645–1715. Recall that the concentration
of cosmogenic beryllium displays strong variations
with a period close to 11 years during the Maunder
minimum [18]. Note that analyses of solar cyclicity
during the Maunder minimum based on cosmogenic
isotopes are also complicated by the fact that the
Cassiopeia A supernova explosion, which probably
occurred in about 1672, could provide an additional
enhancement in the concentrations of these isotopes,
distorting the solar–terrestrial variations [34]. How-
ever, apart from cosmogenic isotopes, quasi-twenty-
year variations during the Maunder minimum have
also been derived from the concentration of nitrates
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Fig. 4. Scheme of the statistical experiment used to estimate the significance of a correlation between smoothed series of data.
(NO−
3 ions) in Greenland ice [35, 36], which Glady-

sheva et al. [36] have attributed completely to the
corresponding GCR cycle.

Summarizing our study of the Tbilisi radiocarbon
series, we can draw the following conclusions.

(1) Long-timescale (with periods of tens and hun-
dreds of years) variations of the radiocarbon concen-
tration in tree rings reflect the corresponding varia-
tions of the GCR intensity. This makes atmospheric
radiocarbon a reliable indicator of global minima and
maxima of solar activity.

(2) Short-timescale variations of the 14C concen-
tration depend on variations of the GCR intensity and
solar activity in a more complex manner. We have
evidence for the presence of a significant component
in the high-frequency part of the radiocarbon spec-
trum that is not associated directly with solar activity,
and is probably related to variations of the regional
climate. These variations distort the radiocarbon sig-
nal, making it suitable only for qualitative analyses
of short-timescale variations of the solar activity and
cosmic-ray intensity.

(3) The Tbilisi radiocarbon series contains indi-
cations of 22-year variations of the GCR flux during
the Maunder minimum of the solar activity. In turn,
this testifies that the polarity of the interplanetary
magnetic field continued to reverse every 22 years
in 1645–1715; i.e., the dynamo mechanism was not
completely disabled during the epoch of the Maunder
minimum. In this case, the prolonged and deep SA
minimum in 1645–1715 could be logically under-
stood as being due to the coincidence of the minima
of several long-timescale solar cycles. However, it is
premature to make any definite conclusions on the
behavior of the solar activity during the Maunder
minimum, as the information from different sources
is rather contradictory.
It is clear that analyses of solar activity in the past
based on the concentrations of cosmogenic isotopes
in natural “archives” are a reasonably promising di-
rection in paleoastrophysics, although this problem is
probably more difficult than was supposed earlier. The
joint analysis of several data series on the concentra-
tions of cosmogenic isotopes with different formation
mechanisms could potentially be quite fruitful—an
approach that was initiated in [37]. In any case, the
elucidation of the roles of global and local climatic
factors in determining the concentrations of cosmo-
genic isotopes is clearly an important direction for
future work in this field.
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APPENDIX

ESTIMATION OF THE SIGNIFICANCE
OF THE CORRELATION BETWEEN

SMOOTHED DATA SERIES

If two smoothed data series y(t) and z(t) are found
to be correlated with some correlation coefficient R0,
there remains the problem of estimating the signif-
icance of this correlation. We solved this problem
by performing a statistical experiment in which we
adopted as the null hypothesis the hypothesis that
one of the series (y(t) or z(t)) is noise (white or red)
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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and that the observed correlation arose by chance.
We then tested this null hypothesis via Monte-Carlo
simulations using the scheme shown in Fig. 4.

We first randomize (mix randomly) one of the se-
ries (z(t) in Fig. 4) and construct from it a noise series
randi(t), where y(t) is considered at this stage to be
the useful signal. The noise is constructed according
to the well-known relation

randi(t) = α× randi−1(t) + ε(t),

where ε(t) is the random version of the initial signal
obtained by shuffling it and α is the red-noise index.
The main advantage of using such noise is that it has
a distribution function that either precisely coincides
with that of the analyzed series (α = 0), or is at least
quite similar to it (α > 0). This is important, because
the noise in real experiments can be substantilly non-
Gaussian, as, e.g., in the Davis chlorine–argon neu-
trino experiment. We smooth the noise randi(t) ob-
tained in this way and calculate the correlation coef-
ficient Rli between the smoothed series randi(t) and
y(t). If Rli is greater than R0, the result of the trial
is considered to be positive. After realizing N trials,
the significance of the correlation coefficient R0 is
determined as 1.0 −K+/N , whereK+ is the number
of trials with a positive result. This procedure is then
repeated with z(t) as the useful signal and construct-
ing the noise from y(t). As a result, we obtain two
estimates of the significance, and choose the smaller
as the final estimate. It is obvious that, if we treat
both data series as noise and randomize them both,
the confidence level will be higher. Thus, this type
of statistical experiment yields a lower limit for the
significance level of the correlation.
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Abstract—A cosmological scenario in which the topology of the Universe is treated like a dynamical time-
dependent variable is put forward. The Universe could be small in an initial quantum stage of evolution
and then gradually increase its dimensions so that the present-day nontrivial topology is manifest only far
beyond the cosmological horizon. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Despite the obvious successes of modern cos-
mology, it still involves certain unclear basic ele-
ments arising in the logical structure of the theory
of general relativity itself. This concerns the princi-
ples of predicting the topology of the Universe. The
standard cosmological approach is based on deriv-
ing the metric tensor from certain differential equa-
tions, namely, the Einstein equations. To write these
equations, we must assume that the corresponding
independent variables are specified in some way. In
other words, the topological structure of the manifold
supporting the required metric is specified. Precisely
this structure enables us to assign meaning to the
differential operations appearing in the Einstein equa-
tions, and accordingly to pose the problem of how
they are realized; i.e., the problem of finding the corre-
sponding metric. From this point of view, the choice of
a topology for a cosmological model should be based
on some principles lying outside general relativity.

In practice, cosmology is not a logically consistent
theory, and the construction of cosmological models
begins with a local analysis of the Einstein equations
within a single map that covers only some part of the
cosmological model under consideration. The con-
struction of a complete cosmological model is based
on some procedure for continuing a solution of the
Einstein equations, similar to the continuation of an
analytic function (see, for example, [1, 2]). Simple
examples show that the formalization of this pro-
cedure is unlikely to be successful. In fact, even a
small piece of a Euclidean plane can be continued to
either a complete plane, a cone, or a polyhedral metric
without vertices. It is difficult to justify the choice of
a plane from the point of view of completeness, since
the desired cosmological models can obviously be in-
complete (this is precisely the phenomenon of the Big
Bang). The well-known example of the continuability
of the Taub–NUTmetric [3] to an object violating the
1063-7729/03/4712-0975$24.00 c©
Hausdorff separation axiom demonstrates that much
more exotic situations are also possible.

Practical cosmology avoids such topological prob-
lems by considering only Friedmann-like models of
the Universe. These are based on an initial separation
of space–time into a space-like cross section and a
time axis, with the spatial section being uniform and
isotropic. As a result, the determination of the scale
factor (i.e., the time evolution) and of the topological
structure of the Universe will be relatively isolated
problems. The set of admissible topologies becomes
quite limited, and choosing a realistic model can be
treated as an observational problem. This is precisely
how cosmology has developed since the time when
the problem of choosing the topological structure
of cosmological models was understood (in fact,
just after the formulation of Einstein’s approach to
cosmology, based on general relativity).

As is known, no appreciable deviations from the
simplest Euclidean topology are manifest in virtu-
ally the entire observable part of the Universe. The
first observational estimates of the region of trivial
topology were obtained in the 1970s (for example,
by Sokolov and Shvartsman [4]). It was found that
the available observational data confirmed the triv-
ial topology only within a relatively small (from the
cosmological point of view) distance. This situation
changed substantially in the 1990s, with the discov-
ery of fluctuations of the cosmic microwave back-
ground radiation. As a result, we can now be sure that
the Universe possesses a simple topological structure
almost out to the horizon (see, e.g., the review by
Lachiéze-Rey and Luminet [5]).

Although this progress is remarkable, it does not
enable us to explain why the Universe has such a
topology. Moreover, it is interesting to construct a
compact, spatially-flat Universe using a nontrivial
topology [6].
2003 MAIK “Nauka/Interperiodica”
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It is likely that a self-consistent solution of the
above problem can be obtained only by going beyond
the framework of general relativity. We have not ac-
cumulated a sufficient amount of observational infor-
mation to carry out such a generalization. However,
the internal difficulties of formulating a procedure for
observationally determining the topological structure
of the Universe are beginning to be discussed in the
literature [7, 8]. Therefore, to some degree, discus-
sions of various theoretical approaches to revealing
the topology of the Universe are beginning to make
the transition from pure fantasy to the realm of rea-
sonable scientific problems. If we wish to stray from
the traditional principles of general relativity as little
as possible, the admissible modifications are fairly
restricted, and a sketch of the future theory can be
outlined. This is the aim of the present paper.

2. THE VARIATIONAL PRINCIPLE
AND THE TOPOLOGY OF THE UNIVERSE

We should first point out that the variational for-
mulation of general relativity appears to be most fa-
vorable for attacking the problem of the topology of
the Universe. In this formulation (see, for example,
[9, p. 343]), a gravitational field is determined by the
stationary condition of the action functional

Sg =
∫
L
√
−gdΩ, (1)

where L is the Lagrangian, dΩ is a volume element,
g is the determinant of the metric tensor, and the in-
tegration is carried out over the entire spatial section
and over the time coordinate between two specified
values. Note that space–time is implicitly assumed
here to be topologically factorizable into space and
time. The quantity Sg is commonly treated as a func-
tional of themetric tensor gij , so that its variationwith
respect to the coordinates yields the Einstein equa-
tions. Of course, the functional Sg also depends on
the choice of topological structure of the spatial cross
section. Therefore, if it is possible to vary Sg with
respect to quantities specifying the spatial section, it
may be possible to obtain equations whose solution
determines the topology of the Universe. This is the
basic idea of our method.

The main obstacle is that the set of all possible
topologies of the cosmological model does not rep-
resent a manifold, i.e., it cannot be parameterized by
several continuous parameters, and it is not clear how
the functional should be varied. We shall choose the
simplest way to resolve this difficulty, and assume
that the cosmological model under consideration is
spatially flat and possesses the topology of a three-
dimensional torus. In addition, we will assume the
directions of the topological gluing to be fixed. There-
fore, we shall consider cosmological models of the
form

ds2 = c2dt2 + a2(t)(dx2 + dy2 + dz2), (2)

x = x+A, y = y +B, z = z + C. (3)

This action functional depends on the scale factor a
and three scalar quantities A, B, and C. Variation
with respect to a results in the ordinary equation
following from the Einstein equations, while variation
with respect toA,B, and C can lead to three dynamic
equations that determine the topology.1 However, the
gravitational-field Lagrangian does not depend on the
topological variables A, B, and C, so that the func-
tional Sg is proportional toABC and does not possess
an extremal, so that the resulting equations are in-
compatible. This probably means that it is impossible
to determine the topology of the Universe within the
framework of classical general relativity; however, it
may be possible in quantum cosmology.

3. THE CASIMIR EFFECT AND EVOLUTION
OF THE TOPOLOGY

Quantum effects violate the lack of dependence
of the Lagrangian L on the topological variables A,
B, and C. The best-known phenomenon of this kind
is the Casimir effect. Its essence is that a Universe
satisfying the gluing conditions (3) can be treated like
a huge capacitor, whose field Lagrangian is slightly
different from the Lagrangian in a vacuum. It is ob-
vious that these deviations are appreciable only in
the earliest stages of evolution of the Universe, when
its radius of curvature is comparable to the Planck
scale. Under such conditions, the gravitational-field
Lagrangian acquires a quantum correction [6], whose
terms depend on the topological variables and are
proportional to the Planck constant � (or to some
power of this constant):

L = LE(a) + �Lq(a,A,B,C). (4)

As a result, the extremum condition can lead to non-
trivial algebraic equations of the form F (A,B,C) = 0
for the topological parameters. Precisely their solu-
tion will specify the true valuesA = A∗,B = B∗, and
C = C∗.

