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Abstract—Results obtained from experimental studies of the motion of solid bodies through a granular medium
under a time-varying load are presented. Dependences of the average velocity of a body on the driving frequency
are obtained, and the resonance behavior of these dependences is observed. It is established that the experimental
value of the resonance frequency has a universal meaning and is fundamentally and closely related to the structure
of the granular material. The structural features of a granular medium are qualitatively described, along with the
correlation between them and the result of the study. © 2000 MAIK “Nauka/Interperiodica”.
Granular media, or loose granular materials, are
widespread in nature and industry. They possess some
specific properties that make them different from other
bodies existing in the solid and liquid states. Because of
the widespread occurrence and wide practical applica-
tion of granular materials, studies of their properties
and behavior under static and dynamic loads have been
carried out for years and continue to this day [1–3].
These studies include both purely theoretical investiga-
tions and experiments. Many technological processes
used in industry and construction are related to the
motion of loose granular materials and the motion of
solid bodies in granular media under vibrations. To
increase the efficiency of such processes, it is necessary
to know the structure of the granular materials and the
mechanism of their interaction with solids. In this con-
nection, the studies of such phenomena as the inter-
granular interactions, the friction forces, and the dissi-
pation processes that occur in a granular medium and at
the boundary between the medium and other bodies
become especially important. In the last decade, the
theory of friction has experienced a kind of rebirth: the
most exciting results were obtained in the studies of the
dynamics of the relative stick-slip motion of two pure
crystalline surfaces separated by a thin liquid layer (a
few molecules thick) [4–9]. In fact, some of the laws
derived for this type of motion are universal in nature
and are also valid for granular media. In this paper, we
present the results of the experiments aimed at studying
the specific features of the motion of solid bodies
through granular media under time-varying forces.
Although the work was initially of purely practical
interest, some of the dependences obtained in the
experiments seem to be closely related to the funda-
mental laws of particle interaction and are in confor-
mity with the universal laws discovered in other fields
of science and engineering.
1063-7710/00/4603- $20.00 © 20243
In our experiments, the solid body moving through
a granular medium was an empty metal cylinder with
the outer diameter 2.5 cm and length 10 cm. To reduce
the head resistance, conical surfaces were mounted at
the cylinder ends; the cones were 2 cm high and had the
same radius as the cylinder. The total length of the sam-
ple was about 14 cm, and its total mass varied from 400
to 500 g. The sample was set in a vertical position and
completely buried in the granular medium. The linear
dimensions of grains varied over wide limits: from
fractions of a millimeter to several centimeters. We
used different kinds of granular media: sand commonly
used in construction (dry and wet sand), gravel, silica
gel, and fine-disperse and granular carbon black. The
cylinder was fastened to one end of an inextensible
thread (or string) passing over a fixed block that was
positioned above the surface of the granular material.
The other end of the thread was fastened to a load
whose mass was approximately equal to the cylinder
mass. When the two masses were exactly equal to each
other and both the cylinder and the counterbalance
were in the air, the whole system was at rest. The equi-
librium was not disturbed when the cylinder was pre-
liminarily placed in the granular medium. This was
true even in the case of a considerable difference
between the masses of the cylinder and the counterbal-
ance. Naturally, equilibrium was possible only when
the static friction force arising in the granular material
exceeded the difference between the weights of the
sample and the load.

Longitudinal vibrations were excited in the cylinder.
The excitation was performed by an eccentric mecha-
nism, which consisted of a series of pins set normally
to the surface of a rotating disk at some distance from
its center. The pins deflected the thread thus jerking the
cylinder and the counterbalance upward (the thread
was fairly long). The disk was fixed at the shaft of an
000 MAIK “Nauka/Interperiodica”
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electric motor whose rotational speed was measured by
a tachometer and could be varied over relatively wide
limits. With the selected geometric parameters of the
system (the thread length, the distance from it to the
rotating pins, and the distance from the latter to the
shaft center), the vibration amplitude of the load and
the cylinder that were in balance in air varied from mil-
limeters to several centimeters. As the cylinder was
buried in the granular material, the initial symmetry of
the body vibrations and the counterbalance ones was
violated. The cylinder moved upward with jerks and
finally emerged at the free surface of the granular mate-
rial. The appearance of an upward motion of the sample
should not seem unexpected, if one takes into account
that in some sense it corresponds to the common down-
ward motion observed in driving piles or other objects
into the ground. In both cases, the necessary condition
is that the external force applied to the body be greater
than the friction force arising at the boundary between
the body and the granular material.

The cylinder motion caused by the excitation of the
thread vibrations was an intermittent-translational one.
In fact, a vibrational force was applied to the body, and
an unexpected effect for this kind of motion was the
appearance of a minimum in the dependence of the
time within which the body rose to the surface on the
vibration frequency. As an example, in Fig. 1 we
present a set of such dependences observed for differ-
ent granular media: a sand, b silica gel, and c carbon
black. The abscissa axis represents the frequency f
characterizing the upward jerks applied to the cylinder,
and the ordinate axis represents the average velocity V
of the upward motion of the body, this velocity being
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Fig. 1. Dependence of the velocity of the cylinder rise on the
vibration frequency.
inversely proportional to the time of the body rise.
From the dependences, one can see that the frequency
f0 corresponding to the maximum average velocity is
virtually the same for different granular media, and it is
equal to 7.5 Hz. We will call it resonance frequency. For
the materials under study, the linear dimensions of
grains varied over more than one order of magnitude.
For gravel, the resonance frequency was only 10% less
than for carbon black, while the difference in the grain
size of these materials was almost two orders of magni-
tude. Our experiments showed that noticeable varia-
tions in a number of geometric parameters of the sys-
tem caused only minor variations in the resonance fre-
quency. In particular, we studied the effect of the
natural frequency of the thread carrying the load on the
sought-for resonance frequency. It was found that, as
the thread length was changed by a factor of two, the
frequency varied by no more than 10%. The results of
these measurements are illustrated in Fig. 2. This figure
displays two curves obtained for sand: the dashed line
corresponds to the thread length L = 39 cm, and the
solid line corresponds to L = 70.5 cm.

The increase in the average velocity of the cylinder
rise with frequency is natural and can be easily
explained, if we assume that, with every jerk, the cylin-
der travels approximately the same distance. In the case
of a strict equality, we should have a strictly linear
dependence of the average velocity of the body rise on
the vibration frequency. From Figs. 1 and 2, one can see
that such a linear dependence is observed in the vicinity
of the resonance frequency f0, to the left of it. From the
behavior of the curves a and c shown in Fig. 1, it fol-
lows that this linearity is most clearly defined for sand
and carbon black. As for the nonlinear and slower
decrease of the velocity with decreasing frequency, this
phenomenon is closely related to the specific features
of the load dynamics. Presumably, this can be
explained by the specific way that the driving force is
applied to the body under study and, in particular, by
the lower acceleration experienced by the body. The
decrease in the average velocity of the body rise that
occurs with a considerable increase in the frequency of
the driving force is likely to be related to the plastic
properties of granular media and the finite time of the
disruption of the microstructure of a granular material.
The appearance of the maximum in the frequency
dependence of the average velocity and the existence of
the corresponding resonance frequency f0, which varies
only slightly from one experiment to another and with
variations in different parameters, testify to the funda-
mental nature of the observed phenomenon and its rela-
tion to the structure of the granular material. We note
that (as will be demonstrated below) the frequency f0
and the corresponding period τ ≈ 1/f0 are of the same
order of magnitude as some characteristic values deter-
mined in other publications [7, 8, 11], and the phenom-
ena under study are related not only to granular media,
but also to entirely different systems.
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
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Since there exists no rigorous theory for describing
the behavior of a granular medium under dynamic and
large static loads, we can neither rigorously justify the
aforementioned statements nor obtain any adequate
quantitative estimate for the quantity f0 in this paper.
However, proceeding from the existing concepts of the
granular material structure, we will make an attempt to
relate the measured value of the resonance frequency to
some fundamental parameters of the granular material
structure by using the data from other publications. It is
well known that, in many cases, a granular material
resembles a solid, and, formally, its behavior may be
described to a first approximation by the equations
valid for an elastic body. However, under large static
loads, as well as under moderate forces acting within
long time intervals, the behavior of a granular material
becomes similar to that of a liquid, and it can be
described on the basis of the hydrodynamical equa-
tions. For example, the model calculations in the con-
structional mechanics of granular materials are often
made by using an equation analogous to the Navier–
Stokes one with the stress tensor Tik in the form [4]

.

Here, σ and k are constants depending on the properties
of the material. In this equation, the viscous term,
which is proportional to the viscosity and the velocity
gradient in the Navier–Stokes equation, is replaced by
a term that is independent of the rate of shear. This fact
expresses one of the fundamental properties of granular
media: the stresses are independent of the velocities.
The essential feature of the equation presented above is
that the tensor Vik is divided by |V|, so that the stress ten-
sor does not depend on the absolute value of the velo-
city. Sometimes, in the mathematical description of a
granular medium as an elastic body with allowance for
its rheological and viscoelastic properties, the Hooke
law is replaced by a more general equation relating the
strain and the stress. In the case of strong vibrations and
very large dynamic loads, when the value of the vibra-
tion overload parameter Γ = Aω2/g (where g is the
acceleration of gravity and A is some constant) is great,
a granular material begins to “boil.” In this case, the
corresponding processes can be formally described by
the gas dynamics equations and even with the use of the
Boltzmann kinetic equation [10].

It should be noted that, in many cases, one of the
most important properties of a granular material is its
plasticity. This is the main property that distinguishes
the granular material from classical solids, and it is a
consequence of the very structure of the material. The
plasticity of a granular medium fundamentally differs
from the plasticity of solids. Recall that the particles
(molecules) of a classical condensed matter are bound
together by strong and mainly central forces. There-
fore, in a solid, a crystal lattice is formed, and the plas-
ticity of a solid is related to the lattice defects and the
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formation of, e.g., dislocations. In a granular material,
the particles have macroscopic dimensions (as com-
pared to the quantum dimensions), and their interaction
is largely determined by transverse shearing forces and,
specifically, friction forces. The characteristic feature
of these forces manifests itself in the fact that any par-
ticle of the granular medium interacts with the sur-
rounding particles in a highly nonuniform way. The
force of the interaction with the closest neighbors may
vary by an order of magnitude from one neighbor to
another. As a result, in a granular material, although it
looks very much like a solid, no crystal lattice can be
formed. On the other hand, in contrast to a liquid whose
structure possesses a short-range order, a granular
medium develops a structure that is intermediate
between liquid and fractal ones [11]. In fact, this leads
to the formation of the so-called “chains,” i.e., one-
dimensional branching irregular structures, which pen-
etrate the whole granular material and have linear
dimensions much greater than those of individual
grains. Along these chains, the stresses are transmitted
with the values exceeding the average forces by an
order of magnitude, and the existence of such chains is
confirmed by the experiments [4, 11, 12]. In particular,
the presence of a fully-developed chain-like structure in
a granular material accounts for the well-known exper-
imental fact consisting in the absence of the linear
dependence of pressure on the thickness of the granular
material [4]. This phenomenon is observed in tanks
with granular materials beginning from a certain depth,
and it can be easily explained by the transmission of the
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Fig. 2. Dependence of the velocity of the cylinder rise on the
vibration frequency for different string lengths.
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weight of the upper layers of the material to the tank
walls through the chain structures.

The application of external stresses to a granular
material gives rise to internal stresses in this material
with some average internal stress value. The aforemen-
tioned formal description of the material behavior is
usually performed on the basis of these average values.
However, in contrast to the classical condensed matter,
a granular material is characterized by large stress fluc-
tuations, which occur because of the formation of the
chain-like structure. Their spatial frequency is anoma-
lously high as compared to that of the fluctuations of
internal forces in conventional bodies, while the
stresses themselves exceed the average values by an
order of magnitude [11]. The characteristic feature of
the plasticity of a granular material is the gradual dis-
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ruption of its irregular and chain-like structures under a
load. In this process, the chain-like structure is likely to
be responsible for the existence of a finite, and to some
extent universal, value of the time of disruption.

The behavior of the friction force acting on bodies
moving in granular materials has been studied in
numerous experiments. For example, in some of them
[7, 8], a flat plate was pulled along a horizontal layer of
a granular material. The dependence of the friction
force on the velocity was found to be ambiguous, with
a hysteresis. A detailed study of the plate motion in
time showed that, in a wide range of parameter varia-
tions, this motion was an intermittent-translational one.
At low values of the average plate velocity V, the plate
motion consisted of two phases, namely, the stick and
slip phases, and it was purely regular in character. At
the beginning, as the external force applied to the body
increased from zero to the value of the static friction
force, the body remained at rest; then, it was rapidly
accelerated. After the beginning of the motion, the fric-
tion force decreased, and, as the shear stresses in the
granular medium reached sufficiently small values, the
body came to a stop. Within some interval of time, the
process was repeated. When the average velocity was
increased, the motion of the body became different: the
length of every single plate displacement decreased,
but the motion itself was no longer purely deterministic
or stochastic. With a further increase in the velocity V,
the displacements corresponding to individual jerks
became still shorter, but the motion became more regu-
lar in character. As the velocity V exceeded some criti-
cal value, the plate motion, which initially was an inter-
mittent and jump-like one, became totally irregular, but
continuous.

The experiments described above included simulta-
neous measurements of the variation of the instanta-
neous velocity v

 

 of the body in the process of individ-
ual displacements. Figure 3 shows a set of such experi-
mental dependences that were obtained for different
values of the average velocity 

 

V

 

. One can see that the
maximum instantaneous velocity, which was about
1 cm/s in order of magnitude, was reached in the course
of an individual jerk within the time 

 

T

 

 ≈ 

 

40–50

 

 ms. This
time was virtually independent of the average velocity

 

V

 

 of the body in a wide range of its variation. The most
remarkable fact was that the total time 

 

T

 

 of a single
body slip was of the same order of magnitude as the
characteristic period 

 

τ

 

 (the inverse of the resonance fre-
quency 

 

f
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) determined in our experiment and presented
at the beginning of this paper.

The aforementioned experiment [7] also included
an optical visualization of the changes in the positions
of individual grains of the granular material in the
course of a single plate slip. Figure 4 taken from the
cited paper [7] shows the experimental time depen-
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presented on the logarithmic scale, and time is
expressed in fractions of the slip period í. From this
figure, it follows that, with an increase in stresses in the
granular material, the number of particles changing
their positions, 〈n(t)〉 , substantially increases. The
curve is asymmetric, and the number 〈n(t)〉  reaches its
maximum at the slip stage. Here, it should be empha-
sized that the structural rearrangement of the medium
begins before the slip onset.

Thus, from the experiments performed by Nasuno
et al. [7], we derive two important conclusions: (1) from
some critical value of the velocity V, the intermittent-
translational motion of the body becomes continuous,
but irregular; in a wide range of the velocity V varia-
tion, the motion possesses a characteristic time T whose
value is virtually constant and related to the fundamen-
tal properties of the granular material; (2) within the
time T, a structural rearrangement occurs in the granu-
lar material contacting with the body. Returning to our
experiment, we can state that these two consequences
provide a plausible explanation for the appearance of
the maximum in the dependence V(f) and for the exist-
ence of a nearly constant value of the resonance fre-
quency f0. In our opinion, the decrease observed in the
velocity V at higher frequencies (Fig. 1) is explained by
the fact that, as the average velocity of the cylinder
moving through the granular medium increases, the
spatial rearrangement of the material structure does not
have enough time to occur during the jerks, and, there-
fore, the body cannot move through the material. The
approximate (within an order of magnitude) coinci-
dence of the values of T and 1/f0 and their relative con-
stancy testifies to the universal character of the laws
governing the rearrangement of the granular material
structure. As for the certain numerical difference
between the values obtained in our experiments and in
the cited experiments [7], it can be explained by the
specific features of the structural rearrangement that
occurs in the granular material layer contacting the
body. In contrast to the experiments [7] in which the
body moved along the surface of the granular material,
in our experiments the body moved through the granu-
lar medium and additionally experienced a head resis-
tance. Therefore, to the time of the structural rearrange-
ment of the granular medium in the vicinity of the lat-
eral surface of the body, it is necessary to add the time
of the particle transfer from the region in front of the
body. The actual increase in the time of the structural
rearrangement of the granular material in the vicinity of
the moving body leads to a decrease in frequency. In
our experiments, the time of disruption of the initial
structure is almost by a factor of three greater than in
the cited experiment [7]. We note that an increase in the
region of the disruption of the material structure should
inevitably lead to a decrease in the resonance fre-
quency. It is precisely this effect that is observed when
the vibrations of the body (both longitudinal and trans-
verse ones) are amplified as the thread fixed to the cyl-
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
                                

inder is shortened. This effect is reflected in the behav-
ior of the curves in Fig. 2.

In closing, we note once again the fundamental and
to some extent universal character of the result obtained
in this paper. The relation between the resonance fre-
quency and the time of the disruption of the granular
material structure is a general property not limited to
granular media. A similar result is obtained for the rel-
ative stick-slip motion of two pure crystalline plates
separated by a liquid layer several molecules thick [9].
It was found that the motion of these plates relative to
each other is similar to the motion of a body in a gran-
ular medium and occurs much in the same way as
described in this paper. Despite the difference in the
nature of the materials and the great difference in the
particle dimensions (the dimensions of molecules and
grains differ by more than six orders of magnitude), not
only a qualitative analogy takes place, but also a quan-
titative coincidence of the characteristic values. For low
velocities of the plate slip, the plate motion is also a
jump-like intermittent-translational one. In this case, it
occurs in the form of a stick-slip motion, as in the case
of a granular medium. At higher velocities, the plate
motion becomes continuous, but irregular. The most
remarkable fact is that the values of the critical velocity
and the time of slip (fluctuation) T coincide in order of
magnitude with the corresponding values obtained for
granular materials. According to Thompson and Robins
[9], in this case the slip mechanism is related to the
thermodynamic instability of the lubricant and its
jump-like transition from solid to liquid state. (Recall
that when the lubricant is several molecular layers
thick, its structure forms a crystal lattice that adjusts
itself to the plate structure.) The phase transition in the
lubricant layer plays the role of the structural rear-
rangement that occurs in a granular medium. Within the
same time interval T, the crystal lattice of the molecular
layers of the lubricant is destroyed, and the structural
rearrangement of the substance leads to its transforma-
tion to a liquid.

It is well known that a unique but nonmonotone
dependence of the friction force on the velocity of the
contacting surfaces F(v) leads to a periodic stick-slip
motion for conventional bodies as well. In this case,
one can hear the typical creak accompanying the veloc-
ity oscillations between zero and the value at which the
derivative dF/dv becomes positive. A detailed study of
the laws governing the friction between conventional
bodies [6] shows that, in this case, the appearance of
resonance frequencies is also possible for the bodies
under a vibrational excitation. The imposition of the
resonance frequency vibrations on the bodies slipping
relative to each other makes it possible to increase the
amplitude of the motion and to intensify the processes
of cutting and penetration of one body into another. In
this connection, numerous possibilities open up for the
use of vibrations in science, engineering, and medicine.
Specific examples of such applications can be found in
the monograph written by Blekhman [5].
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Abstract—The behavior of a quasi-monochromatic nonlinear wave near a caustic is considered. Nonlinear
ordinary differential equations for a dispersive dissipative medium with a cubic or quadratic nonlinearity are
derived. For the latter medium, nonstationary equations describing it near the caustic are presented with
allowance for the dissipative dispersive terms. These equations yield ordinary ones for quasi-monochromatic
waves. The amplitude of the second harmonic is expressed in terms of the squared amplitude of the first har-
monic. The amplitude of the second harmonic, as well as the solution as a whole, increases near the caustic.
© 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

A linear solution to the wave equations with a vari-
able sound (light) velocity for a monochromatic wave
near a caustic was obtained by several authors [1–4].
Kravtsov [2] and Ludwig [4] found a uniformly exact
solution in the form of a sum containing the Airy func-
tion and its derivative.

Bagdoev [1] and Gazaryan [3] found a solution to
the problem of the incidence of a given wave on a caus-
tic in the form of only one term containing the Airy
function, i.e., a local asymptotics was found.

This asymptotics is associated with the fact that the
factor of the derivative of the Airy function in the uni-
formly exact asymptotics, which is equal to the differ-
ence between the incident and reflected wave ampli-
tudes at the caustic, is set equal to zero in the problems
solved in [3, 1].

Since the order of magnitude of the linear solution
near the high-frequency caustic is higher than that away
from it, it is necessary in this specific region to allow
for the nonlinear effects that, for a quasi-monochro-
matic wave, exhibit themselves in the form of a cubic
or quadratic nonlinearity smoothed by low dissipation
and dispersion present in the medium. In this case, in
order to obtain a realistic picture of nonlinear wave
fields near the caustic, one should take into account the
second harmonic.

Paper [1] formulated the nonlinear problem for the
quasi-monochromatic wave near a caustic by imposing
the boundary conditions, which were derived from the
1063-7710/00/4603- $20.00 © 0249
linear solution expressed in terms of the Airy function,
at a certain distance from it. The problem was reduced
to an integral equation by the perturbation method and
solved numerically.

In this paper, equations are derived for the quasi-
monochromatic wave near a caustic in a dissipative dis-
persive medium with a cubic or quadratic nonlinearity.

Unlike the case of the medium with a cubic nonlin-
earity considered in [1], where dissipation was taken
into account, here, we obtain a system of two equations
for real amplitudes, which can be solved similarly to
that in [1]. In contrast to the solution away from the
caustic, the numerical solution near the caustic shows a
substantial increase in the wave amplitude due to the
nonlinearity. This solution is valid near the regular
points of the caustic, i.e., at a distance from its cusp,
where the problem should be studied separately.

Note that the numerical analysis of acoustic beam
focusing away from the caustic on the basis of solving
short-wave equations is considered in [8]. A two-wave
solution for nonlinear waves near the caustic can be
obtained by relying on the results provided in [9]. The
parabolic-approximation method for solving the prob-
lems of acoustic wave propagation is developed in
[10]. The acoustic wave attenuation and dispersion in
a gas–liquid mixture are studied in [11]. A step-by-
step approach to analyzing intense diffraction beams
by matching the linear and nonlinear regions is given
in [12].
2000 MAIK “Nauka/Interperiodica”
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LINEAR SOLUTION AND DERIVATION
OF THE DIFFERENTIAL EQUATION

FOR A MEDIUM WITH A CUBIC 
NONLINEARITY

Consider a quasi-monochromatic wave propagating
in a dispersive dissipative medium with a cubic or qua-
dratic nonlinearity. In the linear case, when the wave is
concave or the medium is inhomogeneous, the rays
have an envelope (or a caustic) at which the incident
and reflected waves exist at a time moment t (figure).
These waves intersect the caustic at the point A with the
position vector r0 = r0(t). The inspection of the linear
solution to an arbitrary hyperbolic system of equations
with variable coefficients [1, 2] and to the wave equa-
tion with variable wave velocity [3, 4], the principal
order of the problem near the caustic is determined by
the coordinates

x = (r – r0)k1, y = –(r – r0)N, (1)

where r is the position vector of the point (xi), k1 =

{ } is the wave vector at the point A, N is the unit vec-
tor normal to the caustic at the point A in the direction
of its convexity, x is the eikonal or the wave travel time
from the point A to the projection of the given point on
the wave normal, and k = {αi} is the wave vector at the
given point.

First, we consider the linear problem. Let the
medium equation be given by the expression

(2)

where the hyperbolic operator ∆ has higher derivatives
of the order n, which affect equations near the caustic.
The linear solution and the relationships at the charac-

α j
1

∆ i pt i p j r,–,( )Φ 0,=

x2

x1

x
y

A

B

Wave behavior near the caustic.
teristic [1] provide the dimensions of the region near
the caustic

(3)

where ω is the frequency of the process and ε is the
order of the solution Φ near the caustic. Writing in the
main order of smallness

(4)

where  = –1 + (r – r0) , and expanding ∆ in

series and neglecting the derivatives of orders higher
than ωn – 2/3, where ∆ ~ ωn, one can obtain the represen-
tation for the left-hand part of equation (2) in the linear
problem:

(5)

where the index of ∆ means differentiation. When
deriving (5), terms of the order ωn – 1 obtained as a
result of the action of operators on the variable coeffi-
cients are omitted, which allows us to manipulate with
operators as with numbers.

According to the linear solution [1–4], in the time-
periodic problem one can assume Φ = ψ(y)exp(iωx)
and take into account the linear dispersion relation ∆(ω,

, r0) = 0 at the point A and the ray equation Nj  = 0,

where  = ω . Then, for ψ = ψ(y), the following
equation can be derived from (5):

(6)

where, according to the ray equation [1],

(7)
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Based on equation (1) and neglecting the term

x with x ~ y3/2, one can write accurate to the prin-

cipal order

(8)

Using the notation

we obtain

(9)

From equations ∆Φ = 0 and (6), we obtain for the
linear problem:

(10)

A solution to this equation is the Airy function v( ).
The solution to the wave equation [2, 3] can be gener-
alized to an arbitrary medium described by the hyper-
bolic system of equations [1, 4] to obtain the linear
solution near the caustic:

(11)

where

(12)

Then, the linear solution to equation (10) can be
written in the form

(13)

The real constant A1 can be found from the asymp-
totic formula for the Airy function at large –y > 0,
which corresponds to the incident wave AB in the figure
AB ψ0 = ψgeom,

(14)

away from the caustic.
In order to calculate the nonlinear term that should

be added to (10), one can assume that, at a certain dis-
tance away from the caustic, the summands corre-
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ỹ

Φ0 ψ0 iωx( ),exp=

ψ0 2e
i
π
4
---–

A1v ỹ( ) ω
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sponding to the incident and reflected waves can be

separated, and one can assume  = .
Then we drop the indices of an and ϕn and obtain from
(10) in the linear approximation:

(15)

In order to obtain the nonlinear term that must be
included into (10), for the medium with cubic nonlin-
earity, one should write the nonlinear dispersion rela-
tion [5] for the frequency Ω and eikonal F of the non-
linear wave:

(16)

where

(17)

The following relationships are valid (they assume
that ∂y/∂t is small):

(18)

Using relationships (7)–(9) and nonlinear disper-
sion relation (17), (18), one can obtain

(19)

Taking the real part of (6) with ψ = aeiϕ away from the

caustic and neglecting the diffraction term , one

can compare the result with (19) to show that, for the
linear problem, the left-hand side of (6) must be com-

plemented with the term – |ψ|2ψ∆ω.

Then, the following nonlinear equation can be
written:
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DETERMINATION OF THE COEFFICIENTS
OF NONLINEAR EQUATIONS

NEAR THE CAUSTIC

Since λ1 < 0 and ∆ω > 0, one should distinguish two
cases. The conditions

(21)

and

(22)

define the defocusing and focusing media, respectively.
Then, one can represent the function , which is

defined by ψ =  and satisfies (20), as

(23)

where the “ ” signs refer to media (21) and (22),
respectively, and equation (20) can be written in the
form

(24)

It is necessary to find a solution to (24), which trans-
forms into linear solution (11) at large |y*| and for

which  = v( ). When solving equations (24) with

boundary conditions taken from (13), one should take
into account that (24) is the Painleve equation and has
two moving singularities. Therefore, when the Cauchy
conditions are imposed, for example, at y* = –5 for ψ*

and  taken from (13), the problem will have no

continuous solution. The problem of matching the solu-
tion to equations (24) with the linear solution can be
approximately replaced by the boundary-value problem
for ψ* with the boundary conditions imposed, accord-
ing to (11), at the ends of the segment (–5, 5), i.e.,

(25)

The choice y* = ±5 for the universal coordinate y*,
where the linear and nonlinear solutions are matched,
is, to a certain extent, arbitrary and made so as to
obtain the best numerical result when integrating equa-
tions (24) [1].
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Introducing the notation ψ = ψ* – v(y*), one can

obtain the equation

(26)

which can be solved under the conditions ψ(–5) = 0 and
ψ(5) = 0.

This problem can be replaced by an integral equa-
tion whose kernel depends on two independent solu-
tions to the Airy equation, which can be solved itera-
tively [1]. The solution shows that, when the upper sign
is chosen in (24), i.e., for a defocusing medium, the
nonlinear solution is only slightly different from the
linear one. At the same time, for the lower sign in (24),
i.e., for a focusing medium, the nonlinear solution near
the caustic (y* = 0) is by an order of magnitude greater
than the linear one, and the solution for ψ*(y*) exhibits
soliton behavior.

Now, we determine the coefficients of equation (20)

for an isotropic medium with ω0 = ω0(k) and k2 = .

Since  = – (k) ∆ω and Ni  = 0, expression (9)

yields

λ1 = ω∆ωNj(∂ /∂t – ∂αj/∂t),

where Nj  = –Nj  along the ray with

allowance for the fact that Niα i = 0.

Then, since the ray velocity is vΛ = (k), we obtain

(27)

Additionally, along the ray,

Nj  = NjvΛ∆ω , where tj = /vΛ∆ω, Nj

= .

1/Rr is the projection of the ray curvature vector

onto the normal to the caustic, and  = –Nj  is the

curvature of the normal section of the caustic along the
ray. Then, (27) yields

(28)

which generalizes the result obtained in [3] for the

wave equation. In addition, NiNj = – ∆ω.

C
µ
----

ψ'' ψy∗ ψ C
µ
----v+ 

 
3

,+−=

α̃ i
2

∆α̃ i
ω0'

α̃ i

k
----- ∆α i

α j
1

α̃ j∂
t∂

-------- k
ω0' k( )∆ω
---------------------

∆α̃ j
∂

t∂
----------

ω0'

λ1
k
vΛ
------

∆α̃ j
∂

t∂
----------

∆
α̃ j

1∂

t∂
----------– 

  N j.=

∆α̃ j
∂

t∂
----------

t∂
∂t j ∆α̃ j

t j∂
vΛ t∂
-----------

1
Rr

-----–

1
Rs

-----
t j

1∂
vΛ t∂
-----------

λ1 kvΛ
∆ω

R
------,  

1
R
---– 1

Rr

-----
1
Rs

-----,  
1
R
--- 0,>–= =

∆α̃ iα̃ j

vΛ

k
------
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000



NONLINEAR EQUATIONS FOR QUASI-MONOCHROMATIC WAVES 253
Thus, according to (10), for an isotropic medium in
which ω0 = ω0(k), we obtain

(29)

where χ > 0, and the signs in (23) and (24) are chosen
according to the sign of (∂Ω/∂a2)0. When (∂Ω/∂a2)0 > 0,
the medium is a defocusing one, and the upper signs in
(23) and (24) are chosen; when (∂Ω/∂a2)0 < 0, the
medium is a focusing one.

DERIVATION OF NONLINEAR EQUATIONS
FOR DISSIPATIVE DISPERSIVE MEDIA

WITH QUADRATIC NONLINEARITY
AND THE INVESTIGATION

OF THESE BY THE PERTURBATION METHOD
In the particular case of the nonlinear optics prob-

lem, the Schrödinger equation for the nonstationary
problem [7] yields

(30)

where c is the light velocity, ω = ck, ε0 and ε2 are the lin-
ear and nonlinear permittivities, and ∆⊥  is the transverse

Laplacian. Taking into account that  = eiϕ +

ai eiϕ, for the one-dimensional problem for which

∆⊥ A = 0, equation (30) yields

(31)

By virtue of (18), in the one-dimensional problem, Ω =

 = ω –  and Ω = ω + a2. Therefore,  =

a2, and, for the optical medium, we obtain

(32)

Hence, the optical medium is a focusing one, and the
lower sign should be used in equations (24) and (26).

For waves on the water surface and flexural waves
in shells and plates, the value of (∂Ω/∂a2)0 is given in
[5], which allows us to describe these problems by
equation (20).

When the medium possesses a quadratic nonlinear-
ity, as well as dispersion and dissipation, the determina-
tion of (∂Ω/∂a2)0 is more complicated. For example, for
an electrically conducting gas–fluid mixture, according
to [6], a short-wave equation can be derived that
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describes the three-dimensional problem in the vicinity
of the wave. In the ray coordinates t, τ, θ, ξ, where τ =
x is the eikonal and conditions θ = const and ξ = const
imply ray equations, this equation has the form

(33)

where u is the perturbed particle velocity normal to the
wave; L(u) is the transverse operator with respect to
coordinates θ and ξ; Γ is the nonlinear coefficient in the
formula for the normal wave velocity

(34)

and coefficients Γ, D, and E are expressed in terms of
the mixture parameters [6].

For a quasi-monochromatic wave, one can assume
in (33) that

(35)

where α = ω is the original frequency and ω1 is the
modulated frequency in the linear formulation. Substi-
tuting (35) into (33) gives the linear dispersion relation
and the attenuation factor

(36)

and the nonlinear Schrödinger equation for the ampli-
tude of the first harmonic [6]

(37)

where

(38)

When deriving (37), we took into account that, in
the diffraction problem, we have U1 ~ ε and U0 ~ ε3,
and, therefore, U0 is not involved in equation (37).

When the problem is one-dimensional with respect
to τ, we assume U1 = a1eiϕ, where the eikonal ϕ is
complex in the dissipative case, and obtain from (37)
at a1 = const that

On the right-hand side, dissipation in the factor |e2iϕ|
was neglected and it was assumed that |e2iϕ| = 1, which

is admissible for small quantities on the order of .
Since, by virtue of (17) generalized to a dissipative
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medium, we have (∂Ω/∂ )0  = –∂ϕ/∂t, we obtain

(∂Ω/∂ )0 = [H1/α](  + i ).

Additionally, (35) implies that U1exp(–iω1t –  νt) =
ψ and ψ = aexp(iϕ); then, a1exp(–νt) = a, (∂Ω/∂a2) =

[H1/α](χ1 + iχ2), where χ1, 2 = exp(2νt).

Then, the nonlinear equation for the quasi-mono-
chromatic wave near the caustic is given by (20). In
the case of a gas–fluid mixture, it can be shown [6]
that E > 0 and, for a dissipation-free medium, i.e., at
χ2 = 0, we obtain (∂Ω/∂a2)0 > 0, which means that the
medium is a defocusing one.

Thus, a quasi-monochromatic wave in a dispersive
dissipative medium with a quadratic nonlinearity can
be described near a caustic by the equation

(39)

By calculating the coefficients for a dissipation-free
gas-dynamical medium, one can obtain (ω = α)

(40)

Equation (39) based on short-wave equations (33)
can also be more rigorously deduced from the nonsta-
tionary-wave equation near the caustic for a medium
with a quadratic nonlinearity [1], where the terms that
are responsible for dispersion and dissipation and a
term of the same order ∂2u/∂x∂t are added as a result of
comparison with (33), these terms being neglected
when deriving the principal-order equations near the
caustic [1]. In the one-dimensional (with respect to x)
problem, they are the same for equations (33) and (39).
With the inclusion of these terms, the equations have
the form

(41)

where, by virtue of the homogeneity of ∆(αj , ω), one
can write αj  = –ω∆ω = –α∆ω.

As in (35), we seek a solution to (41) in the form

(42)
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By equating the linear first-harmonic summands
containing no derivatives in (41), one can obtain (36).
By equating the summands associated with the second
harmonic without regard for the derivatives of its
amplitude, which is possible for ω1t @1, one can find

. (43)

Substituting the linear solution for U1 (11) in (43),
one can see that |U1| increases near the caustic as α1/3,

whereas |U2 | increases as .

Equating the first-harmonic terms in (41), we obtain

(44)

where the asterisk means complex conjugation.

Since, in the principal-order approximation for the
quasi-monochromatic wave, U1 = ψ(y)exp(iαx), the
first two summands in (44) can be omitted to obtain

(45)

which coincides with (39) and confirms that it was
derived correctly. It should be noted that, in the princi-
pal order for fast variables x and y for an arbitrary wave
in an inhomogeneous medium, the dependence of the
coefficients on t can be neglected, which also refers to
the factor A1 in (13).

Thus, for a dispersive dissipative medium, one
obtains equation (30) with the complex coefficient χ1 +
iχ2, which makes it different from the case of the non-
dissipative medium described by (20). Then, universal
variables (23) with (∂Ω/∂a2)0 replaced by χ1H1/α can
be introduced. Taking into account that ψ = exp(iϕ0),

 = µψ*, equation (39) yields the following equation
for the defocusing (χ1 > 0) and focusing (χ1 < 0) media:

(46)
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Here, in contrast to (24), ψ* = A + iB is complex,
and A and B satisfy the system of equations

(47)

By introducing the new variable Ψ = A – v(y*)  as

in (26), one can obtain a system of equations for Ψ and
B with zero boundary conditions at y* = –5 and 5.

As in [1], a solution can be obtained numerically by
transforming (47) to integral equations and solving
them by an iterative technique.

SUMMARY
The behavior of monochromatic waves near regular

points of caustics in both linear and nonlinear problems
is considered. The cases of cubic and quadratic nonlin-
earities are studied with allowances made for weak dis-
persion and dissipation. An electrically conducting
fluid with gas bubbles [6] is a typical medium with a
quadratic nonlinearity. Typical media with cubic non-
linearity are the optical medium [7], and plates and
shells [5]. Ordinary nonlinear equations are derived for
monochromatic waves near a caustic, the presence of
dissipation leading to a system of two coupled equa-
tions. An expression for the amplitude of the second
harmonic near the caustic is presented. Its value is an
order of magnitude higher than the value of the ampli-

d2A

dy∗ 2
----------- y∗ A– A2 B2+( ) A

χ2

χ1
-----B– 

 +− 0,=

d2B

dy∗ 2
----------- y∗ B– A2 B2+( ) A

χ2

χ1
----- B+ 

 +− 0.=

C
µ
----
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tude far from the caustic. The formulation of the non-
linear problem in terms of matching with the linear
solution and the result of numerical solution of the non-
dissipative problem are discussed.
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Noise Silencer in the Form of a Helmholtz Resonator
at the Outlet of an Air Duct of Finite Length
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Abstract—A new type of noise silencer with the original design of the air duct–resonator system is pro-
posed. The design is free of the disadvantages that are inherent in the conventional design with a resonator
placed inside the air duct. A physical model of the silencer is developed, and its efficiency is calculated
for different geometrical and physical parameters of the resonator and the air duct. A comparison between
the calculated characteristics and the experimental data is performed, and their agreement is demonstrated.
© 2000 MAIK “Nauka/Interperiodica”.
Helmholtz resonators are widely used for solving
various technological problems [1–3]. In particular,
these resonators are used for noise control in ventilation
systems or in exhaust pipes of internal combustion
engines. In these cases, the intake of a resonator is
mounted flush with the inner surface of the air duct
wall. The useful effect is attained due to the fact that the
resonator has a very small impedance at the resonator
frequency fr and in its vicinity, and the sound waves
propagating along the air duct are reflected from the
place of the resonator mounting as from a soft bound-
ary. More detailed studies of the physical processes
occurring in air ducts of finite dimensions demon-
strated that it is necessary to know the acoustic param-
eters of the noise source in order to use the resonator
effectively [4, 5]. In the case of short air ducts (kL < 1),
the efficiency of noise suppression decreases and tends
to zero as kL tends to zero [6]. One more fact that one
has to take into account in the case of the conventional
design of the resonator is a possibility of its self-excita-
tion under the action of a tangential airflow. The
silencer design proposed in this paper and given in Fig. 1
provides an opportunity to avoid the difficulties indi-
cated above and retain the silencer efficiency in the
case of short air ducts. A silencer in the form of a
Helmholtz resonator is placed at the end of an air
duct, coaxially with it. The resonator intake shaped as
a ring of radius R embraces a pipe of length L and
radius r. The length of the cylindrical resonator neck
l, the area of the neck cross-section Sr , the resonator
volume V, and, hence, the resonance frequency fr can
be changed in such a way that the maximum effect of
noise suppression is attained within a selected fre-
quency range.

A mathematical model for describing the operation
of a silencer of this kind is based on the known experi-
mental fact [6] that a fan located at the intake of a pipe
1063-7710/00/4603- $20.00 © 20256
is a source of preset pressure, and the range of frequen-
cies to be damped is such that an air duct may be con-
sidered as a narrow pipe.

Thus, we consider the following system: a narrow
pipe of radius r with a resonator installed at its end in
such a way that the pipe end and the edge of the reso-
nator neck lie in the same plane. This plane is the
boundary of the halfspace where sound is emitted to.
The source of acoustic pressure (sound) is located at the
beginning of the pipe. It is assumed that the pressure
amplitude P0 is constant within the whole considered
frequency range independently of the load applied from
the side of the air duct.

Let the volume velocity VT arise at the outlet of the
air duct under the action of the pressure P0. Taking into
account the smallness of the diameter of the air duct,
we may assume that an equivalent point source of mass
with the indicated volume velocity is located at the cen-

L0

P0 d D

1

2

3

4

r

H l

Fig. 1. Air duct with a silencer. (1) A source of preset pres-
sure; (2) an air duct; (3) a resonator; and (4) a microphone.
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ter of the cross-section of the air duct. In this case, the
acoustic pressure created by this source can be
described by the known relationship

Here, x is the distance from the source, c is the sound
velocity, and k is the wave number.

Further, we assume as usual that the resonator neck
is closed by a massless piston, which lies freely on the
neck edge. The acoustic pressure Px affecting this pis-
ton gives rise to the force Fr that causes piston vibra-
tions. The pressure force dF acts on an elementary ring
of the area of the resonator neck, while the force
applied from the side of the external source to the
whole resonator neck is equal to

. (1)

The active component of radiation and the inherent
loss of the resonator are taken into account by the intro-
duction of the coefficient η. This coefficient determines
the relative value of the halfwidth of the resonance
band of the resonator at 0.7 of its peak amplitude. As it
is done commonly in calculating the complex acoustic
impedance, Zac is assumed to be equal to

(2)

where α = 1 – ( fr/f )2 – iη( fr/f ).

Here, l is the length of the resonator neck with
allowance for the associated mass of the radiation
impedance and f is the frequency.

Knowing the acoustic impedance of the resonator
(expression (2)) and the force (expression (1)), we can
determine the volume velocity at the resonator neck

This velocity in its turn creates acoustic pressure in the
surrounding medium. The pressure additionally affects
the neck of the air duct.

The reaction force of the resonator neck upon the air
duct Fa can be determined in the same way as the force
Fr if we replace VT by Vr in expression (1):

Thus, the pressure at the outlet of the air duct depends
on two factors: the pressure arising at the outlet of the
free duct (without a resonator) P1 and the additional
pressure Pa caused by the reflection from the resonator.

Px iωρVTe
ikx–

/ 2πx( ),  k ω/c.= =

Fr ρcVT M,  M e
ikr–

e
ikR–

–= =

Zac iωρ1/Sr( ) 1 f r/ f( )2
– iη f r/ f( )–[ ]=

=  iωρ1/Srα ,

Vr := Fr/ SrZac( ) VT M/ iklα( ).=

Pa := Fa/ST iρcVT M
2
/ STklα( ).–=
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In the absence of the resonator, the velocity V1 at the
outlet of the air duct is determined only by the reaction
of the air duct itself and the regime at its inlet, i.e., the
pressure P0 in the case under study.

Representing a narrow pipe (an air duct) as a quad-
ripole, i.e., a part L0 of an acoustic long line, we can
write

Then, we obtain

(3)

where w = ρc.

The pressure P1 and the velocity V1 at the outlet of
the air duct are interconnected by the impedance of
radiation into free space

Taking into account expression (3), we have for V1:

.

This expression determines the radiation from an air
duct without a silencer (resonator).

If a resonator is present at the end of the air duct, the
resonator reaction Pa is added to the pressure at the duct
outlet, and, analogously to expression (3), we can write

(4)

Taking into account P1 and Pa determined earlier and
expression (4), we obtain an expression for the volume
velocity VT at the outlet of the air duct with allowance

P0

V0

kL0( )cos iw
kL0( )sin

ST

---------------------

iST

kL0( )sin
w

--------------------- kL0( )cos

P1

V1

.=

P0 := kL0( )P1 i
w
ST

----- kL0( )V1,sin+cos

V0 := i
ST

w
----- kL0( )P1 kL0( )V1,cos+sin

P1 := V1ZT V1
w
ST

-----β,=

ZT  := 
w
ST

----- kr( )2
i

8
3π
------kr+ ,

β := kr( )2
i

8
3π
------kr.+

V1 := P0

ST

w
----- 1

β kL0( ) i kL0( )sin+cos
--------------------------------------------------------

P0 := kL0( ) P1 Pa+( ) iw
ST

------ kL0( )VT ,sin+cos

V0 := 
iST

w
------- kL0( ) P1 Pa+( ) kL0( )VT .cos+sin
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for the effect of the pressure field reradiated by the res-
onator upon the duct outlet:

(5)

The total acoustic field radiated by the air duct–res-
onator system is determined in this approximation by
the sum of the volume velocities at the outlet of the air
duct and at the resonator neck. However, in this case,
the volume velocity at the neck should be taken with

VT  := P0

ST

w
----- 1

β iM
2

klα
---------+ 

  kL0( ) i kL0( )sin+cos

-----------------------------------------------------------------------------.
the reverse sign:

(6)

If we determine the silencer efficiency as the ratio
of the pressures created in the far wave field by a sys-
tem with a resonator and a system without it, the
silencer efficiency can be calculated according to the
formula

VΣ := VT Vr– VT 1 iM
klα
--------+ 

 =

=  P0

ST

w
----- 1 iM/ klα( )[ ]+

β iM
2
/ klα( )[ ]+{ } kL0( ) i kL0( )sin+cos

---------------------------------------------------------------------------------------------------.
(7)W 20 V1/VΣlog 20 β iM
2

klα( )⁄[ ]+{ } k 1 iη1+( )L0( ) i k 1 iη1+( )L0( )sin+cos
1 iM/ klα( )[ ]+{ } β k 1 iη1+( )L0( ) i k 1 iη1+( )L0( )sin+cos[ ]

----------------------------------------------------------------------------------------------------------------------------------------------------- ,log= =
since, in the case of the limitations mentioned earlier
(small dimensions), the ratio of acoustic pressures is
precisely equal to the ratio of volume velocities.
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Fig. 2. Dependence of the silencer efficiency on frequency
for different values of the attenuation coefficient in the air
duct: η1 = (1) 0.01, (W1); (2) 0.05, (W5); and (3) 0.08, (W8).
The complex value of the wave number k' = k(1 +
iη) is introduced in formula (7) for taking into account
the active loss in the air duct. The frequency range
where W is positive corresponds to the positive effect
when the radiation of the system with a resonator is less
than without it. In the range where W is negative, the
presence of a resonator enhances the radiation. Such a
situation is characteristic of all jet silencers employed
in air ducts of finite lengths.

We have to bear in mind that, in all calculations
according to the formulas given above, the frequency
range where these dependences are true is limited
because of the geometrical dimensions of the resonator
and its shape. For example, in the case of a cubic shape,
the first natural resonance can manifest itself at the fre-

quency f = c/2 V1/3. At much higher frequencies,
such a resonator cannot be considered to possess acous-
tic stiffness.

Formula (7) includes several parameters, which can-
not be calculated and must be determined from special
experiments. Such parameters are the effective length
of the neck l, the loss in the resonator η, and the loss in
the air duct η1. In addition, it is of interest to investigate
how these parameters affect the final result. Some
experimental estimates were obtained from the mea-
surements of the frequency characteristics of a resona-
tor and an air duct. It was found that, in a specific exper-
iment, the value of η was close to 0.1, the value of η1
was close to 0.01, and, according to the measured reso-
nator frequency br , the effective length of the resonator
neck was 0.07–0.08 m, with the physical length of the
neck being l = 0.04 m. In calculating the silencer effi-
ciency, the indicated parameters were varied within the
limits close to the experimental data. The geometric
dimensions of the air duct and the resonator used for cal-
culation also corresponded to those investigated experi-
mentally in order to simplify the comparison between
theory and experiment. Thus, the length of the air duct
was taken equal to L = 0.4 m, its radius was r = 0.0275 m,
the radius of the cylindrical resonator was R1 = 0.3 m, the

3
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radius and length of the resonator neck were R = 0.06 m
and l = 0.04 m, and the resonator depth was H = 0.1 m.

Figure 2 presents the calculated frequency depen-
dence of the resonator efficiency for three different val-
ues of the attenuation coefficient in the air duct η1. One
can see from the shapes of the curves that the peak of
the silencing effect is observed at the frequency some-
what higher than the resonance frequency of the reso-
nator fr . A certain negative effect exists below this peak,
precisely at the frequency fr . And finally, a more or less
smooth dependence with the positive effect increasing
at the frequency of the first resonance of the air duct is
observed at frequencies higher than that of the peak.

