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To the Readers of Acoustical Physics
Dear readers,
This issue is devoted to the memory of the eminent

scientist and specialist in acoustics Leonid Mikhaœlo-
vich Lyamshev. His contribution to contemporary sci-
ence can hardly be overestimated. He is the author of
pioneering works that initiated several new fields of
research: fractal acoustics, radiation acoustics, acous-
tics of elastic shells, etc. Today, these fields of research
are rapidly progressing owing to the efforts of numer-
ous scientists and engineers all over the world, includ-
ing the former students of Professor Lyamshev.

The scientific and organizational activities of Lyam-
shev were varied: he headed a research department at
the Acoustics Institute, chaired the Scientific Council
on Acoustics of the Russian Academy of Sciences, and
took part in the work of the International Commission
on Acoustics and other international and Russian orga-
nizations. His work in Akusticheskiœ Zhurnal (Acousti-
cal Physics) was of special importance. Since 1963, he
was Deputy Editor-in-Chief and since 1987, Editor-in-
1063-7710/03/4901- $24.00 © 20001
Chief of this journal. Under Lyamshev’s supervision,
Akusticheskiœ Zhurnal (Acoustical Physics) has become
one of the leading journals on acoustics in the world-
wide scientific literature.

This issue of the journal contains the papers whose
authors, from both Russia and other countries, work on
the problems closely related to those investigated by
Lyamshev. Some of these papers were even written on
Lyamshev’s initiative. The number of scientists who
would like to present their papers—colleagues, succes-
sors, and students of Lyamshev—exceeds the limits of
one issue. Therefore, the publication of papers devoted
to the memory of Leonid Mikhaœlovich Lyamshev will
be continued in the second issue of Acoustical Physics
of this year and, possibly, in the following issues as
well.

F.V. Bunkin,

Deputy Editor-in-Chief
003 MAIK “Nauka/Interperiodica”
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Abstract—The reciprocity theorem in Lyamshev’s formulation is used to derive a general symmetry relation-
ship for the matrices of reflection coefficients in homogeneous media and one-dimensional waveguides. This
relationship is shown to be equivalent to the normalization of the amplitudes by the cross power flux of the for-
ward and backward waves. The relationship is valid for both propagating and evanescent waves, and all the
symmetry relationships known from the literature represent its particular cases. © 2003 MAIK “Nauka/Inter-
periodica”.
In acoustics, the classical reciprocity principle states
that the response remains unchanged when a point
source and a receiver exchange places, which is equiv-
alent to the symmetry of the Green’s function with
respect to the coordinates of the source and the obser-
vation point. Reciprocity is inherent in a wide class of
linear media and structures and is often used in solving
applied problems [1–3].

In this paper, we focus on the reciprocity in the prob-
lem of wave reflection and transmission (see also [4–7]).
In this problem, the source is a wave incident on an
obstacle and the response is represented by the reflected
and transmitted waves. Reciprocity means that the
reflection (transmission) coefficient remains unchanged
when the incident and reflected (transmitted) waves
exchange places. Mathematically, reciprocity is equiva-
lent to the symmetry of the matrix of reflection and trans-
mission coefficients about its principal diagonal.

It is known from the literature (see, e.g., [8]) that, in
the general case, the reflection and transmission coeffi-
cients do not exhibit reciprocity. However, if the wave
amplitudes are normalized by the time-averaged power
flux (such a normalization means that the wave ampli-
tude is considered as unity if the wave intensity normal
to the boundary is unity), the reflection (transmission)
becomes reciprocal [5, 8–12]. Unfortunately, this result
is valid only for homogeneous waves, which propagate
without attenuation. It is inapplicable to evanescent
waves, which decay exponentially with increasing dis-
tance, because their power flux is identically equal to
zero. Particular relationships between the symmetric
reflection and transmission coefficients were derived
for the evanescent waves in a few simple structures (a
rod or a plate) [7, 10, 11]. However, no general reci-
procity relationship was obtained.

This paper shows that, if a waveguide (a medium)
and an obstacle exhibit reciprocity in its classical sense,
1063-7710/03/4901- $24.00 © 20010
reciprocity also takes place in the wave reflection and
transmission problem. Below, we use the classical rec-
iprocity theorem to derive a new symmetry relationship
for the reflection coefficient, which generalizes all rela-
tionships known from the literature and is valid for both
propagating and evanescent waves. The most signifi-
cant result of this work is that this relationship is equiv-
alent to the amplitude normalization by the alternating
component of the cross power flux of the forward and
backward waves rather than by the direct component of
the power flux, as is common in the literature. In other
words, if all the waves taken into account in the prob-
lem are normalized by the alternating component of the
cross power flux, the complete matrix of reflection and
transmission coefficients becomes symmetric. This
alternating component is nonzero for waves of all types
and, for a propagating wave, is equal to the direct com-
ponent of its power flux.

Below, we derive and analyze the symmetry rela-
tionship for the wave reflection problem. We also estab-
lish a number of new properties of the wave matrices,
on which the theory is based. The general wave reflec-
tion and transmission problem will be considered later,
and general energy relationships for the waves (includ-
ing evanescent waves) that take part in the process will
be presented.

Consider the problem of wave reflection from an
obstacle in a homogeneous continuous structure in
which all the field quantities depend on one spatial
coordinate x. Assume that, at each frequency ω, the
structure can support 2n independent waves of the form

u(±kj)exp(±ikjx – iωt), (1)

where kj is, in general, the complex propagation con-
stant of the jth wave in the x direction;

u = [u1, u2, …, un]T (2)
003 MAIK “Nauka/Interperiodica”



        

RECIPROCITY IN THE WAVE REFLECTION AND TRANSMISSION PROBLEM. PART 1 11

                                                                                                                                                             
is the n-dimensional vector of the generalized displace-
ment in the cross section of the structure; j = 1, 2, …, n;
and the superscript “T” means transposition. Real prop-
agation constants correspond to the propagating waves
or waves homogeneous in x. The imaginary and com-
plex kj refer to the evanescent waves. Half of waves (1)
that have the plus sign before kj are the forward waves;
i.e., they propagate or decay in the positive x direction.
The remaining n waves (with the minus sign) are the
backward waves; i.e., they propagate or decay in the
negative x direction.

The term structure primarily refers in this paper to
one-dimensional solid and fluid waveguides, in
which, unlike two-dimensional and three-dimen-
sional waveguides, a finite number of modes can
exist. A typical example of such a waveguide is a thin
straight rod. It allows the propagation of n = 6 waves
of form (1): a longitudinal wave, a torsional wave,
and two flexural waves in each of the two orthogonal
planes [13], while the components of the vector u are
the displacements along the three orthogonal axes
and the rotation angles about them. In the general
case, the number of independent waves in a one-
dimensional waveguide is equal to the number of
degrees of freedom in its cross section [14].

The structures of interest also include uniform
three-dimensional media if the waves are plane and are
reflected from uniform planar boundaries. In this case,
the projection of all reflected waves on the boundary is
fixed, because it is dictated by the incident wave
(Snell’s law [8]) and the reflection problem is actually
one-dimensional: all the field quantities depend on only
the x coordinate, which is perpendicular to the bound-
ary. The number of waves (1) is limited and equal to the
number of different types of plane waves in this
medium. For instance, in a fluid or gaseous medium, it
is only the longitudinal wave (n = 1). In an elastic
medium, two wave types exist: the longitudinal wave
and the shear wave (n = 2). In porous media, composite
materials, and microstructured media, the number of
waves can be equal to three or more [15].

The theory reported below also covers homoge-
neous two-dimensional media in which waves with a
linear front are reflected from uniform linear obstacles.
In this case, the trace of the waves on the linear bound-
ary is also given, and the problem is one-dimensional
with the number n of waves (1) being equal to the num-
ber of plane waves in the medium. For example, in a
thin uniform plate, there are four waves: two flexural
waves (one propagating and one evanescent) and the
longitudinal and shear waves, which propagate across
the plate without attenuation [13].

Let one of the above structures occupy the negative
x region and its right boundary x = 0 be connected with
the obstacle z (Fig. 1). Assume that the interval [–l, 0]
of the structure, adjacent to the obstacle, is free from
the external action and n forward (incident on the obsta-
cle) waves (1) with the complex displacement ampli-
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
tudes a1, …, an and n backward (reflected from the
obstacle) waves (1) with the complex displacement
amplitudes b1, …, bn are excited in it. The amplitudes
of the reflected waves are uniquely determined by the
amplitudes of the incident waves and by the parameters
of the structure and obstacle. This relationship is com-
monly written in matrix form as

b = Ra, (3)

where a and b are the amplitudes of the incident and
reflected waves written as the n-dimensional vectors

a = [a1, …, an]T, b = [b1, …, bn]T, (4)

and R is the n × n matrix of reflection coefficients. An
element Rjm of this matrix is equal to the displacement
amplitude of the jth reflected wave when a unit-ampli-
tude mth wave is incident on the obstacle.

The problem is to calculate the matrix of reflection
coefficients and establish a symmetry relationship
between its symmetrically positioned elements Rjm and
Rmj or, what is the same, the relationship of matrix R to
its transposed matrix RT.

Following [13, 16], consider the wave matrices,
which describe the main characteristics of the medium
that are necessary for solving the reflection problem.
Since the cross section of the structure that supports n
types of waves has n degrees of freedom [14], its vibra-
tions are characterized not only by n generalized dis-
placements (2), but also by n generalized forces f = [ f1,
f2, …, fn]T associated with them. Each of the n forward
(incident) waves, say, the one with the number m, has
its individual cross-sectional mode of vibration charac-

Z

a

b

Ψ(x)

Z

a

b

f(–l)

–l 0 x

(a)

(b)

Fig. 1. Homogeneous structure (waveguide) with the obsta-
cle Z at its end x = 0: (a) incident waves with the amplitudes
a excited by the external load Ψ(x) are reflected from the
obstacle with the amplitudes b; (b) the same incident and
reflected waves excited by the force f(–l) applied at the
cross section x = –l.
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terized by n-dimensional generalized displacement and
force vectors

u(m) = [ , …, ]T, f (m) = [ , …, ]T, (5)

this mode of vibration being independent of the longi-
tudinal coordinate x; m = 1, …, n. Let us use column
vectors (5) to construct two n × n matrices: the displace-
ment matrix Di and the force matrix Fi ,

Di = [u(1), …, u(n)], Fi = [f (1), …, f (n)]. (6)

Let us also construct two similar matrices Dr and Fr of
vectors (5) that refer to the backward (reflected) waves.
Clearly, matrices Dr and Fr can be obtained from matri-
ces Di and Fi by changing the sign of all propagation
constants.

The x dependence of the displacement and force in
the normal wave is determined by its amplitude, which
is an exponential function of x according to Eq. (1). If
the amplitudes of the incident and reflected waves in
Eqs. (4) refer to the cross section x = 0, then, in an
arbitrary cross section x, they can be written in matrix
form as

a(x) = Φi(x)a, b(x) = Φr(x)b, (7)

where the amplitude matrices

(8)

determine the phase advance and the amplitude decay
within the interval [0, x].

Using matrices (6) and (8) and amplitudes (7), in the
most general case when all incident and reflected waves
are present, the displacement and stress (force) in any
cross section of the structure can be written in the fol-
lowing compact form:

(9)

These relationships completely describe an arbitrary
harmonic motion of the structure and are the starting
point for the further analysis. They contain six n × n
matrices, which we will refer to as the wave matrices.
The latter completely characterize the structure as a
carrier of the wave field. The elements of the wave
matrices are complex-valued and depend on the fre-
quency and the parameters of the structure, in particu-
lar, on the propagation constants kj.

As an example, let us calculate the wave matrices
for a thin homogeneous beam that experiences flexural
vibrations. The general solution to the Bernoulli–Euler
equation [13] Bd4w(x)/dx4 – ρω2Aw(x) = 0 for the trans-
verse displacement w can be written as

w(x) = a1eikx + a2e–kx + b1e–ikx + b2ekx, (10)

where the propagation constants of the two normal
waves are k1 = k and k2 = ik; k4 = ρω2A/B, ρ is the den-

u1
m( )

un
m( )

f 1
m( )

f n
m( )

Φi x( ) diag ik1x( )exp … iknx( )exp, ,[ ] ,=

Φr x( ) diag ik1x–( )exp … iknx–( )exp, ,[ ]=

u x( ) = Dia x( ) Drb x( )+  = DiΦi x( )a DrΦr x( )b,+

f x( ) = Fia x( ) Frb x( )+  = FiΦi x( )a FrΦr x( )b.+
sity of the material, A is the cross section area, and B is
the flexural stiffness of the beam. We calculate the gen-
eralized displacements u1(x) = w(x) and u2(x) = –w '(x)
and the generalized forces associated with them, the
shear force f1(x) = Bw '''(x) and bending moment f2(x) =
Bw ''(x), from Eq. (10). Then, after reducing the results
to the form of Eqs. (9), it can easily be shown that the
wave matrices for the forward waves are

(11)

while, for the backward waves, they can be obtained by
replacing k with –k; a = [a1, a2]T and b = [b1, b2]T.

Now, we present some general properties of the
wave matrices, which will be necessary below. These
properties were never considered in the literature. First
of all, note that the wave matrices are nonsingular. For
diagonal amplitude matrices (8), this property is evi-
dent. For the displacement matrices Di and Dr and the
force matrices Fi  and Fr , this property is a consequence
of the fact that their columns, which are the eigenvec-
tors of a certain normal matrix [14], are linearly inde-
pendent [see Eqs. (5) and (6)]. The nonsingularity
means, in particular, that all the wave matrices have
inverse ones. The following evident equalities are also
valid for amplitude matrices (8):

Φr(x) = (x), Φi(0) = Φr(0) = I, (12)

where I is an n × n identity matrix.
In deriving the symmetry relationships, the follow-

ing power matrices, which determine various power
characteristics of the wave field in the structure, are of
importance:

Pi = Fi , Pr = Fr , (13)

Si = Fi , Sr = Fr , (14)

S = ( Fr – Dr), Q = Fr , (15)

where the asterisk symbol means Hermitian conjuga-
tion. Matrices (13) represent the time-average power
fluxes of the forward and backward waves. For
instance,

 = a*Pia

is the time-independent complex-valued power flux of
the incident waves. Matrices (14) represent the alternat-
ing component of the instantaneous power flux (see
Appendix 1 for details). Matrices (15) are closely con-

Di
1 1

ik– k
, Fi Bk

2 ik k

1 1–
,–= =

Φi x( ) e
ikx

0

0 e
kx–

,=

Φi
1–

Di* Dr*

Di
T

Dr
T

1
2
--- Di

T
Fi

T
Di

T

W i
= iω

2
------
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003



RECIPROCITY IN THE WAVE REFLECTION AND TRANSMISSION PROBLEM. PART 1 13
nected with the alternating component of the cross
power flux.

Matrices (13)–(15) satisfy the following relation-
ships:

Pi + Pr = 0, Si + Sr = 0, (16)

 = Si ,  = Sr , (17)

S = (Q + QT) = diag[Q11, Q22, …, Qnn]. (18)

Relationships (16) mean that, for the direct, as well as
for the alternating component, the power fluxes of the
forward and backward waves have equal magnitudes
and opposite signs. Relationships (17) express the sym-
metry property of the power matrices. Relationship (18)
means that the matrix S of Eqs. (15) is diagonal. A rig-
orous proof of relationships (16)–(18) is given in
Appendix 2, where properties (17) and (18) are also
shown to follow from the classical reciprocity theorem.

To obtain a general solution to the wave reflection
problem, the obstacle and the waveguide must be
described in the same terms. Since the obstacle is acted
upon by n generalized forces g = [g1, …, gn]T from the
side of the waveguide and the response is represented
by n generalized displacements (2), it is most natural to
characterize the motion of the obstacle by its n × n
matrix Z of input impedances with respect to the inter-
action forces or by its n × n input admittance matrix Y,
which are defined as

g = Zu, u = Yg. (19)

Matrices Z and Y are complex valued and symmetric.
Their symmetry is a consequence of the reciprocity the-
orem, which is assumed to be also valid for the obsta-
cle. (Strictly speaking, equalities (19) define the
dynamic stiffness and compliance matrices, which dif-
fer from the impedance and admittance matrices in the
factor –iω. In the framework of this paper, this differ-
ence is of no importance.)

Consider now a structure with an obstacle at its end
x = 0 (Fig. 1). Let g and f(–0) be the generalized force
vectors that act upon the obstacle and structure, respec-
tively, and u and u(0) be the corresponding generalized
displacements at x = 0. Then, we use the condition of
rigid connection between the obstacle and the structure

g + f(–0) = 0, u = u(0) (20)

and substitute relationships (9) and (19) into them.
After some algebra, we obtain the following expression
for the n × n reflection coefficient matrix (3):

R = –(Fr – ZDr)–1(Fi – ZDi). (21)

If, instead of the impedance matrix Z, we use the admit-
tance matrix Y, then, instead of Eq. (21), we obtain the
formula

R = –(YFr – Dr)–1(YFi – Di). (22)

Si
T

Sr
T

1
2
---
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The matrix R relates the amplitudes a of the incident
waves to the amplitudes b of the reflected waves in the
cross section x = 0. It depends on the physical and geo-
metrical parameters of the structure (to be more precise,
on its wave matrices) and on the input impedance
matrix Z or input admittance matrix Y of the obstacle.

Consider several particular cases of formulas (21)
and (22).

Free end. The reflection coefficient matrix for the
free end of the structure is obtained from Eq. (21) with
the impedance matrix of the obstacle being set equal to
the zero matrix:

R0 = – Fi . (23)

Fixed end. The reflection coefficient matrix for the
fixed end of the structure is

R∞ = – Di . (24)

It can be obtained from Eq. (22) by setting the admit-
tance matrix Y equal to the zero matrix.

Transparent obstacle. All the reflection coefficients
are zero (R is the zero matrix) if the obstacle’s imped-
ance matrix is

Z = Zi = Fi . (25)

Matrix Zi is the matrix of characteristic impedances of
the structure. It is equal to the matrix of input imped-
ances in the cross section x = 0 of the semi-infinite
structure that occupies the region x ≥ 0. [Indeed, in this
case, we have f(0) = Fia and u(0) = Dia. Eliminating a

from these expressions yields f(0) = Fi u(0).] Note
that the input impedance matrix for a semi-infinite

structure that occupies the region 0 ≥ x is Zr = –Fr .
It differs from Zi in the sign of some off-diagonal ele-
ments. In terms of the characteristic impedance matri-
ces Zi and Zr , formula (21) can be written as

R = (Zr + Z)–1(Zi – Z)Di . (26)

Similarly, if admittances are used instead of imped-
ances, we have

R = (Yr + Y)–1(Yi – Y)Fi , (27)

where Yi =  and Yr = . Matrix expressions (21),
(22), (26), and (27) for the reflection coefficients extend
the familiar Fresnel formulas [8] to waveguides and
media with several normal modes. Some of these for-
mulas can be found in the literature, e.g., in [13].

To derive the symmetry relationship for the reflec-
tion coefficient matrix R, we use the classical reciproc-
ity theory [2]. To this end, consider the region [–l, 0] of
the waveguide, which is free from external actions, and
replace the action of the region x < –l with the general-
ized reaction force f(–l), which is applied to the cross
section x = –l as shown in Fig. 1b. This force creates the

Fr
1–

Dr
1–

Di
1–

Di
1–

Dr
1–

Dr
1–

Fr
1–

Z i
1–

Zr
1–
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same set of forward and backward waves in the region
under consideration as that created by the external
action Ψ(x) in the original structure (Fig. 1a). With
Eqs. (3) and (9), the forces and displacements in the
x = –l cross section can be written as

(28)

Let there be two different sets of incident wave
amplitudes a(1) and a(2) and the corresponding force and
displacement vectors (28): f (1)(–l), u(1)(–l) and f (2)(–l),
and u(2)(–l). Then, according to the classical reciprocity
theorem, the following equality is valid:

[ f (1)(–l)]Tu(2)(–l) – [u(1)(–l)]Tf (2)(–l) = 0. (29)

Substitution of Eqs. (28) into Eq. (29) after some alge-
bra yields

[a(1)]T[Φi(–l)(Si – )Φi(–l)

+ RTΦr(–l)(Sr – )Φr(–l)R + 2Φi(–l)SΦr(–l)R

– 2RTΦr(–l)STΦi(–l)]a(2) = 0, 

where the power matrices Si, Sr, and S are defined by
formulas (13)–(15). Using the fact that the matrices Si
and Sr are symmetric and that the matrix S is diagonal
[see Eqs. (17) and (18)], as well as the relationship
Φi(−l)SΦr(–l) = S, which can easily be proved, the
above equality can be reduced to

[a(1)]T(SR – RTST)a(2) = 0. 

Since the amplitudes of the incident waves are arbi-
trary, this relationship means that the SR matrix is sym-
metric:

SR = (SR)T. (30)

This is the desired symmetry relationship: the reflection
coefficient matrix R defined in terms of the displace-
ment amplitudes, being originally nonsymmetric (RT ≠
R), becomes symmetric after being premultiplied by the

matrix S = ( Fr – Dr)/2. The matrix S depends
only on the waveguide (medium) parameters, and it is
nonsingular |S | ≠ 0 and diagonal.

Property (30) can be written as a relationship
between the symmetric elements of the matrix R:

Sjj Rjm = SmmRmj , (31)

where Sjj and Smm are the jth and mth diagonal elements
of the matrix S, j ≠ m.

We can also show that symmetry property (30), (31)
is equivalent to a certain normalization of the normal
wave amplitudes. Indeed, if, instead of the displace-
ment amplitudes a and b, we use the amplitudes α and
β defined as

a = S–1/2α, b = S–1/2β, (32)

u l–( ) DiΦi l–( ) DrΦr l–( )R+[ ] a,=

f l–( ) FiΦi l–( ) FrΦr l–( )R+[ ] a.=

Si
T

Sr
T

Di
T

Fi
T

the reflection coefficient matrix R1 that relates the new
amplitudes is symmetric. By substituting Eqs. (32) into
Eq. (3), we obtain

β = R1α, R1 = S1/2RS–1/2. (33)

The matrix R1 can be represented as

R1 = S1/2RS–1/2 = S–1/2(SR)S–1/2.

Since the normalization matrix S1/2 is a diagonal matrix
and, therefore, symmetric, the symmetry of the new

reflection coefficient matrix becomes evident,  = R1.
Thus, if the displacement amplitudes of the normal
waves are normalized by the elements of the diagonal
matrix S1/2, the reflection becomes reciprocal (symmet-
ric): the amplitude βm of the mth reflected wave pro-
duced by the jth unit wave (αj = 1) incident on an obsta-
cle is equal to the amplitude βj of the jth reflected wave
produced by the mth unit wave (αm = 1) incident on the
obstacle. Note that this property is valid for all types of
waves, both propagating and evanescent.

Consider the physical meaning of this symmetry
relationship. As can be seen from Eq. (18), the matrix S
is composed of diagonal elements of the matrix Q =

Fr . According to formula (A5) of Appendix 1, its
mth element Smm = Qmm gives the alternating component
of the cross power flux of the mth forward and back-
ward normal waves: if am and bm are the displacement
amplitudes of these waves, the quantity

– Smmambm = – (ui)m( fr)m (34)

is the complex amplitude of the alternating component
of the work done by the generalized force ( fr)m of the
mth backward wave over the displacement (ui)m of the

mth forward wave per unit time. Let  be the quan-
tity given by Eq. (34) and calculated for the forward

normal wave at bm = am, and  be the quantity of
Eq. (34) calculated for the backward wave at am = bm.
Then, if, instead of the displacement amplitudes am and
bm, we use the power amplitudes

(35)

which differ from those of Eqs. (32) in the constant fac-
tor (–iω/2)1/2, the physical meaning of symmetry rela-
tionships (30)–(33) becomes quite clear: for the reflec-
tion coefficient matrix to be symmetric, the amplitudes
of the normal waves must be defined as square roots of
the alternating components of the cross power fluxes.

Let us show that, for a homogeneous wave with a
real propagation constant km, alternating component
(34) of the cross power flux is equal to the direct com-
ponent of the power flux of the mth wave. Indeed,

R1
T

Di
T

iω
2

------ iω
2

------

W im
~

W rm
~

αm W im
~( )

1/2
iωSmm/2–( )1/2

am,= =

βm W rm
~( )

1/2
iωSmm/2–( )1/2

bm,= =
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according to property (A6) of the force matrix Fr (see
Appendix 2), the force ( fr)m in the mth backward wave
with a real amplitude is equal to the complex conjugate
of the force ( fi)m) in the mth forward wave, which
shows that the quantity of Eq. (34) is equal to the time-
average complex power flux of the mth forward wave.
For the propagating waves, the normalization defined
by formulas (32) and (35) is thus equivalent to the
power normalization known from the literature.

The power flux of an evanescent wave is zero. How-
ever, the cross power fluxes of the forward and back-
ward waves are nonzero [17]. Therefore, normalization
of Eqs. (32), (35) by the cross fluxes is presumably the
only normalization leading to symmetric reflection
coefficient matrices that exhibit reciprocity for
waveguides and media with normal waves of any type.
Also note that the relationships between symmetric
reflection coefficients for evanescent waves in some
particular waveguides and media described in the liter-
ature [7–12] follow from the normalization to the cross
power flux as particular cases.

Consider two simple examples that illustrate the
symmetry relationship obtained above. Let us begin
with the Bernoulli–Euler beam, which supports two
normal waves: one propagating wave and one evanes-
cent wave. The wave matrices for this waveguide are
given by formulas (11). They can be used to calculate
the power matrices, the characteristic impedance matri-
ces, and the reflection coefficient matrices. In particu-
lar, the diagonal matrix of Eqs. (15) has the following
nonzero elements:

S11 = 2iBk3, S22 = 2Bk3. (36)

Symmetry relationship (31) for the reflection coeffi-
cient matrix takes the form

R21 = R12(S11/S22) = iR12, (37)

which coincides with the result reported in [7]. For
example, for the free and fixed ends, the reflection coef-
ficient matrices calculated from Eqs. (23) and (24) are

It can easily be shown that these matrices satisfy rela-
tionship (37). The validity of the latter was directly
(analytically) verified by the author of this paper for the
case of reflection from an obstacle with an arbitrary
symmetric impedance matrix Z. The complex ampli-
tudes of the alternating component of the cross power
flux of Eq. (34) are in this case equal to (they differ
from Eq. (36) in the factor –iω/2)

 = Bk3ω ,  = –iBk3ω . (38)

For the propagating wave, W~ is real (if a1 is real) and
is equal to the time-average power flux of this wave. For
the evanescent wave, its own power flux is identically

R0
i 1 i–

1 i+ i–
, R∞

i –1 i+

–1 i– i–
.= =

W1
~

a1
2

W2
~

a2
2
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zero. The cross flux is however a nonzero, purely imag-
inary quantity, as can be seen from Eqs. (38).

Consider now an example of the wave reflection in
a two-dimensional structure, namely, in a semi-infinite
(x < 0) uniform plate with a linear boundary x = 0.
Assume that the plate has a small wave thickness h, so
that its flexural vibrations comply with the classical Ger-

min–Lagrange equation [13]; ∆2w(x, y) – w(x, y) = 0,
where k0 = (ρω2/D)1/4 is the wavelength, D is the flex-
ural stiffness, ρ is the density, and ∆ is the two-dimen-
sional Laplacian operator. Let two incident flexural
waves with the amplitudes a1 and a2 be excited (for
example, by external forces applied at a certain distance
from the boundary x = 0) in the plate, whose trace on
the boundary x = 0 is an exponential function exp(iky)
with a given y component k of the wave vector. Two
flexural waves with the amplitudes b1 and b2 are
reflected from the boundary, and these waves have the
same trace on the boundary due to Snell’s law. The total
transverse displacement field of the plate can be repre-
sented as the superposition of displacements of all these
waves:

(39)

where the complex-valued x components of the propa-
gation constants

 =  – k2,  = –  – k2 (40)

are obtained after substituting Eq. (39) into the Ger-
min–Lagrange equation. Choosing the coordinates of
the vector u as the displacement u1 = w and the rotation
angle u2 = –∂w/∂x and taking the coordinates of the
vector f as the shear force f1 = D[∂3w/∂x3 + (2 –
ν)∂3w/∂x∂y2] and bending moment f2 = D(∂2w/∂x2 +
ν∂2w/∂y2), where ν is Poisson’s ratio, we represent
these vectors in the form of Eq. (9) to obtain the follow-
ing expressions for the wave matrices:

(41)

Here, p1 =  + k2(1 – ν) and p2 =  – k2(1 – ν). The
diagonal elements of the matrix of Eqs. (15) calculated
from Eqs. (41) are

S11 = i2D k1, S22 = –i2D k2. (42)

Therefore, symmetry relationship (31) for an arbitrary
obstacle placed on the plate on the line x = 0 can be
written as

R21 = R12(S11/S22) = R12(–k1/k2), (43)

where k1, 2 are given by Eqs. (40). For the normal inci-
dence on the boundary (k = 0), we have k1 = k0 and k2 =

k0
4

w x y,( ) a1 ik1x( )exp a2 ik2x( )exp+[=

+ b1 ik1x–( )exp b2 ik2x–( )exp+ ]e
iky
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ik0, and relationship (43) coincides with symmetry rela-
tionship (37) for the beam. According to Eq. (34), the
quantities of Eqs. (42) multiplied by –iω/2 are equal to
the complex amplitude of the alternating component of
the cross power flux. If the trace of the incident waves
is characterized by a real (k < k0) or purely imaginary k,
the first flexural wave in the plate is homogeneous and
the quantity – iωS11/2 is its real positive power flux in
the x direction. For an arbitrary trace of the incident
waves (complex-valued k), all waves, both incident
and reflected, are inhomogeneous, and quantities (42)
and, consequently, the cross power fluxes are complex
valued.

APPENDIX 1. INSTANTANEOUS
POWER FLUX AND ITS COMPONENTS

All calculations in this paper are performed for
time-harmonic signals using the complex representa-
tion. Actual signals are always real valued. Therefore,
to reveal the physical meaning of second-degree com-
plex quantities, for instance, of a product of the com-
plex amplitudes of the displacement and force, one
should know the relationships between the real and
complex representations of the corresponding func-
tions. Below, we present the relationships used in this
paper [18].

Let

(A1)

be n-dimensional displacement and force vectors of
Eqs. (2) and (5) written as real functions of time, where
the components of the vectors uc, s and fc, s are real. The
complex representation of signals (A1) has the form

u(t) = Re(ue–iωt), f(t) = Re( fe–iωt),

where

u = uc + ius, f = fc + ifs (A2)

are the n-dimensional vectors of complex amplitudes.
The instantaneous flux of the oscillatory power through
the waveguide cross section is defined as

(A3)

where W0 is the direct (i.e., time-average) flux compo-
nent and W~ = Wc + iWs is the complex amplitude of the
alternating power flux component with the frequency
2ω. By direct calculations, one can verify that the fol-
lowing relationships are valid:

W0 = Re , (A4)

W~ = – uTf. (A5)

u t( ) uc ωt( )cos us ωt( ),sin+=

f t( ) f c ωt( )cos f s ωt( )sin+=

W(t) = f(t)du(t)/dt
= W0 + Wccos(2ωt) + Wssin(2ωt),

iω
2

------u* f 
 

iω
2

------
                                    

By replacing the vectors u and f with their representa-
tions in terms of the wave matrices [see Eqs. (9)], we
obtain that the direct power flux component of Eq. (A4)
can be expressed in terms of the power matrix of
Eqs. (13); alternating component (A5), in terms of the
matrix of Eqs. (14); and the matrix of Eqs. (15) deter-
mines the alternating component of the cross power
flux [see also Eq. (34)].

APPENDIX 2. PROPERTIES 
OF THE POWER MATRICES

Below, we derive relationships (16)–(18) for power
matrices (13)–(15).

To prove relationships (16), we first consider the
wave matrices as a function of propagation constants kj

of the normal waves. Let j1, j2, …, jm be the ordinal
numbers of those components of the generalized dis-
placement vector of Eqs. (2), (5) that are odd functions
of kj , i.e., change their sign when the signs of all prop-
agation constants are changed. Conversely, since the
displacement and force are interrelated quantities and
their product is proportional to the power flux, which is
an odd function of kj , the force components with ordi-
nal numbers j1, j2, …, jm are even functions and the
remaining components are odd functions of kj . Let us
introduce two diagonal matrices of order n: the matrix
Jd, whose diagonal elements with the numbers j1, j2, …,
jm are equal to –1 and other elements are equal to unity,
and the matrix Jf, whose diagonal elements with the
numbers j1, j2, …, jm are equal to unity and other ele-
ments, to –1. Then, the relationships between the wave
matrices of the forward and backward normal waves
can be written as

Dr = JdDi , Fr = Jf Fi , (A6)

where Jd is the n × n diagonal matrix, whose elements
of numbers j1, j2, …, jm are equal to –1 and the remain-
ing elements are equal to 1, and Jf is the diagonal
matrix, whose elements of numbers j1, j2, …, jm are
equal to 1 and the remaining elements are equal to –1.
Clearly, these diagonal matrices satisfy the following
equalities:

Jd + Jf = 0, JdJf = Jf Jd = –I, (A7)

where I is the identity matrix. In addition, they are also
nilpotent matrices:

 =  = I. (A8)

Using properties (A6)–(A8), Eqs. (16) can easily be
proved. In particular, for the matrix Pr , we have

Pr = Fr = (JdDi)*Jf Fi = JdJf Fi = –Pi ,

which is equivalent to the first equality of Eqs. (16).
The second equality can be proved in a similar way.
Also, (A6)–(A8) yield a relationship between two

Jd
2

J f
2

Dr* Di*
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terms of the matrix S [see Eqs. (15), (18)]. Indeed, the
second term proves to be equal to

Dr = JdDi = JdDi

= – Jf Di = –( Fr)T = –QT,

so that the matrix of Eqs. (15) can be written as S = (Q +
QT)/2, which proves the first equality in Eqs. (18).

Symmetry property (17) of the matrices Si and Sr
and the property of the matrix S of being diagonal are
closely connected to the classical reciprocity theorem.
To prove these properties, consider a uniform region of
the structure between x = 0 and l. Let the field in it be
characterized by forward normal waves with the ampli-
tudes a and backward waves with the amplitudes b.
Then, due to Eqs. (9), the generalized forces at the
structure ends, which excite this set of normal waves,
must be equal to

f(0) = Fia + Frb, f(l) = –FiΦi(l)a – FrΦr(l )b, (A9)

and the generalized displacements at the ends will be
written as

u(0) = Dia + Drb, u(l) = DiΦi(l)a + DrΦr(l)b. (A10)

Now, let us use the reciprocity theorem [2]. Let there
be two sets of forces of Eqs. (A9): f (1)(0), f (1)(l) and
f (2)(0), f (2)(l). These forces excite two sets of normal
waves with the amplitudes a(1), b(1) and a(2), b(2) and the
displacements u(1)(0), u(1)(l) and u(2)(0), u(2)(l). Due to
the reciprocity theorem, we have

(A11)

Substitution of Eqs. (A9) and (A10) into Eq. (A11)
yields an equality, which we omit here for reasons of
space. We will instead consider its particular cases that
are sufficient for proving relationships (17) and (18).

Assume that all the backward wave amplitudes in
(A9)–(A11) are equal to zero: b(1) = b(2) = 0. Then, the
reciprocity relationship is reduced to

[a(1)]T[(Si – ) – Φi(l)(Si – )Φr(l)]a(2) = 0.

Since the vectors a(1) and a(2) are arbitrary, each jmth
element in the brackets must be equal to zero:

(Si – )jm[1 – expi(kj + km)l] = 0.

Since the propagation constants are nonzero and the
length l of the structure region is arbitrary, the symmet-
ric elements of the matrix Si: (Si)jm = (Si)mj are equal,

which means that the matrix is symmetric:  = Si . The
second equality in Eqs. (17), i.e., the symmetry of the
matrix Sr , is proved in a similar way by assuming that
the forward wave amplitudes in Eqs. (A.9)–(A11) are
equal to zero, a(1) = a(2) = 0, and only the backward
waves are excited.

Fi
T

Fi
T

Fi
T
J f

2

Fi
T

Di
T

[ f (1)(0)]Tu(2)(0) + [ f (1)(l)]Tu(2)(l)

= [u(1)(0)]Tf (2)(0) + [u(1)(l)]Tf (2)(l).

Si
T

Si
T

Si
T

Si
T
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The property that the matrix of Eqs. (15) is diagonal
can be proved in a similar manner by setting b(1) = a(2) =
0 in Eqs. (A9)–(A11). In this case, reciprocity relation-
ship (A11) can be reduced to

[a(1)]T[S – Φi(l)SΦr(l)]b(2) = 0.

Clearly, since the amplitudes a(1) and b(2) are arbitrary,
the matrix in the brackets must be zero. Consider its
arbitrary, say, the jmth, element:

(S)jm[1 – expi(kj – km)l] = 0.

For off-diagonal elements j ≠ m, the expression in the
brackets is nonzero, because kj ≠ km and l is arbitrary.
Hence, the jmth off-diagonal element of the matrix S
must be zero. Conversely, for the diagonal elements j =
m, the expression in the brackets is identically zero and
the elements of the matrix are nonzero, which proves
that S is a diagonal matrix and, thereby, proves the sec-
ond equality in Eqs. (18).

It should be noted that the proof used the assump-
tion that the propagation constants of all waves are dif-
ferent. This assumption is valid for all fluid and solid
waveguides and media at all frequencies, except for a
countable number of critical frequencies, at which the
dispersion relationships have multiple roots. If the roots
are multiple, the set of waves given by Eq. (1) is math-
ematically incomplete and must be complemented by
the so-called adjoined waves [19]. As far as is known,
for the adjoined waves, the reflection and transmission
theory has not yet been developed and the problem of
the symmetry of their reflection and transmission
matrices has not therefore been formulated. However,
in our opinion, the notion of the adjoined waves is too
strong a mathematical idealization and these waves do
not exist in real media. It has been shown [20] that the
presence of even a negligibly small loss in the
waveguide or in the medium removes the root multi-
plicity of the dispersion relationship. This makes all the
roots different, and the results of this paper become
valid for all frequencies.
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Experimental Study of the Elements of Acoustic Screens Made
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Abstract—For samples of screens made in the form of a steel layer with an overlying stack of rubber layers
with cylindrical voids, the reflection and transmission coefficients are measured using the Low-Frequency
Acoustic Pipe system. The experimental data are shown to agree well with the calculations performed on the
basis of the theory of large deformations of rubber with cylindrical voids. © 2003 MAIK “Nauka/Interperi-
odica”.
In designing acoustic screens for broadband receiv-
ing antennas that must meet a wide spectrum of require-
ments including the ability to operate under high hydro-
static pressures, it is advantageous to use a layered
mass-elasticity system [1], in which a metal plate
serves as a mass and a set of plane layers made of rub-
ber with cylindrical voids (RCV) and bonded together
with thin metal pads of the same area provides the elas-
ticity. The theory for calculating the acoustic and elastic
characteristics of a medium with cylindrical voids was
first described in [2] and then considered in many pub-
lications, the results of which are generalized in [1, 3].
The application of screens made of elastomers is stud-
ied in [4]. In the present paper, the results of the exper-
imental investigation of samples made of RCV are pre-
sented. The reflection and transmission coefficients of
the samples were measured at the Andreev Acoustics
Institute in the Low-Frequency Acoustic Pipe (LFAP)
system [5, 6] under hydrostatic pressures of up to 6 ×
106 Pa.

