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The one-loop dispersion relation which defines the collective excita-
tions of massive Dirac particles in a hot and dense quark—gluon me-
dium is obtained in the high-temperature limit for the casegT and

is solved explicitly for all|g| when u=0. Four well-separated spec-
trum branchesgquasi-particle and quasi-hole excitatipase found, and

their behaviors for small and lardg| are investigated. All calculations

are performed using the temperature Green function technique and fix-
ing the Feynman gauge. The gauge dependence of the spectra found is
briefly discussed. ©1998 American Institute of Physics.
[S0021-364(98)00101-7

PACS numbers: 12.38.Mh, 11.55.Fv, 02.30.Ks

INTRODUCTION

The study of collective excitations in a hot and dense medium is a topical problem
in present-day physics, especially for chromodynamics. In a medium all the particles
(fermions, as well as boson$ose their individual properties, and, due to the multi-
interaction with the heat bath and one another, collective excitations arise, winidke
the ordinary vacuum physics @&tu=0) have many new peculiarities: a gap of the order
of gT at zero momentum, and a split spectrum at finite momertirithese collective
excitations determine the bulk of the kinetic and thermodynamic properties of the hot and
dense medium and are very important for many processes taking place, for example,
inside a hot quark—gluon plasma. Moreover, the quark—gluon megilran . and/orT
are nonzerpgenerates new collective excitations of fermions: quasi-Hdleshich are
different from the quasi-particle excitations; their peculiariiesg., the minimum of the
quasi-hole branches at finite momentum and the “wrong” relation between chirality and
helicity) can produce new physical consequences. All these collective modes have non-
zero effective masses, which arise dynamically independently of the bare masses and are
not small for large parametefs «. In particular, for initially massive Dirac particles it
has been established that there is a set of four effective m&&sghich, in the general
case, are well-separated and are always nonzero in the medium.

The goal of this paper is to present the one-loop dispersion relation which deter-
mines the collective excitations of massive Dirac particles in a hot and dense quark—
gluon plasma in the high-temperature limit for the cas€gT, and to solve it explicitly
for all |g| whenu=0. We use the standard temperature Green function technique and fix
the Feynman gauge for explicit calculations. Only the case of zero damping is consid-
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ered, and additional problems connected with the dampirge not discussed. Four
well-separated spectrum branches are established, and their behavior for small and large
|q| is investigated. The gauge dependence of the spectra found is briefly discussed. To
start, we choose hot and dense QCD, although many results are model independent.

QCD LAGRANGIAN AND QUARK SELF-ENERGY
The QCD Lagrangian in covariant gauges has the form

— 1
Mg uNyairt 5 (9,V5)2

1
L=— ZGZVZ-F N Z{yﬂ( = Eig)\aVZ

+C¥(9,0%+gfaVv%)g,CP, 1)
Whererw=aﬂvi—aVVZJrgfabeLVf, is the Yang—Mills field strengthy, is a non-
Abelian gauge fieldjys(and ) are the quark fields in the SN) fundamental represen-

tation (3\2 are its generators anid® are the SWN) structure constantsand C? (and

C?) are the ghost Fermi fields. In E€L) « andm are the quark chemical potential and
the bare quark mass, respectively; is the number of quark flavors, and is the
gauge-fixing parametere(=1 for the Feynman gaugeThe metric is chosen to be Eu-
clidean, andy’, =

To find a non-perturbational representation for the temperature quark Green func-
tion, we start from the exact Schwinger—Dyson equation

G Ha)=Gy(a)+3(q) (2)

and calculate the quark self-energy, which in any gauge has the simple, well-known
representatio’r?

3

d’p
(277)3

In what follows we calculat& (q) only in the one-loop approximation, using the bare
Green functions in Eq(3) and fixing the Feynman gaudge., taking the appropriat®
function). All ultraviolet divergences are renormalized as usual, but the infrared ones
(which also arise in the high-temperature expansion winefgT) will be eliminated
phenomenologically.

-1
S(@)= gﬁ,E (D= )7, G(PT,(p.alp—0). €

At first the summation over the spinor indices is performed in @By.using the
standardy-matrix algebra

N2 E iy,P,+2m
277)3 (p2+m?)(p—q)?’

and then the summation is performed over the Fermi frequenkie2#T(n+ 1/2)

using the well-known prescriptid?.Here6={(p4+i,u),p} is a convenient abbreviation
for vectors containinge. All terms found are collected in a convenient form using simple
algebraic transformations, and the final result is given by

2(q)=

(4)
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where e,= Jp?+m? is the bare quark self- energynp—{expﬂ|p| 1}"! and
n— {expB(ep=u)+1} - ! are the Bose and Fermi occupation numbers, respecnvely

Further, it is convenient to introduce two new functions and to rewrite(Bgas

2(q) =iy, K. (q)+mZq), (6)

whereK ,(q)=q,a(q)+iu,b(q), andu,={1,0 is the unit medium vector. All func-
tions separately depend ap, and |g|, as is usual in the medium case. Equati6h
presents the one-loop decomposition3q(fq), which, however, is not the most general
here(see Ref. 11 for detailssince a number of other functions are generated only in the
multi-loop calculations. Using the decompositi(8), we transform Eq(2) to the form

—iy,(q,+K,)+m(1+2)

G(q)=— :
(@ (q,+K,)2+m3(1+2)32

(7)

which gives the correct nonperturbational structure for this function. Setting the determi-
nant of Eq.(7) to zero, we find the dispersion relation

(q,+K,)?+m?(1+2)%=0, 8

which determines the collective excitation spectra after the analytical continuation.

COLLECTIVE EXCITATIONS IN THE HIGH-TEMPERATURE LIMIT

Here we use Eq8) to find the dispersion relation for the collective excitations of
massive Dirac particles in a hot and dense quark—gluon plasma mvk@agiT. Different
limits of this equation are discussed, and it is solved exactly for the massive fermion case
with u=0. The spectrum branches are found for|g|l and their limits for small and
large momenta are presented explicitly. Only the case of zero damping is considered, and
for this reason our analytical continuation is trivial.

Our starting point is the dispersion relati¢®)
[(ida— ) —Ka?=0*(1+K)*+m*(1+2)? &)

with m# 0, and we use Ed5) to find its high-temperature expansion wheregT. Here

Ky= iK_4, and we take into account only the leading term$4nwith the u/T corrections
according to Eqg.9). In this case all the functions which appear in Ef) can be
simplified as follows:

§ &1

1+3hn £+1

g_

&+1 (10

+lg| - —(1 &)n —

K(q4,q)—
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4(Q4vQ)
making it possible to solve E¢) explicitly. Hereé= w/|q| is a convenient variable, and
the integrals are

g’ (N*~1) (= d|p|

nt+n-

p M B

= —|p|| 22— +nB|, 12
K N 042 ()

2 p
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0

2= o 26, (14)

The integrall ;, however, has been redefined to avoid the infrared divergences which
arise after the high-temperature expansion is performedqy,|q|):

z(q)=- TN ”f Hi s
a (2m)° | | % [qa+i(u+ €]+ (q—p)>2

ng’ 1
[Pl [qa+i(u+]phP+el g

The last expression is extracted from ES).

+[h-C(,U«—>—M)]}- (15)

Now one should plug the expressions found above into (Bg.and perform a
number of algebraic transformations to fing-= £|q|. Herew=(iq,— w). The result is an
equation of the fourth degree with respectat(¢):

W [E2—(1+b(&)1) 2]+ 20 g+ w22 13— mi+2d(€) 1« —2(1+D(&) 1)
X(1+d(&)1c]+20E2d(€)1g[ 1+ amE]+13£7d(£)%— £2(1+d(£))?]
—16m?£2d(£)213=0, (16)

wheremg=m(1-2l,) is the renormalized fermionic mass, and the functid(&) and
b(&) are given by

§ &1 1 &-1
d(§)—§|n§+—1 b(§)—§—§(1—§z)|n§+—1 (17)

Since the dispersion relation obtained is very complicated, it is not solved exactly. How-
ever, in the long wavelength lim{ivhen £ — ) it can be simplified as

[0?+w(lg—7mg) — (I +47mig)[[w’+ o(Ig+ 7mg) — (Ix—47mlg)]=0, (18

and one finds the rather simple solufion

1 —lg)?
0(0)= 3 (e A L ki), 19
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which demonstrates four well-separated effective masses: two of them pertain to quasi-
particle excitations and the other two to quasi-holes. Here+ 1, and the parameters
and u are nonzero.

The solutions for al|g| can be found within the framework of E¢L6) if either m
or u is equal to zero. The case=0 with u#0 has been recently considered in detail,
and the result has the fofm

£l it
E()=u—57—==* + | =
26—~ Vae- 7,)2 «S
which extends the well-known result found in Refs. 2 and 3 to the pa&s@. Here we
have restored the physical varialide=ip,. The variablet runs over the range<d¢<<oo,

and the long-wavelength limit corresponds &e-e. For this limit one finds the very
simple result

ls H
E(Q)=p-5= —+IK. (21)

which can be compared with the interpolation formula in Ref. 12.

-1

m : (20)

2|
2

Another case in which Eq16) can be solved exactly for altj| is for m#0 but
n=0. This case is the subject of the present paper and will be discussed below for
m<gT. Now | g=0, and within the adopted accuracy of the calculations the solution of
Eq. (16) is found to be

£(21+mg) ¢
w.(£)*= T (52_1)2[<b<§>lK>2+mé<lK+m§/4>]. (22)
These spectra are our main result. They present the collective excitations of massive
Dirac particles in a hot medium for gifj| whenm<gT. Two branches of the spectrum
(when the plus sign is taken in E(2)) correspond to quasi-particle excitations and the
other two (when the minus sign is takgrio quasi-hole excitations. These spectrum
branches differ in their asymptotic behavior and in many other properties.

The long-wavelength behavior of these spe¢ivhen é— =) has the form

& lal*
L(lah2=Mm2 + M2+_ B — +0(|q|* 23
o (|g)?=m2 5 sz ol @3

where the squares of the effective masses are given by

m3 I
1.
2 Tl

mR

M2 ="+ 1=\ m3 (24)

These masses are different for the four spectrum brankhes 3( pmg+ \/m2R+ aly)
and are in agreement with the results of Refs. 6 and 7. hjere- 1.

However, this is not the case when the second term in(Z8).is taken into account.
This term is not in agreement with the one obtained in Refs. 6 and 7. Although it agrees
qualitatively with the result presented in Ref. 7, there is an essential difference with
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Ref. 6, where a linear term was mistakenly found. It is also important that the quasi-hole
spectraw_(|q|)? are very sensitive to the choice of the parameter$. In many cases
these spectra are monotonic functions for smalf, and the well-known minimuf
disappears. Although this minimum always exists for massless particles, special condi-
tions are necessary to generate it wie# 0. In the high-momentum region the asymp-
totic behaviors found for the quasi-particle and quasi-hole excitations are completely
different. The quasi-particle branches of the spectrum are approximated as

Ik, 4l
. (Jd)?=gl?+(2lc+m3) — —In ———, (25

lal* 21k +mg
where the nonanalytic term is not essential. The situation is different for the quasi-hole
excitations, which do not exist in the vacuumhenT and u are equal to zepo They
disappear very rapidly, and their asymptotic behavior is found to be

w_(la)?=al?+4|a|%exp(—|a|2(21 c + mE)/17). (26)

In the high-momentum region these spectrum branches approach the?rlg|?> more
quickly than do the branchd®5).

CONCLUSION

To summarize, we have obtained and solved the one-loop dispersion relation for
massive fermions at finite temperature. Our solution gives the collective Fermi excita-
tions for all|g|, and we have established that they have four well-separated branches: two
of them represent quasi-particle excitations, and the other two correspond to quasi-holes.
The splitting found in the calculations demonstrates that the effective masses for all
branches are different when+ 0, and these masses are always nonzero in the medium.
The asymptotic behavior found for smdtj] shows that the difference between the
initially massive and massless fermions remains, although a dynamic mass is always
generated and all their collective excitations are massive. For the massless fermions one
finds that a spectral minimum always exists away from the dajirt 0, and the leading
asymptotic term for smallg| is linear. However, this is not the case for initially massive
fermions. Wherm+0 the spectral minimum, as a rule, disappears as well as the linear
term, and the ternig|? gives the leading asymptotic behavior for sniagll. The gauge
invariance of the results found, unfortunately, is not proved, and there is no guarantee
that this is indeed true. Here the situation is completely unclear, and the only known fact
is that the dynamical mass for the caseu=0 is a gauge invariant object. All other
quantities are gauge dependent, at least, within the one-loop calculations. Of course it is
not ruled out that the Braaten—Pisarski resummation is necessary to improve the situa-
tion, but this question is not so evident as it is for the usual damping rate calculations.

| am grateful to S. Randjbar-Daemi for inviting me to the International Center for
Theoretical Physics in Trieste, and | also thank the entire staff of this center for their kind
hospitality.
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On the intrinsic quadrupole electric field of a
centrosymmetric dielectric
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In agreement with a prediction of the theory, we have observed experi-
mentally the intrinsic quadrupole electric field of a centrosymmetric
crystal. © 1998 American Institute of Physics.
[S0021-364(98)00301-9

PACS numbers: 77.84.Bw, 77.22d, 75.80+(q

We reported earlier the experimental observatamd study of the intrinsic external
quadrupole field of antiferromagnetic chromic oxide. These investigations were based on
the theoretical work of Dzyaloshingld who showed that in order for a quadrupole
magnetic moment to exist the magnetic symmetry of the crystal must be the same as that
required for the existence of the magnetoelectric effect, whiglogexhibits. The deci-
sive circumstance for the appearance of both properties was that the symmetry class of
the crystal contain a symmetry element consisting of space inversion together with the
time reversal operation.

If one is considering the purely electrical properties of crystals, specifically, the
possibility of the existence of an intrinsic external quadrupole electric field, then the
existence of a center of symmetry is sufficient for this, since time reversal does not affect
the position of ions in a unit cell. Correspondingly, Dzyaloshihskited in the same
work® that noncubic crystals possessing a center of symmetry should possess an intrinsic
external quadrupole electric field. According to his preliminary estimate, the intensity of
this field is of the order of 1 V/cm.

We performed the investigations described below for the purpose of obtaining ex-
perimental proof of the existence of an intrinsic quadrupole electric field for a centrosym-
metric crystal.

The main difficulty of observing the intrinsic electric field of a dielectric is due to
the existence of free electric charges, which are always present both in the atmosphere
surrounding the sample and on the surface of the sample and its holder. Under the
influence of the intrinsic field of the sample the free charges will move so as to compen-
sate this field, and the ultimate result of the process will be complete screening of the
field. It is well known that the weak external electric fields of dielectrics can be observed
only immediately after the crystal is brought through the phase transition point to a state
with electrical polarization. After some time, the above-described process of screening of
the field by the free charges makes it impossible to observe the polarization that arises.

Correspondingly, the requirement that a phase transition to a state with a center of
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FIG. 1. Diagram of the apparatus.

symmetry be present must be imposed on the sample for our investigations. Furthermore,
the chemical activity of the sample must be minimal in order to avoid “attachment” of
free charges to the cleaned sample surface. Finally, the sample should not be too small.

We were not able to find a crystal satisfying all of the requirements listed above, the
most important of which being the presence of a phase transition. However, there was
still the hope that the quadrupole field in question can be observed if a nonequilibrium
state is produced in the crystal and the external field of the crystal is followed during the
relaxation to equilibrium. In this state, some unit cells located near vacancies, disloca-
tions, and other distortions of the lattice of the nonequilibrium crystal will lose the center
of symmetry and will not contribute to the quadrupole field of the sample. At the same
time, these cells must possess a dipole polarization, but since they are distributed chaoti-
cally throughout the crystal, a macroscopic dipole field should not be observed. As the
crystal relaxes to equilibrium, the number of distorted cells should decrease, the quadru-
pole field will increase, and there will not be enough time for the free charges to screen
the increasing field completely. It is obvious that in this approach the observable part of
the field of the sample will be several orders of magnitude weaker than the total field.
Correspondingly, the instrumental sensitivity required to observe the unscreened part of
the external field of the sample manifested during relaxation will increase sharply. The
experimental difficulties that arise can be compensated to some degree by weakening the
requirements on the lattice distortions in the sample as compared with the equilibrium
case and by the possibility of using a chemically very stable sample with a large volume.

We knew from experience in fabricating and using low-pressure meters with a
flexible sapphire elemehthat after being heated to 600—900 °C the elastic element of
the device relaxes over many hundreds of hours. In the process, its geometry changes by
as much as 0.01%. These data provided hope that we would be able to observe the
quadrupole electric field of sapphire during its relaxation, as described above.