One can also see that the attenuation in the air duct
affects the silencer efficiency only within a narrow fre-
quency band near the resonance frequency of the air
duct (400 Hz in our case), the silencer efficiency
decreasing with the increase in attenuation.
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Fig. 3. Silencer efficiency versus frequency for different val-
ues of the attenuation coefficient in the resonator: η = (1)
0.1, (W1); (2) 0.3, (W3); and (3) 0.8, (W8).
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The influence of the value of attenuation in the res-
onator η upon the silencer efficiency is illustrated in
Fig. 3. In this case, the loss in the resonator also mainly
affects the efficiency of noise suppression within a nar-
row resonance frequency band and have almost no
effect on the wide-band region of the spectrum. One
can see from these curves that it is possible to change
(by 20–30 dB) the effect of noise suppression at its
peak by varying the attenuation in the resonator. How-
ever, simultaneously with the increase in the silencer
efficiency in the resonance region in the case of a
decrease in attenuation in the resonator, the negative
effect is enhanced, although to a lesser extent. Therefore,
by changing purposefully the loss in the resonator, it is
possible to considerably reduce the negative effect, while
the positive effect will be reduced only insignificantly.

The silencer operation is most strongly affected by
the variation in the length of the resonator neck, which
can be seen clearly in Fig. 4. This figure shows the fre-
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Fig. 4. Silencer efficiency versus frequency for different val-
ues of the length of the resonator neck: l = (1) 0.05, (W1);
(2) 0.06, (W2); (3) 0.07, (W3); (4) 0.08, (W4); and (5) 0.1 m,
(W6).
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quency dependence of the silencer efficiency for five
different values of the neck length, other geometric
parameters including the resonator volume being con-
stant. The losses in the resonator and in the air duct are
η = 0.1 and η1 = 0.01. In contrast to attenuation, the
neck length affects the silencer operation in both the
narrow resonance frequency band and in the wide-band
region. The less the neck length, the greater the degree
of noise suppression in the wide-band region (from 5 to
15 dB). As for the region of the maximum discrete
action, there exists a certain optimum length of the neck
that provides the maximum effect. We have to note that
the resonance frequency of the resonator changes
smoothly (in inverse proportion to l) with the change in
the neck length, and, simultaneously, the resonance
regions of the positive and negative effects are shifted.
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Fig. 5. Comparison between the theory and the experiment.
The region of the positive effect of the resonator is hatched;
the empty circles show the experimental data.
As for the negative effect, its maximum shifts smoothly
to the lower frequency range with an increase in the
neck length, and its amplitude is reduced. In the case of
an increase in the neck length, the maximum of the pos-
itive effect also shifts to the low-frequency range, but a
certain optimum neck length exists here providing the
maximum effect. In this case, the effect attains a value
of 30 dB and over in the given interval of the neck
length variation. Thus, it is possible to tune the silencer
to the necessary degree of noise suppression in narrow-
band or wide-band frequency ranges.

We compared the experimental data for the
designed silencer and the results of calculation accord-
ing to the formulas given above in order to prove the
validity of these formulas. In the experiments, we mea-
sured the pressure in the far wave field at the axis of the
air duct in the presence of the resonator (P1) and with-
out it (P2) at a given pressure at the intake of the air
duct. After that, we calculated the efficiency in dB
according to the formula W = 20 P2/P1|.

The results of this comparison are presented in Fig. 5,
where the experimental data are denoted by circles near
the calculated curve, and the region of the positive
effect is hatched. One can see that the calculated and
experimental data coincide not only qualitatively, but
also quantitatively (the scatter is no greater than 2 dB).
This coincidence justifies the approximations used in
the calculations.

In conclusion, it should be noted that the proposed
design of the air duct–resonator system has several
advantages (which were mentioned above) over the
conventional design with a resonator placed inside a
long air duct. The proposed design is the most promis-
ing one for short air ducts.
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Abstract—Numerically calculated two-dimensional correlation moments of the surface-scattered sound field
are presented in the form of correlation surfaces and analyzed. The models of three-dimensional anisotropic and
two-dimensional quasi-harmonic surface waves are considered. Data are presented on the angular dependence
of the space-time correlation domains of the scattered sound field for receivers spaced across the propagation
path in both horizontal and vertical directions, as well as on the shapes of the time-frequency and space-fre-
quency correlation domains. © 2000 MAIK “Nauka/Interperiodica”.
In the previous paper [1], we derived a general
expression for the frequency-space-time correlation
moment of the sound field scattered by the water sur-
face. The approximate expression obtained for a high
smooth roughness was specified for the idealized
model of two-dimensional quasi-harmonic surface
waves and for a more realistic model of three-dimen-
sional anisotropic ones. The obtained formulas are
somewhat awkward, include a large number of param-
eters, and can therefore be hardly analyzed in the
explicit form. We [1] also obtained the estimates that
qualitatively characterize the behavior of the correla-
tion moments for the surface-scattered sound field and
the dimensions of the domains of combined correlation
for the moments. Here, we consider the numerically
obtained results that serve to visualize these domains in
the form of the cross-sections of the correlation sur-
faces in the three-dimensional space, at the level of the
correlation decrease by a factor of e.

In the computations, the PC MATLAB 5.2 program
was used. The computed results were represented on
the plane, as a set of closed curves that correspond to
different values of the parameters. The coordinate axes
represent the values of the shifts in time and space, time
and frequency, or frequency and space, depending on
the computation mode.

Figure 1 shows an example of the correlation surface
corresponding to the absolute value |ΒP| of the two-
dimensional space-time (ST) correlation moment of the
scattered field calculated with the model [1] of the three-
dimensional anisotropic surface waves. The waves are
assumed to be high, i.e., the condition exp(–Φ2) ! 1 is
met, where Φ = 2ksinΨσξ is the Rayleigh roughness
parameter, k = 2π/λ, λ is the acoustic wavelength, σξ is
the rms height of the surface roughness, and ψ is the
1063-7710/00/4603- $20.00 © 20261
grazing angle for the ray specularly reflected from the
mean surface plane. Figure 1 corresponds to the receiv-
ers spaced in the horizontal plane across the sound
propagation path, i.e., along the Y coordinate. The
angle ϑ0 between the general propagation direction of
the surface waves and the vector of the receiver spacing
is specified to be 70°. In accordance with the shape of
the correlation surface, its cross-section by the horizon-
tal plane has an elliptic form in the case at hand.

Figure 2 shows the cross-sections of the correlation
surfaces that are obtained by cutting off the absolute
value of the ST correlation moment |BP(∆t, ∆R)| of the
scattered field at the I/e-level for the receivers spaced in
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10
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Fig. 1. Correlation surface for three-dimensional anisotro-
pic surface waves (a two-dimensional correlation moment
of the scattered field for the receivers spaced across the
propagation path in the horizontal plane).
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Fig. 2. Space-time (ST) correlation domains of the scattered field for three-dimensional anisotropic surface waves at different param-
eters: (a, d) angles ϑ0; (b, e) ratios dz = Z/z; and (c, f) values of l. Receivers are (a–c) horizontally and (d–f) vertically spaced across
the propagation path: (a, d) l = 2, dz = 1; (b, e) l = 2, ϑ0 = 0; (c, f) dz = 1, ϑ0 = 0. The plots are labeled with the values of (a, d)
ϑ0 (in deg), (b, e) dz, and (c, f) l.
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the horizontal plane, perpendicularly to the sound prop-
agation path (along the wavefront), and in the vertical.
Here, the surface waves are three-dimensional, aniso-
tropic, and follow the model [1] with the angular spec-
trum of the form θζ(ϑ) = Cζ cosl(ϑ  – α) at |ϑ – α | ≤ π/2
and θζ(ϑ) = 0 at |ϑ – α| > π/2, where Cζ = Γ(l +

1)/[ Γ(l + 1/2)], l ≥ 1, Γ(·) is the gamma function, and
α is the angle of the general direction of surface wave
propagation; the frequency spectrum is specified as
G(Ω) = a1Ω–nexp(–a2Ω–m) [2]. In the computations, the
following formula was used:

(1)

where ∆tc = /( Φ)– is the time correlation scale

for the scattered field, – is the mean squared (circu-
lar) frequency for the surface spectrum, v is the wind

speed, (∆ )2 = (∆ )2 + (∆ )2, ∆ cosϑ0 = ∆ cosα +

∆ sinα, ∆R = {∆X, ∆Y, ∆Z} is the vector of the

receiver spacing,  = X1  – X2 ,  =

Y1  – Y2 , and z and Z are the transmission

and reception depths; the distances between the imagi-
nary source (specularly reflected relative to the plane
z = 0) and the spaced receivers are Rn =

, n = 1, 2; ql = [(l)!!/(l – 1)!!]2/(l –
1). In expression (1), we use m = 2 and n = 6, which cor-
responds to the Neumann–Pierson spectrum of the fully

developed seas. In this case,  = 4g2/(3v2), where g =
9.81 m/s2 is the gravity acceleration. For the cross-
spaced (in Y) receivers, the shifts are symmetric about

Y = 0: Y1 = ∆Y/2, Y 2 = –∆Y/2, and ∆  =  = ∆Y/(1 +
dz), where dz = Z/z. For vertically spaced receivers,

 =  = −Xz∆Z/[(z + Z)2 – (∆Z/2)2], where ∆Z =
Z1 – Z2 and Z = (Z1 + Z2)/2. The following values of the
parameters are specified: Φ = 3; v = 8 m/s; X = 1904 m;
z + Z = 600 m; dz = 1, 0.2, and 5; and l = 2, 8, and 20.

The correlation cross-sections shown in Fig. 2 can
serve to illustrate the dependence of the correlation
scales of the scattered field on the angle ϑ0, on the ratio
dz = Z/z of the reception and transmission depths, and
on the effective width of the angular surface spectrum,
which is governed by the exponent l. The spatial corre-
lation scales (the shifts |∆Y | and |∆Z | at ∆t = 0) evi-
dently increase as the angle ϑ0 increases from 0° to 90°
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and as dz increases, at a constant interval ∆tc of time
correlation (the shifts |∆t | at ∆Y = 0, ∆Z = 0). The ST
correlation domain becomes broader (in the sense that
the correlation is extended to the space and time shifts
that exceed the corresponding time and space correla-
tion scales of the scattered field) as the angle ϑ0
decreases from 90° to 0°. In comparison with the time
(∆tc) and space (∆Yc , ∆Zc) correlation scales, the ST
correlation domain is most (by approximately 60%)
extended at ϑ0 = 0° when the vector of the receiver
spacing coincides with the general propagation direc-
tion of the surface wave. Of special importance are the
signs of the space and time shifts at which their mutual
compensation occurs, leading to the extension of the

correlation domain. For instance, at ϑ0 = 0° and  =

 = ∆Y/(1 + dz) = (Y1 – Y2)/(1 + dz) > 0, the compen-
sation can occur only for t1 – t2 = ∆t > 0; at ∆Y < 0, it
can occur for ∆t < 0. In contrast, for vertical spacings
at ϑ0 = 0°, negative vertical shifts (∆Z < 0) must cor-

respond to positive time shifts (∆t > 0), because ∆  ~
(–∆Z).

The vertical correlation scales, ∆Zc, are about three
times less than the horizontal ones, ∆Yc, in accordance
with the well-known relation ∆Zc/∆Yc .  = (z +
Z)/X (in our case,  . 0.32).

The scales of the space and ST correlations weakly
depend on the effective width of the angular spectrum:
as the exponent l increases from 2 to 20, the correlation
scales decrease by about 10%.

Figures 3 and 4 illustrate the correlation domains of
the scattered sound field numerically calculated with
the model of two-dimensional quasi-harmonic surface
waves. We used the expression for the absolute value of
the frequency-space-time correlation moment [1],
which can be expressed in the form:

(2)

Here, b = ε12∆p–1(v∆tc)–2, where ε12 = Φ1Φ2/ , ∆Φ =
Φ1 – Φ2, Φ0 = (Φ1 + Φ2)/2, ∆tc . /(Ω0Φ0), v = g/Ω0,
Ω0 = 2π/Tζ; Tζ is the mean period of the surface waves;
Φn = 2knσζ(z + Zn)/Rn, n = 1, 2;

D = (∆t – ∆ /v)2;  ∆  = ∆ cosα + ∆ sinα;

F = 2(µ – 1)[b2(∆t)2 + (∆ )2/v2]/γ2;
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Fig. 3. ST correlation domains of the scattered field for two-dimensional quasi-harmonic surface waves propagating in different
directions (at different angles α), (a–e, g) with the dispersion and (f, h) without it. Receivers are (a, b, e, f) horizontally and (c, d, g,
h) vertically spaced across the propagation path: (a–d, f, h) z = Z = 300 m; (e, g) z = 100 m, Z = 500 m. The plots are labeled with
the values of α (in deg).
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Fig. 4. Domains of (a) ST and (b) TF correlations for the receivers spaced along the specular ray; SF correlation domains for the
receivers spaced (c) in the vertical direction and (d) along the specular ray, at different angles α. The model of two-dimensional
surface waves with dispersion; z = Z = 300 m.
µ = 1 when there is no dispersion of the surface waves
(i.e., when these waves do not change their shapes in
the course of the propagation); µ = 2 when the deep-
water dispersion relation is valid for the surface waves;
γ = Ω0∆tζ; and ∆tζ is the time correlation scale for the
surface waves. In the visual representation of the calcu-
lations, the space and time shifts were introduced
according to the following expressions: Y1 = Y + ∆Y/2,
Y2 = Y – ∆Y/2, Z1 = Z + ∆Z/2, Z2 = Z – ∆Z/2, X1 = X +
∆X/2, X2 = X – ∆X/2, k1 = k + ∆k/2, and k2 = k – ∆k/2.
The following values of the parameters were specified:
Φ0 = 3,  k = 14.65 m–1 (f = 3.5 kHz), sinψ = 0.3,  σζ =
0.34 m, v = 8 m/s, z + Z = 600 m, X = 1904 m, Y = 0,
and γ = 4.

Figure 3 illustrates the dependence of the ST corre-
lation domains on the angle α, which characterizes the
propagation direction of the surface wave and is mea-
sured counterclockwise from the positive direction of
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
the X axis that coincides with the direction from the
source to the receiver in the plane z = 0. The data pre-
sented in the figure are obtained both in view of the dis-
persion of the surface waves and without a dispersion,
for the receivers spaced in the horizontal plane (in the
Y coordinate) and in the vertical direction (in Z coordi-
nate). According to Figs. 3a and 3b, the lateral correla-
tion scale ∆Yc that is governed by the maximum (in
terms of absolute value) shift along the axis ∆Y notice-
ably increases as the angle α decreases from 90° to 0°
and from 270° to 180°. The lowest values of ∆Yc corre-
spond to the angles α = 90°, 270° when the receivers
are spaced along the normal to the wavefront of the
plane surface wave. As α decreases from 90° to 60° and
from 270° to 240°, the scale ∆Yc slightly increases; at
α < 45° and α < 225°, this increase is much more sig-
nificant. At α = 0° and 180°, the full correlation is
retained, this being true only for the shifts ∆Y that are
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symmetric about the Y axis when the receivers are
located on the wavefront. In the general case of lateral
spacing in the Y coordinate (for instance, at Y1 = ∆Y,
Y2 = 0), because of the deformation of the scattering
area at large shifts ∆Y, the correlation scale ∆Yc remains
finite for the angles α = 0°, 180° as well (for the speci-
fied parameters, this value is about 900 m when z = Z =
300 m). Note that the correlation cross-sections shown
in Fig. 3 will also characterize the ST correlation
domains for the angle intervals 90° ≤ α ≤ 180°, 270° ≤
α ≤ 360°, if α is replaced by 180°– α and 540°– α,
respectively.

The angular dependence of the ST correlation scales

 and  has a different form. According to

Figs. 3a and 3b, the quantity  changes from  =
∆tc at α = 0°, 180° to the maximum value that is approx-
imately three times higher than ∆tc at α = 90°, 270°
when the propagation direction of the plane surface
wave coincides with that of the vector of the receiver
spacing. Within the angular ranges 1° to 90° and 181°
to 270°,  slightly (by about 17%) decreases as α

decreases (earlier, we [1] argued that  is indepen-

dent of α and approximately equal to ∆tcγ/ ). A sim-
ilar decrease caused by the increase in α takes place
within the ranges 90° to 179° and 270° to 359°. In nar-
row angular bands near α = 0° and 180°, as α  0°
and α  180°, the time correlation scales ∆tc and

 increase because of the decrease in the Rayleigh
parameter Φ0. However, at (∆Y)2 @ X2 + (z + Z)2, the

condition  @ 1 can be violated, and expression (2)
will not be valid.

The spatial dimensions of the ST correlation
domain decrease as the angle α increases from 0° to
90° and from 180° to 270°, and increase as α increases
from 90° to 180° and from 270° to 365°, the sharpest

changes in the quantity  corresponding to the
vicinities of α = 0° and 180°. For all angles α, except
for the values α = 0° and 180° at which the full space

correlation is retained, the ST correlation scales 
are significantly higher than the scales ∆Yc of the space
correlation. The size of the ST correlation domain is
limited by the effect of the surface wave dispersion that
leads to a waveform distortion in the course of the prop-
agation. The deformation of the scattering surface area,
which is caused by a displacement of the reception
point, has a weaker effect. The latter conclusion can be
confirmed by comparing the correlation cross-sections
shown in Figs. 3b and 3h: in the absence of dispersion
(µ = 1), i.e., in the case of the unchanged waveform, the
size of the ST correlation domain significantly
increases (by a factor of 6–30 as α changes from 185°
to 260°). The strongest changes occur near the values

∆tc
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α = 90° and 270°, while the full correlation is retained
at ∆t = ±∆Y/(2v) for α = 90° and 270° in the case of
µ = 1. In accordance with the dependence b2 ~ sin22α,
the spatial size of the ST correlation domain is mini-
mal at α = α0 = (2n – 1)45° (n = 1, 2, 3) and increases
as |α – α0 | increases within each quadrant. The angular
ranges ∆α = |α – α1| (α1 = 0°, 180°), within which the

correlation scales ∆tc and  grow as α approaches
0° or 180°, are significantly extended when µ = 1, as
compared to the case of µ = 2, and cover about 5°.

When the receivers are spaced in vertical (Figs. 3c,
3d, 3g, and 3h), in contrast to the case of the horizontal
spacing (in Y), the spatial correlation scales ∆Zc and the
spatial size of the ST correlation domains that are given

by the quantity  increase as the angle α increases
from 0° to 90°. With the specified parameters, at the

values of α from 0° to 70°, the quantity  is about

three times smaller than  at α changing from 90°

to 20°. For these angular ranges, the ratio /
changes from 0.34 to 0.4. At sufficiently high spacings
∆Z, because of the deformation of the scattering area,

the correlation scales ∆Zc and  corresponding to
α = 90° are limited by a value of 300 m that is close to
the specified values of z and Z.

At µ = 2, the size of the ST correlation domain 
(in the time coordinate) slowly grows as α increases
from 0° to 80°–85° and sharply decreases in the angular
range 85°–90°, as α approaches 90°. For all angles
except for the vicinity of α = 90°, the size of the ST cor-
relation domain is significantly greater than the corre-
lation scales ∆Yc and ∆tc. This phenomenon is most

pronounced at µ = 1, when the correlation scales 

and  corresponding to α changing from 0° to 70°
are 6 to 10 times higher than those at µ = 2. At µ = 1,

the angular dependence of  is much more pro-

nounced,  increasing by a factor of 1.8 as α
increases from 0° to 70°–75°. According to the calcula-

tions, further increase in α leads to a decrease in ,
and the latter quantity tends to ∆tc at α = 90°.

Note that the correlation cross-sections shown in
Fig. 3, which correspond to vertical receiver spacings,
can be also attributed to the ST correlation within the
fourth quadrant, if α is replaced by 360°– α. To convert
to the second and third quadrants, one should replace α
by 180° – α and 180° + α, respectively, and change the
sign of ∆t.

The spatial dimensions ,  of the ST cor-
relation domain and the spatial correlation scales ∆Yc ,
∆Zc increase as z changes from 300 to 100 m and Z
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changes from 300 to 500 m (i.e., as dz = Z/z increases);
these dependences can be obtained from the compari-
son of Figs. 3a and 3e, 3c and 3g. The deviation from
the dependence ∆Yc, ∆Zc ~ 1 + dz, which is most pro-
nounced at dz > 1 and for vertical receiver spacings, is
caused by the deformation of the scattering area, which
manifests itself as an increase in ∆Yc and ∆Zc with
increasing b2. As a result, within the angular ranges at
hand, the change from 1 to 5 in dz makes the scales ∆Yc

and ∆Zc increase by factors of 3–3.5 and 3.2–4.2,
respectively, depending on α, rather than by a factor of 3.

In this case,  and  increase by a factor of

2.8–3, while the time scale  slightly decreases (by
less than 10–15%).

Figure 4 serves to illustrate the shapes of the time-
frequency (TF) and space-frequency (SF) correlation
domains, along with the ST correlation domain, for the
degenerate case of the receivers spaced along the spec-
ular ray when ψ = const and ∆R = R1 – R2 = ∆Z/sinψ =
∆X/cosψ. The calculations were carried out with the
modified formula for the model of two-dimensional
quasi-harmonic surface waves and for a Gaussian time
correlation function of the surface waves, at Y1 = Y2 =
0. If µ = 2, this formula takes the form:

(3)

Here,

 = 0.5ε12 ∆p–1/g2 = b / , 

∆  = ( Φ0),   = [∆t – ∆ /(g )]2,

 = [ (∆t)2/( ) 

+ (∆ )2/(g )][  – ( )2].

The symmetry of the correlation cross-sections about
the coordinates ∆R and ∆t in Fig. 4a and ∆k/k and ∆t in
Fig. 4b means that the correlation moments do not
depend on the signs of the shifts ∆R, ∆t and ∆k, ∆t and
testifies to the absence of the transport phenomenon.
However, some spread of the ST and TF correlation
domains in the time coordinate takes place, the value of

 = max∆tc(∆R) being independent of α and equal

to about 1.6∆tc , and the value of  = max∆tc(∆k)
decreasing from 1.6∆tc at α = 0°–45° to 1.4∆tc at α =
90° (note that ∆tc corresponds to the values ∆R = 0 and
∆k = 0). Within the angular range α = 0°–90°, the scales
of the space (∆Rc) and frequency (∆kc) correlations
increase as α increases varying from ∆Rc/R . ∆k/k .
0.05 at α = 0° to ∆Rc/R . 0.52 and ∆kc/k . 0.28 (here,
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R stands for R = (R1 + R2)/2). In contrast to the case of
spacing along the specular ray, the size of the frequency
correlation domain and the spread of the TF correlation
domain in ∆t are governed by both the power-law and
exponential factors involved in (3), the latter factor pre-
dominating at α * 60°.

As to the SF correlation domain (Fig. 4c) with ver-
tical receiver spacings, a transport phenomenon can be
noticed that leads to some extension of the SF correla-
tion domain relative to the scales of the frequency (∆kc)
and space (∆Zc) correlations. In this case, the ratio

/∆Zc = max∆Zc(∆k)/∆Zc decreases from 1.9 at α =
0°–60° to 1.75 at α = 80°–85°, and to 1.28 at α = 90°.

The value of  = max∆kc(∆Z) is by as little as 2.5–
4% greater than ∆kc for the entire angular range except
for the close vicinity (1°–2°) of α = 90° where it
sharply increases up to 1.85∆Rc at α = 90°. At the same
time, all correlation scales (frequency, spatial, and spa-
tial-frequency ones) increase as the angle α increases
from 0° to 90°. This is also true for receivers spaced
along the specular ray. In the latter case, the SF corre-
lation moment (Fig. 4d) evidences for the pronounced
transport phenomenon that can be attributed to the
mutual compensation of the space and frequency shifts:
the deformations of the scattering area have different
signs when the frequency and distance R increase. This
phenomenon leads to a significant extension of the SF
correlation domain, in comparison with the scales of
frequency and space correlations for α varying from 0°
to 60°. As α increases from 0° to 60°, the ratio δc =

/∆kc decreases from 8.4 to 3.4, and the ratio δR =

/∆Rc decreases from 8.1 to 2.7. The lowest values
δc . 1.7 and δR . 1.06 correspond to α = 90°. Accord-
ing to Fig. 5d, the size of the SF correlation domain in
the frequency coordinate is independent of α and

equals to /k . 0.47 in this case. This value coin-
cides with the second scale of the frequency correla-

tion, ∆ /k . /Φ0, that corresponds to the expo-
nential decay of |BP(∆k)| [1]. The spatial size of the SF
correlation domain is independent of α for α = 0°–70°

and equals  . 0.42 R; as α increases from 70° to
90°, it increases up to about 0.55 R. In this case, the val-

ues of  correspond to the vertical receiver spac-
ings ∆Z that are comparable with the half-sum of the
reception depths Z1 and Z2.

To conclude with, we emphasize that the presented
geometric interpretation of the numerically calculated
two-dimensional correlation moments of the scattered
sound field can serve to visualize the features of the
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space-time-frequency “medium filter” for the surface-
reflected signals and to improve the explicit estimates
[1] of the correlation domains.
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Abstract—A method and device for measuring the levels of liquids in reservoirs by using an acoustic reso-
nance in a tube are considered. The main advantages of the proposed method are its noise immunity and high
accuracy. © 2000 MAIK “Nauka/Interperiodica”.
Acoustic gauges for measuring the levels of liquids
and loose materials in reservoirs on the basis of the
method of pulsed echo sounding are widely used in
industry and transport [1, 2]. Their main advantage is
their high reliability in severe operating conditions,
which is achieved owing to the absence of moving parts
and the noncontact method of the level measurement.
The electroacoustic transducers of these level gauges
are not in contact with the monitored substance, which
may be aggressive, e.g., chemically active, hot, abra-
sive, and so on. The disadvantage of the echo-sounding
level gauges is their sensitivity to acoustic noise rather
common in industry; noise interferes with the useful
signals and disrupts the operation of gauges. The
enhancement of the measurement accuracy is also
desirable for such gauges [1].

Below, we describe a resonant acoustic level gauge
(RALG) based on the resonance of acoustic waves in a
tube resonator filled with air or some other gas [3].
Having all the advantages of echo-sounding level
gauges, the RALG surpasses them in terms of noise
immunity and accuracy. The main purpose of the
RALG is to measure the levels of liquids. The measure-
ment of the levels of some heavy and mobile loose
materials is also possible.

The main part of the RALG is a tube resonator with
a rigid wall. Its lower end is submerged in the moni-
tored substance, and the upper end is closed with a rigid
cover. In the upper part of the tube or in the cover, there
is a narrow ventilation opening for the communication
of the interior of the resonator with atmosphere or the
part of the monitored reservoir above the monitored
substance for maintaining the equality of gas pressure
and the level of the substance in the reservoir and the
resonator. A source of the noise signal and a receiving
microphone are located under the cover in the resona-
tor. We note that it is possible to manage without a
microphone, by using a reversible electroacoustic
transducer, as is done in a Pierce acoustic interferome-
1063-7710/00/4603- $20.00 © 20269
ter [4]. However, a microphone, in combination with an
amplifier, makes it possible to expand the frequency
band of the received signal and improve the accuracy of
measurements. The sound waves form resonances in
the upper part of the tube above the monitored sub-
stance level. The resonance frequencies depend on the
length of the cavity and, hence, on the level of the sub-
stance. By measuring these frequencies, it becomes
possible to determine the level of interest.

The sound waves are reflected from the rigid upper
cover without loss of amplitude and phase [5]. The
reflection coefficient of plane waves for perpendicular
incidence from gas onto the surface of the monitored
substance is described by the formula

R = (A – 1)/(A + 1),   A = ρ1c1/ρc, (1)

where ρ, c, and ρc are the density, sound velocity, and
acoustic resistance of gas, respectively, and ρ1, c1, and
ρ1c1 are the same quantities for the monitored sub-
stance. For a gas–liquid boundary, A @ 1. For example,
for the air–water boundary, A = 3.2 × 103 and, for the
air-oil boundary, A = 2.3 × 103. Then, R ≈ 1, and the
sound waves are reflected from the monitored sub-
stance in the same way as from a rigid cover. In this
case, the sound waves in the gas-filled cavity of length
L are resonant at the frequencies [5]

fn = cn/2L,   n = 1, 2, 3, …, (2)

where n is the number of resonance. The frequency
spectrum of the received signal develops maxima that
form a harmonic scale with the interval f1 = c/2L. By
measuring f1, it becomes possible to compute L and the
level of the monitored substance h:

L = c/2f1,   h = l – c/2f1, (3)

where h is measured upward from any given level, for
instance, from the bottom of the reservoir, and l is the
distance from this level to the upper cover of the reso-
nator. Only longitudinal waves are used. To eliminate
the generation of oblique waves (modes of higher num-
000 MAIK “Nauka/Interperiodica”
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bers), the following conditions for the internal cross-
section of a circular resonator of diameter D should be
satisfied [6]:

D < λh/1.706,   fh < 0.586c/D, (4)

where λh is the sound wavelength corresponding to the
highest allowable frequency fh of the operating range.

Analogous conditions for a rectangular resonator
with the long side b of the internal cross-section are as
follows [5]:

b < λh/2,   fh < c/2b. (5)

The ventilation opening should not shift the reso-
nance frequencies, which means that its acoustic resis-
tance should be sufficiently large. It requires the fulfill-
ment of the following conditions

d ! D,   d ! λh = c/fh, (6)

where d is the diameter of the opening.

The sound velocity in gas is independent of pressure
but strongly depends on its absolute temperature θ and
molecular weight µ; it is given by the formula [5]

(7)

where Rg = 8.341 J mol–1 deg–1 is the universal gas
constant and γ is the ratio of heat capacities. For
diatomic gases and air, γ = 1.4. The neglected changes
in temperature ∆θ and gas composition and, hence, in
its molecular weight µ result in the relative error of
the determination of L:

(8)

Thus, at the mean temperature θ = 293K (20°C), the
increment ∆θ = 30° leads to an error of 5% in the mea-
surement of L. For removing the temperature error, the
echo-sounding level gauges are provided with sensors
of air temperature and appropriate electronics for cor-
recting the sound velocity values [2]. For a fixed gas
composition in the resonator, such a correction is effi-
cient and can also be used in RALG. The most appro-
priate devices for RALG are the thermoelectric trans-
ducers, whose small size makes it possible to introduce
them into the resonator. Their accuracy is sufficiently
high. According to the JSA American standard, the tol-
erances for copper–constantan thermocouples are equal
to ±0.8% in the range of temperatures T from –60 to
+90°C [9], which corresponds to the relative standard
(root-mean-square) error σT/T ≈ 0.5%, or, for T =
20°C, σθ/θ = 0.034%. According to (8), this results in
the relative standard error σL/L = 0.017%. For L = 1 m,
we have σL = 0.17 mm.

At a small amplitude of sound waves, the dispersion
of the sound velocity in gas is practically absent, and,
as a consequence, there are no difficulties like those

c γRgθ/µ,=

∆L/L ∆c/c
1
2
--- ∆θ

θ
------- ∆µ

µ
-------– 

  .= =
encountered in the design of level gauges based on
transverse oscillations of a string [7] or a rod [8] char-
acterized by a strong dispersion.

If the gas composition in the resonator changes due
to, for example, vapor-gas emission of the monitored
substance, an error arises owing to the change in µ. For
example, the sound velocity in methane is 1.5 times
greater than in air. This gas is emitted from oil. If the
tube walls are compliant and thermally conducting, a
reduction in the sound velocity inside the tube is possi-
ble [6]. All the mentioned errors can be compensated by
introducing a supplementary reference resonator in the
design of RALG. This resonator should be similar to
the main one, but closed with rigid covers at both ends.
For convenience, its length Lk may be less than the
length of the main resonator. Its interior should com-
municate with the interior of the main resonator, or
with the common gas medium, through a ventilation
opening satisfying condition (6). In the reference reso-
nator, a resonance scale with the interval fk1 is excited.
Then,

(9)

This type of RALG will be called a double-resonator
gauge. The system of signal processing may be unified,
connected to the reference resonator by a switch when
needed. Usually, the parameters θ and µ change slowly,
and the connection to the reference resonator may be
rare, practically without reduction in the rate of level
measurement (h).

In the constructed prototypes of RALG, the signal
processing was performed in digital form by several
variants of algorithms and programs. The general flow-
chart of algorithms is shown in Fig. 1. The realization
of a noise signal received by the microphone, p(t),
where t ∈ [0, P], t is time, p is the sound pressure, and
P is the length of realization, is fed to the input of an
A/D converter. The digital sequence {p(ti)} = {p(i)},
where i = 0, 1, 2, …, N – 1 is the number of reading,
ti = i∆t, ∆t = 1/fs, fs is the sampling frequency, and P =
(N – 1)∆t, is passed from the output of the A/D con-
verter to the unit 2. There, the power spectral density
averaged over m realizations is computed. The finite
fast Fourier transform of the sequence {p(i)} is calcu-
lated as

(10)

where i, k are the numbers of readings, k = 0, 1, 2, …,
N – 1, j is the imaginary unit, and q is the number of
realization. The obtained sequence is smoothed by

c 2Lk f k1, h l Lk f k1/ f 1.–= =

Xq k( ) pq i( )WN
ik, WN

ik

i 0=

N 1–

∑ j
2πik

N
-----------– 

  ,exp= =
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using a Goodman window with seven weight coeffi-
cients

(11)

a(0) = 1, a(1) = a(–1) = 0.35, a(2) = a(–2) = –0.0875,

a(3) = a(–3) = 0.0625.

The seven weight coefficients are a reasonable com-
promise between the complexity of calculations and
quality of smoothing [10].

Then, the power spectral density is calculated with
the coefficient corresponding to the Goodman
smoothing:

(12)

The obtained estimate of the power spectral density
is averaged over m successive realizations:

(13)

In single level measurements, we used a cepstrum
method according to which the cepstrum of the power
spectral density was calculated in the unit 3

(14)

where Φ is the Fourier transform. The maximum of the
cepstrum is formed at tk = 1/f1. According to (3), L =
ctk/2. Taking the logarithm of the power spectral den-
sity equalizes the levels of harmonics of the scale to
some extent and assists in the detection of the maxi-
mum of the cepstrum.

In the continuous operation of RALG in the mode of
tracking the level of the monitored substance, a simpler
algorithm can be used according to which, in the unit 3,
the normalized cross-correlation function R(L, LT) of
two power spectral densities, i.e., the measured power
spectral density (k, L) and theoretical one S(k, LT), is
calculated. For L = LT R(L, LT) = 1 and, for L ≠ LT R(L,
LT) < 1. A set of spectra S(k, LT) is calculated for a num-
ber of values of LT selected with a small step ∆LT in the
vicinity of the value of L obtained in the previous mea-
surement. The value of LT corresponding to the maxi-
mum of the correlation function is taken to be the true
value. For a slow change in L, the required number of
steps is not large.

The value of h is calculated in the unit 4 by equa-
tions (3) and (7) or (9). The unit 5 performs the visual-
ization of the results of the measurement and generates

Xq k( ) a i( )Xq k i+( )
i 3–=

3

∑=

=  Xq k( ) a i( ) Xq k i–( ) Xq k i+( )+[ ] ,
i 1=
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Sq k( ) 1.267
1
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S

ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
a request signal for supplying the next ensemble of the
signal realizations to the input of the A/D converter.

A simplified schematic diagram of a double-resona-
tor RALG is shown in Fig. 2. The external interfering
noise has resonances at the same frequencies as the
radiated signal, and, hence, the RALG is absolutely
immune to it.

Random errors of measurement are connected with
the boundedness of the intervals of averaging in time,
frequency, and ensemble of realizations. With some
assumptions, the standard error of determination of f1

by N harmonics and m realizations is σf1 ≈ 1/3P .
From the relation N ≈ 2LF/c, we obtain

(15)

Nm

σ f 1
1

3P
------- c

2LFm
---------------.≈

1 2

345

7 8

96
4

5

2

4
5

3

1

Fig. 1. Flow-chart of the algorithms of signal processing:
(1) analog-to-digital converter, (2) calculation of power
spectral density, (3) analysis of the power spectral density,
(4) calculation of the level h, and (5) representation of the
result on the display and the request for the input signal.

Fig. 2. Schematic diagram of a double-resonator RALG:
(1) monitored substance, (2) measuring resonator, (3) refer-
ence resonator, (4) source of the noise signal, (5) micro-
phone, (6) generator of the electric noise signal, (7) switch,
(8) system of signal processing or PC, and (9) indicator of
the level or a display.
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Differentiating expression (3) with respect to f1 and
substituting df1 for σf1 according to (15), we obtain the
relation for the standard error in the determination of h:

(16)

Let the sound velocity be calculated by the mea-
sured value of gas temperature. The standard error of
the temperature measurement σθ results in the standard
errors of the determination of sound velocity σc and
level of the monitored substance σhθ:

(17)

Assuming that the errors σhP and σhθ are independent,
we obtain the relation for the standard error of measur-
ing h by a single-resonator RALG:

(18)

Similarly, we obtain the equation for σh for a double-
resonator RALG:

(19)

For the purpose of testing the units of the RALG,
evaluating its efficiency, and refining its characteristics,
we manufactured and tested nine prototypes of the
instrument with various types of radiators and receivers
of noise signals, various resonators and data processing
systems. The main unit of the RALG is enclosed in a
cylindrical housing screwed onto the tube resonator. It
consists of a generator and radiator of a noise signal, a
microphone, and a microphone amplifier. We used
small-sized electrodynamic and piezoceramic radiators
and electret microphones. Metal and plastic tubes in
30–50 mm inner diameter and in 1–5 m length were
used as measuring resonators. Water was used as the
monitored substance. Its level was monitored by a
glass-tube level gauge with a standard error of reading
of about 0.3 mm. The temperature of water and air was
measured by mercury thermometers with standard
errors of about 0.3°. The water temperature was
changed in the range from +18 to +80°C with an elec-
tric heater. In one of the experiments, the upper part of
the tube was rolled into a ring of diameter 0.4 m. In all
cases, the RALG operated properly.

The signal was processed on IBM PCs and Note-
books provided with A/D converter boards. The fre-
quency spectra, the cepstra, and the measured level of
water were shown on a display and recorded by a
printer. The power of the electric signal supplied to the
radiator did not exceed 0.1 W, which is lower than the
level of inflammation of combustible materials of the

σhP σLp
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L
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PA group (propane, coal dust), and this fact makes the
RALG comply with the fire safety regulations. In the
course of the tests, the RALG was subjected to intense
noise interference of the level up to 154 dB with a
“pink” spectrum in the range 30–5000 Hz and to vibra-
tion in axial and transverse directions with the ampli-
tude of the particle velocity up to 100 m/s in the fre-
quency range 10–2000 Hz. Under these conditions, the
RALG retained its accuracy.

An empirical estimate of the standard error of mea-
surement was made as follows. At a fixed level of water,
M measurements of Li were made, i = 1, 2, …, M (M =
20) by a single-resonator RALG and by a glass-tube
level gauge. The temperature of air and water was
simultaneously measured by mercury thermometers.
The value of σh was calculated by the formulas

(20)

This procedure was repeated for several values of L in
the range 0.5–1 m. The empirical value σh = 0.5 mm,
or σh/  ≈ 0.05%, was obtained. The parameters of
these measurements were as follows: P = 0.4 s, m = 10,
f = 50–2000 Hz, F = 1950 Hz, T = +20°C, θ = 293K,
σθ = 0.3°, D = 3 cm, and d = 1 mm. According to for-
mula (7), c = 343 m/s. Requirements (5) and (6) are sat-
isfied. According to (18), the calculated estimate is
σh ≈ 0.3–0.8 mm, or, on the average, σh ≈ 0.5 mm,
which corresponds to the empirical estimate.

For a double-resonator RALG at the same condi-
tions, for Lk = 1 m and  = 0.5–1 m, according to (20),

we have σh ≈ 0.3–0.6 mm and σh/  ≈ 0.06%. For com-
parison, the relative error of measurement by various
modifications of the ÉKHO-5 echo-sounding level
gauge lies in the range ∆h/Lmax = 0.5–2.5%, or σh/Lmax ≈
0.3–1.7% [2], where Lmax is the upper limit of the range
of measurements. The widely used float-type and
hydrostatic gauges measuring the levels of liquids
have a fundamental error of 1–5% of the upper limit
of measurement [9]. The allowable level of noise
interference for the ÉKHO-5 gauges is not greater
than 60–80 dB [2].

The field tests of RALG were carried out aboard a
river tanker and at a shore base of the inland water
transport. The monitored substance was fresh water,
L = 0.5–3 m, T = +15°C. The tests demonstrated the
reliability of the RALG in field conditions and their
accuracy being close to the rated value.

The positive results of laboratory and field tests
allow us to recommend the RALG for industrial use.
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Abstract—Experimental data on the angular and energy structures of the acoustic field generated in the first
convergence zone by a source of continuous pseudo-noise radiation in the frequency range 0.5–4.0 kHz are pre-
sented. The experiments are carried out in a tropical region of the Central Atlantic. The acoustic field charac-
teristics are studied with the omnidirectional and highly directional (~2°) reception in the vertical plane. Par-
ticular attention is given to studying the field structure at the entrance to the convergence zone at frequencies of
1.25 and 3.15 kHz. The experimental data are compared with the ray calculations. In the experiments, the origin
of the convergence zone, which is determined by a sharp increase in the received signal intensity, is found to be
about 1.2 km nearer to the source than in the calculations. At a frequency of 1.25 kHz, the convergence zone
begins 300 m nearer than at the higher frequency (3.15 kHz). At distances of several kilometers to the zone ori-
gin, weak signals that arrive at the same angles as the signals forming the origin of the convergence zone are
detected. © 2000 MAIK “Nauka/Interperiodica”.
In investigating the acoustic field structure in the
ocean, one of the key problems is the degree of agree-
ment between the experimental data and the computa-
tional results for a given waveguide model. The solu-
tion of this problem has many aspects, and, first of all,
it depends on the requirements that are imposed on the
aforementioned agreement in setting various specific
problems. At the first stages of studying the energy
characteristics of the total acoustic field (with omnidi-
rectional reception), the approximate correlation was
already established between the experimental data and
the theoretical concepts of long-range sound propaga-
tion in the underwater sound channel. However, in the
studies of the fine structure of acoustic fields, when the
experiments with the directional reception in the verti-
cal plane came into use and more severe requirements
had been imposed upon the correlation between the
experimental data and the computational results, signif-
icant distinctions were revealed, which showed that the
problem considered is far from being solved [1–3]. The
main discrepancies were observed in the spatial posi-
tions of the experimental and calculated boundaries of
convergence zones, as well as in the fine (angle, time,
energy, and correlation) structure of the acoustic field.
In particular, during our experiments carried out in vari-
ous regions of the ocean at frequencies of 0.5–4.0 kHz,
we observed that the first convergence zone was
located nearer to the source compared to the calcula-
tions (the difference varied from several hundreds of
meters to ~1.5 km) [4–6]. In some publications related
mainly to the studies of the total field with the omnidi-
rectional reception, deviations by ~200 m are consid-
ered insignificant, and this accuracy of the calculations
1063-7710/00/4603- $20.00 © 0274
is deemed as quite acceptable [7]. However, for some
applied problems, e.g., tomography, related to the pre-
diction of the acoustic field structure and the solution
of inverse problems, such deviations can be signifi-
cant. In addition, the search for the reasons leading to
these deviations allows one not only to develop the the-
ory of sound propagation, but also to better understand
the physical nature of the phenomena that occur in the
ocean.

The problem under consideration was studied by
introducing some changes and corrections in the exist-
ing models and by improving the metrological support
of the experiments. Because the experiments were per-
formed at relatively high frequencies, we used the ray
model of waveguide sound propagation, that, as it was
shown in [8], allows one to obtain results no worse than
those given by the parabolic equation even in the case
of a rapid variability of the sound velocity profile (for
example, in the thermocline). The refinement of this
model with allowance for the Earth curvature and wave
corrections in the vicinity of caustics [5] somewhat
reduced the discrepancies between experimental and
calculated positions of the convergence zone, but did
not eliminate them totally.

For improving the metrological support of the
experiments, we used a specially developed hydroa-
coustic system for almost continuous measurements of
the distance between the corresponding points (up to
once a minute). The distance was measured between
the radiation and reception points [9] rather than
between the ships, as in the case of the satellite naviga-
tion.
2000 MAIK “Nauka/Interperiodica”
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In this paper, the main attention is given only to the
discrepancies between the experimental and calculated
positions of the origin of the first convergence zone at
different frequencies from the audio range. In some
experimental investigations of the angular and energy
structures of the acoustic field, such discrepancies were
really observed although, according to the ray theory,
they must be absent at frequencies higher than several
hundred hertz. For a detailed study of this question, we
carried out special measurements in the course of the
comprehensive investigations of the acoustic field
structure by the research vessels Sergei Vavilov and
Petr Lebedev of the Acoustics Institute. The experi-
ments were carried out in April 1984 in one of the deep-
water tropical regions of the Atlantic Ocean. Some
results of these investigations were published in [6].

The dependence of the sound velocity c on the depth
z in the test region is shown in Fig. 1. For such a profile
c(z) with a source in upper oceanic layers, the sound
field in the waveguide was formed as a clearly defined
sequence of convergence and shadow zones. The exper-
iment was carried out along the track incorporating the
three first convergence zones with the continuous vari-
ation of the distance between the ships. The rather slow
variation of the distance was attained by the drift of the
receiving ship and a slow motion of the transmitting
ship in the direction opposite to the drift with operating
acoustic systems lowered to a given depth. Pseudonoise
wide-band radiation in the frequency range 0.5–4.0 kHz
was used. The signals were received by an extended
40-m array that consists of 296 hydrophones less than
5 cm in diameter, which were arranged to form 74 phase
centers. This allowed us to realize both the omnidirec-
tional reception at any depth within a 40-m layer and
the directional reception with the corresponding pro-
cessing of the received signals. To obtain the data at dif-
ferent frequencies from a wide-band signal, we used
1/3-octave filters for singling out signals with the mid-
frequencies fm equal to 1.25 and 3.15 kHz. The direc-
tional pattern width in the vertical plane did not depend
on frequency, because the signals with different fm were
received at different lengths of the receiving array. In
both cases, the angular resolution was ~2°. The radiator
and the center of the receiving array were at depths z =
200 m and z1 = 190 m, which approximately corre-
sponded to the lower boundary of the thermocline.

Among all results of investigations of the frequency
dependence of the acoustic field characteristics that
were obtained in this region, we will only consider data
that refer to the first convergence zone. In this case, at
the origin of the zone, the field structure is formed by
signals transmitted through the water layers lying
below the radiation and reception depths and, therefore,
the influence of an unstable subsurface oceanic layer on
the experimental results is eliminated.

The acoustic field structure in the first convergence
zone was studied within two days. In this time interval,
the zone was passed three times, which allowed us to
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
estimate the stability of the characteristics obtained.
Over the total extension of the zone, for both frequency
ranges, we recorded the amplitudes and the arrival
angles in the vertical plane (the angular field structure),
as well as the energy characteristics for omnidirectional
reception in a 40-m layer of the array location.

Figure 2 shows the results of studying the angular
field structure obtained in three passages along the zone
for both frequency ranges. The distance r is represented
by the abscissa axis, and the signal arrival angles in the
vertical plane α are represented by the ordinate axis.
The minus sign refers to the signals arriving at the point
of reception from below, and the plus sign refers to sig-
nals arriving from above. The solid and dashed lines
correspond to the calculated dependences α(r) for the
water rays and bottom-surface reflections, respectively,
and various symbols refer to the experimental data
obtained in different passages of the zone. It should be
noted that all experimental points in the plot are shifted
upwards along the ordinate axis by ~1.5° in order to
eliminate an array slope due to the drift of the receiving
ship. From this plot, it follows that the general experi-
mental structure for both the water rays and the bottom
reflections is close to the calculated structure in the
regions where the calculated field differs from zero.
A significant deviation only occurs at distances from
~47 to 51 km, where, according to the calculations, no
water signals must be present. In the experiment, these
signals with a clearly pronounced angular spectrum (in
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Fig. 1. Sound velocity profile c(z).
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Fig. 2. Angular structure of the sound field in the first convergence zone; z = 200 m, z1 = 190 m.
the range of arrival angles ±5°) were recorded much
nearer to the source (by ~4 km) than the calculated ori-
gin of the convergence zone. However, it should be
noted that the intensity of these signals was low, and
their focusing factor was less than unity. (Some exper-
imental data on the insonification of a shadow zone by
water signals of the same frequencies at distances
shorter than that of the first convergence zone are pre-
sented in [10] for a different region of the ocean.)