Sample no. 1 contained the following four elements:
(a) a steel layer of thickness d = 7 cm; (b) two elements,
each consisting of four RCV layers with outer titanium
straps of thickness ∆1 = 0.5 cm and intermediate tita-
nium plates of thickness ∆2 = 0.1 cm; and (c) one ele-
ment consisting of three RCV layers with plates as
described above (∆1 and ∆2). The total number of RCV
layers was N = 11, the diameter of a cylindrical void
was 2a = 1.1 cm, the number of voids in a layer was n =
55, and the diameter of the sample was D = 14.8 cm. In
determining the perforation coefficient of RCV, one
should take into consideration that, when the outer tita-
nium plates are sufficiently stiff, the longitudinal static
compression of a layer of rubber with cylindrical voids,
as well as the impedance of the sample of diameter lim-
ited by the pipe walls for a plane wave, is determined
1063-7710/03/4901- $24.00 © 20109
by the average perforation coefficient, which is defined
by the ratio of the total area of cross sections of all
cylindrical voids to the area of the sample placed in the
pipe. When determined in this way, the perforation

coefficient is equal to ε2 =  = 0.29. The height of

a single RCV layer is h0 = 1.3 cm, and h0/b = 1.6, where
b is the outer radius of the tube representing the model
of the medium with cylindrical voids. The total thick-
ness of the stack of RCV layers is L0 = 18 cm, and the
total thickness of the sample is L0 + d = 25 cm.

Sample no. 2 contained the following five ele-
ments: (a) a layer of steel of thickness d = 7 cm;
(b) three elements, each consisting of three layers of
RCV with outer titanium plates of thickness ∆1 = 0.4 cm
and intermediate titanium plates of thickness ∆2 = 0.1 cm;
and (c) one element consisted of two RCV layers with
the same outer plates ∆1 and the inner plate ∆2 as spec-
ified above. The total number of RCV layers was N =
11. The cylindrical voids were of two types: (1) 2a1 =
1.6 cm, n1 = 31 and (2) 2a2 = 1.0 cm, n2 = 10. The per-
foration coefficient averaged over the area was ε2 =

 = 0.39; h0 = 1.6 cm, h0/b = 1.5, L0 = 21 cm,

and L0 + d = 28 cm. The straps and the intermediate
plates of the samples were attached to the RCV layers
by vulcanization.

The measurements were carried out separately in the
frequency ranges (300–1000) Hz and (1000–4000) Hz
under hydrostatic pressures P from 1 × 106 to 6 × 106 Pa.
The accuracy of the LFAP system was determined by
measuring the coefficients of reflection r and transmis-
sion t of a steel sample 14.8 cm in diameter and 7 cm in
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thickness. From these measurements and subsequent
statistical processing, it was found that the random
errors in measuring r and t did not exceed 1.5 dB.

The results of measurements for samples nos. 1 and
2 for three values of hydrostatic pressure are presented
in Figs. 1 and 2. The same figures show the theoretical
dependences of the absolute values of the reflection r
and transmission t coefficients on frequency that were
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Fig. 1. Frequency dependences of the absolute values of
the reflection r and transmission t coefficients for sample
no. 1: ηc = 0.1 (solid line) and 0.2 (dashed line); P =

(a) 2 × 106, (b) 4 × 106, and (c) 6 × 106 Pa.
calculated by using the layer theory [7] for several val-
ues of the loss factor (ηc = 0.1 refers to the solid lines
and ηc = 0.2, to the dashed lines). In the calculation pro-
gram, the multilayer system is represented as a cascade
connection of four-terminal networks. The parameters
of RCV for the samples under study were calculated
from relations given in paper [1], which were derived
for the case of large deformations of rubber layers with
cylindrical voids. (Note that the calculation was per-
formed without allowance for the dynamic correction
similar to the Rayleigh correction for rubber with cylin-
drical voids [8], because, at frequencies below 1000 Hz,
its effect on the velocity of elastic waves is insignifi-
cant, and at frequencies above 1000 Hz, it practically
does not manifest itself owing to the high degree of
sound insulation of the massive steel plate.) The elastic
characteristics of the base rubber were assumed in cal-
culations as follows: the static shear modulus measured
in a static press by the technique given in [9] was  =
15 kg/cm2; the velocity of shear waves determined by
using a Bruel and Kjaer 3930 instrument for measuring

the complex Young’s modulus  = E0(1 – iηE) [10] was

ct =  = 0.7 × 104 cm/s.

The analysis of the results of measuring the reflec-
tion r and transmission t coefficients leads to the fol-
lowing conclusions:

(1) In the frequency range (300–1000) Hz, the
experimental values of r under hydrostatic pressures up
to P = 6 × 106 Pa practically coincide with the calcu-
lated characteristics. Due to the special features of the
measuring system, for the sample with a high degree of
sound insulation (at pressures up to P ≤ 4 × 106 Pa), the
measured values of t noticeably differ from the calcu-
lated ones. However, for P = 6.0 × 106 Pa, when the
transmission coefficient of the samples increases owing
to the compression of the RCV layers, i.e., due to the
growth of the relative wave impedance m and the
decrease in the thickness hP , the calculation again
approaches the experiment.

(2) In the frequency range above 1000 Hz, the mea-
sured values of r, regardless of the value of the hydro-
static pressure, oscillate near the calculated characteris-
tics with a practically constant period. This points to the
presence of a systematic error introduced by the mea-
suring system, which, however, does not exceed the
random error.

(3) In the frequency range below 1000 Hz, it is pref-
erable to assume the value of the loss factor in rubber as
ηc = 0.1. With an increase in frequency, the value ηc =
0.2 gives the best agreement with the experiment, espe-
cially for the quantity t, which is most sensitive to this
parameter.

µñ0

E

E0/3ρ
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Fig. 2. Frequency dependences of the absolute values of the reflection r and transmission t coefficients for sample no. 2. The notation
is the same as in Fig. 1.
(4) For sample no. 2, unlike sample no. 1, a series of
measurements were carried out at different times, with-
drawing the sample from the pipe and then remounting
it. The good agreement between the results of these
measurements testifies to their reliability.
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
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The study of pressure fluctuations in a turbulent
boundary layer was one of the outstanding areas of
research among the variety of investigations carried out
by L.M. Lyamshev [1, 2]. The studies initiated by
L.M. Lyamshev are continued in this paper.

Previous publication [3] presents the experimentally
measured cross spectra for the fluctuations of the longi-
tudinal tangential stresses σxz (the x axis is directed
along the flow) that occur at the boundary of a turbulent
boundary layer at points separated along the flow direc-
tion; the same paper presents the cross spectra for the
fluctuations of tangential stresses and the pressure fluc-
tuations:

(1)

where ω is the frequency and y and η are the coordinate
and displacement of the observation points across the
flow. The results of measurements for different fre-
quencies are shown in Fig. 1.

The following publication [4] determines the rela-
tion of the pressure fluctuation spectra obtained for
sound and pseudosound to the spectrum of the fluctua-
tions of tangential stresses at the wall:

(2)

where k = (kx, ky) is the wave vector; c is the velocity of

sound;  = c2 + i ς + µ ω/ρ; and ς, µ, and ρ are the

bulk viscosity, the shear viscosity, and the density of the
medium, respectively.

This result allows a comparison with the aforemen-
tioned experimental data and also makes it possible to
obtain the spatial spectrum of pressure fluctuations,
which is the aim of the present study.

Let us introduce some assumptions. First, we
assume that the transverse component of the tangential

ϕτ σxz* ω 0 y, ,( )σxz ω 0 y η+, ,( )〈 〉 / σ 2〈 〉 ,=

ϕ pσ = p* ω 0 y, ,( )σxz ω 0 y η+, ,( )〈 〉 / p 2〈 〉 σ 2〈 〉 ,

p ω k,( ) 1
qz

----c2

c1
2

----- kxσxz ω k,( ) kyσyz ω k,( )+( ),=

c1
2


 4

3
--- 
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forces is negligibly small in comparison with the longi-
tudinal component:

Second, the cross spectrum of the longitudinal (σxz)
tangential stresses is representable in factorized form:

(3)

The expression for the dimensional factor Φ0(ω) and
the form of the longitudinal cross spectrum of tangen-
tial stress fluctuations φ(ξ, 0, ω) were obtained from the
analysis of experimental data in [5]:

where Uτ = 1.26 m/s is the friction speed and the quan-
tities Uf, Λ1, and F for different Strouhal numbers Sh =

ων/  are given in the table.

The function φ(0, η, ω) used for calculations in this
paper can be obtained by the interpolation of the exper-
imental data [3].

The factorization of the cross spectrum yields a
complete representation of the correlation of tangential
stresses 〈σxz(ω, x, y)σxz(ω, x + ξ, y + η)〉 from the exper-
imental data, which allows us to obtain the spatial spec-
trum of tangential stresses σxz(ω, k) through the two-

σyz ω k,( ) ! σxz ω k,( ).

σxz* ω 0 y, ,( )σxz ω 0 y η+, ,( )〈 〉
=  Φ0 ω( )φ ξ η ω, ,( ),

φ ξ η ω, ,( ) φ ζ 0 ω, ,( )φ 0 η ω, ,( ).=

Φ0 ω( ) ρ2Uτ
2νF ων/Uτ

2( ),=

φ ξ 0 ω, ,( ) –ξ /Λ1 Sh( ) iωξ/Uf–( ), ξ 0,>exp=

Uτ
2

Table

Sh 103 2 4 8 15 30

Uf, m/s 25 24.4 23.9 23.5 22.8

Λ1, mm 75 68.5 62.0 57.7 31.0

F 0.63 0.63 0.525 0.38 0.263
003 MAIK “Nauka/Interperiodica”



114 EFIMTSOV et al.
dimensional Fourier transform with respect to the coor-
dinates ξ and η.

After the spatial spectrum of tangential stresses is
obtained using Eqs. (1) and (2), one can calculate any
of the second moments of the tangential stresses and
pressure at the surface about which the flow moves. In
particular, it is possible to obtain the cross spectrum of
pressure and tangential stresses:

This spectrum can be compared with the experimental
data presented in [3].

However, the following fact should be taken into
account in this case. In the experiment in [3], the pres-
sure was measured by a pressure sensor with a finite
spatial aperture, namely, by a 4138 Bruel & Kjer micro-
phone with a membrane 1/8 in. in diameter. The spatial
spectrum of the quantity measured in this way is related
to the spatial spectrum of tangential stresses by a for-
mula that differs from Eq. (2):

where J1 is the Bessel function of the first kind. Indeed,
the pressure experimentally measured at a point r can
be represented as an integral of the true pressure over
the sensitive surface of the sensor with the center at the
point r. Assuming that the sensitive surface is a circle of
radius R, we obtain

,

where pm is the measured pressure and the function Π
is equal to unity when its argument does not exceed R
in magnitude and is equal to zero in the opposite case.
The expression for the measured pressure is a convolu-
tion in the coordinate space. The spatial spectrum of the
measured pressure is the product of the spatial spec-

φpσ ρ( ) = 
p ϖ r,( )σ ω( r ρ+,〈 〉

p 2〈 〉 σ 2〈 〉
-------------------------------------------------.

p ω k,( )
J1 kR( )

k
----------------- 1

qz

----c2
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2
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Fig. 1. Real part of the transverse cross spectrum (of turbu-
lent fluctuations of the tangential stresses at the wall) for
different Strouhal numbers: Sh = (1) 2 × 10–3, (2) 4 × 10–3,
(3) 8 × 10–3, (4) 15 × 10–3, and (5) 30 × 10–3.
trum of the true pressure by the spatial spectrum of the
function Π:

which yields the expression given above for the spatial
spectrum of the measured pressure.

The average square of the pressure magnitude is
obtained by the integration of the squared magnitude of
the spatial spectrum of pressure with respect to the
wave numbers:

. (4)

For the normalized correlation of pressure and tan-
gential stresses, we derive the expression

(5)

where IFFT means the inverse two-dimensional Fourier
transform.

The calculations by Eqs. (4) and (5) were performed
numerically in the MATLAB medium. The initial
experimental data for the correlation of tangential
stresses were represented on a square grid with a pitch
of 2.3 mm and a size of 300 mm by means of factoriza-
tion. The longitudinal part of the correlation was calcu-
lated by Eq. (3), and the transverse part was obtained by
the interpolation of the experimental data in the mea-
surement interval 0–12 mm; beyond this interval, the
correlation was assumed to be zero. The calculations
were performed using the fast two-dimensional Fourier
transform.

Figure 2 shows the calculated transverse correlation
Rσp(ω, 0, η) between pressure and tangential stresses in
comparison with the experimentally measured correla-
tion values for different Strouhal numbers.

Note that it is precisely this allowance made for
the finite aperture of the pressure sensor that pro-
vides the coincidence with the experiment for the
minima and zeros of the function φσp(ω, 0, η) and,
hence, a good agreement with the experimental curve
from the cited paper [3].

The main conclusion drawn from the above analy-
sis is that, in the case of subsonic flow velocities, tan-
gential stresses make a considerable contribution to

Π r( ) ikr–( )d
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Fig. 2. Calculated transverse correlation between pressure and tangential stresses in comparison with the experimentally measured
correlation of tangential stresses for the Strouhal numbers (from left to right) Sh = 8 × 10–3, 15 × 10–3, and 30 × 10–3.
the formation of the wall pressure fluctuations. This
conclusion agrees well with the results of the previous
study [6].
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This paper studies the problems in which a finite
source interacts with an elastic structure through a
medium. New results are presented that demonstrate
the effect of elastic scatterers on the power emitted by
the source. Conditions are discussed under which the
emitted power increases by several orders of magnitude
over that emitted by the source in free space. This study
was inspired by the research of L.M. Lyamshev [1–3],
who experimentally and theoretically investigated the
interaction between acoustic fields and elastic struc-
tures (plates and shells) and discovered a considerable
amplification of the scattered sound due to resonance
properties of such a coupled system. This paper
addresses the problem with an active source and a pas-
sive finite scatterer, and the solutions are found with
allowance for the multiple reflection between them.
The problem was brought up by the necessity to
describe an acoustic model for such mechanical acous-
tic sources as vibrating elements of machines and struc-
tures that interact with each other and with other elastic
structures through a medium and generate sound. The
consideration of a more complex model of such sources
(instead of a point source), namely, a model with an
extended surface (even one of compact geometry)
revealed new effects, which we managed to describe
quantitatively.

The effect of increasing (or decreasing) the acoustic
power of a source operating near reflectors or scatterers
has long been known qualitatively. The first quantita-
tive estimates were obtained for a point source. For
instance, the problem of a monopole operating near a
rigid boundary in a dihedral angle and in a trihedral
angle is considered in [4]; in a waveguide with two
rigid parallel walls, in [5]. Since the rigid walls can be
replaced by imaginary sources located in free space,
solutions to all these problems can be represented as a
superposition of fields produced by a group of point
sources, and the only physical mechanism (which is far
from efficient) for increasing the power is wave inter-
ference. In particular, the power produced by a mono-
pole near a rigid wall may become two times that of the
power in free space; in a trihedral angle, eight times as
great (by the number of imaginary sources).
1063-7710/03/4901- $24.00 © 20116
The first results for the output power of a finite
source reported in [6], where the sound produced by a
thin disk vibrating near a rigid wall was studied, have
shown that the output of an extended source may vary
within much wider limits, reaching an order of magni-
tude at certain frequencies, and that the physical mech-
anism responsible for this effect is cavity resonance
(the resonance of the space between the disk and the
wall). Investigation of this effect in another model, a
sphere vibrating near rigid surfaces (a sphere, a dihe-
dral angle, and a trihedral angle), has shown that, even
for a source of compact geometry, the amplification
may be as high as 20-fold, depending on the oscillation
mode [7].

In this work, to study the effect of resonance prop-
erties of an elastic scatterer on the source output power,
we considered the acoustic field emitted by an infinite
cylinder (of radius a) with a given vibration velocity
distribution over its surface located near a simply sup-
ported elastic slab (with the width l and thickness h). In
this problem, flexural vibrations were excited by the
acoustic pressure produced on the surface of the slab by
an active source. Figure 1a plots the dimensionless ratio
of the full power flow of the source in the presence of
the slab to that in free space, PR, versus the frequency
for the slab material with a loss factor of 0.01. As can
be seen from the plot, a considerable power amplifica-
tion is observed near the first resonance frequency ka =
0.3 of the slab’s flexural vibrations.

The effect of the resonance scattering from the slab
essentially depended on the azimuthal vibration mode
of the cylinder (the azimuthal distribution of the vibra-
tion velocity v  was taken to be v  = v 0cos(mϕ) or v  =
v 0sin(mϕ)). With the slab vibrating at the first reso-
nance frequency of its flexural vibrations and the cylin-
der pulsating (m = 0) and oscillating (m = 1 or 2), the
emitted power increased by a factor of 1.7, 4.8, and
approximately 180, respectively. In order to isolate the
resonance scattering effect, Fig. 1b presents the ratio of
the power emitted by the source near the elastic slab to
that near a perfectly rigid slab versus frequency.

The power amplification at resonances of the space
between the source and the scatterer is also observed in
003 MAIK “Nauka/Interperiodica”
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this geometry, but this effect is not as significant as in
the case of a vibrating disk. The amplification is only by
a factor of 2.7 due to the compact geometry of the
source. As the source moves away from the scatterer,
the effect vanishes.

We have also established an interesting effect,
which is observed at low frequencies in sources operat-
ing in high-order vibration modes. The effect was
called the source order reduction effect: near a bound-
ary, the power of a source operating in a higher vibra-
tion mode corresponds to that of a lower order source in
free space. For example, near a rigid or an elastic
boundary, a finite quadrupole source emits as a mono-
pole, etc. The acoustic power increases by several
orders of magnitude due to the oscillations of the
medium near the source. The higher the vibration mode
of the source surface, the stronger the effect is. This
result is clearly seen in Fig. 1a.

To make sure that the power amplification in the
presence of a scatterer is observed in real conditions,
we performed a laboratory experiment. A rectangular
wooden plate with two built-in dynamic loudspeakers
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Fig. 1. (a) Power gain versus frequency for a cylinder of
radius a vibrating at a distance H = 0.5a from a thin elastic
slab of width l = 2a; (b) the normalized characteristics of the
radial vibration velocity distribution over the cylinder cir-
cumference: v0(ϕ) = v0sin(ϕ) (solid line), v0 = v0cos(2ϕ)
(dashed line), and v0(ϕ) = v0sin(3ϕ) (dotted line).
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was used as the source. The loudspeakers could be
operated in phase or in antiphase, simulating the dipole
or quadrupole source. As the scatterer, a metal pipe was
used, whose open end was placed near the source. The
experimental setup was installed in a large room. The
radiated power was measured by an intensitimeter at
162 points over a 2-m-diameter hemisphere enclosing
the source and the scatterer. The main results of the
experiment were as follows.

At the first resonance frequency of the pipe (f1 = 92 Hz),
the full power of the source increases by two orders of
magnitude compared to that without the scatterer. For
the quadrupole-type source (the loudspeakers operate
in antiphase), the power gain is higher than that for the
dipole-type source. The reason is that the quadrupole
has a stronger near field, which excites the resonance
vibrations of the pipe stronger and the pipe reradiates
the sound more efficiently, thus transforming part of the
near-field reactive energy into the active far-field
energy. Figure 2 shows the power gain at the resonance
frequency f1 in decibels versus the distance d between
the source and the scatterer. As we see from Fig. 2, the
power gain increases as the distance decreases and the
near field grows.

Similar results were also obtained in other geome-
tries, in particular, in the three-dimensional situation
with a spherical source near a circular plate executing
flexural vibrations. The validity of the quantitative
results in these computationally complex problems is
largely due to the use of the efficient numerical solution
technique with a controlled accuracy [9, 10].

The results of studying the effect of elastic scatterers
on the power emitted by an acoustic source reported in
this paper are important for the correct evaluation of the
energy characteristics of real sources used, for exam-
ple, in the SEA method. They are also important for
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Fig. 2. Power gain for a dipole-type source [(1) theory and
(*) experiment] and a quadrupole-type source [(2) theory
and (º) experiment] versus the distance from the scatterer.
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designing sources with desired acoustic properties by
way of affecting the acoustic environment in which
they operate, by increasing or decreasing their output
power due to the elastic properties and relative position
of the scatterers. The results can be useful for under-
standing the physical mechanisms of sound generation
by complex industrial noise sources.
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Abstract—The effect of phase conjugation for the second harmonic of a focused ultrasonic beam was investi-
gated experimentally and by numerical simulation. An ultrasonic pulse with the carrier frequency f = 3 MHz
was emitted into water and focused at a point between the source and the phase conjugating system. The phase
conjugation for the second harmonic of the incident wave (2f = 6 MHz) was performed in a magnetostrictive
ceramic as a result of the parametric interaction of the incident wave with the pumping magnetic field (the
pumping frequency was fp = 4f = 12 MHz). The axial and focal distributions of sound pressure in the incident
and conjugated beams were measured using a broadband PVDF membrane hydrophone. The corresponding
calculations were performed by solving numerically the Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation
allowing for the nonlinearity, diffraction, and thermoviscous absorption. The results of measurements agreed
well with the calculations and showed that the field of a conjugate wave adequately reproduces the field of the
second harmonic of the incident wave. A certain advantage of focusing with the phase conjugation for the sec-
ond harmonic was demonstrated in comparison with the operation at the doubled frequency of the incident
wave. The results of this study can serve as a basis for the utilization of the phase conjugation of harmonics in
ultrasonic tomography and nondestructive testing. © 2003 MAIK “Nauka/Interperiodica”.
The problem of phase conjugation in acoustics has
attracted the attention of researchers for a long time.
L.M. Lyamshev, to whose memory this issue of the
journal is dedicated, was also interested in it. He
worked in this field himself [1] and took a keen interest
in the research performed by other teams, including
ours.

Traditionally, in the case of phase conjugation in
acoustics, the sources are passive scatterers or common
ultrasonic radiators [2]. In this case, a phase conjugate
wave reproducing all stages of propagation of an inci-
dent wave in the inverse sequence comes back to a
localized source. This property of phase conjugation is
the basis for the technique of self-targeting of ultra-
sonic energy to scattering objects in liquids [3, 4] and
for the method of compensation of phase distortions in
the reconstruction of ultrasonic images in a phase-inho-
mogeneous medium [5, 6].

At the same time, another physical situation is
possible, when the source of a conjugate wave is dis-
tributed and does not have a definite localization. An
example can be the harmonics arising in the course
of the propagation of intense sound waves in a non-
linear medium. It is not quite clear a priori what the
wave resulting from the phase conjugation of one of
1063-7710/03/4901- $24.00 © 20019
the harmonics of an incident wave is like. The inves-
tigation of such waves is also necessary and interest-
ing from the point of view of the application of phase
conjugation for the compensation of phase distor-
tions in nonlinear techniques of acoustic imaging [7].
As a rule, these techniques utilize the second harmonic
of the probing radiation, which is focused better than
the first harmonic, has a lower level of side peaks, and
is less subjected to the effect of reverberation.

One can get a certain qualitative idea of the expected
results of phase conjugation of harmonics on the basis
of the Khokhlov–Zabolotskaya–Kuznetsov (KZK)
equation using its analytical solution for the case of an
axisymmetric source with a Gaussian amplitude distri-
bution. The second harmonic generated in an incident
wave can be written as p2in(r, z, t ) = q2in(r, z)ei2(ωt – kz),
where r and z are the transverse and longitudinal cylin-
drical coordinates, respectively; k = ω/c; ω = 2πf is the
circular frequency; c is the sound velocity; and the
expression for q2in is known (see, e.g., [8]). Then, the
conjugate wave should have the form p2c(r, z, t ) = q2c(r,
z)ei2(ωt + kz). Assuming for simplicity that the amplifica-
tion in the case of phase conjugation is equal to one and
that the propagation of a conjugate wave is linear, we
003 MAIK “Nauka/Interperiodica”
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ignore the absorption to obtain the following expres-
sion for the case of a focused incident beam:

. (1)

Here, the asterisk denotes complex conjugation, G =
ka2/2d is the focusing coefficient, a is the source radius,
d is the focal distance, and h is the distance from the
source to the plane of phase conjugation. It is interest-
ing that the transverse distributions of the incident and
conjugate beams coincide and the differences manifest
themselves only along the propagation direction. Fig-
ure 1 shows the dependence of Q = |q2c/ | on the
dimensionless longitudinal coordinate z/d for the case
G = 10 and h/d = 3. Between the focus and the phase-
conjugating system, where generation of the second
harmonic in the incident wave is weak, the amplitudes
of both waves are almost equal (Q ≈ 1). The value of Q
increases monotonically in the direction from the focus
to the source, since the amplitude of the second har-
monic generated in the incident beam tends to zero as
the source is approached, while the conjugate wave
propagates linearly along z.

The subject of this study is the experimental realiza-
tion and investigation of the parametric phase conjuga-
tion of the second harmonic of a focused ultrasonic
beam generated by a real source. It is quite easy to per-
form the phase conjugation of individual harmonic
components of incident ultrasonic radiation in the
framework of the method of parametric phase conjuga-
tion [9]. The necessary conditions are provided by the
resonance nature of the sound wave interaction and the
parametric electromagnetic pumping in an active con-
jugating medium. To select the necessary harmonic, it
is sufficient to set the relationship between the pumping

q2c
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Fig. 1. Axial distribution of the ratio of the amplitudes of
the conjugate wave and the second harmonic of the incident
wave (Q = |q2c/ |) in a focused Gaussian beam.q2i

*

frequency fp and the chosen frequency component f of
the conjugate wave that is common to the parametric
method: fp = 2f. We measured and numerically simu-
lated the axial and focal distributions of sound pressure
in both incident and conjugate beams. A good agree-
ment of the calculated and experimental data is
obtained, and the reconstruction of the field of the sec-
ond harmonic of the incident wave in the conjugate
wave is demonstrated. It is shown that, in the case of
phase conjugation of the second harmonic of a focused
beam, it is possible to reduce to a certain extent the
level of side peaks in the phase-conjugation focusing,
as compared to the case of using a double-frequency
incident wave.

A simplified experimental scheme is given in Fig. 2.
A Panametrics M307 focusing transducer with a diam-
eter of 27 mm and a focusing distance of 84 mm gener-
ated an ultrasonic pulse with a duration of 30 µs and a
carrier frequency f = 3 MHz into the water filling a
basin.1 The wave excited by the source was sufficiently
intense, and the generation of higher harmonics (2f, 3f,
etc.) occurred in the course of its propagation. A special
filter was used in the generation circuit to minimize
spurious emission by the transducer of the second har-
monic. The level of the second harmonic at the distances
20–25 mm from the source did not exceed –35 dB of the
first harmonic level, which agrees well with calcula-
tions for the case of a purely monochromatic radiation.
A phase-conjugating element made of a special magne-
tostrictive ceramic in the form of a cylinder with a
diameter of 36 mm and a length of 150 mm was fixed
in a hole in the basin wall coaxially with the source at a

1 Here, the focusing distance is understood as the so-called geo-
metric-optical focusing distance. The real point of the maximal
pressure amplitude is more shifted towards the source, the lower
the radiation frequency is.
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Fig. 2. Experimental setup: H is the constant bias magnetic
field and x and z are the coordinate axes. The dashed arrows
indicate the propagation of the sound beams.
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distance of 206 mm from it.2 The design and operation
of the utilized phase-conjugating system were
described earlier (e.g., in [2, 3]). A system of concentric
grooves was made on the working surface of the active
element to extend the angular operation range of the
system and to improve the quality of phase conjugation
(see [10, 11]). The phase conjugation for the second
harmonic of the incident wave was performed with the
help of parametric pumping. It was a pulse of alternat-
ing magnetic field with a duration of 50 µs and with the
carrier frequency 2 × 2f = 12 MHz. The field was pro-
duced by a special coil in the direction along the axis of
the phase-conjugating element at the moment when the
pulse of the incident wave arrived at the element. The
amplitude of the resulting conjugate wave (with the fre-
quency 2f = 6 MHz) was in its turn sufficient for an
intense generation of harmonics (4f, 6f, 8f, …) in the
course of propagation, which is of interest for many
practical applications. The acoustic fields of the inci-
dent and conjugate beams were measured by a broad-
band PVDF membrane hydrophone, which was moved
both along the beam axis and across it. The diameter of
the sensitive element of the hydrophone was 0.5 mm. In
the course of the measurements, a given part of the
wave packet was monitored along the axis with the help
of the corresponding delay of the analysis interval. The
signal from the hydrophone was amplified and mea-
sured by a “Tektronix” TDS 340A digital oscilloscope,
where the averaging over 32 samples and the fast Fou-
rier transformation were performed. After that, the data
arrays were fed to a computer.

The simulation was conducted on the basis of the
numerical solution of the KZK equation in the time
domain [12]. The nonlinear propagation of the incident
wave to the phase-conjugating element was calculated
on the assumption of piston radiation. The second har-
monic of the frequency spectrum (2f) was separated in
the operating plane of the element with the help of the
Fourier transformation, and the values of the Fourier
components beyond the system aperture were assumed
to be equal to zero. The complex conjugate field of the
second harmonic was transformed back into the time
domain taking into account the system gain obtained in
the experiments. Then, the nonlinear propagation of the
inverted and amplified wave toward the source was cal-
culated.

The results of the measurements and the corre-
sponding calculations are shown in Figs. 3–6. Figure 3
presents (a) the axial and (b) the transverse distributions
of pressure in the incident beam. A transverse scanning
was performed at the point z = 82 mm, where the max-
imum of the second harmonic of interest was located.
The measurements agree with calculations rather well,
and the dependences are typical of a focused beam with
a finite amplitude. The generation of higher harmonics

2 The distance was selected in such a way that the incident beam
completely falls within the aperture of the conjugating element in
the geometric approximation.
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is observed, and their amplitudes increase with the dis-
tance and reach their maximum near the focus. The
width of the principal maximum in the focal plane and
the relative level of side components decrease as the
harmonic index grows. The time profile of the incident
wave at the focal point had characteristic nonlinear dis-
tortions, and the amplitudes of the harmonics 2f, 3f, and
4f were 15.6, 3.5, and 2.8%, respectively, of the ampli-
tude of the first harmonic.

Figure 4 shows the measured distributions of the
fundamental harmonic of the conjugate wave (the fre-
quency 2f ) in comparison with the incident wave com-
ponent to be conjugated (the second harmonic). One
can see that, on the whole, the conjugate wave repro-
duces the field of the second harmonic of the incident
wave. The conjugate beam is focused. The width of the
focal maximum of the fundamental component of the
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Fig. 3. Distribution of pressure amplitudes for the first three
harmonics in the incident beam (a) along the axis and (b)
across the beam, at the focus of the second harmonic; z is
the distance from the source and x is the distance from the
beam axis. The solid lines correspond to the experiment and
the dotted lines, to the calculation. The numbers I–III are
those of harmonics with the frequencies f = 3 MHz, 2 f =
6 MHz, and 3f = 9 MHz, respectively. The dashed line indi-
cates the position of the transverse scanning plane.
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conjugate beam and its axial position almost do not dif-
fer from those for the second harmonic of the incident
beam. Note that the resulting dependences qualitatively
correspond to the analytical estimate for the Gaussian
beam (Fig. 1). Figures 5 and 6 present the pressure dis-
tributions for the first four harmonics of the conjugate
beam (2f, 4f, 6f, and 8f ) in the plane z = 82 mm and
along the beam axis, respectively. One can see that the
data of the focal measurements of harmonics (Fig. 5a)
agree well with the numerical model. The calculated
and experimental curves for the axial distributions are
given separately in Figs. 6a and 6b to make it easier to
see them. Being similar in general, they have certain
differences, namely, the shifts of the measured maxima
of the harmonics towards the source from their calcu-
lated positions. The reason for this phenomenon can be
the presence of multiple internal reflections of an ultra-
sonic pulse in the phase-conjugating element, which
are not taken into account in the model. These reflec-
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Fig. 4. Comparison of the fields of the fundamental har-
monic of the conjugate wave and the second harmonic of
the incident wave (a) along the beam axis and (b) across the
axis at the point z = 82 mm. The solid line corresponds to
the conjugate wave and the dashed line, to the second har-
monic of the incident wave.
tions lead to the rise of waves, including those not cou-
pled with pumping. The indicated nonideal character of
real phase-conjugating systems needs further investiga-
tion.

Figure 5b additionally presents the comparison of
the focal distribution measured in the case of phase
conjugation of the second harmonic (2f = 6 MHz) with
the case when a wave with a frequency of 6 MHz is gen-
erated directly by the source. Although the curves are
generally similar, the first version gives a slightly wider
principal maximum with a simultaneous small reduc-
tion of the side peaks.
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Fig. 5. Transverse pressure distribution in the conjugate
beam at z = 82 mm. (a) Harmonic amplitudes. The solid
lines correspond to the experiment and the dashed lines, to
the calculation. The numbers I–IV are those of harmonics
with the frequencies 2f = 6 MHz, 4f = 12 MHz, 6f =
18 MHz, and 8f = 24 MHz, respectively. (b) Comparison of
the experimental data on the phase-conjugation focusing
with the use of conjugation of the first and second harmon-
ics: (1) the second harmonic of the incident wave is conju-
gated (2f = 6 MHz) and (2) the fundamental harmonic of the
linear incident wave with a frequency of 6 MHz is conju-
gated.
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Thus we investigated numerically and experimen-
tally the parametric phase conjugation of the second
harmonic of a focused ultrasonic beam. It was demon-
strated that the field of the conjugate wave is also
focused and, on the whole, adequately reproduces the
field of the second harmonic of the incident wave. The
data of measurements agree rather well with the results
of the numerical simulation. Using phase conjugation
of harmonics, it is possible to design high-resolution
phase-conjugating systems for acoustic imaging. With
the same frequency of the conjugate wave, the systems
utilizing phase conjugation of the second harmonic can
be advantageous in comparison with the utilization of
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Fig. 6. Dependences of the pressure amplitudes of the
first four harmonics of the conjugate beam on the longi-
tudinal coordinate: (a) the calculation and (b) the exper-
iment; z is the distance from the source. The numbers I–IV
are those of harmonics with the frequencies 2f = 6 MHz,
4f = 12 MHz, 6f = 18 MHz, and 8f = 24 MHz, respec-
tively.
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the phase conjugation of the fundamental component
owing to the reduction of reverberation in the course of
propagation and because of the reduced relative level of
side peaks in the second harmonic of the incident wave
and their attenuation in the conjugate wave. In the case
of a sufficient amplification of the conjugate wave that
provides its nonlinear propagation back to the source, it
is possible to obtain an acoustic image with a corre-
spondingly increased resolution by using the harmonics
of this wave, for example, at the fourfold frequency of
the incident wave.
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A Brief Review of L.M. Lyamshev’s Work in Science
(August 30, 1928–March 28, 2002)
Among the researchers working in acoustics all over
the world, Leonid Mikhaœlovich Lyamshev occupies a
special place owing to his great and many-sided contri-
bution to the development of this field of science. He is
the founder of a number of areas of research that deter-
mine the state of the art in modern acoustics. Many of
the results obtained by Lyamshev have become classi-
cal and were included in textbooks. His scientific career
coincided with the period of global rapid progress in
acoustics, and his life was interesting and full of
remarkable events—the life of a scientist whose works
gained worldwide recognition.

The beginning of Lyamshev’s work in science dates
back to 1951, when, after graduating from the Radio
Faculty of Moscow Electrotechnical Institute of Com-
munication, he became a postgraduate student of the
Lebedev Physical Institute of the Academy of Sciences
of the USSR. Yu.M. Sukharevskiœ, who supervised
Lyamshev’s postgraduate studies, proposed that the
first research project of Lyamshev be the reflection of
sound from submerged shells. At that time, after World
War II, work aimed at the enhancement of the defense
potential of the country, including the development of
the underwater fleet, was among the top priorities (not
only in the USSR). The problem of protecting subma-
rines from being detected by sonars or by way of
receiving their noise was set as one of the burning prob-
lems before scientists and engineers. However, the
results of the first experiments carried out by Lyamshev
with shell models at the Acoustics Laboratory of the
Lebedev Physical Institute proved to be rather compli-
cated and could not be explained in terms of the acous-
tical concepts available at that time. Then, Lyamshev
turned to the simplest models of elastic bodies in the
form of rectangular plates. In this case, the experimen-
tal results also proved to be unexpected: at certain
angles of sound wave incidence, a strong reflection of
sound in the backward (nonspecular) direction was
observed. Some time elapsed before this result was rec-
ognized as a discovery, the role of the flexural and lon-
gitudinal vibrations of plates in this effect was under-
stood, and the whole picture of sound scattering by a
plate was described mathematically. The first publica-
tion by Lyamshev [4] summarized the results of thor-
ough research and was rather informative: it described
the new physical phenomenon of nonspecular reflec-
tion and presented a complete mathematical description
1063-7710/03/4901- $24.00 © 20002
of it with an adequate physical interpretation. In the
subsequent works by Lyamshev (see the list of his pub-
lications given below), these results were generalized to
more complex elastic structures. Finally, the compli-
cated picture of sound scattering by shells was fully
understood, the physical mechanism of the spatial wave
coincidence underlying this phenomenon was revealed,
and a strict theory of the sound scattering by cylindrical
and spherical shells was developed. Today, the scatter-
ing of sound by elastic bodies is a large and important
part of structural acoustics. It is represented by several
thousands of publications including several mono-
graphs. Lyamshev is deservedly considered the founder
of this field of research.

The next major contribution to science made by
Lyamshev is related to the proof of the reciprocity the-
orem. The necessity to study the specific features of
sound radiation by shells (in connection with the devel-
opment of passive methods of acoustic detection) drew
Lyamshev’s attention to the reciprocity principle. This
principle could serve to relate the radiation field to the
scattering field and, hence, be a handy instrument for
studying sound radiation from shells by using the scat-
tering properties studied before. However, no strict
mathematical proof of the reciprocity principle existed
at that time. In 1958, Lyamshev gave a new formulation
of this principle and provided its strict proof on the
basis of the theory of self-conjugated operators [16].
Thus, the reciprocity principle has become the reci-
procity theorem. Until today, Lyamshev’s formulation
of this theorem is used as the most general one in the lit-
erature. Lyamshev and his students used it for studying
the radiation of sound by plates and shells and general-
ized the results to the boundary-value problems for the
fields of different nature (not only acoustic fields).

Studying the acoustic interaction of elastic bodies
with a fluid, Lyamshev turned his attention to the prob-
lem of radiation and scattering of sound by shells in a
moving medium. A moving medium is described by
non-self-conjugate equations, and the classical reci-
procity principle does not hold in this case. However,
by applying the previously developed approach, Lyam-
shev managed to derive new integral equations relating
the solutions to two conjugate problems. Later on, these
equations were called the modified reciprocity theorem
or the acoustic theorem of flow reversal [22]. They were
used by Lyamshev to study the radiation and scattering
003 MAIK “Nauka/Interperiodica”
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of sound by shells in a moving medium. In addition,
Lyamshev generalized the notion of impedance for a
moving medium [112], which allowed him to extend
many results obtained for the acoustics of stationary
media, e.g., the Fresnel reflection/transmission formu-
las, to the acoustics of moving media. These results
were summarized in Lyamshev’s doctoral dissertation,
“Some Problems of the Scattering and Radiation of
Sound in Moving Media” (Acoustics Institute, Mos-
cow, 1964).

In parallel with the aforementioned investigations,
Lyamshev studied the hydrodynamic sources of sound,
i.e., the flow noise of elastic shells, which, at high
speeds, is often predominant in the sound field. On the
basis of the equations of the continuum mechanics,
Lyamshev developed the approximate theory of a tur-
bulent boundary layer [66] in terms of the small pertur-
bation method. This theory explained a number of
experimental results, such as the effect of the shell
vibrations on the properties of the turbulent layer, the
effect of the shell inhomogeneities (stiffening ribs) on
the sound radiation, and other effects. These studies
were performed with the aim of answering the question
of whether it is possible to efficiently reduce the flow
noise by controlling the boundary layer, i.e., by elimi-
nating the fluid through gaps or pores, or, conversely,
by introducing aqueous solutions of, e.g., polymers into
the boundary layer. Finally, a general answer to this
question was obtained. The series of comprehensive
experimental and theoretical studies performed by
Lyamshev together with his students in this area of
research provided a substantial contribution not only to
the theory of hydrodynamic sources of sound but also
to the practical design of low-noise moving sea objects.

