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INTRODUCTION

From the wave theory, it is well known that the
whole variety of wave processes in one-dimensional
systems is determined by the relation between nonlin-
earity, dispersion, and dissipation. In two- and three-
dimensional systems, the diffraction phenomenon also
comes into play. In the case when the nonlinear, disper-
sion, and diffraction factors compensate each other and
the dissipation is small, solitary nonlinear stationary
waves (solitons) can be formed in the system, these
waves propagating with a constant speed without
changing their form. According to the definition given
in the encyclopedia [99], “A soliton is a structurally sta-
ble solitary wave in a nonlinear dispersive system. Soli-
tons behave like particles; i.e., on interacting with each
other and with some other disturbances, solitons do not
collapse but move away retaining their structure.” The
term “soliton” was introduced by N. Zabuski and
M. Kruskal in 1965. This type of waves was noticed by
J. Scott Russell when observing waves in channels as
early as in 1834. A soliton solution for long waves on a
liquid surface was obtained for the first time by Bouss-
inesque (1872). Korteweg and de Vries derived the
equation named after them and determined a solution in
the form of periodic (cnoidal) waves in 1895.

Interest in solitons grew continuously after the dis-
covery of the method of the inverse scattering problem
by C. Gardner, J. Greene, M. Kruskal, and R. Miura
[108] in 1967 and a series of completely integrable
equations (see monographs [1, 11, 12, 16, 21, 39, 49,
57, 58, 62, 95, 96]). Soon after the discovery of the
method of the inverse scattering problem, P. Lax in
1968 performed a study that revealed the algebraic
mechanism forming the basis of this method [112].
V.E. Zakharov and A.B. Shabat [42] developed a gen-
eral scheme that provided an opportunity to integrate
some physically interesting equations like the Bouss-
inesque’s equation (connected with the Lax operator of
the third order) and the Kadomtsev–Petviashvili equa-
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tion using the inverse scattering problem. The method
of the inverse problem was developed substantially in
works by V.E. Zakharov and A.B. Shabat [41–43],
V.E. Zakharov and A.V. Mikhailov [40], and also by
M. Ablowitz, D. Kaup, A. Newell, and H. Segur [103]
and V.E. Zakharov and S.V. Manakov [38]. Solutions to
nonlinear equations that were of no lesser interest than
the Korteweg–de Vries equation were determined using
this method.

As interest in solitons grew, interest in nonlinear
waves in rods, as one of the objects most suitable for
experimental investigation and at the same time used
widely in technology, arose [2, 3, 15, 72].

A rod is commonly understood as a deformable
solid with its two dimensions being small in compari-
son with the third one and with a finite rigidity in ten-
sion, torsion, and bending. Normal modes excited in
rods are divided into three types: longitudinal, tor-
sional, and flexural modes. In the linear approximation,
different types of waves propagating in straight rods do
not interact.

LONGITUDINAL WAVES IN RODS

The classical model by D. Bernoulli (the technolog-
ical theory) presumes that, in describing the longitudi-
nal vibrations of a rod, it is possible to ignore the poten-
tial energy of shear strain and the kinetic energy of the
transverse motion of the rod particles. According to this
theory, linear waves in rods propagate with the velocity

c0 =  (where E is the Young’s modulus and ρ is
the density of the material), which does not depend on
frequency. Therefore, the adopted assumptions do not
allow us to describe the geometric dispersion of longi-
tudinal waves that is observed experimentally.

The mathematical models proposed by J. Rayleigh
and A. Love, R. Bishop, R. Mindlin, and J. Hermann
(the refined theories) [3] eliminate this disadvantage.
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Considering one-dimensional models, the Mindlin–
Hermann model describes the dispersion of longitudi-
nal waves in a wide frequency band most accurately.

Accounting for the nonlinearity of the relation
between strains and displacement gradients (geometric
nonlinearity) and strain and stress (physical nonlinear-
ity) leads to a nonlinear generalization of the aforemen-
tioned mathematical models.

Under certain conditions, the Korteweg–de Vries
equation is suitable for the description of nonlinear lon-
gitudinal waves in rods:

(1)

where v  = ux, u is the longitudinal displacement of the
particles of the median line, x is the dimensionless
coordinate, and t is the dimensionless time. (Here and
below, the subscript letter denotes the differentiation
with respect to the corresponding independent vari-
able.) This was first demonstrated by G.A. Nariboli
[114]. Later, the dissipation effects were taken into
account, and the generalized Burgers–Korteweg–de
Vries equation, which describes the influence of disper-
sion and dissipation on the waves of small but finite
amplitude in viscoelastic rods and plates, was derived
by G.A. Nariboli and A. Sedov [115]:

(2)

where α, β, and γ are the parameters describing the
effects of nonlinearity, dissipation, and dispersion; n =
0, 1, and 2 for plane, cylindrical, and spherical waves,
respectively. The case of a spherical wave was pre-
sented only for generality, and it is not considered in
this paper. The Korteweg–de Vries equation was
obtained in [114, 115] by the perturbation method in
several small parameters from an exact set of equations
of the theory of elasticity that describes nonlinear
waves in a circular rod.

The ideas of the perturbation method are also used
in a book by Yu.K. Engelbrecht and U.K. Nigul [102]
proceeding from complex equations of motion to sim-
ple ones (in particular, the Korteweg–de Vries equa-
tion); specifically, the authors use the ideas of the ray
method. For example, in the model of a viscoelastic
rod, the transfer equation of the first order has the form
of the Burgers–Korteweg–de Vries equation.

L.A. Ostrovskiœ and A.M. Sutin [76, 77] considered
the propagation of longitudinal waves in a homoge-
neous rod made from a nonlinearly elastic material with
the internal energy being a function of the invariants of
the strain tensor with an accuracy up to the cubic term
inclusive. They demonstrate that the evolution of the
longitudinal component of the displacement vector is
described by the equation (the nonlinear generalization
of the Rayleigh–Love model or the nonlinear Bouss-
inesque equation)

(3)

v t 6vv x v xxx+ + 0,=

v t
n
2
---v

t
---- αvv x βv xx– γv xxx–+ + 0,=

utt uxx– uxuxx– uxxtt– 0.=
The simplification method developed by one of the
authors for sets of equations with small nonlinearity
and dispersion was applied to this equation [75]. In the
case of small nonlinearity and dispersion, this equation
is reduced to the Korteweg–de Vries equation.

I.A. Molotkov and S.A. Vakulenko [69, 14] consid-
ered a rod with a density and a Young’s modulus chang-
ing slowly along the median line. The perturbed
Korteweg–de Vries equation for the longitudinal veloc-
ity of rod particles was solved using the perturbation
method. Expressions for the amplitude and velocity of
a perturbed soliton were obtained. The solution is the
soliton kernel localized in a small spatial region with
the soliton tail of an almost constant value following it.

An approximate solution to the perturbed Korteweg–
de Vries equation was determined more rigorously
using the asymptotic method of operation [110] by
A.M. Samsonov and E.V. Sokurinskaya [85, 87, 90,
122]. They studied the wave propagation in rods with
continuously varying elastic properties: rods with vary-
ing cross section, Young’s modulus, Poisson’s ratio,
and nonlinear parameter were considered, and asymp-
totic and numerical solutions to the problem of evolu-
tion of solitons in these rods were determined. A satis-
factory coincidence of numerical and asymptotic solu-
tions was obtained. More exact expressions for the
amplitude and velocity of a soliton than those by
Molotkov and Vakulenko were derived. Interesting
behavior of the solution is observed at certain relations
between the nonlinear parameter β and the Young’s
modulus E, namely: at β2E3 = const, the amplitude and
energy of a soliton do not change. At β4E3 = const, the
amplitude of a soliton changes but the plateau after the
soliton is not formed. It was noticed that, when the
material hardens (E increases), the soliton loses mass
and energy, and when the material softens (E decreases),
the amplitude and energy can increase infinitely, which
may lead to irreversible deformations.

V.I. Erofeev and A.I. Potapov [36] proposed a tech-
nique for reducing the three-dimensional equations of
the nonlinear theory of elasticity to the approximate
equations of the theory of rods, which was based on the
approximation of motion in the rod cross section and
the application of the Hamilton–Ostrogradski variation
principle. The nonlinear equations generalizing the
Bishop and Mindlin–Hermann models were obtained.
The first of these equations has the form

(4)

where α =  + (1 – 6ν) + ν2(1 – 2ν) + ν3 is the

coefficient characterizing the geometric and physical

nonlinearities of the rod, cτ =  is the propagation
velocity of an elastic shear wave in the material, µ is the
shear modulus, ν is the Poisson’s ratio, and rp is the
polar radius of inertia of the rod cross section.

utt c0
2

1
6σ
E

------ux– 
  uxx– ν2

rp utt cτ
2
uxx–( )xx– 0,=

E
2
---

ν1

6
----- 4

3
---

µ/ρ
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A.M. Samsonov and E.V. Sokurinskiœ [84, 86, 89,
91, 92, 121] investigated rigorously Eq. (4) rewritten
using the displacement gradients

(5)

where b = (2(1 + ν))–1 < 1 and ε < 1 is the small param-
eter of the problem. The authors called Eq. (5) “an
equation with two dispersions.” The allowable values of
velocities, i.e., the values at which the propagation of a
solitary wave is possible, lie within the intervals (0, cτ)
and (c0, ∞), and, therefore, Eq. (5) allows “subsonic”
solitons as solutions apart from the solutions of the type
of “supersonic” strain solitons, the existence of which
(but with different parameters) follows from the analy-
sis of the solutions to the Korteweg–de Vries equation.
The condition of balance between nonlinearity and dis-
persion that provides the existence of a localized quasi-
stationary solution to Eq. (5) differs fundamentally
from the analogous condition for the Korteweg–de
Vries and Boussinesque equations, because it connects
all the parameters of the solution rather than only the
amplitude and width of a pulse. This can be explained
by the different dispersion properties of these equations
and, in particular, by the fact that the dispersion terms
in the equation can even compensate each other at the
velocity close to the velocity of a shear wave, after
which the balance of nonlinearity and dispersion
becomes violated. Several conservation laws are deter-
mined for Eq. (5). According to [121], the reduction of
Eq. (5) to the Korteweg–de Vries equation considerably
narrows the class of the solutions and provides rough
estimates for soliton parameters, which makes their
experimental detection in rods more difficult.

The major part of the paper by G.V. Dreiden,
Yu.I. Ostrovskiœ, A.M. Samsonov, I.V. Semenova, and
E.V. Sokurinskaya [17] is devoted to the experimental
investigation of the formation and propagation of soli-
tary waves in rods. According to them, as a result of the
excitation of a compression pulse with pressure ampli-

tude P0 and length τ0 =  at the end of a rod of radius

R, a localized plane wave with strain amplitude A,
width λ, and velocity V can be formed at distance λ
from the end of the rod:

where

v tt v xx– ε 6v
2

v tt bv xx–+( )xx,=

λ0

c
-----

l RV /4( ) E/ βA( )3/2
, A P0/E,≈ ≈

λ RV 2 6 E µ–( )/ βA+( )1/2
,≈

V c0 1 Aβ/3E+( )1/2
,≈

β 3E 2A 1 2ν3
–( ) 6B 1 2ν– 2ν2

4ν3
–+( )+ +=

+ 2C 1 2ν–( )3
3E 2l 1 2ν–( )3

+=

+ 4m 1 2ν–( ) 1 ν+( )2
6nν2

+
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is the parameter of the material nonlinearity that
depends on the elastic moduli of the second (E and ν)
and third orders (A, B, and C are the Landau moduli and
l, m, and n are the Murnaghan moduli).

Specific examples of calculating the parameters of
solitary waves at a preset radius of the rod and a preset
pressure of the initial pulse are given. Apparently, the
authors were the first to generate a nonlinear solitary
wave (soliton) of longitudinal strain in a solid
waveguide (a polystyrene rod) from a primary shock
wave and to detect it.

The same authors in [19] somewhat modified their
experimental technique to increase the possibility of
detecting the waves of interest in comparison with [17].
This provided an opportunity to observe not only the
generation of a solitary wave but also its propagation at
large distances and, therefore, to demonstrate experi-
mentally that the wave really retains its form and the
ratio of the amplitude to the wavelength, which allows
one to call it a longitudinal strain soliton.

The paper [20] considers the problem on the soliton
reflection from the end of a waveguide. Two cases of
boundary conditions are examined for the “equation
with two dispersions” that correspond to two types of
fixation: free and fixed ends of a rod. Trying a solution
in the form

where ξ = x + t, η = x – t, and τ = εt, the authors arrive
at two Korteweg–de Vries equations for u01 and u02,

It is demonstrated that a solitary wave is reflected from
the fixed end without changing its sign and shape,
whereas it cannot be reflected from the free end and
must vanish. The papers [20, 124] give the results of
physical experiments on the reflection of a compression
soliton from the end of a polystyrene waveguide. In the
case of reflection of a solitary wave from a free end, a
considerable reduction of the wave amplitude is
observed, which, according to the authors, indicates the
impossibility of the existence of a solitary tension wave
in polystyrene. To obtain the conditions of fixation, the
waveguide was glued to a massive brass plate. Experi-
ments demonstrated that the soliton amplitude almost
did not change after its reflection from the fixed end.

A.V. Porubov and A.M. Samsonov in [78] refined
the hypotheses underlying the theory of propagation of
a longitudinal strain wave in a nonlinearly elastic rod of
a cylindrical shape, this hypothesis being based on non-
linear Eq. (5). The following relations for the axial u

u0 u01 ξ τ,( ) u02 η τ,( ),+=

2u1 ξη, 2u01 ξτ, 2u02 ητ,–=

+
β

2E
------- u01

2( )ξξ 2u01 ξ, u02 η, u02
2( )ηη+ +( )

+
ν2

2
----- u01 4ξ, u02 4η,+( ).
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and radial w components of the displacement vector
along the x and r axes, respectively, were adopted:

where U, V, and W are the functions to be determined.
At V = W = 0, these expressions are the record of the
hypothesis of Love’s plane sections, which was used to
derive the equation with two dispersions. The form of
the functions V and W is obtained from the condition of
the zero values of the components of the Piola–Kirch-
hof tensor, Prr |r = a = 0 and Prz |r = a = 0, at the free surface
of the rod:

A refined “equation with two dispersions” for the lon-
gitudinal strain component v  = ux is obtained:

(6)

where β is the parameter of nonlinearity of the material,
which depends on the elastic moduli of the second (E
and ν) and third (l, m, and n) orders, and ν is the Pois-
son’s ratio. The tangential stress component at the lat-
eral surface of a rod is obtained within the framework
of the refined theory: σrx < 3.95R3µν2A/(3 – 2ν)λ3; i.e.,
the value of the maximal stress σrx at the boundary

decreases by a factor of  in comparison with its

maximal value in the theory given in [84]. The refined
model given by Eq. (6) differs little in the coefficient
values from those obtained earlier, but this refinement
can be of some importance for the estimation of the
experimental parameters in the case of the observation
of strain solitons in a nonlinearly elastic rod.

It is necessary to note that, apart from the general
theory of perturbations for partial solutions of nonlin-
ear equations [110, 128], which was used in [14, 69, 85,
87, 90, 92, 122], there exists the theory of perturbations
for solitons that was developed using the method of the
inverse scattering problem (here, we should note first of
all the papers by V.I. Karpman and E.M. Maslov [50,
51] and also the paper by D. Kaup and A. Newell
[109]). These methods provide an opportunity to derive
the perturbed equations describing the evolution of the
scattering data using the perturbation theory for a cor-
responding linear problem of scattering.

M.P. Soerensen, P.L. Christiansen, P.S. Lomdahl,
and O. Scovgaard [126, 127] demonstrated that taking
into account the terms of the fourth order in the expan-
sion of the elastic energy density with respect to the
invariants of the strain tensor and in the case of the non-

u U x t,( ) r
2
V x t,( ), w+ rνUx– r

3
W x t,( ),+= =

V
1
2
---νUxx, W

ν2

2 3 2ν–( )
-----------------------Uxxx.–= =

Utt c0
2
Uxx–

=  
1
2
--- β

ρ
---U

2 νR
2 ν 1–( )Utt νR

2
c0

2
Uxx+ + 

 
xx

,

E
βA
----------
linear relation between the radial displacement urad and
the longitudinal strain

(ν1, ν2, and ν3 are the Poisson’s ratios of the first, sec-
ond, and third orders), the propagation of longitudinal
nonlinear solitary waves is described by the modified
refined Boussinesque equation

(7)

and, with allowance for the terms of only the third
order, by the refined Boussinesque equation

(8)

The authors determined solutions of the solitary wave
type to these equations [solutions in the form of an anti-
soliton and a breather exist also in the case of Eq. (7)].
In the numerical investigation of collisions of such
solutions, their almost elastic behavior was discovered;
i.e., the waves almost retained their shape and velocity
but an additional radiation appeared. Collisions of a
soliton and an antisoliton, joint propagation of a soliton
and an antisoliton moving close to each other and with
the same velocity in a breather-like state, and the colli-
sion of breathers for Eq. (7) were studied. It was dem-
onstrated that, in the case of a quadratic nonlinearity,
antisolitons either collapse or lead to singular solutions.
The reflection and splitting of solitary waves in a rod
with a varying cross section (the cross section varies
continuously and in a jump), the reflection of solitary
waves from a massive end, and also the explosion and
collapse of an antisoliton in the case of the modified
Boussinesque equation were studied numerically in
[127]. The equations considered are almost integrable,
and their solutions of the solitary wave type are not soli-
tons in the strict sense. However, the solutions in the
form of solitary waves with small amplitudes reveal
the soliton behavior due to the fact that these equa-
tions can be reduced to completely integrable ones
(the Korteweg–de Vries equation and the modified
Korteweg–de Vries equation) in the case of small
amplitudes.

P.A. Clarcson, R.J. LeVeque, and R. Saxton [106]
obtained an equation for longitudinal waves in rods
made from nonlinear incompressible or almost incom-
pressible materials:

(9)

where p = 3 or 5, depending on the parameters of the
material. It was noted that even values of p are of inter-
est when the rod material is known to be dynamically
unstable globally. The authors called the last equation
the Pochhammer–Cree equation. A collision of two sol-
itary waves that represent the solutions to the nonlinear
Pochhammer–Cree equation was studied numerically

urad –ν1rux ν2rux
2

– ν3rux
3

–=

v tt v xx–
1
3
--- v

3( )xx± v xxtt+ 0=

v tt v xx–
1
2
--- v

2( )xx v xxtt+ + 0.=

v tt v xx–
1
p
--- v

p( )xx± v xxtt+ 0,=
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for the case when these waves have the same parame-
ters and move towards each other. It is necessary to note
that the applicability of the models of a nonlinear
incompressible material (the models by Mooney,
Mooney–Rivlin, and others) seems to be rather limited.
It is believed that these models can be used for rubber-
like materials and polyvinylidene chloride.

A.I. Potapov and N.P. Semerikova [80] considered
nonlinear longitudinal waves in a rod by taking into
account the interaction of strain and temperature fields.
The set of equations for the nonlinear dynamic problem
of thermoelasticity has the form

(10)

where T and T0 are the dimensionless values of the cur-
rent and ambient temperatures; ε < 1 is the small
parameter; αT , α, and χ are the dimensionless coeffi-
cients of thermal expansion and heat exchange and the
thermal diffusivity, respectively; and b = (2(1 + ν))–1 < 1.
If we differentiate the first equation of the set with
respect to x and write it as an equation in the longitudi-
nal strain v  = ux, it will differ from Eq. (5) only by the
presence of the term describing the thermal expansion.
Based on the analysis of Eqs. (10), it was demonstrated
that convective heat transfer leads to the dissipation of
the longitudinal wave energy, which is typical of the
model of a viscoelastic material with an aftereffect and
a relaxation. An equation for the amplitude variation of
a traveling wave was obtained, and the attenuation laws
for quasi-harmonic and cnoidal waves and solitons
were determined.

I.V. Miloserdova and A.I. Potapov studied nonlinear
longitudinal waves in a rod of finite length with rigidly
fixed ends [66]. The boundary problem was solved for
the same equation as in [77]. An approximation (which
is often called a single-wave approximation) was used
that considers two stationary waves moving towards
each other with the effect of nonlinearity taken into
account in two stages. At first, the interaction of contra-
directional waves is not taken into account and only the
effects of nonlinearity and dispersion for one wave are
considered. The solutions to the equation of single-
wave approximation are expressed in terms of elliptical
functions. It is presumed that contradirectional waves
do not interact in the first approximation in a system
with a quadratic nonlinearity. The soliton solutions
obtained in [77] cannot exist in this case.

Despite the developed analytical theory that pro-
vides a fundamental possibility to determine nonsta-
tionary solutions to completely integrable equations
with the help of the method of the inverse scattering
problem, the problem of numerical algorithms for the
Korteweg–de Vries equation and other completely inte-
grable equations seems important, because, in the case
of arbitrary initial data, it is hardly possible to obtain a
solution in a closed form using analytical techniques.
Such predictor–corrector schemes as the Lax, Lax–

utt 1 6ux+( )uxx– ε utt buxx–( )xx–  = αT T T0–( )x,–

Tt χT xx– α T T0–( )+ αTuxt,–=
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Wendrof, and McCormack schemes are used for
numerical investigation of the Korteweg–de Vries and
Boussinesque–Korteweg–de Vries equations. These
difference schemes distort the monotonic solutions
because of the frequency dispersion. However, they
may be used in solving the Korteweg–de Vries and
Boussinesque–Korteweg–de Vries equations if the step
in the spatial coordinate is selected in such way that the
numerical dispersion is considerably smaller than the
physical one. Three-level explicit schemes that are
quite simple and convenient for realization are also
used. Semispectral and spectral techniques are used as
well to solve the Korteweg–de Vries and Bouss-
inesque–Korteweg–de Vries equations. In the spectral
method, the desired solution is expanded into a har-
monic series. The substitution of this series into the ini-
tial equation produces an infinite set of equations for
harmonic amplitudes. The maximal wave number with
a fitted value is introduced to make the set finite. These
techniques can provide a good accuracy, but they are
much more complicated than finite-difference methods
and inefficient from the point of view of computer time.
A review of numerical techniques with a detailed
description of physical models, algorithms, and calcu-
lation results is given by Yu.A. Berezin [7], along with
a large number of references on numerical simulation.
There are papers where numerical investigations of the
Korteweg–de Vries and Boussinesque–Korteweg–de
Vries equations are the basic means for studying non-
linear wave processes in rods. However, the effects
noted in these papers are not characteristic (i.e., inher-
ent in rods only). A paper by A. Nakamura [113] is an
example of this. This paper studies the soliton propaga-
tion in a thin rod made of fused quartz.

A paper by A.M. Samsonov, G.V. Dreiden, A.V. Poru-
bov, and I.V. Semenova [125] analyzes theoretically the
evolution of a solitary wave of longitudinal strain and
presents experimental data on a nonlinearly elastic cone
like rod. A soliton focusing in a rod with a decreasing
cross section, which is observed experimentally, is pre-
dicted. An asymmetric deformation of a soliton in the
process of focusing is observed. An approach to the
determination of analytical relations between longitu-
dinal and shear nonlinear strains is developed in the
paper, and an asymptotic solution exactly satisfying the
boundary conditions at the lateral surface of a rod is
determined. An exact expression for the soliton ampli-
tude depending on the change of the radius of the rod
cross section is obtained. It is demonstrated that an
allowable interval of soliton velocities exists and
depends on the elastic properties of the rod. It is shown
experimentally that an elastic strain soliton is not
absorbed even at distances greater than the typical
length of linear damping of a wave in polystyrene.

Papers [88, 117] treat the propagation of nonlinear
longitudinal solitary strain waves in a cylindrical rod
that is in contact with an external elastic and viscous
(antiviscous) medium. A.M. Samsonov and E.V. Sokur-
inskaya [88] use the refined Winkler–Pasternak model
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as the model of an elastic medium. According to this
model, the effect of the surrounding medium can be
presented as the result of the work of elastic springs for
compression and shear, and in [117] the response to
shear is assumed to be zero. A nonlinear equation for
longitudinal strain waves is derived. In the case of an
elastic medium, this equation coincides with the
already known “equation with two dispersions” but
with the increased linear “rod-type” and decreased
shear velocities. In the case of a viscous (active)
medium, the term v txx appears in the equation. Unlike
the case of a free rod, the external medium can change
the type of the strain soliton. An approach to possible
experimental determination of the Murnaghan elastic
moduli of the third order is proposed.

V.I. Erofeev, N.V. Klyueva, and N.P. Semerikova
[32, 33] examined the nonlinear mathematical model
describing longitudinal vibrations of a rod taking into
account shear strains and transverse motions of parti-
cles of the median line (the nonlinear generalization of
the Mindlin–Hermann model). Specific features of the
propagation of stationary strain waves, i.e., periodic
waves and solitons, were studied. The interdepen-
dences of the basic parameters of such waves (the wave
amplitude, the wavelength, the propagation velocity,
and the coefficient of nonlinear distortion of the wave
form) were obtained. It is demonstrated that the anoma-
lous behavior of solitons (the wave amplitude decreases
with increasing velocity) can also be observed together
with their classical behavior (a wave with a large ampli-
tude has a smaller width and propagates with greater
velocity).

S.A. Rybak and Yu.I. Skrynnikov [83] demonstrated
that the propagation of nonlinear waves of longitudinal
strain in a rod with a constant curvature can be
described by the Klein–Gordon equation of the form

(11)

where R is the curvature radius. Transverse motions,
which are connected with longitudinal ones in curvilin-
ear rods already in the linear approximation, are
ignored. A solution in the form of a solitary stationary
wave is obtained. The soliton of Eq. (11) has a para-
bolic profile in the vicinity of the peak, and its tails
decreasing at infinity have the same structure as the
tails of the Korteweg–de Vries soliton. The soliton

width is ∆ ~  (where A is the amplitude). The influ-
ence of dissipation on the properties of the solitons
described by Eq. (11) was analyzed by Yu.I. Skrynni-
kov [92].

N.N. Myagkov [70] studied the propagation of lon-
gitudinal elastic-plastic waves in a rod. The rod was in
the state called strain softening (a decrease in stress at
an increase in strain). Such behavior precedes fracture
for a wide class of materials (metals, concrete, geoma-
terials, etc.). A model, where the yield function depends

v tt c0
2
v xx–

c0
2

R
2

------v+
α
2ρ
------ v

2( )xx,=

A

not only on stress and strain but also on the strain gra-
dient of the second order, is examined:

(12)

where ε is the total strain, V is the velocity, and σs(ε) is
the stress–strain diagram of the material (it is assumed
to be quadratic). The quantity δ is a small dimension-
less parameter whose introduction provides an opportu-
nity to regularize the model, since attempts to describe
the softening by using models that are insensitive to the
strain rate lead to the loss of hyperbolicity of the set of
equations and to an incorrect statement of the Cauchy
problem. Exact solutions to the set obtained from
Eq. (12) for the strain increments (ε') are constructed
with the help of the Hirota transformation. Such solu-
tions are nonstationary solitary waves, the evolution of
which describes the process of strain localization in a
softening rod, which originates from a smooth initial
perturbation and ends in collapse.

In many cases, rods operate within the limits of lin-
ear-elastic behavior of a material, and only the bound-
ary fixations are nonlinear (e.g., the presence of gaps or
arresters in detail joints). I.V. Miloserdova, A.A. Novi-
kov, and A.I. Potapov [65, 67, 68] demonstrated that
nonlinear stationary strain waves with a wide frequency
spectrum and properties similar to the properties of
waves in rods with distributed elastic nonlinearity can
exist in such systems in the presence of internal reso-
nances.

V.V. Kazhaev [45, 46] presented the results of ana-
log and numerical simulation of nonstationary wave
processes that occur in rods with nonlinear-elastic fixa-
tion and include the effects of the decay of the initial
perturbation into solitons, the exchange interaction
between solitons, and the phenomenon of recovery.

FLEXURAL WAVES IN RODS

Unlike longitudinal waves, flexural waves in a rod
have a strong dispersion. According to the Bernoulli–
Euler model (the technological theory), the frequency
of a harmonic wave is proportional to the square of the
wave number. Therefore, the dispersion has an anoma-
lous character. The group velocity is two times greater
than the phase velocity at any frequency.

The propagation of flexural waves in a nonlinearly
elastic rod is described by the equation (the geometric
nonlinearity is taken into account)

(13)

Here, the dimensionless variables x' = x/ry, t ' = c0t/ry,
and w' = w/ry are introduced, where ry is the axial radius
of inertia of the cross section. The primes in Eq. (13)
are omitted.

∂ε
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-----

∂V
∂x
-------,

∂V
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-------

dσs ε( )
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----------------∂ε
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V.I. Erofeev [25] analyzed the nonlinear stationary
waves of envelopes, which arise in the process of prop-
agation of quasi-harmonic flexural waves in a rod.
A transition from Eq. (13) to two coupled nonlinear
Schrödinger equations is performed using the method
of coupled normal modes [74]. One of these equations
has the form

(14)

and the second one is a complex conjugate of Eq. (14)
(U* is the complex conjugate of U). The functions U
and U* are connected with the transverse displacement
w by the relations

The amplitude variation of a quasi-harmonic wave U =
Aei(ωt – kx + ψ) + c.c. is described by the equation of an
anharmonic oscillator

It is stated that the equation has a soliton solution at

|d | = V/18 , where V is the velocity of a stationary
wave. All parameters of the soliton can be expressed
through the strain wave amplitude at the rod boundary
(a0). The soliton velocity is proportional to the first

power of a0, V = 3 a0, and its amplitude is propor-

tional to the square of this quantity, A0 = . The

soliton width is determined by the expression ∆ =

2/3 a0.
V.I. Erofeev [23] investigated nonlinear flexural

oscillations of a rod when the points of its median line
perform motions in two mutually perpendicular planes.
Helicons in an infinite rod (in particular, the solitons of
helicon envelopes) and circularly polarized vibrations
of a finite-length rod were studied.

A model of flexural vibrations of a physically non-
linear rod is proposed in a book by G. Kauderer [52]:

(15)

where w(x, t) is the deflection of the point x of the rod
axis at the moment t, and α and λ are some constants
containing geometric and elastic characteristics of
the rod. Stationary wave solutions to this equation
were investigated by A.A. Berezovskiœ and Yu.V. Zher-
novoœ [8].

A.K. Abramian, D.A. Indejtsev, and S.A. Vakulenko
[104] considered the propagation of a soliton in a non-
linear rod being in contact with an ideal compressible
liquid. The soliton propagating along a rod contacting a
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liquid was interpreted as a “moving inclusion.” Analyt-
ical solutions for solitary waves were determined. Two
cases were examined: when the soliton velocity was
greater than the velocity of acoustic waves in the liquid
and when the soliton velocity was smaller than the
sound velocity in the liquid. In the first case, the liquid
cannot be involved in the soliton motion and large resis-
tance forces arise. A soliton loses its velocity rather fast
in this case. In the second case, a soliton moving along
a beam causes the liquid to move as well, while the
motion of the liquid has little effect on the soliton
motion.

V.I. Erofeev, V.V. Kazhaev, and N.P. Semerikova
[27, 28, 107] studied the specific features of nonlinear
flexural wave propagation in Timoshenko’s rod. The
equations describing the dynamics of such a rod with
allowance for the geometric and physical nonlinearities
were obtained in [24]:

(16)

where w(x, t) is the transverse displacement, ϕ(x, t) is
the rotation angle of the cross section, ρ is the volume

density of the material, J1 =  and J2 = 

are the axial moments of inertia, ℵ  is Timoshenko’s

coefficient, and αj ( j = ) are the coefficients char-
acterizing the geometric and physical nonlinearities of
the medium. On the assumption of smallness of the
rotation angles of the cross sections for long-wave pro-
cesses, Eqs. (16) are reduced to a single equation. In the
case of stationary waves, it takes the form of the Duff-
ing equation. Conditions for the appearance of the
modulation instability of quasi-harmonic waves that
leads to their self-modulation and formation of station-
ary waves of envelopes were analyzed in [27]. Timo-
shenko’s model is not unambiguous in comparison with
the Bernoulli–Euler model of flexural vibrations, where
flexural waves are always stable. Quasi-harmonic flex-
ural waves may be both stable and unstable, depending
on the frequency and the corresponding dispersion
branch of the elastic properties of the material. A dia-
gram showing the regions of stability and instability on
the dispersion curves is presented. Unlike [27], the
main attention in [28] is given to the case when flexural
waves have a high intensity and lie within the region of
weak dispersion. It is demonstrated that qualitatively
different wave patterns can be observed, depending on
the value of the velocity. The expressions connecting
the basic parameters of stationary waves (periodic
waves and solitons) are determined: the wave ampli-
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tude, the wavelength, the propagation velocity, and the
coefficient of nonlinear distortions of the wave form. It
is shown that the anomalous behavior of solitons can be
observed in certain velocity ranges.

V.V. Kazhaev, A.I. Potapova, and N.P. Semerikova
[47, 48] studied localized flexural stationary waves in a
thin stretched rod:

(17)

where c1 = 2ε0(λ + µ)/ρ is the velocity of transverse

waves in the rod, c2 =  + ε0[3(λ + 2µ) – (5λ +

µ)ν] (1 – ν) is a quantity that has the dimension of

velocity, λ and µ are the scale factors, ε0 is the initial

strain, and α = 3  is the coefficient of nonlinearity.
Analytical and numerical investigations of this equa-
tion were conducted. An implicit three-level difference
scheme with the approximation order O(τ2, h2) was
used for numerical simulation. It is necessary to note

that, at C =  > 1, the equation has an anomalous (pos-

itive) dispersion that gives rise to new nonlinear effects.
Two regions of restricted solutions with qualitatively
different behavior exist for stationary waves in the
amplitude–velocity plane at C > 1. The solutions from
the region of strongly nonlinear waves, nonexistent at
amplitudes smaller than a certain critical value, were
studied. Such waves are described by the expression

and (as follows from the results of numerical investiga-
tion) in many cases behave like solitons but have some
properties that differ from those of classical solitons.
For example, in the case of collisions of contradirec-
tional waves, the latter split producing secondary parti-
cle-like waves and a wave packet, if their amplitudes
exceed a certain threshold value.

An experimental observation of the splitting of
pulses with different polarity in the case of such colli-
sions is described in a paper by A.I. Potapov and
A.I. Vesnitsky [119].

The inclusion of the geometric nonlinearity leads
not only to self-action of flexural waves but also to the
interaction of flexural and longitudinal waves.

The resonance interactions of quasi-harmonic longi-
tudinal and flexural waves in straight rods and circular
resonators with the resulting formation of nonlinear
waves of envelopes were studied in [26, 34, 56, 111].

Longitudinal-flexural waves in an elastic infinite rod
were studied by A.A. Berezovskiœ and Yu.V. Zhernovoœ
[9]. Periodic cnoidal wave solutions for the inflection

wtt c1
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E
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


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 sinh ,  wxarctan± U x t,( ),= =
w(x, t) = w(kx – ωt) and the longitudinal motion were
determined in an explicit form using elliptical Jacobi-
ans. The corresponding dispersion relations connecting
the wave number k, the frequency ω, and the amplitude
parameter A were obtained.

A group of problems that stand somewhat apart
deals with “forced nonlinear stationary waves,” i.e.,
waves excited by loads moving along nonlinearly elas-
tic guides. Some of these problems were examined in
the dissertation by V.A. Bychenkov [13] and a paper by
A.V. Metrikin [63].

TORSIONAL WAVES IN RODS
Torsional waves can also propagate in rods in addi-

tion to longitudinal and flexural waves. A special fea-
ture of torsional waves is the absence of dispersion of
the zero mode; i.e., the phase and group velocities of

this mode are equal to cτ = . This fact is the reason
for the lesser interest expressed in nonlinear torsional
waves.

I.V. Miloserdova derived an equation with cubic
nonlinearity for nonlinear torsional waves in rods by
taking into account warping effects:

(18)

which is a generalization of the known nonlinear wave
equations [64]. Here, θ is the dimensionless torsion
angle. Equation (18) is also applicable to the case of
nonlinear flexural waves in rods. Above, we already
discussed the analytical and numerical investigation of
this equation in [47, 48].

V.I. Erofeev, N.V. Klyueva, S.A. Monichev, and
N.P. Semerikova [29–31] studied the influence of dif-
ferent moduli of the material and warping on the prop-
agation of nonlinear torsional waves in a rod. A differ-
ence in the moduli due to the presence of material dam-
age leads to the dominance of the square nonlinearity
instead of the cubic one (the existence of a square non-
linearity for shear and torsional waves is forbidden by
the classical theory of elasticity). The combined effect
of cubic nonlinearity and dispersion caused by warping
leads to the formation of solitons and stationary peri-
odic waves. The interdependences of the basic wave
parameters (the velocity, the amplitude, and the width
for a soliton or the frequency for a periodic wave) and
the material damage were determined. It was demon-
strated that these dependences can serve as the basis for
the development of an acoustic technique for testing the
state of materials and structures.

WAVES IN PLATES
The propagation of solitary plane longitudinal

waves in plates is described by the same equations as
those used for describing similar processes in rods.
Naturally, the coefficients of these equations are differ-
ent [77, 115].

µ/ρ

θtt 1 θx( )2
+( )θxx– θtt C

2θxx–( )xx– 0,=
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A.V. Martynov [61] studied longitudinal vibrations
of a plate and demonstrated that, in the case of the prop-
agation of a plane wave, the initial equations can be
reduced to the sine-Gordon equation, which has solu-
tions in the form of solitons.

One-dimensional quasi-harmonic flexural waves in
a nonlinearly-elastic plate placed on a linearly elastic
base were studied by D.Kh. Topchyan [97]. It was dem-
onstrated that, for kh < 0.3 (where k is the wave number
and h is the plate thickness), the stability of wave pack-
ets is observed, while for kh > 0.3, the modulation insta-
bility leading to the formation of stationary waves of
envelopes takes place.

A.G. Bagdoev and L.A. Movsisyan [4–6] examined
modulated waves in plates in the presence of geometric
and physical nonlinearities. In this case, the physical
nonlinearity is quadratic and (or) cubic. In the case of a
quadratic nonlinearity, the instability of modulation is
always present independently of the sign of the coeffi-
cient. The conditions when the cubic nonlinearity can
lead to stability are determined.

L.A. Shenyavskiœ determined two types of exact
wave solutions to the following nonlinear equations for
longitudinal-flexural vibrations of a plate [101]:

(19)

These equations were obtained from the theory of thin
flat shells with an infinite curvature radius. The solu-
tions describing coupled longitudinal-flexural waves in
Eqs. (19) at the propagation velocity c > c0 have the
form

and at c < c0,

where h is the plate thickness; zn is the zeta function;
sn, cn, and dn are the elliptical Jacobians; κ is the mod-
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ulus of the elliptical function; K and E are the complete
elliptical integrals of the first and second kinds, respec-
tively; and ξ = t – x/c. Coupled longitudinal-flexural
waves are completely determined by two parameters,
e.g., by the propagation velocity c and the modulus κ.
The frequency of oscillations of the longitudinal com-
ponent u is twice the frequency of oscillations of the
flexural component w. At c > c0, nonlinear coupled lon-
gitudinal-flexural waves degenerate into a purely longi-
tudinal wave. The dependences of the propagation
velocities of longitudinal-flexural waves on frequency
for different amplitude values of the flexural compo-
nents were calculated.

An important difference in the problem statement
for nonlinear waves in plates is the question of the sta-
bility of plane waves with respect to transverse pertur-
bations. It is not evident that the soliton existing in a rod
will exist in a plate. The problem is that, in two-dimen-
sional systems, transverse perturbations can destroy an
unstable solitary wave. A paper by O.I. Bogoyavlenskiœ
[10] may be an example. This paper studied the interac-
tion of long waves propagating along one coordinate
axis together with the simple Riemann waves propagat-
ing in the transverse direction. It was demonstrated
that, in the case of such an interaction, the soliton solu-
tions turn over. V.E. Zakharov, E.A. Kuznetsov, and
A.M. Rubenchik [129] demonstrated for the Kadom-
tsev–Petviashvili equation that solitary and periodic
stationary waves in a medium with negative dispersion
are stable with respect to transverse perturbations. The
situation with waves with positive dispersion is entirely
different. Here, a one-dimensional soliton is unstable
with respect to transverse perturbations.

The presence of one more spatial variable makes
plane waves no more characteristic of plates and shells.
Even if, at the initial moments, the wave front in an infi-
nite plate is close to a straight line, it becomes distorted
with time because of the diffraction divergence. The
competition of nonlinearity, dispersion, and diffraction
gives rise to new effects, such as self-focusing.

A.I. Potapov and I.N. Soldatov [82] derived two-
dimensional equations for longitudinal vibrations of a
plate taking into account the geometric and physical
nonlinearities. The propagation of a weakly divergent
beam of nonlinear longitudinal waves in a plate was
investigated, and it was demonstrated that, in this case,
the longitudinal strain component satisfies the Kadom-
tsev–Petviashvili equation

(20)

and two-dimensional solitons can propagate in plates.
(Here, ψ = u0ξ is the longitudinal strain component.) It
was noted that the influence of the boundary conditions
(i.e., the fact that the beam propagates in a plate and not
in an infinite medium) manifests itself in the values of
the nonlinearity coefficients and in the diffraction

∂
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divergence in addition to the fact that a dispersion term
is present in the equation.

Equations for waves of nonlinear longitudinal strain
in plates made of incompressible Mooney’s material
and compressible Murnaghan’s material are given in a
paper by E.V. Sokurinskaya [94]. It was demonstrated
that, using the function of strain f = ux (u is the dis-
placement along the direction of wave propagation in
the median plane of the plate), these equations can be
reduced to the form

(21)

where θ = x ± ky ± Vt, V, k = const, a = ,

and b = . The expressions for

the coefficients a and b are given here for Mooney’s
material, while their form for Murnaghan’s material is
somewhat different. The last equation is reduced
through a change of variables to the well-known Weier-
strass equation, which can be solved in elliptical func-
tions. The Weierstrass equation investigated explicitly
in [84, 88] has a solution in the form of localized shocks
and cnoidal and solitary waves. It is asserted that,
unlike the description of two-dimensional nonlinear
strain waves with the help of the Kadomtsev–Petviash-
vili equation in [84], which permits only compression
solitons, the description of strain waves in a plate with
the help of the Weierstrass equation is more general,
because the last equation has a wider class of solutions
including, in particular, the localized waves of not only
compression but also tension.

Yu.S. Kivshar’ and E.S. Syrkin [53] considered
shear solitons in an elastic plate, and a nonlinear para-
bolic equation (the nonlinear Schrödinger equation)
describing the dynamics of shear wave envelopes was
derived. It was demonstrated that “light” or “dark”
shear solitons with the parameters connected with the
linear modes of an elastic plate can propagate in it,
depending on its nonlinear properties. Shear solitons in
an elastic plate were observed experimentally by
M. Planat and M. Hoummady [116].

The results of the experiments on the excitation of a
localized nonlinear wave of longitudinal strain that can
propagate retaining its form in an elastic polystyrene
plate are given in a paper by G.V. Dreiden, A.V. Poru-
bov, A.M. Samsonov, and I.V. Semenova [19]. A setup
analogous to that used in the experiments on the soliton
excitation in rods served to generate a solitary wave
[17, 19]. The amplitude of the longitudinal strain soli-
ton was found to be 2.45 times smaller than in the case
of a rod under the same excitation conditions. The soli-
ton itself was a sufficiently long wave of a trough-
shaped longitudinal compression, behind which no ten-
sion waves of any significant amplitude were observed.
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WAVES IN SHELLS

The conditions for the appearance of a modulation
instability of quasi-harmonic flexural waves in nonlin-
early elastic cylindrical shells were studied in the
papers by A.G. Bagdoev and L.A. Movsisyan [4, 5]
already cited above.

The first experimental observation of the soliton of
a flexural wave envelope in a thin metallic cylindrical
shell was described by I. Rudnick, J. Wu, J. Wheatley,
and S. Putterman [120].

M.D. Martynenko, Nguyen Dang Bik, and Fam Shi
Vinh [59, 60] analyzed the existence conditions for
solitons in nonlinearly elastic bodies and considered
the problems of the propagation of elastic waves in
moving cylindrical shells with allowance for the non-
linear effects caused by the influence of inertial forces.

The nonlinear resonance interactions of quasi-har-
monic waves of various types in a thin-walled cylindri-
cal shell were studied in the papers by D.A. Kovrigin
[54, 55]:

(a) the parametric interaction of an axisymmetric
wave with flexural waves propagating together in the
longitudinal direction or in opposite circular directions;

(b) the cross-interaction of axisymmetric and non-
axisymmetric waves that leads to the formation of a sta-
tionary wave;

(c) the self-modulation of an axisymmetric wave in
the longitudinal direction.

It was demonstrated that three-frequency solitons of
envelopes that represent modulated waves propagating
in the longitudinal direction can be formed in both a
straight rod and a shell.

The reduction of the equations of shell (and also rod
and plate) dynamics to nonlinear evolutionary equa-
tions was performed in the dissertation by Yu.A. Chov-
nyuk [100].

Many problems of nonlinear wave dynamics of
cylindrical shells are discussed in the papers by
A.I. Zemlyanukhin and L.I. Mogilevich that were com-
bined to form a mongraph [44]. The problems consid-
ered there include

(a) the derivation of the evolutionary equations sim-
ulating the propagation of longitudinal, shear, and flex-
ural waves in nonlinearly elastic, nonlinearly viscoelas-
tic, homogeneous, and inhomogeneous cylindrical
shells;

(b) the determination of the classes of exact soliton
and shock-wave solutions;

(c) the determination of the conditions at which the
models are connected with the integrable technique of
the inverse scattering problem;

(d) the theoretical-group analysis of nonlinear equa-
tions in partial derivatives and the mechanical interpre-
tation of the invariant solutions.
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CONCLUSION

In this review, attention was concentrated on the
problems of propagation of strain solitons in the elastic
elements of structures when the presence of dispersion
was associated with the finiteness of the dimensions of
the objects under consideration in the direction trans-
verse to the direction of wave propagation, i.e., with the
waveguide properties of the tested objects.

Another factor giving rise to a dispersion is the
effect of the microscopic structure of materials. The
analysis shows that the dispersion caused by the micro-
structure of a material and manifesting itself at much
higher frequencies than waveguide dispersion can lead
to the formation of strain solitons in the material in the
presence of nonlinearity.

Various problems of nonlinear wave dynamics of
solid media with a microscopic structure are discussed
in the books by K.A. Naugol’nykh and L.A. Ostrovskiœ
[71], V.N. Nikolaevskiœ [73], and V.I. Erofeev [22].
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Abstract—On the basis of the experimental data obtained in the tropical zone of the Indian Ocean with the use
of explosive sources, the characteristics of signals that penetrate the shadow zone as a result of leakage from
the subsurface channel are studied. The propagation velocity of these signals, the transformation of their spec-
trum due to the frequency-dependent transmission loss, the maximum of the correlation function, and the opti-
mal frequency of the shadow zone insonification by these signals are determined. On the basis of computer
modeling with a code realizing the wide-angle parabolic approximation, the effects of individual parameters of
the medium on the energy leakage from the subsurface channel are estimated. The numerical results are reliably
confirmed by the experimental data. © 2002 MAIK “Nauka/Interperiodica”.
The solution of the problems of applied acoustics
requires knowledge of the characteristics of both the
total sound field and its individual components. In par-
ticular, this statement extends to sound signals that are
weak against the background of the oceanic ambient
noise. To such signals, we can assign those recorded in
the geometric shadow zone of the deep ocean after their
penetration there by the water paths (i.e., without bot-
tom or surface reflections). In addition to the diffrac-
tion-caused penetration of sound through the boundary
of the shadow zone [1], the appearance of water-path
signals in the shadow zone can be caused by energy
leakage from the subsurface channel [2] and by the
reflection (or scattering) of sound from fine-structure
inhomogeneities of the water medium [3]. Sound can
also penetrate into the shadow zone through micro-
channels in the sound velocity profile [4].