These ideas have not been substantially developed
over the last two decades, and the analysis of obser-
vational data likewise does not suggest any preferred
topology. Therefore, let us assume that there are no

1 From the viewpoint of topology as a mathematical science,
all models of this family have the same topological structure
but different global structures. This discrepancy between the
mathematical and physical terminology is explained in more
detail, for example, by Sokolov and Shvartsman [4].
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preferred values of the topological parameters (F �=
0). Moreover, physical laws are usually described by
dynamic (evolutionary) equations rather than alge-
braic relations.

To obtain differential equations for the topological
parameters by varying the action, Lq must contain
Ȧ, Ḃ, and Ċ, where a dot denotes a time deriva-
tive. Previous calculations of Lq were based on the
assumption that the topology of the Universe was
constant, and so they did not contain time derivatives
of A, B, and C. On the other hand, there is no rea-
son why it should not be possible to introduce terms
with such derivatives into the theory. Bearing in mind
the fact that the corresponding theory has not been
fully developed, we will simply suppose that, one way
or another, terms containing time derivatives of the
topological parameters appear in Lq:

L = LE(a) + �Lq(a,A,B,C, Ȧ, Ḃ, Ċ, . . .). (5)

As a result, the equations governing the topological
variables will take the dynamic form

�ÄFd + F = 0, (6)

where Fd is a term arising due to the variation with
respect to the time derivatives.

Since we assumed that F �= 0, the solution of
equation (6) varies with a rate inversely proportional
to �

1/2. Since the present size of the Universe is not
microscopic, this variation should represent a very
rapid increase, so that the initial small size can sub-
stantially exceed the size of the modern horizon by the
end of the quantum epoch.

Note that Eq. (6) retains its meaning if there is
a preferred topology of the Universe. In that case, a
solution with a different initial topology will rapidly
reach the preferred configuration.

Thus, the variational approach to general relativ-
ity provides hints that it is possible to generalize it
such that the size of the initially small Universe will
sharply grow by the end of the quantum stage of its
evolution. As a result, the spatial size of the Uni-
verse becomes very large, and exceeds the present-
day horizon. In essence, we do not need to consider a
quantum–cosmology process that directly gives rise
to an infinite Universe: a small Universe can initially
be born, after which its dimensions increase to an
arbitrarily large value. This process is similar to but
appreciably different from inflation. During inflation,
the scale factor increases, but all spatial points of the
comoving coordinate system (which can be identified,
for example, by test particles) exist at all times in the
evolution of the Universe. In our scenario, the space-
like cross section of the Universe gradually acquires
new regions, whose test particles did not participate
ASTRONOMY REPORTS Vol. 47 No. 12 2003
in the prior evolution and were created at later times.
This process can be called topological inflation.

We emphasize that the rate of increase of the
comoving space in the quantum stage of topological
inflation could exceed limits imposed by causality, so
that the parameters A, B, and C could initially be
smaller than the horizon, and then exceed it later.

4. TOPOLOGICAL INFLATION

Of course, the proposed picture represents a
quasi-classical approach to quantum cosmology, and
we will not attempt to construct a self-consistent
theory. We will limit our analysis to elucidating
how we can imagine a topological increase of the
comoving space.

Let the topological parameter A increase by dA
during the time interval dt. As a result, some new spa-
tial points should appear in the cosmological model,
which must somehow be assigned new spatial co-
ordinates. It is not possible to simply postulate that
these coordinates cover the interval between x = A
and x = A+ dA because (i) this would violate the
spatial uniformity of the x coordinate, and (ii) the
coordinate x = A is not distinguished in any way
on a flat (zero-curvature) torus. The solution of this
conceptual problem may be based on considering
a quantum ensemble of universes, whose individual
members increase their spatial cross sections at dif-
ferent values of x (as well as of y and z).

Let us describe the corresponding mathematical
construction using rather unusual notation. At time
t = t0, let the growth in the spatial cross section
in x occur near the point x = Bx, the growth in
y occur near y = By , and the growth in z occur
near z = Bz . The wave function of the Universe
♣ will obviously depend on these parameters: ♣ =
♣(A,Bx, B,By, C,Bz) (we shall not write explicitly
its dependence on other variables). The uniformity of
the cosmological model, for example, with respect to
x, now reduces to the condition

∂♣♣∗

∂Bx
= 0, (7)

where (∗) represents complex conjugation. In other
words, the condition of uniformity implies that the
spatial growth occurs in any place with equal prob-
ability.

In the proposed scenario, the present state of the
Universe is a flat torus, whose three topological pa-
rameters can considerably exceed the size of the hori-
zon. These topological parameters are now almost
constant, so that the size of the spatial cross section
increases only due to variations in the scale factor.
Just as a macroscopic body can exhibit with van-
ishingly small probability traces of quantum motion,
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so the modern Universe (in our scenario) can with
vanishing small probability form a region of newly
born space.

5. DISCUSSION

We have described a scenario that, in principle,
can help us resolve one of the conceptual problems
of general relativity and cosmology: uncertainty in the
choice of the topology of the space-like cross section.
The proposed scenario explains why we do not see a
nontrivial topological structure of the Universe.

Due to the scarcity of observational data that are
potentially able to support our ideas, we have not
discussed a particular form of the Lagrangian of this
theory. In principle, it is not difficult to write this
Lagrangian in a form that is consistent with the con-
straints available. A substantial limitation of our sce-
nario is that, in general, the topology of the Universe
is not described by continuous parameters, so that
the action cannot be varied directly with respect to
the topology of the space. One way to overcome this
obstacle may be to vary the action with respect to the
symmetry transformations, whose factorization could
lead to a nontrivial topology. The set of corresponding
transformations possesses much more regular struc-
ture than the set of various topologies for Friedmann
cosmological models.

Another advantage of our scenario is that it is not
necessary to choose between a universe that is born
once or permanently exists—it becomes possible to
consider a universe that is continually being born bit
by bit. Of course, the next natural step in the develop-
ment of such a theory is to admit the possibility of the
disappearance of some regions of space.

A principal postulate in the construction of our
scenario was the assumption that it was possible to
factorize (at least, topologically) the Universe into a
time axis and a space-like cross section. This seems
to be a substantial violation of the basic principles
of general relativity. However, simple examples (see,
e.g., [10]) show that attempts to preserve the equal
status of the temporal and spatial variables even at the
topological level open possibilities that are currently
far beyond the boldest dreams.

In particular, the variational principle in the pro-
posed scenario is more fundamental than the Einstein
equations. The same ideas were put forward by Gert-
senshtein and Konstantinov [11], who drew attention
to the fact that the action does not diverge in the
Friedmann singularity, and used this feature to con-
tinue their cosmological model beyond the singularity.

We emphasize that, even if the topological pa-
rameters are now considerably larger than the dis-
tance to the horizon, they can still affect local phys-
ical processes. The presence of topological gluing
preserves the local uniformity of Friedmann models,
but violates their global isotropy (an exception is a
projective space, as a special topological version of
a closed Friedmann model [12]). In principle, break-
ing the global isotropy could lead to the formation
of a uniform magnetic field in the quantum stage,
when the size of the Universe was microscopic. The
corresponding magnetic field lines will be closed but
cover a contour that cannot contract to a point. We
can imagine that this field will grow together with
the comoving space, and this process may help us to
resolve another problem of modern cosmology. Our
scenario admits the possible existence of a perfectly
uniform cosmological magnetic field, but does not
indicate a particular path for its formation. On the
other hand, even a very weak cosmological magnetic
field can substantially modify our understanding of
the origin of the seed fields that are amplified by the
galactic dynamo mechanism to form the large-scale
magnetic fields of spiral galaxies observed today [13].
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Abstract—The chemical and thermal evolution of the baryon component in the gravitational field of low-
mass primordial dark-matter halos during their virialization is studied. We consider low-mass halos to
be those for which the characteristic baryon cooling time can appreciably exceed the comoving Hubble
time, so that the cooling process can continue to the current epoch (z ∼ 0). The virialization process is
described in two scenarios: “quiet ” virialization, in which the establishment of the virial state is assumed to
be homogeneous over the entire volume considered, and “violent” virialization, in which the establishment
of the virial state is assumed to be realized via the action of shock waves. In this second case, the efficiency of
the formation of molecular hydrogen grows substantially, and can reach H2/H∼ 0.01 in some cases, which
exceeds current estimates by at least an order of magnitude. This eases the condition for the birth of the
first gravitationally bound objects with comparatively lowmasses (M � 2× 105M�), possibly leading to an
appreciable increase in the fraction of the mass contained in Population III objects, and also to a shift in the
onset of the formation of the first stars toward higher redshifts. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

One of the key questions in modern cosmology is
the nature of the first stellar objects: their masses, the
epoch of their formation, and their evolutionary sta-
tus. The properties of these first objects determine the
entire subsequent evolution of the Universe, and their
influence on the ionization state of diffuse gas deter-
mines the level of angular fluctuations in the cosmic
background radiation. In cosmological models with
cold dark matter, the formation of the first stellar
objects corresponds to the compression of baryonic
matter in the gravitational field of non-baryonic dark
matter, which forms, in turn, so-called dark halos—
condensations of dark matter in a virial state [1]. The
minimummass of the first objects can be estimated as
the minimum baryonic mass that can not only sustain
itself in the gravitational field of the dark halo, but
also be compressed, with the subsequent formation
of gravitationally bound condensations of baryons—
future protostars or proto-stellar clusters.

This question has been studied by a number of
groups in recent years, and the following scenario
is currently generally accepted [2] (see also the re-
views [3, 4]). Let us consider a mass M consisting
nearly 90% of non-baryonic dark matter that sep-
arates out from the general Hubble expansion and
reaches a virial state at redshift zv. The temperature
of the baryons associated with the mass M in the
1063-7729/03/4712-0979$24.00 c©
virial state reaches some value Tv(M) that depends
onM [5]:

Tv
∼= 0.3

(
π3

96

)1/3
Gµmp

k
M2/3(Ωmρ0)1/3(1 + z),

(1)

where ρ0 = 3H2
0/8πG is the critical density. If gas at

this temperature is able to cool via radiative losses in
molecular hydrogen lines at the given z, it can sub-
sequently contract and form a gravitationally bound
baryonic object. Since the efficiency of the formation
of H2 molecules and cooling via their line radiation
falls off with decreasing temperature, there exists at
each z a minimum mass Mm(z) for which the gas at
the temperature Tv ends up in a cooling state over the
comoving Hubble time tH(z): Mm(z) is a decreasing
function of z [2]. The absolute minimum mass of
the first objects and the epoch of their formation in
the Universe z are determined by the intersection of
the mass Mm(z) and the mass of the halo M3σ(z)
corresponding to a fluctuation amplitude exceeding
the 3σ level. According to [2], this redshift is z = 30,
and the masses of the first objects are M ∼ 106M�.
Only objects with higher masses can form at lower
redshifts. The cooling criterion adopted in [2] is that
there be a substantial decrease in the temperature
of the gas compared to the virial temperature over
some specified time for each z: all objects satisfying
2003 MAIK “Nauka/Interperiodica”
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Fig. 1. Jeans mass MJ (solid curve) and the minimum
mass Mc (dashed curve) in units of M�.

the condition T (ηz) < ηT (z) with η = 0.75 are con-
sidered to be cooling, and capable of further forming
gravitationally bound baryonic systems.

Thus, this scenario is limited to rapidly evolving
gas condensations that preferably form the earliest
stellar systems at redshifts close to the epoch when
the halo separates out from the Hubble expansion.
In addition, objects with lower masses that evolve
appreciably more slowly remain outside this frame-
work, so that they become capable of forming stellar
systems only at epochs close to the current epoch
(z ∼ 0), or alternatively form metal-poor gravitation-
ally bound clumps that are captured by more mas-
sive galaxies in a bottom–up hierarchical scheme of
galaxy formation.