In the early 1970s, on Lyamshev’s initiative and
with his participation, systematic investigations of
sound generation by laser radiation in liquid were
started [111]. The operation principle of a laser source
is based on the sound generation as a result of the inter-
action of optical radiation with a medium (water or
some solid). Such sources have some advantages over
conventional acoustic radiators (the absence of the con-
tact with the medium, the possibility to move with any
speed, etc.) and, therefore, extend the capabilities of
experimental acoustics. Together with his colleagues,
Lyamshev developed the theory of sound excitation by
a laser beam and proposed new schemes for practical
applications of such sources. At that time, he also con-
tinued the search for new applications of optical meth-
ods in acoustics. He studied the possibilities offered by
the fiber-optic sound detectors and took active part in
the development of laser-acoustic technologies (photo-
acoustic sounding of a medium, laser-acoustic micros-
copy, and diagnostics of deep defects) and optical sys-
tems of data processing. All this allowed Lyamshev to
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
create a new promising direction of research—laser
acoustics [2, 144].

The problem studied by Lyamshev and his col-
leagues in the 1980s was close to the aforementioned
area of research: sound generation by penetrating radi-
ation [167]. The studies of the radiation-acoustic effects
accompanying the interaction of individual particles or
particle fluxes with matter opened up new wide possi-
bilities for the visualization and control of the internal
areas of opaque materials in biology (radiation-acoustic
microscopy), geology (neutrino-acoustic sounding of
the Earth), astrophysics (detection of cosmic neutri-
nos), etc. The monograph Radiation Acoustics [3] writ-
ten by Lyamshev summarizes the results obtained in
this area of research before 1995.

The end of the cold war changed the tendencies of
the development of acoustics in the world [which is
confirmed by the statistics of the acoustic publications
during the last 30 years: see J. Acoust. Soc. Am. 109 (5)
1779 (2001), Part 2]. In line with these changes, Lyam-
shev’s scientific interests were shifted in the 1990s
toward the basic and general physical problems of
acoustics. In addition to radiation acoustics, he devel-
oped another new direction of research: fractal acous-
tics. He was the first to realize the important role of
fractals in acoustics and showed that many experimen-
tal facts can be explained by the fractal properties of
media and wave processes [175]. For example, the frac-
tal structure of such media as various grounds, porous
materials, amorphous bodies, etc., determines the
velocity and attenuation of waves propagating in them,
the oscillation spectra, the localization of modes, and
other properties. The fractal dimension of a wind-agi-
tated sea surface proves to be responsible for the char-
acter of the frequency–angular dependences of the scat-
tered fields. The sound fields themselves can also
exhibit fractal properties as a result of, e.g., nonlinear
interaction of waves. These and related problems were
the major preoccupation of Lyamshev during the last
years of his life. Unfortunately, his investigations were
terminated by his unexpected death. However, the work
carried out by him together with his students and col-
leagues has made this area of research one of the most
promising fields of modern acoustics.

The list of the main scientific publications by Lyam-
shev is presented below. It includes papers that
appeared in refereed journals, such as Doklady
Rossiœskoœ Akademii Nauk (Doklady Physics), Uspekhi
Fizicheskikh Nauk, Zhurnal Tekhnicheskoœ Fiziki
(Technical Physics), and, naturally, Akusticheskiœ Zhur-
nal (Acoustical Physics). The list does not contain
numerous abstracts of talks given at various confer-
ences, book reviews, reports on conferences, inven-
tions, and popular scientific papers and books. How-
ever, the list gives a rather comprehensive idea of the
fruitful scientific work of Leonid Mikhaœlovich Lyam-
shev.
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Features of Underwater Acoustics from Aristotle to Our Time1
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Abstract—Underwater acoustics has been one of the fastest growing fields of research in acoustics. In partic-
ular, the 20th Century has taken our understanding of underwater acoustics phenomena a great step forward.
The two World Wars contributed to the recognition of the importance of research in underwater acoustics, and
the momentum in research and development gained during World War II did not reduce in the years after the
war. The so-called cold war and the development in computer technology both contributed substantially to the
development in underwater acoustics over the second half of the 20th Century. However, the very widespread
field of underwater acoustic activities started nearly 2300 years ago with human curiosity about the fundamental
nature of sound in the sea. From primitive philosophical and experimental studies of the velocity of sound in
the sea and through centuries of successes and failures, the knowledge about underwater acoustics has devel-
oped into its high-technological status of today. In particular the development through the period from Aristotle
(384–322 BC) to 1960 formed the basis for the tremendous research and development efforts we have witnessed
in our time. In this paper most emphasis will be put on the development in underwater acoustics through this
period of nearly 2300 years duration, and only the main trends in later research will be mentioned. © 2003
MAIK “Nauka/Interperiodica”.

Dedicated to the memory of my friend and colleague Professor L.M. Lyamshev
1After my plenary lecture held at the 2nd EAA
International Symposium on Hydroacoustics in Gdansk
in May 1999, Professor L.M. Lyamshev asked me to
write this lecture as a paper to be published in the inter-
national journal Acoustical Physics, for which he was
editor-in-chief. I promised to do it when time allowed.
Now having been asked to contribute a paper to a spe-
cial memory issue of Acoustical Physics for Professor
L.M. Lyamshev, I found that this paper, which he
encouraged me to write, would be the best contribution
I could give to the memory of a great acoustician, an
internationally recognized scientist, and a good friend
and colleague whose modest and friendly personality
we shall miss in the years to come.

Underwater acoustics is one of the fastest growing
fields of research in acoustics, which is reflected in the
increasing number of publications per year in interna-
tional journals. Underwater acoustics’ relation to other
fields of importance to science and technology like
oceanography, meteorology, seismology, and fishery is
becoming closer. Every year billions of dollars are
spent on the use of underwater acoustics by the mineral
industry (oil and solid mineral exploration in the sea),
the communication and energy sector (cable and tube
laying, survey and maintenance), the food industry
(fishing), the transportation and recreation industries
(navigation and safety devices), and the worlds’ navies
(undersea warfare). A great number of industrial com-
panies are developing, manufacturing, and selling

1 This article was submitted by the author in English.
1063-7710/03/4901- $24.00 © 20024
instruments and devices for underwater acoustics,
including, for instance, instruments for the inspection
and mapping of the seabed, underwater communica-
tion, control of processes in offshore activities, search
and recovery missions, etc.

STUDIES OF UNDERWATER ACOUSTICS 
BEFORE WORLD WAR I

This comprehensive activity in underwater acous-
tics is based on research and development over more
than two millennia, spawned by the human curiosity in
the sea and its ability to carry sound waves. As far as we
know today, it started with the Greek philosopher Aris-
totle (384–322 BC), who was the first to note that sound
could be heard in water as well as in air. In 1490 the
Italian scientist and artist Leonardo da Vinci (1452–
1519) wrote in his notebook, “If you cause your ship to
stop and place the head of a long tube in the water and
place the other extremity to your ear, you will hear
ships at great distances.” Of course, the ambient noise
level in lakes and seas was much lower during his days
than today, when all kinds of ships and offshore activi-
ties pollute the seas with noise. About one hundred
years later, the English philosopher Francis Bacon
(1551–1626) in his work Historia Naturalis et Experi-
mentalis supported the idea that water is the principal
medium by which sounds originating therein reach a
human observer standing nearby.
003 MAIK “Nauka/Interperiodica”
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In the 18th and early 19th centuries, a few scientists
became interested in sound transmitted in water. They
measured the speed of sound in fresh and salt water,
comparing these with the speed of sound in air, already
measured by then. Their sound sources included bells,
gunpowder, hunting horns, and human voices. Their
own ears usually served as receivers. In 1743, J.A. Nol-
let conducted a series of experiments in order to prove
that water is compressible. With his head underwater,
he heard a pistol shot, a bell, a whistle and loud shouts.
He noted that the intensity of the sound decreased little
with the depth, thus indicating that the loss mostly
occurred at the water surface. In 1780, Alexander
Monro (1733–1817) tested his ability to hear sounds
underwater. He used a large and a small bell, which he
sounded both in air and in water. The bells could be
heard in water, but he found that the pitch sounded
lower in water than in air. He also attempted to compare
the speed of sound in air and in water, and he concluded
that the two sound speeds seemed to be the same.

The breakthrough in sound speed measurement
came in September 1826, when the Swiss physicist
J.D. Colladon (1802–1893) and the French mathemati-
cian J.K.F. Sturm (1803–1855) on Lake Geneva at a
water temperature of 8°C made the first widely known
measurement of the speed of sound in water. A bell
hanging down from a boat was used as transmitter, and
when striking the bell a flash of light was made by ignit-
ing some gunpowder. This flash could be seen by Col-
ladon in a boat situated at a distance of about 10 miles
from the transmitter. He started his watch when he saw
the flash and stopped it when he heard the sound signal
in the water about 10 s later. His receiver was a trumpet
design with one end in the water and the other in his ear.
By means of this rather primitive setup they measured
the speed of sound in water at 8°C to 1435 m/s, only
about 3 m/s less than accepted today [1].

During the years 1830–1860 scientists started think-
ing over some applications of underwater sound. Ques-
tions like “Can the echo of a sound pulse in water be
used for determination of the water depth or the dis-
tance between ships?” or “Can the communication
between ships be improved by underwater transmission
of sound?” were posed. The frustration in relation to the
use of underwater sound for depth measurements is
obvious from M.F. Maury’s (1806–1873) words in
chapter 12 of his book Physical Geography of the Sea,
6th ed. 1859, where he says, “Attempts to fathom the
ocean, by both sound and pressure, had been made, but
out in blue water every trial was only a failure repeated.
The most ingenious and beautiful contrivances for
deep-sea sounding were resorted to. By exploding
petards, or ringing bells in the deep sea, when the winds
were hushed and all was still, the echo or reverberation
from the bottom might, it be held, be heard, and the
depth determined from the rate at which sound travels
through water. But though the concussion took place
many feet below the surface, echo was silent, and no
answer was received from the bottom.”
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During the last half of the 19th Century, when the
maritime world changed from sail to engine driven
ships and wood was replaced by steel for ship construc-
tions, concern was expressed about the safety of navi-
gation in fog and the danger of collision with other
ships or with icebergs. John Tyndall (1820–1893) in
England and Joseph Henry (1797–1878) in the USA—
in spite of the fact that they both in separate investiga-
tions found sound propagation in air to be unreliable—
recommended in 1876 to the lighthouse authorities in
both countries that they should adopt high-power siren
warning installations for use in air at all major light-
houses. From 1873 joint experiments took place and a
large-scale steam-driven siren was built at the South
Foreland lighthouse in England using frequencies from
100 to 400 Hz [2]. Sound transmission conditions,
however, gave rise to problems. Gradients in wind
speed and in temperature over the path of sound propa-
gation caused strong variations in the sound detection
distance. This blow to underwater acoustics, therefore,
did not have any serious consequences. The possible
advantages of signaling by sound in water were taken
up again in the late 1880s by Lucien Blake and Thomas
Alva Edison (1847–1931) in the USA. Edison invented
an underwater device for communication between
ships, but for some unknown reasons the US govern-
ment lost interest in his invention.

Submerged bells on lightships were introduced to a
large extent during the last years of the 19th century.
The sound from these bells could be detected at a great
distance through a stethoscope or by means of simple
microphones mounted on a ships hull. Moreover, when
the ship was outfitted with two detecting devices, one
on each side of the hull, it became possible to determine
the possible bearing of the lightship by transmitting the
sounds separately to the right and the left ears of the
observer. Elisha Gray, working with Edison on improv-
ing the telephone, recognized that the carbon-button
microphone in a suitable waterproof container could be
used as a hydrophone to receive underwater bell signals
(see Fig. 1).

In 1899, Gray and A.J. Mundy were granted a patent
on an electrically operated bell for underwater signal-
ling (see Fig. 2).

The commercial market now started to motivate
efforts. The work by Gray and Mundy led in 1901 to the
establishment of the Submarine Signal Company in
Boston, USA (now part of the Raytheon Company), but
the rapid development in radio communication and
direction finding technology threatened the commercial
market of undersea acoustic navigation devices.

In 1912, the Submarine Signal Company hired the
Canadian R.A. Fessenden (see Fig. 3) to develop a
sound source more efficient than the pneumatically or
electrically operated bells.

Fessenden designed and built a moving coil trans-
ducer for the emission of underwater sound. The Fes-
senden oscillator, which was designed somewhat like
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an electrodynamic loudspeaker (see Fig. 4), allowed
ships to both communicate with each other by use of
Morse code or to detect echoes from underwater
objects. The acoustic power transmitted into the water
was about 2 kW at a resonance frequency of 540 Hz,
and the electroacoustic efficiency was 40–50%.

In 1914, the echo location process known as echo
ranging was far enough developed to locate an iceberg
at a distance of 3.2 km. This development, unfortu-
nately, came too late to avoid the Titanic disaster.

UNDERWATER ACOUSTICS
DURING WORLD WAR I

The outbreak of World War I and the later intro-
duced unrestricted submarine warfare from the German
side were the impetus for the development of a number
of military applications of underwater sound. In France
the Russian electrical engineer Constantin Chilowsky
collaborated with the physicist Paul Langevin (1872–
1946) on a project involving a condenser (electrostatic)
projector and a carbon-button microphone situated at
the focus of a concave acoustic mirror. In 1916 they
filed an application for a patent comprising the princi-
ple of their method and their equipment. The same year
they had been able to transmit an underwater signal
over a distance of 3 km and to detect echoes from
reflection by an iron plate at a distance of 100 m. As
Chilowsky left the project after filing the patent, Paul
Langevin in 1917 turned his interest to the piezoelectric
effect—originally discovered by Jacques and Pierre

d
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ac
b

Fig. 1. Carbon-button microphone in a watertight housing.
Curie in 1880—in order to develop transmitters and
receivers for undersea use. The newly developed vac-
uum tube amplifier was used by Langevin for his quartz
receiver, and in 1918 he completed the development of
his sandwich-type, steel–quartz–steel transmitter (see
Fig. 5). By means of this transmitter, the range for one-
way transmission was increased to more than 8 km, and
clear submarine echoes were heard.

A slab of quartz was sent to Robert W. Boyle in
England, who in 1916 had organized a research group

Fig. 2. Electrically driven underwater bell.

Fig. 3. Reginald A. Fessenden [3].
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Fig. 4. A cross section of the working parts of the Fessenden oscillator. (1) The diaphragm is about 60 cm in diameter,
(2) moveable copper-tube conductor, (3) flexible discs, (4) the coil, (5) the electromagnet, (6) the iron core, (7) turns of wire,
and (8) steel bolt [3].
to study underwater ultrasound. His experiments with a
quartz receiver were as successful as Langevin’s. The
name ASDIC (Anti-Submarine Detection Investigation
Committee) for the underwater detection system was
coined during these days. The magnitude and impor-
tance of the submarine war during World War I is
reflected in the number and types of ships the British
admiral Jellicoe had gathered in November 1917 when
the German navy had 137 submarines. To protect con-
voys against German submarines a fleet consisting of
the following ships was necessary: 277 destroyers,
44 P-boats, 65 submarines, 50 airships, 194 airplanes,
849 armed trawlers, 867 drifters, 338 motor launches,
68 coastal motorboats, 30 sloops, 77 decoy ships,
24 paddle minesweepers, and 49 yachts. However, sub-
marines sunk more than 4800 merchant ships during
World War I.

In the USA, Dr. Harvey Hayes had gathered a group
of specialists at the Naval Experimental Station, New
London, with the term of reference “to devise as
quickly as possible the best of available technology to
defeat a U-boat.” Hayes and his group developed the
towed hydrophone assembly called the Eel, and a pas-
sive sonar installation using 48 hydrophones—hull
mounted and towed—was tested. This installation was
the most advanced passive sonar system produced dur-
ing World War I. Some US inventions made during
World War I are shown in Figs. 6 and 7.

In Germany, Heinrich Hecht in Kiel developed a
hydrodynamic source for underwater sound (see Fig. 8),
and an electromagnetic membrane transmitter, which
during the war was built into several hundred surface
ships and submarines. Moreover, the German engineer
Hugo Lichte (1891–1963) performed rather extensive
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
underwater acoustic studies in which he correctly
deduced the effects of temperature, salinity, and pres-
sure on the speed of sound, and he predicted in 1919
that in deep water the upward refraction produced by
pressure should produce extraordinarily long sound lis-
tening ranges. This fact was verified only many years
later.

5
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Fig. 5. Paul Langevin’s piezoelectric quartz based transmit-
ter/receiver. In spite of random variation of the quartz in the
Y direction, but by exploiting the vacuum tube amplifier,
Langevin was able in the active mode to detect submarines
at distances exceeding 8 km. The transducers beam angle
was 20° at a driving frequency of 38 kHz [4]. (1) To the a.c.
oscillator and receiver; (2) circular steel inner electrode;
(3) watertight container; (4) circular steel outer electrode;
(5) layer of thin slices of quartz.
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UNDERWATER ACOUSTICS 1918–1940

During the period 1918–1940, three uses of under-
water acoustics based on wartime experiences were
developed extensively but slowly. They were echo
sounding, sound ranging in the ocean, and seismic
prospecting. A great practical impetus was received
from advances in electronics, which made available
new methods and devices for amplification, processing,
and displaying of received underwater signals.
M. Marti had in 1919 patented a recorder to be used for
echo sounding. This recorder, which turned out to be of
extreme importance to ocean studies using sound, con-
sisted of a sheet of paper constrained to move slowly
beneath a pen writing on the paper while traversing the
paper from one side to the other in a direction perpen-
dicular to the motion of the paper. The pen was driven
laterally to the paper motion by an electric signal the
amplitude of which was proportional to the output from
the underwater sound receiver. Viewing side by side the
successive echoes, with passage of time, a profile of the
seabed could be produced. In 1922 the first long echo-
sounding depth profiles were made while exploring a
cable route between France and Algeria.

The need for improved and more robust high-power
underwater sound sources instead of the Langevin type
transducers based on quartz or Rochelle salt crystals,
led G.W. Pierce in the USA, in 1925, to develop a mag-
netostrictive oscillator operating at 25 kHz with an
emitted sound power of a few kilowatts, without the
danger of fracture of the oscillating element, as fre-
quently found by crystal based transducers.

During the same period, the US Coast and Geodetic
Survey in their attempt to establish geodetic control by
horizontal sound ranging was experiencing a strong
variability in sound intensity and speed in the sea. Also
the Naval Research Laboratory, established in 1923 on

1

2

Fig. 6. A simple mechanically rotated rubber bulb stetho-
scope for direct listening. This device was able to record an
underwater explosion at a distance of 120 km and it was
mounted on patrol boats and on submarines. (1) Rubber
bulbs; (2) stethoscope.
a suggestion from Edison, when seeking to improve
submarine hunting, working at 20–30 kHz, found the
same variability. Some of this variability appeared to
show a diurnal cycle, where the equipment in the morn-
ing was working according to the specifications while
in the afternoon it did not produce any echoes from sub-
marines, except at very short ranges. The same “after-
noon effect” was found in several regions of the ocean.
Dr. Harvey Hayes and scientists from the newly estab-
lished oceanographic institution at Woods Hole, includ-

1

2

Fig. 7. A US invention from World War I was the so-called
“Rat” (due to its rodentlike appearance) consisting of a
rubber diaphragm and a housing forming the watertight
space for a carbon-granules microphone and its electrical
leads. The nonresonant diaphragm gave a broadband
hydrophone, particular applicable for operation in the fre-
quency range of 500–1500 Hz. (1) Carbon microphone;
(2) electric leads.

Fig. 8. The hydrodynamic siren for generation of underwa-
ter sound at frequencies around 1 kHz and with an acousti-
cal power of up to 600 W [5].
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ing the institutions head, Columbus Iselin, decided to
study these phenomena in more depth.

It soon became clear that the upper parts of the
ocean were heated during the day by the sun, thus leav-
ing a layer 4.5–9 m thick with a temperature 1–2°C
warmer than the more uniform water layer beneath and
with a gradual decrease in temperature with distance
from the surface of the sea. As the appearance of the
temperature layer coincided with the deterioration of
the signal reception, the scientists concluded that the
warm layer caused sound entering the water to bend
downward, thus producing an acoustic shadow zone in
which a submarine could hide. This discovery in 1937,
achieved through cooperation between acousticians
and oceanographers, led to the start of a new field of
research called acoustical oceanography. The same
year Athelstan Spilhaus from MIT invented and build
the first bathythermograph, a small torpedo-shaped
device that held a temperature sensor and an element to
detect changes in static water pressure. By the begin-
ning of World War II, all US naval vessels engaged in
antisubmarine work was equipped with the Spilhaus
device.

The SONAR (SOund NAvigation and Ranging)
developments in the years before World War II was
based on exploitation of the crystals quartz, Rochelle
salt, and tourmaline, along with magnetostrictive
Ni−Fe alloys. Single hydrophones, as well as linear and
planar arrays, were developed and tested and found
their way into the major navies. A Rochelle salt-based
hydrophone developed in Germany in 1935 for use
onboard warships is shown in Fig. 9.

UNDERWATER ACOUSTICS 
DURING WORLD WAR II

The outbreak of World War II launched great activ-
ity in underwater acoustics research in Europe, USA,
and the Far East. The hunt for submarines received high
priority. The combination of convoys, aircraft patrols,
and ASDIC gear effectively held off conventional day-
light attacks by the original small number of German
submarines. However, the Germans soon learned to
launch night attacks on convoys using so-called “wolf-
pack” techniques. The development of airborne radar,
and in particular the Allied’s monopoly on the 10 cm
radar, became a great help in hunting down German
submarines, of which Germany during the war lost 781.

Apart from the development of underwater arms
like the acoustic homing torpedo, the acoustic mine,
and the scanning sonar, a much better understanding of
underwater factors influencing sound propagation was
established. Concepts like target strength, self-noise of
ships, reverberation of the underwater environment,
scattering of sound and sound absorption in seawater,
were established and studied. Sound propagation under
the influence of vertical variation in sound speed was
investigated and modeled using the “ray theory” bor-
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
rowed from the theory of light. Most of the achieve-
ments in underwater acoustics during World War II
were published in the USA just after the war in
23 reports called “National Defence Research Commit-
tee Division 6, Summary Technical Reports.” One of
these reports—entitled “Physics of Sound in the
Sea”—comprises chapters on deep- and shallow-water
acoustic transmission, on intensity fluctuations, and on
the explosion as a source of underwater sound.

UNDERWATER ACOUSTICS 
FROM WORLD WAR II TO 1960

Maurice Ewing, professor of physics at Lehigh Uni-
versity, had during the war studied the characteristics of
low frequency sound propagation in the sea, and he was
convinced that it would be possible to propagate sound
over hundreds—possibly thousands—of kilometers
through the ocean if both source and receiver were
appropriately placed. In 1945 he propagated sound
from a small explosion over a distance of more than
3000 km from Eleuthera in the Bahamas to Dakar in
West Africa. The sound propagation took place in a
ubiquitous permanent sound channel of the deep ocean.
The channel was called by Ewing the SOFAR (SOund
Fixing And Ranging) channel. The first application of
this discovery was aimed at providing a rescue system
for downed-at-sea airmen. From his inflated rubber
boat, the airman should drop small cartridges over the
side set to explode on the axis of the SOFAR channel
situated at some 1200 m depth in the North Atlantic.
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Fig. 9. The German developed Rochelle salt based Gruppen
Horch Gerat GHG hydrophone used as an element in
receiving arrays. (1) Housing, (2) membrane, (3) Rochelle
salt element, (4) back mass, (5) electric connectors, and
(6) cable. These hydrophones were carefully vibration iso-
lated, and they were flush mounted to a ship’s hull with
close tolerances. 
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Sound from the explosion would be refracted back to
the channel axis and the propagation would only be
influenced by cylindrical spreading. The signals would
then be picked up by hydrophones positioned on the
channel axis at various positions off the continental
shelves, making it possible by comparing arrival times
for the signals to find the position of the source. Not
only Maurice Ewing in the USA, but also Academician
L.M. Brekhovskikh in the USSR was studying the under-
sea sound channel, and in the years just after the war he
discovered the existence of the sound channel in the
Pacific Ocean by analyzing signals received from under-
water explosions in the Sea of Japan.

Ewing, together with J.L. Worzel and several other
colleagues at Woods Hole Oceanographic Institute,
also studied long-distance sound propagation in shal-
low water. Based on their data, Chaim Pekeris con-
structed his normal mode propagation theory. The con-
cept of elastic wave propagation has allowed underwa-
ter acousticians to model and understand the complex
acoustics of shallow water. Ewing and Worzel’s
research also formed the basis of a series of seabed geo-
logic structure studies performed mostly in shallow
water off the East Coast of the USA. The cooperation
established between Ewing’s group at Columbia Uni-
versity and the scientists at Woods Hole Oceanographic
Institute turned out to be most fruitful for underwater
seismology investigations. The “refraction method”
and the “continuous seismic profiler” were results of
this cooperation.

A group around C.F. Eyring in San Diego, USA, had
observed that diffuse echoes were received from the
volume of the water column. These echoes were
arranged roughly in horizontal layers whose depths
were of the order of 400 m at noon, but they migrated to
the surface during the twilight and the early evening. At
dawn, they migrated downward to complete a daily cycle.
Based on help from marine biologists it was possible to
show that the responsible scatterers were small planktonic
fish that have a swim bladder and living in the deep water
regions of the oceans. The research into the “deep scatter-
ing layers” peaked during the period 1949–1957. Impor-
tant contributions to marine bioacoustics were produced
during the subsequent years.

These years also brought important research results
related to sound absorption mechanisms in the sea and
related to sources and spectra of ambient noise.

The comprehensive research and development
efforts in underwater acoustics up to 1960 and the
development in computer technology after 1960
formed the basis for the nearly explosive development
in underwater acoustics from 1960 until today. Among
the main trends in underwater acoustics research and
development are underwater sound propagation model-
ing involving mode theory, parabolic equations, and
finite element methods to include realistic range depen-
dence and surface and bottom effects, reverberation
studies, and ambient noise directivity studies; underwa-
ter acoustical tomography including the international
Acoustic Thermometry of the Ocean Climate (ATOC)
studies; and the coupling between acoustics, oceanog-
raphy, and meteorology to lead to long term reliable
weather forecasts, acoustical studies of biomass in the
sea, and extensive bottom and subbottom studies for the
exploitation of minerals, oil, and gas, as well as for
cable and tube laying.

CONCLUSIONS

The development over 2300 years in underwater
acoustics has shown an exponential trend. The impor-
tance of the impact of underwater warfare and military
applications on the development in underwater acous-
tics is obvious, and this close relationship has fre-
quently given underwater acoustics a heavy military
element, which has sometimes overshadowed the many
important civilian applications of underwater acoustics
research results. However, the substantial civilian
research and development efforts funded by the EU
through several Marine Science and Technology
(MAST) programs and by science foundations in many
countries outside the EU have contributed to the devel-
opment of large-scale research in underwater acoustics
and to meeting the grand challenges of the world’s
oceans. The use of autonomous underwater vehicles for
underwater acoustic studies of long term ocean effects
and for operations in difficult accessible and hostile
environments of the deep seas is only in its starting-up
phase, broadband transducer technology and intelligent
sensors will bring us new knowledge in the future, and
the interest among scientists to use sound for investiga-
tions of the sea has never been higher. All this points to
increasing research and development activity in under-
water acoustics in the time to come, exploiting the valu-
able broad basis of knowledge in underwater acoustics
created over more than two millennia.
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Abstract—Kirchhoff’s theory of plates is used to study forced harmonic vibrations of a semi-infinite strip when
the latter is in the generalized stressed state or experiences flexural deformation. The forced vibrations are
excited by a load applied to the strip end. Cross-boundary conditions are imposed on the strip’s sides, which
allows one to obtain a closed solution. The presence of an infinite real frequency spectrum corresponding to the
edge resonances is revealed. The relation of these resonances to the Rayleigh planar and flexural waves is estab-
lished. © 2003 MAIK “Nauka/Interperiodica”.
The edge resonance effect was first discovered in
experimental studies of vibrations of a circular disk [1].
Paper [1] initiated a series of publications on the edge
resonance in a semi-infinite strip with free edges [2, 3,
etc.]. These works indicated that the edge resonance in
a semi-infinite strip is damped by the propagating
modes. A resonance with an amplitude tending to infin-
ity was described in [4], where it was shown that, in a
material with a zero Poisson ratio, coupling between
propagating and evanescent waves vanishes and, in the
framework of the model of a perfectly elastic body, the
amplitude of vibrations tends to infinity at the fre-
quency of the first edge resonance if the strip is excited
at its end by a self-balanced load.

We assume that cross-boundary conditions are satis-
fied at the strip sides, which allows the separation of
variables. In this case, there is no damping of the edge
resonance of any index by the propagating modes,
whatever value the Poisson ratio takes. We use Kirch-
hoff’s theory of plates to study the planar vibrations of
a semi-infinite strip in a generalized planar stressed
state, as well as its flexural vibrations. For each of these
problems, equations for the resonance frequencies are
derived and shown to correspond to the dispersion rela-
tions for the Rayleigh surface waves. In the first case,
this is the classical Rayleigh wave extended to the case
of the generalized planar stressed state; in the second
case, the flexural Rayleigh wave first obtained in [5].
It is established that the above edge resonances are
caused by the accumulation of the energy of surface
waves. Each of these cases is illustrated by a numeri-
cal example.

Free oscillations of a semi-infinite strip with
cross-boundary conditions imposed on its sides were
1063-7710/03/4901- $24.00 © 0031
first considered in [6]. The eigenfrequencies obtained
there coincide with those obtained by us. The problem
considered in [6] played an important part in the asymp-
totic study of free edge vibrations of shells [7, 8].

1. GENERALIZED PLANAR STRESSED STATE

Consider a thin plate of thickness 2h whose middle
surface lies in the xy plane in the region (0 ≤ x < ∞,
|y | ≤ b) (Fig. 1). Vibrations are excited in the plate by a
load applied to its end. Assume that the plate is in a gen-
eralized planar stressed state. Vibrations of a plate are
then described by the following equations in the dimen-
sionless coordinates x1 = πx/b and y1 = πy/b:

(1.1)
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2
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2
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Fig. 1.
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where

λ is the dimensionless frequency parameter, ω is the
circular frequency, E is the Young modulus, ν is the
Poisson ratio, and u1 and v 1 are the dimensionless dis-
placements. The time dependence of vibrations is taken
to obey the law exp(iωt).

Assume that the load is applied normally to the plate
end and is described by the following boundary condi-
tions at x1 = 0:

(1.2)

At the strip sides y1 = ±π, the cross-boundary condi-
tions are imposed:

(1.3)

Consider the case when the load is symmetric about
y1 = 0. Let us represent the boundary values of the nor-
mal stress as the Fourier series

(1.4)

and seek the displacements u1 and v 1 in the form

(1.5)

It can easily be seen that representations (1.5) satisfy
boundary conditions (1.3). By substituting Eqs. (1.5)
into Eqs. (1.1), we obtain the system of ordinary differ-
ential equations for the functions un(x1) and v n(x1):

(1.6)

λ ρω2

E
---------b

2

π2
-----, ν2 1 ν2

, u1–
u
b
---, v 1

v
b
----,= = = =

∂u1

∂x1
-------- ν

∂v 1

∂y1
---------+ f y1( ),

∂u1

∂y1
--------

∂v 1

∂x1
---------+ 0.= =

v 1
∂u1

∂y1
-------- 0.= =

f y1( ) an ny1cos
n 0=

∞

∑=

u1 un x1( ) ny1,cos
n 0=

∞

∑=

v 1 v n x1( ) ny1.sin
n 1=

∞

∑=

d
2
un

dx1
2

----------
1 ν–

2
------------n

2
un–

1 ν+
2

------------n
dv n

dx1
--------- ν2λun+ + 0,=

–
1 ν+

2
------------

dun

dx1
-------- 1 ν–

2
------------

d
2
v n

dx1
2

----------- n
2
v n– ν2λv n+ + 0=

Table 1.  Resonance frequencies of planar vibrations of the plate

n 1 2 3 4 5

ω0 0.568 1.136 1.705 2.273 2.841
with the boundary conditions imposed at x1 = 0:

(1.7)

The general solution to system (1.6) can be repre-
sented as

(1.8)

where

(1.9)

By satisfying boundary conditions (1.7), we obtain

(1.10)

where

(1.11)

Thus, the solution to the problem has the form

(1.12)

Clearly, the resonance frequencies of the problem
correspond to zero values of the function D. The equa-
tion

D = 0 (1.13)

can be reduced to an equation for the phase velocity of
the Rayleigh waves for the case of the general planar
stressed state. Dividing it by n4/4 and using the nota-
tions

we arrive at the equation
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which coincides with the equation for the phase veloc-
ity of the Rayleigh wave accurate to the value of the
longitudinal wave velocity c1. The first five resonance
frequencies at ν = 0.3 are listed in Table 1, where ω0 =

.
As an example, consider vibrations of the semi-infi-

nite strip excited by the load

(1.15)

where σ0 is a dimensionless constant factor. For func-
tion (1.15), the coefficients of expansion (1.4) have the
form

(1.16)

Figure 2 shows the displacement amplitude u1 at the
point (0, 0) versus frequency at σ0 = 1. Figures 3 and 4
illustrate the energy distribution in the planar Rayleigh
wave. The solid line in Fig. 3 shows the displacement
u1 versus x1 at y1 = 0 in the vicinity of the third reso-
nance frequency (ω0 = 1.703). The dashed line shows
the zero-order term of series (1.12); the dot-and-dash
line represents the third-order term. Figure 4 shows the
same quantities at ω0 = 1.673.

2. FLEXURAL VIBRATIONS

Consider forced flexural vibrations of the semi-infi-
nite strip illustrated in Fig. 1. Introduce the dimension-
less parameter

(2.1)

Then, in the framework of the theory of Kichhoff’s
plates, the equation of motion (Germin’s equation)
takes the form

(2.2)

where

w1 is the dimensionless deflection, and ∆ is the Lapla-
cian operator. Let the vibrations be excited by the bend-
ing moment

(2.3)

λ

f y1( ) σ0 1
y1

2

π2
-----–

 
 
 

,=

a0
2
3
---σ0, an

4σ0

π2
--------- 1–( )n 1+

n
2

-------------------.= =

η hπ
b

------.=

1
3
---η2∆2

w1 ν2λw1– 0,=

w1
w
b
----, ∆ ∂2

∂x1
2

--------
∂2

∂y1
2

--------,+= =

∂2
w1

∂x1
2

----------- ν
∂2

w1

∂y1
2

-----------+ f y1( ),=

∂3
w1

∂x1
3

----------- 2 ν–( )
∂3

w1

∂x1∂y1
2

-----------------+ 0=
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
at the strip’s end x1 = 0, and let the hinge-support
boundary conditions

(2.4)

be imposed at its sides y1 = ±π. We expand the load into

w1
∂2

w1

∂y1
2

----------- 0= =

0.5 1.0 1.5 2.0 2.5 3.0
ω0

0

2

4

6

8

10
|u1|

Fig. 2. Displacement amplitude u1 versus frequency.
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Fig. 3. Displacement u1 in the vicinity of the third reso-
nance frequency.
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Fig. 4. Displacement u1 far from the third resonance fre-
quency.
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a trigonometric series assuming that the function f(y1)
is symmetric about y1 = 0:

(2.5)f y1( ) an γny1, γncos
n 1=

∞

∑ 2n 1–
2

---------------.= =

Table 2.  Resonance frequencies of flexural vibrations of the plate

n 1 2 3 4 5

ω0 0.015102 0.135918 0.377549 0.739997 1.223260
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Fig. 5. Deflection amplitude versus frequency.
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Fig. 6. Deflection in the vicinity of the second resonance
frequency.
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Fig. 7. Deflection far from the second resonance frequency.
Represent the deflection as

(2.6)

and impose boundary conditions (2.4).
The differential equation and the boundary condi-

tions for the function wn(x1) have the form

(2.7)

(2.8)

Let us write the general solution to Eq. (2.7):

(2.9)

From boundary conditions (2.8), we obtain

(2.10)

where

(2.11)

The solution to the problem has the form

(2.12)

The resonance frequencies of the problem corre-
spond to the roots of the equation D = 0, which can be
expressed explicitly as

(2.13)

It can be shown that relationship (2.13) corresponds to
the dispersion relation of the flexural Rayleigh wave
[5]. Table 2 lists the first five resonance frequencies at
ν = 0.3 and h/b = 0.1π–1.

Let the bending moment applied at the end vary as

(2.14)

Then, the expansion coefficients in series (2.5) take the
form

(2.15)

Figure 5 presents the deflection amplitude at the
point with the coordinates (0, 0) versus the frequency at

w1 wn x1( ) γny1,cos
n 1=

∞

∑=

1
3
---η2 d

4
wn

dx1
4

----------- 2γn
2d

2
wn

dx1
2

-----------– γn
4
wn+

 
 
 

ν2λwn– 0,=

d
2
wn

dx1
2

----------- νγn
2
wn–  = an,

d
3
wn

dx1
3

----------- 2 ν–( )γn
2dwn

dx1
---------–  = 0.

wn x1( ) C1 r1x1–( )exp C2 r2x1–( ),exp+=

r1 2, γn
2 λ 1/2η1

1–
+− , η1 η / 3ν2.= =

C1 an

r2s1

D
---------, C2– an

r1s2

D
---------,= =

D r1s2
2

r2s1
2
, s1 2,– 1 ν–( )γn

2 λ 1/2η1
1–
.+−= =

w1

an

D
----- r2s1 r1x1–( )exp–(

n 1=

∞

∑=

+ r1s2 r2x1–( )exp ) γny1.cos

λn η1
2γn

4
1 ν–( ) 3ν 1– 2 1 ν–( )2 ν2

++( ).=

f y1( ) M0 1
y1

2

π2
-----–

 
 
 

.=

an

4M0

π3
---------- 1–( )n 1+

γn
3

-------------------.=
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003



RESONANCES OF THE RAYLEIGH WAVES IN AN ELASTIC SEMI-INFINITE STRIP 35
M0 = 1. Figure 6 shows the deflection (the solid line)
versus the coordinate x1 at y1 = 0 in the vicinity of the
second resonance frequency ω0 = 0.135915. The
dashed line represents the first-order term of series
(1.12), and the dot-and-dash line, the second-order term
of this series. Figure 7 shows the same quantities for
ω0 = 0.1358.