In spite of the low energy content of these signals, it
was found that the energy leakage from the subsurface
channel at frequencies lower than the critical frequency
is substantial, and a receiver placed in a shadow zone is
reliably insonified at low frequencies [5]. It is also
known that the acoustic energy that penetrates the sec-
ond shadow zone due to the reflection by fine-structure
inhomogeneities of the water medium can in some fre-
quency range be comparable with the energy of the bot-
tom-reflected signals [6]. In this connection, it is of
interest to estimate the possibility of using the mea-
sured characteristics of these signals for both enhanc-
ing the efficiency of detection systems and obtaining
the information on the medium.

The analysis of our experimental results obtained in
various regions of the ocean showed that the use of
1063-7710/02/4806- $22.00 © 20656
high-power wide-band sources of the explosive type
allows one to detect the aforementioned signals and to
study their characteristics in detail. Below, we dwell
on the results of the experiment carried out in the
Indian Ocean (along 6° S), where the signals penetrat-
ing through the boundary of the geometric shadow
zone were found to be most pronounced in the experi-
mental records.

The experiment was carried out along a 50-km track
at an ocean depth of 5000 m. The receiving ship with
hydrophones lowered to depths of 350 and 3000 m was
adrift at the initial point of the track. The transmitting
ship was initially in the proximity of the receiving ship
and began its motion dropping charges of a weight of
2.88 kg. The charges were exploded at depths of 195 m
at spatial intervals of about 1.0 km. The state of the sea
surface was estimated as Beaufort 3.

The results of the hydrological survey at the initial
point of the track showed that a mixed water layer with
the sound velocity at the sea surface c0 = 1541.1 m/s
and the weak positive gradient g1 = 0.010 s–1 was
observed within the depths from zero to 30 m. Below, a
water layer with a steep negative gradient g2 = 0.616 s–1

was located.

The sound propagation conditions were such that
the lower hydrophone (3000 m) was located in the inson-
ified zone, whereas the upper hydrophone (350 m),
beginning from the first several kilometers, was located
in the region where water-path rays do not penetrate
(the so-called geometric shadow zone).

The shadow zone boundary (in the geometric acous-
tics approximation) is unambiguously determined only
002 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) Ray pattern in the presence of the subsurface channel and the location of the transmitting ship at the instants of charge
explosions 1–10. (b) Records of the initial segments of the signals from explosions 2–10 recorded by the upper hydrophone.
Records 5–10 exhibit the signal arrivals (a) from the subsurface channel; (b) due to the diffraction-caused sound penetration through
the boundary of the shadow zone; and (c) due to the reflection from fine-structure inhomogeneities of the water medium.
in the case of the sound velocity profile with a negative
gradient that begins directly from the ocean surface. It
is described by the trajectory of the limiting water-path
ray, i.e., the ray that has the upper turning point at the
ocean surface. Given the subsurface channel in the
ocean, the limiting water-path ray will have a turning
point near the lower boundary of the channel, where it
is split into two rays. One of them refracts downward,
whereas the other penetrates the channel under the zero
grazing angle. Strictly speaking, in this case, the
boundary of the shadow zone is interpreted as the tra-
jectory of this ray (Fig. 1a). At a small positive gradient
in the subsurface layer, the distance travelled by this ray
in the channel can be rather long (up to 7 km in the
Indian Ocean). Thus, the interval of distances between
the trajectory of the limiting water-path ray and the new
boundary of the shadow zone will be additionally
insonified by rays that are singly reflected from the sur-
face. The amplitude of signals propagating along these
rays must be very small due to the expansion of the ray
tube, and their propagation times are very close to the
propagation times of signals observed in the experi-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
ment. As a result, in the above-mentioned interval of
distances, we obtain a ray pattern that, at first glance, is
very close to the actual field observed in the ocean.

Nevertheless, a more detailed analysis of experi-
mental data brings up the question of the validity of
using the ray approximation for studying the real phys-
ical picture. This is caused by several facts. The first of
them is the considerable discrepancy between the
experimental data and the calculations by the ray theory
in estimating the spectrum of signals recorded outside
the reliably insonified region bounded by the trajectory
of the limiting water-path ray.

Figure 1b shows the records of the initial segments
(without bottom reflections) of signals from explosions
2–10 recorded by the upper hydrophone (z = 350 m).
The first three signals (2–4) are direct and surface
reflected signals recorded in the insonified zone. Their
propagation paths in the ray approximation, including
the signals from the first explosion, are shown in Fig. 1a.
For the signal from explosion 5 (r = 4.2 km), the
receiver is in the region where signals, in the ray
approximation, cannot penetrate by the water paths,
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Fig. 2. Comparison of shock-wave spectra for (a) the signal from the subsurface channel (r = 8.15 km, z = 350 m) and (b) the water-
path signal (r = 8.25 km, z = 3000 m); (c) the noise spectrum in the shadow zone.
and it begins to detect only low-energy signals (bottom
reflections, as before, are not considered). As the dis-
tance increases, it becomes apparent that the signal
recorded is not a single one but represents a superposi-
tion of signals of various nature and with individual
characteristics: spectrum, propagation velocity, decay
factor, etc. We identified these signals as those caused
by (a) the presence of the subsurface channel, (b) the
diffraction penetration of sound from the insonified
zone, and (c) the reflection from fine-structure inhomo-
geneities of the water medium. In this paper, we mainly
consider the signals from the subsurface channel.

Figure 2a shows the shock wave spectra of the signal
under study, and Fig. 2b, the levels of ambient noise
recorded by the upper hydrophone at a distance of
8.15 km from the source (explosion 9) and their com-
parison with the spectrum of the shock wave of the
water-path signal recorded by the lower hydrophone
(3000 m) at a distance of 8.25 km. The difference (com-
pensated in Fig. 2) in the spectrum levels of the signals
presented in Figs. 2a and 2b exceeds 22 dB at a fre-
quency of 500 Hz. The comparison of the spectra of the
two signals reveals the lack of low frequencies in the
spectrum of the signal from the subsurface channel.
The maximum observed in the spectrum of this signal
in a frequency range of 500–700 Hz corresponds to the
frequency range corresponding to the maximal energy
leakage from the subsurface channel at the given dis-
tance. As the distance increases, this maximum is
shifted to the region of higher frequencies due to the
frequency-dependent leakage of the energy from the
channel. The disappearance of the low-frequency sig-
nals from the spectrum in Fig. 2a cannot be explained
in the framework of the ray acoustics but is reliably
illustrated by calculations with the wave theory [7] as
the result of the waveguide propagation in the subsur-
face water layer.

In addition, computations with the wave theory
(Fig. 3) and the experimental data (Fig. 4) testify that
the sound propagation in a subsurface channel and the
energy leakage from it into the underlying deep-water
sound channel are observed up to distances that are
much greater than classical geometric acoustics can
explain. In order to make this theory consistent with the
observed experimental data, one needs to introduce a
rough boundary of the subsurface channel into the
waveguide model. This boundary causes sound scatter-
ing, and the latter leads to the trapping of rays by the
channel. At the same time, as follows from the curves
in Fig. 3, similar calculations by the wave theory for a
plane-layered model of the subsurface channel point to
a satisfactory agreement with the propagation distances
observed in the experiments.

In this experiment, the signals from the subsurface
channel were observed with confidence up to distances
above 20 km (Fig. 4) and the signals reflected by fine-
structure inhomogeneities, up to the far boundary of the
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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z = 20 and 350 m). The curves for z =350 m are shifted downward by 40 dB. The dashed curves show the spherical decay laws
beginning at a distance of 1 km and at the boundary of the shadow zone for a given depth of reception, respectively.
shadow zone. The temporal characteristics of impulse
signals calculated for the distances of interest to us con-
firmed the existence of two first families of signals
caused by the presence of the subsurface channel and
the diffraction penetration of sound from the insonified
zone. This calculation was performed with the Avilov
code [7] for a range-independent sound velocity profile
obtained in the course of the experiment. The introduc-
tion of a disturbing layer of several tens of meters in
thickness into the sound velocity profile at a certain
depth leads to the appearance of signals from the third
family. All three families of signals are noticeably
ahead of the bottom-reflected signal arrival.

The fact that the highest velocity signal (a) observed
in the experiment is caused by the existence of the sub-
surface channel is reliably confirmed by the calcula-
tions of the characteristics of the impulse signals. The
calculated propagation velocity of the signal that first
arrives at the point of reception is very close to the
sound velocity in the subsurface channel (1537.8 m/s).
Besides, the arrival angle of this signal at the reception
depth in the shadow zone does not depend on distance
(Fig. 5) and equals the arrival angle of the limiting
water-path ray at this depth. Calculations show that the
change of the sound velocity gradient in the subsurface
channel causes only insignificant changes in the ampli-
tude of the signal of interest. In this case, the arrival
angle and the velocity of its propagation remain invari-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
able. In particular, as the gradient decreases or even
takes small negative values, the signal in the shadow
zone continues to be observed, although its intensity
noticeably decreases. This suggests that the necessary
condition for the appearance of a given signal in the
shadow zone is the presence of a jump in the values of
the sound velocity gradient, namely, a virtual boundary
in the upper part of the water layer, rather than the exist-
ence of the subsurface channel itself.

The analysis of spectrograms of both calculated and
recorded signals, in full agreement with literature data
[8, 9], points to an almost complete absence of disper-
sion of the group velocities within the whole frequency
range under study (500–5000 Hz). This fact explains
the high cross-correlation of the signals of interest. The
correlation function maximum remains almost constant
(0.50–0.55) in a band of 200–900 Hz and at a level of
0.75–0.80 in a narrower band of 600–700 Hz, as the
distance varies from 7 to 15 km. Note that, for single-
reflected bottom signals received from the same dis-
tances, the maximum of the cross-correlation function
in the same frequency band is only 0.12 and 0.18,
respectively.

However, our computations show that, for such a
small thickness of the channel (30 m) and a weak posi-
tive gradient (0.010 s–1) of the sound velocity in it, there
exist no normal waves propagating with group veloci-
ties close to the sound velocity in the subsurface chan-
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Fig. 4. Records of the initial segments of signals (without bottom reflections) recorded by the upper hydrophone. The instant of the
signal arrival from the subsurface channel is taken as zero time.
nel [8] at frequencies below the critical frequency of the
channel (about 1450 Hz). The propagation of low-fre-
quency signals in the shadow zone with a velocity close
to that in the subsurface channel can best be illustrated
using the geometric diffraction theory. According to
this theory, the boundary diffraction ray must propagate
along the aforementioned virtual boundary in the upper
oceanic layer. At every point of the boundary, this ray is
split, emitting one more ray that leaves the boundary in
the direction tangential to it [10]. This ray repeats, con-
tinuously shifting in the horizontal plane, the trajectory
of the limiting water-path ray. This shows, first, that the
arrival angles of the considered signals at the depth of
reception are invariable as the distance varies and, sec-
ond, their propagation velocity is frequency-indepen-
dent, as for a lateral wave. Further, the ray leaving the
boundary behaves in full accordance with the laws of
ray acoustics. This allows us to experimentally observe
the signals from the subsurface channel at all depths of
reception, in particular, at a reception depth of 3000 m.

The above-noted analogy with the lateral wave
allows us to use a mathematical method developed in
geophysics for the determination of the propagation
velocity of the signals observed in the experiment. The
signal travel times to a given point of reception were
calculated in two steps. First, the arrival time tr of the
first bottom signal was calculated at the distance r. Sec-
ond, the time delay ∆t of the bottom signal arrival at a
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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given point of reception with respect to the main pulse
was estimated from experimental records. In this case,
the arrival time t of a signal from the subsurface chan-
nel is determined as

t = (tr – ∆t) = t0 + (r – r0)/c,

where r0 is the horizontal source–receiver distance trav-
elled by the limiting water-path ray, t0 is the travel time
along this ray, and c is the unknown propagation veloc-
ity of our pulse. The values of the function t(r) obtained
in such a way were approximated by the method of
least squares for distances from 6 to 24 km. They cor-
respond to the propagation velocity 1538.9 m/s of the
experimental pulse, which is very close to the above-
calculated value 1537.8 m/s and the sound velocity
1541.4 m/s at the lower boundary of the subsurface
channel.

It is easy to show (this is evident from the physical
point of view, as well) that the attenuation of signals
with their penetration and further propagating in the
first shadow zone of the deep ocean are fully deter-
mined by the losses in the subsurface channel itself.
Figure 6 shows the laws of the sound intensity decay
with distance in the subsurface channel calculated at a
depth of 20 m (z0 = 200 m) for a number of frequencies.
For a frequency of 100 Hz, the sound field at this depth
is entirely determined by the diffraction penetration of
sound through the boundary of the shadow zone. How-
ever, above 200 Hz, the total sound field begins to
 PHYSICS      Vol. 48      No. 6      2002
exceed the pure diffraction field, although the transmis-
sion loss in the channel is very high due to the energy
leakage from it. The loss decreases gradually as the fre-
quency increases. For frequencies above the critical fre-
quency of the channel (~1450 Hz), the intensity decay
with distance (beginning from the boundary of the
shadow zone) follows the spherical law. A further
increase in frequency leaves the average level of the
field invariable (in the framework of the plane-parallel
boundaries) but leads to the formation of a distinct
interference pattern due to the excitation of the trapped
modes of ever increasing numbers. The result of this is
that the energy leakage from the channel with increas-
ing distance will have an oscillating character rather
than a continuous one, as at lower frequencies. This
phenomenon can be seen in the experimental curves
beginning from a frequency of 1000 Hz.

The comparison of the field levels at depths of 20
and 350 m (in the subsurface channel and in the shadow
zone, respectively) should be carried out beginning
from 500 Hz because of the difference in the rate of the
diffraction field decay. According to the results of the
computation of the vertical run of the field performed at
a distance of 12 km from the source, the field levels in
the channel and in the shadow zone are almost the same
at a given frequency (Fig. 7). As frequency increases,
the trapped energy level continues to increase. As a
consequence, the field level in the shadow zone also
increases up to certain frequencies, although the rate of
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this increase continuously decreases with growing fre-
quency. In the end, at a frequency of 1450 Hz, which is
the critical frequency of the channel, the increase in the
field level terminates at both depths. In the upper water
layer, the sound propagation becomes completely of a
waveguide character. Now, the field levels in the
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Fig. 7. Frequency dependence of the field level in the subsur-
face channel (z = 20 m) and in the shadow zone (z = 350 m).
Depth of emission 200 m.
shadow zone will almost completely be determined by
the exponential tails of the normal waves trapped by the
channel at a frequency higher than the critical one. The
decay rate of these waves with depth grows as the fre-
quency increases. This leads to a decrease in the field
level in the shadow zone at a given depth as the fre-
quency increases further. Thus, there exists an optimal
frequency of the shadow zone insonification, which
corresponds to the critical frequency of the subsurface
channel.

The sound propagation in the isovelocity subsurface
water layer overlying a liquid halfspace with a negative
sound velocity gradient was considered in [11]. It was
shown that, in the isovelocity water layer, the sound
intensity follows the spherical decay law with distance,
with additional field attenuation caused by the energy
leakage from the layer into the lower halfspace. The
magnitude of these losses is inversely proportional to the
channel thickness, the frequency to the power –2/3, and
the negative sound velocity gradient in the lower half-
space to the power –1/3. In general, the dependence of
the losses on the parameters of the medium agrees rea-
sonably with our computations. It is worth noting that,
for real sound velocity profiles in the ocean, the main
role in the change of loss levels is played by the magni-
tude of the sound velocity gradient just below the chan-
nel boundary (g2). The variation of the gradient (g1) in
the subsurface channel from zero to its typical values of
0.017–0.018 s–1 affects the transmission losses practi-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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cally in the same way as the change of g2 (according to
the law close to the power –1/3).

Figure 8 shows the frequency dependence of the
transmission loss, which was computed for different
values of the thickness h of the subsurface channel and
g1 = 0.018 s–1 and of g2 = 0.616 s–1. For a frequency of
500 Hz, the possible dispersion of the transmission loss
varies from 0.001 to 0.018 s–1 for g1 and from 0.230 to
1.600 s–1 for g2. Here, the circles show the experimen-
tal data obtained for several central frequencies in the
100-Hz band. The inset in Fig. 8 shows the experimen-
tal data for the entire range of frequencies.

In spite of the large volume of computer modeling,
we could not obtain a universal analytical dependence
of the transmission loss on the medium parameters and
the frequency. The dependence obtained is an almost
straight sloping line at low frequencies, which smoothly
passes into a curve of the parabolic type as the fre-
quency approaches the critical frequency of the subsur-
face channel. As follows from these curves, the main
parameter of the medium determining the magnitude of
the losses is the thickness of the subsurface channel.
The effect of obviously overstated (in our computer
modeling) variations of the values of the sound velocity
gradients on each side of the lower boundary of the
channel on the loss values can be compensated by a
very small change of the channel thickness. The latter
can be caused, for example, by passing internal waves.
Thus, for real estimates of both the transmission loss in
the subsurface channel and the energy leakage from the
channel into the shadow zone, one should operate
mainly with two parameters: the frequency of the emis-
sion and the thickness of the subsurface channel.

Referring now to the experimental curve, we may
conclude that the average channel thickness along the
track was most likely 36 m rather than 30 m, as mea-
sured at the initial (reception) point of the track. As a
consequence, the minimal losses are observed in a
lower frequency band (1200–1400 Hz) than expected
for a 30-m thick channel. As the frequency increases
further, the losses again begin to increase due to the
sound scattering by the rough sea surface.

Summarizing, we note the following. The presence
of the subsurface channel in the ocean causes a notice-
able insonification of shadow zones at frequencies
below the critical frequency of this channel. The ray
methods cannot correctly describe the sound propaga-
tion in the channel itself and the sound field in the
shadow zone formed due to the energy leakage from the
channel. The true physical pattern of the sound field
may be obtained by wave methods of computation. A
convenient and useful tool in this respect is Avilov’s
code [7], which allows one to compute not only the
field levels over a wide dynamic range (above 150 dB),
but the form of the impulse signals in a wide frequency
band as well. This allows one to estimate the contribu-
tions of weak energy signals, which are considered in
this paper, to the total field with a reasonable accuracy.
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
The computation results and the experimental data
showed that the propagation velocity of the signals
from the subsurface channel almost does not depend on
the frequency and is close to the sound velocity near the
lower boundary of the channel. Starting from frequen-
cies and distances when one may ignore the diffraction
penetration of sound through the boundary of a shadow
zone, the sound levels in the subsurface channel are
higher than at different depths in the shadow zone.
However, the sound decay laws with distance remain
the same in both cases: the spherical law with addi-
tional decay that is determined by the energy leakage
from the channel. In the frequency range lower than the
critical frequency of the channel, the frequency depen-
dence of losses is determined mainly by the channel
thickness and, to a lesser degree, by the sound velocity
gradients on both sides of the lower boundary of the
channel. The critical frequency of the channel, which is
determined by the given environment parameters, is the
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optimal frequency for the sound penetration from the
channel into the shadow zone. The high sensitivity of
losses to the slightest changes of the channel thickness
makes it very difficult to use the characteristics of the
investigated signals as a tool for monitoring the oceanic
medium. From the applied point of view, the above-
mentioned high correlation of the signals studied in our
experiments is a very important fact.
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Abstract—The data of three experiments on the long-range propagation of explosion-generated sound signals
in the coastal Kamchatka region of the Pacific Ocean are analyzed. The experimental conditions correspond to
summertime (July) with a fully-developed underwater sound channel. The propagation paths are oriented
towards the coast and cross the cold Kamchatka current. A considerable spatial variability of the hydrological
environment on the 250-km deep-water parts of the paths leads to pronounced deviations from the cylindrical
law of the geometric spread of the sound field level. The time structure of the sound field formed in conditions
of channel-type sound propagation in this region is analyzed. For the classical quartets of signals reflected from
the surface, reduced t/N–R/N diagrams are obtained. The diagrams are found to be slightly different for three
different paths. The “purely water” signals arriving at the receiver are nearly unresolved in time. One of the
experiments reveals pronounced changes in the structure of the explosion-generated signals at distances of 100–
120 km from the reception point: the terminal parts of the signals show a sharp increase in level. For the same
part of the path, a pronounced level increase is also observed in the range dependence of the sound field. The
hydrological data obtained for the water medium in this experiment show that these distances correspond to the
boundary of the cold current. From the decay of the sound field level, the attenuation coefficient is determined
by the differential method for the frequencies within 400–2000 Hz. The experimental data on the attenuation
of low-frequency sound in the Kamchatka region of the Pacific Ocean noticeably exceed the calculated values
of the sound absorption coefficient. © 2002 MAIK “Nauka/Interperiodica”.
In different years, in the coastal waters of the Pacific
Ocean near the Kamchatka Peninsula with a fully-
developed underwater sound channel (USC), experi-
ments have been repeatedly performed to study the
long-range propagation of explosion-generated sound
signals. The objective of the experiments was to reveal
the features of the formation of the time and intensity
structures of the sound field in that region. As a rule, the
studies were carried out on propagation paths oriented
perpendicularly to the coastline. The paths crossed the
cold Kamchatka current and the continental slope,
including part of the shelf zone. The receiving system was
located far from the coast, at a distance of ~400–450 km.
Some results obtained by analyzing the experimental
data were published earlier [1]. In the present paper, we
mainly address the specificity of the time structure of an
explosion-generated signal, including the decay of the
sound field with distance in the deep-water (about 2000 m
deep) part of the paths.

THE HYDROLOGICAL ENVIRONMENT
IN THE REGION OF THE EXPERIMENTS

For the Kamchatka region of the Pacific Ocean, a
considerable spatial variability of its hydrological
parameters is typical.
1063-7710/02/4806- $22.00 © 20665
In this region, the field of the sound speed is formed
under the influence of cold runoff waters and the cold
Kamchatka current, which leads to considerable
changes in the depth of the USC axis in summertime. In
July and August, the depth of the USC axis is 40–60 m
in the coastal areas and about 100 m at distances of
300–400 km from the coast. At 100–120 km from the
coastal shelf, a relatively sharp change in the axis depth
occurs along with a change in the USC shape due to the
intrusion of cold waters of the coastal Kamchatka cur-
rent (which penetrates down to depths of 200–300 m
and reaches about 100 km in width). The difference in
the sound speeds near the surface and the USC axis
reaches 28–35 m/s; the sound speed difference between
the USC axis and the near-bottom water layers is about
35 m/s at a sea depth of 2000 m and increases up to
80 m/s at a sea depth of 5000 m.

Figures 1a, 1b, and 1c show the vertical sound speed
profiles that are typical of the coastal area influenced by
the runoff waters, the region affected by the Kamchatka
current, and the deep-water part of the Pacific Ocean
300–400 km away from the coast, respectively.

By analyzing a great body of experimental data on
hydrological parameters in the north-western part of
the Pacific Ocean, Rostov [2] concludes that thermal
002 MAIK “Nauka/Interperiodica”
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inhomogeneities exist in the region of the Kamchatka
current, which take the form of thin layers. For such
inhomogeneities in the region of the current and in
nearby areas, the mean square fluctuation of the acous-
tic refraction index is µ2 ≈ 10–5–10–7.

EXPERIMENTAL TECHNIQUE

The experiments were carried out in summertime
(July), in different years, on three different paths about
300 km long each. The length of deep-water (more than
2000 m deep) parts of the paths was 230–250 km. The
zones where different paths crossed the Kamchatka
current were 130–150 km apart from each other.

Two research vessels participated in the experiments.
The receiving vessel drifted 350–400 km away from
the coast. The transmitting vessel moved at a speed of
10–14 knots from the coast towards the reception point
along the path perpendicular to the 150- to 200-m iso-
baths. The explosive charges were dropped from the
transmitting vessel and exploded by pressure-sensitive
detonators. The depth of explosions somewhat varied in
different experiments: it was 200 and 250 m on the first
and second paths and 150 m on the third one. In each of
the three experiments, from 25 to 40 charges were
exploded within the deep-water parts of the paths. The
successive explosions were separated by 15–30 min in
time, this interval corresponding to 6.5–10 km in dis-
tance. At the moment of each charge dropping, the dis-
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Fig. 1. Vertical profiles of the sound velocity that are typical
of different parts of the paths under study: (a) parts influ-
enced by the runoff waters, (b) parts influenced by the cold
Kamchatka current, and (c) parts that are most distant from
the coastline.
tance between the vessels was determined from the
propagation time of a sound signal and recalculated by
navigational observations periodically performed on
both vessels. The explosion-generated signals were
received by omnidirectional systems located at the
depths of 80, 100, or 150 m, which differed from exper-
iment to experiment.

Before or after each experiment, vertical profiles of
water temperature and electric conductivity (subse-
quently recalculated to salinity) were measured by the
ISTOK-3 apparatus at 6–7 points of the path. Such a
probing was performed for the depths reaching 500–
1000 m. The values of temperature, salinity, and hydro-
static pressure were recalculated to the sound speed
according to Wilson [3].

During the experiment, the wind speed was no
higher than 6–7 m/s and the sea state was Beaufort 1–3.

TIME STRUCTURE OF THE SOUND FIELD

The explosion-generated signal was received in the
frequency band from 10–20 Hz to 1–2 kHz, at distances
of 10–20 km and longer. In the case of a single-ray
sound propagation, the received signal consists of two
short (less than 1 ms) pulses that are equal in amplitude
and have the same signs: the shock wave and the first
oscillation of the gas bubble. The interval between the
pulses corresponds to the period TÓ of the gas-bubble
oscillation. In our experiments, TÓ varied from 12 ms for
an explosion depth of 250 m to 20 ms for that of 150
m. In the case of a multi-ray reception, each ray yields
a pair of the aforementioned pulses in the time structure
of the signal.

Figure 2 shows a pattern of changes in the time
structure of the explosion-generated signals as a func-
tion of distance. This pattern obtained in one of the
experiments resembles the classical t–R diagram pro-
posed by Ewing and Worzel [4] to describe the details
of the sound field structure in the USC. The explosion-
generated signals shown in Fig. 2 are normalized to the
maximal amplitude of each of them and leveled with
respect to the moment of their termination. The classi-
cal quartets of the elementary (single-ray) signals lie on
individual branches that differ in the number of full
cycles produced by the rays along which the central sig-
nals of the quartets propagate. The quartet that is the
first to arrive at the receiver is composed by well-
resolved signals propagating over the rays with maxi-
mal deviations from the USC axis. In the Kamchatka
region, well-resolved signals in the quartets can be
observed at distances no longer than 200 km from the
source. At distances longer than 200 km, the quartets
transform into relatively compact groups of nearly
unresolved signals. In the signals received at distances
shorter than 200 km, no more than two or three signal
quartets can be observed simultaneously. According to
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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the shapes of the elementary (single-ray) signals in the
quartet that arrives first (see inset in Fig. 2), they can be
attributed to the signals that are surface-reflected
(except for the first signal of the quartet received at dis-
tances shorter than 60 km from the source). For the first
branch of the quartets received at distances longer than
35–40 km, a phase shift that is a multiple of 180° is
obvious (instead of 90°, which arises when the ray
touches the caustic). This conclusion is also confirmed
by the ray-approximation calculations of the sound
field structure. According to the calculation, the quar-
tets of the first branch, which exist in the time structure
of the explosion-generated signals received at distances
of up to 35–40 km, are produced by the rays that do not
touch the surface: surface reflections occur starting
from 35–40 km. The main energy of the total explo-
sion-generated signal comes from purely water compo-
nents that are nearly unresolved in time.

From the data, obtained on the first path, we have
earlier concluded in [1] that, although the source and
receiver are set off the USC axis, a terminal part exists
in the group of the unresolved signals, whose duration
is about 50% of the total signal duration and which
cannot be explained in the framework of ray consider-
ations. In comparing the experimental and calculated
time structures of the explosion-generated signal, we
matched them according to the positions of individual
quartets and the beginning of the group of the signals
unresolved in time. With such a matching, the
observed termination of this signal group corresponds
to the velocity of sound propagation along the USC
axis (Fig. 3).

We calculated the group velocity and the degrees of
excitation for the initial ten modes at a frequency of
200 Hz by using the computer code by Mal’tsev [5] (the
medium was assumed to be horizontally layered, with
one of the measured c(z) profiles). Such a calculation
allowed us to partially explain the aforementioned
experimental fact. The six initial modes had the calcu-
lated group velocities that nearly did not differ from the
sound speed at the USC axis, and four modes had rather
high excitation factors. A more comprehensive study of
the problem was made by Belov et al. [6]. In this work,
the wave-approximation code of Avilov [7] was applied
to one of the c(z) profiles measured on the second path
to compute the time structure of the explosion-gener-
ated signal at the frequencies 20–200 Hz. A satisfactory
agreement with the experimental signal structure was
obtained for the signal received at a distance of 105 km
in the second experiment. According to the results
reported in [6], the horizons that are far from the USC
axis were insonified by the exponential tails of the ver-
tical distributions of the mode amplitudes.

At the same time, for the third path, the ray-approx-
imation calculations of the sound field structure showed
that the horizontal component of the propagation veloc-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
ity along some rays crossing the USC axis at angles that
were noticeably different from 0° nearly coincides with
the sound speed at the axis. For this experiment, the
experimental and ray-approximation-calculated time
structures of the explosion-generated signal agreed
well.

Figure 2 presents the time structure of the explo-
sion-generated signals received on the third path. Note
the pronounced changes in the signal structure when
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Fig. 2. Time structure of the explosion-generated signal
received at different distances from the source on the third
path. The source depth is 150 m, and the reception depth,
80 m. The distance between the source and the receiver (in
kilometers) is indicated to the right of the signal oscillo-
grams.
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Fig. 3. Time structure of the explosion-generated signal received at the distances (a) 40 and (b) 203 km from the source. The source
depth is 200 m, and the reception depth is 100 m. The comparison of the experimental record and the calculated results (the ribbon
with vertical dashes under the records shows the signal travel times for individual rays). The computations are performed with
Vagin’s computer code.
crossing the south-eastern boundary of the cold Kam-
chatka current, namely, a sharp increase in the ampli-
tude of the terminal part of the signal. These amplitude
changes correspond to a distance of 90–95 km from the
reception point. The field of the sound speed, which
was measured in the same experiment and is presented
in Fig. 4, evidences that, at this distance from the near-
est reception point, a boundary of the cold current
exists with rather sharp changes in the position of the
USC axis. Similar, though smoother, changes in the ter-
minal signal part were obtained for the distance
increase from 50 to 150 km by ray-approximation cal-
culations with the computer code by Vagin [8] (in view
of the sound-speed profile changes along the path).

To simplify the comparative analysis of the time
structures of the sound field for different ocean regions,
we [9] proposed using the reduced t/N–R/N diagram,
which consists of a single curve representing the t–R
relation for the signals that propagate along the rays
producing N full cycles. Such a diagram fully deter-
mines the propagation times for individual quartets,
including their positions in the time structure of the
multi-ray signal at an arbitrary distance from the
source. By simple recalculations, the reduced t/N–R/N
diagram can be obtained for the entire body of experi-
mental data obtained in each experiment.

The results of such a recalculation for the third path
are shown in Fig. 5. The recalculation was performed
for N = 1, 2, 3. In addition to the experimental data, the
approximating curve is plotted in Fig. 5. In spite of the
considerable spatial variability of the hydrological
environment along the path, the recalculated values
obtained for different N agree well with each other at
distances up to 160 km. The scatter of the experimental
data is insignificant. A rather high degree of order has
been also mentioned by other researchers (see, e.g.,
[10]) for individual ray groups in long-range sound
propagation in variable hydrological environments.

A similar recalculation was also performed for the
first and second paths. For those measurements, Fig. 5
shows the t/N–R/N diagrams in the form of curves that
approximate the experimental data. The difference
between the t/N–R/N diagrams constructed for different
paths is more significant. Such a difference can be
caused both by space–time changes in the hydrological
parameters of the paths (space separation of them, dif-
ferent years of experimenting) and by different depths
of the transmitter and receiver relative to the USC axis
in these measurements.

The change in the terminal unresolved part of the
explosion-generated signal (that is, the elongation of
the signal part formed by purely water arrivals) was
proportional to the distance with a proportionality fac-
tor of 0.005 s/km for the first path, 0.008 s/km for the
second, and 0.007 s/km for the third.
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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Fig. 4. Sound speed field obtained from the data of the hydrological survey carried out on the third path during the acoustic exper-
iment.
SOUND FIELD DECAY AND THE FREQUENCY 
DEPENDENCE OF ATTENUATION

With the explosion-generated sound signals, the fol-
lowing sound field characteristic equivalent to the sig-
nal energy within a frequency band ∆f is used:

where T is the signal duration, and pf(t) is the sound
pressure in the explosion-generated signal, which is
normalized to the frequency band ∆f. In computer sig-
nal processing, this equivalent value can be obtained
from the power spectrum of the signal.

By processing the signals received on each of the
paths, the experimental decay laws were estimated for
the sound field levels at different frequencies. The
obtained decay laws were used as starting data for esti-
mating the frequency dependence of the attenuation
coefficient.

Figure 6 illustrates the decay of the sound field cor-
rected for the cylindrical law of geometric spread for
the frequencies 200, 400, and 800 Hz on the first and
third experimental paths. Both on the first and on the
third paths, a moderate (3–4 dB) elevation in the sound
field level is observed for the region of the current
boundary nearest to the reception point. The corre-

E f p f
2 t( ) t,d

0

T

∫=
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sponding distances are 120–150 km for the first path
and 90–10 km for the third one.

For the frequency band 100–2000 Hz, we used the
deviation of the experimental sound field decay from
the cylindrical law of geometric spread to estimate the
attenuation coefficient. Strictly speaking, the cylindri-
cal law is valid for a channel-type sound propagation in
a horizontally stratified medium. In our case, the atten-

0.5
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30

t/N, s

R/N, km
40 50 60

1.0

a

b
c

Fig. 5. The t/N–R/N diagram plotted on the basis of the
experimental data obtained on the (a) first, (b) second, and
(c) third paths. The symbols d, ×, and s indicate the exper-
imental values of t/N for N = 1, 2, and 3, respectively, on the
third path.
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uation coefficient estimated in this way is nothing but a
quantitative parameter that characterizes the steepness
of the decrease in the sound field level with distance,
i.e., the departure of the decay from the cylindrical law.
To exclude terminological ambiguity, let us call the
aforementioned value the formally determined value
of the attenuation coefficient βf . The values of βf esti-
mated from the experimental data obtained on the
propagation paths are summarized in Table 1.

The experimental law of the sound field decay is
also governed by the changes in the USC parameters

Table 1.  Experimental values of βf for the three paths

Frequency, 
Hz

Path 1, βf , 
dB/km

Path 2, βf , 
dB/km Path 3, βf , dB/km

100 –0.014 –0.004 –0.0055 (–0.006)

125 –0.004 –0.003 –0.0055 (–0.006)

160 –0.021 –0.002 0.000 (–0.004)

200 –0.0095 –0.001 0.0045 (0.005)

250 –0.002 –0.001 0.0043 (0.002)

315 –0.005 0.000 0.0083 (0.008)

400 –0.009 0.0105 0.0165 (0.0155)

500 0.0035 0.011 0.020 (0.018)

630 0.009 0.017 0.029 (0.028)

800 0.018 0.029 0.0395 (0.0395)

1000 0.027 0.036 0.044 (0.043)

1250 0.037 0.047 0.0575 (0.0575)

1600 0.052 0.057 0.069 (0.0685)

2000 0.069 0.078 0.083 (0.083)
along the path, including its shape and the depth of its
axis. This statement is especially true for low frequen-
cies at which the sound absorption and scattering by
inhomogeneities of the sea medium are weak. As was
noted in [11], the deviations from the cylindrical law
can be observed toward both increase and decrease in
the steepness of the decay, the decrease leading to neg-
ative values βf .

According to Table 1, we observed a decrease in the
decay steepness (relative to the cylindrical law) on all
three paths. This decrease manifested itself at the fre-
quencies 400 Hz and lower on the first path, at 250 Hz
and lower on the second, and at 125 Hz and lower on
the third. At frequencies higher than 400 Hz, the values
of βf presented in the table increase from the first to the
third path. On average, the difference in the decay rates
was about 0.0085 dB/km between the second and first
paths and 0.018 dB/km between the third and first
paths, remaining almost independent of frequency.

For the third path, Table 1 additionally shows the
values of βf (in parentheses) that were obtained from
truncated explosion-generated signals. From the whole
signals, segments were artificially cut out that con-
tained the quartets of resolved elementary (single-ray)
signals reflected by the sea surface (the sea state
reached Beaufort 2–3 in this case). By doing so, we
tried to exclude the influence of the wavy surface from
the values of βf . However, as the comparison of the data
presented in Table 1 shows, this influence proved to be
negligibly small in our case.

With the parameters of the medium changing along
the path, one cannot determine the law of geometric
spread to a sufficient accuracy. To estimate the attenua-
tion coefficient, one should use the so-called differen-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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tial method proposed [12] in the mid-1950s. This
method of estimating the attenuation is based on two
assumptions: first, that the law of geometric spread is
unknown but the same for the entire frequency band at
hand, and, second, that the frequency dependence of the
attenuation coefficient can be approximated by a
power-low curve with a zero constant component. At
individual frequencies, the levels of the sound field are
normalized to the level at one of the frequencies, which
is chosen as a reference. This procedure serves to fully
exclude the unknown law of geometric spread. From
the normalized decays at each frequency, the “differen-
tial” attenuation coefficient is determined. By approxi-
mating the frequency dependence of the differential
attenuation coefficient and by omitting the free term,
we obtain the following relation for the total attenua-
tion coefficient:

(1)

The relatively small lengths of the paths did not allow
us to attain sufficient reliability in estimating the attenu-
ation coefficient at lower frequencies (100–315 Hz). The
estimates were obtained for the range 400–2000 Hz.
The differential values of the attenuation coefficient
were estimated for all the paths studied. These values
are summarized in Table 2. The 800-Hz frequency was
specified as the reference.

In transforming the differential values into the com-
mon ones of the attenuation coefficient, we took into
account the experimental data obtained on all three
paths. To describe the frequency dependence of the
attenuation by Eq. (1) with the frequency in kilohertz
and attenuation in decibels per kilometer, we obtained
the following parameter values: a = 0.063 and n = 0.7.

For the sake of comparison, in addition to the exper-
imental values, Table 3 shows the attenuation coeffi-
cients calculated according to Eq. (1) and according to
the expression presented in [13] for the frequency
dependence of the absorption coefficient (in view of the
relaxation processes caused by magnesium sulphate
and boron which are present in sea water).

According to the hydrological surveys of the propa-
gation paths, which were performed prior to all experi-
ments, the characteristic values 4°ë and 34‰ were
found for the temperature and salinity at depths of 20–
400 m. The concentration of hydrogen ions was not
determined in the surveys. However, the archival data
existing for the region at hand lead to the pH values
7.9–8.1 for these depths. In accordance with Table 3, in
the Kamchatka region of the Pacific Ocean, the attenu-
ation coefficients are two to three times higher than the
absorption coefficient at the frequencies 400–1000 Hz.

Together with the Norwegian Sea [14], the deep-
water southern part of the Sea of Okhotsk [15], and the
Greenland Sea [16] (at least, its eastern part), the Kam-
chatka region should be attributed to the regions of the

β a f n.=
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
ocean that are characterized by an increased low-fre-
quency sound attenuation. The most probable mecha-
nism of such attenuation in these regions is the sound
scattering by fine-structure thermal inhomogeneities
generated by the cold Kamchatka current [2].

To conclude, let us formulate the main results
obtained in analyzing the data of the three experiments
on long-range propagation of the explosion-generated
signals on different paths in the Kamchatka region of
the Pacific Ocean.

For the three 230 to 250-km-long paths, a consider-
able spatial variability of their hydrological environ-
ments is typical, which leads to pronounced deviations
of the geometric spread from the cylindrical law at fre-
quencies below 200–400 Hz.

The experimental time structure of the explosion-
generated signals contains well resolved classical quar-
tets produced by elementary (single-ray) signals
reflected from the sea surface. The reduced t/N–R/N dia-
grams obtained from the experimental data are some-
what different for the three paths, although the scatter
of the values of t/N for an individual path is negligibly
small. The purely water elementary (single-ray) signals
are nearly unresolved in time and arrive as a compact
group, whose duration increases in proportion with the
distance from the source. The proportionality factor
varies from 0.005 to 0.008 s/km for different paths.

On one of the paths, sharp changes in the structure
of the aforementioned signal group were observed at
the point where the path crosses the Kamchatka current
boundary nearest to the receiver: the amplitude of the
terminal part of this group (which constitutes about
10% of its duration) sharply increased and became
three to four times higher than the amplitude of the
main signal part.

The attenuation coefficients determined by the dif-
ferential method from the level decay at 400–1000 Hz
exceed the calculated values of the attenuation coeffi-

Table 2.  Experimental values of the differential attenuation
coefficient (the reference frequency is f0 = 800 Hz)

Frequency, 
Hz

Path 1, attenu-
ation, dB/km

Path 2, attenu-
ation, dB/km

Path 3, attenu-
ation, dB/km

400 –0.027 –0.018 –0.023

500 –0.015 –0.018 –0.020

630 –0.009 –0.011 –0.011

800 0 0 0

1000 0.009 0.008 0.005

1250 0.019 0.018 0.018

1600 0.034 0.029 0.030

2000 0.051 0.049 0.044
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Table 3.  Comparison of the experimental data obtained for the attenuation in the coastal Kamchatka region of the Pacific
Ocean with the absorption coefficient calculated for the experimental region

Frequency, Hz
Attenuation,

dB/km, calculation 
by Eq. (1)

Experimental attenuation, dB/km Absorption, dB/km,
calculation according

to [13]path 1 path 2 path 3

400 0.033 0.028 0.037 0.032 0.007–0.009

500 0.039 0.041 0.038 0.036 0.011–0.014

630 0.045 0.047 0.044 0.045 0.016–0.020

800 0.054 0.055 0.055 0.055 0.023–0.029

1000 0.063 0.065 0.063 0.060 0.031–0.039

1250 0.073 0.074 0.074 0.073 0.042–0.052

1600 0.087 0.089 0.084 0.085 0.058–0.070

2000 0.102 0.107 0.104 0.099 0.078–0.091
cient by a factor of 2 to 3. Thus, this region of the ocean
should be ascribed to the regions with increased atten-
uation, like the previously studied regions of the Norwe-
gian Sea, the Sea of Okhotsk, and the Greenland Sea.
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Abstract—The elastic and mechanical properties of thin films formed by carbon nanotubes differently oriented
with respect to the substrate are studied. The penetration depth of a probe tip into the film is measured as a func-
tion of the pressing force by using a scanning-probe atomic force microscope. The effect of pressing the tip into
the films on their mechanical stability and the unusual behavior of the films scratched by the tip are investigated.
It is found that films with different tube orientation with respect to the substrate exhibit radically different prop-
erties. © 2002 MAIK “Nauka/Interperiodica”.
Great interest has been recently shown in the new car-
bon nanotube materials [1, 2]. This is related to their
unique physical properties, including the elastic,
mechanical, and electric ones. For electronic applica-
tions, the dense-film devices are no less promising than
those based on isolated nanotubes or their bundles. How-
ever, it seems very important for a film to contain only
one layer of nanotubes. In this case, each tube can have
its own independent contact on both sides of the film. At
present, quite a number of laboratories all over the world
can grow dense layers of nanotubes [3–5], but there are
few examples of single layers of oriented tubes. It is pre-
cisely this type of single-layer films of nanotubes identi-
cally oriented with respect to the substrate that is used in
the present study. It should be emphasized that we also
managed to obtain unusual films with the tubes oriented
not at the habitual 90° angle to the substrate (below, we
call them 90-degree films) but at an angle of 45° (below,
we call them 45-degree films). These are quite interest-
ing objects due to the giant anisotropy of the physical
properties of individual nanotubes.

The elastic and mechanical properties of individual
isolated tubes and their bundles have been much inves-
tigated. As for the properties of dense films, their study
is only just beginning [6–8]. Below, we report on the
study of films with various tube orientations. The fol-
lowing characteristics were obtained:

(1) the penetration depth of a probe tip into the film
as a function of the pressing force (the so-called loading
curves);
1063-7710/02/4806- $22.00 © 20673
(2) the presence of indentations produced in the film
by the pressing tip;

(3) the character of the damage caused by the tip
scratching the film (the scratch sclerometry);

(4) the effect of silicon doping on the elastic proper-
ties of the films.

In the experiments, a Nanoscan scanning-probe
atomic force microscope was used. Its description and
parameters can be found in [9, 10]. An elastic oscilla-
tory system was brought into contact with the analyzed
surface by means of a hard tip. When the tip was
pressed into the sample, both the frequency and ampli-
tude of elastic oscillations changed. By this change, it
was possible to determine the elastic parameters of the
sample.

Let the curvature radius of the tip be R and the stiff-
ness of the oscillatory system (the cantilevel fixing the
tip) be k0. Now, we lift the sample and fix the moment
of contact with the tip. Then, we lift the sample still fur-
ther. As a result, the tip moves into the sample to the
depth h, and the cantilevel shifts upward by a certain
distance x. The total lift of the sample after the moment
of contact is x + h. This total length can be easily mea-
sured. The resistance force F acting from the side of the
sample on the pressing tip depends on h. At equilib-
rium, we have

(1)

For evaluation purposes, we limit our consideration to
the case of a very hard tip (in our case, it is a diamond

k0x F h( ).=
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one) contacting a semi-infinite isotropic medium,
because there is no Hertz theory of contact (even a qual-
itative one) for crystalline media and textures. Since the
force F(h) is proportional to h3/2 [11], there exists a
region of sufficiently small values of h, for which k0h @
F(h). Taking into account Eq. (1), we obtain for this
case x ! h. Hence, for the sufficiently small h, the lift
of the cantilevel is small compared to the displacement
of the tip, and the total displacement can be considered
as equal to the tip’s penetration into the sample.
Neglecting the tip deformation and applying the Hertz
theory [11], we obtain a simple condition for this
approximation:

(2)

Here, E is the Young modulus and σ is the Poisson ratio.
A characteristic property of our microscope is the value
of stiffness (1.3 × 105 N/m), which is very high for the
atomic-force microscopy. This considerably increases
the region determined by inequality (2). For a sample
with E = 1.7 × 1011 Pa and σ = 0.2, inequality (2) holds
for h ! 80 nm, even with the tip’s curvature radius R =
4 µm. (Such a large curvature radius of the tip is neces-
sary to measure the macroscopic characteristics of the
films formed by elements as massive as nanotubes.)

Consider now the frequency shift of the oscillatory
system of the microscope that occurs when the tip is
pressed into the sample. The stiffness of the system is
now determined not only by the cantilevel, but also by
the resistance force of the sample. If the amplitude of
elastic oscillations is much less than the penetration
depth, the total stiffness is

(3)

h ! 
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Fig. 1. Pressing force as a function of the tip’s penetration
depth into the film for 90-degree and 45-degree films.
Hence, one can easily obtain the pressing force:

(4)

Here, f0 is the frequency of the unloaded system
and f – f0 is the oscillation frequency shift caused by
pressing of the tip. In deriving Eq. (4), we assumed that
the frequency shift is small compared to the frequency
of the unloaded system. Using the Hertz theory, one can
easily show that this condition is satisfied for the above
parameters and h ! 80 nm.