Figure 1 shows a diagram of the apparatus which we assembled for the purpose of
observing the configuration of weak external fields of crystals. The experimental sample
1, secured to the hold&, can move in the direction and pass through a ring electrode
3, which is 19 mm in diameter. The electrode is attached to the grid of an electrometric
tube4 of a U5-6 amplifier. The apparatus is surrounded by a grounded electrostatic shield
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5. The holder2 is secured to an electromagnetic vibrafoand oscillates in the direc-
tion with a frequency of 10 Hz and an amplitude-6D.5 mm.

The potentiale of the samplel periodically recharges the electro8ethrough a
capacitance of the order of 0.02 pF between the sample and this electrode. Correspond-
ingly, the voltage on the grid of the tube is proportionaldg/ 9z, i.e., to the desired
quantity, i.e., the field that is generated by the sample along thés. The signal at the
output of the electrometric cascade was fed through an RC circuit to a selective amplifier
and then to a synchronous detector that made it possible to determine the sign of the
detected field.

The noise level on the electro@eordinarily was equal to 20—-4QV, which corre-
sponded to a current sensitivity 053017 A. The electrometer was calibrated together
with the ac output amplifiers by applying a known voltage from a generator to the
electrode3 through a 50 pF capacitor with a leakage resistance f @0

We can see the advantage of this apparatus in that the data obtained describe the
most characteristic features of the electric field of the sample. Specifically, the configu-
ration of the field of a quadrupole whose axis is directed along ttheection will differ
sharply from that of the field of an isolated charge or the field of a dipole.

The capability of the apparatus to detect an electric field with a configuration char-
acteristic for a quadrupole was checked by means of a model inserted in the place of the
samplel. The model is shown in the same Fig. 1 and consists of a set of metallic
electrodes glued onto a ceramic holder. The dimensions of the model are virtually iden-
tical to those of our crystal samples whose intrinsic field we endeavored to detect. A
small constant voltage was applied to the electrodes.

The apparatus was calibrated in a uniform electric field. The accuracy of the cali-
bration is of the order of 5%. The sensitivity of the apparatus makes it possible to detect
confidently an electric field of intensity less than 0.005 V/cm.

For the investigations we employed single-crystal sapphire samples possessing a
rhombohedral structure with a center of symmetry. Dzyaloshiresstimated the qua-
drupole moment of sapphire to be positive and equal to 11@W for a 1 cn? sample.

We had at our disposal three single-crystal samples: a cylinder 13 mm in diameter
and 15 mm long, prepared from a high-quality crystal with no indications of block
structure, and with th€ axis oriented along the axis of the cylinder; a sphere 13.5 mm
in diameter; a tube 25 mm long and having an outer diameter of 10 mm and an inner
diameter of 6 mm; it had clearly visible defects andGtsaxis made an angle of 30° with
the axis of the tube.

It was found that the results described below can be obtained only after the surface
of the samples are carefully cleaned. The best method was found to be etching in carbon
dioxide gas at 1700 °C for 0.5 h. This removed a layer several microns thick; in the
process, the crystallographic reflection planes became clearly visible and the sample
(spherg could be oriented without difficulty with th€ axis along thez direction in the
apparatus.

Samples with a cleaned surface were secured by means of prestressed fiberglass-
reinforced cement to a holde— a ceramic tube 3 mm in diameter, consisting of sintered
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FIG. 2. Results of experiments with the model quadrugaleand the sample&). See text for explanations.

Al,O5, whose thermal expansion coefficient is equal to that of sapphire and which crys-
tallizes in air at 510 °C. Next, the holder with the sample was secured to the vibrator, and
the sample was covered with a screen and brought into contact with the electrometric
electrode.

It was found that after this procedure the sample always had the &msre rule
positive) charge, whose field reached an intensity of 10 V/cm. This charge vanished with
a characteristic time of the order of 5 h, which, judging from the capacitance of the
sample, corresponded to a reasonable leakage resistab@é@ () along the surface of
the holder and through the surrounding air on account of its conductivity. The character-
istic discharge time could vary by approximately a factor of 1.5 depending on the room
humidity. The signal of interest to us could be observed after two days at the earliest.

We also determined that the characteristic time indicated above refers to the surface
charge on the sample and is equal to the time associated with the flow onto the sample of
the free charge that screens the electric field. For this purpose a model dipole consisting
of two metal disks was introduced and secured inside the tubular sample. When a low dc
voltage was applied to these disks, the characteristic dipole curve, with a field peak
between the disks, arose immediately. During thet riek the amplitude of this peak
dropped approximately by a factor of 3, and after 24 h the free charges that had flowed
onto the sample had reduced the amplitude of the peak to the noise level of the experi-
mental apparatus. After this, the voltage on the model dipole was switched off and the
free charges which had flowed onto the sample were immediately manifested in the form
of a peak with the same amplitude but with opposite sign as at the moment when the
voltage was switched on. Once again this peak vanished over a characteristic time of
about 5 h.

Figure 2b shows one of many characteristic experimental curves of the quadrupole
field of the spherical sample. The left side of the curve is somewhat distorted by the
holder. The quadrupole is positive, and this sign was always observed on all samples and
at all stages of relaxation of the signal to zero.

The amplitude of the quadrupole field shown in Fig. 2b and measured three days
after annealing equals about 0.1 V/cm and decreases in time, decaying by a factor of 3
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over 50 h. This characteristic signal decay time for the spherical sample is approximately
2.5 times longer than for the cylindrical sample but approximately 4 times shorter than
for the tubular sample. This ratio of the relaxation times for samples of different purity
qualitatively corresponds to the proposed model, according to which the lattice cells that
are distorted by neighboring defects re-establish the centrosymmetric structure, generat-
ing the quadrupole field, as the sample relaxes to equilibrium and the defects vanish. It is
obvious that in a contaminated sample the number and height of energy barriers that must
be overcome along the path to equilibrium are greater and correspondingly the relaxation
time is also longer.

The dependence of the amplitude of the observed quadrupole field on the purity of
the experimental samples also supports the proposed model. The amplitude is smallest for
a high-purity cylindrical sample which relaxed more quickly and was closer to a state of
equilibrium at the moment when observations were started. For the contaminated tubular
sample the amplitude is approximately four times larger.

It should be noted that the source of the external quadrupole electric field of the
sample is not only of volume origin. In principle, a surface layer of the sample, where the
unit cells are distorted as a result of the proximity of the boundary, could be the source.
In this layer the force fields acting on a cell are extremely asymmetric and the distortion
of cell structure is also very large. Such cells lose their center of symmetry and should
possess a substantial intrinsic dipole moment. It is obvious that these dipoles should be
oppositely oriented relative to th&; axis, which is parallel to the axis of the apparatus,
at opposite ends of the sample.

As a result, an intrinsic quadrupole field of surface origin, and not volume origin,
will arise in the sample, as should happen in the case analyzed by Dzyaloshiinski
number of distorted cells contributing to the quadrupole of surface origin is approxi-
mately 16 times smaller than the number of cells in a sample with a volume of the order
of 1 cn?, but their dipole moments are very large, especially for cells located in direct
proximity to the surface. It is very difficult to estimate the strength of the quadrupole field
of surface origin, even to within an order of magnitude, and it cannot be distinguished
from a quadrupole of volume origin on the basis of symmetry considerations.

However, the field relaxation which we observed in all samples permits making the
required choice. It is very likely that the experimentally observed quadrupole fields arise
as a result of a relaxation of the crystal lattice to equilibrium, accompanied by a decrease
in the number of lattice defects, together with a gradual screening of these fields by free
charges. The quadrupole field of surface origin is also related with a lattice “defect,”
which the surface itself is. It is obvious that this “defect” will always be present, and the
effect of relaxation on the near-surface cells is all the weaker the stronger the distortion
of these cells. For this reason, the quadrupole of surface origin cannot change appreciably
in time and will be completely screened by surface charges.

For the reason indicated, we assume that the observed relaxing quadrupole field can
be only of volume origin.

An additional confirmation of the fact that the field arising on the sample is of a
purely quadrupole character was obtained by comparing with the well-known farmula
for the potential of a quadrupole
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D
QDIR(:B co§0—1), (1)

whereD is the quadrupole momerR is the distance to the point of observation, &hd

is the angle measured from the axis of the quadrupole. In the coordnatetr, where

z is the distance along theaxis from the center of the sample to the ring electrode of
radiusr, which are convenient for comparing with experiment, we have

D
¢:Z(222_r2)(22+r2)75/2. (2)
Hence the component of the field along thexis is
3
E,=— ——=-Dz(22°—3r?)(2*+r%) "2 (3)

Figure 2a shows that this formula describes well the experimental curve for the quadru-
pole model at large distances. Hence it follows that, despite the small dimensions of the
screens, our apparatus does not appreciably distort the observed field. A direct compari-
son of this formula with the experimental curves showed only qualitative agreement.
Specifically, the measured amplitudes of the end peaks were much larger than implied by
the formula, and the field decays away from the sample more slowly.

However, if one adheres to the same picture of the process, according to which the
quadrupole field generated as the sample relaxes to equilibrium is screened with some
delay by the free charges flowing onto the sample and the field of the charge is taken into
account(Fig. 2b, then the agreement between the theoretical curve and the experimental
data falls within the limits of the experimental accuracy. This is shown in Fig. 2b, which
displays the experimentally measured field of the spherical sample and the computed
curve obtained by superposing the field of a point quadru@®leand the field of the
charge carried by the spherical sample. The arbitrary unit on the plot corresponds to 1
arb. unit= —6.25x10" 2 V/cm, whence we obtain 0.22 ¢m® for the quadrupole
moment of our sample, which is 100 times smaller than the theoretical value. It is
necessary to take into account the fact that the left sides of the experimental curves are
distorted by the sample holder. It is interesting to note that even near the surface of the
sample the experimental curve is described well by expreg8jofor a point dipole.

We thank I. E. Dzyaloshinskior suggestions and a discussion of the results and E.
A. Smirnov and Z. A. Magomedov for providing the samples for the investigations.

This work was supported by the Russian Fund for Fundamental Resgaraht
96-02-17264

3|, E. Dzyaloshinskj private communicatioi1997).

1D. N. Astrov and N. B. Ermakov, JETP Le&9, 297 (1994.
2D. N. Astrov, A. S. Borovik-Romanov, N. B. Ermakat al, JETP Lett.63, 745(1996.
3. E. Dzyaloshinskii, Solid State Commu82, 579 (1992.

20 JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Astrov et al. 20



4D. N. Astrov, L. B. Belyansky, Y. A. Dedikoet al, Metrologia26, 151 (1989.
5L. D. Landau and E. M. LifshitzThe Classical Theory of Field®ergamon Press, New York, 19f&ted
Russian original, Nauka, Moscow, 1988, Sec].41

Translated by M. E. Alferieff

21 JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Astrov et al. 21



Field theory of mesoscopic fluctuations in
superconductor/normal-metal systems
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The thermodynamic and transport properties of normal disordered con-
ductors are strongly influenced by the proximity of a superconductor. A
cooperation between mesoscopic coherence and Andreev scattering of
particles from the superconductor generates new types of interference
phenomena. A field theoretic approach is introduced which is capable
of exploring both the averaged properties and mesoscopic fluctuations
of superconductor/normal-metal systems. As an example the method is
applied to the study of the level statistics of a SNS junction. 1€98
American Institute of Physic§S0021-364(18)00401-0

PACS numbers: 74.5@r, 74.25.Fy, 74.80.Fp, 73.23b

The physical properties of both superconductors and mesoscopic normal metals are
governed by mechanisms of macroscopic quantum coherence. Their interplay in hybrid
systems consisting of a superconductor adjacent to a normal metal gives rise to qualita-
tively new phenomenégsee Ref. 1 for a reviewaspects of the superconducting charac-
teristics are imparted to the behavior of electrons in the normal region. This phenomenon,
known as the “proximity effect,” manifests itself in:)g¢he mean(disorder-averaged
properties of SN systems being substantially different from those of normal metals, and
b) various types of mesoscopiltictuationswhich not only tend to be larger than in the
pure N case but also can be of qualitatively different physical origin. Although powerful
quasi-classical methods, based largely on the pioneering work of Eilenbeagdr
Usadef have been developed to analyze the manifestations of the proximity effect in
average characteristics of SN systems, far less is known about the physics of mesoscopic
fluctuations: while the quasi-classical approach is not tailored to an analysis of fluctua-
tions, standard diagrammatic technicftiesed in the study of N-mesoscopic fluctuations
can oftennot be applied due to the essentially nonperturbative influence of the fully
established proximity effect. Important progress was made recently by extending the
scattering formulation of transport in N-mesoscopic systems to the SN G&sie. ap-
proach has proven powerful in the study of various transport fluctuation phenomena but
is not applicable to the study of fluctuations on a local and truly microscopic level.

In the present letter we introduce a general framework that combines key elements
of the quasi-classical approach with more recent methods developed in N-mesoscopic
physics into a unified approach. As a result we obtain a formalism that can be applied to
the general analysis of mesoscopic fluctuations superimposed on a mean background
influenced by the proximity effect. In order to demonstrate the practical use of the
approach we will consider the exampleggfectral fluctuationsis a typical representative
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of a mesoscopic phenomenon. The density of stébEsS) of N-mesoscopic systems
exhibits quantum fluctuations around its disorder-averaged mean value which can be
described in terms of various types of universal statistics. The analogous question in the
SN case — what types of statistics govern the disorder-induced fluctuation behavior of
the proximity-effect-influence®oS? — has not been answered so far. Our main result,
the emergence of some kind of modified Wigner—Dyson stati3tici§i, be derived be-

low.

To be specific we consider the geometry of a quasi-1D SNS junction, where the N
region is of length. and the complex order parameters of the adjacent S regions differ in
phase bye. It is well knowrf that even the mean DoS of the SNS system exhibits
nontrivial behavior which is difficult to describe within standard perturbation schemes:
states which fall within the superconducting gap, are confined to the normal metal.
The proximity effect then further induces a minigap in the DoS of nbemal region
around the Fermi energyr, whose size oO(E.=D,/L?) depends sensitively op
(D, is the diffusion constant, anfd=1 throughout To analyze the fluctuation behavior
of the DoS,v(€), around its disorder-averaged backgroupd.€)), we will consider the
two-point correlation functiof,R,(e,0) =(v(€))~ X v(e+ w/2)v(e— w/2)).. The start-
ing point of our analysis is the Gor’kov equation for the matrix advanced/retdeded
Green functiof

(G F
ge’ = F‘rr,a G‘rr,a’ (1)
where
1(. e h 2 A h|~r,a ’ ’
€ 5| P~ A0S | —V(N+(A() +e.) 08| GLA(rr) = 6%(r—r), ¥)

e.=€+i0, A is the vector potential of an external magnetic fields Aofhexp(—igoogh)
represents théspatially dependeptomplex order parameter with phageand the Pauli
matricesaP" operate in the Nambu or particle/hdlgh) space. The impurity potential in

the N region is taken to be Gaussidhcorrelated with zero mean and correlation
(V(N)V(r")y=8%r—r")2mvr, wherev denotes the DoS of the bulk normal metal at
ex, and 7 represents the mean free scattering time. In the following the complex order
parameter in the S region iimposedand not obtained self-consistenfiyhere the S and

N regions are distindfas in the SNS junctionthe bulk DoSy,, s and scattering time,, s

will be chosen independently.

Traditionally theimpurity-averagedsreen function(1) is computed within a quasi-
classical approximation, i.e., the ScHimger equation(2) is reduced to an effective
transport equation, the Eilenberger equatiovhich in the dirty limit simplifies further to
the diffusive Usadel equatiohHere we develop a field theoretic formulation that inte-
grates concepts of the quasi-classical formalism into a more general framework allowing
for the computation of disorder-averagptbductsof Green functions, a necessary re-
quirement for the calculation of correlation functions suchiRasThe basic strategy will
be to start from amicroscopically derivedgenerating functional whose points of sta-
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tionary phase obey the Usadel equation. By investigating fluctuations around this quasi-
classical limit, correlations between the different Green functions will be explored. In the
following we formulate this program in more detail.