Note that the resonance phenomena considered
above should also be observed in anisotropic plates,
because they support similar surface waves (see, e.g.,
[9, 10]).
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Abstract—A method is developed for solving the problem of sound scattering by concentrated inhomogene-
ities in a waveguide of small depth in the presence of internal waves (IW) typical of an oceanic shelf. The sound
field fluctuations related to the motion of a model scatterer (a soft spheroid) and to the propagation of the IW
are calculated and analyzed. It is shown that the field of internal waves considerably affects the scattered
sound field even when the source–receiver and source–scatterer distances are relatively small (about several
kilometers). This effect depends not only on the amplitude of the IW, but on their propagation direction as
well. © 2003 MAIK “Nauka/Interperiodica”.
In view of its applied significance, the investigation
of the small-angle scattering (diffraction) of sound
waves in plane-layered waveguides is one of the urgent
areas of development of wave theory. Some approaches
to the solution of this problem are presented in a series
of publications [1–7]. In particular, the expansion of the
incident and scattered fields in the waveguide modes
for a waveguide without a scatterer is used in [3, 5, 6].
The possibility of obtaining analytically closed expres-
sions in the framework of this approach is related to the
assumption that a scatterer is small compared with typ-
ical scales of medium variability. This allows one to
consider separately the sound propagation in the
waveguide and the scattering by the object. In its turn,
such an approach allows one to obtain expressions for
the scattered field by using the data on the scattering by
the object located in a homogeneous boundless space.
Although the basic results obtained in papers [5, 6] are
presented for regular channels, they evidently can be
generalized to the case of a smooth (adiabatic) variation
of the waveguide parameters. In others words, in the
framework of this approach, the single reason for sound
scattering (in a waveguide, this is equivalent to mode
transformations) is a scatterer (a localized inhomogene-
ity). However, to take into account the real properties of
the medium, one has to consider other mechanisms of
mode transformation in addition to the sound scattering
by localized inhomogeneities. It is clear that this fact
complicates the pattern of the sound diffraction in a
waveguide, which imposes certain limitations on the
field calculations. In particular, the problem of sound
scattering by a body in a randomly inhomogeneous
1063-7710/03/4901- $24.00 © 20036
oceanic waveguide was considered in [7]. The com-
bined effect of a randomly inhomogeneous medium
and a scatterer on the sound field was considered in the
framework of the small-angle transfer equation for the
propagation and the Kirchhoff approximation for the
diffraction of sound. This approach made it possible to
determine the statistical characteristics of the scattered
sound field.

However, in the cited paper [7], the statistical char-
acteristics were analyzed only for the scattered field Ps

but not for the total field P1 = P0 + Ps at the point of
reception, where P0 is the incident field. In reality, we
always observe the total field and, in this case, temporal
fluctuations of the field P1 are caused by the variations
of Ps due to the motion of the scatterer and by the
changes in the direct and scattered fields because of the
fluctuations of the parameters of the medium. This
paper is devoted to the analysis of the total field with
consideration of the effect of the fluctuations of the
parameters of the medium on the direct and scattered
fields.

The fluctuations of the medium in oceanic
waveguides with typical times comparable with the
variations of Ps are mainly related to the presence of
internal waves. However, the realizations of the internal
waves described by the Garrett–Munk model (consid-
ered in [7]) are not the only possible ones for such
waveguides. Such realizations are typical only for the
deep ocean. In this paper, we consider examples of
solving the diffraction problems in the presence of the
internal waves typical of shallow water areas [8]. In this
003 MAIK “Nauka/Interperiodica”
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case, the deterministic approach is quite admissible for
describing the waveguide perturbations [6]. Note also
that the method used below for solving the diffraction
problems allows one to analyze the fluctuations of the
sound field P1 for scatterers with small wave dimen-
sions (compared to the sound wavelength). Such
scatterers are, e.g., large sea animals of the whale
family [9].

Let a waveguide be formed by a water layer with the

squared refractive index n2( , z, t) = ( , z) + µ( , z, t),

where  is the horizontal radius vector of a point with

the coordinates (x, y); t is time; and ( , z) corre-
sponds to an average layer stratification described by

the sound velocity c( , z), the density ρ(z), and the per-

turbation µ( , z, t) of the acoustic properties of the
layer due to the internal wave packet. The problem is
solved in the coordinate system related to the
waveguide (the xy plane coincides with the sea surface
and the z axis is directed vertically downward). The
water layer is bounded in depth by the free surface z =
0 and by a homogeneous absorbing half-space repre-

senting the bottom at z = H( ). The half-space is char-
acterized by the density ρ1 and the squared refractive

index  = (1 + iα), where α is determined by the
absorbing properties of the bottom.

The spatial and temporal variations of µ( , z, t) are
determined by the relationship [10]

(1)

Here, N(z) = {(g/ρ)(dρ/dz)}1/2 is the frequency of buoy-
ancy, g is the gravitational acceleration, Q ≈ 2.4 s2/m is
a constant determined by the physical properties of
water, and ζ represents the vertical displacements of the
water layers. The latter quantity is expressed as

(2)

where (z) is the amplitude of the first gravitation
mode of internal waves (IW) normalized by its maxi-

mal value,  is the speed of motion of the IW packet,

and ζ0(  – ) represents the vertical displacements of
the surface of the constant density at a depth where the

function (z) is maximal. (The predominance of the
first gravitational mode in the modal expansion of IWs
is typical of shallow water.) Figure 1 shows the average
equilibrium depth dependences of the sound velocity
profile c(z), the frequency of buoyancy N(z), and the

function (z) obtained from the experimental data [8]
that are used in our calculations. According to Eq. (2),
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the wave fronts of the IW packet are assumed to be
plane, which adequately describes the real IWs (the
length of an almost plane IW front can be 20 to 30 km).
In others words, Eq. (2) reflects the well known exper-
imental fact that the sound velocity field in the presence
of IWs in a shallow sea is anisotropic. This leads to the
dependence of the sound velocity fluctuations (the
refractive index) and, hence, acoustic fluctuations on
the orientation of the sound propagation track, or, more
precisely, on the angle between the track and the direc-

tion of the speed  in the framework of our assumption
about the rectilinear character of the wave fronts. It is
clear that the changes in the refractive index are most
sharp when the acoustic track is directed almost at right
angle to the wave fronts of the IWs. The typical scales
of the spatial variability in this case can be ~200–400 m.
At such distances, the sound velocity in the thermocline
region can vary by 20–30 m/s. In this case, the mode
interactions at distances of the order of several kilome-
ters can be significant and must be taken into account
together with the sound scattering by a localized inho-
mogeneity. However, our analysis will be carried out on
the assumption that we may separate the processes of
the sound propagation in the waveguide (even with
allowance for the mode transformations) and the scat-
tering by the object. In our case, it is possible, because
the typical scales of the mode transformation (i.e., the
distance at which a change in the modal composition
becomes noticeable) are of several kilometers, which
far exceeds the size of the scatterer.

Let us assume that the source is at the point ( , z0),

where  = (0, 0). In this case, the field P0( , z) at an

arbitrary point ( , z) in the sound channel that is irregu-
lar due to the presence of internal waves can be repre-
sented as the superposition of the interacting local
modes (normal waves) of the channel [10]:
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Fig. 1. Average depth dependences of the sound velocity
c(z), the frequency of buoyancy N(z), and the first gravita-
tional mode (z).Φ
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(3)

Here, ψl( ; z) and ξm = qm + iγm/2 are the local eigen-
functions and the eigenvalues of the unperturbed
Sturm–Liouville boundary-value problem (note that
the Sturm–Liouville problem is formulated differently,
depending on the orientation of the sound propagation
track), M is the number of the energy modes in the

channel, and Cm( , ) are the modal amplitudes varied
in the course of the propagation. Generally speaking,
the integration in Eq. (3) is performed along a horizon-
tal curvilinear (due to the horizontal refraction) ray Km

connecting the source and the point where the field is
calculated. This ray corresponds to the vertical mode of
number m. The time dependence in Eq. (3) and in fur-
ther expressions for the field is omitted. In connection
with relatively slow variations of the medium and the
scatterer position (as compared to the times of the
sound wave propagation), the problem is solved on the
assumption of a frozen time; in other words, the time t
is a parameter that is not involved explicitly in the cal-
culations.

The variation of the modal amplitudes Cm( , )
along such a ray characterized by the current coordinate
s is determined by the equation of the interacting
modes:

(4)

P0 r z,( ) i
8π
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Fig. 2. Geometry of scattering: U is the source, R is the
receiver, and S is the model scatterer.

rr
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rs

v

with the initial conditions for Cm( , ) that are deter-
mined by source type. In particular, for a point sound
source of the power W, the initial conditions have the
form

(5)

The interaction coefficients in these equations are
determined by the decomposition of the problem into
an unperturbed part and a perturbation. In particular,
when analyzing the sound propagation almost at right
angles to the wave fronts of the IWs, the local modes
are determined by the Sturm–Liouville problem

(6)

,

where k = 2πf /c is the wave vector corresponding to
the sound velocity c at a certain depth and f is the
sound frequency.

The perturbation responsible for the mode interac-
tions in the case of the given direction of propagation is
described by the variation of the refractive index (1).
Then, the mode interaction coefficients in Eq. (4) have
the form

(7)

In general, in calculating the sound field at an arbi-
trary point, the equations of interacting modes (4) are
numerically integrated from the source to the given
point along the corresponding horizontal ray. In this
paper, we consider only the cases when the changes of
the vertical displacements that are caused by the IWs

propagating at right angles to the vector  are small
and the horizontal refraction may be ignored. This
means that the integration in Eq. (3) can be performed
along this vector also in the case of the numerical
solution of Eq. (4).

Consider next the solution of the diffraction prob-
lem (see Fig. 2). Assume that a scattering body moves

in a waveguide with the constant speed  along a direct
line at a constant depth. The position of the body at the
instant t is determined by a conditional point connected

with the body and called “the center of the body” ( (t),
zs). The acoustic track (the direct line connecting the
source and the receiver) coincides with the x axis. Let
this body cross the acoustic track under the angle . To
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Fig. 3. Vertical displacements of liquid particles due to the internal waves.
calculate the sound field P0( , zr ) arriving at the

point of reception without scattering, the field Pi( , zs)

incident on the body, and the scattered field Ps( , zr )
at the point of reception, we use expressions similar to
Eq. (3):

(8)

(9)

(10)

where the integration is carried out along the corre-
sponding direct lines: K between the source (0, z0) and

the reception point ( , zr), K ' connecting the points

with the coordinates ( , z0) and ( , zs), and K '' con-

necting the points ( , zs) and ( , zr). The modal ampli-

tudes ( , ), ( , ), and Cµ( , ) are also
found from the solution to the system of equations (4),
and these equations are integrated along the same direct
lines K, K ', and K '', respectively.
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The initial conditions for the modal amplitudes

( , ) and ( , ) in Eqs. (8) and (9) are
determined from Eq. (5). To write the initial conditions

for the amplitudes Cµ( , ), we use the results of our
previous paper [6], where the expression for the matrix
Sµm is obtained. The latter determines the scattering of
the mth normal wave of the incident field into the µth
normal wave of the scattered field:

(11)

where

(12)

Here,  = , σm = ,

k is the wave number, F( , ) is the scattering ampli-

tude of the body in free space, and  and  are the
wave vectors of the incident and scattered plane waves
corresponding to the waveguide modes.

Consider now some numerical examples of the solu-
tions of the diffraction problem using the above-men-
tioned relationships for the direct P0 and scattered Ps

sound fields at the point of reception. Assume that a
model waveguide has the average depth dependences
c(z) and N(z) shown in Fig. 1, its depth being H = 60 m,
and the bottom parameters being ng = 0.829, ρ1 =
2 g/cm3, and α = 0.02. Assume also that the IW packets
propagate in such a waveguide with the speed u =
0.2 m/s. These packets generate vertical oscillations of
liquid particles at a depth of 33.5 m (Fig. 3). (The
model packets of IWs were formed on the basis of the
experimental data given in [8].) In the numerical exper-
iments, we used a soft spheroid of length L = 10 m and
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Fig. 4. Sound field variations due to scattering by a moving soft spheroid: (a, d) in the absence of internal waves, (b, e) in the case
of the longitudinal propagation of internal waves, and (c, f) in the case of the transverse propagation of internal waves.
diameter D = 3 m as a scattering body. The sound veloc-
ity in the spheroid body was cs = 1540 m/s and the den-
sity of the spheroid was ρs = 1.05 g/cm3 (the spheroid
with such dimensions and acoustic properties models a
grey whale [9]). It was assumed that the spheroid
moves with the speed v = 1 m/s at the depth zs = 20 m
and crosses the acoustic track between the stationary
sound source and the vertical chain of receivers at a right
angle (  = 90°). The length of the stationary track was
r = 10 km. A source of power of 20 W generated a cw
signal with the frequency f = 300 Hz. In the calculations
of the field scattered by the soft spheroid, the scattered
field amplitude was chosen in the following form [11]:

(13)
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where , ,  and  are the angles in the spher-
ical system of coordinates, which determine the direc-

tions of the wave vectors  and ; εn =  is

the Neumann symbol; Snl, ,  are the prolate
angular and radial spheroidal functions of the first and
third kinds (the primed radial functions mean the deriv-

atives with respect to ϑ); χs =  (ks = 2πf/cs);

ms = ρs/ρ(zs), χ = (k/2)  (k = 2πf/c(zs)); and

ϑ = L/ .

Taking into account the strong horizontal anisotropy
of the IWs in shallow water and the characteristics of
the sound fields connected with this anisotropy [8, 10],
two possible situations of the internal wave propagation
were analyzed in the numerical modeling: along and
across the stationary track. When the internal wave
moves from the receiver to the source, we assumed that
the distribution ζ(x) along the track at the initial instant
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Fig. 5. (a) Autocorrelation coefficient of the signal K0(τ) = B1(τ)/B1(0) and the cross-correlation coefficient K(τ) of the signals in
the cases of the (b) longitudinal and (c) transverse propagation of the internal waves.
of time corresponds to that shown in Fig. 3 (the interval
0–10 km). When integrating system (4), we took into
account the dependence of the coefficients of mode
interactions on the angle between the direct lines K ' and
K '' and the acoustic track, which vary as the scatterer
moves. When the internal waves propagate across the
stationary track, the IW front is assumed to be plane
over the whole track length; i.e., the oscillations of the
particles of liquid occur synchronously along the whole
track. The displacement ζ(y) across the track at the ini-
tial instant of time was chosen so as to correspond to
that within the track part from 3740 to 5250 m (Fig. 3).
Note also that, for such a model of transverse perturba-
tions of the waveguide, the calculation technique was

simpler, because the eigenfunctions ψl( ; z) were con-
structed with allowance for perturbation (1) caused by
the IWs. This perturbation was also included in Eq. (6).

(Instead of the average refractive index n0( , z), Eq. (6)

is now written for n( , z, t) depending on time as a
parameter.) In this case, the coefficients Vml for such
modes in Eq. (4) are equal to zero.

The results of the numerical experiments for the
depth of reception zr = 25 m are shown in Fig. 4. Fig-
ures 4a–4c present the time dependence of the quantity
dPs = |Ps + | – | |, where  is the average value of
the direct field within the numerical experiment. Fig-
ures 4d–4f demonstrate the variations of dP1 = |Ps + P0| –

r

r

r

P0 P0 P0
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| |. Figures 4a and 4d correspond to the situation
when the internal waves are absent (in fact, these fig-
ures show the same dependence but on different scales
along the vertical axis). Figures 4b and 4e refer to the
longitudinal propagation of the IWs, and Figs. 4c and
4f, to the transverse propagation. As illustrated, the
internal waves noticeably affect the fluctuations of the
direct and scattered sound fields, and for the transverse
propagation this effect is much greater, despite the fact
that, in modeling the transverse propagation, we chose
a piece of the IW realization (Fig. 3) with relatively
small amplitudes. It is also significant that, in the case
of the transverse propagation, the frequency of fluctua-
tions is higher, which agrees with the previous results
[8]. In general, it is important to note that the fluctua-
tions of the direct field are so large that the received
field variations related to the motion of the scatterer are
almost invisible against their background (see Figs. 4e
and 4f). This situation takes place despite the evident
differences in the characteristic frequencies of the
sound field variation. As seen in Fig. 4, the model scat-
terer causes variations of higher frequency.

Analyzing only high-frequency1 (above 0.0067 Hz;
at higher frequencies, the fluctuations of the direct field
in the longitudinal propagation of the IWs are almost
absent) variations of the sound field at the point of

1 For high-frequency filtering of the dependence dP1(t), we used
the Batterworth filter of the eighth order.

P0
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reception, we compare them with and without the inter-
nal waves by using the correlation criterion:

. (14)

Here, B(τ) is the envelope of the cross-correlation
function of filtered signals dP1(t ) with and without
IWs (the technique for selecting the envelope of the
cross-correlation function using the quadrature com-
ponents of the signals is described, e.g., in the mono-
graph [12]), and B1(τ) and B2(τ) are the autocorrela-
tion functions of the filtered signals in the absence and
presence of IWs, respectively. The angular brackets
mean the averaging over the depth of reception. Here
in the calculations, the receivers were assumed to be
located at depths from 5 to 55 m at a step of 5 m. The
dependences K(τ) for the different cases are presented
in Fig. 5. As seen from this figure, for the longitudinal
propagation of internal waves, an appreciable correla-
tion exist between the signals in the presence of the
IWs and without them. For the transverse propagation,
the internal waves almost totally destroy the above-
mentioned correlation.

In closing, we emphasize that the results obtained
testify to the significant effect of the field of internal
waves on the scattered sound field even for relatively
small (several kilometers) distances between the source
and the receiver and between the source and the scat-
terer. In a shallow-water sound channel, this effect
depends not only on the amplitudes of the IWs but also
on the direction of their propagation.

K τ( ) 2
B τ( )〈 〉

B1 0( )〈 〉 B2 0( )〈 〉+
---------------------------------------------=
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Abstract—The pattern equations method is extended to solving the problems of wave scattering by bodies with
piecewise smooth boundaries. The method is based on the reduction of the initial boundary-value problem to
an integro-operator equation of the second kind in the scattering pattern of a body. With the use of the series
expansion of the scattering pattern in angular spherical harmonics, the problem is ultimately reduced to solving
an infinite algebraic system of equations in the expansion coefficients of the scattering pattern. The conditions
at which this system can be solved by the method of reduction are formulated. Examples of solving the prob-
lems of wave scattering by bodies with impedance boundaries are considered. Essential advantages of the pro-
posed method over other known methods are demonstrated. © 2003 MAIK “Nauka/Interperiodica”.
The three-dimensional problem of wave scattering
by a body of limited size is categorized as a classical
problem of the theory of diffraction [1, 2]. Its solution
in the region of resonance frequencies, in which case
the size of the body is about the wavelength of the inci-
dent field, encounters severe computational difficulties
[3]. If the boundary of the scatterer is broken, the diffi-
culties become still greater. For example, in the strict
sense, the widely used method of auxiliary (or discrete)
sources [4], which is very convenient from the compu-
tational standpoint, is inapplicable to this kind of prob-
lem, because, by the theorem of existence [5], the car-
rier of auxiliary currents must encompass the singular-
ities of the diffraction field, while, in the situation under
consideration, some singularities will exist at the
boundary of the scatterer. It is clear that rounding off
the edges will not change the situation fundamentally.

When the problems of wave scattering are solved
with the use of such a universal method as the method
of integral equations for the field at the body boundary
[6], the corresponding algebraic systems, even in the
two-dimensional case, have orders of about 10–20 kd,
where d is the characteristic size of the body [6]. In the
three-dimensional case, the order of the system will
obviously be proportional to the square of the above
order, and the presence of breaks of the boundaries will
undoubtedly make the algorithm more difficult.

The pattern equations method (PEM) suggested in
[7, 8] is characterized by a much higher degree of con-
vergence, and this degree only slightly depends on the
geometry of the scatterers. For example, the use of this
method for solving the problem of scattering by an
oblate spheroid [9] showed that, even for a spheroid
with an axis ratio of 40 : 1, the degree of convergence
of the computational algorithm was nearly the same as
1063-7710/03/4901- $24.00 © 200043
in the problem of scattering by a sphere of the same
diameter. In our opinion, this occurs, because, when
solving the scattering problems with the use of the
PEM, one directly considers the scattering pattern [i.e.,
some (stationary) functional of the field distributed
over the scatterer’s surface] as the desired quantity. As
a result, the fast field components, whose correct
approximation requires the use of higher harmonics,
are smoothed out by the integration, which finally
results in a considerable reduction in the amount of cal-
culation required for a fixed accuracy.

This paper extends the approach suggested in paper
[8] to the case of impedance boundary conditions. In
addition, we show that the method remains highly effi-
cient even in the case when the scatterer has a broken
boundary.

PROBLEM FORMULATION AND SOLUTION

Consider the following boundary-value problem:

, (1)

(2)

where u1 is the velocity potential of the scattered sound
field; u = u0 + u1 is the velocity potential of the total
field; u0 is the velocity potential of the primary, or inci-

dent, field; k = , W = ; c is the sound velocity; ρ is

the density of the medium; Z is the local acoustic
impedance that is constant at the boundary S of the scat-
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terer; and  denotes the differentiation in the direc-

tion of the external normal to surface S.

In addition to Eqs. (1) and (2), the function u1 must
satisfy the radiation condition [2]

(3)

For brevity, in what follows we will call the function u1

simply the wave field or the diffraction field.

In accordance with condition (3), the following
asymptotic equality holds in the so-called wave zone
(i.e., in the region r @ d):

(4)

Here, g(θ, ϕ) is the scattering pattern. Taking into
account boundary condition (2), the following repre-
sentation for the function g in the spherical coordinate
system may be obtained:

(5)

where

(6)

and r = R(θ, ϕ) is the equation of the surface S.

The wave field is representable in the following
form [10]:

(7)

∂
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where (α, β; θ, ϕ) is determined as

(8)

Here,

where

and

is the rotation matrix that brings the z axis of the coor-
dinate system in coincidence with the direction toward
the observation point.

Representation (7) makes it possible to determine the
function u1 everywhere in R3 \ , where  is the convex
envelope of singularities of the wave field u1(r, θ, ϕ).
Using Eqs. (5)–(7), we can obtain, by analogy with [8],
the following integro-operator equation of the second
kind for the scattering pattern:

(9)
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In this equation, g0(α, β) is the known function deter-
mined by Eq. (5), in which the function v (θ, ϕ) should
be replaced with

Equation (8) is solvable under the condition that

where  is the region occupied by the scatterer, includ-
ing the boundary.

In the particular case of a spherical scatterer (R(θ, ϕ) =
a ≡ const), Eq. (9) takes the form

(10)

Equation (10) can be solved, in particular, with the use
of an iterative method. Carrying out simple but cumber-
some calculations, we obtain

(11)

Expression (11) coincides with the known solution for
an impedance sphere. Series (11) converges abso-
lutely for any value of the parameter ka; therefore, it
can be used for constructing asymptotic solutions (for
ka @ 1) [7].

In the general case of a nonspherical scatterer, one
can also solve Eq. (9) using an iterative method; how-
ever, in this case, the solution cannot be represented in
closed analytical form. For this reason, we consider
another way of solving Eq. (9); namely, we reduce it
to a system of algebraic equations. For this purpose,
we use a generalized Fourier series expansion of the
pattern

(12)

From Eq. (8), we have
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where

and (cosθ) are the generalized Legendre functions
[10].

Substituting Eqs. (12) and (13) into Eq. (9) and
using the relationship [11]

we obtain the following system of algebraic equations
in the coefficients anm:

(14)

Here,

(15)

The free terms  are the expansion coefficients of the
known function g0(α, β):

An important advantage of system (14) is the fact
that its matrix elements, as can be seen from Eq. (15),
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are expressed through integrals whose multiplicity is
twice as small as those in widely used methods such as
the method of integral equations for the field on the
body’s surface and the method of moments. In addition,
as we will see below, the method of reduction, which is
used for solving system (14), is characterized by a high
degree of convergence, and this degree only slightly
depends on the scatterer geometry.

In the cases of W = 0 (an acoustically soft body) or
W = ∞ (an acoustically hard body), the initial boundary-
value problem takes the form of a Dirichlet or Neu-
mann problem, respectively. In both cases, the alge-
braic system retains form (14), and one can show that
the following relationships are valid:

(16)

The notations are evident. These relationships between
the elements of the algebraic systems for the Dirichlet
and Neumann boundary-value problems are very con-
venient from the computational standpoint.

If the scatterer is a body of revolution, i.e., if R(θ, ϕ) =
R(θ), the algebraic system (14) takes on the form

(17)

In this system,
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By analogy with paper [8], one can show that
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where θ0 and ϕ0 are the roots of the equations

(21)

The maximum in Eq. (20) is sought among the roots of
system (21). Upon the change of variable ς = R(θ, ϕ)eiθ,
these roots appear to lie inside the contours Cϕ, which
are the maps of the surface S sections by the (ϕ, ϕ + π)
plane onto the plane z = reiα. If the surface S has nonan-
alytic (in θ, ϕ) points, the search for the maximum in
Eq. (20) should include these points as well [12].

In the same way, for ν @ n, one can find that

where

, (22)

and the minimum in this expression is sought among
those roots of system (21) that correspond, upon the
change ς = Reiθ, to points lying outside the aforemen-
tioned contours Cϕ in the plane z = reiα.

Similarly, one can show that

(23)

for n @ 1. Here, σ0 =  and r0 is the distance to the

point inside S that is most distant from the origin and
corresponds to a singular point of the function v 0(θ, ϕ)
after it is analytically continued to the region of com-
plex angles [12]. Note that σ0 = 0 if u0 is the field of a
plane wave.

From the above estimates, it follows that the
unknown coefficients in system (14) must be replaced
according to the formula [8]
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Upon this change of variables, system (14) is trans-
formed to the system
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System (25) is solvable by the method of reduction
under the condition that
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Table

N 9 11 13 15 17

Cylinder
(ka = 2, kh = 4)

w = 0 g(π/2,0) 7.5025E+00 7.5172E+00 7.5229E+00 7.5200E+00 7.4486E+00

w = 0 g(π/2,π) 2.5663E+00 2.5169E+00 2.4979E+00 2.5026E+00 2.5027E+00

w = 1000 g(π/2,0) 3.044E+00 3.0743E+00 3.0838E+00 3.0653E+00 3.0644E+00

w = 1000 g(π/2,π) 2.4335+00 2.4788E+00 2.5108E+00 2.5070E+00 2.5066E+00

Spheroid
(ka = 2, kc = 4)

w = 0 g(π/2,0) 6.5647E+00 6.5649E+00 6.5649E+00 6.5659E+00 6.5653E+00

w = 0 g(π/2,π) 2.0405E+00 2.0404E+00 2.0404E+00 2.0413E+00 2.0416E+00

w = 1000 g(π/2,0) 2.6626E+00 2.6615E+00 2.6615E+00 2.6615E+00 2.6615E+00

w = 1000 g(π/2,π) 1.9921E+00 1.9919E+00 1.9919E+00 1.9919E+00 1.9918E+00

Spheroid
(ka = 1.005, kc = 5.1)

w = 0 g(π/2,0) 5.7223E–01 5.7231E–01 5.7005E–01 5.7006E–01 5.7005E–01

w = 0 g(π/2,π) 5.7178E–01 5.7186E–01 5.6960E–01 5.6962E–01 5.6961E–01

w = 1000 g(π/2,0) 1.2399E–01 1.2408E–01 1.2368E–01 1.2369E–01 1.2367E–01

w = 1000 g(π/2,π) 1.2539E–01 1.2564E–01 1.2524E–01 1.2523E–01 1.2525E–01

Cone
(ka = 2, kh = 6)

w = 0 g(π/2,0) 6.3459E–01 6.1876E–01 6.0257E–01 6.0523E–01 6.0350E–01

w = 0 g(π/2,π) 6.5045E–01 6.9022E–01 6.7486E–01 6.7215E–01 6.7252E–01

w = 1000 g(π/2,0) 9.6439E–01 9.4209E–01 9.2592E–01 9.1410E–01 9.2467E–01

w = 1000 g(π/2,π) 7.4507E–01 7.5850E–01 7.6272E–01 7.6862E–01 7.6735E–01
The wave scattering by bodies that violate condi-
tion (26), in particular, by significantly nonconvex bod-
ies, can be simulated using several bodies of simpler
geometry by combining them in a group whose config-
uration reproduces the geometry of the initial scatterer
[13, 14]. Such a simulation is possible because, in the
case of a group of bodies, the degree of convergence of
the PEM computational algorithm only slightly
depends on the distances between the bodies, down to
their contact [14].

RESULTS OF CALCULATIONS

We investigated numerically the wave scattering by
axially symmetric bodies, namely, by a prolate spher-
oid with a long half-axis c (along the z axis) and a short
half-axis a; by a circular cylinder with a radius a, and
spherically rounded ends of the same radius, and the
height of the cylindrical part h; and by a circular cone
with a spherical base of radius a equal to the radius of
the cone and with the height of the conic part h. The cal-
culations were carried out for three values of the imped-
ance W = 0, 1000, and –i. The latter case corresponds to
the so-called matched impedance [6].
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
We considered the incidence of a unit plane wave at
the angles θ0 = π/2 and ϕ0 = 0 for all bodies under con-
sideration, excluding the cone, for which the direction
of incidence was characterized by the angles θ0 = 0 and
ϕ0 = 0. The scattering pattern was computed as a func-
tion of the angle θ in the plane ϕ = 0, π.

All calculations were carried out on the basis of the
solution of the finite system of equations

[this system can be obtained from the general sys-
tem (25) in the case of a body of revolution], in which
N was set equal to 15, i.e., N ≈ 2kd, in all calculations
(excluding the table).

Figures 1–3 show the scattering patterns of a cylin-
der of height kh = 4 (curves 1) and a prolate spheroid
with half-axes ka = 2 and kc = 4 (curves 2), which is
inscribed in this cylinder. Figures 1–3 correspond to the
impedances W = 1000, 0, and –i, respectively. It can be
seen that the difference between the scattering patterns

xnm xnm
0

gnm νm, xνm,
ν µ=

N

∑+=

m n, n≤ 0 1 … N, , ,=
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is most prominent in the case of an acoustically hard
scatterer. The main lobe in the scattering patterns is the
shadow lobe, whose width agrees with the geometric
optics estimates. However, in the case of an acousti-
cally hard scatterer, the level of the back lobe is quite
comparable with the level of the shadow lobe. In the
case of the matched impedance, the level of the shadow
lobe substantially (by approximately 30 dB) exceeds
the level of the back lobe, while this excess measures
only about 10 dB in the case of an acoustically soft
body. This fact agrees well with the intuitive notion of
a perfectly absorbing scatterer.

Figure 4 shows the scattering patterns of a cone
characterized by the geometric parameters ka = 2 and
kh = 6 for different values of the surface impedance
(curve 1 corresponds to W = 0, curve 2, to W = –i, and
curve 3, to W = 1000). Here, again, the back lobe of the
cone with the matched impedance is smaller than the
shadow lobe by about 20 dB. One can see that the scat-
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tering pattern is nearly constant over a broad segment
(about 90°) corresponding to scattering from the spher-
ical part of the body.

Figure 5 illustrates the results of calculation for the

parameter |g(π/2, π)|, which is the relative radius of

the so-called equivalent sphere [6] and characterizes
the backscattering cross section of the body. This
parameter is represented as a function of ka for the
sphere (curve 2) and the cylinder of height kh = 0.1 (i.e.,
a body that only slightly differs from the sphere) for the
impedance W = 1000. It can be seen that the difference
between these curves is small (less than 2%).

Figure 6 shows the results of a similar calculation of

the parameter |g(π/2, π)| as a function of kc for the

cylinder (curve 1) and the spheroid (curve 2) with the
same geometric parameters as in Figs. 1–3 for W =
1000. Here, the parameter c characterizes half of the
body length. It can be seen that both curves vary syn-
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chronously; however, the curve for the cylinder goes
distinctly higher, which corresponds to Fig. 1 and is
explained by the fact that the cylinder has a consider-
able part of its surface formed by a rectilinear genera-
trix and oriented normally to the incident wave.

Finally, the table presents the data characterizing
the degree of convergence of the computational algo-
rithm used for the cylinder, the spheroid, and the cone.
It can be seen that, in the case of the body with an ana-
lytical boundary (the spheroid), two correct digits
after the decimal point are obtained even with N ≈ kd.
Approximately the same degree of convergence is
obtained when solving the problem of wave diffrac-
tion by a spheroid using the method of separation of
variables and the expansions in spheroidal functions
[15]. For bodies with broken boundaries (the cylinder
and the cone), one must use N ≈ 2kd, which is several
times (and may be several tens of times) better than
the corresponding parameters for the conventional
methods.

The numerical results presented above suggest that
the pattern equations method is a highly efficient tool
for solving the problems of wave diffraction by
impedance bodies with a complex geometry, includ-
ing bodies with edges and conic points. The computa-
tional algorithm constructed on the basis of the PEM
appears to be very fast. With this method, the calcula-
tions of the scattering characteristics of smooth bodies
and bodies with singularities (such as edges) are per-
formed using the same algorithm, without taking any
special measures.

After this paper was submitted for publication, we
became acquainted with paper [16], where the bound-
ary-value problem of wave diffraction by a scatterer of
finite size was reduced to an algebraic system of the
form of system (14). However, we note that the corre-
sponding algebraic system was obtained in [16] with
the use of the diffracted field represented as a series in
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the spherical wave harmonics, which, in the general
case, is correct only for the so-called Rayleigh bodies
(see, e.g., [4], Ch. 5 and [12]). In our case, system (14)
is rigorously derived from the integro-operator equa-
tion (9) solvable under condition (10), which is essen-
tially less restrictive than the Rayleigh body condition
[7, 8]. In addition, in our approach, system (14) is only
a version of the algebraization of Eq. (9) and is deter-
mined by the choice of spherical harmonics as the basis
for the representation of the scattering pattern. It is
clear that such an algebraization can be realized in
many other correct ways.
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Abstract—The history of studies of the photoacoustic effect in liquids and its applications to the development
of a “virtual” source of underwater acoustic signals is briefly reviewed. The problem of the efficiency of the
photoacoustic conversion is considered. The modes of laser generation of sound, i.e., the thermooptical, non-
linear surface, and nonlinear bulk modes of operation, are discussed taking into account the real features of the
marine environment, the most important of them being the surface waves. A review of the publications con-
cerned with the problem of a moving photoacoustic source is presented. Advances in the photoacoustic under-
water remote sensing technology are described. © 2003 MAIK “Nauka/Interperiodica”.
The necessity to exploit the resources of the world’s
seas, monitor meteorological conditions, and solve
problems of underwater communications and remote
control demands an improvement in the available tech-
niques and devices for acoustic remote sensing of the
marine environment. The idea of creating a sound
source in a sea medium in a remote manner, without
submerging any conventional material transducers,
arose almost simultaneously with the development of
powerful lasers operating in visual and infrared ranges.
It turned out that the region of interaction of laser radi-
ation with the sea medium can play the role of a source
of underwater sound. This region has been called the
optical underwater acoustic source or a noncontact
underwater acoustic source. Its operation was consid-
ered to be as follows: a laser source irradiating a preset
spot on the sea surface is installed on the deck of a ship
or aboard an aircraft, and an acoustic field is generated
in the sea medium as a result.

Several decades of studies of the effect and its appli-
cations demonstrated that the remoteness of the sound
source of laser origin is not its only advantage. Unique
characteristics of the field of such a source were
revealed, attractive opportunities provided by rapid
scanning with the source over the surface were taken
into account, and the relative simplicity of creating
multiple sources and their synthetic aperture was con-
sidered.

Some other special features of noncontact underwa-
ter acoustic sources were discovered in the course of
further investigation. It turned out that there is no uni-
versal approach to creating a noncontact underwater
acoustic source. Each problem needs its own definite
mode of laser excitation of the sea medium. A certain
classification of noncontact underwater acoustic
sources has been developed. It distinguishes thermoop-
tical (or linear thermal) noncontact underwater acoustic
sources, which radiate sound due to the thermal expan-
1063-7710/03/4901- $24.00 © 20051
sion of the light-absorbing medium volume; combined
noncontact underwater acoustic sources, where the
major contribution to sound excitation is made by the
phase transitions on the water surface while the contri-
bution of thermal expansion remains considerable; and
finally, nonlinear bulk noncontact underwater acoustic
sources, which are based on the effect of the laser
breakdown in the sea medium. This classification gen-
erally coincides with the classification adopted in the
laboratory applications of photoacoustics.

Systematic studies of the marine applications of the
photoacoustic effect started in 1973 on the known initia-
tive by F.V. Bunkin, L.M. Lyamshev, and R.V. Khokhlov,
who formulated the program of these studies. At that
time, the program was supported by the government.

Recalling the years of fruitful research in this field,
L.M. Lyamshev used to say that a retrospective look at
the chain of findings, errors, disappointments, and
eventually realized diagnostic techniques in the field of
marine photoacoustics deserves a special description. It
was him who suggested a possible title for such an
essay: “In search of a noncontact underwater acoustic
source.”

The present paper has the same title. It does not pre-
tend to be a comprehensive study but gives an idea of
some essential intermediate results obtained by
researchers from the leading laboratories of the world
in the course of the long-term investigations in this field
of research.

BRIEF HISTORY

The significant year was 1962. At that time, White
[1] in the USA and Prokhorov et al. [2] in the USSR
independently discovered effective sound excitation in
condensed media under the action of laser pulses.
Despite the absence of a clear understanding of the
physical phenomena underlying such conversion at that
003 MAIK “Nauka/Interperiodica”
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time, underwater acoustics was named one of the pos-
sible important applications of the effect. The priority
of the patent for a laser-acoustic generator that was filed
by Brewer and Rieckhoff [3] refers to 1964. It was this
patent that contained the proposal to use the focal
region of a powerful laser beam as a pulsed laser source
of intense ultrasonic oscillations with a high efficiency
of conversion of light energy into sound energy. The
record-breaking (at that time) signal level, higher than
0.1 MPa, allowed them to propose this source for both
technological applications and oceanic bottom studies.

Starting from the second half of the 1960s, the con-
cept of possible mechanisms of optical sound genera-
tion [4–6] and their mutual influence began to form
gradually. At first glance, the complexity of the prob-
lem manifested itself in the poor reproducibility of
experimental data obtained by different researchers.
The ratio of the sound amplitudes excited by laser radi-
ation under seemingly identical conditions attained a
value of 104 and greater. Attempts to resolve this con-
tradiction led to the development of the first rough clas-
sification of photoacoustic conversion mechanisms,
which retains its significance up to now [7, 8]. The first
in situ experiments performed in the USA refer to the
beginning of the 1970s. The first solutions for the
amplitude, spectral, and spatial characteristics of sig-
nals were obtained [9, 10].

The studies of the problem of a noncontact under-
water acoustic source were performed in the USA at
least at three centers in different years: at the Techno-
logical Institute in Atlanta (Georgia) [11, 12], at the
Laboratory of Applied Research of Texas University,
Austin (Texas) [13–15], and at the Laboratory of Naval
Weapons in Silver Springs (Maryland) [16]. The so-
called sonar ply of the American studies attracts one’s
attention: the evaluation of the applicability of the
method was performed mainly in connection with the
possible development of a bistatic “virtual” sonar.

In China, the problems of marine photoacoustics are
studied at the Oceanological University (Tsindao) and
Institute of Measuring Technology (Dalyan) [17, 18].
In the USSR, optical underwater acoustic studies were
carried out at the Andreev Acoustics Institute [19–21],
the Physical Institute and General Physics Institute of
the Academy of Sciences of the USSR [5–7], at Mos-
cow State University [23], and at the Pacific Oceano-
logical Institute of the Far-East Research Center of the
Academy of Sciences of the USSR [24, 25]. Lately,
despite considerable cuts in funding of large-scale pro-
grams, the support provided by the Russian Foundation
for Basic Research made it possible to continue the
joint projects of the Andreev Acoustics Institute and
Shirshov Oceanology Institute of the Russian Academy
of Sciences in optical underwater acoustics [26, 27].
ON THE EFFICIENCY OF A REMOTE 
CONVERSION OF LIGHT INTO SOUND

Researchers were interested first of all in the prob-
lem of the efficiency of conversion of optical energy
into sound energy. Other important parameters, such as
the spectral-time characteristics of the signal produced
by the noncontact underwater acoustic source, its direc-
tivity, amplitude, stability to wind waves, the effect of
screening of the surface source by a bubble sheet, noise
stability, and the classification potential of the signal,
were considered as secondary for a long time.