Thus, using the nonstandard parameters of our scan-
ning-probe atomic force microscope, we can reliably
measure the loading curves at the nanometer level and
the penetration depths down to at least 10 nm. This
opens up interesting prospects for investigating differ-
ent types of thin films, as for them there are still no ade-
quate measuring techniques and the experimental data
are contradictory.

Now, we discuss our experimental results. The films
were deposited on a silicon substrate. They consisted of
one layer of nanotubes with a characteristic tube length
of about 110 nm. The tubes were practically parallel to
each other for both tube orientations with respect to the
substrate. They were mostly multilayer nanotubes with
diameters from 3 to 5 nm. The surface relief was stud-
ied for both film types. The relief was studied with a tip
of curvature radius about 4 µm and that of curvature
radius about 100 nm. In both cases, a rather smooth sur-
face was observed, which was quite similar to the sur-
face described in our previous paper [8], the character-
istic inhomogeneities being about 1–2 nm in height.

The loading curves for the films with different ori-
entation of nanotubes, taken with the diamond tip
whose curvature radius was about 4 µm, are shown in
Fig. 1. As distinct from the previous work [8], we
present here the quantitative dependence of the press-
ing force on the depth of penetration of the tip into a
thin film formed by nanotubes. Such an approach has
many advantages. If we need to create a pressure con-
tact or introduce an impurity into some surface area by
means of atomic force microscopy, or to treat the sur-
face mechanically, then, having performed the corre-
sponding measurements according to this method, we
can determine the pressure necessary for obtaining a
contact of a desired diameter, irrespective of the surface
character (a hard tip is not subject to deformation). One
does not need to know what contribution to the sample
response is made by the substrate and what is made by
the film. One does not need to choose a region with a
very smooth surface, as was the case in our previous
work. Figure 1 demonstrates the results for the most
common region with a considerable roughness. The
part of the curve corresponding to the tip penetration
depth of less than 1 nm was deliberately omitted,
because the amplitude of the tip oscillations was finite,
although we chose the minimal possible oscillation

F h( ) 2k0

f f 0–
f 0

-------------- h.d

0

h
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intensity during the observations. As a result, we had to
reject the region where this circumstance could have
affected the results.

One can see at once a strong difference between the
elastic properties of nanotubes with the 45-degree ori-
entation and those with the 90-degree one. For such a
complex anisotropic medium, this difference can be
analyzed in detail only on the basis of a full set of elas-
tic moduli, but the latter can hardly be obtained in the
near future for a thin film with a single layer of tubes.
However, the measurement data give a general idea of
the enormous anisotropy of elastic properties. Compar-
ative measurements on samples of some other materials
have been carried out. Since such results were given in
[8], we need not dwell on them. We only note that the
elastic stiffness of the high-quality 90-degree film used
in this study proved to be considerably higher than that
of the sample used before [8].

In the cited paper [8], we noted that the square of
frequency shift in nanotube films is proportional to the
indentation depth, as should be the case in isotropic
media. This allowed us to ascribe a certain effective
Young modulus to the nanotube film. (Unfortunately,
we have not emphasized that it could differ from the
real Young modulus and that it plays the role of the lat-
ter to characterize the indentation only.) The same
dependence can be represented as the proportionality of
F2/3 to the penetration depth of the tip. For the new
90-degree film, such a law really holds in the regions
with a smooth surface. But it was quite unexpected to
find that this law manifests itself for the 45-degree films
as well, although, in this case, the elastic force problem
is not even an axially symmetric one. Lacking a quali-
tative Hertz contact theory for crystals and textures, one
can hardly be successful in analyzing this fact, but some
more or less general relation could possibly be found.
(Note that a generalization of the Hertz theory to the
case of an arbitrary nonspherical shape of contacting
surfaces leads, for isotropic materials, to the above-
mentioned dependence [11].)

The mechanical properties of the films are also of
interest. We searched for the traces of the tip after it was
pressed into the film to a penetration depth of several
tens of nanometers. For this purpose, the tip was
pressed into the same place several times in succession.
We tried to detect the change in the time of initial con-
tact and the shape of the loading curve. Within the mea-
surement accuracy (no worse than 1 nm), we could not
find any traces of previous pressing for both film types.

It was very interesting to carry out the sclerometric
investigations (scratch hardness testing) for such an
unusual medium. For this purpose, a tip with a curva-
ture radius of about 100 nm was used. The tip was
pressed into the film and moved parallel to its surface.
The results obtained for a 90-degree film were remark-
able (Fig. 2). If the tip was pressed into the surface
through no more than 60 nm, the trace of scratching
actually disappeared on the most part of the analyzed
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
surface within one minute after scratching (this is the
maximal speed at which the relief study was possible
with the equipment used). Figure 2a shows the relief
observed along the line of scratching to a depth of 30 nm
after 2 min after the scratching procedure. No distinct
trace is visible. If there was any, it should have been
healed. There are isolated damage regions seen in the
picture as dark spots. Figure 2b shows the relief cross
section for one of such regions. The section was made
at an angle of 75° to the line of scratching for two time
instants: within 2 min after the scratching and within
7 min (in Fig. 2a, the section is marked by the straight

25

0 1.25

nm

µm
1.250

25
nm

(a)

(b)

(c)

Fig. 2. Traces of scratching for the 90-degree film. (a) Sur-
face relief along the scratch line. The tip is pressed into the
film to a depth of 30 nm. The dark regions correspond to
depressions. The frame size is 3.5 × 1.2 µm2. The straight
line corresponds to the cross section in Fig. 2b. (b) Cross
section of the surface relief at 75° to the scratch direction,
2 min (left) and 7 min (right) after scratching. (c) Permanent
scratch observed after the tip was pressed through the whole
thickness of the film. The frame size is 6 × 6 µm2. The dark
regions show depressions, and the light regions correspond
to the raising relief.
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(a) (b) (c)

Fig. 3. Scratches on the surface of the 45-degree film. A three-dimensional relief pattern with “illumination.” (a) Scratches along
the direction of the tube slope (right to left). The depth increases upwards from 30 nm to the full thickness of the film. (b) Scratches
in the opposite direction (left to right). The depth increases upwards from 30 nm to the full thickness of the film. (c) Scratch across
the direction of the tube slope (upwards) through the full thickness of the film.
line). We see that the residual trace of the scratch on the
90-degree film continues healing. After several tens of
minutes, the main (though, not all) traces of scratching
disappear, and even some surface defects that existed
before the scratching disappear as well. Apparently, this
is related to the following two circumstances. The nan-
otubes are remarkably stable and restore their shape
after a strong deformation. The weak bond between
individual tubes does not prevent their rearrangement
in the course of the surface healing and the transition of
the whole system to the state with the minimal potential
energy.

The situation drastically changes when the tip
becomes close to the silicon substrate or reaches it. The
separation of the film from the substrate (most likely, a
temporary one) leads to a permanent scratch in the form
of a large damage region (Fig. 2c). However, its depth
is much smaller than the penetration depth of the tip.
The film relief in the scratch region is highly nonuni-
form not only on the scale of hundreds of nanometers,
but on the nanometer scale as well. Most likely, it is
connected with pushing individual nanotubes or their
bundles out of the layer.

When the 45-degree films are scratched, the situa-
tion is entirely different (Fig. 3). The films were
scratched in three directions: across the tube slope
direction, along the slope, and in the opposite direction.
In all three cases, no trace of healing was observed.
Note that we cannot guarantee that the tip is moving
strictly parallel to the slope direction of the tubes. The
error is about several degrees. The tip cannot be strictly
perpendicular to the surface either, the error being of
the same order of magnitude. As long as the depth of
scratching is much smaller than the film thickness, the
scratches are smooth and regular, with no fundamental
difference observed for the three orientations.

When the probing depth approaches the film thick-
ness, the film is likely to partially separate from the sub-
strate. Unlike the case of the 90-degree film, the depth
of the residual trace is comparable to the film thickness.
The relief around the scratch is noticeably raised. The
elasticity of the surrounding region is lower than that of
the rest of the film. At the same time, unlike the case of
the 90-degree film, the relief of nanometer-scale
regions proves to be smooth. This means that isolated
areas of the film are deformed as a whole, without push-
ing individual tubes or their bundles out of the layer.

In the case of a deep scratching, there are consider-
able differences for different directions. Figure 3a
shows several scratches made along the direction of the
tube slope, and Fig. 3b shows scratches made in the
opposite direction. In Figs. 3a and 3b, the probing depth
grows in the upward direction. The relief pattern is
shown as if the surface were illuminated from some
point above it. The two lower traces in both figures cor-
respond to the tip pressing to a depth that is much
smaller than the film thickness. Such traces are similar
for all scratch directions. The upper traces are obtained
by scratching to a depth close to the film thickness. In
the case of the deep scratching along the tube slope (in
Fig. 3, from right to left), the trace is at first smooth, and
then a large distorted surface region appears. When
deep scratching occurs in the opposite direction (in
Fig. 3, from left to right), the trace is at first striped, and
then it also transforms to a large distorted surface
region. In the case of deep scratching across the tube
slope, a complex cocoonlike structure is observed,
which is shown in Fig. 3c. The fundamental difference
between this and the scratching of 90-degree films is
related to the fact that, in the case of 45-degree films,
the motion of the scratching tip has a considerable
velocity component across the tubes (remember that we
cannot scratch strictly along the tube slope). The tip
should either break a tube or bend it strongly together
with all neighboring tubes.

It is well known that nanotubes actively absorb var-
ious chemical elements. Hence, the atoms from the sil-
icon substrate should inevitably move into the film in
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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considerable amounts. Therefore, the measurements of
the loading curves were performed regularly over two
months. No changes in the elastic properties were
found within the accessible accuracy of measurements
for both film types. This fact, which is strange at first
sight, has a simple explanation. Apparently, the diffu-
sion of silicon atoms into the film mainly goes through
the internal cavity of the multilayer tube. It is well
known that individual layers inside a multilayer nano-
tube are weakly bound to each other. Therefore, the
appearance of impurities and a structure modification
within the tube does not affect the external layers’
response to the mechanical action. In the case of silicon
diffusion between the layers inside a multilayer nano-
tube, or between the nanotubes, one should expect a
quite different result.

Thus, in the present study, we managed to obtain the
quantitative loading curves for the tip pressed to small
depths into two different types of films manufactured
on the basis of nanotubes. The mechanical resistance of
such films to the external action was investigated.

ACKNOWLEDGMENTS

We are grateful to the Russian Foundation for Basic
Research for supporting this study (grant nos. 00-02-
16473 and 01-02-18017).
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
REFERENCES
1. R. Saito and M. S. Dresselhaus, Physical Properties of

Carbon Nanotubes (Imperial College Press, London,
1998).

2. A. V. Eletskiœ, Usp. Fiz. Nauk 167, 945 (1997) [Phys.–
Usp. 40, 899 (1997)].

3. Z. Ya. Kosakovskaya, L. A. Chernozatonskiœ, and
V. A. Fedorov, Pis’ma Zh. Éksp. Teor. Fiz. 56 (1), 26
(1992) [JETP Lett. 56 (1), 26 (1992)].

4. J. S. Suh and J. S. Lee, Appl. Phys. Lett. 75 (14), 2047
(1999).

5. D. A. Walters, M. J. Casavant, X. C. Qin, et al., Chem.
Phys. Lett. 338 (1), 14 (2001).

6. P. Calvert, Nature 399, 210 (1999).
7. V. N. Popov, V. E. van Doren, and M. Balkanski, Solid

State Commun. 114 (7), 395 (2000).
8. I. S. Grudzinskaya, Z. Ya. Kosakovskaya, V. N. Reshe-

tov, and A. A. Chaban, Akust. Zh. 47, 632 (2001)
[Acoust. Phys. 47, 548 (2001)].

9. K. V. Gogolinskiœ and V. N. Reshetov, Zavod. Lab. 64
(6), 30 (1998).

10. Description of the NanoScan Scanning Probe Micro-
scope, http://www.mtu-net.ru/nanoscan.

11. L. D. Landau and E. M. Lifshits, Course of Theoretical
Physics, Vol. 7: Theory of Elasticity, 4th ed. (Nauka,
Moscow, 1987; Pergamon, New York, 1986).

Translated by A. Kruglov



  

Acoustical Physics, Vol. 48, No. 6, 2002, pp. 678–680. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 48, No. 6, 2002, pp. 766–769.
Original Russian Text Copyright © 2002 by Dvoesherstov, Cherednik, Chirimanov, Petrov.

                                                                                                     
Properties of Acoustic Boundary Waves Propagating along
the Interface between Two Piezoelectric Media

M. Yu. Dvoesherstov, V. I. Cherednik, A. P. Chirimanov, and S. G. Petrov
Lobachevskiœ State University, Nizhni Novgorod,

pr. Gagarina 23, Nizhni Novgorod, 603600 Russia
e-mail: dvoesh@rf.unn.runnet.ru

Received October 23, 2001

Abstract—The properties of electroacoustic boundary waves propagating in a system of two piezoelectric
crystalline media are theoretically analyzed. A numerical experiment is used to determine the specific pairs of
piezoelectric media and their orientations that allow the propagation of this type of waves with optimal proper-
ties. © 2002 MAIK “Nauka/Interperiodica”.
A wave that propagates without dispersion along the
interface between two isotropic halfspaces is called a
Stoneley wave [1]. This type of wave can exist only
when certain relationships between the elastic parame-
ters of the bordering media are valid [2]. In a system of
two semi-infinite piezoelectric crystalline media that
have an acoustic contact with each other, an electroa-
coustic boundary wave (BW) can also exist [2, 3]. The
electroacoustic waves that propagate in a layered sys-
tem formed by a film and a piezoelectric substrate when
the film thickness h is sufficiently large (comparable to
the wavelength λ) are also called BW [4].

No system of two bordering piezoelectric media has
yet been manufactured by the epitaxial growth of a
piezoelectric crystalline film on a piezoelectric sub-
strate of another type (except for the ZnO films [5]).
The piezoelectric films of SiO2, LiNbO3, LiTaO3, etc.
have not yet been obtained by epitaxial technology.
However, recently, some technologies appeared (the
direct bonding of piezoelectric materials) that allow
one to create a direct acoustic contact between two pre-
viously grown piezocrystals of different symmetry [4,
6]. Accordingly, interest in the properties of BW has
grown considerably. The application of BW in acousto-
electronic devices can give a number of important
advantages over the common surface acoustic waves
(SAW): unlike a SAW, a BW has no direct contact with
the atmosphere, and, hence, there is no need to encase
the structure obtained, which considerably reduces the
final dimensions of the device [4]; in some cases, the
phase velocity of transverse BW can be higher than that
of SAW [3]; by choosing specific piezoelectric media,
one can considerably improve the technical parame-
ters of the wave, namely, raise the electromechanical
coupling coefficient K 2 and, simultaneously, improve
the thermal stability of the wave [7].
1063-7710/02/4806- $22.00 © 0678
The aim of the present study is the theoretical deter-
mination of various pairs of piezoelectric crystals and
their orientations that allow the existence of BW, as
well as the numerical analysis of the main parameters
of BW.

Following the solution-searching technique used for
SAW [8], one can also find the solution for BW. In the
last case, since the energy of BW is mainly localized in
the vicinity of the interface between two piezoelectric
media, the amplitudes of mechanical displacements
and the corresponding electric potential should expo-
nentially decay on both sides of the interface.

By numerical calculation, we determined the solu-
tions for a quasi-transverse BW propagating in a sys-
tem of two identical bordering piezoelectric crystals of
LiNbO3, LiTaO3, Li2B4O7, etc., separated by an infi-
nitely thin short-circuited metallic layer (see table). The
electric short-circuiting of the interface leads to the
condition of the existence of this type of wave. For
comparison, the table also shows the calculated phase
velocities of SAW (V0 for a free surface and VM for a
metallized surface) and the bulk wave velocities (Vt1,
Vt2, and VL) for the given crystal orientations (which are
represented by three Euler angles φ, θ, and Ψ [9]). It
can be seen that the velocity of the quasi-transverse BW
VBW is close to that of the slow shear bulk wave Vt1. Fig-
ure 1 demonstrates the calculated normalized ampli-
tudes of the mechanical displacements u1, u2, u3 and the
potential u4 = ϕ of the BW on both sides of the interface
(along the X3 axis) in the system of two identical YX-cut
(0°, 90°, 0°) lithium niobate piezoelectric media sepa-
rated by an infinitely thin short-circuited metallic layer.
Figure 1 shows that the boundary wave mainly consists
of two shear components of mechanical displacements
u2 and u3. The displacement amplitudes decay along the
X3 axis at a relatively large distance from the interface:
2002 MAIK “Nauka/Interperiodica”
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about ten wavelengths, which is far greater than in the
SAW case.

By means of a numerical experiment, the regions for
the existence of BW solutions in a system of two differ-
ent piezoelectric crystals were also determined. Fig-
ure 2 demonstrates the calculated dependences of the
velocity VBW (curve bws) in the LiNbO3(0°, 90°,
0°)/metal/KNbO3(0°, 90°, Ψ = 140°–220°) system. The
same figure shows for comparison the calculated veloc-
ities of a slow shear bulk wave in KNbO3 and LiNbO3
crystals (curves knbo3, Vt and linbo3, Vt) and the SAW
velocity on a metallized surface of KNbO3 (curve
knbo3, VS).

It can be seen that, in this case, the phase velocity of
BW is considerably smaller than the velocities of the
bulk waves in both piezoelectric crystals and is close to
the SAW velocity in YX-LiNbO3 (  = 3.691 km/s).
Figure 3 demonstrates the normalized amplitudes of the
displacements of a BW as functions of the distance
from the contact boundary of two crystals in the (0°,
90°, 0°)LiNbO3/metal/(0°, 90°, 175°)KNbO3 system. In
this case, only one transverse displacement component
u2 is predominant (u2 @ u1, u3). Contrary to the situation
in Fig. 1, the displacement amplitudes are no more
symmetric on the left and on the right of the interface
(X3 = 0), and the amplitude u2 with the electric potential
ϕ decay much faster on both sides of the interface,
namely, at distances of about 1.5 wavelengths. Besides,
the electric potential in the KNbO3 crystal is higher
than that in the LiNbO3 crystal, because the piezoelec-
tric parameters of KNbO3 are an order of magnitude

VLiNbO3

6

–10 –8 –6 –4 –2 0 2 4 6 8 10
x3/Λ

LiNbO3(0°, 90°, 0°) + LiNbO3(0°, 90°, 0°)

u1
u2
u3
u4

Fig. 1. Normalized amplitudes of the displacements
(curves u1, u2, and u3) and the potential (curve u4) of the
BW along the X3 axis in a system of two identical bordering
piezoelectric media (YX-cut LiNbO3) separated by metal.
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higher [10]. Note also that a BW exists in this pair of
piezocrystals in the absence of a metallic layer at the
interface. In this case, the value of its phase velocity lies
between those of SAW phase velocities in both media,
and its electromechanical coupling coefficient K2 is

3.0

160

V, km/s

Ψ

5.0

200140 150 180 190 210 220170
2.5

3.5

4.0

4.5

knbo3, VS

bws

knbo3, Vt

linbo3, Vt

LiNbO3(0°, 90°, 0°) + metal + KNbO3(0°, 90°, Ψ)

Fig. 2. The BW phase velocity (curve bws) in the (0°, 90°,
0°)LiNbO3/metal/(0°, 90°, Ψ)KNbO3 system, the SAW
velocity (curve knbo3,VS), and the velocity of slow shear
bulk waves in KNbO3 (curve knbo3, Vt) and in LiNbO3
(curve linbo3, Vt) versus the angle Ψ.

Table

Piezoelectric crystals
Vt, km/s
Vt2, km/s
VL, km/s

SAW
VM, km/s 
V0, km/s

VBW, km/s

Orientation (0°, 90°, 0°) 
LiNbO3/metal/LiNbO3

4.03078 3.691 4.02907

4.7524 3.7178

6.547

Orientation (0°, –49°, 0°) 
LiNbO3/metal/LiNbO3

4.03078 3.637 4.0302

4.7524 3.641

6.547

Orientation (0°, 90°, 0°) 
LiTaO3/metal/LiTaO3

3.350833 3.158 3.350831

4.2265 3.161

5.5885

Orientation (0°, 75°, 75°) 
Li2B4O7/metal/Li2B4O7

3.6889 3.2945 3.3759

4.936 3.309

6.4385

Orientation (0°, 90°, 0°) 
PKN/metal/PKN

3.0546 3.2945 2.6942

4.936 3.309

6.4385
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higher than that of LiNbO3 but lower than that of
KNbO3.

Earlier [4], a structure consisting of an YX-LiNbO3
film on YX-quartz was proposed, in which the BW has

1.0
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Fig. 3. Normalized amplitudes of the displacements
(curves u1, u2, and u3) and the potential (curve u4) of the
BW along the X3 axis in the (0°, 90°, 0°)LiNbO3/metal/(0°,
90°, 175°)KNbO3 system.

Fig. 4. Dependences of the tcd (10–6/C) and K2 (%) on h/λ
for the system consisting of a (0°, 90°, 0°)LiTaO3 film on
(0°, 140°, 40°)LGS.
the “optimal” characteristics (K 2 ≈ 1.5% and the tem-
perature coefficient of delay tcd < 10–6/C) with the
thickness of the lithium niobate film being h ≈ 0.3λ (λ
is the wavelength).

In this paper, we propose a structure consisting of an
YX-LiTaO3 film on (0°, 140°, 40°) LGS (langasite).
Figure 4 demonstrates the calculated dependences of
K2 (%) and tcd (10–6/C) on h/λ for BW in this layered
structure. It can be seen that, in this system, at h/λ ≈ 0.2,
the BW has the maximal coefficient K 2 ≈ 0.96% and a
practically zero value of the tcd.

For piezoelectric crystals with strong piezoelectric
coupling (LiNbO3, KNbO3, and LiTaO3), the orienta-
tions are found that allow the propagation of BW. It is
shown that, in the case of two identical piezoelectric
media separated by an infinitely thin metallic layer, the
BW has a quasi-transverse structure and its phase
velocity is close to that of the slow shear bulk wave. The
LiTaO3/LGS layered structure is proposed. In this
structure, the BW has optimal parameters: a high elec-
tromechanical coupling coefficient and a zero tempera-
ture coefficient of delay.

REFERENCES

1. R. Stoneley, Proc. R. Soc. London, Ser. A 106, 416
(1924).

2. K. Yamanouchi, K. Iwahashi, and K. Shibayama, IEEE
Trans. Sonics Ultrason. 25, 384 (1978).

3. S. Camou and S. Ballandras, in Proceedings of IEEE
Ultrasonics Symposium (2000).

4. K. Eda, K. Onishi, and H. Sato, in Proceedings of IEEE
Ultrasonics Symposium (2000).

5. E. Adler and L. Solie, in Proceedings of IEEE Ultrason-
ics Symposium (Seattle, USA, 1995), p. 341.

6. H. Sato, K. Onishi, and T. Shimamura, in Proceedings of
IEEE Ultrasonics Symposium (1999).

7. T. Irino, T. Y. Watanabe, and Y. Shimizu, in Proceedings
of IEEE Ultrasonics Symposium (1987), p. 257.

8. M. Yu. Dvoesherstov, V. I. Cherednik, and A. P. Chiri-
manov, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 43 (9),
801 (2000).

9. M. P. Shaskol’skaya, Acoustic Crystals (Nauka, Mos-
cow, 1982), p. 632.

10. M. Yu. Dvoesherstov, V. I. Cherednick, A. P. Chirimanov,
and S. G. Petrov, Proc. SPIE 3900, 290 (1999).

Translated by A. Kruglov
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002



  

Acoustical Physics, Vol. 48, No. 6, 2002, pp. 681–686. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 48, No. 6, 2002, pp. 770–776.
Original Russian Text Copyright © 2002 by Esipov, Johannessen, Naugolnykh, Ovchinnikov, Tuzhilkin.

        
Sound Signal Scintillation Approach in the Acoustic Modeling
of the Current Speed Profile in the Fram Strait

I. B. Esipov*, O. M. Johannessen**, K. A. Naugolnykh***,
O. B. Ovchinnikov*, and Yu. I. Tuzhilkin*

* Andreev Acoustics Institute, Russian Academy of Sciences,
ul.Shvernika 4, Moscow, 117036 Russia

e-mail: ibesipov@akin.ru
** Nansen Environment and Remote Sensing Center, N–5037 Bergen, Norway

*** Environmental Technologies Laboratory NOAA (Zeltech),
University of Colorado, 80303 Boulder, USA

Received March 27, 2002

Abstract—The results of mathematical model measurements of the speed of the transverse current in the Fram
Strait are presented. The method is based on the statistical processing of the propagation time fluctuations of
the probing signals along 16 acoustic tracks. The dependence of the sound velocity on depth is assumed to cor-
respond to winter conditions. For the imitation of the current, the three-dimensional field of environmental
inhomogeneities observed in the strait is computed. The complex profile of the current in the direction across
the strait is represented by the motion of 10 layers of this field that move with different velocities. The measur-
ing system consists of four transmitters and four receivers positioned near both coasts of the strait. The rays
used for the measurements do not touch the bottom and do not change their type under the effect of environ-
mental inhomogeneities crossing the acoustic tracks. © 2002 MAIK “Nauka/Interperiodica”.
In recent years, interest among scientists in the
problem of predicting global changes in the Earth’s cli-
mate has increased. Global warming will lead to an
increase in the ocean level, floods covering seaside cit-
ies, and other consequences, which are necessary to
know beforehand. An important role in the formation of
the climate of the Northern Hemisphere is played by the
temperature of waters of the Arctic Ocean. The temper-
ature, in turn, depends on the amount of heat transferred
to the ocean through straits and estuaries. Most of the
heat enters with the Gulf Stream through the Fram
Strait [1, 2], which explains the interest taken by
researchers in arranging a monitoring of the tempera-
ture of its waters and the speed of their currents. Some
aspects of temperature monitoring by the acoustic
method are considered in our previous paper [3]. Here,
we will dwell on the problems of using acoustics for the
observation of currents.

The currents along the acoustic tracks are measured
by the travel time difference of the sound signals in the
reciprocal transmission [4–7]. However, one of the
main features of the current in the Fram Strait is its vari-
ability in the direction across the strait. Therefore,
obtaining the total run of the current needs a great num-
ber of measurements. Methods of measuring currents
directed across the acoustic track seem to be more
attractive. These methods are considered in [8–11]. The
main feature of these works is the assumption that the
field of currents is uniform over the whole acoustic
1063-7710/02/4806- $22.00 © 20681
track, which does not hold for the conditions in the
Fram Strait.

The most adequate method for solving this problem
is the scintillation approach. It was developed in optics,
where it obtained its name [12]. The method is based on
the analysis of the amplitude and phase fluctuations that
occur in the received signal because of the inhomoge-
neities transferred by a current through the acoustic
track. The theory of the method is given in [13]. The
results of the sea tests are described in [14]. The method
uses horizontal arrays of large dimensions, which
allows phasing the array not only by azimuth but also
by distance along the acoustic track. The resolution in
distance increases if both arrays (i.e., the transmitting
and receiving ones) are phased to the same part of the
track. The theory is developed for cases where the
reflection of acoustic rays from the waveguide bound-
aries and the deformation of rays under the effect of
hydrological conditions are not taken into account. The
experimental validation of the theory was performed in
[14] on a short track with the separation of the direct
signal by means of time gating.

The possibility of using such methods for monitor-
ing transverse currents on long tracks in conditions
close to real ones can be investigated by means of math-
ematical modeling. Such a modeling for the conditions
in the Fram Strait is the goal of our paper.

We begin with considering the features of the test
region and the choice of the acoustic track. Then, we
002 MAIK “Nauka/Interperiodica”



 

682

        

ESIPOV 

 

et al

 

.

        
describe the technique for obtaining the three-dimen-
sional field of the water medium inhomogeneities and
the model of the distribution of currents. Next, the tech-
nique used for the signal processing by horizontal
arrays is justified. Finally, the results of estimating the
speed distribution in the current along the acoustic
track crossing the strait are discussed.

For modeling, we chose the strait region along 79° W,
between the Spitsbergen and Greenland islands. The
width of the central deep-water part of the strait is close
to 300 km, and the average sea depth is 2500 m. The
hydrological conditions in this region were determined
by the data of the run completed by the R/V Polarstern
in March of 1993. Therefore, our modeling refers to
winter conditions. Typical dependencies of the sound
velocity on depth for different parts of the strait are
shown in Fig. 1. The distance is measured from the
Spitsbergen archipelago. Therefore, in Fig. 1, the east is
on the left, as if one is looking on the strait from its
northern side. It is seen that the sound velocity mini-
mum is located on the strait surface. The second mini-
mum is seen in its eastern part, at a depth of about 600 m.
The overlying layer of higher sound velocity is formed
by warm Atlantic waters entering with the West-Spits-
bergen current. Owing to high salinity, these waters
sink under layers of cooler but less saline waters form-
ing a subsurface minimum of the sound velocity. The
thickness of the subsurface layer increases westward
where the East-Greenland current carrying low-salinity
waters of the Arctic Ocean to the south predominates
[15]. The structure of currents in the strait is very com-
plex [16]. Therefore, for modeling, we chose a simpli-
fied version, which, however, retains the basic features
of this structure. In accordance with [17], it is assumed
that, in the eastern one-third of the strait, the current in
the surface water layers is directed to the north, while
in the remaining part, to the south. The speed distribu-
tion in the current is shown in Fig. 5 (the solid line). For
simplicity, the speed of the current is assumed to be
depth-independent.

3

8.0

km

2

1

0
49.7 92.1 141.5 195.1 248.1 294.9 324.0 km

Fig. 1. Sound velocity profiles in different parts of the Fram
Strait. East is on the left.
The dependence of the sound velocity on depth is
not described by smooth functions. This is explained by
the turbulent nature of the current. The inhomogene-
ities transferred by it are clearly seen in Fig. 2, which
displays the sound velocity isolines. It is seen that the
inhomogeneities are concentrated in the upper 1-km
layer. According to the data of [1, 18], the typical
dimensions of mesoscale inhomogeneities are within
20 to 50 km, their lifetime is up to 20 days, and the
speed of their motion is 5 to 15 km per day. Unfortu-
nately, small-scale inhomogeneities in the strait are
poorly investigated.

The conditions in the Fram Strait are rather compli-
cated for describing the sound propagation features. In
the modal approximation, one needs to take into
account the mode interaction, while in the ray approxi-
mation, the variability of ray types. In this paper, as pre-
viously in [3], we used the ray approximation. Such a
choice seems to be justified, since the length of the
acoustic track is much smaller than that where the ray
chaos begins leading to strong unpredictable variations
of ray trajectories under the effect of small changes in
environmental conditions [19]. However, this method is
justified only when there are rays that do not change
their type (i.e., retain the number of reflections from the
sea surface and the number of lower turning points)
under the effect of inhomogeneities transferred by the
current. Such rays are lacking among those propagating
in the upper turbulent layer. On the other hand, rays
emerging from the source at large angles touch the bot-
tom, whose characteristics are not exactly known. As a
compromise, we chose the rays that do not touch the
bottom and experience five reflections from the surface.
They allow us to determine the speed of the current at a
rather larger number (5) of track segments. In addition,
they penetrate to depths where the sound velocity
exceeds that in subsurface layers even in the presence
of most intense inhomogeneities. This is the necessary
condition for retaining the type of rays. The depth of the
lower turning points of these rays is close to 1800 m,
where the sound velocity is 1475 m/s. In subsurface
layers, the sound velocity is 1460 m/s. With such a
velocity difference of 15 m/s, the ray does not touch the
bottom. These circumstances limit the length of the
acoustic track by the deep-water part of the Fram Strait.
The locations of the source (T) and the receiver (R) are
shown in Fig. 2. It is assumed that the source is at
depths of 100 and 1500 m, at a distance of 80 km from
Prince Carl Land. The length of the acoustic track was
210 km. Computations were carried out for different
depths of the reception points. Varying the depth within
several hundreds of meters, we could shift the coordi-
nates of tangency points of rays on the sea surface. This
allowed the estimation of the speed of current at ten
segments of the track.

As noted above, the scintillation method is based on
the analysis of signal fluctuations caused by environ-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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Fig. 2. Sound velocity isolines in the transverse section of the current.
mental inhomogeneities transferred by the current.
Therefore, for modeling, it was necessary to generate
the three-dimensional field of inhomogeneities with
given characteristics. The transfer of this field across
the acoustic track can imitate a current. The transfer of
the field with the same speed over the whole track imi-
tates a uniform current. Otherwise, the current will be
nonuniform along the track, which is characteristics of
the Fram Strait. In its imitation, the field is separated
into several branches moving with different speeds.
Since the sound velocity c(z, r) in the strait depends not
only on the presence of inhomogeneities but on the spe-
cific segment of the acoustic track as well, we must
determine what will be understood as inhomogeneities.
As initial material, we used the distribution c(z, r)
obtained from the measurements of R/V Polarstern
(Fig. 2). It is represented by sampling values in z at
64 depths and in the distance r with a step of 5 km. For
each ri, using the method of least squares, the function
zj , ri is represented by a third-degree polynomial. The
resulting functions c0(z, ri) are taken as regular compo-
nents of the sound velocity field. The field inhomoge-
neities are determined as the difference

(1)

As statistical characteristics of inhomogeneities, their

variance  and the spatial spectrum were calculated.
Subsequent field realizations were obtained by adding
a random component at each field point. To provide the
slowness of the field variations, these components were
small (no greater than ±0.1∆0). Its spatial characteris-
tics remained relatively stable under two additional
conditions: the random component was introduced to

δc0 z j ri,( ) c z j ri,( ) c0 z j ri,( ).–=

∆0
2

YSICS      Vol. 48      No. 6      2002
the kth realization only if the following inequalities
were satisfied:

(2)

(3)

In other words, the sound velocity at a point zj , ri can
increase or decrease in passing to the kth realization if
in the previous realization it increased or decreased
with increasing r [condition (2)]. Condition (3) requires
the coincidence of signs of the derivatives of δck with
respect to the depth z. At every step of the computa-
tions, 100 random numbers were given. When none of
them satisfied inequalities (2) and (3), the sound veloc-
ity gradients were set equal to zero. As a result, the
sound velocity gradient could change its sign. After fil-
tering and normalization, the computed field appeared
to be homogeneous. Its variances and spatial spectra
along the z and r axes were the same in all realizations.
The spectra along the k axis (k is the number of realiza-
tion) were also computed. Equating the field correlation
intervals along the r and k axes, we obtain an equation
that allows one to determine the spatial scale to which
the step along the k axis corresponds in the inhomoge-
neous field isotropic in the horizontal plane at a chosen
depth. In modeling, the field was assumed to be isotro-
pic at a depth of the location of most intense inhomoge-
neities. It is clear that, introducing some coefficient in
this equation, we can model the field of inhomogene-
ities, compressed or expanded in the direction of the
current. Average statistical characteristics can be

δck z j ri,( ) δck 1– z j ri,( )–[ ]
× δck 1– z j ri 1+,( ) δck 1– z j ri,( )–[ ] 0,≥

δck z j ri,( ) δck z j 1– ri,( )–[ ]
× δck 1– z j ri,( ) δck 1– z j 1– ri,( )–[ ] 0.≥
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obtained if the amount of the field data is rather large.
In this paper, 12000 runs similar to those shown in
Fig. 2 represent the random field of inhomogeneities.

The ray code used allows one to compute the fluctu-
ations of the amplitudes and travel times of signals
propagating along the rays. In this paper, we consider
only time fluctuations. They arise when the realizations
of the field of inhomogeneities change on the acoustic
track. Large-scale inhomogeneities generate slow fluc-
tuations at a constant speed of current u, while small-
scale inhomogeneities generate fast fluctuations. When
a measuring scheme consists of two parallel tracks sep-
arated along the current by the distance d, fluctuations
at both receivers should be correlated after the compen-
sation of the time delay d/u. When the tracks have a
common source and two separated receivers, correlated
fluctuations are generated only by the inhomogeneities
located within the parts of divergent tracks where the
distance between them is close to d. Fluctuations gen-
erated by inhomogeneities in other parts of the tracks
are uncorrelated and play the role of noise. The corre-
lated part of fluctuations can be accumulated using a
group of divergent and convergent tracks. When the
fluctuations are added up, their correlated part is accu-
mulated faster than noise. The measured system used is
shown in Fig. 3. It consists of four sources and four
receivers forming two parallel chains at both ends of
the strait of width l. In the chains, the distance a
between the elements is much smaller than the strait
width. The system allows one to arrange 16 acoustic
tracks that differ from one another by the element num-
bers and the frequency of the transmitted signal. The
fluctuations of signal travel times are added up over all
16 tracks after introducing the necessary delays.
Choosing them, we can tune the system to the speed u
measured at the distance r from the sources, which is
about the same along any track. The value of the delay
ti, j between the ith source and the jth receiver is taken
from the table.

To measure the speed u of the current at the distance
r, we need to substitute this value into the expression

1 2 3 4

1 2 3 4

West-Spitsbergen
current

East-Greenland
current

l = 210 km

a = 5 km

r

Fig. 3. Schematic positions of the sources and receivers of
the measuring system.
for the delays ti, j and, using the method of item-to-item
examination, find the value of u corresponding to the
maximal sum of fluctuations. For the measuring system
to be wide-band with respect to the spatial frequencies,
its dimensions along the current must be moderate: the
distance between end elements (aperture) equals 15 km
at a = 5 km. The system is most sensitive to inhomoge-
neities with dimensions of 4–7 km. Based on the
hypothesis of frozen turbulence, we can assume that
such inhomogeneities retain their form within the aper-
ture of the measuring system. The inhomogeneities of
greater dimensions generate fluctuations correlated
over all tracks and are unsuitable for the measurements.
They were filtered out from the spatial spectrum. The
results of modeling are shown in Fig. 4. In this case, the
system was tuned to the distances r = 20, 40, and 160 km.
The maxima of the variance of the sums of fluctuations
averaged over 12000 realizations were near the current
speeds –0.1, –0.05, and 0.02 m/s. The negative values
of the speed correspond to the northward direction.

Figure 5 exhibits the results of the total distribution
of the speed of current in the strait. They were obtained
by the following procedure. First, on the basis of the
atlas data [17], we determined the function describing
the direction and speed of current in the transverse sec-
tion of the strait (the solid line in Fig. 5). In contrast to
[17], in our case the current was assumed to be barotro-
pic. Then, the current was imitated by the motion of the
three-dimensional field of inhomogeneities. The cur-
rent was divided by the vertical planes into 10 layers of
about the same width, so that the middle of each layer
was at a point where the ray exits to the sea surface.
Remember that, in computations, two sets of depths
were used for the source and receiver locations. This
doubled the number of ray tangents to the strait surface.
Each layer moves across the track with the speed given
at this segment of the track. The measuring system was
tuned beforehand to the coordinates of the points of the
ray exit to the surface, and, at each such point, the enu-
meration of all possible values of speeds was performed
with a step of 0.025 m/s. The results of calculations are
shown in Fig. 5 by rectangles. One can easily see that
the modeling provides an appropriate pattern of the
speed distribution for currents in the strait, which
offers the possibility of remote tracking this current by
remote acoustic sensing. The maximal error is close to
0.03 m/s.

In discussing the results, it is expedient to begin
with the adopted model of the current. It does not take
into account the effect of surface roughness, internal
waves, and ice cover. Each of these factors can lead to
arrival time fluctuations of the probing signals of the
order of 10 ms [20–22]. Due to such a model of inho-
mogeneities, the mean square deviation of fluctuations
is close to 5 ms; i.e., the useful effect has the same order
of magnitude as noise. However, the situation can be
improved using the accumulation in time. Indeed, the
measurement of the current structure is carried out by
the arrival time fluctuations of the probing signals along
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002



SOUND SIGNAL SCINTILLATION APPROACH IN THE ACOUSTIC MODELING 685
Table

t44 = 0 t34 = t24 = t14 = 

t43 = t33 = t23 = t13 = 

t42 = t32 = t22 = t12 = 

t41 = t31 = t21 = t11 = 

a l r–( )
ul

------------------ 2a l r–( )
ul

--------------------- 3a l r–( )
ul

---------------------

ar
ul
----- a

u
--- a 2l r–( )

ul
--------------------- a 3l 2r–( )

ul
------------------------

2ar
ul

--------- a l r+( )
ul

------------------ 2a
u

------ a 3l r–( )
ul

---------------------

3ar
ul

--------- a l r+( )
ul

------------------ a 2l r+( )
ul

--------------------- 3a
u

------
the acoustic tracks. The accuracy of the arrival time
measurement depends on the pulse form and the signal-
to-noise ratio at the point of reception [23]. If the enve-
lope of the probing pulse has, e.g., the Gaussian form

with the variance σ2, the mean square error in determin-
ing the arrival time t0 is

where S is the average amplitude of the pulse at the
point of reception and N is the mean square amplitude
value of noise when the signal is absent. If the
waveguide has no inhomogeneities, then, using rather
powerful sources, one can decrease σt up to a required
value. Unfortunately, σ is determined to a considerable
extent by the waveguide inhomogeneities and the
roughness of its upper boundary caused by sea waves or
by the ice cover. After its scattering from the surface,
the signal arrives at the receiver at times that differ from
the arrival time of the main signal, which spreads the
total pulse. For a symmetric spreading, one can use the
accumulation over the envelope of several pulses.
Indeed, the characteristic period of fluctuations caused
by inhomogeneities is determined by the time of their
presence at the acoustic track. The average dimension
of inhomogeneities in use is 6 km. Assuming that the
speed of current is 1 m/s, which is certainly an over-
stated value, we obtain the time of crossing equal to
100 min. When transmitting one pulse per minute and
combining the received signals by their envelopes, the
signal-to-noise ratio can be increased by a factor of
10 due to the averaging of fast fluctuations caused by
the sea waves and the roughness of the ice cover. When
a pulse expands asymmetrically, some shifts occur in
the estimates of the arrival times. Their determination
needs a separate investigation.

The system considered can be used in practice. The
main difficulty in using it is the necessity to determine
the real location of the transmitting and receiving ele-
ments of the system secured on the cable stretched

1

σ 2π
--------------

t t0–( )2

2σ2
------------------–

 
 
 

exp

σt
σN
S

--------,≥
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between the anchor and the neutral-buoyancy buoy. At
the present time, this problem is solved by means of
bottom acoustic beacons located near the transmitters
and receivers.

It remains to note that the measurements were car-
ried out with signals arriving over rays that did not
change their type in the course of measurements. In
modeling, they were singled out by the arrival times of
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Fig. 4. Dependence of the variance of the total signal on the
speed of current with the system tuned to r = (1) 20, (2) 40,
and (3) 160 km.

Fig. 5. Preset distribution of the speed of current in the
transverse section of the strait (the solid line) and the results
of its estimation by the scintillation approach.
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the signals within a certain time interval. In practice,
the arrival angle can also be taken into account. To this
end, the chain of the receivers must be replaced by a
chain of vertical arrays.

Let us summarize the results. The mathematical
modeling shows that, in the Fram Strait, it is possible to
develop an acoustic system that allows one to measure
the speed of the current in separate parts of the trans-
verse section of the strait. The system consists of hori-
zontal chains of transmitters and receivers positioned
along both sides of the strait and forming a set of acous-
tic tracks. Among the rays connecting the sources and
the receivers, those rays that do not touch the bottom
and do not change their type under the effect of inho-
mogeneities transferred by the current are singlet out.
The separation of the rays is performed through the
time gating and, in more complicated cases, by the
arrival angle as well. On each track, the travel time fluc-
tuations are measured for signals propagating over
these rays. It is assumed that, at distances of an order of
three characteristic dimensions of inhomogeneities of
the water medium, the hypothesis of frozen turbulence
is valid. In this case, the travel time fluctuations of the
signals travelling along these rays will be partially cor-
related after the introduction of time delays calculated
for a given distance from the source and a given speed
of current. The variance of the sum of fluctuations over
all tracks is maximal for correct values of the distance
and the speed of current. The necessary condition for
the presence of rays that do not touch the bottom and do
not change their type in the turbulent flow is the suffi-
ciently large depth of the strait. A ray exits to the sur-
face if the sound velocity at its lower turning point is
greater than the sound velocity in the subsurface layers
filled with inhomogeneities. The deep-water part of the
Fram Strait satisfies this condition.
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Abstract—The relaxation of the orientational order in liquid crystals in a sound field is taken as the basis for the
theoretical description of the spatially modulated structures arising in a layer of a cholesteric liquid crystal under
the effect of ultrasound. Two mechanisms of the destabilization of a cholesteric liquid crystal layer with planar
initial orientation are analyzed: the vortex mechanism, which takes into account the contribution of relaxation pro-
cesses to the formation of an oscillating vortex flow in the layer of a cholesteric liquid crystal, and the nonlinear
relaxation mechanism based on the stationary nonlinear stress and moments arising due to the relaxation of the
orientational order in a sound field and unrelated to the vortex flows. It is demonstrated that, when both these
mechanisms are simultaneously in effect, the formation of a domain structure must be observed in a wide fre-
quency range. The results of calculations are compared with experimental data. © 2002 MAIK “Nauka/Interpe-
riodica”.
Nematic and cholesteric liquid crystals demonstrate
the variety of spatially modulated dissipative structures
(domains), which may arise in them as a result of the
periodic deformation of crystals in oscillating flows,
viscous waves, and sound fields. The domain form
depends on the initial orientation of a crystal, the geom-
etry of a liquid-crystal cell, and the type and frequency
of action. The theoretical analysis of domain structures
was performed in papers published earlier (see, e.g.,
[1–8]) within the framework of linear hydrodynamics
of Leslie and Ericsen [9, 10], where the viscous stress
and moments are a linear combination of the gradients
of velocity and rate of director rotation and the pro-
cesses of structural relaxation are not taken into
account. Such an approach provides an opportunity to
develop an adequate description of a dissipative struc-
ture arising in a crystal in the case of a low-frequency
deformation but can be insufficient at ultrasonic fre-
quencies. The necessity to take into account the relax-
ation processes and the nonlinear terms in rheological
relations in describing the dissipative structures in liq-
uid crystals is substantiated below using the example of
a theoretical description of domains that arise in a layer
of a cholesteric liquid crystal when the crystal is com-
pressed in an ultrasonic field.