Figure 3 exhibits the experimental results obtained
by measuring the energy structure over the total exten-
sion of the first convergence zone with the omnidirec-
tional reception in the 1/3-octave frequency bands with
fm = 1.25 kHz and fm = 3.15 kHz. The distance r is rep-
resented by the abscissa and the intensity J is the ordi-
nate, where 0 dB corresponds to the signal level at a
distance of 1 km for the spherical law of propagation.
The solid curve (1) corresponds to the measured
results, the dotted curve (2) to the calculations, and the
dot-and-dash curve shows the spherical law J(r) with
allowance for the spatial attenuation calculated by the
formula β = 0.028f 3/2 dB/km, i.e., 0.04 dB/km for f =
1.25 kHz and 0.16 dB/km for f = 3.15 kHz. The plots in
Fig. 3 show that the general behavior of the experimen-
tal and calculated dependences J(r) is almost the same;
however, they are displaced in distance relative to each
other. The calculated origin of the convergence zone
(r ≈ 51 km) “lags behind” the measured origin, which
is determined from the rapid increase in the intensity of
the received signals, by about 1.2 km for both fre-
quency ranges. In the vicinity of the caustic (near the ori-
gin of the zone), the signal propagation anomaly is
~16µ dB for fm = 1.25 kHz and ~ 22 dB for fm = 3.15 kHz.
The anomaly reaches its maximum level in the first half
of the zone at a distance of 51.1–51.3 km, which is
equal to 21–22 dB for the signals with fm = 1.25 kHz
and 22–23 dB for the signals with fm = 3.15 kHz. In
these plots, the local maxima and minima are caused by
the interference effects arising because of the multipath
character of the acoustic field.

In order to investigate in detail the field structure
formed only by water signals, we used the directional
reception in the vertical plane. Figure 4 compares the
energy field structure J(r) obtained at the entrance to
the convergence zone at distances from ~48 to ~52 km
with the directional and omnidirectional receptions for
both frequency ranges considered. The intensity J is
represented by the ordinate and the distance r (at the
bottom) and the current time t (at the top) are shown on
the abscissa axis. Curves with the index 1 obtained for
the omnidirectional reception correspond to curves 1 in
Fig. 3. Curves with the index 2 represent the depen-
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
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Fig. 3. Energy structure of the sound field in the first convergence zone for the omnidirectional reception; z = 200 m, z1 = 190 m.
The frequency range with fm = (a) 1.25 and (b) 3.15 kHz.
dences J(r) obtained for the directional reception in the
vertical plane (the angular width of the directional pat-
tern is ~2°). The guidance angle of the pattern α corre-
sponded to the direction of the signal arrivals with the
maximum intensity in the angular spectrum at each dis-
tance (by an angular spectrum the dependence of the
amplitudes of signals on their arrival angle in the verti-
cal plane is meant). The spherical law of sound propa-
gation with allowance for the spatial attenuation is
shown by a dot-and-dash line. It follows from these
plots that the focusing factor of the signals received by
the directional system at the entrance to the conver-
gence zone is much less than unity (the intensity of the
total signal within the array directional pattern falls by
20 dB below the dot-and-dash line at certain distances).
As the distance increases, the amplitude of the received
signals gradually increases, and, at a distance of r ≈
49 km for the frequency fm = 1.25 kHz and a distance
of r ≈ 49.5 km for fm = 3.15 kHz, the signal intensities
become comparable for the directional and omnidirec-
tional reception. This means that, at these distances, the
main contribution to the total field in the omnidirec-
tional reception is given by the signals that propagate
not only over the water path, but arrive in the narrow
angular range that is used in the directional reception.
At longer distances within the convergence zone, a
fairly correlated variation of both dependences J(r) is
observed.

In the hydrological conditions considered, the origin
of the convergence zone is marked by a rapid increase
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
in the amplitude of the received signal. As shown in
Fig. 4b, such an increase in the amplitude for the sig-
nals with fm = 3.15 kHz culminated in a well pro-
nounced maximum at a distance of 49.73 km. For sig-
nals with fm = 1.25 kHz, the corresponding maximum
of J(r) was less pronounced and observed at a distance
of ~49.50 km. According to these data, one can speak
about a tendency toward a nearer location of the conver-
gence zone in the experiment at a frequency of 1.25 kHz
as compared to a frequency of 3.15 kHz. In Fig. 4, the
calculated origin of the convergence zone (50.95 km) is
shown by a thick vertical line. Thus, the experimental
origin of the convergence zone is ahead of the calculated
one by ∆r ≈ 1.45 km for the signals with fm = 1.25 kHz
and ∆r ≈ 1.22 km for the signals with fm = 3.15 kHz.

A more detailed angular field structure at the
entrance to the first convergence zone was obtained
from analyzing the continuous sequence of all recorded
realizations of the angular spectrum. Fig. 5 exhibits (a)
the examples of realizations of the angular spectrum
and (b, c) the experimental angular structure of the field
α(r) at the entrance to the zone for both frequency
ranges. These examples of the angular spectra are pho-
tographs taken from an indicator of a sector display of
the receiving system. To increase the accuracy of the
determination of the signal arrival angles within the
range from –20° to +20°, the indicator scale was
extended about six times. The exterior scanning on the
screen corresponds to the response of the total array
length to the signals with fm = 1.25 kHz, while the inte-
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rior scanning refers to the response of the central part
of the same array to the signals with the mid-frequency
fm = 3.15 kHz. In Figs. 5b and 5c, the observation time
t and the distance to the source r are laid off on the
abscissa and the signal arrival angles are plotted along
the ordinate axis. The left scale refers to the arrival
angles obtained directly from the processing of the
angular spectra, while the right scale refers to the
arrival angles corrected for the array slope, which was
equal to ~1.5°. In order to obtain certain information on
the energy relationships of the received signals from
the dependences α(r), the experimental values of the
arrival angles are shown by four different symbols
arranged in the order of increasing signal amplitudes:
points, circles, crosses, and stars. When rays are not
resolved by the directional pattern but their presence is
evident from the angular spectrum form, they were
shown by a common oval curve on the plot. The angular
spectrum realizations shown in Fig. 5a refer to the field
segments that are marked in the plots by vertical arrows
with indices 1–4 corresponding to the numbers of the
angular spectra.

From the experimental dependences α(r), we can
observe the dynamics of the variation of the angular
field structure at different segments of the track at the
entrance to the convergence zone. In spite of the simi-
larity of the general behavior of the dependences α(r),
the fine structure of the field at different frequencies
slightly differs, which is confirmed by the photographs
of the angular spectra presented in Fig. 5a.

As noted above, a steep increase in the intensity of
the received signals is related to the origin of the con-
vergence zone. At these distances, the signals arrive
over rays with the grazing angles that slightly differ
from each other, and, therefore, to resolve them even
using a highly directional system is very difficult. In
Figs. 5b and 5c, such segments of the angular structure
characterizing the high signal level are located at dis-
tances ~49.5–49.6 km and designated by vertically
elongated ovals and stars. Let us note that the increase
in the signal amplitude with the frequency fm = 1.25 kHz
begins slightly nearer to the source than with the fre-
quency fm = 3.15 kHz. At distances exceeding ~50.1 km,
a simpler angular structure is first formed, which is fol-
lowed by a more complicated structure with fully
resolvable and well observable ray congruences. From
Figs. 5b and 5c, it also follows that the angular structure
was already formed at the smallest distances (~48.4 km)
shown in these plots, i.e., well before the origin of the
convergence zone. The angular structure was character-
ized not only by two families of signals with the arrival
angles (±12°–13°) that correspond to the first bottom
reflections but also, what is more important, by the
family of weak signals with the arrival angles from
(+2°…3°) to (−4°…6°). These weak signals arrive at
the point of reception over purely water paths. It should
be noted that recording these signals with the use of an
extened array was possible at shorter distances: accord-
ing to Fig. 2, it was possible from a distance of ~47 km,
the arrival direction being well resolved by the direc-
tional array. A pronounced angular dependence corre-
sponding to the width of the directional pattern of the
array testifies to a rather well defined front of the arriv-
ing signal. An example is the angular spectrum with the
index 1 in Fig. 5a, which was recorded at a distance of
~49 km, i.e., before the origin of the convergence zone.
The two-ray spectrum for the signals with fm = 3.15 kHz
and the three-ray spectrum for the signals with fm =
1.25 kHz possess narrow and clearly defined maxima.

Figure 6 compares the experimental angular struc-
ture of the sound field at the entrance to the conver-
gence zone with the calculated dependence α(r) for the
signals within the frequency range with fm = 1.25 kHz.
The calculated dependence is shown by a solid curve.
The distance r is shown on the abscissa, and the upper
scale is related to the experiment, while the lower scale
is related to the calculation. The calculated curve was
imposed on the experimental points in such a way as to
reach the best agreement between the experimental and
calculated values at the field segments belonging to the
convergence zone. The shift in distance between these
two dependences is a measure of the difference
between the experimental and calculated positions of the
convergence zone boundary. With reference to Fig. 6,
this shift is ∆r ≈ 1.45 km.

The boundary (origin) of the convergence zone was
determined more precisely from the experimental data
obtained with the directional reception, on the basis of
the energy relationships for the recorded signals. Fig-
ures 7a and 7b exhibit the dependences of the sound
field level on distance at the output of the array for
water rays that determine the origin of the convergence
zone and correspond to signals of both frequency
ranges (fm = 1.25 kHz and fm = 3.15 kHz), with arrival
angles close to ~–3° (see Figs. 5b, 5c). The distance r
and the current time of the experiment t are plotted
along the abscissa axis, and the ratio of pressures
P/Pmax is represented by the ordinate on the linear scale,
where Pmax is the maximum pressure at the site consid-
ered. In this case, the changes in the signal level, espe-
cially in the vicinity of the maximum, can be repre-
sented more clearly than on the logarithmic scale (see,
e.g., Fig. 4). As noted above, the signals at the entrance
to the convergence zone were recorded with the use of
the complete length of the 40-m array, as well as by its
separate hydrophones. The signals from a group of
hydrophones (30 units) uniformly distributed in depth
were recorded in the wide frequency band (0.5–4 kHz).
Then, they were simultaneously introduced into an ana-
lyzer and summed up. The temporal variations of the
sound pressure obtained by summing up signals from
these hydrophones are shown in Fig. 7c. The compari-
son of this dependence with those in Figs. 7a and 7b
shows a good agreement between the curves obtained
for the same instants of time, which confirms the valid-
ity of various methods used for recording and process-
ing the signals.
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
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fm = (a) 1.25 and (b) 3.15 kHz; (c) the frequency range 0.5–4.0 kHz.
In order to locate the origin of the convergence zone,
we proceed from the fact that the field at a simple caus-
tic is by a factor of 1.5 less than at the nearest maximum
at the entrance to the convergence zone. The distance
∆rm from the caustic to this maximum can be found
from the formula [11]

,

where m is the Airy function argument whose modulus
is equal to 1.02, r is the distance from the source, χ0 is

∆rm

m ∂2r ∂⁄ χ0
2 1/3

21/3 k0 χ0sin( )2/3
-------------------------------------=

=  1.02 ∂2r ∂⁄ χ0
2( )1/3

c2/3

21/3 2πf χ0sin( )2/3
-------------------------------------------------
the grazing angle at the radiation point, f is the signal
frequency, and c is the sound propagation velocity.

Thus, to determine the origin of the convergence
zone from the calculated location of the caustic, it is
necessary to find such a distance r in the energy depen-
dences (Fig. 7) that the signal amplitude at this distance
be by a factor 1.5 less than its value at the nearest
maximum. Then, for the signals with the mid-fre-
quency fm = 1.25 kHz, we obtain r = 49.48 km, and, for
the signals with fm = 3.15 kHz, we obtain r = 49.79 km.
Therefore, the origin of the convergence zone at lower
frequencies is nearer to the source by ~300 m than at
higher frequencies. A discrepancy between the calcu-
lated (50.95 km) and observed locations of the origins
of the convergence zone is ∆r ≈ 1.16 km for the signals
with fm = 3.15 kHz and ∆r = 1.47 km for the signals
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
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with fm = 1.25 kHz. The displacement of the origin of
the convergence zone toward the source for the signals
with fm ~ 1 kHz compared to higher-frequency signals
was observed by us in other experiments as well. True
enough, sometimes the value of such a displacement
was much smaller, but the tendency toward such a phe-
nomenon was often observed. This fact somewhat dif-
fers from the theoretical results [11]. The ray calcula-
tions show that the location of the caustic does not
depend on frequency, while the location of the field
maximum at a distance of ∆rm is frequency dependent.
Therefore, to obtain the signal maximum at a higher
frequency, it is necessary to penetrate inside the conver-
gence zone to a smaller distance ∆rm. Therefore, as the
frequency decreases, the field maximum nearest to the
origin of the convergence zone should move away from
the source, rather than approach it as in the experiments.

It should be noted that a similar behavior of the fre-
quency dependence of the convergence zone locations,
i.e., the lower frequency, the nearer the convergence
zone, was also reported by other authors [12] who ana-
lyzed the experimental data on the sound propagation at
frequencies of 13.89 and 111.1 Hz along an extended
track (from 400 to 2800 km). However, their conclu-
sion was not quite correct, since the authors compared
the signal propagation data obtained at different fre-
quencies and radiation–reception depths (104 m for the
low frequency and 21 m for the high frequency).

On the basis of the studies of the angular structure
of the acoustic fields generated by continuous pseudo-
noise source in the frequency range 0.5–4.0 kHz in a
tropical region of the Central Atlantic, the following
conclusions can be drawn:

The field experiments confirm the fact of a discrep-
ancy between the calculated and experimental positions
of the origin of the convergence zone in the deep ocean,
this discrepancy being observed in many previous
investigations. For the hydrological conditions consid-
ered above, the origin of the first convergence zone was
by about 1.1–1.4 km nearer to the source than in the
calculations, which is close to the maximum discrep-
ancy observed in earlier experiments.

As a result of detailed investigations of the angular
and energy structures of the sound field in the one-
third-octave bands with the mid-frequencies 1.25 and
3.15 kHz, it is shown that there exist a frequency depen-
dence of the spatial position of the convergence zones:
at lower frequencies, the first zone is by ~300 m nearer
to the source than at higher frequencies.
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
Within several kilometers of the origin of the con-
vergence zone, the experiments revealed the appear-
ance of weak signals, which propagated without reflec-
tions from the waveguide boundaries and arrived at the
same angles as the signals forming the origin of the first
convergence zone. The mechanism of the weak signal
excitation has yet to be understood.
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Abstract—Generation of coherent acoustic oscillations due to the interaction of laser pulses with the periodic
domain structure formed in a lithium niobate single crystal is observed. It is found that the excitation of acoustic
waves is most efficient when the generated wavelength is equal to the period of the domain structure. The pro-
posed mechanism of the optical generation of acoustic oscillations consists of the photogeneration of free car-
riers, which compensate the polarization fields within the domains, and the occurrence of alternating elastic
stresses caused by the piezoelectric effect. © 2000 MAIK “Nauka/Interperiodica”.
The modern methods developed for the formation of
periodic domain structures in ferroelectrics made it
possible to derive new information on the interaction of
coherent optical radiation with these structures and to
extend the area of their application in nonlinear optics
[1]. Most investigations concerned with this phenome-
non center on the generation of the second harmonic of
the laser radiation interacting with the domain struc-
ture. This effect was theoretically substantiated by
Armstrong, Bloembergen, and Ducuing as early as
1962 [2]. However, in centrally asymmetric ferroelec-
trics such as lithium niobate, lithium tantalate, and bar-
ium titanate, which have pronounced piezoelectric
properties, the interaction of an external field with a
periodic domain structure should lead to a wider variety
of manifestations.

In this paper, we report on the observation of coher-
ent acoustic oscillations generated as a result of the
interaction of laser pulses with a periodic domain struc-
ture formed in lithium niobate.

It should be noted that the possibility of a laser gen-
eration of acoustic waves at a spatial charge grating
(called a holographic grating) was considered in a num-
ber of publications [3–5]. Such gratings can be formed
by optical radiation in photorefractive crystals. Experi-
mentally, the aforementioned effect was first observed
by Pyatakov et al. [6]. In these experiments, it was
found that the generation of pulses of acoustic waves
occurred in the process of erasure of the charge struc-
ture under pulsed laser radiation. Thus, the following
generation of acoustic waves was possible only after
another act of the holographic grating formation by an
auxiliary laser. Several years later, a new version of the
generation of acoustic pulses was proposed: a photo-
conducting piezoelectric was irradiated by a laser pulse
with a periodic intensity distribution [7]. In this case,
the generation mechanism was also related to the pro-
1063-7710/00/4603- $20.00 © 20284
cess of recording or erasing the field of spatial charge.
Below, we will show that the mechanism of the acoustic
wave generation at a periodic domain structure has
much in common with the generation at a holographic
grating, but in this case no erasure of the domain struc-
ture takes place.

The experimental study of the laser generation of
acoustic waves was performed on a rectangular plate of
an X-cut lithium niobate crystal. The sample contained
~1018 cm–3 iron ions with a concentration ratio
Fe2+/Fe3+ ~ 0.3. According to Vladimirtzev et al. [8],
such conditions provide the maximum concentration of
photoexcited electrons. A system of 50 ferroelectric
domains was preliminarily formed in the middle part of
the plate. The width of every domain was about 50 µm,
and the domain boundaries were perpendicular to the
polarization axis (Fig. 1). The formation of the periodic
domain structure was performed by the method
described by Mizuuchi and Yamamoto [9]. The plate
ends were covered with metal to form electrodes that
could be used for a broadband detection of acoustic
waves. The optical effect was produced by a homoge-
neous beam of the second harmonic of a YAG : Nd3+

laser (λ = 0.53 µm). The beam was projected onto the
sample surface to form a 10 × 2 mm2 rectangular spot.
The sample was irradiated with a sequence of pulses
characterized by the power density104 W/cm2, pulse
duration 1.2 × 10–7 s, and pulse repetition frequency
10–50 Hz. To measure the jumps that occur in the elec-
tric field strength within the domains under the laser
pulses, the electrooptic effect was used. The refraction
index was measured with the help of a low-power He-
Ne laser. As a laser pulse affected the region of the peri-
odic domain structure, radio-frequency (r.f.) pulses
were detected at both acoustic transducers. According
to their travel times to the detectors, these pulses were
attributed to the signals of a surface acoustic wave and
000 MAIK “Nauka/Interperiodica”
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the longitudinal and transverse components of a sub-
surface acoustic wave (Fig. 2). The center of the fre-
quency spectrum of these waves (the spectrum is shown
in Fig. 3) corresponds to the condition of the equality
between the acoustic wavelength and the period of the
domain structure. The strain amplitude in the acoustic
wave reached values of about ~10–4.

According to Lyamshev [10], the generation of elas-
tic waves under a modulated laser radiation is most effi-
cient when it occurs at the expense of a periodic ther-
moelastic process. Our previous experiments [11]
showed that, in such transparent materials as lithium
niobate, the thermoelastic generation is effective only
in the presence of an absorbing layer (aabs ≥ 102 cm–1)
applied to the sample surface, and the frequency range
of the generated waves is determined by the duration of
the laser pulses.

We propose another mechanism for the laser gener-
ation of acoustic waves: it consists of the photogenera-
tion of a great number of electrons, which screen the
polarization fields within the ferroelectric domains.
Because of the opposite signs of the piezoelectric coef-
ficients in neighboring domains, the jumps in the result-
ing electric fields cause alternating strains at the
domain boundaries. Thus, a periodic domain structure
can be represented (Fig. 1c) in the form of a system of
periodically arranged sources of acoustic oscillations
that propagate in both directions outward from the peri-
odic domain structure. Because of the interference of
the oscillations generated by individual sources, an effi-
cient generation of acoustic waves is possible only at
the frequencies satisfying the condition

(1)

where d+ and d– are the widths of the domains with
direct and inverse polarizations and V is the velocity of
the acoustic wave propagation.

After the termination of the laser pulse, a relaxation
of the induced field takes place. At a certain ratio
between the relative pulse duration and the relaxation
time, the polarization fields inside the domains may
recover to their initial values by the beginning of the
next pulse of the sequence.

It is well known that lithium niobate belongs to the
group of crystals that possess a strong photovoltaic
field. This field is formed at the expense of the spatial
recharging of impurity ions with variable valence, e.g.,
Fe2+ and Fe3+ ions. The strength of this field may reach
values as high as 105 V/cm [12]. In our case, under a
uniform irradiation, only the photogeneration of a great
number of free electrons n takes place.

To estimate the jump that occurs in the polarization
field E0 under a short laser pulse of duration τp, we can
use the known system of the Poisson and continuity
equations [12]. This system of equations describes the
evolution of the field of the spatial charge. When τp < τr
(the electron recombination time), the electron recom-

f nV d⁄ , n 1 2 3… d, , d+ d–,+= = =
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bination processes that occur within the pulse duration
can be neglected. Then, the varying polarization field
obeys the equation

(2)∂E
∂t
------ E

τ
---+ 0,=

1

2
3

4

5
6

7
8

Z

Y Z

+++ –––

(c)

(b)

(a)

Fig. 1. (a) Experimental setup for the study of the optical
generation of acoustic waves at a periodic domain structure;
the directions of (b) the polarization fields and (c) piezoelec-
tric axes in the domains. (1) Sample; (2, 3) end transducers;
(4) domain structure; (5) capacitive pickups; (6) oscillo-
scope; (7) laser beam; and (8) cylindrical lens.

0

0 1 2 3
t , µs

T

L
R

r.f. pulse amplitude (arb. units)

Fig. 2. Acoustic signals corresponding to the (L) longitudi-
nal, (T) transverse, and (R) surface waves.
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where τ = εε0/enµ; µ and n are the mobility and concen-
tration of photoexcited electrons, respectively.

The solution to equation (2) in the form

(3)

shows that the variation in the polarization field ∆E is
proportional to the optical beam intensity I, because

(4)

where α is the optical absorption coefficient, k is the
quantum efficiency of the excitation, and g is the elec-
tron generation rate.

For the known material constants of lithium nio-
bate, the aforementioned concentrations of iron ions,
and I ~ 104 W/cm2, the jump in the field strength may
reach 104–105 V/cm. The proposed mechanism was
experimentally verified by the observation of the peri-
odic variation of the refraction index δn within the
intervals of pulse duration. The values of δn presented

∆E t( ) E0 t τ⁄–( )exp=

n gτ r; g t( ) αkI "ω,⁄= =

1.0

0.5

0 10 20
t, µs

δn × 10–4

Fig. 4. Periodic variation of the refractive index under opti-
cal pulses.

~ ~

1.5

1.0

0.5

0 20 30 40 50 60 70
f , MHz

r.f. pulse amplitude (rel. units)

Fig. 3. Frequency spectrum of the acoustic waves excited at
the periodic domain structure.
in Fig. 4 correspond to electric field jumps of about
~4 × 104 V/cm.

We emphasize the fundamental difference between
the laser generation of acoustic oscillations and the
generation under an alternating electric field applied to
a periodic domain structure, the latter effect being also
observed in lithium niobate [13]. Firstly, the laser gen-
eration provides the possibility to increase the strength
of the excited electric fields by one or two orders of mag-
nitude and, thus, to increase the efficiency of acous-
tooptic devices serving for signal processing. Secondly
(this seems to be the most important result), a new pos-
sibility is opened up for studying the processes and
mechanisms of the interaction between laser radiation
and excited carriers.
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Abstract—Problems related to such properties of sound waves as momentum, radiation pressure, and sound
energy density and flux are investigated on the basis of the solutions of particular problems in the first- and sec-
ond-order approximations using the Eulerian representation. Specifically, it is shown that a disturbance propa-
gating in a continuous medium may have a nonzero momentum when the average density of the medium in the
volume occupied by the wave coincides with the density of the undisturbed medium. In this case, the momen-
tum and the related mass transfer and radiation pressure are caused by variations in the wave profile (envelope).
Andreev’s expression for the energy density that differs from the commonly used one is verified, and some other
paradoxical consequences of the theory of sound are considered. The correctness of using the quantities aver-
aged over time and space is discussed. © 2000 MAIK “Nauka/Interperiodica”.
The problems dealing with the momentum and radi-
ation pressure of sound waves and the sound energy
density and flux, as well as with the relationships
between the corresponding average quantities, have
been discussed in scientific literature over many years.
This issue attracted the attention of Andreev [1], who
solved many fundamental problems of acoustics and, in
particular, proposed an expression for the sound energy
density that differs from the commonly used expression.
Note that this problem still remains pressing [1–12],
and its solution leads to a number of incomprehensible
results. For example, some of the cited publications
[3, 8, 10] contain the statement that waves necessarily
have a nonzero momentum, while other publications
[7, 9] say that this momentum must be zero. Another
example is the paradoxical result obtained for a special
case of sound wave propagation when the time-average
energy density in the sound field is less than the energy
density in the undisturbed medium [2, 5]. This paper
solves these and other problems on the basis of the
study of the planar motion of an ideal gas (liquid)
enclosed in a tube with a unit cross-sectional area. We
consider small vibrations of gas; however, we solve the
equations to the terms of the second order of a small
quantity, which is necessary, because many quantities
of our interest include quadratic terms. In addition,
equations of the second-order approximation contain
secular terms; this fact restricts the applicability of the
results to the time interval between the beginning of the
process and the formation of the discontinuity. Below,
we present the solutions of a number of particular prob-
lems. For some of the known problems, we use non-
1063-7710/00/4603- $20.00 © 20287
standard formulations. We obtain both instantaneous
and average quantities.

In the Eulerian representation, the equations of the
planar motion of an ideal liquid (gas) without any exter-
nal factors acting on it have the form

, (1)

where v is the velocity of flow at a given point of the
medium, ρ is the density, and p is the pressure. Multi-
plying the first equation by v and adding the second
equation to the result, we obtain

(2)

where j = ρv is the density of momentum. As will be
seen, these equations appear simpler and more conve-
nient than the initial system. We will consider the prop-
agation of a wave packet in an infinite medium, the
interaction of the packet with a reflecting wall, the gen-
eration of wave motions in gas by a vibrating piston, the
evolution of these motions, and other problems. Since
our interest is in solving the problem to the second-
order terms, we will seek ρ and j in the form ρ = ρ0 +
ρ' + ρ'' + … and j = j ' + j '' + …, where the number of
primes corresponds to the order of smallness [1, 2].
Assuming that the pressure is a single-valued function
of density, we write the Poisson equation

(3‡)

ρt ρv( )x+ 0, ρv t ρvv x px+ + 0= =

ρt jx+ 0, jt j
2ρ 1–

p+( )x+ 0,= =

p p0 ρ/ρ0( )γ
,=

p ρ( ) p0 c0
2ρ'

1
2
---c0

2 γ 1–( )ρ0
1– ρ'2 c0

2ρ'',+ + +≈
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where γ is the adiabatic index and  = (∂p/∂ρ  is
the squared velocity of sound. Equations of the first-
order approximation and their obvious solutions are

,

(2')

Here, f1 and f2 are arbitrary functions that describe the
waves propagating to the left and to the right, respec-
tively, with a fixed velocity c0 without any changes in
the wave profile; these functions must be small (much
less than unity) in magnitude. Below, we will consider,
in particular, the case γ < 0, which is physically non-
sense, because it leads to a decrease in pressure with
increasing density. In this case, one can assume (for
γ = –1) [3]

(3b)

With this assumption, the results obtained below will
be valid for the γ of any sign.

Wave propagating in an unbounded medium. As fol-
lows from solution (2'), the momentum of a wave
packet propagating to the left and described by a con-
tinuous function f(x + c0t) taking finite values within
the interval 0 ≤ x + c0t ≤ l and vanishing at the ends of
this interval and outside it is completely determined by
the deviation of density from its equilibrium value. In
particular, if, at a moment t1, the wave packet is
enclosed between x1 and x2 = x1 + l and the excess of

mass of the packet is ρ0 (x, t1)dx > 0, then, the

packet momentum will be (x, t1)dx < 0, which

means that the direction of the momentum coincides
with the direction of the wave propagation. If the mass
is deficient, the momentum will be positive, which
means that the momentum and the wave propagation
have opposite directions. Similar conclusions can be
easily made for the wave propagating to the right.
Therefore, according to the solution in the first-order
approximation, the motion of a wave packet with a
finite momentum is accompanied by a mass transfer in
the direction that may not coincide with the propaga-
tion direction.

For the wave packet propagating to the left, equa-
tions of the second-order approximation have the form

(2'')

where ε = 0.5(γ + 1).

c0
2

)ρ ρ0=

ρt' jx'+ 0; jt' c0
2ρx'+ 0= =

ρ'/ρ0 f 1 ξ  = x c0t+( ) f 2 η  = x c0t–( ),+=

j'/ρ0 c0 f 1 ξ( )– c0 f 2 η( ).+=

p p0 ρ0c0
2

1 ρ0ρ
1–

–( ).+=

f
x1

x2∫
j'

x1

x2∫

ρt'' jx''+ 0, jt'' c0
2ρx''+=

=  ρ0
1–

– j'2
1
2
--- γ 1–( )c0

2ρ'2+ 
 

x

εc0
2ρ0 f

2 ξ( )( )x,–=
We will assume that the initial conditions for these
equations are nonzero only within the interval 0 < x < l:

, (4)

These solutions are obtained for an arbitrary contin-
uous function f(x, t) that has continuous derivatives
with respect to x and t. Equations were solved by using
the characteristics ξ = x + c0t, η = x – c0t and substitut-
ing them into equations (2''). The resulting solution
assumes that t < td, where td is the instant of the discon-
tinuity formation.

From the solutions for the initial functions (x) = 0

and (x) = 0, it follows that the wave packet initially
propagating to the left and described by the function
f(x) is later split into a group of waves propagating to
the left and changing their envelopes (two first terms)
and a wave propagating to the right (the third term). It
appears that, if the initial packet was characterized by
zero mass excess and momentum, which were deter-

mined by the integral (x)dx, the resulting two

groups of waves are characterized by finite mass
excesses (or deficits) and momentums, which are deter-
mined by the integrals of f 2(x ± c0t), so that these quan-
tities remain zero for the whole wave process. This is a
manifestation of the mass and momentum conservation
laws for the whole wave process.

Note that the wave propagating in the opposite
direction disappears when

(5)

Taking this fact into account and eliminating (x), we
obtain

(4‡)

ρ'' x 0,( ) ρ2
0

x( ), j'' x 0,( ) j2
0

x( ),= =

ρ'' x t,( ) ε
4
---ρ0 f

2 ξ( )– 2c0t f
2 ξ( )[ ] x f

2 η( )+ +[ ]=

+
1
2
--- ρ2

0 ξ( ) ρ2
0 η( ) c0

1–
j2

0 ξ( )– c0
1–
j2

0 η( )+ +[ ]

j'' x t,( )
ε
4
---c0ρ0 f

2 ξ( )– 2c0t f
2 ξ( )[ ] x f

2 η( )+ +[ ]=

+
1
2
--- j2

0 ξ( ) j2
0 η( ) c0ρ2

0 ξ( )– c0ρ2
0 η( )+ +[ ] .

ρ2
0

j2
0

f
0

l∫

ε
2
---c0ρ0 f

2
x( ) c0ρ2

0
x( ) j2

0
x( )+ + 0.=

j2
0

ρ ρ0 ρ0 f ξ( ) ε
2
---ρ0c0t f

2 ξ( )[ ] x ρ2
0 ξ( ),+ + +=

j = c0ρ0 f ξ( )–

–
ε
2
---ρ0c0 f

2 ξ( ) c0t f
2 ξ( )[ ] x+{ } c0ρ2

2 ξ( ).–
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Additionally, we present the formulas corresponding to

(x) = − ρ0[xf 2(x)]x:

(4b)

These solutions differ in the second-order terms that are
proportional to ~t in the first case and to ~x in the sec-
ond case; however, the behavior of the solutions is vir-
tually the same, because x ~ c0t for propagating waves.

From (4a) and (4b), it follows that ρ' + ρ'')dx and

dx cannot vanish simultaneously.

These formulas relate the momentum and density in
a more complicated manner than the formulas of the
first-order approximation. For a wave propagating to
the right, we obtain the solutions by changing the sign
of c0. From the formulas derived above, it follows that,
on the one hand, the wave cannot propagate without
distortions (due to the term proportional to t or x)
except for the case γ = –1, which is a well-known result.
On the other hand, a nonsplitting wave necessarily has
either a momentum or an excess (or deficit) of mass, or

both. As an example, for (x) = –ε/2ρ0 f 2(x), the wave
packet has a zero momentum and a deficit of mass.

Special attention must be given to an additional fact
of great importance that follows from formulas (4a).

For (x) = 0 and (x)dx = 0, the wave packet has a

zero mass excess, because f 2(x)]xdx = 0 by virtue of

the condition f(0) = f(l) = 0, and, simultaneously, it has
a finite momentum

(6)

This brings up the question: How the packet with van-
ishing excess of mass can provide the mass transfer in
view of its finite momentum? To resolve this paradox,
let us calculate the momentum of the medium enclosed
between the boundaries x1 and x2 where a wave packet
with the leading edge at x = –c0t and the trailing edge at
x = l – c0t propagates from the right to the left, so that
x1 ≤ –c0t and l – c0t ≤ x2. The center of mass xc of this
part of the medium xc can be found from the formula

ρ2
0 ε

2
---

ρ ρ0 ρ0 f ξ( ) ε
2
---ρ0 x f

2 ξ( )[ ] x;–+=

j c0ρ0 f ξ( )–
ε
2
---c0ρ0x f

2 ξ( )[ ] x.+=

(
x1

x2∫
j

x1

x2∫

ρ2
0

ρ2
0

f
0

l∫
[

0

l∫

j'' x( ) xd

0

l

∫ ε
2
---ρ0c0 f

2
x( ) x.d

0

l

∫–=

ρ0 x2 x1–( )xc xρ x t,( ) x.d

x1

x2

∫=
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Substituting the density from (4a) for  = 0 in this
relationship, we obtain

From this formula, it follows that, in the first-order
approximation, the wave characterized by a zero aver-
age and propagating between x1 and x2 results only in a
constant displacement of the center of mass of the con-
sidered part of the medium. The velocity of the center
of mass is completely determined by the second-order
term and is caused by the variation in the wave enve-
lope:

which coincides with momentum (6). This result can be
extended to waves of finite amplitude.

Therefore, despite the wave packet being character-
ized by a zero mass excess, the packet momentum is
related to the mass transfer due to the redistribution of
density relative to the packet, i.e., due to the changes in
the packet envelope. The momentum is proportional to
γ + 1, and the denser portions have greater velocities
then the portions with lower density [4]; as a result, the
direction of the momentum coincides with the direction
of the packet propagation when γ > –1. Different direc-
tions of the momentum and the velocity of packet prop-
agation for a deficient mass and, in particular, the finite
momentum for a packet with zero mass excess essen-
tially distinguish the relation between the momentum
and the velocity in a discrete system from that in a con-
tinuous medium. In a discrete system, the negative
mass can be considered as an analog of the first fact;
however, there is no analog of the second fact that is
characteristic only of a continuous system and follows
from its nonlinearity, the sign of the effect being coin-
cident with the sign of γ + 1. Note that, for γ = –1, equa-
tions in the Lagrangian representation are linear [2],
and the waves propagate without distortions (as in the
Eulerian representation). In this case, the second afore-
mentioned fact is absent, and a propagating wave with
zero mass excess has a zero momentum [12].

It should be noted that the first-order approximation
is insufficient for the determination of momentum (6),
in contrast to the case considered by Landau and Lif-
shitz [4], namely, a wave occupying a finite region of
the three-dimensional space with the velocity potential
being constant outside the wave region. In the case of
plane waves, the velocity potentials in front of the wave
and behind it are different.

ρ2
0

ρ0 x2 x1–( )xc
1
2
---ρ0 x2

2
x1

2
–( )=

+ ρ0 z f z( ) z
ε
2
---ρ0c0t f

2
z( ) z.d

0

l

∫–d

0

l

∫

ρ0l ẋc
ε
2
---c0ρ0 f

2
z( ) z,d

0

l

∫–=
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Thus, a wave propagating in an unbounded medium
may have both nonzero and zero momentum, depend-
ing on the initial conditions, and a wave with a zero ini-
tial momentum is split into two waves propagating in
opposite directions. The Brillouin’s statement [7] that
waves always have zero momentum is explained by the
fact that he considered a sinusoidal propagating wave,
i.e., a wave with an invariant envelope.

Interaction between a wave packet with an arbitrary
envelope and an impenetrable wall. Let the wall be
positioned at x = 0 and the wave packet be initially
located in the region x0 < x < l + x0 and propagate
toward the wall. The interaction between the packet and
the wall occurs within the time interval determined by
the condition x0 ≤ c0t ≤ x0 + l, and, at x0 + l ≤ c0t, the
completely formed reflected wave packet propagates
away from the wall. Since the wall is assumed to be
impenetrable, we can write the condition j(0, t) = 0. We
will solve this boundary-value problem using a well-
known procedure; namely, in the unbounded space, we
consider a problem symmetric about x = 0. In this prob-
lem, j(x, t) = –j(–x, t), ρ(x, t) = ρ(–x, t), and the initial
functions j0(x) and ρ0(x) are specified so as to generate
nonsplitting wave packets symmetric with respect to
the wall and propagating toward the wall. We write the
solution to this problem in the form:

(7)

where x0 ≤ ξ ≤ l + x0, – l – x0 ≤ η ≤ –x0, Fz(z) = f(z), and

(x, 0) are the initial functions for the second-order
approximation; j(0, t) = 0, because the functions f(x, t)

and (x, 0) are even with respect to x = 0.

There are two possible interpretations of the solu-
tions for j(x, t) and ρ(x, t). The first one considers the
solutions as two wave packets approaching each other.
For 0 ≤ c0t ≤ x0, the packets do not overlap, and the last
terms containing the products of the functions of ξ and
η vanish. For x0 ≤ c0t ≤ l + x0, the packets interact, and

j +ρ0c0 f ξ( )–
ε
2
--- f

2 ξ( )–
ε
2
--- f

2 ξ( )[ ] xc0t–




=

– ρ0
1– ρ2

0 ξ( ) f η( ) ε
2
--- f

2 η( ) ε
2
--- f

2 η( )[ ] xc0t–+ +

+ ρ0
1– ρ2

0 η( ) 1
4
--- 3 γ–( ) f x η( )F ξ( ) f x ξ( )F η( )–[ ]+





;

ρ ρ0 1 f ξ( )
ε
2
--- f

2 ξ( )[ ] xc0t ρ0
1– ρ2

0 ξ( ) f η( )+ + + +




=

ε
2
--- f

2 η( )[ ] xc0t– ρ0
1– ρ2

0 η( )+

+ 1
4
--- 3 γ–( ) f x η( )F ξ( ) f x ξ( )F η( ) 2 f ξ( ) f η( )+ +[ ]





,

ρ2
0

ρ2
0

all terms of the solutions are nonzero. For x0 + l ≤ c0t,
the wave packets move away from each other, and the
last terms vanish again. The second interpretation con-
siders the solutions as a description of a wave packet
incident on the wall. For 0 ≤ c0t ≤ x0, the whole packet
is located to the right of the wall, and one should take
into account only the terms dependent on ξ. For x0 ≤
c0t ≤ x0 + l, the packet interacts with the wall, and one
should take into account all terms for 0 < x. For l + x0 ≤
c0t, the reflected wave packet moves away from the
wall, and one should take into account only the terms
dependent on η.

Substituting ρ(0, t) into formula (3a), we obtain the
radiation pressure on the wall for any time, and the total
effect will be

Now, we calculate the initial momentum of the wave
packet for x > 0:

For x0 + l < c0t1 and 0 < x, the momentum of the
reflected packet G(x, t1) will have the same magnitude
but the opposite sign. In this case, G(x, t1) – G(x, 0) will
determine the total force with which the wave packet
acts on the wall. If the wave has a zero density excess,
the its momentum and force acting on the wall depend
on the length of the wave packet, the initial disturbance
f(x, 0), and the nonlinear properties of the medium. For
1 + γ > 0, the wave produces positive pressure on the
wall, and, for 1 + γ < 0, the pressure is negative.

In parallel with its own significance, this problem
immediately supports the idea of Rayleigh [12] that the
packet can produce a total pressure on the wall only if
it has a nonzero momentum. McEntire [9] considered
this idea to be erroneous.

Wave generation in gas by a moving piston. We will
consider the motion of gas both to the left and to the
right of the piston, which is assumed to be at the origin
of coordinates at the initial moment t = 0. We will
assume that the initial velocities of the piston and the
gas were zero everywhere, so that j(x, 0) = 0 and ρ(x, 0) =
ρ0 for all x. We derive the boundary conditions consid-
ering the problem of small vibrations of the piston. The
gas velocity v at the piston located at s(t) must coincide
with the piston velocity:

p 0 t,( ) td

x0/c0

x0 l+( )/c0

∫

=  2ρ0 f c0t( ) ερ0 f
2

c0t( ) 2ρ2
0

c0t( )+ +[ ]c0l.

G x 0,( ) j x 0,( ) xd

x0

l x0+

∫=

=  ρ0c0 f x( ) ε
2
---ρ0c0 f

2
x( ) c0ρ2

0
x( )+ + l.–

v s t( ) t,( ) ṡ t( ) v ' 0 t,( ) v '' 0 t,( ) v x' 0 t,( )s t( ).+ +≈=
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Taking into account the relationship j(x, t) . (ρ0 + ρ')(v' +
v''), we obtain

In the first-order approximation, the equations and
the boundary and initial conditions are as follows:

For the second-order approximation, we have

In the first-order approximation, the solution to the
problem is

where z± = t ± x/c0, Θ(x) is the unit step function, and
Θ(0) = 1/2.

The solution is composed of two identical waves orig-
inating at x = 0, but propagating in opposite directions.
The coordinate of the leading edge of the wave propagat-
ing to the right is x = c0t, and that of the wave propagating
to the left is x = –c0t.

In the second-order approximation, equations for
the wave propagating to the right are as follows:

For the wave propagating to the left, for –c0t ≤ x ≤ 0,
one must replace c0 by –c0.

The initial conditions are j ''(x, 0) = 0 and ρ''(x, 0) =
0. Taking into account the first-order solution, we bring
the boundary conditions to the form:

For the wave propagating to the right, the solution is

j' 0 t,( ) ρ0ṡ t( );=

j'' 0 t,( ) jx' 0 t,( )s t( )– ρ' 0 t,( )ṡ t( ).+=

ρt' jx'+ 0; jt' c0
2ρx'+ 0;= =

j' 0 t,( ) ρ0ṡ t( ); 0 t ∞,≤ ≤=

ṡ 0( ) 0; j' x 0,( ) 0; ρ' x 0,( ) 0,= = =

∞ x +∞.< <–

ρt'' jx''+ 0;=

jt'' c0
2ρx''+

1
2
--- c0

2ρ0
1– γ 1–( )ρ'2 j'2ρ0

1–
+[ ] x,–=

j'' 0 t,( ) ρ' 0 t,( )ṡ t( ) jx' 0 t,( )s t( ); j'' x 0,( )– 0.= =

j' Θ x( )ρ0st z–( ) Θ x–( )ρ0st z+( ),+=

c0ρ' Θ x( )ρ0st z–( ) Θ x–( )ρ0st z+( ),–=

ρt'' jx''+ 0;=

jt'' c0
2ρx''+ ερ0 st

2
z–( )[ ] x, 0 x c0t.≤ ≤–=

j'' 0 t,( ) ρ0c0
1–

s t( )st t( )[ ] t Rt t( ).= =

j' j''+ ρ0st z–( )  
ε
2
---ρ0c0

1–
– x st

2
z–( )[ ] x Rt z–( ),+=

ρ' ρ''+ ρ0c0
1–
st z–( )  

ε
2
---ρ0c0

2–
– xst

2
z–( )[ ] x c0

1–
Rt z–( ).+=
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For the wave propagating to the left, one must change
the sign of c0.

The first order solutions ρ', j ' are complemented by
waves, whose amplitude is proportional to γ + 1 and
increases with increasing x, and waves, whose behavior
is governed by the piston motion through the function
Rt(t). the terms proportional to x distort the wave enve-
lope. In combination with the first-order terms, they are
responsible for the wave momentum. If the piston
motion is stopped at some instant t = T, two wave pack-
ets propagating in opposite directions are formed at this
instant. For t > T, their leading edges are at x = ±c0t, and
their trailing edges are at x = ±c0(t – T). Let us calculate
the momentum and the mass excess of these packets for
an arbitrary motion of the piston s(t) under the condi-
tions s(0) = 0; s(t ≥ T) = s(T); st(0) = st(T) = 0:

where x1 = +c0(t – T) and x2 = c0t for x > 0; x1 = –c0t and
x2 = −c0(t – T) for x < 0. The upper sign corresponds to
the packet propagating to the right at x > 0, and the
lower sign corresponds to the packet propagating to the
left at x < 0. The first-order momentum is determined
by the resulting displacement of the piston s(T). In this
case, the gas acquires the same momentum both on the
right and on the left. In both cases, this momentum is
directed along the piston displacement despite the fact
that the wave packets propagate in opposite directions.
The density excesses is also determined by the piston
displacement s(T) and has different signs for waves
propagating in opposite directions. For s(T) > 0, the
medium is compressed to the right of the piston and rar-
efied to the left of the piston.

In the above formulas for momentum, the second
term is of the second order of smallness. However, this
term predominates when s(T) = 0, i.e., when the piston
is stopped at the initial point, or for long intervals T.
The direction of the second-order momentum always
coincides with the propagation direction of the wave
packet for γ + 1 > 0, and it is opposite to the propagation
direction for γ + 1 < 0. Let us determine the conditions
under which the second-order term of the momentum
considerably exceeds the first-order term. Consider a
piston oscillating according to the law

In this case, the total time of the piston motion is com-
posed of an integer number of half-periods of its oscil-

j' j''+( ) xd

x1

x2

∫ ρ0c0s T( ) ε
2
---ρ0 st

2 τ( ) τ ,d

0

T

∫±=

ρ' ρ''+( ) xd

x1

x2

∫ ρ0s T( ),±=

s t( ) a 1 ωtcos–( ) for 0 t nπ/ω≤ ≤ T ,= =

s t( ) s T( ) for T t.<=
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lations. For an odd n, the momentums of the wave pack-
ets will be given by

and the desired conditions will have the form n @
8c0/πεaω. An estimate shows that this ratio is great even
for high-power radiators, and the first term can be
neglected only for long trains of waves. For s(T) = 0,
wave packets are generated with zero mass excess, but
with nonzero momentum. This fact agrees with the
results obtained above for a wave propagating in an
unbounded medium and is a consequence of the varia-
tions in the wave envelope. The mass transfer through
an arbitrary cross-section x within the time interval
between the arrival of the wave packet t1 and its termi-

nation t2 is equal to zero, i.e., (x, t)dt = 0.

The results obtained in solving this problem are
comparable with the Earnshaw solution [2, 5]. Here, we
emphasize a significant difference between the average

quantities. If T is the mass of the medium trans-
ferred through the cross-section x within the time T,

then, l is the momentum of the wave packet of
length l at the instant t corresponding to the mass trans-
fer within the packet.

Two immobile walls. Consider the gas oscillations
with the following boundary and initial conditions:

where sinkl = 0, ak ! 1, and c0 = ω/k. Then,

In this case, the average radiation pressure  =

 is determined as

Here, τ is the averaging time equal to an integer number
of periods of gas oscillations. As one can see, the aver-

G± 2ρ0c0a
ε
4
---ρ0ω

2
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2
T ,±=

j
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t2∫

j x( )t

j x( )x

j 0 t,( ) j l t,( ) 0,= =

ρ 0 x,( ) ρ0 ρ0ak kx, j 0 t,( )cos+ 0,= =

ρ ρ0 ρ0ak kx ωt
ρ0a

2
k

2

4
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× 2 ε–( ) 1 2ωtcos–( ) εωt 2ωtsin–[ ] ,

j ρ0aω kx ωt
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2
kω

4
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× 3
2
---ε 2– 

  2ωt εωt 2ωtcos+sin .