As in the pure N case, ensemble-averaged products of advanced and retarded
Gor'kov Green functions can be described in terms of generating functionals of the
nonlinearo-model typé (see Ref. 10 for a review on the-model analysis of Green
functions in N-mesoscopic physicsn the dirty limit, (e,A) <7 '<eg, the generaliza-
tion of the supersymmetric N-type modef° reads

fz DQ(---)e S,
Qc=

(OF

A+e+ 5

ar ph

amv P
SQl=- ?f St'{D(ﬁQ)2+4iQ , €
where §=a—i(e/c)[A¢at3r®a§h, -] represents a  covariant  derivative,
A4=A+cl/(2e)d¢ accounts for both the external field and the phase of the order pa-
rameterA=Ao}", the Pauli matrices™, o', and®" operate in fermion/boson, time-
reversal, and ar-blocks respectivéfyThe symbolD stands for a space-dependent diffu-
sion constant which may take separate values, denoté&y, asin the N and S regions.
Although specific pre-exponential source ter(denoted by ellipses in Eq3)) must be
chosen according to some given correlation functgrch ak,), their precise form does
not influence the analysis below and we therefore refer to Ref. 10 for their detailed
structure. The integration in3) extends over a 1816-dimensional matrix field
Q=T‘lta§h® o3'T, whose symmetries are identical with those of the conventional
model:

The expressioni3) differs in two respects from the model for N systems:)ithe
appearance of a ph-space associated with th&-Pnatrix structure of the Gor'’kov Green

function, and ij the presence of the order parameletWhereas)ican be accounted for

by a doubling of the matrix dimension of the fiefd, ii) calls for more substantial
modifications: forA#0 standard perturbation schemes for the evaluation of the func-
tional (3) fail,** an indication of the fact that the superconductor influences the properties
of the normal metal heavily. Under these conditions a more efficient approach is first to
subject the action to a mean field analysis and then to consider fluctuations around a
newly defined — and generally space-dependent — stationary field configuration. A
variation of the actior(3) with respect toQ, subject to the constraif@’=, generates a
nonlinear equation for the saddle point,

D3,(Q3,Q)+[Q,A0t"—i(e+ w, a8l =0. (4)

Current conservation implies the boundary condiﬁ%)fr,nQo7X|an=aSQ&Xlst, where
ons=€?v, D s denotes the conductivity anﬂ(|xn(s) is a normal derivative at the (S)
side of the interface.

An inspection of(4) shows that only the particle/hole components of the matrix field
(5are coupled by the saddle-point equation. It is thus sensible to make a block diagonal
ansatzQ= bdiag @, ,q_), where the eight dimensional retardeq.) and advanced
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(g-) subblocks are diagonal in both time-reversal and boson/fermion space. Noting that
the saddle-point configuratiori mvq.. of the nonlinears model is associated with the
impurity-averaged retarded/advanced Green funcflave identify Eq.(4) as the Usadel
equation. The general connection betweenahmodel formalism and the quasi-classical
approach was first noted in Ref. 13.

Equation (4), in its interpretation as the Usadel equation, has been discussed at
length in the literatur&*° Although in general complex, the solutions have a simple
qualitative geometric interpretation: with the explicit parametrizatq)pzqi-(;ph,

Eq. (4) describes the gradual rotation of the three dimensional vecfm a direction
almost parallel te; in the bulk superconductor to a direction aligned vethdeep in the
normal metal.

So far our analysis has been for SN systems of a general geometry. Specializing the
discussion to the SNS junction, we sefr)=A0(|x|—L/2) constant inside the super-
conductor A>E.), and zero in the normal region, with a phas&+ sgn) ¢/2. The
saddle-point equation depends sensitively on both the presence or absence of an external
magnetic field and the phase difference between the order parameters. Taking the exter-
nal field to be zero, it is convenient to focus on two extreme cdgeg=0 (orthogonal

symmetry, and (i) ¢>1/\/g (unitary symmetry. Hereg= EC/d_>1 denotes the dimen-

sionless conductance addepresents the bulk single-particle level spacing of the normal
metal.

Thedisorder-averaged local Do&an be obtained from the analytical solution of the
Usadel-saddle-point equatiolf—1"as v(r)=vRed q, (r)]5. The most striking feature of
the average DoS is the appearance of a spatially constant minigap in the N region. The
gap attains its maximum width, at ¢=0 and shrinks to O ag approachesr (Ref. 15.

We next turn to the main subject of this letter, the issudlwftuations about the

Usadel saddle poinEmploying the parametrizatio=T QT, T#, one can identify
three qualitatively different types of fluctuations) fields T which are diagonal in the
space of advanced and retarded componéghjs]’s which commute with all matrices
aiph but mix advanced and retarded components, @dr’s fulfilling neither of the
conditions(a) and (b). Fluctuations of thda) type preserve the ar-diagonal structure of
the saddle point. These fluctuations do not give rise to correlations between advanced and
retarded Green functions. Nonetheless, they are of physical significance: Quantum cor-
rections to the Usadel solution, most importantly the renormalization of the minigap by
weak localization effects and the existence of rare prelocalized Stéteelow the gap,
are described by fluctuations of this type. We postpone further discussion of these results
to a separate papérand, instead, turn to a discussion of the second type of fluctuations,
(b).

Consider the saddle-point equati@h in the simple case= ¢=0. Obviously, as it
commutes with all matriceeiph, any spatially constant rotatioh of type (b) gives rise
to another solution. In other words, tlig) fluctuations represent Goldstone modes with
an action that vanishes in the limit of spatial constancy ard0. Since anyT diagonal
in ph-space inevitably has to couple between advanced and retarded #dibese
modes lead ta@orrelations between advanced and retarded Green functiamng thereby
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to mesoscopic fluctuationswhich become progressively more pronouncedwasp-
proaches zero.

In the limit of small frequenciem<E_, the ergodic regimethe global zero mode
Q0=T51qTO, [To,c;ph]=0, To(r)=const, plays a unique role: whereas fluctuations
with nonvanishing spatial dependence give rise to contributions to the actiofgsf 1)
(Ref. 10, this mode couplesnly to the frequency difference. Restricting attention to
the pure zero-mode contribution, we obtain the effective action

S Qol =i 2 st Qoo )

whered(e)=(fv(e)) ! denotes the average level spacing and the ph-degrees of free-
dom have been traced out. From this result it foll&that, in the ergodic regime, the
spectral statistics of an SNS system is governed by Wigner—Dyson fluct@dtiarisi)
orthogonal or(ii) unitary symmetry superimposed upon an energetically nonuniform
mean DoS. Furthermore, a comparison of ). with the analogous action for N
system&’ shows the correlations to depend on an average level spacing that is effectively
halved This reflects the strong “hybridization” of levels at energiege = € induced by
Andreev scattering at the SN interface.

In further contrast to N systems, the range over which Wigner—Dyson statistics
apply turns out to be greatly diminished by nonuniversal fluctuations Refs. 20 and 21.
This is a consequence of the presence of fluctuations of ¢gpecoupling between
advanced/retardednd particle/hole components. The detailed analysis of (teype
fluctuations is cumbersome and will be deferred to a forthcoming publicktidere we
only report that a perturbational integration over these modes leads to an exponential
suppression of the DoS fluctuations already for energy separatitifs) ~ v/g. This is
in contrast to the pure N case where the Wigner—Dyson regprevailing up to fre-
quenciesv=E_) is succeeded by other forms @fjebraicallydecaying spectral statistics
in the high-frequency domain>E, (Ref. 22.

In conclusion, a general framework has been developed in which the interplay of
mesoscopic quantum coherence phenomena and the proximity effect can be explored. An
investigation of the spectral statistics of an SNS geometry revealed that level correlations
are Wigner—Dyson distributed with strong nonuniversal corrections at large energy
scales. Finally, we remark that for quantum structures in which transport is not diffusive
but ballistic and boundary scattering is irregular, a ballistimodel involving the clas-
sical Poisson bracket can be deri/@dn this case, the saddle-point condition recovers
the Eilenberger equation of transpbrt.

We are indebted to Anton Andreev, Dima Khmel'nitskii, and Martin Zirnbauer for
helpful discussions. One of UBT-S) acknowledges the financial support of the EPSRC.
The hospitality of the ITP in Santa Barbara and the Lorentz Center in Leiden are grate-
fully acknowledged. This research was supported in part by the National Science Foun-
dation under Grant PHY94-07194.
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An effective Hamiltonian is obtained which describes quantum tunnel-
ing in ferromagnetic nanoparticles in the presence of a hyperfine inter-
action of the electron spins in the nanoparticle with the microscopic
spins in the environmer(such as paramagnetic impurities or nuclear
sping. A criterion of transition between ferromagnetic and antiferro-
magnetic tunneling regimes is found. The validity of the equations
obtained is checked by the method of exact diagonalization1988
American Institute of Physic§S0021-364(18)00501-5

PACS numbers: 61.46w, 75.50.Tt, 75.10.Jm

1. The phenomenon of quantum tunneling of magnetizatiorthe Nel vecto) in
nanoparticles has been attracting increasing attention in recent years from both the ex-
perimental and theoretical viewpoints, since this purely quantum effect appears on mac-
roscopic scales of the total number of spins of the order dfat@ more. The electronic
spins of the nanopatrticles are exchange-paired with one another, forming either a “giant
central spin” — in the ferromagnetic case — or a “giantéleector” — in the anti-
ferromagnetic case, and they can tunnel coherently between two degenerate states sepa-
rated by a barrier due to the presence of magnetic anisotropy. The theory of coherent
tunneling of the magnetization vector is expounded in a number of paffersa more
complete review see Ref. 2 and the literature cited therdihe tunneling effect in
antiferromagnetic particles should be even stronger than in ferromagnetic paffiotes
review of the current status of the theory and experiment see, respectively, Refs. 3—9 and
Ref. 10. It is found that in both cases the hyperfine interaction of the electronic spins of
the particles with a spin thermostat, consisting of nuclear spins or paramagnetic impuri-
ties, plays an extremely role in both cad&¥ This interaction is so strong that it can
suppress quantum coherence completéigoherence suppression in the process of tun-
neling can be analyzed theoretically by introducingedfective Hamiltoniardescribing
the low-energydynamics of the system “giant spin(br “giant Neel vector”) + the spin
thermostat. This means that the experimental energy range is limited to the refign
where (), characterizes the gap between the bottom doublet and the excited energy
levels, and the Hilbert space of the problem is bounded by the bottom doublet, corre-
sponding to the opposite spatial orientations of the order parameter. Such an effective
Hamiltonian for the “giant spin” was obtained with the aid of the instanton technique in
my previous work* In the present letter a similar effective Hamiltonian will be obtained
for the case of derrimagnetic/antiferromagnetic nanoparticl&he validity of the ana-

Iytical expression obtained will be checked by exact diagonalization.
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2. Using the well-known fact that the Heisenberg model with antiferromagnetic
ordering can be reduced in the long-wavelength limit to the nonli®4&) o model(in
both the one- and two-dimensional casty’%*we introduce an effective two-sublattice
model with a strong exchange interaction between the magnetizations of the sublattices.
The Lagrangian of the model will be similar to the Lagrangian of@{8) o model(see,
for example, Refs. 3, 4, and.8ut, in contrast to the papers mentioned, we shall add the
hyperfine interaction of the sublattice spi8sandS, with the spins in the environment

(|5i|=%) in a weak magnetic fieldH, (We neglect the interaction of the spins in the
environment with one anotherSince the spins in the environment can be located either
inside the particle itself or near fon the substraje without loss of generality we shall
assume that only one paramagnetic impurity is present and that it is located in the first
sublattice. Then, assuming the magnetic anisotropy to be afakg axis/easy plartgpe,

we write the starting Hamiltonian in the form

H=JS;- S+ U(S) +U(Sy) + 2%0810 U(S)=—K|S;+K. §~7eHo S, (1)
1

whereawy is the hyperfine interaction constakt,>0 andK, >0 are the magnetic anisot-
ropy constants J>Kj, K, >K;, yeS;dHol<2K;SI,, and wo<2K|Si,. Assuming
S;+S,>1, we choose thguasiclassicadescription for the solution.

In accordance with the fact that we are interested only in the low-energy dynamics
of the system, only trajectories witlimost antiparalleli.e., weakly fluctuating in direc-
tion relative to one anothg; andS, will contribute to the transition amplitude between
the two lower energy levels. This means thataémostconstant Nel vectorN=S,—S,
will tunnel. In addition, since we assume tt&t# S, in the general case, the uncompen-
sated spirs=S,—S, will tunnel in a correlated fashion with the Blevector.

We now introduce the spherical angles, 6,, ¢, and¢,, which fix the directions
of S; andS,. In accordance with what has been said above, we&setr— 6,— €, and
dr=m+ Pt e, (for [, |€,]<1) (see Ref. 8 We choose as a basis the states char-
acterized by opposite directions of the éleector (along the easy axig) ||l) and|f).
Then the transition amplitude can be written as an integral over trajectories:

a t
Faﬁ(t):fﬁ 9{6’1,92,¢1.¢>2}9XP[—fodT[ﬁo(THMH(TH oL ()]}, 2

where Ly(7), 8Ly(7), andSL,(7) are taken in the Euclidean form amd 8=|l),|1).

3. Let us now find the extremal trajectory fé5(7) and ¢,(7) with no field and no
interaction with an impurity(this is the trajectory that will be needed below, since we
shall assume th3H,| and w, are small. The LagrangiarC, has the following form:

Lo=J3S;S,(sin 6;5in 8,c0 ¢b;— ¢) +C0os ;c0S O+ 1)+ Lgl+ Lg,,

L3=—iS$0 sin 6+K S*sirf o+ K, S? sirfo sirf . 3)

Since they axis is the “heavy” axis,¢ will fluctuate weakly aroundp=0 or ¢= .
These values o§ correspond to two possible trajectories — clockwise or counterclock-
wise — connecting two quasiclassical minima. The result of the Gaussian integration
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over the three fast variableg(, €,, ¢) is (all terms that do not contribute to the
equation of motion are dropped and the indicesd@and ¢ are droppef

2 2

. - _ 2K
%&sinz o+K, Sir? 0, ZZKJ_—,V—&?,
2J J+2K, S

&? 2SSK, s; 255K 2
M=—<+ == 2+~ 2+~~ 2.5 (4)
27 Z(J+2K,S2) T+2K, S Z(T+2K,S?)

M'Z
£0(0)=7 0 +

where “K'L,”:KL”(S% S%) and J=JS,S,. This Lagrangian gives the quasiclassical
equations of motiongp=0 and = sin 6. Their solution is

$=const, sind(7)=1/costiQq7), Qo= (2K /M)'2 (5)
Substituting the extremal trajectory intly and integrating over gives for the Euclidean
action

Ad=Ao+inmS, Ag=4K;/Q, (6)
where = * correspond to clockwise and counterclockwise motion between the quasi-
classical minima andy7S is the Kramers—Haldane phase.

4. We now introduce a weak magnetic fielg & 1):

8Lw=0LY +8LY,, SLE=—S(Hg sin 6 cos ¢+ HY sin 6 sin ¢+ HE cosh).  (7)

Integrating Lo+ 6L, over €, and €, settingS;=S,, and passing to the limid>K;
yield the well-known expression for the Andreev—Marchenko Lagrad@ieithout a
gradient term and the term describing weak Dzyaloshirfskiomagnetism. But now we
continue in general form. Having integrat€@) over all three fast variablegetaining
only the terms linear in the fieldwe substitute the extremal trajectofy) and after
integrating overr, we obtain a correction to the acti¢6)

i 7/7TS§Hy Il-l— 2K12_$ _ UWHXJ KH$+ KLSZSQg
42K, 2|7 ZT+2k D] Qo | T Z(T+2K, )2
sSQ S0, S2 4K
Hx+i—~oHy —,_.77,.,—0822 X-F;SZHy .
27 27(J+2K, S)) Qo
5. The correction to the Lagrangiafi, as a result of the hyperfine interaction with
nuclear spin can be represented in the form

nmwS

o, ®

w -~ ~ -~
5£0=70(ch sin 6, cos ¢, + oy sin 6, sin ¢+ o, COS 6), 9)

wherea; (i=x, y, z) are the Pauli matrices. The same calculations as in the case of a
magnetic field yield for the correction to the action

Two| ~ 0K . TwoSa
san="TT20 ax+i~,.$ e R T Eatr (10)
2Qy Z(J+2K, S?) 47
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6. There are two characteristic time scales in the probl@rgﬁ corresponds to the
tunneling time through the barrier and the second time scale is determined by the tun-
neling splitting 2\, (see also Ref. 17

/6
ZAOZQO ;AO eXp{—AO}; (11)

andAg1 corresponds to the time during which the system occupies one of the minima. If
le<t<A51, the relation between the transition amplitU@gand the off-diagonal part

of the effective Hamiltonian can be represented in the fomm have returned to the real
time axig

HOP= {7 Tyt + he), Typ=itdo S exp(~A), (12

n==*

where7_ is a lowering operator in the space of Pauli matrices. Then, in the antiferro-
magnetic(whenS; =S, and the Nel vector tunnels retaining only the leading terms in
the corrections to the actiofand setting for simplicityH,=0), we obtain

A7(0)=Ag(0) =i n¢(0)+ na(0)(ax+iN(0)ay), Qo(0)=2S,VK|(I+K)),

- _ mHy _ Tuwg B
Ap(0)=4S,7(0), I/I(O)_J—i_KL, “(0)_—290(0)’ NO)= VK /(I+K,).
(13

Substituting expressiond.3) into Eq. (12) gives the off-diagonali.e., corresponding to
tunneling part of the effective Hamiltonian

HSP(0)=2A4(0) 7_cog ¢(0) + a(0)(io,— N (0) )]+ h.c. (14)

(the diagonal(statig part will not be given here; a general method of calculating it is
given in Ref. 14). We note that in the cas®;> S, an effective Hamiltonian is obtained
which describes tunneling of magnetization in a ferromagnetic grdfiule.