Experimental studies [1, 11, 12] show that, in the
case of the ultrasonic wave incidence upon a layer of a
cholesteric liquid crystal (LC) with the planar orienta-
tion of molecules, periodic structure distortions arise in
the LC. These distortions are observed as domains, and
the effect is of a threshold character. The structure form
depends on the initial geometry of an LC sample, and
its spatial period decreases with advancing over the
1063-7710/02/4806- $22.00 © 20687
effect threshold. An attempt to describe theoretically
the formation of a spatially-modulated structure in a
layer of a cholesteric LC in the case of normal inci-
dence of an ultrasonic wave upon it was made in [13]
on the basis of the Leslie–Ericsen hydrodynamics. The
mechanism of domain formation under the effect of
periodic compression within the framework of linear
hydrodynamics is as follows. A random deviation, peri-
odic along the layer, of the director from the equilib-
rium orientation δn gives rise to shear stress and

moments of the form δσij ~ δninkv kj and δ  ~ δnkv ik

(σij and Gv are the viscous stress and moments and v ij is
the rate of deformation of the medium). This results in
the appearance of oscillating vortex flows in the crystal.
The phase delay of the particle displacement in the
flows relative to the deformation caused by the sound
field gives rise to stationary flows, which can enhance
the initial rotation of the director. The initial structure
of the crystal is stabilized by the elastic Frank’s
moments. The actions of the destabilizing and elastic
moments become equal at the effect threshold, and
domains form with a further increase in the action
intensity. Calculation [13] predicts the formation of a
domain structure in a layer of a cholesteric LC under
the effect of ultrasound. At the same time, a significant
qualitative disagreement with experimental data, which
was revealed by a detailed comparison [12], indicates
that it is impossible, within the framework of the clas-
sical hydrodynamics of cholesteric LC, to adequately
describe the domain structure formed as a result of the
compression of a layer of a cholesteric LC at ultrasonic
frequencies.
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Let us analyze the effect of ultrasound on a layer of
a cholesteric LC once more with allowance for the
effects connected with the relaxation of the parameter
of orientational order. The inclusion of the relaxation
leads to the following mechanisms of destabilization of
the structure of the cholesteric LC layer. The first of
them is the vortex one. It is analogous to the mechanism
described in [13], but it takes into account the displace-
ment delay in the oscillating flows because of the relax-
ation processes in the medium and the viscoelastic
character of the crystal deformation at high frequen-
cies. The second mechanism is the nonlinear relaxation
one. It takes into account that the Leslie viscosity coef-
ficients involved in the expression for the viscous stress
and moments depend on the orientational order of the
crystal and change together with it in the course of the
medium deformation in sound and viscous waves. The
relaxation delay of these changes relative to the defor-
mation in an external field must give rise to the station-
ary stress σij and moments Γi of the form

(1.1)

Here, the overbar means averaging over the oscilla-
tion period, εpq are the components of the strain ten-
sor, v pq = , and α and γ are the Leslie viscosity coef-
ficients. These stress and moments nonlinear in the
strain have a relaxation nature and are not connected
with the rise of additional vortex flows in a medium.

This paper shows that the indicated mechanisms
lead to the destabilization of the structure of a planar
layer of a cholesteric LC in the case of normal inci-
dence of an ultrasonic wave upon it and, as a result, to
the formation of domains. The threshold intensity of
sound and the size of domains are determined. It is pos-
sible to judge the importance of the relaxation pro-
cesses in macroscopic phenomena by comparing the
theoretical and experimental threshold parameters of
the effect.

HYDRODYNAMIC EQUATIONS
OF CHOLESTERIC LIQUID CRYSTALS

Describing the effect, we treat a cholesteric crystal
as a twisted nematic. Adding the terms nonlinear in the
strain rate in the medium to the equations of motion and
rotation, we represent them in the form

(2.1)

σij
2( ) Re

δα
δεpq

----------εpq v ij
 
 
 

,∼

Γ i
2( ) Re

δ γ2/γ1( )
δεpq

--------------------δεpq v ik
 
 
 

nk.∼

ε̇pq

ρv̇ –∇ P ∇ σˆ⋅ ∇ σˆ 2( )⋅ F,+ + +=

γ1N γ2 v̂ n⋅ n v̂ n⋅ ⋅( )n–[ ] G– G 2( )+ + 0.=
Here, ρ is the density, v is the velocity, n is the director,
N =  – 1/2(rotv × n) is the velocity of the director
rotation with respect to the surrounding medium,  is
the strain rate tensor, P is the pressure,  is the vis-
coelastic stress tensor [14]

(2.2)

∆E = DEF(ωτ)/2 and µ3 = DEτ/[2(1 + ω2τ2)] are the
anisotropic part of the local elastic modulus and the
coefficient of volume viscosity, DE = (E|| – E⊥  is

the dispersion jump of the anisotropy of the elastic
modulus determined along and perpendicularly to the
director, F(ωτ) = ω2τ2/(1 + ω2τ2), ω is the frequency of
a sound wave, τ is the time of relaxation of the orienta-
tional order parameter, αi are the viscosity coefficients,
G and F are the elastic moments and forces arising in a
deformed cholesteric structure and determined through

the Frank’s elastic energy, and G(2) and  are the
nonlinear relaxation moments and stress of the form
of Eq. (1.1) (these quantities are constructed using statis-
tical methods). The viscosity coefficient α3 is assumed to
be small by analogy with nematic crystals, and we fur-
ther assume it to be equal to zero. In this case, the coeffi-
cients of rotational viscosity are equal: γ1 = –γ2 = γ.

Let us specify the form of Eqs. (2.1) for the Carte-
sian coordinate system, where the z axis determines the
direction of the unperturbed axis of the cholesteric
helix. In the unperturbed state, the director lies in the
cholesteric planes parallel to (x, y) and rotates uni-
formly with the period P0 in passing from one plane to
another. Let us set the structure distortions by the
angles θ and ϕ determining the deviation of molecules
from the unperturbed cholesteric plane and from the
initial orientation in this plane, respectively. The den-
sity of the Frank’s elastic energy g has the following
form, when expressed through the variables θ and ϕ in
the two-constant approximation with allowance for the
possible tension of the crystal along the cholesteric axis

 = ∆h/h [14]:

(2.3)

where K11 = K33 and K22 are the Frank’s elastic con-
stants, λ = K22/K33, and q = 2π/P0.

The minimum of the elastic energy for the pertur-
bations of the angles θ and ϕ that are periodic along
the layer leads to the possibility of the formation of
domains of the square-grid type at the critical tensile
strain δ0. The strain δ0, the structure wave number k0,

ṅ
v̂

σ̂

σij nin j ∆Eεαα µ3v αα+( )=

+ α1v αβnαnβnin j α2Nin j α3N jn j+ +

+ α4v ij α5v iknkn j α6v jknkni,+ +

) ω 0=
ω ∞=

σ̂ 2( )

δz'

g
1
2
---K33 ∇ ⊥ ϕ( )2 1 δz'–( ) λ ∇ ||ϕ( )2 ∇θ( )2+ +{=

+ q2θ2 4qθ n∇( )ϕ λ 1–( ) nx ∂yθ( ) ny∂xθ–[ ] 2+ + } ,
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and the domain size d0 at the effect threshold are
equal to

(2.4)

The elastic moments Γθ and Γϕ conjugate to the
angles θ and ϕ in a distorted cholesteric structure are
determined by the Euler equations using the free
energy:

Here and below, the index α runs over the values α = x,

y and ∆⊥  =  + .

The force F in Eq. (2.1) is determined by the differ-
entiation of the energy g with respect to the displace-
ments u at fixed spatial angles of molecule rotation. The
following expressions are obtained for the components
of F [14]:

The inequality ηω/ρc2 ! 1 is valid at ultrasonic fre-
quencies. It provides an opportunity to eliminate the
acoustic modes from the equation of motion (2.1) by
using the double rotor operation. We retain the square
terms in the equations, which are proportional to the
product of the rotation angles of molecules θ and ϕ by
the velocities, and take into account the change of the
wave number q0 in a sound field that is connected with
the geometrical tension of the medium. Performing the
necessary transformations, we arrive at the following
equations:

equations of rotation

(2.5)

δ0

P0

4h
------ 2λ 3 λ+( ), k0

2π
P0h

------------- 2λ
3 λ+
------------ 

 
1/4

,= =

d0
π 2
k0

---------- hP0
3 λ+
8λ

------------ 
 

1/4

.= =

Γϕ ∇ ∂g
∂∇ϕ
----------- ∂g

∂ϕ
------–=

=  K33 1 δ'–( )∆⊥ ϕ λϕ zz 2qnαθα+ +[ ] ,

Γθ ∇ ∂g
∂∇θ
----------- ∂g

∂θ
------– K33 ∆θ q2θ– 2qnαϕα–[= =

+ λ 1–( ) nx
2θyy ny

2θxx 2nxnyθxy–+( ) ] .

∂x
2 ∂y

2

Fz –qΓϕ nαΓθ α, ,+=

Fx y, Fy x,–
1
2
---∆⊥ Γϕ , Fα α, 0.= =

γ1 ϕ t, q0v z q0εzzv z–
1
2
--- rotv( )z– nxny v xx v yy–( )+ +

---+ nx
2 ny

2–( )v xy Γϕ– Γϕ
2( )+ 0,=

γ1 θ̇ nαv z α,– θv zz–( ) Γθ– Γθ
2( )+ 0=
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and equations of motion

(2.6)

Here, g = ρ[(v∇ )v + v(∇ v)] is the convective force,
 = ϕ,t + q0v z – Ωz is the spatial rate of molecule rota-

tion around the z axis, W = 1/2rotv, and  is the dif-
ferentiating operator of the form

Let us consider an ultrasonic wave with the fre-
quency ω and compression amplitude ε0 that is incident
normally upon a planar layer of a cholesteric LC with
the thickness h and analyze its effect upon this layer on
the basis of Eqs. (2.5) and (2.6). The axis of the choles-
teric helix in the unperturbed state of the crystal (the z
axis) is directed along the normal to the layer, and the
cholesteric layers are parallel to the layer boundaries
z = 0 and z = h. Assuming that the first boundary of the
LC layer in the path of the sound wave (z = 0) is acous-

ρ∂t∆ η D̂1–( )v z γ∆⊥ nαθ̇ α,–=

+ ∆Eεzz∆⊥ µ3 α5+( )v zz∆⊥+[ ] nαθα rotrotg[ ] z+

– α6∂z
2 v zznαθα( ) γ∆⊥ q0 ϕ t q0v z Ωz–+[{–

+ nxny v xx v yy–( ) nx
2 ny

2–( )v xy+

– nβ∂β θ̇ nαv z α,– θv zz–( ) } ∆ ⊥ σzk k,
2( )+

– ∂z ∇ ∇ σ ˆ 2( )⋅ ⋅( ), β x y;,=

ρ∂t η 1
4
---α5+ 

  ∆⊥– η∂ z
2– Ωz

+
1
4
---nx

2 ny
2 α5 ∂x

2 ∂y
2–( )Ωz α6 v

xy z
2,

v zz xy,+( )–




–

+
α6

2
----- 3∂x

2 ∂y
2+( )v x y, 3∂y

2 ∂x
2+( )v y x,+( )





+ α5nxny∂x∂yΩz
1
2
---γ ∆⊥ ϕ̇m ---





–=

+ nxny ∂x∂yϕ̇m
1
2
---∆⊥ v xx v yy–( )+

+
1
2
--- nx

2 ny
2–( )∆⊥ v xy





–
1
2
---α6∂z v zz nyθ x, nyθ y,–( )[ ]

+ ∂z rotg( )z σyk kx,
2( ) σxk ky,

2( ) , k–+ x y z;, ,=

divv 0.=

ϕ̇m

D̂1

D̂1 = 
2α4 α5 2γ+ +

4η
----------------------------------∆⊥

2 α4 α5/2 3/8α1+ +
η

--------------------------------------------∆⊥ ∂z
2 ∂z

4,+ +

η 1
2
--- α4 α6/2+( ).=
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tically transparent and the second one (z = h) is hard, we
represent the compression of the layer in the sound field
by the standing wave

(2.7)

where ks = ω/c is the wave number of sound in the layer
and c is the sound velocity.

Analyzing the effect, we restrict ourselves to the fre-
quencies at which the sound wavelength in the choles-
teric crystal is greater than the helix pitch, and, in the
equations for perturbations, we replace the square of
liquid compression averaged over the oscillation period
and determining the effect by its value averaged over
the layer thickness:

VORTEX MECHANISM
OF THE DESTABILIZATION

OF A CHOLESTERIC STRUCTURE

Let us consider separately the contribution of vis-
coelastic stress to the destabilization of the structure of
a cholesteric LC by excluding the nonlinear relaxation

moments G(2) and the stress  from Eqs. (2.5) and
(2.6). We represent θ, ϕ, and the velocity perturbations
δv as the sums of the stationary (index 2) terms and the
terms oscillating (prime) with the sound frequency:

and we separate the equations for stationary and non-
stationary variables. Let us consider the structure dis-
tortions with the minimal free energy, when θ = nατα
and the functions τα and ϕ change slowly along the
crystal axis. We assume the velocity perturbations also
to be functions that slowly vary with z. Let us average
all the terms in the equations for ϕ and v over the helix
pitch P0 and eliminate the elastic moments, which are
small in comparison with the viscous ones, from the
equation for oscillating variables.

We assume the stationary perturbations to be equal
to zero at the boundaries,

and, ignoring the effects in the boundary layers with the
thickness of the order of the viscous wavelength, we
determine the oscillating variables  and θ' as a par-
ticular solution to the corresponding inhomogeneous
equations. The existence condition for a nonzero solu-
tion to Eqs. (2.5) and (2.6) corresponds to the threshold
of the domain formation.

We represent stationary perturbations in the form
of the functions depending periodically on the coor-

ε 2ε0 ks h z–( )[ ] ωt,sincos≈

ε2 ε0
2 1 2ksh( )/ 2ksh( )sin+[ ] .=

σ̂ 2( )

θ θ2 θ', ϕ+ ϕ2 ϕ', δv+ v2 v',+= = =

ϕ2 z 0 h,=
τ2 z 0 h,=

0,= =

Ωz z 0 h,=
0; v 2z z 0 h,=

0,= =

v z'
dinates x and y and satisfying zero boundary condi-
tions

(3.1)

where kx and ky are the wave numbers determining the
form of the domain structure; kz = 2π/h; and, in this

case, ∂α = ikα and ∆⊥  =  –  = –k2.

We assume that the inequalities

(3.2)

are valid and consider the formation of the structure of
the square-grid type, where kx = ky . In the case of such
a structure, the terms averaged over the helix pitch,
nx  – ny , nxθ2, y – nyθ2, x, and (rotg)z, vanish, and, as
a consequence, the rate of rotation of the medium also
vanishes:  = 0.

We omit the equations for oscillating perturbations
because of their length and give expressions for the
oscillations of the velocity  and the angles θ' and ϕ':

we also present the coupled equations for stationary
perturbations:

(3.3)

Here,

A = (η + α5/4)/(γ/2 + η + α5/4),

ϕ2 τ v 2z, Ωz, , ikxx ikyy+( ) kzz( ),sinexp∼

kx
2– ky

2

kz k q0< <

θ y,' θ x,'

Ωz'

v z'

v z'
k2

2B
-------τ2α α, η D1 ∆E ∆ ρ µ3 α6+( )ω2+[ ]ε zz{=

+ η µ3 α6+( ) D1 ∆ ρ∆E–[ ] v zz } ,

θ'
k2

2B
-------nβτ2α αβ, η µ3 α6+( ) D1 ∆ ρ∆E–[ ]ε zz{=

– η D1 ∆E ∆ ρ µ3 α6+( )ω2–[ ]ω 2– v zz } ,

ϕ' q0 uz' uz+( );–=

γAq0v 2z Mε0
2q0τα α,–

+ K33 k2 1 δz'–( ) λkz
2+[ ]ϕ q0τα α,–{ } 0,=

γAk2v 2z Mε0
2k2τα α,–

+ K33 2q0
2 3 λ+

4
------------k2+ 

  τα α, 2q0k2ϕ– 0,=

γAv 2z Nε0
2τα α,– 0.=

M
2γk2 1 2ksh( )/2kshsin+[ ]

B
---------------------------------------------------------------=

× η D1 ∆E ∆ ρ µ3 α6+( )ω2+( ),
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µ3, 0 = DEτ/2 is the viscosity coefficient µ3 at low fre-

quencies (ωτ ! 1), and σ =  is the wave num-
ber in the viscous wave propagating along the crystal
axis η = α4/2 + α6/4.

We determine the value of ε0, at which perturbations
with the wave number k start to increase, by setting the
determinant of the system of equations (3.3) equal to
zero:

(3.4)

The wave number k at the effect threshold and the
threshold value of εth is determined by the minimization
of ε0(ω, k) with respect to k.

The finite expression for εth as a function of the
parameters of the crystal and the cell is lengthy. We give
a simplified expression for εth that is obtained taking
into account the inequality

(3.5)

and inequalities (3.2). Their validity for typical crystal
parameters, helix pitch, layer thickness, and frequen-
cies, which are examined below, is proved by a direct
testing.

If conditions (3.2) and (3.5) are valid, the expression
for ε0 is determined by the formula

(3.6)

N
1 2ksh( )/2kshsin+[ ]

2Bq0
2

---------------------------------------------------=

× 2ρk2ω2 ρk2∆E η µ3 α6+( ) D1–[ ]




+ DE∆E 1 2
α6

µ3 0,
--------- 

  α6

µ3 0,
--------- 

 
2

1 ω2τ2+( )+ +




,

B η2 D1
2 4σ4 ∆ 2+[ ] , σ ρω/2η ,= =

D1

2α4 α5 γ+ +
4η

------------------------------k4 α4 α5/2 3/8α1+ +
η

--------------------------------------------k2kz
2 kz

2,+ +=

∆ k2 kz
2,+=

ρω/2η

ε0 ω k,( )
K33

4k2
-------- 3 λ+( ) 1 δz'–( )k4 8λkz

2q2+[




=

– 8k2q2δz' λ 3 λ+( ) 1 δz'–( )kz
2k2+ ]

---× M N–( ) 2q2 k2 λkz
2+ +( )[ ] 1–





1/2

.

N /M  ! 1

ε0 ω k,( )
ηK33k0

4 3 λ+( )
8 1 2ksh( )/2kshsin+[ ]γ DEq2
------------------------------------------------------------------------





=

× ξ4 1 2ξ2δ–+( ) ξ4 a2ω2τ2+( )
ξ4 aξ2+

----------------------------------------------------------------------1 ω2τ2+

ω2τ2
--------------------





1/2

,
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where ξ = k/k0, δ = δ'/δ0 is the ratio of the layer exten-

sion to the critical one; a = ρ/(ητ ); and, in the real
case, the inequality a @ 1 is valid.

The minimal value of ε0 in Eq. (3.6) at the frequen-
cies τ–1a–1 < ω < τ–1 is attained at ξ = 1, and the thresh-
old compression εth in this case depends only slightly
on frequency:

(3.7)

while the characteristic size of the domain structure is
equal to d = d0.

The value of εth increases beyond this frequency
interval away from it. At high frequencies, when ω > τ–1,

we obtain εth ≈ ωτ ~ ω and the domain size in
this case is equal to d ≈ d0. At low frequencies, when

ω < (aτ)–1, we obtain εth ≈  ~ ω–1/2 and d ≈

d0/  ~ ω–1/2 [14], respectively. Thus, the action of
the vortex mechanism in the formation of acoustic
domains is most effective within the frequency range
τ–1a–1 < ω < τ–1.

NONLINEAR RELAXATION MECHANISM
OF THE DESTABILIZATION OF A CHOLESTERIC 

STRUCTURE

Let us consider the action of stationary nonlinear
relaxation stress and moments while ignoring the oscil-
lating variables in Eqs. (2.5) and (2.6). We use a statis-

tical approach to determine G(2) and . The micro-
scopic model of a nematic crystal that was proposed in
[15–19] lies at its basis. The equation of rotation of a
single molecule is constructed within the framework of
this model, which serves as the basis for an equation
describing the density evolution of the angular distribu-
tion of molecule orientations. The microscopic stress
arising in this case is determined simultaneously. The
averaging of the microscopic stress over the equilib-
rium distribution provides an opportunity to develop a
hydrodynamic description of LC and to determine the
Leslie viscosity coefficients, viscoelastic properties of
crystals, and anisotropy of their acoustic properties
[20–26]. Here, the averaging of the microscopic stress
and evolutionary equation is performed over the non-
equilibrium density of the orientational distribution of
molecules of a nematic LC, which results in the hydro-
dynamic description of a medium that is nonlinear in
the strain rate.

According to [17, 18, 23], we describe the angular
dependence in the distribution of the molecule orienta-
tion and the microscopic stress in the components of the
vector L(|L| = 1) and represent the equations of rotation

k0
2

εth
1( )

=  
k0

q
----

ρK33 3 λ+( )
4 1 2ksh( )/2kshsin+[ ]γτDE
--------------------------------------------------------------------- 1 δ–( )

 
 
 

1/2

,

εth
1( ) a

εth
1( ) 2a/ωτ

aωτ

σ̂ 2( )
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of a single molecule and the microscopic stress  aris-
ing in this case in the form

(4.1)

(4.2)

where NL =  – (Ω × L); G is the force thermodynam-
ically conjugate to NL, which arises in the case of the
nonequilibrium angular distribution of molecule orien-
tation;

b is the rotational mobility; and ak are the kinetic coef-
ficients. In this case,

The coefficient Λ depends on the molecule shape
and changes from Λ = 1 for elongated ellipsoid mole-
cules to Λ = –1 for disk-shaped molecules [20]. We take
Λ = 1, assuming the molecules to be of elongated shape.

The forces G can be presented in the form [18, 19]

(4.3)

Here, f ' = (f – f0)/f0 is the relative deviation of the
angular distribution density of molecule axes f = f (L)
from the quasi-equilibrium Boltzmann distribution f0 =
const exp{–E/T}, where E = E(L) is the orientational
energy of molecules and T is the temperature in the
energy representation. The instant values of the temper-
ature T, pressure P, director n, and angular distribution
moments  averaged over the nonequilib-
rium density of the distribution f are involved in the
quasi-equilibrium distribution f0. In the case of the
equilibrium distribution f00, the unperturbed values of
the indicated quantities are used.

From Eqs. (4.2) and (4.3), we obtain the following
expression for the microscopic stress tensor:

(4.4)

Its averaging over the nonequilibrium distribution f =
f0(1 + f ') yields nonlinear relaxation stress.

The density of the angular distribution f satisfies
the continuity equation in the form

(4.5)

σij'

L̇i W L×( )i Λκ ijkv jk bGi,+ +=

σij' b 1– a2NL i, L j a3NL j, Li a5v iα Lα L j+ +(–=

+ a6v jα Lα Li a1v αβLα LβLiL j+ ),

L̇

κ ijk
1
2
--- δijLk δikL j 2LiL jLk–+[ ] ;=

a2 a3– 1, a2 a3+ a6 a5– Λ.= = =

Gi T
∂

∂Li

-------- LiL j
∂

∂L j

--------– 
  f '.–=

Li1
Li2

…Lik
〈 〉

σij' T L j
∂

∂Li

-------- L jLiLk
∂

∂Lk

--------– 
  f '=

–
1
2
---b 1– 1 a5 a6+ +( ) v iα Lα L j v jα Lα Li+( )

– b 1– a1 1–( )v αβLα LβLiL j.

t∂
∂ f ∂

∂Li

-------- LiL j
∂

∂L j

--------– L̇i f( )+ 0,=
which, together with the equation of molecule rota-
tion (2.1) and Eq. (2.3), leads to the equation of angular
diffusion for the function f '. We describe the orienta-
tional interaction of molecules by a self-consistent field
with the Maier–Saupe potential E(L) = –d〈P2(L1)〉P2(L1),
where d is the field constant, Pk are the Legendre poly-
nomials, L1 = nL is the projection of the vector L onto
the crystal axis, and the angular brackets here and fur-
ther mean averaging over the equilibrium angular
distribution f00. The equation for f ' was obtained and
studied in [22, 23]. Solving it and restricting ourselves
to the relaxation of the parameter of orientational order
only, we represent the perturbation f ' and the nonequi-
librium distribution density in the form

(4.6)

Here, A11 = β–1{K [Fε + (1 – F)τ ] – 3R[Fe11 + (1 –

F)τ ]}, βS is the adiabatic compressibility; R = 1 –
dT/7 + 12dTR24/(35R22), Rnm = 〈PnPm〉  – 〈Pn〉〈 Pm〉 , dT =
d〈P2〉/T, e11 = εiknink – 1/3ε; the parameters K and β have
the forms

Tc is the temperature of orientational melting of the
crystal; α is the volumetric coefficient of thermal
expansion; V is the volume; Cp is the specific heat at
constant pressure; and the function F = F(ωτ) deter-
mines the relaxation dependence of the angular distri-
bution perturbation on the action frequency.

The stress  in a one-dimensional sound field
with the oscillation direction determined by the unit
vector m is reduced to the form

(4.7)

where the dimensionless tensor function (ω, m, n)
determines the dependence of nonlinear stress on the
molecular parameters of the medium and on the fre-
quency and direction of sound propagation; its compo-
nents are

f ' P2 P2〈 〉–( )A11,=

f f 00 1 3dT L1Lsδns+{=

+ P2 P2〈 〉–( ) –KβS
1– ε βA11+{ } .

βS
1– ε̇

e11˙

K βdT
1
T
---

∂Tc

∂p
-------- αTV

Cp

-----------– 
  ,=

β 1 nR22

dT
2

Cp

------ R22
d
T
---–+ 

 
1–

;=

σ̂ 2( )

σ̂ 2( ) nTε2Σ̂ ω m n, ,( ),=

Σ̂

Σij β 1– KβS
1– R 3m1

2 1–( )+[ ]=

× F ωτ( ) –
3
2
--- P2〈 〉 m1 min j m jni–( )





– 3R22 a5 a6+( )R m1 min j m jni+( ) 2
3
---mim j–
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(4.8)

We derive the equation of the director rotation
directly from the balance equation of the distribution
density (2.6). Let us multiply all the terms in the equa-
tion by L1Ls (s = 2, 3) and integrate with respect to the
directions of the vector L. Taking into account the rela-

tion 〈  – 〉  = 2d/3T, which can be readily obtained
for the Boltzmann distribution with the Maier–Saupe
potential, we reduce the equation of the director rota-
tion to the form

Transforming this equation with the help of Eq. (4.6),
we arrive at the nonlinear equation of director rotation.
We separate the part in it that describes the director evo-
lutions that are slow in comparison with the frequency
of the external action. For this purpose, we average
each term over the oscillation period. Adding also the
Frank’s elastic moments G, which are not included in
the initial molecular model of a nematic LC, we obtain
a finite equation for the slow rotation of the director in
a one-dimensional sound field:

(4.9)

where

is the parameter with the dimension of frequency.
In the given geometry of the effect of a sound field

upon the layer of a cholesteric LC, we obtain m = (0, 0, 1),
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n = (nx, ny, θ), and m1 = θ. Further more, we omit the

small term containing ω2 in the expression for . Deter-
mining the matrix elements Σij according to Eq. (4.8), we
write down the components of the stress tensor that are
necessary for the equations:

(4.10)

where

(4.11)

are the parameters, which also have the dimension of
frequency.

The stress  is symmetric with respect to the
transposition of indices, and the diagonal elements of

the stress tensor  coincide. These components will
not be used in the equation of motion.

Let us again consider the structure distortions with
the minimal free energy when θ = nατα and the func-
tions τα and ϕ and the flow velocities change slowly
along the crystal axis. We determine the periodic
dependence of the variables on the coordinates accord-
ing to Eq. (3.1). Retaining only the nonlinear relaxation
terms in Eqs. (2.5) and (2.6), we separate the equations
for τ, ϕ2, v 2, z, and Ωz with the coefficients containing

the external action :

(4.12)

We determine the value of ε0, at which the perturba-
tions with the wave number k start to grow, by setting to
zero the determinant of the set of equations (4.12):

where A = (η + α5/4)/(γ/2 + η + α5/4).
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The wave number of the domain structure at the

effect threshold kth and the threshold value of  are
determined by the minimization of ε0(ω, k) with respect
to k:

(4.13)

DISCUSSION

Let us compare the effects of the two aforemen-
tioned mechanisms of the structure destabilization for a
layer of cholesteric LC with each other and with exper-
imental data. Experimental observation of domains in a
layer of a cholesteric LC under the effect of ultrasound
in the frequency range 0.3–3.6 MHz is described in [1,
11, 12]. These publications report on the formation of a
domain structure of the square-grid type with sides that
are parallel and perpendicular to the rubbing lines of the
boundary surface. The grid appears only in separate
parts of the layer of a cholesteric LC, where, presum-
ably, the layer extension at disclinations takes place.

The parameters of a cholesteric LC in the numerical
analysis were assumed to be equal to the typical ones
for nematic crystals: K33 ≈ 0.5 × 10–11 N, α4 ≈ γ1 ≈ 0.1 Pa
[10], c = 1.5 × 103 m/s, τ  = 3 × 10–8 s, βS = 0.5 ×
10–9 N–1 m2 [27], DE = 2 × 107 N/m2 [28], α6 ≈ 0, ρ ≈
103 kg m–3 [29], ∂Tc /∂P = 3.5 × 10–7 deg m2 N–1 [30],
Cp = 2 × 106 J m–3 [31], d ≈ 0.45Tc [12], and Tc = 319 K
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Fig. 1. Dependence of the threshold compressibility on fre-
quency. (1) Vortex mechanism, (2) nonlinear relaxation
mechanism, and (3) complete theory. The parameters of the
layer of a cholesteric LC are h = 100 µm, P0 = 10 µm, and
δ = 0.8.
[10]. The threshold compressibility and the size of
domains were determined for the temperature T =
310 K, at which the molecular parameters of the
medium are 〈P2〉  = 0.6, β ≈ 5, and dT ≈ 2.5. Equaling
d0 [Eq. (2.4)] to the experimental size of domains d ≈
18.5 µm observed at the static extension of the layer of
a cholesteric LC with the thickness h = 22 µm and the
helix pitch P0 = 4.3 µm [12], we obtain the value λ =
K22/K ≈ 2.8 × 10–2. The kinetic coefficients a1 and a5 +

a6 in the parameter  remain undetermined within the
framework of the model in use. Let us estimate their
value according to the publications [18, 19, 24, 25],
where the anisotropic part of the Leslie stress with the
viscosity coefficients αk (k ≠ 4) is mainly caused by the
gradients f '. In this case, the second and third terms in
Eq. (4.4) must be small, which gives the values a1 ≈ 1
and a5 + a6 ≈ –1 that are used for the numerical calcu-

lation of .

Both vortex and nonlinear relaxation mechanisms
lead to the destabilization of the structure of a choles-
teric LC in a sound field and to the formation of a
domain structure in the layer of a cholesteric LC. Their
effect manifests itself in different frequency ranges: the
first one manifests itself in the interval (aτ)–1 < ω < τ–1

and the second, for ω > τ–1. The numerical comparison
of the vortex and relaxation thresholds of the effect is
given in Fig. 1, where the curves for the threshold val-
ues εth as the functions of the reduced frequency ωτ are
plotted according to Eqs. (3.6) and (4.13) for the layer
thickness h = 100 µm and the helix pitch P0 = 10 µm. It
was assumed in Eq. (3.6) that ξ = 1. The relative exten-
sion of the layer in both cases was assumed to be equal
to δ = 0.8.

A curve for the frequency dependence of the thresh-
old amplitude of compression εth, obtained by taking
into account the simultaneous effects of both mecha-
nisms, is plotted in the same figure. The expression for
εth is constructed by summation of the inverse squares

of  and :

(5.1)

Figure 1 demonstrates that the vortex and relaxation
mechanisms of destabilization of the structure of a cho-
lesteric LC and the domain formation in the layer of a
cholesteric LC are governing in different frequency
ranges. The boundary between these ranges ω = ω0 can
be estimated using the relation ω0 ≈ 2.25 × 10–2h/P0τ–1.
The two mechanisms complement each other and
expand the frequency range where the effect must be

observed. The value of  at ωτ ! 1 and the value of

 at ωτ @ 1 differ little, which leads to a slight
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dependence of the threshold compression εth on fre-
quency. For example, in the case of the layer thickness
h = 100 µm and the helix pitch P0 = 4 µm, the threshold
compression changes from the value εth ≈ 0.7 × 10–5 at
low frequencies to εth ≈ 0.8 × 10–5 at high frequencies.
The corresponding value of the threshold intensity of
sound in the wave incident upon the layer is equal to

Ith = ρc3 ≈ 0.02 W/cm2.

Both vortex and relaxation mechanisms lead to the
formation of acoustic domains of the same size d0 in a
layer of a cholesteric LC. This size does not depend on
frequency, and the visual manifestations of these mech-
anisms are similar. However, they lead to different
dependences of the threshold compressibility on the

pitch of the cholesteric helix: εth ~ 1/  for the non-

linear relaxation mechanism and εth ~  for the vor-
tex one, and their effects can be identified experimen-
tally.

A comparison of the theoretical and the experimen-
tal thresholds of the effect, i.e., εth and εexp, respectively,
is represented in Fig. 2. The values of εth/εexp are plotted

there as functions of  for different ω, h, and P0.
The threshold compression εth was determined accord-
ing to Eqs. (5.1), (3.6), and (4.13) at ξ = 1, and the val-
ues of εexp were recalculated according to the experi-
mental data given in [1, 12]. The comparison of the the-
oretical and experimental sizes of domains is given in
Fig. 3, where the theoretical curve for d = d0 as the func-

tion of  is plotted and the experimental data [1,
12] are indicated.

Figures 2 and 3 demonstrate a good agreement
between theoretical calculations and experimental data.
The closeness of the theory developed with allowance

εth
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P0

P0h

P0h

0.5

0 0.5

εth/εexp

(P0/h)1/2
1.0

1.0

1.5

Fig. 2. Ratio of the theoretical compressibility εth to the
experimental compressibility εexp for different values of
P0/h.
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for the relaxation processes and the experimental data
indicates that the processes of structural relaxation can
play a decisive role in the formation of spatially modu-
lated structures in LC affected by ultrasound, and they
must be taken into account in the theory of the corre-
sponding phenomena.

In conclusion, we present some numerical estimates
for the parameters used above for the layer of a choles-
teric LC:

These values testify to the validity of inequalities (3.2)
and (3.5) used in the derivation of Eq. (3.6).
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Abstract—On the basis of the WKB method and the theory of sound scattering by a stochastically rough sur-
face of an elastic layer, the normal mode attenuation coefficients (NMAC) are analyzed for the coherent com-
ponent of the sound field generated by a tone source in the deep-water acoustic waveguide extending along the
Spitsbergen–Barrow Point oceanographic section. For an arctic waveguide with an ice cover in the form of a
flat homogeneous absorbing elastic layer, the NMAC are explicitly obtained as analytical functions of the whole
set of the waveguide parameters and the parameters of the sound velocity profiles in characteristic water layers
with consideration for the typical features of thermohaline stratification observed in the central region of the
Arctic Ocean. It is shown that the results of calculating the values of the NMAC and their dependences on the
ice cover thickness by the derived formulas are very close to the exact results obtained with the use of the mode
program. A number of regularities were found in the behavior of the NMAC as functions of the mode number
and the ice cover thickness, as well as in the sensitivity of the sound field formed in the arctic waveguide to the
variability of the ice cover thickness. Specific features are revealed in the distribution of the sound field intensity
along a vertical receiving acoustic array. It is shown that the aforementioned WKB approximations for the
NMAC and all mentioned regularities also hold for arctic waveguides with ice cover described by more realistic
models with stochastically rough surfaces in the domain of applicability of the methods used for calculating the
coherent reflection coefficient at the water–ice boundary. It is pointed out that the use of the WKB approxima-
tions of NMAC can considerably improve the efficiency of computer programs used for acoustic remote mon-
itoring of the thermohaline structure of the underice medium and the ice cover of the Arctic Ocean and for sound
source localization in arctic regions. © 2002 MAIK “Nauka/Interperiodica”.
The thermohaline structure of the underice medium
in the Arctic basin is of primary importance in the ice
formation, the global oceanic circulation, and the for-
mation of the Earth’s climate. Methods for modeling
the acoustic monitoring of this structure have been
developed in the last few years in the framework of the
international scientific projects Arctic ATOC (Arctic
Acoustic Thermometry of Ocean Climate) and ACOUS
(Arctic Climate Observation using Underwater Sound)
[1–7]. Both modeling and the full-scale experiments on
thermometry of the Arctic Ocean along deep-water
transarctic acoustic paths showed that the measure-
ments of the variations in the arrival times of normal
modes offer the possibility of monitoring the average
temperature of the intermediate layer of warm water
intruding from the Atlantic [1–4] and affecting the ther-
mohaline structure in the upper water layers. A similar
technique can be applied [5–7] in modeling the acoustic
monitoring of salinity of the uppermost desalinated
water layer whose temperature is always about the
freezing point. It is precisely this layer with reduced
salinity that plays the crucial role in the existence of the
permanent ice cover and the formation of the inclement
climate in the Arctic basin.

It is obvious that the data on normal mode propa-
gation times alone are insufficient for realizing the
1063-7710/02/4806- $22.00 © 20697
acoustic monitoring of the ice cover in the Arctic
Ocean and the thermohaline structure in the water lay-
ers intermediate between the aforementioned layers,
because the ice cover with its typical material param-
eters only slightly affects these propagation times [8],
and the velocity of sound in these layers depends on
both temperature and salinity. In this context, it is
advantageous to use the normal mode attenuation
coefficients (NMAC) of several first numbers as addi-
tional informative data. These coefficients are very
sensitive to variations in both the parameters of the ice
cover and the vertical gradient of the sound velocity in
the adjacent upper layers of the medium under the ice
cover. The magnitudes of NMAC can be reconstructed
from the expansion coefficients of the sound pressure
along the vertical array in normalized eigenfunctions
of the arctic waveguide. The eigenfunctions, in turn,
can be calculated, with the use of mode filtration algo-
rithms, from the measured sound pressure values of
the narrow-band or broadband signals at the hydro-
phones of the receiving acoustic arrays [9–18]. In this
connection, the study of regularities in the NMAC as
functions of the parameters of the ice cover and the
underice medium is of considerable interest for the
development of methods of modeling the acoustic
monitoring in the Arctic basin.
002 MAIK “Nauka/Interperiodica”
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This paper deals with the study of these regularities
in the absorption of normal modes and uses the deep-
water waveguide with the vertical sound field profile
typical of the Central Arctic basin (see Fig. 1) as an
example. Results of similar investigations in the case of
a shallow-water arctic waveguide can be found in [19,
20]. The paper also presents the normal mode attenua-
tion coefficients and analyzes the distribution of the
sound field intensity generated by a tone source on a
vertical acoustic array and the sensitivity of the hori-
zontal sections of intensity levels in the subsurface
sound channel to the variation of the ice cover thick-
ness. All results are obtained both numerically and
using the WKB method, for a horizontally homoge-
neous waveguide with the aforementioned sound veloc-
ity profile in the water layer and the ice cover in the
form of a homogeneous absorbing elastic layer of con-
stant thickness with flat boundaries. The results of some
known theoretical studies of the sound reflection and
scattering by an elastic layer with stochastically rough
boundaries are used to extend the regularities estab-
lished for the normal mode attenuation coefficients in
such a waveguide to the model of an arctic waveguide
whose ice cover is characterized by rough boundaries.
Some aspects of possible applications of the estab-
lished regularities are discussed.

MODELS OF THE SOUND FIELD PROFILE 
AND THE ICE COVER OF AN ARCTIC 

WAVEGUIDE

As is known [21–23], five characteristic layers can
be distinguished in the underice medium of the deep-
water region of the Arctic Ocean: (1) the uppermost
desalinated water layer characterized by low salinity
and a temperature of about the freezing point, (2) the
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Fig. 1. Typical vertical sound velocity profile in water after
averaging over the 2000-km segment of the European part
of the Spitsbergen–Barrow Point oceanographic section.
cold halocline layer with a high positive vertical gradi-
ent of salinity, (3) the layer of warm and saline Atlantic
waters characterized by a considerable positive gradi-
ent of temperature and reaching the Arctic basin
through the eastern part of the Fram Channel, (4) the
core of Atlantic water masses, and (5) the deep-water
layer extending to the bottom and characterized by a
nearly constant vertical hydrostatic gradient of sound
velocity. Layers 1–4 with a total thickness of about sev-
eral hundreds of meters below the ice undersurface
form a fully developed subsurface sound channel. Out-
side this channel, with a further depth increase to the
bottom, the sound velocity increases almost linearly
and with a much smaller gradient due to the hydrostatic
pressure. The mixed surface layer 1 with low salinity is
formed by the inflow of fresh waters arriving mainly
from four river systems (McKenzie, Ob, Eniseœ, and
Lena) and due to the arrival of low-salinity water
masses from the Bering Sea through the Bering Strait to
the Chukotsk Sea. The latter arrival measures up to
40% of the income portion of freshwater balance of the
Arctic Ocean. The origin of the cold halocline layer 2 is
caused both by the wintertime advection of the cold
saline shelf waters from the periphery of the Arctic
Ocean to the deeper (below 100 m) layers located
between the desalinated layer 1 and the Atlantic saline
warm waters and by the autumnal and wintertime con-
vection of saline water masses from the subsurface
layer. This process is completed by the intrusion of cold
desalinated shelf waters into this layer [22, 23]. The
subsurface layer isolates the ice cover from the warm
waters of Atlantic origin and prevents it from being
melted (indeed, the heat of Atlantic waters of even a
few watts per square meter would be sufficient to melt
a considerable portion of ice in the case of the absence
of this layer), thus favoring the ice formation process
[23]. The reduced salinity of the upper layer is the most
important factor affecting the formation of the ice cover
and climate of the Arctic basin.

With the aim of establishing the relationships for the
NMAC as functions of the above features of the
underice medium, we approximate the sound field pro-
file in the water layer by an ascending piecewise linear
function

(1)

where cj are the values of the sound velocity at the

boundaries z =  =  of the aforementioned
characteristic water layers; hj are the widths of these
layers; gj = (cj + 1 – cj)/hj are the positive vertical gradi-
ents of sound velocity in these layers; and c1 = c2 = c0 =
c(0) and c6 = c(H) are sound velocities at the ice under-
surface  = 0 and at the bottom  = H, respectively.
In calculating the normal mode characteristics, we used

c z( ) c j g j z z j–( ) for z j z z j 1+ ,≤ ≤+=

j 1 2 3 4 5, , , ,( ),=

z j hmm 1=
j∑

z1 z6
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Table 1.  Model of the sound velocity profile c(z) along the European part of the Spitsbergen–Barrow Point oceanographic
section, the depths of the boundaries separating the characteristic layers, the thicknesses of the layers, and the gradients of the
sound velocity in the layers

Boundary
number j

Boundary
depth , m

Sound velocity
cj, m/s

Number
of layer j

Layer
thickness hi, m

Sound velocity
gradient gi , s

–1

1 0 1440 1 50 0

2 50 1440 2 70 1.1143 × 10–1

3 120 1448 3 280 3.9286 × 10–2

4 400 1459 4 600 5.0000 × 10–3

5 1000 1462 5 2000 1.9000 × 10–2

6 3000 1500

z j

Table 2.  Parameters of the ice cover

Ice thickness l, m Longitudinal wave 
velocity cp, m/s

Shear wave velocity 
cs, m/s

Longitudinal wave 
attenuation δp ,

dB/m/kHz

Shear wave attenua-
tion δs, dB/m/kHz Density ρi , g/cm3

0–5 3832.7 1903.5 0.058 0.348 0.9
the sound field profile whose parameters are given in
Table 1. Figure 1 shows this profile only to a depth of
2000 m. This profile was obtained by averaging the
sound field profiles calculated from the measured verti-
cal temperature and salinity profiles during the Sever
expedition [21] for intermediate points of the European
part of the Spitsbergen–Barrow Point oceanographic
section 2000 km in length with the average depth H =
3000 m.

For the ice cover, we used the model in the form of
a homogeneous absorbing elastic layer. In accordance
with the available experimental data [24], we approxi-
mated the attenuation coefficients βP [dB/km] and βs
[dB/km] by linear functions of frequency: βP = δpf and
βs = δsf, where the frequency f is measured in hertz and
the attenuation factors δp and δs are related by the for-
mula δs = 6δp and have the dimension [dB/m/kHz].
Table 2 presents the parameters of the ice cover.

REPRESENTATION OF THE PRESSURE
IN THE SOUND FIELD OF A TONE SOURCE

IN AN ARCTIC WAVEGUIDE WITH ICE COVER 
OF CONSTANT THICKNESS IN THE FORM

OF A SERIES EXPANSION IN NORMAL MODES

Consider first the model of an arctic waveguide with
the sound field profile shown in Fig. 1 and ice cover in
the form of a homogeneous absorbing elastic layer with
flat boundaries. The pressure p of the sound field gen-
erated at an arbitrary point (r, z) of the water layer by a
harmonic point source with the angular frequency ω =
2πf under the condition kr @ 1 (k = ω/c(0) is the wave
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number) is determined as the sum of normal modes
[19]:

(2)

(3)

where ρ0 is the density of water, Q is the volume veloc-
ity of the source, z0 and z are the source and receiver
depths, and r is the horizontal distance between the
source and the receiver. In these formulas, the quanti-

ties wn(z) and λn =  (ξn is the complex horizontal
wave number of a normal mode with number n) are the
nth normalized eigenfunction and the nth eigenvalue of
the spectral boundary-value problem

(4)

(5)

where ξ is the spectral parameter (the horizontal wave
number); H is the thickness of the water layer; c(z) is
the sound velocity in the water layer; and Gs and Gb are
the input admittance of the homogeneous absorbing ice
cover at the surface z = 0 and the input admittance of the
stratified absorbing bottom at the water–bottom bound-
ary z = H, respectively. In the following consideration,

p r z z0ω, ,( ) ωρ0Q Anwn z ξn
2,( ),

n 1=

∞

∑–=

An 8iπξnr( ) 1/2– wn z0( )=

× iRe ξn( )r βnr/ 20 e10log( )–[ ] ,exp

ξn
2

d2w

d2z
--------- ω2

c2 z( )
------------ ξ2– w+ 0,=

dw
dz
------- Gs ξ2( )w+

z 0=

dw
dz
------- Gb ξ2( )w+

z H=

0,= =
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we will use only the expression for the admittance Gs
derived in [19]:

(6)

(7)

(8)

where a = , b = , kp = (ω/cp)(1 + iηp),

ks = (ω/cs)(1 + iηs), ηp = 10–3cpδp /[40π ], and
ηs = 10–3csδs /[40π ] are the coefficients of
losses for the longitudinal and shear waves in the ice
layer; l is the thickness of the ice cover; mi = ρi/ρ0 is the

ice-to-water density ratio; and i = . The quantity βn

in Eq. (3) is the attenuation coefficient of the nth mode
(in [dB/km]); it is caused by the sound wave absorption
by the ice cover and the ocean bottom and is related to
the imaginary part Im(ξn) [Neper/m] of the wave num-
ber ξn by the formula

(9)

WKB APPROXIMATIONS OF THE NORMAL 
MODE ATTENUATION COEFFICIENTS

IN AN ARCTIC WAVEGUIDE WITH ICE COVER 
OF CONSTANT THICKNESS

For a more illustrative interpretation of the numeri-
cal results obtained for the NMAC in terms of the above
model of the arctic waveguide with the use of a mode
program that modifies the program [25] to allow for
expressions (6)–(8) for the input admittance Gs of the
absorbing ice layer and to control the calculation cor-
rectness, we first obtain approximate explicit expres-
sions for the NMAC on the basis of the asymptotic
WKB method. For convenience, we represent the pres-
sure p as the sum of two components p = p1 + p2. The
pressure p1 is the sum of sound pressures of the least
attenuating normal modes with the numbers n = 1,
2, …, N; for sufficiently high frequencies, these modes
correspond to rays refracted upward and reflected only
from the ice undersurface. The pressure p2 is the sum of
pressures of normal modes with the numbers from N +
1 to infinity; these modes correspond to rays multiply
reflected from two absorbing boundaries of the water
layer. For sufficiently large distances r from the source,
normal modes with the numbers n = 1, 2, …, N predom-
inate in the total sound field; for this reason, the analyt-
ical and numerical results given below refer to these
modes. By the WKB method, the attenuation coeffi-

Gs mi
1– αG1/G2,=

G1 ks
4 2ξ2 ks

2–( )2 α l( )coth 4αβξ 2 βl( )coth–[ ] ,=

G2 2ξ2 ks
2–( )2

4αβξ 2 α l
2
----- 

  βl
2
----- 

 cothtanh–=

× 2ξ2 ks
2–( )2

4αβξ 2 α l
2
----- 

  βl
2
----- 

 tanhcoth– ,

ξ2 kp
2– ξ2 ks

2–

e( )10log
e( )10log

1–

βn 20 e( )10log( )Im ξn( ) 103.×=
cients βn [dB/km] of the normal modes with the num-
bers n = 1, 2, …, N are given by the expressions [26]

(10)

(11)

(12)

where χn is the grazing angle of the ray corresponding
to the nth mode near the ice cover; this angle can be
determined from the relationship Re(ξn) = kcosχn. The
parameters |Vs| and ϕs are the magnitude and phase of
the reflection coefficient from the water–ice boundary,
respectively; Dn is the cycle length of the geometric ray
with the grazing angle χn at the water–ice boundary
(this length is equal to the distance between two succes-
sive reflections from the ice undersurface); ∆n is the
horizontal displacement of the beam of rays at the
reflection from the surface of the ice cover; and zt is the
depth of the point at which the ray with the grazing
angle χn is turned back and which is the unique root of
the equation c0/c(zt) – cosχn = 0. The grazing angles χn
are determined from the equations

(13)

These expressions hold for all modes with grazing
angles χn ≤ χ4, where χ4 = /c(H)] is the graz-
ing angle of the ray touching the bottom.