The efficiency of the photoacoustic conversion η
can be expressed through the total acoustic energy
emitted into the half-space Eac (a pulsed mode of oper-
ation):

or the acoustic power Wac (a continuous mode of oper-
ation):

where ϕ is the angle that determines the direction to the
reception point with respect to the vertical; r is the dis-
tance to the reception point; pϕ(t) is the pressure pulse
at the reception point; p0(ϕ) is the amplitude of a con-
tinuous signal at the reception point; E0 and W0 are the
energy and power of laser radiation, respectively; ρ is
the water density; and c is the sound velocity in water.

Depending on the conditions of sound excitations in
water and, mainly, on the conversion mechanisms
involved in the process, the value of η varies from 10−11

to 0.1.
The smallness of the efficiency of the photoacoustic

conversion was embarrassing for the specialists in the
field of conventional means of underwater sound gener-
ation, because they were used to greater values. For
example, it was popular to compare the efficiency of
photoacoustic conversion with the efficiency of direct
sound transmission into water. Let us imagine a loud-
speaker radiating a plane sound wave in air in the direc-
tion of the sea surface. With a loudspeaker efficiency of
10–1 and a transmission ratio of the sea surface of 10–3,
the ratio of conversion of the electromagnetic energy
feeding the loudspeaker into underwater sound energy
is 10–4, which noticeably exceeds the efficiency of
many modes of photoacoustic conversion.

The record-breaking efficiency of photoacoustic
conversion (up to 10%) is attained with the help of the
laser radiation providing the subsurface breakdown of
the sea medium at a depth no smaller than 1 m. In this
case, the effect is similar to the effect of sound radiation
by an electric discharge and can be evaluated according
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to the corresponding models. To develop a general idea
of the opportunities provided by a nonlinear noncontact
underwater volume sound source, the trotyl equivalent
of the optical breakdown of the sea medium was used.
Indeed, let us compare the process of breakdown to a
microscopic explosion that leads to the rise of an oscil-
lating bubble emitting sound. One can assume that most
of the energy evolved in this case is spent on the bubble
oscillations. Then, the energy-balance equation can be
written in the form

where ph is the hydrostatic pressure and Rmax is the
maximal radius of the oscillating bubble. Thus, at E0 =
30 J and ph = 1 atm, we have Rmax = 4 cm. Then, we have
the following expression for the equivalent mass of the
explosive (trotyl equivalent):

where ρp is the density of explosion products when the
bubble attains the radius Rmax. In this case, it is the den-
sity of water vapor at ph = 0.6 × 10–3 g/cm3, and we
finally obtain We = 0.15 g. The modest value of We
should not be disappointing in view of the fact that we
are dealing with a bodiless and massless source. Know-
ing the value of We, we can estimate the maximal pres-
sure pm in a pulse at the distance of 1 m from the break-
down center with the help of the known formulas of the
theory of underwater explosions. Estimations give the
value pm = 2.5 × 105 Pa. Such an estimate agrees well
with experimental data [28]. Despite the high efficiency
of conversion, a nonlinear volume source did not find
wide application in marine technologies because of the
technical difficulties in its implementation.

The signal level in the case of a surface nonlinear
photoacoustic (combined) source attains values even
greater than that in the previous case (1 MPa m and over
at the maximum). However, on the whole, the conver-
sion efficiency is smaller because of the pronounced
directivity of the radiation pattern along the normal to
the surface, and it reaches only a value of 10–2. The radia-
tion of a combined source is an N-shaped acoustic
pulse with a length of 3–10 µs. This mode of photoa-
coustic conversion is used in various cases of remote
sensing of shallow-water regions [27–32]. To excite
such a source, powerful ship-based or airborne CO2
lasers are used [33].

Spectral-time characteristics of a thermooptical
source are more varied. A signal can be a narrowband
harmonic train (the typical frequencies are 5–25 kHz)
or a limited pulse with a total length of 1–3 ms and a
carrier frequency of 10–20 kHz, as well as a sequence
of short pulses (this so-called quasi-continuous mode
was realized for the first time in [34]). A thermooptical
source of underwater sound provides an opportunity to

4
3
---πphRmax

3 E0,=

We
4
3
---πρpRmax
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control the angular position of the directivity pattern
maximum. One should also not forget about additional
features of a thermooptical source, which arise when
the irradiation spot scans over the surface. The interest
in thermooptical noncontact underwater acoustic
sources persists [19, 21, 33] despite the small efficiency
of conversion. This mode of operation is used success-
fully to monitor wind waves and the thin subsurface
structure of the ocean [21, 35]. Let us examine it in
more detail.

A THERMOOPTICAL SOUND SOURCE

Remote radiant heating of a certain region of a sea
medium leads to its rapid expansion and to radiation of
sound. In the typical case of a harmonic modulation of
laser intensity, the frequency of the excited underwater
acoustic signal corresponds to the modulation fre-
quency of the laser beam. The wave equation describ-
ing the sound field in a medium without losses, which
contains thermal sources, was obtained for the first time
by U. Ingard in 1958 [36]. The problem of a thermoop-
tical sound source with high directivity was solved in
subsequent publications (see, e.g., [4]).

It should be noted that now the studies of thermoop-
tical sound generation are also carried out beyond the
framework of underwater acoustics. For example, ana-
lytical devices based on the principle of thermal con-
version of light energy into sound energy are used
widely in biology, medical science, and semiconductor
technology.

Let us give a simple estimate of the efficiency of
pulsed thermooptical sound generation. Restricting
our consideration to the model of rapid heat evolution
in a spherical region with the radius R in an infinite
liquid, we write down an expression for the pressure
increment ∆p:

where β is the coefficient of thermal expansion of water
and Cp is the specific heat. A pressure relief in a spherical
region leads to the emission of the so-called N-wave with
the peak pressure value pm at the distance r,

and the length

where c is the sound velocity in water.

The total energy in an acoustic pulse is expressed as
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and correspondingly, for the conversion coefficient, we
have

The efficiency turns out to be proportional to the
evolved optical energy. For example, at a water temper-
ature of 20°C, R = 1 cm, and E0 = 1 J, we have η = 5 ×
10–7; at E0 = 100 J, η increases up to 5 × 10–5.

Thermooptical sources are often used to excite
sound pulses. However, their important feature is the
possibility of obtaining a continuous narrowband sound
radiation. The pressure amplitude in the far field at the
modulation frequency ω of a continuous laser beam
with the Gaussian intensity distribution over the cross
section is determined as

(1)

where α is the coefficient of light absorption, k is the
wave number of sound, and a is the beam radius. When
both conditions ka ! 1 and k > α are satisfied (a high-
frequency sound radiation by a narrow laser beam,
which travels a long distance in the medium), the max-
imum of the directivity pattern of the acoustic field cor-
responds to the direction

The pressure amplitude at the maximum of the
directivity pattern does not depend on the coefficient of
light absorption:

The half-width of the directivity pattern ∆ϕ0.7 ≈
2α( )/k for k @ α can be very small. This narrow-
beam mode of radiation is realized with the help of
blue-green laser radiation. An advantage of laser radia-
tion in the blue-green range is related to the favorable
propagation conditions in the atmospheric transparence
window and the possibility of focusing from relatively
high altitudes.

When ka ! 1 and k ≤ α (a low-frequency sound
radiation by a narrow laser beam), the maximum of the
directivity pattern coincides with the normal to the sea
surface. The radiation is inefficient in comparison with
the preceding case. In the limiting case k ! α, the direc-
tivity pattern exhibits a dipole character.

In the case of sound generation by a wide laser beam
(ka @ 1), the pronounced directivity of the field along
the normal is realized, as follows from Eq. (1). For-
mally, this fact is taken into account by the fast decrease
in the exponent in Eq. (1) with increasing ϕ.

Being interested in the transmission of a sound sig-
nal along the normal to the surface ϕ = 0°, we determine
the conditions for obtaining the peak level of pressure
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in a narrowband signal at a preset depth r. For this pur-
pose, we test Eq. (1) for a maximum by adding the fac-
tor exp[−γ(ω)r], which takes into account the fre-
quency-dependent coefficient of sound absorption in
the sea γ(ω), to the right-hand side of this expression.
It is evident that the maximal possible level of pω(r)
can be realized by varying α and k. The known condi-
tions of the maximum of a function of two variables
[in this case, pω(α, k)] produce the following optimal
values for a preset reception depth and real marine
conditions [28]:

The coefficient of optical absorption depends on the
wavelength of laser radiation. It is technically difficult
to change the wavelength. A partial optimization is per-
formed at a fixed value of α for the modulation fre-
quency of laser radiation. The presence of the optimum
in frequency is connected with the fact that the effi-
ciency of thermooptical conversion in the continuous
mode of operation increases with the modulation fre-
quency. However, the propagation conditions in the
sea become worse with a frequency increase. For
example, in the case of laser radiation with a wave-
length of 1.06 µm (which corresponds to α = 0.18 cm–1),
we have a simple engineering formula for the optimal
modulation frequency:

Thus, the optimal modulation frequency of a laser beam
decreases slowly with the depth to which the acoustic
signal must be transmitted.

An interesting comparative estimate of the intensity
of a signal from a harmonic thermooptical sound source
at a preset depth r is given in [22]. The comparison was
performed with the intensity of the direct signal trans-
mission from a blue-green laser I0.55 (an optical radia-
tion with a wavelength of 0.55 µm). The following
expression was obtained using Eq. (1):

where I1.06 [W/cm2] is the intensity of infrared radiation
with a wavelength of 1.06 µm, which excites the ther-
mooptical source, and α0.55 = 0.05 m–1 is the coefficient
of absorption of the blue-green beam in the sea
medium. The estimate shows that, at I1.06 = 100 W/cm2,
we have G > 1 for r > 400 m. In other words, starting
from a certain depth, the information channel with con-
version according to the thermooptical mode turns out
to be energetically preferable to the purely optical one.

The first full-scale experiments with thermooptical
sources were conducted in 1973 at Travis Lake (Texas)
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by a research team from Texas University, Austin [9,
10]. The radiation sources were free-running lasers
with neodymium glass (the second harmonic) and ruby.
Submerged “virtual” thermoacoustic arrays with a
length of up to several meters, which emitted underwa-
ter acoustic signals with a duration of 1–2 ms and car-
rier frequencies from 20 to 50 kHz, were realized with
the help of a periscope and changeable onboard sys-
tems. The distinctive feature of this configuration is the
high vertical directivity of sound radiation. In fact, the
half-width of the directivity pattern is θ1/2 ≈ α/k, which
gives several degrees for the case of visual range lasers
and indicated frequencies. Later, thermooptical sound
sources were used for monitoring surface waves [35]
and solving a series of model problems [11]. The
endeavors to increase the efficiency of photoacoustic
conversion in the thermooptical mode forced research-
ers to consider the potentialities of sound generation by
a moving laser beam.

WHAT CAN BE EXPECTED
FROM A MOVING NONCONTACT 

UNDERWATER ACOUSTIC SOURCE?

The unique feature of the thermooptical conversion
mode is the opportunity to create a moving noncontact
underwater acoustic source. The first solution to the
problem of generation of a shock wave by a laser focus
moving in water with a supersonic velocity was obtained
in [37]. Studies of moving noncontact sound sources
were conducted in the USSR by the research teams of
F.V. Bunkin, L.M. Lyamshev, and O.V. Rudenko [7,
23, 38]. It was found that the general efficiency of
conversion does not depend on whether the light spot
moves along the water surface or remains fixed [38].
However, interest in such a way of photoacoustic con-
version persisted, because it offered some additional
opportunities for remote control over the sound field
in the sea medium. The intrapulse modulation mode is
most often used for moving noncontact underwater
acoustic sources. The duration of the pulse itself con-
stitutes 1–1.5 ms, and the intrapulse modulation has a
frequency of 2–20 kHz. The trajectory of the spot
motion along the surface represents a straight line with
a length of 5–10 m. Unlike the stationary case, the radi-
ated sound field has a pronounced asymmetry of direc-
tivity with respect to the normal to the sea surface. The
parameter

where v  is the velocity of laser spot scanning and θ is
the angle in the horizontal plane between the spot tra-
jectory and the direction to the receiver, plays an impor-
tant role in the field description.

In the case of the subsonic source motion, v /c < 1,
the field description is rather simple. The signal repre-

M̃
v
c
---- ϕ θ,cossin=
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sents a pulse compressed by a factor of (|1 – |)–1 with
the Doppler frequency filling

At the relative velocity of motion v /c = 0.9, the
maximum of the directivity pattern occurs in the direc-
tion ϕ = 82°. Estimation shows that, in this direction,
when the sea noise corresponds to waves of Beaufort 4,
with an optical pulse energy of 200 J and a modulation
frequency of 2 kHz, a signal-to-noise ratio of 20 dB is
attained at a distance of 5 km, which is very good for
thermal photoacoustic conversion. The Doppler fre-
quency is equal to 20 kHz in this case. Thus, the con-
version efficiency does not grow, but the field is redis-
tributed very efficiently.

A continuous spatial structure of the field corre-
sponds to a supersonic scanning by a laser spot along
the surface, v /c > 1. The analysis of the field structure
is performed in the plane of motion of the noncontact
underwater acoustic source (cosθ = 1). A signal at the
Doppler frequency is detected in the motion direction,
and an inverted tone signal is detected in the opposite

direction. The condition  ≅  1 corresponds to the
Cherenkov direction. In this direction, a signal with an
amplitude that is record-breaking for thermooptical
sound generation is emitted as the Mach wave. For the
peak value of the pressure radiated in the Cherenkov
direction, we have the expression [38]

where a0 is the spot aperture and a is the length of the
scanning trajectory. The comparison with the radiation
level of a stationary noncontact underwater acoustic
source with the same energy gives a gain of 20 or more
times. The diffraction minima correspond to the values

A broadband pulse (which is typical of the case of scan-
ning by an ordinary focus) and a tone signal can be dis-
tinguished according to the signal character in the
Cherenkov direction in the conditions of the spatial
modulation of the focal spot at the surface by a grid
with the step L. In this case, the carrier frequency of the
signal is c/L. Such a technique is proposed in [33],
where the scheme of its realization is also suggested.

The calculations conducted independently at the
Laboratory of Applied Research of the Texas Univer-
sity, Austin [12, 14, 15] confirmed the major features of
moving noncontact underwater acoustic sources. The
following expression for the upper limit of the effi-
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ciency of noncontact underwater acoustic sources in the
case of narrowband reception was obtained [14]:

where Ba is the reception bandwidth. Concerning the
location applications, from the latter relation it follows
that, for a short-range laser-acoustic sonar (the modula-
tion frequency of the beam is 30 kHz and E0 = 100 J),
the value of η = 10–6 is still acceptable. At the same
time, a long-range sonar (a frequency of 3 kHz and E0 =
100 J) is characterized by small values of η = 10–9 (even
an increase in E0 by one order of magnitude does not
improve the situation).

An unquestionable advantage of moving noncontact
underwater acoustic sources consists not in the increase
in η but in the possibility of forming a narrow acoustic
beam with a record-breaking pressure level in a preset
direction, as well as the possibility of providing a reli-
able targeting due to the frequency character of the
probing signal in space.

SURFACE WAVES AND NONCONTACT 
UNDERWATER ACOUSTIC SOURCES

The influence of surface waves on the parameters of
noncontact underwater acoustic sources has widely
attracted the attention of researchers [35]. Indeed, the
sea surface is always included in the region of photoa-
coustic conversion. Its linear and angular motions can-
not but affect the characteristics of the generated field.
Amplitude-phase distortions of a signal and fluctua-
tions of arrival times at a stationary submerged sound
receiver were expected. Depending on the problem to
be solved, it was necessary either to compensate this
influence (for example, in the problems of remote con-

η βc
4πCp

------------- 
  2

E0k24πBa/ρc,<

Fig. 1. Oscilloscope pattern of a fragment of the acoustic
signal excited in the quasi-continuous mode of operation
and detected at a depth of 1 m directly under the light spot
in the frequency band from 0.1 Hz to 10 kHz. The repetition
rate of the pulses of excitation radiation is 20 kHz, and the
average optical power is 20 W. The horizontal scale is
10 µs/division, and the vertical scale is 0.05 Pa/division.
trol of underwater vehicles [26, 27]) or, conversely, to
stress it (in the problems of monitoring the state of the
sea surface).

It is interesting to observe the influence of surface
waves on thermooptical sound excitation in the afore-
mentioned quasi-continuous mode. Such a mode was
realized in a model experiment in the testing basin of
the Andreev Acoustics Institute with the help of an LTI-
501 YAG laser. Its radiation was a sequence of pulses
with a frequency of 10–20 kHz and a high length-to-
period ratio. The laser provided a rather high average
power of 20 W, and the characteristic signal level at a
depth of 1 m in a broad frequency band was 0.06 Pa. A
characteristic oscilloscope pattern for an acoustic sig-
nal excited in the case of irradiation of a calm water sur-
face is given in Fig. 1. It is possible to conclude even
from the pattern shape that the spectrum of the signal
excited in the quasi-continuous mode is enriched with
higher harmonics. A spectral analysis in the case of a
7-Hz transmission bandwidth of the filter of a spectrum
analyzer provides an opportunity to reveal the fine
structure of the components consisting of a set of equi-
distant lines spaced in frequency at 100 Hz. This can be
explained by the fact that the peak optical power was
not constant but oscillated with a frequency of 100 Hz
and a depth up to 30%. In their turn, these components
for the case of higher harmonics are very sensitive to
the presence of surface waves.

If controlled waves are produced at the water sur-
face, their influence is more and more noticeable with
the growth in the harmonic number. In the model exper-
iment, a wave generator created waves with a period of
2 Hz and an amplitude of 10 cm at the basin surface.
The repetition rate of optical pulses was 16 kHz. The
influence of waves on the spectral characteristics is
barely noticeable for lower harmonics (Figs. 2a, 2b)
and becomes essential with the growth of the harmonic
number (Figs. 3a, 3b). At constant parameters of sur-
face waves, each line broadens proportionally to the
harmonic number. This is connected with the Doppler
modulation of the radiation of the source, which moves
together with the surface. The level of the spectral den-
sity of surface waves correspondingly drops. As one
can see from Fig. 3b, the components of the sixth har-
monic of the signal are sharply reduced in amplitude.
The change in the width of the components of higher
harmonics provides an opportunity to evaluate qualita-
tively the parameters of surface waves.

SURFACE NONLINEAR NONCONTACT 
UNDERWATER ACOUSTIC SOURCES: 

APPLICATION TO PROBLEMS
OF CLASSIFICATION OF UNDERWATER 

OBJECTS

A large number of papers, including reviews, are
devoted to marine applications of surface nonlinear
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
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noncontact underwater acoustic sources [21, 30, 31].
Here, we consider one of the applications that is based
on bionic analogies. The point is that, as early as in the
first experiments with a combined source of sound, it
was found that the pulse characteristics are similar to
the sounding pulses of cetaceans [39]. Such pulses
belong to the class of so-called ultrashort pulses, which
seem to be very promising for short-range sonars to
provide not only the detection of an underwater target
but also its classification. Let us note the important
advantages of ultrashort pulses [40]. First, in the case of
equal widths of the spectra of ultrashort pulses and con-
ventional narrowband signals (and, therefore, in the
case of the same spatial resolution), the ultrashort
pulses are less subjected to attenuation and better pre-
serve the initial profile. Second, in the case of a preset
resolution determined by the frequency bandwidth, the
upper and lower limiting frequencies can be selected in
such a way that the signal spectrum will cover the range
of natural resonances of the object to be located. In this
case, when an ultrashort pulse is reflected, its shape and
spectrum will change essentially because of the contri-
bution of the shape and aspect angle of the object and
the contribution of its natural resonances (in its turn,
this carries information on the elastic and absorptive
properties of the object). The shape of narrowerband
signals changes inessentially in the case of reflection.

32 kHz

(‡)

(b)

Fig. 2. Fine structure of the second harmonic of the acoustic
signal at a depth of 3 m (a) in the absence and (b) in the pres-
ence of waves on the surface. The repetition rate of optical
pulses is 16 kHz. The horizontal scale is 100 Hz/division.
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
Pulsed signals are characterized by the bandwidth
coefficient

where fup and flow are the upper and lower limiting
frequencies of the spectrum, respectively.

Ultrashort acoustic pulses can be generated not only
by dolphins or in the process of photoacoustic conver-
sion. Common transducers and irreversible (explosion
or electrical discharge) sources are also used to gener-
ate them. However, the property of conventional sound
sources is that an ultrashort pulse emitted by them con-
tains additional extraneous oscillations caused by the
collapse of cavities in the case of explosions or because
of the insufficient bandwidth of the radiating underwa-
ter acoustic array [41]. This is the reason why the max-
imal value of the bandwidth attained in the usual way
does not exceed Ω = 0.5. A typical pulse from a com-
bined source that arises due to water irradiation by a
pulse of a CO2 laser provides a value of the bandwidth
coefficient close to the record-breaking value of 2.
Moreover, an important feature of a photoacoustic
source of this type is the absence of sidelobes in the
directivity pattern. In fact, the angular distribution of
the signal energy in a wide band [or wide band angular

Ω 2 f up f low+( )/ f up f low–( ),=

96 kHz
(b)

(‡)

Fig. 3. Fine structure of the sixth harmonic of the acoustic
signal at a depth of 3 m (a) in the absence and (b) in the pres-
ence of waves on the surface. The repetition rate of optical
pulses is 16 kHz. The horizontal scale is 100 Hz/division.
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energy distribution (WBEAD) in terms of [42]} has a
shape close to Gaussian.

This mode was used in a model experiment on
studying the classification potential of ultrashort pulses
of photoacoustic origin. In this case, the system of pro-
cessing of the signal reflected from a target took into
account the similarity of the photoacoustic pulse to the
sounding pulses of cetaceans, which allow the animals
to detect the targets that are interesting to them.
Namely, the procedure of pulse segmentation was
used.1 It belongs to the methods of nonlinear filtration
and analogous procedures used for speech recognition
[43]. In this case, the segmentation algorithm is based
on the assumption that the shape of an ultrashort pulse
should not change essentially when it is reflected from
a smooth target. In the case of additive superposition of
the echo signal and interference (noise or reverbera-
tion), an interval with time and energy parameters
closely corresponding to the initial pulse appears in the
record. The selection of intervals with peculiarities
from the record and their classification with the echo
signal from the target or with the signals of different
origin is performed by an adapted interactive expert
system based on a computer.

Figure 4 presents a block diagram of the experiment
conducted in a laboratory acoustic basin. Metal and
polyfoam cylinders with the ends shaped as semi-
spheres were used as targets. The target length was
9 cm and their diameter, 4 cm. The targets were sus-
pended in the horizontal position. In the course of
experimenting, the targets were rotated around the ver-
tical axes with an angular step of 10°.

A B&K 8101 hydrophone with a reception fre-
quency bandwidth of 150 kHz was used as a receiver.
The bistatic scheme of location was realized; i.e., the

1 The segmentation software was provided by S.V. Ryabikov.

1
2

8

6

7

5

4

3

Fig. 4. Block diagram of the model experiment on photoa-
coustic classification of a submerged object: (1) pulsed CO2
laser, (2) rotating mirror, (3) test acoustic basin, (4) target,
(5) B&K 8101 hydrophone, (6) analog-to-digital converter,
and (7) computer.
receiver position did not coincide with the source posi-
tion. The pulse repetition rate was 0.5 Hz. The direct
signal, the echo signal from the target, and the reverber-
ation signals reflected by the basin walls were detected
by the hydrophone, passed through an amplifier and an
analog-to-digital converter, and were processed by a
computer. Each laser pulse gave rise to a single realiza-
tion of the echo signal. The upper limit of detectable
frequencies was 80 kHz. Records of 190 realizations
were obtained for each target.

At the first stage of signal processing, the reverber-
ation signal was separated from the direct and echo
signals. Segmentation was performed taking into
account the parameters of the sounding signal with a
preset confidence interval of possible deviations of the
time and energy parameters of the signal reflected
from the target.

Further, it was necessary to select, according to the
set of spectral-time classification features, from all sep-
arated signals precisely the signal that corresponds to
the echo signal from the target. All other signals were
declared to be a false target and ignored. Finally, after
the detection of the echo signal, a conclusion concern-
ing the target material was made according to the same
set of features.

Some experimental records are given in Fig. 5 (a
polyfoam target) and Fig. 6 (a steel target). Selected
intervals are indicated on the time sweeps in the upper
parts of the figures, and their spectra are given in the
lower parts. In both figures, intervals 1 correspond to
the sounding signal, intervals 2 present the echo signals
from the targets, intervals 3 show the mirror reflection
from the bottom, and interval 4, the reverberation sig-
nal. Naturally, intervals 2 are most interesting from the
point of view of analysis. In the case of an acoustically
soft target (Fig. 5), intervals 1 and 2 are in antiphase,
which is not observed in the case of an acoustically
hard target. The spectra of intervals 2 differ noticeably
for different targets. It is difficult to take concentrated
reflections (intervals 3) for something else. Intervals 4
corresponding to reverberation signals also have a sta-
ble “unique” set of features, and their interfering influ-
ence can be easily eliminated.

The dependence of the noise stability of the method
and the efficiency of the target material classification on
the aspect angle of the target was analyzed in the case
of sounding by ultrashort pulses. It turned out that an
ultrashort pulse excited in water by laser radiation pro-
vides stable parameters for the target classification,
these parameters being independent of the aspect angle
of sounding. A high efficiency of segmentation of the
primary records and the efficiency of analysis of the
interval structure were maintained in all realizations.
The experiment conducted demonstrated the applica-
bility of the photoacoustic technique to solving the
problems of underwater detection and ranging of small
targets in shallow-water regions with a high level of
reverberation interference.
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
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Fig. 5. Records corresponding to a polyfoam target: (a) time sweep for one of the realizations and (b) the spectra of the separated
intervals (indicated by numbers).
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Fig. 6. Records corresponding to a steel target: (a) time sweep for one of the realizations and (b) the spectra of the separated intervals
(indicated by numbers).
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CONCLUSION

There is already considerable successful experience
in full-scale applications of photoacoustic technology.
The diagnostics of surface waves [44], bathymetry
[30], the analysis of bottom reverberation in shallow-
water regions [45], and the diagnostics of the fine sur-
face structure of the sea medium have been mastered.
Model studies of sonar applications [11, 13, 16, 46]
have been conducted, and ways of identifying small
submerged objects and transmitting remote control sig-
nals to autonomous oceanographic buoys [27, 28] have
been determined. Certain inflated expectations of the
first years of photoacoustic underwater investigations,
when it was assumed that the source range will be tens
of kilometers at least, are more than compensated for
by the unexpectedly discovered unique opportunities
for the diagnostics of the marine environment on the
subkilometer scale.

However, the problem of long-range photoacoustics
remains unsolved. In fact, this is a question of the
development of laser technology. The development of a
new class of reliable powerful lasers is critical for
progress in the photoacoustic monitoring of the marine
environment [47]. The rapid development of laser tech-
nology may make expedient various techniques of real-
ization of noncontact underwater acoustic sources. For
example, new excimer lasers emitting short ultraviolet
pulses with a small length-to-period ratio provide a
high average power. Shifting the radiation wavelength
of such lasers on account of stimulated scattering to the
range 0.55–1 µm provides an opportunity to maintain
the boiling conditions modulated by a frequency of 1–
10 kHz in a limited volume of liquid. One can expect
that this mode of operation will serve as the basis for a
low-frequency noncontact underwater acoustic source
with an acoustic power of tens of watts. NH3 lasers
whose power reaches 500 kW and the whole class of
chemical lasers with a radiation wavelength of 1.3 µm
are promising for the generation of surface nonlinear
sources. At the same time, advances in the development
of conventional laser technology will in future provide
compactness and reliability for the new generation of
photoacoustic systems.
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Abstract—It is shown that outwardly similar (in shapes and levels) pulses reflected from a moving discrete tar-
get (the signal) and produced by sound scattering from the waved water surface (the surface reverberation) have
a qualitative difference, which manifests itself in a coherent cumulation of signals. The signal and the surface
reverberation differently increase as the interval of their coherent summation grows. Quantitatively, this differ-
ence consists in the fact that the signal has a much smaller variance of deviations from the linear law of its
increase. The effect is observed both in in-field experiments and in numerical simulations. © 2003 MAIK
“Nauka/Interperiodica”.

Dedicated to the memory of my friend and colleague L.M. Lyamshev
In the active location, the main interference is rever-
beration, which cannot be avoided by increasing the
power of the probing pulse transmitted into the
medium. The bottom reverberation can be noticeably
suppressed if the target to be detected moves in such a
manner that a Doppler shift occurs in the reflected sig-
nal. The frequency shift produced in the reflected signal
by the target motion is the qualitative difference
between the desired signal and the bottom reverbera-
tion. To take advantage of this opportunity, it is suffi-
cient to apply so-called interperiod subtraction, which
is widely used in radar for the same purpose [1]. Inter-
period subtraction has a frequency characteristic that
excludes the zero Doppler frequency, and this feature
strongly attenuates the frequencies that are close to zero
and suppresses the contribution of the bottom reverber-
ation. Thus, the possibility arises of observing targets
whose scattered field has a level that is much lower than
that of the bottom reverberation [2–4].

With surface reverberation, which has a wide spec-
trum in the same frequency band as the Doppler shift of
the desired signal, the interperiod processing of the sig-
nal becomes less effective. The efficiency can be
increased by applying the coherent cumulation of the
received pulses. Coherent cumulation consists in the
spectral Fourier analysis of a set of samples from the
sequence of pulses, which have the same delays relative
to the transmitted pulse (the signals of the same range).
The spectrum of such a sequence is a frequency decom-
position of the Doppler frequency shift (DFS) of the
signal. If a discrete target moves uniformly within the
1063-7710/03/4901- $24.00 © 20062
entire duration of the spectral decomposition, its DFS
spectrum is discrete. If the surface motion were abso-
lutely chaotic, its DFS spectrum would be continuous.
Then, the coherent cumulation would lead to the same
gain in the signal-to-reverberation ratio as in the spec-
tral detection of a discrete-frequency signal against the
background of noise with a continuous spectrum. In
reality, the surface motion is not absolutely chaotic.
This motion has a spectrum that includes rather narrow
maxima. For such a spectrum to considerably reduce
the gain of coherent cumulation, it is not necessary that
these frequency bands precisely coincide with the DFS
of the signal. In the general case, neither the range nor
the object speed are known in advance. Therefore,
when a signal with a narrow DFS spectrum is observed,
one cannot be sure whether this is the reflection from
the object or the reverberation. If the sea state, the
direction of the waves, and the location direction are
such that reverberation signals have narrow maxima in
the DFS spectrum, the desired signal can be extracted
from this background only if its level is much (as a rule,
by 10 dB or more) higher than that of the reverberation.
This condition significantly restricts the scattering
cross sections for the signals to be reliably detected.

The purpose of this work is to show (based on the
experiment) how one can distinguish the signals
reflected from the object to be located from the rever-
beration signals that have a narrow DFS spectrum, are
localized in range, and exhibit comparable or even
higher levels than the signal. The main idea of this
study consists in the fact that regular signals with a dis-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Pulse pattern in the range–Doppler frequency plane.
crete spectrum are in some aspects quite different from
narrowband signals that are random in their nature and
are formed by the sound field of a continuous spectrum.
It is evident that the signal with a discrete spectrum can
be synchronized with the sampling rate in such a way
that its Fourier spectrum will occupy a single or several
frequency readings, with zeros at other frequencies. No
synchronization will lead to the same result if the signal
is represented by a narrow spectral line formed by a
continuous spectrum: a narrowband noise can have a
zero level in no finite frequency band. Unfortunately,
the aforementioned feature of the discrete signal cannot
be widely used in detecting the signal against the rever-
beration background, because too strong requirements
are imposed on the signal coherence in this case.

We use another difference that does not impose such
strict constraints on the coherence. It is known that, if a
narrowband signal is coherently cumulated at its own
frequency, its level increases proportionally to the
cumulation time until its coherence time is reached.
After that, the increase terminates. The signal and the
reverberation response can have different coherence
times. This difference can be quantitatively estimated
by measuring the variance in the amplitude deviation
from the linear law at the output of the filter that is
tuned so as to obtain the maximal response at the max-
imal time of cumulation. The earlier the beginning of
the deviation from the linear law, the higher the vari-
ance of the deviations is. For the experimental data, it is
shown that the variances of the signal and the reverber-
ation (the latter varying in the same manner as the sig-
nal in the range–frequency plane when the time of
coherent cumulation increases) can differ by a factor of
7–8 for a cumulation time of several seconds.

Let us begin with considering the experiment. The
experiment was performed at the Gor’ki storage lake.
YSICS      Vol. 49      No. 1      2003
The depth of the lake was 7–8 m at the experimental
site. A bistatic location scheme was used. The duration
of the transmitted pulse was 2 ms. The repetition rate
was 400 ms, and the transmitted frequency was 2 kHz.
For signal reception, a linear horizontal array was used
that consisted of 32 separate hydrophones and was 6 m
in length. The signals received by each single hydro-
phone of the array were recorded in a broad frequency
band. So, the array could be phased to select any
desired direction of reception. The object of location
was represented by a hollow cylindrical tube with a bal-
last 8 m in length and 0.6 m in diameter. The tube was
towed by a rowing boat at a depth of 3 m, with a con-
stant speed of about 0.5 m/s, in different directions and
at different distances from the sound source and the
receiving array.

As a result of the signal processing, which consisted
of array phasing, interperiod subtraction, and coher-
ently cumulation, the signal scattered by the object was
reliably detected against all types of reverberation
background. The processing procedure yields a high
(about 10 dB) excess of the response level over all
peaks of the interfering noise in the range–azimuth
plane at all possible values of the DFS. The signal can
be traced within nearly the entire tack. The coordinates
of the scattered pulses form a sequence that fully agrees
with the trajectory of the object.

To carry out the experiment under discussion, we
had to roughen the signal processing to make the signal
and reverberation equal in level. For this purpose, it was
sufficient to give up the array phasing and sum up the
processed signals from all array hydrophones in their
absolute values (incoherently). The resulting pattern in
the range–DFS plane is shown in Fig. 1. From this pat-
tern, we determined the Doppler frequencies and the
ranges for the two most pronounced pulses. One of
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them, namely, the pulse whose coordinates precisely
coincided with those of the highest pulse in the coher-
ent summation of the signals received by the array
hydrophones, was the desired signal.

To determine the variance in the deviation from the
linear law for the signal increase with increasing time
of coherent cumulation, we processed the signal in the
following way. A function

(1)

was formed, where n is the ordinal number of the
transmitted pulse, m is that of the receiving hydro-
phone, f is the complex signal from the mth hydro-
phone within the time of the nth pulse transmission, r is
the range coordinate for the pulse at hand, and w is the
Doppler shift of this pulse. The square-bracketed differ-
ence in Eq. (1) produces the algorithm of interperiod
subtraction, and the exponential serves for the subse-
quent coherent cumulation of the signal at the detected
Doppler frequency shift (w).

Further signal processing consists in the summation
of Eq. (1) over n with a variable upper limit t. This pro-
cedure follows the formula

(2)

At the next stage, we perform the incoherent sum-
mation of the signals from all receiving hydrophones of
the array:

(3)

The function represented by Eq. (3) linearly
increases within the limits of the signal coherence. The
task is to estimate the variance in the deviations from

F n m,( ) 

f m r n 1+, ,[ ] f m r n, ,( )–[ ] i2πnw( )exp=

S m t,( ) F n m,( ).
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Fig. 2. Deviation of the pulse amplitude growth with
increasing number of cumulated pulses from the linear law.
Data of the in-field experiment. Signal and reverberation are
shown by dashed and solid lines, respectively.
the linear growth. This can be done by using a function,
which we call “deviation”:

(4)

Here, N is the maximal value of the upper limit of sum-
mation in Eq. (2), or the maximal value of t. The con-
cluding procedure consists in calculating the variance
of the deviation:

(5)

The deviation function of Eq. (4) is shown in Fig. 2
for the two selected pulses of Fig. 1. The following val-
ues of deviation variances were obtained: D = 0.136 for
reverberation and D = 0.019 for the desired signal. The
ratio of the deviation variances of the reverberation and
signal is equal to 7. This value is quite high in view of
the fact that both pulses of Fig. 1 have the same shapes.

To clear up the physical origin of the difference
observed in the deviations, we performed a numerical
simulation. The task of such a simulation is similar to
that considered in [5, 6]. We had to construct a mathe-
matical model providing the values of the deviations
and deviation variances that are close to those observed
in the experiment. In the mathematical modeling, the
signal and the reverberation were formed from a contin-
uous signal A(v). We selected different forms of the
function A(v) for the signal and the interference, while
the rest of the procedures of forming these signals were
the same.

For the signal, the function A(v) was specified as

(6)

For the reverberation, this function had the form

(7)

The exponentials with complex arguments lead to
different Doppler frequencies for the signal and the
reverberation. The modulating functions determine the
shape of the spectrum. These functions were as follows:

(8)

(9)

(10)

For the signal, the modulating function was speci-
fied as a decaying exponential. Thus, an exponentially
decaying harmonic signal served as a model for the
desired signal. Such a model agrees well with the
experimental data. However, this model cannot be used
for the reverberation no matter what the signal decay:

Q t( ) U t( )
max U t( )( )
---------------------------

t
N
----.–=

D Q t( ) Q t( )〈 〉–( )2

t

∑ .=

S v( ) i
2π
768
---------4v 

  MS v( ).exp=

R v( ) i
2π
768
---------8v 

  MR v( ).exp=

MS v( ) 0.0006v–( ),exp=

MR v( ) π v
960
--------- 

  for v 480,<cos=

MR v( ) 0 for v 480.≥=
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RangeFrequency

Fig. 3. Pulse pattern in the range–Doppler frequency plane in the numerical experiment.
the corresponding shape of the deviation curve given by
Eq. (4) is quite different from that shown in Fig. 2. The
statistical model that was constructed in [5, 6] on the
basis of a random function with a narrowband spectrum
cannot be accepted as well. Satisfactory results were
obtained with the signal modeled as a single train of
harmonic oscillations of a finite duration. With such a
model, the deviation function of Eq. (4) has the shape
of a triangle, which seems to be similar to the experi-
mental curve of Fig. 2. If one applies a smooth envelope
(according to the cosine law) to the finite train, the
resulting dependence will be close to the experimen-
tal reverberation curve of Fig. 2 in all aspects. Func-
tions (9) and (10) correspond to this model.

From the whole set of data containing v  = 768 dig-
its, a matrix B(ξ, n) that had 32 columns with ordinal
numbers ξ and 24 rows with ordinal numbers n was
constructed. The variable ξ means the range, and the
variable n has the same meaning as above: the ordinal

0 10

Amplitude

 Number of pulses (n/32)
20

0.5

1.0

Fig. 4. Decay of the signal amplitude with increasing num-
ber of cumulated pulses in the numerical experiment. The
functions MR(v) given by Eqs. (9) and (10) are shown by
the solid line, and the function MS(v) given by Eq. (8), by
the dashed line.
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number of the pulse. The matrix was formed according
to the formula

(11)

From the matrix B(ξ, n), a pulsed signal was formed
by assigning a value of 1 to the matrix member corre-
sponding to a single value of the variable ξ. The speci-
fied values were ξ = 20 for the signal and ξ = 8 for the
reverberation. After that, the matrices of the signal and
the reverberation were combined (multiplying the
reverberation matrix by 2) and Fourier-transformed
(i.e., coherently cumulated) over 24 values of n.

By using the aforementioned procedure, the pulses
were formed from the harmonic signals with different
amplitude modulation. These pulses are shown in Fig. 3
in the range–DFS plane. Figure 4 shows the laws of
amplitude modulation for pulses (8), (9), and (10). In
this figure, the values v  divided by 32 are plotted along
the horizontal axis.