In the current paper, we follow the evolution of
such low-mass, cooling baryonic condensations over
fairly long time intervals, often appreciably exceed-
ing the comoving Hubble time. This enables us to
distinguish a class of first-generation objects (i.e.,
those born from primordial material), whose forma-
tion extends to comparatively low redshifts, or, in
some cases, even to the current epoch, so that the
epochs of their formation can coincide with the forma-
tion of objects of subsequent generations, which were
born from material that has already been enriched in
metals. Being gravitationally bound, such objects will
be essentially isolated, and will not become enriched
in metals. Therefore, they could supply material for
dwarf galaxies with extremely low metal abundances
at the current epoch [6].
Another important circumstance of the scenario
described above is that the specific process by which
the dark halos are virialized is excluded from con-
sideration, supposing only that this virialization is
accomplished via violent relaxation on time scales
appreciably shorter than the comoving Hubble time.
(In models of violent relaxation, the characteristic
virialization time for a dark halo differs from the co-
moving Hubble time by the factor

√
〈ρ〉/ρh, where

〈ρ〉 is the mean total density in the Universe and ρh

is the mean density of the halo.) At the same time,
the process of violent relaxation proceeds with the
appearance of appreciable fluctuations of the tem-
perature and density of the relaxing system [7, 8].
In the case of a mixture of baryon and dark compo-
nents, the situation is complicated by the fact that,
being dissipative, the baryon component can form a
structure during the virialization process; i.e., gen-
erally speaking, long before the dark-matter compo-
nent reaches the virial state. A full description of this
process requires three-dimensional numerical simu-
lations of a two-fluid, self-gravitating medium, and
is accordingly extremely computationally consuming.
In the current paper, we propose a qualitative analysis
of the chemical and thermal evolution of the baryon
component based on a simple model for the virializa-
tion of dark halos. A more detailed description of the
fluctuations of the potential and density, as well as the
results of two-dimensional numerical computations,
will be given in subsequent papers. We present here
the results of computations for amodel with cold, dark
matter and a Λ term (a ΛCDM model) with Ω = 1,
Ωm = 0.29, Ωb = 0.047, ΩΛ = 0.71, Hubble constant
h = 0.72, and σ = 0.9 [9], although we also carried
out computations for a standard CDM model with
Ω = Ωm = 1, Ωb = 0.06, Hubble constant h = 0.5,
and σ = 0.7. The resulting minimum masses in the
CDM model exceed those in the ΛCDM model by no
more than a factor of two.

Section 2 describes the model underlying our
analysis of the role of shock waves in the chemical
and thermal history of the baryons in the virialization
process. In Section 3, we formulate the equations
used to study the dynamics of colliding baryonic
condensations. In Section 4, we present a simple
system of equations to describe the dynamics of the
halos after they reach the virial state in a “quiet”
virialization model. Section 5 describes the thermal
and chemical processes determining the thermal
evolution of the baryons. Finally, Sections 6 and 7
present our main results and conclusions.

2. DESCRIPTION OF THE VIRIALIZATION
MODEL

The simple description of the processes determin-
ing the masses of the first objects in the Universe
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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that we present here is based on certain assumptions
about the virialization of dark-matter halos, including
the character of motions within them. In this section,
we present arguments supporting these assumptions,
and specify the initial state of baryons in the early
stages of formation of gravitationally bound objects.

2.1. Model for the Virialization of Dark Halos

The formation and virialization of massive halos
can be viewed as the unification of less massive into
more massive fragments (subhalos), with subsequent
relaxation to a new equilibrium corresponding to the
higher mass. If an even more massive halo forms via
the separation of a uniform (homogeneous) mixture
of baryons and dark matter, the subsequent violent
relaxation is accompanied by the formation of inho-
mogeneities in the cold component of the dark mat-
ter due to gravitational instability, whose interactions
with each other accelerate the relaxation process.
Following the terminology adopted in [7], we will call
this model “violent” virialization, in constrast to the
“quiet” virialization considered below (see Sections 4
and 6.1). In our simple description, we will assume
that, at the time of its separation from the Hubble
flow and the onset of virialization, a dark-matter halo
of mass M consists of an ensemble of subhalos with
lower masses mi, such that M =

∑
i mi. Even if

the relative velocities of the lower-mass halos were
initially small, they can grow during the subsequent
compression of the system as a whole, reaching val-
ues close to vr ∼

√
GM/r, where r is the current ra-

dius of the halo, and thus can exceed the virial velocity
vR =

√
GM/R before equilibrium is attained, where

R is the radius of the system in the virial state.

2.2. Critical Mass

We restrict our consideration to those stages of
evolution of the Universe when the thermal contact
between matter and radiation via Compton interac-
tions between electrons and photons had ceased to
be important. This corresponds to redshifts z < zi,
where

1 + zi = 137
(

Ωbh
2

0.022

)2/5

, (2)

where h = H0/100 km s−1 Mps−1 is the Hubble
constant and Ωb is the baryonic density parameter.
At z > zi, the temperature of baryons and electrons
T coincides with the temperature of the background
relict radiation Tr = 2.7(1 + z) K, while at z < zi,

Tb = Tr

(
1 + z

1 + zi

)2

. (3)
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In spite of the fact that the masses of dark halos
are not restricted from below by gravitational insta-
bility (this restriction can be associated only with the
possible cutoff of the perturbation spectrum δd(k)),
there is a critical mass below which baryons with the
temperature Tb(z) cannot be sustained by dark halos.
We determine this critical mass by requiring that the
virial temperature Tv(M), which must be provided
by the gravitational potential of the dark matter with
massM , be higher than the background temperature
of the baryons (3): Tv(M) > Tb(z). We thus obtain for
the critical mass

Mc(z) (4)

=

{
8.45 × 103M�, z > zi,

8.45 × 103M�(1 + z/1 + zi)3/2, z ≤ zi.

Note that this value differs from the critical Jeans
mass for the baryonsMJ(z), determined for the back-
ground baryon density and temperature. Figure 1
shows the dependences Mc(z) andMJ(z).

2.3. Criteria for Violent Relaxation and Virialization
of the Halos

In the virial state, the outer radius of the halo is

R =
(

M

24π3Ωmρ0

)1/3

(1 + z)−1, (5)

so that the characteristic velocity of the subhalos is

vR =
√
GM2/3(24π3Ωmρ0)1/3(1 + z). (6)

In our model for violent relaxation, the virial state is
achieved via Coulomb scatterings of the halos on each
other, with the interval between scatterings being

tC =
(

3π
29

Nsr
3

Gmi

)1/2

[ln(Ns/
√
π)]−1. (7)

We will consider the system to be relaxing if tC is less
than the comoving Hubble time for a specified z and
tC < tH(z). This corresponds to the condition

Ns

ln(Ns/
√
π)

=
27π

3H0
(Gρ0)1/2. (8)

It is easy to see that condition (8) yields Ns < 3
in the ΛCDMmodel with Ωm = 0.29. It is reasonable
to suppose that, in the simplest case, halos of cold,
dark matter virialize via the development of a dipolar
mode corresponding to the oncoming motion of two
flows, as occurs in the theory of the evolution of adia-
batic perturbations of Zeldovich [10]. Thus, as a basic
violent-relaxation model, we will consider a head-on
collision of two flows (two subhalos) with masses
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M1 = M2 = M/2 and with velocities in the center-
of-mass system equal to the virial velocities (6).

An important circumstance here is that, being col-
lisionless, the dark matter leaves the region of shock
compression of the baryons. The oncoming flows of
dark matter that arise are subject to streaming in-
stability, which can bring about a rapid relaxation of
the system to the virial state, and also facilitate the
fragmentation of the compressed baryonic layer.

We also investigated shocks associated with the
head-on collisions of lower-mass subhalos (mi <
M/2). However, since these subhalos will have the
same characteristic velocity (6), while the durations of
the collisions between them will be shorter, ∝ mi

1/3,
the number of H2 molecules in the final state is
smaller, and consequently the efficiency of the cooling
of the gas is lower.

3. BARYONS BEHIND THE SHOCK FRONTS

When considering models for violent virialization,
we restricted our analysis to a one-dimensional de-
scription of the thermal evolution of the baryons dur-
ing a collision of subhalos. The legitimacy of this
approach is based on the fact that, since the gas
flows are subsonic behind the front, expansion in the
transverse direction (parallel to the plane of the shock
front) requires more time than expansion in the direc-
tion of the collision. However, we should keep in mind
that the development of a strong outflow of matter
in the equatorial direction (along the shock front)
immediately after the collision can lower the pres-
sure behind the front, and consequently decrease the
degree of compression and the efficiency of forming
molecular hydrogen. However, as a rule, this decrease
in pressure does not exceed a factor of two, so that our
results will provide a qualitatively correct description
of the dynamics of the cooling gas in colliding subha-
los. In the absence of significant thermal conductivity,
the evolution of the baryons behind the shock front
can be described by a system of ordinary differential
equations written for an individual Lagrange element
of the fluid. We will assume that the temperatures of
the electrons and heavy particles (atomic hydrogen
and helium and their ions) coincide behind the front.
In this case, the system of dynamical equations de-
scribing the thermal properties and chemical trans-
formations of the baryon component behind the shock
front during a collision of subhalos takes the form

Ṫ = −
∑

i

Λi(T, x2, x, n), (9)

ẋ = I(T, x, n) −R(T, x, n), (10)

ẋ2 = F (T, x, n) −D(T, x, n), (11)
where Λi is the cooling rate of the gas associated with
process i, I and R are the ionization and recombina-
tion rates for hydrogen (we neglect here the contribu-
tion of helium to thermal and ionizational processes),
F and D are the total rates of the formation and
dissociation of molecular hydrogen, x is the degree of
ionization, x2 is the relative number density of H2, and
T is the temperature of the gas. We assume that each
gas element behind the front evolves isobarically, and
describe the density using the expression

n =
p

µkT
, (12)

µ = ρ/nmp = 1.4. Here, we have neglected the con-
tribution of electrons, protons, and other particles
taking part in the chemical and ionization equilibrium
behind the front, since their relative number densities
always remain substantially lower than unity. The
pressure p is determined from the condition of con-
servation of momentum at the discontinuity:

p =
15
9
ρiv

2 (13)

for an adiabatic shock, where v is the velocity of the
cloud relative to the center of mass, ρi is the density
of baryons in the subhalos before their collision, and

p = ρiv
2 (14)

for a radiative shock [11]. We adopt for the initial
temperature the temperature of the gas behind the
shock front:

T0 =
15
36

mp

k
v2 (15)

for an adiabatic shock and

T0 =
mp

4k
v2 (16)

for a radiative shock. The initial degree of ionization
and number density of H2 were taken to be equal to
their cosmological values.

4. BARYONS IN THE QUIET VIRIALIZATION
MODEL

The system of dynamical equations that we will
use to describe the dynamics of the baryons in the field
of the dark-matter halo in the case of quiet (spheri-
cally symmetrical) virialization can be written

Ṙ = u, (17)

u̇ =
5
11

[
4kT
µmpR

− 4
3
πG(ρd + ρ)R

]
, (18)

Ṫ = −2mp

3k

[
3kT
µmpR

+
4
5
πG(ρd + ρ)R

]
u− 2L

3kµn
,

(19)
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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where n = ρ/µmp,G is the gravitational constant, R
the radius of the cloud, and u the velocity of the cloud
particles at its boundary. The system (17)–(19) is
obtained from the integral form of the gas-dynamical
equations [12]

∫
V

ρvdV +

t∫
t0

dt

∫
S

ρv2dS (20)

= −
t∫

t0

dt

∫
S

pdS +

t∫
t0

dt

∫
V

FdV,

∫
V

ρ(ε+ v2/2)dV −
∫
V0

ρ(ε+ v2/2)dV (21)

= −
t∫

t0

dt

∫
S

pvdS −
t∫

t0

dt

∫
V

LdV +

t∫
t0

dt

∫
V

FvdV.