Calculating the integral in Eq. (12) with the use of
piecewise linear approximation (1) for the sound
velocity c(z), we obtain the following recursion rela-
tions for the cycle length of the sound ray with the
grazing angle χn:

where χ j = /cj + 2) (j = 1, 2, 3, and 4) are the
grazing angles of the boundary rays touching three
characteristic boundaries of the water layer and bottom
z = . Because only the modes with small grazing
angles (less than the boundary angle χ4) are of interest
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in our consideration, we can approximate the magni-
tude of the reflection coefficient by the relationship

(15)

Then, taking into account the expressions for the reflec-
tion coefficient Vs and its magnitude,

(16)

(17)

and calculating the derivative of expression (17) with
respect to the grazing angle χ at χ = 0, we obtain an
expression for γ:

(18)

where  = k–1(Gs)χ = 0. As follows from Eqs. (6)–(8)
for the admittance Gs and from Eq. (18), the expression
for γ has the following form:

(19)

where

Then, using Eqs. (1), (10), and (11) and taking into
account the fact that ∆n ! Dn for the attenuation coeffi-
cients βn [dB/km] of normal modes captured by the
underice sound channel, we obtain the approximate
expression

(20)

where the quantities χn and Dn(χn) are determined by
Eqs. (13) and (14). In particular, in the case of the sound
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γ ∂ Vs /∂χ( )χ 0= .=

Vs

=  ik χsin Gs k χcos( )–[ ] / ik χsin Gs k χcos( )+[ ] ,

Vs 1 4k 1– Im Gs( )–{=

× χ/ χsin
2

k 2– Gs
2 2k 1– Im Gs( ) χsin+ +[ ]sin }

1/2
,

γ 2Im 1/G̃s( ),=

G̃s

γ 2Im γ2γ3/γ1( ),=

γ1
ν4

mi

----- 1 µ2– 2 ν2–( )2
kl( ) 1 µ2–[ ]coth{=

– 4 1 ν2– 1 µ2– kl( ) 1 ν2–[ ]coth } ,

γ2 2 ν2–( )2
4 1 ν2– 1 µ2– ---–





=

× kl
2
---- 1 µ2–

kl
2
---- 1 ν2–cothtanh





;

γ3 2 ν2–( )2
4 1 ν2– 1 µ2– ---–





=

× kl
2
---- 1 µ2–

kl
2
---- 1 ν2–tanhcoth





;

µ c0/cp( ) 1 iη p+( ), ν c0/cs( ) 1 iη s+( ).= =

βn 20 e( )10log γ χn 103/Dn χn( ),×sin=
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
0.005

0 50

βn, dB/km

100 150 200 n

0.010

0.015

0.020

0.025 (a)

I II III

0.005

0 10

βn, dB/km

20 30 40 n

0.010

0.015

0.020

0.025 (b)

I II III

IV

Fig. 2. Attenuation coefficients βn (dB/km) of normal
modes as functions of mode numbers for (a) n = 1, …, 250
and (b) n = 1, …, 50 at a frequency of 250 Hz for different
values of the ice cover thickness: l = ( ) 1, (×) 2, (+) 3, (*) 4,
and (s) 5 m.
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Fig. 3. Attenuation coefficients βn (dB/km) of normal
modes as functions of mode numbers for n = 1, …, 50 at a
frequency of 250 Hz for the ice cover thickness l = 3 m:
(+) the exact mode program and ( ) the WKB method.
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Fig. 4. Normal mode attenuation coefficients βn at a frequency of 250 Hz as functions of the ice cover thickness l = 0–5 m for the
mode numbers n = 1, …, 50: (a) the exact mode program and (b) the WKB method.
velocity profile described by a linear or bilinear func-
tion of depth, which occurs, e.g., in the Greenland Sea
[27] in winter and spring, the attenuation coefficients of
lower normal modes captured by the subsurface sound
channel only slightly depend on the number n and are
given by the simple expression [19, 20]

(21)

where g is the gradient of sound velocity in the subsur-
face sound channel.

NUMERICAL ANALYSIS OF THE NORMAL 
MODE ATTENUATION COEFFICIENTS
AND ITS INTERPRETATION IN TERMS

OF THE WKB APPROXIMATION

Now, we analyze the regularities that the sound
absorption by the ice cover causes in the distribution of
the NMAC over the mode numbers for different ice
thickness values ranging from 0 to 5 m. As can be seen
from Fig. 2a, the sequence of NMAC {βn}, n = 1, 2, …,
250, is divided into four groups of numbers separated
by the vertical dashed lines and marked by roman num-
bers I, II, III, and IV. In group I, coefficients βn take on
maximal values and correspond to the modes of lower
numbers n = 1, 2, …, N1 = 15 with phase velocities cp, n
in the interval c0 = c1 = 1440 < cp, n ≤ c4 = 1459, or to
water-path rays that are refracted in the upward direc-
tion, turn back at the depths zt ≤ , have grazing angles
χ ≤ χ2, and cross the desalinated and halocline cold lay-
ers. In group II, the coefficients βn take on minimal val-

βn 20 e( )10log γg2 103/c2× β const,= = =

z4
ues and correspond to the modes with the numbers N1 +
1 ≤ n = 16, …, N2 = 28 with phase velocities c in the
interval c4 = 1459 ≤ cp, n ≤ c5 = 1462, or to rays that turn
back at depths zt ≤  and cross all four upper layers.
The vast group III, which includes modes with the
numbers N2 + 1 ≤ n = 29, … N3 = 100 and phase veloc-
ities in the interval c5 = 1462 ≤ cp, n ≤ c6 = c(H) = 1500,
is characterized by the NMAC only slightly increasing
with the number n and corresponds to rays with grazing
angles χ3 < χ ≤ χ4 and turning points lying in the thick
lowest layer with a constant hydrostatic gradient of
sound velocity. Group IV includes the NMAC for
modes with the numbers N3 + 1 ≤ n = N4 = 250; these
coefficients rapidly increase with the mode number n
and correspond to rays multiply reflected from both the
ice cover and the arctic waveguide bottom. The above
features in the distribution of NMAC over the mode
numbers appear more prominent in Fig. 2b, where the
distribution is shown for modes with the numbers n =
1, 2, …, 50 on an enlarged scale. As can be seen from
Figs. 2a and 2b, the values of NMAC are nonmonotone
functions of the ice cover thickness. Furthermore, the
values of NMAC for group I of modes are more sensi-
tive to variation of the ice cover thickness in compari-
son with those for groups II and III. Figure 3 shows a
comparison of the exact values {βn}, n = 1, 2, …, 50,
calculated with the modified mode program [25] for the
ice thickness l = 3 m with the corresponding values cal-
culated by formulas (10), (14), (19), and (20) based on
the WKB method. From this comparison, it follows that
the above WKB approximations for the coefficients

z5
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{βn}, n = 1, 2, … practically coincide with their exact
values obtained with the use of the numerical proce-
dures of searching for complex eigenvalues of the spec-
tral boundary-value problem (4)–(8).

The above features in the behavior of NMAC versus
the mode number are prominent in Fig. 4, where the
coefficients βn for mode numbers n = 1, 2, …, 50 are
shown as functions of the ice cover thickness l in the
interval from 0 to 5 m. The comparison of the curves
presented in Figs. 4a and 4b shows that, within the
whole range of ice thickness, the curves βn(l) calculated
by the WKB formulas (10), (14), (19), and (20) coin-
cide to a high accuracy with those obtained using digi-
tal procedures of determining the complex eigenvalues
of the boundary-value problem (4)–(8). As seen from
Fig. 4, the curves βn(l) for mode groups I and III show
a curious geometrical feature that consists in the fact
that they nearly merge forming two contrast concentra-
tion regions in the lβ plane; these regions are shown by
the solid lines and marked by arrows and roman numer-
als. The closely spaced curves shown by the dashed
lines correspond to the least attenuated modes of group
II. In addition, Fig. 4 shows that the coefficients βn are
two-valued functions of l and have maxima at certain
values of ice cover thickness. As can be seen from Fig.
4, the curves βn(l) are ordered in the lβ plane in a fairly
complex nonmonotone way, and regions appear where
they approach one another, which is unlike the case of
a shallow-water arctic waveguide [20], where the
curves βn(l) are ordered from bottom to top in ascend-
ing order of mode numbers n.

SOUND INTENSITY LEVEL
AT THE VERTICAL ACOUSTIC ARRAY

AS A FUNCTION OF DISTANCE
AND ICE COVER THICKNESS

Now, we discuss the features of the sound field
intensity I(r, z, z0) produced at a vertical acoustic array
(a chain of hydrophones) by a tone source as a function
of the horizontal distance r between the source and the
array. For simplicity, we assume that the sound inten-
sity at a single receiving element of the array is deter-
mined as the incoherent sum of the mode energies
|An|2|wn(z)|2 of the required maximal number nmax of
normal modes [where z is the depth of an array receiver
and the quantities An for the numbers n = 1, 2, …, nnmax
are determined from Eq. (3)]. For modes of group IV,
the attenuation coefficients rapidly increase with the
number n, and the amplitudes An are, according to our
calculations, very small in comparison with the ampli-
tudes of modes of groups I–III. For this reason, the
sound field in the case of middle and long distances r is
mainly formed by modes of groups I, II, and III, the
attenuation coefficients of the modes of group III being
only slightly dependent on the mode number. We
denote by δ1 and δ2 the average attenuation coefficients
of modes of group I and of combined group II + III,
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
respectively. One can see from Fig. 5 that the magni-
tudes of the functions |wn| for the modes of group I (n =
1–15) are noticeably greater than the magnitudes of the
functions |wn| for the modes of groups II and III in the
depth interval 0 < z < h, and they are exponentially
small for the depths h ≤ z ≤ H, where h = h1 + h2 + h3 =
400 m. For this reason, the sound intensity curves J =
10 (r, z, z0)/I0] (I0 is the sound intensity at the
distance r = 1 km in free space) corresponding to the
source located at some depth z0 ≤ h (z0 = 100 m) in the
region with a high sound velocity gradient and two
receiving array elements lying at the depths z1 < h and
z2 > h cross each other at a certain distance r0 (Fig. 6a).
An approximate formula for r0 follows from Eqs. (2)
and (3):

(22)

where the figures I and II + III mean the summation
over the mode numbers of group I and the combined
group II + III.

Figure 6a shows that for a distance of several hun-
dreds of kilometers from the source r ≤ r0, the sound
field produced at the array segment 0 < z < h by a source
located at the depth z0 = 100 m ≤ h is formed predomi-
nantly by the modes of groups I and II with the numbers
n = 1, …, 29, which are captured by the subsurface
sound channel. At the same time, the contribution of all
modes of group III to the sound field intensity at this
array segment is appreciably smaller and does not
exceed 0.5 dB. For longer distances r, the sound field at
this array segment is formed by all modes of groups I–
III. For the remainder of the array located at depths h <
z < H, only the least attenuated modes of groups II and
III contribute to the sound intensity for all distances r,
because the quantities |wn(z)| are exponentially small
for the modes of group I. For a source located at a depth
z0 > h, the modes of group I are practically not gener-
ated in the waveguide, so that the sound field is formed
predominantly by the modes of groups II and III along
the whole length of the array and for all distances r.

Figure 6b shows the family of the horizontal sec-
tions of the intensity level J in the subsurface sound
channel for different values of the ice cover thickness
l = 0–5 m (the light solid line corresponds to l = 0). As
can be seen, the magnitude of the intensity level J as a
function of the ice cover thickness l correlates, at a
given r, with the features in the behavior of the curves
βn(l) shown in Figs. 2 and 4. It appears that the curves
of the intensity level J(r) are most sensitive to varia-
tions in the ice thickness for l = 1–2 m.
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Fig. 5. Magnitudes of the normalized eigenfunctions wn as functions of depth at a frequency of 250 Hz and at the ice cover depth
l = 3 m. The integers are the mode numbers: numbers from 1 to 15 correspond to group I, from 16 to 29, to group II, and from 30
to 44, to group III.
EXTENSION OF THE RESULTS
TO THE MODEL OF AN ARCTIC WAVEGUIDE 

WITH STOCHASTICALLY ROUGH 
BOUNDARIES OF THE ICE COVER

The above results were extended to several realistic
models of the ice cover with stochastically rough
boundaries. For such models, an adequate characteris-
tic of the sound field is (see [28, 29]) the average inten-
sity 〈I 〉  of the coherent component of the sound field, in
which the pressure is calculated as the incoherent sum
of the waveguide modes corresponding to the flat aver-
age water–ice boundary characterized by the coherent
reflection coefficient 〈Vs〉  (here, the averaging is per-
formed over the statistical ensemble of realizations of
the ice cover roughness). If the reflection coefficient
〈Vs〉  is known, the corresponding attenuation coeffi-

cients of these modes { }, n = 1, 2, …, N, due to theβn
absorption in the bulk of ice and the scattering of sound
and elastic waves from the rough boundaries of the ice
cover, as well as their mode-number average values

 and  for modes of group I and the combined
group II + III, are determined in the WKB approxima-
tion by the expressions similar to Eqs. (10), (14), (19)
and (20), in which the quantity γ should be replaced
with  equal to the absolute value of the partial deriva-
tive of the magnitude of 〈Vs〉  with respect to the grazing
angle at zero:  = |(∂|〈Vs〉|/∂χ)χ = 0|. The quantity  gov-
erns the dependence of the attenuation coefficients

{ }, n = 1, 2, …, N on the geometrical parameters of
the ice cover (such as the rms amplitudes of different
types of roughness relative to the average boundary, the
spatial radius of roughness correlation, and the average
ice thickness), the acoustic and elastic material param-

δ1 δ2

γ

γ γ

βn
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eters of ice, and the frequency. Numerically, the quan-
tity  can, in principle, be determined using the known
formulas and methods [28–32] for calculating the
reflection coefficient 〈Vs〉  as a function of the grazing
angle χ.

Since the only difference between the quantities

{ } (n = 1, 2, …, N) and the quantities { } (n = 1,
2, …, N) consists in the constant factors  and γ, all
regularities obtained above for the normal mode char-
acteristics and the spatial distribution of the sound
intensity in an arctic waveguide with a flat elastic
absorbing ice layer will hold (in the regions where the
aforementioned methods of calculating the coherent
reflection coefficient 〈Vs〉 and the quantity  are valid)
also for the arctic waveguide models with stochasti-
cally rough ice cover.
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Fig. 6. Sound field intensity levels J (dB) as functions of dis-
tance r at a frequency of 250 Hz and at the source depth z0 =
100 m: (a) (—) l = 3 m, z = 200 m, and nmax = 400; (—) l =
3 m, z = 500 m, and nmax = 400; (— - — - —) l = 3 m, z =
200 m, and nmax = 29; and (b) z = 200 m, nmax = 400, l = (d)
1, (h) 1.25, (e) 1.5, (n) 1.75, (×) 2, (+) 3, (*) 4, and (s) 5 m. 
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CONCLUSIONS

The WKB approximations proposed above for the
attenuation coefficients of normal modes of the coher-
ent component of the sound field generated by a tone
source and the established regularities in the distribu-
tion of the intensity of this component over a vertical
acoustic array can be useful for the development of
methods for the acoustic monitoring of the ice cover
state and the thermohaline structure in the Arctic basin.
Simple formulas (14) and (20) derived in the framework
of the WKB method, combined with formula (13), the
known asymptotic expressions for the eigenfunctions
wn, and an empirical function relating the sound veloc-
ity to temperature, salinity, and depth (e.g., like the
Chen–Millero–Lee equation), form the key set for
deriving the optimal estimators of the stochastic aver-
age geometrical, acoustic, and elastic parameters of the
ice cover, as well as the thickness, temperature, and
salinity of the characteristic layers in the underice
medium, from the experimentally measured attenuation

coefficients of normal modes of groups I and II {( )e},
n = 1, 2, …, N2, which carry important fundamental
information about the ice cover parameters and the
oceanographic characteristics of the subsurface sound
channel. These estimators can be obtained with the use
of digital procedures for solving, on the basis of the
least squares method [33], the system of nonlinear

equations {( )e – } = 0, n = 1, 2, …, N2, where 
are the theoretically calculated NMAC, in the vector of

the parameters to be estimated. The coefficients ( )e

are determined from Eq. (3) by using the coefficients
An, which are the expansion coefficients of the sound
field at the vertical array in the eigenfunctions wn. The
expansion coefficients, in turn, can be calculated using
the methods of modal decomposition [9–11, 14, 18]
and the matched-field processing [12, 13–17] from the
sound field pressures measured with the hydrophones
of the vertical receiving array segment located at the
depths 0 < z < h in the subsurface sound channel. As
was shown above, under the condition that z0 < h, these
pressures are formed by the modes of groups I and II for
a wide range of distances r < r0.

Note that the derived WKB approximations for the

coefficients  provide the possibility of a fast and
high-accuracy calculation of their distribution over the
mode numbers and their dependences on the ice cover
parameters, the thermohaline structure of the underice
medium, and the frequency. They offer the possibility
of circumventing multiple calculations of the complex
wave numbers of normal modes with the use of proce-
dures for searching for the complex eigenvalues of a
non-self-conjugate spectral boundary-value problem
for the second-order differential equation. In turn, these
formulas, together with the asymptotic expressions for
modal eigenfunctions, provide the possibility of a fast
calculation of the sound field intensity generated by a

βn

βn βn βn

βn

βn
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tone source as a function of the horizontal distance r,
various parameters of the ice cover and the underice
medium, and the frequency. Therefore, the use of these
formulas may significantly improve the efficiency of
computer programs used both in the acoustic tomogra-
phy of the ocean and for the localization of a sound
source in the oceanic waveguide, which are based on
the matched-field processing [15] requiring multiple
calculations of the sound field characteristics for
numerous values of the parameters to be estimated.
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Abstract—An analytical solution to the problem of determining the frequencies and modes of free axisymmet-
ric oscillations of a spherical cone is obtained and studied. The spherical cone is filled with an ideal compress-
ible liquid. The spherical surface of the cone is represented by a thin elastic shell rigidly fixed along its boundary
to the perfectly rigid radial wall of the cone. Approximate equations for the eigenfrequencies are presented. The
dependences of the frequencies on the mechanical properties of the shell and on the geometric dimensions of
the resonator are analyzed. © 2002 MAIK “Nauka/Interperiodica”.
Oscillations of fluid-filled elastic spherical shells
are considered in many papers, which present both ana-
lytical solutions [1–6] and numerical techniques, such
as a combination of the boundary-element and finite-
element methods [3]. Oscillations of both a complete
sphere [1–3, 6] and a hemisphere [4, 5, 7] have been
studied. In this paper, we consider a case that has not
been adequately investigated in the literature: we study
free oscillations of a spherical cone with an arbitrary
vertex angle and an ideal compressible liquid filling its
inner volume. The spherical cone is bounded by a thin
elastic spherical shell and a perfectly rigid radial wall.

The spherical cone occupies the region Ω = {0 < r < R,
0 ≤ ϕ < 2π, 0 ≤ ϑ  < α}, where r, ϕ, and ϑ  are spherical
coordinates. The region Ω is filled with an ideal com-
pressible liquid characterized by the density ρ0 and the
sound velocity c. The shell represents the spherical sur-
face of radius R. For the spherical cone defined above,
we seek the axisymmetric modes of oscillation that do
not depend on the azimuth angle ϕ. Therefore, this vari-
able is absent in our calculations.

The sound pressure P(r, ϑ) in the medium in the
region Ω satisfies the Helmholtz homogeneous equation

(1)

where k = ω/c is the wave number (ω is the circular fre-
quency). The dependence of the wave process on time
is assumed to be harmonic and determined by the factor
exp(–iωt), which is omitted from here on.

The boundary condition that determines the absence
of motion for the wall of the angular region has the form

(2)

1

r2
---- ∂

∂r
-----r2 ∂

∂r
----- 1

r2 ϑsin
---------------- ∂

∂ϑ
------- ϑ ∂

∂ϑ
-------sin k2+ + 

  P r ϑ,( ) 0,=

∂P r ϑ,( )
∂ϑ

---------------------
ϑ α=

0.=
1063-7710/02/4806- $22.00 © 20707
The displacements of the points of the elastic shell
are described by a system of ordinary differential equa-
tions from the Vlasov theory of shell oscillations [8]
with allowance for the contact with the acoustic
medium. The equations describing the shell movement
harmonic in time are as follows:

(3)

(4)

Here, U(ϑ) and W(ϑ) are the displacements of the shell
points in the meridian and radial directions, respec-
tively;

G = Eh/(R2(1 – σ2)); β = h2/(12R2); h is the thickness of
the shell; and E, σ, and ρ are the Young modulus, Pois-
son ratio, and density of the shell material, respectively.

The equality of the radial displacements of the shell
points and the displacements of the liquid at the shell

ρhω2U ϑ( )– G 1 σ–
d

dϑ
-------L+ 

  U ϑ( )=

+ G
d

dϑ
------- 1 σ β ∆⊥ 2+( )–+( )Wϑ( ),

ρhω2W ϑ( )– G 1 σ β∆⊥–+( )LU ϑ( )–=

– G 2 1 σ+( ) β ∆⊥
2 1 σ–( ) ∆⊥ 2+( )+( )+( )W ϑ( )

+ P R ϑ,( ).

LΦ ϑ( ) 1
ϑsin

----------- d
dϑ
------- ϑΦ ϑ( )sin( );=

∆⊥ Φ ϑ( ) L
d

dϑ
-------Φ ϑ( ) 

  ;=
002 MAIK “Nauka/Interperiodica”
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surface in the direction normal to the latter is expressed
as follows:

(5)

The condition that the shell is fixed along its perim-
eter means the absence of displacements and rotations
at the shell boundary:

(6)

(7)

(8)

To make the problem unambiguously solvable, it is
necessary to define the behavior of the pressure near the
vertex of the angular region. Near the vertex and near
the fixed points of the shell boundary, the Meixner con-
ditions must be satisfied [9].

The construction and testing of the solution to the
above-stated problem for the shell–liquid coupled sys-
tem rely on the solution to the problem of natural oscil-
lations of a shell in vacuum. Free oscillations of a
spherical shell were considered in [2, 3, 10], and free
oscillations of a hemispherical shell, in [5, 7, 11].

The solution U0(ϑ), W0(ϑ) to the auxiliary problem
of the oscillations of a shell with an arbitrary cone angle
should satisfy conditions (3), (4), and (6)–(8), where in
Eq. (4), for the time being, we set P(R, ϑ) ≡ 0. The follow-
ing relationships should be applied: U0(ϑ) = AF1(q, ϑ)
and W0(ϑ) = BF0(q, ϑ), where F0(q, ϑ) = Pq(cosϑ),

F1(q, ϑ) = , and Pq(z) is the Legendre func-

tion of the first kind of order q. Here, q is the sought
quantity.

To determine the constants A and B, we use a homo-
geneous system of linear algebraic equations in the
unknown quantity χ = q(q + 1):

(9)

where the coefficients are determined by the expres-
sions

W ϑ( ) 1

ρ0ω
2

------------∂P r ϑ,( )
∂r

---------------------

r R=

.=

U α( ) 0,=

dW ϑ( )
dϑ

-----------------
ϑ α=

0,=

W α( ) 0.=

∂Pq ϑcos( )
∂ϑ

---------------------------

a11 χ( ) ρhω2+( )A a12 χ( )B+ 0=

a21 χ( )A a22 χ( ) ρhω2+( )B+ 0=
,





a11 χ( ) –χ 1 σ–+( )G,=

a12 χ( ) χ 2–( )β 1 σ+ +( )G,=

a21 χ( ) χ χβ 1 σ+ +( )G,=

a22 χ( ) χ2 χ 2–( ) 1 σ–( )–( )β 2 1 σ+( )+( )G.–=
For system (9) to have a nonzero solution, the following
condition should be satisfied:

(10)

The determinant ∆(χ) is a third-degree polynomial
in χ. Therefore, Eq. (10) has three roots. For each of
these roots χs, there is a pair of quantities qs = (–1 +

)/2,  = (–1 – )/2. From the prop-
erty of the Legendre functions Pq(z) = P–1 – q(z), we
obtain (z) = (z). Then, for each pair qs, , there
exist linearly dependent solutions to the system of dif-
ferential equations (3), (4). Thus, three linearly inde-
pendent solutions to the system of equations are deter-
mined by the three roots q1, q2, and q3 obtained by using
the characteristic equation (10). Each root corresponds
to a particular solution

The general solution to the system of equations with
boundary conditions (6) and (7) has the form

where C is an arbitrary constant, m1 = U03(α) (α) –

U02(α) (α), m2 = U01(α) (α) – U03(α) (α),

and m3 = U02(α) (α) – U01(α) (α).

When condition (8) is satisfied, we can construct an
equation for the determination of the eigenfrequencies
of an isolated shell:

(11)

The method proposed in [13–15] for constructing a
solution to the problem of coupled oscillations of a
shell with a liquid yields the following result:

∆ χ( ) a11 χ( ) ρhω2+( ) a22 χ( ) ρhω2+( )=

– a12 χ( )a21 χ( ) 0.=

1 4χs+ q̃s 1 4χs+

Pq̃s
Pqs

q̃s

U0s ϑ( ) a12 χs( )F1 qs ϑ,( ),=

W0s ϑ( ) a11 χs( ) ρhω2+( )F0 qs ϑ,( ).–=

U0 ϑ( ) = C msU0s ϑ( ), W0 ϑ( )
s 1=

3

∑  = C msW0s ϑ( ),
s 1=

3

∑
W02'

W03' W03' W01'

W01' W02'

msW0s α( ).
s 1=

3

∑

P r ϑ,( ) C pnQn r ϑ,( ),
n 0=

∞

∑=

Qn r ϑ,( )
f 0 λn kr,( )
f 0 λn kR,( )
-------------------------

F0 λn ϑ,( )
F0 λn α,( )
-----------------------,=

U ϑ( ) C un

F1 λn ϑ,( )
F0 λn α,( )
-----------------------,

n 0=

∞

∑=

W ϑ( ) C wn

F0 λn ϑ,( )
F0 λn α,( )
-----------------------,

n 0=

∞

∑=
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where

µn = λn(λn + 1), and Jm(z) is the Bessel function of order
m. The expression for εn is chosen to obey the asymp-
totics εn  1 [16]. The discrete set of values λn,
where n = 0, 1, 2, …, is determined from the equation

on condition that λ0 = 0 and λn  π(n + 1/4)/α – 1/2

[16].

The proposed expressions for the fields satisfying
conditions (1)–(7) will correspond to a free process, if
we impose the last condition (8) on W(ϑ). Then, the
equation for the determination of the discrete set of

pn εn f 0 λn kR,( )ρ0ωc ρhω2 a11 µn( )+( )/zn,=

un εn f 1 λn kR,( )a12 µn( )/zn,–=

wn wn ω( ) εn f 1 λn kR,( ) ρhω2 a11 µn( )+( )/zn,= =

zn zn ω( ) f 0 λn kR,( )ρ0ωc ρhω2 a11 µn( )+( )= =

+ f 1 λn kR,( )∆ µn( ),

εn α λ n 1/2+( )F0 λn α,( )
∂F1 λn α,( )

∂λn

-------------------------- 
 

1–

,–=

f 0 λ z,( )
Jλ 1/2+ z( )

z
----------------------, f 1 λ z,( )

∂ f 0 λ z,( )
∂z

----------------------,= =

n → ∞

F1 λ α,( ) 0=

~
n → ∞

0 90 180
α, deg

1

2

3

4

5
kR

(12)
(11)
(13)
(17)
[2, 3]

Fig. 1. Dependences of the lower eigenfrequencies on the
vertex angle of the spherical cone at a fixed R (the solid
lines); h/R = 0.01. The dashed and dot-and-dash lines corre-
spond to the oscillation frequencies of an isolated shell and
a resonator with perfectly rigid walls. The dotted lines are
plotted using the frequency equation from [2, 3].
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eigenfrequencies ωs, where s = 1, 2, 3, …, takes the
form

(12)

To perform a numerical study of free oscillations of
the resonator under consideration, it is convenient to
use a comparison with the behavior of isolated shells
and containers with perfectly rigid walls.

A formal substitution of ρ0 ≡ 0 in Eq. (12) allows us
to determine the frequencies of free oscillations of a
shell in vacuum. In this case, we avoid the labor-inten-
sive search for the real-valued roots of a complex-val-
ued function, as is necessary in the case of using
Eq. (11). The results obtained by the two approaches
coincide.

Oscillations of a liquid-filled hemispherical container
with perfectly rigid walls have been studied in [5, 12].

The eigenfrequencies of a resonator with an arbi-
trary cone angle and perfectly rigid conic and spherical
walls are determined from the equation

(13)

If the spherical surface is perfectly soft, one should use
the equation

(14)

The numerical experiments performed for a steel
shell–water coupled system are illustrated in Figs. 1–5.

First of all, it should be noted that the spectrum of
the coupled system under consideration lies in a region
of much lower frequencies compared to both the spec-

wn ω( )
n 0=

∞

∑ 0.=

f 1 λ s kR,( ) 0, s 0 1 2 … ., , ,= =

f 0 λ s kR,( ) 0, s 0 1 2 … ., , ,= =

0 0.01 0.05
h/R

10

20
(kR)2

(12)
(16)
(15)
(13)

0.02 0.03 0.04

A

B

C

D
E F

G

H

I

Fig. 2. Dependences of the lower eigenfrequencies ωs (s =
1, 2, 3, 4) on the shell thickness for α = 60° (the solid lines).
The dashed lines are obtained from the approximate equa-
tion (16). The pole lines are represented by short-dash lines.
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0

1

–1

P(r, ϑ)/Pmax

Rr

ϑ

α

Fig. 3. Modes of free pressure oscillations in the resonator at the frequencies (a) ω1 and (b) ω2 (points A and B in Fig. 2); α = 60°
and h/R = 0.01.

(a) (b)
trum of an isolated shell and the spectrum of a perfectly
rigid resonator (Fig. 1).

When h/R  0, the convergence of the series in
Eq. (12) becomes rather slow, which hinders the
computations. Simultaneously, the eigenfrequencies
approach the roots of the equation

(15)

The lowest of these roots for each index s are below
denoted as . Applying the algorithm described in
[15], we construct the relation

or a finite transcendental equation for an approximate
frequency determination:

(16)

Equation (16) provides an acceptable accuracy in rather
wide limits of variation of the quantity h/R (Fig. 2).

The modes of pressure oscillations in the medium
are shown in Figs. 3 and 4, where

zs ω( ) 0, s 1 2 3 … ., , ,= =

ω̃s

ωs

hEλ s µs 2–( )
R3ρ0 µs 1– σ+( )
----------------------------------------,≈

n → ∞

ws ω( ) R2 R 3 1 σ2–( )4

Eh h
-----------------------------------------+ 0, s 1 2 3 … ., , ,= =
As long as the eigenfrequency line is immediately
adjacent to the line of the roots  of Eq. (15) (Fig. 2),
the standing wave Qs(r, ϑ) dominates in the wave
packet of the oscillatory process. Figure 4 shows the
dynamics of the coefficients pn of this packet.

At the frequency , the wave Qs(r, ϑ) satisfies con-
ditions (1)–(7) of the problem, while condition (8) fails.
However, at the points of intersection of the lines of
roots of Eq. (15) with different indices s1 and s2 (the
points F and I in Fig. 2), the free process in the resona-
tor is represented by a linear combination of just the
two waves (r, ϑ) and (r, ϑ). The relation

between the coefficients  and  of this combina-
tion is such that condition (8) is also satisfied.

The use of the asymptotics λn  j0n/α – 1/2, n > 0,

where j0n is the set of positive roots of the equation
J1(z) = 0, allows us to construct a finite transcendental
equation suitable for the determination of the lower
eigenfrequencies at small angles α:

Pmax P r ϑ,( ) .
0 r R≤ ≤
0 ϑ α≤ ≤

max=

ω̃s

ω̃s

Qs1
Qs2

ps1
ps2

~
n → ∞
(17)
kR( )tan

kR
------------------- 1

α3 α /2( )Rρ0ω
2tan

96G 1 β–( )β α3 α /2( ) 2G 1 σ 1 σ–( )β+ +( ) ρhω2–( )tan+
------------------------------------------------------------------------------------------------------------------------------------------------+

 
 
 

1.=
In the derivation of Eq. (17), we took into account that

 = 1/192 (as in [14]).

If α  0 while R and h are constant, the rigidity of
the shell increases with a decrease in its diameter,

j0n
4–

n 1=
∞∑
which results in the desired frequencies approaching
the roots of Eq. (13) (Fig. 1).

The special case of small angles α when the quantity
Rc = Rα is constant is also of interest. In this case, as
α  0 and, hence, R  ∞, the spherical shell
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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–1

0

1

0 5 10
n

pn/Pmax

0 α
–1

0

1

ϑ

P(R, ϑ)/Pmax

(a) (b) (c) (d) (e) (f)

Fig. 4. Evolution of the modes of pressure oscillations and the standing wave packet with the displacement along the line of the
fourth eigenfrequency; α = 60°. The plots (and the corresponding values of h/R) refer to the points (a) C, (b) D, (c) E, (d) F, (e) G,
and (f) H in Fig. 2.
becomes less curved and its oscillations become similar
to those of a flat circular plate of a constant radius Rc. It
is appropriate to compare the frequencies of free oscil-
lations of the resonator under study with the eigenfre-
quencies of a cylindrical resonator of radius Rc and
height Hc = R. The eigenfrequencies of such a resona-

0 5 15
α, deg

0.5

1.0

1.5
kRα

(12)
(18)
(17)
(14)

10

Fig. 5. Dependences of the lower eigenfrequencies on the
cone angle at a fixed parameter Rα (the solid lines);
h/(Rα) = 0.02. The dashed, short-dash, and dot-and-dash
lines correspond to the calculations by Eqs. (18), (17), and
(14), respectively.
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tor, which has a perfectly rigid cylindrical surface, a
soft surface at one end, and an elastic plate at the other
end, can be determined from the equation

(18)

where qn = j0n/Rc and D = Eh3/(12(1 – σ2)). Equation (18)
is a particular case of the result obtained in [14].

The expected coming together of the roots of Eqs. (12)
and (18) is confirmed by Fig. 5. It is important to note
that, in contrast to Fig. 1, in the special case under dis-
cussion, the shell behaves at the lower frequencies as a
soft shell rather than as a rigid one. The dimensions and
the shape of the shell vary insignificantly, its rigidity
does not grow, and the effect of inertia, by contrast,
decreases with decreasing frequency of its oscillations.
As in the previous publications [13–15], where a simi-
lar effect was described, an increase in R is accompa-
nied by an increase in the acoustic volume covered by
the shell, and, hence, the role of the compressibility of
the medium becomes more important.
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Abstract—The Rayleigh equation describing nonlinear oscillations of a gas bubble in a liquid is analyzed using the
theory of groups. The group of scale transformations is calculated and then used as the basis for constructing the solu-
tions to the Rayleigh equation. The analytical description of the essentially nonlinear dynamics of a bubble allows
one to use the aforementioned solutions as a model for analyzing such phenomena as cavitation, shock wave propa-
gation in liquids with phase inclusions, and sonoluminescence. © 2002 MAIK “Nauka/Interperiodica”.
The application of the theory of continuous groups
for analyzing the symmetry of equations of nonlinear
acoustics [1, 2] made it possible to obtain new integrals
of motion and exact analytical solutions.

This paper deals with the symmetry of the Rayleigh
equation that describes nonlinear oscillations of a gas
bubble in an acoustic field.

The Rayleigh equation has the form

(1)

where R and R0 are the current end equilibrium radii of
the bubble, Pi is the gas pressure in the bubble, P0 is the
equilibrium pressure, P(t) is the external pressure, and
ρ0 is the density of the liquid.

In Eq. (1), we omitted small (outside the small time
interval of bubble collapse) terms describing dissipa-
tive processes. The contribution of these terms can be
taken into account either using the perturbation theory
or as an adiabatic perturbation along the trajectories of
Hamiltonian system (1) [3, 4] or numerically.

We begin our analysis of the symmetry of Eq. (1)
with the construction of infinitesimal generators of the
desired continuous groups. We represent Eq. (1) in
terms of normalized variables u = R/R0,  = du/dτ, τ =

tΩ0,  = (3γP0/ρ0 ), and u1 = P(t)/P0:

(2)

The procedure for determining the tangent vector
field of the group of symmetry V = ξ(τ, u)∂τ + η(τ, u)∂u

is given in monographs [5–7] and consists of the con-

RṘ̇
3
2
--- Ṙ

2
+

Pi R( ) P t( )–
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------------------------------,=

Pi R( ) P0 R0/R( )3γ
,=
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2

u̇̇
1
u
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3
2
--- u̇

1
3γ
------ 1

u
3γ------- u1– 

 + .=
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struction of the prolongations of the first and second
kinds to the space τ, u, , :

and the solution of the equation of group

(3)

Rewriting Eq. (3) in an explicit form and collecting the
coefficients of equal powers of , we obtain

where

(4)

u̇ u̇̇
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Since  is an independent variable, we must equate
each of the above coefficients to zero. From the condi-
tion C3 = 0, we have ξ(τ, u) = α(τ) + u5/2β(τ). The con-
dition C2 = 0 can be represented in the form

(5)

which yields η(τ, u) =  + ν(τ)u + β(τ)u7/2.

Substituting the expressions derived above for η and
ξ in equations C1 = 0 and C0 = 0 and equating the coef-
ficients of equal powers of u, we obtain the following
relationships for the unknown functions α(τ), β(τ),
σ(τ), and ν(τ):

β = 0, 5  (from the condition C1 = 0), (6a)

(6b)

From relationships (6), it follows that

(7)

In the case of a steady external pressure, we have
∂u1/∂τ = 0, u1 = const, and c1 = 0, and the group gener-
ator is

(8)

This group is the group of time translation G1: (u2, u3,
τ + ε). Its presence has the result that the Rayleigh
equation has an integral of motion, i.e., a Hamiltonian
[3, 4]:

(9)

The second nontrivial solution to Eqs. (7) appears for
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Changing the variable  = (τ + τ0), we obtain u1( ) =

U , where U = u1(0) . An external
perturbation of this form corresponds to the shock wave
P(t) = Pmt0/(t + t0)6γ/(2 + 3γ) with the pressure drop Pm at
the leading edge and with the characteristic fall time t0
(τ0 ≡ t0Ω0).

In this case, the group generator has the form

(10)

This group is the group of scaling transformations

which translates the solution of the Rayleigh equation
into another solution; i.e., the function u' is also a solu-
tion to Eq. (2) if it is considered as a function of the new
variable : u'( ) = λ2/(2 + 3γ)u(λ–1 ).

Thus, only two symmetry groups, namely, the time
translation and the scaling transformations, can exist
for the Rayleigh equation.

Let us investigate the behavior of the solutions
under the condition that the group of scaling transfor-
mations is available. The invariant solution u'( ) =
λ2/(2 + 3γ)u(λ–1 ) = u( ) has the form

(11)

To find the general solution, we will use the fact that
the availability of a certain continuous group of sym-
metry generally offers the possibility of reducing the
order of the corresponding differential equation.
Namely, it appears possible to introduce new coordi-
nates (w, z) in such a way that the vector field V2 and
its prolongations pr(1)V2 and pr(2)V2 represent the
shift: V2 = ∂/∂w [7]. Thus, to be invariant in the new
coordinate system, differential equation (2) must be
independent of w.

The change of variables is constructed with the use of
the group invariants; in our case, it is reduced to the sub-

stitution z(w) = u( ) , w = ln . It is convenient

to introduce the new variable z1( ) = ( ) and
rewrite the second-order differential equation (2) as a
system of two first-order equations. It turns out that the
variable w does not appear explicitly in the resulting
system:

(12)
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From this system, we derive

(13)

Indeed, Eq. (13) is an ordinary differential equation of
the first order.

Let us analyze the phase portrait of dynamic system
(12). Stationary states are determined from the condi-
tion that the right-hand sides of Eqs. (12) vanish:

(14)

This equation has no roots for U < Uc, where

(15)

one root for U > Uc and γ = 1, and two roots for U > Uc

and γ > 1. Explicit expressions for these stationary
points can be found either if the polytropic exponent
only slightly deviates from unity (γ – 1) ! 1 or for γ =
4/3. In the latter case, Eq. (14) is the bicubic equation
z6 – 9/2Uz4 + 9/2 = 0 and its solutions (that make sense
for U ≥ Uc = 3–1/3 = 0.694) are described by the formulas

(16)

where cosα = 1 – 2 /U3 (  =  = 32/3 if U =
Uccosα = –1). The type of these singular points is
determined from the linear stability analysis and from
the calculation of the corresponding Lyapunov expo-
nents λ, which can be expressed explicitly through the
solutions of Eq. (14) zs, n:

(17)

Stationary states appear at U = Uc (15) at the point with
coordinates zc = [(2 + 3γ)2/12(γ – 1)]1/(2 + 3γ), z1c = 2/(2 +
3γ)zc (z2c = 31/3 for γ = 4/3). The Lyapunov exponents
for this point are λ1, 2 = (0, –(8 – 3γ)/(2 + 3γ)). For U > Uc,
Eq. (14) has two roots, zn < zc and zs > zc. As follows from
Eq. (17), a nodal point corresponds to the stationary state
zn (because λ1n, 2n < 0), and a saddle point corresponds to
the stationary state zc (because λ1s < 0 and λ2s > 0). With
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further increase in U, the node is transformed to the focus

at zn =  (this trans-

formation occurs at U = Uf ≈ 1 for γ = 4/3). In the case
of γ  1, the bifurcation point at which the node and
the saddle merge tends to infinity zc  ∞ (Uc  0,
zn  U1/3).

We will investigate the behavior of trajectories far
away from the origin using the mapping of the phase
plane onto the Poincaré sphere (which is the unit radius
sphere touching the (z, z1) plane at the origin) [8]. On
the sphere, two points correspond to every point (z, z1)
of the plane; they lie on the straight line passing
through the center of the sphere and the point under
consideration. The point of the plane located at an infi-
nite distance is mapped onto the equator of the sphere.
In this mapping, the integral curves on the plane are
transformed into the corresponding curves on the
sphere, and this transformation will not change the
characteristic behavior of saddles, nodes, and focuses.
However, new singular points will appear on the equa-
tor. The transformation z = (1/c), z1 = (m/s) offers the
possibility of studying singular points on the equator of
the Poincaré sphere, except for the points correspond-
ing to the ends of the z1 axis (however, an analysis
shows that the system under consideration has no sin-
gular points in this region of the phase space).

Two singular points are located on the equator. They
are unstable (s = 0, m = 0) and stable (s = 0, m = 5/2)
nodes. At long distances from the origin, all trajectories
tend to this equilibrium state along certain directions,
and these directions are the m axis (along which only
two trajectories arrive at the node) and the s axis (along
which an infinite set of semi-trajectories arrive at the
node). On the initial (z, z1) phase plane, the angular
coefficient of the direction along which the trajectories
tend to the simple equilibrium state measures 2/5. In the
case of time reversal, the trajectories will tend to the
unstable node along the direction coinciding with the z
axis.

The figure illustrates the above analysis. It shows
the behaviors of trajectories calculated for characteris-
tic values of the amplitude parameter U = 0.5, 1, and 10
and the polytropic exponent γ = 4/3. These values are
chosen with the goal of characterizing the trajectory
behaviors in typical situations:

(a) a small amplitude parameter U < 1: here, we use
U = 0.5, which is less than unity but is sufficiently close
to the critical value Uc = 0.694, to demonstrate how the
singularities appear;

(b) an intermediate amplitude parameter U ~ 1: in
this case, we use U = 1 to illustrate the change of the
singular point behavior (the node-focus transforma-
tion); and

(c) large amplitude parameters: here, we use U = 10.

25 18 γ 1–( ) 9 γ 1–( )2
+ +

4 2 3γ+( )2
---------------------------------------------------------------

1/ 2 3γ+( )–
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Phase portraits of dynamic system (12) for different values of the governing parameter U = 0.5, 1, and 10.
For U = 0.5, the system has no singular points in
any finite region of the phase space. Trajectories begin
from the unstable nodal point at infinity along the
direction corresponding to the z axis and go to infinity
for w  ∞ (   ∞) along the direction z1/z = 2/5.
The figure shows three trajectories for different initial
conditions that are specially chosen to illustrate the
appearance of the singular point. The motion along the

τ̃
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direction z1/z = 2/5 corresponds to the known Rayleigh
law (the 2/5 law) describing the expansion of an empty
bubble.

Note that, for U ! 1, the solution to the Rayleigh
equation can be obtained in an explicit form. Indeed,
since Pm ≥ P0 (u1(0) ≥ 1) in the shock wave, the condi-

tion U ! 1 u1(0)  ! 1 can be satisfied only in
the case of short pulses t0Ω0 ! 1 (τ0 ! 1) and a not too
intense wave, because only the inertial term compen-
sates the varying external force. The radius will only
slightly vary during the action of the pulse, and the
velocity will also be small. Assuming that the bubble
under consideration was at rest at the moment of pulse
arrival ( (τ = 0) = 0, u (τ = 0) = 1), we have

(18)

The speed of bubble compression reaches its maximal
value umax at the moment τ∗  = U(2 + 3γ)/6γ – τ0 =

τ0[u1(0)(2 + 3γ)/6γ – 1] (for γ = 4/3, τ∗  = τ0[u1(0)3/4 – 1]); this
maximal value is

(19)

For u1(0) ~ 1, we have umax ~ –τ0, and for u1(0) @ 1, we
have umax ~ –τ0u1(0).

The applicability of this approximation is restricted
more severely than follows from the condition U ! 1,
because the speed of the bubble wall is small only for
1 ≤ u1(0) ! (1/τ0), and from the above condition it fol-
lows that there is a subregion (1/τ0) ≤ u1(0) !
(1/τ0)6γ/(2 + 3γ) where this velocity is high.

At the moment τ = τ∗∗ ,

(20)

[τ∗∗  ~ τ0 for u1(0) ~ 1 and τ∗∗  ≈ τ0u1(0) (2 + 3γ)/(3γ –
2) for u1(0) @ 1], the bubble radius reaches its minimal
value umin,

(21)
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We have umin ≈ 1 – (0) 2/3γ[(2 + 3γ)/(3γ – 2)2] for

u1(0) @ 1 and umin ~ (1 – ~ ) for u1(0) ~ 1.