In the case of arbitrarg (ferrimagnet, however, the Nel vector tunneldogether

with the excess spin. In the Iimﬁ>2KlS§ the effective Hamiltonian has the forfance
again we seH,=0)

HIP(S)=2A¢(S) 7_cog 7S— ¥(S) — a(S)(io,—\(S)ay) ]+ h.c,,

AN
Ao(S) = \/4KL

_ wA(SH, _ o0 e \/ aKK, T
9= 20,8 1 2049 TN TR srassk,
15

2K 4K 0SS K,
P+t \(5)= 22| 24 =
S5 §J (S) 7 1273
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FIG. 1. 3 — o). Numerical coefficient€;; (dashed curvgscompared with the analytical expressions from Eqg.
(16) (solid curve$ as a function of the magnetic field, with J=40, K, =20, K =1, 0,=0.2,$,=S,=10,
ando=1/2. d Numerical(dashed curveand analytical16) (solid curve dependences of the coefficiesmton
the magnitude of the sublattice spin wilk-40, K, =20, K;=1, wg=0.2, ando=1/2.

A natural criterion arises for the magnitude of the excess spin according to which switch-
ing occurs from a ferromagnetic to an antiferromagnetic regime:
S>S,(2K, /(3 +2K, S3))¥2 — ferromagnetic regime; §S,(2K, /(J+2K, S3))¥? —
antiferromagnetic regime

7. We now use the method of exact diagonalization applied to the initial Hamilto-
nian (1) with H,=0 to check the formulas obtained. For lack of space, here the compu-
tational results are presented only for the antiferromagnetic case$,). The exact
diagonalization procedure is described in detail in Ref. 14. For this reason, here we shall
determine only the quantities subject to analysis. Expanding expred<ioim a series up
to terms linear inw, gives

HIP~2A4(0)(cos ¢(0) - 7yoo— a(0)sin ¢- 7yo+ a(0)N(0)sin ¢ Tay).  (16)

The dynamic part of the effective Hamiltonian obtained by exact diagonalization has the
form

oD ~on ~on ~on
Hep=Cxo- 7x00+ Cyy- 7xoy+ Cy - 7y 0y, (17

where these coefficients;; are shown in Figs. 1a, b, and(dashed linestogether with
the corresponding analytical quantities from Ef§6) (solid lineg as a function of the
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applied magnetic field witd=40, K, =20, K;=1, 0,=0.2, $,=5,=10, ando=1/2.

The coefficienta(0), developed fromC,, (dashed ling together with its analytical
analog from Eq(13) (solid line) is plotted in Fig. 1d as a function of the sublattice spin
with J=60,K, =20,K =1, wg=0.2, ando= 1/2. This coefficient describes the interac-
tion with the spin thermostat and correspondingly it is of greatest interest in the present
work. As one can see from all figures, the agreement between the analytical and the
computer calculations is satisfactory. The discrepancy between the two valuesdor

small S, has an obvious explanation: The quasiclassical description is still not valid at
such values of the spin.

8. My objective in the present work was not to makeedailedanalysis of all factors
influencing the tunneling process but some obvious qualitative conclusions can be drawn
even without practical calculationsvith the obtained Hamiltoniansaccording to the
spin dynamics of the systems studigd: Tunneling in antiferromagnetic systems is
indeed manifested much more strongly than in ferromagnetic systems, since
A (AFM) <A (FM); (ii) the presence of an excess spin has a strong effect on the
tunneling process, at least because of the fact that it renormafigemd 4, which
together determine the magnitude of the tunneling splitting and the tunneling frequency;
(iii) the interaction with the spins in the environment is extremely important because it
can radically change the tunneling picture, right up to complete suppression of tunneling,
just as in the case of tunneling of half-integer excess spin or half-integer “giant spin.”
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Magnetic and magnetooptical properties of Au/Cu-wedge/
15-A-NiFe sandwiches
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The results of an investigation of the magnetic and magnetooptical
properties of Au/Cu-wedge/15-A-NiFe sandwiches are reported. Oscil-
lations of the equatorial Kerr effect as a function of the copper wedge
thickness are observed. The period of these oscillations is found to be
of the order of 5-6 A. The experimentally observed oscillations of the
equatorial Kerr effect are attributed to a quantum size effect.1998
American Institute of Physic§S0021-364(1®8)00601-X]

PACS numbers: 78.20.Ls, 75.70.Cn

The problem of theoretical and experimental investigation of the quantum size effect
has become popular in recent years. This was promoted by the development of technolo-
gies making it possible to obtain samples where the specific atomic layers are localized
with a high degree of accuracy. The quantum size effect is due to the small thicknesses
of the film samples or individual layers in multilayer structures. It is manifested in the
dependence of the physical properties of a sample on its thicknésis known' that
whent becomes small the motion of charge carriers between the surfaces of the sample
can manifest a quantum character. The discrete electronic states appearing in the process
in a direction perpendicular to the surface of the sample are ordinarily called quantum
well statedQWS). QWS in ultrathin(of the order of several monolayesamples can be
observed directly by the method of photoemission spectroscopy. Investigations per-
formed in recent years by this method have confirmed the existence of Q¥80nand
(11D ultrathin paramagnetic Ag, Au, and Cu layers on ferromagnetic substrates
(Fe, Co>®and in ultrathin magnetic films on paramagref$.It was now been proved
that QWS make it possible to explain the experimentally observable values of the period
of the oscillations of the exchange interaction between ferromagnetic layers through a
nonmagnetic layér'® as well as oscillations in the values of the magnetoresistance in
multilayer structuregsee, for example, Ref. 1land the magnetooptical Kerr effect in
ultrathin films of irot?~**and cobalt*~'® At the same time, analysis of the existing data
shows that the effect of QWS on the magnetic and magnetooptical properties of para-
magnetic layer/magnetic film sandwiches has not been adequately studied. Actually, the
only work where the results of a magnetooptical investigation of Au-wedd@efDd)
samples are presented is Ref. 6.
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H, 0e

FIG. 1. Typical local magnetization curves for a Au/Cu-wedge/15-A-NiFe sandwich. The curves were obtained
by displacing a light spot over the central section of a wedge along the length of the wedge2(7 eV).

In the present letter we report the results of an investigation of the influence of
guantum size effects on the magnetic and magnetooptical properties of Au/Cu-wedge/15-
A-FegNi,g sandwiches.

The experimental samples were prepared by molecular-beam epitaxy with a base
pressure of 10% torr in the chamber. Polished Mg®01) crystals were used for sub-
strates. To remove the absorption gases and relieve stress, the substrates were first an-
nealed at 950 °C for 1 min. After cooling to room temperature, a quite thick Cu layer was
deposited. A 15-A thick permalloy film was deposited on the Cu layer and a 20 mm long
Cu wedge with a 1.35 A/mm slope and minimum and maximum thicknesses of 4 and 31
A, respectively, 20 mm was deposited on the permalloy layer. To prevent oxidation the
Cu wedge was coated with a 20 A thick Au layer. A transverse section of the sandwich
is shown in the inset in Fig. &see below.

The measurements were performed on a magnetooptic micromagnetometer, a de-
tailed description of which is given in Ref. 17. Investigation of the hysteresis and mag-
netooptical properties of the experimental sample were performed with the aid of an
equatorial Kerr effect —5 (the external magnetic field is perpendicular to the plane of
incidence of the light and parallel to the surface of the magratthis case the ac
magnetic fieldH with frequencyf =80 Hz was applied in the plane of the sample along
the lengthL of the wedge. The magnetooptical sig#alvas detected in the reflection of
light from a microsection with diameté& =30 xm of the surface. The local magnetiza-
tion curvesé(H)~M(H) (M — magnetization of the sampland the dependene¥L),
which is equivalent tos(tc,),were obtained in a recording regime on an automatic
recorder. The measurementsd&H) were performed with a step with the light beam
displaced along the length of the wedge. The photon eni&gpf the incident light was
fixed.

Figure 1 displays typical local magnetization cung&si) ~M (H) measured for the
experimental sample withw=2.7 eV. The curvd was obtained on a microsection with
tcy~4 A. The curve, 3, and so on were obtained with the light beam displaced by 1
mm along the central section of the wedge. It is evident from the figure that the local
magnetization curves for the experimental sample are substantially different. At the same
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FIG. 2. Local values of the saturation field in the experimental sample versus copper wedge thickness. Inset:
Transverse section of the sample.

time, there exists on all curveXH) a fieldH in which 6 no longer varies in magnitude.
This value ofH corresponds to the technological saturation fidksl of the given local
microsection of the sample. By analyzing curves of this type it is possible to construct the
dependencéis(tc,) and to determine the maximum valles™® for the experimental
sample(see Fig. 2. Curves of the equatorial Kerr effect as a function of the thickness of
the copper wedge were measuredHbr Hs™#* and fixed# w. Figure 3 displays a typical
curve 4(tg,) obtained withiw=2.7 eV. One can see from the figure thathas a
maximum value atc,~5.5 A. The value of§ drops sharply in the region<6tc, <8 A.
Fortc,>8 A & decreases continuously with increasing thickness of the copper wedge; in
the processs is observed to oscillate with a small amplitude. The period of these
oscillations equals-5—6 A. For clarity, a section 06(t,) for tc,>8 A is presented on
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FIG. 3. Equatorial Kerr effect in the experimental sample versus the copper wedge thickness.
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an enlarged scale in the inset in Fig. 3. Comparing Figs. 2 and 3 shows that the depen-
dence of the local values of the saturation fielld on the thickness of the copper wedge
is similar to 6(tc,)-

Similar measurements were performed for other valugs«®i2.5 and 3.2 eYand
on sandwiches with a permalloy layer thicknégs,= 25 and 35 A. On account of the
smallness of the amplitude of the oscillationsého appreciable changes in the period
of the oscillations ofé as a function ofiw were observed. It was established that the
curvesd(tc,) for samples with e, =25 and 35 A are similar in form té(tc,) obtained
for a sample witht o= 15 A. The difference was that in the entire interval of copper
wedge thicknesses the values®fncreased linearly withe,m, but the oscillations of
were virtually unnoticeable.

The data obtained can be explained as follows. As already mentioned, the photo-
emission spectroscopy investigations confirmed the existence of QWS in ultrathin layers
of precious metal§Ag, Au, Cu) on magnetic substrates. Thus, it was observed in Refs. 2
and 4 that the strongest changes, consisting of the appearance of the first additional peak
in the photoemission spectrum, are observed for a Cu layer on@@acsubstrate with
tcy~2 monolayers, and for a Cu layer on a(6@l) substrate witht;,~1.5 monolayers.

As tc, increased, the intensity of this peak decreased and the position of the peak shifted
toward the Fermi level. It was established that the photoemission intensity at the Fermi
level oscillates in magnitude as a function of the thickness of the Cu film. The period of
these oscillations equats4.5—6 monolayersl monolayer~ 1.8 A). The periodic varia-

tion of the photoemission spectrum as a function of the Cu layer thickness proves the
existence of QW$® In Ref. 2 and 4 it is shown that on account of the spin-dependent
boundary conditions at the copper/ferromagnet interface QWS in Cu films are spin-
polarized. This feature of QWS remains in Cu films all the way ug-te- 30 monolayers

thick. The presence of spin-polarized QWS in ultrathin Cu films attests to the fact that the
copper atoms carry a small magnetic moment, which changks, asreases and which

is impossible to estimate from photoemission spectra. At the same time, there is no doubt
that the experimentally observed strong change, as compared with bulk samples, in the
electronic structure of ultrathin Cu films on magnetic substrates and the consequent
appearance of a small magnetic moment in the copper atoms should influence the mag-
netic and magnetooptical properties of the magnet bordering the Cu film. In the case of
sandwiches with a wedge-shaped Cu layer, the local magnetic and magnetooptical prop-
erties of the layer should vary along the length of the wedge. On this basis, the Cu-wedge
thickness dependences of the local magnetic and magnetooptical properties of the sand-
wich should have an oscillatory character and the strongest changes in these properties
should be observed for small valuestef,. Our data for a Au/Cu-wedge/15-A-Ffi,
sandwich agree with this conclusion.

The decrease in the amplitude of the oscillations &r samples wittt e, =25 and
35 A is apparently due to the fact that the maximum effect of the QWS on the magne-
tooptic properties of sandwiches will obtain for some thickness of the magnetic layer. In
our case this optimal thickness was found to be 15 A. Finally, the linear increa$e in
with t,.m agrees with the calculations performed in Ref. 19.

So, we have observed in Au/Cu-wedge/15-AfR&,, sandwiches an oscillatory
dependence of the equatorial Kerr effect and local values of the saturation field on the
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thickness of the copper wedge. The data obtained were explained by the existence of
spin-polarized QWS in the Cu layer and their effect on the sandwich properties which
were studied.
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Giant negative magnetoresistance in a composite system
based on Fe ;0, nanocrystals in a polymer matrix
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Conducting polymer composites based ons@£ nanocrystals in a
polyvinyl alcohol matrix are synthesized. The current—voltage charac-
teristics, the magnetization, and the magnetoresistance of the nanocom-
posites are investigated, and a giant negative magnetoresistance is ob-
served. The decrease in the resistance at room temperature is found to
reach 10% in a 10 kOe field. @998 American Institute of Physics.
[S0021-364(©8)00701-4

PACS numbers: 81.05.Qk, 81.05.Ys, 75:8Q, 72.80.Le

Giant negative magnetoresistar@&MR) was initially observed in multilayer mag-
netic structures$. Later it was also observed in granular magnetic films, consisting of
particles of a magnetic metdgFe, Co, N) in a honmagnetic-metal matfi® or in a
dielectric matrix (for example, Si@).*® It is believed that in the case of a system of
nanoparticles of a magnetic metal in a nonmagnetic-metal matrix the GMR is due to the
additional scattering of spin-polarized charged carriers, which depends on the relative
orientation of the magnetic moments of the nanopartitiesthe case of a dielectric
matrix the GMR is explained by spin-dependent tunneling between magnetic
nanoparticle$. However, the nature of the GMR in granular systems has still not been
completely elucidated.

The method for obtaining polymer composites containing iron oXidagnetite
Fe;0, and Fg0s) is based on performingn situ reactions in a volume of swollen
polymer matrices. Magnetite contains iron with degrees of oxidatidrand+3 in a 1:2
ratio, so that a mixture of salts of di- and trivalent iron must be used in order to obtain it.
Polymer—iron oxide nanocomposites were obtained by treating polyvinyl al¢BN#)
films, containing a mixture of Feghnd FeC] salts, with an alkali solutiod N NaOH.

The duration of the treatment was 12 h. To prepare PVA films containing iron salts water
solutions of PVA and FeGland FeCJ salts were mixed in a 1:1 molar ratio. The PVA
concentration in the resulting solution was equal to 4 wt.%. The films were obtained by
pouring a PVA—FeGIFeCk solution onto a glass substrate. The reaction between the
iron ions immobilized in the volume of the polymer matfooordination-linked with the
hydroxyl groups of PVA and the OH groups of the alkali results ultimately in the
formation of nanoparticles of iron oxides. This is manifested externally in the appearance
of intense film color, ranging from yellow-browftharacteristic for Fg3) to black
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(Fe&;0,4). The blackest samplgsamples with the highest E@, contenj were obtained

using a mixture of FeGland FeCJ in a 1:1 molar ratio. The use of a stoichiometric
mixture with a 1:2 molar ratio decreases thg®gcontent in the composite in connec-

tion with the oxidation of F&" by oxygen in air to F&" during the process of drying a
sample(3—4 days at 20 ° The iron oxide content in the composite was determined by

a thermogravimetric method on a Mettler TA-4000 device. ThgOgecontent in the
experimental samples reached 150 wi@6 24 vol.%9. At this concentration it was
possible to observe conduction in the nanocomposite. The experimental samples con-
sisted of 2<2 mm and 100um thick film with contacts deposited by means of silver
paste. The average particle size in the composite, estimated according to the half-width of
the x-ray reflection, was-100 A. An estimate of the concentration of;Pg particles in

the experimental samples with a concentration of 24 vol.% gived®’ cm 3.