Π
t

p ρv 2
+

t

1
τ
--- Π x t,( ) td

t0

t0 τ+

∫

=  p0

ερ0a
2ω2

4
-------------------- 1

2ωt0cos
2

-------------------- 2kxcos+ 
  .+
age radiation pressure has two components, one con-
stant and one varying in space [2]; however, the latter
depends on the time t0 at which the averaging process
begins, and it is completely determined by the secular
term of the solution ρ(x, t). This means that the depen-
dence of the average pressure on x is governed by the
nonstationary character of oscillations.

For a number of experiments, the quantity t0 can be
considered as random. Then, the last term in the for-
mula can be neglected, and the pressure will every-
where be constant and coincident with the result
obtained by Rayleigh [12]. The instability of initial
mode of oscillations in the ideal gas calls into question
the result obtained in this section (see p. 200 in [2]);
however, the result can be considered as a true one for
a finite time and under the condition that the accepted
idealizations are fulfilled. Additionally, we note that

the first-order momentum (x, t)dx = ρ0ac0(1 –

coskl)sinωt either is finite and periodically varies (for
coskl = –1), or is always zero (for coskl = 1). Conse-
quently, in a closed volume completely occupied by an
oscillating medium, the pressure is unrelated to the
momentum, but is caused by the nonlinearity of the sys-
tem of equations (γ ≠ –1) and by the wall response.

Sound energy. Zarembo and Krasil’nikov [2] give
two expressions for the sound energy density E. In the
second-order approximation, these expressions are

The first expression is the commonly used formula, and
the second expression was proposed by N.N. Andreev
[1]. Note that, in the case of an invariable volume V0,

the integral V0 ρ' + ρ'')dV = 0, and the total sound

energy can be calculated by using only the two first
terms that are identical in the above expressions. How-
ever, such an approximation is generally inappropriate
(e.g., in the case of varying surfaces or in calculating
the energy in a portion of the volume). Commonly, the
potential energy density is defined as the difference
between the energy densities in disturbed and undis-
turbed media: w = ρu – ρ0u0, where u is the potential
energy per unit mass. Since the energy density is deter-
mined as the ratio of energy to the volume under con-
sideration, this definition holds only for volumes that
remain invariable in the presence of the disturbance.
Andreev suggested another definition for the sound
energy density by assuming that the potential portion
of the energy density is approximately equal to the
ratio of the difference between the energies in the pres-
ence and absence of sound to the disturbed volume:

.

j
0

l∫

E2
ρ0v '2

2
-------------

c0
2ρ'2

2ρ0
-----------

c0
2

γ 1–
----------- ρ' ρ''+( ),+ +=

E2A

ρ0v '2

2
-------------

c0
2ρ'2

2ρ0
-----------

c0
2

γ
----- ρ' ρ''+( ).+ +=

(
V0∫

wA ρuV ρ0u0V0–( )/V≈
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Andreev considered a fixed mass of the medium m that
occupies the volume V0 before the disturbance and V
after the disturbance, so that ρV = ρ0V0 = m. If the mass
and the volume are sufficiently small, the quantity wA

can be considered as the density at the point x at the
instant t. Taking into account the last relationship, we
obtain wA(x, t) = ρ(u – u0). The relationship wA = w
holds for V = V0. Adding the kinetic energy, using the
known expression for u(ρ) [2, 4], and restricting our
consideration to the second-order terms, we obtain the
above formulas for E2 and E2A. A steep increase in E2 at
γ  1 casts some doubt on the result. Andreev [1]
derived the expression for the sound energy density EA

in the general case. There is no general agreement
regarding the definition of E. Using our solutions, we
can argue for one or another definition. The difference
between the definitions is essential and is evident even
in the first-order approximation. This fact considerably
simplifies our task. As an example, we will use the result
obtained for the wave generation in gas by a moving pis-
ton, specifically, the solution ρ' = ρ0 st(t – x/c0). In this

problem, in the first-order approximation, all the
energy of the wave propagating to the right is deter-
mined by the work of the pressure forces acting on the
wall and is equal to the product of the pressure p0 and

the wall displacement s(T): p0s(T) = ( ρ0/γ)s(T),
where T is the instant when the piston comes to rest. On
the other hand, this energy can be obtained by integrat-
ing the energy density of the generated wave with
respect to x. With Andreev’s energy density, we obtain

The coincidence of the calculated results is evidence in
favor of Andreev’s expression for the energy density.
The same result was obtained for the energy of the dis-
turbance generated by a piston moving with a constant
acceleration in an infinite tube; this problem was
exactly solved for small ρ' and v' in [4].

The case of a zero mass flux  = 0 is of interest.

Such situation corresponds to  = 0 in the above prob-
lem of a moving piston. Let us take the solution for the
wave propagating to the right and calculate the time-
average energy density according to the common for-
mula. We obtain

This result casts great doubt upon its validity, because,
for 1 < γ < 5/3, i.e., for most gases, it means that the
energy in the sound field is less than the energy in an
undisturbed medium, which leads to an instability.
Papers [2, 5], where this fact was pointed out, suggest
different interpretations of this paradox. However, the

c0
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c0
2

c0
2

γ
-----ρ' xd

0

c0t

∫  = 
c0ρ0

γ
---------- st t x/c0–( ) xd

0

c0t

∫  = 
ρ0c0

2
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----------s T( ) T t<( ).

j
t

st
t
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ρ0st
2
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ερ0
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2
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paradox disappears if one uses Andreev’s expression
for the energy density. The corresponding calculation

gives  =  > 0 for all gases.

Average quantities. For the characterization of a
wave or an oscillating process, the quantities averaged
over time are usually more important than their instan-
taneous values. In most cases, the time-average quanti-
ties coincide with the space-average ones. However,
this is not the case, for example, for waves whose enve-
lope varies in the course of the wave propagation. To
clarify the question as to what kind of average quanti-
ties should be used, we consider the equation relating
the energy density to the energy flux q:

We consider the situation in which a wave disturbance
propagates from the left to the right, so that its leading
edge appears in the cross-section x1 at t = t1 and in the
cross-section x2 at t = t2. Then, we have

Taking into account that x2 – x1 = c0(t2 – t1), we obtain

from these expressions: c0  = . Thus, the widely

used formula c0  =  is inappropriate for waves with
varying profile. To calculate the energy in a given vol-
ume, one must use either the spatial energy density or
the time-average energy flux through a given surface.
The aforesaid also applies to the equations

where one must use the average quantities  and 
for calculating the mass and the mass flux (the first

equation) and  and  for calculating the momentum
and the radiation pressure (the second equation). Addi-
tionally, we present the formula that expresses the radi-
ation pressure in terms of the kinetic energy for the dis-
tance between the walls being invariant (the piston
problem considered above) and for spring-loaded
walls:

.

E2A
t 3γ 1–

4γ
---------------st

2

Et qx+ 0, E x t2,( ) E x t1,( )–[ ] xd

x1

x2

∫=

+ q x2 t,( ) q x1 t,( )–[ ] td

t1

t2

∫ 0.=

E x t2,( ) xd

x1

x2

∫ q x1 t,( ) t,d

t1

t2

∫=

x2 x1–( )E
x

t2 t1–( )q
t
.=

E
x

q
t

E
t

q
t

ρt jx+ 0, jt Π x+ 0,= =

ρx
j

t

j
x

Π
t

Π''
t

εEk, Π''
t

εEkrl/ rl ρ0c0
2

+( )= =



294 DENISOV
Note that radiation pressure strongly depends on the
spring rigidity r.

The main results. An isolated wave may have a non-
zero or zero momentum depending on the initial condi-
tions. A wave with zero excess or deficit of density has
a momentum caused by the nonlinearity and directed in
the propagation direction when γ + 1 > 0. Variations in
the wave envelope are an indication of the presence of
a nonzero momentum. A mass transfer necessarily
accompanies the propagation of a wave with a nonzero
momentum.

One should distinguish between the factors respon-
sible for the radiation pressure in the case of a closed
volume completely filled with an oscillating medium
and in the case of an isolated wave acting on a reflecting
obstacle.

For undisturbed gas, the pressure behaves in accor-
dance with the Poisson law p0 = p(ρ0). In the presence
of acoustic oscillations, by virtue of the nonlinear
dependence Π(ρ, v) = p(ρ) + ρv2, the periodically
varying density ρ' and velocity v' lead to an increase in
the average pressure for γ > –1, i.e., to the appearance

of the radiation pressure . Hence, the volume of
gas is increased, if the volume is bounded with surfaces
held in pace by forces characterized by a finite rigidity.
In this case, the radiation pressure is determined by the
kinetic energy density of gas and the rigidity of the
walls enclosing the volume, and it does not depend on
the total momentum of gas. Here, we have a complete
analogy with the thermal expansion of bodies due to the
nonlinearity of interatomic bonds.

In the case of an isolated wave packet, the radiation
pressure on a reflecting obstacle is completely deter-
mined by the variations in the packet momentum (as it
is generally believed).

Π p0–
t
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Abstract—The propagation of a harmonic elastic wave in a microinhomogeneous (defect-containing) medium
is considered in the framework of the rheological model that reperesents the medium in the form of a one-
dimensional chain of masses connected by purely elastic elements and by Kelvin–Voigt viscoelastic elements.
Analytical expressions are derived for the dissipation and dispersion characteristics of this medium for various
distributions of the parameters of the viscoelastic elements. The dissipation and dispersion properties are found
to obey the Kramers–Kronig relations. It is also shown that the damping decrement of the wave is almost con-
stant, and the phase velocity monotonically increases in a sufficiently wide range of parameters of the viscoelas-
tic elements in a wide frequency band. The derived expressions for the dispersion and dissipation are used to
simulate the propagation of broadband pulses in this kind of medium. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It has been established experimentally that, in a
wide frequency band, most microinhomogeneous
(defect-containing) solids (in particular, rocks and met-
als) are described by an almost constant Q-factor [1–3].
The Kramers–Kronig relations [1, 4], which relate the
dispersion and attenuation characteristics, show that
these media must also exhibit noticeable dispersion.
This conclusion is corroborated by experiments. They
show that, in particular, the waveforms of propagating
seismic pulses are asymmetric [1]. The problem of an
adequate analytical description of the dissipation and
dispersion properties of such media as functions of fre-
quency is still under discussion [1, 3, 5, 6], because
phenomenological approximations of these dependen-
cies often do not fit each other and violate the causality
principle.

A rheological model of a microinhomogeneous
medium was proposed in our previous publications [7, 8].
This model explains why the Q-factor of such a
medium is almost frequency-independent. We calcu-
lated the Q-factor on the basis of the energy approach,
which allows for the absorption of the elastic wave
energy by soft dissipative inclusions (defects) of differ-
ent compliance. Clearly, this approach cannot directly
determine the dispersion properties of the medium,
though they can be found from the dissipation depen-
dencies provided by the Kramers–Kronig relations.

In this paper, we derive the dissipation and disper-
sion properties of the microinhomogeneous medium in
the framework of the rheological model [7, 8]. At first,
we address the propagation of a harmonic elastic wave
in this medium and find its attenuation factor and prop-
1063-7710/00/4603- $20.00 © 20295
agation velocity. Then, we show that the dissipation and
dispersion properties thus derived satisfy the Kramers–
Kronig relations. Finally, we study the propagation of
broadband pulses by numerical simulation with the use
of these dissipation and dispersion relations.

MODEL OF A MICROINHOMOGENEOUS 
MEDIUM AND THE BASIC EQUATIONS

Consider the propagation of a harmonic elastic
wave in the framework of the model that represents the
microinhomogeneous medium as a chain of masses and
elastic and viscoelastic elements [7, 8] (Fig. 1). As in
[7], we assume that the elastic elements of the chain are
characterized by the elasticity coefficient K, and the
dissipation effects are associated with the Kelvin–Voigt
viscoelastic elements whose equations of state have the
form

(1)

where kj and g are the elasticity and viscosity coeffi-
cients of the jth element (kj = ζjK, ζj ! 1), X is the vari-

ation of the defect length, and  = ∂X/∂t. Assume that
a unit length of this chain contains a total of N elements
of the length H, the number of viscoelastic elements
being equal to N1, so that the ratio ν = N1/N character-
izes the defect density. Also assume that the length of
the elastic wave λ = 2π/k (where k is the wave number)
is much greater than the defect length H, so that kH ! 1.
These conditions allow one to regard the homogeneous
regions of the chain as a continuum and assume that the
elastic wave subjects each element to quasistatic defor-
mations. Then, one can consider the interaction of the

σ k j X gẊ ,+=

Ẋ
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elastic wave with the defect of number j in terms of
only the incident, reflected, and transmitted waves out-
side this defect and describe the deformation of the
defect by the equations

(2)

where x = xj and x = xj + H are the coordinates of the
defect boundaries, and the stress and strain, σi , σr, σt
and Ui , Ur, Ut, in the incident, reflected, and transmitted
waves, respectively, are related through the elasticity
coefficient K

(3)

DISPERSION RELATION
FOR THE MICROINHOMOGENEOUS MEDIUM

For a harmonic wave exp(–iωt ± ikx) propagating in
the homogeneous part of the chain in the positive (inci-
dent and transmitted waves) and negative (reflected
wave) directions, respectively, equations (3) take the
form

(4)

where k = ω/c0 and c0 is the elastic wave velocity in a
defect-free medium. Introduce the transmission Tj and
reflection Rj factors for the jth defect:

(5)

Substituting expressions (4) and (5) into the system of
equations (2), we obtain

(6)

(7)

where Ω = K/g.
These expressions show that, when kH ! ζj < 1, the

magnitudes of the transmission and reflection factors
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Fig. 1. Rheological model of a microinhomogeneous
medium.
tend to unity (|Tj|  1) and zero (|Rj| ! 1), respec-
tively. Under the assumption that reflection from each
defect is negligible, the microinhomogeneous medium
can be considered as an equivalent homogeneous (on
average, on a scale much larger than the distance
between the defects and covering a great number of
them) medium with effective (spatially averaged)
parameters [9]. In order to calculate the effective
parameters of the equivalent homogeneous medium,
which characterize the wave attenuation and the phase
shift gained in the course of the propagation through
the chain of the length L = NH containing a large num-
ber of defects, let us find their effect on the wave ampli-
tude and phase. Clearly, for this purpose one should
find a product of the transmission factors of all ele-
ments of the chain. As a result, we obtain the following
formula for the total transmission factor Ttotal of the
wave transmitted through the chain of length L:

(8)

where the factor exp(–ikL) describes the phase delay of
the wave transmitted through the chain of length L =
NH consisting of N elements, N1 of which contain

defects, and the factors  are given by the expression

(9)

By equating expression (8) to the transmission fac-
tor of the equivalent homogeneous medium defined as

T0 = exp(–i L), we obtain an equation for the complex

wave number  = (ω) of the homogeneous medium

(10)

which yields

(11)

Next, we take into account that, for the part of
defects that are described by the same parameter ζj ,

/L = νj characterizes their linear concentra-
tion. When the number of defects is great, the distribu-
tion function ν = ν(ζ) can be introduced, so that
ν(ζ)dζ is the number of defects belonging to the inter-
val [ζ, ζ + dζ] per unit length of the chain. Then, in
view of (9), expression (11) takes the form

. (12)
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When kH ! ζ < 1, this equation yields the dispersion
relation for the microinhomogeneous medium:

(13)

The first summand in the integrand determines the
frequency-dependent phase correction, and the second
one determines the wave attenuation. Using the rela-
tionship θ(ω) = α(ω)λ between the wave attenuation
factor α(ω) and the damping decrement θ(ω) in equa-
tion (13), we obtain

(14)

(A similar expression was obtained in [7, 8] by sum-
ming the losses due to individual inclusions.) Equa-
tion (13) can be used to obtain the dispersion correc-
tion to the phase velocity ∆c(ω) = c(ω) – c0 (when
∆c/c0 ! 1):

(15)

According to [7, 8], the independence of the Q-factor
from frequency can be explained under the assump-
tion that the defect distribution in the parameter ζ is
wide, which is likely to be valid for actual microinho-
mogeneous media. (Taking additionally into consider-
ation the defect distribution in the parameter Ω does
not change the main conclusions. Therefore, for the
time being, we can assume that the parameter Ω is
constant.) Let the defect distribution in the parameter
ζ in equations (14) and (15) be described by a Π-shaped
function

(16)

In this case, integral (14) yields

(17)

From expression (17), we obtain

(18)

(19)

(20)

In a similar manner, we use expression (15) for the dis-
persion correction to obtain

(21)
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This correction is negative and tends to zero as ω  ∞;
therefore, c0 has the meaning of the high-frequency
limit of the phase velocity in the microinhomogeneous
medium. Figure 2 displays the damping decrement and
the phase velocity of the elastic wave against frequency.
These plots show that a wide defect distribution in elas-
ticity leads to a wide frequency region a < ω/Ω < b
where the damping decrement is almost constant and
the phase velocity gradually increases. It is of interest
that, in this region, the decrement is independent of the
viscosity of the defects and is determined by their den-
sity alone. The relative change in the wave phase veloc-
ity ∆c/c0 = [c(ω @ bΩ) – c(ω ! aΩ)]/c0 ≈ (ν0/2)ln(b/a)
is also determined by the defect density and by the
range d = b/a where θ ≈ const.

ALLOWANCE FOR THE DEFECT DISTRIBUTION 
IN VISCOSITY

Expressions (17) and (21) were derived under the
assumption that the defects possess identical viscous
properties, i.e., that the parameter Ω is the same for all
defects. In real microinhomogeneous media, the vis-
coelastic inclusions are not only distributed in their
elastic parameters, but also in their viscous properties.
It can be expected that these distributions are statisti-
cally independent, i.e.,

(22)

In this case, in order to find the contribution of all
defects, the integrals in (14) and (15) should be taken
with respect to both parameters ζ and Ω:

(23)

(24)
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Fig. 2. (1) Dispersion and (2) dissipation characteristics of the
medium for a = 10–5, b = 10–1, Ω = 108 Hz, ν = 1.3 × 10–3,
and c0 = 3000 m/s.
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For a Π-shaped distribution function ν = ν(ζ, Ω) in the
form

(25)

expressions (23) and (24) yield

(26)

(27)

Figure 3 shows the frequency dependencies (26) and
(27) at various Ωb/Ωa and a fixed total defect density νt:

(28)

These plots show that, first, a wide region where the
damping decrement (or the Q-factor of the medium) is
almost constant is present in every curve. Second, at a
fixed total density νt, the decrement remains almost
unchanged in this region, and the frequency boundaries
of this region are weakly sensitive to the parameter
Ωb/Ωa; namely, when Ωb/Ωa changes from 1 to 104

(curves 1–4 in Fig. 3a), the boundaries of the frequency
band move towards lower frequencies (approximately
by half an order of magnitude in frequency for curve 4,
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Fig. 3. (a) Dissipation and (b) dispersion characteristics of
the medium for Ωb/Ωa = (1) 1, (2) 2, (3) 10, and (4) 105.
which has the maximum displacement). Dispersion
curves 1–4 plotted in Fig. 3b for the same values of
Ωb/Ωa exhibit a similar behavior. These results once
again show that the distribution of the elastic properties
of the soft defects is the key factor that primarily deter-
mines the frequency dependencies of attenuation and
dispersion.

DISSIPATION AND DISPERSION PROPERTIES 
AND THE KRAMERS–KRONIG RELATIONS

It is well known that the requirement for the causal-
ity principle to be fulfilled leads to the integral Kram-
ers–Kronig relations [1, 4], which relate the frequency
behavior of the real and imaginary parts of the wave

number (ω) = k(ω) + iα(ω), i.e., the dissipation and
the dispersion. In the case under study, it is convenient

to introduce the following notation: (ω) =  + k'(ω) +

ik''(ω), where k'(ω) = k(ω) –  is the dispersion correc-

tion and k''(ω) = α(ω). In terms of this notation, the
Kramers–Kronig dispersion relations have the form [1]

(29)

(30)

By virtue of integral (29) and expression (13), one
obtains the relation

which is equivalent to dispersion relation (21) when
∆c(ω)/c0 ! 1. In a similar manner, it can also be shown
that the second Kramers–Kronig relation (30) is identi-
cally satisfied.

The structure of integrals (29) and (30) shows that,
for example, the dispersion correction at a particular
frequency is related to the behavior of the attenuation
factor in the entire frequency range from zero to infin-
ity, and the requirement that the integral be convergent
imposes constraints, which determine the physically
admissible frequency behavior of the decrement at low
and high frequencies [1, 5]. It is clear that a simple
approximation of the decrement, for example, by a con-
stant does not satisfy relationships (29) and (30) and is
unsuitable for estimates both at low and at high fre-
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quencies. It should be noted that some other more com-
plex approximations of the decrement [10], which
agree well with the experiments, also fail to fit the cau-
sality principle. Nevertheless, in the frequency range
where the Q-factor of the medium is approximately
constant, it was found that the following approximate
relationship for the ratio of the phase velocities at two
frequencies ω1 and ω2 is valid [1]:

(31)

One can easily verify that the relationships derived
above agree well with this approximate result. In par-
ticular, for a < ω/Ω < b, expression (21) yields

which, when used with (19), gives

Thus, expressions for the dispersion and the damp-
ing decrement obtained from the solution to the one-
dimensional propagation problem satisfy the causality
principle. Furthermore, since the same expression for
the decrement can be obtained from energy consider-
ations, which do not require that the medium be one-
dimensional, the derivation of the dispersion correction
from the Kramers–Kronig relations also allows us to
extend these results to the three-dimensional medium,
for which the propagation problem cannot be solved
that easily.

NUMERICAL SIMULATION
OF THE PROPAGATION

OF BROADBAND PULSES

Let us use expressions (17) and (21) for the attenu-
ation factor and phase velocity of a harmonic elastic
wave to study the propagation of broadband pulses in a
medium for which the wave number has the form

(32)
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The shape of the pulse that passed a distance x in the
medium can be found from the equation [4]

(33)

where (ω) = exp(iωt)dt is the spectrum of

the initial pulse f = f(t) and (ω) = f '(ω)exp(i (ω)z) is
the spectrum of the pulse in the medium.

Below, we present the results of the simulation for
initial pulses of three types.

In the first case, we consider a Gaussian unipolar
initial pulse: f(x) = exp(–(t/2τ0)2). Figure 4 presents the
pulse waveforms in the medium calculated for three
durations of the initial pulse. The long pulse whose
spectrum completely falls into the dispersion-free
region of the phase velocity is symmetrically broad-
ened due to attenuation (Fig. 4a). The pulse whose
spectrum covers part of the region where the Q-factor
is constant experiences dispersion effects: its leading
edge becomes steeper, while the trailing edge is spread
(Fig. 4b). The short pulse whose spectrum completely
covers the region of the constant Q-factor experiences
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Fig. 4. Pulse waveforms in the medium for f(t) =
exp(– (t/2τ0)2), x = 400λ, and τ0 = (a) 5 × 10–2, (b) 5 ×
10–5, and (c) 10–7 s.
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similar but more pronounced dispersion effects (an
essentially asymmetric pulse shape, as shown in Fig. 4c).

In the second and third cases, we consider bipolar
pulses in the form of the first and second time-deriva-
tives of the Gaussian pulse:

(Such pulses are generated as a result of the self-demod-
ulation of the high-frequency pulses in nonlinear media
and can be radiated by parametric acoustic sources oper-
ating in the Berktay and Westervelt modes [11].)

The respective pulse waveforms in the medium cal-
culated for three characteristic durations of the initial
pulse are plotted in Figs. 5 and 6. For long pulses whose
spectrum is localized in the region of the square-law
frequency behavior of the attenuation factor, only the
attenuation and the corresponding pulse broadening are
significant (Figs. 5a, 6a). The pulses whose major part
of spectrum falls into the region of the constant Q-fac-
tor experience noticeable dispersion effects: as they
travel through the medium, their leading edge becomes
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d
dt
-----
steeper, and the trailing edge becomes flatter (Figs. 5b,
6b). For a short pulse, similar but more pronounced dis-
persion effects are observed, which make the pulse
asymmetric, so that the negative part of the trailing
edge almost disappears (Figs. 5c, 6c).

CONCLUSIONS

The origin of the frequency-independent decrement
observed for the elastic wave attenuation in various
microinhomogeneous media had been a problem under
discussion for a long time [1–3, 5]. A number of phe-
nomenological models of this effect (the best of them,
Gurevich’s [12] and Liu’s [13] models, are in essence
identical and based on the introduction of the spectrum
of relaxation times of the type 1/τ) left open the ques-
tion of their physical realization and, therefore, the
question of the relationship between the model param-
eters and the microstructure characteristics of the
medium.

The rheological model proposed above for describ-
ing a microinhomogeneous medium occupies an inter-
mediate position between the physical models of elastic
and dissipative properties of media and the phenome-
nological approximations that describe the empirical
data. This model is based on the assumption that the
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elastic properties of the defects are characterized by a
wide distribution, which, in terms of the relaxation
times, is equivalent to the phenomenological models [5,
13]. The rheological model proposed above allows us
to assign the physical meaning to the parameters intro-
duced earlier and used in the phenomenological
approaches [1, 5, 13, 14] and to relate these parameters
to the microstructural characteristics of the medium.
An important result of our analysis is the conclusion
that, for the Q-factor to be almost frequency-indepen-
dent, only a small number of microinhomogeneities are
necessary. In fact, the only important factor is the pres-
ence of highly compliant defects whose size is small as
compared to the wavelength of the elastic waves and
whose elastic parameters are characterized by a wide
distribution. It was found that, in the frequency region
where the Q-factor is almost constant, its value is pri-
marily determined by the geometric properties of the
microstructure and is almost independent of both the
effective viscosity and the elasticity of the defects
(though these parameters determine the boundaries of
this frequency region). Clearly, such defects are typical
of a wide class of microinhomogeneous media; there-
fore, it is no wonder that materials, which at first glance
appear to be wildly different (for example, many metals
and rocks), exhibit similar dissipation and dispersion
properties. The effective viscosity introduced in the
model can be associated with thermal loss at the defects
due to high temperature gradients (because the defects
are small [15]) and the high rate of material deformation
near the defects (intergranular contacts, cracks, etc.).

Our results agree well with the known experimental
data on the dissipation and dispersion properties of
microinhomogeneous elastic media [1, 2, 5, 6]. In par-
ticular, the simulation of the propagation of broadband
pulses has shown that the pulse edges are asymmetric
due to the dispersion distortions, which is known to be
typical of real seismic pulses [1]. Finally, our results
(unlike some phenomenological approximations [1, 5])
do not violate the physical limitations imposed on the
relationship between attenuation and dispersion: the
consequences of the physically realizable model pro-
posed above satisfy the Kramers–Kronig relations,
which directly follow from the causality principle.
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
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Abstract—Computational algorithms and some computed data are presented for the total sound field in a
waveguide whose depth arbitrarily depends on two horizontal coordinates. The sound speed is supposed to be
constant, and the bottom slopes are considered as small. The algorithm involves three steps. First, horizontal
rays, i.e., horizontal projections of the real rays multiply bottom- and surface-reflected, are calculated. Second,
the horizontal rays are set up to a point. Third, the real rays are set up to a point. The computational accuracy
is analyzed for a homogeneous wedge lying on a halfspace. Calculations are carried out for a coastal region of
the ocean. © 2000 MAIK “Nauka/Interperiodica”.
In recent years, a significant progress has been
achieved in the development of three-dimensional
models of sound propagation in the ocean. Most mod-
els use the approximation of a parabolic equation [1, 2].
Among the earliest successful attempts to solve the
problem of long-range low-frequency propagation in a
three-dimensional medium, the approach is known that
is based on the sound field representation in the form of
the sum of adiabatic modes which are calculated in the
parabolic approximation. This method follows the the-
ory of horizontal rays and vertical modes of Weinberg
and Burridge [3]. Heany et al. [4] used this theory to
interpret the experimental data on the global propaga-
tion of low-frequency sound (from the western coast of
Australia to the Bermuda Islands). Collins [5] made a
next step by developing a method for calculating the
low-frequency sound field on the basis of the computa-
tion of adiabatic modes in the parabolic approximation.
Later, in a number of joint studies [6, 7], the aforemen-
tioned researchers obtained excellent results that
explained the global low-frequency propagation
observed in the HIFT (Head Island Feasibility Test),
which was carried out in 1991 to study the feasibility of
monitoring global warming. The method used in these
studies is advantageous in that it allows one to solve the
long-range propagation problem in view of the real
dependence of the parameters of the medium on the
spatial coordinates. Though this approach is approxi-
mate, the calculation errors seem to be comparable with
those in the determination of the parameters of the
medium. Abawi et al. [8] considered the mode interac-
tion by using the parabolic approximation to solve the
horizontal wave equation that involves the summands
governing the interaction of modes.
1063-7710/00/4603- $20.00 © 20302
Three-dimensional models for high-frequency
sound propagation are developed to a lesser extent.
Good results are achieved in developing the calculation
methods based on the ray considerations for the case of
a sound speed in the medium depending on three spatial
coordinates (e.g., in sea currents, oceanic fronts, and
internal waves). Thus, Chiu et al. [9] analyzed the HIFT
by using the HARPO computer program (Hamiltonian
Raytracing Program for the Ocean) developed in 1986
[10]. The program computes the rays by the numerical
integration of the Hamilton equations of motion. The
sound speed that depends on three spatial coordinates is
expanded in orthogonal functions.

Nevertheless, one often faces difficulties in applying
the classical ray theory to three-dimensional high-fre-
quency propagation when the bottom profile signifi-
cantly contributes to the sound field formation. These
difficulties are related to the limited computer abilities.
In particular, the calculation of the sound field in a shal-
low sea corresponds to the case of the sea depth
depending on both horizontal coordinates, and the ray
being multiply bottom- and surface-reflected and
refracted in the horizontal plane. Recently, such a
refraction has been called the “bathymetric” one [11] in
contrast to the refraction caused by the sound speed
dependence on the horizontal coordinates. In the theo-
retical studies of the bathymetric refraction, combined
methods are frequently used that involve elements of
both ray and mode techniques. Thus, the interpretation
of the effects observed in the coastal zone [12] in terms
of mode considerations and equivalent rays made it
possible to explain the noticeable difference in the azi-
muth angles of the refracted and direct arrivals (the
observed angular difference was as high as 25°). A
000 MAIK “Nauka/Interperiodica”
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number of theoretical studies [13–16] used the ray
invariant and considered the reflection from the
inclined bottom. However, such studies are based on
simplified models for the medium: the sea depth H is
supposed to depend on a single horizontal coordinate
[15, 16].

On the other hand, to obtain the sound field param-
eters for natural environments, one should take into
account the dependence of the sea depth on both hori-
zontal coordinates. An efficient method was proposed
[17–20] for calculating the high-frequency sound field
for an arbitrary (but smooth) depth dependence on both
coordinates. This method is based on an approximate
technique for calculating the horizontal rays (i.e., pro-
jections of the real rays on the horizontal plane). At the
same time, the three-dimensional problem of determin-
ing the horizontal projections of the rays is reduced to
two-dimensional ray calculations in a two-dimension-
ally inhomogeneous medium with the effective refrac-
tive index (x, y) that depends on two horizontal coor-
dinates and is governed by the bottom relief and sound
speed profile [17, 18]. This approach has been imple-
mented in computer codes to calculate the rays for the
cases of a constant sound speed [19] and an arbitrary
dependence of the sound speed on the vertical coordi-
nate [20].

The computation of the horizontal rays is the first
step in solving the problem of the sound field calcula-
tion in an oceanic waveguide with an arbitrary depth
dependence on both horizontal coordinates. The next
step consists in computing the total sound field at an
arbitrary point S(xs, ys, zs) along with its spatial and
temporal spectra. The main problem here is to set up
the rays to a point, i.e., to determine the ensemble of the
rays that connect the sound source and receiver, this
problem being much more complicated for the three-
dimensional model than for the two-dimensional one.
In this paper, we report on the algorithm and some
results of computing the parameters of the total sound
field in a waveguide whose depth H(x, y) arbitrarily (but
smoothly) depends on two horizontal coordinates. We
assume that the bottom slopes are small and the sound
speed co is constant (considering the vertical depen-
dence of the sound speed is the subject of further stud-
ies).

The way of specifying the medium parameters is
described in [19]. The bottom relief is set by the iso-
baths. The bottom is approximated by osculating tri-
angles, so that the water column above each triangle
is an element of a wedge-like domain. Accordingly,
the horizontal ray propagates as if the medium is
stratified and has the effective refractive index (H) =

, where ϑp is the grazing angle of
the ray at the sound source (at the point P(xp, yp, zp)),
Hp = H(xp, yp), and H(x, y) is the dependence of the sea
depth on the horizontal coordinates x, y.

n
~

ñ

1 H p
2 ϑ p/H

2
sin

2
–
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The algorithm of calculating the total sound field in
a waveguide with a three-dimensional bottom relief
involves the following steps.

1. The first step consists in computing the parame-
ters of the horizontal rays that emanate from the source.
The horizontal trajectories of the real rays are deter-
mined for each given grazing angle ϑp, i.e., the current
coordinates of the horizontal ray are calculated as a
function of the propagation time t:

(1)

where ϕp is the azimuth departure angle of the ray.
(This procedure is described in [17, 19].) As a result of
computing, two-dimensional arrays are calculated for
each ϑp varying with the increment ∆ϑp. These arrays
are defined on a two-dimensional grid {T, A}, where A
is a one-dimensional array containing the values of the
azimuth departure angles ϕpj (the angle increment is
∆ϕp), and T is a one-dimensional array containing the
propagation times ti for the ray (the time increment is
∆t). The elements of the jth column of the array XAT
and those of the jth column of the array YAT determine
the trajectory of the horizontal ray with the azimuth
departure angle ϕpj . The elements of the ith row of the
arrays XAT and YAT determine the projection of the
curve of constant propagation time, t = ti , on a horizon-
tal plane. The horizontal projections of the rays and the
constant-propagation-time curves form a curved grid
on the (xy) plane with the cells Cij , each cell being
formed by two portions of the horizontal rays with the
departure angles ϕpj and ϕpj + 1, which are bounded by
the projections of the curves t = ti and t = ti + 1. Each
grazing angle ϑp leads to its own curved grid.

In addition to the trajectory of the horizontal ray (1),
for each current point of this ray, the time dependences
of the grazing angle ϑ(ϕp, t |ϑp) and the azimuth angle
ϕ(ϕp, t |ϑp) of the real ray are calculated along with the
intensity l(ϕp, t |ϑp) of the sound field associated with
the ray and the sea depth h(ϕp, t |ϑp) for the current ray
point at the instant t. The number N(ϕp, t|ϑp) of ray
cycles that are produced by the real ray before it comes
to the current point are also calculated. Here, the ray
cycle means the trajectory of the real ray between the
adjacent points of reflection from the surface or from
the bottom. The horizontal length of the ray cycle can
be approximately (within the order of the small bottom
slope) expressed as

where the quantity L is a slowly varying function of the
propagation time t. Denote the ray length in the hori-
zontal plane as σ and the number of cycles produced by
the ray as N. The change ∆σ in a single cycle (∆N = 1)
is the cycle length L: ∆σ/∆N = 1. Hence, assuming that
N is a real and continuous function of σ, in view of the

x X ϕ p t ϑ p,( ),  y Y ϕ p t ϑ p,( ),= =

L ϕ p t ϑ p,( ) 2h ϕ p t ϑ p,( ) ϑcot ϕ p t ϑ p,( ),=
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slow variation of L, we obtain dσ/dN = L. Then, we
have

(2)

The latter formula was used to compute the number
of cycles of the real ray simultaneously with the param-
eters of the horizontal ray. By computing the number N
of ray cycles, we managed to set the rays to a point
without calculating the trajectory of the real ray in three
dimensions.

The number N(ϕp, t |ϑp) of ray cycles is a monoton-
ically increasing function of the ray propagation time t.
For instance, if zp = 0, the values N = 1, 2, 3, … cor-
respond to the first, second, third, etc time that the
ray comes to the surface, and the values N = 0.5, 1.5,
2.5, … correspond to the first, second, third, etc time
that the ray touches the bottom. The value N can be
expressed as a sum of the integer and fractional parts:

.

The integer part m is the number of full cycles produced
by the ray, and the fractional part µ corresponds to the
last incomplete ray cycle and depends on the vertical
coordinate zs of the point S. It can be shown that, at zp =
0 (within the order of the small bottom slope), we have

 for the ray propagating from above, (3)

(4)

Here, z is the vertical coordinate of the current point of
the real ray and h is the sea depth under this point. If one
knows the fractional part of N, expressions (3) and (4)
can be used to obtain the vertical coordinate z of the cur-
rent point of the real ray at the instant t. Thus, the calcu-
lated trajectory of the horizontal ray, i.e., the quantities
x = X(ϕp, t|ϑp) and y = Y(ϕp, t|ϑp), and the number N(ϕp,
t|ϑp) of the ray cycles carry complete information on the
trajectory of the real ray with the departure angles ϑp
and ϕp.

The grazing angle of the real ray as a function of
time t was calculated with the use of the Weston invari-
ant H |sinϑ | = Hp |sinϑp | for the trajectory of the hori-
zontal ray (1). In calculating the intensity I(t) of the ray-
associated sound field, we transformed the sum of the
reflected ray contributions into the integral over its hor-
izontal trajectory. For the intensity I(t) expressed in
decibels, the following expression is valid:

(5)

N
dσ
L

------

0

σ

∫
c0

2
---- ϑsin

h
-----------dt.

0

t

∫= =

N m µ+=

µ z( ) = 0.5z/h

µ z( ) = 1 0.5z/h for the ray propagating from below.–

I t( ) 10 τ– 2
e

–βτ
Vν

2

ν 1=

νt

∏log=

=  20 τlog– 10 e
–βτ

log 20 Vlog ν,
ν 1=

νt

∑+ +
where τ = cot is the path length along the real ray; β is
the attenuation coefficient; ν is the ordinal number of
bottom reflection (ν = 1, 2 … νt); νt is the number of bot-
tom reflections experienced by the ray till the instant t;
Vν = |V(γν)| is the absolute value of the bottom reflection
coefficient; and γν is the grazing angle of the reflected
ray relative to the bottom, which is approximately equal
to the ray grazing angle: γν ≈ ϑν. In the latter summand
of (5), we replace the summation by the integration and
use the facts that the real ray grazing angle slowly var-
ies along its trajectory and that dν = dN = dσ/L =
cosinϑdt/(2h):

(6)

where h(t) = H(x(t), y(t)) is the sea depth at the current
ray point. This expression was used to calculate the
parameters of the horizontal rays. As a result, two-
dimensional arrays were obtained on the two-dimen-
sional grid {TA}, which contain the ray parameters.

2. The second step of the algorithm consists in set-
ting the horizontal rays to the point So(xs, ys, 0), which
is the projection of the observation point S(xs, ys, zs) on
the horizontal plane. For each grazing angle at the
source, ϑpk = ϑpo + k∆ϑp (k = 0, 1, 2, … and ϑpo is the
initial angle at the source, which is close to zero), the
departure angle ϕps(ϑpk) is calculated for the horizontal
ray that passes through the point So, i.e., the azimuth
departure angle ϕps(ϑpk) of the real ray that passes
under the point So. To do so, for each ϑpk, a cell Cij is
found that contains the point So. Then, by using the
coordinates x, y of the cell nodes and by the inverse
interpolation, the departure grazing angles ϕps are
determined for the horizontal ray that passes through
the point So(xs, ys, 0), along with the time ts(ϑpk) of
propagation of the associated real ray from the source.
After that, with the parameters ϑ , ϕ, I, h, and N calcu-
lated at the cell nodes, the values of these parameters
are computer-interpolated to the point So. By imple-
menting the aforementioned procedures for all ϑpk
(with the specified increments ∆ϑp), we obtain one-
dimensional arrays that characterize the dependence of
the ray parameters on the grazing angle ϑp at the point
So: ϕs(ϑp), ϑ s(ϑp), Is(ϑp), and Ns(ϑp).

3. The third step consists in setting up the real rays
to the point S, i.e., in determining the departure angles
ϑpm and ϕpm for the real rays emanating from the source
and arriving at the point S(xs, ys, zs). Till now, the verti-
cal coordinate zs of the reception point was not used in
the calculations. In fact, the calculated parameters
determine all physical rays passing under the point So.
From these rays, only those should be selected that pass

20 Vνlog
ν 1=

νt

∑ 20 V ϑ N( )log Nd

0

N

∫=

=  20 V ϑ( ) σd
L

------log

0

σ

∫ 10co V ϑ t( )[ ] ϑsin
h t( )
-----------log t,d

0

t
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through the point S(xs, ys, zs) with the specified vertical
coordinate zs. One must solve the equation:

(7)

In other words, for the specified value of zs, a number
of ϑpm should be found that serve as the departure
angles for the rays arriving at the point S. Then, by
interpolation, the parameters tm, ϑm, ϕm, and Im corre-
sponding to these real rays are calculated. Thus, the
temporal and angular spectra of the sound field are
computed for the point S.

The proposed algorithm of setting the rays to a point
needs no calculation of trajectories for the three-dimen-
sional reference rays and no determination of the coor-
dinates for multiple points of bottom reflections.
Instead, it is sufficient to compute the horizontal trajec-
tories and solve equation (7). A number of problems do
not require even this equation to be solved. In particu-
lar, to determine the total intensity I of the sound field
at the point S, one can transform the summation over
the ray number m into the integration:

The derivative [dm/dϑp]s means the number of rays
arriving at the point S and belonging to a unit interval
of the grazing angles at the source. This derivative is
given by equation (7), where zs = const:

Then, we have

(8)

i.e., the summation of intensities of all rays arriving at
the point S is reduced to the integration of the function
that is specified by the computed array. One can expect
that this algorithm will be more advantageous for the
problems which require sound fields of many sources to
be calculated, e.g., estimation of ambient-noise and
reverberation interference.

The proposed algorithm can be successfully accom-
plished on condition that the sea depth is a slowly vary-
ing function of the horizontal coordinates. This condi-
tion was used in deriving the equation for horizontal
rays [17] and in passing from the sum to the integral in
expressions (2) and (6). To illustrate the accuracy of the
aforementioned computer program, a uniform wedge
can be considered, for which the ray parameters can be
precisely calculated by using the method of imaginary
sources [21]. In the previous paper [19], we compared
the data of the horizontal-ray calculations with those of
the accurate calculations of the horizontal projections
of real rays for a wedge with an angle of 3°. The relative
error proved to be approximately 10– 3. For this wedge,
Fig. 1 shows the calculated departure angles ϕpm and
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I Im∑ Is ϑ p( ) md
ϑ pd

---------
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ϑ p.d∫= =
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Ns ϑ p( )d

ϑ pd
--------------------.=
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Ns ϑ p( )d
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calculations of the rays connecting the source and the
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of the proposed algorithm. Some trajectories can hardly
be distinguished in Fig. 2. Each solid curve corresponds
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mate approach allows a sufficiently good setting of the
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value) and –28.50 dB (the approximate value). A con-
clusion can be drawn that expressions (5) and (6) are
good approximations for the intensity computations
when the sea depth is a slowly varying function of the
horizontal coordinates.

Below, we present the angular and temporal struc-
tures of the sound field calculated for a coastal region
of the ocean. The region has a sand bottom, and its
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Fig. 2. Horizontal rays connecting the source P and the point S (50, 110, 0.4) within the wedge (the approximate calculation). The
numbers on the right indicate the depths for the isobaths x = 20, 40, and 60 km.
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Fig. 3. Bottom topography for the coastal region and the positions of the source P and the reception points Sn used in the calculations.
topography is shown in Fig. 3. A set of points Sn at
which the field was calculated is also shown in this fig-
ure. The point P(30, 8, 0) indicates the source position.
The reception depth was zs = 75 m. The points Sn lie in
four propagation paths. Two of the paths are oriented
approximately along the isobaths (path 2, points S6–S9
and path 4, point S16–S19, see Fig. 3), and the two other
paths are nearly perpendicular to the isobaths (path 1,
points S1–S6 and path 3, point S11–S16).
The calculations were carried out for two bottom
topographies. The first case is illustrated in Fig. 3: the
bottom slope is about 0.2° at the bottom area between
the 100- and 150-m isobaths. The second case is char-
acterized by the same isobath positions, but they corre-
spond to other depth values (instead of the 150-, 200-,
300-, and 500-m depths, the values 500, 600, 700, and
800 m are used), the bottom slope being about 1.5°
between the 100- and 500-m isobaths.
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Fig. 4. Angular structure of the signal (a steep bottom slope): (a) at the point S14; (b) at the points S11–S15.
Figure 4 shows the angular spectrum of the sound
field calculated for the point S14 of the sea region under
study (case 2, steep slope). Parameters are shown only
for the rays with the intensities higher than –50 dB.
Each vertical line in the figure corresponds to a ray that
arrives at the point S14 from the direction determined by
the angles ϕm and ϑm, and with the intensity Im. The
computations show that the most intense signals arrive
from the directions close to that of the direct arrival,
ϕ0 ≈ 93°. The range of the grazing angles of the arriving
rays is wider than that of the azimuth angles. Figure 4b
shows the arrival angles ϕm and ϑm for five points of
path 3. The numbers 11–15 denote the calculated data
for the points S11–S15. The circled points correspond to
the rays with intensities higher than –50 dB. Other
points illustrate the arrival angles for the rays with
intensities from –300 to –50 dB. The maximum |ϑm |
corresponds to the ray with a turning point that is close
to the reception point Sn in the horizontal plane. The
rays associated with the points of the lower portions of
curves 11–15 arrive at the point Sn after turning back
from the coast, their intensities being small. As the dis-
tance between the observation point and the coast
grows, the range of the azimuth arrival angles
increases.

The range of the azimuth arrival angles ∆ϕ is gov-
erned by the bottom topography and seems to be the
most pronounced feature determined by the three-
dimensional geometry of the problem. If the sea depth
were constant, all rays would arrive at the same azi-
muth angle (∆ϕ = 0). For the data shown in Fig. 4a, ∆ϕ
reaches a value of 11° for the rays with intensities
higher than –50 dB. If one considers rays of lower
intensities, this range will increase. Figure 5 illustrates
the second case of the bottom topography. The values
of ∆ϕ are shown for the points Sn of all four paths, only
the rays with intensities Im > –50 dB being taken into
account. The data show that the values of ∆ϕ increase
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000
as the distance from the source increases. A trend can
be also noticed to increasing ∆ϕ for the observation
points approaching the coast line. The computations
yield a broader range ∆ϕ when the bottom slope is steep
compared to the smooth one. This is a consequence of
the fact that, with the steep slope, the rays experience a
lesser number of bottom reflections and are more
intense than those observed in the case of a smooth bot-
tom, this effect leading to broader range of the azimuth
arrival angles for intense rays.

The calculations showed that the signal duration is
considerably greater for the steep bottom slope than for
the smooth one. Figure 6 presents the temporal signal
structure at the point S13 (a steep slope). The direct ray
(with the highest intensity) is the first to arrive at the
observation point. The comparative data on the ray
parameters for the points S11–S15 are summarized in the
table for both a steep and a smooth bottom slope.

The performed calculations lead to the following
conclusions for the steep bottom slope:
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Fig. 5. Range of the azimuth arrival angles at the points Sn
for the coastal region with a steep bottom slope.
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the number of rays forming the received signal is
less;

the range ∆ϕ of the azimuth arrival angles is
broader;

the range ∆ϑ  of the grazing arrival angles is broader;
the range ∆ϕp of the azimuth departure angles is

broader;
the range ∆ϑp of the grazing departure angles is

broader; and
the signal duration ∆t is longer.
The table illustrates how the signal duration ∆t

increases, as the distance of the observation point from
the coast grows (the points from S15 to S11).