B ξ n,( ) A ξ 32n+( ).=

0 10

Deviation

Number of pulses
20

0.1

0.4

0.2

0.3

0.5

Fig. 5. Deviation of the pulse amplitude growth with
increasing number of cumulated pulses from the linear law.
Data of the numerical experiment. Signal and reverberation
are shown by dashed and solid lines, respectively.
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Fig. 6. Variances of deviations and maxima of the pulse amplitudes in the range–azimuth plane versus the DFS. The deviation vari-
ances are plotted with the opposite sign for the instants (a) 225 and (c) 300 s. The amplitude maxima are shown for the instants
(b) 225 and (d) 300 s.
To determine the deviation function in the model
experiment, we used the procedure given by Eq. (4),
where the function F(n, m) of Eq. (1) had the following
form for the reverberation:

(12)

For the signal, the same function was specified as

(13)

where wR and wS were the frequencies maximizing the
responses of Fig. 3 for the reverberation and the signal,
respectively.

Figure 5 shows the deviation functions for the model
signals. The variances of deviations were D = 0.142 and
D = 0.018 for the numerically modeled reverberation
and signal, respectively. The ratio of these values is
close to 8.

Figure 6 illustrates the effect of using the deviation
variance in extracting the signal from reverberation.
The plot presents the results of processing the received
signals for two time intervals of about 4 s in duration.
The beginnings of the intervals correspond to (A) 225
and (B) 300 s after the object of location began to move.
The signals were processed by a coherent summation of
the outputs of all hydrophones of the array for all
24 pulses.

FR n( ) B 8 n,( ) i2πnwR( ).exp=

FS n( ) B 20 n,( ) i2πnwS( ),exp=
Figure 6 was obtained in the following way: in the
range–azimuth plane, the maximal signal was found at
a single fixed value of the DFS; for this signal, its abso-
lute level and variance of deviations were determined;
after that, the DFS value was slightly changed, and the
signal maximum was again found for the whole range–
azimuth plane. The data thus obtained were plotted in
Fig. 6. The scattering cross section of the object of loca-
tion was much greater at instant A than at instant B.
Therefore, the signal level is rather high in Fig. 6b. At
instant B, the scattering cross section is so small that the
signal is undetectable in level. However, at instant B,
the signal is reliably detected by using its deviation
variance.

Thus, the difference in coherence between the rever-
beration and the signal can be used to reduce the thresh-
old of detection and extraction of the signal against the
reverberation background. This difference can be
explained by the fact that reverberation produces a
pulse that is outwardly similar to the signal because of
the shorter train of coherent pulses. Therefore, to reli-
ably distinguish between the reverberation and the
desired signal by the aforementioned method, one
should make the time of coherent cumulation longer
than the duration of the reverberation train; it is also
preferable that the object to be located move uniformly
along a straight line. The proposed method seems to be
original and promising, as compared to those described in
other recent publications (see, e.g., [8]).
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Abstract—In the framework of the theory of integral equations, the problem of sound diffraction by pressure-
release and acoustically stiff inhomogeneities of an oceanic waveguide is considered. The iteration method is
used to obtain recurrent relations for the surface currents. The relations describe the diffraction process as a
sequence of interactions between the body and the waveguide boundaries (multiple reflections). The validity
condition for the zero-order approximation, which ignores multiple reflections, is formulated and physically
justified. © 2003 MAIK “Nauka/Interperiodica”.
The rigorous theory of diffraction is known to be
based on the Huygens principle combined with integral
equations that determine the boundary-value problem.
However, the current status of the theory of diffraction
by bodies in a waveguide does not allow one to obtain
rigorous explicit solutions to the boundary-value prob-
lem in a closed form [1, 2]. In the majority of acoustic
problems, one deals with the Green’s functions, for
which the solutions to the integral equations can be
found by nothing but numerical calculations. Although
fast and reliable computer codes exist for calculating
the diffracted fields, it is often advantageous to use
approximate analytical approaches that allow one to
obtain the characteristics of the scattering process in a
simple and easy-to-grasp way. By now, the approxi-
mate methods [3–6] for calculating the diffraction
structure of the sound field in waveguides, which are
based on specific physical considerations, are exclu-
sively limited to the situation when one can neglect the
effects of multiple reflections from the body and the
waveguide boundaries. At the same time, it is obvious
that, if the body is located near one of the waveguide
surfaces, the multiple scattering effects can be signifi-
cant. The wide variety of such problems are concerned
with the phenomena related to the effect of the inter-
faces between media on the diffracted field [7–9]. In
this connection, it is important to obtain an approxi-
mate solution that allows one to consider and estimate
the effects of multiple scattering. Such problems are
impeded by the fact that the sound fields must satisfy
the boundary conditions at the boundaries of the
waveguide and the body, which have different geomet-
ric shapes and acoustic properties. In such situations, it
is most advantageous to expand the external fields into
the eigenfunctions of the waveguide and to solve the
diffraction problem on the basis of the wave equation in
its integral form. The advantage of this approach con-
sists in the fact that the solutions of the integral equa-
1063-7710/03/4901- $24.00 © 20068
tions automatically satisfy the boundary conditions at
the interface between two media.

This paper presents the method of successive
approximations (iterations) for solving the integral
equations that describe the sound diffraction by a body
with uniform Dirichlet and Neumann conditions in a
plane-layered waveguide of the oceanic type. The
validity conditions for the zero-order approximation,
which ignores multiple reflections, are formulated and
physically justified.

STATEMENT 
OF THE DIFFRACTION PROBLEM

Let us consider the problem of sound diffraction by
acoustically soft (the p-case) and acoustically stiff (the
s-case) bodies in a uniform plane-layered waveguide.
For this purpose, we use the method of integral equa-
tions. A waveguide with thickness H and sound speed
profile c(z) has the upper boundary at z = 0 and the
lower boundary at z = H. Let a point source of unit-
amplitude harmonic waves be located at a point Q0(R0)
with the coordinates r = (0, 0), z = z0. The coordinates
of the geometric center Qs(Rs) of the body are rs = (xs,
ys), z = zs, and the reception point Q(R) has the coordi-
nates r = (x, y), z = z. Here, R = r + azz, r = axx + ayy is
the radius vector in the horizontal plane (x, y); and ax,
ay, and az are the unit vectors. We introduce a Cartesian
coordinate system whose origin coincides with the
point Qs. With this coordinate system, an arbitrary point

of the medium is determined by its radius vector  =
 + , where  =  +  is the radius vector in

the horizontal plane and , , and  are the unit
vectors. Evidently, the following relation holds: R =

Rs + .

R̂
r̂ âzẑ r̂ âx x̂ ây ŷ

âx ây âz

R̂
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As a result of diffraction, at the observation point
Q(R), the total field p is a superposition of the incident
u and scattered w fields: p(R) = u(R) + w(R). The inci-
dent monochromatic field u produced by the point
source of frequency ω (i.e., the Green’s function G) is
determined by the wave equation

(1)

and satisfies the corresponding boundary conditions at
the upper (z = 0) and lower (z = H) surfaces of the
waveguide, as well as the radiation condition at infinity.
Here, k(z) = ω/c(z) is the wave number at the horizon z.
Let us restrict our consideration to the cylindrically
symmetric problem and assume that the solution to
Eq. (1) is known [10]:

(2)

where  is the Hankel function of the first kind; hm,
ψm, and κm are the propagation constant, normalized
eigenfunction, and attenuation coefficient of the mth
mode, respectively; and r = |r | is the horizontal distance
from the source to the observation point. By using the
Huygens principle, we can represent the scattered field
in the form [11]

(a) for the p-case [p = 0 at the surface (S)],

(3‡)

(b) for the s-case [∂p/∂n = 0 at the surface (S)],

(3b)

where ϕ and ϑ  are the surface densities of the ordinary
and dipole sources, respectively; ∂/∂n is the derivative
in the direction of the outer normal to the surface (S);

and  is the element of the body’s surface (S) in the

vicinity of the point . The integration is performed
over the surface (S) of the body. Here and below, the
primes label all quantities and operators associated
with the integration point. Expressions (3a) and (3b)
satisfy the boundary conditions of the Helmholtz equa-
tion (1), so it remains for us to satisfy the boundary con-
ditions at (S). From the boundary condition at the
body’s surface, we obtain the Fredholm equation of the
second kind for the unknown functions ϕ and ϑ  [11]:

∆ k
2

z( )+[ ] u R( ) δ R R0–( )–=

u R( ) G R( )=

=  
i
4
--- ψm z0( )ψm z( )H0

1( )
hmr( ) κmr–( ),exp

m

∑

H0
1( )

w R( ) ϕ R'ˆ( )G R Rs R'ˆ+,( ) R'ˆ ,d

S

∫°–=

w R( ) ϑ R'ˆ( ) ∂
∂n'
-------G R Rs R'ˆ+,( ) R'ˆ ,d

S

∫°=

dR'ˆ

R'ˆ
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(a) for the p-case,

(4‡)

(b) for the s-case,

(4b)

The surface densities ϕ and ϑ  are determined by both
the incident field and the secondary field produced by
all elements of the surface. Equation (4b) determining
ϑ  is the integral equation of the same type as Eq. (4a)
determining ϕ. These equations differ in the first terms
on their right-hand side and in their kernels, because
they involve normals to the surface at different points,

namely: n = n( ) and n' = n( ). The kernels are asym-
metric, and the following expression is valid for the
“transposed” kernels:

(5)

In general, Eqs. (1)–(4) solve the problem of sound dif-
fraction by a body in the waveguide, because their solu-
tions satisfy the boundary conditions at the surfaces of
the body and the waveguide together with the radiation
condition.

To rigorously derive Eqs. (3) and (4), it is sufficient
to apply the known derivation procedure of the Helm-
holtz equation to Eq. (1) and then to perform the con-
version to the surface currents. This procedure does not
differ in any way from the case of free space [11]. We
omit the computation details but make the following
remark. The resultant expressions are in fact the conse-
quence of the generalized Helmholtz equation whose
integrand involves the free-space Green’s function
G0(R, R0). Such a generalization is based on the known
property of the solution to the wave equation: at a reg-
ular point, the wave function can be represented as an
integral over an arbitrary closed surface encircling this
point, the form of the Green’s function G(R, R0) being
immaterial. Really, Eqs. (3) and (4) correspond to the
Huygens principle and also satisfy the boundary condi-
tions at the body’s surface when G(R, R0) is treated as
an arbitrary function that satisfies the wave equation (1)
and fits the physical conditions of the problem. In free
space, the only such condition is the radiation condition
at infinity. Therefore, the Green’s function is specified
in the form G(R, R0) = exp(ik |R – R0 |)/4π|R – R0 |. For
the problem of sound scattering in the waveguide, the
Green’s function G(R, R0) should be treated as the
solution to Eq. (1) that determines the fields satisfying

ϕ R̂( ) 2
∂u R̂( )

∂n
--------------- 2 ϕ R'ˆ( ) ∂

∂n
------G R̂ R'ˆ,( ) R'ˆ ,d

S

∫°–=

R̂ S( ),∈

ϑ R̂( ) 2u R̂( ) 2 ϑ R'ˆ( ) ∂
∂n'
-------G R̂ R'ˆ,( ) R'ˆ ,d

S

∫°+=

R̂ S( ).∈

R̂ R'ˆ

∂
∂n
------G R'ˆ R̂,( ) ∂

∂n'
-------G R̂ R'ˆ,( ).–=
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the boundary conditions at the waveguide surfaces. In
our case, such a solution is given by Eq. (2).

Let us apply Eqs. (1)–(4) to the calculation of the
Fraunhofer fields in the waveguide. Assuming that the
horizontal distance between the body and the source is
long enough, we expand the source field (2) into plane
waves. Using the asymptotic form of the Hankel func-
tion, we reduce the incident field at the body’s surface
to the form

(6)

where

(7)

are the partial plane waves corresponding to the mth
mode,

(8)

is the field of the mth mode at the body’s center, and

(9)

Here,  = (hm ± gm) are the local wave vectors of the
Brillouin rays of the incident field with the horizontal
hm and vertical ±gm components, hm = (rs/rs)hm, gm =

, gm(zs) = , and rs = |rs| is the horizon-
tal distance between the source and the body’s center.
In deriving Eq. (6), we used the expansion of the eigen-
function ψm(z) in the vicinity of the reference point zs:

(10)

which is admissible in the approximation of a locally
homogeneous medium [12]. The latter means that the
inhomogeneous medium is close to a homogeneous one
within the characteristic vertical size of the body.

Let the partial plane waves  induce surface cur-

rents with the densities  (the p-case) or  (the
s-case) on the body’s surface. These currents generate
secondary diffraction fields. Then, for the diffracted

u Rs R̂+( ) um
+ Rs R̂+( ) um

– Rs R̂+( )+[ ] ,
m

∑=

Rs R̂+( ) S( ),∈

um
± Rs R̂+( ) um Rs( ) am
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± R̂( )exp[ ] ,=
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8π
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hmrs

--------------------------------- ihmrs κmis–( )exp=
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zs( ) 1
2
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ψm' zs( )
2igm zs( )ψm zs( )
-------------------------------------.±=

km
±

âzgm k
2

zs( ) hm
2

–

ψm zs ẑ+( )

=  ψm zs( ) am
+

igmẑ( )exp am
–

igmẑ–( )exp+[ ] ,

um
±

ϕm
± ϑ m

±

field (3a) or (3b) in the far-field zone, Eqs. (2) and (10)
yield

(11)

where function Tµ takes the form

(a) in the p-case,

(12‡)

(b) in the s-case,

(12b)

Here,  = hµ ± gµ are the local wave vectors of the
Brillouin rays of the diffracted field, hµ = [(r – rs)/|r –

rs |]hµ, and the vectors ±gµ and factors  are similar to

±gm and  of Eq. (9). Here and further, we use Greek
symbols (µ, ν, …) and Latin ones (m, n, …) for enu-
merating the modes of the scattered and primary fields,
respectively. The integrands on the right-hand side of
Eq. (12b) are equal to

(13)
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In view of Eq. (13), the integrals of Eqs. (12a) and (12b)
mean the Fourier transforms for the surface density of
the sources. According to the reciprocity theorem [13],
they describe the angular distribution of the Fraunhofer
partial field diffracted in the direction of the wave vec-

tor  when a plane wave propagating in the direction

of  is incident on the body. The quantity F( , )
is given by the following expressions

(a) in the p-case,

(14‡)

(b) in the s-case,

(14b)

This quantity has a dimensionality of meters and can be
treated as a generalization of the concept of the scatter-
ing amplitude to the case of the waveguide propagation.
On the right-hand side of Eqs. (14a) and (14b), the fac-

tor (1/ um(Rs)) multiplying the integral serves to nor-
malize the amplitude of the plane wave of the mth mode.
According to Eqs. (4a) and (4b), the surface density is
determined from the integral equations

(a) in the p-case,

(15‡)

(b) in the s-case,

(15b)

where the quantities G( , ) and ( ) are given by
Eqs. (2) and (7). In view of the definitions of Eqs. (8),
(14a), and (14b), the diffracted field of Eq. (11) can be
expressed as

(16)
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where the scattering matrix of the guided modes has the
form

(17)

Expression (16) agrees well with the common appre-
hension that, in the far-field zone, the diffracted field is
a superposition of plane waves emitted by individual

elements of the body’s surface in the directions . As
a result, the task is to determine the unknown functions

( ) and ( ). A rigorous solution to Eqs. (15a)
and (15b) can be found for a limited range of problems
associated with the use of the Green’s function G0(R) of
a homogeneous space. This situation is caused by the fact
that the mathematics of the diffraction theory is based on
the use of the homogeneous-space Green’s function [11,
14], and a replacement of this function by another (the
waveguide Green’s function G(R)) requires a total modifi-
cation of the methods of solving the integral equations.
Thus, in considering the sound propagation in the
waveguide, we have to use approximate methods.

ITERATIVE METHOD

To find approximate solutions ( ) and ( )
to integral equations (15a) and (15b), we use the
method of successive approximations. The method of
iterations is especially advantageous when the problem
to be solved is close to a problem that can be solved
exactly. In this case, it is assumed that the differences in
the two solutions are not singular; i.e., the exact solu-
tion can be transformed to the approximate one in a
continuous manner. Explicitly, it means that the pertur-
bation should be a continuous function of the parameter
that determines the value of the perturbation. As the

zero-order approximation, we use the quantities 

and  that are the solutions to Eqs. (15a) and (15b)
with the kernel in the form of the homogeneous-space

Green’s function G0( , ) = exp(ik |  – |)/4π|  –

|; these solutions are assumed to be known. By sub-

stituting the known functions  and  into the
integrals on the right-hand side of Eqs. (15a) and (15b),
we find the first approximations in the form of the sum

of two terms:  =  +  and  =  +

.

In the p-case, we have

(18‡)

Sµm am
+

aµ
+
F km

+ kµ
–,( ) am

–
aµ

–
F km

– kµ
+,( )+=

+ am
+

aµ
–
F km

+ kµ
+,( ) am

–
aµ

+
F km

– kµ
–,( ).+

kµ
±

ϕm
± R̂ ϑ m

± R̂

ϕm
± R̂ ϑ m

± R̂

ϕm
± 0( )

ϑ m
± 0( )

R̂ R'ˆ R̂ R'ˆ R̂

R'ˆ

ϕm
± 0( ) ϑ m

± 0( )

ϕm
± 1[ ] ϕm

± 0( ) ϕm
± 1( ) ϑ m

± 1[ ] ϑ m
± 0( )

ϑ m
± 1( )

ϕm
± 1( ) R̂( ) = 2 ϕm

± 0( ) R'ˆ( )
∂

∂n
------ G0 R̂ R'ˆ,( ) G R̂ R'ˆ,( )–[ ] R'ˆ ,d

S

∫°
R̂ S( ),∈
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and in the s-case,

(18b)

If, on the right-hand side of integral expressions (15a)
and (15b), the unknown functions are replaced by their

first approximations,  and , we can find the

second approximations for  and  as sums of

three terms:  =  +  +  and  =

 +  + .

Then, in the p-case, we have

(19‡)

and in the s-case,

(19b)

In Eqs. (19a) and (19b), the quantities  and 
are given by Eqs. (18a) and (18b). By repeating these
iterative procedures many times, we obtain a sequence

of functions ( ) and ( ) whose sum tends

to the exact solutions ( ) and ( ):

(20)

because the surface densities of sources are finite for
physical reasons. The nth steps of iterations for

 and  follow the recurrent relations

(a) in the p-case,

(21‡)

(b) in the s-case,

(21b)

Note that, according to Eq. (5), the approximations

 and , n ≥ 1, which are given by Eqs. (18a),

ϑ m
± 1( ) R̂( ) = 2 ϑ m

± 0( ) R'ˆ( )
∂

∂n'
------- G R̂ R'ˆ,( ) G0 R̂ R'ˆ,( )–[ ] R'ˆ ,d

S

∫°
R̂ S( ).∈

ϕm
± 1[ ] ϑ m

± 1[ ]

ϕm
± 2[ ] ϑ m

± 2[ ]

ϕm
± 2[ ] ϕm

± 0( ) ϕm
± 1( ) ϕm

± 2( ) ϑ m
± 2[ ]

ϑ m
± 0( ) ϑ m

± 1( ) ϑ m
± 2( )

ϕm
± 2( ) R̂( ) 2 ϕm

± 1( ) R'ˆ( ) ∂
∂n
------G R̂ R'ˆ,( ) R'ˆ ,d

S

∫°–=

R̂ S( ),∈

ϑ m
± 2( ) R̂( ) 2 ϑ m

± 1( ) R'ˆ( ) ∂
∂n'
-------G R̂ R'ˆ,( ) R'ˆ ,d

S

∫°=

R̂ S( ).∈

ϕm
± 1( ) ϑ m

± 1( )

ϕm
± n( ) R̂ ϑ m

± n( ) R̂

ϕm
± R̂ ϑ m

± R̂

ϕm
± R̂( ) = ϕm

± n( ) R̂( ), ϑ m
± R̂( )

n 0=

∞

∑  = ϑ m
± n( ) R̂( ),

n 0=

∞

∑

ϕm
± n( ) ϑ m

± n( )

ϕm
± n( ) R̂( ) 2 ϕm

± n 1–( ) R'ˆ( ) ∂
∂n
------G R̂ R'ˆ,( ) R'ˆ ,d

S

∫°–=

R̂ S( ), n 2,≥∈

ϑ m
± n( ) R̂( ) 2 ϑ m

± n 1–( ) R'ˆ( ) ∂
∂n'
-------G R̂ R'ˆ,( ) R'ˆ ,d

S

∫°=

R̂ S( ), n 2.≥∈

ϕm
± n( ) ϑ m

± n( )
(18b), (21a), and (21b), follow the same functional

dependence. The quantities  and  from the
perturbation series (20) can be interpreted as follows:

the zero-order terms  and  determine the dif-
fracted field without accounting for multiple reflections
between the body and the waveguide boundaries, and

the higher terms  and , n ≥ 1 can be under-
stood as the surface densities governed by the n-fold
interaction of the body and the waveguide boundaries.
Then, the first terms given by Eqs. (18a) and (18b) are
nothing but the well-known Born approximation. Thus,
with the use of representation (20), which is the solu-
tion to integral equations (15a) and (15b), the process
of diffraction in the waveguide is represented as a
sequence of interactions between the body and the
waveguide boundaries (multiple reflections). The
aforementioned considerations allow one to determine
in which case several initial approximations lead to a
good result. After the determination of the solutions to
integral equations (15a) and (15b) in the form of series

(20), the quantity F( , ), which determines the
scattering matrix for the waveguide modes Sµm (17),
can be found from Eqs. (14a) and (14b).

Similarly, a theory of perturbations can be devel-
oped for the problem of sound diffraction by a body
with an impedance surface in a regular plane-layered
waveguide.

VALIDITY OF THE FIRST-ORDER 
APPROXIMATION

Let us consider the conditions when the first-order
approximation is justified. In this case, according to
Eqs. (14a), (14b), (15a), and (15b), the scattering
matrix Sµm (17) of the waveguide modes is determined
by the scattering amplitude in a homogeneous medium.
This fact was proved earlier in [3, 12].

Evidently, in order for the first-order approximation
to be valid, the residue of the perturbation series (20)
should be much smaller in its absolute value than the
zero-order term. In the general case of arbitrary func-

tions  and , the estimation of the infinite sum
of the omitted terms is rather complicated. Therefore,
the usual practice is to restrict the problem to consider-

ing the first terms  and  and to find the con-
ditions when the following inequalities hold:

(22)

Strictly speaking, this validity criterion of the zero-
order approximation works only when expansions (20)
converge and have an alternating sign. This is precisely
the case under consideration. The first inequality is met
because of the physical understanding of the finiteness
of the surface density of sources, and the second ine-

ϕm
± n( ) ϑ m

± n( )

ϕm
± 0( ) ϑ m

± 0( )

ϕm
± n( ) ϑ m

± n( )

km
± kµ

±

ϕm
± 0( ) ϑ m

± 0( )

ϕm
± 1( ) ϑ m

± 1( )

ϕm
± 1( ) R̂( )  ! ϕm

± 0( ) R̂( ) , ϑ m
± 1( ) R̂( )  ! ϑ m

± 0( ) R̂( ) .
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quality is justified by Eqs. (21a) and (21b). Hence, con-
ditions (22) are necessary and sufficient for the zero-
order approximation to be valid. By using Eqs. (5),
(18a), and (18b), we can rewrite conditions (22) as fol-
lows:

(a) in the p-case,

(23‡)

(b) in the s-case,

(23b)

In general, inequalities (23a) and (23b) are too compli-
cated to be directly analyzed. Let us simplify the prob-
lem to extract simple and easy-to-grasp estimates from
expressions (23).

Suppose that the body is close to one of the
waveguide boundaries: the free water surface at z = 0,
for instance. Let the characteristic vertical size d of the
body be much smaller than the waveguide thickness H,
d ! H, and the medium be locally homogeneous within
the layer of thickness zs + d near the boundary (see
[12]). Then, in the first approximation, the Green’s
function of the waveguide can be replaced by that of a
half-space with a pressure-release surface. Thereby, the
problem is reduced to that of sound scattering by two
bodies (real and imaginary) that are mirror symmetric
with respect to the plane z = 0. In this case, the function

G( , ) involved in expressions (23a) and (23b)
takes the form [11]:

(24)

Here, (S1) is the surface of the real body with the geo-
metric center at the point Qs(Rs), a is the vector con-

necting two mirror-symmetric points  and  of the
surfaces (S2) and (S1), (S2) is the surface of the imagi-
nary body with the geometric center at the point

( ), and  = Rs – . By substituting Eq. (24)
into expressions (23a) and (23b), we obtain the inequal-
ities

2 ϕm
± 0( ) R'ˆ( ) ∂

∂n
------ G0 R̂ R'ˆ,( ) G R̂ R'ˆ,( )–[ ] R'ˆd

S

∫°
! ϕm

± 0( ) R̂( ) ,

R̂ S( ),∈

2 ϑ m
± 0( ) R'ˆ( ) ∂

∂n
------ G0 R'ˆ R̂,( ) G R'ˆ R̂,( )–[ ] R'ˆd

S

∫°
! ϑ m

± 0( ) R̂( ) ,

R̂ S( ).∈

R̂ R'ˆ

G R̂ R'ˆ,( ) ik R̂ R̂1'–( )exp

4π R̂ R̂1'–
---------------------------------------

ik R̂ R̂1'– a+( )exp

4π R̂ R̂1'– a+
------------------------------------------------,–=

R̂ R̂1' S1( ).∈,

R̂2' R̂1'

Qs
* Rs

* Rs
* 2âzzs
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(a) in the p-case,

(25‡)

(b) in the s-case,

(25b)

where the kernel K( , ) is given by the expression

(26)

For each specific case, the validation of approximations
(25a) and (25b) is not difficult, and we do not particu-
larize it here.

To obtain a rough estimate for the domain of validity
of the zero-order approximation (25a) and (25b), we

proceed as follows. Let us specify  = const and

 = const in expressions (25a) and (25b) and make
use of the mean-value theorem for a triple integral. In
doing so, we keep in mind that the modulus of the inte-
gral is not greater than the integral of the modulus of the
integrand. To simplify inequalities (25a) and (25b), we
specify (n, b) = b in Eq. (26). The quantity b involved
in these inequalities is no smaller than the least distance
and no greater than the maximal one between two
points, one of which lies on the surface (S1) and the
other lies on (S2). As a characteristic value of the quan-
tity b, we accept the distance 2zs between the geometric
centers of the bodies: b = 2zs . As a result, we obtain

(27)

where S is the area of the body’s surface. In two limiting
cases of short and long waves, we find from Eq. (27)

(a) for short waves, (2kzs)2 @ 1,

S/2λzs ! 1, (28‡)

(b) for long waves, (2kzs)2 ! 1,

S/8π  ! 1. (28b)

Hence, if the sound wavelength λ is much smaller than
the distance zs from the body to the water surface at z =
0, it is sufficient that the surface area be small relative
to the quantity 2λzs for the zero-order approximation to
be valid. If the wavelength is much longer than this dis-
tance, the first term of the perturbation series can be

1
2π
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± 0( ) R̂1'( )K R̂ R̂1',( ) R̂1'd

S1
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1
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∫°  ! ϑ m
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R̂ S1( ),∈

R̂ R̂1'

K R̂ R̂1',( ) n b,( )
b

3
-------------- ikb 1–( ) ikb( ),exp=
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± 0( )

S 1 2kzs( )2
+ /8πzs

2
 ! 1,
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omitted when the surface area is small relative to the

quantity 8π  The estimating conditions (28a) and
(28b) agree well with the data of numerical modeling
[15–17]. For example, in considering the sound scatter-
ing by two spheres in [17], it was shown that the effect
of the secondary scattered fields is does not exceed 10%
if the radius of the sphere meets the condition r ≤ 2zs/5.
According to expression (28b), we obtain zs ≥ 2.2r.

Thus, in the framework of the theory of integral
equations, the problem of sound diffraction by pres-
sure-release and acoustically stiff bodies in a plane-lay-
ered waveguide of oceanic type is formulated. The pos-
sibility of applying the theory of perturbations to solv-
ing the integral equations is considered. A recurrent
method for calculating the corrections to the scattering
parameters with allowance for the multiple reflections
of waves by the body and the waveguide boundaries is
proposed. The conditions for the multiple reflections to
be neglected (the zero-order approximation) are dis-
cussed. In the zero-order approximation, the scattering
matrix of the waveguide modes is shown to be deter-
mined by the scattering amplitude in a homogeneous
space.
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Admittance of a Groove on a Rigid Surface under a Grazing Flow
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Abstract—The problem of sound diffraction by a groove on a rigid surface in the presence of a grazing flow is
considered. The input admittance of the groove is calculated, and its real part is shown to be negative. © 2003
MAIK “Nauka/Interperiodica”.
The effect of the average shear of the flow on the
acoustic admittance of holes in a screen separating sta-
tionary and moving media is of interest for the design
and analysis of silencers operating in a moving medium.
It has been proven experimentally that the tangential dis-
continuity spanning the throat of a Helmholtz resonator
changes both its resonance frequency and its loss coeffi-
cient [1]. The admittance of an isolated hole in a screen
was investigated in detail in [2]. A rigorous analytical
method for calculating the effect of the tangential discon-
tinuity on the acoustics of a hole in a screen was sug-
gested in papers [3, 4]. A numerical difference procedure
for solving the Navier–Stokes equation was used in
paper [5] (which presents an exhaustive list of publica-
tions concerning the effect of a flow on the acoustics of
cavities). In this paper, we extend the method suggested
in papers [3, 4] to the problem of a rigid plane with a
groove spanned by a tangential discontinuity. The main
difference in the formulations of the problems on the dif-
fraction by holes without and with a tangential disconti-
nuity consists in different boundary conditions on the
front edge. In the absence of a tangential discontinuity,
the conditions on both edges are formulated as zero-val-
ued energy flux in the edge direction. If a tangential dis-
continuity is present, the Kutta–Zhukovski condition is
formulated on the front edge: the displacement and the
slope of the tangential discontinuity vanish at the edge.
Papers [3, 4] showed that the problem of the diffraction
by a hole spanned by a tangential discontinuity can be
reduced to two problems that are solved sequentially.
The first problem is that of the diffraction by a hole in the
absence of the flow. After this problem is solved, the
solution to the problem with the tangential discontinuity
can be obtained from the solution to the first problem by
using certain operator transformation that can be repre-
sented explicitly in an analytical form. The extension
suggested in this paper offers a possibility to extend this
procedure to the situations in which the Green’s func-
tions are different on the different sides of the tangential
discontinuity.

Consider the diffraction of sound by a rectangular
groove in a rigid surface (Fig. 1). The density and the
1063-7710/03/4901- $24.00 © 20075
sound velocity in the groove coincide with those in the
half-space and are denoted as ρ and c, respectively. The
medium in the half-space y > 0 moves along the x axis
with a velocity U, and the medium in the groove is at
rest. Under the action of the sound field, the interface
between the moving and stationary media—the tangen-
tial discontinuity—is displaced. Denote by η(x, t) the
deviation of this interface from the plane y = 0. Let the
harmonic sound field in the moving medium be known
in the case of a closed groove (η ≡ 0). We denote the
sound pressure in this field by p0(x, y) [we omit the tem-
poral factor exp(–iωt)]. The problem consists in find-
ing the displacement η(x) of the tangential discontinu-
ity over an open groove. From this displacement, we
can determine the sound pressure field in both the
groove and the half-space.

Denote by Φ1 and Φ2 the sound potentials of the
scattered fields in the stationary and moving media,
respectively. The sound pressures and the y-compo-
nents of velocities and displacements are related to
these potentials as follows:

(1)

(2)

p1 iωρΦ1, p2 iωρ 1
U
iω–

--------- ∂
∂x
------+ Φ2,= =

v 1y

∂Φ1

∂y
---------- iωη1 x y,( ),–= =

v 2y

∂Φ2

∂y
---------- iω 1

U
iω–

--------- ∂
∂x
------+ η2 x y,( ).–= =

y

y = –h

x

V2

V1

p1

p0 + p2

a/2–a/2

U

Fig. 1. Groove on a rigid plane with a grazing flow over it.
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The total field must satisfy the condition of the pressure
continuity in the hole

(3)

the displacement continuity in the hole

(4)

and the Kutta–Zhukovski condition on the front edge

(5)

We represent the fields p1 and p2 in the form

where p1r and p2r are the fields produced by the normal
displacements of the tangential discontinuity in the sta-
tionary and moving media and p1l and p2l are the fields
produced in the stationary and moving media by the
end sources resulting from the discontinuous flow
around the right-hand edge of the groove. We note that
the fields p1l and p2l are calculated for a closed groove
(η ≡ 0). Let us write the integral relationships relating
the fields p1r, p2r, p1l, and p2l to the displacement η(x)
and then substitute these expressions into the boundary
condition (3). The resulting expression will be the
desired equation in η(x). In accordance with Eqs. (1),
(2), and (4), we can assume that the fields p1r and p2r

are produced by the respective sources of volume
velocity,

which are distributed over the plane y = 0 in the interval
|x | < a/2. Using the Fourier method, we obtain the fol-
lowing expressions for the fields p1r and p2r:

(6)

(7)

where kn = πn/a, k = ω/c, M = U/c, and it is assumed that

Re  > 0 for Imk > 0. The coefficients
bn and g(α) are the amplitudes of the Fourier compo-
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η a
2
---– 

  0,
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nents in the expansion of the displacement η(x) in the
Fourier series and in the Fourier integral, respectively:

(8)

where ε0 = 2 and εn = 1 for n ≠ 0. These coefficients are
related as follows:

(9)

where

To obtain the parameters of the end sources, we use
the following physical speculations. In the case of the
negative deviation of the tangential discontinuity at the
point x = a/2, the moving medium finds its way into the
groove. This inflow can be described as the action of a
volume velocity source located near (below) the right-
hand side of the groove. The amplitude of the harmonic
component of this volume velocity is approximately

V1 = –β1Uη , where the coefficient β1 measures

about 0.5. In the case of the positive deviation of the

tangential discontinuity at the point x = , the medium

between this discontinuity and the plane y = 0 becomes
stationary. This stop can be described as the action of a
volume velocity source located near (above) the right-
hand side of the groove. The amplitude of the harmonic
component of this volume velocity is approximately

V2 = –β2Uη , where the coefficient β2 measures
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again about 0.5. For a closed groove (η ≡ 0), these
monopole end sources create the fields

(10)

(11)

The fields p1 = p1r + p1l and p2 = p2r + p2l , where p1r , p2r ,
p1l, and p2l are determined by formulas (6), (7), (10),
and (11), satisfy boundary condition (4). Let us make
them satisfy boundary condition (3). For this purpose,
we expand the fields p1r(x, 0) and p1l(x, 0) in the Fou-
rier integrals; by virtue of Eqs. (9), we obtain the expan-
sions

(12)

(13)

Substituting Eqs. (7), (11), (12), and (13) into boundary
condition (3), we obtain the integral equation in g(α):

(14)

where
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For a given pressure drop at the hole P(x) ≡ p0(x, 0) +
pl(x, 0), the displacement of the boundary at U ≠ 0 can
be expressed through the displacement at U = 0. Denote
the solution of Eq. (14) at U = 0 as g0(α). Then, the
solution for U ≠ 0 (for the same pressure drop at the
hole P(x)) will be

The displacement can be obtained by the formula

(16)

where

(17)

and η0(x) = (α)eiαxdα is the boundary displace-

ment at U = 0.
The integral with respect to α in Eq. (16) can be cal-

culated with the use of the residue theory. The poles of
the integrand are the roots of the equation W(α) = 0.
This equation has two physical roots, α = α1 and α =
α2, that determine the wave numbers of free hydrody-
namic waves. Performing the corresponding calcula-
tions and satisfying boundary conditions (15) on the
edge by adding free hydrodynamic waves to the solu-
tion, we obtain the desired displacement

(18)
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where

The limiting values of the roots for the case of an
incompressible medium (c = ∞) are

h  ∞;

h  0.

Thus, the calculation of the displacement η(x) for
U ≠ 0 requires knowledge of the displacement η0(x) at
U = 0 (for the same pressure drop on the hole). The lat-
ter can be obtained as follows. Substitute the fields
p1 = p1r + p1l and p2 = p2r + p2l , where p1r and p2r are
determined by Eqs. (6) and (7) at U = 0, into boundary
condition (3); then, multiply both sides of the resulting

relationship by cos  and integrate the

result with respect to x over the interval |x | < a/2. By
virtue of Eqs. (9), we obtain a system of algebraic equa-
tions in the amplitudes bn:

With these amplitudes, we obtain the displacement
η0(x) by the formula

(19)
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Represent the displacement η0(x) in the form

(20)

where (x) is the displacement caused by pressure

p0(x, 0) and η ζ(x) is the displacement caused by

pressure pl(x, 0) (in the absence of the flow). Using

Eqs. (18) and (20), we obtain an expression for η :

(21)

Formulas (18), (20), and (21) form the solution to
the problem of the motion of the tangential discontinu-
ity in a hole. Consider briefly the structure of the solu-
tion. According to Eq. (18), the displacement of the tan-
gential discontinuity is the sum of two hydrodynamic
waves, one of which exponentially increases and the
other exponentially decreases. These waves are excited
by the sources represented by the vertical displace-
ments of particles in the hole that coincide with those
appearing in the upper half-space under the action of
the pressure fields p0(x, 0) and pl(x, 0) in the absence of
the flow in the upper half-space. The field pl realizes the
feedback between the displacements of the tangential
discontinuity on edge x = a/2 and the displacements
over the entire hole.

The solution obtained above can be used, in partic-
ular, to calculate the input admittance of the groove, if
its length is small in comparison with the wavelength of
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the incident wave. The input admittance is determined
by the formula

(22)

where

(23)

is the volume velocity of the medium passing through
the hole. In Eq. (23), the first term is related to the dis-
placement flow of the medium under the lateral motion
of the tangential discontinuity, and the second term is
related to the penetration of a jet of the moving medium
into the stationary medium filling the groove.

The algorithm suggested for the calculation is
closed and exact but cumbersome. The main calcula-
tion difficulty, unrelated to the presence of the tangen-
tial discontinuity, consists in solving the system of
equations in the coefficients bn. To obtain a qualita-
tively correct estimate of the behavior of the tangential
discontinuity and acoustic admittance of the groove, we
can consider the problem in a simplified formulation.
Namely, assume that displacement η0(x) is a purely pis-
ton displacement. In other words, we retain only the
first term in the Fourier series (19). It should be empha-
sized that the displacement of the tangential discontinu-
ity calculated by Eq. (18) is not assumed to be a piston
displacement. We simplify only the auxiliary problem
concerning the calculation of the displacement field on
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the hole in the absence of the flow. The same procedure
was used in paper [1].