The current—voltage characteristi?/C) was investigated with a V7-30 electrom-
eter up to a voltage of 300 VFig. 1). The IVC on a double logarithmic scale can be
approximated with two linear sections, corresponding to power-law functions of the
current versus the voltage with exponents of 1 and 2082. Thus, the IVC is of a
linear, Ohmic character on the initial section and quadratic at high voltages, as is char-
acteristic for space-charge-limited injection currents, neglecting the effect of traps. The
density n of equilibrium charge carriers and their effective drift mobility can be
estimated from the magnitude of the voltage at which a transition occurs from Ohmic to
injection conduction and according to the conductivity in the Ohmic regier8x 10~ !
(Q-cm)~! (Ref. 8:

V,=enl?e, o=upune. )
HereV =10V is the voltage at which a transition occurs from Ohm’s law to a trapless
guadratic law;L is the distance between the contacts; ands the permittivity of the
nanocomposite. An estimate gives the equilibrium carrier demsitgx 10° cm™ 2 and

the effective drift mobilityu~0.1 cnf/V-s.
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FIG. 2. Magnetoresistance versus magnetic field.

The magnetoresistance was investigated right up to fields 14 kOe with different
orientations of the sample relative to the direction of the magnetic field and with a
voltage of 100 V on the sample, which corresponds to the carrier-injection regime. The
typical resistance of the samples was equalxal®® (). The sign of the variation of the
resistance in the magnetic field was negative. The field dependence of the magnetoresis-
tance determined agR(H=0)—R(H)]/R(H=0) is nonlinear and saturates in high
fields (Fig. 2. The magnetoresistance reached 10-12% in a 10 kOe magnetic field and
the absolute magnitude of the change in the resistance in the magnetic field was equal to
2x10° Q. We note that this value is much larger than in granular systems based on Co
and Ni nanopatrticles in a Snatrix. The GMR in these systems in a 10 kOe field was
equal to 4.5% and 0.6%, respectivéfyThe magnetoresistive sensitivity in our case in
weak fields was equal to 2—3%/kOe. A weak anisotropy of the magnetoresistance was
observed. In a magnetic field oriented in a direction perpendicular to the current the
magnetoresistance saturated in weak fietd§,kOe, and its magnitude was smaller. It is
interesting that in a close to Ohmic regireith a voltage of 15 V on the sampl¢he
GMR was several times smaller=2%) than in the injection regime. The increase in the
GMR with increasing voltage could be due to the fact that in the presence of injection the
Fermi quasilevel shifts and the degree of carrier polarizatbp«D )/(D;+D)) in-
creases, wherB, is the density of states for carriers with the corresponding spin.

The magnetic-field dependence of the magnetizatiowas also investigate¢Fig.
3). The measurements were performed in a pulsed magnetic field up to 70 kOe over a
time ~10 2 s. The absence of hysteresis in the magnetization curve and the slow ap-
proach to saturation in fields 10 kOe indicate that in our case the;Bg nanoparticles
at room temperature are in a superparamagnetic $fte. magnetic moment per 5@,
“molecule” in a nanoparticle can be estimated from the saturation magnetization as
~1.98ug (Whereug is the Bohr magnetgnFor comparison, in bulk R©®, the magnetic
moment per “molecule” is (4.03 4.08)ug .X° Thus even in fields- 70 kOe almost half
the particles are in a superparamagnetic state during the observatior ié s.

The magnetization dependence of the magnetoresistance was constructed from the
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FIG. 3. Magnetization versus magnetic field.

magnetic field dependences of the magnetoresistance and magnetization. This depen-
dence can be approximated by a quadratic function

[R(H=0)— R(H) J/R(H=0)=(60=1.6)-10"°- M?, ?

where M is the magnetization in CGSM units/émThis character of the dependence
agrees with the theoretical and experimental results on GMR in granular systems.

As far as we know, the GMR effect in composites based on ferrite nanocrystals in a
polymer matrix had never been observed prior to this. The nature of the GMR in our case
can be explained, just as in the case of a system of nanoparticles of a magnetic metal in
a dielectric matrix, by tunneling of charge carriers, which depends on the relative orien-
tation of the magnetic moments of the nanoparticles of the ferromdgnet.
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Electron g factor in quantum wires and quantum dots
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A theory of the Zeeman effect for electrons in one- and zero-
dimensional semiconductor heterostructures is developed. A relation is
established between the number of linearly independent components of
the g-factor tensor and the point symmetry of a low-dimensional sys-
tem. A specific calculation is performed for a spherical quantum dot
and a cylindrical wire. ©1998 American Institute of Physics.
[S0021-364(98)00801-9

PACS numbers: 73.61.Ey, 71.70.Ej

The effective Lande factors for electrons in semiconductors with the zinc blende
lattice vary as a function of the chemical composition over wide lingts 2 in wide-gap
materials,g= —0.44 in GaAs, andj~ —50 in InSh. This dependence is described well
by the Roth formuld,introduced in second-ordéwp perturbation theory. In Ref. 2 we
extended the factor theory to structures with quantum wells and superlattices, and we
calculated the dependence of thefactor on the width of the layers and predicted an
anomalously high anisotropy of the Zeeman effect for electrons in the conduction band of
the heterostructure. Experiments confirmed that the theory developed is applicable for
structures grown on the basis of IlI-V and II-VI cubic semiconductotsThe first
measurements of thg factor in structures with quantum dots have appeatdd.the
present letter we construct a theory of the Zeeman effect for electrons in quasi-one- and
quasi-zero-dimensional systems, i.e., in quantum wires and dots. The dependence of the
g factor on the system size is calculated for a wire with a circular cross section and for
a spherical quantum dot.

As in Ref. 2, to calculate the electrgnfactor we employ the Kane model, in which
thekp mixing of the states in the conduction bahigland in the valence bandg andI’;
is taken into account exactly but the effect of remote bands is neglected. Let us expand
the electron wave function in terms of Bloch functian®;(r), where thecg (s= +1/2)
are] and | spin column matrices and i, are the coordinate functiors (I'; repre-
sentation of the point groupy) and X,Y, Z (I"45 representation It is convenient to
represent the eight envelopes in the form of a spimgr) with the componentsiy,,
u_4y, for the Bloch functionsST andS| and the vector spinar=(vy,vy,v,), wherev,
is a spinor with the components 1, andv, _ 1, for the Bloch functionXT, X|, and so
on.

The Schrdinger equation with thép HamiltonianH (k) in the form of an &8
matrix can be reduced to the differential equation
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for the spinoru, and the vector spinos can be related with the gradieRtu by the
relation

1 £ 1 A2 I
Vu—iz5 7—[9(E) —go](oXV)u. 2

" P 2mJ(E) P 4m,

Here E is the electron energy measured from the bottom ofltgeconduction band,

k=—iV, P=i(%/my)(S|p,/Z), my andg, are the free-electron mass and Larigdetor
(90~2), and

1 2P 2 . 1 . 4 myP? A
M(E) 3 32\E, E EgrE+a) 9BT0T 3 (EFENE,FETA)
)

The boundary conditions are the requirement that the spi(rand the components of
the vectorPu(r) be continuous in a direction normal to the heterointerface.

We note thatn, 1(0) and the differencg(0)— g, are, respectively, the contribution
of the valence band to the reciprocal of the effective mass angd thetor of an electron
at the conduction band bottom, calculated to second order ikgiperturbation theory.
If the wave function is localized in one of the directiohas a result of size quantization,
then the first-order perturbation theory in the lingiarthe magnetic fieldcorrection to
the electronic Hamiltonian can be used to find ¢hiactor in a magnetic fiel@.L {. This
device has been used previously to calculate the transgef@etor in quantum well$!
In a structure with a quantum dot, where the wave function is localized in all three
directions, the first-order perturbation theory is applicable, and feetor tensog,, s for
the size-quantization ground stat# is given by the expression

1 1
E/*‘LBO-a,SS’gaﬁBBZEQOMBaa,SS’ Ba+ <81,S| 6H | el,s’). (4)

Here ug is the Bohr magnetonr, (a¢=Xx,y,z) are the Pauli matrices, the electron spin
projections,s' = *=1/2, SH=(e/c)VA is a perturbation linear in the vector potential
A(r), —e is the electron charge, and in the Kane model the velocity operator
Vzh‘laH(k)/ak is an 8<8 matrix with components that do not dependkori-ormula

(4) is also applicable for an electron state at the bottom of the subdhrid a quantum

wire if: a) the gauge of the vector potential is chosen so that the potential depends on the
coordinates in a plane perpendicular to the principal axisf the wire, and b the
diamagnetic terrt

§<el,s|ﬁz|el,s’><Az(f)>7
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which can be nonzero in the case of low cross-sectional symmetry of the wire, is sub-
tracted out. We note that the averagg)=(el;s|A,|els) does not depend on the spin

s. Using the explicit form of the matriX/, we arrive at the basic formula for calculating
the g factor:

e
(el,s|5H|e1,s’)=iaf P[(A-vJ)ug—u (A-vg)]dr. (5)

In the general case the spinor functior) can be represented in the form
u(n)=[f(r)+io.h.(r)jcs, cs=Torl,

wheref(r) andh,(r) are real functions. The symmetry of a quantum dot or wire imposes
restrictions on the form of these functions. Specifically, in a quantum dot With
symmetry (the symmetry of a rectangular parallelepiped or ellipsow@ have for the
electronic  ground state el: f(r)=f(x?,y%2%), hy(r)=yzM(x?y?2?),
hy(r)=zxM,(x?,y?,z%), andh,(r) =xyM,(x?y?z?), whereM,, are arbitrary functions
of x?, y2, andz?. The envelope of the electron wave function in a state Wjth0 in a
quantum wire does not depend mrFor this reason, in a quantum wire with a rectangular
cross section h,(r)=hy(r)=0, h,(r)=xyM,(x?,y%,z%). In a cylindrical wire
f(r)=f(p=x?+y?) and the three functionis(r) are identically equal to zero, since
combinations which transform as components of a pseudovector under the rqup
cannot be constructed from powers of the coordinateend y. For a similar reason
h,(r)=0 in a spherical quantum dot.

Substituting into Eq(5) the expression foug(r) in the formf(r)cs, we find that
the electrong factor is isotropic not only in a spherical quantum dot but also in a
cylindrical wire. This unexpected result can be understood without detailed calculations.
Indeed, let us choose the gauge=(0,0,-xB,) for the caseBLz and the gauge
A=(0, xB,,0) for the caseB|z. In a cylindrical wire the function$, are identically
equal to zero, the functiohfor the ground state does not depend on the azimuthal angle,
and the velocity operator in the Kane model is a matrix with constant coefficients; for
these reasons, both components of ¢héactor are proportional to the same integral
Jdxdyf(p)x(d/ox)f(p), and the coefficients of proportionality do not depend on the
dimensions of the wire. Since tlgefactor is isotropic in the limiR—o (just as in a bulk
semiconductay it is also isotropic for anR.

Substituting the functiorf into Eq. (5) and integrating by parts, we obtain for a
circular wire and a spherical dot

9= 1790+ [9s(E) —ga(E)IV3_4(R)FA(R) +[ga(E) — goIWa+[ga(E) — golWs, ©

whereV, is the volume of a-dimensional sphereV,= wR?, V3=47R%/3), ga(E) and

gg(E) are determined in accordance with E8), w, andwg are integrals of the function

f2 over the region occupied by materialor B (for v #0 the sumw,+wg is different

from 1). The coefficienty# 1 for E>0 on account of mixing of the spin statgsand |,

and it can be anisotropic in low-symmetry systems. However, estimates show that, as a
rule, its difference from 1 can be neglected. As the radluacreases, the value @i,
approaches 1, and the enerByof the levelel, the productV;_4(R)f%(R), and the
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FIG. 1. Electrong factor versus the linear dimensions of a structure in the heterosystem GaAS&alsAS.
The values for a spherical quantum dot and a cylindrical quantum wire with r&dare represented by the
solid and dashed lines, respectively. For comparison, the longitudinal and transverse components of the electron

g-factor tensor gﬁW< gfw) for a single quantum well of thicknesR2are also showridotted lines.

quantitywg decrease to zero, so that in the liRit> o the g factor approaches the bulk
value in materialA according to the lavg(R) =ga(0)+ (Rq/R)?; hereR;<Rq.

In the present work we calculated tlgefactor in a spherical quantum dot and a
cylindrical wire, where the envelopgr) for the levelel has, respectively, the form
Cr~Isinkr for r<R, Dr ~lexgd—«(r—R)] for r>R, andCJy(kp) for p<R, DKq(xp)
for p>R. HereR is the radiusk=[2ma(E)E/%2]*?, k[2mg(E)(AE.— E)/%2]Y2, Jo(x)
andKy(x) are Bessel functions\E; is the offset of the conduction band at the hetero-
interface of the two materialsvhich are designated below @sandB), ma(E) is the
massm.(E) determined according to E¢B) for materialA, the analogous masseg(E)
is determined for the parameters of mateBalith allowance for the offset of the bands,
i.e.,, mg(E)=m.(E—AE,), and the coefficient€ andD are found from the boundary
conditions: continuity off and of the normal component of the vecmgl(E)Vf, and
from the normalization/(u*u+v*v)dV;_4=1, whered=0 or 1 anddV, is the vol-
ume element im-dimensional space.

Formula(6) is also applicable for calculating the transvegséactor g, =gy=0yy
for an electron in a quantum well of widthR2 for whichd=2, V5;_4=2R and in which
f=C coskzfor |zZ]<R andDexg —«(2—R)] for |z|>R.

Figure 1 displays the electrom factor in a spherical quantum dog{®) and a
cylindrical wire (@°"R) as a function of the radiuR. For comparison, the figure also
shows (dotted lineg the values of the Iongitudinalgfw, B||z) and transversegﬁw,

B.L z) g factors for a quantum well of widthR. The model calculation was performed
for the heterosystem GaAsi\Ga, g5As. The following values of the parameters were
used in the calculatiorE,=1.52 eV,A=0.34 eV, and P2 /my=28.9 eV for bulk GaAs
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(Pe,=1(SIp,1Z)), E,=1.94 eV,A=0.32 eV, and P2 /my=26.7 eV for the barrier
material, and a ratio of the band offsets at the heterointeiddtge: AE.=2:3. Totake

into account the contribution of remote bands, we added the constpat-0.12 to the
values of theg factor obtained in the Kane model. When this is done, the elegron
factor reaches the bulk value0.44 in GaAs as the size of the structure increases. As the
linear dimensions of the structure decrease,ghfctor increases, approaching in the
limit R —0 the value 0.57 in the barrier material. Since size-quantization effects play an
increasingly larger role as the dimension of the system decreases, the relations
gﬁ?l’v<gQWR<gQD hold (see Fig. 1 Estimates show that the contribution of the term in
Eq. (6) that is proportional tad?(R) is not small, which rules out an approximation of
g(R) in the formga(E)wa+0g(E)wWg.

In summary, using the Kane model we have constructed a theory of the elgctron
factor in superconductor quantum dots and quantum wires; we have performed a sym-
metry analysis for a number of specific microstructures and have shown that in contrast
to a quantum well, wherg#g, , theg factor in a cylindrical wire(a system with the
same point symmetpyis isotropic. We have carried out a model calculation for a spheri-
cal dot and a cylindrical wire.