For a spherical cloud, substituting the thermodynam-
ical quantities in the integrals with their mean values
and assuming that the local velocity of the compres-
sion is proportional to the local radius (which, strictly
speaking, is valid for a free-fall regime), v(r) = −αr.
In these equations, L [erg cm−3 s−1] is the radiative-
cooling rate per unit volume, F (r) = −GMρ/r2, p =
knT , and ε = 3kT/2µmp. In the system made up
of (17)–(19) and (20)–(21), it is assumed that the
kinetic energy of the compressed gas is transformed
into thermal energy on short timescales. It can readily
be seen from (18)–(19) that, in the absence of ra-
diative cooling, L ≡ 0, the gas temperature increases
to the virial temperature as it is compressed, Tv (1),
after which the rate goes to zero, and the compression
ceases.

We solved the system (17)–(19) for a model with
quiet evolution of the halo, without including the ef-
fects of fluctuations and the appearance of shocks.
We considered the evolution of the baryon component
from the time the dark halo separated out; i.e., from
the turning point when the Hubble expansion within
some perturbed region of dark matter is replaced by
compression. We described the evolution of the dark
matter using the approximate expression given in [2],
which reproduces well the exact solution. We used
the temperature and density corresponding to the
turning point as their initial values, also taking the
initial densities of electrons and H2 molecules to be
equal to their cosmological values at that time. The
system of dynamical equations for the baryons (17)–
(19) was solved further for the case of a specified
(approximated) dark-matter background.
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Rates of chemical reactions

Reaction Reaction coefficient
k, cm3 s−1 Ref.

H+ + e− → H + hν k1 ≈ 1.88 × 10−10T−0.64 [16]

H + e− → H− + hν k2 ≈ 1.83 × 10−18T 0.88 [16]

H− + H → H2 + e− k3 ≈ 1.3 × 10−9 [17]

H+ + H → H+
2 + hν k5 ≈ 1.85 × 10−23T 1.8 [18]

H+
2 + H → H2 + H+ k6 ≈ 6.4 × 10−10 [19]

D+ + H2 → HD + H+ α1 ≈ 2.1 × 10−9 [15]

H+ + HD → H2 + D+ α2 ≈ α1e
−465K/T /4 [15]

5. THERMAL AND CHEMICAL PROCESSES

The main cooling agents for the baryons in the
redshift range of interest to us (z < 200) are molec-
ular hydrogen, H2, and HD. In the computations, we
adopted for the cooling function of the H2 molecules
[13] the expression

LH2
 Lr

E

1 + ncr/n
, (22)

where the critical density is

ncr ≡
Lr

E

Lr
(n→0)

n, (23)

which depends only on the temperature, not on n. The
cooling rate in LTE is

Lr
E  1

n

{
9.5 × 10−22T3

3.76e−(0.13/T3)3

1 + 0.12T3
2.1 (24)

+ 3 × 10−24e−0.51/T3

}
erg cm3/s,

while the cooling rate in the limit of low densities is

Lr
(n→0)  5

4
γ2(E2 − E0)e−(E2−E0)/kT (25)

+
7
4
γ3(E3 − E1)e−(E3−E1)/kT .

Here, T3 = T/1000 K andEJ = J(J + 1)E1/2, where
E1/k  171 K, and γ2 and γ3 are the collisional de-
excitation rates for transitions from the J = 2 and
J = 3 rotational levels [13]:

γJ =

(
10−11T3

1/2

1 + 60T3
−4 + 10−12T3

)
(26)

×
{

0.33 + 0.9 exp

[
−
(
J − 3.5

0.9

)2
]}

cm3/s.
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Fig. 2. The tη(M) relation, where tη is the time that has
passed from the separation of the halo from the cosmo-
logical expansion to the collapse (η = 1) in units of the
comoving Hubble time tH(z), for zv = 40...10 in steps of
ten (left to right). For lowmasses, this time is comparable
to the current age of the Universe. The masses are indi-
cated in units of M�.

Equation (25) assumes that the ratio of the ortho
and para configurations of H2 is 3 : 1. The first and
second terms give the contributions to the cooling
from para- and ortho-H2. It is shown in [14] that, in
the volume reactions

H2(orto) + H+ → H2(para) + H+, (27)

all the ortho-H2 is transformed into para-H2. Thus,
the corresponding cooling rate is obtained by multi-
plying the first term of (25) by four; i.e., Eq. (25) is
replaced by the simpler expression

Lr
(n→0)  5γ2(E2 − E0)e−(E2−E0)/kT . (28)

For the rate of cooling by the HD molecules, we
adopted the expression [13]

LHD = 6.6 × 10−23T−1/2 (29)

× exp
(
−128.4K

T

)
erg cm3/s.

The critical density for the HD molecules is substan-
tially higher than the values attained in our computa-
tions. The computations included the chain of reac-
tions presented in the table, which are the dominant
processes under the conditions considered. A very
complete analysis of the reactions in a primary gas is
presented in [15]. We neglected the contribution of the
photodissociation of H− and H+

2 ions by photons of
the background radiation, since their energies are two
to three orders of magnitude lower than the binding
energies of these ions in the redshift range considered,
z ≤ 40.

Taking into account the fact that the reactions
D+ +H2 −→ HD+H+ andH+ +HD −→ H2 +D+

are rapid, i.e., their characteristic time scales are sub-
stantially shorter than other time scales in the prob-
lem, the system of equations describing the relative
densities of electrons x = ne/n and H2 molecules,
f = 2n(H2)/n, can be written

ẋ = −k1nx
2, (30)

ḟ = 2kmn(1 − x− f)x, (31)

where, in accordance with [2] and allowing for the
fact that photodissociation of the H− and H+

2 ions by
cosmic background photons is negligible,

km = k2 + k5 (32)

(the first and second terms describe the formation
of H2 in reaction chains involving the H− ion and
H+ ion, respectively). The collisional ionization of
H atoms and dissociation of H2 are negligibly small
under the low-temperature conditions we are consid-
ering.

At temperatures below  400 K, the effect of the
chemical fractionation of deuterated molecular hy-
drogen becomes important [20]. In late stages of the
compression of the condensations as the gas is cooled
to a temperature of ∼ 30 K, all the deuterium may be
transformed into molecular form [21]. However, under
the conditions for the initial evolution of the halos
considered here, when the temperature of the baryons
is not able to fall below 30–100 K, the contribution of
HD molecules to the thermal balance is only 5–10%.

6. RESULTS

6.1. Model for Quiet Virialization

At each fixed redshift, we carried out computa-
tions for grids of halo masses exceeding the criti-
cal mass Mc(z), and determined the minimum mass
Mm(z) for which the baryons are able to be cooled
and compressed. The computations were conducted
for a standard CDMmodel and for a CDMmodel with
a Λ term. The standard CDM model gives minimum
masses that exceed their values for the ΛCDM model
by no more than a factor of two. We fixed the baryon
mass, taking it to be equal to (Ωb/Ωm)M , where M
is the total mass of the cloud, including the baryon
and dark matter components. Following the standard
approach (see, for example, [2, 22]), we suppose that,
ASTRONOMY REPORTS Vol. 47 No. 12 2003



VIRIALIZATION OF THE DARK-MATTER HALOS 985

 

10100 1

1

10

100

10

 

2

 

10

 

3

 

10

 

20

 
10
 

21
 

R
 

, c
m

 
T

 
, K

 
n

 
, c

m
 

–
3

 

(a)

(b)

(c)

 

z

Fig. 3. Evolution of the (a) radius, (b) temperature, and
(c) density for two types of halos (with masses close to
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middle graph also shows the temperature of the cosmic
background radiation (dashed curve).

at some z, a perturbed region separates out from the
general Hubble expansion, begins to be compressed,
and, at z  zv , the halo of dark matter relaxes to the
virial state with characteristic density

ρv ≈ 18π2ρ0Ωd(1 + z)3, (33)

where Ωd = Ωm − Ωb. We used the following approx-
imation to describe the transition to the virial state in
the computations [2]:

ρ(z) ≈ ρ0Ωd(1 + z)3 exp
(

1.9A
1 − 0.75A2

)
, (34)

where

A(z) ≡ 1 + zv

1 + z
. (35)

We assumed that the density of baryons in the
halo varies proportional to the density of dark mat-
ter before the separation from the Hubble expansion,
after which we found the solution to the system of
equations (17)–(19). Thus, in contrast to [2], we
separate the evolution of the baryon component from
the non-baryon component at stages following the
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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curve corresponds to objects forming by the epoch z = 6.
The bold, solid curve shows the minimum masses for
rapidly evolving objects in a violent-virialization scenario.
The dashed curve corresponds to 3σ fluctuations in the
ΛCDM model (σ8 = 0.9). The masses are indicated in
units of M�.

separation from the cosmological expansion. As a
criterion for the formation of a gravitationally bound
baryonic object, we adopted the condition that, in
the process of the cooling and compression of the
baryon component in the total gravitational field of the
baryons and dark matter, the density of baryons with-
in the radius occupied by the baryon component must
exceed the density of the non-baryonic dark matter
by a specified factor η > 1. This is a stricter condition
than the condition that the temperature of the baryons
decrease by a factor of 1.5, as was adopted in [2].
Figure 2 shows the tη(M) dependence, where tη is
the time that has passed from the separation from
the cosmological expansion to the final compression
(when η > 1) in units of the comoving Hubble time
tH(z) for various zv.

Figure 3 depicts the evolution of the radius, tem-
perature, and density for two values of zv for two types
of halos: those with masses close to and much greater
than the critical mass Mc(z). There are obvious dif-
ferences in the evolution of these halos. In the former
case, molecular hydrogen forms slowly in the com-
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pressed baryon component, so that only after several
oscillations does enough H2 accumulate to provide
the subsequent cooling and monotonic compression
of the baryons. In the latter case, a sufficient quantity
of H2 forms even in the initial stages of the compres-
sion, giving rise to the rapid cooling and compression
of the baryon component. For each zv, we computed
the dynamics of the compression of an ensemble of
halos with various masses, in order to find the critical
(minimum) mass Mm(z) of a halo that is able to be
compressed over the local (i.e., modern) Hubble time.
These masses lie above the shaded region in Fig. 4,
which also shows the minimummass for rapidly (over
the comoving Hubble time) evolving halos for the
criterion applied in [2] (solid, thin curve; the compu-
tations in [2] were carried out for the standard CDM
model, while we have recomputed the results of [2] for
a ΛCDM model), and for our stricter criterion (thin,
dot–dash curve; corresponding to the rapid compres-
sion of the baryons to Mb/Md > 1 over the comov-
ing Hubble time). We can see that the differences in
the masses for rapidly and slowly evolving halos can
reach two orders of magnitude. The thin dashed curve
corresponds to masses that are compressed and form
gravitationally bound baryonic condensations by the
epoch z = 6 in our model. The upper limit for the
mass of the baryonic objects being born is determined
by the curve M3σ , which corresponds to exceeding
the density fluctuations at the 3σ level [4] (dashed
curve in Fig. 4). Thus, gravitationally bound objects
with a wide range of masses Mm(z) < M < M3σ(z)
are simultaneously born and evolve in the Universe.
The more massive objects evolve more rapidly, while
lower-mass objects can give rise to new stellar sys-
tems only at later epochs.

6.2. Model for Violent Virialization
In accordance with the above, we also carried

out computations for each fixed redshift for a grid
of halo masses M in this model. The halos relaxed
via the collision of two subhalos with half the total
mass, Ms = M/2, and with the virial velocities in the
center-of-mass system:

vR
∼= 1.16 × 105

(
M

106 M�

)1/3

(1 + z)1/2 cm/s.

