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Collective excitations of massive Dirac particles in a hot
and dense medium
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The one-loop dispersion relation which defines the collective excita-
tions of massive Dirac particles in a hot and dense quark–gluon me-
dium is obtained in the high-temperature limit for the casem!gT and
is solved explicitly for alluqu when m50. Four well-separated spec-
trum branches~quasi-particle and quasi-hole excitations! are found, and
their behaviors for small and largeuqu are investigated. All calculations
are performed using the temperature Green function technique and fix-
ing the Feynman gauge. The gauge dependence of the spectra found is
briefly discussed. ©1998 American Institute of Physics.
@S0021-3640~98!00101-7#

PACS numbers: 12.38.Mh, 11.55.Fv, 02.30.Ks

INTRODUCTION

The study of collective excitations in a hot and dense medium is a topical pro
in present-day physics, especially for chromodynamics. In a medium all the par
~fermions, as well as bosons! lose their individual properties, and, due to the mu
interaction with the heat bath and one another, collective excitations arise, which~unlike
the ordinary vacuum physics atT,m50) have many new peculiarities: a gap of the ord
of gT at zero momentum, and a split spectrum at finite momentum.1–5 These collective
excitations determine the bulk of the kinetic and thermodynamic properties of the ho
dense medium and are very important for many processes taking place, for exa
inside a hot quark–gluon plasma. Moreover, the quark–gluon medium~whenm and/orT
are nonzero! generates new collective excitations of fermions: quasi-holes,2,4 which are
different from the quasi-particle excitations; their peculiarities~e.g., the minimum of the
quasi-hole branches at finite momentum and the ‘‘wrong’’ relation between chirality
helicity! can produce new physical consequences. All these collective modes have
zero effective masses, which arise dynamically independently of the bare masses a
not small for large parametersT,m. In particular, for initially massive Dirac particles
has been established that there is a set of four effective masses,6–8 which, in the general
case, are well-separated and are always nonzero in the medium.

The goal of this paper is to present the one-loop dispersion relation which d
mines the collective excitations of massive Dirac particles in a hot and dense qu
gluon plasma in the high-temperature limit for the casem!gT, and to solve it explicitly
for all uqu whenm50. We use the standard temperature Green function technique an
the Feynman gauge for explicit calculations. Only the case of zero damping is co
1 10021-3640/98/010001-07$15.00 © 1998 American Institute of Physics
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ered, and additional problems connected with the damping5,9 are not discussed. Fou
well-separated spectrum branches are established, and their behavior for small an
uqu is investigated. The gauge dependence of the spectra found is briefly discuss
start, we choose hot and dense QCD, although many results are model independe

QCD LAGRANGIAN AND QUARK SELF-ENERGY

The QCD Lagrangian in covariant gauges has the form

L52
1

4
Gmn

a 21Nf c̄FgmS ]m2
1

2
iglaVm

a D1mGc2mNf c̄g4c1
1

2a
~]mVm

a !2

1C̄a~]mdab1g fabcVm
c !]mCb, ~1!

whereGmn
a 5]mVn

a2]nVm
a 1g fabcVm

b Vn
c is the Yang–Mills field strength;Vm is a non-

Abelian gauge field;c~and c̄) are the quark fields in the SU~N! fundamental represen

tation (1
2l

a are its generators andf abc are the SU~N! structure constants!, andCa ~and

C̄a) are the ghost Fermi fields. In Eq.~1! m andm are the quark chemical potential an
the bare quark mass, respectively,Nf is the number of quark flavors, anda is the
gauge-fixing parameter (a51 for the Feynman gauge!. The metric is chosen to be Eu
clidean, andgm

2 51.

To find a non-perturbational representation for the temperature quark Green
tion, we start from the exact Schwinger–Dyson equation

G21~q!5G0
21~q!1S~q! ~2!

and calculate the quark self-energy, which in any gauge has the simple, well-k
representation10

S~q!5
N221

2N

g2

b (
p4

F E d3p

~2p!3
Dmn~p2q!gmG~p!Gn~p,qup2q!. ~3!

In what follows we calculateS(q) only in the one-loop approximation, using the ba
Green functions in Eq.~3! and fixing the Feynman gauge~i.e., taking the appropriateD
function!. All ultraviolet divergences are renormalized as usual, but the infrared
~which also arise in the high-temperature expansion whenm!gT) will be eliminated
phenomenologically.

At first the summation over the spinor indices is performed in Eq.~3! using the
standardg-matrix algebra

S~q!5
N221

N

g2

b (
p4

F E d3p

~2p!3

igmp̂m12m

~ p̂21m2!~p2q!2
, ~4!

and then the summation is performed over the Fermi frequenciesp452pT(n11/2)
using the well-known prescription.10 Here p̂5$(p41 im),p% is a convenient abbreviation
for vectors containingm. All terms found are collected in a convenient form using sim
algebraic transformations, and the final result is given by
2 2JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 O. K. Kalashnikov
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S~q!52
g2~N221!

N E d3p

2~2p!3 H F 1

ep

np
1@g4ep1~ i gp12m!#

@q41 i ~m1ep!#21~q2p!2

1
np

B

upu
~ upu1m2 iq4!g42@ i g~q2p!12m#

@q41 i ~m1upu!#21ep2q
2 G2@h.c.~m,m!→2~m,m!#J ,

~5!

where ep5Ap21m2 is the bare quark self-energy;np
B5$expbupu21%21 and

np
65$expb(ep6m)11%21 are the Bose and Fermi occupation numbers, respective

Further, it is convenient to introduce two new functions and to rewrite Eq.~5! as

S~q!5 igmKm~q!1mZ~q!, ~6!

whereKm(q)5qma(q)1 iumb(q), andum5$1,0% is the unit medium vector. All func-
tions separately depend onq4 and uqu, as is usual in the medium case. Equation~6!
presents the one-loop decomposition ofS(q), which, however, is not the most gener
here~see Ref. 11 for details!, since a number of other functions are generated only in
multi-loop calculations. Using the decomposition~6!, we transform Eq.~2! to the form

G~q!5
2 igm~ q̂m1Km!1m~11Z!

~ q̂m1Km!21m2~11Z!2
, ~7!

which gives the correct nonperturbational structure for this function. Setting the det
nant of Eq.~7! to zero, we find the dispersion relation

~ q̂m1Km!21m2~11Z!250, ~8!

which determines the collective excitation spectra after the analytical continuation.

COLLECTIVE EXCITATIONS IN THE HIGH-TEMPERATURE LIMIT

Here we use Eq.~8! to find the dispersion relation for the collective excitations
massive Dirac particles in a hot and dense quark–gluon plasma whenm!gT. Different
limits of this equation are discussed, and it is solved exactly for the massive fermion
with m50. The spectrum branches are found for alluqu and their limits for small and
large momenta are presented explicitly. Only the case of zero damping is considere
for this reason our analytical continuation is trivial.

Our starting point is the dispersion relation~8!

@~ iq42m!2K̄4#25q2~11K !21m2~11Z!2 ~9!

with mÞ0, and we use Eq.~5! to find its high-temperature expansion whenm!gT. Here
K45 iK̄ 4, and we take into account only the leading terms inT2, with them/T corrections
according to Eq.~9!. In this case all the functions which appear in Eq.~9! can be
simplified as follows:

K~q4 ,q!5
I K

q2 S 11
j

2
ln

j21

j11D1I BS j2
1

2
~12j2!ln

j21

j11D , ~10!
3 3JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 O. K. Kalashnikov
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2K̄4~q4 ,q!5
I K

2uqu
ln

j21

j11
1I B , 2Z~q4 ,q!52I Z1

2I B

uqu
ln

j21

j11
, ~11!

making it possible to solve Eq.~9! explicitly. Herej5v/uqu is a convenient variable, an
the integrals are

I K5
g2~N221!

N E
0

` dupu

4p2
upuFnp

11np
2

2
1np

BG , ~12!

I B52
g2~N221!

N E
0

` dupu

8p2

np
12np

2

2
, ~13!

I Z5
g2~N221!

N E
0

` dupu

8p2

np
11np

2

2ep
. ~14!

The integralI Z , however, has been redefined to avoid the infrared divergences w
arise after the high-temperature expansion is performed forZ(q4 ,uqu):

Z~q!52
g2~N221!

N E d3p

~2p!3 H F 1

ep

np
1

@q41 i ~m1ep!#21~q2p!2

2
np

B

upu
1

@q41 i ~m1upu!#21ep2q
2 G1@h.c.~m→2m!#J . ~15!

The last expression is extracted from Eq.~5!.

Now one should plug the expressions found above into Eq.~9! and perform a
number of algebraic transformations to findv5juqu. Herev5( iq42m). The result is an
equation of the fourth degree with respect tov(j):

v4@j22~11b~j!I B!2#12v3j2I B1v2j2@ I B
22mR

212d~j!I K22~11b~j!I B!

3~11d~j!!I K#12vj2d~j!I B@ I K14mR
2 #1I K

2 j2@d~j!22j2~11d~j!!2#

216m2j2d~j!2I B
250, ~16!

wheremR5m(122I Z) is the renormalized fermionic mass, and the functionsd(j) and
b(j) are given by

d~j!5
j

2
ln

j21

j11
; b~j!5j2

1

2
~12j2!ln

j21

j11
. ~17!

Since the dispersion relation obtained is very complicated, it is not solved exactly. H
ever, in the long wavelength limit~whenj→`) it can be simplified as

@v21v~ I B2hmR!2~ I K14hmIB!#@v21v~ I B1hmR!2~ I K24hmIB!#50, ~18!

and one finds the rather simple solution8

v~0!5
1

2
~hmR2I B!6A~h mR2I B!2

4
1~ I K14hmIB!, ~19!
4 4JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 O. K. Kalashnikov
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which demonstrates four well-separated effective masses: two of them pertain to
particle excitations and the other two to quasi-holes. Hereh561, and the parametersm
andm are nonzero.

The solutions for alluqu can be found within the framework of Eq.~16! if either m
or m is equal to zero. The casem50 with mÞ0 has been recently considered in deta
and the result has the form8

E~j!5m2
j I B

2~j2h!
6A j2I B

2

4~j2h!2
1I Kj2S h

j2h
1

h

2
ln

j21

j11D , ~20!

which extends the well-known result found in Refs. 2 and 3 to the casemÞ0. Here we
have restored the physical variableE5 ip4. The variablej runs over the range 1,j,`,
and the long-wavelength limit corresponds toj→`. For this limit one finds the very
simple result

E~0!5m2
I B

2
6AI B

2

4
1I K, ~21!

which can be compared with the interpolation formula in Ref. 12.

Another case in which Eq.~16! can be solved exactly for alluqu is for mÞ0 but
m50. This case is the subject of the present paper and will be discussed belo
m!gT. Now I B50, and within the adopted accuracy of the calculations the solutio
Eq. ~16! is found to be

v6~j!25
j2~2I K1mR

2 !

2~j221!
6A j4

~j221!2
@~b~j!I K!21mR

2~ I K1mR
2/4!#. ~22!

These spectra are our main result. They present the collective excitations of m
Dirac particles in a hot medium for alluqu whenm!gT. Two branches of the spectrum
~when the plus sign is taken in Eq.~22!! correspond to quasi-particle excitations and t
other two ~when the minus sign is taken! to quasi-hole excitations. These spectru
branches differ in their asymptotic behavior and in many other properties.

The long-wavelength behavior of these spectra~whenj→`) has the form

v6~ uqu!25M 6
2 1S M 6

2 6
4

9

I K
2

AmR
2~mR

214I K!
D uqu2

M 6
2

1O~ uqu4! ~23!

where the squares of the effective masses are given by

M 6
2 5

mR
2

2
1I K6AmR

2 S mR
2

4
1I KD . ~24!

These masses are different for the four spectrum branchesM 65 1
2(hmR6AmR

214I K)
and are in agreement with the results of Refs. 6 and 7. Hereh561.

However, this is not the case when the second term in Eq.~23! is taken into account.
This term is not in agreement with the one obtained in Refs. 6 and 7. Although it a
qualitatively with the result presented in Ref. 7, there is an essential difference
5 5JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 O. K. Kalashnikov
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Ref. 6, where a linear term was mistakenly found. It is also important that the quas
spectrav2(uqu)2 are very sensitive to the choice of the parametersm,T. In many cases
these spectra are monotonic functions for smalluqu2, and the well-known minimum2

disappears. Although this minimum always exists for massless particles, special c
tions are necessary to generate it whenmÞ0. In the high-momentum region the asym
totic behaviors found for the quasi-particle and quasi-hole excitations are comp
different. The quasi-particle branches of the spectrum are approximated as

v1~ uqu!25uqu21~2I K1mR
2 !2

I K
2

uqu2
ln

4uqu2

2I K1mR
2

, ~25!

where the nonanalytic term is not essential. The situation is different for the quas
excitations, which do not exist in the vacuum~whenT andm are equal to zero!. They
disappear very rapidly, and their asymptotic behavior is found to be

v2~ uqu!25uqu214uqu2exp~2uqu2~2I K1mR
2 !/I K

2 !. ~26!

In the high-momentum region these spectrum branches approach the linev25uqu2 more
quickly than do the branches~25!.

CONCLUSION

To summarize, we have obtained and solved the one-loop dispersion relatio
massive fermions at finite temperature. Our solution gives the collective Fermi ex
tions for all uqu, and we have established that they have four well-separated branche
of them represent quasi-particle excitations, and the other two correspond to quasi
The splitting found in the calculations demonstrates that the effective masses f
branches are different whenmÞ0, and these masses are always nonzero in the med
The asymptotic behavior found for smalluqu shows that the difference between th
initially massive and massless fermions remains, although a dynamic mass is a
generated and all their collective excitations are massive. For the massless fermio
finds that a spectral minimum always exists away from the pointuqu50, and the leading
asymptotic term for smalluqu is linear. However, this is not the case for initially massi
fermions. WhenmÞ0 the spectral minimum, as a rule, disappears as well as the li
term, and the termuqu2 gives the leading asymptotic behavior for smalluqu. The gauge
invariance of the results found, unfortunately, is not proved, and there is no guar
that this is indeed true. Here the situation is completely unclear, and the only know
is that the dynamical mass for the casem,m50 is a gauge invariant object. All othe
quantities are gauge dependent, at least, within the one-loop calculations. Of cour
not ruled out that the Braaten–Pisarski resummation is necessary to improve the
tion, but this question is not so evident as it is for the usual damping rate calculati

I am grateful to S. Randjbar-Daemi for inviting me to the International Center
Theoretical Physics in Trieste, and I also thank the entire staff of this center for their
hospitality.
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On the intrinsic quadrupole electric field of a
centrosymmetric dielectric

D. N. Astrov, N. B. Ermakov, and S. V. Korostin
All-Russia Scientific-Research Institute of Physicotechnical and Radio Engineering
Measurements, 141570 Mendeleevo, Moscow Region, Russia

~Submitted 14 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 15–20~10 January 1998!

In agreement with a prediction of the theory, we have observed experi-
mentally the intrinsic quadrupole electric field of a centrosymmetric
crystal. © 1998 American Institute of Physics.
@S0021-3640~98!00301-6#

PACS numbers: 77.84.Bw, 77.22.2d, 75.80.1q

We reported earlier the experimental observation1 and study2 of the intrinsic external
quadrupole field of antiferromagnetic chromic oxide. These investigations were bas
the theoretical work of Dzyaloshinski�,3 who showed that in order for a quadrupo
magnetic moment to exist the magnetic symmetry of the crystal must be the same
required for the existence of the magnetoelectric effect, which Cr2O3 exhibits. The deci-
sive circumstance for the appearance of both properties was that the symmetry c
the crystal contain a symmetry element consisting of space inversion together wi
time reversal operation.

If one is considering the purely electrical properties of crystals, specifically,
possibility of the existence of an intrinsic external quadrupole electric field, then
existence of a center of symmetry is sufficient for this, since time reversal does not
the position of ions in a unit cell. Correspondingly, Dzyaloshinski� noted in the same
work3 that noncubic crystals possessing a center of symmetry should possess an in
external quadrupole electric field. According to his preliminary estimate, the intensi
this field is of the order of 1 V/cm.

We performed the investigations described below for the purpose of obtainin
perimental proof of the existence of an intrinsic quadrupole electric field for a centro
metric crystal.

The main difficulty of observing the intrinsic electric field of a dielectric is due
the existence of free electric charges, which are always present both in the atmo
surrounding the sample and on the surface of the sample and its holder. Und
influence of the intrinsic field of the sample the free charges will move so as to com
sate this field, and the ultimate result of the process will be complete screening o
field. It is well known that the weak external electric fields of dielectrics can be obse
only immediately after the crystal is brought through the phase transition point to a
with electrical polarization. After some time, the above-described process of screen
the field by the free charges makes it impossible to observe the polarization that a

Correspondingly, the requirement that a phase transition to a state with a cen
15 150021-3640/98/010015-07$15.00 © 1998 American Institute of Physics
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symmetry be present must be imposed on the sample for our investigations. Furthe
the chemical activity of the sample must be minimal in order to avoid ‘‘attachment
free charges to the cleaned sample surface. Finally, the sample should not be too

We were not able to find a crystal satisfying all of the requirements listed above
most important of which being the presence of a phase transition. However, ther
still the hope that the quadrupole field in question can be observed if a nonequilib
state is produced in the crystal and the external field of the crystal is followed durin
relaxation to equilibrium. In this state, some unit cells located near vacancies, dis
tions, and other distortions of the lattice of the nonequilibrium crystal will lose the ce
of symmetry and will not contribute to the quadrupole field of the sample. At the s
time, these cells must possess a dipole polarization, but since they are distributed
cally throughout the crystal, a macroscopic dipole field should not be observed. A
crystal relaxes to equilibrium, the number of distorted cells should decrease, the qu
pole field will increase, and there will not be enough time for the free charges to s
the increasing field completely. It is obvious that in this approach the observable p
the field of the sample will be several orders of magnitude weaker than the total
Correspondingly, the instrumental sensitivity required to observe the unscreened p
the external field of the sample manifested during relaxation will increase sharply
experimental difficulties that arise can be compensated to some degree by weaken
requirements on the lattice distortions in the sample as compared with the equilib
case and by the possibility of using a chemically very stable sample with a large vo

We knew from experience in fabricating and using low-pressure meters w
flexible sapphire element4 that after being heated to 600–900 °C the elastic elemen
the device relaxes over many hundreds of hours. In the process, its geometry chan
as much as 0.01%. These data provided hope that we would be able to obser
quadrupole electric field of sapphire during its relaxation, as described above.

Figure 1 shows a diagram of the apparatus which we assembled for the purp
observing the configuration of weak external fields of crystals. The experimental sa
1, secured to the holder2, can move in thez direction and pass through a ring electro
3, which is 19 mm in diameter. The electrode is attached to the grid of an electrom
tube4 of a U5-6 amplifier. The apparatus is surrounded by a grounded electrostatic

FIG. 1. Diagram of the apparatus.
16 16JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Astrov et al.
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5. The holder2 is secured to an electromagnetic vibrator6 and oscillates in thez direc-
tion with a frequency of 10 Hz and an amplitude of;0.5 mm.

The potentialw of the sample1 periodically recharges the electrode3 through a
capacitance of the order of 0.02 pF between the sample and this electrode. Corre
ingly, the voltage on the grid of the tube is proportional to]w/]z, i.e., to the desired
quantity, i.e., the field that is generated by the sample along thez axis. The signal at the
output of the electrometric cascade was fed through an RC circuit to a selective am
and then to a synchronous detector that made it possible to determine the sign
detected field.

The noise level on the electrode3 ordinarily was equal to 20–40mV, which corre-
sponded to a current sensitivity of 3310217 A. The electrometer was calibrated togeth
with the ac output amplifiers by applying a known voltage from a generator to
electrode3 through a 50 pF capacitor with a leakage resistance of 1016 V.

We can see the advantage of this apparatus in that the data obtained descr
most characteristic features of the electric field of the sample. Specifically, the con
ration of the field of a quadrupole whose axis is directed along thez direction will differ
sharply from that of the field of an isolated charge or the field of a dipole.

The capability of the apparatus to detect an electric field with a configuration c
acteristic for a quadrupole was checked by means of a model inserted in the place
sample1. The model is shown in the same Fig. 1 and consists of a set of me
electrodes glued onto a ceramic holder. The dimensions of the model are virtually
tical to those of our crystal samples whose intrinsic field we endeavored to dete
small constant voltage was applied to the electrodes.

The apparatus was calibrated in a uniform electric field. The accuracy of the
bration is of the order of 5%. The sensitivity of the apparatus makes it possible to d
confidently an electric field of intensity less than 0.005 V/cm.

For the investigations we employed single-crystal sapphire samples posses
rhombohedral structure with a center of symmetry. Dzyaloshinski� estimatesa! the qua-
drupole moment of sapphire to be positive and equal to 11.3 V•cm3 for a 1 cm3 sample.

We had at our disposal three single-crystal samples: a cylinder 13 mm in diam
and 15 mm long, prepared from a high-quality crystal with no indications of bl
structure, and with theC3 axis oriented along the axis of the cylinder; a sphere 13.5
in diameter; a tube 25 mm long and having an outer diameter of 10 mm and an
diameter of 6 mm; it had clearly visible defects and itsC3 axis made an angle of 30° with
the axis of the tube.

It was found that the results described below can be obtained only after the su
of the samples are carefully cleaned. The best method was found to be etching in c
dioxide gas at 1700 °C for 0.5 h. This removed a layer several microns thick; in
process, the crystallographic reflection planes became clearly visible and the s
~sphere! could be oriented without difficulty with theC3 axis along thez direction in the
apparatus.

Samples with a cleaned surface were secured by means of prestressed fibe
reinforced cement to a holder — a ceramic tube 3 mm in diameter, consisting of sinte
17 17JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Astrov et al.
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Al2O3, whose thermal expansion coefficient is equal to that of sapphire and which
tallizes in air at 510 °C. Next, the holder with the sample was secured to the vibrator
the sample was covered with a screen and brought into contact with the electrom
electrode.

It was found that after this procedure the sample always had the same~as a rule
positive! charge, whose field reached an intensity of 10 V/cm. This charge vanished
a characteristic time of the order of 5 h, which, judging from the capacitance of
sample, corresponded to a reasonable leakage resistance;1016 V along the surface of
the holder and through the surrounding air on account of its conductivity. The chara
istic discharge time could vary by approximately a factor of 1.5 depending on the r
humidity. The signal of interest to us could be observed after two days at the earli

We also determined that the characteristic time indicated above refers to the su
charge on the sample and is equal to the time associated with the flow onto the sam
the free charge that screens the electric field. For this purpose a model dipole con
of two metal disks was introduced and secured inside the tubular sample. When a l
voltage was applied to these disks, the characteristic dipole curve, with a field
between the disks, arose immediately. During the next 5 h the amplitude of this peak
dropped approximately by a factor of 3, and after 24 h the free charges that had fl
onto the sample had reduced the amplitude of the peak to the noise level of the e
mental apparatus. After this, the voltage on the model dipole was switched off an
free charges which had flowed onto the sample were immediately manifested in the
of a peak with the same amplitude but with opposite sign as at the moment whe
voltage was switched on. Once again this peak vanished over a characteristic ti
about 5 h.

Figure 2b shows one of many characteristic experimental curves of the quadr
field of the spherical sample. The left side of the curve is somewhat distorted by
holder. The quadrupole is positive, and this sign was always observed on all sample
at all stages of relaxation of the signal to zero.

The amplitude of the quadrupole field shown in Fig. 2b and measured three
after annealing equals about 0.1 V/cm and decreases in time, decaying by a facto

FIG. 2. Results of experiments with the model quadrupole~a! and the samples~b!. See text for explanations.
18 18JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Astrov et al.
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over 50 h. This characteristic signal decay time for the spherical sample is approxim
2.5 times longer than for the cylindrical sample but approximately 4 times shorter
for the tubular sample. This ratio of the relaxation times for samples of different p
qualitatively corresponds to the proposed model, according to which the lattice cell
are distorted by neighboring defects re-establish the centrosymmetric structure, ge
ing the quadrupole field, as the sample relaxes to equilibrium and the defects vanis
obvious that in a contaminated sample the number and height of energy barriers tha
be overcome along the path to equilibrium are greater and correspondingly the rela
time is also longer.

The dependence of the amplitude of the observed quadrupole field on the pur
the experimental samples also supports the proposed model. The amplitude is smal
a high-purity cylindrical sample which relaxed more quickly and was closer to a sta
equilibrium at the moment when observations were started. For the contaminated t
sample the amplitude is approximately four times larger.