I, dB
0

–50

–100

–150

–200

23 25 27 29 31
t, s

Fig. 6. Temporal structure of the signal at the point S13 (a
steep bottom slope, zs = 0.4 km).
According to the calculations, the total sound field
intensity (obtained by summation of the ray-associated
intensities) is by ~2–3 dB higher for the steep slope
than for the smooth one. This intensity difference is a
consequence of the lower number of bottom reflections
of the ray in the steep-bottom case. The intensity range
dependence is most interesting for path 3, which is per-
pendicular to the isobaths and passes away from the
source (Fig. 7). For this path, the distance from the
source increases from 33.5 km (point S11) to 38.5 km
(point S15), and the total intensity even becomes some-
what higher for longer ranges. The reason is the
increase in the number of intense rays (see table). On
path 1, which is also perpendicular to the isobaths but

I, dB
–14

–16

–18

–20

–22
1.52 1.54 1.56 1.58

logr
1.60

1

2

3

Fig. 7. Sound field intensity on path 3 for (1) a smooth bot-
tom slope, (2) a steep bottom slope, and (3) a cylindrical
decay law, I = –10 /r0), where r0 = 1 km.r(log
Range of the ray parameters (at the –50-dB intensity level) for the reception points S11–S15 and for two cases of the bottom
topography in the coastal zone (a sand bottom)

Case
no. 1 or 2

Reception points

S15 S14 S13 S12 S11

Number of rays connecting the 
source and the receiver

I 51 47 45 43 39

II 35 31 27 25 23

Range of azimuth arrival
angles ∆ϕ, deg

I 3.0 1.3 1.4 2.3 3.1

II 8.3 11.3 8.2 5.8 5.2

Range of grazing arrival
angles ∆|ϑ|, deg

I 11.5 10.8 10.8 9.5 7.2

II 17 21 19 17 17

Range of azimuth departure
angles ∆ϕp, deg

I 0.6 1.0 1.3 2.2 3.3

II 1.0 2.8 3.9 4.4 5.7

Range of grazing departure
angles ∆ϑp, deg

I 3.2 4.2 5.0 6.0 7.8

II 2.0 6.9 10.6 14.0 6.9

Signal duration ∆t, s I 0.27 0.32 0.35 0.41 0.5

II 0.26 0.81 1.1 1.3 1.5
ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000



CALCULATION OF TEMPORAL, ANGULAR, AND INTENSITY CHARACTERISTICS 309
passes through the source, the sound field decays with
distance.

The proposed algorithm for calculating the high-fre-
quency sound field in the sea with a three-dimensional
bottom is based on ray considerations, but requires nei-
ther the reference rays to be computed in the three-
dimensional space, nor the multiple points of bottom
reflections to be found. At a number of procedure steps,
the problem is reduced to two dimensions. One can
expect that thereby higher efficiency of computing may
be attained, especially when sound fields of many
sources are to be combined (e.g., the calculations of
surface-generated ambient noise or reverberation). The
approach used above is approximate and imposes some
constraints on the parameters of the problem. First, the
general validity conditions of the geometrical optics
should be met. Second, the bottom slope should be low.
The latter requirement can hardly be formulated in a
more formal way. To be more specific, we have com-
pared the approximate results with the exact ones
obtained for the wedge. A typical feature of the prob-
lems associated with the bathymetric refraction is that
one cannot specify the bottom relief and the slopes in
detail. This fact seems to justify the inaccuracy of our
computations.
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Abstract—The correlation description of the fluctuations of the frequency shifts, which occur in the sound field
interference pattern of a shallow sea because of the spatial variability of the medium, is presented. The fre-
quency shifts of the spectral intensity oscillations are estimated for a number of models of large-scale inhomo-
geneities. The possibilities for using this phenomenon for monitoring shallow-water ocean regions are dis-
cussed. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The frequency shift of the sound field interference
pattern in waveguide channels due to the variability of
the propagation conditions along the track is a well-
known effect in ocean acoustics. The study of this shift
is of interest in relation to the investigation of the char-
acteristic features of the sound field propagation in the
ocean that are associated with interference phenomena,
as well as from the point of view of its possible appli-
cations.

Most of the theoretical and experimental investiga-
tions were devoted to the study of the sound reception
at points separated in space and frequency in horizon-
tally homogeneous oceanic waveguides (e.g., [1–4]).
However, in most cases, the spatial characteristics of
the water medium vary along the track. Due to this fact,
the development of a more general theory has become
a necessity. This problem was not discussed in the liter-
ature, although there are some publications that con-
sider its particular aspects [2, 5, 6].

The first description of the spectral intensity oscilla-
tions caused by the temporal variability of the propaga-
tion conditions was given in the previous paper by
Kuz’kin [7]. The theory developed there was confirmed
by the experimental data [8].

This paper develops the results obtained by Chuprov
[2] and Kuz’kin [5, 6]. It provides the correlation
description of the fluctuations of the spectral intensity
oscillations caused by the spatial variability of the
ocean. The characteristic scales of such variations are
estimated for a number of perturbation models. The
possibility of using this effect for remote sensing of the
inhomogeneity parameters of oceanic waveguides is
discussed.
1063-7710/00/4603- $20.00 © 0310
FREQUENCY SHIFTS OF SOUND INTENSITY

For the subsequent analysis, we need the expres-
sion for the shift of the signal frequency spectrum in a
somewhat different form than it was given by Chu-
prov [2]. Therefore, we briefly consider its derivation.
We restrict ourselves to considering longitudinal and
transverse separations of the points of reception (rela-
tive to the direction of sound wave propagation) only in
the (x, y) horizontal plane. Assume that sound propa-
gates along the x axis.

Longitudinal Separation

At a long distance x from the point source, the inten-
sity of a monochromatic field of frequency ω is repre-
sented as a sum of modes

(1)

where ξmn = ξm – ξn, and Am and ξm are the amplitude
and the propagation constant (the horizontal compo-
nent of the wave vector) of the mth mode. In the vicinity
of the point (ω0, x0) of a local extremum of the sound
intensity, the following expression is valid:

(2)

The sound propagation conditions in the ocean are such
[3] that the local interference pattern, which is stable to
the variations of the propagation conditions, is formed
efficiently by a small number of one-type modes
excited in phase (constructive interference). In this
interval of mode numbers, we expand ξm in a power

I Am x( )An* x( ) i ξmn ω x',( ) x'd

0

x

∫ ,exp
n

∑
m

∑=

∂I ω0 x0,( )
∂ω

------------------------∆ω||
∂I ω0 x0,( )

∂x
------------------------∆x+ 0.=
2000 MAIK “Nauka/Interperiodica”
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series in the vicinity of the lth mode and retain only the
linear terms

(3)

where α = ∂ξl/∂l = –2π/Sl  and Sl is the ray cycle length
corresponding to the lth mode [9]. Assuming that the
mode amplitude is a slower function of its arguments as
compared to the phase and using relations (1)–(3), we
obtain for the frequency shift of the oscillations:

(4)

Expression (4) can be derived in a different way by
using the condition of the phase constancy of the field

excited by a group of one-type modes: (ω, x')dx' =

const [4]. Expanding the phase in the vicinity of the
point (ω0, x0) in a Taylor series and retaining only the
linear terms, we find

With allowance for expansion (3), the right-hand mem-
ber of the obtained expression does not depend on
mode numbers and coincides with the right-hand mem-
ber of expression (4).

Note that expression (4) can also be transformed in a
different way by using the definitions of the group cgl

and phase cphl velocities of the lth mode: cgl = ∂ω/∂ξl and
cphl = ω/ξl . As a result, equality (4) takes the form

which corresponds to the relationship used in [2]. Here,
cphl(x0) is the mean phase velocity of a group of one-
type modes received at the distance x0 from the source;
the quantity 〈1/cgl 〉  is the value of 1/cgl averaged over

the track, i.e., 1/cgl , 〈1/cgl 〉  = (1/x0) /cgl(x)]dx, and

cgl(x) is the local value of the group velocity of the lth
mode.

Transverse Separation

Assume that the points of reception are located at
the distance x from the source and are separated by the
interval y in the transverse direction. If we perform cal-
culations similar to those used to derive expression (4),

ξm ξ l m l–( )α ,+=

∆ω|| α ω0 x,( ) xd

x0

x0 ∆x+

∫ /
∂α ω0 x,( )

∂ω
------------------------ xd

0

x0

∫ .–=

ξmn0

x∫

∆ω|| ζmn ω0 x,( ) xd

x0

x0 ∆x+

∫ /
∂ξmn ω0 x,( )

∂ω
---------------------------- xd

0

x0

∫ .–=

∆ω||/ω0

∆x/x0
------------------

d 1/cphl x0( )[ ]
1/cgl〈 〉d

-------------------------------,–=

1[
0

x0∫
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we obtain for the frequency shift of the spectral oscilla-
tions:

(5)

It is clear that in waveguides with the horizontal strati-
fication, ∆ω⊥  = 0.

The frequency shifts of the interference extrema can
be used, in particular, for controlling the field focusing
in oceanic waveguides on the basis of the principle of
phase conjugation (wave front inversion) [10–12] and
for monitoring shallow-water ocean regions [4].

STATISTICAL PROPERTIES
OF THE FREQUENCY SHIFTS

In the framework of the correlation theory, we
describe the fluctuations of the spectral intensity oscil-
lations caused by random variations of the oceanic
medium. The quantity α is represented as the sum of
the mean value  and its fluctuations :

(6)

where  = α0 + α1, α0 is the unperturbed value corre-
sponding to a horizontally-homogeneous waveguide
channel, and α1 is the perturbation caused by the regu-
lar inhomogeneities, the latter quantity satisfying the

condition  = 0 and | | @ | |; r = r(x, y) is the radius-
vector of the point of observation in the (x, y) horizontal
plane. The overbar means statistical averaging of the
quantity considered. Assume that the random field

(r) is an isotropic and homogeneous one. The correc-
tions α1 and  to the unperturbed value α0, which is
assumed to be known, can be found in the WKB
approximation from the perturbation theory [13]. In
this case, the corrections are explicitly expressed in the
integral form and can be related to the behavior of the
field of oceanic inhomogeneities. Further, it is conve-
nient to write  as the product of a deterministic func-
tion ν(ω) and a random function µ(ρ):

(7)

We will describe the random field µ by the correlation
function Bµ(ρ). Consider the fluctuations of the fre-
quency shift of the field interference pattern for longi-
tudinal and transverse separations of the points of
observation in the (x, y) horizontal plane.

∆ω⊥ α ω x' y, ,( )[
0

x

∫


–=

– α ω x' 0, ,( ) ]dx'




/
∂α ω x' 0, ,( )

∂ω
----------------------------- x'.d

0

x

∫

α α̃

α ω r,( ) α ω r,( ) α̃ ω r,( ),+=

α

α̃ α α̃

α̃
α̃

α̃

α̃ ω ρ,( ) ν ω( )µ ρ( ).=
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Longitudinal Correlation

Using expressions (4), (6), and (7), for a random fre-
quency shift of the spectral intensity fluctuations within
the interval (x, x + s), we obtain the expression

(8)

where Ω(x) is the random field of the frequency shifts
of the local intensity extrema on the x axis, and
〈∂ /∂ω〉 is the mean value of ∂ /∂ω within the inter-
val (0, x). The mean value of the frequency shift  is
determined by expression (4) in which we need to set
x0 ≡ x, ∆x ≡ s, and α ≡ . Consider a fluctuation of the
field increments for the field Ω(x), i.e., the quantity

(x) = Ω(x) – . According to (8), for the mean
square modulus of the increment of the fluctuation com-

ponent  of the field Ω, which we denote by DΩ(x, s),
we obtain

(9)

The one-dimensional spatial spectral density Wµ(κ) of
the homogeneous and isotropic field µ along the chosen
direction is related to its correlation function Bµ(s)
through the Fourier transformations [14]:

(10)

Using spatial spectrum (10), we can express the struc-
ture function (9) as the integral

(11)

If the spectrum width ∆κ of the random field µ is large
compared to that of the main maximum of the factor

ϕ|| x s,( ) = Ω x s+( ) Ω x( )–  = ϕ|| x s,( ) x
∂α
∂ω
-------

1–

–

× ν ω( ) µ x'( ) x'd

x

x s+

∫ ϕ|| x s,( ) ∂ν
∂ω
------- µ x'( ) x'd

0

x

∫+
 
 
 

,

α α
ϕ

α

Ω̃ Ω x( )

Ω̃

DΩ x s,( ) = x
∂α
∂ω
-------

2–

ν2 ω( ) Bµ x'' x'–( ) x''d x'd∫
x

x s+

∫



+ ϕ|| x s,( )[ ]2 ∂ν
∂ω
------- 

 
2

Bµ x'' x'–( ) x''d x'd∫
0

x

∫ 



.

Bµ s( ) Wµ κ( ) κs( ) κ ,dcos

∞–

∞

∫=

Wµ κ( ) 2π( ) 1–
Bµ s( ) κs( ) s.dcos

∞–

∞

∫=

DΩ x s,( ) = 2 x
∂α
∂ω
-------

2–

ν2 ω( ) Wµ κ( )
1 κscos–

κ 2
----------------------- κd

∞–

∞

∫



+ ϕ|| x s,( )[ ]2 ∂ν
∂ω
------- 

 
2

Wµ κ( )1 κxcos–

κ 2
------------------------ κd

∞–

∞

∫ 



.

(1 – cosκx)/κ2, i.e., ∆κ @ 2π/x, and Wµ(0) ≠ 0, expres-
sion (11) can be reduced to the form

(12)

where  and lint are the mean square and the integral
correlation radius of the field fluctuations µ, respec-

tively; lint = (1/ ) . The condition, at which

expression (12) holds, can be given in the correlation
form. If, for isotropic random fields, we use the uncer-
tainty principle (or “smearing”) ∆κlint ≥ 1 in which
∆κ = ϑ/lint, where ϑ = 2π, we arrive at the condition x @
lint . In particular, in the absence of regular perturbations
of the oceanic medium (α1 = 0), formula (12) yields

(13)

We now estimate the influence of the braced terms
of the right-hand member of (12) on the behavior of the
structure function. For subsequent estimates, it is suffi-
cient to use any model of the correlation function µ, for
example, an exponential function

for which, in particular, the field correlation radius l
coincides with the integral radius, l = lint . According to
(10) and using (13), we determine the spectral density
of the random field µ and substitute it in (12). As a
result, we obtain

(14)

Consider the two limiting cases:
(i) For the spatial intervals s ! l, the total rms fre-

quency shift is described by the square-law dependence

DΩ x s,( ) = 2 x
∂α
∂ω
-------

2–

ν2 ω( ) Wµ κ( )
1 κscos–

κ 2
----------------------- κd

∞–

∞

∫



+ ϕ|| x s,( )[ ]2 ∂ν
∂ω
------- 

 
2

xσµ
2
lint





,

σµ
2

σµ
2

Bµ s( ) sd
0

∞∫

DΩ x s,( ) 2 x
∂α0

∂ω
---------

2–

ν2 ω( ) Wµ κ( )1 κscos–

κ 2
----------------------- κd

∞–

∞

∫



=

+ α0
2
s

2
x( ) 1– ∂α0

∂ω
--------- 

 
2

σµ
2
lint





.

Bµ s( ) σµ
2

s /l–( ),exp=

DΩ x s,( ) 2 x
∂α
∂ω
-------

2–

lσµ
2

=

× ν2
s l 1 e

s /l–
–( )–[ ] ϕ|| x s,( )[ ]2

x
∂ν
∂ω
------- 

 
2

+
 
 
 

.

DΩ x s,( ) x
∂α
∂ω
-------

2–

s
2σµ

2
l=

× ν2 ω( )/l( ) 2x α( )2
x

∂α
∂ω
-------

2– ∂ν
∂ω
------- 

 
2

+
 
 
 
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in which the first term predominates over the second
term, provided that x @ 2l.

(ii) For the spatial intervals s @ l, we obtain

The behavior of the structure function is now deter-
mined by the diffusion law, on condition that x @ s.

In deriving these estimates, we took into account the
condition [ /ν]2/[〈∂ /∂ω〉/(∂ν/∂ω)]2 ~ 1. Thus, at large
distances x @ l in the case of both the narrow spectrum,
i.e., a long-lived correlation (s ! l), and the wide spec-
trum, i.e., a short-lived correlation (s @ l), the structure
function of the frequency shifts of the local extrema is
determined by the expression

or in the other form

where

is the spectral density of the structure function of the
random field γ(x) [14] and µ(x) = dγ/dx × (Wγ(κ) =
Wµ(κ)/κ2).

It is clear that these conclusions are unrelated to the
special choice of the exponential correlation function
(13) for µ. An important point is only whether this cor-
relation function is sufficiently sharp within the interval
s, i.e., l ! s, or this interval is too small, s ! l. Certainly,
this result can be obtained directly from expression (12)
by considering short-correlated and long-correlated
fluctuations µ. Thus, at distances x far exceeding the
integral correlation radius lint , x @ lint , in the limiting
cases of slow and fast fluctuations µ, the spectrum of
the frequency shifts of the local intensity extrema
reproduces the spectrum of the random field γ within
the factor ν2(ω)[x〈∂ /∂ω〉]–2. The value of this factor
depends on the track length and the dispersion charac-
teristic of the waveguide.

DΩ x s,( ) 2 x
∂α
∂ω
-------

2–

σµ
2
l=

× ν2 ω( )s α( )2
s

2
x x

∂α
∂ω
-------

2– ∂ν
∂ω
------- 

 
2

+
 
 
 

.

α α

DΩ x s,( ) 2 x
∂α
∂ω
-------

2–

ν2 ω( )=

× Wµ κ( )1 κscos–

κ 2
----------------------- κ ,d

∞–

∞

∫

DΩ x s,( ) x
∂α
∂ω
-------

2–

ν2 ω( )Dγ s( ),=

Dγ s( ) 2 1 κscos–( )Wγ κ( ) κd

∞–

∞

∫=

α
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Transverse Correlation

Consider the mean square ϕ⊥ (x, y) = (x, y) –

(x, 0) (referred to as D⊥ (x, y)) of the increments of the

frequency shift fluctuations (x, y) = Ω(x, y) – 
of the local intensity extrema on the y axis. If these
extrema are observed at the distance x from the source,
then, according to (5)–(7), we obtain

(15)

where

is the mean value of the frequency shift of the interfer-
ence pattern for a transverse separation of the points of
observation. If the transverse (with respect to the direc-
tion of sound wave propagation) gradient of the regular

perturbation equals zero, i.e., ∂ /∂y = 0, we have

 = 0.

Now, in expression (15), we go over to new vari-
ables of integration, s = x'' – x' and η = (x' + x'')/2, and
take into account that the correlation function markedly
differs from zero only for the values of |s| that do not
exceed the correlation radius of the fluctuations µ. At
distances x @ lint, the limits of the integration with
respect to s can be extended to infinity, and the integral
with respect to η can be calculated in the limits from 0
to x. Since Bµ(ρ) = [Dµ(∞) – Dµ(ρ)]/2, we obtain

(16)

Ω̃
Ω̃

Ω̃ Ω x y,( )

D⊥ x y,( ) x
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---------------------
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,
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x
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∫ – α x' 0,( ) ]dx'




/ ∂α x' 0,( )/ ωd )( x'd

0

x

∫

α x 0,( )
ϕ⊥

D⊥ x y,( ) 2x x
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∂ω
---------------------
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=

× ν ν ϕ⊥
∂ν
∂ω
-------– 

  Dµ s y,( ) Dµ s 0,( )–[ ] sd
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

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Structure function (16) can be expressed in terms of the
spatial spectrum of fluctuations. Substituting the spec-
tral density [14]

where r = , in expression (16) and inte-
grating with respect to s, we obtain

(17)

Here, J0(x) is the zero Bessel function, and Φµ(κ) is the
three-dimensional spatial spectrum of the homoge-
neous isotropic field µ, which is related to the one-
dimensional spectrum Wµ(κ) by the relationship [14]

From (17) it follows that, in the absence of regular
inhomogeneities (ϕ⊥  = 0), we have

(18)

From this expression, we derive

(19)

The variance of fluctuations Ω has the form

(20)

Thus, the mean square of the frequency shifts of the
spectral intensity oscillations is determined by the track
length, the dispersion characteristic of the unperturbed
waveguide channel, and the variance and the integral
correlation radius of the fluctuations µ. It is worth not-
ing that, as the distance decreases, the fluctuations of
the frequency shifts of the spectrum increase as (1/x).
From expression (19) it follows that the transverse cor-
relation of the frequency shifts of the oscillation spec-

Dµ r( ) 8π 1 κrsin
κr

-------------– 
  Φµ κ( )κ 2 κ ,d
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∞
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2
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2
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+ +

D⊥ x y,( ) 8π2
x x
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2πκ
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-------------------.–=
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 
–2

ν2 ω( )σµ
2
lint.
trum extends over distances of the order of the correla-
tion radius l of the random field µ, i.e., l⊥  ~ l. This fact
is evident from the example of the Gaussian correlation
function

for which one can show that

where the variance (x) is determined by expression
(20). In this case, we obtain l⊥  = l.

In particular, if the transverse correlation function
B⊥ (x, y) of the frequency shifts of the local intensity
extrema is known, then, inverting formula (19), we
obtain an expression for the spatial spectrum of fluctu-
ations

ESTIMATES OF THE FREQUENCY SHIFTS

The relationships obtained above allow us to esti-
mate the effect of various parameters of the oceanic
medium (for a known oceanic medium model) on the
frequency shift of the sound field interference pattern.
As an illustration, we consider some examples of both
regular and random spatial perturbations in a
waveguide channel with perfectly reflecting bound-
aries. Here, we accept a model with a rigid bottom. The
use of a more complex bottom model as an impedance
medium does not significantly affect the estimates of
the frequency shift (see [2] and the literature cited
there).

Regular Perturbations

Example 1. Plane slope bottom, isovelocity chan-
nel. Let the waveguide depth vary with distance along
the x axis as

and the track length x0 exceed the distance x2, x0 > x2.
Using the dispersion relation for a perfectly homoge-
neous waveguide [9]and expression (4), we obtain an
expression for the relative frequency shift
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x( ) y
2
/2l

2
–( ),exp=

σΩ
2

Φµ κ( ) 2π( ) 2–
x ∂α0/∂ω( )2ν 2– ω( )=

× B⊥ x y,( )J0 κy( )y y.d

0

∞

∫

H x( )

H1, 0 x x1≤ ≤
H1 ε x x1–( ), x1 x x2≤ ≤+

H2, x x2≥





=

∆ω||

ω
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Setting, for example, x1 = x2 – x1 = x0 – x2 = 10 km (the
total track length is x0 = 30 km), ε = 10–2, and H1 =
100 m, we obtain ∆ω||/ω ≈ 1.4 × 10–5∆x. Note that, in
the absence of depth variations along the track (H(x) =
const), we have ∆ω||/ω ≈ ∆x/x0 ≈ 3.3 × 10–5∆x [2]. The
quantity ∆x is expressed in meters.

Example 2. Frontal zone. Assume that the frontal
zone is a transition region between two regions with
range-independent stratifications. We limit our consid-
eration to a two-layer model of the sound channel in the
transition region 0 ≤ x ≤ L, which is described by the
sound velocity profile

and assume that the parameters c0(x) and χ(x) vary lin-
early with the distance x:

c x z,( )
c0 x( ), h– z 0≤ ≤
c0 x( ) 1 χ x( ) h z+( )+[ ] , H– z h–≤ ≤




=

c0 x( ) c1 ∆c/L( )x,  χ x( )+ χ1 ∆χ/L( )x.+= =
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The sea depth H, the thickness of the homogeneous
layer h, and the sound velocity near the bottom c(–H)
are assumed to be invariable along the track. Assume
also that the track is normal to the frontal zone bound-
aries and its length exceeds the width of the transition
region, x0 > L. We use the following values of the sound
channel parameters: ∆c ~ 13.8 m/s, c1 ~ 1480 m/s, ∆χ ~
4.6 × 10–5 1/m, χ1 ~ 1.7 × 10–5 1/m, H ~ 250 m, h ~ 50 m,
and L ~ 10 km, which roughly correspond to the polar
frontal zone of the western part of the Barents Sea
[15, 16]. We estimate the frequency shifts of the local
extrema of the field interference pattern formed by a
group of modes associated with the bottom rays.
According to [9], we have

The substitution of this expression in (4) yields

α 3π( )2/3

3
----------------ω1/3χ2/3

x( )c0
1/3–

x( ) l
3
4
---– 

  1/3–

.–=
∆ω||

ω
---------

3χ2
2/3

c2
1/3– ∆x–

χ2
2/3

c2
1/3–

x0 χ1
2/3

c1
1/3–

x1 χ2
2/3

c2
1/3–

x2–( )– 3/5( ) χ2
5/3 χ1

5/3
–( )Lc1

1/3– ∆χ( ) 1–
+

------------------------------------------------------------------------------------------------------------------------------------------------------------------------,=
where x1 and x0 – x2 represent the track length in the
first and second horizontally homogeneous regions,
respectively; x2 = x1 + L, c2 = c1 + ∆c; and χ2 = χ1 + ∆χ.
Setting x1 = x0 – x2 = 10 km (the total track length is
x0 = 30 km), we obtain the estimate: ∆ω||/ω ≈ −5.6 ×
10–5∆x. Note that, in the absence of the transition
region, the relative frequency shift would be ∆ω||/ω =
–3∆x/x0 ≈ –10–4∆x [2]. The quantity ∆x is expressed in
meters.

Random Inhomogeneities

On the assumption that regular inhomogeneities are
absent, we estimate the relative fluctuations of the fre-
quency shift of the spectrum oscillations, σΩ/ω (20).

Example 3. Isovelocity channel with a rough lower
boundary. In our case, we have

where H and  are the mean value and the random fluc-
tuations of the depth, respectively, and c is the sound
velocity. Assume that the roughness is described by the

Gaussian correlation function Bµ(ρ) = exp(–ρ2/2l2).
Then, from expression (20), we obtain

The validity of this relationship is limited by the condi-
tion that the size of the Fresnel zone is small compared
to the correlation radius of roughness, which allows us

α0
π2

l 1/2+( )c

ωH
2

-----------------------------– ,  ν ω( )
2α0

H
---------,  µ ρ( )–≈≈ h̃ ρ( ),=

h̃

σµ
2

σΩ/ω 2 2π4 σµ/H( ) l/x.=
to ignore the amplitude fluctuations as compared to the
phase fluctuations [17]. Setting, for example, H = 200 m.
x = 30 km, σµ = 2 m, and l = 1 km (mesoscale bottom
roughness), we obtain σΩ/ω ≈ 4.7 × 10–3.

Example 4. Random inhomogeneities of the
medium. Consider an isovelocity channel in which the
sound velocity fluctuates about the mean (unperturbed)
value c. Assume that the variance of the sound velocity
fluctuations does not depend on the channel depth. In
this case, according to (20), we arrive at the estimate

Setting x =30 km, c = 1500 m/s, σµ = 1 m/s, and lint =
300 m [18], we obtain σΩ/ω ≈ 10–4.

CONCLUSIONS

The estimates presented above for the frequency
shifts of the spectrum oscillations provided reassuring
results. These estimates reach noticeable values, which
testifies to the feasibility of their reliable measure-
ments. Under the conditions of multimode propagation,
the interference effects often make it difficult, if not
impossible, to obtain any definite conclusions about the
relation between the parameters of the oceanic medium
and the observed variability of the sound field charac-
teristics. In the case under study, the statistical charac-
teristics of the frequency shifts of the interference pat-
tern, as indicated above, are completely determined by
the dispersion characteristic of an unperturbed sound
channel and by the correlation function of fluctuations
of the inhomogeneity parameters. From this standpoint,

σΩ/ω 2lint/x σµ/c( ).=
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the effect of the frequency shifts of the local interfer-
ence extrema at small distances offers considerable
promise for solving an inverse problem, i.e., the con-
struction of models of the spatial variability of the oce-
anic medium on the basis of the data obtained by
recording the frequency shifts of the spectrum oscilla-
tions. The results are obtained on the assumption that
the emitting and (or) receiving arrays provide spatial
filtering of a group of one-type modes whose interfer-
ence pattern is sensitive to oceanic perturbations of the
type under study. The problems of the synthesis of
acoustic field in waveguide systems have been widely
discussed in the literature (see, e.g., [19, 20]). The fea-
sibility of the spatial filtering of a given set of modes in
a shallow sea was demonstrated by Lynch et al. [16].
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Abstract—Reflection of a plane monochromatic transverse wave by the boundary of the acoustic contact of a
dielectric with a hexagonal piezoelectric semiconductor in the presence of a longitudinal charge drift is treated
in the small-signal approximation within the framework of the hydrodynamic description of a charge carrier
plasma. A procedure of selecting the branches with allowance for the conversion of the quasi-acoustic mode
(a refracted transverse wave) into plasma-acoustic disturbances, both in-leaking at the boundary or out-leaking
from it, is proposed for the determination of the solution under the conditions of a supersonic drift and “over-
critical” angles of incidence. Beyond the restrictions of White’s theory of ultrasonic wave propagation in piezo-
electric semiconductors, it is demonstrated that this technique removes the defects of the solutions obtained ear-
lier in the form of discontinuities in angular dependences of the modulus of the reflection coefficient of a trans-
verse wave in the vicinity of the “critical” angle of incidence and leads to a solution that does not contain a
resonance singularity of a polar type. © 2000 MAIK “Nauka/Interperiodica”.
Reflection of ultrasonic waves from the boundaries
of layered structures of the “piezoelectric–semiconduc-
tor” and “dielectric–piezoelectric semiconductor with
current of charge carriers” types was discussed quite
extensively in the 1970s and 1980s. The case of the
wave reflection in structures with separated piezoelec-
tric and semiconductor properties was studied in detail
[1–5]. This case attracted the attention of researchers
because of the good prospects for its applications in the
development of nonlinear acoustoelectronic devices
[6]. Naturally, further efforts were concentrated on the
analysis of nonlinear effects [7–9].

The reflection properties of the boundary of a mono-
lithic structure “dielectric–piezoelectric semiconductor
with current” with respect to acoustic waves incident
from the dielectric was also considered by many
researchers [10–15]. Despite many attempts, the problem
has not been solved adequately. The major theoretical dif-
ficulties in studying this case are connected first of all
with the singularities in the angular dependences of the
modulus of the reflection coefficient near the “critical”
angle of incidence under the conditions of supersonic
drift.1 They are similar to those existing in optics in the
case of reflection of light waves from the boundary of an
amplifying medium of a lower density [16, 17]. A similar
situation exists also in the case of the reflection of sound

1 It is necessary to note that in our previous paper [10] (see also
[20]), such singularities were not noticed because of a mistake in
interpolation in the case of a too large step of change of the inci-
dence angle.
1063-7710/00/4603- $20.00 © 20317
waves from the boundary between equilibrium and non-
equilibrium oscillatory-excited gases [18].

As applied to the boundary-value problems of the
refraction of electromagnetic waves at the contact
between passive and active media, the existence of
these singularities is connected commonly [19] with
insufficient adequacy of a single-frequency representa-
tion of wave fields for expressing the cause-and-effect
relationships at overcritical angles of incidence. This
does not answer the question, since, in the case of the
monochromatic way of describing the establishment of
the chain of events, “cause–effect” is not canceled in
general but transformed into a corresponding causal
form, i.e., the radiation principle. On the other hand, in
an active medium, we cannot ignore the possibility of
conversion of a refracted wave into field disturbances,
which not only transfer energy, but also contribute to
the energy “extraction” from the active medium. Then,
the radiation principle is replaced (or complemented)
by the conditions of the process existence correspond-
ing to the causal considerations and grounded upon a
specified mechanism of field interaction with the active
medium. In this case, the latter plays the role of a dis-
tributed source of energy, and, in this connection, pos-
sible singularities (jumps) of the modulus of the reflec-
tion coefficient2 must be connected (if they exist at all)
with the change of not a geometrical quantity, i.e., the

2 We should remind the reader that in fact, the modulus of the
reflection coefficient is the energy characteristic of the refraction
process.
000 MAIK “Nauka/Interperiodica”
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angle of incidence (the characteristic of the spatial
spectrum), but the parameter expressing the specific
features of the “energy exchange” between the wave
and the active medium. In our opinion, the inability to
understand this fact and the absence of nonformalized
models of the field interaction with an active medium
(see [11, 16, 17]) are the primary causes for the arising
difficulties.

A paper by Filippov [13] is indicative in this respect.
It considers the reflection of a transverse wave by a
“dielectric–semiconductor layer with current” bound-

ary for the 45°-cut of a crystal of the class 3m. The
continuity of the calculated angular dependences of the
energy reflection coefficient |R|2 gives an impression of
successful results. However, the selection of solution
that is motivated only by the radiation principle is ques-
tionable. The fact that the value R = 1, which is com-
mon for the reflection of a transverse wave by a free
boundary of an isotropic solid in the case of the thick-
ness of a piezoelectric semiconductor layer tending to
zero, does not follow from the paper results (despite the
statements made by the author) makes such opinions
about this paper more justified. In particular, in the case
of this limit, the amplitude coefficient R of the reflected
wave retains in an incomprehensible way the depen-
dence on the electromechanical coupling coefficient
(already eliminated by the gradual “stripping” of the
layer) of the semiconductor and on the dielectric per-
meabilities of the materials.

The purpose of this paper is to critically revise the
theoretical data on the reflection of a transverse wave
from an acoustic contact between an isotropic dielectric
and a piezoelectric semiconductor of the class 6mm
with current [10, 14, 15] on the basis of the concept of
conditionality of the “critical” reflection by the energy
characteristics of the process of the interaction of a
refracted wave with an active medium. Correspond-
ingly, the condition of a continuous change of the solu-
tion as a function of the angle of incidence is adopted
as the main concept for the selection of the quasi-
acoustic branch of the solution in a piezoelectric semi-
conductor in the process of the transition to the “over-
critical” reflection and active behavior of the medium (a
supersonic drift). This condition allows us to alterna-
tively combine the requirement of boundedness of the
solution (which used to be the only criterion for the
selection of a solution [10, 14, 15]) with the radiation
principle (the only criterion for the selection of a solu-
tion used by Filippov [13]). The limitation due to the
requirement of the low level of electromechanical cou-
pling, which is characteristic of White’s theory of
acousto-electronic interaction [21], as well as the tradi-
tional relation between the “critical” reflection and the
idea of the critical angle of the total reflection, is
removed from the description of the dispersion proper-
ties of a piezoelectric semiconductor with current in

4

this paper. This provides an opportunity not only to
extend the theoretical results to the case of strong
piezoelectric materials but also to remove the addi-
tional mistake, which was present in many preceding
papers [10, 13–15]. The “smallness” of this mistake is
far from being evident under the conditions of “critical”
reflection, even in the case of piezoelectric semicon-
ductors with weak electromechanical coupling. The
necessary data on the spectral properties of the modes
of a piezoelectric semiconductor with current are taken
from our previous paper [22], where the hydrodynamic
approximation was used to describe the effects of kinet-
ics of charge carriers, and the quasi-static approxima-
tion of an electric field was also applied. The effect of
these approximations is completely transferred to this
paper.

We consider the next geometry of the problem: the
region y > 0 in the rectangular coordinates x0yz is filled
with an isotropic dielectric (ν =1), and the region y < 0
is filled with a piezoelectric semiconductor of the class
6mm with the axis 6 ||z (ν = 2). The “pulling” field E0 ||x
is applied to the semiconductor. Let a plane monochro-
matic transverse wave with the frequency ω and parti-
cle displacements u||z be incident at the angle θ upon
the boundary y = 0 of the acoustic contact between the
materials from the side of the dielectric. The interaction
of the wave with the boundary in these conditions does
not change the polarization of the elastic displace-
ments. Therefore, the equations of the piezoelectric
effect together with the Maxwell equations in the quasi-
static approximation and the motion equations of the
theory of elasticity complemented with the equation of
continuity and the linearized expression for the current
density in the piezoelectric semiconductor [21] (see
also [8, 15]) lead to the next system of initial equations:

(1)

Here, uν is the elastic displacement, ϕν is the electric
potential, n is the density of charge carriers induced in
the process of shear deformation of the piezoelectric
semiconductor, ∇ 2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian, ρν
is the density, λν is the shear modulus, εν is the dielec-
tric permeability, β is the piezoelectric modulus, µ is
the mobility of charge carriers, D0 is the diffusion coef-
ficient of charge carriers, σ0 is the conductivity of the
piezoelectric semiconductor, f is the trap factor, e is the

pν u̇̇ν λν∇
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∂
∂x
------ 

  f D0∇
2

+ ∂
∂t
-----– en σ0∇

2ϕν.=
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elementary charge, and t is time. Let us add the bound-
ary conditions to equations (1):

(2)

which mean the continuity of shear displacements and
stress, electric potentials and normal components of
electric inductions, and the requirement of the absence
of charge carrier flow from the piezoelectric semicon-
ductor to the dielectric, respectively.

Oscillations and waves arising as a result of bound-
ary disturbance by an incident wave are in spatial (in
the x axis) and time synchronism at the boundary
points. Therefore, if ξ = kxx – ωt is the phase of oscilla-
tions of the incident wave at y = 0, then, uν, ϕν, and n ~
exp(iξ). Using this fact, we obtain (in the way similar
that used earlier [10, 14, 15]) from equations (1) at ν =
1(y > 0):

(3)

where U is the amplitude of particle displacements in
the incident wave, R is the coefficient of reflection of

the transverse wave, p = (  – )1/2, k1 = (ρ1ω2/λ1)1/2

is the wave number for transverse waves in the dielec-
tric, kx = k1sinθ, and F is the amplitude of oscillations
of the electric field potential induced in the dielectric by
piezoelectric charges from the surface of the piezoelec-
tric semiconductor. We should remind that, in the pro-
cess of the selection of solutions (3), we followed the
standard requirement of limitation for the potential and
the Sommerfeld radiation principle.

In the case of a piezoelectric semiconductor (ν = 2),
the process of solution construction is analogous. By
virtue of proportionality of the quantities u2, ϕ2, and n
to the phase factor exp(iξ), equations (1) are trans-
formed into a system of homogeneous differential
equations, which establishes the dependences of the
fields u2 and ϕ2 on the transverse coordinate and the dis-
tribution of charge carriers n along it. The characteristic
equation of this system has the known form [15, 20]

(4)
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where s = q2 – , q is the characteristic coefficient,
k2 = (ρ2ω2/λ2)1/2 is the wave number of transverse
waves in the piezoelectric semiconductor without tak-
ing into account the piezoelectric effect, γ = 1 – vdkx/ω
is the drift parameter, vd = – fµE0 is the drift velocity,
ωc = 4πσ0/ε2 is the frequency of the conductivity relax-
ation, ω/ωD = fD0 /ω, ωD is the diffusion frequency,

and K2 = 4πβ2/ε2λ2 is the square of the factor of the
static electromechanical coupling.

In the case of a piezoelectric semiconductor, the
solution to equation (1) for the sequence of the values
of the characteristic coefficients qj , j = 1, 2, …,
obtained from equation (4) can be represented in the
form

(5)

In this case, the amplitude coefficients to be deter-
mined, i.e., Aj , Fj, and Nj from expressions (5), for each
single value of qj are connected by the relationships

(6)

Expressions (4)–(6) demonstrate that oscillations of
three types are excited under the action of the incident
wave: purely electrical ones with the simple root s1 = 0
of equation (4), oscillations at the only possible
(because of the boundedness of the solution at y < 0)
characteristic coefficient q1 = kx , where kx > 0, and
mixed plasma-acoustic oscillations connected by elec-
tric fields with the roots of equation (4)

(7)

where Γ± = ωc/ω ± ω/ωD – iγ(1 + K2).
Electric oscillations describe the boundary piezo-

electric polarization field of the type ϕ1 from expres-
sion (3). Its properties are well known (see [15, 20] for
example). Plasma-acoustic oscillations are less studied
and have been considered as a rule in the approximation
of low electromechanical coupling K2 ! 1 and for low-
frequency ultrasound ω ! ωD. For the case of such an
approximate approach, they were classified in our pre-
vious paper [20] as oscillations of mostly the plasma
(the root s2 in the case of the sign “plus” in formula (7))
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Fig. 1. Structure of boundary quasi-plasma oscillations in the cases of (a) subsonic and (b) supersonic drift. Inclined lines correspond
to wave fronts, and curves show the distribution of the oscillation amplitudes along the fronts. Disturbances of the cubic density of
charge carriers in the direction of the wave normal n are shown by the dotted regions.
or acoustic (the root s3 in the case of the sign “minus”
in formula (7)) nature. In this case, the behavior of the
quasi-acoustic mode obeys White’s theory [21], and the
excitation of quasi-plasma oscillations is explained by
the additional (because of the boundary mode cou-
pling) disturbance of the plasma subsystem of the
piezoelectric semiconductor under the action of the
field of the boundary piezoelectric-polarization oscilla-
tions.

The specific features of plasma-acoustic oscillations
mentioned above also remain valid in the case of both
strong electromechanic coupling and frequencies ω
comparable to ωD, which provides grounds to follow a
common tradition in naming them. However, one will
be able to see from the following analysis that just the
approximate (White’s) description of the quasi-acous-
tic mode is in fact the main reason for the utilization of
the concept of “critical” reflection on the basis of the
idea of the critical angle of “total” reflection [10, 14,
15, 20]. The inadequacy of the approximate approach is
explained by the fact noted by Shevyakhov [22], that
the mutual influence of nontunable branches of the
spectrum of plasma and acoustic modes of an infinite
piezoelectric semiconductor (this effect being funda-
mentally important for the correct determination of the
conditions of “critical” reflection) can be detected reli-
ably only in the higher orders of the approximation
with respect to the coupling parameter _2ωc/ωD, where
_2 = K2/(1 + K2), because of the “weakness” of the
interaction specific to them. This specific feature also
remains in the conditions of the boundary mode cou-
pling.3

Before the determination of the characteristic coef-

ficient q2 = ±(s2 + )1/2 of quasi-plasma oscillations,
we have to remind the basic properties of the plasma
mode for an infinite piezoelectric semiconductor [22]
and dwell on its differences from quasi-plasma oscilla-
tions arising due to boundary mode coupling. First, let

3 In the conditions of boundary mode coupling, the nontunability of
the plasma and acoustic branches of the spectrum is expressed as
the absence of multiple degeneracy of the roots of equation (7).

kx
2

us note that they interrelate as natural and forced oscil-
lations. The role of the latter is played by the quasi-
plasma oscillations excited in the piezoelectric semi-
conductor by the wave incident from outside. The sec-
ond characteristic feature is the fact that they are “tied”
to the boundary, i.e., they are localized boundary distur-
bances. It is important that in this case we do not con-
tradict their interpretation as a plasma mode proper to a
piezoelectric semiconductor. Indeed, according to
Shevyakhov [22], plasma waves do not have anomalies
in the dispersion spectrum and attenuate at any pulling
fields. As the distance from the boundary of the piezo-
electric semiconductor grows, they attenuate indepen-
dently of the value of the pulling field and the condi-
tions of the boundary excitation.

It follows from the stated above that, in the process
of the determination of the sign of the characteristic
coefficient q2, one has to be guided by the condition

Req2 > 0, i.e., q2 = (s2 + )1/2. In fact, this means that,
despite the presence of the component Imq2 ≠ 0 in the
wave vector of quasi-plasma disturbances, they demon-
strate first of all the properties of localized boundary
oscillations in their behavior and obey not the radiation
principle but the requirement of boundedness. The
details of the structure of boundary plasma oscillations
can be demonstrated using a piezoelectric semiconduc-
tor with low electromechanical coupling as an example.
In this case, together with the relationship ωc ! ωD,
which is usually valid, we obtain an expression from
relationship (7):

(8)

which being substituted into expression (5) shows, first,
the criticality of the inclination of the equiphase planes
of quasi-plasma oscillations with respect to the sign of
the drift parameter, and, second, the boundedness of the
depth of their localization by the Debye length rD (see
Fig. 1).
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The first of these features follows from the fact that
the plasma mode is subjected to the governing action of
the pulling field to a greater extent as compared to the
acoustic mode [22]. The mechanism of the formation of
the inclination of the equiphase planes of quasi-plasma
oscillations under the action of drift is as follows.
Wisps of quasi-plasma oscillations at the surface of a
piezoelectric semiconductor have a strictly “sonic”
velocity of longitudinal displacements because of the
coupling with the boundary disturbances caused by an
incident wave. At the same time, in the in-depth layers
of the crystal, they move at the velocity vd in confor-
mity with the “drift” nature of plasma waves and thus,
they either fall behind (Fig. 1a, subsonic drift) or
advance (Fig. 1b, supersonic drift) the surface wisps.
This leads to the inclination of the equiphase planes and
gives the quasi-plasma oscillations the form of the
waves leaking from the boundary (γ > 0) or to it (γ < 0).
It is expedient to note that, in the conditions of “active”
behavior of the medium γ < 0, the boundary plasma
oscillations are an example of the “typical” violation of
the radiation principle in active media. We mentioned
this fact in the introductory part of the paper.

Let us turn to the determination of the characteristic
coefficient q3. Considering the inequality ReΓ+ > ReΓ–,
we have according to expression (7) Res3 < 0. Under
the condition k1 > k2, which provides the total reflection
of the transverse wave from a piezoelectric semicon-
ductor in the dielectric limit ωc/ω  0, ω/ωD  0,
and γ  1, there is the fundamental possibility of the

sign of Re  = Res3 +  changing as the angle θ
grows. The same possibility of a change of sign of the

quantity Im  = Ims3 ~ –γ is present within the range
of drift velocities vd > ω/k1. In the characteristic condi-
tions of the formation of singularities in the depen-
dences |R(θ)| [14, 15] (the “overcritical” angles of inci-
dence and supersonic drift), one has to take into
account both possibilities, which indicates the exist-
ence of the branch point q3 = 0.

This fact was ignored in preceding papers [10, 14,
15, 20], where the “overcriticality” of reflection of a
transverse wave by a piezoelectric semiconductor was
traditionally connected (though with reservations) only
with the realization of the total reflection in the limiting
case of a dielectric medium. We can assume that, in the
case of a piezoelectric semiconductor with current, just
the branch point q3 = 0 determines the conditions of the
mode of “critical” reflection without mixing it with the
concept of total reflection, which does not have a phys-
ical meaning. Revision of the results of the preceding
papers [10, 14, 15, 20] on these grounds is also promis-
ing because it avoids the limitations of White’s theory
[21]. This theory was used to one or another extent in
the attempts to utilize the concept of the angle of limit-
ing reflection as the indicator of the “criticality” of
reflection.

q3
2

kx
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q3
2
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The position of the branch point q3 = 0 in the plane
(θ, vd) can be determined from the combined solution

of the equations Res3 +  = 0 and γ = 0. Designating

its coordinates as θ* and  and taking into account
expression (7), we obtain

(9)

The corresponding value of θ* is calculated according
to the formula sinθ* = ω/k1 .

The meaning of the quantity  in expression (9)
can be revealed considering the behavior of the para-
metric (at vd = const) trajectories described in the com-

plex plane  by the image point of the quasi-acoustic
mode in the process of the θ variation from 0 to π/2.
According to the typical pattern given in Fig. 2, one can
see that the trajectory corresponding to the “critical”
value of  (the dashed line) is the only possibility for
the direct transition of the image point from the quad-

rant III of the plane  to the quadrant I bypassing the
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Fig. 2. Pattern of parametric phase trajectories of the image

point for the quasi-acoustic mode in the complex plane 

in the process of the variation of the incidence angle from 0
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intermediate quadrants II (at vd > , curve 3) or IV

(at vd < , curve 2). Intersection of the branch line
(–∞, 0] by the trajectory with the transition of the type
III  II  I means its extension to another sheet of

the Riemannian surface .

Thus, we can treat  as the threshold value of the
drift velocity vd > ω/k1. If the value of the drift velocity
lies lower than this threshold, the parametric trajectory
lies completely within the initial sheet of the Rieman-
nian surface, and if the threshold is exceeded, the tra-
jectory ends at another sheet.

We can assume that if a medium is active (quadrants I
and II), the radiation principle and the requirement of
boundedness of the solution acquire a contradictory

character in homeomorphic mapping { }  {q3},
and the choice between them in order to select the
branches of the solution must be made proceeding from
the previous history of the behavior of the parametric
trajectory. The existence of such mutual exclusion was
demonstrated already by the behavior of the solution
for the boundary quasi-plasma oscillations. However,
this question did not arise, since the attenuation always
proper to the plasma mode allowed us to accept the
requirement of boundedness of the solution as the self-
contained one. It is expedient here to monitor the
changes in the structure of the quasi-acoustic mode in
the process of the movement of the image point along
the parametric trajectories of the three chosen types
(vd < , vd = , and vd > ) by concentrating our
attention at the continuity of the change of the value q3
in the transitions between the quadrants. Let us denote

(10)

where, in correspondence with the representation  =

 + s3 and formula (7), for s3 we have χ'' ~ –γ. Taking
into account expression (10), we can write (according
to the definition of the signum function):

(11)

In the quadrant III (small incidence angles θ < θ*
and subsonic drift γ > 0), we have χ' < 0, χ'' < 0, which

gives  !  or at least  ≤
. Physically, this means the obvious preva-

lence of the radiation principle Imq3 < 0 in the process
of the selection of branches. This condition takes into
account the absence of dispersion anomalies in the
acoustic spectrum of the modes of a piezoelectric semi-
conductor [21, 22]. We should add that the above infer-
ences are also valid in the process of the selection of
branches in the quadrant II, which also belongs to the
quadrants with the wave type of solution.
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In the quadrant IV χ' > 0, if at the beginning (at χ' !
1) the values of Req3 and Imq3 are close to each other,
the real part of q3 becomes dominant as χ' grows. In
relation to the clearly nonwave character of the solu-
tion, now we have to consider the requirement of
boundedness Req3 < 0 as the criterion for the selection
of the solution branches. Analogously, the selection of
branches in the quadrant I should obey the same condi-
tion. However, we should recall that, here, they may
belong to different sheets of the Riemannian surface.
Therefore, the extension of this criterion to the quad-
rant I is admissible only with the proviso that the
selected solution belongs to the sheet of the Rieman-
nian surface common with the quadrant IV. This condi-
tion is consistent with the solution obtained for the case
vd < .