Thus, we assume that both sources—the pressure in
the external field p0(x) and the pressure pl(x) of the end
sources of the volume velocity—act on a weightless
rigid piston closing the groove. The problem consists in
finding the piston displacement under the action of
these two sources. To additionally simplify the prob-
lem, we assume that the medium is weakly compress-
ible, so that the wavelength of sound is much longer
than the size of the groove. In this case, the displace-

ment  caused by the action of the external field is
expressed as (this displacement is proportional to the
medium compressibility in the groove volume)

and the parameter ζ, which is determined as the propor-
tionality coefficient between the displacement of the

tangential discontinuity on the rear edge η  and η0

(assuming that the medium in the groove is incom-
pressible, this coefficient is calculated by equating the
volume displacement of the end source to the volume
displacement of the piston), has the form

The integrals appearing in Eq. (21) are calculated ana-

lytically, and the displacement η  is found to be
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Then, we determine the displacement η0 in the auxiliary problem:

Rearranging this expression, we obtain

η a
2
--- 

 

R α1( ) R α2( )+
α1 α2–

------------------------------------ e
iα1a

e
iα2a

–( )
iR α1( )

iα1–
---------------- 1 e

iα1a
–( )

iR α2( )
iα2–

---------------- 1 e
iα2a

–( )+ +

ζ
R α1( ) R α2( )+

α1 α2–
------------------------------------ e

iα1a
e

iα2a
–( )

iR α1( )
iα1–

---------------- 1 e
iα1a

–( )
iR α2( )

iα2–
---------------- 1 e

iα2a
–( )+ + 1–

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------η0
0( )

.–=

η0 η0
0( )

1 ζ

R α1( ) R α2( )+
α1 α2–

------------------------------------ e
iα1a

e
iα2a

–( )
iR α1( )

iα1–
---------------- 1 e

iα1a
–( )

iR α2( )
iα2–

---------------- 1 e
iα2a

–( )+ +

ζ
R α1( ) R α2( )+

α1 α2–
------------------------------------ e

iα1a
e

iα2a
–( )

iR α1( )
iα1–

---------------- 1 e
iα1a

–( )
iR α2( )

iα2–
---------------- 1 e

iα2a
–( )+ + 1–

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------–

 
 
 
 
 

.=

η0 η0
0( ) 1–

ζ
R α1( ) R α2( )+

α1 α2–
------------------------------------ e

iα1a
e

iα2a
–( )

iR α1( )
iα1–

---------------- 1 e
iα1a

–( )
iR α2( )

iα2–
---------------- 1 e

iα2a
–( )+ + 1–

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

 
 
 
 
 

.=



80 LAPIN, MIRONOV
–10

0 20

ReY/|Y0|

ω × a/U
3010 40

–12

–8

–6

–4

–2

0

2

0.1
0.3

0.5

0

0 20

ImY/|Y0|

3010 40
–2

2

4

6

8

10

0.1

0.3
0.5

Fig. 2. (a) Real and (b) imaginary parts of the groove admittance as functions of frequency. The abscissa axis represents the dimen-
sionless frequency and the ordinate axis, the dimensionless admittance normalized by the absolute value of the groove admittance
in the absence of flow, Y0 = iωh/ρc2. Different curves correspond to different values of the parameter β1 (the values are indicated
near the curves). The dimensional parameters are h = 0.005 m, a = 0.005 m, and U = 17 m.

(a) (b)
We calculate the displacement of the tangential discon-
tinuity by Eq. (18):

This expression satisfies the Kutta–Zhukovski condi-
tion. Now, we can calculate the effective admittance of
the groove. The volume velocity is

All quantities appearing in this expression were calcu-
lated above. Ultimately, they are all expressed through

. The admittance of the groove is
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Figure 2 shows the calculated real and imaginary parts
of the admittance normalized by the absolute value of
the elastic admittance of the groove in the absence of
flow, Y0 = iωh/ρc2. Different curves correspond to dif-
ferent coefficients β1. The real part of the admittance is
negative. This means that work is performed on the
acoustic field, so that the total power of the field
increases.

We dedicate this work to the memory of L.M. Lyam-
shev who greatly contributed to the study of aeroacous-
tic interactions (see, e.g., [6]).
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Abstract—The application of resonant acoustic spectroscopy to rock, building materials, and materials with
cracks is hindered by the substantial mechanical losses in these materials and by the overlapping of the individ-
ual resonance responses. The paper describes a method for the determination of the resonance frequencies in
low-Q materials in the presence of a strong overlapping of resonances. The effect of cracks on the values of the
resonance frequencies and Q factors is studied experimentally. © 2003 MAIK “Nauka/Interperiodica”.
Resonant acoustic spectroscopy (RAS) has received
wide acceptance as a method for measuring the elastic-
ity tensors of various samples [1]. A detailed descrip-
tion of RAS methods along with examples of their
application can be found in [1–3]. The high accuracy of
this technique has made it a popular instrument for
solving a wide variety of problems. For example, RAS
is used for analyzing such effects and parameters as dis-
sipation mechanisms in solids [4], phase transitions in
superconducting materials [5], the mobility of disloca-
tions in a crystal lattice [6], the structures of polycrys-
talline bodies [7] and composites [8], the effect of the
treatment of a material on its microstructure [9], and the
elastic moduli of the third order [10]; RAS is also used
for estimating the grain size in a structurally inhomoge-
neous medium [11]. One of the most important areas of
application of RAS is the nondestructive testing of
materials [12–14].

Initially, RAS methods were developed for measur-
ing the properties of crystals, e.g., for the determination
of the specific heat of crystals or the detection of phase
transitions in them. Such samples are almost free of
internal defects, and, hence, the mechanical losses in
them are small. Each resonance observed on these sam-
ples manifests itself as a sharp peak. The position of
each peak in the frequency spectrum of the response
determines a resonance frequency, and the width of the
peak indicates the Q factor. This method of measuring
the resonance frequencies and the Q factors enjoys
wide application [1].

As for the resonant acoustic spectroscopy of com-
posite and structurally inhomogeneous materials, the
main obstacle here is the overlapping of individual res-
onance responses, which hinders the resolution of res-
onances and makes it impossible to obtain the required
accuracy when using this method for nondestructive
testing [15]. Unlike crystals, the composites and struc-
1063-7710/03/4901- $24.00 © 20081
turally inhomogeneous media (such as rock or building
materials) are characterized by great numbers of inter-
nal defects and, hence, by high mechanical losses. As a
result, the resonances do not manifest themselves as
separate peaks, and the measurement of the resonance
frequencies and Q factors by the conventional RAS
technique is rather difficult. In the recent publication
[16] (by one of the authors of this paper), the matched-
filter processing of the experimental data was proposed
as a method to determine the resonance frequencies and
the Q factors in acoustic spectroscopy. In another pub-
lication [17], this method was shown to provide a high
accuracy in measuring the elastic constants, including
the cases when the conventional technique (the identi-
fication of the peaks) fails.

In the present paper, matched-filter processing is
used to determine the resonance frequencies and the Q
factors for materials with high concentrations of inter-
nal defects and to estimate the effect of cracks on the
values of the resonance frequencies and Q factors at
fracture. The first section briefly describes (on the basis
of [16]) the method of the determination of the reso-
nance frequencies and the Q factors of the samples; the
second section describes the experimental setup and the
scheme of measurements; and the third section dis-
cusses the results.

RESOLUTION OF OVERLAPPING RESONANCES

For the methods under consideration, the usual
approach is the minimization of the mean square devi-
ation of the measurement data from some selected
physical model whose parameters are to be determined.
In analyzing the linear response of a mechanical vibra-
tory system with many degrees of freedom (modes), it
is natural to choose a model in the form of the superpo-
sition of individual resonances. Then, the complex
003 MAIK “Nauka/Interperiodica”
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transfer function (TF) being defined as TF(ω) =
Aout(ω)/Ainp(ω), where Ainp(ω) and Aout(ω) are the com-
plex amplitudes of the input and output signals propor-
tional to the force and the displacement, respectively,
should be represented in the form

(1)

Here, M is the number of resonances in the frequency
range under consideration (ωmin < ω < ωmax), p = iω,

G( p, δl, ωl) =  is the response for the lth

resonance, δl is the corresponding loss factor, and ωl is
the corresponding frequency. Function (1) describes the
response of an arbitrary linear vibratory system in the
frequency domain [18]. Let us assume that we know N
values of the transfer function at the frequencies pn =
i(ωmin + 2π∆fn/N ), where 0 ≤ n ≤ N, ∆f = (ωmax –
ωmin)/2π is the frequency range in which the experi-
mental data are given, and ∆f/N is the frequency resolu-
tion of the transfer function. Then, the finite parameters
of model (1), i.e., the number of resonances, their fre-
quencies and amplitudes, and the loss factor, should
provide the minimal mean square deviation of the mea-
sured (or given) values of TFexp( pn) from the results of
calculation by Eq. (1). We set the variations of the
square magnitude of the corresponding difference with
respect to Al equal to zero to obtain a system of linear
equations for the amplitudes of the responses:

(2)

where Ckl = (pj, δk, ωk)G(pj, δl, ωl) and Dk =

(pj, δk, ωk)TF(pj).

To determine the resonance frequencies ωl and the
loss factors δl in model (1), we use the modified meth-
ods of linear prediction in the time domain (see, e.g.,
[19]). To change from the frequency domain of defini-
tion of the transfer function to the time domain (the
pulse response), we use a discrete Fourier transform, so
that the array of equidistant readings in the frequency
domain TF(pn) is put in correspondence with an array of
the readings ζn equidistant in time. The deviation of the

predicted value of ζn from the measured one  is
minimized as follows [19]. We determine a characteris-

tic polynomial H(z) = 1 +  with z = exp((–δ +
iω)/∆f ). The polynomial coefficients represent the solu-
tion to the system of equations

(3)
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where ajk = ζL – k + j , bj = ζL + j , j = 1, 2, …, N – L, k = 1,
2, …, L, and L ≥ M. The zeros of the polynomial H
[H(zl) = 0, zl = exp((–δl + iωl)/∆f )] coincide with the
poles of expression (1) (see [16, 19]). As a result, the
mean square deviation of the measured data from the
data obtained using model (1) with the corresponding
set of parameters (ωl , δl) and with the amplitudes Al sat-
isfying Eq. (2) proves to be minimal.

In the absence of losses (δl = 0), the autocorrelation

matrix A =  [where  = ajk is determined from
Eqs. (3) and the sign (·)+ denotes Hermitian conjuga-
tion] has the dimension L × L and the rank M. The first
M eigenvalues Λ of this matrix are positive (Λk > 0, k =
1, 2, …, M), and the remaining L – M eigenvalues are
equal to zero: Λk = 0, k = M + 1, M + 2, …, L [19]. The
presence of noise in the experimental data results in that
the matrix A has a full rank. According to [19], the
experimental data can be separated into the desired sig-
nal and the noise component by using the difference in
the eigenvalues Λk: the small values of Λk should be
identified with noise.

The presence of loss (δl ≠ 0) smoothes out the spec-
trum of the eigenvalues of the matrix A. In this case, the
boundary between the desired signal (the contribution
of resonances) and noise is assumed to be the break of
the spectrum of Λk [16]. This allows one to determine
the number M of the “true” resonances in model (1). If
the signal-to-noise ratio (snr) is known or can be deter-
mined independently, the number of resonances can
also be determined from the energy considerations
(each Λk is equal to the power of the corresponding
degree of freedom). Namely, for every (mth) physical
resonance, the following condition should be met:

(4)

The number of resonances M is determined as the max-
imal value of m satisfying inequality (4).

In this study, the number of resonances in the fre-
quency band ∆f is performed through the search for
singularities in the spectrum of the eigenvalues Λk and
the search for the maximal value of m in inequality (4).
Then, after the value of M is determined, equations (3)
and (2) are solved sequentially, and the parameters
involved in model (1) are determined. The result of cal-
culating the transfer function by Eq. (1) is compared
with the experimental data. If discrepancies are
obtained, the whole procedure is repeated with another
value of L, which serves as the initial approximation for
the number of resonances.

The measurement error for the parameters of
model (1) is estimated in the conventional way. The
goal function, which represents the sum of the squared
magnitudes of the difference between the measured
values of the transfer function and the parametric
model (1), is represented as a Taylor series up to the

â
+
â â

snr Λm Λk.
k 1=

L

∑≥×
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second-order terms for the values of Al, ωl, δl corre-
sponding to the minimum of the goal function. In this
case, the variance of each parameter of model (1) is
determined by the ratio of the goal function to the sec-
ond derivative of the goal function with respect to the
corresponding parameter.

The proposed method was used to analyze the
results of two series of measurements performed for
materials with cracks. One series was performed for
polycarbonate samples with the use of a swept signal,
as in the case of the standard methods of resonant
acoustic spectroscopy. The other series was performed
for concrete samples with the use of impulse excitation
of natural vibrations in the samples (impulse resonant
spectroscopy). Note that no nonlinear effects were
observed in the experiments described below.

RESONANT SPECTROSCOPY
OF POLYCARBONATES

The polycarbonate samples had the form of rectan-
gular bricks with the dimensions 13 × 38 × 132 mm3.
Each sample had a 12-mm-deep groove. Under a cyclic
loading, a visible crack was formed at the groove bot-
tom. Sample no. 1 served as reference and was not sub-
jected to loading, while sample no. 2 under the cyclic
loading developed a 6-mm-long crack.

The measuring setup is schematically represented in
Fig. 1. Piezoceramic transducers in the form of 2-mm-
thick disks, 10 mm in diameter, were glued to the end
surfaces of the sample. One of the transducers was
used for the excitation of vibrations in the sample
and the other served as a receiver. The response was
measured by a resonant ultrasound spectroscope
(produced by Dynamic Resonance Systems, see
http://www.ndtest.com/). The setup made it possible
to vary the excitation frequency and to save the data on
the hard disk of a computer. The frequency resolution
(the step in frequency) was 1 Hz in the frequency band
8–30 kHz and provided the possibility of recording the
resonances with a Q factor up to 1000, which far
exceeded the measured values of the Q factor.

Figure 2 presents the measured transfer function for
a defect-free polycarbonate sample and the correspond-
ing transfer function reconstructed by Eq. (1). One can
see that, even for such a sample, the conventional anal-
ysis of the power spectral density (the search for peaks)
does not allow one to determine all resonance frequen-
cies and Q factors. Specifically, resonances marked in
Fig. 2 by the numbers 3, 7, 9, 12–15, 17, 18, 20, 22, and
24 do not manifest themselves as peaks. Moreover, nei-
ther the amplitude nor the phase dependence of the
transfer function on frequency provides the determina-
tion of the resonance positions with the use of only the
local properties of TF(ω).
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
At the same time, the method discussed above pro-
vides the resolution of even noticeably overlapping res-
onance responses. To determine the number of reso-
nances in the measuring frequency band, we performed
the search for singularities (breaks) in the dependence
Λ(m) by using inequality (4). The value of the snr
involved in inequality (4) was estimated as the ratio of
the total spectral density (the sum of squared ampli-
tudes) to the noise power in Fig. 2. The noise amplitude
at every frequency was estimated as the difference
between the measured value and the mean value
obtained from the piecewise-linear smoothing approxi-
mation of the TF. The horizontal dashed line in Fig. 3
shows the noise power normalized to the total power of
the signal. The intersection of this line with the curve
corresponding to the eigenvalue spectrum normalized
to the total power corresponds to the number of reso-
nances in the measuring frequency band. The number
of the resonances was found to be 29 within the fre-
quency band 8–30 kHz. The Q factor of four resonances
out of these 29 proved to be less than seven, which was
much smaller than the mean value of the Q factor being
approximately equal to 50. The appearance of these res-
onances was caused by the finite width of the measur-
ing frequency band ∆f and by the smooth trends arising
in the frequency dependence of the TF. One resonance
was found to have an amplitude comparable with the
noise level and large errors in the measurements of its
frequency and Q factor. Thus, the five resonances spec-
ified above were excluded from the analysis. The
remaining M = 24 resonances are shown in Fig. 2.
Their parameters were used for calculating the TF by
Eq. (1).

It is well known that the presence of cracks mainly
leads to a decrease in the Q factor while the propagation
velocities of elastic waves vary within fractions of per-
cent [20]. Since, initially, the Q factor values are small
even for the defect-free sample, the measurement of the

Fig. 1. Measuring setup: (1) crack, (2) groove, (3) position
of the driving transducer, and (4) position of the receiver.

Resonance
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spectroscope
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3 4
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Fig. 2. Result of the reconstruction of the transfer function for sample 1 of polycarbonate (thin lines) and the experimental values
of the TF (thick lines). The upper plot shows the phase and the lower plot, the amplitude of the TF.
Q factor variation due to the presence of cracks presents
a difficult problem.

Figure 4 shows the resonance frequencies and the Q
factors of the first ten resonances for polycarbonate
samples 1 and 2. The frequencies were measured to
within 1%, and the accuracy of the Q factor measure-
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Fig. 3. Spectrum of the eigenvalues of the autocorrelation
matrix for sample 1 of polycarbonate; the spectrum is nor-
malized to the total power.
ment was much lower. The maximal measurement
errors were observed for the resonances whose ampli-
tudes were comparable with the noise level (1–3 in
Fig. 2) and in the case of a considerable overlapping of
the responses (9 and 10 in Fig. 2). Of all resonances pre-
sented in Fig. 4, we can separate three, namely, the res-
onances marked by arrows (6–8) in Fig. 2, for which the
measured values of the Q factor are statistically distin-
guishable (the confidence intervals of the data obtained
for samples 1 and 2 do not overlap). The maximal vari-
ations in the resonance frequencies occur for the same
three resonances 6–8 (Fig. 4). For these resonances, the
appearance of the crack is accompanied by a loss
increase. The Q factor decreases in the presence of the
crack by approximately a factor of 2 with respect to the
initial value (Q0 ≈ 100). The maximal changes in the Q
factor are observed for the mode with the maximal ini-
tial Q factor value (mode 6 in Fig. 4).

IMPULSE RESONANT SPECTROSCOPY
OF CONCRETE SAMPLES

The second series of measurements was performed
on two concrete samples. The samples had the form of
rectangular bricks with the dimensions 152.4 × 152.4 ×
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
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533.4 mm3 and had no grooves. Both samples initially
had no defects and were gradually destroyed by a lin-
early increasing load until their fracture. The experi-
mental setup is illustrated in Fig. 5.

The natural vibrations of the sample were excited by
a small hammer. The latter performed a single stroke,
which was controlled by a piezoceramic transducer
mounted on the hammer.

Figure 6 presents examples of signal records after
the stroke for a defect-free concrete brick and for a
brick under the effect of a load causing the formation of
microcracks. One can see that, in the brick with cracks,
the increased losses lead to a faster damping of the
excited vibrations.

The vibration excitation by a hammer stroke along
the sample axis mainly resulted in the excitation of lon-
gitudinal vibrations. In the reconstruction of the TF for
a concrete sample containing no defects, we obtained
the peak corresponding to the lowest mode of longitu-
dinal vibrations of the concrete brick (this mode is
observed against the minimal noise level). As the sam-
ple was gradually destroyed, the peak was split, and the
splitting increased with increasing load (Fig. 7).

Figure 8 shows this splitting as a function of the load
applied to the sample. The breaking force in Fig. 7 is
normalized in such a way that zero corresponds to the
absence of load while unity, to the maximal value of the
force beyond which the sample fracture takes place.
The splitting of the peak is presumably related to the
formation of cracks. The cracks were formed in the
region of the maximal axial tension under the load
(when the force was close to maximal, the cracking
could be detected visually). Without discussing the
mechanism of the splitting (it will be the subject of our
subsequent studies), we note that the appearance of
inhomogeneities inside the sample evidently leads to an
increase in the number of eigenmodes (longitudinal or
flexural), and one of the factors responsible for this
effect is the elimination of the degeneracy related to the
square cross section of the brick. Figure 9 shows the
dependence of the Q factor of longitudinal vibrations
3

2

1

0

–1

–2

–3
0 10 20

Time, ms
0 10 20

 Signal

Fig. 6. Responses of concrete samples to a hammer stroke: the left plot refers to the defect-free sample and the right plot, to the
sample immediately before fracture.
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(crosses in Fig. 8 and peak 1 in Fig. 7) on the breaking
load. The data presented in Fig. 9 are obtained from the
measurements on sample 1, which were performed
with the highest accuracy. The data shown in Fig. 9 tes-
tify to the rapid decrease in the Q factor, starting from
loads of about 10–20% of the ultimate load.

In the experiment, we observed a brittle fracture of
concrete. It is expedient to compare our results with
other data on the brittle fracture of solids. For example,
polycrystalline rock, including granite, exhibits brittle
fracture [21]. In [22], it was shown that, in granite,
microcracks are formed at the initial stage of fracture,
when the breaking force does not exceed 20% of the
ultimate strength. With further load increase, small
cracks coalesce, and the formation of new cracks slows
down. Small cracks cause a dissipation increase [20].
As one can see from the data shown in Fig. 9, in our
case, the maximal change in the Q factor is also
observed at the initial stage of fracture (presumably, at
the stage of microcrack formation). By contrast, the
maximal splitting of the longitudinal and flexural
modes is observed under loads of 20% or more (pre-
sumably, at the stage corresponding to the microcrack
coalescence and the strongest violation of symmetry in
the sample).

Thus, the method of matched-filter processing
allows one to extend the area of application of resonant
acoustic spectroscopy to the case of materials with low
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|TF|

4000

10–2

10–1
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10–1

3000 5000 F, Hz

Load = 0%

Load ù 95%

1 2

Fig. 7. Splitting of the peak under an increasing load; the
peak corresponds to the longitudinal mode. The dashed
lines show the result of the reconstruction of the frequency
response by Eq. (1). (The peak numbers correspond to those
in Fig. 8.)
Q factors. It becomes possible to perform acoustic mea-
surements of viscoelastic characteristics of structurally
inhomogeneous media the vibrations of which are char-
acterized by Q factors within 10–20. The above results
of the experimental study of fracture processes can be
considered as the first step in this direction.
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Abstract—Two opposite gravity-capillary waves of equal frequency give rise to the formation of a standing
wave on the ocean surface and, thus, in the nonlinear approximation, generate a sound wave of twofold fre-
quency with an amplitude proportional to the squared height of the surface wave [1]. This effect, being caused
by the nonlinear interaction of opposite surface waves, can give rise to the radiation of sound waves in both
ocean and atmosphere [2]. Opposite waves can appear in the ocean as a result of different ocean–atmosphere
interactions and, in particular, as a result of the blocking of capillary waves on the slope of a gravity wave. ©
2003 MAIK “Nauka/Interperiodica”.
L.M. Lyamshev contributed to research in acoustic
hydrodynamic phenomena while he was interested in
Aeolian tones, turbulent flow noise, and nonlinear
sound generation. This paper deals with the latter prob-
lem. In the nonlinear approximation, a standing surface
wave in the ocean is accompanied by the appearance of
a continuous sound wave with a twofold frequency and
an amplitude proportional to the squared height of the
surface wave [1]. Being caused by the nonlinear inter-
action of opposite gravity-capillary waves, this effect
gives rise to the generation of sound waves [2] that
propagate both upwards, in the atmosphere, and down-
wards, in the ocean.

The interaction between the surface waves and the
sound wave is best described in terms of a three-wave
interaction [3]. Consider the interaction between the
surface waves and sound that satisfy the conditions of
synchronism:

(1)

(2)

where ωi and ki are the frequencies and the wave num-
bers of opposite gravity-capillary waves and ω and qρ
are the frequency and the horizontal component of the
wave number of sound. The flow of liquid caused by the
surface waves can be considered as potential:

(3)

where ϕ is the velocity potential. The boundary condi-
tions on the free surface of the liquid are formulated as
the equality of the vertical velocity component to the
derivative of the velocity potential with respect to the

ω1 ω2+ ω,=

k1 k2+ qρ,=

∆ϕ 0,=
1063-7710/03/4901- $24.00 © 20088
vertical coordinate z (the kinematical boundary condi-
tion),

(4)

and the balance of pressures at the free surface of the
liquid (the dynamic boundary condition),

(5)

Here, ς is the elevation of the surface of liquid, γ = α/ρ,
α is the surface tension, and ρ is the density of the liq-
uid. In the problem under consideration, the nonlinear-
ity is mainly determined by the boundary conditions.
Therefore, the propagation of sound can be described
by the linear wave equation

(6)

where c is the velocity of sound.
Indeed, the nonlinear terms in the equation for

sound are smaller than the nonlinear terms in hydrody-
namic equations by a factor equal to the ratio of the
velocity of surface waves to the velocity of sound [3].

Let the vertical coordinate z increase in the upward
direction and the plane z = 0 coincide with the free sur-
face of the liquid. Then, gravity-capillary waves travel-
ing along the x axis can be represented in the form

. (7)

We assume that the sound wave travels downwards in
the vertical direction:

(8)
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Consider the interaction of opposite surface waves (k1 +
k2 = 0) and a sound wave traveling downwards (qρ = 0)
under the condition that they satisfy synchronism con-
dition (1) (see figure). If we substitute expressions (6)
and (7) into Eqs. (3) and (4) and retain only bilinear
terms, then, following [3], in the approximation of
slowly varying amplitudes, we obtain

(9)

(10)

(11)

As was shown in paper [4], the consideration of higher
approximations makes no difference. Taking into
account the relationship between the potential of the
surface wave velocity and the surface displacement,
ϕ i = (ω/k)ςi , we obtain an expression for the amplitude
of the sound wave produced by the interaction of oppo-
site surface waves of amplitude ςa:

(12)

This expression means that the ratio of pressure ampli-
tudes of the sound and surface waves is proportional to
the slope of the surface wave. The excess pressure
caused by the elevation of the surface to a height ς is
pg = ρgς, where g is the gravity acceleration. Then,
assuming that ςa = 10–2 cm and 4kςa = 0.1, we obtain
ps ~ 10–1 Pa. Note that this estimate corresponds to the
noise level experimentally measured in the ocean in the
10-Hz range [5]. The generation of sound by the broad-
band field of surface waves is described by the relation-
ship derived by Brekhovskikh [2]:

(13)

Here, P(ω) is the spectral density of pressure in the
sound wave, ρ is the density of the liquid, and Φ(ω) is
the one-dimensional spectral density of wind waves. To
obtain quantitative estimates, we will represent the
angular spectrum of wind waves by the empirical
expression suggested by Toba [6]:

(14)

where B = 0.03/T0.5, u∗  = 0.04UW, and UW is the wind
speed. The corresponding frequency spectrum has the
form

(15)

From this formula, for example, it follows that the
spectral density Φ(ω) measures 10–2 cm2/s at a fre-
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quency of 10 Hz. Hence, the spectral density of the
sound field generated by wind waves at frequencies of
about 10 Hz measures P(ω) = 10–2 Pa Hz–1/2, and the
pressure amplitude in the 10-Hz frequency band mea-
sures ps = 10–1 Pa, which agrees with the experimental
data on internal sea noise under moderate winds.

In this context, the question arises of what the con-
ditions are under which opposite surface waves appear.
It is clear that opposite waves appear under local distur-
bances of the ocean–atmosphere interface, such as
cyclones. The disturbances produced on the sea surface
by a cyclone traveling over it interact with the wind
waves, and this interaction may result in the formation
of standing waves. Long standing waves generate infra-
sound in the atmosphere and globally propagating
microseisms in the ocean bottom. In particular, paper
[7] presents data on the infrasonic disturbances gener-
ated by Pacific cyclones and detected at the Badar
observatory (near Irkutsk), as well as on the corre-
sponding microseisms received at the Petropavlovsk-
Kamchatskiœ seismic station.

The analysis of radar angular spectra argues, gener-
ally, for the complexity of the sea surface structure and,
in particular, for the presence of waves traveling in the
direction against the main wind waves [8]. The genera-
tion of gravity waves traveling against the wind was
observed in the scattering of signals of high-frequency
radars. It was assumed that this effect could be
explained by the nonlinear interaction of gravity waves,
which was described in terms of the radiation flux [9]
or four-wave interaction [10]. Conversely, for capillary
waves, a possible mechanism for the generation of
opposite waves can be related to the effect of blocking.

Depth

Distance

k1k2

q

Opposite gravity-capillary waves with wave vectors k1 and
k2 generate a sound wave with a wave vector q.
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An inhomogeneous flow caused by the orbital flow of
liquid in a gravity wave affects the propagation of the
capillary ripples on the slope of the gravity wave and
causes their modulation and blocking. The capillary
wave cannot traverse the zone where its group velocity
becomes equal to the phase velocity of the carrier grav-
ity wave (with allowance for the orbital velocity).
Hence, a caustic is formed, and this caustic corresponds
to the appearance of an opposite capillary wave. Math-
ematically, this effect can be explained using Lamb’s
problem on the disturbances caused by the action of
pressure on the surface of a homogeneous flow of liquid
moving with velocity U [11]. The action of pressure
specified by the function Pδ(x) causes disturbances on
the surface of the flow, and these disturbances propa-
gate in the form of two waves: a short wave in the direc-
tion against the flow and a long wave in the flow direc-
tion:

(16)

Two cases can be distinguished: ∆ ≤ 0 and ∆ ≥ 0
[11], which are arbitrarily called the resonance and out-
of-resonance cases, respectively. In the resonance case,
the wave number is real-valued, and a apropagating
wave exists. In the out-of-resonance case, no real-val-
ued solution exists. At ∆ = 0, the blocking conditions
take place, and the expression for the disturbance
diverges. A more accurate calculation procedure shows
that the wave near the caustic is described by the Airy
function and the above divergence disappears. In the
ocean, an inhomogeneous flow appears, for example,
on the slope of a gravity wave and blocks the capillary
ripples traveling along the slope. At the blocking point,
the long wave component arriving at the caustic is
reflected and transformed into the short wave compo-
nent. At the caustic, where ∆ = 0, we have k1 = –k2 = k,
i.e., two opposite waves appear with wave numbers
equal in magnitude but different in sign. The magnitude
of the wave number k is determined from the blocking
condition ∆ = 0. Using this condition, from Eq. (16) we
obtain

(17)

where U = (4gγ)1/4.

Thus, we approximately have k = 3.8 cm–1, which
makes it possible to determine the frequency of the gen-
erated sound: it proves to be about 102 Hz. However, the
condition k1 + k2 = qρ = 0 is satisfied only at the caustic

ς x( ) 2P–

∆1/2
----------

k1x, x 0≤sin

k2x, x 0≥sin 
 
 

,=

∆ U4 4gγ,–=

k1 k2, 1
2γ
------ U2 U4 4gγ–( )1/2±( ).=

k
U2

2γ
------,=
and is violated when the distance from the caustic
increases because of the increase in the difference
between the wave numbers. The interaction of opposite
waves with qπ ≠ 0 results in the generation of a sound
wave whose wave vector has the vertical component

qz = . In the latter formula, ω is the fre-

quency determined according to the synchronism con-
dition (1) as the sum of frequencies of interacting oppo-
site waves, and qρ = k1 + k2.

If ω/c ≤ qρ the vertical component of the wave vector
qz is imaginary and the sound wave becomes inhomo-
geneous. However, taking into account the fact that the
generated sound wave frequency determined by the fre-
quencies of the opposite surface waves is low, we can
conclude that the inhomogeneous wavelength is long,
measuring hundreds of meters in characteristic cases.
For this reason, the long-wave inhomogeneous sound
waves generated due to the blocking of surface waves
can contribute to the noise of the surface layer of the
ocean.
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Abstract—The properties of a multichannel transmission line of longitudinal–flexural type are considered.
Analytical formulas are obtained for the principal acoustic characteristics of a symmetric multichannel trans-
mission line, such as the input impedance matrix and the vectors of the reflection and transmission factors, in
the case of an arbitrary number and arbitrary parameters of single lines with simultaneous longitudinal and flex-
ural oscillations. © 2003 MAIK “Nauka/Interperiodica”.

Dedicated to L.M. Lyamshev, with whom the author was lucky to collaborate for more than 50 years.
The problem of sound and vibration absorption and
insulation remains topical from both theoretical and
practical points of view. Along with the progress in the
so-called active methods [1–6], the conventional meth-
ods of wave absorption and insulation also continue to
be developed (see, e.g., [7]). One such method is
described in [8, 9], which investigate the characteristics
of new acoustic objects, namely, the so-called multi-
channel transmission lines (MTL), in the cases of
purely longitudinal [8] and purely flexural [9] waves.

In the present paper, the MTL method is generalized
to the case of longitudinal and flexural waves simulta-
neously propagating in such a line. As in [8, 9], the fol-
lowing acoustic characteristics of longitudinal–flexural
MTL are calculated: the input impedance and the
reflection and transmission factors of flexural waves.

We assume that a longitudinal–flexural MTL con-
sists of a number of single transmission lines in the
form of parallel flat bars (strips) that can perform both
longitudinal and flexural vibrations at a frequency ω.
Each line is characterized by the following parameters:
l is its length (the same for all lines); mj = ρjhj is the lin-
ear mass (it is assumed that the bar width is much
smaller than the wavelength of the flexural wave); ρj is

the density; hj is the thickness; Gj =  and gj = Ejhj

are the flexural and longitudinal rigidities, respectively;
Ej is Young’s modulus; j = –N to N is the bar number;
and Hj is the distance between the jth bar and the “mid-
dle” plane of the MTL. It is assumed that the latter is a
structure symmetric with respect to this plane; i.e., all
the parameters of the jth bar coincide with the respec-
tive parameters of the –jth one. For example, Gj = G–j,
ρj = ρ–j, etc. In addition, for convenience, we assume

E jh j
3

12
-----------
1063-7710/03/4901- $24.00 © 20091
that Hj = –H–j  and the middle planes of the bar corre-
sponding to j = 0 and the MTL coincide.

The MTL model under consideration implies that
the left ends of all lines (x = 0) are connected with each
other, as well as the right ends (x = l) (Fig. 1a), by
weightless perfectly rigid plates that can shift and rotate
as a whole with respect to the middle plane, so that the
transverse displacements wj and the rotations  of
each end are the same for all the lines.

According to the chosen model, we believe that the
transverse displacements wj and the longitudinal ones uj

in each of the single lines satisfy the equations for the
flexural and longitudinal vibrations of a bar, respec-
tively:

(1)

. (2)

In Eqs. (1) and (2),  = ,  = , and kj and

k1j are the wave numbers of longitudinal and flexural
waves in the jth line.

The general solutions to Eqs. (1), (2) can be taken as

(3)

. (4)

w j'

d
4
w j

dx
4

----------- k j
4
w j– 0,=

d
2
u j

dx
2

---------- k1 ju j+ 0=

k j
4 m jω

2

G j

------------ k1 j
2 m jω

2

g j

------------

w j a j k jxcos b j k jxcosh+=

+ c j k jxsin d j k jx,sinh+

u j A j k1 j xcos B j k1 j xsin+=
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The boundary conditions can be written as

(5)

, (6)

(7)

, (8)

, (9)

. (10)

Here, w0, l  and  are unknown displacements and
rotations at x = 0 and x = l; Fj and Mj are cutting forces
and bending moments, respectively; Nj are longitudinal
forces; M1j are “additional” moments emerging due to
the longitudinal forces; and F0, l and M0, l are predeter-
mined transverse forces and rotational moments
applied to the connecting plates. Equations (5)–(7) cor-
respond to the flexural vibrations, while Eqs. (8)–(10)
refer to the longitudinal ones.

The quantities Fj , Mj, and Nj are expressed through
the generalized displacements by the well-known for-
mulas

(11)

w j 0 l,( ) w0 l, ,=

w j' 0 l,( ) w0 l,'=

F j 0 l,( )
j N–=

N

∑ F0 l,+ 0,=

M j 0 l,( ) M1l 0 l,( )+[ ]
j N–=

N

∑ M0 l,+ 0=

u j 0 l,( ) H jw0 l,'=

M1 j, 0 l,( ) H jN j 0 l,( )=

w0 l,'

F j = G j

d
3
w j

dx
3

-----------, M j–  = G j

d
2
w j

dx
2

-----------, N j–  = g j

du j

dx
--------.–

(a)

F0

M0

x = 0 x = l

Zl

+j

–j

(b)

+j

–j

x = 0 x = l

1

V P

Fig. 1. Illustration of the derivation of equations for the
acoustic characteristics of the longitudinal–flexural MTL.
We introduce the relative forces

(12)

Using solutions (3) and (4) along with formulas (11)
and (12), we can express the unknown constants
through the values of functions at the point x = 0:

Substituting these values into Eqs. (3), (4), and (12)
at x = l, and introducing the vector of generalized forces
and displacements for each end of a single line

(0, l) = [mj(0, l), fj(0, l)]T,

(0, l) = ,

we obtain a system of equations for the flexural compo-
nent of oscillations:

(13)

. (14)

Here, Pj and Rj are 2 × 2 matrices of the form

whose constituent functions are

For the longitudinal component, we similarly obtain

(15)

It is the latter equations that were used in the previ-
ous paper [8] to obtain its main results. Using bound-
ary conditions (5), (6), and (9), we represent formu-
las (13)–(15) as

, (16)

, (17)

f j

F j

G jk j
3

-----------, m j

M j

G jk j
2

-----------, n j

N j

g jk1 j

-----------.= = =

a j
1
2
---

w j' 0( )
k j

-------------- f j 0( )– , b j
1
2
---

w j' 0( )
k j

-------------- f j 0( )+ ,= =

c j
1
2
--- w j 0( ) m j 0( )–[ ] , d j

1
2
--- w j 0( ) m j 0( )+[ ] ,= =

A j n j 0( ), B j– u j 0( ).= =

Q j

U j w j 0 l,( )
w j' 0 l,( )

k j

------------------,
T

2U j l( ) P jU j 0( ) R jQ j 0( ),+=

2Q j l( ) R jU j 0( ) P jQ j 0( )+=

P j
C j

+
S j

+

S j
–

C j
+

 
 
 
 

, R j
C j

–
S j

–

S j
+

C j
–

 
 
 
 

,= =

C j
± ϕ jcosh ϕ j, S j

±
cos± ϕ jsinh ϕ j,sin±= =

ϕ j k jl.=

n j 0( )
u j l( )

ϕ1 jsin
--------------- u j 0( ) ϕ1 j,cot–=

n j l( ) u j l( ) ϕ1 jcot
u j 0( )

ϕ1 jsin
---------------, ϕ1 j– k1 jl.= =

2U j l( ) R jU0 P jQ j 0( )+=

2Q j l( ) R jU0 P jQ j 0( )+=
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(18)

Here,  =  and  = .