It should be noted that the source of the external quadrupole electric field o
sample is not only of volume origin. In principle, a surface layer of the sample, wher
unit cells are distorted as a result of the proximity of the boundary, could be the so
In this layer the force fields acting on a cell are extremely asymmetric and the disto
of cell structure is also very large. Such cells lose their center of symmetry and s
possess a substantial intrinsic dipole moment. It is obvious that these dipoles sho
oppositely oriented relative to theC3 axis, which is parallel to thez axis of the apparatus
at opposite ends of the sample.

As a result, an intrinsic quadrupole field of surface origin, and not volume or
will arise in the sample, as should happen in the case analyzed by Dzyaloshinski�. The
number of distorted cells contributing to the quadrupole of surface origin is app
mately 105 times smaller than the number of cells in a sample with a volume of the o
of 1 cm3, but their dipole moments are very large, especially for cells located in d
proximity to the surface. It is very difficult to estimate the strength of the quadrupole
of surface origin, even to within an order of magnitude, and it cannot be distingui
from a quadrupole of volume origin on the basis of symmetry considerations.

However, the field relaxation which we observed in all samples permits making
required choice. It is very likely that the experimentally observed quadrupole fields
as a result of a relaxation of the crystal lattice to equilibrium, accompanied by a dec
in the number of lattice defects, together with a gradual screening of these fields b
charges. The quadrupole field of surface origin is also related with a lattice ‘‘defe
which the surface itself is. It is obvious that this ‘‘defect’’ will always be present, and
effect of relaxation on the near-surface cells is all the weaker the stronger the dist
of these cells. For this reason, the quadrupole of surface origin cannot change appre
in time and will be completely screened by surface charges.

For the reason indicated, we assume that the observed relaxing quadrupole fie
be only of volume origin.

An additional confirmation of the fact that the field arising on the sample is
purely quadrupole character was obtained by comparing with the well-known form5

for the potential of a quadrupole
19 19JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Astrov et al.
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w5
D

4R3
~3 cos2u21!, ~1!

whereD is the quadrupole moment,R is the distance to the point of observation, andu
is the angle measured from the axis of the quadrupole. In the coordinatesz andr , where
z is the distance along thez axis from the center of the sample to the ring electrode
radiusr , which are convenient for comparing with experiment, we have

w5
D

4
~2z22r 2!~z21r 2!25/2. ~2!

Hence the component of the field along thez axis is

Ez52
]w

]z
5

3

4
Dz~2z223r 2!~z21r 2!27/2. ~3!

Figure 2a shows that this formula describes well the experimental curve for the qu
pole model at large distances. Hence it follows that, despite the small dimensions
screens, our apparatus does not appreciably distort the observed field. A direct co
son of this formula with the experimental curves showed only qualitative agreem
Specifically, the measured amplitudes of the end peaks were much larger than impl
the formula, and the field decays away from the sample more slowly.

However, if one adheres to the same picture of the process, according to whic
quadrupole field generated as the sample relaxes to equilibrium is screened with
delay by the free charges flowing onto the sample and the field of the charge is take
account~Fig. 2b!, then the agreement between the theoretical curve and the experim
data falls within the limits of the experimental accuracy. This is shown in Fig. 2b, w
displays the experimentally measured field of the spherical sample and the com
curve obtained by superposing the field of a point quadrupole~3! and the field of the
charge carried by the spherical sample. The arbitrary unit on the plot correspond
arb. unit 5 26.2531023 V/cm, whence we obtain 0.22 V•cm3 for the quadrupole
moment of our sample, which is 100 times smaller than the theoretical value.
necessary to take into account the fact that the left sides of the experimental curv
distorted by the sample holder. It is interesting to note that even near the surface
sample the experimental curve is described well by expression~3! for a point dipole.

We thank I. E. Dzyaloshinski� for suggestions and a discussion of the results and
A. Smirnov and Z. A. Magomedov for providing the samples for the investigations

This work was supported by the Russian Fund for Fundamental Research~Grant
96-02-17264!.
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Field theory of mesoscopic fluctuations in
superconductor/normal-metal systems

A. Altland, B. D. Simons, and D. Taras-Semchuk
Cavendish Laboratory, Cambridge CB3 OHE, UK

~Submitted 20 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 21–26~10 January 1998!

The thermodynamic and transport properties of normal disordered con-
ductors are strongly influenced by the proximity of a superconductor. A
cooperation between mesoscopic coherence and Andreev scattering of
particles from the superconductor generates new types of interference
phenomena. A field theoretic approach is introduced which is capable
of exploring both the averaged properties and mesoscopic fluctuations
of superconductor/normal-metal systems. As an example the method is
applied to the study of the level statistics of a SNS junction. ©1998
American Institute of Physics.@S0021-3640~98!00401-0#

PACS numbers: 74.50.1r, 74.25.Fy, 74.80.Fp, 73.23.2b

The physical properties of both superconductors and mesoscopic normal meta
governed by mechanisms of macroscopic quantum coherence. Their interplay in h
systems consisting of a superconductor adjacent to a normal metal gives rise to q
tively new phenomena~see Ref. 1 for a review!: aspects of the superconducting chara
teristics are imparted to the behavior of electrons in the normal region. This phenom
known as the ‘‘proximity effect,’’ manifests itself in: a! the mean~disorder-averaged!
properties of SN systems being substantially different from those of normal metals
b! various types of mesoscopicfluctuationswhich not only tend to be larger than in th
pure N case but also can be of qualitatively different physical origin. Although powe
quasi-classical methods, based largely on the pioneering work of Eilenberger2 and
Usadel,3 have been developed to analyze the manifestations of the proximity effe
average characteristics of SN systems, far less is known about the physics of meso
fluctuations: while the quasi-classical approach is not tailored to an analysis of flu
tions, standard diagrammatic techniques4 used in the study of N-mesoscopic fluctuatio
can oftennot be applied due to the essentially nonperturbative influence of the
established proximity effect. Important progress was made recently by extendin
scattering formulation of transport in N-mesoscopic systems to the SN case.1 This ap-
proach has proven powerful in the study of various transport fluctuation phenomen
is not applicable to the study of fluctuations on a local and truly microscopic level.

In the present letter we introduce a general framework that combines key elem
of the quasi-classical approach with more recent methods developed in N-meso
physics into a unified approach. As a result we obtain a formalism that can be appl
the general analysis of mesoscopic fluctuations superimposed on a mean back
influenced by the proximity effect. In order to demonstrate the practical use o
approach we will consider the example ofspectral fluctuationsas a typical representativ
22 220021-3640/98/010022-06$15.00 © 1998 American Institute of Physics
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of a mesoscopic phenomenon. The density of states~DoS! of N-mesoscopic system
exhibits quantum fluctuations around its disorder-averaged mean value which c
described in terms of various types of universal statistics. The analogous question
SN case — what types of statistics govern the disorder-induced fluctuation behav
the proximity-effect-influencedDoS? — has not been answered so far. Our main res
the emergence of some kind of modified Wigner–Dyson statistics,5 will be derived be-
low.

To be specific we consider the geometry of a quasi-1D SNS junction, where t
region is of lengthL and the complex order parameters of the adjacent S regions diff
phase byw. It is well known6 that even the mean DoS of the SNS system exhi
nontrivial behavior which is difficult to describe within standard perturbation schem
states which fall within the superconducting gap,D, are confined to the normal meta
The proximity effect then further induces a minigap in the DoS of thenormal region
around the Fermi energy,eF , whose size ofO(Ec5Dn /L2) depends sensitively onw
(Dn is the diffusion constant, and\51 throughout!. To analyze the fluctuation behavio
of the DoS,n(e), around its disorder-averaged background,^n(e)&, we will consider the
two-point correlation function,7 R2(e,v)5^n(e)&22^n(e1v/2)n(e2v/2)&c . The start-
ing point of our analysis is the Gor’kov equation for the matrix advanced/retarded~a/r!
Green function2

Ge
r ,a5S Ge

r ,a Fe
r ,a

Fe
†r ,a Ge

†r ,aD , ~1!

where

FeF2
1

2mS p̂2
e

c
As3

phD 2

2V~r !1~D̂~r !1e6!s3
phGGe

r ,a~r ,r 8!5dd~r2r 8!, ~2!

e6[e6 i0, A is the vector potential of an external magnetic field,D̂5Ds1
phexp(2iws3

ph)
represents the~spatially dependent! complex order parameter with phasew, and the Pauli
matricessW ph operate in the Nambu or particle/hole~ph! space. The impurity potential in
the N region is taken to be Gaussiand-correlated with zero mean and correlatio
^V(r )V(r 8)&5dd(r2r 8)/2pnt, wheren denotes the DoS of the bulk normal metal
eF , andt represents the mean free scattering time. In the following the complex o
parameter in the S region isimposedand not obtained self-consistently.8 Where the S and
N regions are distinct~as in the SNS junction!, the bulk DoSnn,s and scattering timetn,s

will be chosen independently.

Traditionally theimpurity-averagedGreen function~1! is computed within a quasi
classical approximation, i.e., the Schro¨dinger equation~2! is reduced to an effective
transport equation, the Eilenberger equation,2 which in the dirty limit simplifies further to
the diffusive Usadel equation.3 Here we develop a field theoretic formulation that int
grates concepts of the quasi-classical formalism into a more general framework allo
for the computation of disorder-averagedproductsof Green functions, a necessary r
quirement for the calculation of correlation functions such asR2. The basic strategy will
be to start from a~microscopically derived! generating functional whose points of st
23 23JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Altland et al.
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tionary phase obey the Usadel equation. By investigating fluctuations around this
classical limit, correlations between the different Green functions will be explored. In
following we formulate this program in more detail.

As in the pure N case, ensemble-averaged products of advanced and re
Gor’kov Green functions can be described in terms of generating functionals o
nonlinears-model type9 ~see Ref. 10 for a review on thes-model analysis of Green
functions in N-mesoscopic physics!. In the dirty limit, (e,D),t21!eF , the generaliza-
tion of the supersymmetric N-types model10 reads

E
Q25

DQ~••• !e2S[Q] ,

S@Q#52
pn

8 E strFD~ ]̃ Q!214iQS D̃1e1
v1

2
s3

arDs3
phG , ~3!

where ]̃ 5]2 i (e/c)@Afs3
tr

^ s3
ph,•# represents a covariant derivativ

Af5A1c/(2e)]f accounts for both the external field and the phase of the order
rameter,D̃5Ds2

ph , the Pauli matricessW f b, sW tr , andsW ar operate in fermion/boson, time
reversal, and ar-blocks respectively.10 The symbolD stands for a space-dependent diff
sion constant which may take separate values, denoted asDn,s , in the N and S regions
Although specific pre-exponential source terms~denoted by ellipses in Eq.~3!! must be
chosen according to some given correlation function~such asR2), their precise form does
not influence the analysis below and we therefore refer to Ref. 10 for their det
structure. The integration in~3! extends over a 16316-dimensional matrix field
Q5T21s3

ph
^ s3

arT, whose symmetries are identical with those of the conventionas
model.10

The expression~3! differs in two respects from thes model for N systems: i! the
appearance of a ph-space associated with the 232-matrix structure of the Gor’kov Gree
function, and ii! the presence of the order parameterD̃. Whereas i! can be accounted fo
by a doubling of the matrix dimension of the fieldQ, ii! calls for more substantia
modifications: forDÞ0 standard perturbation schemes for the evaluation of the fu
tional ~3! fail,11 an indication of the fact that the superconductor influences the prope
of the normal metal heavily. Under these conditions a more efficient approach is fi
subject the action to a mean field analysis and then to consider fluctuations aro
newly defined — and generally space-dependent — stationary field configuratio
variation of the action~3! with respect toQ, subject to the constraintQ25, generates a
nonlinear equation for the saddle point,

D ]̃ i~Q̄ ]̃ i Q̄!1@Q̄,Ds1
ph2 i ~e1v1s3

ar!s3
ph#50. ~4!

Current conservation implies the boundary condition,12 snQ]xuxn
Q5ssQ]xuxs

Q, where
sn,s5e2nn,sDn,s denotes the conductivity and]xuxn(s)

is a normal derivative at the N~S!

side of the interface.

An inspection of~4! shows that only the particle/hole components of the matrix fi
Q̄ are coupled by the saddle-point equation. It is thus sensible to make a block dia
ansatzQ̄5bdiag (q1 ,q2), where the eight dimensional retarded (q1) and advanced
24 24JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Altland et al.
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(q2) subblocks are diagonal in both time-reversal and boson/fermion space. Notin
the saddle-point configuration2 ipnq6 of the nonlinears model is associated with th
impurity-averaged retarded/advanced Green function,10 we identify Eq.~4! as the Usadel
equation. The general connection between thes-model formalism and the quasi-classic
approach was first noted in Ref. 13.

Equation ~4!, in its interpretation as the Usadel equation, has been discuss
length in the literature.6,14,15 Although in general complex, the solutions have a sim

qualitative geometric interpretation: with the explicit parametrizationq65q6•sW ph,
Eq. ~4! describes the gradual rotation of the three dimensional vectorq from a direction

almost parallel toê1 in the bulk superconductor to a direction aligned withê3 deep in the
normal metal.

So far our analysis has been for SN systems of a general geometry. Specializi
discussion to the SNS junction, we setD(r )[DQ(uxu2L/2) constant inside the supe
conductor (D@Ec), and zero in the normal region, with a phasep/21sgn(x)w/2. The
saddle-point equation depends sensitively on both the presence or absence of an e
magnetic field and the phase difference between the order parameters. Taking the
nal field to be zero, it is convenient to focus on two extreme cases:~i! w50 ~orthogonal

symmetry!, and~ii ! w@1/Ag ~unitary symmetry!. Hereg5Ec /d̄@1 denotes the dimen

sionless conductance andd̄ represents the bulk single-particle level spacing of the nor
metal.

Thedisorder-averaged local DoScan be obtained from the analytical solution of t
Usadel-saddle-point equation6,14–17asn(r )5nRe@q1(r )#3. The most striking feature o
the average DoS is the appearance of a spatially constant minigap in the N regio
gap attains its maximum widthEc at w50 and shrinks to 0 asw approachesp ~Ref. 15!.

We next turn to the main subject of this letter, the issue offluctuations about the

Usadel saddle point. Employing the parametrizationQ5T21Q̄T, TÞ, one can identify
three qualitatively different types of fluctuations:~a! fields T which are diagonal in the
space of advanced and retarded components,~b! T’s which commute with all matrices
s i

ph but mix advanced and retarded components, and~c! T’s fulfilling neither of the
conditions~a! and ~b!. Fluctuations of the~a! type preserve the ar-diagonal structure
the saddle point. These fluctuations do not give rise to correlations between advanc
retarded Green functions. Nonetheless, they are of physical significance: Quantum
rections to the Usadel solution, most importantly the renormalization of the miniga
weak localization effects and the existence of rare prelocalized states13,18 below the gap,
are described by fluctuations of this type. We postpone further discussion of these
to a separate paper17 and, instead, turn to a discussion of the second type of fluctuat
~b!.

Consider the saddle-point equation~4! in the simple casev5w50. Obviously, as it
commutes with all matricess i

ph , any spatially constant rotationT of type ~b! gives rise
to another solution. In other words, the~b! fluctuations represent Goldstone modes w
an action that vanishes in the limit of spatial constancy andv→0. Since anyT diagonal
in ph-space inevitably has to couple between advanced and retarded indices,10 these
modes lead tocorrelations between advanced and retarded Green functions~and thereby
25 25JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Altland et al.
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to mesoscopic fluctuations!, which become progressively more pronounced asv ap-
proaches zero.

In the limit of small frequenciesv,Ec , theergodic regime, the global zero mode
Q05T0

21qT0, @T0 ,sW ph#50, T0(r )5const, plays a unique role: whereas fluctuatio
with nonvanishing spatial dependence give rise to contributions to the action ofO(g@1)
~Ref. 10!, this mode couplesonly to the frequency differencev. Restricting attention to
the pure zero-mode contribution, we obtain the effective action

S0@Q0#52 i
p

2

v1

d̄~e!
str@Q0s3

ar#, ~5!

where d̄(e)5(*n(e))21 denotes the average level spacing and the ph-degrees of
dom have been traced out. From this result it follows10 that, in the ergodic regime, th
spectral statistics of an SNS system is governed by Wigner–Dyson fluctuations5,19 of ~i!
orthogonal or~ii ! unitary symmetry superimposed upon an energetically nonunif
mean DoS. Furthermore, a comparison of Eq.~5! with the analogous action for N
systems10 shows the correlations to depend on an average level spacing that is effec
halved. This reflects the strong ‘‘hybridization’’ of levels at energies;eF6e induced by
Andreev scattering at the SN interface.

In further contrast to N systems, the range over which Wigner–Dyson stat
apply turns out to be greatly diminished by nonuniversal fluctuations Refs. 20 an
This is a consequence of the presence of fluctuations of type~c!, coupling between
advanced/retardedand particle/hole components. The detailed analysis of the~c!-type
fluctuations is cumbersome and will be deferred to a forthcoming publication.17 Here we
only report that a perturbational integration over these modes leads to an expon
suppression of the DoS fluctuations already for energy separationsv/d̄(e);Ag. This is
in contrast to the pure N case where the Wigner–Dyson regime~prevailing up to fre-
quenciesv.Ec) is succeeded by other forms ofalgebraicallydecaying spectral statistic
in the high-frequency domainv.Ec ~Ref. 22!.

In conclusion, a general framework has been developed in which the interpl
mesoscopic quantum coherence phenomena and the proximity effect can be explor
investigation of the spectral statistics of an SNS geometry revealed that level correl
are Wigner–Dyson distributed with strong nonuniversal corrections at large en
scales. Finally, we remark that for quantum structures in which transport is not diffu
but ballistic and boundary scattering is irregular, a ballistics model involving the clas-
sical Poisson bracket can be derived.23 In this case, the saddle-point condition recove
the Eilenberger equation of transport.2

We are indebted to Anton Andreev, Dima Khmel’nitskii, and Martin Zirnbauer
helpful discussions. One of us~DT-S! acknowledges the financial support of the EPSR
The hospitality of the ITP in Santa Barbara and the Lorentz Center in Leiden are g
fully acknowledged. This research was supported in part by the National Science
dation under Grant PHY94-07194.
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Quantum tunneling in ferromagnetic nanoparticles
interacting with a spin thermostat: effective Hamiltonian

I. S. Tupitsyn
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia
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An effective Hamiltonian is obtained which describes quantum tunnel-
ing in ferromagnetic nanoparticles in the presence of a hyperfine inter-
action of the electron spins in the nanoparticle with the microscopic
spins in the environment~such as paramagnetic impurities or nuclear
spins!. A criterion of transition between ferromagnetic and antiferro-
magnetic tunneling regimes is found. The validity of the equations
obtained is checked by the method of exact diagonalization. ©1998
American Institute of Physics.@S0021-3640~98!00501-5#

PACS numbers: 61.46.1w, 75.50.Tt, 75.10.Jm

1. The phenomenon of quantum tunneling of magnetization~or the Néel vector! in
nanoparticles has been attracting increasing attention in recent years from both t
perimental and theoretical viewpoints, since this purely quantum effect appears on
roscopic scales of the total number of spins of the order of 104 and more. The electronic
spins of the nanoparticles are exchange-paired with one another, forming either a
central spin’’ — in the ferromagnetic case — or a ‘‘giant Ne´el vector’’ — in the anti-
ferromagnetic case, and they can tunnel coherently between two degenerate state
rated by a barrier due to the presence of magnetic anisotropy. The theory of co
tunneling of the magnetization vector is expounded in a number of papers1 ~for a more
complete review see Ref. 2 and the literature cited therein!. The tunneling effect in
antiferromagnetic particles should be even stronger than in ferromagnetic particles3 ~for a
review of the current status of the theory and experiment see, respectively, Refs. 3–
Ref. 10!. It is found that in both cases the hyperfine interaction of the electronic spin
the particles with a spin thermostat, consisting of nuclear spins or paramagnetic im
ties, plays an extremely role in both cases.11,12 This interaction is so strong that it ca
suppress quantum coherence completely.13 Coherence suppression in the process of t
neling can be analyzed theoretically by introducing aneffective Hamiltoniandescribing
the low-energydynamics of the system ‘‘giant spin’’~or ‘‘giant Néel vector’’! 1 the spin
thermostat. This means that the experimental energy range is limited to the region!V0,
where V0 characterizes the gap between the bottom doublet and the excited e
levels, and the Hilbert space of the problem is bounded by the bottom doublet, c
sponding to the opposite spatial orientations of the order parameter. Such an eff
Hamiltonian for the ‘‘giant spin’’ was obtained with the aid of the instanton techniqu
my previous work.14 In the present letter a similar effective Hamiltonian will be obtain
for the case of aferrimagnetic/antiferromagnetic nanoparticle.The validity of the ana-
lytical expression obtained will be checked by exact diagonalization.
28 280021-3640/98/010028-06$15.00 © 1998 American Institute of Physics
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2. Using the well-known fact that the Heisenberg model with antiferromagn
ordering can be reduced in the long-wavelength limit to the nonlinearO(3) s model~in
both the one- and two-dimensional cases!,4,5,7,9,15we introduce an effective two-sublattic
model with a strong exchange interaction between the magnetizations of the subla
The Lagrangian of the model will be similar to the Lagrangian of theO(3) s model~see,
for example, Refs. 3, 4, and 8!. But, in contrast to the papers mentioned, we shall add
hyperfine interaction of the sublattice spinsS1 andS2 with the spins in the environmen

(usW i u5
1
2) in a weak magnetic fieldH0 ~We neglect the interaction of the spins in th

environment with one another!. Since the spins in the environment can be located ei
inside the particle itself or near it~on the substrate!, without loss of generality we shal
assume that only one paramagnetic impurity is present and that it is located in th
sublattice. Then, assuming the magnetic anisotropy to be of theeasy axis/easy planetype,
we write the starting Hamiltonian in the form

Ĥ5JS1•S21U~S1!1U~S2!1
v0

2S1
S1•sW , U~S!52K iSz

21K'Sy
22geH0•S, ~1!

wherev0 is the hyperfine interaction constant,K i.0 andK'.0 are the magnetic anisot
ropy constants,J@K i , K'@K i , geS1,2uH0u!2K iS1,2

2 , and v0!2K iS1,2
2 . Assuming

S11S2@1, we choose thequasiclassicaldescription for the solution.

In accordance with the fact that we are interested only in the low-energy dyna
of the system, only trajectories withalmost antiparallel~i.e., weakly fluctuating in direc-
tion relative to one another! S1 andS2 will contribute to the transition amplitude betwee
the two lower energy levels. This means that analmostconstant Ne´el vectorN5S12S2

will tunnel. In addition, since we assume thatS1ÞS2 in the general case, the uncompe
sated spinS5S12S2 will tunnel in a correlated fashion with the Ne´el vector.

We now introduce the spherical anglesu1 , u2 , f1 , andf2, which fix the directions
of S1 andS2. In accordance with what has been said above, we setu25p2u12eu and
f25p1f11ef ~for ueuu, uefu!1) ~see Ref. 3!. We choose as a basis the states ch
acterized by opposite directions of the Ne´el vector~along the easy axisz) u⇓& and u⇑&.
Then the transition amplitude can be written as an integral over trajectories:

Gab~ t !5E
b

a

D$u1 ,u2 ,f1 ,f2%expH 2E
0

t

dt@L0~t!1dLH~t!1dLs~t!#J , ~2!

whereL0(t), dLH(t), anddLs(t) are taken in the Euclidean form anda, b5u⇓&,u⇑&.

3. Let us now find the extremal trajectory foru1(t) andf1(t) with no field and no
interaction with an impurity~this is the trajectory that will be needed below, since
shall assume thatuH0u andv0 are small!. The LagrangianL0 has the following form:

L05JS1S2~sin u1sin u2cos~f12f2!1cosu1cosu211!1LS1

0 1LS2

0 ,

LS
052 iSfu̇ sin u1K iS

2sin2u1K'S2 sin2u sin2f. ~3!

Since they axis is the ‘‘heavy’’ axis,f will fluctuate weakly aroundf50 or f5p.
These values off correspond to two possible trajectories — clockwise or counterclo
wise — connecting two quasiclassical minima. The result of the Gaussian integr
29 29JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 I. S. Tupitsyn
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over the three fast variables (eu , ef , f) is ~all terms that do not contribute to th
equation of motion are dropped and the indices foru andf are dropped!

L0~u!5
M
2

u̇21
S2

2

2 J̃
ḟ2 sin2 u1K̃ i sin2 u, z̃5K̃'2

2K'
2 S2

4

J̃12K'S2
2

,

M5
S2

2 z̃
1

2SS2
3K'

z̃~ J̃12K'S2
2!

1
S2

2

J̃12K'S2
2

1
2S2

6K'
2

z̃~ J̃12K'S2
2!2

, ~4!

where K̃',i5K',i(S1
21S2

2) and J̃5JS1S2. This Lagrangian gives the quasiclassic
equations of motion:ḟ50 andu̇5V0 sinu. Their solution is

f5const, sinu~t!51/cosh~V0t!, V05~2K̃ i /M!1/2. ~5!