For times noticeably exceeding the characteristic
duration of the pulse (τ @ τ0), the behavior of trajecto-
ries is governed by the integral of energy (9) calculated
at u1 = 0. Finally, for τ @ 1, in which case u @ 1 and the
compressibility of gas can be neglected, the bubble will
expand according to the Rayleigh law u ~ τ2/5. In the fig-
ure, this process corresponds to motion along the
straight line z1 = (2/5)z as mentioned above.

We note that the maximal speed , the minimal
radius umin = Rmin/R0, and the collapse time τ∗∗  depend
on the parameters of the acoustic pulse, as in the case of
the exponential pulse P(t) = Pmexp(–t/t0) that was
studied in detail in [9, 10]. This fact is not surprising,
because only integral characteristics of the shock wave
govern the effect in the case of short pulses.

Two singular points appear in the phase portrait cor-
responding to U = 1. They are the node and the saddle
separated by a small distance. The initial data for three
calculated trajectories were chosen so as to decorate the
separatrixes of the saddle point and to distinguish the
domain of attraction of the nodal point. In this region of
the initial data, the intensity and duration of the shock
wave are sufficient to capture the bubble and to govern
its dynamics.

In the figure, the phase portrait for U = 10 illustrates
the bubble oscillations under the action of an intense
shock wave (U @ 1). Note that, in this case, the singular
points are spaced rather widely. Three calculated trajec-
tories decorate the separatrixes of the saddle point and
the domain of attraction of the focus. In this region of the
parameter U, the bubble collapse (z ! 1) is so intense
(|z1| @ 1) that trajectories go beyond the frame of the fig-
ure and one has to follow the branches of a trajectory by
using markers.

This case also allows an analytical description. For
τ0 @ 1, the external force acting on the bubble varies
slowly, which results in the existence of an adiabatic
invariant [4, 11].

Note that the initial Rayleigh equation (2) can be
written in the Hamiltonian form

(22)

However, the above variables z(w) = u( )  and
w = ln  are more convenient for the analysis. Applying
a canonical transformation with the generation function
Φ(u, P, ) = z(u)P,

(23)
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we obtain the expressions for the canonical momentum
P and the Hamiltonian H ' in new variables:

With the use of the new temporal variable w, we finally
obtain

(24)

Since the Hamiltonian  depends on the time w
slowly, as compared to the period of the fundamental
bubble oscillations, the dynamic system (24) has the
adiabatic invariant [11]

in the form of an integral along the trajectory for a given

energy  = (z, P, λad) and a given adiabatic parame-
ter λad. We emphasize that only a fixed value of Hamil-
tonian (22) has the direct physical meaning of energy.
Under the canonical transformation (23), the Hamilto-
nian is changed and its value will not describe the
energy directly; however, we will use this term in single
quotation marks to designate a fixed value of the
Hamiltonian.

To avoid cumbersome exponents, we perform the
calculations for γ = 4/3. In this case,

(25)

where zmax and zmin correspond to the turning points
dz/dw = 0. At these values of z, the argument of the root
in Eq. (25) vanishes. The period of motion along this
trajectory is given by the expression

(26)

If the bubble that was initially in equilibrium (u = 1,

 = 0 z(w0) =  = λad(w0)–1/2, and P = 0) is driven by

P
∂z
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z
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3
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----------------------------------------------------------.
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∫=

u̇ τ0
1/3–
the shock wave at the moment τ = 0 w0 = lnτ0, its

“energy” will be (w0) =  + , and

adiabatic invariant (25) calculated in the first approxi-
mation with respect to the parameter u1 @ 1 will be
equal to

(27)

Since the magnitude of the adiabatic invariant does
not vary with time w, we can equate the left-hand side
of expression (25) to the initial value (27) of the invari-
ant, thus obtaining an expression implicitly specifying

the “energy”  = (w) as a function of time w.

The calculation of the integral in Eq. (25) becomes
an essentially simpler problem in the asymptotic limit
w @ w0 z(w)  zn + ∆z(w), |∆z(w)| ! zn, which corre-
sponds to the dynamic bubble trajectory approaching
the focus of system (12). In this case, z = zn + ∆z,
|∆z | ! zn, and P = Pn(w) + ∆P, where Pn is determined
from the condition

and ∆P satisfies the equation

The replacement of variable P by ∆P is, in essence, the
canonical transformation with the generating function

(28a)

as a result of which the Hamiltonian is also transformed
into the form

(28b)

To consider Eq. (12) linearized near the focus, we

must expand the Hamiltonian  in ∆z and ∆P to qua-
dratic terms:

(29)
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Ẽ Ẽ

dz
dw
------- P

λ w( )z
3

----------------- z
3
---– 0, Pn w( ) λ w( )

zn
4

3
----= = =

d∆P
dw

----------- –
∂H̃
∂z
------- dλ w( )

dw
---------------

zn
4

3
----–

∂
∂∆z
--------- H̃

2
9
---λ w( )zn

4∆z+ 
  .–= =

Φ1 z ∆P w, ,( ) P z zn–( ) Pn w( ) ∆P∆z,+= =

P ∂Φ1/∂z, ∆z ∂Φ1/∂∆P,= =

H̃ ' H̃ ∂Φ1/∂w+ H̃ ∆z∂Pn w( )/∂w+= =

=  H̃ 2/9λ w( )zn
4∆z.+

H̃ '

H̃ ' λ w( ) 1
3
--- 1

zn

----
zn

5

9
----– 

  ∆P
2

2λ 2
w( )zn

3
-----------------------+=

–
4
3
---∆P∆z

π w( )
-------------- 7

9
---zn

3 1
2
--- 1

zn
3

----+ 
  ∆z

2

2
--------+ .
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002



SYMMETRY OF THE RAYLEIGH EQUATION AND THE ANALYSIS 719
This expression allows further simplifications. Since
U @ 1 and zn ! 1, we have, to the first approximation,

(30)

Now, the adiabatic invariant can be easily calcu-
lated. From Eq. (30), we find the variable ∆P as a func-

tion of ∆z at constant “energy”  and adiabatic param-
eter λ:

(31)

Using this expression, we obtain

(32)

Since the adiabatic invariant does not vary with time,
we can equate expression (32) to the initial value of I
determined by Eq. (27), thus finding the temporal

behavior of the “energy”  and its dependence on the
amplitude u1(0) and the decay time τ0 of the shock
wave:

(33)

The real energy of bubble oscillations of Eqs. (22),
when averaged over the period 2π/(Imλ), where λ is
determined by expression (17), is obtained from

Eq. (33) as  divided by , which follows from the
canonical transformation formulas (23), (28a), and (28b).

In the stationary regime described by Eq. (33), two
superimposed motions govern the variation of the bub-
ble radius:

(34)
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3 Ẽ ' Ẽn–
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One of these motions is the increase in the radius
according to the power law with an exponent that is
noticeably different from the exponent in the Rayleigh
law. The other motion is the oscillation with a constant
amplitude and a logarithmically increasing period. The
constant phase α cannot be calculated explicitly in the
framework of our approach.

It appears thus possible to analytically describe the
nonlinear dynamics of a bubble driven by an external
perturbation in conditions ensuring the scale invariance
of the Rayleigh equation.

This fact offers the possibility of using the class of
solutions obtained above as a convenient model for
analyzing such phenomena as cavitation, shock wave
propagation in liquids with phase inclusions, and
sonoluminescence.
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Abstract—Strongly focused ultrasonic beams are widely used in such modern applications as nondestructive
testing and ultrasonic diagnostics and surgery. In these applications, it is important to theoretically predict the
acoustic field distribution. The field is usually focused with the help of concave piezoelectric sources, which
may consist of one or several radiating elements. The field produced by such sources is usually calculated in
terms of the widely known Rayleigh integral, which neglects the multiple scattering of the field by the nonpla-
nar radiating surface. However, at wide focusing angles, the contribution of this effect may be significant. This
paper reports results of a numerical simulation of the acoustic field produced by an axially symmetric concave
radiator by the method of matched expansions modified for sources whose size is large in terms of the wave-
length and for a strong focusing (with convergence angles up to 180°). The results are compared with the cal-
culations by the Rayleigh integral. The spatial structure of the additional acoustic field resulting from the dif-
fraction by the edges and the multiple scattering from the radiating surface itself is considered. The effect of
the concave shape of the radiating surface is shown to be significant not only near the source, but also at the
beam axis, near the focal point, as well as in the region where the beams issued from the edge arrive after their
reflection from the concave surface. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recent medical and nondestructive-testing ultrasonic
applications increasingly use strongly focused acoustic
beams. Therefore, much attention has been focused on
the theoretical description of the corresponding sources
that operate in continuous [1, 2] and pulsed [3–5] operat-
ing modes. The field is usually focused with the help of
concave piezoelectric transducers; less frequently, by a
combination of a plane source and an acoustic lens.
Phased arrays have also been used recently [6]. At wide
focusing angles, a much more complex theory should be
used to allow for the diffraction by the curved surface of
the radiator or the lens. However, the field is usually
described in terms of the Rayleigh integral, which is the
exact solution to the diffraction problem for a plane radi-
ating surface [7]. This representation is equivalent to the
Huygens–Fresnel principle, which regards the field of an
extended source as interference of spherical waves pro-
duced by elementary point sources distributed over the
radiating surface. This approach ignores the secondary
waves produced by multiple scattering from the curved
surface of the radiator. To find an adequate solution to the
problem with allowance for the diffraction from the
curved surface, one can use the method of matched
expansions proposed by Coulouvrat [8]. However, in its
initial form as described in [8], this method imposes lim-
itations on the maximal aperture dimension and on the
maximal focusing angle. The present paper proposes a
modification of this method that significantly extends its
range of application [9].
1063-7710/02/4806- $22.00 © 20720
DESCRIPTION OF THE METHOD

Consider the problem whose geometry is illustrated
in Fig. 1. Let an axially symmetric spherical bowl ΓS
built in an infinite rigid screen ΓB oscillate radially as
exp(–iωt). Let a, f, and F be the aperture radius, radius
of curvature, and center of curvature, respectively. The
observation point M will be characterized by its spher-
ical coordinates r and θ with the origin at the point O
where the plane of the screen intersects the source’s
axis of symmetry. The acoustic field is described by the
Helmholtz equation ∆p + k2p = 0 with the Sommerfeld
radiation condition at infinity and with the boundary
conditions ∂p/∂n = ikρ0c0u on ΓS and ∂p/∂n = 0 on ΓB.
Here, p is the amplitude of the sound pressure; k = ω/c0
is the wave number; ω is the circular frequency; ρ0 and
c0 are the density of the medium and the acoustic veloc-
ity in it, respectively; and u is the amplitude of the nor-
mal component of the radiating surface velocity, the
normal being directed toward the medium.

Consider an additional hemisphere ΓL of radius a
centered at the origin O. This surface separates the inte-
rior domain Ωi from the exterior domain Ωe. Denote the
acoustic field in these domains as pi and pe, respec-
tively. Then the original problem splits in two:

(1‡)

(1b)

∆ pi k2 pi+ 0,=

∂ pi

∂n
--------

ΓS

ikρ0c0u,=
002 MAIK “Nauka/Interperiodica”
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(2‡)

(2b)

These two problems are related by the conditions
that the pressure and normal velocity be continuous at
the separating surface ΓL:

(3‡)

(3b)

Following the procedure described in [8], represent
the general solution to Eqs. (1) and (2) in terms of the
spherical function expansions. Due to the condition that
the acoustic pressure be finite at the origin O and to the
Sommerfeld radiation condition, we obtain

(4)

(5)

where the coefficients ξn and ηn of the expansions are
determined by boundary conditions (1) and (2) and by
continuity conditions (3); Pn are the Legendre polyno-

mials; and jn,  = jn + iyn, and yn are the nth-order
spherical Bessel, first-kind Hankel, and Neumann func-
tions, respectively.

Note that it is not evident whether expansion (4) can
be used in the interior domain Ωi, because the boundary
surface is not spherical and solution (4) can in general
fail to satisfy the boundary condition. An encouraging
circumstance is the fact that, in the limiting case of a
zero curvature, this approach gives excellent agreement
with the exact solution [8]. In more general cases, the
possibility of representing the solution in form (4)
requires a special theoretical study and is not a simple
problem [10]. However, a direct checking method
exists: if, in numerical simulations after finding coeffi-
cients ξn, expansion (4) reconstructs the boundary con-
dition to a high accuracy, then, as follows from the
existence and uniqueness theorem for the Helmholtz
equation, the expansion found is the solution to the
problem. Leaping ahead, we note that the solutions we
found did reconstruct the boundary condition to a high
accuracy (see Fig. 4).

As follows from boundary condition (2b), all odd
coefficients in Eq. (5) vanish. Thus, we have

(6)

∆ pe k2 pe+ 0,=

∂ pe

∂n
--------

Γ B

0.=

pi Γ L

pe Γ L

,=

∂ pi

∂n
--------

Γ L

∂ pe

∂n
--------

Γ L

.=

pi ξnPn θcos( ) jn kr( ),
n 0=

∞

∑=

pe ηnPn θcos( )hn
1( ) kr( ),

n 0=

∞

∑=

hn
1( )

pe ηnP2n θcos( )h2n
1( ) kr( ).

n 0=

∞

∑=
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Matching conditions (3) relate the coefficients of the
interior and exterior expansions; i.e., the quantities ηn
can be expressed in terms of ξn. In addition, all even
coefficients ξ2n of the interior expansion can be repre-
sented as infinite combinations of the odd coefficients
ξ2n + 1. Applying the boundary condition at a number of
points of the radiating surface, we obtain an infinite
system of linear equations for the unknown expansion
coefficients ξn. For more details, refer to the original
paper [8].

To obtain a finite system of equations, one has to
reduce the number of terms in expansions (4) and (6)
retaining the first NB terms in the interior expansion
and NA terms in the exterior expansion and hoping that
the series converge rapidly enough. In this case, NA
equations for NB unknowns (NB > NA) are obtained
from the matching conditions, while the remaining
NP = NB – NA equations are obtained from the bound-
ary condition applied at the corresponding number of
points of the radiating surface.

The Bessel and Neumann functions can be calcu-
lated by recurrent formulas (see Appendix). The prob-
lem is thus reduced to the numerical solution of a finite
system of linear equations, which can be performed by
standard methods.

High-order Bessel and Neumann functions are
known to have the following asymptotics [11]:

(7‡)

(7b)

It can be seen that, as the order increases above n > eς/2,
especially at high ς (in this problem, at ς ~ ka), the
Bessel functions become very small and the Neumann
functions become very large. Therefore, the accuracy of
solving the system of linear equations becomes low,
because the magnitudes of the basis functions appear

jn ς( ) 4ς n 1/2+( )[ ] 1/2– eς/2 n 1/2+( )[ ] n 1/2+ ,∼

yn ς( ) ς n 1/2+( )[ ] 1/2–– eς/2 n 1/2+( )[ ] n 1/2+( )– .∼
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Fig. 1. Geometry of the problem.
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widely different in their order, and, hence, part of the
terms of the series are products of very large and very
small quantities and, as a result, are calculated with
insufficient accuracy. The higher the order of the func-
tions used, the greater they differ in magnitude from the
approximate unit amplitude of lower order functions.
Therefore, a too high NB leads to significant errors and
makes numerical simulations impossible. On the other
hand, in order to reduce the error due to the truncation
of series (4)–(6), the method should use the spherical
Bessel and Neumann functions of up to very high
orders. Thus, an optimal value of NB exists. Our calcu-
lations have shown that sufficiently good results are
obtained at NB ≈ (2–3)ka. This means that this method
is difficult to apply to radiators whose size ka is large in
terms of wavelength, because the maximal order of the
Bessel and Neumann functions becomes very high and
they reach computer zero or computer infinity at orders
smaller than (2–3)ka due to asymptotics (7).

To sidestep this difficulty, we wrote expansions (4)
and (6) in terms of normalized Bessel and Hankel func-
tions whose magnitudes are close to unity:

(8)

(9)

For the sake of simplicity, we denote the expansion
coefficients as ξn and ηn as before, though their values
are different from those in formulas (4) and (6). The
new normalized basis functions are as follows:

(10)

(11)

(12)

pi ξnPn θcos( ) jn kr( ),
n 0=

NB

∑=

pe ηnP2n θcos( )h2n
1( )

kr( ).
n 0=

NA

∑=

jn ς( ) jn ς( ) εn–( ),exp=

yn ς( ) yn ς( ) εn( ),exp=

hn
1( ) ς( ) jn ς( ) 2εn–( )exp iyn ς( ).+=

z

f

Fα0

SNP

S3
S2
S1

(‡)

z

f

Fα0

SNP

S3
S2

S1

(b)

Fig. 2. (a) Uniform and (b) nonuniform distribution of the
points at which the amplitude of the normal velocity of the
radiating surface is specified.
The normalization exponents εn are independent of ς,
and their values are noticeably smaller than computer
infinity. The formulas for coefficients εn and normal-
ized functions are given in Appendix B.

Expansions (8) and (9) considerably extend the
range in which the aperture radius can be specified (to
ka ~ 103) maintaining a sufficiently high accuracy of
calculations.

Another improvement of the method is to use the
nonuniformly distributed spatial points where the nor-
mal velocity of the radiating surface ΓS is specified. As
we mentioned above, part of the equations in the system
are determined by the boundary conditions imposed at
NP points of the surface ΓS. Our calculations have
shown that the distribution of these points over the sur-
face strongly affects the accuracy of the boundary con-
dition reconstruction and, therefore, the accuracy of the
method. More accurate results were obtained when the
point spacing was greater far from the edge and smaller
near edge (Fig. 2b) rather than uniform (Fig. 2a). Such
a nonuniform distribution provides a better description
of the rapid acoustic field variation near the edge of the
source.

NUMERICAL RESULTS

As an example of the calculation of the field pro-
duced by a large focusing aperture, Fig. 3 shows the
axial sound pressure amplitude distribution for an aper-
ture with ka = 1000, the focusing angle α0 = 60°, and a
constant velocity over the radiating surface:

(13)

The focusing angle is understood hereinafter as half of
the convergence angle (see Fig. 1). The solid line in
Fig. 3 is calculated by the modified method of matched
expansions; the dashed line, by the Rayleigh integral

(14)

Here, r is the position vector of the observation point
and r' is the position vector of the element dS' of the
radiating surface ΓS. The noticeable difference between
these two theoretical curves in the region near the radi-
ating surface, which can be attributed to the diffraction
by the surface of the source or to multiple scattering of
the elementary waves by the curved radiator, is visible.

As we noted above, the validation criterion for the
solution is the accuracy of reconstructing the boundary
conditions, because spherical-harmonics expansions
(8) and (9) give a particular solution to the Helmholtz
equation, whatever the expansion coefficients ξn and
ηn. Figure 4 demonstrates a high accuracy of recon-
structing boundary condition (1b) and matching condi-

u u0, α α 0<=

u 0, α α 0.≥=



p r( ) –
iωρ0

2π
----------- u r'( )eik r r'–

r r'–
--------------- S '.d

ΓS

∫∫=
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Fig. 3. Normalized amplitude of the acoustic pressure |P| = |p|/ρ0c0u0 at the radiator axis for ka = 1000, α0 = 60°, and a uniform
velocity distribution over the radiating surface: the method of matched expansions (solid line) and the Rayleigh integral (dashed
line).
tion (3b) for the normal component of the particle
velocity. In this case, we used Eqs. (13) as boundary
condition (1b), the aperture radius was ka = 200, and
the focusing angle was α0 = 80°. The velocity distribu-
tion is plotted versus the spherical angle θ (Fig. 1),
while the curve in Fig. 4 reconstructs conditions (3b)
and (1b) within the intervals [0°, 90°] and [90°, 180°],
respectively. The normal velocity component of the
radiating surface is reconstructed to within 0.03%, and
the calculated normal derivative of the pressure is con-
tinuous along the matching surface to within 3% rela-
tive to the velocity on the radiator, the maximal error
being observed at the edge.

The nonuniform distribution of the points where the
boundary condition was imposed on the surface of the
radiator was in many cases found to improve the accu-
racy of the calculations by a factor of about 10, all other
conditions being the same. Figure 5 illustrates this situ-
ation by the results of reconstructing boundary condi-
tion (1b) at ka = 150, α0 = 60, and a uniform velocity
distribution (13) over the radiating surface.

Aside from improving the accuracy, the modifica-
tion of the method was also found to considerably
extend the range of the focusing angles admissible for
calculations up to 90°. Figure 6 presents the acoustic
field calculated at the axis of the radiator with the aper-
ture radius ka = 200 and the focusing angle α0 = 88°.
This case cannot be simulated in the framework of the
nonmodified approach [8]. The thick line in Fig. 6 is
obtained by the modified method of matched expan-
sions; the thin line, by the Rayleigh integral. The figure
also shows on an enlarged scale the corresponding dis-
tributions near the source and behind the focal point.

From the viewpoint of applications, it is of interest
to calculate corrections given by the theory reported in
this paper relative to the field predicted by Rayleigh
integral (14). These corrections represent the multiply
scattered field due to the diffraction by the curved sur-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
face. Figure 7 shows the two-dimensional spatial
amplitude distributions of this scattered field over the
plane passing through the source axis. The field ampli-
tude was calculated as |∆p| = |p1 – p2|, where p1 and p2
are the complex amplitudes of the sound pressure
obtained by the modified method of matched expan-
sions and by the Rayleigh integral, respectively. The
plots refer to ka = 200 and the considerably wide focus-
ing angles α0 = (a) 80° and (b) 88°. For illustration, we
use a nonuniformly shaded scale to make the diffracted

0.5

0 45
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0
85
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90
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0.01
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0.9995
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Fig. 4. Reconstructed boundary condition and the matching
condition for the normal component of the particle velocity

at ka = 200 and α0 = 80°: |U| =  is

the jump in the dimensionless velocity at the matching sur-

face for 0° ≤ θ ≤ 90°, and |U| =  is the dimen-

sionless velocity on the radiating surface for 90° < θ ≤ 180°.
The exact solution provides |U| = 0 for 0° ≤ θ ≤ 90° and
|U| = 1 for 90° < θ ≤ 180°.

∂ pi pe–( )
∂n

--------------------------- /kρ0c0u0

∂p
∂n
--------- /kρ0c0u0



724 SAPOZHNIKOV, SINILO
field structure in the prefocal region more pronounced.
The multiply scattered field is seen to be particularly
intense near the axis of the radiator, especially begin-
ning from a certain distance behind the geometrical
focal point. As noted in [8], the concentration of the
additional field at the axis behind the focal point can
be explained by geometrical considerations: rays mul-
tiply reflected from the curved surface cannot cross
the axis closer than at the distance zmin /f = 1 –
cosα0/cos2α0. At this distance, the axis is crossed by
the rays issuing from the edge points of the radiator
after the specular reflection from the opposite points
(the dash-and-dot line in Fig. 8). All other multiply
reflected rays cross the acoustic axis at the distances
z > zmin.

In the off-axis region, the rescattered field has a par-
ticular structure (see Fig. 7). An oval domain is
observed between the focal point and the radiator,
where the rescattered field is very small (except, per-

0.95

0 20

u/u0

1.00

40

0.90

0.85
α, deg

Fig. 5. Reconstructed boundary condition for the uniform
distribution of the amplitude of the normal velocity over the
radiating surface at ka = 150 and α0 = 60°: uniform (thin
line) and nonuniform (thick line) distributions of the points
over the surface.
haps, near the axis). In this domain, the Rayleigh inte-
gral predicts the acoustic field rather accurately. The
existence of this domain also follows from geometrical
considerations. The analysis of all possible rays issuing
from the radiator points and reflected by the curved sur-
face clearly shows that, after the specular reflection, the
rays issuing from the edge exhibit the maximal devia-
tion from the surface. Note that the edge is also the
strongest source, which generates the so-called edge
wave. The dotted lines in Fig. 8 show the rays that go
from the edge to the concave surface (the correspond-
ing acoustic field is taken into account by the Rayleigh
integral); the thin solid lines show these rays after their
reflection (these rays are disregarded by the Rayleigh
integral). The envelope of all rays that emanated from
the edge and were singly reflected from the surface has
a typical arc shape shown in Fig. 8 by a thick line. The
analysis shows that this envelope can be written as R(β)
in the following parametric form:

(15)

(16)

where γ = π – (3ϕ ± α0)/2 and ϕ varies in the range π –
α0 < ϕ < π + α0. It is precisely the surface of revolution
produced by this envelope that bounds the oval shadow
region in which corrections to the Rayleigh integral are
small. The rays that experienced one or more reflec-
tions pass outside this shadow region. At first sight, it
may seem from Fig. 7 that the amplitude of the multiply
scattered field formed by these rays is small compared
to the axial values. However, the off-axis amplitude of
the primary field is also small; i.e., the relative level of

R f
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-----------------------------------------,=

β
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2 3

2 γcos
2

-----------------– 
  ϕsin γ ϕcostan–

1 3

2 γcos
2

-----------------– 
  ϕcos γ ϕsintan–

-----------------------------------------------------------------------------------

 
 
 
 
 

,arctan=
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Fig. 6. Amplitude of the sound pressure at the axis of the radiator with ka = 200 and α0 = 88°: the modified method of matched
expansions (thick line) and the Rayleigh integral (thin line).
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Fig. 7. Two-dimensional amplitude distributions of the multiply scattered acoustic field in the plane that passes through the axis of
the radiator with the aperture radius ka = 200 and a wide focusing angle α0 = (a) 80° and (b) 88°. The shading represents the mag-
nitude of the difference between the complex amplitudes of the sound pressure calculated by the method of matched expansions
and by the Rayleigh integral.
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Fig. 8. Geometric structure of the multiply scattered field.
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the multiply scattered field is high. For instance, near
the radiating surface, the corrections due to the multiply
reflected rays may be comparable with the primary
field.

For weakly and moderately focused sources, the
shadow region (for the multiply scattered field) grows
so that it occupies almost the entire halfspace in front of
the radiator (Fig. 8b). This observation is validated
experimentally [12]. The above acoustic ray patterns
give only a qualitative structure of the additional field.
For example, they fail to predict the multiply scattered
field near the axis in the shadow region, the interference
fringes, etc. The value of the method of matched expan-
sions used in this paper is that it calculates the total dif-
fracted field to a high accuracy.
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APPENDIX A

The spherical Bessel and Neumann functions and
their derivatives can be calculated by the well-known
recurrent formulas [13]

(A.1)

(A.2)

where sn(ς) denotes any of these spherical functions
and ς is the argument of the corresponding function.

sn ς( ) 2n 1–
ς

---------------sn 1– ς( ) sn 2– ς( ),–=

sn' ς( ) sn 1– ς( ) n 1+
ς

------------sn ς( ),–=
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Recurrent procedure (A.1) uses the known expressions
for the zero- and first-order functions

Procedure (A.1) is stable for Neumann functions of
any order and for Bessel functions with n ≤ ς. Bessel
functions with n ≥ ς can be calculated from the inverse
recurrent formula [14]

(A.3)

To start procedure (A.3) with a certain number N,
one should know the values of jN + 2(ς) and jN + 1(ς),
which are unknown in advance. However, recurrent
algorithm (A.3) rather rapidly reaches the branch corre-
sponding to the Bessel functions; i.e., the particular val-
ues of the initial functions sN + 2(ς) and sN + 1(ς) are
unimportant. For example, they can be taken as 0 and 1,
respectively, while the number N must considerably (by
several hundreds) exceed the maximal required n.
Recurrent procedure (A.3) then calculates the Bessel

functions accurate to within a constant factor: (ς) =
χ jn(ς).

Functions  grow very fast with decreasing n [see
asymptotics (7a)] and can, in general, approach com-
puter infinity. Therefore, at certain numbers n = nm (m =
1, 2, …, M), it is reasonable to renormalize these func-
tions. To this end, a coefficient χm = χµ1µ2…µm is intro-

duced for the functions  with nm ≤ n < nm + 1; i.e., the

functions are redefined as (ς) = χm jn(ς). The factor
µm, stored in the computer memory, is chosen so that

the nmth function be equal to unity: (ς) = 1. The fac-
tor χ is defined so that the direct and inverse recurrent
procedures yield the same value for the Bessel function
of the order n ≈ ς. The final true values of the higher-
order Bessel functions are calculated through the

inverse normalization of the functions  with the num-
bers nm ≤ n < nm – 1:

(A.4)

After this, the derivatives are calculated from recur-
rent formulas (A.2). Thus, the spherical Bessel and
Neumann functions of all required orders and their
derivatives are determined.

APPENDIX B

In the problem considered in this paper, it is conve-
nient to normalize the spherical Bessel and Hankel

j0 ς( ) ςsin
ς

----------, j1 ς( ) j0' ς( )– –
ςcos

ς
----------- ςsin

ς2
----------,+= = =

y0 ς( ) ςcos
ς

-----------– , y1 ς( ) y0' ς( )– –
ςsin

ς
---------- ςcos

ς2
-----------.–= = =

jn ς( ) 2n 3+
ς

--------------- jn 1+ ς( ) jn 2+ ς( ).–=

j̃n

j̃n

j̃n

j̃n

j̃nm

j̃n

jn ς( ) j̃n ς( )/χm j̃n ς( )/ χµ1µ2…µm( ).= =
functions using the value of the Bessel function at ς =
ka, i.e., at the boundary of the inner domain, r ≈ a. In
this case, the new functions will not be too small or too
large in the range of ς of interest. To calculate the nor-
malization factors εn such that εn = 0 for n < ka and
εn = –ln[ jn(ka)] for n ≥ ka, one can use asymptotic for-
mulas (7). However, it is more convenient to rely on the
recurrent formulas that follow from the corresponding
relationships for the spherical Bessel functions (see
Appendix A). To calculate εn = –ln[ jn(ka)], one can
use the logarithms of the auxilliary coefficients χ, µ1,
µ2, …, µm and the functions (ka) introduced in
Appendix A,

(B.1)

rather than compute the functions  explicitly.

This procedure avoids the use of great numbers, i.e.,
overcomes the problem of computer infinity.

To calculate the normalized spherical Bessel func-
tions at an arbitrary argument ς for the orders n ≤ ς, we
use the transformed direct recurrent relationships

(B.2)

To calculate the normalized spherical Bessel func-
tions of the orders n ≥ ς, we use the inverse recurrent
procedure described in Appendix A and store the func-

tions  and logarithms  = ln(χm) of the coefficients
χm (where nm ≤ n < nm + 1) rather than the functions jn.
Subsequently, the necessary normalization is applied:

(B.3)

The derivatives of the normalized Bessel functions
are calculated by the recurrent formula

(B.4)

The normalized Hankel functions and their deriva-
tives are determined from the relationships

(B.5)

j̃n

εn χ( )ln µ1( )ln µ2( )ln …+ + +=

+ µm( )ln j̃n ka( )( ),ln–

j̃n

jn ς( ) 2n 1–
ς

--------------- jn 1– ς( ) εn εn 1––( )exp=

– jn 2– ς( ) εn εn 2––( ).exp

j̃n ε̃n

jn ς( ) j̃n ς( ) ε̃n εn–( ).exp=

jn' ς( ) jn 1– ς( ) εn εn 1––( )exp
n 1+( ) jn ς( )

ς
-----------------------------.–=

hn
1( ) ς( ) jn ς( ) 2εn–( )exp iyn ς( ),+=

hn
1( )' ς( ) jn' ς( ) 2εn–( )exp iyn' ς( ).+=
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The normalized Neumann functions (ς) =

yn(ς)exp(εn) and their derivatives  are computed from
the following modified recurrent relationships:

(B.6)
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Abstract—Using the generalized multiscale method, a system of parabolic equations for the normal mode ampli-
tudes is derived to describe wide-angle sound propagation in the horizontal direction. For the simplest case, this
system is compared with the wide-angle equation obtained by the formal factorization of the horizontal Helmholtz
operator and the rational-linear Padé approximation for the square roots of operators. The problem of energy flux
conservation is considered. The formulas obtained are extended to the case when both density and refractive index
may have discontinuities at some interfaces. © 2002 MAIK “Nauka/Interperiodica”.
The multiscale method has been used to derive the
wide-angle parabolic equations in [1, 2]. It was found
that wide-angle equations can be obtained by simply
taking into account the subsequent approximations of
the multiscale method without the total or partial sum-
mation of asymptotic series.

This paper realizes such a procedure to determine
the first correction to the narrow-angle parabolic equa-
tion [3]. The procedure is found to lead to the wide-
angle equations corresponding to the rational-linear
approximation of the square root of the horizontal
Helmholtz operator in the formal factorization method
[4]. The proposed approach improves the results
obtained with the use of the factorization method, and
the most important improvement consists in taking into
account the radiation transformed into other modes (to
avoid misunderstanding, note that Abawi et al. [5] con-
sidered a somewhat different problem). Since the deri-
vation in the general form is rather cumbersome, it is
described below for only the simplest case. For the gen-
eral case, the final formulas are presented without deri-
vation. The problem of energy flux conservation is also
considered for the simplest case.

This paper continues the previous study [3], which
formulates the initial physical problem and briefly dis-
cusses the history of the problem (see also [4]). Note
that the applicability of the adiabatic approximation in
the context of certain particular problems have been
recently investigated in [6].

In the simplest case, the propagation of sound is
described by the Helmholtz equation

(1)

where P is the acoustic pressure, n = 1/c is the refractive
index, and c is the velocity of sound. The absorption of
sound is taken into account by the imaginary part of the
refractive index [4]. The variables are made dimension-

Pxx Pyy Pzz n
2
P+ + + 0,=
1063-7710/02/4806- $22.00 © 20728
less with the use of the length scale  = /ω and the
time scale ω–1, where ω is the angular frequency of
sound and  is the characteristic velocity of sound.

Equation (1) is considered in the domain Ω specified
by the condition –H ≤ z ≤ 0, where H is the depth of an
imaginary boundary at the bottom, with boundary con-
ditions

P = 0  at z = 0, Pz = 0 at z = –H. (2)

In addition, appropriate radiation conditions at infinity
are assumed to be satisfied for the horizontal variables.

Introduce a small parameter e and the slow variables
X = ex and Y = e1/2y. Such scales of slowness are char-
acteristic of the parabolic approximation; they were
discussed in [7] (see also Sect. 1 in [8]). We postulate
that the refractive index allows an expansion in the
form

(3)

where we assume that n0 is real and assign the imagi-
nary part of the refractive index (which is responsible
for the absorption of sound) to ν. The assumption that
the absorption is small holds for the sound frequencies
for which the equations derived below are used. In
terms of the slow variables, the Helmholtz equation
takes the form

(4)

With the introduction of one fast variable, the gener-
alized multiscale method [9] yields the acoustic pres-
sure expansion in the form

(5)

h c

c

n
2

n0
2

X z,( ) eν X Y z, ,( ),+=

e
2
PXX ePYY Pzz n0

2
eν+( )P+ + + 0.=

P u0 X Y z, ,( ) eu1 X Y z, ,( )+(=

+ e
2
u2 X Y z, ,( ) …) i

e
--θ X Y z, ,( ) 

  ,exp+
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which was discussed in detail in [3]. The substitution of
this expansion into Eq. (4) and boundary conditions (2)
leads to the family of boundary-value problems
indexed with the orders (degrees) of e. We consider
these problems up to the order O(e2).

First of all, we note that boundary conditions (2)
yield the identical boundary conditions for ul , l = 0,
1, … in all orders:

ul = 0 at z = 0, ulz = 0 at z = –H. (6)

In the orders O(e–2) and O(e–1), we obtain the fol-
lowing relationships

which can be satisfied by assuming that the function θ
is independent of z and Y.

In the order O(e0), we obtain the equation

(7)

with boundary conditions (6). We restrict our consider-
ation of this problem to the solutions of the form

(8)

where φ is the solution to the eigenvalue problem

(9)

with the spectral parameter k2 = (θX)2. We assume that
solutions to problem (9), i.e., the eigenfunctions, are
real and normalized according to the relationship

(10)

It is known that eigenfunctions form a denumerable set,
which we will represent as sequence φl , l = 0, 1, … and
mark the corresponding wave numbers using the same
indexes kl , l = 0, 1, … . In what follows, we fix a num-
ber j and assume that

(11)

In the order O(e1), we obtain

(12)

with boundary conditions (6). The condition of solv-
ability of this problem with respect to u1 is

(13)

where

(14)

θz( )2
u0 0, θY( )2

u0 0,= =

u0zz n0
2
u0 θX( )2

u0–+ 0=

u0 A X Y,( )φ z X,( ),=

φzz n0
2φ k

2φ–+ 0, φ 0( ) 0, φz H–( ) 0= = =

φ2
zd

H–

0

∫ 1.=

u0 A X Y,( )φj z X,( ).=

u1zz n0
2
u1 θX( )2

u1–+

=  –2θXu0X iθXXu0– u0YY– νu0–

2ik j AX ik jX A AYY αA+ + + 0,=

α νφj
2

z.d

H

0

∫=
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
Equation (13) is a very particular case of the parabolic
equation derived in [3] (see the same paper for the
explanation of the concept of solvability conditions).

In view of Eq. (13), Eq. (12) can be rewritten as

(15)

We seek the solution to problem (15) with boundary
conditions (6) in the form

(16)

In view of the fact that index j has a special meaning,
we will denote coefficient Bjj as simply B. Substituting
Eq. (16) into Eq. (15) and integrating the resulting
equality over z from –H to 0, we obtain, after certain
rearrangements, an equation valid for l ≠ j:

(17)

where we introduced the notation

(18)

(which will be convenient for the following consider-
ation). Equation (17) serves to obtain the coefficients Bjl
for j ≠ l. The coefficient B will be determined from the
parabolic equation that will be derived below from the
condition of solvability of the problem in the order
O(e2). Since the coefficients Bjl are proportional to A, it
is convenient to introduce the quantities Ejl for j ≠ l:

(19)

For definiteness, we set Ejj = 0.

To find the expressions for φjX and kjX appearing in
many formulas, we differentiate problem (9) written for
φj , kj with respect to X to obtain

(20)

The condition of solvability of this problem is

(21)
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2
u1–+

=  A φj νφj
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which makes it possible to determine kjX . We will seek
the function φjX in the form

(22)

In a way similar to that used in the derivation of expres-
sions for the coefficients Bjl , we obtain the formulas for
the coefficients Cjl with j ≠ l:

(23)

From normalization condition (10) differentiated with
respect to X, we additionally obtain

(24)

Now, we turn our attention to the relationships in the
order O(e2). In this order, we obtain the equation

(25)

with boundary conditions (6). Replacing the quanti-
ties u0 and u1 appearing in this equation by corre-
sponding representations (8) and (16) and using repre-
sentation (22), we arrive at the condition of solvability
in the form

(26)

where

(27)

In deriving formula (27), we used the formula

which can be obtained by differentiating twice the nor-
malization condition (10). Using the equality

(28)

which can be obtained by differentiating the orthogo-
nality condition for the eigenfunctions

with respect to X, together with the expression (17) for
Bjl and taking into account the symmetry of the coeffi-

φjX C jlφl.
l 0=

∞
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kl
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cients Djl with respect to indexes, we obtain (after some
rearrangements) convenient expressions for β:

(29)

The system of equations (13), (26) represents the
wide-angle adiabatic mode parabolic equations in the
framework of our approach. This statement will acquire
a more specific content when the results obtained here
are compared with those obtained with a more tradi-
tional approach.

Consider the case of n0 independent of X. To com-
pare our system of equations (13), (26) with the equa-
tion resulting from the formal factorization of the hori-
zontal Helmholtz operator, we introduce the amplitude

U = A + eB

and add Eq. (26) multiplied by e to Eq. (13). We express
the term AXX appearing in Eq. (26) with the use of
Eq. (13) differentiated with respect to X. As a result, we
obtain

(30)

Since we intend to consider this equation only to the
terms of O(e2), we can replace it with the equation

(31)

Returning to the initial variables x = e–1X and y = e–1/2Y
and introducing the parameters

we finally obtain

(32)

where, in this case,

Now, we apply the method of formal factorization
(for details, see [8], [10], and [11]) of the horizontal
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Helmholtz operator to Eq. (4) written in the initial vari-
ables in the form

(33)

Following the algorithm from [4], we represent the
acoustic pressure P in the form

where φj is the eigenfunction, and integrate Eq. (33)
with respect to z from –H to 0. Taking into account nor-
malization condition (10) and spectral problem (9), we

obtain the equation for the amplitude :

(34)

We replace this equation with its factorization:

(35)

Remember that such a replacement is approximate in
the case of variable coefficients.

Retaining only the first factor, we approximate the

square root of the operator , where

by a rational-linear combination (1 + pQ)(1 + qQ)–1,

where p and q are some factors. Using formula  =

exp(kjx) to introduce the envelope , we obtain the
equation for the envelope

For p = 3/4 and q = 1/4 (these coefficients correspond

to the Padé approximation  [12]), we obtain, after
some rearrangements, the final equation

(36)

This equation differs from Eq. (32) in that some terms
are absent; namely, the term

is absent because of the above assumptions regarding

commutativity, and the term  is absent because of
the exclusion of other modes from our consideration.

Now, we show that, under the assumption that the
loss is absent (the refractive index is real), the equations

Pxx Pyy Pzz n0
2 ν+( )P+ + + 0.=

P Ã x y,( )φj z( ),=

Ã

Ãxx Ãyy k j
2
Ã α Ã+ + + 0.=

i
∂
∂x
------ k j 1

1

k j
2

----- ∂2

∂y
2

-------- α+ 
 ++

 
 
 

× i
∂
∂x
------ k j 1

1

k j
2

----- ∂2

∂y
2

-------- α+ 
 +–

 
 
 

Ã 0.=

1 Q+

Q
1

k j
2

----- ∂2

∂y
2

-------- α+ 
 =

Ã

Ũ Ũ

i 1 qQ+( )Ũx k j p q–( )QŨ+ 0.=

P1
1

2ik jŨx Ũyy α Ũ
i

2k j

-------Ũyyx
i

2k j

-------D jjŨx+ + + + 0.=

i
2k j

-------D jjxŨ

βŨ
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derived above ensure the conservation of the energy
flux to the order O(e3).

We introduce the notation

(37)

where the asterisk means complex conjugation. We
multiply Eq. (1) by P* and integrate it with respect to y
from –∞ to ∞ and with respect to z from –H to 0. Inte-
grating by parts with the use of the boundary condi-
tions, we obtain the equality

which yields

The energy flux across the (y, z) plane is Im〈Px, P〉. This
expression, which is differentiated with respect to x,
gives Im〈Pxx , P〉 . Consequently, we have the energy
flux conservation law for Eq. (1):

(38)

We now turn our attention to the consideration of
this law for parabolic equations (13) and (26). Remem-
ber that, in these equations, we have

where A, B, and Bjl are functions of low variables X =
ex and Y = e1/2y, θ is a function of X, and φj  and φl are
functions of X and z. Taking into account the fact that

we have kj = θX = (1/e)θx.
Direct calculations yield

(39)

h g,〈 〉 hg* z y,dd

H–

0

∫
∞–

∞

∫=

Pxx P,〈 〉 Py Py,〈 〉– Pz Pz,〈 〉–

+ n
2

P
2

z ydd

H–

0

∫
∞–

∞

∫ 0,=

Im Pxx P,〈 〉 0.=

∂
∂x
------Im Px P,〈 〉 0.=

P Aφj
i
e
--θexp eBφj

i
e
--θexp+=

+ e B jlφl

l 0 l j≠,=

∞

∑ 
 
  i

e
--θexp O e

2( ),+

∂
∂x
------ e

∂
∂X
-------,=

∂
∂x
------Im Px P,〈 〉 e k j A

2
yd

∞–

∞

∫ 
 
 

X

=

+ e
2 1

2i
----- AXX A* AXX* A–( ) yd

∞–

∞

∫



+ k jX BA* AB*+( ) yd

∞–

∞

∫
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Note that Eq. (39) is sufficient to obtain the conserva-
tion law (38) in the order of O(e0). Indeed, multiply
Eq. (13) by A* and integrate the resulting equality with
respect to Y from –∞ to ∞. From the equality obtained
in this way, subtract the complex conjugate Eq. (13)
multiplied by A and integrated with respect to Y in the
same limits. As a result, we obtain

which is the conservation law (38) in the order of O(e).

To obtain the conservation law in the order of O(e2),
which is equivalent to a zero factor of e2 in Eq. (39), we
should combine two equalities. The first equality is the
difference between Eq. (13) multiplied by B* and inte-
grated with respect to Y from –∞ to ∞ and the complex
conjugate Eq. (13) multiplied by B and integrated with
respect to Y from –∞ to ∞. The second equality is the
difference between Eq. (26) multiplied by A* and inte-
grated with respect to Y from –∞ to ∞ and the complex
conjugate Eq. (26) multiplied by A and integrated with
respect to Y from –∞ to ∞. For a better understanding
of the two latter sentences, which are somewhat cum-
bersome, we note that equations are first multiplied and
then integrated.

Now, we present the basic formulas for the case
when the sound propagation is described by the equa-
tion

(40)

where γ = 1/ρ and ρ is the density made dimensionless
with the use of the characteristic density  as the den-
sity scale.

The domain, where this equation is considered, and
the boundary conditions are the same as in the above
simplest case.

We introduce slow variables X = ex and Y = e1/2y and
postulate that the refractive index has the form of
Eq. (3) and the parameter γ is representable in the form

Substitute these representations and expression (5) into
Eq. (40) written in terms of slow variables and in
boundary conditions (2) and consider the boundary-
value problems in different orders of e.