(36)

The computations were conducted for collisional ve-
locities from 2 to 16 km/s, which corresponds to the
virial velocities for halo masses M = (2 × 104–8 ×
106)M� at redshift z = 30.

A halo was considered to be capable of subse-
quently forming a stellar system if the Jeans mass
in the cooled gas after the collision was smaller than
the total mass of the baryons. The corresponding halo
mass is shown by the bold solid curve in Fig. 4. The
computations were carried out over times equal to
one dynamical time for the colliding subhalos: td =
R/v. This corresponds to the fact that the compressed
object will begin to expand and the formation of H2

molecules will cease at t > td. Figure 5 presents the
dependence of the number densities of the electrons,
H2, and HD and of the temperature on the velocity
of the subhalo collisions at redshift z = 30, for Ms =
104M� (left) and Ms = 105M� (right). The mass of
a halo (in M�) for which the virial velocity is equal
to the corresponding velocity on the x axis is shown
below.

We expect that, in a more complex scenario when
the relaxation of the halos occurs due to interactions
between multiple (more than two), less massive sub-
halos, the formation of H2 molecules and the cooling
due to them will be less efficient than in the case
considered above, since the times for their interac-
tions will be shorter, td ∝ m

1/3
i . Note, however, that

the final count at time t = td corresponds to a lower
limit to the effects discussed, since, after a collision,
the expanding gas fragments take part in subsequent
collisions with fragments from other collisions, with
the characteristic relative velocities being

√
2vR. As a

result, a random, supersonic velocity and density field
that is close to a logarithmic normal distribution will
be established in the system, as follows from numer-
ical simulations [23]. One consequence of this will be
the ongoing, more efficient formation of H2 molecules
behind the shock front, enhancing the overall cooling
of the baryon component of the halo.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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6.3. Survival of Low-Mass Objects

A fundamental question is the survival of slowly
evolving objects in the field of the ionizing radiation
created by the stellar population born from rapidly
evolving systems with high masses (above the limit
of [2], shown by the thin solid curve in Fig. 4). One of
the most important consequences of the formation
of the first objects is the secondary ionization and
heating of the Universe [4, 9, 24–27]. The subsequent
evolution of protogalaxies and the efficiency of star
formation in them can be substantially affected by
the ionizing radiation emitted by the first objects
formed. We note in this connection that the most
recent observations of distant quasars with redshifts
z � 4.5 as part of the Sloan Digital Sky Survey
appear to indicate that the secondary ionization and
heating occurred near redshifts z ∼ 6, so that the flux
of ionizing radiation drops sharply at high redshifts
(z > 6), as is testified to by the latest observations of
the Gunn–Peterson effect [28–30] and the WMAP
data [9]. This may indicate that the very first objects
in the Universe formed low-mass stars that were not
able to make an appreciable contribution to ionizing
radiation, that the bulk of the ionizing photons are
trapped in dense zones of HII, or alternatively that
the number of these earliest objects was small. In
any case, this means that low-mass (slowly evolving)
objects with masses in the interval indicated above
can evolve without being appreciably affected by
ionizing radiation, at least to redshifts z ∼ 6. Indeed,
at the densities that are reached in these objects at
stages when the central baryon density exceeds the
density of the non-baryonic dark component by an
order of magnitude, the number density of hydrogen is
n ∼ 10 cm−3. At ionization rates ξH < 4× 10−14 s−1,
corresponding to redshifts z > 6 [30], the degree of
ionization brought about by external radiation is only
x < 4× 10−2, and the ionization induced heating rate
is Γ � 6 × 10−26 erg s−1, while the rate of cooling by
molecular hydrogen at these stages lies in the range
∼ (4–6) × 10−26 for masses of (0.3–3) × 106M�,
which virialize at z = 30–20. The rate of dissociation
of H− ions by ionizing radiation of the Lyman contin-
uum for the flux estimated in [30] is ∼ 4 × 10−18 s−1,
substantially lower than the rate at which they are
transformed into H2 (∼ 10−8 s−1). Note that, under
these conditions, the ionizing radiation can stimulate
the formation of H2 if it leads to an enhancement
of the electron density to x ∼ 10−2. In the more
realistic case of violent relaxation of the halos with
the formation of multiple shocks, the efficiency of
the secondary ionization and photodissociation of
H2 decreases, because the density of gas in regions
through which the shocks have passed is higher than
ASTRONOMY REPORTS Vol. 47 No. 12 2003
the average density. Thus, we expect that some low-
mass halos can be preserved in the external field of
ionizing radiation, and, moreover, some fraction of
these can subsequently also contribute to this field.
It will be possible to draw firm conclusions only
on the basis of self-consistent computations of the
formation of the first stellar objects and the production
of ionizing radiation by them.

7. CONCLUSIONS

(1) We have considered the evolution of low-mass,
slowly evolving first objects—so-called dark-matter
halos—which give rise to the first stellar population
of the Universe. We showed in our simple (quiet)
virialization model that baryonic objects with masses
exceeding (0.3–10) × 105ΩbM� can be compressed
and give rise to stellar systems at the current epoch.
Baryonic objects with masses (0.1–12) × 106ΩbM�,
which virialize at z = 40–10, form gravitationally
bound systems by z = 6. Since the mass function of
the first objects decreases with the mass (probably
more rapidly than M−1), this may mean that the
production of ionizing photons at z < 6 will be higher
than is usually predicted.

(2) We have shown that the estimated minimum
mass of the forming objects depends substantially on
the adopted baryon-cooling criterion. In particular,
if we take such objects to be those in which the
baryons are compressed during the cooling process
to densities exceeding the density of dark matter in
the central regions of the halo, then this state can
be reached over the comoving Hubble time only by
objects whose masses exceed the known limit [2] by
half an order of magnitude.

(3) We have examined the influence of the shock
waves that necessarily arise during the virialization of
the halos on the thermal regime of the baryons in a
simplified approach. The minimum baryon tempera-
ture is achieved during collisions of fragments with
masses that are half the mass of the halo. Although
the fraction of such halos is probably small, precisely
they give rise to the formation of the least massive
first objects, with masses (0.6–12) × 105M�, which
is lower than the limit of [2] by a factor of 2–12.
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Abstract—The paper analyzes the mass distribution of stellar black holes derived from the light and radial-
velocity curves of optical stars in close binary systems using dynamical methods. The systematic errors
inherent in this approach are discussed. These are associated primarily with uncertainties in models for
the contribution from gaseous structures to the optical brightness of the systems under consideration. The
mass distribution is nearly flat in the range 4–15 M�. This is compared with the mass distribution for black
holes in massive close binaries, which can be manifest as ultrabright X-ray sources (Lx > 1039 erg/s)
observed in other galaxies. If the X-ray luminosities of these objects correspond to the Eddington limit,
the black-hole mass distribution should be described by a power law, which is incompatible with the flat
shape derived dynamically from observations of close binaries in our Galaxy. One possible explanation of
this discrepancy is the rapid evaporation of stellar-mass black holes predicted in recent multi-dimensional
models of gravity. This hypothesis can be verified by refining the stellar black-hole mass spectrum or finding
isolated or binary black holes with masses below∼ 3M�. c© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of approximately twenty black holes
with stellar masses and about one hundred super-
massive black holes (e.g. reviews [1, 2]) raises the
question of their demography; i.e., the relationship of
these extreme objects to other objects in theUniverse,
as well as to the deep physical properties of space–
time. Bimodality in the mass distribution for stellar-
mass relativistic objects was recently detected [3–5].
The masses of neutron stars lie in the narrow range
MNS = (1–2)M�, with themean value being (1.35±
0.15)M� . On the other hand, the masses of black
holes are distributed over the fairly broad range M =
(4–15)M�, with the mean value being 8–10M�. No
neutron stars or black holes have been found in the
mass interval 2–4M�, despite the fact that masses
have now been measured for almost 40 relativistic
objects. This gap in the mass distribution of rela-
tivistic objects at masses of 2–4M� cannot be due
to observational selection effects [2–5], and seems
especially surprising from the viewpoint of recent data
on the mass distribution of the CO cores of Wolf–
Rayet stars at the end of their evolution [5], which
cover the wide range Mf

CO = (1 − 2)–(20 − 44)M�
and are distributed continuously. Since Wolf–Rayet
stars in close binary systems are commonly thought
to be the progenitors of relativistic objects [6–8], the
large difference between the distribution of the final
masses of the CO cores of Wolf–Rayet stars and the
masses of the resulting relativistic objects is a non-
trivial observational fact, which must be explained.
1063-7729/03/4712-0989$24.00 c©
The bimodal mass distribution for relativistic objects
was interpreted in [9, 10] in terms of modern concepts
about the late stages of stellar evolution and explo-
sions of collapsing supernovae (Types II and Ib, c).
As an alternative way to explain the broad distribution
of massses for stellar-mass black holes and the lower
limit observed in binary systems,∼ 4M�, we consider
here modern, multi-dimensional theories of gravity,
which enable us to view the mechanism and char-
acteristic time for the quantum evaporation of black
holes in a new light.

2. METHODS FOR DETERMINING
BLACK-HOLE MASSES IN BINARY

SYSTEMS

It is important to answer the question of whether
the observed broad distribution of black-hole masses
in the interval 4–15M� is real, or whether these
masses are actually distributed in accordance with
some other law (for example, concentrated in a nar-
rower interval), with the observed scatter being due
to errors in the derived masses.

Most of the information about the mass of a black
hole in a binary system in which the secondary is an
optical star is contained in the mass function of the
optical star [2, 11]:

fv(m) =
m3

x sin3 i

(mx + mv)2
(1)

= 1.038 × 10−7K3
v P (1 − e2)3/2,
2003 MAIK “Nauka/Interperiodica”
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which is derived from its radial-velocity curve; the
optical star is considered to be a point mass moving
along a Keplerian ellipse. Here, mx and mv are the
masses of the black hole and optical star in solar
units, Kv the semi-amplitude of the radial-velocity
curve of the optical star (in km/s), P the orbital period
of the binary system (in days), and e the eccentricity of
its orbit. In reality, the optical star is not a point mass,
since its shape is disturbed by tidal interactions with
the black hole and its atmosphere is heated by X-ray
radiation from the black-hole accretion disk. Taking
these effects into account shows that they affect the
derived black-hole mass most when the component-
mass ratio is q = mx/mv < 1 [11]. In this case, the
center of mass of the binary system is located in-
side the optical star (as occurs, for example, in the
systems Cyg X-1, LMC X-1, and SS 433, in which
q = 0.3–0.6), and the distortion of the spectral-line
profiles used to derive the radial-velocity curve is
greatest. When q = 0.3–0.6, corrections of the mass
function fv(m) for the effects of the finite size of the
optical star do not exceed 10%, and can be reliably
estimated using modern methods for synthesizing the
line profiles and radial-velocity curves of X-ray bina-
ries [11–13].