To be able to apply boundary conditions (7) and (8),

we should obtain (0) and (l) from Eqs. (16) and

(17) as explicit functions of  and . To make fur-
ther transformations easier, it is expedient to return to
the element-by-element representation of vectors.
From Eqs. (16) and (17), after some (simple, but time
consuming) transformations with matrix multiplication
we obtain:

(19)

, (20)

, (21)

(22)

The latter formulas contain some additional con-
stants:

For the sake of convenience, we introduce the

parameters G0, k0 and g0,  of a certain “comparison”
line along with the dimensionless quantities

(23)

With allowance for Eq. (23), the expressions for the
renormalized generalized forces can be transformed
into

(24)

n j 0( ) H j

wl'
ϕ1 jsin

--------------- w0' ϕ1 jcot– 
  ,=

n j l( ) H j wl' ϕ1 jcot
w0'

ϕ1 jsin
---------------– 

  .=

U0 w0

w0'
k j

------, 
 

T

Ul wl

wl'
k j

-----, 
 

T

Q j Q j

U0 Ul

m j 0( ) – p jw0 T j
–w0'

k j

------– C j
–
wl S j

–wl'
k j

-----–+ 
  ∆ j

1–
,=

f j 0( ) T j
+
w0 p j

w0'
k j

------ S j
+
wl– C j

–wl'
k j

-----+ + 
  ∆ j

1–
=

m j l( ) C j
–
w0 S j

–w0'
k j

------ p jwl– T j
–wl'
k j

-----+ + 
  ∆ j

1–
=

f j l( ) S j
+
w0 C j

–w0'
k j

------ T j
+
wl– p j

wl'
k j

-----+ + 
  ∆ j

1–
.=

p j ϕ j ϕ j,sinsinh=

T j
± ϕ j ϕ jcoshsin ϕ j ϕ j,sinhcos±=

∆ j 1 ϕ j ϕ j.coshcos–=

k1
0

ψ j

G j

G
0

------, ξ j

k j

k
0

----, ψ1 j

g j

G
0

------, ξ1 j

k1 j

k
0

------.= = = =

m j 0( )

=  
Ψ jξ j

2

∆ j

------------ – p jw0 T j
–ξ j

1– w0'

k
0

------– C j
–
wl S j

–ξ j
1– wl'

k
0

-----–+
 
 
 

,
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(25)

(26)

(27)

, (28)

. (29)

Without considering the longitudinal components,
we can write the desired quantities by introducing the
impedance matrices

, (30)

. (31)

Here,  = ,  = , and the 2 × 2

matrices Zik have the elements

;

f j 0( )

=  
Ψ jξ j

3

∆ j

------------ T j
+
w0 p jξ j

1– w0'

k
0

------ – S j
+
wl C j

–ξ j
1– wl'

k
0

-----+ +
 
 
 

,

m j l( )

=  
Ψ jξ j

2

∆ j

------------ C j
–
w0 S j

–ξ j
1– w0'

k
0

------ – p jwl T j
–ξ j

1– wl'

k
0

-----+ +
 
 
 

,

fj l( ) = 
Ψ jξ j

3

∆ j

------------ S j
+
w0 C j

–ξ j
1– w0'

k
0

------ – T j
+
wl p jξ j

1– wl'

k
0

-----+ +
 
 
 

,

m1 j 0( ) Ψ1 jξ1 jH j
2 wl'

k
0

----- 1
ϕ1 jsin

---------------
w0'

k
0

------ ϕ1 jcot–
 
 
 

=

m1 j l( ) Ψ1 jξ1 jH j
2 wl'

k
0

----- ϕ1 jcot
w0'

k
0

------ 1
ϕ1 jsin

---------------–
 
 
 

=

Q 0( ) Z
00

U0 Z
0l

Ul+=

Q l( ) Z
l0

U0 Z
ll
Ul+=

U0 w0

w0'

k
0

------,
 
 
 

T

Ul wl

wl'

k
0

-----,
 
 
 

T

Z11
00

Z22
00

– Z11
ll

Z22
ll

–
Ψ jξ j

2

∆ j

------------ p j;
j N–=

N

∑–= = = =

Z12
00

Z12
ll

–
Ψ jξ j

∆ j

-----------T j
–
;

j N–=

N

∑–= =

Z21
00

Z21
ll

–
Ψ jξ j

3

∆ j

------------T j
+
;

j N–=

N

∑–= =

Z11
0l

Z22
0l

Z11
l0

Z22
l0 Ψ jξ j

2

∆ j

------------C j
–

j N–=

N

∑= = = =

Z12
0l

Z12
l0 Ψ jξ j

∆ j

-----------S j
–
;

j N–=

N

∑–= =
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0l

Z21
l0 Ψ jξ j

3

∆ j

------------S j
+
.

j N–=

N
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One can see from these formulas that flexural vibra-
tions of the MTL are described by six independent
matrix elements. To take into account the longitudinal
vibrations, the matrix elements corresponding to the
effect of longitudinal forces should be added. Since the
latter affect only the moment component of the gener-
alized forces and only through the “rotational” compo-
nent of the generalized displacements, the additional
moments can be represented as

Here, the matrix elements, on the basis of Eqs. (28) and
(29), have the form

These elements should be added to the respective
matrix elements of flexural impedances. In this case,
Eqs. (30) and (31) can be rewritten as

, (30‡)

(31‡)

Here, the renamed impedances Zik take into account
both flexural and longitudinal components and can be
represented in the form

(32)

.

m1 0( ) z12
00w0'

k
0

------ z12
0l wl'

k
0

-----; m1 l( )+ z12
l0 w0'

k
0

------ z12
ll wl'

k
0

-----.+= =

z12
00

z12
ll

– Ψ1 jξ1 jH j
2 ϕ1 j;cot

j N–=

N

∑= =

z12
0l

z12
l0

–
Ψ1 jξ1 j

ϕ1 jsin
---------------H j

2
.

j N–=

N

∑= =

Q 0( ) Z00U0 Z0lUl+=

Q l( ) Zl0U0 ZllUl.+=

Zll
Z11

00
Z12

00
z12

00
+( )–

Z21
00

– Z11
00

– 
 
 
 

;=

Zl0
Z11

0l
Z12

0l
z12

0l
–

Z21
0l

– Z11
0l

 
 
 
 

;=

Z00
Z11

00
Z12

00
z12

00
+

Z21
00

Z11
00

– 
 
 
 

;= Z0l
Z11

0l
Z12

0l
z12

0l
+

Z21
0l

Z11
0l

 
 
 
 

=

From Eqs. (30a) and (31a), one can easily obtain the
input impedance matrix of the MTL. For this purpose,
we represent the generalized forces as

. (33)

Here Zin and Zl are the input impedance matrix and the
loading matrix, respectively. Substituting Eq. (33) into
Eqs. (30a) and (31a), we obtain

(34)

(35)

Eliminating the arbitrary vector  (or ) from
Eqs. (34) and (35), we obtain the mutual relations
between the matrices Zin and Zl:

, (36)

. (37)

From formulas (36) and (37), we obtain such acous-
tic characteristics of the MTL as the reflection and
transmission factors of flexural waves. The model used
for calculation is presented in Fig. 1b. A single trans-
mission line is connected to the MTL on the left and
right. To describe its parameters, we use the quantities
G0 and k0 introduced earlier. (Structurally, this line
can pass through the multichannel line so as to repre-
sent the line with the number j =0.) A harmonic wave
of unit amplitude propagates along this line from left
to right:

This wave generates two reflected waves, one being
uniform and the other nonuniform with its amplitude
decreasing with x  –∞:

.

Upon propagation through the MTL, similar waves
emerge at its output:

. (38)

Here, R and D are the desired reflection and transmis-
sion factors of the flexural wave.

Using the above notation, we can write the compo-
nents of the generalized displacement at x = 0 as

Q 0( ) Z inU0; Q l( ) Z lUl= =

Z00 Z in–( )U0 Z0lUl+ 0,=

Zl0U0 Zll Z l–( )Ul+ 0.=

U0 Ul

Z in Z00 Z0l Zll Z l–( ) 1–
Zl0–=

Z l Zll Zl0 Z00 Z in–( ) 1–
Z0l–=

w ik
0
x( ).exp=

w1 R ik
0
x–( )exp E k

0
x( )exp+=

w2 D ik
0

x l–( )( )exp F k
0

x l–( )–( )exp+=

w0 1 R E;
w0'

k
0

------+ + i iR– E.+= =
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Similarly, the components of the generalized force are

Introducing the vectors

the above relations can be written in matrix form:

(39)

Here, the matrices S1 and S2 are

Let us introduce, as above, the input impedance
matrix, which now will be related to the incident and
reflected waves:

(40)

Substituting Eq. (40) into Eq. (39) and eliminating

, we obtain the vector of the reflection factors

(41)

In Eq. (41), I is the unitary matrix.
Since from Eqs. (7) and (8) it follows that

the final formula for the vector of the reflection factors
of the MTL takes the form

. (42)

The quantity Zl involved in Eq. (36) for Zin will be
defined below.

In a similar way, we can find the vector of the trans-
mission factors of the MTL. Starting from formula (38)
for the transmitted waves, we find

.

M0

G
0

k
0( )

2
------------------ m0 1 R E,+ += =

F0

G
0

k
0( )

3
------------------ f 0 i iR– E.–= =

U0 w0

w0'

k
0

------,
 
 
 

T

, Q0 m0 f 0,( )T
,= =

V R E,( )T
, and A0 1 i,( )T

,= =

U0 S1V A0, Q0+ S2V A0.+= =

S1
1 1

i– 1 
 
 

, S2
1 1–

i– 1– 
 
 

.= =

Q0 Z in
0

U0.–=

U0

V Z in
0

S1 S2+( )
1–

I Z in
0

+( )A0.–=

Z in Z in
0

,–=

V Z inS1 S2–( ) 1–
I Z in–( )A0=

wl D F;
w1'

k
0

------+ iD F;–= =

Ml

G
0

k
0( )

2
------------------ ml D F,

Fl

G
0

k
0( )

3
------------------– f l iD F+= = = =
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Introducing, as above, the vectors

we can write the expressions

where the matrices q1 and q2 have the form

Writing the obvious chain of equalities

for Zl, we obtain

(43)

We can determine the vector  of the transmission
factors of a flexural wave by Eq. (34) [or (35)], which
can be rewritten as

(44)

Substituting the expressions for  and  from the
above formulas, we obtain a formula for the desired
vector, which is expressed through the quantities
defined earlier:

. (45)

Note that since, according to Eq. (41), vector  is propor-

tional to vector , vector  is also proportional to it.

Thus, the principal acoustic characteristics of the
MTL of the flexural–longitudinal type are obtained: the
input impedance, along with the reflection and trans-
mission factors, in the case of its excitation by a flexural
wave propagating along the single line connected to the
MTL in its middle plane, which is its plane of symme-
try. Note that the symmetric structure and the way of
connection described do not lead to the appearance of
longitudinal waves in the reflected and transmitted
fields. Similarly, when a longitudinal wave is incident
on the MTL, no flexural waves appear. In this case, the
situation is completely described in the previous paper
[8], and its results can be used in solving the latter prob-
lem.
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Abstract—In this article I discuss numerical sequences of potential interest to physicists, engineers, and artists.
Foremost among these are the maximum-length or “Galois” sequences, based on the prime number 2 and larger
primes, which have found wide use in physics, including acoustics, and engineering:
—the measurement of impulse responses in concert halls, radar echoes from planets (to check the General The-
ory of Relativity), and travel times in the deep-ocean sound channel (to monitor water temperature and global
warming);
—the spatial diffusion of sound waves, coherent (laser) light, and electromagnetic waves;
—algebraic error-correcting codes (Simplex and Hamming codes);
—minimizing peak-factors for radar and sonar signals, synthetic speech, and computer music;
—the formation of X-ray images with 2D masks (in X-ray astronomy).
Other sequences include
—quadratic-residue sequences for the construction of wide-band diffusing reflection-phase-gratings in one and
two dimensions;
—the Morse–Thue sequence, the Fibonacci and “rabbit” sequences and their musical potential; and
—certain self-similar sequences from number theory that engender attractive visual patterns, rhythms, and mel-
odies. © 2003 MAIK “Nauka/Interperiodica”.
12 INTRODUCTION
Number theory has been considered since time

immemorial to be the very paradigm of pure—some
would say useless—mathematics. Number theory is the
queen of mathematics, according to Carl Friedrich
Gauss, the lifelong wunderkind of arithmetic. What
could be more beautiful than a deep satisfying relation-
ship between whole numbers. (One is almost tempted
to call them wholesome numbers.) In fact, it is hard to
come up with a more appropriate designation than their
learned name: integers—meaning the “untouched
ones.” How high they rank in the realm of pure thought
and aesthetics above their lesser brethren, real and com-
plex numbers.

Yet, as we shall see here, number theory can provide
totally unexpected answers to real-world problems.
Specifically, I will focus on the application of
sequences of numbers that have found wide use in con-
cert hall acoustics, deep ocean monitoring of global
warming, precise radar ranging of interplanetary dis-
tances for checking Einstein’s Theory of General Rela-
tivity, error-correcting codes for the Internet, X-ray

1 The article is based on the author’s Number Theory in Science
and Communication, 3rd ed. (Springer 1997).

2 The article was submitted at the request of L.M. Lyamshev after
he got acquainted with this work by the author of the well-known
book on fractals and saw a relation to acoustics. The article was
submitted by the author in English.
1063-7710/03/4901- $24.00 © 20097
astronomy, speech synthesis, and the creation of musi-
cal rhythms and melodies.

GALOIS FIELDS

A pure, continuous sine wave has a power spectrum
with a single frequency component, but its envelope is
constant in time. By contrast, a sharp impulse has a
power spectrum with many frequencies, but of course
its envelope is limited to a short-time interval. Thus, for
a given maximum amplitude, the sharp pulse does not
pack much energy. Are there waveforms that contain
many frequencies, i.e., broadband signals whose
energy is more evenly distributed in time, allowing
higher energies to be transmitted (by an active long-
range radar or sonar, for example)? This is one of the
most fundamental and pervasive questions in modern
signal design. The answer to this question is a resound-
ing “yes.” In fact, there exist periodic broadband signals
whose discrete spectral frequency components have
constant magnitude and whose amplitudes in time also
have constant magnitude, say ±1. This sounds almost to
good to be true. But a little number theory shows that
this can indeed be accomplished.

The branch of number theory that guarantees this
astounding result is called finite-field theory. (In lan-
guages other than English, the word field is often
replaced by a word derived from the Latin word corpus
003 MAIK “Nauka/Interperiodica”
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(body), as in the German Zahlkörper.) Finite fields, also
called Galois fields, abbreviated GF, (after the French
mathematician Evariste Galois (1811–1832)) that are
of interest here are based on prime numbers p and their
powers pm. A finite field based on the prime number 5,
for example, has 5 elements: 0, 1, 2, 3, 4, and all arith-
metic operations are performed modulo 5; i.e., only the
remainders modulo 5 are considered. Thus, 3 + 4 does
not equal 7, as in ordinary arithmetic, but 3 + 4 equals
2, the remainder when 7 is divided by 5. Similarly, for
multiplication, 2 × 4 equals 3 modulo 5 and, for divi-
sion, 2/4 also equals 3 (because 4 × 3 equals 2 modulo

5). Here is a list of reciprocals in GF(5):  = 3,  = 2,

 = 4.

Finite fields based on prime powers pm are usually
represented by “vectors” in m dimensions, each vector
component being one of the elements 0, …, p – 1. Thus,
the finite field GF(22) consists of the following two-
dimensional binary vectors: 00, 01, 10, 11. Addition
proceeds place by place (without carries) modulo p.
Thus, for example, 01 + 11 = 10.

For purposes of multiplication, the vectors are rep-
resented by polynomials. Thus, the polynomial x + 1
corresponds to the vector 10, etc. To multiply two vec-
tors, their polynomials are multiplied modulo a primi-
tive polynomial, which thus plays the role of a prime
number. For GF(22), a primitive polynomial is x2 + x +1.
Setting it equal to zero (x2 + x + 1 = 0 or x2 = x + 1)
means identifying x2 with x + 1.

Thus, for example, 10 × 1 written as a product of two
polynomials becomes x(x + 1) = x2 + x = x + 1 + x = 2x +
1 = 1 (note that 2 = 0, and –1 = +1, in fields based on
the prime number 2). The “polynomial” 1 corresponds
to the vector 01. Therefore, finally, 10 × 11 = 01. This
looks funny, but it’s true and consistent!

GALOIS SEQUENCES

The primary use of primitive polynomials in finite
fields GF( pm) is the generation of Galois sequences,
also known as maximum-length sequences, i.e., peri-
odic sequences with period length pm – 1 such that their

1
2
--- 1

3
---

1
4
---

Exclusive Or

akak + 1

ak + 4

≡ ak + 1 + ak(mod 2)

Fig. 1. Four-stage linear shift register with feedback con-
nection using an “exclusive or” gate.
DFT (discrete Fourier transform) has constant magni-
tude (is “flat”) while—in the case of p = 2—the ampli-
tude values of the sequences are restricted to the two
values {0, 1} or, after a simple transformation, {+1, −1}
[1].

Let us study the generation of a Galois sequence and
its properties for the case of p = 2 and m = 3, i.e.,
GF(23). A primitive polynomial for GF(23) is p(x) =
x3 + x + 1. Next let us look at the reciprocal of p(x),
because the preferred method of generating Galois
sequences, namely by linear recursion, corresponds to
taking reciprocals:

Written as a binary sequence, the first factor is
0010111. (Note that in GF(23) vectors have 23 – 1 = 7
dimensions. Hence the two 0s to the left of 10111,
reflecting the fact that the terms x5 and x6 in the first fac-
tor are missing, i.e., have zero coefficients.) The second
factor (1 + x7 + x14 + …) means that the sequence
0010111 is repeated periodically with a period length
of 7:

(1)

Note that the ak obey the following recursion:

(2)

which stems directly from the “generating” polynomial
p(x) set equal to zero:

x3 + x + 1 = 0

or

x3 = x + 1

(note again that –1 equals +1 for p = 2).
The recursion formula (2) for the Galois sequence (1)

leads directly to its electronic realization by a shift reg-
ister with linear feedback (see Fig. 1). Galois sequences
are therefore also called “shift-register sequences” [2].

For generating the Galois sequence by computer
program, we start with some initial conditions (not all
0), say 001, and then generate the next term by adding
(modulo 2) the two leftmost terms (0 0), resulting in

0 0 1 0.
Next, we add the next two left terms (0 1), giving

0 0 1 0 1.
By repeating this process of adding (modulo 2) succes-
sive pairs of terms, we get

0 0 1 0 1 1
0 0 1 0 1 1 1
0 0 1 0 1 1 1 0
0 0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0 0 1,
etc.

1
p x( )
----------- x

4
x

2
x 1+ + +( ) 1 x

7
x

14 …+ + +( ).=

ak 0010111 0010111 001… ., ,=

ak 3+ ak 1+ ak,+=
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The resulting sequence repeats after 23 – 1 = 7 steps,
as it must: a three-stage shift register can at most hold
23 = 8 different binary triplets, all of which, except the
{0, 0, 0} triplet, occur exactly once (if p(x) is primi-
tive!). As a consequence, the number of 1s per period
equals 2m – 1 or, for m = 3, 4. (The number of 0s equals
2m – 1 – 1 or 3.)

Instead of the {0, 1} alphabet, the {+1, –1} alphabet
is preferred in many applications. Thus, instead of gen-
erating a pulse (1) or no pulse (0), a positive pulse (+1)
or a negative pulse (–1) is used. The general formula to
convert a one-sided alphabet a = {0, …, p – 1} into a
symmetric alphabet b is

b = exp .

Thus, for the binary alphabet ( p = 2) a = 0 is mapped
into +1 and a = 1 goes into exp(πi) = –1. (The b are
known in mathematics as pth roots of unity; they are
located on the unit circle in the complex plane.)

The above sequence ak = 0010111, 001… is thus
converted to bk = + + – + – – –, + + –…, where “+”
stands for +1 and “–” stands for –1.

For the bk, the addition in the recursion (2) turns into
multiplication,

bk + 3 = bk + 1bk,

or, equivalently,

(3)

Note that the number of +1s per period is one less
than the number of –1s. Thus the sum of the bk over one
period equals exactly –1.

Now let us look at the circular correlation sequence
of the bk, defined by

(4)

For n = 0, we get, trivially, c0 = 2m – 1. For n ≠ 0, it
is easy to show that the product bkbk + 1 equals a simple
shift, say by s, of the bk:

bkbk + n = bk + s .

Thus, the correlations are given by a sum of the bk

over one period,

cn = ,

or considering that bk is periodic with period 2m – 1:

cn = ,

2πia
p

------------ 
 

bk bk 2– bk 3– .=

cn bkbk n+ .
k 0=

2
m

2–

∑=

bk s+

k 0=

2
m

2–

∑

bk

k 0=

2
m

2–

∑
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which equals –1. Thus, the autocorrelation sequence cn

of the bk has exactly two values:

c0 = 2m – 1,

cn = –1

for n = 1, …, 2m – 2.
The DFT of such a two-valued sequence has itself only
two distinct values. In fact, the power spectrum | |Bn |2 is
“flat”:

|B0 |2 = 1

and

|Bn |2 = 2m

for n = 1, …, 2m – 2.
Thus, except for the “dc” component |B0 |2, all 2m – 2

“ac” power spectral lines have the same power: 2m.

CONCERT HALLS, OCEANS, AND VENUS

Galois sequences have been used for precision mea-
surements of impulse responses of a wide variety of
“linear systems” under the most adverse circumstances,
including the determination of concert hall acoustics
during an actual music performance. Thus, the testing
of acoustic performance spaces in the presence of a live
audience has become a real possibility!

One of the remarkable applications of Galois
sequences has been the measurement of ocean temper-
atures (for monitoring global warming) by measuring
sound transmission delays between Heard Island in the
Indian Ocean and Greenland, a distance exceeding
10000 km (see Fig. 2) [3]. The fact that sound waves
can travel over such large distances is due to the trap-
ping of sound energy in a waveguidelike channel at a
(moderate) depth corresponding to the minimum sound
velocity (see Fig. 3 for a computer ray simulation) [4].

Perhaps the most spectacular application of Galois
sequences has been the measurement of interplanetary
distances such as that between Earth and Venus when
the latter is hiding behind the Sun (upper conjunction).
In this application the Galois sequence is used to switch
the phase of a CW (continuous wave) radar pulse
between 0° and 180° at zero crossings of the sinusoidal
radar signal (see Fig. 4 for the sequence + + + – – + –).
Such a radar signal has a broad frequency spectrum
around the carrier frequency, which is conducive to pre-
cision time measurements by the Uncertainty Principle.
With a peak-power limitation of the radar signal, the
maximum average power (300 kW) can be radiated into
space. But with Venus in upper conjunction, only 10–27

of the outgoing energy, or less than 10–21 W, is reflected
to Earth! Results of such measurement by I. Shapiro [5]
are illustrated in Fig. 5, showing the extra delay, of up
to about 180 µs, over that if the speed of light was con-
stant along the entire return path of the radar signal. But
when Venus is in upper conjunction, the radar signal is
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Fig. 2. Long-range ocean monitoring (courtesy of Munk).
skirting the Sun and, according to Einstein’s Theory of
General Relativity, slowed down by the Sun’s gravita-
tional field. The solid curve shows Einstein’s prediction
of the delay. The measurements thus confirm his theory,
as opposed to several other competing theories. (This
was the fourth crucial test of General Relativity, the
three earlier ones being the perihel motion of Mercury,
the bending of star light grazing the sun (first observed
during an eclipse in 1919), and the frequency shift of
light emitted in a gravitational field.)

The Galois sequence used by Shapiro in these
astounding measurements had a period length of 26 – 1 =

Fig. 3. Computer ray tracing of sound in ocean with surface
channel (courtesy of M.M. Sondhi).
63. In the meantime, even the extremely small “Sha-
piro” time delay caused by the relatively weak gravita-
tional field of the Earth (compared to the sun) has been
measured and found to be in agreement with General
Relativity (order of magnitude: 10–10 s).

CONCERT HALL ACOUSTICS

One area in which Galois sequences have made a
difference, as already mentioned, is concert hall acous-
tics. Here the high signal-to-noise ratio (SNR) obtain-
able with Galois sequences allows precision measure-

Time

A
m

pl
itu

de

Fig. 4. Phase-switched radar signal.
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ments in the presence of a noisy audience (most halls
are measured—unrealistically—without an audience)
and even during an actual musical performance! (Here
the amplitude of the Galois sequence is adjusted to such
a low level as to be masked by the music and thus inau-
dible.) The high temporal resolution has allowed the
pinpointing of disturbing echoes in Philharmonic Hall
in New York (now Avery Fisher Hall) and the discovery
of the culprit for the low-frequency deficiencies (the
overhead reflecting panels, called—perhaps appropri-
ately—“clouds”). The measurement (see Fig, 6),
revealed a 20-dB loss along the center aisle of the hall
between 750 and 125 Hz. By contrast, upper balcony
seat A-15 showed only a 3-dB spread. (This seat was
included in the measurement program, because the ush-
ers, students of the Juliard School of Music, named that
seat as the best in Philharmonic Hall [16]).

Galois sequences have also been used in psycho-
physics and neurophysiology, for example, to measure
brain-stem responses [7]. Other applications are in
atmospheric physics [8] and numerous other fields.

For all these applications, fast computational algo-
rithms are crucial [9, 10].

PEAK FACTORS

Voiced speech sounds are electronically synchro-
nized by filtering a quasiperiodic train of pulses con-
sisting of, say, 31 in-phase harmonics (see Fig. 7, upper
waveform), which leads to a “raucous” sound of the
synthetic speech signal.

By replacing the all-zero phases in the 31-term Fou-
rier-cosine series by the 31 signs (±1) of a Galois
sequence from GF(25), i.e., a +1 corresponds to a zero
phase angle and a –1 corresponds to a phase angle equal
to π, the peak factor can be appreciably lowered (see
Fig. 7, lower waveform, plotted to the same scale as the
upper waveform [1]). The two waveforms shown in
Fig. 7 have the same total power and the same (flat)
power spectrum, yet they sound very different, the
lower peak factor giving rise to a “smoother” sound and
more pleasant sounding synthetic speech. The reason
for this surprising effect of Galois phase can be under-
stood as follows. Instead of minimizing the amplitude
range of the waveform s(t) for a given power, we can
ask for the minimum of the fourth moment of the (“Hil-
bert”) envelope of the waveform

where σ(t) is the “analytic signal” corresponding to
s(t), defined by

and (t) is the so-called Hilbert transform of s(t) [11].
As is well known, the analytic signal has a nonvanish-
ing Fourier transform only for positive frequencies. Its
absolute square, the square envelope |σ|2, is of course

σ t( ) 4
t,d∫

σ t( ) := s
2

t( ) C
2

t( )+ ,=

C=
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the autocorrelation of that spectrum. Thus, |σ|4 measures
the power in the squared envelope. The smaller this
power, the more constant, i.e., less “peaky” |σ|2 will be.

ERROR CORRECTING CODES

Another important application of Galois sequences
occurs in digital error correcting [12]. As we saw
above, Galois sequences in the finite field GF( pm) are
generated by a linear recursion modulo p.

For p = 2 (the most frequent case) and m = 3, say,
one such recursion is

ak + 3 = ak + 1 + ak(mod 2).

200
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0
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January 25, 1970

Fig. 5. Excess round-trip radar delay Earth–Venus during
upper conjunction (Venus behind the Sun). Solid line: pre-
diction by Einstein’s Theory of General Relativity (after
I. Shapiro).
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Fig. 6. Sound energy in three different frequency bands
along the center aisle of Philharmonic Hall (New York).
Note the sharp drop at 125 Hz and the small variation for a
seat in the upper balcony (A-15).
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“Galois” phases

Zero phases

Fig. 7. Peak factor reduction of periodic pulse (upper waveform). By using Galois phases, the peak amplitude range can be lowered
nearly threefold. (Both waveforms are drawn to the same scale.)
With the initial condition 1 1 1, say, the rest of one
period of the sequence is 0 0 1 0. In the context of error
correcting codes, we now consider the initial condition
(1 1 1), the information bits, and the remaining bits
(0 0 1 0) the check bits. This is the simplex code (of
length 7), so called because the geometric representa-
tion of the code words is a simplex (for example, a tet-
rahedron in three dimensions). The general binary sim-
plex code has length 2m – 1, with m information bits
(i.e., 2m code words) and 2m – 1 – m check bits. Thus its
relative rate of information transmission is only m/(2m –
1). But the code words have a mutual Hamming dis-
tance of 2m – 1, which allows the detection of 2m – 2 errors
and the correction of 2m – 2 – 1 errors, or, for large m,
almost 25%. This remarkable capability, a result of the

00

0

1

1
1

0

CheckInformation
bits bits

Fig. 8. Venn diagram illustrating the working of a length-7
Hamming code. The inner 4 bits (fat) are the information
bits. The other 3 bits (thin) are the check bits determined to
make the parity (sum of bits modulo 2) in each of the 3 cir-
cles zero. It is easily seen that reversing any of the 7 bits will
violate the proper parity in one or more circles, thereby
uniquely identifying its location.
relatively large Hamming distance of 2m – 1, is directly
related to the low autocorrelation of the corresponding
±1 sequence: a small correlation corresponds to a large
Hamming distance.

The simplex code is the basis of several other pow-
erful error correcting codes that are used in computers,
compact discs, and interplanetary space exploration.
The “dual” of the simplex codes are the famous Ham-
ming codes in which the roles of information and check
bits are reversed. Thus the Hamming code of length 7
has 4 information and only 3 check bits, enough to cor-
rect one error in any of the 7 bits—or to indicate that
there is no error. To distinguish between these 8 cases
is, in fact, the most 3 binary check bits could accom-
plish. Hamming codes are therefore called perfect
codes. (All binary perfect codes are, in fact, Hamming
codes.) Figure 8 illustrates the error correction of the
length-7 Hamming code by means of a Venn diagram.

Hamming codes, as they are perfect codes, are also
perfect covering codes [14]. A covering code is a selec-
tion of points in a space such that “unit balls” will cover
all other points of the space. An optimum covering code
has the smallest possible number of points. Good cov-
ering codes are needed for quantizing analog or digital
signals into the smallest number of representative
points for a given maximal error. They are also good for
solving certain “hat color” puzzles.

X-RAY ASTRONOMY

X rays are difficult to focus. Fresnel zone plates are
highly wavelength dependent. But number theory
offers a method of X ray imaging applicable in X-ray
astronomy that avoids these difficulties [15]. The meth-
ods depends on a two-dimensional (2D) “Galois array”
obtained by laying down a Galois sequence on a rectan-
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
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gular grid in a diagonal way, a “1” corresponding to a
little square-shaped transparent hole and a “0” to a little
square area blocking X-rays. For this method to work,
the length of the sequence L = 2m – 1 must be factorable
into two coprime factors. (Thus L must not be a
Mersenne prime.)

For example, for m = 12, L = 4095 = 63 × 65. The
corresponding 2D array is shown in Fig. 9. The X-ray
shadow from this mask is scanned into a computer
where it is deconvolved with the same 63 × 65 array,

Fig. 9. Two-dimensional Galois array.
ACOUSTICAL PHYSICS      Vol. 49      No. 1      2003
giving the image shown in Fig. 10 (revealing two X-ray
sources).

DIFFUSORS

One of the widest applications of Galois sequences
and arrays is to wave diffusion (sound, microwaves,
light) by means of gratings. For this purpose the Galois
sequence (in the ±1 form) is realized as a sequence of
reflection factors (see Fig. 11). A normally incident
plane wave is diffracted with nearly equal energies into
the different diffraction orders [13] (see Fig. 12). Of
course, for twice the design frequency (half the wave-
length), the troughs have a depth of λ/2. Thus, there is
no round trip phase shift and the grating acts much like
a plane mirror! To broaden the frequency range, the
prime number 2 used in the design of the grating has to
be replaced by a larger prime p, giving a grating of
length pm – 1 and useful for p – 1 frequencies (1, 2,
3, …, p – 1). (For noninteger multiples of the design
frequency, say 1.5, the scattering is still very good.)

QUADRATIC-RESIDUE DIFFUSORS

Another approach to constructing broadband diffu-
sors is based on the quadratic residues of a prime num-
ber p. For p = 7, for example, the quadratic residues of
the integer 0, 1, 2, 3, 4, 5, 6, 7, … are 0, 1, 4, 2, 2, 4, 1,
0 …, a sequence repeating with period p = 7. A reflec-
tion phase grating based on the quadratic residues of the
prime p = 17 is illustrated in Fig. 13. The depths of the
individual troughs are given by

dn

λ0

2 p
------ n

2( )mod p,=
Fig. 10. X-ray image constructed with the array of Fig. 9 revealing two X-ray sources.
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where λ0 is the fundamental (longest) wavelength. It is
easy to show that the sequence of reflection coefficients

rn = exp(2πidn/λ0)

has a vanishing autocorrelation sequence (except for a
shift congruent to zero modulo p). Thus, the corre-
sponding power spectrum is flat and the scattering pat-
tern is uniform [1].

The resulting broad scattering is shown in Fig. 14.
Again, such a grating works well for p – 1 frequencies,
i.e., almost four musical octaves for p = 17.

Diffracted
waves

Incident
wave

. . . . . . λ /4

–1 –1 –1 –1+1 +1 +1

λ /2

Fig. 11. Reflection phase grating based on Galois sequence
of length 7.

Fig. 12. Backscatter from a metallic Galois reflection phase
grating shown in Fig. 11. (The measurements were made
with 3-cm microwaves.)

Width
1

Troughs

Cross-dimension of hall

Ceiling

Period

Fig. 13. Reflection phase grating based on the quadratic res-
idues of the prime number 17.
THE RABBIT SEQUENCE

One of the most interesting binary sequences is the
rabbit sequence [16]: 1 0 1 1 0 1 0 1 …, generated by
the transformation 0  1 and 1  1 0. Starting with
a simple 0, the sequence of “generations” is thus

Each generation is the last-but-one generation
appended to the last generation. The number of bits in
generation n is thus the nth Fibonacci number Fn, which
obeys the recursion Fn = Fn – 1 + Fn – 2 starting with F0 =
F1 = 1. The number of 1s in generation n equals Fn – 1
and the number of zeros is Fn – 2. The ratio of 1s to 0s

therefore tends to the “golden mean” g = (  + 1)/2 =
1.618. In fact, the golden mean is useful in generating
the entire rabbit sequence rn without recourse to recur-
sion:

rn =  (n + 1)g  –  ng ,

where  x  stands for largest integer not exceeding x.
The name “rabbit sequence” stems from the fact that
the mapping 0  1 and 1  1 0 is the one consid-
ered by Fibonacci [17] for procreating rabbits: Imma-
ture rabbits become mature (0  1) and mature rab-
bits survive and get (immature) children (1  1 0).
One of the important properties of the rabbit sequence
is its self-similarity illustrated with the help of the rab-
bit lattice (“lettuce”) (see Fig. 15). The scaling factor

equals (  + 1)/2 = g.

QUASICRYSTALS

When an alloy, obtained by rapid cooling of a 1 : 6
mixture of manganese and aluminum, Al6Mn, is
exposed to a beam of electrons, the resulting diffraction
pattern shows bright spots and a fivefold symmetry (see
Fig. 16) [18]. The diffraction pattern shows also self-
similarity: there are numerous regular pentagons of dif-
ferent sizes, with a scale factor of g or g2 = 1 + g =
2.618… . Now, a fivefold symmetry of any periodic lat-
tice is forbidden by fundamental geometry. Yet the light
spots seem to imply a periodic crystal. Thus, something
must be wrong. The resolution of the puzzle comes, of
all things, from Fibonacci’s rabbits. There, we encoun-
tered a 1D structure (see Fig. 15), which is self-similar
and scales with a factor g. Can we find a 3D analog?
Figure 17 illustrates a projection method that generates
the 1D rabbit lattice from a square lattice [19]. This
method can be generalized to 2D and 3D rabbit lattices.
To generate a 2D rabbit lattice, one starts from a five-

n Rabbits Fn

0 0 1
1 1 1
2 1 0 2
3 1 0 1 3
4 1 0 1 1 0 5
…

5

5
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dimensional hypercubic lattice and projects down to an
appropriately inclined plane (see Fig. 18). When this
computer-generated aperiodic lattice is positioned in a
laser beam, the diffraction pattern shown in Fig. 19
results, showing exactly the right scaling and fivefold
symmetry! (Courtesy of H.W. Strube and H. Henze.)

THE MORSE–THUE SEQUENCE

Another important mathematical sequence for phys-
ics is the Morse–Thue sequence. Like the rabbit
sequence, it is self-generating, obeying the mapping
rules 0  01 and 0  1 0. Starting with a simple 0,
we get the following sequence of generations: 

In other words, the Morse–Thue sequence is gener-
ated by the simple rule “copy and append the comple-
ment.” This rule is “inherited” in the sense that the nth
generation is obtained by copying the (n – 1)th genera-
tion and appending its complement.

There is also a direct formula for the kth term of the
sequence: mk is the sum of the digits modulo 2 of the
binary representation of k. For example, the 7th term
(counting from zero) equals 1 because 7  1 1 1 and
1 + 1 + 1 = 1 modulo 2. The Morse–Thue sequence is
self-similar in the sense that m2k = mk. It got its name
from Axel Thue [20], who used it in mathematical lin-
guistics and Marston Morse [21], who discovered its
importance in chaotic dynamics.

SYMBOLIC DYNAMICS

Consider a simple example of a discrete nonlinear
dynamical system, the iterated quadratic map

xn + 1 = f(xn) = rxn(1 – xn).

For x = , the map has a fixed point and for

r = 2, the fixed point is “super stable” [ f(x) has a zero

derivative]. The initial value of x =  will stay at x0 =

, called the “orbit.” Symbolically, we denote this orbit

by

C C C … (period length 1),

where C stands for “center” .

n mn Number of bits
0 0 1
1 0 1 2
2 0 1 1 0 4
3 0 1 1 0  1 0 0 1 8
…

C≡

1 1
r
---– 

 

1
2
---

1
2
---

x = 
1
2
--- 
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Incident wave

Specular
reflection

Fig. 14. Reflection pattern of the grating shown in Fig. 13.

. . .

. . .
Compression
g = 1.618

1g

Fig. 15. A one-dimensional rabbit lattice (“lettuce”) and its
self-similarity. When compressed by a factor g each “atom”
of the original lattice is directly above an atom of the com-
pressed lattice. Each 1 in the rabbit sequence corresponds to
an “interatomic” distance proportional to g, and each 0 cor-
responds to a distance of 1.

Fig. 16. Electron diffraction pattern of a quasicrystal with
fivefold forbidden symmetry (from [18]).
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For r = 1 +  = 3.236… , the map has a super sta-

ble orbit of period length 2. Starting with x0 = , we get

x1 = 0.809…x3 = , … . Symbolically: C R C R C R …

(period length 2). Here, R stands for “right” because x1
is to the right of (greater than) x0.

For subsequent values of r, we obtain super stable
orbits of period lengths 4, 8, 16, etc., the so-called
period-doubling cascade. The symbolic dynamics are,
respectively,

C … (period length 1)

C R … (period length 2)

C R L R … (period length 4)

C R L R R R L R … (period length 8).

Is there a simple rule to go from one symbolic
dynamics to the next? Yes, there is: we copy the orbit
once and change the second C alternately to R and L
[16]. The orbit can also be described by a binary
sequence by writing 1 instead of R and 0 for C or L:

0

0 1

0 1 0 1

0 1 0 1 1 1 0 1

….

5
1
2
---

1
2
---

α tan α = 1.618

0
1

1

1

1

1
1

1
1

0

0

0

0

Fig. 17. Projection method for generating the 1D quasiperi-
odic “rabbit lattice” illustrated in Fig. 15.
There is a deep connection between the symbolic
dynamics of the quadratic map and the Morse–Thue
sequence:

0 1 1 0 1 0 0 1….

Taking first differences modulo 2 yields

1 0 1 1 1 0 1…,

which, except for the initial 0, are the symbolic dynam-
ics of the quadratic map at its super stable orbits at the
end of the period doubling cascade! Thus, an intriguing
connection is revealed between a case of nonlinear
dynamics and number theory (see [16] for more
details).

Fig. 18. A computer-generated 2D rabbit lattice obtained by
projecting a five-dimensional hypercubic lattice onto an
appropriately inclined plane.

Fig. 19. Diffraction pattern from quasiperiodic lattice
shown in Fig. 18.
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Fig. 21. Computer-generated “baroque” melody. This and other melodies are available on the Internet [22, 23]. 

1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111

1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

C C D C D D E C D D E C E E F

D D D C F

D C F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

...

...

...

...

...

...

Binary:

Number of 1’s:

C Major:

Every 3d note:

Melody:

Fig. 20. The baroque integer sequence converted to sound in the C-major scale by identifying 1 with C, 2 with D, etc. Repeated
notes are not repeated but held for a longer time, thereby imparting a rhythm.
BAROQUE INTEGERS

Let us consider yet another rule for generating inter-
esting sequences, namely “copy, add 1, and append.”
Thus, starting with a single 0, we obtain

0
0 1
0 1 1 2
0 1 1 2 1 2 2 3.
The nth term of the sequence signifies the number of

1s in the binary notation of n. This follows directly
from the generating rule and the initial condition (b0 =
0, see Fig. 20). Taking the bn modulo 2 gives the already
mentioned Morse–Thue sequence.

Like so many other objects generated by iteration,
the baroque integers [16] sequence is self-similar: Tak-
ing all even numbered terms, bn, reproduces the infinite
sequence bn (because n and 2n have the same number
of 1s in binary notation). Taking however, every third
term, b3m, produces an interesting new sequence whose
partial sums show a noteworthy fractal growth property.
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Such decimated baroque-integer sequences, converted
to sound (see Fig. 20), can also produce melodies [22,
23] reminiscent of baroque composition (hence my
designation). This is particularly true when every 63rd
term is taken (see Fig. 21), which is said to sound like
one of the Scarlattis.
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