In the case of an inactive medium, the governing
role of the radiation principle (in the case of the subor-
dinate meaning of the requirement of boundedness,
quadrant III) or, conversely, the requirement of bound-
edness (in the case of the subordinate meaning of the
radiation principle, quadrant IV) might not be stressed,
since, in the process of the selection of the positive root
(11), they are satisfied simultaneously because of the
general condition χ'' < 0 (Req3 > 0, Imq3 < 0):

(12)

The validity of this approach is not exhausted by the
considerations of only methodological character but
originates from the essential physical differences in the
structure of solution (5) of the quasi-acoustic mode of
branch (12) lying in the quadrants III (χ' < 0) or IV
(χ' > 0). For example, in the quadrant III, we have
Req3 ! |Imq3|, and the corresponding solution (5)
describes a monochromatic wave refracted in the piezo-
electric semiconductor and attenuating weakly because
of the acoustoelectronic absorption as the distance from
the boundary grows. In the case of the transition to the
quadrant IV, the quantities Req3 and Imq3 exchange
their places so to say, and, from expression (5) taking
into account expression (12), it follows that the quasi-
acoustic mode acquires the dominant features as χ' > 0
increases, these features being characteristic of the
boundary plasma-acoustic oscillations of the out-leak-
ing type (see Fig. 1a). We should stress that here we do
not mean the identical coincidence of solutions (5) for
q2 and q3 in the quadrant IV. However, their closeness is
doubtless, and, naturally, the following transition from
the quadrant IV to the active quadrant I at vd <  (i.e.,
along curve 2 in Fig. 2) is performed according to the
same rules that were established above for the selection
of the root q2. The condition Req3 > 0 is imposed just
by virtue of the “violation” of the radiation principle
because of the active character of the medium. An
explicit expression for q3 is obtained in this case from

v d*
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2
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expression (12) with a change of sign of the imaginary
part:

(13)

and, according to expression (5), it determines the solu-
tion in the form of the boundary plasma-acoustic oscil-
lations of the in-leaking type (Fig. 1b). Finally, we have
to note that q3 expressed by formulas (12) and (13) at
different sections of the single-sheet trajectory 2 in
Fig. 2 are determined by a common formula (11),
where the selection of the positive root corresponds to
the initial sheet.

Now let us discuss the specific features of the selec-
tion of the solution for the quasi-acoustic mode under
the conditions vd > . The value of q3 in the initial
quadrant III is already known and determined by for-
mula (12). The transition of the trajectory 3 (Fig. 2)
from the quadrant III to the active quadrant II is con-
nected with the extension of the branch to another sheet
of the Riemannian surface, as we have mentioned
above. Therefore, we have not just to take  = 1
in formula (11) but also to select the negative sign, i.e.,

(14)

The negativeness of the quantity Req3 in expression
(14) shows that this branch of the solution is selected in
contradiction with the requirement of boundedness but
in consistency with the radiation principle. It is charac-
teristic that, in the intersection point of the trajectory 3

and the semi-axis Re  < 0 in Fig. 2, the values of q3

determined by formulas (12) and (14) coincide. On the
contrary, if we follow the way of selecting the solution
used previously [10, 14, 15, 20], then, with the transi-
tion to the quadrant II, we should change the sign of
only the imaginary part of q3 in expression (12). In this
case, we obtain expression (13) for q3. This expression
in combination with expression (12) does not provide a
continuity of its change in the process of the transition
between the quadrants. The violation of the radiation
principle here was not perceived earlier [10, 14, 15, 20]
as a defect of solution because of the lack of the differ-
entiation of reflection modes by the condition vd > .4

It seemed natural in this case to extend the universality
of the requirement of boundedness for boundary quasi-
plasma oscillations (the root q2) also to the quasi-acous-
tic mode under the conditions of “overcritical” reflec-
tion. The singularities in the dependences |R(θ)| men-

4 This was indicated by Filippov [13], but again, another extremity
arose because of the lack of the distinction between the reflection
modes according to the drift, i.e., a complete neglect of the
requirement of boundedness of the solution for the quasi-acoustic
mode.
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tioned above arose because of this. According to
expression (14), where the imaginary part numerically
exceeds the real part due to the condition χ' < 0, solu-
tion (5) represents the quasi-acoustic mode (as in the
quadrant III) in the form of a refracted monochromatic
wave, which is not attenuated but amplified (a super-
sonic drift) with the propagation within the piezoelec-
tric semiconductor bulk. Thus, at this stage, the require-
ment of boundedness is quite reasonably excluded from
consideration because of the typical wave behavior of
the quasi-acoustic mode in the conditions of the
medium activity [21, 22]. The transition from the quad-
rant II to the quadrant I along trajectory 3 in Fig. 2 is
accompanied only by the change of sign of χ' in for-
mula (14). This leads to the decrease in |Imq3| and
growth of |Req3|. The quasi-acoustic mode finally
acquires the form of the wave, which is amplified but,
at the same time, out-leaking weakly into the piezoelec-
tric semiconductor.

If vd ≡  at θ < θ*, the coefficient q3 is unambig-
uously determined by relationship (12), and the quasi-
acoustic mode has the form of a refracted transverse
plane wave attenuating as it propagates in a piezoelec-
tric semiconductor. As the wave reaches the branch
point q3 = 0 in the process of motion along the trajec-
tory indicated by a broken line in Fig. 2, this attenuation
stops because of the establishment of the strictly
“sonic” drift velocity (at θ  θ*, γ  0), and the
refracted wave with a plane homogeneous front starts
to propagate along the boundary, as it occurs under the
conditions of “critical” reflection from a common ideal
medium. As the condition θ > θ* becomes valid, further
motion along the trajectory shown by the dashed line in
Fig. 2 into the quadrant I does not allow us anymore to
make the unambiguous choice between the values of q3

from expressions (13) and (14) at χ' > 0. The ambiguity
of the result symptomatically indicates the conditional-
ity of the “critical” reflection caused by just the energy
side of the process of wave interaction with an active
medium.

After the determination of qj (j = 1, 2, 3), only F1, A2,
and A3 of the whole set of the amplitude coefficients of
solution (5) may be considered independent because of
expression (6). After the substitution of expressions (3)
and (5) into expression (2) and the solution of the
obtained system of algebraic equations, we obtain

(15)
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Here, A2 = –A3L3/L2 and

(16)

According to expression (8), we have from expressions
(16) in the low frequency limit: 1 + ∆2  0 (in this
case 1 + ∆3 ≠ 0). This leads to L2/L3  0 and, corre-
spondingly, to A2/A3  0. This implication could be
foreseen because of the mainly plasma nature of the
oscillations described by partial solution (5) at j = 2.

We restrict ourselves to expressions (15), omitting
the formulas for the amplitudes of the potentials F and
F1. If, in the process of the determination of the quanti-
ties qj and sj from expressions (15) and (16), we use
White’s approximation and select the “overcritical”
region by the limiting angle of the total reflection for a
dielectric medium, then, in the process of selecting the
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Fig. 3. Angular dependences |R(θ)| for the As2Se3–ZnO
boundary at ωc/ω = 0.005, ω/ωD = 0.001, and vd/ct = 2.8.
The quantity ct = ω/k1 is the velocity of transverse waves in
the dielectric.
branches of q3 by formula (13) in the conditions of the
activity of a piezoelectric semiconductor, we arrive at
the results obtained earlier [10, 14, 15, 20], as it could
be expected. The rejection of White’s approximation
and the concept of the limiting angle of total reflection
developed on its basis as the criterion of the “critical-
ity” of reflection while maintaining the representation
of q3 under the conditions γ < 0 by formula (13)
removes the polar singularities in the dependences
|R(θ)|. At the same time, their finite jumps-singularities
at the “critical” point do not vanish at all, but, on the
contrary, they may be amplified with the change in the
pulling field. Such a behavior of |R(θ)| for the boundary
of a piezoelectric semiconductor crystal ZnO with a
chalcogenide glass As2Se3 (λ1/λ2 = 0.18, ρ1/ρ2 = 0.8,
ε1/ε2 = 1.0, and K2 = 0.08; the material parameters are
taken from a handbook [23] and a paper by
Kul’bitskaya and Shutilov [24]) is shown in Fig. 3 by
line 1 consisting of dots virtually merged into a contin-
uous line.

The total elimination of all defects of the solution is
attained in the case vd >  only by way of application
of formula (14) instead of formula (13). The corre-
sponding dependence |R(θ)| is given in Fig. 3 by the
dashed curve 2. The absence of the sharp peak of the
resonance acoustoelectronic amplification of the
reflected wave in the curves in Fig. 3, i.e. the peak that
transforms (according to the earlier data [10, 14, 15,
20]) into the polar singularity of |R(θ)| at a certain value
of supersonic drift, is evidence of inadequacy of the use
of the concept of the limiting angle of total reflection on
the basis of White’s approach even in the case of weak
piezoelectric materials like ZnO. One can see also from
Fig. 3 that in the case of an exact calculation of |R(θ)|
according to formula (15) in the range of angles θ < θ*
(they precede the singularity in curve 1), the acousto-
electronic interaction leads to the formation of a “gap”
in the reflection (indicated by an arrow) because of the
optimization of the acoustic coupling of the dielectric
and the piezoelectric semiconductor on account of con-
ductivity and drift. This result agrees well with the
described behavior of the quasi-acoustic mode in a
piezoelectric semiconductor (before the transition of
the image point along the phase trajectory 3 in Fig. 2
from the quadrant III to the quadrant II) as that of an
attenuating wave refracted into the volume. 

As the image point gets into the quadrant II, the
attenuation of the refracted wave is changed for the
amplification that does not influence qualitatively the
character of the energy transfer by the wave with
respect to the boundary. Therefore, the “gap” in the
reflection in the form of a local minimum in the depen-
dence |R(θ)| remains. However, there is a new detail,
which manifests itself by the fact that a narrow peak of
total reflection corresponding to the intersection point
of the phase trajectory 3 in Fig. 2 with the negative

semiaxis Re  arises in the reflection gap. Such peaks
of total reflection are present in curve 1 in Fig. 4 at vd

v d*

q3
2

ACOUSTICAL PHYSICS      Vol. 46      No. 3      2000



REFLECTION OF TRANSVERSE WAVES IN A STRUCTURE 325
slightly exceeding  ≈ 2.13 with the offset (vd –

)/  = 10–11 and in curve 3 when vd is noticeably

greater than .

The dashed curve, which is obtained for the small
negative offset of vd from  ((  – vd)/  = 10–11)
and, therefore, almost coincides with curve 1 at the
angles θ < θ*, and curve 2 in Fig. 4 correspond to the
case vd < . Now, by virtue of the passage of the image
point in the transitions of the type III  IV  I
through the “nonwave” quadrant IV into the “non-
wave” (according to the condition of positioning of the
phase trajectory 2 in Fig. 2 totally in the initial sheet of

the Riemannian surface ) quadrant I, the depen-
dences |R(θ)| reproduce a typical acoustoelectronic
change in the signal level under the effect of drift [21].
In the case of the image point being in the “inactive”
quadrant IV, when the quasi-acoustic mode in a piezo-
electric semiconductor is a wave out-leaking from the
boundary (because of γ > 0) like quasi-plasma oscilla-
tions in Fig. 1a, the acoustoelectronic attenuation of
reflection occurs, and |R(θ)| passes through the mini-
mum. At the moment when the image point intersects

the positive semiaxis Re  = 0 (see curve 2 in Fig. 2),
we have Imq3 = 0 (γ = 0) and |R| ≡ 1. The corresponding
point in the dashed curve in Fig. 4 is indicated by a
cross. It is of interest, because it represents in fact the

branch point of the solution  = 0 (the point “0” in the
phase plane in Fig. 2) since the phase trajectory for the
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Fig. 4. Angular dependences |R(θ)| for the As2Se3–ZnO
boundary for the same characteristics of the electronic
plasma as in Fig. 3. (1) vd/ct . 2.13, (2) vd/ct = 2.12, and
(3) vd/ct = 2.25.
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dashed curve in Fig. 4 almost coincides with the dashed
trajectory in Fig. 2. This fact is confirmed by the com-
parison of the dashed curve and curve 1 in Fig. 4
obtained at the values of vd very close to : they
coincide at θ < θ* and diverge essentially at θ > θ*.

After the transition of the image point from the
quadrant IV to the quadrant I, the acoustoelectronic
attenuation of the reflected wave is changed by ampli-
fication: γ < 0. This is explained physically by the fact
that, in the case of the position of the image point in the
quadrant I on the initial sheet of the Riemannian sur-

face , the quasi-acoustic mode in the piezoelectric
semiconductor is the wave in-leaking to the boundary
like quasi-plasma oscillations in Fig. 1b. Thus, apply-
ing energy to the boundary, it provides an energy trans-
fer to the reflected wave and, therefore, contributes to
the amplification of the latter.

The acoustoelectronic amplification of the reflected
wave is small. Even in the case of strong electrome-
chanical coupling (see Fig. 5), it does not attain 10% of
the level of total reflection. Comparing curves 1 and 2
with the dashed curve in Fig. 5, one can see that an
increase in conductivity of a piezoelectric semiconduc-
tor causes the broadening and decrease of the peaks of
acoustoelectronic amplification. In the dielectric limit
ωc/ω  0, they become narrower and smaller. There-
fore, the dependence |R(θ)| acquires a characteristic
break with the transition into the typically horizontal
section of the total reflection after passing through the
“Brewster” minimum and a sharp growth up to unity.

v d*

q3
2

1

2

1.2

1.0

0.8

0.6

0.4

0.2

0 10 20 30 40 50 60
θ, deg

|R|

Fig. 5. Angular dependences |R(θ)| for the boundary
“dielectric–semiconductor” with the parameters λ1/λ2 =
0.11, ρ1/ρ2 = 0.58, ε1/ε2 = 0.73, and K2 = 0.55 at ω/ωD =
0.001 and vd/ct = 2.28. (1) ωc/ω = 0.1 and (2) ωc/ω = 0.5.
The dashed curve is obtained for ωc/ω = 0.01.
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Turning to Fig. 4, we can see that the jump-like tran-
sition from curve 1 to the dashed curve at the angles θ >
θ* with the increase in vd in the vicinity of  reflects
the presence of jumps-singularities in the dependences
|R(vd)| in the obtained solution at fixed θ, at the point
vd = . Figure 6 illustrates this fact. In contrast to the
jumps-singularities in the angular dependences |R(θ)|
characteristic of the previous results [10, 14, 15, 20]
(see Fig. 3), the discussed jumps-singularities manifest
themselves with the change in the activity factor of the
piezoelectric semiconductor and can be treated as the
consequence of the insufficient adequacy of the
adopted model of acoustoelectronic interaction. The
experimental study of these phenomenon looks promis-
ing in this connection.

About 40 years have passed after the publication of
the first papers devoted to the propagation of acoustic
waves in semiconductors. However, this problem is still
important and garners the attention of researchers (see
[25, 26] for example).
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Abstract—It is demonstrated that the periodic (along the path) rearrangement of the spatial (in depth and hor-
izontal distance) interference structure of the acoustic field generated in an oceanic waveguide by a CW point
source is accompanied by a diffraction focusing of the field with the corresponding spatial period. It is found
that, in an oceanic waveguide with a monotone angular dependence of the Brillouin ray cycle, the spatial period
of both the rearrangement of the interference structure and the diffraction focusing of the field is directly pro-
portional to the square of the characteristic vertical scale of the waveguide and inversely proportional to the
wavelength; in a waveguide with a nonmonotone dependence, the corresponding spatial period is directly pro-
portional to the cube of the aforementioned waveguide scale and inversely proportional to the square of the
wavelength. © 2000 MAIK “Nauka/Interperiodica”.
The periodic focusing of the acoustic field generated
by a CW point source in a constant-velocity oceanic
waveguide is a well-known phenomenon [1–5]. In the
framework of the simplest model of a constant-velocity
waveguide with a perfectly rigid bottom and in terms of
the paraxial approximation used for the mode represen-
tation of the field in this waveguide, the spatial period
RH of the periodic focusing along the horizontal axis is
determined by the formula

(1)

where H is the depth of the water layer and λ is the
sound wavelength. A detailed review of the publica-
tions concerned with the description of this effect in
optics, electrodynamics, and acoustics can be found in
the preprint written by the author of this paper [6].
Here, it is important to note that, in contrast to the
refraction focusing of the fields in oceanic waveguides
stratified in depth [7], the spatial period RH (1) of the
aforementioned focusing is fundamentally determined
by the radiation wavelength. Hence, we will call it dif-
fraction focusing (as in [5, 6]). Naturally, the diffraction
focusing should also be observed in oceanic
waveguides stratified in depth [6]. Therefore, this paper
is devoted to the generalization of the analytical results
obtained in earlier publications [1–4] to the refraction
oceanic waveguides.

To solve this problem, we use the approach pro-
posed in [6, 8] for analyzing the spatial interference
structure of the acoustic field in an oceanic waveguide.

RH 4H2 λ⁄ ,=
1063-7710/00/4603- $20.00 © 20327
We write the expression for the dependence of the field
intensity J(r) on the horizontal distance r in the form

(2)

which is valid in the far zone klr @ 1 of a CW point
source operating at a cyclic frequency ω and positioned
at the depth zs. Here,

(3)

is the amplitude of the lth mode, kl is the horizontal wave
number of this mode, ψl(z) represents the corresponding
orthonormal eigenfunctions of the waveguide, L(ω) =
max(l) is the total number of excited modes, z is the
depth of the reception, and p0 is the amplitude of the
pressure disturbance produced by a point source in a
homogeneous medium at a spherical surface of radius
R0. From expression (2), it follows (see [6, 8]) that, in a
waveguide, the acoustic field intensity orthonormalized
to the geometric spread, J0(r) = rJ(r), is a function quasi-
periodic in r with certain spatial periods (interference
periods)

(4)

and the corresponding spatial periods of beats

(5)

J r( ) 2πp0

R0
2

r
----- Al

2

l 1=

L ω( )

∑=

+ AlAl'
* kl kl'–( )r[ ]cos

l' 1=

L ω( )

∑
l l'≠

L ω( )

∑ ,

Al ψl zs( )ψl z( ) kl⁄=

Rl l', 2π kl kl'–( )⁄=

Rg l l'; n n', ,( ) Rl l', Rn n', Rl l', Rn n',–( ).⁄=
000 MAIK “Nauka/Interperiodica”



 

328

        

PETUKHOV

                         
The latter will be called (as in [6, 8]) spatial periods of
the rearrangement of the interference structure of the
acoustic field in a waveguide.

Below, we consider only the well predicted (and,
hence, being of most interest) large-scale interference
structure of the acoustic field. This interference struc-
ture is formed by different pairs of adjacent modes for
which expressions (4) and (5) take the form

(6)

(7)

From the aforesaid, it follows that the spatial interfer-
ence structure of the acoustic field in an oceanic
waveguide will be rearranged with the maximum pos-
sible spatial period Rmax (see [6, 8]). Evidently, the
value of Rmax must fall within the range of values of the
spatial period of rearrangement for two adjacent pairs
of modes from their entire possible set:

(8)

The minimum spatial period Rmin of the rearrangement
of the field interference structure formed in the
waveguide

(9)

is also of interest, because the rearrangement of the
large-scale interference structure should be most pro-
nounced in the intervals of horizontal distances deter-
mined by this very period:

. (10)

The diffraction focusing of the field should be observed
in the same intervals of distances (10). This statement
follows from the fact that the rearrangement of the
interference structure with the spatial period Rmax (8)
implies at least a partial manifestation of its specific
features observed at the distances 0 < r ! Rmin includ-
ing the immediate vicinity of the source. Here, it should
be noted that it is the periodic diffraction focusing of
the field within distances (10) that leads to the phenom-
enon of the periodic spatial rearrangement of the far
zones of insonification in an underwater sound channel
open toward the surface [8].

Now, we proceed to the derivation of an analytical
expression for the spatial period of the diffraction
focusing of the field in a stratified oceanic waveguide
with a smooth, although somewhat arbitrary, depth
dependence of the square of the refraction index for
acoustic waves n2(z). We assume that the free surface
z = 0 and the bottom z = H are perfectly reflecting sur-
faces.

Since the phenomenon under study is most conspic-
uous in the case of multimode propagation (see [1–6]),
we will solve the above-stated problem by using the
WKB approach on the assumption that the conditions
of its applicability are satisfied [7]. In the WKB approx-

Rl l 1+, 2π kl kl 1+–( ),⁄=

Rg l l 1; n n 1+,+,( )
=  Rl l 1+, Rn n 1+, Rl l 1+, Rn n 1+,–⁄ .

Rmax max Rg l l 1; l 1+ + l 2+, ,( )[ ] .=

Rmin min Rg l l 1; l 1+ + l 2+, ,( )[ ]=

mRmin r mRmax m 1 2 …, ,=( )≤ ≤
imation, the dispersion equation for horizontal wave
numbers of modes has the form [7]

(11)

where

Here, χl is the grazing angle of a Brillouin ray at the
channel axis z = z0; zlu and zll are the upper and lower
turning depths of Brillouin rays, respectively; n(z) =
c(z0)/c(z), where c(z) is the dependence of the sound
velocity on depth; and k = ω/c(z0).

With the use of the WKB approximation, the series
expansion of the quantity βl + 1 correct to the third order

, (12)

and the differential relation following from equation (11),

(13)

where Dl is the cycle length of the corresponding Bril-
louin ray

(14)

we represent expression (6) in the form of an approxi-
mate equality at Dlk @ 1:

(15)

In the same way, using formulas (13) and (15) and the
series expansion

(16)

k n2 z( ) βl
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we represent expression (7) in the form of an approxi-
mate equality:

(17)

For the following calculations, it is important to
note that oceanic waveguides can be classified accord-
ing to the dependences of Dl on the ray parameter βl [9,
10]. Hence, for oceanic waveguides with a monotone
dependence of Dl on βl , i.e., in the absence of extrema
when

(18)

we use relations (17) and (18) at kDl @ 1, and, from
expressions (8) and (9), we obtain simple expressions
for the minimum and maximum spatial periods of the
diffraction focusing of the field:

(19)

(20)

Here,  = Dl/Hg is the Brillouin ray cycle length nor-
malized to the characteristic vertical scale of the
waveguide Hg.

Thus, the dependences (19) and (20) suggest that, in
an oceanic waveguide with a monotone dependence of
the Brillouin ray cycle on the ray parameter, the spatial
period of the diffraction focusing of the field is directly
proportional to the square of the characteristic vertical
scale of the waveguide and inversely proportional to the
radiation wavelength.

In an oceanic waveguide with a nonmonotone
dependence Dl(βl), which at some βl = βc exhibits
extrema satisfying the condition

(21)

and corresponding to the formation of weakly divergent
acoustic beams [9, 10], we use relations (17) and (21),
and, from expression (8), we obtain the desired expres-
sion for the spatial period of the diffraction focusing of
the field:

(22)
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In such oceanic waveguides, the spatial period (22) of
the diffraction focusing of the field is directly propor-
tional to the cube of the characteristic vertical scale of
the waveguide and inversely proportional to the square
of the radiation wavelength.

Now, using the analytical calculations and the WKB
approximation, we will prove that the spatial rearrange-
ment of the interference structure of the acoustic field
in waveguides leads to the diffraction focusing of the
field with the same spatial period Rmax: (20) or (22). For
this purpose, we use the results of the analysis of the
mode structure of the field in a waveguide [4, 10, 11].
To simplify the intermediate calculations, we consider
an oceanic waveguide with a sound channel open
toward the surface and with an acoustically transparent
bottom. Such a simplification causes no loss of gener-
ality for the resulting expressions for Rmin and Rmax.

Using the WKB approximation, we obtain the fol-
lowing expression for the pressure field formed by the
refracted modes, 1 ≤ l ≤ Lr , and the modes interacting
with the ocean surface, Lr +1 ≤ l ≤ L, [7, 8]:

(23)

where

(24)

(25)

and t is time. The total number of the refracted modes
Lr and the number of all excited modes L can be deter-
mined from the dispersion equation (11) with the cor-
responding values of the parameters zlu = 0, βl = n(0),
zll = H, and βl = n(H):

(26)

where Hr is the characteristic width of the underwater
sound channel, this quantity being determined from the
equation n(0) = n(Hr).
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In the case of multimode propagation with the
points of transmission and reception being far from the
interfaces, the field in the waveguide has a beam struc-
ture determined by the oscillatory dependence of the
absolute value of the excitation coefficient of modes on
their numbers [4, 10, 11]. For each beam, there exists a
certain number of a refracted mode lmax(q) = lrmax(qr) or
a mode reflected from the ocean surface lmax(q) =
lsmax(qs) at which the mode amplitude reaches its maxi-
mum absolute value |Al | at the source depth z = zs.
Therefore, the equations for the determination of
lmax(q) follow from the equality sin2[ϕl(zs)] = 1 [10] and
have a relatively simple form:

(27)

(28)

Here, qr = [1, Qr] and qs = [Qr + 1, Q] are the corre-
sponding numbers of the refracted and surface-
reflected mode beams, Qr is the total number of
refracted mode beams, Q is the total number of all
mode beams, and q = [1, Q].

It should be kept in mind that, in the case of the exci-
tation of a large number of refracted modes Lr @ 1, the
depth interval ∆zlu = zl + 1u – zlu between the turning
depths of the adjacent modes becomes fairly small, and
there will always exist some depth zlu that is quite close
to zs. In this case, the mode number lr = lrmax (1) corre-
sponding to the first refracted mode beam will be deter-
mined not from equation (27), but from the dispersion
equation (11) under the condition of the coincidence of
the depths zlu = zs:

(29)

where z∗  is the depth corresponding to the source depth
and determined from the equality n(zs) = n(z∗ ). Evi-
dently, the solutions to equations (27) and (28) should
satisfy the conditions:

(30)

Each of the mode beams is formed by a certain
group of modes:

(31)

In each of these groups, the values of the mode numbers
lmin(q) = lr min(qr) and lmin(q) = ls min(qs) correspond to the
positions of the |Al | minima following after lmax(q) =
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values are determined from the equations
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and their solutions must satisfy the conditions similar
to conditions (30):
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Then, expression (23) for the pressure field can be
represented in the form of a sum of the corresponding
mode beams:
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Using the differential relation (13) and the approximate
equality (39), we represent expression (35) for the pres-
sure field in the form

(40)
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where

(41)

(42)

(43)

(44)

If, in the exponent in (41), we take into account only
the term proportional to ζ1 (see [11]), we can perform
an elementary summation with the use of the formula
for a geometric progression. Then, we obtain that every
mode beam is formed near two reference Brillouin rays
whose grazing angles at the source depth are opposite
in sign, such a mode beam propagating without any dif-
fraction distortions. The equations for the ray paths of
these rays have the form

(45)

and they are found from the equality

(46)

which means an in-phase summation of the mode
group forming the given beam along the corresponding
Brillouin rays (45).

The inclusion of the second term of the exponent in
(41), i.e., the term proportional to ζ2, leads to a dephas-
ing of the modes forming the corresponding beam, i.e.,
to its diffraction spread along the propagation path [4].
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However, according to expressions (41) and (43), at the

distances r =  determined by the expression

(47)

which follows from the equality

(48)

a diffraction focusing of the corresponding mode beam
will be observed. For odd Lq and m2, the beam will be
focused in phase at odd L1q and L2q and in antiphase at
even L1q and L2q. For even m2, the beam will always be
focused in phase independently of L1q and L2q. Only for
the beam formed by an even number of modes at odd
m2 will a considerable defocusing be observed.

Assuming that the condition kDl @ 1 and condition
(18) are valid, from expression (47) we obtain the
approximate relation

(49)

where the quantity

(50)

is the spatial period of the diffraction focusing of the
corresponding mode beam. From all values of the
quantity Rg(lmax(q)) that are possible at q = [1, Q], we
always can select the minimum Rmin and maximum Rmax
values of the spatial period of the diffraction focusing
of the field:

(51)

(52)

From formulas (51) and (52), one can see that the cor-
responding values are determined by the expressions
that are analogous to the expressions for the minimum
Rmin (19) and maximum Rmax (20) spatial periods of the
rearrangement of the field interference structure in an
oceanic waveguide.

Hence, the spatial rearrangement of the interference
structure of the acoustic field in an oceanic waveguide

R jm
2( )

R jm
2( ) k

2π
------

Dl
3

dDl

dβl

---------
------------=

× m2
2π

kDl
2

--------- µ j

dDl zs( )
dβl

------------------ χ j

dDl z( )
dβl

----------------+ 
 +

-- µ jDl zs( )– χ jDl z( )–

l lmax q( )=

,

ζ2 πm2, m2 1 2 …, ,=( ),=

R jm
2( ) m2Rg lmax q( )( ),≈

Rg lmax q( )( )
kHg

2

2π
--------- Dl

3 dDl

dβl

---------⁄
l lmax q( )=

=

Rmin

kHg
2

2π
---------min Dl

3 dDl

dβl

---------⁄
l lmax q( )=

,=

Rmax

kHg
2

2π
---------max Dl

3 dDl

dβl

---------⁄
l lmax q( )=

.=



332 PETUKHOV
gives rise to the diffraction focusing of the field with the
corresponding spatial periods.

It should be noted that, from the equality

, (53)

which fundamentally differs from (48), Virovlyanskii
et al. [12] obtained the following expression for the
evaluation of the limiting allowable number of modes
that are combined in phase and form the mode beam:

(54)

where Rg(lmax(q)) is determined by formula (50). On the
basis of expression (54), these authors [12] made a funda-
mentally wrong conclusion that, at the distances r ≥
Rg(lmax(q)), all modes cease to interfere along the refer-
ence Brillouin rays, and the initially narrow beam formed
by these rays is totally spread. Such a conclusion was
made without taking into account an important fact:
although different modes (–L1q + 1 ≤ ∆l ≤ L2q – 1) become
dephased at different distances r = Rg(lmax(q))/(∆l)2, they
will be in a certain way phased owing to the integer values
of the quantity (∆l)2, and their phasing will occur at the

distances  (49) with the corresponding characteristic
spatial period Rg(lmax(q)) (50).

The spatial periodicity of the diffraction focusing of
the field in oceanic waveguides does not mean an exact
reproduction of its values in the corresponding focal
planes because of the effect of the third term, i.e., the
term proportional to ζ3, in the exponent in expression
(41). This term plays a crucial role in the diffraction
spread and focusing of weakly divergent acoustic
beams [8–10]. If equality (21) is satisfied for some
mode number l = lmax(q) = lc = l(βc), i.e., ζ2 = 0, then,
from the equation

(55)

we obtain another expression for the determination of

the distances r =  at which the diffraction focusing
of a weakly divergent mode beam will be observed:

(56)
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l

--– µ jDl zs( ) χ jDl z( )–

l lc=

.

From expression (56) at kDl @ 1, we derive a simple
expression

(57)

where the quantity

(58)

is the spatial period of the diffraction focusing of a
weakly divergent mode beam. The focusing of every
beam in phase or in antiphase depends on the same
conditions, which are formulated above for m3, Lq, l1q,
and L2q with allowance for only two terms in the expo-
nent in expression (41), i.e., the terms proportional to
ζ1 and ζ2.

The comparison of the expression for Rmax (22) with
the one for Rg(lc) (58) shows that these quantities differ
only by the integer coefficient Rg(lc)/Rmax = 3. Thus, the
approach based on the analysis of the beam structure of
the acoustic field in an oceanic waveguide suggests the
conclusion that the diffraction focusing of weakly
divergent acoustic beams manifests itself at intervals
equal to three spatial periods of the rearrangement of
the interference structure of the field. However, this
result does not rule out the possibility of a partial dif-
fraction focusing of the field with the spatial period
Rmax (22). The reason is that the conclusions made on
the basis of analyzing the spatial rearrangement of the
interference structure of acoustic field in oceanic
waveguides are more general ones. This statement may
be confirmed by the fact that the correctness of the
aforementioned conclusions does not depend on the
validity of the equality lmax(q) = lc characteristic of
weakly divergent acoustic beams.

In closing, we formulate the main results of this
study, which may be useful for a correct description of
a long-range sound transmission in the ocean [13, 14].

First, it is shown that the periodic rearrangement of
the spatial interference structure of acoustic field along
an oceanic waveguide is accompanied by the diffrac-
tion focusing of the field with the corresponding spatial
period.

Second, it is found that, for an oceanic waveguide
with a monotone angular dependence of the Brillouin
ray cycle on the ray parameter, the spatial period of the
diffraction focusing of acoustic field is proportional to
the square of the characteristic vertical scale of the
waveguide and inversely proportional to the sound
wavelength.

Third, for an oceanic waveguide with a nonmono-
tone dependence of the Brillouin ray cycle on the ray
parameter (i.e., a dependence with extrema), the spatial
period of the diffraction focusing of acoustic field is
proportional to the cube of the characteristic vertical
scale of the waveguide and inversely proportional to the
square of the sound wavelength.

Rjm
3( ) m3Rg lc( ),≈

Rg lc( )
3k2Hg
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4π2
--------------- Dl

4 d2Dl

dβl
2
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l lc=
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Abstract—A method of describing oscillations in resonators on the basis of evolution equations is proposed.
The latter are obtained by simplifying the functional equations under the assumption that the distortions of trav-
elling waves within the resonator length are small, that the Mach number for the moving boundary oscillations
is small, and that the frequency is close to one of the natural frequencies of the resonator. The problems of non-
stationary oscillations of a layer with a moving boundary are solved. The law that should govern the wall oscil-
lations to provide the development of steady-state linear resonance oscillations is determined. The shape of the
resonance curve formed in the presence of a boundary nonlinearity is calculated. The method of matching of
asymptotics is applied to the singularly perturbed problem with small dissipation. It is shown that a boundary
nonlinearity leads to a distortion of the temporal profile of the standing wave and to the generation of higher
harmonics in the process of the development of steady-state oscillations. In contrast to the classical linear prob-
lems where the resonance occurs at the coincidence of the external force frequency with one of the natural fre-
quencies, in the case under study the resonance behavior is observed in frequency bands, which are wider the
higher the amplitude of the boundary oscillations is. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Most publications concerned with nonlinear acous-
tics are devoted to the studies of bulk nonlinear effects,
which lead to progressive distortions of the profiles and
spectra of waves in the course of their propagation
through a nonlinear medium. However, in some cases,
it is necessary to take into account local distortions that
are related to the nonlinearity of the boundary condi-
tion at a surface performing finite-amplitude oscilla-
tions.

In the framework of the problems concerned with
wave radiation, the effects of the boundary nonlinearity
are not accumulated and, therefore, manifest them-
selves only when the motion occurs with the velocities
comparable to the velocity of sound [1]. However, these
effects may be important in resonators where their
accumulation with time is possible. In this case, the
nonlinear effects are determined by the ratio of the two
small parameters: the acoustic Mach number M and the
detuning, i.e., the dimensionless departure ∆ from the
exact resonance frequency. This ratio can be relatively
large in high-Q resonators or in the presence of intense
pumping.

The accumulation of the effects of the boundary
nonlinearity in a resonator was considered in the previ-
ous paper [2]. The results reported there were obtained
on the basis of the solution of the functional equations
and applicable only to steady-state oscillations without
considering the processes of their development. How-
1063-7710/00/4603- $20.00 © 20334
ever, in the case M > |∆|, the steady-state solution exhib-
its some singularities, which makes it necessary to ana-
lyze the process of the development of oscillations. It is
also fundamentally important to take into account the
dissipative properties of the medium, i.e., the properties
that limit the field growth in the layer.

In this paper, we present the solution of a more gen-
eral nonstationary problem on the basis of a simplified
evolution equation that allows for the dissipation, the
detuning, and the finiteness of the boundary motion.

The results presented below contribute to the theory
of nonlinear oscillations of linearly deformed systems
with moving boundaries [3–6].

Our interest in this problem was inspired by the
development of superhigh-Q resonators for subtle
physical measurements [7] and by the technical
achievements in the excitation of highly nonlinear
oscillations with the suppression of the process of the
shock front formation [8]. The formulation of the prob-
lem was discussed in detail in the introduction to the
cited paper [2].

EVOLUTION EQUATION. DEVELOPMENT
OF LINEAR OSCILLATIONS IN THE LAYER

This section outlines the scheme of the derivation of
the evolution equation for describing the process of a
slow (relative to the oscillation period) development of
steady-state oscillations in a layer of a dissipative
000 MAIK “Nauka/Interperiodica”
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medium. A number of formulas presented here are used
in the following sections for solving the moving-
boundary problem.

We consider a layer whose left boundary (x = 0) per-
forms harmonic oscillations (e.g., according to the law
X = –(A/ω)cos(ωt)), and the right boundary (x = L) is
immobile. Then, for the particle velocity in the medium
we have

(1)

Plane waves propagating in a viscous heat-conduct-
ing medium are described by the equation [9]

(2)

Here, c and ρ are the equilibrium values of the sound
velocity and density of the medium and b is the effec-
tive dissipation factor [9]. We assume that the absorp-
tion is weak, and the travelling wave attenuates only
weakly within distances of the order of the wavelength.
In this case, for the wave propagating in the positive
direction along the x axis, equation (2) yields a simpli-
fied parabolic equation [9]

(3)

For the wave propagating in the opposite direction (left-
ward), the corresponding equation will have the form

(4)

In the approximation indicated above, the general solu-
tion to equation (2) can be represented as a sum of the
solutions to equations (3) and (4). Specifically, for
boundary conditions (1), the solution can be repre-
sented in the form

(5)

where δ = b/(2c3ρ) and F is an unknown function; here,
F(t) is a linear combination of sin(ωt) and cos(ωt) with
the coefficients that may slowly vary with time.

The corresponding expression for the acoustic pres-
sure has the form

(6)

Formula (5) is written so as to automatically satisfy
condition (1) at the fixed boundary. Condition (1) at the
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oscillating boundary (x = 0) reduces expression (5) to
the functional equation

(7)

where D = δω2L.
For steady-state linear oscillations, the function F(t)

is a harmonic one. In this case, equation (7) can be eas-
ily solved. The solution has the form

(8)

Let the frequency ω of the boundary oscillations be
close to the fundamental resonance frequency ω0 =
πc/L. In this case, we can write kL = π + ∆, where ∆ =
π(ω – ω0)/ω0 represents the small detuning. The atten-
uation within the resonator length is also assumed to be
small: D = δω2L ! 1. Under these assumptions, solu-
tion (8) is considerably simplified:

(9)

From solution (9), one can easily derive the known
facts: the amplitude of forced oscillations at resonance
and the width of the resonance curve are finite and
determined by the attenuation; the phase of the oscilla-
tions changes as the frequency ω passes through ω0.

Now, we return to the functional equation (7) in
order to analyze the process of the development of
steady-state oscillations. In the vicinity of the funda-
mental resonance, kL = π + ∆, equation (7) takes the
form

(10)

For small detuning ∆ and attenuation D, we expand the
right-hand member of equation (10) in a series and
retain only the terms of the zero and first orders of
smallness:

(11)

Here, F+ = F(ωt + π), F– = F(ωt – π), and the prime
means the differentiation with respect to the argument.

Since F is a nearly periodic function with the period
2π, and it slowly varies from one period to another, we
can write the following approximate expression for the
difference F+ – F–:

(12)

where T = ωt/π is the “slow” time. We note that the
slowness (in comparison with the oscillation period) of
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the variation of the quantity F as a function of T is
determined by the presence of the small coefficients M,
∆, and D in all remaining terms of the derived evolution
equation.

In the second and third terms of expansion (11),
which contain small coefficients D and ∆, the deviation
of the function F from strict periodicity can be
neglected. Then, the functional equation (10) can be
reduced to the following differential equation:

(13)

Introducing the notations U = F/c, M = A/c, and ξ = ωt +
π, we represent the partial differential equation (13) in
the final form

(14)

The process of the development of steady-state oscil-
lations in the layer is described by the solution to equa-
tion (14) with the zero initial condition U(T = 0, ξ) = 0.
This solution is as follows:

(15)

(16)

(17)

For small T, solution (15)–(17) is reduced to the
expression

, (18)

which describes the beginning of the process of the
oscillation development with a linear growth of ampli-
tude. As T  ∞, solution (15)–(17) tends to a steady-
state form

(19)

which coincides with expression (9).

LAYER WITH A MOVING BOUNDARY: 
EQUATION AND THE INVERSE PROBLEM
To derive the evolution equation with allowance

for the boundary motion, we use a scheme similar to
that used for the derivation of the differential equation
(14) from the initial functional equation (7). The only
difference is that the new boundary condition (com-
pare with (1))

(20)

∂F
∂T
------ + DF ωt + π( )

+ ∆ ∂
∂ ωt( )
--------------F ωt + π( ) = 

A
2
--- ωt( ).sin

∂U
∂T
------- DU ∆∂U

∂ξ
-------+ +

M
2
----- ξsin .–=

U B T( ) ξ ϕ T( )+( ),cos=

B
M
2
----- 1 2e

DT– ∆T( )cos e
2DT–

+–

∆2
D

2
+

---------------------------------------------------------------

1/2

,=

ϕ D
∆
----

e
DT– ∆T( )sin

1 e
DT– ∆T( )cos–

----------------------------------------- .arctan+arctan=

U
1
2
---MT ξsin–≈

U
M
2
----- ξ D/∆( )arctan+( )cos

∆2
D

2
+

-----------------------------------------------------,≈

v x = X t( ) t,( ) dX
dt
-------=
set at the wall moving according to the law x = X(t)
leads to the appearance of nonlinear field distortions.
Therefore, the function F in solution (5) will contain
higher harmonics:

(21)

even when the law X(t) is a harmonic one. The corre-
sponding generalization of functional equation (7) has
the form

(22)

As before, we assume that the attenuation within the
resonator length is weak (D = δω2L ! 1) and consider
the oscillations that are close to the fundamental mode
of the resonator (kL = π + ∆, |∆| ! 1). In addition, we
assume that the displacement of the wall is small in
comparison with the wavelength (k |X | ! 1).

Expanding all functions involved in equation (22)
into series and retaining only the terms of the zero and
first orders of smallness, we arrive at the relation

(23)

Here, we note that, firstly, the multiplication of the
terms of the series by (–inω) corresponds to the differ-
entiation of the exponent with respect to the variable t,
and, secondly, in the vicinity of the fundamental reso-
nance, we have L/c ≈ π/ω. Taking into account these
two facts and expression (21) for F, we represent rela-
tion (23) in the form

(24)

Using notation (14), we arrive at the sought-for equation
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If the wall motion X(t) is nonharmonic but periodic
with the period 2π, equation (25) allows the following
generalization:

(26)

where Mf (ξ) = kX(ξ – π).
Now, as in the cited paper [2], we consider the direct

and inverse problems on the basis of the equations
obtained above.

The direct problem consists in the determination of
the form U(T, ξ) of the wave excited in the layer from
the known law X(t) of the layer boundary motion. For
this purpose, it is necessary to solve equations (25) and
(26), which are inhomogeneous second-order partial
differential equations with variable coefficients. This
problem is fairly complicated.

The inverse problem is a simpler one. It consists in
the determination of the law X(t) that should govern the
boundary motion to provide the development of a given
process U(T, ξ) in the resonator. In this case, it is nec-
essary to solve equation (26) for f(ξ), i.e., to solve an
ordinary first-order equation.

It is easy to verify that the expression

(27)

will be an exact solution to equation (26), and this solu-
tion will be periodic in the variable ξ, provided that the
process has the form

(28)

Here, C1 and C2 are arbitrary functions of the “slow”
time T and U0 is a constant.

Assuming that in expressions (27) and (28) we have

(29)

where I0 is a zero-order modified Bessel function, we
obtain the solution to the inverse problem in the form:

(30)

(31)
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It is remarkable that, in the absence of attenuation
(D = 0), solution (30), (31) correct to the notation coin-
cides with the solution obtained by treating the inverse
problem in an entirely different way in the previous
paper [2] (formulas (9) and (4)). In the cited paper [2],
the best way of the excitation of steady-state waves is
determined; namely, the law of the wall motion that
effectively maintains resonance harmonic oscillations
is derived. In the case of a small ratio M/∆, the wall can
be moved according to a harmonic law, while, at greater
ratios M/∆, the wall motion should be modified in a
special way. For example, to maintain harmonic oscil-
lations in the layer at large values of M/∆, it is necessary
to excite the resonator by short “jerks” following one
after another with the period 2π.

In contrast to the solution obtained in [2], solution
(30) is a nonstationary one. It describes the dissipation-
caused transition from “highly nonlinear” (for M/∆ @
1) wall oscillations at the initial instant of time T = 0 to
purely harmonic linear oscillations at T  ∞. In the
course of the evolution of law (30) governing the wall
motion, oscillations (31) excited in the layer remain
harmonic; as T  ∞, these oscillations attenuate.

Figure 1 shows the temporal profiles of the periodic
boundary motion (30) providing a harmonic mode of
oscillations (31). The profiles are plotted for M/∆ = 10
and the instants of time DT = 0, 0.3, 0.6, 1, and 2
(curves 1–5, respectively).

Let us determine the dependence f(T, ξ) that pro-
vides the formation of the linear solution (15)–(17).
Using the fact that solution (15)–(17) satisfies equation
(14), we can simplify the differential equation for f.
Subtracting (14) from (26), we obtain

(32)

The solution to this equation is

(33)

df
dξ
------ 2 fB ξ ϕ+( )sin ξ .sin–=

f ξ( ) e
2B ξ ϕ+( )cos– ξe

2B ξ ϕ+( )cos
sin ξ .d∫–=

f

0 π
ξ
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The integration constant involved in the latter expres-
sion is arbitrary, which means that, for a single depen-
dence U(T, ξ), we obtain a family of solutions. How-
ever, in our calculations, the integration constant was
selected so as to obtain a zero time-average displace-
ment of the piston.

The results of the calculations are presented in Fig. 2.
We selected the parameters ∆ = 0, D = 0.01, and T =
10–1, 1, 10, and 102 (curves 1–4, respectively). From
this figure, one can see that, for small values of T, the
wall motion is similar to that in the linear case, while,
for greater values of T, the piston motion should be
fairly complicated.

FIELD IN A RESONATOR
WITHOUT DISSIPATION. THE DIRECT 

NONSTATIONARY PROBLEM

We begin with the solution of equation (25) for a
medium without dissipation, i.e., with D = 0. In this
case, the order of the evolution equation is reduced, and
it takes the form

(34)

In the problem of the development of steady-state
forced oscillations, we should set a zero initial condi-
tion (at T = 0) and the condition of periodicity in the
variable ξ:

(35)

The solution to the Cauchy problem (34), (35) can be
found by the conventional method of characteristics.
However, the symmetry of equation (34) makes it pos-
sible to use a simpler method. In equation (34), we set

(36)

The unknown functions A, B, and C must satisfy the
system of ordinary equations

(37)

∂U
∂T
------- ∆ M ξcos–( )∂U

∂ξ
-------+

M
2
----- ξ .sin–=

U T  = 0 ξ,( ) 0, U T ξ 2π+,( ) U T ξ,( ).= =

U
1
2
--- A T( ) ξ B T( ) ξ C T( )+sin+cos[ ] .ln–=

dA
dT
------- ∆B+ 0, dB

dT
------- ∆A– MC,

dC
dT
------- MB,= = =

1.0

0.5

0

–0.5

–1.0

π/2 3π/2 ξ

f
1
2

3

4

Fig. 2.
which can be easily solved. With allowance for the ini-
tial condition (35), we have

(38)

for small detuning, i.e., for ∆2 < M2, and

(39)

for greater detuning ∆2 > M2.
Let us discuss the results obtained above. First, we

consider the case |∆| < M. From formulas (36) and (38),
it follows that in this case the expression under the log-
arithm is positively definite, and, hence, the solution
has no singularities. For T  ∞, it takes the form

(40)

where sin ξ∗  = . Analyzing formulas (40),
we conclude that, as T  ∞, the quantity U tends to
the function with a logarithmic singularity at ξ = –ξ∗ ,
while, at any finite T, no singularities are present.