In the case of X-ray binaries with massive (O–
B) companions (Cyg X-1, LMC X-1, LMC X-3, and
SS 433), there is another effect that disturbs the line
profiles and radial-velocity curve of the optical star:
the variable (depending on the phase of the orbital
period) selective absorption of the light of the optical
star by its intense stellar wind. (The mass-loss rates
of such stars are typically ∼ 10−6–10−7M�/yr, and
reach 10−4M�/yr in the case of SS 433.) The ab-
sorption coefficient at the line center is considerably
greater than in the neighboring continuum. There-
fore, the central part of the absorption line is formed
in the upper layers of the stellar atmosphere, at the
base of the stellar wind, where the radial velocity of
the plasma outflow reaches a few tens of km/s. Since
the free-fall acceleration in a star with an almost
filled Roche lobe varies over the stellar surface, the
velocity and intensity of the wind near its base will
also vary over the stellar surface, resulting in addi-
tional orbital-phase-dependent Doppler shifts of the
absorption lines in the spectrum of the optical star and
distortion of its radial-velocity curve [14]. Moreover,
in the case of an X-ray binary with an elliptical orbit,
nonradial pulsations can be excited in the optical star,
as occurs in the system containing the neutron star
Vela X-1 [15]. This also results in additional distortion
of the radial-velocity curve of the optical star and
leads to systematic errors in the derived mass of the
relativistic object.
In the case of large mass ratios q > 1, the center
of mass of the system is located outside the body
of the optical star, and the effect of the finite size
of the optical star becomes small. This is especially
important because the masses of 15 of 18 black holes
were determined in transient, low-mass X-ray bina-
ries (X-ray novae with large mass ratios, q > 1.5).
Therefore, the masses of most of the black holes are
affected only slightly by the finite sizes of their optical
components. Since the stellar winds from the low-
mass (A–M) stars that are the companions of the
black holes in X-ray novae are weak, the effect of
selective absorption of the light of the optical stars by
their wind is also small. The orbits of all X-ray novae
with low-mass (A–M) companions are circular, and
the optical stars in these systems fill their Roche
lobes.

The mass of the invisible companion (black hole)
in a binary system is derived from the mass function
of the optical star fv(m):

mx = fv(m)
(

1 +
1
q

)2 1
sin3 i

. (2)

The uncertainty in the black-hole mass includes ran-
dom and systematic errors. The random errors can
be reduced by increasing the accuracy and duration
of the observations. The systematic errors are due to
uncertainty in the model for the X-ray binary. Taking
the systematic errors into account when determining
black-holemasses is very difficult. Let us consider the
influence of systematic errors in the parameters q, i
on the corresponding estimate of the black-holemass
mx.

The parameter q is usually estimated from the
rotational broadening of absorption lines in the spec-
trum of the optical star. In most close X-ray binaries
containing black holes (in particular, in X-ray novae),
the optical star fills its Roche lobe, whose relative size
depends on the mass ratio q. On the other hand, the
larger the absolute size of the optical star, the greater
the rotational broadening of absorption lines in its
spectrum. As a result, assuming the axial and orbital
rotations are synchronized, we obtain the following
equation determining q [1, 11–13]:

v sin i = 0.462Kvq−1/3

(
1 +

1
q

)2/3

. (3)

The rotational broadening v sin i varies with the phase
of the orbital period, since the dimensions of the star
along the line connecting the component centers are
different from those perpendicular to this direction
[11]. In addition, X-ray heating of the optical star
gives rise to an emission component in the lines that
depends on the phase of the orbital period, which
distorts the standard absorption-line profile [13]. The
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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corresponding errors in v sin i values derived from the
analysis of absorption-line profiles in the spectrum
of the optical star can be as large as 10–20%. A
new method for determining q and i from the orbital
variability of the absorption-line profiles in the optical
spectra of close X-ray binaries was suggested in [16,
17]. Modern methods for synthesizing line profiles in
the spectra of the optical components of close X-ray
binaries can take into account the spectral variabil-
ity of the optical star and thereby reduce systematic
errors as much as possible. We emphasize that most
black-hole masses have been measured using X-ray
novae, for which q > 1, in the quiescent state. In this
case, the effect of X-ray heating is small, and the error
in q affects the value of mx when q > 1 only weakly
[see (2)]. As a result, the influence of systematic errors
on q values derived from the rotational broadening of
absorption lines is usually insignificant.

The orbital inclination i is most affected by sys-
tematic errors. A method for determining i from the
optical light curves of X-ray binaries, whose shapes
are determined primarily by the ellipticity of the opti-
cal star, was proposed in [18, 19], and is now being
widely used to derive the masses of black holes in
binary systems [1, 11]. The main source of systematic
errors in the i values derived using this method is
the contribution of gaseous structures (such as the
accretion disk, gas streams, and the region of interac-
tion between the stream and disk) to the total optical
or infrared luminosity of the system. This contribution
can be estimated spectrophotometrically by compar-
ing the equivalent widths of absorption lines in the
spectrum of the binary system with the corresponding
equivalent widths in the spectrum of an isolated star
of the same spectral and luminosity class. Unfortu-
nately, the contribution of such gaseous structures
can exceed 50% in the case of X-ray novae—binaries
with low-mass cool stars [20], and the orbital vari-
ability of the emission of these structures is complex
[21]. As a result, the systematic errors in i, and con-
sequently in the mass mx, become considerable. For
example, the mass of the black hole mx in the X-ray
nova GRO J0422+32, estimated using two differ-
ent methods, varies from 2.5–4M� to > 9M� [20].
In the case of quasi-stationary close X-ray binaries
with massive, hot stars (Cyg X-1, LMC X-1, and
LMC X-3), the contribution of the optical radiation
of gaseous structures is small (< 2%), but the optical
light curves of these systems suffer from the effects
of absorption of the light from the optical star by the
gaseous structures [22], which also leads to system-
atic errors in the orbital inclinations of these close
binaries. In addition, the optical stars in the Cyg X-
1 and LMC X-1 systems do not quite entirely fill their
Roche lobes. This also introduces an extra systematic
ASTRONOMY REPORTS Vol. 47 No. 12 2003
error into i, so that information about the distance to
the system is required [11].

The new method for determining q and i presented
in [16, 17], based on analysis of the orbital variabil-
ity of absorption-line profiles in the spectrum of the
optical star in a close X-ray binary, does not depend
on the contribution of gaseous structures to the to-
tal luminosity of the system. Therefore, high-quality
spectroscopy of close X-ray binaries with high spec-
tral resolution R = 50000–100 000 using the largest
new-generation telescopes should enable us to ap-
preciably reduce the effect of systematic errors and
obtain the most trustworthy estimates of black-hole
masses in close binary systems.

Another opportunity for independently determin-
ing the orbital inclinations i of X-ray binaries is the
use of new, more accurate information on their dis-
tances d, which will be provided by next-generation
astrometric space observatories (SIMA, GAIA, etc.).
Knowledge of the distance d, interstellar absorption
Av, apparent magnitude mv, and the contribution of
gaseous structures to the system’s luminosity en-
ables determination of the average radius of the opti-
cal star Rv. This gives us a relation between q, µ, and
i [11, 23] (where µ is the degree of filling of the Roche
lobe by the optical star):

sin i =
(

0.38µ

Rv

)(
GP 2fv(m)

4π2

)1/3( 1 + q

q1.208

)
. (4)

Since we can assume for X-ray novae that µ = 1 [2]
and the value of q can be determined independently
from the rotational broadening of absorption lines in
the optical spectrum [see (3)], Eq. (4) can be used
to obtain an independent determination of the orbital
inclination i.

Thus, the probable presence of considerable sys-
tematic errors in dynamic black-hole masses cur-
rently prevents us from firmly establishing the black-
hole mass distribution. We shall consider below only
two limiting cases of the distribution of black-hole
masses in close binaries: (1) a sharp δ-function-like
peak near some specified value ∼ 9–10M� and (2) a
uniform distribution over a broad range (4–15M�).

3. DIFFERENCES IN THE OBSERVABLE
MANIFESTATIONS OF ACCRETING

NEUTRON STARS AND BLACK HOLES

Since it will be important for us that the masses
of black holes and of neutron stars have different
lower limits, it is appropriate to underline here the
fundamental differences in the observable manifesta-
tions of these two types of relativistic objects. As was
noted above, the masses of approximately 40 com-
pact objects in binary systems—18 black holes and
more than 20 neutron stars—have currently been
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Fig. 1. Observed mass distribution of relativistic objects
in close binary systems. The neutron stars are con-
centrated in the narrow interval M = (1–2)M�, while
black holes in close binaries are found in the interval 4–
16M�. The masses of isolated black holes derived from
microlensingobservations are marked by hollow squares.

measured. It is a remarkable fact that the observed
features of the accreting neutron stars and black holes
differ, in accordance with the quantitative predictions
of Einsteinian general relativity: there is a gap in
the observed manifestations of compact relativistic
objects near a mass of 3M� (the absolute upper limit
for the mass of a neutron star following from general
relativity). In all cases when the mass of an X-ray
pulsar, type I X-ray burster, or radio pulsar (phe-
nomena showing clear signs that we are observing
the surface of a relativistic compact object) is de-
termined, the corresponding masses do not exceed
3M�, in good agreement with general relativity. The
large number of known neutron-star masses (over
20) makes this result statistically significant. On the
other hand, none of the 18massive (> 3M�) relativis-
tic objects (black-hole candidates) is associated with
an X-ray pulsar, type I X-ray burster, or radio pulsar.
Therefore, none of the black-hole candidates shows
features associated with an observable surface, as
should be the case for black holes in general relativity.
The increasing number of such objects (currently 18)
confirms the high statistical significance of this result.
Of course, the absence of clear features associated
with an observable surface represents a necessary, but
not sufficient, indication of a black hole.

We emphasize that there are also finer observa-
tional spectral differences between accreting neutron
stars and black holes, as well as differences in the
rapid variability of their X-ray emission (see, for ex-
ample, [24, 25]). These differences are also consistent
with the idea that neutron stars have observable sur-
faces, while black holes do not.

Therefore, all the necessary conditions imposed by
general relativity on the observable manifestations of
accreting neutron stars and black holes are satis-
fied. This strengthens our certainty in the existence
of black holes in nature. Further, there is hope that
sufficient criteria for the observational identification
of black holes will be obtained very soon using the
X-ray space interferometer [26] and via the detection
of bursts of gravitational radiation due to merging
black holes in binaries using gravitational-wave in-
terferometers such as LIGO, VIRGO, and LISA (for
more details, see the review [27]).

4. THE OBSERVED BLACK-HOLE MASS
FUNCTION

Thus, modern astronomical data provide a ba-
sis for a discussion of the observed mass function
for stellar-mass black holes (Fig. 1). The apparent
mass distribution is in the range ∼ 4 to ∼ 20M�,
with no significant concentration at any particular
mass. Since the systematic errors in the mass of
an invisible companion in a close binary (especially
ambiguity in the orbital inclination) can appreciably
distort the true distribution, we shall consider two
limiting cases: (a) a narrow distribution of masses
around some specified value M0 (for definiteness,
we adopt M0 = 10M�) and (b) a uniform distribu-
tion over some range Mmin − Mmax, where Mmin =
(3–4)M� and Mmax = (15–20)M�.

Case (a): a narrow mass function around a spec-
ified value M0, dN/dM ∼ δ(M − M0). There is no
fundamental physical justification for the realization
of such a distribution. Moreover, the observed X-ray
luminosity function of massive close binary systems
in other galaxies is clearly inconsistent with this hy-
pothesis (see below).

Case (b): a flat (or almost flat) mass function
dN/dM ∼ M−β , where β ≈ 0, Mmin < M < Mmax.
Such a distribution seems more probable, since the
masses of collapsing supernova progenitors are dis-
tributed over some interval, and the fraction of the
stellar mass that collapses into the black hole can
depend substantially on the physical conditions of
the collapse (such as rotation, magnetic field, etc.).
Accordingly, we will consider this case to be realized
below.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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4.1. Initial Black-Hole Mass Function:
Direct Calculations

The mass function is a fundamental characteristic
of black holes. Modern theoretical concepts about
the collapse of stellar cores are incomplete, and can-
not predict unambiguously the masses of the re-
sulting compact remnants. For example, a bimodal
initial mass function (IMF) for the compact rem-
nants (with peaks at MNS = 1.28M� for neutron
stars and MBH = 1.78M� for black holes) was ob-
tained in calculations of collapsing type II super-
novae [28], in clear contradiction with the absence
of observed black-hole candidates with masses be-
low 3–4M�. In contrast, based on certain assump-
tions about the masses of the resulting black holes,
Fryer and Kalogera [10] obtained a broad, continuous
distribution of black-hole masses up to 10–15M�,
without any deficit of objects with masses 1.5–3M�.
Neither of these theoretical distributions are in satis-
factory agreement with the observations. The origin of
these discrepancies may lie in observational selection
effects. For example, Fryer and Kalogera [10] suppose
that, if a black hole acquires some additional velocity
(“kick”) during its formation, low-mass black holes
in binary systems will have a lower probability of
surviving after the ejection of the massive envelope.
This argument is doubtful, since this effect should be
even stronger during the formation of neutron stars in
binary systems [5], in evident contradiction with the
observed pattern.