As in the simplest case, we first obtain that the quan-
tity θ is independent of z and Y. The problem in the
order of O(e0) leads us to the representation

+ k j BX A* BAX AXB ABX*+ + +( ) yd

∞–

∞

∫ 



.

k j A
2

yd

∞–

∞

∫ 
 
 

X

0,=

γPx( )x γPy( )y γPz( )z γn
2
P+ + + 0,=

ρ

γ γ0 X z,( ) eγ1 X Y z, ,( ).+=

u0 A X Y,( )φj z X,( ),=
where (φj , kj) is one of the solutions to the eigenvalue
problem

(41)

with the spectral parameter k2 = (θX)2 and the normal-
ization condition

(42)

The condition of solvability for the problem in the
order of O(e1) is the parabolic equation for A

(43)

where α is now given by the formula

(44)

The solution to the boundary-value problem in the
order of O(e) is represented in the form

(45)

where the coefficient Bjj is again denoted as B. As
below, the coefficients Bjl for j ≠ l prove to be propor-
tional to A, and we introduce the coefficients Ejl for j ≠ l
by the equality

(46)

For j ≠ l, these coefficients satisfy the equation

(47)

In contrast to the simplest case, we now set

(48)

For the derivatives of the eigenfunctions with
respect to X, we use the representation

(49)

γ0φz( )z γ0n0
2φ γ0k

2φ–+ 0,=

φ 0( ) 0, φz H–( ) 0= =

γ0φ
2

zd

H–

0

∫ 1.=

2ik j AX ik jX A AYY αA+ + + 0,=

α  = γ0νφj
2

zd

H–

0

∫ γ1 n0
2

k j
2

–( )φj
2

zd

H–

0

∫ γ1 φjz( )2
z.d

H–

0

∫–+

u1 B jl X Y,( )φl z X,( ),
l 0=

∞

∑=

AE jl B jl.=

kl
2

k j
2

–( )E jl –ik j γ0Xφjφl zd

H–

0

∫ 2ik j γ0φjXφl zd

H–

0

∫–=

+ k j
2 γ1φjφl zd

H–

0

∫ γ1φjz( )zφl zd

H–

0

∫–

– γ1n0
2φjφl zd

H–

0

∫ γ0νφjφl z.d

H–

0

∫–

E jj
1
2
--- γ1φj

2
z.d

H–

0

∫–=

φjX C jlφl.
l 0=

∞

∑=
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The equation for these coefficients is as follows:

(50)

where δjm is the Kronecker delta. For j ≠ m, this equation
gives the coefficients Cjm, and, for j = m, it gives the for-
mula for kjX. The equation for Cjj is obtained by differen-
tiating normalization condition (42) with respect to X:

(51)

In contrast to the simplest case considered above, the
coefficients Cjm are now not antisymmetric in indexes;
instead, we have the relationship

(52)

The analogous formula for Ejm has the form

(53)

The solvability condition for the boundary-value
problem in the order of O(e2) gives the parabolic equa-
tion for the amplitude B:

(54)

where

(55)

Assume now that the parameters γ0 and n0 have dis-
continuities of the first kind at the boundaries

where the functions h(l) have the form

For other points, we assume that the functions γ0 and n0
are smooth.

km
2

k j
2

–( )C jm γ0Xφjzφmz zd

H–

0

∫=

– γ0n0
2( )Xφjφm zd

H–

0

∫ k j
2( )Xδjm k j

2 γ0Xφjφm z,d

H–

0

∫+ +

γ0Xφj
2

zd

H–

0

∫ 2C jj+ 0.=

C jm Cmj+ γ0Xφjφm z.d

H–

0

∫–=

E jm Emj+ γ1φjφm zd

H–

0

∫– i
1

km k j–
---------------- Cmj C jm–( ).+=

2ik jBX ik jXB BYY αB+ + +

+ AXX 4ik jE jj AX 2 E jj AY( )Y βA+ + + 0,=

β 2ik j E jl Clj C jl–( )
l 0 l j≠,=

∞

∑=

– kl
2

k j
2

–( )E jl
2

C jjX+
l 0 l j≠,=

∞

∑

– C jl
2

2ik jE jjX 2ik jXE jj γ1νφj
2

z.d

H–

0

∫+ + +
l 0=

∞

∑

z h
l( )

X Y,( ), l 1 … N ,, ,= =

h
l( )

X Y,( ) h0
l( )

X( ) eh1
l( )

X Y,( ).+=
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Note that, under the condition that  = 0, the for-
mulas derived above remain valid even in the presence
of discontinuities, provided that the solutions to the
boundary-value problems are understood in the sense
of appropriate distributions (say, belonging to the
Sobolev space H1). Here, we show that these formulas

formally include also the case of  ≠ 0 if one includes
the perturbations of the boundaries into the perturba-
tions of the parameter γ and the refractive index γ1 and
ν. However, in this procedure, the portions of γ1 and ν
corresponding to the perturbation of the boundaries
must be of the order of O(1/e), because only in this case
will they change the values of γ and n by finite values
after their multiplication by e. For this reason, the
smallness of these perturbations must be understood in
some integral sense rather than pointwise. Having men-
tioned this fact, we will not consider the questions of
functional analysis and simply give the formal deriva-
tion of formulas, which contains all the information
required for a more rigorous consideration.

Let the perturbations of γ0 and n0 corresponding to
the perturbation of the boundary z = h(l) at a point (X, Y)
be described by the function χ(z) as follows:

(56)

where we require that function χ satisfy the conditions

χ is a smooth function, and the support of χ has a diam-

eter of about O( ).

Expand the functions  and  in the Taylor series

Here, because of the discontinuous behavior of the

functions γ0 and , the derivatives are understood in
the sense of distributions. The validity of the Taylor
formula in this case is shown, e.g., in [13] (Sect. 3.3
of Part 1). In our case, we have

and a similar formula for , where δ is the Dirac delta,

γ0+ = , and γ0– = .

If we set

h1
l( )

h1
l( )

γ̃0 z( ) γ0 z χ z( )–( ),=

ñ0 z( ) n0 z χ z( )–( ),=

χ h0
l( )( ) h1

l( )
, χ z( ) h1

l( )
for z h0

l( )
;≠<=

h1
l( )

γ̃0 ñ0
2

γ̃0 γ0 χγ0z– o h1
l( )( ),+=

ñ0
2 n0

2 χ n0
2( )z– o h1

l( )( ).+=

n0
2

χγ0z χ γ0+ γ0––( )δ z h0
l( )

–( )=

+ a smooth fuction of order O h1
l( )( )

n0
2

γ0
z h0

l( )→ z h0
l( )>,

lim γ0
z h0

l( )→ z h0
l( )<,

lim

γ1 χγ0z, ν– χ n0
2( )z,–= =
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the integrals containing these quantities and appearing in
expressions (14) and (27) for the coefficients α and β are

(57)

(58)

(59)

and

(60)

It remains to note that the orders of errors in formu-
las (57)–(60) correspond to the orders of e, in which
these integrals appear in the expressions for the coeffi-
cients α and β if one returns to the initial variables in
these expressions, as we have done in the comparison
with the method of factorization.

It is not difficult to check that the above formulas
agree well with the formulas from [3].1

1 Except for the term containing , which appeared in the final for-

mulas because of the use of an erroneous formula  =

 +  (see [3], Appendix). In fact, such

integrals must be differentiated as follows (we consider the case of one

boundary):  =  +  =

 –  + the terms given above. As a result, the

terms containing  are cancelled.
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2
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=  γ0+ γ0––( ) n0
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2

z h0
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=
o h1

l( ) 2
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h0X
l( )

1
ρ0
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zd
H–

0∫ 
 

X

1
ρ0
----- 

 
X
φ2

zd
H–

0∫ 2
1
ρ0
-----φXφ zd

H–
0∫

1
ρ0
-----φ2

zd
H–
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 

X

1
ρ0
-----φ2

zd
H–
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l( )
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 1
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-----φ2

zd
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h0X
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Thus, using the generalized multiscale method, the
system of parabolic equations (43) and (54) for the
amplitudes of the normal acoustic mode was derived
to describe the wide-angle propagation of sound in the
horizontal plane. For the simplest case, this system
was compared with the wide-angle equation obtained
by the formal factorization of the horizontal Helm-
holtz operator with the use of the rational-linear Padé
approximation for the square root of the operator. The
problem of energy flux conservation was considered.
On the basis of the theory of distributions, an
approach was developed to extend the formulas
obtained for smooth density and refractive index to
the case when these parameters are discontinuous at
some interfaces.
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Abstract—An asymptotic solution to the two-dimensional inhomogeneous Helmholtz equation in the R2 space
with a variable refractive index is considered. The volume density of the source is nonzero in a finite region D.
A special conformal transformation of the original space is used to show that this asymptotic solution can be
represented as a geometrooptical series. Algorithms for calculating all characteristics of this series are pre-
sented. The results can be applied to a real three-dimensional oceanic waveguide. © 2002 MAIK “Nauka/Inter-
periodica”.
The problem of calculating the fields and responses
produced by linear antennas in oceanic waveguides
attracted considerable interest in recent years [1–8].
The studies concerned with this problem used the
assumption that the properties of the medium are either
constant [2–4, 8] or change negligibly [6] over the aper-
ture, or the field was calculated by simple summation
over all the antenna elements (integration over the
antenna aperture) paying no attention to the variation of
the properties of the medium within the antenna aper-
ture [1, 5, 7]. In the first and second cases, the authors
quite correctly keep using the notion of the directional
pattern of the antenna in free space, which is, however,
invalid in the general case when the variations in the
properties of the medium over the antenna aperture can-
not be neglected. The third approach, which is valid in
this case, is nevertheless ineffective and physically
unclear.

In this paper, we study the field produced by an
antenna in a two-dimensional inhomogeneous medium
with allowance for the variation of the properties of the
medium over the antenna aperture and retaining the
efficiency and clarity characteristic of the first two
approaches.

One of the most efficient techniques for solving the
Helmholtz equation with a variable refractive index is
the method of canonical operator (see, e.g., [9] and
other works by V.P. Maslov and other authors). Note
that, as a rule, the procedure consists in solving the
homogeneous equation with inhomogeneous boundary
conditions. The solution thus obtained is called the for-
mal asymptotic solution (FAS) or quasi-classical
asymptotics. In [10] and a number of other publica-
tions, the FAS was obtained for the fundamental solu-
tion (Green’s function) of the Helmholtz equation with
a variable refractive index in a space of an arbitrary
1063-7710/02/4806- $22.00 © 20735
dimension. For an arbitrary source function, the solu-
tion can formally be obtained as a convolution of the
corresponding Green’s function with the volume den-
sity of the source. The question of whether this solution
can be represented as a geometrooptical series remains,
however, open. For a space of an arbitrary dimension
with a constant refractive index, this question has been
solved positively: a solution to the respective boundary
problem can be represented as a geometrooptical series
[11].

This paper shows that the FAS to the inhomoge-
neous two-dimensional Helmholtz equation with a
variable refractive index can be represented as a
geometrooptical series.

Let us formulate the problem as follows:

(1)

(2)

(3)

The decay rate of the function at infinity for any multi-
index α satisfies the condition

(3‡)

The Hamiltonian system generated by Eq. (1) should
also comply with the condition that finite motion be
absent; i.e., all rays emanating from a point must go to
infinity [10].

L x y j∂/∂x– j∂/∂y–, , ,( )u x y,( )

=  ∆2 k2n2 x y,( )+[ ] u x y,( ) f x y,( ),–=

u x y,( ) O r 1/2–( );=

∂/∂ r jk–( )u x y,( ) o r 1/2–( ); r x y,( ) R2;∈= =

n x y,( ) C∞; n x y,( ) 0;>∈
n x y,( ) 1, r ∞.

Dx
α n r( )( ) cα 1 r+( )– α 2– , cα≤ const.=
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Here, ∆2 = ∂/∂x2 + ∂/∂y2 is the Laplacian, u(x, y) is
the sound pressure field, k is the wave number, and
f(x, y) is the volume density of the source existing in a
finite region D = suppf . In general, f(x, y) may be a
generalized function; then the solution should be
understood as a generalized solution.

If the above conditions are met, a unique solution to
problem (1)–(3a) exists and the FAS asymptotically
converges to the exact solution [10].

Consider the equation for the fundamental solution
to the Helmholtz equation:

(4)

To find the FAS to Eq. (4), one must construct the
Lagrangian manifold associated with the zero value of
the Hamiltonian

(5)

which corresponds to the operator L = ∆2 + k2n2(x, y)
[9, 10]. The Lagrangian manifold is a web of bicharac-
teristics that are solutions to the Hamiltonian system

(6)

Here, (t, ϕ) are the coordinates on the Lagrangian man-
ifold, ϕ is the polar angle on the circle of initial
momenta |p0|2 = n2(x0, y0), and p = (px, py) is the
momentum vector.

Let us make the following assumption. Let a region
D1 contain the region D so that, ∀ r0 ∈  D and ∀ r ∈  D1,
the projections of the Lagrangian manifolds onto R2 are
unique and the rays that connect the points r0 and r do
not intersect; i.e., they lie on a nonsingular map.

It is known [10] that, on a nonsingular map, an FAS
to Eq. (4) has the form

(7)

Here, S(r0, r(t, ϕ)) is the eikonal on the ray that connects
the point r0 with the point r; ϕn are the transfer ampli-
tudes, where ϕ0 = 1, the others being calculated recur-
sively [10]; J(r0, t, ϕ) = D(x, y, r0)/D(t, ϕ) is the Jaco-
bian of the change of coordinates from (x, y) to (t, ϕ);
and γ(r0, r) is the number of zeroes of the Jacobian in
the interval (0, t) with allowance for their multiplicity.
Since the map is nonsingular, the Jacobian is nonzero
everywhere on the ray from r0 to r, and these points are
connected by a single ray. In this case, γ = 0.

∆2 k2n2 x y,( )+[ ] G x x0 y y0, , ,( )
=  δ x x0–( )δ y y0–( ).

H r p,( ) – px
2 py

2– n2 x y,( ),+=

dr/dt ∂H/∂p; dp/dt ∂H/∂r,–= =

r
t 0= r0 x0 y0,( ); p

t 0= p0== =

=  p0x p0y,( ) n x0 y0,( ) ϕcos n x0 y0,( ) ϕsin,( ).=

GN r0 r k, ,( ) j–

2 πk
-------------=

×
j kS jπ/2γ r0 r,( )– π/4–( )( )exp

J r0 t ϕ, ,( ) 1/2
------------------------------------------------------------------------------

ϕn r r0,( )
jk( )n

---------------------.
n 0=

N 2+

∑

The FAS GN satisfies the equation

When GN is known, the solution to Eq. (1) can formally
be calculated as the convolution

(8)

where uN is the FAS to Eq. (1), which satisfies the
equation LuN = –f(x, y) + o(k–N – 1), and β =

exp(–jπ/4). As follows from Eq. (8), the FAS uN

does not have the form of a geometrooptical series of
Eq. (7), which features the following properties [9]: the
series has form (7); the eikonal, transfer amplitudes,
and Jacobian correspond to the Lagrangian manifold
associated with Hamiltonian system (6); and the zero-
order transfer amplitude ϕ0 remains constant on the ray,
the other transfer amplitudes being calculated from ϕ0

by a recursive procedure. Therefore, algorithm (8) that
calculates the FAS by the Green’s function technique is
of little use, because, for each point r, it performs the
whole of the time-consuming procedure (8) for each
point r0 ∈ D.

Note that the stationary-phase method does not give
a geometrooptical series from FAS in form (8) for the
two-dimensional case or in the form of a similar inte-
gral in the n-dimensional case, because the eikonal
S(r0, r) has no stationary-phase point, since S(r0, r) =
p(r0, r) ≠ 0, which follows from conditions (3) and the
fact that Hamiltonian (5) is zero. Here, p(r0, r) is the
momentum vector at the point r0 on the ray connecting
the points r0 and r. However, if a stationary point were
present, its position would depend on the current point r,
which enters the phase function S(r0, r) as a parameter.

Let us show that, under the above assumptions, the
FAS uN can nevertheless be represented as a
geometrooptical series. To this end, we apply a confor-
mal transformation to Eq. (1) that changes coordinates
from (x, y) to (ξ1, ξ2). Let ω = ω(z) = ξ1 + jξ2 be the
conformal transformation of the complex variable z =
x + jy. Then, the Laplacian can be transformed to [12,
pp. 334, 474]

LGN r0 r,( ) δ x x0–( )δ y y0–( ) o k–N 1–( ).+=

uN f r0( )GN r0 r,( ) r0d

D

∫–=

=  β f r0( )
jkS r0 r,( )( )exp

J r0 t ϕ, ,( ) 1/2
--------------------------------------

ϕn r0 r,( )
jk( )n

---------------------
n 0=

N

∑ r0,d

D

∫

j

2 πk
-------------

∇ r0

∆2 ∂2/∂x2 ∂2/∂y2+=

=  4∂2/∂z∂z ∂2/∂ξ1
2 ∂2/∂ξ2

2+( ) dω/dz 2.=
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In this case, Eq. (1) can be written as

(9)

According to [12], |dz/dω| = [(∂x/dξ1)2 + (∂y/dξ1)2]1/2 =
[(∂x/dξ2)2 + (∂y/dξ2)2]1/2 = h1 = h2, where h1, 2 are the
Lamé coefficients, which are equal for the conformal
transformation. The following equality is valid [13]:
Jz → ω(ξ1, ξ2) = D(x, y)/D(ξ1, ξ2) = h1h2, where Jz → ω is
the Jacobian of the transformation (x, y)  (ξ1, ξ2).
Therefore, Jz → ω(ξ1, ξ2) = |dz/dω|2.

Let such an analytical function ω(z) exist that the
equality

(10)
is valid in the region D1 and, hence, |dω/dz|2 ≠ 0 [see
conditions (3)]. Then, Eq. (9) can be transformed as fol-
lows (the algorithm for reconstructing an analytical
function from its magnitude is given in the Appendix):

(11)

As can be seen from Eq. (11), we obtained an inho-
mogeneous Helmholtz equation with a constant refrac-
tive index. Clearly, this transformation turns the rays
into straight lines and the wave fronts, which are per-
pendicular to the rays, into circles when a point source
is used.

Consider a point r0 = (x0, y0) ∈ D. This point can
coincide with the geometric center of the antenna or it
may be chosen based on other reasons, which will be

discussed below. Let us introduce ρ = [(ξ1 + )0 + (ξ2 +

)2]1/2, where ( , ) ∈  , the point ( , ) on the
plane ω corresponds to the point (x0, y0) on the plane z,
and the region  on the plane ω corresponds to the
region D1 on the plane z. If there is no backscatter from

the boundary ∂  between the regions  and ,
which can easily be achieved by the smooth continua-

tion of the refractive index to the region R2\ , the
solution to Eq. (11) can be represented as the following
geometrooptical series [11]:

(12)

Here, (ρ, ϕ') are the polar coordinates on the ω plane

relative to the point ( , ); (ρ, ϕ') = u(x(ξ1, ξ2),
y(ξ1, ξ2)); and the function D0(ϕ') is defined as

(13)

dω/dz 2 ∂2/∂ξ1
2 ∂2/∂ξ2

2+( ){

+ k2n2 x ξ1 ξ2,( ) y ξ1 ξ2,( ),[ ] } u x ξ1 ξ2,( ) y ξ1 ξ2,( ),[ ]
=  – f x ξ1 ξ2,( ) y ξ1 ξ2,( ),[ ] .

dω/dz 2 n2 x y,( ),=

∂2/∂ξ1
2 ∂2/∂ξ2

2 k2+ +( )u x ξ1 ξ2,( ) y ξ1 ξ2,( ),( )
=  –Jz ω→ ξ1 ξ2,( ) f x ξ1 ξ2,( ) y ξ1 ξ2,( ),( ).

ξ1
0

ξ2
0 ξ1

0 ξ2
0 D ξ1

0 ξ2
0

D

D
1

D
1

Rω
2 \D

1

D
1

u ρ ϕ',( ) j
4
--- 2

πk
------ jπ/4–( ) jkρ( )exp

ρ1/2
-----------------------

Dn ϕ'( )
kρ( )n

----------------.
n 0=

∞

∑exp≈

ξ1
0 ξ2

0 u

D0 ϕ( ) f x( )Jz ω→ x( ) jk x x0–( )–( )exp d2ξ ,

D

∫=
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where x = (ξ1, ξ2), x0 = ( , ), (x) = f [x(ξ1, ξ2),
and y(ξ1, ξ2)], k = (k, ϕ). The higher order transfer ampli-
tudes are determined by the recurrent formula [11]

(14)

Now, to obtain a geometrooptical field representa-
tion in the original space (x, y), it is necessary to return
to this space in expression (12) through the appropriate
change of variables. However, it is easier to obtain this
representation by comparing the FASs for the funda-
mental solutions in these two configuration spaces.

Note that, when passing from Eq. (1) to Eqs. (9) and
(11), we change the configuration space [for Eq. (1),
this is the (x, y) plane; for Eqs. (9) and (11), this is the
(ξ1, ξ2) plane]. For Eq. (9), original Hamiltonian (5) is
simply written in terms of the new variables to
become

(5‡)

For Eq. (11), the Hamiltonian changes to

(15)

Therefore, for Eq. (11) and, accordingly, for Hamilto-
nian (15), the Lagrangian manifold composed of the
corresponding bicharacteristics will differ from the
Lagrangian manifold associated with Eqs. (1) and (9)
and with Hamiltonians (5) and (5a). Note however that,
when conditions (3) and (10) are met, solutions to
Eqs. (1), (9), and (11) coincide. Therefore, since the
change of variables is smooth and the maps are nonsin-
gular, a one-to-one correspondence (diffeomorphism)
exists between the points of the bicharacteristics
belonging to both Lagrangian manifolds, i.e., to the
manifolds associated with Hamiltonians (5), (5a), and
(15), and, hence, a one-to-one correspondence exists
between the parameters t and t' connected with these
manifolds [see system (6)].

The solution to Hamiltonian system (6) for Hamil-
tonian (15) with the initial condition x|t' = 0 = x0 yields
J(x0, t ', ϕ') = D(ξ1, ξ2, x0)/D(t ', ϕ') = 4t ', ρ = 2t ', and
S(x0, ϕ ', t ') = 2t '. Here, (ϕ ', t ') are the coordinates on
the Lagrangian manifold associated with Hamiltonian
(15). Since the transformation (x, y)  (ξ1, ξ2) is con-
formal, the angles ϕ on the initial-momentum circle

 +  = n2(x0, y0) and the angles ϕ' on the initial-

momentum circle  +  = 1 differ by a constant

term α: ϕ = ϕ' + α. Assume for simplicity that, after an
appropriate shift, the equality ϕ = ϕ' is valid. Then, by
virtue of the diffeomorphism described above, a
smooth dependence exists between the parameters t and

ξ1
0 ξ2

0 f

Dn 1+ ϕ'( ) ∂2/∂ϕ '2 n n 1+( ) 1/4+ +[ ]
2 j n 1+( )

----------------------------------------------------------------Dn ϕ'( ).=

H p x,( ) = dω
dz
-------

2
– pξ1

2 pξ2

2–( ) n2 x ξ1 ξ2,( ) y ξ1 ξ2,( ),( ),+

p pξ1
pξ2

,( ).=

H1 p x,( ) – pξ1

2 pξ2

2– 1.+=

p0x
2 p0y

2

p
ξ1

0
2 p

ξ2
0
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t ' on the respective bicharacteristics. Let us denote the
unknown dependence as t ' = ψ(ϕ, t) and find it. Let us
write an expression for the fundamental solution in the

region  of the ω plane, i.e., with the source function
f(x, y) = –δ(x – x0)δ(y – y0) in Eq. (11). Then, with the

equality δ(x – x0)δ(y – y0) =  [12,

p. 769], we obtain the equation

for the fundamental solution, which is known from

[12]: G = (kρ). This solution can be represented

in the geometrooptical form

(16)

by using Eqs. (12)–(14). Clearly, expression (16)
describes the asymptotics of the Hankel function up to
within a constant factor. Next, we substitute J(x0, t ', ϕ') =
4t ', ρ = 2t ', and S = 2t ' into Eq. (16) and compare the
result with the equivalent expression (7) to obtain

(17)

With Eqs. (17), solution (12) in the original space (x, y)
can be written as

(18)

where

(19)

and Dn and Φn are related due to Eqs. (17) as

The above considerations have shown that the FAS
to problem (1) can be represented as a geometrooptical
series, for which purpose one must calculate not only
the usual source-independent FAS characteristics (the

D
1
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0–( )δ ξ2 ξ2

0–( )
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------------------------------------------------
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2 k2+ +( )G x x( ) y x( ) x0 k, , ,( )
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0–( )δ ξ2 ξ2

0–( ), x D
1
, x0 D∈∈

j–
4
-----H0

1( )

G
j–

4
----- 2

πk
------ jπ/4–( ) jkρ( )exp

ρ1/2
-----------------------

dn

kρ( )n
-------------

n 0=

∞

∑exp≈

d0 1=

t' J x0 t ϕ, ,( ) /4, d0 ϕ0 1,≡= =

ϕn dn
jn

J x0 t ϕ, ,( ) /2( )n
----------------------------------------.=

u x y,( ) j

2 πk
-------------≈

×
j kS r0 ϕ t, ,( ) π

2
---γ r0 r,( )– π/4– 

 
 
 exp

J r0 ϕ t, ,( ) 1/2
---------------------------------------------------------------------------------------------

×
Φn r0 ϕ t, ,( )

jk( )n
---------------------------,

n 0=

∞

∑

Φ0 D0 f x( )Jz ω→ x( ) jk x x0–( )–( )d2ξexp

D

∫= =

Φn Dn
jn

J r0 t ϕ, ,( ) /2( )n
---------------------------------------.=
eikonal, the phase paths, and the Jacobian), but also the
zero-order transfer amplitude (19), which characterizes
the source. Expression (19) must be calculated in the
(ξ1, ξ2) space through the corresponding conformal
transformation, which in some cases may be inconve-
nient. Consider a technique to overcome this difficulty.
To this end, let us find out to which wave in the original
space (x, y) the plane wave exp( jk(x – x0)) in the region

 corresponds.

The plane wave front in  is the limit to which the
cylindrical wave front tends as the distance between the
points x and x0 increases without limit. Therefore, the

plane wave front in the region  corresponds to the
limiting wave front in the region D1 when r goes to
infinity. Due to stabilization conditions (3), this limit-
ing front also tends to a plane front when |r|  ∞.

The key circumstance in the further consideration is
the fact that, if the refractive index is smoothly varied
on the phase path keeping conditions (3) and (4) satis-
fied, the zero-order transfer amplitude remains constant
in contrast to other FAS characteristics. The zero-order
transfer amplitude is thus a FAS invariant insensitive to
smooth perturbations on the phase path. Therefore, it is
possible to vary the refractive index on the phase path
so as to obtain the simplest procedure for calculating
the zero-order transfer amplitude.

Clearly, this variation is the smooth transition from
the current refractive index to its stationary value of
n(x, y) ≡ 1 outside the region D1 = D ∪ Dε, D1 ⊂ D1,
where Dε is a small neighborhood of D, if the refractive
index with its derivatives is smoothly continued to a
constant, which is necessary in order to avoid reflec-
tions and false caustics. Then, the plane wave exp(jk(x –
x0)) in the region  will correspond to a plane wave
refracted by the region D1 in the (x, y) space deformed as

described above. The eikonal  in the domain

ω is thus transformed to the eikonal (r0, r0, ϕ) =

(r0, ϕ) – (r0, ϕ), where r0, r0 ∈  D1. Here, (r0, ϕ) is
the eikonal at the point r0 on the front of the refracted
wave produced by the plane wave exp(jkr) incident on
the region D1 from infinity in such a direction that the
refracted beam passes through the point r0 at the angle
ϕ being sought. Then, by returning to variables (x, y) in
integral (13), we obtain

After Φ0(ϕ) is found, we can return to the original con-
figuration space (x, y) and use Eq. (18) to calculate the

D
1

D
1

D
1

D
1

k
k
------ x x0–( )

S

S S S

Φ0 ϕ( ) D0 ϕ( )=

=  f r0( ) jkS r0 r0 ϕ, ,( )–( )exp x0 y0.dd

D

∫
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FAS to Eq. (1). Note that, when the refractive index is
constant, Φ0(ϕ) is the directional pattern of the antenna.

Consider an example of applying this algorithm. Let
the refractive index meet the conditions for the confor-
mal transformation to exist (see Appendix) and be a
function of only one variable: n(x, y) = n(y). Take a
point r0 ∈ D and find the FAS on the ray leaving r0 at
an angle of π/2 to the x axis. Clearly, due to the symme-
try, this ray will be a straight line parallel to the y axis.
This is just the case to which the calculation of the
FAS is reduced after the quasi-separation of variables
in the x = const cross section of a three-dimensional
waveguide whose refractive index and depth depend
only on y.

Evidently, the wave front (r0, r0) = const will be
plane and perpendicular to the chosen ray, and the

eikonal will be (r0, r0) =  = (y0, y0). Here,

r0 = (x0, y0) and r0 = (x0, y0). The calculations yield

Φ0(r0, π/2) = exp(–jk dy)dx0dy0.

Thus, we have shown that the FAS to problem (1)
with a distributed source can be represented as a
geometrooptical series referred to the point r0.

The point r0 ∈ D was chosen arbitrarily. However,
when choosing this point, one should rely on a certain
criterion, e.g., on the condition of minimizing the dif-
ference between truncated FAS series (18) and the
exact solution to Eq. (1), this problem being beyond the
scope of this paper.

The results obtained above can be used to calculate
the fields produced by extended sources in real three-
dimensional oceanic waveguides, both regular ones
with a vertical linear antenna and irregular ones with
arbitrary antennas, when the case considered is pre-
cisely the one to which a three-dimensional problem is
reduced by the quasi-separation of variables [14].

APPENDIX

Let the magnitude ρ(x, y) = |f(z)| of the analytical
function f(z) = dω(z)/dz be given. It is necessary to
reconstruct f(z) and, subsequently, ω(z). Let us write
f(z) in the exponential form as f(z) = ρ(x, y)exp( jθ(x, y)).
Then, its real and imaginary parts, respectively, are

(A.‡)

The analysis of the analytical function ln f (z) shows
that ln[ρ(x, y)] and, hence, ln[n(x, y)] ([see Eq. (10)] are
analytical harmonic functions.

S

S n y( ) yd
y

0

y0∫ S

f r0( )
D∫ n y( )

y
0

y0∫

u x y,( ) ρ x y,( ) θ x y,( )[ ] ;cos=

v x y,( ) ρ x y,( ) θ x y,( )[ ] .sin=
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By substituting (A.a) into the Cauchy–Riemann
equations, we arrive at

(A.b)

Determining  from (A.b), we obtain  =

 or

(A.c)

Since Eq. (A.c) contains only real functions, it can only
be valid if both its sides are zero, which yields the

expressions for θ:  =  and  = . Finally,

we obtain

(A.d)

Note that the last integral actually contains the deriva-
tives of the real part of ln[ f(z)].

Thus, the original analytical function f (z) =
ρ(x, y)exp[ jθ(x, y)] is reconstructed uniquely. In the
reconstruction, we used the assumption that ln[n(x, y)],
where (x, y) ∈ D1, is a harmonic function. Otherwise,
it is necessary to approximate n(x, y) by the magnitude
of an analytical function under the condition that the
perturbation of the field u(x, y) is small.

The original function ω(z) can easily be recon-
structed from f(z) in the region where it is analytical by
the procedure described in [12, pp. 346, 347], the func-
tion ω(z) being also analytical.

Consider an example. Let the refractive index in the
region D be n(x, y) = ρ(x, y) = exp(α1x + α2y). Then,
ln[ρ(x, y)] = α1x + α2y is a harmonic function. Formula

(A.d) yields θ(x, y) = dx + α1dy = –α2x + α1y + C.

Then, up to a constant, we have ln[ f(z)] = (α1 – jα2)z,
which yields f(z) = exp[(α1 – jα2)z] and, therefore,

ω(z) = exp[(α1 – jα2)z].
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Abstract—Experimental results obtained by measuring the swell-caused underwater shore noise at different
distances from a shingly coast are presented. The experiment was carried out on a sea shelf near the waterline.
The typical spectrum of the shore noise is shown to have two peaks, one of which, corresponding to lower fre-
quencies, is caused by the filtration of sound in the shallow-water waveguide and the other, corresponding to
higher frequencies, is caused by the radiation of the bubble wash foam. The noise fluctuations are found to carry
information on the swell period. © 2002 MAIK “Nauka/Interperiodica”.
Fluctuating shore noise forms an interference of
appreciable level for hydroacoustic facilities located
near the coast, so knowledge of this noise is important
for optimizing the characteristics of sound-receiving
systems. In addition, shore noise is informative of
shoreline structure, coastal depths, and the period of
incoming waves. Only scarce data are available in the
recent literature on the experimental and theoretical
investigations of shore noise. It seems likely that Kir-
shov was the first to take an interest in the physics of
shore noise in the mid-1960s; some experimental data
on shore noise can be found in the paper by Bardyshev
et al. [1], the review by Urick [2], and some other
papers [3, 4] that concern this problem indirectly.
1063-7710/02/4806- $22.00 © 20741
We measured the underwater shore noise near the
city of Gelendjik. A hydrophone was sunk to the bot-
tom at three different points that were at distances of
20, 100, and 200 m from the shoreline, and the signal
was continuously recorded during this procedure. Fig-
ure 1 shows the three corresponding noise spectra aver-
aged over an interval of 10 s. All three spectra are sim-
ilar in shape and approximately equal in level. The fea-
tures characteristic of these spectra are the decrease at
lower frequencies and the increase at frequencies of
2−5 kHz.

Measurements were carried out in the morning
hours, during the period of quiescent weather. The wind
velocity from the coast was below 5 m/s, so the sea was
10–2
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Fig. 1. Spectrum of the noise level for different distances from the shoreline: (1) 20, (2) 100, and (3) 200 m.
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practically calm. Due to this fact, we can assume that
the noise was caused by two sources: the sea (the cor-
responding noise component is ps) and the coast (pc).
The coastal noise was caused by the breaking swell
whose period measured 3–4 s. This periodicity is char-
acteristic of the total noise pattern, especially for small
distances from the shoreline.

Since the sea depth slowly increases with the dis-
tance from the shoreline (the slope of the bottom is
about 1°), the sea near the coast can be arbitrarily
described as a two-dimensional waveguide with soft
and hard boundaries. In such a waveguide, the waves
propagate without losses when their frequencies exceed
the critical frequency: f > fk = c/4h, where c is the
sound velocity and h is the waveguide depth. In our
case, the critical frequency measured about 100 Hz for
all three points 20, 100, and 200 m from the shore. Fre-
quencies below the critical frequency correspond to the
decreasing parts of the noise spectra in Fig. 1.

0.5

0 50

pc
2

R, m
100 150 200 250 300

1.0

Fig. 2. Coastal noise as a function of distance from the
shoreline R.
In the waveguide, the energy of a sound wave gen-
erated by a point source decreases in inverse proportion

to the distance from the shoreline R. The sound field 
of all sound sources uniformly distributed along the
shoreline of length L can be found as a function of the
distance R:

Figure 2 shows this law of power decay with distance.
The logarithmic behavior of the noise sound pressure pc
as a function of R makes it possible to assume that the
level of the coastal component of shore noise is con-
stant or slowly decays with the distance from the shore-
line. It seems likely that the sea component ps of the
shore noise can also be considered as equal for all three
distances. Thus, the total noise level pn = ps + pc only
slightly varies for the distances used in the experiment,
which reflects the fact that the spectra in Fig. 1 nearly
coincide.

The wave wash on the coast causes the formation of
foam (due to the breaking waves) and the motion of
small stones. To describe the coastal component of the
noise, we must compare the spectrum averaged over
several periods with the spectrum measured during a
single wash (Fig. 3). The level of sound measured dur-
ing a single wave breaking event appears higher at all
frequencies. Figure 4 presents the ratio of the spectra
shown in Fig. 3. The maximal excess of the level of
sound measured during a single wash occurs for higher
frequencies. This increase can be explained by an
increased number of air bubbles formed in water when

pc
2

pc
2 xd

R2 x2+
---------------------

L/2–

L/2

∫∝ L
R
---.arcsinh=
10–2

101 102

P

Frequency, Hz
103 104

10–1

100

1

2

Fig. 3. Average noise spectrum compared with the spectrum of a single wave breaking event for a distance of 100 m from the shore-
line: (1) spectrum averaged over an interval of 10 s and (2) spectrum measured during a single wave wash.
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Fig. 4. Ratio of the noise spectrum measured during a single wave wash Pw to the averaged noise spectrum Pav at a distance of 20 m
from the shoreline.
the wave breaks. The bubbles are excited at resonance
frequencies and generate sound due to their cavitation
in the wave. Estimating the contribution of the air bub-
bles to the total noise, we can neglect the interaction
between the bubbles. The resonance frequency of
monopole oscillations of a gas bubble in a liquid is
determined by the well-known formula [5]

where ρ is the density of water, β is the compressibility
of air, and a is the radius of the bubble. According to
this formula, the peak observed in the spectra at fre-
quencies 2–5 kHz corresponds to bubbles whose size is
within 0.5 to 1.5 mm. The Gaussian distribution of the

bubble radii N(r) = N0  with the param-

eters r0 = 1 mm and σ = 0.5 mm describes the high-fre-
quency peak. The motion of stones also contributes to
the total noise; however, the problem of sound genera-
tion by moving stones should be investigated sepa-
rately.

The qualitative pattern of the shore noise in a calm
sea has its distinctive features. The weather and the sea
roughness can strongly affect not only the noise level,
but also the shape of the noise spectrum. Therefore, it is

ω0
3

a2ρβ
------------,=

–
r r0–( )2

2σ2
-------------------exp
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of interest to carry out experiments for different condi-
tions affecting the shore noise and for regions charac-
terized by different structures and profiles of the bottom
in the wave breaking zone.
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Abstract—Data on the auditory nerve response to an electric stimulation of the cochlea are presented. Mech-
anisms of analyzing the temporal fine structure and the amplitude variation of the signal in the cochlear nuclei
are described. The studies of the mechanisms underlying the temporal analysis of the envelope and, primarily,
of the signal amplitude modulation are of particular importance. The tuning of the auditory system to the level
of incident sound in the process of short-term and long-term adaptation is described. Special attention is paid
to the levels of internal noise (spontaneous activity) and external noise in the formation of stochastic resonance.
All these data can be used in designing conventional and electronic hearing implants, as well as in advanced
systems of speech discrimination. A number of these results are analyzed, and recommendations for their pos-
sible application are given. © 2002 MAIK “Nauka/Interperiodica”.

XI Session of the Russian Acoustical Society
The XI Session of the Russian Acoustical Society was held in Moscow on November 19–23, 2001. The scope

of the session covered a wide range of problems of modern acoustics, and the participants of the session included
acousticians from almost all regions of Russia. Considerable interest was aroused among the participants by the
section “Speech Acoustics and Acoustic Problems of Applied Linguistics.” The editorial board of Acoustical Phys-
ics decided to publish part of the papers presented in this section and devoted to the most topical problems of this
promising field of research. The papers were not additionally refereed before publishing. 
In the last few years, important results concerning
the mechanisms of information processing on the
periphery of the auditory system and in the individual,
sequentially positioned, nuclei of the auditory pathway
have been obtained. A better understanding of the
active mechanisms of spectral analysis performed
mainly by the outer hair cells of the cochlea has been
achieved. The neural responses of the auditory nerve of
an animal to various sound signals and to an electric
stimulation of the cochlea has been analyzed in detail.
These data, along with the results of model studies, not
only give a better insight into the operation of auditory
receptors but also offer possibilities for improving the
systems of electrode hearing implants for patients suf-
fering a loss of receptor structures.

ELECTRODE COCHLEAR IMPLANTS
Over a period of several tens of years, electrode

cochlear implants have become quite popular in medi-
cal practice. This method is the only one that restores
the auditory perception to patients with a total hearing
loss due to the atrophy of the receptor cells of the
cochlea. In many cases, the stimulation of the hearing
organs through electrodes placed in the cochlea not
1063-7710/02/4806- $22.00 © 20744
only restores auditory perception but also provides a
fairly reliable discrimination of fluent speech. How-
ever, such a result can be achieved for only a certain
number of patients, while for other patients the opera-
tion may be useless. Moreover, even in the case of suc-
cessful operations, the dynamical range of perception
and its noise immunity remain rather poor.

In fact, detailed systematic studies of the effects that
occur in the internal ear and in the central auditory sys-
tem in response to an electric stimulation of the cochlea
have begun only recently. Most studies have been per-
formed on animals and, primarily, on cats [1–3]. It was
found that the spike caused by an electric stimulation
can arise at several sites along the auditory nerve fiber,
from the basilar membrane to the cochlea outlet. The
shortest response occurs in the case of a direct stimula-
tion of the myelinized auditory nerve segment lying
even behind the cell body. The delay of this response
relative to the electric stimulus is less than half a milli-
second. Naturally, the dynamical range of such a
response is very small, about 1 dB, and the possibility
of transmitting the information on the signal intensity
variations is practically absent. On the other hand, the
frequency of the signal (at least in the low-frequency
002 MAIK “Nauka/Interperiodica”
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range) can be well transmitted by means of the value of
the pulse spacing, because the variance of the instants
of the pulse formation is about 10 µs.

When the cochlea is stimulated by signals with
somewhat lower intensity, a pulse of the auditory nerve
fiber can appear at more peripheral parts of the fiber: in
myelinized segments of the auditory nerve before the
cell body or even in nonmyelinized segments. The
delay of such a response is about 1 ms, the time vari-
ance is about 50 µs, and the dynamical range is doubled
in this case. Note that, under a strong stimulation, the
response in the nonmyelinized segment will be absent
because of the refractoriness. Therefore, with increas-
ing intensity, the delay of the response usually changes
in a jumplike manner. With a special choice of parame-
ters, it is possible to obtain two separate peaks in the
post-stimulus histogram of the response.

Responses with large delays and large dynamical
ranges were observed only for the animals that retained
viable hair cells. In addition, it has been known for
years that the auditory nerve fibers of an impaired
cochlea exhibit no spontaneous pulsed activity.

These main results are necessary to understand the
sensations experienced by a patient under the electric
stimulation of the cochlea and to reveal the basic limi-
tations of this method. Note that an electric pulse prop-
agates along the cochlea with attenuation, and, hence,
at different points of the cochlea, different mechanisms
of the spike generation are possible with different cor-
responding delays. As a result, at the subsequent stages
of the auditory pathway, where the summation of inputs
from many fibers takes place, a desynchronization of
the responses is possible. Judging from morphological
data, for humans, the scatter in the values of the delay
of the auditory nerve fiber excitation can be even
greater because of the greater length of the nonmyelin-
ized segment and the absence of myelin around the cell
wall [4, 5]. One may assume that precisely this circum-
stance leads to the absence of the pure tone perception
by patients receiving their hearing sensations from
electric stimulation.

With hearing implants, the perception of the fre-
quency of sound by the position principle is also diffi-
cult because of the limited number of active electrodes.
Even the most advanced systems contain no more than
20 electrodes, and not all of them operate perfectly. In
addition, because of the electric conductivity of the
cochlear liquids, even a bipolar stimulation is not local
enough ([6], but see also [7]).

However, the main difficulties in reproducing the
normal pattern of the auditory nerve excitation by an
electric stimulation are determined by the extremely
small dynamic range of each single fiber. In principle,
this is evident, because the spike generation is a highly
nonlinear threshold process. A normally functioning
cochlea has a set of mechanisms providing an extension
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
of the dynamical range. Some of them are: (1) the non-
linearity of the active mechanical–electric–mechanical
conversion of the signal by outer hair cells; (2) the com-
bination of the signal with an additional noise compo-
nent providing, in particular, the spontaneous activity
of the fibers; (3) the refractory properties of the audi-
tory nerve fibers; and (4) the adaptation processes in the
peripheral and central neurons of the auditory system.

Let us consider each of these mechanisms sepa-
rately. The transformation of the signal by outer hair
cells results in the fact that the vibrations of the basilar
membrane become strongly nonlinear with a pro-
nounced saturation at high levels of the external action.
This property makes it possible to retain information on
the signal variations at high levels. Note that the corre-
sponding operations, which are reduced to a compres-
sional nonlinearity, are easily performed in most exist-
ing systems of preliminary signal processing for elec-
tronic implants [8].

The positive effect of the noise component on the
signal analysis by nonlinear elements has attracted the
attention of researchers only recently [9]. The fact that
this aspect of information processing in the auditory
nerve had been neglected until recent years is presum-
ably explained by the internal origin of the noise signal.
However, from some model experiments, it was
inferred that precisely the presence of fluctuations
made it possible for the whole population of auditory
nerve fibers to retain information on time intervals that
are much smaller than the time required by the nerve
fiber to recover its excitability after a spike generation
[10]. Subsequent model experiments clearly demon-
strated the role of the noise component in the extension
of the dynamical range of the neural responses of the
auditory nerve. In addition, it should be noted that the
presence of the noise component should increase the
variance of the instants of the spike generation under
the effect of electric signals, which allows a more ade-
quate reproduction of its shape and, specifically, a sup-
pression of the effect of the aforementioned artificial
temporal shifts, which are caused by the discreteness of
the sites of spike generation [11]. Some publications
directly discuss the possibility of introducing a noise
component in the real signals presented to patients with
electrode cochlear implants [12, 13]. However, in this
case, the problem arises as to how to provide the inde-
pendence of noise in different fibers of the auditory
nerve. In an intact cochlea, the absence of correlation of
the spontaneous activity even in adjacent fibers [14] is
presumably responsible for the fact that a human does
not perceive the spontaneous activity as a real noise sig-
nal. To provide this property in the case of electric stim-
ulation seems to be a rather complicated problem,
which should be the subject of further studies.

It is well known that all neurons are characterized by
refractoriness, which is generally determined as a
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reduction of the cell excitability after the spike genera-
tion. In the spiral ganglion neurons forming the audi-
tory nerve, at least three stages of refractoriness are
present: absolute refractoriness (within fractions of a
millisecond), fast relative refractoriness (with a time
constant of 1–3 ms), and slow refractoriness (with a
time constant of 20–40 ms). There are reasons to
believe that the last stage of refractoriness possesses the
accumulation property, i.e., the summation of the
threshold shifts of successive spikes rapidly following
one after another. The effect of the refractory properties
of peripheral neurons on the coding of sound signals
was analyzed in model experiments, and it was found
that even the weakest accumulated refractoriness can
determine the experimentally observed decrease in the
firing rate of the response of the auditory nerve fiber to
tone bursts [15]. Owing to the refractoriness, it is pos-
sible to increase the dynamical range of the electric
stimulation, if the stimulating pulses are presented at a
high rate [3].

The changes that occur in the refractoriness when
the synapses of the receptor cells and, possibly, the
peripheral outgrowths of spiral ganglion neurons are
destroyed remain poorly investigated. There are some
data on refractoriness enhancement after the destruc-
tion of the cochlea [3]. However, these data concern
only fast refractoriness. Accumulated refractoriness,
which is essential for the formation of the response to
relatively long signals, can appear at the synapse
between a hair cell and the fiber and disappear in the
case of its impairment.

The mechanism of short-time adaptation in the audi-
tory nerve fibers remains unknown. The choice
between the hypotheses based on mediator exhaustion
in the synapses of hair cells [16] and on accumulated
refractoriness [15] has still not been made. However,
judging from the experiments on laboratory animals, in
the case of the electric stimulation of an impaired
cochlea, the effect of adaptation is drastically reduced,
which also affects the ability of the neural network to
analyze the signal variations in a wide dynamical range.
In an instrumental realization, the adaptation mecha-
nism can be reproduced either by a simple differentiat-
ing device or in the form of an accumulated refractori-
ness element corresponding to one of the units of the
peripheral auditory system model used as a prepro-
cessor of the hearing implant. It seems to be quite
possible that the recent progress in the understanding
of the functioning of the cochlea will allow one to
design a preprocessing system for signals presented
to the electrodes of the cochlear implants on the basis
of an adequate model of all the lost elements of sys-
tem of signal reception and transformation in the
human internal ear.

In closing the section devoted to the prospects of
hearing implants, it is appropriate to note the latest
trend toward the realization of entirely new possibilities
for solving the problem of curing hearing impairment.
It has been known long ago that hair cells in the cochlea
of birds are able to regenerate. The advances in study-
ing the gene factors of ontogenesis and the growth fac-
tors of nerve tissue [17, 18] allow one to hope that a
regeneration of human hair cells will be possible in the
future.

ANALYSIS OF SIGNALS IN THE CENTRAL 
AUDITORY SYSTEM

The optimistic predictions concerning the future of
cochlear rehabilitation are also supported by the fact
that the recent data testify to both the preservation of
the neural mechanisms of sound signal processing,
even after a long-term absence of auditory inputs to the
central nervous system, and the ability of the neural
network to undergo plastic changes when the function-
ing of these inputs is resumed [19]. For example, it has
been shown that, in the case of both acute [20] and
chronic impairment [21] of the internal ear, an electric
stimulation causes the same types of neural responses
of the central auditory midbrain as the responses caused
by an acoustic stimulation. The thresholds of the
response to sound signals prove to be invariable even
with the loss of up to 80–90% of the internal hair cells,
which should correspond to an approximately equal
decrease in the evoked activity of the auditory nerve
fibers. In the course of regeneration, the responses of
the central auditory system are restored even earlier
than the peripheral responses [22].