Substituting the extremal trajectory intoL0 and integrating overt gives for the Euclidean
action

A0
h5A01 ihpS, A054K̃ i /V0 , ~6!

whereh56 correspond to clockwise and counterclockwise motion between the q
classical minima andhpS is the Kramers–Haldane phase.

4. We now introduce a weak magnetic field (ge51):

dLH5dLS1

H 1dLS2

H , dLS
H52S~H0

x sin u cosf1H0
y sin u sin f1H0

z cosu!. ~7!

IntegratingL01dLH over eu and ef , settingS15S2, and passing to the limitJ@K'

yield the well-known expression for the Andreev–Marchenko Lagrangian16 without a
gradient term and the term describing weak Dzyaloshinski� ferromagnetism. But now we
continue in general form. Having integrated~7! over all three fast variables~retaining
only the terms linear in the field!, we substitute the extremal trajectory~5! and after
integrating overt, we obtain a correction to the action~6!

dAH
h 52 i

hpS2
2Hy

J̃12K'S2
2H 11

2K'
2 S2

4

z̃~ J̃12K'S2
2!
J 2

hpHx

V0
H K iS2

3

J̃
1

K'S2
5V0

2

z̃~ J̃12K'S2
2!2J

2
hpS

V0
H Hx1 i

SV0

2 z̃
HyJ 2

hpSV0S2
2

2 z̃~ J̃12K'S2
2!

H Hx1 i
4K'S2

V0
HyJ . ~8!

5. The correction to the LagrangianL0 as a result of the hyperfine interaction wi
nuclear spin can be represented in the form

dLs5
v0

2
~ ŝx sin u1 cosf11ŝy sin u1 sin f11ŝz cosu1!, ~9!

whereŝ i ( i 5x, y, z) are the Pauli matrices. The same calculations as in the case
magnetic field yield for the correction to the action

dAs
h5

hpv0

2V0
S ŝx1 i

S2
3V0K'

z̃~ J̃12K'S2
2!

ŝyD 1 i
hpv0S

4 z̃
ŝy . ~10!
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6. There are two characteristic time scales in the problem:V0
21 corresponds to the

tunneling time through the barrier and the second time scale is determined by th
neling splitting 2D0 ~see also Ref. 17!:

2D05V0A6

p
A0 exp$2A0%; ~11!

andD0
21 corresponds to the time during which the system occupies one of the minim

V0
21!t!D0

21, the relation between the transition amplitude~2! and the off-diagonal par
of the effective Hamiltonian can be represented in the form~we have returned to the rea
time axis!

Heff
OD5

i

t
$t̂2Ĝ⇓⇑~ t !1 h.c.%, G⇓⇑~ t !5 i tD0 (

h56
exp$2Ah%, ~12!

where t̂2 is a lowering operator in the space of Pauli matrices. Then, in the antife
magnetic~whenS15S2 and the Ne´el vector tunnels!, retaining only the leading terms in
the corrections to the action~and setting for simplicityHx50), we obtain

Ah~0!5A0~0!2 ihc~0!1ha~0!~ ŝx1 il~0!ŝy!, V0~0!52S2AK i~J1K'!,

A0~0!54S2l~0!, c~0!5
pHy

J1K'

, a~0!5
pv0

2V0~0!
, l~0!5AK i /~J1K'!.

~13!

Substituting expressions~13! into Eq. ~12! gives the off-diagonal~i.e., corresponding to
tunneling! part of the effective Hamiltonian

Heff
OD~0!52D0~0!t̂2cos@c~0!1a~0!~ i ŝx2l~0!ŝy!#1h.c. ~14!

~the diagonal~static! part will not be given here; a general method of calculating it
given in Ref. 14.! We note that in the caseS1@S2 an effective Hamiltonian is obtaine
which describes tunneling of magnetization in a ferromagnetic granule.14

In the case of arbitraryS ~ferrimagnet!, however, the Ne´el vector tunnelstogether

with the excess spin. In the limitJ̃@2K'S2
2 the effective Hamiltonian has the form~once

again we setHx50)

Heff
OD~S!52D0~S!t̂2cos@pS2c~S!2a~S!~ i ŝx2l~S!ŝy!#1h.c.,

A0~S!5A4
K i

K'
S S21S2

2 2K̃'

J̃
1SS2

3 4K'

J̃
D , l~S!5

V0~S!

K̃'

S S

2
1

K'S2
3

J̃
D ,

c~S!5
pA0~S!Hy

2V0~S!
, a~S!5

pv0

2V0~S!
, V0~S!5A 4K̃ iK̃' J̃

S2 J̃12K̃'S2
214SS2

3K'

.

~15!
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A natural criterion arises for the magnitude of the excess spin according to which sw
ing occurs from a ferromagnetic to an antiferromagnetic regim
S@S2(2K̃' /( J̃12K'S2

2))1/2 — ferromagnetic regime; S!S2(2K̃' /( J̃12K'S2
2))1/2 —

antiferromagnetic regime.

7. We now use the method of exact diagonalization applied to the initial Ham
nian ~1! with Hx50 to check the formulas obtained. For lack of space, here the com
tational results are presented only for the antiferromagnetic case (S15S2). The exact
diagonalization procedure is described in detail in Ref. 14. For this reason, here we
determine only the quantities subject to analysis. Expanding expression~14! in a series up
to terms linear inv0 gives

Heff
OD'2D0~0!~cosc~0!• t̂xŝ02a~0!sin c• t̂yŝx1a~0!l~0!sin c• t̂xŝy!. ~16!

The dynamic part of the effective Hamiltonian obtained by exact diagonalization ha
form

HED
OD5Cx0• t̂xŝ01Cxy• t̂xŝy1Cyx• t̂yŝx , ~17!

where these coefficientsCi j are shown in Figs. 1a, b, and c~dashed lines! together with
the corresponding analytical quantities from Eq.~16! ~solid lines! as a function of the

FIG. 1. a! – c!. Numerical coefficientsCi j ~dashed curves! compared with the analytical expressions from E
~16! ~solid curves! as a function of the magnetic fieldHy with J540, K'520, K i51, v050.2, S15S2510,
ands51/2. d! Numerical~dashed curve! and analytical~16! ~solid curve! dependences of the coefficienta on
the magnitude of the sublattice spin withJ540, K'520, K i51, v050.2, ands51/2.
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applied magnetic field withJ540, K'520, K i51, v050.2, S15S2510, ands51/2.
The coefficienta(0), developed fromCyx ~dashed line!, together with its analytical
analog from Eq.~13! ~solid line! is plotted in Fig. 1d as a function of the sublattice sp
with J560, K'520, K i51, v050.2, ands51/2. This coefficient describes the intera
tion with the spin thermostat and correspondingly it is of greatest interest in the pr
work. As one can see from all figures, the agreement between the analytical an
computer calculations is satisfactory. The discrepancy between the two values fora for
small S2 has an obvious explanation: The quasiclassical description is still not val
such values of the spin.

8. My objective in the present work was not to make adetailedanalysis of all factors
influencing the tunneling process but some obvious qualitative conclusions can be
even without practical calculations~with the obtained Hamiltonians! according to the
spin dynamics of the systems studied:~i! Tunneling in antiferromagnetic systems
indeed manifested much more strongly than in ferromagnetic systems,
A0(AFM),A0(FM ); ~ii ! the presence of an excess spin has a strong effect on
tunneling process, at least because of the fact that it renormalizesA0 and V0, which
together determine the magnitude of the tunneling splitting and the tunneling frequ
~iii ! the interaction with the spins in the environment is extremely important becau
can radically change the tunneling picture, right up to complete suppression of tunn
just as in the case of tunneling of half-integer excess spin or half-integer ‘‘giant sp

I thank N. Prokof’ev, F. Stamp, and B. Barbara for numerous helpful discuss
and the L. Ne´el Laboratory~Grenoble, France!, where part of this work was performed
for hospitality. This work was supported by the Russian Fund for Fundamental Res
~Project 97-02-16548!.
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Magnetic and magnetooptical properties of Au/Cu-wedge/
15-Å-NiFe sandwiches

E. E. Shalygina, A. V. Vedyaev, O. A. Shalygina, and I. A. Pogrebnaya
Department of Physics, M. V. Lomonosov Moscow State University, 119899
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The results of an investigation of the magnetic and magnetooptical
properties of Au/Cu-wedge/15-Å-NiFe sandwiches are reported. Oscil-
lations of the equatorial Kerr effect as a function of the copper wedge
thickness are observed. The period of these oscillations is found to be
of the order of 5–6 Å. The experimentally observed oscillations of the
equatorial Kerr effect are attributed to a quantum size effect. ©1998
American Institute of Physics.@S0021-3640~98!00601-X#

PACS numbers: 78.20.Ls, 75.70.Cn

The problem of theoretical and experimental investigation of the quantum size e
has become popular in recent years. This was promoted by the development of tec
gies making it possible to obtain samples where the specific atomic layers are loc
with a high degree of accuracy. The quantum size effect is due to the small thickn
of the film samples or individual layers in multilayer structures. It is manifested in
dependence of the physical properties of a sample on its thicknesst. It is known1 that
when t becomes small the motion of charge carriers between the surfaces of the s
can manifest a quantum character. The discrete electronic states appearing in the
in a direction perpendicular to the surface of the sample are ordinarily called qua
well states~QWS!. QWS in ultrathin~of the order of several monolayers! samples can be
observed directly by the method of photoemission spectroscopy. Investigations
formed in recent years by this method have confirmed the existence of QWS in~100! and
~111! ultrathin paramagnetic Ag, Au, and Cu layers on ferromagnetic subst
~Fe, Co!2–6 and in ultrathin magnetic films on paramagnets.2,7,8 It was now been proved
that QWS make it possible to explain the experimentally observable values of the p
of the oscillations of the exchange interaction between ferromagnetic layers thro
nonmagnetic layer9,10 as well as oscillations in the values of the magnetoresistanc
multilayer structures~see, for example, Ref. 11! and the magnetooptical Kerr effect i
ultrathin films of iron12–14and cobalt.14–16At the same time, analysis of the existing da
shows that the effect of QWS on the magnetic and magnetooptical properties of
magnetic layer/magnetic film sandwiches has not been adequately studied. Actual
only work where the results of a magnetooptical investigation of Au-wedge/Co~0001!
samples are presented is Ref. 6.
34 340021-3640/98/010034-05$15.00 © 1998 American Institute of Physics
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In the present letter we report the results of an investigation of the influenc
quantum size effects on the magnetic and magnetooptical properties of Au/Cu-wed
Å-Fe80Ni20 sandwiches.

The experimental samples were prepared by molecular-beam epitaxy with a
pressure of 10210 torr in the chamber. Polished MgO~001! crystals were used for sub
strates. To remove the absorption gases and relieve stress, the substrates were
nealed at 950 °C for 1 min. After cooling to room temperature, a quite thick Cu layer
deposited. A 15-Å thick permalloy film was deposited on the Cu layer and a 20 mm
Cu wedge with a 1.35 Å/mm slope and minimum and maximum thicknesses of 4 an
Å, respectively, 20 mm was deposited on the permalloy layer. To prevent oxidatio
Cu wedge was coated with a 20 Å thick Au layer. A transverse section of the sand
is shown in the inset in Fig. 2~see below!.

The measurements were performed on a magnetooptic micromagnetometer,
tailed description of which is given in Ref. 17. Investigation of the hysteresis and m
netooptical properties of the experimental sample were performed with the aid
equatorial Kerr effect —d ~the external magnetic field is perpendicular to the plane
incidence of the light and parallel to the surface of the magnet!. In this case the ac
magnetic fieldH with frequencyf 580 Hz was applied in the plane of the sample alo
the lengthL of the wedge. The magnetooptical signald was detected in the reflection o
light from a microsection with diameterD530 mm of the surface. The local magnetiza
tion curvesd(H);M (H) (M — magnetization of the sample! and the dependenced(L),
which is equivalent tod(tCu),were obtained in a recording regime on an automa
recorder. The measurements ofd(H) were performed with a stepD with the light beam
displaced along the length of the wedge. The photon energy\v of the incident light was
fixed.

Figure 1 displays typical local magnetization curvesd(H);M (H) measured for the
experimental sample with\v52.7 eV. The curve1 was obtained on a microsection wit
tCu;4 Å. The curves2, 3, and so on were obtained with the light beam displaced b
mm along the central section of the wedge. It is evident from the figure that the
magnetization curves for the experimental sample are substantially different. At the

FIG. 1. Typical local magnetization curves for a Au/Cu-wedge/15-Å-NiFe sandwich. The curves were ob
by displacing a light spot over the central section of a wedge along the length of the wedge (\v52.7 eV!.
35 35JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Shalygina et al.
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time, there exists on all curvesd(H) a fieldH in which d no longer varies in magnitude
This value ofH corresponds to the technological saturation fieldHs of the given local
microsection of the sample. By analyzing curves of this type it is possible to constru
dependenceHs(tCu) and to determine the maximum valueHsmax for the experimental
sample~see Fig. 2!. Curves of the equatorial Kerr effect as a function of the thicknes
the copper wedge were measured forH.Hsmax and fixed\v. Figure 3 displays a typica
curve d(tCu) obtained with\v52.7 eV. One can see from the figure thatd has a
maximum value attCu;5.5 Å. The value ofd drops sharply in the region 6,tCu,8 Å.
For tCu.8 Å d decreases continuously with increasing thickness of the copper wedg
the process,d is observed to oscillate with a small amplitude. The period of th
oscillations equals;526 Å. For clarity, a section ofd(tCu) for tCu.8 Å is presented on

FIG. 2. Local values of the saturation field in the experimental sample versus copper wedge thickness
Transverse section of the sample.

FIG. 3. Equatorial Kerr effect in the experimental sample versus the copper wedge thickness.
36 36JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Shalygina et al.
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an enlarged scale in the inset in Fig. 3. Comparing Figs. 2 and 3 shows that the d
dence of the local values of the saturation fieldHs on the thickness of the copper wedg
is similar tod(tCu).

Similar measurements were performed for other values of\v ~2.5 and 3.2 eV! and
on sandwiches with a permalloy layer thicknesstperm525 and 35 Å. On account of the
smallness of the amplitude of the oscillations ofd no appreciable changes in the perio
of the oscillations ofd as a function of\v were observed. It was established that t
curvesd(tCu) for samples withtperm525 and 35 Å are similar in form tod(tCu) obtained
for a sample withtperm515 Å. The difference was that in the entire interval of copp
wedge thicknesses the values ofd increased linearly withtperm but the oscillations ofd
were virtually unnoticeable.

The data obtained can be explained as follows. As already mentioned, the p
emission spectroscopy investigations confirmed the existence of QWS in ultrathin l
of precious metals~Ag, Au, Cu! on magnetic substrates. Thus, it was observed in Ref
and 4 that the strongest changes, consisting of the appearance of the first addition
in the photoemission spectrum, are observed for a Cu layer on a Co~001! substrate with
tCu;2 monolayers, and for a Cu layer on a Fe~001! substrate withtCu;1.5 monolayers.
As tCu increased, the intensity of this peak decreased and the position of the peak s
toward the Fermi level. It was established that the photoemission intensity at the
level oscillates in magnitude as a function of the thickness of the Cu film. The perio
these oscillations equals;4.5–6 monolayers~1 monolayer;1.8 Å!. The periodic varia-
tion of the photoemission spectrum as a function of the Cu layer thickness prove
existence of QWS.18 In Ref. 2 and 4 it is shown that on account of the spin-depend
boundary conditions at the copper/ferromagnet interface QWS in Cu films are
polarized. This feature of QWS remains in Cu films all the way up totCu;30 monolayers
thick. The presence of spin-polarized QWS in ultrathin Cu films attests to the fact tha
copper atoms carry a small magnetic moment, which changes astCu increases and which
is impossible to estimate from photoemission spectra. At the same time, there is no
that the experimentally observed strong change, as compared with bulk samples,
electronic structure of ultrathin Cu films on magnetic substrates and the conse
appearance of a small magnetic moment in the copper atoms should influence the
netic and magnetooptical properties of the magnet bordering the Cu film. In the ca
sandwiches with a wedge-shaped Cu layer, the local magnetic and magnetooptica
erties of the layer should vary along the length of the wedge. On this basis, the Cu-w
thickness dependences of the local magnetic and magnetooptical properties of the
wich should have an oscillatory character and the strongest changes in these pro
should be observed for small values oftCu. Our data for a Au/Cu-wedge/15-Å-Fe80Ni20

sandwich agree with this conclusion.

The decrease in the amplitude of the oscillations ofd for samples withtperm525 and
35 Å is apparently due to the fact that the maximum effect of the QWS on the ma
tooptic properties of sandwiches will obtain for some thickness of the magnetic laye
our case this optimal thickness was found to be 15 Å. Finally, the linear increased
with tperm agrees with the calculations performed in Ref. 19.

So, we have observed in Au/Cu-wedge/15-Å-Fe80Ni20 sandwiches an oscillatory
dependence of the equatorial Kerr effect and local values of the saturation field o
37 37JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Shalygina et al.
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thickness of the copper wedge. The data obtained were explained by the existe
spin-polarized QWS in the Cu layer and their effect on the sandwich properties w
were studied.
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Giant negative magnetoresistance in a composite system
based on Fe 3O4 nanocrystals in a polymer matrix

A. E. Varfolomeev,a) D. Yu. Godovski , and G. A. Kapustin
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

A. V. Volkov and M. A. Moskvina
M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

~Submitted 27 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 37–40~10 January 1998!

Conducting polymer composites based on Fe3O4 nanocrystals in a
polyvinyl alcohol matrix are synthesized. The current–voltage charac-
teristics, the magnetization, and the magnetoresistance of the nanocom-
posites are investigated, and a giant negative magnetoresistance is ob-
served. The decrease in the resistance at room temperature is found to
reach 10% in a 10 kOe field. ©1998 American Institute of Physics.
@S0021-3640~98!00701-4#

PACS numbers: 81.05.Qk, 81.05.Ys, 75.80.1q, 72.80.Le

Giant negative magnetoresistance~GMR! was initially observed in multilayer mag
netic structures.1 Later it was also observed in granular magnetic films, consisting
particles of a magnetic metal~Fe, Co, Ni! in a nonmagnetic-metal matrix2,3 or in a
dielectric matrix~for example, SiO2).4,5 It is believed that in the case of a system
nanoparticles of a magnetic metal in a nonmagnetic-metal matrix the GMR is due
additional scattering of spin-polarized charged carriers, which depends on the re
orientation of the magnetic moments of the nanoparticles.6 In the case of a dielectric
matrix the GMR is explained by spin-dependent tunneling between mag
nanoparticles.7 However, the nature of the GMR in granular systems has still not b
completely elucidated.

The method for obtaining polymer composites containing iron oxide~magnetite
Fe3O4 and Fe2O3) is based on performingin situ reactions in a volume of swollen
polymer matrices. Magnetite contains iron with degrees of oxidation12 and13 in a 1:2
ratio, so that a mixture of salts of di- and trivalent iron must be used in order to obta
Polymer–iron oxide nanocomposites were obtained by treating polyvinyl alcohol~PVA!
films, containing a mixture of FeCl2 and FeCl3 salts, with an alkali solution~4 N NaOH!.
The duration of the treatment was 12 h. To prepare PVA films containing iron salts w
solutions of PVA and FeCl2 and FeCl3 salts were mixed in a 1:1 molar ratio. The PV
concentration in the resulting solution was equal to 4 wt.%. The films were obtaine
pouring a PVA–FeCl2/FeCl3 solution onto a glass substrate. The reaction between
iron ions immobilized in the volume of the polymer matrix~coordination-linked with the
hydroxyl groups of PVA! and the OH2 groups of the alkali results ultimately in th
formation of nanoparticles of iron oxides. This is manifested externally in the appea
of intense film color, ranging from yellow-brown~characteristic for Fe2O3) to black
39 390021-3640/98/010039-04$15.00 © 1998 American Institute of Physics
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(Fe3O4). The blackest samples~samples with the highest Fe3O4 content! were obtained
using a mixture of FeCl2 and FeCl3 in a 1:1 molar ratio. The use of a stoichiometr
mixture with a 1:2 molar ratio decreases the Fe3O4 content in the composite in connec
tion with the oxidation of Fe21 by oxygen in air to Fe31 during the process of drying a
sample~3–4 days at 20 °C!. The iron oxide content in the composite was determined
a thermogravimetric method on a Mettler TA-4000 device. The Fe3O4 content in the
experimental samples reached 150 wt.%~or 24 vol.%!. At this concentration it was
possible to observe conduction in the nanocomposite. The experimental sample
sisted of 232 mm and 100mm thick film with contacts deposited by means of silv
paste. The average particle size in the composite, estimated according to the half-w
the x-ray reflection, was'100 Å. An estimate of the concentration of Fe3O4 particles in
the experimental samples with a concentration of 24 vol.% gives 531017 cm23.

The current–voltage characteristic~IVC! was investigated with a V7-30 electrom
eter up to a voltage of 300 V~Fig. 1!. The IVC on a double logarithmic scale can b
approximated with two linear sections, corresponding to power-law functions of
current versus the voltage with exponents of 1 and 2.0560.02. Thus, the IVC is of a
linear, Ohmic character on the initial section and quadratic at high voltages, as is
acteristic for space-charge-limited injection currents, neglecting the effect of traps
density n of equilibrium charge carriers and their effective drift mobilitym can be
estimated from the magnitude of the voltage at which a transition occurs from Ohm
injection conduction and according to the conductivity in the Ohmic regions53310211

(V•cm!21 ~Ref. 8!:

Vx5enL2/e, s5mne. ~1!

HereVs510 V is the voltage at which a transition occurs from Ohm’s law to a trap
quadratic law;L is the distance between the contacts; and,e is the permittivity of the
nanocomposite. An estimate gives the equilibrium carrier densityn'63109 cm23 and
the effective drift mobilitym'0.1 cm2/V•s.

FIG. 1. Current–voltage characteristic.
40 40JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Varfolomeev et al.
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The magnetoresistance was investigated right up to fields 14 kOe with diffe
orientations of the sample relative to the direction of the magnetic field and w
voltage of 100 V on the sample, which corresponds to the carrier-injection regime
typical resistance of the samples was equal to 23109 V. The sign of the variation of the
resistance in the magnetic field was negative. The field dependence of the magnet
tance determined as@R(H50)2R(H)#/R(H50) is nonlinear and saturates in hig
fields ~Fig. 2!. The magnetoresistance reached 10–12% in a 10 kOe magnetic fiel
the absolute magnitude of the change in the resistance in the magnetic field was e
23108 V. We note that this value is much larger than in granular systems based o
and Ni nanoparticles in a SiO2 matrix. The GMR in these systems in a 10 kOe field w
equal to 4.5% and 0.6%, respectively.4,5 The magnetoresistive sensitivity in our case
weak fields was equal to 2–3%/kOe. A weak anisotropy of the magnetoresistanc
observed. In a magnetic field oriented in a direction perpendicular to the curren
magnetoresistance saturated in weak fields,;6 kOe, and its magnitude was smaller. It
interesting that in a close to Ohmic regime~with a voltage of 15 V on the sample! the
GMR was several times smaller ('2%) than in the injection regime. The increase in t
GMR with increasing voltage could be due to the fact that in the presence of injectio
Fermi quasilevel shifts and the degree of carrier polarization (D↑2D↓)/(D↑1D↓) in-
creases, whereD↑ is the density of states for carriers with the corresponding spin.

The magnetic-field dependence of the magnetizationM was also investigated~Fig.
3!. The measurements were performed in a pulsed magnetic field up to 70 kOe o
time '1022 s. The absence of hysteresis in the magnetization curve and the slo
proach to saturation in fields.10 kOe indicate that in our case the Fe3O4 nanoparticles
at room temperature are in a superparamagnetic state.9 The magnetic moment per Fe3O4

‘‘molecule’’ in a nanoparticle can be estimated from the saturation magnetizatio
'1.98mB ~wheremB is the Bohr magneton!. For comparison, in bulk Fe3O4 the magnetic
moment per ‘‘molecule’’ is (4.0324.08)mB .10 Thus even in fields;70 kOe almost half
the particles are in a superparamagnetic state during the observation time'1022 s.