A possible physical explanation for the absence of
observed masses of compact objects in the range 1.5–
3M� was proposed in [9], which considers a magne-
torotational mechanism for supernova explosions [29]
and a fairly soft equation of state for neutron stars,
with a limiting mass of Mmax ≈ 1.6M�.

However, there is no doubt that all such calcu-
lations are model-dependent, and, moreover, do not
adequately take into account the effects of rotation,
the magnetic field, the possible accretion of matter
from the ejected envelope, and so on. It is likely that
the derivation of the black-hole IMF will require the
use of phenomenological data on the core masses and
other physical characteristics of supernova progeni-
tors derived from observations [5].

Nevertheless, it seems useful to analyze various
hypotheses about the black-hole IMF and compare
the results with observations. It is well known that
the stellar IMF has the power-law form f(M)i =
(dN/dM)i ∝ M−αi . The Salpeter IMF has an index
(slope of the differential mass function) αi = 2.35 for
stars with masses up to 10M� in the solar neighbor-
hood, and is in agreement with modern observations.
The slope of the IMF for more massive stars becomes
steeper. (This should probably be treated only as a
ASTRONOMY REPORTS Vol. 47 No. 12 2003
trend due to the large errors in the masses of early-
type stars and insufficient statistics.) For example,
the Miller–Scalo IMF yields αi = 2.5 for stars with
M ∼ 10M�. Some astronomers (e.g. B. Elmegreen,
et al.) believe that the stellar IMF is a manifestation
of the universal character of star formation in the tur-
bulent self-gravitating interstellar medium in galaxies
(see the recent review [30] and references therein).
In addition, it is well known that the stellar winds of
massive OB stars carry away a substantial fraction of
the initial mass of the main-sequence stars, and the
masses of supernova-progenitor cores are distributed
over a wide range [5]. It is easy to see that power-
law dependences for the fundamental parameters of
stars (such as their luminosity and radius) on their
mass can lead to a stellar mass distribution at the
end of their thermonuclear evolution (just before the
collapse) that also has a power-law form. Therefore,
the power-law form of the black-hole IMF is admissi-
ble theoretically, but does not follow from any general
physical arguments.

4.2. Variations in the Black-Hole Mass
in the Course of Subsequent Evolution

The mass of a black hole that has formed in any
way can either (a) increase due to accretion of matter
(or, more precisely, energy) onto the black hole or
(b) decrease due to quantum evaporation [31]. The
mass M of an isolated black hole moving with speed
v through an interstellar medium with density ρ and
sound speed vs increasess due to Bondi–Hoyle ac-
cretion Ṁ+ ∝ ρvM2/(v2

s + v2)2. In the typical case,
vs < 1 km/s, and the velocity dispersion of massive
stars in the Galactic disk (which can give birth to
black holes at the end of their evolution) is of the or-
der of 10 km/s, so that Ṁ+ ∼ ρM2/v3 ∼ 1013g/s =
10−13M�/yr for an isolated black hole with a mass of
a few solar masses moving through a medium with
a characteristic density of 10−23 g/cm3. Therefore,
the increase in the masses of isolated black holes
in the Galaxy can be neglected. A unique opportu-
nity to measure the masses of isolated black holes
via observations of gravitational microlensing has re-
cently appeared [32, 33]. This method has enabled
the measurement of the masses of two black-hole
candidates using the microlensing events MACHO-
96-BLG-5 (M = 6+10

−3 M�) and MACHO-98-BLG-
6 (M = 6+7

−3M�) [32]. The corresponding values are
also plotted in Fig. 1 (hollow squares).

The mass of a black hole in a close binary system
can increase due to the accretion of matter from its
companion. In the case of low-mass binaries contain-
ing black holes (such as X-ray novae), the average
accretion rate is determined by the evolution of the
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binary orbit as its orbital angular momentum is car-
ried away by gravitational radiation or themagnetized
stellar wind of the optical star, and will be of the order
of Ṁ+ ∼ (10−9–10−10) M�/yr. The accretion rate
can be greater for black holes in massive close bina-
ries (such as Cyg X-1 and SS 433). If the standard
regime of accretion in a thin disk is realized [34, 35],
the rate of increase of the black-holemass will be lim-
ited by the Eddington luminosity (about 10−7 M�/yr
for M = 10M�). In the case of advection-dominated
accretion, the rate of increase in the mass can be
even greater. However, evolutionary considerations
indicate that there should be substantially fewer ac-
creting black holes in massive close binary systems in
our Galaxy [36]. The increase in the mass of a black
hole will obviously be determined by the duration of
the accretion stage (∼ (107–108) yr for low-mass
and ∼ 105 yr for massive close binaries). Therefore,
in the case of black holes in close binaries, in first
approximation we can neglect the possible increase
in their mass by about 10%.

4.3. The Black-Hole Mass Function
and the Luminosity Function of X-Ray Sources

in Galaxies
The high angular resolution of the modern

CHANDRA and XMM X-ray telescopes makes it
possible to study individual X-ray sources in other
galaxies and, in particular, to construct their dis-
tribution over the observed X-ray luminosity; see,
for example, [37], as well as [38], which presents
the X-ray luminosity function constructed using the
HRI instrument onboard the ROSAT satellite. These
and other works (see also, for example, the recent
review [39]) have shown that the luminosity function
of point-like X-ray sources in various galaxies has a
power-law form dN/dLx ∝ L−β

x over a wide range
of luminosities 1036 to ∼ 1040 erg/s, with the index
being β ∼ 1.5–1.7. The hypothesis that there exists
a universal X-ray luminosity function with index β ≈
1.6 for the population of binary systems in galaxies
was put forward and argued in [37]. As was shown in
[40], the existence of a universal power-law for this
X-ray luminosity function can be explained by the
nature of accretion onto compact objects in massive
close binary systems. The characteristic properties of
the observed X-ray luminosity function are (1) the
absence of a visible break at Lx ≈ 1038 erg/s (the
Eddington limit for accretion onto a neutron star)
and (2) a sharp cutoff in the function at a lumi-
nosity of ∼(2 × 1039 − 2 × 1040) erg/s. Although
the corresponding observations may be statistically
incomplete, let us consider what we can deduce about
the masses of accreting black holes in binary systems
based on the X-ray luminosity function.
Let us begin with the cutoff of the observed lu-
minosity at ∼ 2 × 1040 erg/s. Let us suppose that
this maximum luminosity is equal to the Eddington
luminosity, LEdd ≈ 1038(M/M�) erg/s. Depending
on its inclination, the luminosity of a standard accre-
tion disk can be a factor of three to six higher than
the nominal Eddington luminosity (see discussion in
[37]). The maximummass of the corresponding black
holes would then be Mmax ∼ (20–30)M�. We believe
that the observation of such bright X-ray sources in
many galaxies is difficult to reconcile with the hypoth-
esis that the black-holemasses are concentrated near
the value∼ 10M�, suggesting a fairly broad distribu-
tion of black-hole masses is more likely. An alterna-
tive explanation for the ultrabright X-ray sources ob-
served in other galaxies is that they are microquasars
whose jets are directed toward the observer (see the
discussion in the review [41] and references therein).
In this case, the true X-ray luminosity of the source
should be a factor of at least 1 − cos θ lower than
the luminosity derived from the received radiation flux
assuming spherical symmetry of the source (where θ
is the opening angle of the collimation cone of the ra-
diation). The estimates of [42] show that this hypoth-
esis requires unreasonably broad collimation of the
radiation θ ∼ 30◦–60◦ in order to obtain agreement
with the statistics of the observed ultrabright X-ray
sources. In addition, the microquasar hypothesis is
not consistent (at present) with the observed absence
of a break in the X-ray luminosity function near ∼
1038 erg/s.

The analysis of the X-ray luminosity function pre-
sented in Fig. 5 of [37] shows that the absolute value
of the index characterizing the slope of the func-
tion dN/dLx becomes greater than the mean value
−1.6 at a luminosity of ∼ 2 × 1039 erg/s, namely,
dN/dLx ∝ L−2...−2.2

x . The following two conclusions
can be drawn from this fact. First, including the factor
of three to six noted above when interpreting the ob-
served luminosity of an accretion disk radiating at the
Eddington limit, a luminosity of 2 × 1039 erg/s cor-
responds to a black-hole mass of 3–4M�. Second,
if we assume that all ultrabright X-ray sources with
Lx > 2 × 1039 erg/s are actually close binary sys-
tems with black holes whose luminosities are about
equal to the Eddington luminosity, then dN/dLx ∝
dN/dM , and the observed slope of the X-ray lumi-
nosity function at high luminosities should directly
reflect the distribution of black-hole masses in close
binaries: dN/dM ∼ M−2...−2.2. Since the increase
in the masses of black holes in massive close bina-
ries (which seem to correspond to ultrabright X-ray
sources) is small during the accretion stage, the cor-
responding distribution should reflect the initial form
of the black-holemass function: f0(M) ∝ M−2...−2.2.
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Finally, if accretion onto a black hole in a close
binary occurs in a subcritical regime, the X-ray lu-
minosity for standard disk accretion is simply Lx =
ηṀc2, where the coefficient of proportionality de-
pends on the rotation of the black-hole (η ≈ 0.06 for
nonrotating and 0.42 for maximally rotating black
holes). In this case, the luminosity function of such
X-ray sources does not depend on the mass of the
black hole and is determined, as in the case of neutron
stars, by the mass distribution of the optical com-
ponents in the binaries and the dependence of the
accretion rate on these masses [40]. This makes the
absence of a break at the value of LEdd for 1–2 M�
quite natural. A cutoff in the luminosity function is
expected at higher luminosities, determined by the
limiting (Eddington) X-ray luminosity for the black
hole with minimum mass. If Mmin = 3–4M�, the
corresponding value could be a few times 1039 erg/s.
The broad distribution of black-hole masses in close
X-ray binaries is a supplementary factor that smooths
the sharp break.

Therefore, we have arrived at two important con-
clusions: the distribution of black-hole masses in
binary systems, dN/dM ∼ M−2...−2.2, derived from
the observed X-ray luminosity function for ultrabright
X-ray sources with Lx > 2 × 1039 erg/s in other
galaxies (a) is consistent with the black-hole mass
range 4–20 M� obtained from dynamical measure-
ments and (b) is not consistent with a uniform
distribution for the dynamical masses of black holes
in close binaries within this same range. This latter
conclusion can be explained by various selective
effects, such as the possibility that the evolution of
massive (ultrabright X-ray sources) and low-mass
(most close X-ray binaries with known masses for
their black-hole candidates) X-ray binaries proceeds
along different paths. However, we can also seek a
physical origin for the observed discrepancy that is
not related to evolutionary processes. With this aim
in view, let us consider the hypothesis of enhanced
evaporation of stellar-mass black holes.

5. ENHANCED EVAPORATION OF BLACK
HOLES IN CERTAIN MODERN MODELS

OF GRAVITY

In the framework of a classical, four-dimensional,
Einsteinian theory of gravity, the quantum evapora-
tion of stellar-mass black holes is negligible, since
the characteristic time for Hawking evaporation,
which is of the order of τ ∼ tP l(M/mP l)3 (where
tP l ∼ 10−43 s and mP l ∼ 10−5 g are the fundamental
Planck time and mass), becomes shorter than the
current age of the Universe tH ∼ 14 × 109 yr only for
objects with masses below ∼ 1015 g (a detailed con-
sideration of black-hole evaporation in the framework
ASTRONOMY REPORTS Vol. 47 No. 12 2003
of general relativity can be found, for example, in [43]).
Consequently, if we neglect quantum evaporation,
the observed spectrum of black-hole masses in close
binary systems should reflect the initial mass function
of black holes in these systems. From this point of
view, the observed flat spectrum over a broad range of
masses leads us to the conclusion [5] that not only the
mass of the supernova progenitor but also a number
of other physical parameters (rotation, magnetic field,
etc.) determine the mass of the black hole formed
during the collapse of the stellar core.