In this connection, we briefly review the general
principles of signal transformation by the neurons of
the central auditory system. First of all, it should be
noted that, according to the latest concepts, the general
principles of signal transformation in the direct audi-
tory pathway (at least, up to the midbrain stage) are
much the same for different animals. The idea that the
hearing of lower vertebrates is specialized so as to pro-
vide the perception of only a narrow range of sounds,
e.g., communication sounds or alarm signals, failed to
agree with reality. It has become clear that the main
function of the auditory system of any vertebrate, from
fish to human, is the perception and the analysis of the
whole acoustic environment, which, presumably, is
necessary for the orientation in the surrounding space
[23, 24]. The perception of specialized sounds is pre-
sumably performed by special nuclei near the direct
auditory pathway [25, 26]. In particular, recently, it was
found that a human auditory cortex has an area that is
separate from the primary auditory cortex and is selec-
tively excited in response to speech sounds [27].

The general analysis of the acoustic environment is
performed on the basis of the information that arrives to
the brain from the auditory nerve, all fibers of which
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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end in the cochlear nuclei. There, the signal is pro-
cessed by several separate subsystems. The neurons of
one of them retain, and even enhance, the temporal fea-
tures of the signal. The corresponding cells are retained
at the next stage of the auditory system, i.e., in the supe-
rior olives, where, in particular, the fine analysis of the
binaural delays is performed, thus providing sound
source localization.

The other system performs the coding of sound
intensity variations in each of the frequency channels.
In the cochlear nuclei, the coding efficiency for these
variations in a wide dynamical range is considerably
increased, as compared to the auditory nerve fibers.
This occurs because of the summation of the excita-
tions from many auditory nerve fibers with close tuning
frequencies. The delayed inhibitory inputs arrive at the
same neurons from a somewhat broader region on the
basilar membrane. In this situation, even a small
increase in the amplitude of an intense signal can cause
a spike generation at the neuron output, because the
inhibitory input arrives with a certain delay relative to
the initiating one [24].

The ability of neurons to reproduce small amplitude
variations of relatively loud signals gradually increases
with a continuous presentation of the signal. One can
assume that the mechanism of such a tuning is related
to a gradual increase in the relative contribution of the
inhibitory inputs. As a result, the summary level of the
input synaptic action proves to be close to the spike
generation threshold, so that even a small increase in
level causes a synchronous response of the cell. This
process, which seems to be universal for the auditory
systems of different animals, is sequentially reproduced
at the following stages of the auditory system, at least
up to the midbrain. In the case of the coding of rela-
tively slow variations of the signal level (up to modula-
tion frequencies of 50–100 Hz), the aforementioned
effect is considerably amplified [28] at the midbrain
stage and clearly manifests itself already within the first
second of the stimulus presentation [29].

Thus, one of the main universal operations of the
signal coding in the nervous system is the analysis of
the signal amplitude variations by a set of highly non-
linear threshold elements that provide an adaptive tun-
ing of the spike generation threshold to the level of the
presented signal. The specific mechanism of this tuning
is yet unknown. However, some interesting possibilities
have opened up recently in connection with the discov-
ery of the effect of the cell activity on the efficiency of
synaptic inputs. According to these data, the efficiency
of a synapse increases when the neural spike immedi-
ately follows its input, while this efficiency decreases
when the input signal appears immediately after the
neural spike [30]. Since this process occurs with a cer-
tain excess of the weight of inhibitory inputs over that
of the initiating ones, the result should be a gradual tun-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
ing of the input action to the spike generation threshold
of the neuron under study.

An interesting situation occurs when, as a result of
the adaptive tuning, the spike generation threshold
proves to be higher than the maximal value of the signal
amplitude. In this case, conditions for the realization of
stochastic resonance are formed in the neuron. The lat-
ter does not respond to weak sinusoidal variations of
the signal amplitude. If a random noise component is
added to the sinusoidal modulating function, a long
active response is observed, and this response proves to
be synchronized with the weak periodic component of
the modulation (Bibikov, to be published). Up to now,
stochastic resonance in an intact auditory system was
best observed precisely in the case of the coding of
weak periodic amplitude variations of intense signals in
the adapted regime by the neurons of the higher stages
of the auditory system. In the peripheral auditory sys-
tem, the corresponding effect can be observed only by
providing artificial conditions at the levels close to the
detection threshold [31, 32]. This is quite natural,
because in an intact auditory nerve, noise is actually
present, manifesting itself, in particular, as a spontane-
ous activity.
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Abstract—The classical acoustic theory of speech production has remained basically intact since 1870, when
it was first developed by Helmholtz. However, there are some questions that require special consideration,
because the answers to them are still unclear. © 2002 MAIK “Nauka/Interperiodica”.
The acoustic theory of speech production in its sci-
entific form was first formulated by Helmholtz in 1870
[1]. The basic ideas of this work remain intact until now
and, explicitly or implicitly, are accepted by the major-
ity of specialists in this field of science. Naturally, this
theory has acquired a number of mathematical and
methodical-technological improvements, which were
introduced by different scientists, from the now forgot-
ten publication by Chiba and Kajiama [2] to the classi-
cal works by Fant [3] and Ungeheur [4] and, finally, to
some recent publications [5, 6].

The Helmholtz model is characterized by two main
statements.

(1) The process of speech production consists of two
independent components: the excitation of sound itself
and the formation of the phonetic quality of sound
through the excitation of the resonance frequencies of
the articulatory tract (according to Helmholtz) or
through filtering (according to recent concepts).

(2) The phonetic quality of sound is determined by
the so-called formants, which are determined as the res-
onance frequencies of the articulatory tract (or the poles
of the transfer function of the articulatory filter) or as
the spectral maxima of the speech signal [7].

These statements have never been explicitly revised,
although they apparently are contrary to fact. This situ-
ation occurs, because no one can predict the scientific
consequences of such a revision.

Let us first discuss the statement concerning the
independence of the sound source and the articulatory
filter. Earlier [8], it was found that the phonetic quality
of vowels is mainly formed in the larynx without the
effect of the articulatory filter. Moreover, from the clas-
sical literature, it is well known that the voice source
has its own poles and zeros, which directly affects the
quality of the speech signal. All this suggests that, if the
formants determining the phonetic quality of sound
really exist, they are represented by the spectral max-
ima rather than by the poles of the transfer function that
1063-7710/02/4806- $22.00 © 20749
require a deconvolution operation, as is stated by the
classical theory.

The second question is whether the processes of
speech production and speech perception are symmet-
ric, as the classical theory implies. The fact that using
such formants one can obtain a given phonetic quality
of sound is evident. (An example is the speech produc-
tion of birds.) However, is it just these maxima that
determine the phonetic quality of speech sounds? This
question arose for the first time in the 1930s, after the
development of a band vocoder [9]. In the early 1960s,
ample experimental data were used to develop the the-
ory of speech intelligibility on the basis of the band rep-
resentation of a speech signal [10, 11] without consid-
ering the formants (it should be noted that, in the Rus-
sian version of this theory, the main computational
parameter retained the name of “formant intelligibil-
ity”). All this suggested the hypothesis (L.A. Var-
shavskiœ and I.M. Litvak) that the phonetic quality of
sounds is determined by a certain level of the power
ratios in the spectral bands while the formants (i.e., the
spectral maxima) serve only as a means for the speech
production system to obtain the necessary band ratios.

Relying on the aforementioned double set of con-
cepts concerning the formation of the acoustic appear-
ance of speech sounds at the phonetic level, it is natural
to assume that there exist several simultaneously oper-
ating systems of sound-discriminating features. Pre-
cisely the existence of several systems of different
types of features provides the stability of speech as a
communication system against the effect of a rather
wide range of noise and distortions.

The next question concerns the number of the exist-
ing formants. The positions of the formants are known
for the Russian vowels pronounced separately or in syl-
lables. No noticeable deviations from the results
obtained in the classical work by Fant [3] are observed.
However, it is known that, in a real speech signal, the
formant pattern noticeably changes. It exhibits addi-
tional maxima, the splitting of the maxima in the for-
002 MAIK “Nauka/Interperiodica”



 

750

        

GALUNOV

   
1000 2600 4200 5800

1000 2600 4200 5800

1000 2600 4200 5800 1000 2600 4200 5800

1000 2600 4200 5800

1400 3000 4600 6200

[Ë] [‡]

[˚] [Ó]

[˝] [Û]

Figure.
mant positions of the ideal version, and the disappear-
ance of the classical formant maxima. These deviations
may result from at least the three following factors: the
individual features of the speaker, the contextual sur-
roundings, and the situational features (the psycho-
physical condition of the speaker, the manner of pro-
nouncing in a given audience, etc.).

Suppose we accept the hypothesis that the articula-
tory system has finite acoustic resonances and filtering
abilities while the speaker producing the speech sounds
tends to a certain structure of discriminative features,
one of which is a specific formant pattern. Then, despite
all the aforementioned possible distortions of the “cor-
rect” formant structure, the histograms representing the
probability distribution of the spectral maxima will
exhibit zones where the “correct” formant structures
will be observed.

In our previous paper [12], it was shown that, for all
vowels, the probability distribution of spectral maxima
exhibits three clearly pronounced maxima in the low-
frequency part of the spectrum, and these maxima cor-
respond to the first three formants (see figure). In the
intervals between them and in the high-frequency
region, the probability distribution of maxima is practi-
cally uniform and no formant regions can be identified.
The aforementioned formant regions coincide with the
commonly accepted positions of the three first formants
of the Russian vowels. In addition, it should be noted
that, in fluent speech, for male voices, an additional
spectral maximum is often observed between the sec-
ond and third formants. For female voices, the disap-
pearance of the second formant is typical (this phenom-
enon is even more typical of children’s voices).

In connection with the problem of the role of for-
mants in speech perception, it is appropriate to mention
one more problem that has never been explicitly dis-
cussed. It is well known that, in real speech, the main
role in the formation of the linguistic image of speech
is played by the transitions between sounds. Stationary
regions can even exchange places without affecting the
perception of the meaning. It is unclear how this corre-
lates with the explicit meaning of stationary regions
and with their formant structure in the perception of
isolated vowels or syllables.

Now, let us consider the possibilities of a band rep-
resentation of the speech signal. Evidently, because of
purely physical limitations, a speaker cannot control a
great number of spectral components in the process of
speech production. This follows from the physical lim-
itations of the articulatory tract [13]. If, at a given
instant, we can measure a great number of spectral
components, with time, they can vary only in a corre-
lated manner. The independent spectral components
can be revealed by analyzing the correlation matrices of
the temporal envelopes of the spectral components. It is
natural to assume that the independent components
obtained in this way are precisely the variables that
determine the quality of the signal. In our previous
study [12], by the factorial analysis of the correlation
matrices of spectral components of speech signals, we
obtained the following, approximately independent,
spectral bands: 80–400, 400–750, 750–1350, 1350–
1750, 1750–2200, 2200–2900, and 2900–5000 Hz. The
separated components coincide to a fair accuracy with
the boundaries of the formant bands (it is interesting
that the band 1350–1750 Hz does not correspond to any
formants of the Russian vowels but yields the false for-
mant frequently observed for male voices—see above).

Let us return to the conventional scheme. The main
assumption is that the informational sound wave is
formed in the speech tract as a result of the excitation
of natural oscillations of the sound waveguide, which is
believed to be the speech tract. These natural oscilla-
tions are analyzed by the brain and perceived by a
human listener as speech. In principle, such a scheme
can exist. Moreover, considerable progress has been
achieved with its help. However, there are some points
that, in our opinion, are contradictory to fact. First, the
real spectra of the same speech signals produced by dif-
ferent speakers are often different, which fundamen-
tally contradicts the conventional scheme. The case of
speech production with a considerable change in the
speech tract (e.g., with a cigarette in the mouth) is even
less understood. Moreover, when a speech signal is
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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transmitted through a telephone communication chan-
nel, its spectrum is considerably distorted, but the
meaning of the speech is retained. This fact alone is suf-
ficient to cast some doubt on the conventional model of
speech production. There are also some other ques-
tions, which, however, can be considered as emotional.
Why does nature need such a complex system? Indeed,
to form a certain time dependence at the output of the
speech tract, it is necessary not only to excite specific
modes of the waveguide but also to excite them with
certain phase and intensity relationships. In addition,
the role of the considerable spatial deformations of the
speech tract in the process of speech production is
totally unclear.

These questions are eliminated when another
model, namely, the modulation model of speech pro-
duction, is used. In this model, two stages can be distin-
guished. At the first stage, a sound wave containing no
information and playing the role of a carrier is gener-
ated. At the second stage, the carrier is modulated, and
this modulation contains the whole information about
the speech. Here, the role of the speech tract is reduced
to the role of a modulator, which makes the consider-
able spatial deformations of the speech tract quite
understandable. The problem of the strict phase and
intensity relationships between the natural oscillations
is eliminated, because the excited wave can be (and, in
our opinion, it is) of a random character. This model
explains the noncoincidence of the spectra obtained for
the same speech signals, as well as the characteristic
features of the transmission through the telephone
cables. One of the possible modulation circuits is pro-
posed in our other paper [14].
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
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Abstract—The spectral characteristics of stressed Russian vowels are studied experimentally in relation to the
palatalized or nonpalatalized feature of the consonant environment, the local speech tempo, and the speaker
effect. The experimental data are used as a basis to discuss the possibility of classifying vowels by their static
and dynamic spectral characteristics. The role of individual articulatory strategies and speech tempo is ana-
lyzed. © 2002 MAIK “Nauka/Interperiodica”.
The study of the ways vowels function in speech
presents one of the most complicated problems, which
has not been adequately solved to this day. Resuming
the history of speech studies, the well-known phoneti-
cian J. Ohala came to the conclusion that there still is
no unified understanding of the acoustic–auditory cor-
relates of the phonetic quality of a vowel.

Facing the antinomy of the invariance of phonolog-
ical units and their frightening realization variability in
speech, some linguists fell into phonetic agnosticism by
denying the role of articulatory acoustic properties of
sound units in their classification (in the phonetic
decoding of a speech flow). For example, the authorita-
tive specialist in Russian phonetics L.V. Bondarko drew
the conclusion that the properties of the psychological
domain of vowel phonemes do not follow from the pho-
netic (material) properties of their acoustic realizations
but are determined, in particular, by such functional
properties as the frequency of occurrence in speech or
the possibility of alternation in a word (see p. 184 in
[1]).

In our opinion, the realization variability of vowels
in Russian speech is indeed of an extremely complex
but systematic character, which can and must be
revealed as a result of a thorough investigation of the
ways the sounds function in speech communication.

This paper is focused on the spectral classification
of stressed Russian vowels when their variability is
caused by such factors as the palatalized (P) or nonpal-
atalized (NP) feature of the consonant environment, the
vowel duration caused not by the speech tempo but by
the linguistic variables (sentence length, number of syl-
lables in a word, etc.), and, to some extent, the individ-
ual features of the speaker.

The speech material and the speakers taking part in
the experiment were as follows. In view of the purpose
of the study, three types of speech material were cho-
sen: (1) a monosyllabic pseudoword with a consonant–
vowel–consonant (CVC) structure in which the conso-
nants are symmetric and realized as an NP or P fricative
[s, s'] and the vowel is represented by ten corresponding
1063-7710/02/4806- $22.00 © 20752
allophones of five vowel phonemes, namely, those
between NP consonants (an NP context) [a, e, o, u, ]
(NP allophones) and between P consonants (a P con-
text) [ ja, je, jo, ju, i] (P allophones). For recording the
speech material, a list was compiled in which each of
the ten pseudowords was repeated 33 times at random;
(2) the aforementioned textual pseudoword was
included in a frame sentence “Say … again.” As in the
previous case, the list for reading consisted of
330 sentences; and (3) the frame sentence “I was
informed that the oldest … company has gone bank-
rupt” contained the pseudoword “bisCVCfurnaya,” in
which the consonant standing to the left and to the right
of the stressed vowel V was realized by an NP or a P
occlusive [t, t'] while V was represented by the corre-
sponding ten allophones. The list for reading consisted
of 110 sentences with the ten initial sentences being
repeated 11 times at random.

For the sake of brevity, the first type of speech mate-
rial will below be called “word-phrase,” the second
type, “short phrase,” and the third type, “long phrase.”
Subsequent measurements showed [2] that the structure
of these phrases made it possible to obtain test vowels
of different duration (the mean values were 154, 99,
and 76 ms, respectively) when read at a normal speech
tempo.

The short-phrase speech material was recorded from
four male speakers 25–50 years old, Moscow born,
characterized by a normal literary pronunciation, and
possessing no speech defects. The rest of the speech
material was read by one of these four speakers
(speaker C).

The spectrum of a vowel was measured at the
boundary with the preceding consonant (the transition
value) and at the point where the trajectory of the sec-
ond formant reached its extremum or in the middle of
the vowel (the target value). The calculation of the fre-
quencies and amplitudes of the first three formants was
usually performed in an automated way; in difficult
cases, it was performed by hand with the use of an LPC
analysis controlled by the FFT spectrograms. A

i
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detailed description of the methodological aspects of
the study can be found in [2, 3].

The results of spectral measurements are conven-
tionally presented in the F1–F2 space in the form of
dots corresponding to the mean values of parameters
(Fig. 1) or in the form of ellipses (the other figures) rep-
resenting 95% common confidence regions of the
parameter values for a given vowel. The orientation of
an ellipse is determined by the sign of the correlation
coefficient between F1 and F2, and its major axis lies
on the straight linear regression of F2 on F1.

Figure 1 shows the mean target frequencies of for-
mants obtained from four speakers. One can see that the
same vowels produced by different speakers form a
compact group in the F1–F2 plane except for the four
vowels produced by speaker Z: [ju, jo, ja, a]. These
vowels are indicated in Fig. 1. For a more detailed anal-
ysis of the results, the data obtained from speaker Z and
a typical representative of other speakers, namely,
speaker C, are shown in Figs. 2 and 3, respectively. We
begin the analysis with a comparison of the spectral
variabilities of allophones of a single phoneme. From
Figs. 2 and 3, one can see that the target values of the
frequency F1 exhibited by both speakers are higher for
low rising P vowels than for the corresponding NP allo-
phones; however, this difference is below the statistical
significance level.

As for frequency F2, the difference between its tar-
get values for P and NP allophones of the same pho-
neme lies within 300–700 Hz and, except for one case,
is statistically certain for both speakers. The deviation
from this rule is related to the intersection of the
ellipses of the vowels [o] and [jo] of speaker Z (Fig. 2).
Note that, for the allophones of the phoneme /u/ of the
same speaker, the confidence regions almost touch each
other.
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Fig. 1. Mean formant frequencies over four speakers (short
phrase).
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Estimating the difference between the NP and P
allophones, we come to the conclusion that it cannot be
completely ascribed to the effect of coarticulation,
when the F structure observed in the context of soft
consonants is interpreted as a failure in reaching the
acoustic target, which is assumed to be the F structure
of the NP allophone. We assume that the realization of
a phoneme in the NP and P context is achieved with the
use of different articulatory programs. This concept is
supported by several arguments. First, the maximal
“undershoot” values of F2 recorded in the experiment
(see, e.g., the allophones of the phonemes /u/ and /e/ in
Fig. 3) evidently exceed the limits usually associated
with the coarticulation effect. In our data, an example
of vowel variability due to coarticulation can be the
allophonic realization of the phoneme /o/ and, to some
extent, the phoneme /u/ by speaker Z (Fig. 2).
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Fig. 3. Mean formant frequencies of speaker C (short
phrase).
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Second, the soft allophones occupy the regions of
the F1–F2 plane that are usually ascribed by the Inter-
national Phonetic Association to the vowels that differ
from the basic phoneme version (the NP allophone).
According to their formant characteristics measured in
the position closest to the target, the vowels [ju] and
[jo] of speaker C (Fig. 3) can be classified with the front
rounded vowels unlike their vis-à-vis, the back rounded
ones.

Third, it is believed that the degree of coarticulation
is inversely proportional to the time available for the
articulation of the sound. However, the formant charac-
teristics of the soft allophones of speaker C, when mea-
sured in three types of phrases that provide different
vowel durations, differ little from each other. This can
be seen from Figs. 3 and 4, as well as from the table
where the target values of the first three formants are
presented for four vowels of speaker C. For example,
although the mean vowel duration in the long phrase
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Fig. 4. Mean formant frequencies of speaker C (long
phrase).

Dynamics of formant frequencies for different vowel dura-
tions (speaker C, V_i denotes the vowel onset, and V_t is the
vowel target)

Vowel
Word-phrase Short phrase Long phrase

F1 F2 F3 F1 F2 F3 F1 F2 F3

_i 418 1360 2535 394 1483 2445 420 1654 2555

_t 403 1504 2503 375 1627 2364 407 1658 2520

E_i 462 1490 2603 451 1575 2542 458 1607 2565

E_t 534 1598 2634 497 1633 2518 474 1633 2614

JO_i 410 1779 2600 385 1855 2621 398 1680 2572

JO_t 479 1570 2522 424 1652 2510 451 1632 2599

JU_i 389 1802 2531 385 1873 2511 385 1715 2525

JU_t 386 1533 2406 346 1624 2391 363 1684 2520

i

i

was two times greater than in the short phrase, the dif-
ference in the values of F2 did not exceed 150 Hz. It
should be also noted that the mean durations of the
vowels [ jo] and [ju] of speakers C and Z practically
coincide while the formant characteristics of the vowels
differ considerably (compare Figs. 2 and 3), which
brings up the question as to the identity of the articula-
tory programs used by these speakers.

Summarizing the results described above, we can
conclude that, in pronouncing NP and P allophones, all
the speakers realized different articulatory programs.
Speaker Z was likely to use the same program for the
phonemes /o/ and /u/; in this case, the spectral differ-
ences between the NP and P allophones were related to
coarticulation.

Now, we proceed to analyzing the relative positions
of vowels in the F1–F2 space, regardless of the pho-
nemes to which they belong. From Figs. 1, 2, and 3, one
can see that the vowel positions form a triangle whose
vertices correspond to the vowels [i, a, u]. This triangle
falls into two smaller triangles formed by NP and P
allophones. Their vertices correspond to the vowels
[ , a, u] and [i, ja, ju], respectively. These triangles have
a common side, which lies in the F2 frequency range of
1500–1800 Hz. Note that this does not concern the
vowel configuration of speaker Z. The common side of
triangles is a result of the overlapping of the confidence
regions of the vowel [ju] with [ ] and [jo] with [ ] and
[e] (see Fig. 3). For these vowels, the frequencies F2
coincide, and they differ only in the values of F1. This
means that the static spectral characteristic of stressed
vowels, even when recorded from a single speaker,
does not provide their complete discrimination in prin-
ciple. The ambiguity of the static classification of vow-
els can be easily eliminated, if we can determine
whether a given vowel is pronounced after an NP or a P
consonant [4]. It is well known that the type of the pre-
ceding consonant can be determined from the formant
transition: after a soft consonant, the frequency F2 does
not fall below 1700 Hz.

The results of our measurements of the F structure
at the boundaries between the test vowels and the pre-
ceding consonants are presented in Fig. 5 and in the
table for the four aforementioned vowels. One can see
that the onset values of the formant transitions obtained
for NP and P allophones are widely separated in F2.
Thus, combining the data of Figs. 3 and 5 (which allows
us to trace the dynamics of the spectral changes that
occur on the vowel segment), we obtain a complete dif-
ferentiation of the test vowels.

In the case of speaker Z, the vowel classification is
possible within the limits of the static spectral charac-
teristics.

In closing, we consider whether all the aforesaid
remains valid in the case of the maximal reduction of
the test vowel duration (the long phrase). As for the
other two duration ranges, from the point of view of
spectral characteristics, we revealed no noticeable dif-

i

i i
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ferences between the vowels taken from a word-phrase
and a short phrase.

The analysis of Fig. 4 shows that, compared to the
vowels from a short phrase (Fig. 3), the positions of the
allophones have become more compact forming three
different groups: the clearly distinguished [u, o, a], the
closely spaced [ju, , jo, e] with [ja] approaching them,
and the vowels [je] and [i] that are now practically
indistinguishable. The majority of ellipses are oriented
horizontally, which means a small variability of the fre-
quency F2 of the vowels. As in the case with the vowels
from a short phrase, the static spectral information is
obviously insufficient for the discrimination of all allo-
phones. The situation has become even worse, because
for the vowels [je] and [i], the inclusion of data on the
transition values of formants is useless: both vowels are
soft allophones. The measurements of the transition
values for the vowels [ju, , jo, e] presented in Fig. 6
show that the differences between the NP and P allo-
phones reach the statistical significance level neither in
F1 nor in F2. Only the region of common confidence
values for [e] does not overlap with the confidence
regions of soft allophones. Thus, the discrimination of
the vowels [ju, , jo, e] on the basis of the spectral
information enclosed within the vowel segment proves
to be impossible, because the formant transition does
not indicate the NP or P feature of the preceding conso-
nant.

Since a human listener does not confuse these vow-
els (in our previous study [5], we carried out an experi-
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Fig. 5. Frequencies of the onset formant transitions.
Speaker C (monosyllabic word-phrase).
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ment on the discrimination of the test vowels in a long
phrase), one may assume that a human listener first dis-
criminates not individual sounds but greater units like
syllables, from which he extracts phonetical units of
smaller size. Note that this hypothesis was put forward
earlier, but in connection with another problem: it was
found that the same fricative noise of a stop consonant
is identified in different ways, depending on the pho-
netic quality of the subsequent vowel [6].
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The interaction between the eddy and potential
components of the velocity field due to the boundary
conditions at a rigid wall were considered in previous
publications [1–3]. This paper analyzes the role of the
interaction (coupling) that occurs between the afore-
mentioned components in the liquid itself (rather than
at the boundary) in the case of a shear flow. This inter-
action gives rise to a hydrodynamic instability in a
shear flow even in the absence of an inflection point in
its profile.

Consider a system of hydrodynamic equations for a
two-dimensional model with the (x, y) coordinates,
where x is the coordinate along the flow U(y) and y is
the coordinate along the flow normal. In the quadratic
approximation with respect to the velocity vector v i(t,
x, y), this system of equations has the form

(1)

In the linearized limit, system (1) is reduced as follows:

(2)
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The first equation of system (2) is a modified Orr–
Sommerfeld equation [4]. It is this equation that takes
into account the relation arising between the eddy com-
ponent of the velocity field and the potential component
because of the presence of the shear flow U(y). The sec-
ond and third equations are essentially equivalent to the
Lighthill equation [5] with the right-hand side linear-
ized against the background of the shear flow. These
equations are written with allowance for the Doppler
frequency shift that is nonuniform along the Y axis.

The conditions for the appearance of an instability
in such a system are not determined by the necessary
presence of an inflection point in the profile U(y), as is
required by the Rayleigh theorem (see, e.g., [4, 6]) with
only the eddy field component taken into account. Let
us show that the instability appears even in the simplest
case of a linear dependence U(y), which has no inflec-
tion points:

(3)

Here, q is the projection of the wave vector of a har-
monic wave onto the Y axis. We also assume that

(4)

To analyze the instability, it is necessary to consider the
compressibility of the medium, i.e., the finite propaga-
tion velocity of a potential (sound) wave coupled with
the eddy component according to Eqs. (2). The source
of the wave can be, for example, of a noise nature (ther-
mal noise).

This consideration is quite important for explaining
the origin of hydrodynamic instability in different situ-
ations and, specifically, in the boundary layer where the
presence of an inflection point in the profile U(y) is not
always evident.

U y( ) U0 1 εqy+( ).=

ε 1
qL
------  ! 1, L

1– Uy

U
------.∝=
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The system of equations (2) with allowance for
Eq. (3) has the form (the viscosity is neglected)

(5)

According to relations (3) and (4), we obtain

(6)

We solve system (5) to the first order in ε, i.e., assuming
that U and Uy are constant. Then, we arrive at the
expressions

(7)

We set

(8)

Substituting Eqs. (7) in system (5), we obtain a disper-
sion relation:

(9)

With allowance for Eqs. (3), (4), and (8), we derive

(10)

In the derivation of these expressions, we used inequal-
ity (4) to ignore the last term in the numerator on the
right-hand side of Eq. (9).

Hence, even in the simplest case of linear depen-
dence (3) of the shear velocity, the inclusion of the
interaction between the potential and eddy components
of the wave field leads to a wave instability. It is essen-
tial that the compressibility of the medium should be
taken into account, because otherwise we obtain a
divergence in Eq. (9).

Now, let us consider the development of the instabil-
ity in the region y > 0 on condition that

(11)

(a rigid wall). The shear flow satisfies the relation

(12)

The choice of the solution in the form of Eqs. (7) with
condition (11) leads to a zero value of the resulting par-
ticle velocity component v y:

(13)
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From Eqs. (5), (7), and (13), we obtain

(14)

It should be emphasized that, for the wave (φ, ϕ) to
decay in the direction y > 0, it is necessary that condi-
tion Imq > 0 be satisfied. The latter is valid, in particu-
lar, for a wave with k < 0.

Now, dispersion relation (9) can be reduced to the
form

(15)

Biquadratic equation (15) has the solution (in particular)

(16)

with the proviso that ε ! 1.
In the model under consideration, the instability

appears when the condition

(17)

is satisfied.
The study of the further development of instability

evidently requires an analysis of the nonlinear system
of equations (1).
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Vadim Alekseevich Golenishchev-Kutuzov
(On His 70th Birthday)
Vadim Alekseevich Golenishchev-Kutuzov was
born on July 1, 1932, in Kazan. In 1955, he graduated
from Kazan State University, where he specialized in
radio-wave physics. During the next seven years, he
worked as an assistant professor at this university.
Then, he changed his place of work to the Kazan Phys-
icotechnical Institute of the Russian Academy of Sci-
ences, where he advanced from postgraduate student to
junior researcher, senior researcher, head of a labora-
tory (since 1968), and, finally, head of the Department
of Quantum Acoustics (since 1973). Since 1979, he
combined research with tutorial activity at the Kazan
Branch of the Moscow Power Institute (now, Kazan
State Power University). From 1984 to 1998, he headed
the Department of Industrial Electronics, and in 1994–
1996, he was the Dean of the Faculty of Electronic
Engineering and Automation. Today, Golenishchev-
Kutuzov is a professor in the Department of Industrial
Electronics of Kazan State Power University and,
simultaneously, a principal researcher at Kazan Physi-
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cotechnical Institute of the Russian Academy of Sci-
ences.

In 1964, Golenishchev-Kutuzov defended his candi-
date’s dissertation, and in 1972, his doctoral disserta-
tion, which was entitled “Acoustic Nuclear Magnetic
Resonance in Crystals.” In 1980, he received the title of
Professor.

Golenishchev-Kutuzov belongs to the Kazan scien-
tific school of quantum acoustics, the theoretical founda-
tions of which were laid by the works by S.A. Al’tshuler
and U.Kh. Kopvillem. In the late 1950s, Golenishchev-
Kutuzov pioneered the study of acoustic paramagnetic
resonance, and in 1962, these studies culminated in the
discovery of a new effect: the nonresonance absorption
of ultrasound by the electron spin system. Together
with U.Kh. Kopvillem and N.A. Shamukov, Goleni-
shchev-Kutuzov discovered and studied acoustic elec-
tron-nuclear double resonances, which opened the way
to a considerable extension of the area of application of
acoustic magnetic spectroscopy (a Gold Medal of the
Exhibition of Domestic Economic Achievements in
1970). Later, he used the methods of magnetic quantum
acoustics in studying the electronic structure of electri-
cally and magnetically ordered crystals. He revealed
and investigated such nonlinear acoustic effects as
quantum oscillations of nuclear spins in an acoustic
wave field (in collaboration with V.F. Tarasov) and a
soliton regime of acoustic pulse propagation in a magnet
(together with Kh.G. Bogdanova).The results of these
studies were generalized in the monographs Magnetic
Quantum Acoustics written together with V.V. Samart-
sev, N.K. Solovarov, and B.M. Khabibullin (Nauka,
Moscow, 1977) and Pulsed Optical and Acoustic Coher-
ent Spectroscopy written together with V.V. Samartsev
and B.M. Khabibullin (Nauka, Moscow, 1988).

In the following years, the methods of acoustic elec-
tron paramagnetic resonance spectroscopy and photoa-
coustic spectroscopy were used to develop a complex
technique for controlling the quality of crystals in quan-
tum electronics (in collaboration with S.A. Migachev).

Today, Golenishchev-Kutuzov is the leader of the
scientific school in studying the electronic structure and
nonlinear properties of magnetically and electrically
ordered materials, which unites professors and post-
graduate students of Kazan State Power University and
Kazan Physicotechnical Institute. Over the last ten
years, studies in this field have been supported by the
Russian Foundation for Basic Research and the Minis-
002 MAIK “Nauka/Interperiodica”



        

VADIM ALEKSEEVICH GOLENISHCHEV-KUTUZOV 759

    
try of Education. More than 20 candidate’s and doctoral
dissertations were prepared and defended under Golen-
ishchev-Kutuzov’s supervision.

Golenishchev-Kutuzov is not only a researcher:
since the late 1970s, he delivers lectures to students in
electronic engineering and quantum electronics.

Golenishchev-Kutuzov takes active part in the work
of scientific councils on acoustics, magnetism, and
nondestructive testing of the Russian Academy of Sci-
ences. He is a member of the editorial council of Acous-
tical Physics. He is a full member of the International
Academy of Sciences of Universities and a correspon-
dent member of the Academy of Electrotechnical Sci-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
ences. Golenishchev-Kutuzov received the titles of
Honorary Scientist and Engineer of both Tatarstan
(1982) and the Russian Federation (1995). He is a
descendant of a well-known noble family of Golenish-
chev-Kutuzovs.

Colleagues, students, and friends of the brilliant sci-
entist, excellent teacher, and wonderful man Vadim
Alekseevich Golenishchev-Kutuzov congratulate him
on his 70th birthday and wish that all his new creative
ideas and plans come true.

Translated by E. Golyamina
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Andreœ Vladimirovich Rimskiœ-Korsakov
(August 29, 1910–February 9, 2002)
On February 9, 2002, the world-famous Russian sci-
entist Andreœ Vladimirovich Rimskiœ-Korsakov—Doc-
tor of Science (Phys.–Math.), professor, and a winner
of the USSR State Award—died at the age of 91.

Rimskiœ-Korsakov, a grandson of the famous Rus-
sian composer, lived a long fruitful life filled with cre-
ative work. He was born on August 29, 1910, in
St. Petersburg, into a family of ancient noble lineage,
which gave many prominent statesmen, scientists, and
army leaders to Russia. Rimskiœ-Korsakov received an
excellent education: he simultaneously studied at a
German general education school and at a music school
and then continued and completed his education at the
Leningrad Conservatory and the Leningrad Polytechni-
cal Institute.

In 1932, Rimskiœ-Korsakov began his career at the
Research Institute of Musical Industry. His outstanding
gifts and combination of musical education and techni-
cal knowledge made his work successful from the very
1063-7710/02/4806- $22.00 © 20760
beginning. The first Russian electric musical instru-
ment called Émiriton was constructed with his partici-
pation. The method of studying the frequency charac-
teristics of musical instruments by using pulsed excita-
tion is still in use as a method for determining the noise
characteristics of complex vibratory systems. In 1940,
after defending his candidate’s dissertation, Rimskiœ-
Korsakov changed his place of work and came to the
Leningrad Physicotechnical Institute, where he began
his studies in hydroacoustics. The experience gained
there helped him in designing and testing acoustic
mines, which was the work he carried out as a navy
officer from 1944. After he was demobilized, Rimskiœ-
Korsakov returned to his studies in musical acoustics
and broadcasting.

The great erudition and diversity of interests of
Rimskiœ-Korsakov manifested themselves most impres-
sively at the Acoustics Institute, where he worked since
moving to Moscow in 1955 till the last day of his life.
There, as the head of the department organized by him-
self, he conducted extensive studies in aerothermoa-
coustics, hydroacoustics, and the noise and vibrations
of complex mechanical structures. On his initiative,
special test benches called “Aeroacoustic tunnel” and
“Noise” were built at the Volga research station of the
Acoustics Institute. The test benches were designed to
study the processes of noise generation by gas jets and
flows about obstacles. These studies revealed the mech-
anism of sound generation by vortices and by rotating
fans and blade wheels in air blowers and made it possi-
ble to work out recommendations for the design of low-
noise turbocompressors and centrifugal ventilators that
were later applied in industry. On the basis of the results
obtained by studying the self-oscillations of supersonic
jets and noise generation by reaction jets, Rimskiœ-Kor-
sakov and his students developed methods for calculat-
ing the noise fields of jet engines and proposed ways for
suppressing the self-oscillations of powerful jets of
rocket engines. They undertook important studies of
noise radiation from gas jets, both cool and heated, and
also revealed the origin of the discrete noise compo-
nents generated by supersonic jets.

The studies of noise and vibrations excited in frame
structures by the mechanisms they support were carried
out, according to the proposal of Rimskiœ-Korsakov,
both on models at the Volga research station and on real
objects in the Black and Baltic seas. Rimskiœ-Korsakov
participated personally in many expeditions, and his
knowledge and experience to a considerable degree
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determined the success of the studies. The results of
research expeditions and laboratory studies were regu-
larly discussed at the scientific seminars conducted by
Rimskiœ-Korsakov at his department in an atmosphere
of friendly criticism and useful remarks.

A characteristic feature of the scientific activity of
Rimskiœ-Korsakov was his close attention to the most
topical issues concerning the needs of industry and the
navy. Many scientific developments that found applica-
tion in industry were conducted by the colleagues of
Rimskiœ-Korsakov under his supervision and with his
participation, in cooperation with the leading research
institutes of Russia, such as the Zhukovsky Central
Aerohydrodynamics Institute, the Krylov Central
Research Institute, the Institute of Mechanical Engi-
neering of the Academy of Sciences of the USSR, PO
Ékvator (Nikolaev), etc.

Rimskiœ-Korsakov devoted much time to tutorial
activities. His talent for teaching appeared as early as
his student years, when he conducted seminars in math-
ematics at a workers’ faculty. In 1946, he began his reg-
ular tutorial activity: first, as an associate professor at
the Department of Broadcasting and Acoustics of the
Leningrad Electrotechnical Institute of Communica-
tion, and then, as the head of this department and the
dean of the Faculty of Radio Engineering. Due to Rim-
skiœ-Korsakov’s skilled tutorial activity and wise supervi-
sion, the department showed considerable progress. In
1950, Rimskiœ-Korsakov received his doctoral degree
and the title of professor. In 1960, working at the
Acoustics Institute, he organized the department of
Electroacoustics and Ultrasonics at the Moscow Min-
ing Institute, where he gave lectures on electroacoustics
and acoustical measurements. Beginning in 1965, Rim-
skiœ-Korsakov taught at the Moscow Institute of Radio
Engineering, Electronics, and Automation: he gave lec-
tures on electroacoustics and organized a student’s
training laboratory. Many of his former students now
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
work at the Acoustics Institute and give lectures them-
selves, remembering with gratitude the pedagogical tal-
ent of Rimskiœ-Korsakov.

The wide scope of scientific interests of Rimskiœ-
Korsakov is reflected in the great number of his publi-
cations. He wrote nine monographs on fundamental
problems of acoustics, edited five collections of papers
on acoustical aerodynamics, and received more than
fifty inventor’s certificates. The list of his publications
contains more than a hundred papers, both theoretical
and experimental, in the fields of electroacoustics,
musical acoustics, aerothermoacoustics, hydroacous-
tics, and noise and vibration in mechanical structures.

Rimskiœ-Korsakov has given many invited and ple-
nary talks at the All-Union and International scientific
conferences (in Moscow, Tokyo, Budapest, Madrid,
and London) in Russian, as well as in German, English,
and French, having mastered these languages perfectly.
From 1965 over a period of 15 years, he represented the
USSR in the International Electrotechnical Commis-
sion as secretary of the Ultrasound Subcommittee. He
was also a member of the International Commission on
Acoustics (1968–1974).

The services of Rimskiœ-Korsakov to Russia were
marked by State awards: the USSR State Award, the
order of the Red Banner of Labor, the Badge of Honor,
and medals.

Rimskiœ-Korsakov was infinitely devoted to science
and worked till the last day of his life. He was always
held in high respect and much loved by his colleagues
who tried to follow his example. The blessed memory
of Andreœ Vladimirovich Rimskiœ-Korsakov will always
live in the hearts of his numerous students and col-
leagues.

Translated by A. Kruglov
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Review of the Monograph Low-Frequency Ambient Acoustic 
Noise of the Ocean by I. F. Kadykov

(Editorial URSS, Moscow, 1999)
The monograph is devoted to the studies of low-fre-
quency ambient noise in the ocean. Nowadays, special-
ists in the remote acoustic sensing of sea basins take an
active interest in the passive methods that are based on
the use of the ambient noise of a shallow sea and a deep
ocean. In this respect, low-frequency noise is most
advantageous because of its propagation features: start-
ing from a certain ratio of the elastic wave length to the
sea depth, the noise propagates not only in the water
layer but also in the structures of the sea floor. This pro-
cess is accompanied by the partial transformation of the
energy of elastic oscillations to surface waves propagat-
ing at the interface between the two media. The
increase in both the number of propagation channels
and the variety of observable elastic waves with differ-
ent propagation velocities extends the possibilities of
the remote acoustic monitoring of natural noise sources
and the parameters of the water and bottom propagation
channels. In some situations, the use of the signals of
natural sources is the only possible way to acoustically
monitor a water basin in view of the difficulties encoun-
tered in designing artificial low-frequency sound
sources.

The problems considered in the book are concerned
with the formation, propagation, and measurement of
low-frequency noise, from several thousandths of hertz
to several hundreds of hertz, and with the analysis of
the noise sources.

The book consists of eight chapters. The two initial
ones present the main concepts of low-frequency
acoustics and the analysis of the latest data on low-fre-
quency noise, its sources, and the main processes
responsible for interference in the noise measurements.
The author argues that the ambient noise of the ocean is
not limited in time and covers a broad frequency band.
Therefore, in the experimental studies, it is necessary to
separate the noise components of different origin.

The third chapter contains an analysis of the experi-
mental conditions and the techniques used in the low-
frequency noise measurements in the ocean. The author
presents the estimates of the interfering action of pseu-
dosound caused by the motion of the hydrophone in the
water medium, as well as by the turbulence, the pres-
sure fluctuations induced by the surface waves, and the
pressure variations caused by the displacements of the
1063-7710/02/4806- $22.00 © 20762
bottom. Methods for controlling the interfering effects
are proposed.

The fourth and fifth chapters present the experimen-
tal data obtained for the low-frequency noise at fre-
quencies from 0.5 Hz to several tens of hertz in differ-
ent shallow-water regions of the ocean and at frequen-
cies from 0.01 Hz to several hundreds of hertz in deep-
ocean regions. It is shown that, in the deep ocean, the
maximal noise level is reached at the frequencies 0.15–
0.3 Hz, while two local maxima, at 0.1–0.15 and 0.4–
0.6 Hz, are observed in shallow seas with depths of sev-
eral hundreds of meters or less. At frequencies higher
than 5 Hz, in the majority of deep-ocean regions, the
ambient noise is governed by far ship traffic, the spec-
trum of this noise being discrete up to 15–20 Hz and
nearly independent of the weather conditions up to a
frequency of several hundreds of hertz. In seismically
active regions, the spectrum of the low-frequency noise
can be influenced by earthquakes, the main portion of
seismic noise energy lying within the frequency band
0.5–10 Hz. In shallow-water regions that are far from
ship traffic, the noise of frequencies higher than 5 Hz is
completely determined by the wind at the point of
reception. In contrast to deep-water noise, which is
formed by nothing but acoustic waves in water, shal-
low-water noise is not restricted to a single type of elas-
tic waves. At the low-frequency edge of the band, shal-
low-water noise is governed by the waves on the sea
surface and by the zero mode of the elastic waves at the
bottom boundary; at frequencies higher than 1–2.5 Hz,
this type of noise also includes the first mode of the
sound waves propagating in the water layer and the first
mode of the surface waves at the sea floor.

In the sixth chapter, the generalized characteristics
are given for deep- and shallow-water noise in the
ocean. Detailed information is presented on such
important noise parameters as its power spectrum and
space correlation for different environments: shallow
shelf regions and open deep ocean.

The seventh chapter considers the manifestations of
different natural sources of elastic waves in the
recorded low-frequency noise. Here, for the first time,
a detailed analysis is presented for the acoustic and
seismic signals of earthquakes, which manifest them-
selves in the low-frequency ambient noise of the ocean
and in the microseismic oscillations on the continent.
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In the concluding eighth chapter, the author pro-
poses to use low-frequency ocean noise and the signals
of earthquakes to solve some problems of acoustics and
oceanography. In particular, the possibility is shown for
determining the structure of the sediment bulk in the
ocean and sea shelf by measuring the spatial coherence
of the ambient noise and for using the water phase of
the earthquake-generated signals (the T-phase) to esti-
mate the velocities of elastic waves in the ocean–conti-
nent transition zone. A new original mechanism of
microseism generation is proposed. It explains the
microseism as a result of low-frequency noise transfer
from water into the sea floor and its subsequent propa-
gation in the continental area.

The book is based on a large body of original exper-
imental data obtained by the author during the expedi-
ACOUSTICAL PHYSICS      Vol. 48      No. 6      2002
tions carried out by the Acoustics Institute in different
deep-water regions and shelf zones of the ocean. In the
monograph, methodological aspects of in-sea experi-
ments are considered in detail, the state of the art is ana-
lyzed, and the prospects for future studies are outlined.
The book contains numerous actual data, 118 refer-
ences, and a qualified analysis of experiments. The
monograph is a valuable handbook for specialists
whose professional activities are concerned with the
exploration of the world ocean.

I. A. Maslov

Translated by E. Kopyl
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New Books on Acoustics (1998–200)
1998

Ocean Acoustics: Proceedings of Brekhovskikh’s
Workshop and 7th Session of the Russian Acoustical
Society, Shirshov Oceanology Institute, Russian Acad-
emy of Sciences, Moscow, 1998 (GEOS, Moscow,
1998), 360 pp.

V. M. Baranov, A. I. Grishchenko, A. M. Kara-
sevich, et al., Acoustic Diagnostics and Control at the
Enterprises of the Fuel-Power Industry (Nauka, Mos-
cow, 1998), 304 pp.

V. N. Belomestnykh, Physical-Chemical Acoustics
of Crystals (Tomsk, 1998), 183 pp., with a bibliography
of 186 titles.

Study and Exploitation of the World Ocean: Pro-
ceedings of the 6th All-Russian Acoustical Conference
(with International Participation), December, 1997
(Dal’nauka, Vladivostok, 1998), 249 pp.

N. P. Zagraœ, Nonlinear Interactions in Layered and
Inhomogeneous Media, Ed. by V. I. Timoshenko
(Taganrog State Radiotechnical University, Taganrog,
1998), 434 pp.

On the History of Russian Hydroacoustics: A Col-
lection of Papers, Essays, and Memoirs, Compiled by
Ya. S. Karlik (St. Petersburg, 1998), 691 pp.

V. A. Komarov and V. F. Muzhitskiœ, and S. Yu. Gure-
vich, Acoustic Field, Vol. 2 of Theory of Physical Fields
(1998), 300 pp.

Mathematical Problems of the Theory of Wave
Propagation, Ed. by V. M. Babich (Moscow, 1998),
Issue 27, 340 pp.

Marine Technologies, Ed. by M. D. Ageev, Issue 2
(Dal’nauka, Vladivostok, 1998), 276 pp.

Nonlinear Acoustics of Solids: Proceedings of
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