We thank the Russian Fund for Fundamental Research and the Volkswagen Foun-
dation for financial support.
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Nanometer germanium islands in epitaxial layers of silicon are obtained
by molecular-beam epitaxy. The dimensions and shapes of the islands
are determined in an atomic-force microscope. The photoluminescence
spectra are found to contain lines that can be interpreted as quasidirect
optical transitions in the islands. It is concluded on the basis of optical
and microprobe measurements and theoretical calculations of the ener-
gies of electronic states that silicon is dissolved in the germanium is-
lands. Values of the germanium and silicon contents in the solid solu-
tion are presented. @998 American Institute of Physics.
[S0021-364(98)00901-3

PACS numbers: 81.15.Hi, 81.05.Cy, 78.55.Ap

In the present letter we study the physical properties of hanometer germanium is-
lands obtained in silicon in the process of molecular-beam epitaxy. Island formation
under certain conditions of epitaxial growth of elastically strained atomic layers of ger-
manium on silicon is connected with the process of self-organization of islands in accor-
dance with the StranskiKrastanov mechanisfin the last few years a large number of
works have been devoted to the processes of self-organization of Ge islands in epitaxial
layers of Sit™ Such great interest in these objects has apparently been engendered, to
some degree, by the rapidly developing investigations of quantum dots in strained het-
erostructures on the basis of 1lI-V materials, as a result of which the understanding of the
growth of self-organizing structures, the physical properties of objects with zero-
dimensional density of states, and the applied aspects of the application of structures with
arrays of quantum dots is now well developed.

The basic conditions for the formation of self-organizing islands of germanium in
silicon in the process of epitaxial growth in a high vac@dror in a gaseous medium at
atmospheric or low pressifréhave now been determined. In contrast to Ill-V quantum
dots, germanium islands have large dimensions in the growth plane and the electronic
spectrum of the charge carriers in them is two-dimensional. The dimensions of the islands
and their packing density in the growth plane depend strongly on the substrate tempera-
ture and the Ge and Si deposition rat€3uestions concerning deformation and disloca-
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tions in islands, the shape of the islands, the solubility of silicon and the formation of the
solid solution SiGe in them, the spectra of electronic states and optical transitions, and
other features remain open. The present letter is devoted to clarifying some of these
questions.

The experimental structures were grown in a “Balzers” apparatus that had been
modernized for molecular-beam epitaxy of Si/Ge heterostructures. The residual-gas pres-
sure in the growth chamber did not exceed B0~ X° mbar and the working pressure did
not exceed X108 mbar. Silicon and germanium were evaporated from sources by
electron beams. Plates pftype S{100 were used as substrates. The structures were
grown at two substrate temperaturg=550 °C and 700 °C. The substrate surfaces
were precleaned by thermal etchinglat 1150 °C. Two types of structures were grown.
Structures intended for analysis with an atomic-force micros¢apd/) contained a 225
nm thick silicon buffer layer on which a germanium layer, consisting of 2 to 10 mono-
layers(1 monolayer= 1.4 A), and a 40-50 A silicon layer were deposited successively.
For photoluminescence measurements, a ten-period lattice of alternating germanium lay-
ers, consisting of 2—7.8 monolayers, and a 500 A thick silicon layer was grown on a 500
nm thick buffer. The growth rates of the Si and Ge layers were equal to 2 A/s and 0.05
Als, respectively. Prior to the Ge growth onset, the Si growth rate was decreased to 0.5
AJs in order to decrease the roughness of the heterointerface. It will be shown below that
as a result of internal elastic stresses, which arise as a result of the mismatch of the Si and
Ge lattice periods, the germanium layer transformed into islands when the thickness
exceeded of the order of 3—4 monolayers. For this reason, the germanium layer thick-
nesses>3—4 monolayers reported here and below are nominal galae layer of such
thickness would have been deposited on the substrate in accordance with the source
evaporation rate and time if the islands had not formed.

Silicon structures with germanium were examined with a “Park Scientific Instru-
ment” AFM under room conditions. Figure 1 displays an AFM photograph of a sample
with Ge-layer thicknessige=10 monolayers, grown alg=700 °C. According to mi-
croprobe data, the critical Ge-layer thickness)(above which self-organization of is-
lands occurs igl,.=4.5 A (3.2 monolayersunder our growth conditions. As the amount
of Ge deposited increases, the sizes of the islands and their concentration increase. The
islands can be divided into three groups according to the transverse dimefsions
D=<190 nm, 206D =300 nm, and> =350 nm. Judging from the dimensions and shape
of the islands in the first and second groups, these are apparently elastically strained
dislocation-free islands, in which partial relaxation of elastic stresses has occurred as a
result of local deformation of a surface layer of silié@nd relaxation of stresses on the
free surface of the islands. The third group consists of islands which have undergone
plastic relaxation of elastic stresses as a result of the formation of misfit dislocations in
them. The size of the islands in the growth plane for which formation of dislocations
occurs is close to the critical size of the elastically strained isl&nd800 nm, measured
in Ref. 5.

The surface densitilg of the islands depends on the Ge-layer thickness and for
different amounts of deposited germanium fluctuates frofi€’ cm™2 to 2x 10° cm™2.
Decreasing the growth temperature to 550 °C gives a more uniform size distribution
of the islands, decreases their average s2e-{90 nm), and increases the surface
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FIG. 1. AFM photograph of a sample grownBj=700 °C withdg.=10 monolayers.

density. The data on the sizes and density of self-organized islands agree with the results
of Ref. 2.

The photoluminescence spectra of Si/Ge structures were meadudel avith a
resolution of 0.5 meV on a “Boem” DA3-36 Fourier spectrometer with a cooled InGaAs
photodetector(see Fig. 2 The spectra were obtained by excitation with a"Kaser
(A\=647 nm). Besides the luminescence lines of the silicon subgjpatnon replicas
with participation of optical TO and acoustic TA phonosee Fig. 2), luminescence
associated with a wetting Ge lay&D) is observed in the spectra of samples with an
effective germanium layex=5 monolayergwith participation of TO phonons — TQ
and a phonon-free line NB). For thedg.=2 monolayers sample the MPline falls in
the range of the phonon lineF0 + 2TA)g of the substrate luminescence. As the
amount of deposited germanium increases, the photoluminescence lines associated with
the germanium layer shift to lower energies as a result of the size-quantization effect. The
position of the lines from the wetting layer agrees well with the computed values.

For Ge-layer thickness greater than a critical value, a wide peak is observed in the
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FIG. 2. Photoluminescence spectra of structures growi,at700 °C with different Ge-layer thicknesses.

critical region 0.8—0.925 eV. This emission band is attributed to the formation of Ge
nanoislands.

The characteristic dimensions of the islands in the growth plane excéell Their

height is approximately an order of magnitude smaller. For such dimensions, the energy
associated with size-quantization effects for holes in Ge islands would no exceed 20 meV
and therefore the strong shift in the energy range 800—-925 meV of the wide photolumi-
nescence band relative to the silicon radiation cannot be attributed unequivocally to
purely germanium islands in silicon. It can be assumed that the islands consist of a solid
solution of germanium with silicohand then the molar fraction of silicon in them can be
estimated.

Figure 3 shows the positions of the band edges of the thin homomorphic solid
solution Sj_,Ge, on Si, calculated using the model of Ref. 6. The symibdisand|h
denote heavy- and light-hole bandsA Zlenotes two delta valleys of the conduction
bands where the electron masses are highest in the direction of growtlaret the
remaining four delta valleys of the conduction band; dnds aL valley. The calcula-
tions show that the photoluminescence in the energy range 800—925 meV in a homomor-
phically grown solution on a silicon substrate is possible if the germanium fraction in the
islands ranges from 30 to 50%. The formation of a solution in islands is apparently
associated with the segregation of germanium.

Since the structures possgs$ype conductivity and the islands are potential wells
for holes, the holes accumulate in the islands, charging them positively. The surface
density of holes in islands for volume hole density in-S10"° cm™2 can be estimated,
just as for a quantum well with the same energy level of the heavy-hole ground state, as
~4x 10 cm™2 (see, for example, Ref.)7As a result of Coulomb repulsion, holes
inside islands must concentrate along the heterointerfaces. The positive charge of the
islands produces a quantum well for photoelectrons in silicon near a heteroju(sgi®n
inset in Fig. 3. In the case when the conduction band bottom in silicon is lower than in
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FIG. 3. Calculation of the conduction and valence bands of the solid solutjonG#, grown homomorphi-
cally on a Sf100 substrate(lattice constant — 5.43 A, solid lingsThe dashed line corresponds to the
elastically strained silicodlattice constant — 5.46 A Inset: Band diagram for the case wher0.32.

the islands(in Fig. 3 one can see that this occurs for0.32, the photoluminescence
energyE, <960 meV}, on account of size quantization in this well the ground states are
the states of the & valleys because of the large, compared with thevélleys, masses

in the (001 direction. Here, electrons located near the base and top boundary of the
islands are primarily studied, since these electrons make the main contribution to the
photoluminescence because of the large difference in the areas of the lateral sides and
bases. As a result of size quantization, the electron quasimomentum perpendicular to the
heterointerfaces is no longer consenétk Brillouin zone is two-dimensionaand the

states of electrons in theA?valleys are displaced into the center of the two-dimensional
Brillouin zone. In this case the interband optical transitions are direct in momentum space
(Pina— Pinitir=0) .2 but in the coordinate space the transitions are indirect, since the
electrons and holes are localized on different sides of the heterointerface. This is probably
the reason why the photoluminescence is weak.

As to the influence of the island sizes, the large width of the luminescence line
associated with the presence of islands is apparently determined not so much by the
variance in the island sizes, as happens for self-organized InAs/GaAs quantufradots,
by the nonuniform distribution of germanium and silicon valleys in the islands and the
different degree of relaxation of elastic stresses. This is probably the reason why the
position of the strongly broadened photoluminescence line associated with islands is
insensitive to the island size.

If it is assumed that partial relaxation of elastic stresses in the solid solution has
occurred as a result of the deformation of the surrounding silicon, then according to the
calculations the fraction of the germanium in the islands whose photoluminescence falls
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into the energy range 0.8—0.925 eV should decrease compared with the islands where
such relaxation has not occurred. This conclusion can be drawn by analyzing Fig. 3,
where the dashed lines represent the positions of the band edges in the solid solution in
the case when the silicon layers surrounding it are deformed.

We thank A. Yu. Andreev for organizing the AFM measurements. This work was
supported by Russian Fund for Fundamental Research Grant 96-02-16991 and Project
96-2011 of the Interdisciplinary Science and Technology Program “Physics of Solid-
State Nanostructures.”
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The low-temperature decay of a vibrational eigenstate of a crystalline
mesoscopic particle surrounded by other such particles of approxi-
mately the same size is considered. The decay time is determined by
the anharmonicity and the coupling between adjacent mesoscopic par-
ticles. Under some limiting conditions for particles of a typical size of
50 A the decay time at low temperatures can be several milliseconds.
© 1998 American Institute of Physids$S0021-364(08)01001-9

PACS numbers: 63.20.Pw, 53.5(, 61.43.Gt

In a recent paper by Kaplyanskii, Feofilov, and Zakharchénlmg-lived size-
guantized vibrational states in porous,®4 were studied at low temperatures between 2
and 5 K. Nonequilibrium phonons were excited by “optical heating” with a laser pulse.
The anti-Stokes spectrum was observed at long time delays of 2—-4 ms, and a low-
frequency maximum aby~ 20 cmi ! was found to decay for 1 ms. The purpose of the
present letter is to provide a theory of the decay rate of such vibrational states which
might shed light on the origin of the exceptionally long decay times observed in the
experiment.

The physics of the phenomenon can be described as follows. The samplgOgf Al
consists of particles of approximatefput not exactly the same size, about 50 A in
diameter, and which are presumably only weakly connected, i.e., most of the bonds on
the surface of a particle are dangling. Although some of the particles might constitute
“dead ends” and others can be connected with several neighbors, most of the particles’
surfaces can still be considered as free.

Due to the small dispersion of the mesoscopic crystal sizes and the comparatively
large density, our system is distinct from typical aerogdis.these the typical lengths
may vary by some orders of magnitude, leading to fractal behavids. equally distinct
from a glas$. There one has only one length scale, the atomic one.

We consider porous materials, in which two length scales exist. In addition to the
microscopic scaléset by the interatomic distancehe nanocrystal size provides a sec-
ond, mesoscopic scale. We suggest that the novel type of solids investigated in Ref. 1
belongs to this type. We assume that there is nearly perfect order inside the single
particles on atomic scales. On the mesoscopic scale, we envisage the material to be built
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from single-crystal particles. The comparatively large density and the small variation of
the particle sizes will ensure some interparticle short-range order. One should not expect
any long-range order.

Corresponding to this structure we expect two types of vibrations. The intraparticle
vibrations are determined by the interatomic forces, and their wavelengths are limited by
the particle size. In first approximation these states can be described as isolated particles
with free surface boundary conditions. We will provide an algorithm for the calculation
of the lifetimes of the lowest-frequency modes. These can indeed be very long. In addi-
tion to these modes there are interparticle vibrations, whose wavelengths are larger than
the typical particle size and whose frequencies are determined by the much weaker
interparticle coupling. The two types of vibrations interact. The strength of the interaction
is proportional to the ratio between interparticle and interatomic coupling. We consider
the case where this is sufficiently small.

The material is characterized by a narrow distribution of particle diameters. We
further assume a coupling between the crystallites so weak that there is a gap between the
respective spectra of the intra- and interparticle vibrations. The average density is in the
range of 30% to 50% of the crystalline density, and the typical diameter of the crystallites
and the pores between them is 50 A.

First we consider an isolated crystallite. There will be of the order of 1000—10000
atoms in a crystallite, which allows the use of continuum theory to estimate the lowest
eigenfrequencies. The vibrations of a homogeneous spherical body were calculated by
Lamb® and by Tamura etal,’ who give for the lowest eigenfrequency
wmin~ 2.0 R. Herev @ s the average transverse sound velocity in the crystalline
material andrR the radius of the particle. The corresponding eigenmode is mostly con-
centrated on the surface of the particle. Such modes have been observed, e.g., by Raman
scattering on nucleated glaSs.

The long-wavelength dynamics and elastic behavior of polycrystalline and similar
materials is a long-standing problefsee, e.g., Refs. 8—L0For our purpose a simple
estimate is sufficient. In aerosols one observes a scaling of the sound velocity with the

density p: v_ocp_l"‘ (Ref. 11, where the bar indicates an average over the sample. We
expect a similar dependence for the porous material considered here. Taking the relation

v= \/C_/p, we find Cxp>® whereC andp are the averaged elastic constant and mass
density, respectively. Since the interatomic bonds inside the crystallites will not be af-
fected strongly by porosity, the elastic weakening reflects the weak bonding between the
crystallites. The elastic constants are determined by the stiffness and number of bonds.
The reduction ofC by more than a factor 10 reflects a similar reduction in the number of
bonds between the crystallites.

Regarding elastic wavesvith wavelengths much larger than the interparticle dis-
tance the porous material can be considered as an elastic medium whose properties are
characterized by the average dengitand average elastic modul);,,,, the averaging
being over length scales much larger than the interparticle distance. Alternatively one can
look upon the problem from an equivalent point of view. To a good approximation the
harmonic dynamics of elastic waves in the porous material can be described by weakly
coupled rigid particles. In this amorphous lattice of crystallites the diamé&ewil take
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the role of the lattice constant inside the particles. The maximum frequency of the
acoustic waves is the®d(qma) =~ mv/R.

We consider the case > o(qmae and further stipulate that the relative spread,
due to variations of diameter and shape, of the lowest intra particle vibration frequencies
is larger than thdinear coupling between these modes in adjacent crystallites. This
means that the modes in the adjacent crystallites are entitglpf resonanceThen the
eigenmodes of the crystallites are localized in the true sense of harmonic lattice theory.
Their amplitudes will decay exponentially in space into the adjoining material, and the
larger the difference between the two eigenfrequencies, the faster this decay will be. As
they are true eigenmodes their time dependence is harmonic. This means that if one
neglects anharmonicitthey do not decay in time at allf one treats the site-diagonal
disorder as a perturbation one can get a lifetime as the imaginary part of the phonon
self-energy. As is well known, this lifetime would be spurious, as such an imaginary part
would not correspond to any attenuation. It is due only to the fact that in the presence of
disorder a phonon wave vector is a poor quantum number.

Thus the lifetimes of the local vibrations are determined by anharmonicity. We
consider low temperatures, where in thermal equilibrium the occupation numbers of the
phonons are essentially zero and transitions are dominated by phonon emission. We will
show that, compared to typical crystalline samples, the anharmonic effects are so strongly
reduced that the lifetimes of the low-frequency localized vibrations become extremely
long.

The elastic displacement within an isolated parti¢leorresponding to the lowest
eigenstate is given B§

f ,
W)=\ 5 e efi ), @)

wherec, and cj are the annihilation and creation operators of the lowest eigenmode in
particle/’, andp is the mass density of the crystallites. The eigenfunctfénigr) satisfy
the equations of elasticity theory and the normalization condition

%Jvd3r[f(/)]2:1 v

with V the volume of the particle. The Hamiltonian of partiefeis
H,=ho(clc, +1/2).