The magnetization dependence of the magnetoresistance was constructed fr

FIG. 2. Magnetoresistance versus magnetic field.
41 41JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Varfolomeev et al.
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magnetic field dependences of the magnetoresistance and magnetization. This
dence can be approximated by a quadratic function

@R~H50!2R~H !#/R~H50!5~6061.6!•1026
•M2, ~2!

where M is the magnetization in CGSM units/cm3. This character of the dependen
agrees with the theoretical and experimental results on GMR in granular systems.5,7

As far as we know, the GMR effect in composites based on ferrite nanocrystals
polymer matrix had never been observed prior to this. The nature of the GMR in our
can be explained, just as in the case of a system of nanoparticles of a magnetic m
a dielectric matrix, by tunneling of charge carriers, which depends on the relative o
tation of the magnetic moments of the nanoparticles of the ferromagnet.7

This work was supported by the Russian Fund for Fundamental Research~Grant
96-03-32397a!.
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FIG. 3. Magnetization versus magnetic field.
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Electron g factor in quantum wires and quantum dots

E. L. Ivchenko and A. A. Kiselev
A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021
St. Petersburg, Russia

~Submitted 17 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 41–45~10 January 1998!

A theory of the Zeeman effect for electrons in one- and zero-
dimensional semiconductor heterostructures is developed. A relation is
established between the number of linearly independent components of
the g-factor tensor and the point symmetry of a low-dimensional sys-
tem. A specific calculation is performed for a spherical quantum dot
and a cylindrical wire. ©1998 American Institute of Physics.
@S0021-3640~98!00801-9#

PACS numbers: 73.61.Ey, 71.70.Ej

The effective Lande´ g factors for electrons in semiconductors with the zinc blen
lattice vary as a function of the chemical composition over wide limits (g'2 in wide-gap
materials,g520.44 in GaAs, andg'250 in InSb!. This dependence is described we
by the Roth formula,1 introduced in second-orderkp perturbation theory. In Ref. 2 we
extended theg factor theory to structures with quantum wells and superlattices, and
calculated the dependence of theg factor on the width of the layers and predicted
anomalously high anisotropy of the Zeeman effect for electrons in the conduction ba
the heterostructure. Experiments confirmed that the theory developed is applicab
structures grown on the basis of III–V and II–VI cubic semiconductors.3–9 The first
measurements of theg factor in structures with quantum dots have appeared.10 In the
present letter we construct a theory of the Zeeman effect for electrons in quasi-one
quasi-zero-dimensional systems, i.e., in quantum wires and dots. The dependence
g factor on the system size is calculated for a wire with a circular cross section an
a spherical quantum dot.

As in Ref. 2, to calculate the electrong factor we employ the Kane model, in whic
thekp mixing of the states in the conduction bandG6 and in the valence bandsG8 andG7

is taken into account exactly but the effect of remote bands is neglected. Let us e
the electron wave function in terms of Bloch functionscsRj (r ), where thecs (s561/2)
are↑ and↓ spin column matrices and theRj are the coordinate functionsS (G1 repre-
sentation of the point groupTd) and X,Y, Z (G15 representation!. It is convenient to
represent the eight envelopes in the form of a spinoru(r ) with the componentsu1/2,
u21/2 for the Bloch functionsS↑ andS↓ and the vector spinorv5(vx ,vy ,vz), wherevx

is a spinor with the componentsvx,1/2 andvx,21/2 for the Bloch functionsX↑, X↓, and so
on.

The Schro¨dinger equation with thekp HamiltonianH( k̂) in the form of an 838
matrix can be reduced to the differential equation
43 430021-3640/98/010043-05$15.00 © 1998 American Institute of Physics
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2mc~E!
u5Eu ~1!

for the spinoru, and the vector spinorv can be related with the gradient¹u by the
relation

v5
1

P

\2

2mc~E!
¹u2 i

1

P

\2

4m0
@g~E!2g0#~sW 3¹W !u. ~2!

Here E is the electron energy measured from the bottom of theG6 conduction band,
k̂52 i¹, P5 i (\/m0)^Su p̂zuZ&, m0 andg0 are the free-electron mass and Lande´ factor
(g0'2), and

1

mc~E!
5

2

3

P2

\2 S 2

Eg1E
1

1

Eg1E1D D , g~E!5g02
4

3

m0P2

\2

D

~Eg1E!~Eg1E1D!
.

~3!

The boundary conditions are the requirement that the spinoru(r ) and the components o
the vectorPv(r ) be continuous in a direction normal to the heterointerface.

We note thatmc
21(0) and the differenceg(0)2g0 are, respectively, the contributio

of the valence band to the reciprocal of the effective mass and theg factor of an electron
at the conduction band bottom, calculated to second order in thekp perturbation theory.
If the wave function is localized in one of the directionsz as a result of size quantization
then the first-order perturbation theory in the linear~in the magnetic field! correction to
the electronic Hamiltonian can be used to find theg factor in a magnetic fieldB'z. This
device has been used previously to calculate the transverseg factor in quantum wells.11

In a structure with a quantum dot, where the wave function is localized in all t
directions, the first-order perturbation theory is applicable, and theg-factor tensorgab for
the size-quantization ground statee1 is given by the expression

1

2
mBsa,ss8gabBb5

1

2
g0mBsa,ss8Ba1^e1,sudHue1,s8&. ~4!

HeremB is the Bohr magneton,sa (a5x,y,z) are the Pauli matrices, the electron sp
projection s,s8561/2, dH5(e/c)V̂A is a perturbation linear in the vector potenti
A(r ), 2e is the electron charge, and in the Kane model the velocity oper
V̂5\21]H(k)/]k is an 838 matrix with components that do not depend onk. Formula
~4! is also applicable for an electron state at the bottom of the subbande1 in a quantum
wire if: a! the gauge of the vector potential is chosen so that the potential depends
coordinates in a plane perpendicular to the principal axisz of the wire, and b! the
diamagnetic term11

e

c
^e1,suv̂zue1,s8&^Az~r !&,
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which can be nonzero in the case of low cross-sectional symmetry of the wire, is
tracted out. We note that the average^Az&[^e1,suAzue1,s& does not depend on the sp
s. Using the explicit form of the matrixV̂, we arrive at the basic formula for calculatin
the g factor:

^e1,sudHue1,s8&5 i
e

c\E P@~A–vs
1!us82us

1~A–vs8!#dr . ~5!

In the general case the spinor functionu(r ) can be represented in the form

u~r !5@ f ~r !1 isaha~r !#cs , cs5↑ or ↓,

wheref (r ) andha(r ) are real functions. The symmetry of a quantum dot or wire impo
restrictions on the form of these functions. Specifically, in a quantum dot withD2d

symmetry~the symmetry of a rectangular parallelepiped or ellipsoid! we have for the
electronic ground state e1: f (r )5 f (x2,y2,z2), hx(r )5yzMx(x

2,y2,z2),
hy(r )5zxMy(x

2,y2,z2), andhz(r )5xyMz(x
2,y2,z2), whereMa are arbitrary functions

of x2, y2, andz2. The envelope of the electron wave function in a state withkz50 in a
quantum wire does not depend onz. For this reason, in a quantum wire with a rectangu
cross section hx(r )[hy(r )[0, hz(r )5xyMz(x

2,y2,z2). In a cylindrical wire
f (r )5 f (r5Ax21y2) and the three functionsha(r ) are identically equal to zero, sinc
combinations which transform as components of a pseudovector under the grouD`h

cannot be constructed from powers of the coordinatesx and y. For a similar reason
ha(r )50 in a spherical quantum dot.

Substituting into Eq.~5! the expression forus(r ) in the form f (r )cs , we find that
the electrong factor is isotropic not only in a spherical quantum dot but also in
cylindrical wire. This unexpected result can be understood without detailed calcula
Indeed, let us choose the gaugeA5(0,0,2xBy) for the caseB'z and the gauge
A5(0, xBz,0) for the caseBiz. In a cylindrical wire the functionsha are identically
equal to zero, the functionf for the ground state does not depend on the azimuthal an
and the velocity operator in the Kane model is a matrix with constant coefficients
these reasons, both components of theg factor are proportional to the same integr
*dxdy f(r)x(]/]x) f (r), and the coefficients of proportionality do not depend on
dimensions of the wire. Since theg factor is isotropic in the limitR→` ~just as in a bulk
semiconductor!, it is also isotropic for anyR.

Substituting the functionf into Eq. ~5! and integrating by parts, we obtain for
circular wire and a spherical dot

g5hg01@gB~E!2gA~E!#V32d~R! f 2~R!1@gA~E!2g0#wA1@gB~E!2g0#wB ,
~6!

whereVn is the volume of an-dimensional sphere (V25pR2, V354pR3/3), gA(E) and
gB(E) are determined in accordance with Eq.~3!, wA andwB are integrals of the function
f 2 over the region occupied by materialA or B ~for vÞ0 the sumwA1wB is different
from 1!. The coefficienthÞ1 for E.0 on account of mixing of the spin states↑ and↓,
and it can be anisotropic in low-symmetry systems. However, estimates show tha
rule, its difference from 1 can be neglected. As the radiusR increases, the value ofwA

approaches 1, and the energyE of the level e1, the productV32d(R) f 2(R), and the
45 45JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 E. L. Ivchenko and A. A. Kiselev
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quantitywB decrease to zero, so that in the limitR→` theg factor approaches the bul
value in materialA according to the lawg(R)5gA(0)1(Rd /R)2; hereR1,R0.

In the present work we calculated theg factor in a spherical quantum dot and
cylindrical wire, where the envelopef (r ) for the levele1 has, respectively, the form
Cr21sinkr for r ,R, Dr 21exp@2k(r2R)# for r .R, andCJ0(kr) for r,R, DK0(kr)
for r.R. HereR is the radius,k5@2mA(E)E/\2#1/2, k[2mB(E)(DEc2E)/\2] 1/2, J0(x)
andK0(x) are Bessel functions,DEc is the offset of the conduction band at the hete
interface of the two materials~which are designated below asA and B), mA(E) is the
massmc(E) determined according to Eq.~3! for materialA, the analogous massmB(E)
is determined for the parameters of materialB with allowance for the offset of the band
i.e., mB(E)5mc(E2DEc), and the coefficientsC and D are found from the boundary
conditions: continuity off and of the normal component of the vectormc

21(E)¹ f , and
from the normalization*(u1u1v1v)dV32d51, whered50 or 1 anddVn is the vol-
ume element inn-dimensional space.

Formula~6! is also applicable for calculating the transverseg factor g'5gxx5gyy

for an electron in a quantum well of width 2R, for which d52, V32d52R and in which
f 5C coskz for uzu,R andDexp@2k(uzu2R)# for uzu.R.

Figure 1 displays the electrong factor in a spherical quantum dot (gQD) and a
cylindrical wire (gQWR) as a function of the radiusR. For comparison, the figure als
shows~dotted lines! the values of the longitudinal (gi

QW , Biz) and transverse (g'
QW ,

B'z) g factors for a quantum well of width 2R. The model calculation was performe
for the heterosystem GaAs/Al0.35Ga0.65As. The following values of the parameters we
used in the calculation:Eg51.52 eV,D50.34 eV, and 2pcv

2 /m0528.9 eV for bulk GaAs

FIG. 1. Electrong factor versus the linear dimensions of a structure in the heterosystem GaAs/Al0.35Ga0.65As.
The values for a spherical quantum dot and a cylindrical quantum wire with radiusR are represented by the
solid and dashed lines, respectively. For comparison, the longitudinal and transverse components of the

g-factor tensor (gi
QW

,g'
QW) for a single quantum well of thickness 2R are also shown~dotted lines!.
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(pcv5 i ^Su p̂zuZ&), Eg51.94 eV, D50.32 eV, and 2pcv
2 /m0526.7 eV for the barrier

material, and a ratio of the band offsets at the heterointerfaceDEv :DEc52:3. To take
into account the contribution of remote bands, we added the constantDg520.12 to the
values of theg factor obtained in the Kane model. When this is done, the electrog
factor reaches the bulk value20.44 in GaAs as the size of the structure increases. As
linear dimensions of the structure decrease, theg factor increases, approaching in th
limit R→0 the value 0.57 in the barrier material. Since size-quantization effects pla
increasingly larger role as the dimension of the system decreases, the rel
gi ,'

QW
,gQWR,gQD hold ~see Fig. 1!. Estimates show that the contribution of the term

Eq. ~6! that is proportional tof 2(R) is not small, which rules out an approximation
g(R) in the formgA(E)wA1gB(E)wB .

In summary, using the Kane model we have constructed a theory of the electg
factor in superconductor quantum dots and quantum wires; we have performed a
metry analysis for a number of specific microstructures and have shown that in co
to a quantum well, wheregiÞg' , the g factor in a cylindrical wire~a system with the
same point symmetry! is isotropic. We have carried out a model calculation for a sph
cal dot and a cylindrical wire.

We thank the Russian Fund for Fundamental Research and the Volkswagen
dation for financial support.
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Self-organization of germanium nanoislands obtained in
silicon by molecular-beam epitaxy

V. Ya. Aleshkin, N. A. Bekin, N. G. Kalugin, Z. F. Krasil’nik,a)

A. V. Novikov, and V. V. Postnikov
Institute of Physics of Microstructures, Russian Academy of Sciences, 603600 Nizhni�

Novgorod, Russia

H. Seyringer
Institute for Semiconductor Physics, Johanes Kepler University of Linz, Linz, Austria

~Submitted 2 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 46–50~10 January 1998!

Nanometer germanium islands in epitaxial layers of silicon are obtained
by molecular-beam epitaxy. The dimensions and shapes of the islands
are determined in an atomic-force microscope. The photoluminescence
spectra are found to contain lines that can be interpreted as quasidirect
optical transitions in the islands. It is concluded on the basis of optical
and microprobe measurements and theoretical calculations of the ener-
gies of electronic states that silicon is dissolved in the germanium is-
lands. Values of the germanium and silicon contents in the solid solu-
tion are presented. ©1998 American Institute of Physics.
@S0021-3640~98!00901-3#

PACS numbers: 81.15.Hi, 81.05.Cy, 78.55.Ap

In the present letter we study the physical properties of nanometer germaniu
lands obtained in silicon in the process of molecular-beam epitaxy. Island form
under certain conditions of epitaxial growth of elastically strained atomic layers of
manium on silicon is connected with the process of self-organization of islands in a
dance with the Stranski�–Krastanov mechanism.1 In the last few years a large number
works have been devoted to the processes of self-organization of Ge islands in ep
layers of Si.1–5 Such great interest in these objects has apparently been engende
some degree, by the rapidly developing investigations of quantum dots in straine
erostructures on the basis of III–V materials, as a result of which the understanding
growth of self-organizing structures, the physical properties of objects with z
dimensional density of states, and the applied aspects of the application of structure
arrays of quantum dots is now well developed.

The basic conditions for the formation of self-organizing islands of germanium
silicon in the process of epitaxial growth in a high vacuum2,3 or in a gaseous medium a
atmospheric or low pressure4,5 have now been determined. In contrast to III–V quant
dots, germanium islands have large dimensions in the growth plane and the elec
spectrum of the charge carriers in them is two-dimensional. The dimensions of the is
and their packing density in the growth plane depend strongly on the substrate tem
ture and the Ge and Si deposition rates.2 Questions concerning deformation and disloc
48 480021-3640/98/010048-06$15.00 © 1998 American Institute of Physics
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tions in islands, the shape of the islands, the solubility of silicon and the formation o
solid solution SiGe in them, the spectra of electronic states and optical transitions
other features remain open. The present letter is devoted to clarifying some of
questions.

The experimental structures were grown in a ‘‘Balzers’’ apparatus that had
modernized for molecular-beam epitaxy of Si/Ge heterostructures. The residual-gas
sure in the growth chamber did not exceed 5310210 mbar and the working pressure d
not exceed 231028 mbar. Silicon and germanium were evaporated from sources
electron beams. Plates ofp-type Si~100! were used as substrates. The structures w
grown at two substrate temperaturesTg5550 °C and 700 °C. The substrate surfac
were precleaned by thermal etching atT51150 °C. Two types of structures were grow
Structures intended for analysis with an atomic-force microscope~AFM! contained a 225
nm thick silicon buffer layer on which a germanium layer, consisting of 2 to 10 mo
layers~1 monolayer5 1.4 Å!, and a 40–50 Å silicon layer were deposited successiv
For photoluminescence measurements, a ten-period lattice of alternating germaniu
ers, consisting of 2–7.8 monolayers, and a 500 Å thick silicon layer was grown on a
nm thick buffer. The growth rates of the Si and Ge layers were equal to 2 Å/s and
Å/s, respectively. Prior to the Ge growth onset, the Si growth rate was decreased
Å/s in order to decrease the roughness of the heterointerface. It will be shown belo
as a result of internal elastic stresses, which arise as a result of the mismatch of the
Ge lattice periods, the germanium layer transformed into islands when the thic
exceeded of the order of 3–4 monolayers. For this reason, the germanium layer
nesses.324 monolayers reported here and below are nominal values — a layer of such
thickness would have been deposited on the substrate in accordance with the
evaporation rate and time if the islands had not formed.

Silicon structures with germanium were examined with a ‘‘Park Scientific Ins
ment’’ AFM under room conditions. Figure 1 displays an AFM photograph of a sam
with Ge-layer thicknessdGe510 monolayers, grown atTg5700 °C. According to mi-
croprobe data, the critical Ge-layer thickness (dc) above which self-organization of is
lands occurs isdc54.5 Å ~3.2 monolayers! under our growth conditions. As the amou
of Ge deposited increases, the sizes of the islands and their concentration increas
islands can be divided into three groups according to the transverse dimensioD:
D<190 nm, 200<D<300 nm, andD>350 nm. Judging from the dimensions and sha
of the islands in the first and second groups, these are apparently elastically st
dislocation-free islands, in which partial relaxation of elastic stresses has occurre
result of local deformation of a surface layer of silicon1 and relaxation of stresses on th
free surface of the islands. The third group consists of islands which have unde
plastic relaxation of elastic stresses as a result of the formation of misfit dislocatio
them. The size of the islands in the growth plane for which formation of dislocat
occurs is close to the critical size of the elastically strained islandsD.300 nm, measured
in Ref. 5.

The surface densityNs of the islands depends on the Ge-layer thickness and
different amounts of deposited germanium fluctuates from 83107 cm22 to 23109 cm22.
Decreasing the growth temperature to 550 °C gives a more uniform size distrib
of the islands, decreases their average size (D'190 nm), and increases the surfa
49 49JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Aleshkin et al.
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density. The data on the sizes and density of self-organized islands agree with the
of Ref. 2.

The photoluminescence spectra of Si/Ge structures were measured at 4 K with a
resolution of 0.5 meV on a ‘‘Boem’’ DA3-36 Fourier spectrometer with a cooled InGa
photodetector~see Fig. 2!. The spectra were obtained by excitation with a Kr1 laser
(l5647 nm). Besides the luminescence lines of the silicon substrate~phonon replicas
with participation of optical TO and acoustic TA phonons~see Fig. 2!!, luminescence
associated with a wetting Ge layer~2D! is observed in the spectra of samples with
effective germanium layer<5 monolayers~with participation of TO phonons — TO2D

and a phonon-free line NP2D). For thedGe52 monolayers sample the NP2D line falls in
the range of the phonon lines~TO 1 2TA!Si of the substrate luminescence. As th
amount of deposited germanium increases, the photoluminescence lines associat
the germanium layer shift to lower energies as a result of the size-quantization effec
position of the lines from the wetting layer agrees well with the computed values.

For Ge-layer thickness greater than a critical value, a wide peak is observed

FIG. 1. AFM photograph of a sample grown atTg5700 °C withdGe510 monolayers.
50 50JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Aleshkin et al.
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critical region 0.8–0.925 eV. This emission band is attributed to the formation o
nanoislands.

The characteristic dimensions of the islands in the growth plane exceed 103 Å. Their
height is approximately an order of magnitude smaller. For such dimensions, the e
associated with size-quantization effects for holes in Ge islands would no exceed 20
and therefore the strong shift in the energy range 800–925 meV of the wide photo
nescence band relative to the silicon radiation cannot be attributed unequivoca
purely germanium islands in silicon. It can be assumed that the islands consist of a
solution of germanium with silicon,2 and then the molar fraction of silicon in them can
estimated.

Figure 3 shows the positions of the band edges of the thin homomorphic
solution Si12xGex on Si, calculated using the model of Ref. 6. The symbolshh and lh
denote heavy- and light-hole bands; 2D denotes two delta valleys of the conductio
bands where the electron masses are highest in the direction of growth; 4D are the
remaining four delta valleys of the conduction band; and,L is a L valley. The calcula-
tions show that the photoluminescence in the energy range 800–925 meV in a hom
phically grown solution on a silicon substrate is possible if the germanium fraction in
islands ranges from 30 to 50%. The formation of a solution in islands is appar
associated with the segregation of germanium.

Since the structures possessp-type conductivity and the islands are potential we
for holes, the holes accumulate in the islands, charging them positively. The su
density of holes in islands for volume hole density in Si;1015 cm23 can be estimated
just as for a quantum well with the same energy level of the heavy-hole ground sta
;431010 cm22 ~see, for example, Ref. 7!. As a result of Coulomb repulsion, hole
inside islands must concentrate along the heterointerfaces. The positive charge
islands produces a quantum well for photoelectrons in silicon near a heterojunction~see
inset in Fig. 3!. In the case when the conduction band bottom in silicon is lower tha

FIG. 2. Photoluminescence spectra of structures grown atTg5700 °C with different Ge-layer thicknesses.
51 51JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Aleshkin et al.
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the islands~in Fig. 3 one can see that this occurs forx.0.32, the photoluminescenc
energyEpl,960 meV!, on account of size quantization in this well the ground states
the states of the 2D valleys because of the large, compared with the 4D valleys, masses
in the ~001! direction. Here, electrons located near the base and top boundary o
islands are primarily studied, since these electrons make the main contribution
photoluminescence because of the large difference in the areas of the lateral sid
bases. As a result of size quantization, the electron quasimomentum perpendicular
heterointerfaces is no longer conserved~the Brillouin zone is two-dimensional! and the
states of electrons in the 2D valleys are displaced into the center of the two-dimensio
Brillouin zone. In this case the interband optical transitions are direct in momentum s
(pfinal2pinitial50),6 but in the coordinate space the transitions are indirect, since
electrons and holes are localized on different sides of the heterointerface. This is pro
the reason why the photoluminescence is weak.

As to the influence of the island sizes, the large width of the luminescence
associated with the presence of islands is apparently determined not so much
variance in the island sizes, as happens for self-organized InAs/GaAs quantum do8 as
by the nonuniform distribution of germanium and silicon valleys in the islands and
different degree of relaxation of elastic stresses. This is probably the reason wh
position of the strongly broadened photoluminescence line associated with islan
insensitive to the island size.

If it is assumed that partial relaxation of elastic stresses in the solid solution
occurred as a result of the deformation of the surrounding silicon, then according
calculations the fraction of the germanium in the islands whose photoluminescence

FIG. 3. Calculation of the conduction and valence bands of the solid solution Si12xGex grown homomorphi-
cally on a Si~100! substrate~lattice constant — 5.43 Å, solid lines!. The dashed line corresponds to th
elastically strained silicon~lattice constant — 5.46 Å!. Inset: Band diagram for the case whenx.0.32.
52 52JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Aleshkin et al.
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into the energy range 0.8–0.925 eV should decrease compared with the islands
such relaxation has not occurred. This conclusion can be drawn by analyzing F
where the dashed lines represent the positions of the band edges in the solid solu
the case when the silicon layers surrounding it are deformed.
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Decay of mesoscopically localized vibrations in porous
materials
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The low-temperature decay of a vibrational eigenstate of a crystalline
mesoscopic particle surrounded by other such particles of approxi-
mately the same size is considered. The decay time is determined by
the anharmonicity and the coupling between adjacent mesoscopic par-
ticles. Under some limiting conditions for particles of a typical size of
50 Å the decay time at low temperatures can be several milliseconds.
© 1998 American Institute of Physics.@S0021-3640~98!01001-9#

PACS numbers: 63.20.Pw, 53.50.1x, 61.43.Gt

In a recent paper by Kaplyanskii, Feofilov, and Zakharchenya,1 long-lived size-
quantized vibrational states in porous Al2O3 were studied at low temperatures between
and 5 K. Nonequilibrium phonons were excited by ‘‘optical heating’’ with a laser pu
The anti-Stokes spectrum was observed at long time delays of 2–4 ms, and a
frequency maximum atv0'20 cm21 was found to decay for;1 ms. The purpose of the
present letter is to provide a theory of the decay rate of such vibrational states w
might shed light on the origin of the exceptionally long decay times observed in
experiment.

The physics of the phenomenon can be described as follows. The sample of2O3

consists of particles of approximately~but not exactly! the same size, about 50 Å i
diameter, and which are presumably only weakly connected, i.e., most of the bon
the surface of a particle are dangling. Although some of the particles might cons
‘‘dead ends’’ and others can be connected with several neighbors, most of the par
surfaces can still be considered as free.