We introduce the notation

(41)

Figure 3 presents the plots of ue(ξ) and U +
(MT/2)sinξ∗  for ∆ = 0, M = 0.1, and T = 10, 20, 30, and
40 (curves 1–4, respectively). One can see that a sharp
peak is formed near the point ξ = –ξ∗ , and the height of
this peak increases with time. Evidently, the growth of
this peak is limited by dissipation, and, for T  ∞, it
is necessary to take into account the term D∂2U/∂ξ2,
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which was discarded when passing from the evolution
equation (25) to its simplified version (34).

In the second case, for greater detuning |∆| > M, the
solution to equation (34) has the form (36), (39). Evi-
dently, this solution is periodic in T with the period

2π/ . The profiles of the wave U(T, ξ) are
shown in Fig. 4 for M = 0.1 and ∆ = 0.15 and for dif-
ferent T selected according to the formula T =

2πn/(6 ), where n = 1, 2, 3, 4, and 5. One can
see that the solution has no singularities.

The analysis of Figs. 3 and 4 reveals some funda-
mental differences between the oscillations of a layer
with a moving boundary and those of a layer with an
infinitesimal displacement of its wall.

Figure 4 shows the “beats” whose frequency
depends on the amplitude A of the wall oscillations (or
on M = A/c); this frequency decreases as M approaches
|∆|. Similar beats are observed in the classical problem
when the excitation frequency does not coincide with
the resonance frequency. These beats result from the
summation of forced and natural oscillations, and
their frequency does not depend on M and is exactly
equal to ∆.

In an ordinary resonator, when the excitation fre-
quency coincides with the resonance frequency, the
oscillation amplitude increases with time (see (15)–
(17)). A similar behavior is observed in Fig. 3. The dif-
ference lies in the form of the wave, which now con-
tains higher harmonics; at longer times T, a sharp peak
is formed, and in the limit T  ∞, it is transformed
to a logarithmic singularity. Such “resonance” behav-
ior is observed not only at ∆ = 0, but also within the
band |∆| < M.

STEADY-STATE OSCILLATIONS
IN A RESONATOR WITH SMALL DISSIPATION

In the previous section, we have shown that, for |∆| <
M, the function U exhibits a sharp peak whose height is
limited by dissipation. Let us determine the height of
this peak in the case of small dissipation. In addition,
we assume that the small parameters D and M obey the
relation D/M ! 1. The physical meaning of this relation
is evident. Two concurrent processes occur in the reso-
nator: the accumulation of “nonlinearity,” which leads
to the formation of the peak, and the dissipation, which
destroys this peak. If M and D will be of the same order
of magnitude or D will be greater than M, the peak will
never be formed, and, qualitatively, the solution will be
the same as in the classical linear case.

Let us assume that the oscillations in the resonator
are fully developed, i.e., the boundary nonlinearity and
the dissipation are in balance. We need to determine the
field in the resonator. At first glance, it may seem that
for this purpose it is sufficient to drop the term contain-
ing the derivative with respect to T in equation (25) and
to solve the resulting ordinary differential equation.

∆2
M

2
–

∆2
M

2
–
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However, the solution is not that simple. The analy-
sis of expressions (40) and (41) shows that the solu-
tion to the equation without dissipation contains a
secular (slowly increasing with T) term, which is equal
to – (MTsinξ∗ )/2. The same term is present in the solu-
tion to the equation with dissipation (this follows from
the analysis of the singularity at ξ = ξ∗ ). Hence, we
seek the “steady-state” solution to equation (25) in the
form

(42)

The presence of the linearly increasing term is a theo-
retical problem. This term disappears with the passage
(5) from the auxiliary function U to the particle velocity
v in the layer; however, this term is present in the
expression for the pressure p (see (6)).

The problem of the appearance of a nonzero mean
in a nonlinear oscillatory motion is well known (see
[10], pp. 362 and 524). In purely one-dimensional
problems, constant or slowly varying mean values are
usually unrelated to the mass transfer; they only
slightly change the “background” on which the oscilla-
tions are observed. Presumably, the linear growth can
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be eliminated by considering an equation of motion
that is more realistic than equation (2). Here, we do not
solve this problem, because the presence of such a dis-
advantage does not prevent us from getting correct
results. Besides, such difficulties do not arise in other
similar problems concerned with the oscillations of a
string or a rod with moving ends [3, 4].

For the function u(ξ), we have an ordinary differen-
tial equation

(43)

This equation can be solved by conventional methods,
but such a solution is cumbersome and requires an extra
analysis to determine of its asymptotic characteristics.
In our case, it is more convenient to use an approximate
solution obtained by the method of matching of asymp-
totics.

For small ratios D/M, it is possible to ignore the
term with the second derivative everywhere except the
vicinity of the point ξ = –ξ∗  and to use the quantity ue
determined by formula (41) as the approximate solu-
tion. In terms of the perturbation theory [11], ue is the
first term of the “external” solution to the problem.
Near the point ξ = –ξ∗ , the external solution cannot be
used, and, therefore, it is necessary to construct an
internal expansion that allows for the dissipation but is
valid only in the vicinity of the singular point. For this
purpose, we derive a differential equation of type (43)
with simplified coefficients.

We introduce the “internal” variable

(44)

We expand the second and third terms in equation (43)
in powers of ξ + ξ∗  and pass to the independent variable
y. Retaining only the terms of the expansion that are

leading in , we obtain the equation that deter-
mines the approximate internal solution:

(45)
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The even (with respect to y) solution to equation (45)
can be expressed through Dawson’s integral F(z) [12]:

(46)

where K is an arbitrary constant. This solution
describes the form of the peak of the steady-state wave
profile at any values of the parameters ∆, M, and D sat-
isfying the above assumptions. The curve representing
this solution for K = 0 is shown in Fig. 5.

The functions ue and ui describe the behavior of u in
different regions, and, therefore, it is necessary that
they are matched in a certain sense [11]. One can use
the condition of the matching of asymptotics, which, in
our case, is as follows: when expressed through the
variable ξ, the asymptotics of ui for y  ∞ should
coincide with the asymptotics of ue for ξ  –ξ∗ . The
application of this condition provides a correct choice
of the parameter K.

The asymptotics of ue for ξ  –ξ∗  can be easily
obtained from formula (41):

(47)

The asymptotics of the internal solution (46) is given by
the formula

(48)

where the asymptotics of Dawson’s integral F(z  ∞)
~ (2z)–1 is used, and the constant

(49)

is determined numerically: η = 0.635181. Correlating
formulas (47) and (48), we obtain

. (50)

The curves representing the external and internal
expansions are shown in Fig. 6 for different D. The
selected parameters are M = 0.1 and D = 2 × 10–4, 1 ×
10–3, and 5 × 10–3 (curves 1–3, respectively). From this
figure, it follows that, for small D/M, the internal
expansion describing the shape of the resonance pulse
smoothly passes into the external expansion describing
the rest of the signal. Comparing Figs. 3 and 6, one can
see that the steady-state wave profiles formed in a res-
onator with dissipation are similar to the wave profiles
formed in a medium without dissipation at different
instants of time T. This result makes it possible to qual-
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itatively describe the process of the development of
oscillations in a resonator with dissipation. For small T,
dissipation is insignificant, and the growth of the wave
profile is observed, as in Fig. 3. At some time, the pro-
file becomes close to the limiting distribution (see Fig. 6)
and, then, exponentially tends to it (varying insignifi-
cantly). We note that the calculated value of the con-
stant K is the peak value of the wave profile. Hence,
relation (50) represents the resonance curve for the sys-
tem with dissipation.

Let us estimate the time of the development of the
mode of oscillation described by formulas (41) and
(46). For this purpose, we determine the time that is
necessary for the formation of a peak of height (50) in
the absence of dissipation. Equation (34) allows us to
directly calculate the values of U(T, ±ξ∗ ). We note that,
at the given values of the variable ξ, the coefficient of
the derivative with respect to ξ is equal to zero. The
peak value of the wave profile calculated by using
equation (34) is as follows:

(51)

Comparing this quantity with relation (50) and taking
into account the linearly increasing term, we obtain
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the estimate

. (52)
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Abstract—A simple method is developed for calculating the wall-pressure spectra in turbulent boundary lay-
ers. The method is based on the modeling of the wave-number spectrum of the sources that are caused by the
interaction of the turbulence–mean shear type. The sources are described in the framework of the semiempirical
theory of turbulence. The calculations reveal four characteristic frequency ranges; for these ranges, the specific
features of the wall-pressure spectra are determined, and the most general ways of their scaling are found. The
calculated spectra and rms values of pressure fluctuations are compared with the experimental data, and a good
agreement between the calculations and the experiment is observed. © 2000 MAIK “Nauka/Interperiodica”.
The frequency spectrum of pseudosound (in the
Blokhintsev sense) pressure fluctuations in a turbulent
boundary layer is one of the most important statistical
characteristics that are used in calculating the flow
noise and the vibrations excited by turbulent flows in
airplane fuselages, ship hulls, and other engineering
structures. In the last 40 years, numerous measure-
ments of pressure spectra in turbulent boundary layers
were carried out for various flow conditions. Compre-
hensive reviews of such measurements can be found in
the literature [1, 2]. The studies concerned with the the-
oretical calculations of such spectra are much fewer in
number. In some recent publications, the statistical
characteristics of a turbulent wall-pressure field were
determined by numerical integration of the Navier–
Stokes equations [3, 4]. However, this approach
requires a great deal of calculation, and one has to con-
sider only the case of low Reynolds numbers even if
modern efficient computers are used. Earlier attempts
at analytical studies of the problem for high Reynolds
numbers originate from Kraichnan’s publication [5].
The latter study was based on the use of the Poisson
equation, which was obtained by taking the divergence
of the Navier–Stokes equations for an incompressible
fluid, and on the assumption that the pressure sources
caused by the interaction of turbulence with the mean
shear (the turbulence–mean shear sources) predomi-
nate over the turbulence–turbulence sources. With this
method, the greatest progress was achieved by Panton
and Lineberger [6]: they integrated the spectral form of
the Poisson differential equation by the Monte-Carlo
method with the help of a computer the performance of
which corresponded to the time of their work. The main
problems encountered by these authors [6] were related
to the fact that the integrand function contained fairly
complex and, in the general case, unknown spectral and
correlation characteristics of the velocity field formed
1063-7710/00/4603- $20.00 © 20342
in the boundary layer. To overcome this difficulty, one
has to rely on scanty and disconnected experimental
data by supplementing them with many speculative
hypotheses whose validity is not always evident, and,
therefore, the results of such studies are not sufficiently
reliable. Possibly, this was the reason why Blake, in his
fundamental monograph [7], gave up a detailed
description of the integrand and restricted his consider-
ation to the evaluation of the orders of magnitude of dif-
ferent terms and to only qualitative predictions about
the shape of the spectrum in different frequency ranges
(see p. 528 and Fig. 8.14 in [7]).

For the pseudosound region (k @ ω/c), Blake [7]
used the following expression (first proposed in [8]) for
the pressure produced at a flat plate in a turbulent
boundary layer by the turbulence–mean shear sources:

(1)

Here, ω is the circular frequency; c is the sound
velocity; p(k1, k3, ω) is the wavenumber-frequency
spectrum of the amplitudes of pressure fluctuations; k1
and k3 are the wave numbers in the planes parallel to the
plate, where k1 corresponds to the flow direction, k3 cor-

responds to the direction across the flow, and k = (  +

)1/2; ρ is the density of liquid; y is the distance from
the plate along the normal to it; U is the average veloc-
ity in the boundary layer at the level y; and (k1, y, k3,
ω) is the Fourier transform of the velocity fluctuations
u2(x, y, z, t) normal to the plate in the planes y = const,
where x and z are the Cartesian coordinates along the
flow and across it, respectively, and t is time.
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The wavenumber-frequency spectrum of energy
E(k, ω) is related to the amplitude spectrum:

(2)
where δ(x) is the Dirac delta-function, k' and ω' are
variables independent of k and ω, and angular brackets
denote averaging over the ensemble. The multiplication
of integrals (1) and their subsequent averaging in con-
formity with (2) yields an expression containing
unknown wavenumber-frequency spectra and spatial
correlations of velocity fluctuations, which are to be
integrated twice with respect to the independent coor-
dinates y and y' normal to the wall along with the aver-
age velocity gradients.

The main idea of this work is to avoid the aforemen-
tioned manipulations with unknown functions. For this
purpose, based on the structures of formulas (1) and
(2), we construct a simplified expression on the
assumption that the necessary averaging and one inte-
gration with respect to y have already been performed:

(3)

Here, G(k, ω, y) is a generalized wavenumber-fre-
quency function of the pressure sources located in the
boundary layer at the distance y from the wall. Now, the
only problem consists in an adequate modeling of the
function G. For this function, we adopt the Taylor fro-
zen turbulence hypothesis (however, in our case, this
hypothesis is not extended to the wall pressure field
[8]):

(4)

where B(k1, k3, y) is the wave-number spectrum of the
sources; at small k, this spectrum is proportional to k2,
and, at k  ∞, it tends to zero (see [8]). Such behavior
is in particular characteristic of the function

(5)

In the geometric interpretation, function (5) has the
form of an elongated crater oriented along k3 at β > 1,
where β is the asymmetry coefficient. In formula (5), l
is the typical size of eddy structures (the length scale)
at the distance y from the wall, and α is the dimension-
less coefficient that determines the rate of decrease of
spectrum (5) at high wave numbers. It would appear
natural to have the maximum energy at the wave num-
ber k3 = 2π/l; for this purpose, we set α = 1/π.

Based on the dimensional considerations, we can
represent the function of the distance in (5) as f(y) ~ vl5,
where v is the characteristic value of turbulent velocity
fluctuations at the level y. Using this relation and sub-
stituting formulas (4) and (5) into expression (3), we
perform the integration of the latter over the wave num-
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bers and obtain the following expression for the fre-
quency spectrum of turbulent pressures:

(6)

Here, A is a dimensionless constant,

(7)

µ = (ωl/πU)[1 + (2πy/l)], s2 = 1 + (k3U/ω)2, K1(µ) is the
first-order modified Bessel function of the second kind,
and I(µ) is the second integral from relation (7).

For the characteristic scales of the velocity and
length of turbulent motion in a shear flow, we use the
expressions [9, 10]:

(8)

Here, 〈u1u2〉  is the correlation of the longitudinal and
the transverse (i.e., normal to the wall) components of
turbulent velocity fluctuations. This quantity is propor-
tional to the Reynolds stresses. We note that the second
expression (8) agrees well with the Prandtl hypothesis
l = κy about the path of mixing (κ = 0.41 is the Karman
constant).

Using turbulent scales (8) and simple relations
obtained from the semiempirical theory of turbulence,
we can determine the contributions of different parts of
the boundary layer to the wall pressure field; namely,
the contributions of the parts characterized by different
dependences of the motion on the viscous and inertial
forces acting in the flow.

In a turbulent boundary layer, two regions of the
flow can be distinguished: the layer of constant stresses
and the outer part of the boundary layer. Each of these
parts has its own specific features that will be used
below in calculating the spectra of pressure fluctuations
in a turbulent flow.

In the constant stress layer, which lies next to the
wall and occupies about 13–15% of the boundary layer
thickness, the equilibrium of forces is described by the
relation [11, 12]

(9)

where ν is the molecular viscosity, ε = 〈u1u2〉/(dU/dy) is
the eddy viscosity, Uτ = (τw/ρ)1/2 is the friction velocity,
and τw is the viscous friction stress at the wall. Using
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expression (9), we can represent turbulent scales (8) in
the form

(10)

According to Townsend [11], the eddy viscosity
increases with distance from the wall, first, as the cube
of the distance and, then, in direct proportion to it.
Therefore, we set:

(11)

where b is a constant. We do not use the more compli-
cated expression [9] that combines both these cases,
because it is not necessary for our calculations. Figure 1
compares the results, which were obtained by calculat-

ing the quantity 〈u1u2〉/  (curve 1) on the basis of the
definition ε = 〈u1u2〉/(dU/dy) and formulas (9) and (11),
with the experimental data taken from Hinze’s mono-

v Uτ ε/ν( )/ 1 ε/ν+( )[ ] 1/2
,∼

l ν/Uτ( ) ε/ν( ) 1 ε/ν+( )[ ] 1/2
.=

ε/ν b yUτ /ν( )3
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Fig. 1. Distribution of Reynolds stresses across the bound-
ary layer: (s, d) experimental and (—) computational data.
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Fig. 2. Distribution of the average velocity and velocity
defect across the boundary layer. Notations are the same as
in Fig. 1.
graph [12]. The use of dependences (11) for the deter-
mination of the average velocity profile U/Uτ = f(yUτ/ν)
by integrating formula (9) yields the results that also
agree well with the experimental data in all parts of the
constant stress layer; i.e., in the viscous part (ε ! ν), the
buffer part (ε ≈ ν), and the part with fully developed tur-
bulence (ε @ ν) (see curve 1 in Fig. 2); in this case, the
experimental data were taken from the same mono-
graph [12]. A good agreement of the calculations with
the experiment is achieved at b = 6.14 × 10–4, which is
quite close to the initial estimate b = 6 × 10–4 given by
Townsend [11] and corresponds to the widely used con-
stant 4.9 in the logarithmic profile U/Uτ = κ –1ln(yUτ /ν) +
4.9. In other coordinates, this profile corresponds to the
logarithmic dependence of the velocity defect [11, 12]
(U0 – U)/Uτ = –k–1lnY + 2.5, where Y = y/δ, U0 is the
velocity at the upper boundary of the boundary layer,
and δ is its thickness. The latter can easily be deter-
mined from the comparison of the two logarithmic
dependences:

. (12)

For the outer part of the boundary layer, which
occupies 85–87% of the boundary layer thickness, the
concept of a constant eddy viscosity is valid [9–12]:

(13)

where γ is a constant. In this region, the correlation
〈u1u2〉  is adequately approximated by a square expo-
nent [12]

(14)

which is illustrated by curve 2 in Fig. 1. Since the cor-
relation is related to the gradient of the average veloc-
ity, 〈u1u2〉  = ε(dU/dy), we obtain the expression

(15)

Substituting formulas (14) and (15) into expressions
(8), we obtain the following turbulence scales in the
outer part of the boundary layer:

(16)

The boundary y0 between the constant stress layer
and the outer part of the boundary layer can be found
from the condition of equality of the eddy viscosities
determined by formula (13) and the second formula
(11). This boundary is described by the dimensionless
expressions

(17)
Performing the integration of gradient (15) and the

comparison of the resulting defect of the average veloc-
ity in the outer part of the layer with the experimental
data, one can see that a good agreement between the
calculations and the experiment is achieved at γ = 17.9
(curve 2 in Fig. 2). This value was used for calculating
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the pressure spectra. The substitution of this value in
the second formula (17) at κ = 0.41 shows that the
thickness of the constant stress layer lying next to the
wall is about 14% of the total boundary layer thickness.

The values of the displacement thickness δ* and the
momentum thickness θ, which were necessary for dif-
ferent kinds of the pressure spectra scaling, were
obtained by the integration of the corresponding
expressions, (1 – U/U0) and (U/U0)(1 – U/U0), over the
entire thickness of the boundary layer (12). The friction
velocity Uτ and the related local friction τw and the fric-
tion coefficient cw were calculated by the Falkner for-

mula cw = 2τw/(ρ ) = 2(Uτ /U0)2 = 0.0263 , where
Rx = U0x/ν is the Reynolds number along the x coordi-
nate measured downstream from the leading edge of
the plate.

The proportionality factors implied in formulas
(10) and (16) are included in the constant A of the
main computational formula (6), and the value of A is
determined from the comparison of the calculated and
measured pressure spectra. The same is true for the
second unknown constant, i.e., the asymmetry coeffi-
cient β of the wave-number spectrum of the pressure
sources (5). The best suitable values were found to be
A = 1.6 and β = 6.

Figure 3 presents the pressure fluctuation spectra
measured in laboratory conditions by Schewe [13],
Emmerling [14], Farabee [15], Bull and Thomas [16],
and Manoha [17], as well as the spectra measured by
Efimtsov [18] at airplane fuselages. The scaling vari-
ables for the spectral levels are the outer scales of the
boundary layer, i.e., the scales that characterize the
inertial forces in the flow. The same figure shows the
results of the calculations by formula (6) for the Rey-
nolds numbers corresponding to the conditions of mea-
surements. Despite the slight scatter of data, the com-
putational and experimental results are in a relatively
good agreement. In the region of low and mid-frequen-
cies, the spectra (with the aforementioned scaling)
form a dense group for a wide range of Reynolds num-
bers. At high frequencies, the spectra become separated
according to the Reynolds numbers (this effect was first
noticed by Efimtsov [18]). In Fig. 4, the scaling vari-
ables for the same computational and experimental
results are the inner scales, which characterize the vis-
cous forces in the flow. One can see that, at high dimen-
sionless frequencies, all these spectra tend to a single
dependence (judging from the review [1], this fact is
well known), while, at low and mid-frequencies, they
become separated according to the Reynolds numbers.
In the calculated spectra, smooth peaks are observed,
with their heights depending on the Reynolds number.
Figure 5 shows the calculated heights of these peaks
versus the quantity Rθ = U0θ/ν (curve 1) along with the
experimental data [13, 15, 16, 19–21] borrowed from
the review [2] and complemented with the results of the
aforementioned experiments [14, 17, 18]. One can see

U0
2

Rx
1/7–
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that the results of calculations agree well with those of
measurements. Figure 6 presents only the calculated
frequency spectra in order to demonstrate the specific
features of their behavior at different frequencies and
different Reynolds numbers. The lower group of curves
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Fig. 3. Pressure spectra with the outer scaling. Measure-
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represents the spectra with the inner scaling. According
to the classification proposed in [1, 7, 22], four charac-
teristic frequency ranges can be distinguished in the
spectra at high Reynolds numbers.

At low frequencies, a decrease in the spectral levels
is observed with decreasing frequency, and this
decrease gradually passes into the quadratic depen-
dence P(ω) ~ ω2 theoretically predicted in [7, 8]. The
authors of the experiments [22] believe that, in this fre-
quency range, the most general scaling variable for the

spectral levels is the quantity ρ2 δ*, while the most
general scaling variable for the frequencies is U0/δ*.
Our calculations confirm this assumption: such a scal-
ing provides a coincidence (within 1 dB) of the low-fre-
quency spectra in a wide range of Reynolds numbers
103 < Rθ < 106.

The mid-frequency range lies in the region of the
peaks of the spectra. According to [1, 2, 18, 22], the
most suitable scaling variables in this region are the

quantity δ/Uτ for the spectra and Uτ/δ for the fre-
quencies, which is confirmed by the computational
results, namely, by the upper group of curves in Fig. 6.
An exception is the spectrum corresponding to the low-
est Reynolds number Rθ = 560 (Rx ≈ 2 × 105) at which
the notion of a fully developed turbulent boundary
layer loses its meaning. The frequency range following
the mid-frequencies was called the “universal” range
by Bradshaw [23]. Using the dimensional analysis,
Bradshaw predicted that, in this frequency range, the
wave-number spectrum of pressures should decrease in
inverse proportion to the wave number P (k1) ~ 1/k1.
Such a dependence was also obtained by calculations
for some range of wave numbers in [6]. If we assume
that the turbulent pressure field is frozen and carried
with a constant convection velocity, the prediction
made by Bradshaw [23] for the wave-number spectrum
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Fig. 6. Calculated pressure spectra with different scaling for
different Reynolds numbers Rθ = (1) 560; (2) 3.5 × 103;

(3) 104; (4) 105; and (5) 5 × 105.
is equivalent to a similar prediction for the frequency
spectrum: P(ω) ~ ω–1. Our calculations yield the depen-
dence P(ω) ~ ω–1.11, which slightly deviates from ω–1,
and this deviation can be easily explained by the pres-
ence of an incompletely frozen pressure field and the
dependence of the convection velocity on the wave
number. The calculations showed that the pressure
spectrum in the universal range is determined by the
turbulent motion in the logarithmic zone of the bound-
ary layer, and the width of this region essentially
depends on the Reynolds number. It decreases with
decreasing Reynolds number, and at Rθ ≤ 3.5 × 103 the
universal range vanishes. In Fig. 6, empty circles indi-
cate the points corresponding to the beginning of this
region, and the full circles indicate its end points at

ων/  ≈ 0.2. The calculated lowest frequency of the
universal range versus the Reynolds number is shown
by curve 2 in Fig. 5.

At high frequencies ων/  > 0.2, the calculated
spectral levels with the inner scaling are characterized
by a single curve independent of the Reynolds number,
which is also observed in the experiment (Fig. 4).

To make the proposed computational scheme
(which can be realized within minutes with the simplest
IBM PC) applicable to other situations, one can use the
approximating formulas that at Rθ > 103 (Rx > 5 × 105)
yield the spectra deviating from the computer calcu-
lated ones by no more than ±0.6 dB:

(18)

where (ω) = P(ω) /( ν) and  = ων/ ,  =

49.35 . Knowing the values of δ, δ*, and θ, one
can easily pass to other forms of the frequency spectra
scaling. The first factors in these formulas describe the
main laws governing the behavior of the spectra in the
low-frequency, universal, and high-frequency ranges,
respectively. The second factors (in parentheses) pro-
vide a smooth matching of the levels in the regions
between these ranges.

For the spectra at high frequencies, there exists a
wide variety of concepts in the literature: from P(ω) ~
ω–1 [26] to P(ω) ~ ω–5 [7]. Some publications provide
intermediate estimates like ~ω–3/2 or ~ω–7/3. The exper-
imental data shown in Fig. 4 on a bilogarithmic scale
are represented in Fig. 7 as a function of frequency
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instead of its logarithm. One can see that, in the fre-

quency range ων/  > 0.2, a tendency toward a linear
dependence of the logarithm of the spectrum on fre-
quency is observed (dashed line), which testifies to an
exponential form of the spectrum rather than a power-
law one. The results of the calculation by formula (6)
are shown by a solid line in Fig. 7, and they are also
quite close to an exponential dependence. Evidently,
different portions of the exponent can be approximated
by the power-law dependences of type ω–m with the
exponent m increasing with increasing frequency.

Figure 8 presents the experimental rms values 〈p2〉1/2

of the turbulent pressures from different publications
[4, 13, 14, 16, 22, 24, 25, 27]. The solid line shows the
computational results obtained by the integration of
spectrum (6) with respect to frequency. The dashed line
corresponds to the dependence proposed in [22]. Both
computational and experimental data testify that the
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Fig. 7. High-frequency part of the pressure spectrum in
semilogarithmic coordinates. Notations are the same as in
Fig. 3; (- - - -) exponential approximation and (—) calcula-
tion.
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Fig. 8. Root-mean-square values of pressure fluctuations.
Measurements: (∗ ) [4], (s) [13], (d) [14], (h) [16], (j) [22],
(m) [24], (e) [25], and (%) [27]; (- - - -) approximation [22]
and (—) calculation.
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ratio 〈p2〉1/2/τw increases with increasing Reynolds
number.

Thus, the proposed computational scheme is consis-
tent with the experimental data reported in the litera-
ture. With formulas (6) or (18), it can be used for pre-
dicting the frequency spectra of pressures in turbulent
boundary layers at different Reynolds numbers.
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Abstract—Nondimensional cross-spectra of pseudosound wall-pressures in turbulence are considered in the
framework of model fields of progressively increasing complexity. Conditions for the existence of the similarity
of the nondimensional cross-spectra for frequency and spacing are studied; factors that lead to the violation of
this similarity are considered. It is shown that, for the similarity of both longitudinal and transverse spectra, a
wide distribution of the field energy in the wave numbers is necessary in combination with a small dispersion
of the transport velocity of the wave components of the field. For the longitudinal spectrum, this condition is
also a sufficient one. For the similarity of the transverse spectrum, the wave-number spectrum of the field should
have some special form. The absence of the field energy in some region of the wave space leads to the vio-
lation of similarity of the cross-spectra at the corresponding frequencies. The results of the calculations of
the longitudinal and transverse spectra are presented. The calculations are performed in the framework of the
proposed model; they illustrate the effects of different parameters of the field on the properties of the cross-
spectra. © 2000 MAIK “Nauka/Interperiodica”.
The field of pressure fluctuations that occur in a tur-
bulent boundary layer at a flat or weakly curved surface
at high Reynolds numbers is usually considered as a
statistically uniform and steady-state field. An impor-
tant characteristic of such a field is its cross-spectrum or,
more precisely, the frequency cross-spectrum P(x, ω)
that describes the statistical correlation at different
time-domain frequencies and different spacings. This
spectrum is determined as the Fourier transform of the
space-time correlation function R(x, τ):

(1)

where x = {ξ1, ξ2} is the vector of the spacing between
the points at the plane with the components ξ1 and ξ2,
ω is the cyclic frequency, τ is the time delay, and i is the
imaginary unit. From here on, the subscript 1 indicates
the vector component along the flow, and the subscript 2
corresponds to the direction across the flow. In practice,
it is more common to use the nondimensional cross-
spectrum γ(x, ω) determined as function (1) scaled on
its value at x = 0, i.e., on the power spectrum:

(2)

Both functions, (1) and (2), are complex functions of
real variables, which is peculiar to a streamwise field
transfer. The objects usually studied by researchers are
the real γre and imaginary γim parts of the nondimen-

P x ω,( ) 1
2π
------ R x τ,( ) iωτ–( )exp τ ,d

∞–

∞

∫=

γ x ω,( ) P x ω,( )/P 0 ω,( ).=
1063-7710/00/4603- $20.00 © 20348
sional cross-spectrum (2), as well as its absolute value

|γ| = (  + )1/2 and phase ϕ = .

The property of similarity of the cross-spectrum for
spacing and frequency was first revealed by Corcos [1]
with the help of the empirical approach and later veri-
fied by other researchers. According to this property,
spectrum (2) is a function of the product of the two vari-
ables, γ(x, ω) = γ(ωx/Uc), where Uc is a factor with the
velocity dimension; this factor is usually called the con-
vection velocity. Later, along with the experimental
justification of the similarity of cross-spectra, it was
found that this similarity may be violated in the low-fre-
quency range [2–4]. The theoretical studies carried out by
Smol’yakov [5] showed that the condition of incompress-
ibility of a medium leads to the fundamental impossibil-
ity of the similarity of cross-spectra at ω  0. Owing to
recent progress in experimental and computational
methods, it has become possible to measure the cross-
spectra of turbulent pressures for a wide range of spac-
ings [6, 7]. Such measurements made the violation of
similarity of the cross-spectra even more evident. How-
ever, the physical mechanism of this phenomenon is
still poorly understood. According to the hypothesis put
forward by Farabee and Casarella [6], the deviation
from similarity of the cross-spectra is a result of the
low-wave-number cutoff of the wavenumber-frequency
spectrum of turbulence. Some questions still have to be
answered: whether the nature of the similarity is the
same for the longitudinal and transverse cross-spectra?
What are the factors that determine the damping decre-
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2 γim

2 γim/γre( )arctan
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ment for the cross-spectrum level? Which parameters
of the field govern the violation of similarity of the
cross-spectra at low frequencies? Is a violation of sim-
ilarity possible at high frequencies? In this paper, we
use the convective field model [8] to answer these ques-
tions.

Construction of the model. Let us consider a pair
of plane waves at the x10x2 plane, this pair being an ele-
mentary component of the field of wall-pressures in a
turbulent boundary layer. Along each wave, the pres-
sure varies according to a harmonic law with the ampli-
tude po. The wavelength and the orientation of the
waves on the plane are determined by the wave vectors
ko = { , } and k'o = { , – }. Both waves are
transferred in the aforementioned plane with a fixed

convection velocity Uo = { , }. Their transport
velocity is assumed to be much less than the sound
velocity, so the results should be attributed to incom-
pressible flows. Because of the transference of waves,
the pressure p produced at the point x = {x1, x2} (in Car-
tesian coordinates on the plane) will be a function of the
spatial coordinates and time t:

For this pressure field, we can determine the space-time
correlation function

(3)

where * denotes the complex conjugation, 〈  〉  denotes
the averaging over time and space for a multiple of the
spatial and temporal periods, and the point between the
vectors means scalar multiplication. The field compo-
nents with different wave vectors are statistically
orthogonal to each other in the sense that their average
products equal zero. Therefore, for more complicated
fields consisting of a great or infinite number of wave
components, the space-time correlation and other two-
point characteristics determined by the Fourier trans-
form can be obtained by the summation or integration
over the corresponding characteristics of the elemen-
tary pair of waves. Fourier transform (1) of expression
(3) yields the cross-spectrum of the pair of pressure

k1
o k2

o k1
o k2

o

U1
o U2

o

p x t ko Uo, , ,( ) 1
2
--- po iko x Uot+( )[ ]exp{=

+ iko x Uot+( )–[ ] ik'o x Uot+( )[ ]exp+exp

+ ik'o x Uot+( )–[ ]exp } .

R x τ ko Uo, , ,( ) p* x t ko, ,( ) p x x+ t τ+ ko, ,( )〈 〉=

=  
1
4
--- po

2 iko x Uoτ+( )[ ]exp{

+ iko x Uoτ+( )–[ ]exp ik'o x Uoτ+( )[ ]exp+

+ ik'o x Uoτ+( )–[ ]exp } ,
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waves, which are symmetric about the longitudinal axis
and transferred with the velocity Uo:

(4)

where δ(…) is the Dirac delta-function. From expres-
sion (4), one can easily derive the nondimensional
spectrum (2) of the elementary pair of waves for the
case of their transfer along the longitudinal axis, i.e., at

 = 0. Let us separately consider the longitudinal
cross-spectrum (ξ2 = 0)

(5)

and the transverse spectrum (ξ1 = 0)

(6)

Although expressions (5) and (6) bear little resem-
blance to the cross-spectra of the real pressure field in
turbulence (they differ from zero at a single frequency
and are represented by undamped functions), they sug-
gest some useful conclusions. Firstly, both longitudinal
and transverse spectra differ from zero at the same sin-
gle frequency determined by the longitudinal compo-

nent  of the wave vector and by the transport velocity

. Secondly, expression (5) for the longitudinal spec-
trum does not contain any transverse components of the
initial wave vectors. This means that, in the longitudi-
nal cross-spectrum, the contributions made by the

waves with identical longitudinal  and different

transverse  components are indistinguishable, and
the longitudinal spectrum for a set of such waves will
be the same as the spectrum for one pair of waves with

the same . As for the transverse cross-spectrum (6),

its form is determined by the transverse components 
of the wave vectors. For several pairs of waves with the

same  and different , the form of the transverse
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spectrum will depend on the distribution of the field
energy in the wave space along the transverse direction.

Let us consider the dependence of the transverse
cross-spectrum on the spacing in more detail. We con-
sider a field formed by n pairs of waves with the wave

vectors kj = { , ± }, j = 1, 2, …, n. Without loss of
generality, we can assume that the amplitudes of all
waves are equal; in this case, the nonuniformity of the
field energy distribution in the wave space can be intro-
duced through the nonuniformity of the distribution of
the wave vectors over the plane. Then, instead of
expression (6), for the nondimensional transverse spec-
trum of such a field we obtain the expression

(7)

If the components  of the wave vectors are contin-
uously distributed in space, the sum involved in expres-
sion (7) can be replaced by an integral:

(7')

where W(k2) is the probability distribution function
describing the distribution of the transverse compo-
nents in the wave space:

(8)

To this point, the wave composition of the model
field was limited to the components containing only

one longitudinal component . At a single transport

velocity , the spectral characteristics of the field

were nonzero at a single frequency ω = ± , which
did not allow us to pose the problem of similarity of the
cross-spectra. In what follows, the wave composition of
the field will be extended by adding wave components
with different longitudinal components k1. Even if all
field components are transported with the same veloc-
ity, such a field structure will provide the existence of
the field characteristics in a wide frequency range and
will allow us to consider the similarity or dissimilarity
of the dependences of the cross-spectra on the spacing
and frequency.
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Similarity of the longitudinal cross-spectrum.
Let the projections k1 of the wave vectors fill the whole
longitudinal axis. Every wave number k1 makes a con-

tribution to the frequency ω = ±k1 , and the set of fre-
quencies, as well as the set of wave numbers k1, is
everywhere dense. Then, according to expression (5),
the longitudinal cross-spectrum will, for all frequen-
cies, have the form

i.e., it will be similar for the frequency and spacing. We
note that, for a field where the projections of the wave
vectors on the longitudinal axis form an everywhere
dense set only within a segment  ≤ ω ≤ , the lon-
gitudinal cross-spectrum has the form

The latter expression testifies that the similarity of the
cross-spectrum occurs only within some limited fre-
quency range. Thus, at a constant convection velocity,
for the similarity of the longitudinal cross-spectrum, it
is sufficient that the field energy be continuously dis-
tributed along the longitudinal (i.e., coincident with the
direction of the field transfer) axis of the wave space.
Below, it will be shown that this statement is also valid
for a variety of transport velocities of the field compo-
nents with a small dispersion relative to the average
value.

Similarity of the transverse spectrum. The condi-
tions of similarity can be most easily determined by
using the example of two pairs of coupled waves, one
of which is determined by the wave vectors k' = { ,

± } and the other by the wave vectors k'' = { , ± },

so that  ≠ . According to expression (6), the trans-
verse cross-spectrum of these waves transferred with

the velocity  has the form

To judge the similarity of the cross-spectrum, it is nec-
essary that its frequency dependence be an explicit one.
We denote λ' = /  and λ'' = / . Then, it is evi-
dent that, for a local similarity of the transverse spec-
trum at these two frequencies, it is sufficient that the
equality λ' = λ'' be valid; i.e., that the wave vectors k'
and k'' be collinear. This statement holds for any num-
ber of wave vectors. When the longitudinal components
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of all wave vectors continuously fill the k1 axis so that
every value of k1 corresponds to a single pair of vectors
{k1, ±k2}, the transverse spectrum is determined at all
frequencies. It has the form

(9)

However, the similarity of the spectrum will occur only
when the wave vectors are collinear. In this case, we
have k2 = ±λk1, λ = const, and, at all frequencies, we
obtain

(9')

If the wave vectors are collinear but their projections
only partially fill the longitudinal axis within the seg-
ment  ≤ k1 ≤ , the transverse spectrum will be sim-
ilar only within a limited frequency range:

as in the analogous case for the longitudinal spectrum.
The undamped dependence (9') on the transverse

spacing is not typical of turbulent fields. Such a depen-
dence occurs because, at each frequency, the pressure
fluctuations are produced by only one pair of waves. As
indicated above, the presence of a great number of
wave components with a given longitudinal component

 will change the dependence of the transverse spec-
trum on the spacing, and this dependence will be deter-
mined by expression (7) or (7'). Below, we consider two
specific examples of the energy distribution in the wave
space.

Case 1. We assume that, at every k1 in the wave
space, the energy is uniformly distributed in k2 within

the segment [– , ] and is absent outside this seg-

ment, the quantity  depending on k1:  = (k1).
The corresponding distribution function has the form

The calculation of the transverse spectrum by formula
(7') yields

(10)

In contrast to expression (6), the transverse spectrum
(10) decreases with increasing spacing ξ2 but fluctuates
near the zero value, which makes it different from the
typical dependence for turbulent pressure fields.
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Case 2. Now, assume that at every k1 the energy is
uniformly distributed within the angle 0 ≤ |θ| ≤ θm,
where θ = , and is absent outside this
angle; i.e., the distribution function for the angle θ has
the form

The corresponding distribution function for the trans-
verse components of the wave numbers can be deter-
mined by the formula known from the theory of ran-
dom functions:

which at θm = π/2 yields

(11)

Applying expression (7') to this case, we obtain the
transverse spectrum γ(ξ2, ω) = exp(–k1|ξ2|); since ω =
±k1 , we obtain the spectrum

(12)

Spectrum (12) has an exponential form that is com-
monly used in the Corcos model [1]. Thus, the expo-
nential dependence of the transverse spectrum on the
spacing is a consequence of a uniform distribution of
the wave vectors with the same longitudinal component
throughout the directions.

On the basis of the analysis described above, we can
determine the general form of the distribution function
W(k1, k2) that describes the energy distribution in the
wave space at which the similarity of the transverse
spectrum takes place. The condition of collinearity of
the wave vectors requires an affine expansion of the
function in proportion to the distance from the origin of
coordinates, which, in combination with condition (8),
requires a corresponding compression of the function
in height. The function satisfying these requirements
has the form

(13)

Thus, in a convected field where the distribution of
energy in wave numbers is expressed by formula (13),

k2/k1( )arctan

W θ( )
1/2θm at 0 θ θm≤ ≤

0 at θ θm.>



=

W k2( ) W θ( ) 1
dk2

dθ
--------

-----------=

=  

1

θm
------

k1

k1
2 k2

2+
---------------- at 0 k2 k2

m≤ ≤ k1 θmtan=

0 at k2 k2
m,>






W k2( ) 2
π
---k1/ k1

2 k2
2+( ).=

U1
o

γ ξ2 ω,( ) ω ξ2 /U1
o–( ).exp=

W k1 k2,( ) 1
k1
----W k2/k1( ).=



352 TKACHENKO
the transverse cross-spectrum will exhibit similarity.
Since the function W(k1, k2) has the meaning of the
wave-number spectrum, we can conclude that, for the
similarity of the transverse cross-spectrum, the wave-
number spectrum of the field must have the form deter-
mined by expression (13). It is easy to verify that, in the
first of the examples presented above, the transverse

spectrum (10) will be a similar one only when  is
proportional to k1. Function (11) from the second
example satisfies condition (13), and, hence, spectrum
(12) is a similar one. As predicted by Farabee and
Casarella [6], in the absence of energy in some region
of the wave space, or, more specifically, in the region of
longitudinal wave numbers, the similarity of the cross-
spectrum is partially violated.

Field model with a random convection velocity.
The field model considered above was based on a single
transport velocity of the field components. This
assumption simplified the analysis and allowed us to
derive important qualitative conclusions concerning the
conditions of similarity of the cross-spectra. To obtain
a closer approximation to the real pressure fields in tur-
bulence, it is necessary to introduce a variety of trans-
port velocities. Let us assume that the transport velocity
Uo of the field components in spectrum (4) is a random
variable that takes one or another value with a probabil-
ity determined by the distribution function W(Uo). The
cross-spectrum of such a field has the form

The specific form of the distribution function is
unknown; however, it seems reasonable to use the two-
dimensional normal law

where Uc is the average convection velocity, and 

and  describe its dispersion in the longitudinal and
transverse directions. The adopted distribution law
allows the integration of expression (4) by quadratures;
as a result, the cross-spectrum of a pair of pressure
waves symmetric about the longitudinal axis can be
represented in the form

(14)
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where s2 = 2(  + ). If instead of one pair of
coupled waves, a denumerable set of such pairs is
present in the field, the cross-spectrum can be obtained
by summing the corresponding expressions (14). For a
field with a continuous distribution of energy in the
wave numbers, the cross-spectrum can be obtained by

defining the parameters  and  as random variables

with a given probability distribution function W( ,

). Then, the cross-spectrum of the field will be
obtained by the integration of contributions (14) over

the entire wave space with the weight factor W( , ).

It can easily be shown that the quantity ( /2)W( ,

) is equivalent to the wave-number spectrum of the

field B( , ). Using this result, we obtain the final
expression for the cross-spectrum:

(15)

On the basis of expression (15), a number of nondimen-
sional cross-spectra were calculated with the use of a
PC. Before the calculations, a passage to the nondimen-
sional variables was performed:  = ωδ*/U1,  =

Uc/U1,  = / , and  = δ* (i = 1, 2), where δ*
and U1 are the characteristic scales of length and veloc-
ity; e.g., the displacement thickness of the boundary
layer and the velocity at its outer boundary. It is
assumed that the wave-number spectrum and the cross-
spectrum involved in expression (15) are scaled on
some characteristic quantities, but the specific values of
the latter are unimportant, because they are absent in
the final result. The frequency, the spacing, the disper-
sion of the convection velocity, and the form of the
wave-number spectrum of the field were varied in the
course of the calculations. The average convection
velocity was assumed to be constant and equal to  =
0.8. The dispersion of the convection velocity was

assumed to be small:  from 0.0017 to 0.017 and 

from 0.0001 to 0.0004.

The integration was performed by the Simpson

method within the region 0 ≤  ≤ 20, 0 ≤  ≤ 50 with
a precision no lower than 1–2%. The region of the
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Fig. 1. (a) Absolute value and (b) phase of the longitudinal cross-spectrum at different values of the convection velocity dispersion:

 = (s) 0.0170, (+) 0.0065, and (×) 0. 0017;  = 0.0001. The wave-number spectrum is determined by expression (16);  =

0.05 and  = 20.0.
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existence of the wave-number spectrum was bounded

by the wave numbers  from below and  from
above, which made it possible to demonstrate the vio-
lation of similarity of the cross-spectra and to avoid the
singularity at the origin of coordinates. The wave-num-
ber spectrum was determined by the expression

(16)

The results obtained by calculating the nondimen-
sional cross-spectra are shown in Figs. 1–3 (the longi-
tudinal spectrum: its absolute value and the phase) and
Figs. 4–6 (the transverse spectrum). Figure 1 illustrates
the effect of the dispersion of the transport velocity of
the field components on the absolute value and the
phase of the longitudinal spectrum. When the wave-
number spectrum is determined in a wide range of wave

numbers (  = 0.05,  = 20.0), the absolute value
of the longitudinal cross-spectrum as the function of
the phase exhibits the property of similarity at every
fixed value of the dispersion of the transport velocity of
the field components (Fig. 1a). The calculations were
performed for three values of the dispersion of the

transport velocity in the longitudinal direction:  =
0.0017, 0.0065, and 0.0170. It was found that the less
the dispersion, the less the attenuation of the absolute
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value of the longitudinal spectrum. This is natural,
because, in the case of a zero dispersion, the absolute
value of the longitudinal spectrum does not attenuate at
all. In contrast to the absolute value, the phase of the
cross-spectrum is not affected by the dispersion of the
transport velocity, and, for all frequencies and spacings,
it is proportional to ωξ1/Uc (Fig. 1b). The low values of

the transverse convective velocity dispersion  do not
affect the longitudinal spectrum.

Figures 2 and 3 illustrate the violation of similarity
of the longitudinal cross-spectrum in the absence of
energy in some region of the wave space. If the field
contains no wave components with longitudinal com-

ponents below some , the violation of similarity
occurs at small values of the quantity ωξ1/Uc and, cor-
respondingly, at low frequencies (Figs. 2a, 2b). The
absence of the field energy at high wave numbers when

k1 exceeds some  leads to the violation of similarity
at large values of the quantity ωξ1/Uc and, correspond-
ingly, at high frequencies (Figs. 3a, 3b). For both the
absolute value and the phase of the cross-spectrum, the
violation of similarity is observed as the deviation of
the curves from the general law.

Figure 4 displays the transverse cross-spectrum for
the field with the wave-number spectrum determined
by expression (16) in a wide range of longitudinal wave
numbers. According to the results obtained above, the
spectrum has an exponential form and is a similar one.
We note that the variation in the dispersion of the trans-
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Fig. 3. Violation of similarity of (a) the absolute value and (b) the phase of the longitudinal cross-spectrum at high frequencies in the

absence of the field energy in the high-wave-number region. The wave-number spectrum is determined by expression (16);  =

0.05;  = (+) 2, (s) 3, and (*) 4 at  = 3; the solid line corresponds to the same values of  at  = 20.0;  = 0.017

and  = 0.0001.
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Fig. 2. Violation of similarity of (a) the absolute value and (b) the phase of the longitudinal cross-spectrum at low frequencies in the

absence of the field energy in the low-wave-number region. The wave-number spectrum is determined by expression (16);  =

20.0;  = (+) 2, (*) 4, (s) 6, and (×) 8 at  = 0.4; the solid line corresponds to the same values of  at  = 0.05;  =

0.017 and  = 0.0001.
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port velocity of the field components does not affect the
value of the transverse spectrum. Figure 5 presents an
example of a complete absence of similarity of the
transverse spectrum when the wave-number spectrum
of the field does not satisfy condition (13). In this case,
the wave-number spectrum was set in the form

(17)

at  <  <  = 20.0. Finally, Fig. 6 shows an
example of the violation of similarity of the transverse
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spectrum in the low-frequency range when the wave-
number spectrum is determined by expression (16), and

part of the wave space of the field at low  contains no
energy.