Consider two adjacent particles, 1 and 2, which are weakly harmonically coupled.
The coupling Hamiltonian is

H1,= 7fi\wiwy(cico+cles) €)
where n<<1. The eigenfrequencies of the two particles will not differ strongly and
o —w?|/oV<1, 4
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In places such as E@3) we need not discriminate between®) and »(® and we will

replace them by some average valuieln order to make perturbation theory applicable
the interparticle coupling has to obey the inequality

P
77—|w(1)_w(2)| <. (5)

In this limit the localized vibrational states of the two particles mix only weakly. Indeed,
the vibrational amplitude, which is normalized to unity within particle 1, acquires an
extra small factor5) in particle 2, etc.

We takew™> ). Then an excitation in particle 1 can decay into one in particle
2 by passing the surplus energy to a traveling acoustic wave with frequegeyq:

wV=0?+ Wgq. (6)
The energy density for the anharmonic interactiéman be written &%
- 1 (3)
&= ggc Cialbmcuaiublucma
ilm

whereu,;= du,/dx; andC), . is the tensor of anharmonic moduli of third order, which
are usually somewhat larger numerically than the harmonic moduli.

The matrix element of the process described by (Byis
<(1)|5|(2),q>_ 2 Clalbmcf d3r<(l)luaiublucml(2)1q>v (7)

where

[(1))y=cll0y, [(2),ay=clcl|0)

and|0) is the vacuum state with no phonons excited. To estimate the anharmonic inter-
action within particle 1 we write

u=u®+y@ 4 yen,
where the displacement due to the traveling acoustic phonon is

ulPh = IZpVN > T e(q)exmq r(cqe+cly). ®)

q

Summation over the acoustic branches with polarization vee{gpsis implied. Unlike
the particle volumeV in Eq. (1), Vy is a normalization volume which drops out of the
final result.

The local displacement of particle 1 now has, in addition to @g. a term given
by Eq. (3) describing the “leakage” of the vibrational statel?) from particle 2 into
particle 1:
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[ &
1= (&N
u 2w1pV1f (r)

Foru®® we have the same equation with the replacemen®l Inserting Eqs(9) and(8)
into Eq. (7), we get after the integration

(D]E(2),ay=i(EV+E2)((1)|cle,cq (2),0), (10)

where&®) and £2) are the results of integration over volumgs andV,, respectively,
and

h [ & 1
H—
2 7]2P ; pr YV o—0? ¢ z meGCQm

ot of
1) _ 3 3
b(rm): fal)bmcf d°r

(ci+ch+7 (cot+ch)|. 9

PREVEPNEY

Again the equation fo£®® is obtained by interchanging<22. As qL (wherelL is the
diameter of the particleis assumed to be small, we replace the factor igxpj by 1.

Now the decay probability of the vibration in particle 1 can be calculated by Fermi's
golden rule. Summing ovey one gets

2 2 3
_Tnh dq o o o
4p p<(z bmcnmec) > (277) 6( o wq),

wheren=g/q and(. . .)q denotes the average over the solid angle of directions

Not knowing the exact dependence of the sound velofit;n the average density
we assume as a rough estimate, in analogy to the aerdg#lat pv, neglecting the

observed small deviations from proportionality. Introducing the density tatip/p, we
get

2,
r= u< ( 2 BmdmEe

8ma®p3®

2
> . (11
Q
For the orientational average we apply the estimate
2 4
T
<(2 Bmdmee > ~§2p204 E) .
cm
Q
Here we have made use of the fact that the cubic anharmonic moduli are roughly of the
same order as the harmonic ones. The fa¢taepresents their ratio, which may be

several times unity. Finally we get the following approximate value for the decay con-
stant:

2, 3723 —
T {hw

FQNM_ (12)
8alpuL?
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Here w, is the average positive frequency differeno€)—»(®, A is the number of
neighbors to which the particle of interest is connected by chemical bonds and whose
lowest eigenfrequencies!”) are smaller tham¥), and 72 is the mean squared coupling
constant to these neighbor¥. can vary between 1 and a dozen.

From Eq.(12) one can get a rough estimate of the limits to be expected for the decay
constant I'. Let us assume the following values for the parameters:
7°=10"% a®=10"% (cf. Ref. 1; w,=10"s™% p=5 glen’; v=2X10° cmis;
L=5x10"7 cm, and/? can have a typical value of several times unity. In particular
depending on the value ¢f we thus gef values of about 18-10* s™* as observed in
the experiment.

There are some major sources of ambiguities in such an estimate. The relative
interparticle strengthy® may be larger than 1G. It would be helpful to develop methods
for its experimental determination. Measurements of the elastic constants and sound
velocities of the porous sample would provide a more reliable estimate. The spread in the
eigenfrequencie®, can, in principle, be determined by a careful optical investigation.

It is necessary to check the validity of the relatjpav. A lot could be learned from
an investigation of the form of the particles constituting the sample and from their
relative spatial arrangemeritVe are not giving estimates for a rather rare case where all
the adjacent particles have frequencies larger thé&n. For such particles the decay
constant would be proportional tg* rather than top?.)

Simultaneous measurements of the average mass deTna'myi the average sound

velocity v should help towards an understanding of the weak attenuation of the eigen-
modes in the mesoscopic crystallites. Each of these crystallites should have its own decay
rate because of differences in the sizes and in the harmonic coupling constants, numbers
of neighbors, etc. The observation of a nonexponential overall désaperefore not
surprising.

In summary, we have calculated the low-temperature decay rate of an ultrasonic
vibration in a mesoscopic crystalline particle weakly coupled to one or several other such
particles of approximately the same size. The decay time depends on the width of the
particle size distribution and on the strengths of the harmonic and anharmonic couplings.
Under the given limiting conditions for particles of a typical size of 50 A the decay times
may be as large as several milliseconds.

We are grateful to A. A. Kaplyanskii for discussing his experimental ward to
U. Buchenau for very interesting comments. V. L. G. wishes to express his gratitude to
the Institut fu Festkaperforschung, Forschungszentrundichu for the hospitality ex-
tended to him while the work on this paper was done, and to the Alexander von Hum-
boldt Foundation for financial support.
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The Mossbauer spectra of a permalloy film placed in an rf magnetic

field are measured. The film is so thin that transverse magnetostriction
oscillations are not excited in it. This permits the observation of satel-

lites that are due solely to periodic variations of the magnetic field at

the nucleus. The data are in good agreement with calculations per-
formed in the model of step-wise field reversals. On application of an

additional static magnetic field the splitting of the satellites is observed,

as predicted by the model of asymmetric step-wise field reversals.
© 1998 American Institute of Physids$0021-364(1®8)01101-3

PACS numbers: 76.88y, 75.80+q

Many Massbauer experimentsee the reviews® are devoted to the investigation
of soft ferromagnets in a radio-frequen@y) magnetic field with angular frequendy.
Equidistant(separated by an intervdl) satellites, which are split if the quadrupole
interaction is also strong, were observed in these experiments. At high frequéhcies
these spectra collapse into a single line or doublet. The main idea forming the basis of the
model of step-wise field reversals is that the magnetic fi€k) at a nucleus in a soft
ferromagnet placed in an rf field ;(t) jumps periodically between two valuesh, and
—hgy. The corresponding equations for the absorption cross section are derived in
Refs. 5-7.

The reversals can be simply explained as folldamse also Ref.)8 It is knowr?1°
that soft ferromagnets have a cluster structure. Such weakly interacting clusters behave
similarly to superparamagnetic particles in which all spins are strongly coupled. The
magnetizatiorM . of a cluster can be oriented along the easy-magnetization axis or in the
opposite direction. Correspondingly, the potential en&ky¢) of a cluster as a function
of the angle betweeM . and the easy-magnetization axis has two minima. In a field
H(t) a cluster acquires the additional potential eneX{y) = —M.-H(t). Then the
total potential energyV,+ V(t) will be a periodic function of time. Its oscillations force
M. to undergo periodic jumps between two opposite potential wells with a time interval
T/2 between successive jumps, whare 27/} is the period of the rf field. Application
of an additional static magnetic field, gives another static contributionM ;- Hg to the
potential energy. This makes one potential well deeper than the other, even in the absence
of H(t). The applied fieldH (t) with amplitude greater thah, will once again give
rise to jumps of the magnetization but in this case the fimevhich a cluster spends in
the potential well with magnetizatioM . parallel toH, will be greater than the timé,
spent in a well withM; antiparallel toHy. A nucleus interacting with a reversing field
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h(t) exchanges with rf photons with frequen€y with the field. Not having a definite
energy, such a nucleus is characterized by infinite sets of quasi-energies separated by an
interval (). Transitions between such quasilevels lead to the appearance of a spectrum
in the form of a central peak with equidistant satellites.

In addition, there also exists a phonon channel for energy exchange between a
nucleus and the rf fielth ;(t). An ac magnetic field excites magnetostriction oscillations
in the ferromagnet. These forced oscillations with average amplityddong the inci-
dent Massbauer radiation beam also contribute to the intensity of the satélift@he
value ofx, is unknown, so that in Ref. 8, in explaining Pfeiffer’s resditsye used this
parameter only as an adjustable parameter. Therefore, to separate the photon channel in a
pure form and check the model of step-wise reversals, it is desirable to quench the
magnetostrictional oscillations. To this end, in our experiment, which we describe below,
we chose as the absorber a very thin permalloy film with thickf@iesa /2, where\ ¢ is
the wavelength of the magnetostrictional oscillations. In such a film the conditions for a

vibrational resonance are strongly degraded Eg\ﬁo.
In the general case, when both a fiéfigi(t) and a fieldH, which is parallel to
H,:(t) are imposed, the magnetic field at a nucleus can be written in the form

+1, _T1<t<0,

h(t)=hef(t), f()=F(t+T), f(t)= 1 0<t<T, (1)

whereT=T,;+T,. The asymmetry of the reversals is described by the parameter

T.—T

AT, @

which assumes values in the intervak®=<1. The Floquet wave function of a nucleus
in the fieldh(t) has the form

.oN
\IleKMK(t)=|IKMK)‘I){\'KMK;n(t)e—ISMK;nt/h, 3

where|l .M, ) is the stationary function of a nucleus in statéx = g for the ground state
and «=e for the excited stajewith spin |, and the projectiorM . of the spin on the
direction hy; ®N(t)=®N(t+T) is a periodic function of tim&. The complete set of
quasi-energies is determined by the expression

EM_n=Ex—7.M(h(t)+nhQ, (4)

whereEy'=0 andEy'=Ej is the energy of the unsplit resonance levgl,is the gyro-
magnetic ratio of the nucleus in theh state, andh(t)) is the time-averaged field(t)
and is given by

(h(t))=heR. (5)

As the spinl, of the nucleus follows the reversals of the fidi¢t), its direction of
precession periodically changes. The average frequency of Larmor precession around the
field h(t) can be introduced as follows:
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<Qf>=|im%, )

t—oo

where ¢, is the angle of rotation of the nuclear spin in tkéh state over the time.
WhenR# 0, the preferred direction of precession around the fieldhg and the average
Larmor frequency equals the conventional precession frequency

(Qf)=r<h®) (7)

in a constant magnetic field,R. Such averaged rotation of the spin with Larmor fre-
quency(Q)) results in a splitting in the quasilevel) that depends on the magnitude of
the time-averaged fiel¢h(t)).

If it is assumed, as a simplification, that there is no quadrupole interaction, then the
absorption cross section averaged over the energy distribution of the ingidayts is
given by the equatidh

[’

o (S)Z Uorze*ZWe*ZWa Jeg(ﬁ)|aeg(n)|2
) 2 0o MMy (5—A—fargR—NAQ)2+ T2

)

where A=E|—E, determines the isomeric shif;, is the cross section at resonance,
e 2V are the Debye—Waller factors for the soured &nd absorberd), I' is the width

of the resonance leve§=(v/c)E,, v is the velocity of the source relative to the ab-
sorber, the functiong.(¥) determine the relative intensities of the linbk,—M,,
which depend on the angl@ between the wave vectdr of the incidenty-rays andhg
(see, for example, Ref.)8

Moreover, we have employed the notation

@egl

haeg:(')’gMg_'}’eMe)hOv Xeg:Tv
_ 2Xeq [ 1+R 1-R 9
e M= TRy (15 Rixggrna] " 2 L1 RXegmn7l (9)

We can see from Eq$8) that if R#0, each absorption line splits into a Zeeman
sextet corresponding to interaction with a constant magnetic figltl This equation
describes exchange of rf photons between a nucleus and a classical nf fleldo study
this process in a pure experiment without forced oscillations, we employed a thin absorb-
ing permalloy (58% Fe-42% Ni film with thicknessD=7 um. The M®sbauer spec-
trometer operated in a regime of constant acceleration with good linearity of the source
motion. The sample was placed inside an inductance coil of a resonance loop of a
high-power rf generator, generating the rf magnetic fidlg(t) in the plane of the ab-
sorbing film. Moreover, a Helmholtz coil was used to obtain a constant magnetitifeld
parallel toH(t). In all measurements the amplitude of the ac fléjgdt) was equal to 25
G. The wave vectok was always perpendicular to the surface of the film.

The experimental results are displayed in Figs. 1 axdo?y. They are presented in
relative units withN(e)=100%, corresponding to the intensity of the transmitted radia-
tion far from resonance. The solid lines in the figures represent our numerical calcula-
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FIG. 1. Mdssbauer spectra of nonvibrating permalloy film at different frequencies of the rf field.

tions, in which Eq«(8) was used. The results of measurements performedhkijth0 at
different frequencies= /27 are presented in Fig. 1. We see here a rapid dropoff of the
intensity of the satellites with increasing satellite numibefThe more extended distribu-
tion of the satellite intensities that was observed eaftiee, for example, Refs. 1 }-dan

be attributed to magnetostrictional oscillations. Here the standard rf collapse into an
isolated line is also observed at high frequencies.

Figure 2 displays the results of measurements performed with a constanitfield
#0, where the frequency of the ac fieldH +(t) is fixed at 38.8 MHz. The data described
by the curvea were obtained wittHy=0; b — 7.5 G; ¢ — 12 G; d — 16 G. The
corresponding values of the adjustable param@tare 0, 0.04, 0.1, and 0.13. Moreover,
I'=0.5 mm/s.

So, our data are described well by a simple model of step-wise field reversals. The
observed splitting of the satellites confirms the reality of the nuclear quasi-enéyies
and the cluster structure of soft ferromagnets. Earlier, Kopcewial? observed a
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FIG. 2. Massbauer spectra for different values of the additional constant magnetic field and fixed frequency
38.8 MHz of the rf magnetic field.

splitting of only the collapsed isolated line by superposing an additional constant mag-
netic field. They interpreted this effect as a destruction of the collapse due an increase in
the anisotropy field. However, our observations attest to the fact that this splitting is
caused by the asymmetry of the magnetic-field reversals. At high frequencies a nucleus
feels only the time-averaged fie{fi(t)), which does not vanish R+ 0. For this reason,

at high frequencies and+ 0, the spectrum collapses into a Zeeman sextet corresponding
to the constant fieldh(t)).
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Effect of the coherence of free electron—hole pairs on
excitonic absorption in GaAs/AlGaAs superlattices
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The effect of photoexcited free carriers on the absorption spectra dy-
namics of GaAs/AlGa, _,As superlattices is investigated experimen-
tally by the pump—probe method. A sharp change in the shift of the
excitonic resonance energy from the low- to the high-energy direction
is found to occur at the moment that the electromagnetic radiation of
the pump and probe beams overlap in the case of band—band excitation.
This phenomenon is explained in a model of scattering of high-energy
electron—hole pairs. The dephasing time of free high-energy patrticles is
experimentally estimated to be several tens of femtosecondsl9%9B
American Institute of Physic§S0021-364(98)01201-§

PACS numbers: 71.35.Cc, 71.35.Ee, 42.50.Hz, 78.66.Fd

One of the phenomena arising when coherent polarization interacts with an exciting
laser radiation is the optical Stark effect. The optical Stark effect in semiconductors is
studied by the method of pumping and probing with subpicosecond laser pulses. Thus far,
the situation when the spectral position of the pump beam is far Bélow abové
excitonic resonance has been well studied experimentally and theoretically.