Due to the small dispersion of the mesoscopic crystal sizes and the compara
large density, our system is distinct from typical aerogels.2 In these the typical lengths
may vary by some orders of magnitude, leading to fractal behavior.3 It is equally distinct
from a glass.4 There one has only one length scale, the atomic one.

We consider porous materials, in which two length scales exist. In addition to
microscopic scale~set by the interatomic distance!, the nanocrystal size provides a se
ond, mesoscopic scale. We suggest that the novel type of solids investigated in
belongs to this type. We assume that there is nearly perfect order inside the
particles on atomic scales. On the mesoscopic scale, we envisage the material to b
54 540021-3640/98/010054-07$15.00 © 1998 American Institute of Physics
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from single-crystal particles. The comparatively large density and the small variatio
the particle sizes will ensure some interparticle short-range order. One should not e
any long-range order.

Corresponding to this structure we expect two types of vibrations. The intrapa
vibrations are determined by the interatomic forces, and their wavelengths are limit
the particle size. In first approximation these states can be described as isolated p
with free surface boundary conditions. We will provide an algorithm for the calcula
of the lifetimes of the lowest-frequency modes. These can indeed be very long. In
tion to these modes there are interparticle vibrations, whose wavelengths are large
the typical particle size and whose frequencies are determined by the much w
interparticle coupling. The two types of vibrations interact. The strength of the intera
is proportional to the ratio between interparticle and interatomic coupling. We con
the case where this is sufficiently small.

The material is characterized by a narrow distribution of particle diameters.
further assume a coupling between the crystallites so weak that there is a gap betw
respective spectra of the intra- and interparticle vibrations. The average density is
range of 30% to 50% of the crystalline density, and the typical diameter of the crysta
and the pores between them is 50 Å.

First we consider an isolated crystallite. There will be of the order of 1000–10
atoms in a crystallite, which allows the use of continuum theory to estimate the lo
eigenfrequencies. The vibrations of a homogeneous spherical body were calcula
Lamb5 and by Tamura et al.,6 who give for the lowest eigenfrequenc
vmin'2.5vcrystal/R. Herevcrystal is the average transverse sound velocity in the crystal
material andR the radius of the particle. The corresponding eigenmode is mostly
centrated on the surface of the particle. Such modes have been observed, e.g., by
scattering on nucleated glass.7

The long-wavelength dynamics and elastic behavior of polycrystalline and sim
materials is a long-standing problem~see, e.g., Refs. 8–10!. For our purpose a simple
estimate is sufficient. In aerosols one observes a scaling of the sound velocity wi
densityr: v̄}r̄1.4 ~Ref. 11!, where the bar indicates an average over the sample.
expect a similar dependence for the porous material considered here. Taking the r

v̄5AC̄/ r̄, we find C̄}r̄3.8, whereC̄ and r̄ are the averaged elastic constant and m
density, respectively. Since the interatomic bonds inside the crystallites will not b
fected strongly by porosity, the elastic weakening reflects the weak bonding betwee
crystallites. The elastic constants are determined by the stiffness and number of
The reduction ofC̄ by more than a factor 10 reflects a similar reduction in the numbe
bonds between the crystallites.

Regarding elastic waves~with wavelengths much larger than the interparticle d
tance! the porous material can be considered as an elastic medium whose propert
characterized by the average densityr and average elastic moduliCilmn , the averaging
being over length scales much larger than the interparticle distance. Alternatively on
look upon the problem from an equivalent point of view. To a good approximation
harmonic dynamics of elastic waves in the porous material can be described by w
coupled rigid particles. In this amorphous lattice of crystallites the diameter 2R will take
55 55JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. L. Gurevich and H. R. Schober
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the role of the lattice constant inside the particles. The maximum frequency o
acoustic waves is thenv(qmax)'p v̄/R.

We consider the casevmin.v(qmax) and further stipulate that the relative sprea
due to variations of diameter and shape, of the lowest intra particle vibration freque
is larger than thelinear coupling between these modes in adjacent crystallites. T
means that the modes in the adjacent crystallites are entirelyout of resonance. Then the
eigenmodes of the crystallites are localized in the true sense of harmonic lattice th
Their amplitudes will decay exponentially in space into the adjoining material, and
larger the difference between the two eigenfrequencies, the faster this decay will b
they are true eigenmodes their time dependence is harmonic. This means that
neglects anharmonicitythey do not decay in time at all. If one treats the site-diagona
disorder as a perturbation one can get a lifetime as the imaginary part of the ph
self-energy. As is well known, this lifetime would be spurious, as such an imaginary
would not correspond to any attenuation. It is due only to the fact that in the presen
disorder a phonon wave vector is a poor quantum number.

Thus the lifetimes of the local vibrations are determined by anharmonicity.
consider low temperatures, where in thermal equilibrium the occupation numbers
phonons are essentially zero and transitions are dominated by phonon emission. W
show that, compared to typical crystalline samples, the anharmonic effects are so st
reduced that the lifetimes of the low-frequency localized vibrations become extre
long.

The elastic displacement within an isolated particlel corresponding to the lowes
eigenstate is given by12

ui~r !5A \

2v l rV~cl 1cl
† ! f i

~ l !~r !, ~1!

wherecl andcl
† are the annihilation and creation operators of the lowest eigenmod

particlel , andr is the mass density of the crystallites. The eigenfunctionsf(l )(r ) satisfy
the equations of elasticity theory and the normalization condition

1

VEVd3r @ f~ l !#251 ~2!

with V the volume of the particle. The Hamiltonian of particlel is

H l 5\v~ l !~cl
† cl 11/2!.

Consider two adjacent particles, 1 and 2, which are weakly harmonically cou
The coupling Hamiltonian is

H125h\Av1v2~c1
†c21c2

†c1! ~3!

whereh!1. The eigenfrequencies of the two particles will not differ strongly and

uv~1!2v~2!u/v~1!!1. ~4!
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In places such as Eq.~3! we need not discriminate betweenv (1) andv (2) and we will
replace them by some average valueṽ. In order to make perturbation theory applicab
the interparticle coupling has to obey the inequality

h
ṽ

uv~1!2v~2!u
!1. ~5!

In this limit the localized vibrational states of the two particles mix only weakly. Inde
the vibrational amplitude, which is normalized to unity within particle 1, acquires
extra small factor~5! in particle 2, etc.

We takev (1).v (2). Then an excitation in particle 1 can decay into one in part
2 by passing the surplus energy to a traveling acoustic wave with frequencyvq5 v̄q:

v~1!5v~2!1vq . ~6!

The energy density for the anharmonic interaction,E can be written as6

E5
1

6(abc
ilm

Cialbmc
~3! uaiublucm,

whereuai5]ua /]xi andCialbmc
(3) is the tensor of anharmonic moduli of third order, whic

are usually somewhat larger numerically than the harmonic moduli.

The matrix element of the process described by Eq.~6! is

^~1!uEu~2!,q&5
1

6 (
abc
ilm

Cialbmc
~3! E d3r ^~1!uuaiublucmu~2!,q&, ~7!

where

u~1!&5c1
†u0&, u~2!,q&5c2

†cq
†u0&

and u0& is the vacuum state with no phonons excited. To estimate the anharmonic
action within particle 1 we write

u5u~1!1u~2!1u~ph!,

where the displacement due to the traveling acoustic phonon is

u~ph!5A \

2r̄VN
(

q

1

Avq

e~q!exp~ iq•r !~cq1c2q
† !. ~8!

Summation over the acoustic branches with polarization vectorse(q) is implied. Unlike
the particle volumeV in Eq. ~1!, VN is a normalization volume which drops out of th
final result.

The local displacement of particle 1 now has, in addition to Eq.~1!, a term given
by Eq. ~3! describing the ‘‘leakage’’ of the vibrational statev (2) from particle 2 into
particle 1:
57 57JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. L. Gurevich and H. R. Schober
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u~1!5A \

2v1rV1
f~1!~r !F ~c11c1

†!1h
ṽ

v~1!2v~2!
~c21c2

†!G . ~9!

For u(2) we have the same equation with the replacement 1↔2. Inserting Eqs.~9! and~8!
into Eq. ~7!, we get after the integration

^~1!uEu~2!,q&5 i ~E~1!1E~2!!^~1!uc1
†c2cqu~2!,q&, ~10!

whereE(1) andE(2) are the results of integration over volumesV1 andV2, respectively,
and

E~1!5h
\

2r (
q
A \

2r̄vqV
1

v~1!2v~2! (
cm

bmc
~1!ecqm

with

bmc
~1!5(

ab
il

1

V1
Cialbmc

~3! E
V1

d3r
] f a

~1!

]xi

] f b
~1!

]xl
exp~ iq•r !.

Again the equation forE(2) is obtained by interchanging 1↔2. As qL ~whereL is the
diameter of the particle! is assumed to be small, we replace the factor exp(iq•r ) by 1.

Now the decay probability of the vibration in particle 1 can be calculated by Fer
golden rule. Summing overq one gets

G5
ph2\

4r2r̄
K S (

cm
bmcnmecD 2L

V

E d3q

~2p!3

q2

vq
3
d~v~1!2v~2!2vq!,

wheren5q/q and ^ . . . &V denotes the average over the solid angle of directionsn.

Not knowing the exact dependence of the sound velocityv̄ on the average densit
we assume as a rough estimate, in analogy to the aerogels,11 that r̄} v̄, neglecting the
observed small deviations from proportionality. Introducing the density ratioa5 r̄/r, we
get

G5
h2\vq

8pa6r3v5K S (
cm

bmcnmecD 2L
V

. ~11!

For the orientational average we apply the estimate

K S (
cm

bmcnmecD 2L
V

'z2r2v4S p

L D 4

.

Here we have made use of the fact that the cubic anharmonic moduli are roughly
same order as the harmonic ones. The factorz represents their ratio, which may b
several times unity. Finally we get the following approximate value for the decay
stant:

G'N
h2p3z2\vq

8a6rvL4
. ~12!
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Here vq is the average positive frequency differencev (1)2v (2), N is the number of
neighbors to which the particle of interest is connected by chemical bonds and w
lowest eigenfrequenciesv (l ) are smaller thanv (1), andh2 is the mean squared couplin
constant to these neighbors.N can vary between 1 and a dozen.

From Eq.~12! one can get a rough estimate of the limits to be expected for the d
constant G. Let us assume the following values for the paramete
h251023; a651022 ~cf. Ref. 1!; vq51011s21; r55 g/cm3; v523105 cm/s;
L5531027 cm, andz2 can have a typical value of several times unity. In particu
depending on the value ofN we thus getG values of about 103–104 s21 as observed in
the experiment.1

There are some major sources of ambiguities in such an estimate. The re
interparticle strengthh2 may be larger than 1023. It would be helpful to develop method
for its experimental determination. Measurements of the elastic constants and
velocities of the porous sample would provide a more reliable estimate. The spread
eigenfrequenciesvq can, in principle, be determined by a careful optical investigatio

It is necessary to check the validity of the relationr̄} v̄. A lot could be learned from
an investigation of the form of the particles constituting the sample and from
relative spatial arrangement.~We are not giving estimates for a rather rare case where
the adjacent particles have frequencies larger thanv (1). For such particles the deca
constant would be proportional toh4 rather than toh2.)

Simultaneous measurements of the average mass densityr̄ and the average soun
velocity v̄ should help towards an understanding of the weak attenuation of the e
modes in the mesoscopic crystallites. Each of these crystallites should have its own
rate because of differences in the sizes and in the harmonic coupling constants, nu
of neighbors, etc. The observation of a nonexponential overall decay1 is therefore not
surprising.

In summary, we have calculated the low-temperature decay rate of an ultra
vibration in a mesoscopic crystalline particle weakly coupled to one or several other
particles of approximately the same size. The decay time depends on the width
particle size distribution and on the strengths of the harmonic and anharmonic coup
Under the given limiting conditions for particles of a typical size of 50 Å the decay tim
may be as large as several milliseconds.
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1A. A. Kaplyanskii et al., Opt. Spektrosk.79, 709 ~1995! @Opt. Spectrosc.79, 653 ~1995!#.
2J. Fricke~ed.!, Aerogels, Vol. 6 of Springer Proceedings in Physics, Berlin: Springer, 1986.
3T. Nakayama and K. Yakubo, Rev. Mod. Phys.66, 381 ~1994!.
4Amorphous Solids– Low Temperature Properties, Ed. W. A. Phillips, Berlin: Springer, 1981.
5H. Lamb, Proc. Math. Soc. London13, 187 ~1882!.
6A. Tamuraet al., J. Phys. C15, 4975~1982!.
7E. Duval, A. Boukenter, and B. Champagnon, Phys. Rev. Lett.56, 2052~1986!.
59 59JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. L. Gurevich and H. R. Schober



6.
8W. Voigt, Ann. Phys.33, 573 ~1889!.
9A. Reuss, Z. Angew. Math. Mech.9, 49 ~1929!.

10R. Zeller and P. H. Dederichs, Phys. Status Solidi B55, 831 ~1973!.
11E. Courtens, J. Pelous, J. Phalippouet al., Phys. Rev. Lett.58, 128 ~1987!.
12A. A. Maradudinet al., Theory of Lattice Dynamics in the Harmonic Approximation, New York: Academic

Press, 1971.
13L. D. Landau and E. M. Lifshitz,Theory of Elasticity, 3rd Ed., New York–Oxford: Pergamon Press, 198

Published in English in the original Russian journal. Edited by Steve Torstveit.
60 60JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. L. Gurevich and H. R. Schober



,

n

le
ies
of the

t

ed in

ehave
The

n the

eld

e
rval

bsence

d

RF-photon induced Mo ¨ ssbauer satellites in permalloy

A. Ya. Dzyublik,a) V. Yu. Spivak, R. A. Manapov, and F. G. Vagizov
Institute of Nuclear Studies, 252028 Kiev, Ukraine; Kazan Physicotechnical Institute
420029 Kazan, Tatarstan, Russia

~Submitted 14 July 1997; resubmitted 2 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 57–61~10 January 1998!

The Mössbauer spectra of a permalloy film placed in an rf magnetic
field are measured. The film is so thin that transverse magnetostriction
oscillations are not excited in it. This permits the observation of satel-
lites that are due solely to periodic variations of the magnetic field at
the nucleus. The data are in good agreement with calculations per-
formed in the model of step-wise field reversals. On application of an
additional static magnetic field the splitting of the satellites is observed,
as predicted by the model of asymmetric step-wise field reversals.
© 1998 American Institute of Physics.@S0021-3640~98!01101-3#

PACS numbers: 76.80.1y, 75.80.1q

Many Mössbauer experiments~see the reviews1–4! are devoted to the investigatio
of soft ferromagnets in a radio-frequency~rf! magnetic field with angular frequencyV.
Equidistant~separated by an intervalV) satellites, which are split if the quadrupo
interaction is also strong, were observed in these experiments. At high frequencV
these spectra collapse into a single line or doublet. The main idea forming the basis
model of step-wise field reversals is that the magnetic fieldh(t) at a nucleus in a sof
ferromagnet placed in an rf fieldHrf(t) jumps periodically between two values1h0 and
2h0. The corresponding equations for the absorption cross section are deriv
Refs. 5–7.

The reversals can be simply explained as follows~see also Ref. 8!. It is known9,10

that soft ferromagnets have a cluster structure. Such weakly interacting clusters b
similarly to superparamagnetic particles in which all spins are strongly coupled.
magnetizationM c of a cluster can be oriented along the easy-magnetization axis or i
opposite direction. Correspondingly, the potential energyW0(w) of a cluster as a function
of the angle betweenM c and the easy-magnetization axis has two minima. In a fi
Hrf(t) a cluster acquires the additional potential energyV(t)52M c•Hrf(t). Then the
total potential energyW01V(t) will be a periodic function of time. Its oscillations forc
M c to undergo periodic jumps between two opposite potential wells with a time inte
T/2 between successive jumps, whereT52p/V is the period of the rf field. Application
of an additional static magnetic fieldH0 gives another static contribution2M c•H0 to the
potential energy. This makes one potential well deeper than the other, even in the a
of Hrf(t). The applied fieldHrf(t) with amplitude greater thanH0 will once again give
rise to jumps of the magnetization but in this case the timeT1 which a cluster spends in
the potential well with magnetizationM c parallel toH0 will be greater than the timeT2

spent in a well withM c antiparallel toH0. A nucleus interacting with a reversing fiel
61 610021-3640/98/010061-06$15.00 © 1998 American Institute of Physics
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h(t) exchanges with rf photons with frequencyV with the field. Not having a definite
energy, such a nucleus is characterized by infinite sets of quasi-energies separate
interval \V. Transitions between such quasilevels lead to the appearance of a spe
in the form of a central peak with equidistant satellites.

In addition, there also exists a phonon channel for energy exchange betw
nucleus and the rf fieldHrf(t). An ac magnetic field excites magnetostriction oscillatio
in the ferromagnet. These forced oscillations with average amplitudex̄0 along the inci-
dent Mössbauer radiation beam also contribute to the intensity of the satellites.1–4 The
value of x̄0 is unknown, so that in Ref. 8, in explaining Pfeiffer’s results,11 we used this
parameter only as an adjustable parameter. Therefore, to separate the photon chan
pure form and check the model of step-wise reversals, it is desirable to quenc
magnetostrictional oscillations. To this end, in our experiment, which we describe b
we chose as the absorber a very thin permalloy film with thicknessD!ls/2, wherels is
the wavelength of the magnetostrictional oscillations. In such a film the conditions
vibrational resonance are strongly degraded andx̄0'0.

In the general case, when both a fieldHrf(t) and a fieldH0 which is parallel to
Hrf(t) are imposed, the magnetic field at a nucleus can be written in the form

h~ t !5h0f ~ t !, f ~ t !5 f ~ t1T!, f ~ t !5H 11, 2T1,t,0,

21, 0,t,T2 ,
~1!

whereT5T11T2. The asymmetry of the reversals is described by the parameter

R5
T12T2

T11T2
, ~2!

which assumes values in the interval 0<R<1. The Floquet wave function of a nucleu
in the fieldh(t) has the form

C I kMk
N ~ t !5uI kMk&F I kMk ;n

N ~ t !e2 iE Mk ;n
N t/\, ~3!

whereuI kMk& is the stationary function of a nucleus in statek (k5g for the ground state
and k5e for the excited state! with spin I k and the projectionMk of the spin on the
direction h0; FN(t)5FN(t1T) is a periodic function of time.8 The complete set of
quasi-energies is determined by the expression

E Mk ;n
N 5Ek

N2gkMk^h~ t !&1n\V, ~4!

whereEg
N50 andEe

N5E08 is the energy of the unsplit resonance level,gk is the gyro-
magnetic ratio of the nucleus in thekth state, and̂h(t)& is the time-averaged fieldh(t)
and is given by

^h~ t !&5h0R. ~5!

As the spinIk of the nucleus follows the reversals of the fieldh(t), its direction of
precession periodically changes. The average frequency of Larmor precession arou
field h(t) can be introduced as follows:
62 62JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Dzyublik et al.
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^VL
k&5 lim

t→`

wk

t
, ~6!

wherewk is the angle of rotation of the nuclear spin in thekth state over the timet.
WhenRÞ0, the preferred direction of precession around the field is1h0 and the average
Larmor frequency equals the conventional precession frequency

^VL
k&5gk^h~ t !& ~7!

in a constant magnetic fieldh0R. Such averaged rotation of the spin with Larmor fr
quency^VL

k& results in a splitting in the quasilevels~4! that depends on the magnitude
the time-averaged field̂h(t)&.

If it is assumed, as a simplification, that there is no quadrupole interaction, the
absorption cross section averaged over the energy distribution of the incidentg-rays is
given by the equation8

sa~s!5
s0G2

2
e22We22Wa (

n52`

`

(
Me ,Mg

Jeg~q!uaeg~n!u2

~s2D2\aegR2n\V!21G2
, ~8!

whereD5E082E0 determines the isomeric shift,s0 is the cross section at resonanc
e22W are the Debye–Waller factors for the source (e) and absorber (a), G is the width
of the resonance level,s5(v/c)E0, v is the velocity of the source relative to the a
sorber, the functionsJeg(q) determine the relative intensities of the linesMg→Me ,
which depend on the angleq between the wave vectork of the incidentg-rays andh0

~see, for example, Ref. 8!.

Moreover, we have employed the notation

\aeg5~ggMg2geMe!h0 , xeg5
aegT

2
,

uaeg~n!u5
2xeg

@~12R!xeg2np#@~11R!xeg1np#
sinH 11R

2
@~12R!xeg2np#J . ~9!

We can see from Eqs.~8! that if RÞ0, each absorption line splits into a Zeem
sextet corresponding to interaction with a constant magnetic fieldh0R. This equation
describes exchange of rf photons between a nucleus and a classical rf fieldh(t). To study
this process in a pure experiment without forced oscillations, we employed a thin ab
ing permalloy~58% Fe-42% Ni! film with thicknessD57 mm. The Mössbauer spec
trometer operated in a regime of constant acceleration with good linearity of the s
motion. The sample was placed inside an inductance coil of a resonance loop
high-power rf generator, generating the rf magnetic fieldHrf(t) in the plane of the ab-
sorbing film. Moreover, a Helmholtz coil was used to obtain a constant magnetic fielH0

parallel toHrf(t). In all measurements the amplitude of the ac fieldHrf(t) was equal to 25
G. The wave vectork was always perpendicular to the surface of the film.

The experimental results are displayed in Figs. 1 and 2~dots!. They are presented in
relative units withN(`)5100%, corresponding to the intensity of the transmitted rad
tion far from resonance. The solid lines in the figures represent our numerical ca
63 63JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Dzyublik et al.
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tions, in which Eq.~8! was used. The results of measurements performed withH050 at
different frequenciesn5V/2p are presented in Fig. 1. We see here a rapid dropoff of
intensity of the satellites with increasing satellite numbern. The more extended distribu
tion of the satellite intensities that was observed earlier~see, for example, Refs. 1 –4! can
be attributed to magnetostrictional oscillations. Here the standard rf collapse in
isolated line is also observed at high frequencies.

Figure 2 displays the results of measurements performed with a constant fieH0

Þ0, where the frequencyn of the ac fieldHrf(t) is fixed at 38.8 MHz. The data describe
by the curvea were obtained withH050; b — 7.5 G; c — 12 G; d — 16 G. The
corresponding values of the adjustable parameterR are 0, 0.04, 0.1, and 0.13. Moreove
G50.5 mm/s.

So, our data are described well by a simple model of step-wise field reversals
observed splitting of the satellites confirms the reality of the nuclear quasi-energie~4!
and the cluster structure of soft ferromagnets. Earlier, Kopcewiczet al.12 observed a

FIG. 1. Mössbauer spectra of nonvibrating permalloy film at different frequencies of the rf field.
64 64JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Dzyublik et al.
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splitting of only the collapsed isolated line by superposing an additional constant
netic field. They interpreted this effect as a destruction of the collapse due an incre
the anisotropy field. However, our observations attest to the fact that this splittin
caused by the asymmetry of the magnetic-field reversals. At high frequencies a n
feels only the time-averaged field^h(t)&, which does not vanish ifRÞ0. For this reason,
at high frequencies andRÞ0, the spectrum collapses into a Zeeman sextet correspon
to the constant field̂h(t)&.

a!e-mail: dzyublik@kinr.kiev.ua
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FIG. 2. Mössbauer spectra for different values of the additional constant magnetic field and fixed freq
38.8 MHz of the rf magnetic field.
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Effect of the coherence of free electron–hole pairs on
excitonic absorption in GaAs/AlGaAs superlattices

K. L. Litvinenkoa) and V. G. Lysenko
Institute of Problems of the Technology of Microelectronics and Ultrapure, Materials,
Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia

J. M. Hvam
Mikroelektronik Centrel, DTU, DK-2800 Lyngby, Denmark

~Submitted 4 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 62–67~10 January 1998!

The effect of photoexcited free carriers on the absorption spectra dy-
namics of GaAs/AlxGa12xAs superlattices is investigated experimen-
tally by the pump–probe method. A sharp change in the shift of the
excitonic resonance energy from the low- to the high-energy direction
is found to occur at the moment that the electromagnetic radiation of
the pump and probe beams overlap in the case of band–band excitation.
This phenomenon is explained in a model of scattering of high-energy
electron–hole pairs. The dephasing time of free high-energy particles is
experimentally estimated to be several tens of femtoseconds. ©1998
American Institute of Physics.@S0021-3640~98!01201-8#

PACS numbers: 71.35.Cc, 71.35.Ee, 42.50.Hz, 78.66.Fd

One of the phenomena arising when coherent polarization interacts with an ex
laser radiation is the optical Stark effect. The optical Stark effect in semiconducto
studied by the method of pumping and probing with subpicosecond laser pulses. Th
the situation when the spectral position of the pump beam is far below1,2 or above3

excitonic resonance has been well studied experimentally and theoretically.