Modern attempts to devise a unified theory of
physical interactions have primarily promoted su-
perstring theory as the most promising possibility
(see the review [44]). This is considered to be the
most realistic version of a quantum theory of gravity
(which must describe, in particular, the evaporation
of black holes). The concepts of superstring theory,
always formulated in a multi-dimensional space, has
led recently to multi-dimensional models of gravity
with a macroscopic additional dimension (see the
review [45]). Roughly speaking, these models can
be subdivided into two broad classes: models with
a factorized geometry (of the ADD type [46]) and
models with a nonfactorized geometry (of the RS
type [47]). The latter are preferable from the viewpoint
of modern cosmology [45], and we shall accordingly
consider black holes within the RS approach. In the
simplest versions of this model, the observable phys-
ical world (i.e., particles and fields apart from gravity)
is localized on a four-dimensional surface (the so-
called brane) imbedded into an extra dimension (the
so-called bulk) whose geometry is described by an
anti-deSitter (AdS) metric. The four-dimensional
metric described by classical general relativity is in-
duced on the RS brane. The characteristic scale of the
additional dimension (warp factor) is just the inverse
of the radius of curvature L of the five-dimensional
AdS metric. An extremely important (and, probably,
the most fundamental) property discussed in recent
years is the correspondence between supergravity in
a five-dimensional AdS space and conformal field
theory (supersymmetric Yang–Mills theory) on a
four-brane (the so-called AdS/CFT correspondence;
for more details, see the review [48] and references
therein).

Attempts to derive static black-hole-type solu-
tions within RS models have thus far been unsuc-
cessful: “black cigar” type solutions (a black hole on
a four-brane that asymptotically transforms into the
AdS space [49]) are unstable [50], and clearly unable
to describe the result of the collapse of a massive
stellar core on the brane. There have been some at-
tempts to obtain numerical solutions for black holes
localized on a four-dimensional RS brane, but hints
of a static solution were obtained numerically only
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Fig. 2. Qualitative shape of the expected stationary
black-hole mass distribution (solid curve) with a power-
law initial form (dN/dM)i ∼ M−ai (dashed curve) in a
model with enhanced evaporation of the black hole on the
RS2 brane. The mass M0 corresponds to the minimum
mass of a black hole that can evaporate over the Hubble
time.

for black holes whose horizons were less than L in
size [51].

Analysis of the classical evaporation of black holes
on the RS brane [53] shows that, if the AdS/CFT
correspondence is valid for black holes, astrophys-
ically interesting features of their evaporation will
appear. Namely, the classical evaporation of four-
dimensional black holes can occur much more rapidly
(at least, as long as the radius of the horizon of the
four-dimensional black hole on the brane is greater
than L). The evaporation time in this model is

τ ≡ M

Ṁ
∼ 1

L2
(G4M)3 (5)

∼ 1yr
(

M

M�

)3(1mm
L

)2

,

where G4 is the effective Newtonian gravitational
constant on the brane. An independent field-theo-
retical analysis [53], also based on the AdS/CFT
correspondence, resulted in a qualitatively similar ex-
pression for the evaporation time:

τ 
 102yr
(

M

M�

)3(1mm
L

)2

. (6)

The physical reason for the increase in the rate of
evaporation of black holes in these models is that
the evaporation rate increases in proportion to the
number of degrees of freedom of the corresponding
four-dimensional conformal field theory on the brane:
∝ (L/lP l)2, where lP l ≈ 10−33 cm is the classical
Planck length. The discrepancy in the coefficients in
the above formulas is due to the model allowance for
the number of degrees of freedom in [53].

Note that the evaporation of a black hole into CFT
modes produces essentially low-energy Kaluza–
Klein gravitons, which are weakly coupled to the fields
of ordinary matter, and are therefore unobservable by
direct astrophysical methods. Moreover, the acceler-
ated evaporation of black holes no longer takes place
when the radius of the causality horizon approaches
the size L. These interesting problems are currently
poorly understood (see, for example, the paper [54],
in which results different from those of [53] were
obtained).

If the application of the AdS/CFT correspondence
to black holes is justified and the corresponding hy-
potheses are valid, the existence of stellar-mass black
holes itself imposes extremely strong constraints on
the value of the fundamental AdS radius, namely,
L < 10−3 − 10−4 mm (for themodel of [53]), while the
modern laboratory constraints are L � 0.1 mm [55].

6. INITIAL BLACK-HOLE MASS FUNCTION:
THE INVERSE PROBLEM

In spite of the hypothetical nature of the above
concepts (starting from the adequacy of describ-
ing the Universe using models with macroscopic
additional dimensions!), let us try to use them to
explain the observed spectrum of the dynamically-
measured masses of black holes in close binary
systems. Namely, let us suppose that the observed
absence of black holes with masses below 4M� is
due to their rapid evaporation in the RS model.
Consequently, black holes with smaller masses can-
not be observed, at least in old close binary systems.
Of course, the collapse of a massive stellar core at the
end of its evolution can give birth to a black hole with
an even lowermass, but its lifetimewill be short due to
the enhanced evaporation. We emphasize again that
the evaporation of black holes in this model occurs in
unobservable CFTmodes; i.e., from the viewpoint of a
distant observer, the mass of the black hole decreases
without any other detectable effects. The contribution
of the possible evaporation of stellar-mass black
holes to the total energy budget of the Galaxy is also
negligible. Let us adopt the extreme assumption that
all black holes formed via the evolution of ordinary
stars over Hubble time have evaporated. For our
estimates, we take the average rate of star formation
from baryons in the Galaxy to be ∼ 1M�/yr and the
lower limit for the initial stellar mass that can give
birth to a black hole at the end of its evolution to be
30M�. Then, for a Salpeter initial mass function, the
mass of baryons transformed into black holes over
ASTRONOMY REPORTS Vol. 47 No. 12 2003
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Hubble time should be about 1% of the total baryonic
mass of the Galaxy.

Let us estimate the initial black-hole mass func-
tion f0(M) that is required to satisfy the observed
black-hole mass distribution f(M) = dN/dM ≈
const for a given mass-variation law dM/dt. In the
stationary case, the evolution of the one-dimensional
distribution function is described by the kinetic equa-
tion

∂

∂M

[
f(M)Ṁ

]
= f0(M), (7)

which, in the case Ṁ < 0 (evaporation), reduces to

f(M) =

∫Mmax
M f0(M ′)dM ′

Ṁ
, (8)

M > Mmin.

When M ≤ Mmin, the form of the stationary distribu-
tion does not depend on the initial mass function, and
is determined only by the black-hole mass-variation
law:

f(M) =

∫Mmax
Mmin

f0(M ′)dM ′

Ṁ
=

const

Ṁ
, (9)

M ≤ Mmin.

If the rate of evaporation is higher than the rate of
increase in the mass (in close binary systems with an
average accretion rate of ∼ 10−10M�/yr, this con-
dition is satisfied when L � 10−2 mm for the model
of [53]), then dM/dt = Ṁ− ∝ M−2. Assuming a
power-law form for the initial black-hole mass func-
tion f0(M) ∝ M−αi , we obtain f(M) ∼ M−αi+3

at M > Mmin and f(M) ∼ M2 when M ≤ Mmin,
as is illustrated in Fig. 2 (we assumed M � Mmax
in the above estimates). It is interesting that a flat
distribution is obtained when the coefficient of the
slope of the initial black-holemass function is αi ∼ 3,
close in absolute value to the slopes of the initial
mass function of main-sequence stars (αi ≈ −2.5)
and the mass function of black holes in massive
close binaries derived from observations of ultrabright
X-ray sources in other galaxies (αi ≈ −2 . . . − 2.2).

The self-consistency of the hypothesis being con-
sidered can be tested as follows. The condition for the
evaporation of a black hole with a mass below M0

over the Hubble time in the model of [53] leads to a
constraint on the AdS radius:(

L
1[mm]

)2

� 10−8

(
M0

M�

)3

. (10)

Consequently, canceling out the factor L2 in the ex-
pression for the evaporation rate, we obtain(

dM

dt

)−
� 3 × 10−11M�/yr

(
M0

M�

)
. (11)
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Therefore, the conditions for evaporation over Hubble
time and for an excess of the evaporation rate over the
average accretion rate in close binary systems are sat-
isfied simultaneously when M0 � 10M�. The value
M0 ∼ 4M� adopted in our analysis is lower than but
fairly close to this limit (given the considerable model
uncertainty in the numerical coefficients in the formu-
las describing evaporation). On the other hand, fixing
the value M0 = 4M� yields L � 5 × 10−4 mm and
Ṁ− � 10−10M�/yr, which are also consistent with
the available constraints on L and the hypothesized
decrease in the masses of black holes in close binaries
due to their evaporation.

7. CONCLUSION

Analysis of the observed distribution of masses
of relativistic objects (neutron stars and black holes)
in close binary systems leads to the conclusion that
the masses of neutron stars and black holes are dis-
tributed according to substantially different laws. The
neutron-star masses are concentrated within the nar-
row range 1–2 M�, while the black-hole masses
are spread over the broad interval 4–15M�, with-
out a concentration near any specific mass. The un-
certainties in the dynamical masses of black holes
are due primarily to systematic errors introduced by
the methods used to estimate the orbital inclina-
tions and the component-mass ratios of the close
binaries, derived from the light curves and spectra of
the optical stars (related to the model dependence of
the contributions of gaseous structures to the total
optical luminosity of the systems). These uncertain-
ties can be reduced by using refined models for the
orbital variability of the absorption-line profiles in
the spectra of the optical stars [12, 16, 17] and by
using high-resolution spectra (R = 50000–100 000)
obtained with large modern telescopes when compar-
ing the modeled and observed profiles. More accu-
rate distances to X-ray binaries measured by next-
generation space astrometric observatories (such as
SIMA, GAIA, etc.) will also facilitate determinations
of the orbital inclinations i of the binary systems. It
will also be useful to accumulate information about
the masses of isolated black holes via observations of
gravitational microlensing events.

The mass function of black holes in massive close
binaries can also be derived from observations of
ultrabright (Lx > 2 × 1039 erg/s) X-ray sources in
other galaxies [37]. Assuming that these sources
represent massive X-ray binaries radiating at the
Eddington luminosity, the observed slope of the
luminosity function at luminosities of 2 × 1039–2 ×
1040 erg/s leads to a power-law black-hole mass
function dN/dM ∼ M−2.2, in contradiction with the
lack of concentration of the black-hole masses near
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the lower limit 4M�, as follows from the derived
dynamical masses of black holes in close binaries
(most of which are low-mass systems).

The characteristic features of the black-hole mass
distributions in these two cases can be reconciled
under the hypothesis [52, 53] that the evaporation
of black holes is enhanced on the RS2 brane due to
the large number of (unobservable) CFT modes that
appear in the extrapolation of AdS/CFT correspon-
dence to black holes on the brane. This model can
also explain the absence of observed black holes with
masses < 4M� in low-mass close binaries with low
average accretion rates. This hypothesis can be ver-
ified by searching for black holes with lower masses
(both isolated and in binary systems).

Thus, the reliable determination of the mass func-
tion of compact relativistic objects in close binary
systems is a very important observational problem of
modern astrophysics. This function can be used both
to test the general relativistic theory of the formation
of neutron stars and black holes during the collapse
of the cores of massive stars and to verify theories of
gravity that are fundamental in a deeper sense.
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