The purpose of this work was the determination of
the relation between the structure of the convected field
and its cross-spectral characteristics; therefore, it pre-
sents no direct comparison of the computational results
with the experimental data. However, the qualitative
behavior of the calculated dependences agrees well
with the known results of the cross-spectral measure-
ments. In closing, we present some additional specula-
tions on the correlation between the results of this study
and the properties of real pressure fields in turbulence.
It is reasonable to assume that the dispersion of the
transport velocity of the pressure field components is
closely related to the intensity of the velocity fluctua-
tions in the boundary layer. Therefore, the damping
decrement of the absolute value of the longitudinal
cross-spectrum should be a function of the Reynolds
number. It would appear natural to expect that, in the
boundary layer, no components with the wave numbers
well below than the inverse of the boundary layer thick-
ness will be present. This leads to the violation of sim-
ilarity observed in the experiments at low frequencies
in both longitudinal and transverse cross-spectra. At the
same time, no such limitation exists at high wave num-
bers. Hence, there is no reason to believe that the simi-
larity of the longitudinal cross-spectrum will be vio-
lated at high frequencies. However, the violation of

k1
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Fig. 4. Similarity of the transverse cross-spectrum and the
absence of the dependence on the convection velocity dis-
persion. The wave-number spectrum is determined by

expression (16);  = 0.05 and  = 20.0;  =

0.0017–0.0170;  = 0.0001–0.0004;  = (+) 0.1, (s) 0.3,

and (×) 0.5; the solid line corresponds to exp(–ωξ2/Uc).
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similarity of the transverse spectrum is quite possible,
because the conditions of similarity for this spectrum
are more rigid, and, hence, they may fail. The specula-
tions described above may be useful for the develop-
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Fig. 5. Absence of similarity of the transverse cross-spec-
trum when condition (13) imposed on the form of the wave-
number spectrum fails. The wave-number spectrum is deter-

mined by expression (17);  = 0.05 and  = 20.0;

 = 0.017;  = 0.0001;  = (+) 0.1, (*) 0.2, (s) 0.3,
(×) 0.4, and (⊕ ) 0.5.
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Fig. 6. Violation of similarity of the transverse cross-spec-
trum at low frequencies in the absence of the field energy in
the low-wave-number region. The wave-number spectrum is

determined by expression (16);  = 20.0;  = 0.017;

 = 0.0001;  = (+) 0.1, (s) 0.3, and (×) 0.5 at  =

0.8; the solid line corresponds to the same values of  at

 = 0.05.
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ment of new cross-spectrum models that would provide
a more adequate description of real processes.
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Abstract—The Helmholtz equation solutions corresponding to multiple roots of the dispersion equation are con-
sidered for a waveguide with impedance walls. It is shown that in this case the eigenfunctions are determined by
expressions that cannot be obtained by the separation of variables. In addition to exponential or trigonometric fac-
tors, such functions involve factors linear in coordinates. Equations for calculating the multiple roots are obtained,
and the relationships that determine the impedance values at which the multiple roots appear are presented. The
Green’s function is constructed for the case of the appearance of multiple roots. A plane waveguide and a circular
waveguide with axially symmetric modes are considered. © 2000 MAIK “Nauka/Interperiodica”.
An extensive literature (see, e.g., [1–14]) is devoted
to the investigation of sound wave propagation in a
waveguide with impedance walls. The solutions are
usually written as series expansions in normal waves
whose eigenvalues, which determine the normal wave
velocities, and eigenfunctions are found from the solu-
tion to a complex transcendental equation. In papers
[10], [13], and [14], it was noted that such equations
may have multiple roots. As is shown in [15], such roots
can appear for the normal waves in a thin elastic strip.
In the case of the appearance of multiple roots, the solu-
tions to the Helmholtz equation involve some addi-
tional factors linearly depending on the coordinates.
This leads to the nonseparable solutions. We note that
the nonseparable solutions to the Helmholtz equation
have already been described in the literature [16–19].
However, we found no works describing the specific
features of the wave field representation in an imped-
ance waveguide in the presence of multiple roots. In
this paper, we analyze some properties of the sound
fields in an impedance waveguide in the special case
that the above-mentioned equation has multiple roots.

The sound field in a waveguide is usually repre-
sented as the superposition of normal waves, which
are determined by the separation of variables. A nor-
mal wave that propagates in the positive direction
along the x axis is represented as the combination of
functions that are partial solutions to the Helmholtz
equation. For example, for a plane waveguide, this
wave has the form

(1)iβx/d ikγy+±( ),exp
1063-7710/00/4603- $20.00 © 20357
where x and y are the coordinates along and across the
waveguide, respectively; d is the waveguide width; k is

the wave number; and γ = . The time
dependence is taken as exp(–iωt). Such a wave is
described by the product of two factors, one of them
depending only on x and the other depending only on y.
Below, it is shown that, in addition to the separable
solutions, nonseparable solutions to the Helmholtz
equation are also possible. However, before describing
such solutions, we summarize the main properties of
the conventional solutions to the Helmholtz equation
for a plane waveguide with impedance walls by using
the results and notations from the paper [13].

The boundary conditions are written as

(2)

where p is the sound pressure in the waveguide, w1 =
Z1/ρc and w2 = Z2/ρc are the dimensionless impedances
normalized to the wave impedance of the medium ρc,
and k = ω/c is the wave number in the medium. A par-
tial solution to the Helmholtz equation obtained by sep-
aration of variables has the form

(3)

Here, γn =  and βn are the eigenvalues of
the nth mode. The function ψn(x) is the eigenfunction
that satisfies the Helmholtz equation

(4)

1 β2/ kd( )2–

p
w1

ik
------∂p

∂x
------

x d /2=

, p
w2

ik
------∂p

∂x
------

x d /2–=

,–= =

sn x y,( ) ψn x( ) ikγny( ).exp=

1 βn/kd( )2–

∂2ψn x( )/∂x2 βn/d( )2ψn x( )+ 0=
000 MAIK “Nauka/Interperiodica”
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and boundary conditions (1). The equation for the
eigenvalues is

(5)

where u1 = w1(–ikd) and u2 = w2/(–ikd). Each eigen-
value is referred to the eigenfunction

(6)

The functions ψn(x) satisfy the orthogonality condition
within the interval (–d/2, d/2)

(7)

where Hn is defined as

(8)

Note that, in the integrand of expression (7), the sign
of the complex conjuction for one of the functions is
absent. The Green’s function in the waveguide with the
impedance walls is determined by the expansion (see,
e.g., [11])

(9)

Consider now the nonseparable solutions to the
Helmholtz equation, for example, a function of the form

(10)

which also satisfies the Helmholtz equation. In the lat-
ter expression, one needs to take either upper or lower
signs. Note that function (10) correct to a constant fac-
tor is the derivative of function (1) with respect to the
parameter β. Let us introduce a new function tq(x, y, βq)
as the derivative of the function sq(x, y, βq) with respect
to βq:

(11)

We will denote all quantities related to such a solution
by the subscript q. Function (11) satisfies the Helm-
holtz equation, the second term in the square brackets
satisfying also boundary conditions (2), since the
eigenfunction ψq(x, βq) satisfies these conditions. Let
us find out in which cases the first term also satisfies

F β( ) u1u2β
2 1–( ) β β u1 u2+( ) βcos–sin 0,= =

ψn x( ) u2βn βn x/d( ) βn/2+( )cos=

+ βn x/d( ) βn/2+( ).sin

1
d
--- ψn x( )ψm x( ) xd

d/2–

d/2

∫
0 at m n≠
Hn at m n,=




=

Hn 1 u2 βn
2u2

2 u2 2βn( )cos–+ +[=

+ βn
2u2

2 1–( ) 2βn( )/ 2βn( ) ] /2.sin

G x y x0 y0, , ,( )

=  
i

2kd
---------

ψn x( )ψn x0( )
Hnγn

------------------------------- ikγn y y0–( ).exp
n 1=

∞

∑

x β y/ kdy( )( )–±(( ) iβx/d ikγy+±( ),exp

tq x y βq, ,( )
∂sq x y βq, ,( )

∂βq

------------------------------=

=  
∂ψq x βq,( )

∂βq

-------------------------- i
βqy

kd2γq

-------------ψq x βq,( )– ikγqy( ).exp
these conditions. Denoting this term by ϕq(x) and using
expression (6), we obtain

(12)

where x' = x/d + 0.5. It is easy to verify that expression
(12) satisfies the second boundary condition (2). Using
the first boundary condition (2), we obtain the expres-
sion, which coincides with the derivative of function
(5) with respect to β. Thus, for function (12) to satisfy
the boundary conditions, it is necessary that βq be a root
of the two equations

,

(13)

.

Because, in this case at β = βq, not only the function
F, but also its derivative becomes zero, βq is a double
root. The corresponding solution to the Helmholtz
equation has the form

(14)

Eigenfunction (14) is the product of the exponential
function and an expression involving the x and y coor-
dinates as factors (x enters into this expression as a fac-
tor through expression (12)). Thus, eigenfunction (14)
is a nonseparable solution.

Consider now the orthogonality relationships con-
necting the functions ψn, ψq, and ϕq. Recall that by the
subscript n we denote all functions for which β satisfies
only the first equation (13), while the functions for
which β satisfies both equations (13) are denoted by the
subscript q. First of all, we note that Hq vanishes, i.e.,

(15)

This relationship can be derived by two methods: first,
by direct integration with allowance for equations (13),
and, second, without any integration, taking into
account that the equality Hq = 0 follows directly from
equations (13) if we eliminate u1 from them and com-
pare the result with expression (8). Thus, the function
ψq(x) is orthogonal to itself. We note that Hq can vanish
in spite of the sign of the squared function in the inte-
grand. This is explained by the fact that the eigenfunc-
tions are complex quantities, and, as it was noted
above, the sign of the complex conjugation is absent in
the orthogonality relation.

ϕq x( ) ∂ψq x βq,( ) ∂βq⁄=

=  u2 βqx'( ) u2βqx' βqx'( )sin– x' βqx'( ),cos+cos

F βq( ) u1u2βq
2 1–( ) βq βq u1 u2+( ) βqcos–sin 0= =

∂F βq( ) ∂βq⁄ βq βq 2u1u2 u1 u2+ +( )sin=

+ βq u1u2βq
2 u1– u2– 1–( )cos 0=

tq x y βq, ,( )

=  ϕq x βq,( ) iψq x βq,( )βqy/ kd2γq( )–[ ] ikγqy( ).exp

Hq
1
d
--- ψq

2 x( ) xd

d/2–

d/2

∫ 0.= =
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In addition, the following relationships have place

(16)

(17)

(18)

Here,

(19)

(20)

Using these relationships, we can write Green’s
function in a waveguide with impedance walls when
one of the roots of equation (5) is multiple. In this case,
the normalizing factor Hn in one of the terms in series
(9) vanishes. Let us assume that, in a waveguide cross-
section y = y0, the distribution of the y-component of
the particle velocity has the form of a delta-function

(21)

where Q is the strength of the source. Here, we intro-
duced the factor 1/2 for the following reason. Distribu-
tion (21) corresponds to a concentrated source, i.e., in the
two-dimensional case, to a linear source with the axis
normal to the xy-plane and located near an acoustically
hard plane. The acoustic pressure is then doubled. How-
ever, for calculating Green’s function, we need to
deem that sound waves are radiated both in positive
and negative directions of the y-axis. In other words,
the source as though is cut in two by the plane y = y0.

The acoustic pressure generated by a concentrated
source is related to Green’s function by the relationship

(22)

We represent the acoustic field at y > y0 as

(23)

1
d
--- ψm x( )ψn x( ) xd

d/2–

d/2

∫

=  
0 at m n and at m≠ n q= =

Hn 0 at m≠ n q,≠=



1
d
--- ψn x( )ϕq x( ) xd

d/2–

d/2

∫
0 at n q≠
Lq 0 at n≠ q,=




=

1
d
--- ϕq

2 x( ) xd

d/2–

d/2

∫ Pq.=

Lq 4βq
3u2

2 2βq βq
2u2

2 1–( ) 2βq( )cos+[=

+ 1 4βq
2u2 βq

2u2
2+ +( ) 2βq( ) ] / 8βq

2( ),sin

Pq 4βq
3 1 3u2 3u2

2 βq
2u2

2+ + +( )[=

+ 6βq 1 2βq
2u2 βq

2u2
2+ +( ) 2βq( )cos

+ 3 1– 2βq
2 βq

2u2
2 2βq

4u2
2–+ +( ) 2βq( ) ] / 24βq

3( ).sin

v y Qδ x x0–( )/2,=

p x y x0 y0, , ,( ) ikρcQG x y x0 y0, , ,( ).–=

p x y,( ) anψn x( ) ikγny( )exp
n 1 n q≠,=

∞

∑=

+ aqψq x( ) ikγqy( )exp

+ b ϕq x( ) iψq x( )βqy/ γqkd2( )–[ ] ikγqy( ),exp
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where an, aq, and b are unknown coefficients. From the
sum in this expression, we select the term with n = q
and add function (14). This yields

(24)

Let us multiply the left-hand and right-hand sides by
ψm(x) at m ≠ q, integrate over the waveguide cross-sec-
tion, and set y = y0. By virtue of orthogonality relations
(16) and (17), only the term with n = m remains in the
sum. Then, we obtain

(25)

After this, we multiply the left-hand and right-hand
sides of expression (24) by ψq(x) and integrate. In this
case, all terms of the sum vanish. Then, we obtain

(26)

It remains for us to find the coefficient aq. To do this, we
multiply both sides of expansion (24) by ϕq(x, y0) and
integrate. Using equalities (16), (17), and (26), we find

(27)

Using (22), (23), and (25)–(27), we obtain Green’s
function

(28)

.

In the last expression in (28), we replaced (y – y0) by
|y – y0|, so that it would be valid for both y > y0 and y < y0.

Consider now some examples. It is clear that equa-
tions (13) cannot simultaneously be satisfied at arbi-
trary values of u1 and u2, but only at some definite rela-
tions between them. The algorithm for finding these

v y
1

iωρ
---------∂p

∂y
------

y y0=

1
ρc
------ anγnψn x( )

n 1 n q≠,=

∞

∑= =

× ikγny0( ) 1
ρc
------aqγqψq x( ) ikγqy0( )exp+exp

+ b
1
ρc
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iβq–

kd2γq

-------------ψq x( ) γq ϕq x( ) y0

iβq–

kd2γq

-------------ψq x( )– 
 +

× ikγqy( )exp Qδ x x0–( )/2.=

am ρcQ ikγmy0–( )ψm x0( )/ 2Hmγmd( )exp=

at m q.≠

b ρcQ i– kγqy0( )ψq x0( )/ 2Lqγqd( ).exp=

aq
ρcQ

2Lqγqd
----------------- ikγqy0–( )exp=

× ϕq x0( ) ψq x0( )
βq

kd( )2γq
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Pq

Lq
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iβq

kd2γq
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i
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
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+
ikγq y y0–( )exp
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The first two double roots of the dispersion equation and the normalized impedances at which the double roots appear (a plane
waveguide)

Type of the waveguide q βq w1/kd

Symmetric waveguide, w1 = w2 = w, 1 4.212392 – i 2.250729 0.1478164 + i 0.1184415

Symmetric waves 2 10.712537 – i 3.103149 0.0815858 + i 0.0314714

Symmetric waveguide, w1 = w2 = w, 1 7.497676 – i 2.768678 0.1067190 + i 0.0543799

Antisymmetric waves 2 13.899960 – i 3.352210 0.0656290 + i 0.0206384

One acoustically soft wall, w2 = 0 1 3.748838 – i 1.384339 0.2134380 + i 0.1087599

2 6.499799 – i 1.676105 0.1312580 + i 0.0412769

One acoustically hard wall, w2 = ∞ 1 2.106196 – i 1.125364 0.2956329 + i 0.2368831

2 5.356269 – i 1.551574 0.1631717 + i 0.0629429
values is as follows. For a given u2, we need to solve the
equation

(29)

for βq and then find u1 from any of equations (13). Thus,
for a given impedance of one wall, we can find the
impedance of the other wall so that the root becomes
multiple. The question of the possibility to always find
such a value of βq that would a have physical meaning,
as well as the question about the number of possible
values of u1 for one value of u2, requires further inves-
tigation.

For a symmetric waveguide (u1 = u2 = u), from the
second equation (13), we obtain two solutions

(30)

Substitution of this expression in the first equation (13)
yields two equations

(31)

In expressions (30) and (31), one needs to take simulta-
neously either the upper or the lower signs. The upper
signs correspond to symmetric waves, while the lower
signs refer to antisymmetric waves. Besides the trivial
solution βq = 0, equations (31) have a number of other
solutions. The first two of them are given in the table.
Using the values of βq, from formulas (30) we can find
such values u at which multiple roots exist. In a simi-
lar way, for a waveguide with one acoustically soft
wall (u2 = 0), we obtain the equation

(32)

and the formula for determining the impedance

(33)

For a waveguide with one acoustically hard wall (u2 =
∞), we obtain

(34)

Hq 1 u2 u2
2βq

2 u2 2βq( )cos–+ +[=

+ u2
2βq

2 1–( ) 2βq( )/ 2βq( ) ] 2⁄sin 0=

u
βq 1±cos

βq βqsin
-----------------------.=

βqsin βq.+−=

2βq( )sin 2βq=

u1 βq/βq.tan–=

2βq( )sin 2βq–=
and

(35)

Let us represent expression (30) as

(36)

where the first formula refers to symmetric waves in a
symmetric waveguide and the second formula refers to
antisymmetric waves in the same waveguide. Compar-
ing expressions (31), (32), and (34), we find that the
multiple root values corresponding to the symmetric
waves in a symmetric waveguide equal doubled values
of the roots for the waveguide with an acoustically hard
wall, while the roots for the antisymmetric waves in a
symmetric waveguide equal doubled values of the roots
for a waveguide with an acoustically soft wall. The val-
ues of the impedances at which multiple roots appear
for a symmetric waveguide are less by a factor of 2 than
the corresponding values for the waveguides with one
acoustically hard or acoustically soft wall.

The values of the first two multiple roots and the
corresponding impedances for the above-mentioned
cases are given in the table.

In paper [13] for the waveguide with one acousti-
cally hard wall with kd = 5, the impedance value, at
which the multiple root w1 = 1.47816 + i1.18441 appears,
was presented. The value w1/(kd) = 0.29563 + i0.23688
almost coincides with that presented in the table.

Figure 1 exhibits the behavior of the eigenvalues of
two modes for the wall impedances that satisfy the con-
dition of multiple root appearance. The curves for the
imaginary parts of β1, 2 (Fig. 1b) intersect, while the
curves for the real parts in Fig. 1a are only tangent to
one another at the point corresponding to the appear-
ance of the multiple root. For the given impedance val-
ues, the multiple root appears at kd = 1. Note that if both
curves in Fig. 1a were drawn by solid lines, they might
seem to intersect. Even small changes in the impedance
values lead to that the real parts of β1 and β2 are no
longer tangent to one another (Figs. 1 c, 1d).

Figure 2 shows the dispersion curves for the same
modes as in Fig. 1. The dispersion curves intersect, but,

u1 βq/βq.cot=

u βq/2( )/βq, ucot βq/2( )/βq,tan–= =
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passing through the point kd = 1, the modes switch
places. As an illustration, the upper and lower parts of
Fig. 2 exhibit the modes ψ1, 2(x) corresponding to dif-
ferent points of the dispersion curves. As is seen, the
modes with monotone amplitude variations correspond
to the points a, b, and c, the point c lying on the dotted
line rather than on the solid line. Similarly, a mode with
the amplitude oscillating along the x coordinate passes
from the dotted line to the solid line.

A wave corresponding to the multiple root can be
considered as a result of the interference of two normal
waves with very close phase velocities.

The question as to whether to introduce or not an
additional function tq(x, y) in the field expansion
depends on the desired accuracy of calculations. To
answer this question, we present the following reason-
ing. If we need to calculate the difference f(x + ε) – f(x),
where ε ! x, we can do it by the direct calculation of
this difference when the accuracy of the calculation is
high enough. However, such a calculation is related to
loss in accuracy. Therefore, if the accuracy is insuffi-
cient, we can calculate the quantity εdf(x)/dx instead. In
this case, the calculations may be performed with lower
accuracy. The eigenfunctions of the type (6) may be
calculated by a similar method in the vicinity of the
parameter values u1 and u2 at which the multiple root
appears. However, in this case, a loss in accuracy is
possible. Using expansion (28) instead of (9), such a
loss can be avoided.

From the above results, it follows that multiple roots
appear only for some particular values of the complex
impedances of the walls. In practice, the probability
that in real problems the impedances will take precisely
these values is very low. The question arises as to how
much the impedances must differ from the above-men-
tioned values to make the introduction of the additional
function tq(x, y) in expansion (9) unnecessary. In the
example, shown in Fig. 1, it was sufficient to introduce
a change in the third decimal place in the imaginary
part of the impedance to obtain a noticeable difference
in the values of β for different modes.

We consider now a circular waveguide and restrict
ourselves to the axially symmetric modes. For a circu-
lar waveguide with an impedance inner surface, the
partial solution to the Helmholtz equation satisfying the
boundary condition

(37)

has the form

(38)

In what follows, γn = , w = Z/(ρc), u =
w/(–ika), and βn is the root of the equation

(39)

p
w
ik
----∂p

∂r
------

r a=

=

sn r y,( ) J0 βnr/a( ) ikγny( ).exp=

1 βn
2/ ka( )2–

F β( ) J0 β( ) uβJ1 β( )– 0.= =
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Besides solution (38), there exists another solution

(40)

where

(41)

The function ψ(r) satisfies condition (37). The function
ϕ(r) satisfies this boundary condition if βq is the root of
the equation

(42)

Thus, βq is the double root of equation (39). Eliminat-
ing u from equations (39) and (42), we obtain the equa-
tion for determining the multiple roots

(43)

As before, we will denote the multiple roots by the
index q. Using equation (39), we obtain the impedance
values at which multiple roots appear

(44)

We present the values of the two first roots of equation
(43) and the respective values of the normalized imped-
ances

β = 2.98038241 – i 1.27960254,

w = (0.28330464 + i  0.12163450)ka;

β = 6.17515307 – i 1.61871738,

w = (0.15152723 + i  0.03972043)ka.

tq r y,( ) ∂sq/∂β ϕ r( ) ψ r( )iβqy/ka2ψq–[ ] ,= =

ψ r( ) J0 βqr/α( );=

ϕ r( ) ∂ψ/∂β J1 βqr/a( )r/a.–= =

∂F/∂β J1 β( ) uβJ0 β( )+( )– 0.= =

J0
2 β( ) J1

2 β( )+ 0.=

w ikaJ0 βq( )/ βqJ1 βq( )( ).–=

Re βn
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Fig. 1. Eigenvalues versus kd for two modes in the vicin-
ity of the value kd = 1 corresponding to the double root for
w2 = 0; (a, b) w1 = 0.2134380 + i0.1087599; (c, d) w1 =
0.2134380 + i0.1.
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Fig. 2. Dispersion curves for two modes in the vicinity of the value kd = 1 corresponding to the double root for w2 = 0 and w1 =
0.2134380 + i0.1087599. The middle part of the figure exhibits the dispersion curves; the upper and lower parts exhibit the acoustic
pressure distribution over the waveguide width, i.e., the absolute values of the eigenfunctions.
The functions ϕ and ψ satisfy the following relations of
the orthogonality and normalization:

(45)

where

. (46)

Note that Hn vanishes for n = m = q, i.e., the function
ψq(r) is orthogonal to itself,

(47)

(48)

ψn r( )ψm r( )r rd

0

a

∫

=  
0 at n m at n≠ m q= =

a2Hn at n m q,≠=



Hn J0
2 βn( ) J1

2 βn( )+[ ] 2⁄=

ϕn r( )ψq r( )r rd

a

0

∫
0 at n q≠

a2Lq at n q,=



=

ϕq
2 r( )r rd

0

a

∫ a2Pq,=
where

(49)

(50)

The Green’s function for the axially symmetric
case (i.e, one of the corresponding points lies on the
axis) is determined by expression (28) where one has
to replace x by r, d by a, and use relationships (41),
(46), (49), and (50).
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Abstract—Vibration characteristics of railroad ties are investigated by the method of shock excitation. The fea-
sibility of estimating the quality of railroad tracks from the harmonic analysis of these vibrations is demon-
strated. © 2000 MAIK “Nauka/Interperiodica”.
Monitoring the condition of railroad tracks is essen-
tial for maintaining trouble-free operation of railroads.
Well-timed detection and elimination of defects of
tracks is not only profitable from an economical point
of view, but also assures the safety of this kind of trans-
portation. 

It is known that the quality of tracks largely depends
on the tightness of contact between the ties and ballast,
which serves as a damper and usually consists of a layer
of crushed stone 20–30 cm thick. Today’s methods of
track monitoring do not always make it possible to
detect in time the ties hanging on rails, due to subsid-
ence of the ballast. 

In routine maintenance work, the detection of gaps
between the ties and the ballast is carried out by a spe-
cial-purpose train. While the train is moving along the
rails, it detects the tie deflection under a known load.
This method requires a specially equipped heavy-
loaded train and an interruption in the railway traffic for
the time of measurements. In the opinion of specialists,
this method does not always provide an exact estimate
of the quality of the contact between the ties and the
ballast. 

In this paper, we propose a simple method of detect-
ing ties that have lost tight contact with the ballast and
are hanging on the rails. This method is based on a
shock excitation of tie vibrations, a remote recording of
vibrations by an acoustic microphone, and a subse-
quent harmonic analysis of the signal. 

The railroad track is usually considered as a distrib-
uted elastic system contacting with an elastic base [1,
2]. The dynamics of this system depends not only on
the elastic parameters of the ties and rails, their dimen-
sions, the density of materials and the way of their fas-
tening, but also on the properties of the elastic base,
such as its density, coefficient of restitution, coupling
constant, and coefficient of external friction. Evidently,
for the parts of the track where the ties are not in tight
contact with ballast or even hang above it, some of
these characteristics will differ from the values and
1063-7710/00/4603- $20.00 © 20364
properties of the corresponding characteristics for
tracks with a tight contact. It is reasonable to expect
that this difference will lead to a change in the ampli-
tude-frequency characteristic of the track vibration. 

An efficient method widely used for studying the
amplitude-frequency characteristics of mechanical sys-
tems is the method of shock excitation, with subsequent
recording and analysis of the excited vibrations [3]. In
this process, the amount of energy spent for vibration
and its spectral components depends in a complicated
way on the mass, the material, and the form of the
impact tool, the ratio of the initial velocity of impact
tool to the sound velocity in the system, the mass of the
system, the properties of the surface at the impact site,
and the place of the latter in the system. 

The experimental studies of the vibration processes
generated in reinforced concrete ties by shock excita-
tion were carried out at a railroad testing ground. The
vibrations were detected by RFT vibration transducers
attached to the tie and also by a remote method with the
use of a Bruel and Kjaer capacitor microphone. The
signals were recorded by a multichannel magnetograph
and subjected to computer processing in laboratory
conditions. 

For the excitation of vibrations in ties, we used steel
impact tools of mass from 200 g to 4 kg. In the experi-
ments, it was found that the fundamental frequency of
vibration of a tie fastened to the rail track was most effi-
ciently excited by an impact tool of mass no less than
1 kg, on the condition that the impact occurred at the
center or at the end of the tie. 

If we consider a tie fastened to a massive rail track
as a beam hinged at two points (Fig. 1), then, neglecting
the elasticity of the rail track, we can expect that the
main mode of its vibration will be a symmetric periodic
motion about the points of fastening. The ends of the tie
and its center have maximum amplitudes and are the
points of the most efficient excitation of this type of
000 MAIK “Nauka/Interperiodica”
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vibration. The frequency of vibration is determined by
the well-known relation [4, 5] 

(1)

where E is Young’s modulus, J is the moment of inertia
with respect to the tie center line, l is the track gauge,
and m is the tie mass per unit length. 

The objective of the experiments was to study the
dynamics of the changes in the amplitude-frequency
characteristic of the tie vibration with a decrease in the
area of contact between the tie and the ballast. For this
purpose, we initially chose an arbitrary tie, which was
in tight contact with the ballast, and measured its vibra-
tion generated by impacts at various points. Then, the
tie was undermined on one end for 1/8 of its length, and
the measurements were repeated. The subsequent mea-
surements were carried out with the tie undermined for
1/4 and 1/3 of its length. In addition, at a certain dis-
tance from this tie, six successive ties were chosen for
which similar measurements were performed. How-
ever, these ties were not undermined, and the measure-
ments were aimed at gathering some statistical data. 

Figure 2 shows the power spectra of the signals
detected by the capacitor microphone after the shock
excitation of the ties. The spectra are averaged over ten
realizations and displayed in dimensionless values on a
linear scale along the ordinate axis for the following
cases: (a) a tie in tight contact with the ballast, (b) a tie
with ballast removed for 1/8 of its length, (c) a tie with
the ballast removed for 1/4 of its length, (d) a tie with
ballast removed for 1/3 of its length, and (e) a power
spectrum averaged over six ties being in tight contact
with the ballast. 

It is seen that, when a tie is in tight contact with the
ballast, the spectrum of its vibration is practically uni-
form with quasi-discrete components in the frequency
range from 50 to 1000 Hz. 

However, even slight, for 1/8 of its length, release of
the tie from the contact with the ballast results in the
appearance of a spectral component with a frequency of
about 100 Hz and a power far exceeding all other com-
ponents. 

An increase in the length of undermining to 1/4 and
1/3 of the tie length makes this effect more pronounced
with the aforementioned spectral maximum being
shifted toward lower frequencies. 

It should be noted that, by simply listening to the
strokes on ties, it is possible to detect the change in
sound when there is a hollow under a tie. The change
consists in the appearance of a specific “hollow” sound
and may be explained by the presence of intense com-
ponents in the low-frequency part of the spectrum. 

The calculations by equation (1) confirm that the
frequency of about 100 Hz is the fundamental fre-
quency of vibration of a tie considered as a beam
hinged at two points. As is shown in [5], when such a

w
π2

l
2

----- EJ
m
------ 

 
1/2

,=
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beam lies on an elastic base, its fundamental frequency
is determined by the formula 

(2)

where K0 is the stiffness coefficient of the base and
other parameters are the same as in relation (1). 

w
π4

EJ

l
4

------------ K0+ 
  1

m
----

1/2

,=

1

2

A
B

1.00.5

(a)

f, kHz

Sxx

(b)

(c)

(d)

(e)

1.0

1.0

1.0

1.0

1.0

Fig. 1. Representation of a railroad tie fastened to the rail
track and lying on the ballast as (1) an elastic beam hinged
at the points A and B and (2) lying on an elastic base. 

Fig. 2. Power spectra of the railroad tie vibrations for vari-
ous areas of contact with the ballast. 
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As is seen from (2), the reduction in K0 (in our case,
it corresponds to the increase in the area of undermin-
ing under a tie) must lead to a decrease in the funda-
mental frequency, which was observed in the experi-
ment. If we perform the integration of the power spec-
tra presented in Fig. 2 over some frequency band ∆ f,
the resulting quantity may be interpreted as the energy
of the tie vibration in this frequency band. 

Figure 3 shows the change in the energy of the tie
vibration at a frequency of 100 Hz in a 40-Hz frequency
band as a function of the degree of its release from the
contact with the ballast. The dashed line shows the
averaged energy of vibration for ties being in tight con-
tact with the ballast for the same frequency range. It is
seen from the figure that the ratio of energies changes

30

1/8

w, dB

1/4 1/3

20

10

K0

Fig. 3. Dependence of the energy of the fundamental mode
of tie vibrations on the quantity K characterizing the loss of
contact between tie and the ballast. 
from .12 dB, which corresponds to the case of the loss
of contact with the ballast within 1/8 of the tie length,
to .25 dB for the loss of contact within 1/4 of the tie
length. 

Thus, the performed experimental study shows that,
when a tie is in tight contact with the ballast, the funda-
mental frequency of its vibration, which is about 100 Hz,
is damped by the ballast and practically not excited by
impact. The loss of contact with the ballast results in
the appearance of the fundamental frequency in the
spectrum of the tie vibrations. This effect can be used
as the basis for estimating the quality of the contact
between the ties and the ballast in railroad tracks. 
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Abstract—The radiation of a piston in a rectangular waveguide whose wall is a baffle for the piston is con-
sidered. Simple asymptotic formulas for the real and imaginary parts of the piston radiation impedance are
derived. © 2000 MAIK “Nauka/Interperiodica”.
Efficiency of a radiator is usually characterized by
its radiation impedance [1, 2]. It depends not only on
the radiator design, but also on the medium in which it
operates. The impedance of a particular radiator oper-
ating in a free medium is significantly different from
that in a waveguide [3]. In a waveguide, the radiator
impedance increases without limit when the sound fre-
quency approaches one of the waveguide critical fre-
quencies. In order to calculate the impedance of a radi-
ator in a waveguide, it is necessary to solve a complex
diffraction problem of finding the field at the surface of
this radiator [4–6]. At present, the radiation impedance
is calculated only for the simplest radiators—a piston
in a rectangular waveguide [7] and a ring transducer in
a circular waveguide [8]. The exact formulas obtained
contain infinite sums and take into account the contri-
bution of all normal waveguide modes. For practical
purposes, simple asymptotic formulas that allow one to
approximately estimate the impedance of the radiator
are necessary. Below, we derive such asymptotic for-
mulas for the real and imaginary parts of the radiation
impedance for a piston in a rectangular waveguide.

Consider a rectangular waveguide with perfectly
rigid walls. Choose a Cartesian coordinate system such
that two waveguide walls are coincident with the coor-
dinate planes y = 0 and z = 0. Denote the side lengths of
the waveguide cross-section by Hy and Hz. The lower
wall (z = 0) contains a rectangular opening (|x | < L, 0 <
y < Hy), into which a piston with an area S0 = 2LHy is
inserted without a clearance. The piston oscillates har-
monically with a velocity uexp(– iωt). It is necessary to
find the radiation impedance of this piston.

Denote the sound pressure in the waveguide by p.
Using the standard Fourier method [4], one can obtain
the following integral representation for p:

p x z,( ) iωρu
π
---=

× ξL( ) k2 ξ2– H z–( )[ ]cossin

ξ k2 ξ2– k2 ξ2– H[ ]sin
----------------------------------------------------------------------- iξx( )exp ξ ,d

∞–

∞

∫
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where H = Hz, k = ω/c, and ρ and c are the density of
the medium filling the waveguide and the sound veloc-
ity in it, respectively; the exp(–iωt) time dependence is
omitted. Using the residue theory, we obtain the expres-
sions

(1)

where

The sound field acts upon the piston with the force

(2)

The ratio of this force to the piston velocity is referred
to as the radiation impedance Z. By virtue of formulas
(1) and (2), we obtain the following expression:

p x z,( ) 2ωρu
ξnL( )sin

θnξn
2H

---------------------
n 0=

∞

∑=

× iξn x( ) ζnz( ), x L,≥cosexp

p x z,( ) iωρu
k H z–( )[ ]cos

k kH( )sin
---------------------------------- 2

iξnL( )exp

θnξn
2H

-------------------------
n 0=

∞

∑–




=

--× ξnx( ) ζnz( )coscos




, x L,≤

ζn nπ H⁄ , ξn k2 ζn
2– ,= =

θ0 2, θn 1 at n 0.≠= =

F p x 0,( ) xd y.d

S0

∫∫=

Z F u⁄ iρcS0 kH( ) -cot




= =

+
2k

θnξn
2H

---------------
ξnL( )sin

ξnL( )
--------------------- iξnL( )exp

n 0=

∞

∑




.
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The real and imaginary parts of the radiation imped-
ance are as follows:

(3)

where κn = iξn = , S0 = 2LHy and S = HyHz are
the areas of the piston and waveguide cross-sections,
respectively; and N is the number of homogeneous
modes in a two-dimensional waveguide (layer) of
width H.

The quantity R is called the radiation resistance; the
piston radiation power averaged over a period is equal to
1/2Ru2. In a single-mode waveguide (kH < π), the radia-

tion resistance is equal to ρc /(2S)sin2(kL)/(kL)2. The
radiation resistance of a narrow piston (2kL ! 1) at any
kH can be calculated from the formula

(4)

Assume that the following conditions are valid: 2kL !
1 and kH @ π (a narrow piston in a multimode
waveguide). Then a simple asymptotic formula for R
can be obtained. With this aim, we separate the reso-
nance term with the index N – 1 and replace the sum
from n = 0 to n = N – 2 by an integral

where αn = nπ/(kH). Calculating the integral, we obtain

(5)

As kH  ∞, the relationship αN – 2 ≈ 1 becomes valid,
and formula (5) takes the form

When the frequency ω is well away from all waveguide
critical frequencies, the radiation resistance of a narrow
piston in a wide waveguide coincides with the radiation

R Re z ρcS0
2 S⁄ k

θnξn

----------
ξnL( )sin

2

ξnL( )2
-----------------------,

n 0=

N 1–

∑= =

X Im z ρcS0 kH( ) ---cot




= =

–
2k

θnξn
2H

---------------
ξnL( )sin

ξnL( )
--------------------- ξnL( )cos

n 0=

N 1–

∑

+
2k

θnκn
2H
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κnL( )sinh
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------------------------- κnL–( )exp

n N=

∞

∑

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ζn
2 k2–

S0
2

R ρcS0
2 S⁄ k θnξn( ).⁄
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N 1–

∑=

R ρcS0
2 S⁄ k ξN 1–⁄ kH π⁄ π kH⁄

θn 1 αn
2–

------------------------
n 0=

N 2–

∑+
 
 
 

=

≈ ρcS0
2 S⁄ k ξN 1–⁄ kH π αd

1 α2–
-------------------

0

α N 2–

∫⁄+
 
 
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,

R ρcS0
2 S⁄ k ξN 1–⁄ kH π⁄ α N 2–arcsin+{ } .≈

R ρc 2L( )2kHy 2⁄ 1 2 ξN 1– H( )⁄+{ } .≈
resistance of the corresponding region of an infinite
strip in the free halfspace.

Let us study the behavior of the reactive component
of the radiation impedance. In the general case, X can
be positive (an elastic-type load) or negative (a mass-
type load). For kL @ 1, formula (3) yields

and iX coincides with the impedance of a section of a
pipe of the length H and cross-section S0 closed by a
rigid cap at the end.

Now, we calculate X for a narrow piston (2kL ! 1,
2L/H ! 1). For this purpose, we expand the standing
wave field formed in the layer into the Fourier cosine
series

which, at z = 0, yields

By virtue of this relationship, formula (3) for the nar-
row piston can be reduced to the form

(6)

Separate the resonance term with the index N in for-
mula (6) and replace the sum taken from n = N + 1 to
n = ∞ by an integral:

where 

Divide the integration interval into the subintervals
βN + 1 < β < β2N and β2N < β < ∞. In the first subinterval,
the inequality γ ! 1 is valid, and the integrand is
approximately equal to 1/γ. In the second subinterval,
one can assume γ ≈ β. As result of these simplifying
transformations, we obtain standard integrals [9],
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k H z–( )[ ]cos 2k kH( )
ζnz( )cos

θnξnH
---------------------,

n 0=
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which can be calculated to obtain the approximate for-
mula

(7)

The reactive component of the radiation impedance of
a narrow piston in a waveguide always exhibits mass-
type behavior; the added mass of this piston is equal to
– X/ω. When kH  ∞, the relationships

are valid, and formula (7) takes the form

(8)

When the operating frequency is well away from the
waveguide critical frequencies, formula (8) coincides
with the expression for the reactive impedance of the
corresponding section of an infinite strip in the free
halfspace.

X 2LS0ρck π⁄–≈
× π κ N H( ) 1.6 2L ζ N 1+ κ N 1++( )[ ]ln–+⁄{ } .

κ N 1+  ! ζ N 1+ k≈

X 2LS0ρck π⁄ π κ N H( ) 1.6 2kL( )ln–+⁄{ } .–≈

9

6

3

0 1 2 3 4 5 6

–X '

kH/π

9

6

3

0

R'

Real and imaginary parts of the normalized piston radiation
impedance as functions of kH/π.
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Compare the results given by the exact and asymp-
totic formulas. The figure presents the real and imagi-
nary parts of the normalized radiation impedance R' =

R[S/(ρc )] and X' = X[S/(ρc )] as functions of kH/π
at 2L/H = 0.05. The solid lines are calculated from
exact formulas (4) and (6); the points represent the
results calculated from asymptotic formulas (5) and
(7). The results for X' agree for all kH/π, the results for
R' converge as kH/π increases (note that asymptotic for-
mula (5) is derived under the condition kH/π @ 1). For
the sake of comparison, the dashed lines show R' and X'
for a strip in free space.

Thus, asymptotic formulas (5) and (7) provide a
good description of the real and imaginary parts of the
radiation impedance, and they can be used in practice
to estimate the efficiency of a piston radiator.
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Methods of sound focusing intended for medical
applications have considerably advanced during the
last decade [1–5].

As applied to extracorporeal lithotripsy, it is impor-
tant to reduce the size of the focal spot of focused sound
in order to diminish the risk of damage for the tissues
surrounding the stone to be disintegrated by intense
sound. However, the size of this spot along the axis of
the focusing system is much greater than its transverse
size. This is caused by the fact that the misphasing of
sound waves propagating at small angles to the system
axis, i.e., waves corresponding to paraxial sound rays,
occurs at relatively large distances. The elimination of
paraxial sound rays from the process of formation of
the focal spot leads to a reduction of its size and an
increase in the sound pressure gradient along the sys-
tem axis. If the size of the focal spot decreases, the non-
linear distortions of the sound field also decrease.
Northeved and Toftkjaer [3] achieved such an elimina-
tion by deflecting the paraxial sound rays by a special
plate positioned in their path. A focusing system in
which paraxial sound rays are totally absent in the
vicinity of the focus was described by Reichenberger
[5]. In this system, because of a special design, an aux-
iliary mirror (a cone) deflects the primary beam
through an angle of 90°, thus distributing the rays over
all directions perpendicular to its axis and directing
them at a focusing coaxial parabolic mirror.

Since the effect of the elimination of paraxial rays
upon the size of the focal spot has not been studied the-
oretically until the present time, let us consider this
effect by using as an example a linear problem of the
field generated at the symmetry axis of a focusing mir-
ror, which has the form of a part of an ellipsoid of rev-
olution, by a harmonic point source of unit volume
velocity placed at one of the focuses of this ellipsoid.
The mirror is the part of an ellipsoid confined between
the planes x = x– and x = x+, where x is the coordinate
along the ellipsoid axis. The axial section of the mirror
is shown in Fig. 1. The source of sound is positioned at

the focal point x = εa, where ε =  is the
eccentricity; a and b are the large and small semiaxes of
the ellipsoid, respectively; and y is the distance from the
axis. The distance from the source to the variable point

1 b/a( )2
–

1063-7710/00/4603- $20.00 © 20370
r'(x', y') at the mirror surface is equal to r1 = a – εx'.
The second focus is at the point x = –εa. We assume
that –εa < x– < x+. Since the rays reflected from the mir-
ror and transmitted through the second focus do not get
back to the mirror, and the radii of the mirror curvature
are large compared to the wavelengths of interest, we
may assume (ignoring the contribution of the edge
modes originating from the mirror edge to the field at
the mirror) that the sound pressure at an acoustically
rigid mirror is equal to twice the sound pressure in the
incident field 2pi(r'), where pi(r') = –iρωexp(ikr1)/(4πr1),
ρ is the medium density, ω is the cyclic frequency, and
k is the wave number. At a rigid mirror, the normal
derivative of sound pressure vanishes. Then, in the
approximation at hand, according to the Green formula,
the sound pressure p(x) at the mirror axis is reduced to
the form

(1)

where

R = , ∂/∂n means differentiation with
respect to the inner normal to the mirror, dS' =

2πy'  is the element of the area of the

p x( ) 2 pi r'( ) ∂
∂n
------G x r',( ) S',d

S
∫=

G x r',( ) ikR( )/ 4πR( ),exp=

x x'–( )2 y'2+

1 dy'/dx( )2+

1

y

x
2 3

4

1

5

Fig. 1. (1) Axial section of a mirror shaped as a part of an
ellipsoid. A sound source is positioned at (3) its right-hand
focus, and sound is focused at (2) the left-hand focus. (4, 5)
Cones, forming the walls of a horn directing the radiation
only at the mirror.
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mirror surface, and the integration is performed over
the mirror surface from x– to x+ . From the equation for
the ellipsoid

,

by differentiation we obtain: dy'/dx = x'b2/(y'a2). In this
case, we have

Substituting the determined factors into the integrand
in formula (1), we obtain an expression for the field at
the mirror axis

where

Removal of a part of the mirror does not necessarily
mean the loss of a corresponding part of the energy of
focused sound. If we place a plane rigid wall of large
wave dimensions (the dimensions may be small in
comparison with the distance from the source to the
mirror) next to the source (on the side of the ellipsoid
vertex closest to it) and perpendicularly to the mirror
axis, we obtain a doubling of the focused field. We
obtain an even greater increase in this field if we
replace the plane wall by a rigid cone with the vertex at
the point of the source and the generating lines passing
through the mirror edge closest to the cone vertex, i.e.
to the source. And, finally, the maximum increase in the
field can be obtained by installing one more rigid conic
screen with the vertex at the point of the source and
with the generating lines passing through the far edge
of the mirror (see Fig. 1). The dimensions of the conic
screens must be large in comparison with the wave-
lengths of the operating range, but, preferably, small in
comparison with the distance from the source to the
mirror. In these conditions, almost all radiation is
directed at the mirror, the emitted sound propagates
within a kind of horn formed by the outer and inner coax-
ial cones, and the inner cone does not shade the mirror.
In this case, the sound field increases by a factor of

, (2)

x'/a( )2
y'/b( )2

+ 1=

∂R
∂n
------dS '

2π
R

------b
2

1 xx'

a
2

-------– 
  x'.d–=

p x( ) i
4π
------ b

a
--- 

 
2

ρck F x x',( ) ika
a
R
---– 

  a xζ–( ) ζ ,d

ζ–

ζ+

∫=

F x x',( ) ika 1 εζ– R
a
---+ 

  1

1 εζ–( )R
2

--------------------------,exp=

∂p x( )
∂x

--------------
i

4π
------ b

a
--- 

 
2

ρck F x x',( ) ika
a
R
---– 

  ζ




ζ–

ζ+

∫=

+
x aζ–

R
--------------- 1 ζ x

a
---– 

  ka( )2
i3ka

a
R
--- 3

a
R
--- 
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2

–+ ζ .d

4π
Ω
------ 2
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----------------------------------

2 a εx––( ) a εx+–( )

aL 1 ε2
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-----------------------------------------------= =
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where Ω is the spatial angle at which one can see the
mirror from the observation point; θ– and θ+ are the
angles between the x axis and the directions from the
source to the corresponding edge; and L = x– – x+ is
the distance between the mirror focuses. For the mir-

ror configuration shown in Fig. 1 (a/b = 2, ε = ,
ζ– /a = –ε, and ζ+/a = ε), the right-hand member of for-
mula (2) is equal to 5.8. Curve 1 in Fig. 2 shows the rel-
ative absolute values of sound pressure at the mirror
axis in the vicinity of the focal point for the mirror
parameters specified above and for ka = 200. For com-
parison, curve 2 presents the corresponding values for
a mirror with the nontruncated part on the side of the
sound source. Figure 3 shows analogous curves for the
sound pressure gradient along the mirror axis. The
removal of the indicated right-hand part of the mirror
leads to a decrease in the dimension of the focal spot
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Fig. 2. Relative values of the sound pressure at the axis of
a mirror with a truncated (curve 1) and a nontruncated
(curve 2) part on the side of the source; ka = 200.

Fig. 3. Curves analogous to those in Fig. 2 for the sound
pressure gradient along the mirror axis; d and D are the
maximum values of the corresponding quantities.
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along the mirror axis at the level of half the field ampli-
tude by a factor of 1.58 for sound pressure and by a fac-
tor of 1.88 for its derivative along the mirror axis.
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