The study of the interaction of excited states with coherent laser radiation in the
of resonant excitation is only now beginning. For this case it is still impossible to s
the complete semiconductor Bloch equation.4–6 It has been shown in the theoretic
works1,7 that in the complete absence of free electron–hole pairs Rabi oscillations o
density of excitonic states should be observed in the case of resonant excitation. To
this phenomenon experimentally the duration of the laser pulses must be much s
than the phase relaxation time of the excited states. But, quite short laser pulses
large spectral width, which makes selective excitation of only excitonic states wit
excitation of the electron–hole plasma impossible. In the present investigation, d
the lack of the corresponding theoretical models we considered the problem of stu
experimentally the effect of free electron–hole pairs on the coherent interaction of
nant laser radiation with excitonic states.

In the experimental part of this work we employed a multilayered 20-period q
tum well ~MQW! with 80 Å wide GaAs layers and 20 Å wide AlGaAs layers. Pho
excitation was performed with 120 fs laser pulses whose spectral position was 1–2
67 670021-3640/98/010067-06$15.00 © 1998 American Institute of Physics
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below ~we shall call excitation with such pulses resonant excitation! and 10 meV above
~nonresonant excitation! the excitonic resonance.

The changes occurring in the shapes of the heavy-exciton absorption spect
different delays between the pump and probe beams and for two excitation conditio
presented in Fig. 1. The shift in the energy and the decrease in the peak absorpt
several times smaller for resonant excitation than for nonresonant excitation. Fo
reason, in order to work with quantities of the same order of magnitude we chos
pump beam intensity to be lower for nonresonant excitation. Thus, the photoex
quasiparticle density was 1.431011 cm22 for the spectra displayed in Fig. 1a an
4.431010 cm22 for Fig. 1b. This corresponds to a pump pulse area of approximatelyp
and 0.6p, respectively. The change in the position of peak excitonic absorption on
energy scale is shown in the insets in Figs. 1a and 1b. A blue shift of the excitonic
is observed in the case of resonant excitation. Peak excitonic absorption in the c
nonresonant excitation shifts at first in the red direction and then rapidly in the
direction.

The pronounced absorption determined by the continuous heavy-exciton stat
abled us to separate the effects due to a change in the band gap and binding energ
position of the heavy-exciton ground state on the energy scale. For this, we employ
generalized Elliott formula.8 The results of an analysis of the experimental absorp
spectra are displayed in Figs. 2 and 3. It was found that for our experimental cond
virtually no change in the oscillator strength is observed and that the decrease in a
tion is caused primarily by broadening of the excitonic resonance. As shown in R
the broadening is directly proportional to the quasiparticle density, so that the chan
the density of photoexcited states can be determined unequivocally from the cha
the broadening. Figure 2 shows the behavior of the broadening of the excitonic line
two conditions of excitation.

In the case of resonant excitation by 1p laser pulses one Rabi oscillation of th
density of excitonic states should be observed.7 For resonant excitation we indeed d

FIG. 1. Change in the shape of the heavy-exciton absorption spectrum for two excitation condition
different delay timest. The case of resonant excitation is presented in Fig. 1a:t521 ps~—!, 2300 fs~ . . . .!,
0 ~-..-!, 100 fs~ . . . . . . .!, and 1 ps~- - -!. The case of nonresonant excitation is presented in Fig. 1b:t52425
fs ~—!, 285 fs ~-.-.!, 250 fs ~ . . . .!, 0 ~-..-!, 70 fs ~- - -!, and 475 fs~ . . . . .!. Insets: Change in the energ
position of the peak of the heavy-exciton absorption line for two conditions of excitation.
68 68JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Litvinenko et al.
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tected an increase in broadening and hence in the density of interacting particles
moment when the pump and probe beams overlapped~see Fig. 2!. After passage of the
laser pump pulse, a nonzero density of excited states remains in the sample. This
to the presence of scattering processes,1 the effect of which is that the density of photo
excited quasiparticles now consists of a superposition of virtual and real excited s
the contribution of the real particles increasing monotonically and is proportional to
time integral of the intensity of the laser radiation which has passed through the sa
This monotonic increase is shown in Fig. 2 by the dotted line. The dashed line i
same figure takes account of the effect of both types of particles on the width o
excitonic absorption line and describes the experimental results quite well.

The behavior of the broadening in the case of nonresonant excitation is of the
character. This indicates that the density of the particles that participate in the inter

FIG. 2. BroadeningG of the excitonic absorption line versus the delay time for two excitation conditio
Circles — resonant excitation. Triangles — nonresonant excitation. See text for explanations.

FIG. 3. Change in the band gapEg and binding energyEb of a heavy exciton versus the delay time for tw
excitation conditions. Circles — resonant excitation. Triangles — nonresonant excitation. The lines are
as an aid in following the change in the parameters shown.
69 69JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Litvinenko et al.
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is also a superposition of virtual and real states, a substantial fraction of which are
free electron–hole pairs. The presence of free excited states in the system expla
comparatively large difference of the amplitude of the change in the broadening o
excitation absorption line as compared with the case of resonant excitation, sinc
action of free electron–hole pairs on the width of the excitonic line is at least an ord
magnitude more effective than in the case of exciton–exciton interaction.9 In the case of
resonant excitation, on account of the quite large spectral width of the exciting
radiation in the sample, free electron–hole pairs are nonetheless created and th
impossible to determine unequivocally what causes the increase in the broadening
excitonic line in this case — Rabi oscillations of the excitonic density or free carrier
further increase of the density of the exciting laser radiation, which should lead t
increase in the number of Rabi oscillations,7 results in a substantial increase in th
saturation of excitonic absorption and can destroy the sample. Thus, we were no
unequivocally to detect Rabi oscillations by the pump–probe method in the superl
under study.

However, we were able to detect the unique behavior of the resonance posit
the excitonic absorption line in the case of nonresonant excitation. The familiar blue
is observed in the case of resonant excitation~see inset in Fig. 1a!. Its behavior is
determined by two well-known effects: renormalization of the band gap10 and change in
the binding energy.11 Both effects are presented in Fig. 3. In the case of nonreso
excitation, a red shift of the excitonic line is observed for negative time delayst. As t
→0 this shift decreases rapidly and changes sign whent becomes positive. This chang
occurs during the temporal overlap of the pump and probe laser beams. At first gla
appears that the oscillations of the energy position of the excitonic line will be cause
the direct effect of Rabi oscillations of the density of excited states. However, as fo
from Ref. 7, the 0.6p pump pulse does not give rise to density oscillations and there
this phenomenon must be caused by something else.

Let us consider first the behavior of the binding energy of the excitonic ground
~see Fig. 3!. As the modulus of the negative time delay between the pump and p
beams decreases, i.e., as the influence of the density of photoexcited particles inc
the binding energy decreases rapidly. This decrease is caused by the effect of the
of the phase space~FPS!, as predicted in the theoretical work Ref. 11. Since the part
density does not change abruptly when the sign of the shift in the position of the exc
line changes rapidly~see Fig. 2!, the jump in the binding energy should be due
scattering of the particles participating in the interaction. Indeed, after scattering th
electrons and holes will occupy different positions in wave-vector space and wi
longer participate in the FPS effect, which ultimately can result in an increase o
binding energy on account of the correlation and exchange interactions. The tim
tween the maximum shifts of the energy position of the excitonic absorption line in
red and blue directions changes from several tens to hundreds of femtosecond
depends on the density of the exciting radiation.

When the excitonic absorption spectrum was approximated by a generalized E
formula,8 the broadening of the continuous states varied in the range from 2.1 to
meV. This corresponds to a change in the phase relaxation time from 600 to 350 fs.
values agree well with our results: In the one-beam experiment~in preparation for pub-
70 70JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Litvinenko et al.
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lication! and in the four-wave mixing experiment12 ~see also Ref. 13!, however, they are
much greater than the time interval between the maximum shifts of the excitonic
nance line in the red and blue directions. Indeed, the dephasing time of free excited
decreases substantially with increasing energy of these states.12 This change is so large
that free particles from only a narrow region~of the order of 2 meV wide! near the band
gap participate in the destructive interference effect.12 Higher-lying states lose coherenc
much earlier. Thus, in the case studied the behavior of the excitonic resonance is a
decisively by the loss of coherence between the exciting laser radiation and the
energy electron–hole pairs. Figure 4 shows the particle-density dependence of th
T2 required for a sharp change to occur in the binding energy. This time is dir
proportional to the phase relaxation time. The simplest model describing this depen
is the Drude model of an electron gas, which neglects the Coulomb interaction. Ac
ing to this model, the dephasing time is inversely proportional to the density of inte
ing particles and can be represented in the form

2\/T2~n!52\/T2~0!1geffEB
eff~aB

eff!2nx , ~1!

where\ is Planck’s constant,EB
eff is the effective binding energy (EB

eff55.6 meV!, aB
eff is

the effective Bohr radius (aB
eff5100 Å14!, and nx is the density of excited states. Th

theoretical dependence, shown by the solid line in Fig. 4, was obtained for the follo
values of the parameters:T2(0)5102 fs andgeh

eff58.2. The value that we obtained forT2

equals in order of magnitude to the phase relaxation time of free electron–hole
which varies from 30 to 160 fs and depends on the parameters of the specific qu
well.15

Let us now return to the change in the band gapEg ~see Fig. 3!. As the overlapping
between the pump and probe beams increases, the quasiparticles created start to
increasingly larger effect on the behavior ofEg . The decrease in the band gap in bo
quasi-two- and three-dimensional media with increasing density of excited state
well-known factor, which has been confirmed experimentally16–18 and theoretically.19,20

However, the answer to the question of why in the case of nonresonant excitatio
band gap increases when the high-energy free carriers lose coherence remains o
answer this question it is necessary to solve the complete semiconductor

FIG. 4. Temporal distance between the maximum decrease and increase of the binding energy of an e
state in the case of nonresonant excitation versus the density of electron–hole pairs.
71 71JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Litvinenko et al.
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equation.4–6 We can say only that the unique band-gap behavior that we detected i
to the interaction: coherent excitons, coherent and incoherent free electron–hole pa
well as the pump and probe laser beams.

In summary, we have found experimentally that in the case of nonresonant e
tion the position of the excitonic line on the energy scale shifts in the red direction
negativet and the blue direction for positivet. This behavior of the excitonic absorptio
line is explained by dephasing of the free electron–hole pairs created. The deph
time of high-energy free carriers, equal in order of magnitude to several tens of fe
seconds, was estimated from the distance between the maximum shifts of the e
position of the excitonic resonance.

This work was supported by Russian Fund for Fundamental Research Grant 9
16833 and INTAS-94-0324 and INTAS-RFBR-95-0576.
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On the possibility of quantization of the conductance in
the microwave-induced resistive state of layered
superconductors

Yu. I. Latyshev
Institute of Radio-Engineering and Electronics, Russian Academy of Sciences, 10390
Moscow, Russia

~Submitted 5 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 68–71~10 January 1998!

It was observed that a microwave field induces constant differential
resistance steps, close in magnitude to the reciprocal of the conductance
quantumh/2e2, in the current–voltage characteristics~IVCs! of layered
structures with an intrinsic Josephson effect under conditions of trans-
port in a direction perpendicular to the layers. A qualitative explanation
of this result is proposed. ©1998 American Institute of Physics.
@S0021-3640~98!01301-2#

PACS numbers: 74.80.Dm, 74.25.Nf, 74.50.1r

It is well known that in layered superconductors it is possible to observe an intr
Josephson effect on the natural layered crystalline structure of the material~for a review,
see, for example, Ref. 1!. Strictly speaking, to observe both Josephson effects~stationary
and nonstationary! the size of the junction in the plane of the layers must be less than
characteristic Josephson lengthlJ5s(lc /lab), wheres is the distance between the e
ementary superconducting layers andlc and lab are anisotropic London penetratio
depths. In typical layered high-Tc materials of the BSCCO type one haslJ;122 mm.
Recently, substantial efforts have been made to reduce the lateral dimensions o
structures. It has been shown that a stationary intrinsic Josephson effect first appe
junctions with dimensions,20 mm.2 Attempts to observe a nonstationary intrinsic J
sephson effect on samples with dimensions,10 mm nonetheless have bee
unsuccessful.3,4 In many cases resistive features, whose position on the voltage
depended on the microwave power, were observed, instead of the expected st
constant voltage~Shapiro steps!, on the IVCs of junctions in a microwave field. In th
present letter reports the observation of microwave-induced steps of constant diffe
resistanceRd , close to the reciprocal of the conductance quantum,Rd'h/2e2, on the
IVCs.

The experiment was performed on overlap-type junctions, obtained by sele
ion-plasma etching of high-quality single-crystalline BSCCO 2212 whisker crystals.2 The
main results will be presented for a junction with the dimensio
La3Lb3Lc543830.12mm. The junction was placed at an antinode of theE field in
a 3-cm waveguide. The IVCs were measured by a four-probe method. The measure
were performed mainly at liquid-helium temperatures. The critical current density a
the c axis was equal to 331022103 A/cm2 at 4.2 K, approximately three orders o
magnitude less than the density measured on the same whisker crystals along thea axis.
73 730021-3640/98/010073-05$15.00 © 1998 American Institute of Physics



y a

,

i-

ing

a 11.5

zero

e

Figure 1 shows a family of IVCs for a sample in a resistive state induced b
microwave field with microwave powerW.200 mW incident on the sample. In the
absence of the microwave radiation the critical currentI c of the sample equals'100mA.
The critical current was suppressed to zero atW'20 mW. As one can see from Fig. 1
the effect of the microwave field is to produce resistive features~steps! in the IVCs. We
note the characteristics of the observed features: 1! The steps correspond to approx
mately the same slope~differential resistance! of magnitude 13–14 kV, irrespective of
the radiation power~Fig. 2!; 2! the steps appear with approximately constant spac

FIG. 1. Constant differential resistance steps produced in the IVCs of BSCCO 2212 layered structure by
GHz microwave field. The curves correspond to following incident powers~from top to bottom!: 0.20, 0.40,
0.63, 0.89, 1.26, 1.48, 1.59, 1.78, 1.87, and 2.19 mW. The dimensions of the structure were 43830.12 mm
along thea, b, andc axes, respectively;T54.2 K. The curves are shifted along the current axis, so that the
of each curve in terms of current corresponds to the zero in terms of voltage.

FIG. 2. Differential resistance of the first (h) and second (3) steps as a function of microwave power. Th
solid curve corresponds to the quantityR5h/2e2.
74 74JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Yu. I. Latyshev



oni-

on a

can be

d in a
si-
an
om
tem,

now

e in
the

d by

wave
rged

, under

iently
d
ld
DV'10 mV on theV axis; 3! the current amplitude of the steps depends nonmonot
cally on W; and, 4! the steps occur in the range of currents'1 mA and in terms of the
current the first and second steps'0.5 mA.

The most noteworthy result is that the magnitude of the differential resistance
step is close to the reciprocal of the conductance quantum,h/2e2 ~Fig. 2a!.

The proposed interpretation is based on the fact that a layered superconductor
regarded as a system with a modulated potential along thec axis ~see Fig. 3!, for
example, because of the fact that the modulus of the order parameter is modulate
direction perpendicular to the layers.1 In this case the potential can treated in the qua
classical sense. Let a chargeq5ne be placed at a minimum of the potential, and let
external high-frequency fieldEv with amplitude large enough to transfer the charge fr
one potential well into another be applied. This will induce an ac current in the sys
but the dc current̂ I dc& averaged over one period obviously equals zero. Let us
imagine that a constant fieldE is applied in addition to an ac field~Fig. 3b!. Then it is
possible to have a situation in which during the first half period the charge will mov
a higher average field in the forward direction than in the backward direction and
charge can move forward by two (n) wells and backward by one (n2k) well ~Fig. 3b!,
i.e., during one period of the oscillations of the external field the charge is displace
one (k) well. In other words, a nonzero average~over one period! dc current associated
with these processes will appear

^I dc&5kne f. ~1!

This situation is known as ac–dc interference in systems with a charge-density
~CDW! in a model where the motion of the CDW is regarded as a motion of a cha
particle in a periodic potential~see, for example, Ref. 5!. At the same time charge
displacement can occur by means of subbarrier Josephson tunneling. In this case
the action of a voltageVdc ac currents, whose frequency is proportional toVdc , arise in
the system:

FIG. 3. Schematic diagram of the trajectory of a charge under the action of a microwave field with a suffic
high amplitude in a periodic potential over the first half period~solid curve! and over the second half perio
~dashed curve! in the presence of only a microwave field~a! and under the combined effect of a microwave fie
and a constant field~b!.
75 75JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Yu. I. Latyshev
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Vdc5pNhn/2e, ~2!

wherep is the number of the harmonic andN is the number of elementary junctions
the contact. In the case when both processes have the same frequency (f 5n) a resonance
observed in some region of frequency lock-ind f 5dn can be expected, whence

dV

dI
5a

h

2e2
, ~3!

wherea5pN/kn. Thus, the resonance steps are reminiscent of Shapiro steps, but w
finite slope determined by the quantityah/2e2.

The quantityh/2e2 equals'12.7 kV. The value'13.5 kV is observed experimen
tally ~Fig. 2!. In the present model this should correspond to the conditiona'1. An
estimate of the parametera for the experiment gives the following. For our samp
N'80, the position of the first current step corresponds to'0.5 mA, which gives for
f 511.5 GHz kn'300. The quantityp can be estimated from Eq.~2!, assuming the
position of the first step inV equalsDV'10 mV. This givesp54. Finally, we have
a5pN/kn'1, in good agreement with the model.

Estimates of the microwave fields at which steps first appear give an amplitude;20
mV for the microwave potential on an individual junction, which is comparable t
degree of modulation of the potentialV0 across the layers;D515–30 mV.

Two steps were clearly seen in the experiments. Their amplitudes in terms o
current depended nonmonotonically on the power of the radiation, and the peak a
tude of the first step approximately corresponded in terms of power to the appeara
a second step and the peak amplitude of the second step corresponded to vanishin
first step. The steps exhibit hysteresis as a function of the current. This behavior
many ways reminiscent of the behavior of the Shapiro steps in the underdamped re
In all probability, the second step corresponds to a resonance at the second ha
relative to the first step.

In summary, the proposed model describes the observed phenomenon qualita
It is still unclear how the system adjusts, preserving under resonance condition
parametera'1, and how this parameter will depend on the dimensions of the junc
the number of elementary layers, and other characteristics of the system.

This work was reported in part at the 1st International Conference on the Int
Josephson Effect and Terahertz Plasma Oscillations, Sendai, 1997. I wish to tha
participants of the conference S. N. Artemenko, I. Bozovich, N. Ong, P. Mu¨ller, and A.
Ustinov as well as P. Monceau and O. Buisson for a discussion of the results. This
was supported by the Russian State Program on High-Tc Superconductivity~Project
95028!. I am grateful to the Center for Low-Temperature Research~CRTBT–CNRS!,
Grenoble, where part of this work was performed.
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Spectrum of flexural oscillations of a domain wall with
drifting Bloch lines

A. B. Shumm, L. M. Dedukh,a) and Yu. P. Kabanov
Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow District, Russia

~Submitted 5 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 72–75~10 January 1998!

It is observed that in single-crystalline yttrium iron garnet the ampli-
tude of characteristic flexural oscillations of a 180° domain wall con-
taining Bloch lines increases sharply when drift of the Bloch lines is
excited. The resonance frequencies of these oscillations are virtually
identical to those of flexural oscillations of a monopolar wall. It is
shown experimentally that this phenomenon is most likely caused by a
magnetic aftereffect. ©1998 American Institute of Physics.
@S0021-3640~98!01401-7#

PACS numbers: 75.60.Ch, 75.50.Cc

It is now well known that the dynamic properties of domain walls~DWs! in ferro-
magnetic crystals depend strongly on the state of the DW structure. For examp
expression for DW mobility in a ferromagnet was derived on the basis of a specific
distribution in the wall.1 The ‘‘low mobility’’ paradox, which subsequently existed for
long time, for DWs in single crystals of yttrium iron garnet~YIG!2,3 was explained by
taking account of Bloch lines in the DW structure.4 In addition, it was found that the
Bloch lines strongly decrease not only the DW mobility but also the amplitude of
characteristic flexural oscillations of a DW.5 The effect of the dynamic transformation o
DW structure on the DW velocity in uniaxial garnet films has also been well studied6 It
has been established that the initiation of dynamic conversion of DW structure as a
of the creation, motion, and vanishing of Bloch lines sharply decreases the DW ve
in these materials in an external magnetic field which exceeds some critical field. I
present letter we report the results of investigations in which the opposite effect
observed: It is shown experimentally that when drift of Bloch lines7 is excited in DWs in
YIG the influence of Bloch lines on the amplitude and frequency of the flexural osc
tions of DWs sharply diminishes.

The investigations were performed on single-crystalline YIG plates cut out in
form of a 3.230.730.03 mm rectangular prism extended along the@111# axis. The
sample contained one 180-degree DW, separating domains magnetized in the~112̄! plane
of the plate. The DW in the initial state contained vertical Bloch lines. When require
monopolar state of the DW was produced and maintained, by means of a constan
netic field Hz oriented perpendicular to the plane of the plate, in the course of
measurements of the spectra. The magnetic fields were produced with Helmholtz
with a radius of 6 mm. When the spectral curves were recorded, the amplitude o
current in the coil producing the excitation field was not stabilized and, for this rea
78 780021-3640/98/010078-05$15.00 © 1998 American Institute of Physics
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decreased slightly with frequency. The motion of the DW was detected on a SK
spectrum analyzer with the aid of a compensated detection coil wound directly o
sample.

Curve 1 in Fig. 1 characterizes the excitation spectrum of a DW in a monop
state. The spectrum was recorded in a relatively weak exciting fieldHx acting along the
magnetization in the domains. The curve shows resonance peaks corresponding
appearance in the DW of flexural standing waves with wave vectork perpendicular to the
magnetization in the domains.4 Resonance flexural oscillations of the DW are not o
served in curve2 ~in Fig. 1!, which was recorded in the same excitation field for a D
containing Bloch lines. Under these conditions, as direct observations of DWs sho
the Bloch lines fluctuated near the positions of equilibrium. However, as the amplitu
the exciting field increased up to a value producing drift of the Bloch lines7 resonance
peaks associated with flexural oscillations of the DW appeared in the spectrum o
received signal~curve 3 in Fig. 1!. One can see that the resonance frequencies of
flexural oscillations of the DW in both states are practically identical. However, the w
of the peaks in the spectrum of the demagnetized DW is much larger than in the c
a monopolar DW. This can be due to the additional energy losses occurring with str
excitation of the spin system.

Curve1 in Fig. 2 shows an example of a spectrum of oscillations of a demagne
DW. The spectrum was recorded in an exciting field whose amplitude was close t
critical value. Only two resonance peaks due to flexural oscillations of the DW are cl
shown in it. Direct observation showed that under these conditions the drift of Bloch
is irregular and it is stable only at frequencies at which the high-amplitude reson
peaks are observed. In repeated measurements the spectra had a different for
resonance peaks could arise and vanish, but they arose precisely at the resona
quencies at which drift of the Bloch lines occurred. When an additional constant fielHy

was applied perpendicular to the plane of the DW, influencing the drifting of the lin8

the behavior of the Bloch lines and the form of the spectrum changed as a function
magnitude and polarity ofHy . For one polarity of this field, increasing the field stabiliz

FIG. 1. Curves of the amplitudeE of the induction signal as a function of the frequencyf of the exciting field
Hx . The curves were recorded for monopolar~1! and demagnetized~2,3! DWs. The amplitudeHx50.48 A/m
~1,2! and 2.38~3!, Hz52.07 kA/m ~1!.
79 79JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Shumm et al.
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the drift of the Bloch lines and simultaneously intensified the flexural oscillations of
DW ~curve2, Fig. 2!. Drift of the lines occurred at all resonance frequencies. When
polarity of the fieldHy was reversed and the field was subsequently increased, at fir
drift of the Bloch lines completely stopped and, at the same time, the flexural oscilla
of the wall vanished~curve3, Fig. 2!, after which both the drift of the Bloch lines and th
flexural oscillations of the DW reappeared~curve4, Fig. 2!. These data show that whe
drift of Bloch lines along the DW is initiated, the resonance flexural oscillations of
wall intensify. In addition, it follows from these measurements that an effective fieldHy0

of the order of 0.65 kA/m is present in the experimental sample; this field was obs
in YIG single crystals and in earlier experiments.8

Figure 3 shows single oscillograms of the magnetooptical signal, which wer
corded using a photomultiplier and a storage oscillograph in a local section of the D
the resonance~1! and intermediate~2! frequencies of the fieldHx . The wide and narrow
peaks in these oscillograms reflect the passage of subdomains, separated by Bloc
through the photometric measurement section.7,8 Comparing these oscillograms show
that the drift of the Bloch lines is more intense in the case of the resonance oscillat
the DW than at intermediate frequencies.

In summary, the results presented above show that the excitation of drift of B
lines results in an effective intensification of resonance oscillations of a DW as com
with DW oscillations under conditions when the Bloch lines fluctuate about the posi
of equilibrium. This behavior of a DW can be explained by taking into account

FIG. 2. E( f ) curves recorded with field amplitudeHx51.2 A/m. Curves2, 3, and 4 were recorded in the
presence of the additional fieldHy50.48 kA/m ~2!, 20.64 ~3!, and21.12 ~4!.

FIG. 3. Magnetooptical single oscillograms reflecting the successive passage of Bloch lines along
through the photometric measurement section withHx55.0 A/m, f 51.8 MHz ~1! and 1.1~2!.
80 80JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Shumm et al.
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magnetic aftereffect phenomenon, determined by the interaction of Bloch lines with
defects, whose state depends on the direction of the magnetization.9 According to the
theory of this phenomenon, both DWs9 and Bloch lines,10 interacting with point defects
produce a potential relief whose height is all the smaller the higher the amplitude of
oscillations and the velocity of their motion. Drifting Bloch lines do not have eno
time to produce a potential relief for their own motion, so that their effect on the mo
of DWs should diminish substantially. To check this conjecture, we performed an ex
ment in which in the course of recording the spectrum of oscillations of a wal
additional low-frequency fieldHz was applied to the crystal, giving rise to forced osc
lations of the lines along the wall. An example of such measurements is shown in F
Curve1 in Fig. 4 represents the spectrum of oscillations of a DW with Bloch lines.
spectrum was recorded with a higher sensitivity of the SK4-59 oscillograph than i
case of the curves presented above. In contrast to curve2 in Fig. 1, curve1 in Fig. 4
shows peaks with a complicated shape which are associated with the flexural oscill
of a demagnetized DW.5 Curve2 in Fig. 4 was recorded in the presence of an additio
field Hz . One can see that in the case when low-frequency oscillations of Bloch line
excited along the DW by a fieldHz , the characteristic oscillations of the wall intensi
and the resonance frequencies decrease. Such measurements showed that the c
istic oscillations of a DW are intensified all the more the higher the amplitude
frequency of the fieldHz and the lower the amplitude of the exciting fieldHx . In other
words, the effect of the fieldHz on the oscillations of a DW is strongest when the w
oscillates in the deepest potential relief, determined by the interaction of the wall
point defects. However, when the lines start to drift the intensification of flexural o
lations of the DW is an order of magnitude greater.

This work was supported by the Russian Fund for Fundamental Research,
97-02-16879.

a!e-mail: dedukh@issp.ac.ru
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FIG. 4. E( f ) curves recorded with a higher sensitivity of the SK4-59 oscillograph than in preceding cas
a demagnetized DW in a fieldHx . The amplitudeHx50.04 A/m. Curve2 was recorded in the presence of a
additional fieldHz with amplitude 120 A/m and frequency 100 kHz.
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Forward coherent inelastic Mo ¨ ssbauer scattering of
synchrotron radiation
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A theoretical analysis is presented of the possibilities of satisfying the
conditions of phase matching~PM! in the coherent inelastic Mo¨ssbauer
scattering~CIMS, which is scattering accompanied by the creation or
annihilation of phonons! of synchrotron radiation~SR! and the condi-
tions under which the maximum intensity of CIMS obtains are studied.
Of the two types of CIMS — 1! participation of phonons in a scattering
event only in the stage of absorption or only during re-emission of a
photon, and 2! participation of phonons in both stages of scattering —
PM is possible only in the first. The process in which phonons partici-
pate only at the photon absorption stage leads to efficient conversion of
the SR from a wide spectral line into a narrow line, determined by the
width of the Mössbauer transition. Photons of this type of CIMS effec-
tively possess a higher penetrating power than the standard Mo¨ssbauer
radiation, and their spectral distribution is shifted somewhat in the di-
rection of low frequencies. ©1998 American Institute of Physics.
@S0021-3640~98!00201-1#

PACS numbers: 76.80.1y, 41.60.Ap

Rapid progress in Mo¨ssbauer spectroscopy using synchrotron radiation1 ~SR! has led
to a new type of spectroscopy with a uniquely high energy resolution, limited only by
width of the Mössbauer line~for example, 1028 eV for the most popular Mo¨ssbauer
isotope F57). Recent experiments in this field have made it possible to measure dir
phonon spectra for condensed media, specifically, for crystalline materials2 and liquids3

and to measure inelastic scattering spectra of gases.4 Forward Mössbauer scattering of SR
is important in this field.5

The present letter is devoted to a detailed theoretical analysis of the CIMS of SR
it shows a number of specific properties of the forward CIMS that have not been p
ously investigated.6 Attention is focused mainly on investigating the possibilities
achieving phase matching~PM! in forward CIMS of SR and the relation between th
maximum achievable intensity of forward CIMS in samples of finite thickness and
degree of deviation from PM. Specifically, it is shown that on account of CIMS
maximum intensity of the resonant-energy fraction of the scattered SR obtains for s
thicknesses much greater than the absorption length of the Mo¨ssbauer photons. This i
explained by the ‘‘pumping’’ of nonresonant SR photons into the Mo¨ssbauer line. It is
shown that a shift~by an amount of the order of the width of the Mo¨ssbauer line! of the
spectral distribution of the resonant fraction of the CIMS in the direction of lower e
8 80021-3640/98/010008-07$15.00 © 1998 American Institute of Physics
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BASIC EQUATIONS

Let us consider CIMS processes occurring during the propagation of a SR pu
a sample containing nuclei of a Mo¨ssbauer isotope. Since the Mo¨ssbauer scattering oc
curs in two distinct stages — the absorption of ag ray by a nucleus and subseque
re-emission of theg ray, there exist three different possibilities for CIMS: 1! absorption
or creation of a phonon only at theg-ray absorption stage, 2! absorption or creation of a
phonon only at theg-ray re-emission stage, and 3! absorption or creation of a phonon
both theg-ray absorption are re-emission stages. Following the terminology of Ref. 6
shall call these possibilities CIMS1 — from a nonresonant component of SR in
resonant component, CIMS2 — from a resonant component of SR into a nonres
component, and CIMS3 — from a nonresonant component of SR into a nonres
component.

In a typical Mössbauer experiment with SR, the SR pulse duration~of the order of
10212 s! is much shorter than the duration of the Mo¨ssbauer scattering process~of the
order of 1025–1029 s!, so that the SR pulse can be assumed to be a delta functio
time, propagating in the sample with the group velocity of the SR pulse. For the CI
and CIMS3 processes the interaction of the SR with the Mo¨ssbauer nuclei in the sampl
can be regarded as a perturbation, and the electromagnetic field in the sample can
fore be represented as a sum of two componentsE5E01E1, whereE0 is the unperturbed
SR field andE1 is the perturbation due to the interaction of the SR with the Mo¨ssbauer
nuclei. The equation forE1 assumes the form

2¹3¹3E15c22~e01e1!]2E1 /]t21c22e1]2E0 /]t2, ~1!

wheree0 is the dielectric constant in the absence of nuclear interaction ande1 is the
correction to the dielectric constant due to the nuclear interaction. The explicit forme1

depends on the type of process, among the processes indicated above, and is det
by the corresponding Mo¨ssbauer scattering amplitude.

Since the SR pulse can be regarded as a delta function in time, the last term
right-hand side of Eq.~1! can be represented in the form (vs /c)2e1E0(vs ,z)d(z2vgt),
wherevs is the SR frequency,vg is the group velocity of the SR pulse, andz is the
coordinate in the direction of propagation of the pulse. Representing the solution o
~1! in the formE15ENexp@i(kz2vt)#, we obtain forEN the equation

EN@k22~e01e1!~v/c!2#5~vs /c!2xNE0d~v/vg2k!, ~2!

where xN is the analog of the familiar nonlinear susceptibility in nonlinear optic1

Equation~2! implies the condition

v/vg[kp5k, ~3!

which can be regarded as the phase matching~PM! condition.

COHERENCE LENGTH

Let us examine CIMS in a plane-parallel plate, assuming that the SR propaga
a direction perpendicular to the surface of the plate. According to Ref. 6, the soluti
9 9JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. A. Belyakov
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equation~2! can be represented as a sum of the particular solution of the inhomoge
equation and a solution of the homogeneous equation. The coefficient in front o
homogeneous solution in this superposition is determined from the boundary cond
which require that the CIMS intensity vanishes on the entrance surface. As a resu
have for the CIMS amplitude

E15~vs /c!2xNE0@k22~e01e1!~v/c!2#21$exp@ i ~kpz2vt !#2exp@ i ~kz2vt !#%,
~4!

wherekp5v/vg . The quantity in braces in Eq.~4! is proportional to sin@(k2kp)z/2#, so
that growth of the CIMS intensity in the sample is limited to the distan
l c5p(k2kp)21, called the coherence length. If the PM condition~3! is satisfied, then the
coherence length diverges and the CIMS amplitude at the exit surface increases
portion to the thickness of the plate. In a real situation, absorption is very strong
limits the unbounded growth of the CIMS intensity with sample thickness.

CONDITIONS OF MAXIMUM CIMS INTENSITY

Let us consider the case of CIMS1 — scattering from a nonresonant into a res
component. In this case the factore01e1 in Eqs. ~1! and ~2! assumes the form
e01e1512Deel1DeM , whereDeel andDeM are the electronic and Mo¨ssbauer contri-
butions to the dielectric constant. The quantityDeM deriving from the Mo¨ssbauer inter-
action depends in a resonance manner on the frequency, and its real part changes
the resonance frequency of the Mo¨ssbauer transition, thereby opening up the possib
for satisfying the PM condition~3!. To obtain a quantitative description of the corr
sponding possibility, we employ expressions forDeel andDeM . The expression for the
electronic contribution is well known:

Deel5~vp /v!2, ~5!

wherevp is the plasma frequency for the sample. The explicit form ofDeM depends on
the characteristics of the Mo¨ssbauer transition~see, for example, Refs. 1 and 6! and will
be presented below in the form

DeM52 f G iN~ES2ER1 iG/2!21, ~6!

where f is the Lamb–Mo¨ssbauer factor,G i andG are the natural and total widths of th
Mössbauer transition,N depends on the characteristics of the Mo¨ssbauer transition,1 and
ES andER are the SR and resonance energy, respectively. Now it is easy to findkp and
k for all the specific cases listed above. For example, for the case of CIMS1, scat
from a nonresonant into a resonant component, one has

kp5~v/c!~eel!
21/25~v/c!~11Deel/2!, k5~v/c!~12Deel/21DeM/2!, ~7!

and the PM condition~3! can be represented in the form

Re~Deel1DeM/2!50. ~8!

It follows from the form ofDeM ~Ref. 1! that PM for case 1 can be achieved a
frequency close to and somewhat below the resonance frequency. If condition~8! holds,
an expression for the sample thickness corresponding to maximum intensity of the
nant CIMS component can be found from Eq.~4!:
10 10JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. A. Belyakov
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hm5~1/mMp!ln@~mMp1me!/me#, ~9!

whereme is the absorption coefficient for SR~without the nuclear interaction! andmMp

is the absorption coefficient for the Mo¨ssbauer radiation~without the interaction with
electrons! at a frequency satisfying PM.

It follows from Eq. ~9! that in a typical situation the sample thicknesshm corre-
sponding to the maximum of the resonant component of CIMS is greater than th
sorption length 1/mM ~wheremM is the value of the Mo¨ssbauer absorption coefficient
exact resonance!. For this reason, it follows from Eq.~9! that in case 1 the penetratin
power of the effectively resonant CIMS component is greater than that of the ord
Mössbauer radiation, and the maximum of the intensity of this component is shift
lower frequencies.

For case 3, PM requires thatDeel50, which cannot be satisfied exactly. For th
reason, there exist beats and limits on the intensity as a function of sample thicknes
if there is no absorption. Now the maximum intensity corresponds to the follow
thickness:

hm5~1/Dk!tan21~Dk/me!, ~10!

whereDk5(v/c)Re(Deel).

INTENSITY OF THE RESONANT COMPONENT OF CIMS

The expression for the absolute intensity of CIMS in a sample of finite thickness
be obtained from expression~4! by squaring its modulus and integrating over the S
frequencies. The corresponding range of integration around the Mo¨ssbauer resonanc
frequency is estimated as 2TD , where TD is the Debye temperature of the samp
However, it is difficult to perform such an integration. For this reason, we shall esti
the intensity of the resonant component of the CIMS under the simple assumptio
scattering occurs with the participation of phonons. We shall assume that the
sectionsph for such scattering does not depend on the phonon energy and is cons
an integration interval of 2TD around the resonance frequency. Then, we obtain for
cross section for scattering into the resonant component with phonon participation

sph5s0~G/2TD! f ~12 f !, ~11!

wheres0 is the maximum Mo¨ssbauer elastic scattering cross section. Since the typ
value of the ratioG/2TD is very small~of the order of 1026 for the case of Fe57), the
effect of this scattering channel on SR absorption in the sample is negligible.

On this basis, we obtain for the intensityI r of the resonant component of CIM
generated under the phase-matching conditions~8! the following equation describing th
variation of the intensity with sample thickness:

dIr~x!/dx5 f ~sp /s0!~mph!~a11!21I s~x!2~mMp1me!I r~x!, ~12!

wheresp is the Mössbauer absorption cross section at the phase-matching frequena
is the internal conversion coefficient,I s(x) is the SR intensity as a function of penetratio
depth in the sample, and (mph)

21 is the SR absorption length with respect to nucle
absorption with phonon participation.
11 11JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. A. Belyakov
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Since the CIMS intensity at the entrance surface of the sample equals zero,
into account relation~11! for the cross sections of the process with and without pho
participation, we obtain from Eq.~12! the following expression for the thickness depe
dence of the spectral intensity of the resonant component of the CIMS integrated ov
SR frequency:

I r~x! t5~sp /s0! f ~12 f !~a11!21I s~0!~12exp~2mMpx!!exp~2mex!, ~13!

whereI s(0) is the spectral density of the SR at the entrance surface of the sample

The maximum of expression~13! is reached at a depth determined by relation~9!.
For this thickness of the sample, the ratio of the number of photons of the res
component of CIMS in an energy interval of the order ofG to the number of photons in
the same energy interval in the initial SR beam is estimated as

Nr /NsM5 f ~12 f !~a11!21. ~14!

According to Eq.~14!, the maximum number of resonant phonons that can
obtained on account of the resonant component of CIMS is less than their number
initial SR beam. However, the ratio of their number to the number of resonant pho
that have penetrated through the sample can be much greater than 1:

Nr~x!/NM~x!5 f ~12 f !~a11!21~12exp~2mMpx!!exp~2mex1mMx!. ~15!

The ratio of their number to the number of resonantly elastically scattered photo
estimated as

Nr~x!/NMs~x!5~12 f ! f 21~12exp~2mMpx!!exp~mMx!/~12exp~2mMx!!, ~16!

where at thicknesses greater than (mM)21 relation~16! approaches (12 f ) f 21exp(mMx),
i.e., it becomes exponentially large.

COMPUTATIONAL RESULTS

In the present section the results of the general analysis are illustrated by ca
tions for specific values of the parameters of the problem. The parameters emplo
the calculations correspond approximately to the interaction of SR with a sample o
highly enriched with57Fe. The corresponding Mo¨ssbauer transition energy equals 14
keV.

The following values of the other parameters were used in the calculat
Re(Deel)51025, Im(Deel)5231027, and Max Re(DeM)510 Re(Deel).

As was mentioned above, for the case of CIMS1 the closeness to the PM cond
~3! and ~8! depends on the shift of the frequency relative to the Mo¨ssbauer resonance
Figure 1 displays curves of the amplitude of the resonant component of the CIMS v
the penetration depth of this component in the sample for several values of the dev
of the frequency from resonance.

Since the spectral distribution of the resonant component of CIMS changes a
component propagates in the sample, the spectral distributions of the resonant com
of the CIMS at the exit surface are presented in Fig. 2 for samples of different thick
12 12JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. A. Belyakov
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Figure 3 makes it possible to compare the ordinary decay of the intensity of M¨ss-
bauer radiation in the sample with the behavior of the amplitudes of different compo
of CIMS.

DISCUSSION OF THE RESULTS

As the results of our analysis show, forward CIMS exhibits many character
features, the most pronounced of which are an effective increase in the penetrating
of the resonant component of the CIMS and a shift of its spectral distribution to below
resonance frequency. The amplitude of forward CIMS for frequencies close to PM w
increase linearly with sample thickness if there were no nonresonant absorption.
ever, since nonresonant absorption is present, this linear growth is limited by the ele
absorption length 1/me . The physics of the increase in the penetrating power of
resonant component of CIMS is related with the pumping of the nonresonant comp
of the SR into the resonant component.

FIG. 1. Amplitude of the resonant component of CIMS~arbitrary units! versus the dimensionless samp
thicknesst5h(v/c)Re(Deel) for different deviations of the frequency from resonance: curve1 — Dv/G55;
curve2 — Dv/G5210; curve3 — Dv/G525 — a frequency satisfying the PM conditions.

FIG. 2. Spectral distribution~arbitrary units! of the intensity of the resonant component of CIMS vers
dimensionless sample thicknesst5h(v/c)Re(Deel): curve1 — t51; curve2 — t55; curve3 — t515; curve
4 — t525.
13 13JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. A. Belyakov
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The nonresonant component of CIMS undergoes beats as a function of s
thickness, and it reaches its maximum value when the thickness equals the corresp
coherence length. On the whole, however, the nonresonant components of CIM
smeared over an energy of the order of 2TD , and their spectral density is much lowe
than the corresponding spectral density in the initial SR beam.

There are several possibilities for observing experimentally the above-discu
properties of forward CIMS. An increase in the penetrating power of the resonant
ponent of the CIMS can be observed directly by observing forward CIMS for sam
whose thickness is greater than the Mo¨ssbauer absorption length 1/mM . The transforma-
tion of the spectral distribution of the resonant component of CIMS with sample th
ness can be observed by the traditional Mo¨ssbauer spectroscopy combined with t
time-delay technique. An obvious way of changing the effective sample thickness
change the angle of incidence of the beam.

This work was supported by Russian Fund for Fundamental Research Gran
96-02-18812 and a Grant from the Russian State Science Program ‘‘Fundamenta
trology in the Synchrotron Radiation Project.’’
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FIG. 3. Amplitude of the resonant component of CIMS~arbitrary units! ~curve1!, nonresonant component o
CIMS ~2!, and ordinary Mo¨ssbauer radiation incident on the sample~3! versus the dimensionless samp
thicknesst5h(v/c)Re(Deel) ~curves1 and3 pertain to the same frequencyDv/G525, which satisfies the
PM conditions!.
14 14JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 V. A. Belyakov
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Interaction of Anderson impurities with high orbital
angular momenta: non-RKKY behavior and instability of
Kondo lattice

A. S. Ioselevich
Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940 Mosc
Russia; Institut fu¨r Theoretische Physik, RWTH Aachen, D-52056 Aachen, Germany

~Submitted 10 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 76–81~10 January 1998!

The hybridization-induced interaction of Anderson impurities with or-
bital angular momentuml is revisited. At short distancesR,Rc

}( l 11)/kF the interaction has antiferromagnetic sign and decays as
(Rc /R)4l . At larger distancesR.Rc the RKKY-like oscillatory inter-
action sets in. Asl increases, the system will sooner or later enter the
‘‘short-distance’’ domain, where the intersite magnetic interaction
dominates over the screening processes. This means that, contrary to
previous expectations, the nonmagnetic state of the Anderson lattice is
unstable at l→`. © 1998 American Institute of Physics.
@S0021-3640~98!01501-1#

PACS numbers: 75.30.Mb

The steady interest of theorists in the Anderson lattice model1 is due to a nontrivial
nonmagnetic ground state~Kondo lattice!, which is expected to occur in this model und
certain conditions~see reviews2,3!. Initially such a nonmagnetic state was viewed as
simple collection of basically independent Kondo ions, but it was quickly understood
the situation is not that simple. At any reasonable concentration of magnetic ion
Kondo clouds strongly overlap, so that the nonmagnetic state~if any! could only be a
result of some sophisticated collective screening effect. A severe limitation on the
magnetic scenario4 is imposed by the conduction-electron-mediated magnetic interac
of Anderson ions,5–8 tending to form a magnetically ordered state. The magnetic in
action energyEmag is proportional to the fourth order of the hybridization matrix eleme
V, while the ‘‘Kondo energy’’EK , characteristic for screening processes, is expon
tially small in uVu22. This means that a controlled theoretical analysis of the nonmag
state can only make sense if there is an additional parameter in the model, which ca
to overcome the tendency to the magnetic order formation. It is widely believed now
the degree of ‘‘orbital’’ degeneracyN of the Anderson ion may be such a parameter
was first argued by Coleman9 and Read, Newns, and Doniach10 that the screening pro
cesses can dominate over the intersite interaction for the Anderson ions with highN@1.
The nonmagnetic state itself was extensively studied both for the so-calledSU(N)
Anderson lattice model11,2 with unspecified external origin for the degeneracy, and fo
more realistic model with genuine orbital degeneracy related to the orbital angula
mentuml of a magnetic ion.12,3 For the former model the energyEmag of the competing
magnetic state is easy to find, and the criterion of stability of the Kondo lattice ca
83 830021-3640/98/010083-07$15.00 © 1998 American Institute of Physics
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easily checked: it is indeed fulfilled at largeN. For the latter model only tentative
estimates ofEmag have been found~see Refs. 12,3,8!; they also seemed to favor
nonmagnetic state. In Refs. 12 and 8, however, only the angular dependence of the
elements was taken into account, while, as we will see below, the dependence onuku is of
crucial importance for high angular momental .

The goal of this paper is:~i! to study the dependence of the effective magne
interaction of Anderson ions on the distance between ions, and~ii ! to reconsider
the question of stability of the nonmagnetic state of the Anderson lattice at
degeneracyN.

A mechanism of indirect interaction of magnetic atoms, originating from the hyb
ization of localized and delocalized electrons was proposed in the pioneering pap5 by
Coqblin and Schrieffer~see also Ref. 6!. This interaction is presumably essential~i.e., it
can dominate over the conventional exchange-induced RKKY interaction13! in the reso-
nant case, when the localized levele0 is situated only slightly below the Fermi leveleF ,
which is supposedly the case for the metals with considerable valence fluctuations~e.g.,
cerium!. The original derivation5,6 of the interaction, based on the repeated application
the second order Schrieffer–Wolff transformation,14 was, however, incomplete. A
straightforward fourth-order Schrieffer–Wolff transformation~see Refs. 7,8!, gives rise
to, besides the RKKY-like~though highly anisotropic! Coqblin–Schrieffer interaction, an
additional important term which is reminiscent of ordinary superexchange.15 This term
alters the interaction quite dramatically, especially at short distances, where it dom
and changes the sign of the interaction to antiferromagnetic.

In this letter we restrict consideration to the case of one electron in the mag
shell ~e.g., onef electron for cerium ions! and consider only the lower spin–orbita
multiplet, characterized by the total angular momentumJ5 l 21/2 or l 11/2, the degen-
eracy of the localized state beingN52J11. We describe a system of two magnetic io
(a andb) by the Anderson HamiltonianH5H01Hhyb , where

H05(
ks

ekcks
† cks1e0 (

M ,i 5a,b
niM 1

U

2 (
i ,MÞM8

niM niM 8,

U is the energy of the Hubbard repulsion~we setU51` for simplicity!; niM 5 f iM
† f iM ,

f iM
† creates an electron withJz5M in the unclosed shell of thei th magnetic ion;cks

†

creates a conduction electron with momentumk and spin projections561/2. The
hybridization Hamiltonian is

Hhyb5 (
ikMs

eikRiVM~ks!cks
† f iM 1 h.c.

The initial HamiltonianH can be reduced to an effective interactionĤ of magnetic
moments, by means of a fourth-order Schrieffer–Wolff transformation~see Ref. 8!.
Consider degenerate ground states of the unperturbed HamiltonianH0, characterized by
quantum numbersn[$Ma ,Mb%. Then, specifying all possible intermediate statesu i &, we
obtain composite fourth-order matrix elements between statesun& and un8&:
84 84JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 A. S. Ioselevich
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^n8uHhybu i 3&^ i 3uHhybu i 2&^ i 2uHhybu i 1&^ i 1uHhybun&
~En2Ei 3

!~En2Ei 2
!~En2Ei 1

!

52 (
kk8ss8

F̂
u~ek2eF!

~ek2ek8!~ek2e0!2
, ~1!

F
MaMb

Ma8Mb8[cos$~k2k8!R%$VM
a8
~k8s8!VMa

* ~ks!VM
b8
~ks!VMb

* ~k8s8!1~a↔b!%.

Note that expression~1! comprises both usual RKKY-like indirect exchange proces
with electron–hole excitation in the intermediate state (k.kF , k8,kF), and the
superexchange-like processes with two-electron excitations in the intermediate
(k,k8.kF).

In order to proceed with the calculation of the matrix elementsĤ described by the
general formula~1!, we adopt the ‘‘free electron’’ model~see Ref. 3!, in which the
conduction electrons are described by plane waves, andek5k2/2m. Having in mind an
application to rare earths, we assume that the spatial size of the localized stater 0 is small
~see Ref. 16!, much less than bothR andkF

21 , so that only the contributions of leadin
order inkr0 should be kept. Then the matrix elements of the hybridization Hamilton
are

VM~ks!5CMs
lJ E d3rc l* ~r !YlM 2s* ~V r !V~r !eikr ,

CMs
lJ 5

1

A2
S 11

4~J2 l !sM

l 11/2 D 1/2

,

whereV(r ) is the hybridization potential, which is spherically symmetric at the relev
small distancesr;r 0, andc l(r ) is the radial part of the localized wave function. Pe
forming the angular integration, we get atkr0!1

VM~k,s!5CMs
lJ ~k/kF! lVkF

A4pYlM 2s* ~Vk!, ~2!

whereVkF
}(kFr 0) l is a constant. The factor (kr0) l , very important in the case of highl ,

arises due to tunneling under the centrifugal barrier. Choosing the quantization
parallel toR, we can now rewrite~1! in a form

Ĥ52
2

p
P̂I 0E

kF

`

gJMa
~kR!

~k/kF!2lk2dk

~k222me0!2

3PE
0

`

gJMb
~k8R!

~k8/kF!2lk82dk8

~k22k82!
1~a↔b!, ~3!

where I 05uVkF
u4(m/p)3, the symbolP means the principal value of the integral, an

P̂[dM
a8Mb

dM
b8Ma

is the ‘‘exchange operator.’’ The real function
85 85JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 A. S. Ioselevich
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gJM~x!5(
s

~CMs
lJ !2E dVuYlM 2s~V!u2cos~x cosu!,

depends only onJ and uM u, not on l , and not on the sign ofM . It is convenient to
representgJM(x) as the real part of a complex functiong̃JM(x) with appropriate analyti-
cal behavior

g̃JM~x!52
~J2uM u!!
~J1uM u!! E1

`

$~J1uM u!2uP
J2

1
2

uM u2
1
2
~ t !u21uP

J2
1
2

uM u1
1
2
~ t !u2dteit ~x1 i0!,

wherePn
m are associated Legendre polynomials. For the nondegenerate Anderson

(J51/2) one getsg̃ 1
2

1
2
(x)5eix/ ix. In general,g̃JM(x)5eixQJM(1/x), whereQJM are

polynomials of degree 2J. Their explicit form for not very highJ ~e.g., forJ55/2 in case
of cerium! can be easily found using a program of analytical calculations. The stud
properties ofg̃ for generalJ,M is a quite involved mathematical exercise; here we g
only a few asymptotic forms without derivation:

g̃JM~x!'
BJMeix

~ ix ! uM u11/2
, BJM5

~J1uM u!!

2uM u21/2~ uM u21/2!! ~J2uM u!!
, for x@J, ~4!

g̃JM~x!'J0@xA12~M /J!2#2 i
AJM

x2J
expS DJMx2

8J D , ~5!

for x!J, whereJ0 is a standard Bessel function, and

AJM5
~21!J1MM ~2J!! @~2J!!! #2

2J2~J2M !! ~J1M !!
, DJM5

J~J22!1M2

~J21!2
.

Comparison of the asymptotic forms~4! and ~5! shows that they match atx;J for all
values ofM andJ.

Since g̃JM(x) is an analytic function in the upper half plane, one can perform
integration overk8 in Eq. ~3! by the residue theorem; introducing the dimensionl
variablez5kR, we arrive at

Ĥ52
P̂I 0

~kFR!4l
ImE

kFR

` z4l 13dz

~z222me0R2!2
g̃JMa

~z! g̃JMb
~z!. ~6!

Let us start the discussion with the case of the nondegenerate Anderson m
l 50, J51/2, where the interaction is isotropic:Ĥ5(J(a)

•J(b))I (R). In the nonresonan
case ~when e0 is not especially close toeF) there is only one spatial scale, viz
Rc;p/kF , and the ‘‘exchange constant’’I (R) has the following asymptotic behavior fo
R!Rc :

I ~R!5
I 0

kFR H 1

A«
ln

11A«

12A«
1

2

12« J .0,
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where«5e0 /eF . This asymptotic behavior is dominated by the antiferromagnetic c
tribution of the superexchange processes. ForR@Rc we get I 5I 0(eF /D)2(kFR)23

3cos 2kFR, which coincides with the asymptotic behavior of the conventional RK
interaction.

In the resonant case, whenD[eF2e0!eF , the main contribution to the interactio
comes from a narrow strip of width,D above the Fermi surface. As a consequence
new spatial scaleRres5eF /kFD@Rc , and a new intermediate asymptotic for
I 5I 0(eF /D)(kFR)22sin 2kFR, valid in the rangeRc!r !Rres, arises. This asymptotic
form has a shifted phase of oscillations and a slower decay of the amplitude in com
son to the RKKY behavior.

Let us now discuss the general case:l .0, J.1/2. It can be shown that, at ‘‘short’
distanceskFR!J, the main contribution to~6! comes from the residues of the integran
so that

Ĥ5AJMa
AJMb

pI 0L P̂

~kFR!4l
expH me0R2

4J
~DJMa

1DJMb
!J , ~7!

whereL52mR2e0 for J5 l 21/2 andL5(DJMa
1DJMb

)/16J for J5 l 11/2. Note that
the interaction does not start to oscillate atR;p/kF , as in the conventional RKKY
interaction, but decreases monotonically, without changing its~antiferromagnetic! sign,
up to R;Rc;J/kF .

The physical interpretation of this result is as follows: The main contribution to
interaction comes from electrons which pass by the magnetic ions with impact param
ra;rb;R. On the other hand, these electrons should have angular momentuml , and
therefore their momentak;k* 5 l /R. The composite matrix elementĤ}uV(k* )u4

;( l /kFR)4l , which explains the principal features of~7!. Note that for short distances
whenk* @kF , the only processes in which both electrons involved may have such
momenta are the superexchange processes. Note also that the position of the Ferm
does not appear in expression~7!. For large distances (kFR@J), all factors in the inte-
grand of~6!, except the oscillating ones, can be replaced by their value atz5kFR. Then,
using ~4!, we get

Ĥ'2 P̂S eF

D D 2 I 0BJMa
BJMb

2~kFR! uMau1uMbu12
sinS 2kFR2

p

2
~ uMau1uMbu! D . ~8!

For uMau5uMbu51/2 it matches with the result of Ref. 6.

In the resonant situation we obtain, as in the nondegenerate case, an add
intermediate asymptotic form:Ĥ} Im$ g̃JMa

(kFR) g̃JMb
(kFR)%. In particular, at

Rc!R!Rres it leads to a phase shift ofp/2 and to an additional factor (kFR)D/eF in the
amplitude of oscillations, exactly as in the nondegenerate case.

At moderate distances the spatial form of interaction differs considerably from
RKKY form even in the nonresonant case, though in the resonant case the differen
of course, stronger. We have calculated the largest matrix element of intera
H1/2, 1/2

1/2, 1/2(x52kFR), numerically for two systems: the nondegenerate Anderson mo
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and f levels ~cerium!. The complete plots will be published elsewhere; here we o
mention that the resulting dependences approach the standard oneFRKKY(x)
5x23cosx2x24sinx only for x.15 ~for l 50) and forx.30 ~for l 53). In rare earths,
however, typically 2kFR'10 for nearest neighbors, and at these distances the sp
shape of the interaction is quite far from the RKKY form, even without resonance. T
neither the long-distance asymptotic form~8! nor the simple RKKY function may be
used for interpretation of experimental data on cerium compounds; thek—dependence of
matrix elements is essential for all practically important distances. Note, that
k-dependence arises here already in the leading order inkr0!1, contrary to the case o
the standard exchange-induced RKKY interaction, where thek-dependence of matrix
elements occurs only due to corrections of higher order inkr0 ~see Ref. 13!.

There is an important message concerning the stability of the nonmagnetic Ko
lattice state in the above results. SinceAJM;(4l /e)4l at largel ~and smallM ), we can
conclude from~7! that the energy~per site! in the magnetic state of a lattice of Anderso
impurities is

Emag}2uVkF
u4~Rc /a0!2N, Rc52N/ekF , ~9!

provided that the distance between nearest neighborsa0!Rc . The energy of the non-
magnetic~Kondo! state isEK}2eF exp(2D/NruVkF

u2), wherer is the density of states a
the Fermi surface.9 Which energy is lower at high degeneracyN[2l→`? To answer this
question one rescales the parametersVkF

andkFa0 so thatEK does not change withN,
and then looks to see whetherEmag/EK goes to zero or to infinity atN→`. It was
argued12,3 that in order to get a proper nonmagnetic state, the rescaling should be do
such a way that both the effective coupling constantNuVKF

u2/D and the number of
conduction electrons ‘‘per subband per site’’ (kFa0)3/N remain fixed. The latter mean
that Rc /a0 scales asN2/3 and, consequently, the conditiona0!Rc of the non-RKKY
behavior is fulfilled at largeN, so that one should indeed use Eq.~9! for Emag. Then one
obtainsEmag/EK}N4N/3→`, which means that the magnetic state, not the Kondo latt
is preferable at largeN, and the large-N Kondo-lattice scenario is inconsistent in a mod
in which the physical origin of the largeN is theorbital degeneracy.

The author is indebted to H. Capellmann for discussions.
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Does the phase transition exist in the one-component
plasma model?

S. M. Stishov
Institute of High Pressure Physics, 142092 Troitsk, Moscow Region, Russia

~Submitted 25 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 82–85~10 January 1997!

Explanations are given for why there is no real first-order phase tran-
sition in the one-component plasma~OCP! model. The fluid~liquid!
and crystalline states of the OCP observed in computer experiments are
not in equilibrium, on account of instability of the system. However,
specific features of the free energy suggest that some sort of a ‘‘vir-
tual’’ phase transition occurs in the model. Such a transition can be
turned real by choosing the right form of the background energy.
© 1998 American Institute of Physics.@S0021-3640~98!01601-6#

PACS numbers: 52.25.Kn

The purpose of this note is to clarify some subtle questions concerning the exis
and properties of the phase transition in the so called one-component plasma~OCP!
model. The OCP is a system of identical charged point particles, immersed in a h
geneous neutralizing background of opposite charge. The properties of the classica
can be described in terms of a single dimensionless parameterG5(Ze)2/r sT, whereZe
is the charge of a particle,r s is the radius of a sphere containing one particle, andT is the
temperature. In the quantum case one more parameter,r s or T, is needed to characteriz
the system.

The first indications of the existence of a crystalline phase in the quantum
model were obtained by Wigner in his classical paper devoted to correlation effects
electron gas.1 The terms ‘‘Wigner solid’’ and ‘‘Wigner crystallization’’ have becom
common in physics since that time. Later on, Brush, Sahlin, and Teller2 in their pioneer-
ing Monte Carlo simulation of the OCP discovered that the radial distribution func
g(r ) indicates the existence of crystalline structure in the classical OCP atG.120.
Brush, Sahlin, and Teller were probably the first to use the term ‘‘phase transition
discussing two states of the OCP: liquid and solid. Then Hansen3 and Pollock and
Hansen4 carried out an extensive study of the OCP using an improved Monte C
technique, and again they observed existence of liquid and solid states in the OCP
and announced that the liquid–solid transition in the OCP model occurre
G5155610. It should be emphasized here that by this time nobody doubted the
ence of the phase transition in the OCP, and most of the subsequent papers hav
devoted to determination of a more precise value ofGm , to quantum effects, etc. Curren
estimates ofGm are confined to the interval 172–178.5 Quantum Monte Carlo simulation
of the OCP should be mentioned here.6,7 In general their results are considered to ha
confirmed the expectation of so-called ‘‘cold’’ melting in quantum Coulomb system1,8

The result of the latest simulation data of this sort7 is shown in Fig. 1. It would seem tha
90 900021-3640/98/010090-05$15.00 © 1998 American Institute of Physics
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all the OCP calculation and simulation data that have been obtained create very re
grounds for discussing numerous problems of condensed matter physics connec
various ways with the existence of a solid and a liquid phase in the OCP. The state
plasma in the interior of white dwarfs is one of the most intriguing problems.8,9 But first
we should have better understanding of what actually occurs in the OCP at the c
valueGm . Let’s see how the numbers forGm are being obtained. Normally all calcula
tions in the OCP model are carried out in the canonical ensemble, and the natural
is the Helmholtz free energyF for various values ofG. The intersection of two branche
of the Helmholtz free energy is taken as the phase transition coordinateGm ~Fig. 2!.
Actually this procedure is incorrect: a phase transition occurs when the Gibbs free
gies of two phases are equal, and one has to use the double-tangent construction

FIG. 1. The ‘‘phase’’ diagram of the OCP after Jones and Ceperly.7 The conditionG5const corresponds to the
classical ‘‘transition.’’ The strong deviation of the ‘‘transition’’ curve from theG5const line at high density is
a result of quantum effects. It follows from the numerical data7 that lT /L'0.5 at the maximum of the curve
wherelT is the thermal de Broglie wavelength andL is the average interparticle distance.

FIG. 2. The Helmholtz free energyF divided byNkT as a function ofG23 (G23}V) for the OCP, as follows
from Monte Carlo calculations~H. E. DeWitt — private communication!. V is the specific volume. The plo
contains two systems of data which are almost on top of each other. The crosses and circles correspon
fluid phase and solid phase, respectively. The intersection point occurs atG'175 ~H. E. DeWitt — private
communication!.
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F –V plane or an equivalent to get a correct result~Fig. 3!. But usually it has been said
that the volume change at the transition is too small to distinguish between the
procedures mentioned. Moreover, the subsequent claim that volume change at the
solid transition in the OCP always equals zero eliminated any potential inquiry.10

Meanwhile, the fact that the double-tangent construction is wrong in principle in
case of the OCP was missed by a whole generation of researchers in the field. Fig
where the ‘‘impossible’’ double-tangent construction is depicted, illustrates the situa
The point is that the OCP is thermodynamically unstable atG>3, and the pressure an
compressibility of the system are negative~Figs. 2 and 3!.11 Due to the negative value o
the compressibility the free energyF of the OCP is a convex function of the volumeV,
and hence a common tangent to two branches of the free energy does not make any
The conclusion is that there is not any kind of first-order phase transition in the sy
at least for the reason that one of the necessary conditions, which is equality of pr
in coexisting phases, cannot be satisfied. So a question arises what does take plac
intersection point, whereF liq5Fsol ~see Figs. 2 and 3!. A slope change is obvious at thi
point, and because (]F/]V)T52p, wherep is the pressure, the liquid and solid at th
intersection point have different pressures and cannot be in equilibrium. But fo
reason that will be explained below, the intersection point under discussion may be
the point of a ‘‘virtual’’ phase transition. Note that the density is by definition unchan
at the intersection point, and the long discussion of this problem in Ref. 10 is sens

From the equalityF liq5Fsol one can get an analog of the Clausius–Clapeyron eq
tion in the formdT/dV5DP/DS, which describes behavior of the intersection point
the T–V plane. This equation is applicable to the quantum case as well, where a
perature maximum is observed~Fig. 1!. As follows from the above equation, the tem
perature maximum is reached when the pressure difference in the liquid and
DP50, provided, of course, that one assumes that the corresponding entropy diffe
DS is finite at finite temperatures. This situation is illustrated by Fig. 4, where
temperature of the virtual phase transition as a function of pressure, which is of c
negative, is shown in qualitative way.

It is obvious that the OCP model is not quite physical, but as was empha
earlier, if one would think of the neutralizing background as a degenerate electro
and would add the corresponding Fermi energy to the total energy of the system, th
situation would change drastically.4 The pressure and the compressibility would beco

FIG. 3. An exaggerated version of the diagram of Fig. 2. It is seen that a correct double-tangent constru
impossible for convex potentials.
92 92JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 S. M. Stishov
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positive and the tangent construction would be feasible. That is why we may ca
transition in the OCP a virtual phase transition. Figure 5 illustrates the transformati
the compression isotherm of the OCP with the quantum effects taken into account,
the Fermi energy of the background is added. However one should keep in mind t
the given case the role of the electronic background is restricted to charge neutraliz
and Fig. 5b is drawn under the assumption that there is no other interaction betwe
point charges, which could be ions, and the electrons. We also assume that the qu
kinetic energy of the ions is not influenced by the nature of the background. As a r
the intersection points of the free energy curves do not change their volume coord
~Fig. 5!.

Both of the assumptions are valid in the high-density limit, which almost exa
corresponds to the interior of white dwarfs. However, the free energy difference o

FIG. 4. The ‘‘phase’’ diagram of the OCP in theP–T plane~compare with Fig. 1!.

FIG. 5. The double crossing of free energy curves in case of strong quantum effects in the OCP mode
standard OCP model~see Fig. 1!, b — OCP model with a realistic background; the double-tangent construct
reveal two phase transitions with volume changesV12V2 and V32V4. The second, high-density crossing
due to the fact that the quantum contribution turns out to be structure-sensitive and increases the energ
solid as compared to the liquid.
93 93JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 S. M. Stishov
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liquid and solid in the OCP is so small~see Fig. 2! that hardly any certain prediction
about quantum~cold! melting at very high positive pressure can be made on the bas
OCP calculations that do not take into account the realistic structure of the backgr
In this connection it is instructive to refer to Refs. 12 and 13, where proofs were fo
that in case of metallic hydrogen the zero-point energy favors highly symmetrical s
tures in a certain density range. In other words, one may expect that the quantum
not necessarily decrease the melting temperature of a Coulomb system on compr
and further and more-sophisticated studies are needed to reach a definite conclus

I acknowledge emphatically the discussions I had directly or indirectly with H
De Witt, David Kirzhnits, David Young, Francis Ree, Gilles Chabrier, Neil Ashcroft, a
Efim Katz. I am specially thankful to Hugh De Witt for sending me some results of
calculations.
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Comment on the paper: Does the Unruh effect exist?

A. A. Grib
A. A. Friedman Theoretical Physics Laboratory, 191023 St. Petersburg, Russia

~Submitted 25 November 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 86–86~10 January 1998!

@S0021-3640~98!01701-0#

PACS numbers: 03.70.1k, 04.60.2m

An article with the above title by V. A. Belinski�, B. M. Karnakov, V. D. Mur, and
N. B. Narozhny� was published in a recent issue of JETP Letters.1 The authors make the
following assertion in the article: ‘‘It is shown that quantization on the Fulling mo
presupposes that the field vanishes on the spatial boundaries of the Rindler manifo
this reason, Rindler space is physically unrelated with Minkowski space and the st
a Rindler observer cannot be described by the equilibrium density matrix with
Fulling-Unruh temperature. Therefore it is pointless to talk about the Unruh effe
Later in the text of the article~page 906! the authors talk about a boundary condition th
‘‘corresponds to the presence of an impenetrable wall.’’ I wish to make some
remarks concerning these assertions.

The boundary conditions in the Unruh effect and their difference from the boun
conditions in the Casimir effect or in the problem of a mirror, where an ‘‘impenetra
wall’’ is actually present, have been analyzed by N. Sh. Urusova.2 Urusova2 noted that in
the Unruh effect these boundary conditions are, as is well known,3,4 conditions on the
light cone~on the left half of the cone for the right-hand Rindler angle and vice versa
the left-hand angle!, which in turn is a characteristic surface for the wave equation
characteristic surface, by virtue of the definition of its properties~see, for example,
Ref. 5!, is not an ‘‘impenetrable wall,’’ and conditions on it do not violate the equati
I note, in passing, that the conditions~7! presented in Ref. 1 likewise are conditions o
the light cone and not on a ‘‘time-like surface,’’ since there are no other conditions in
problem of the Unruh effect. Thus in my opinion the Unruh effect does exist an
generally accepted interpretation is correct, and the criticism in Ref. 1 is based
misunderstanding.

1V. A. Belinski�, B. M. Karnakov, V. D. Mur, and N. B. Narozhny�, JETP Lett.65, 902 ~1997!.
2N. S. Urusova, ‘‘Boundary conditions and the Unruh effect,’’ Friedman Lab. Preprint FL040692~1992!.
3A. A. Grib, S. G. Mamaev, and A. M. Mostepanenko,Vacuum Quantum Effects in Strong Fields@in Russian#,
Énergoizdat, Moscow, 1988.

4V. N. Lukash and O. A. Kompaneets, Preprint IKI-570@in Russian# ~1981!.
5V. I. Smirnov,Higher Mathematics@in Russian#, Gostekhizdat, 1957, Vol. 4.

Translated by M. E. Alferieff
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The authors reply

V. A. Belinski , B. M. Karnakov, V. D. Mur, and N. B. Narozhny 

~Submitted 17 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 1, 87–88~10 January 1998!

@S0021-3640~98!01801-5#

PACS numbers: 03.70.1k, 04.60.2m

The boundary condition~7! of our paper1 is not a condition on the light cone. To se
this it is sufficient to glance at Eqs.~8! of that paper,1 which relate the Minkowski and
Rindler coordinates. It follows from these equations that the time axis in Rindler s
(r50, h finite and arbitrary! maps into a single point in Minkowski space, specifical
the origin of coordinatest5z50.

The pointr50 is a boundary point in Rindler space for any Cauchy surface,
which one can take, for example, the ‘‘space-like’’ surfaceh5 const. In Minkowski
space, to such a surface there corresponds a ray emanating from the origin of coor
and lying outside the light cone. Light-cone surfaces in Minkowski spacez22t250,
zÞ0, t.0 (,0) correspond in Rindler space to the pointsr50, h56`, and the
boundary conditions at these points are not important for our analysis.

As was shown in our paper,1 the condition~7! arising at the apex of the light con
ensures that the operatorG(r) in Eq. ~2! of Ref. 1 is self-adjoint~the case of a limit
point2!, as is required in order to solve the Cauchy problem by the Fourier method
therefore in quantizing the field~see Eq.~6! of Ref. 1!. We shall clarify this assertion on
a specific example.

The condition~7! for the quantized fieldfR(r,h) should be understood, strictl
speaking, as an assertion concerning the matrix elements of this operator, for ex
for the single-particle amplitudef f(r,h)5^0RufR(r,h)u f &, whereu f &5c1( f )u0R& and
c1( f )5*0

`dm f (m)cm
1 .

Let us examine the single-particle amplitude for which Ref f(r,h)5m1/2e2mrcoshh.
It satisfies the Klein–Fock–Gordon equation but it does not satisfy the boundary c
tion. The weight functionf m , which is a Kontorovich–Lebedev transform of this amp
tude, equalsf m52m1/2/(sinhm)1/2. Therefore*0

`u f (m)u2dm diverges at the lower limit, so
that the single-particle stateu f & is physically unrealizable. If, however, the bounda
conditionf f(0,h)50 is satisfied, then Parseval’s equation3 holds,

E
0

`

uf f~r,h!u2
dr

r
5

1

2E0

`

u f mu2
dm

m
, ~1!

and the corresponding single-particle state is certainly normalizable.

Finally, following the logic of Sec. 12 of Ref. 4, we calculate the matrix eleme
96 960021-3640/98/010096-02$15.00 © 1998 American Institute of Physics
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1

^0Muc1~ f !c~ f !u0M&5E
0

` dm

~e2pm21!
u f mu2. ~2!

If this matrix element is finite, then according to Eq.~1! the boundary condition
f f(0,h)50 should be satisfied. This means that Rindler and Minkowski spaces are
way physically related, so that the calculation of the matrix element in Eq.~2! is mean-
ingless. The latter assertion is a central point of our paper1 and justifies its title and
results.

1V. A. Belinski�, B. M. Karnakov, V. D. Mur, and N. B. Narozhny�, JETP Lett.65, 902 ~1997!.
2V. A. Ditkin and A. P. Prudnikov,Integral Transforms and Operational Calculus@in Russian#, FM, Moscow,
1961.

3R. D. Richtmyer,Principles of Advanced Mathematical Physics, Springer-Verlag, New York, c1978–198
@Russian translation, Mir, Moscow, 1982#.

4A. A. Grib. S. G. Mamaev, and V. M. Mostepanenko,Vacuum Quantum Effects in Strong Fields@in Russian#,
Énergoatomizdat, Moscow, 1988.

Translated by M. E. Alferieff
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