The study of the interaction of excited states with coherent laser radiation in the case
of resonant excitation is only now beginning. For this case it is still impossible to solve
the complete semiconductor Bloch equatfof.lt has been shown in the theoretical
works"’ that in the complete absence of free electron—hole pairs Rabi oscillations of the
density of excitonic states should be observed in the case of resonant excitation. To study
this phenomenon experimentally the duration of the laser pulses must be much shorter
than the phase relaxation time of the excited states. But, quite short laser pulses have a
large spectral width, which makes selective excitation of only excitonic states without
excitation of the electron—hole plasma impossible. In the present investigation, despite
the lack of the corresponding theoretical models we considered the problem of studying
experimentally the effect of free electron—hole pairs on the coherent interaction of reso-
nant laser radiation with excitonic states.

In the experimental part of this work we employed a multilayered 20-period quan-
tum well (MQW) with 80 A wide GaAs layers and 20 A wide AlGaAs layers. Photo-
excitation was performed with 120 fs laser pulses whose spectral position was 1-2 meV
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FIG. 1. Change in the shape of the heavy-exciton absorption spectrum for two excitation conditions and
different delay times. The case of resonant excitation is presented in Figr#a: 1 ps(—), —300 fs(....),

0(-..-), 100 fs(...... ), and 1 pg- - -). The case of nonresonant excitation is presented in FigrZb: 425

fs (—), —85 fs(-.-.), =50 fs(....), 0 (-..-), 70 fs (- - -), and 475 fs(.... ). Insets: Change in the energy
position of the peak of the heavy-exciton absorption line for two conditions of excitation.

below (we shall call excitation with such pulses resonant excitatéord 10 meV above
(nonresonant excitatigrthe excitonic resonance.

The changes occurring in the shapes of the heavy-exciton absorption spectra for
different delays between the pump and probe beams and for two excitation conditions are
presented in Fig. 1. The shift in the energy and the decrease in the peak absorption are
several times smaller for resonant excitation than for nonresonant excitation. For this
reason, in order to work with quantities of the same order of magnitude we chose the
pump beam intensity to be lower for nonresonant excitation. Thus, the photoexcited
quasiparticle density was 410 cm 2 for the spectra displayed in Fig. 1a and
4.4x10'"° cm™ 2 for Fig. 1b. This corresponds to a pump pulse area of approximately 1
and 0.6, respectively. The change in the position of peak excitonic absorption on the
energy scale is shown in the insets in Figs. 1a and 1b. A blue shift of the excitonic line
is observed in the case of resonant excitation. Peak excitonic absorption in the case of
nonresonant excitation shifts at first in the red direction and then rapidly in the blue
direction.

The pronounced absorption determined by the continuous heavy-exciton states en-
abled us to separate the effects due to a change in the band gap and binding energy on the
position of the heavy-exciton ground state on the energy scale. For this, we employed the
generalized Elliott formul&. The results of an analysis of the experimental absorption
spectra are displayed in Figs. 2 and 3. It was found that for our experimental conditions
virtually no change in the oscillator strength is observed and that the decrease in absorp-
tion is caused primarily by broadening of the excitonic resonance. As shown in Ref. 9,
the broadening is directly proportional to the quasiparticle density, so that the change in
the density of photoexcited states can be determined unequivocally from the change in
the broadening. Figure 2 shows the behavior of the broadening of the excitonic lines for
two conditions of excitation.

In the case of resonant excitation byrlaser pulses one Rabi oscillation of the
density of excitonic states should be obser{dtbr resonant excitation we indeed de-
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FIG. 2. Broadenind® of the excitonic absorption line versus the delay time for two excitation conditions.
Circles — resonant excitation. Triangles — nonresonant excitation. See text for explanations.

tected an increase in broadening and hence in the density of interacting particles at the
moment when the pump and probe beams overlagpeel Fig. 2 After passage of the

laser pump pulse, a nonzero density of excited states remains in the sample. This attests
to the presence of scattering processte effect of which is that the density of photo-
excited quasiparticles now consists of a superposition of virtual and real excited states,
the contribution of the real particles increasing monotonically and is proportional to the
time integral of the intensity of the laser radiation which has passed through the sample.
This monotonic increase is shown in Fig. 2 by the dotted line. The dashed line in the
same figure takes account of the effect of both types of particles on the width of the
excitonic absorption line and describes the experimental results quite well.

The behavior of the broadening in the case of nonresonant excitation is of the same
character. This indicates that the density of the particles that participate in the interaction

| 1
-300 0 300 600
Time delay (ps)

FIG. 3. Change in the band g, and binding energ§, of a heavy exciton versus the delay time for two

excitation conditions. Circles — resonant excitation. Triangles — nonresonant excitation. The lines are drawn
as an aid in following the change in the parameters shown.
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is also a superposition of virtual and real states, a substantial fraction of which are now
free electron—hole pairs. The presence of free excited states in the system explains the
comparatively large difference of the amplitude of the change in the broadening of the
excitation absorption line as compared with the case of resonant excitation, since the
action of free electron—hole pairs on the width of the excitonic line is at least an order of
magnitude more effective than in the case of exciton—exciton interattiothe case of
resonant excitation, on account of the quite large spectral width of the exciting laser
radiation in the sample, free electron—hole pairs are nonetheless created and thus it is
impossible to determine unequivocally what causes the increase in the broadening of the
excitonic line in this case — Rabi oscillations of the excitonic density or free carriers. A
further increase of the density of the exciting laser radiation, which should lead to an
increase in the number of Rabi oscillationsesults in a substantial increase in the
saturation of excitonic absorption and can destroy the sample. Thus, we were not able
unequivocally to detect Rabi oscillations by the pump—probe method in the superlattice
under study.

However, we were able to detect the unique behavior of the resonance position of
the excitonic absorption line in the case of nonresonant excitation. The familiar blue shift
is observed in the case of resonant excitatisae inset in Fig. Ja Its behavior is
determined by two well-known effects: renormalization of the bandtapd change in
the binding energy® Both effects are presented in Fig. 3. In the case of nonresonant
excitation, a red shift of the excitonic line is observed for negative time delays =
—0 this shift decreases rapidly and changes sign whbeecomes positive. This change
occurs during the temporal overlap of the pump and probe laser beams. At first glance it
appears that the oscillations of the energy position of the excitonic line will be caused by
the direct effect of Rabi oscillations of the density of excited states. However, as follows
from Ref. 7, the 0.& pump pulse does not give rise to density oscillations and therefore
this phenomenon must be caused by something else.

Let us consider first the behavior of the binding energy of the excitonic ground state
(see Fig. 3 As the modulus of the negative time delay between the pump and probe
beams decreases, i.e., as the influence of the density of photoexcited particles increases,
the binding energy decreases rapidly. This decrease is caused by the effect of the filling
of the phase spad&P9, as predicted in the theoretical work Ref. 11. Since the particle
density does not change abruptly when the sign of the shift in the position of the excitonic
line changes rapidlysee Fig. 2, the jump in the binding energy should be due to
scattering of the particles participating in the interaction. Indeed, after scattering the free
electrons and holes will occupy different positions in wave-vector space and will no
longer participate in the FPS effect, which ultimately can result in an increase of the
binding energy on account of the correlation and exchange interactions. The time be-
tween the maximum shifts of the energy position of the excitonic absorption line in the
red and blue directions changes from several tens to hundreds of femtoseconds and
depends on the density of the exciting radiation.

When the excitonic absorption spectrum was approximated by a generalized Elliott
formula® the broadening of the continuous states varied in the range from 2.1 to 3.5
meV. This corresponds to a change in the phase relaxation time from 600 to 350 fs. These
values agree well with our results: In the one-beam experirtiergreparation for pub-

70 JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Litvinenko et al. 70



110

1001

1) od

80

T, (fs)

§0

8
n(10"%cm?)

FIG. 4. Temporal distance between the maximum decrease and increase of the binding energy of an excitonic
state in the case of nonresonant excitation versus the density of electron—hole pairs.

lication) and in the four-wave mixing experiméfisee also Ref. 13however, they are

much greater than the time interval between the maximum shifts of the excitonic reso-
nance line in the red and blue directions. Indeed, the dephasing time of free excited states
decreases substantially with increasing energy of these $taféss change is so large

that free particles from only a narrow regi¢of the order of 2 meV widenear the band

gap participate in the destructive interference efféttigher-lying states lose coherence
much earlier. Thus, in the case studied the behavior of the excitonic resonance is affected
decisively by the loss of coherence between the exciting laser radiation and the high-
energy electron—hole pairs. Figure 4 shows the particle-density dependence of the time
T, required for a sharp change to occur in the binding energy. This time is directly
proportional to the phase relaxation time. The simplest model describing this dependence
is the Drude model of an electron gas, which neglects the Coulomb interaction. Accord-
ing to this model, the dephasing time is inversely proportional to the density of interact-
ing particles and can be represented in the form

21T H(n)=21/T,(0) + y*"EE(ag")?n,, (1)

wheref: is Planck’s constanEg" is the effective binding energye€=5.6 meV), ag'" is

the effective Bohr radiusal'=100 A%, andn, is the density of excited states. The
theoretical dependence, shown by the solid line in Fig. 4, was obtained for the following
values of the parameter$;(0)= 102 fs andy<l'=8.2. The value that we obtained s

equals in order of magnitude to the phase relaxation time of free electron—hole pairs,
Whicgvaries from 30 to 160 fs and depends on the parameters of the specific quantum
well.

Let us now return to the change in the band ggp(see Fig. 3. As the overlapping
between the pump and probe beams increases, the quasiparticles created start to have an
increasingly larger effect on the behavior ©f. The decrease in the band gap in both
quasi-two- and three-dimensional media with increasing density of excited states is a
well-known factor, which has been confirmed experiment&ifif and theoretically®2°
However, the answer to the question of why in the case of nonresonant excitation the
band gap increases when the high-energy free carriers lose coherence remains open. To
answer this question it is necessary to solve the complete semiconductor Bloch
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equation’*~® We can say only that the unique band-gap behavior that we detected is due
to the interaction: coherent excitons, coherent and incoherent free electron—hole pairs, as
well as the pump and probe laser beams.

In summary, we have found experimentally that in the case of nonresonant excita-
tion the position of the excitonic line on the energy scale shifts in the red direction for
negativer and the blue direction for positive This behavior of the excitonic absorption
line is explained by dephasing of the free electron—hole pairs created. The dephasing
time of high-energy free carriers, equal in order of magnitude to several tens of femto-
seconds, was estimated from the distance between the maximum shifts of the energy
position of the excitonic resonance.

This work was supported by Russian Fund for Fundamental Research Grant 97-02-
16833 and INTAS-94-0324 and INTAS-RFBR-95-0576.
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It was observed that a microwave field induces constant differential
resistance steps, close in magnitude to the reciprocal of the conductance
quantumh/2e?, in the current—voltage characteristi¢¢Cs) of layered
structures with an intrinsic Josephson effect under conditions of trans-
port in a direction perpendicular to the layers. A qualitative explanation
of this result is proposed. €998 American Institute of Physics.
[S0021-364(98)01301-3

PACS numbers: 74.80.Dm, 74.25.Nf, 74.50.

It is well known that in layered superconductors it is possible to observe an intrinsic
Josephson effect on the natural layered crystalline structure of the méterialreview,
see, for example, Ref)1Strictly speaking, to observe both Josephson efftégionary
and nonstationaithe size of the junction in the plane of the layers must be less than the
characteristic Josephson length=s(\./\p), Wheres is the distance between the el-
ementary superconducting layers angl and A, are anisotropic London penetration
depths. In typical layered highz materials of the BSCCO type one hag~1—2 um.
Recently, substantial efforts have been made to reduce the lateral dimensions of such
structures. It has been shown that a stationary intrinsic Josephson effect first appears on
junctions with dimensions<20 um.? Attempts to observe a nonstationary intrinsic Jo-
sephson effect on samples with dimensiorsl0 um nonetheless have been
unsuccessful? In many cases resistive features, whose position on the voltage scale
depended on the microwave power, were observed, instead of the expected steps of
constant voltagéShapiro steps on the IVCs of junctions in a microwave field. In the
present letter reports the observation of microwave-induced steps of constant differential
resistanceRy, close to the reciprocal of the conductance quantRgssh/2e?, on the
IVCs.

The experiment was performed on overlap-type junctions, obtained by selective
ion-plasma etching of high-quality single-crystalline BSCCO 2212 whisker crysTais.
main results will be presented for a junction with the dimensions
L, XLpXL.=4X8X0.12 um. The junction was placed at an antinode of Ehéield in
a 3-cm waveguide. The IVCs were measured by a four-probe method. The measurements
were performed mainly at liquid-helium temperatures. The critical current density along
the ¢ axis was equal to 8 10°—10° Alcm? at 4.2 K, approximately three orders of
magnitude less than the density measured on the same whisker crystals alaraxibe
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FIG. 1. Constant differential resistance steps produced in the IVCs of BSCCO 2212 layered structure by a 11.5
GHz microwave field. The curves correspond to following incident powfeesn top to bottony: 0.20, 0.40,

0.63, 0.89, 1.26, 1.48, 1.59, 1.78, 1.87, and 2.19 mW. The dimensions of the structure>X\&xed412 um

along thea, b, andc axes, respectivelyf =4.2 K. The curves are shifted along the current axis, so that the zero

of each curve in terms of current corresponds to the zero in terms of voltage.

Figure 1 shows a family of IVCs for a sample in a resistive state induced by a
microwave field with microwave poweW>200 W incident on the sample. In the
absence of the microwave radiation the critical curtgrdf the sample equats 100 pA.

The critical current was suppressed to zerat 20 uW. As one can see from Fig. 1,
the effect of the microwave field is to produce resistive feat(stps in the IVCs. We
note the characteristics of the observed featurg¢stHe steps correspond to approxi-
mately the same slopglifferential resistangeof magnitude 13—-14 Q, irrespective of
the radiation powekFig. 2); 2) the steps appear with approximately constant spacing

2§
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FIG. 2. Differential resistance of the firsfl) and second X) steps as a function of microwave power. The
solid curve corresponds to the quantRy= h/2e?.
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FIG. 3. Schematic diagram of the trajectory of a charge under the action of a microwave field with a sufficiently
high amplitude in a periodic potential over the first half perigdlid curvg and over the second half period
(dashed curven the presence of only a microwave fi€lj and under the combined effect of a microwave field
and a constant fiel¢b).

AV=~10 mV on theV axis; 3 the current amplitude of the steps depends nonmonotoni-
cally onW; and, 4 the steps occur in the range of currertd wA and in terms of the
current the first and second step®.5 pA.

The most noteworthy result is that the magnitude of the differential resistance on a
step is close to the reciprocal of the conductance quantw®e? (Fig. 23.

The proposed interpretation is based on the fact that a layered superconductor can be
regarded as a system with a modulated potential alongctlis (see Fig. 3, for
example, because of the fact that the modulus of the order parameter is modulated in a
direction perpendicular to the layersn this case the potential can treated in the quasi-
classical sense. Let a charge=ne be placed at a minimum of the potential, and let an
external high-frequency field , with amplitude large enough to transfer the charge from
one potential well into another be applied. This will induce an ac current in the system,
but the dc currently.) averaged over one period obviously equals zero. Let us now
imagine that a constant fieH is applied in addition to an ac fieldFig. 3b. Then it is
possible to have a situation in which during the first half period the charge will move in
a higher average field in the forward direction than in the backward direction and the
charge can move forward by twa) wells and backward by onen-k) well (Fig. 3b),

i.e., during one period of the oscillations of the external field the charge is displaced by
one (k) well. In other words, a nonzero averagw/er one periogdc current associated
with these processes will appear

(l4oy=knef. (1)

This situation is known as ac—dc interference in systems with a charge-density wave
(CDW) in a model where the motion of the CDW is regarded as a motion of a charged
particle in a periodic potentialsee, for example, Ref.)5At the same time charge
displacement can occur by means of subbarrier Josephson tunneling. In this case, under
the action of a voltag®,. ac currents, whose frequency is proportionaWvtQ, arise in

the system:
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V4= pNhv/2e, 2

wherep is the number of the harmonic amdlis the number of elementary junctions in
the contact. In the case when both processes have the same fregirengya resonance
observed in some region of frequency lockédh= év can be expected, whence

dv. h 3

= @
wherea=pN/kn. Thus, the resonance steps are reminiscent of Shapiro steps, but with a
finite slope determined by the quantissh/2e?.

The quantityh/2e? equals~12.7 K). The value~13.5 K} is observed experimen-
tally (Fig. 2. In the present model this should correspond to the condiieril. An
estimate of the parameter for the experiment gives the following. For our sample
N~80, the position of the first current step corresponds=@5 pA, which gives for
f=11.5 GHzkn~300. The quantityp can be estimated from Ed@2), assuming the
position of the first step iV equalsAV~10 mV. This givesp=4. Finally, we have
a=pN/kn=1, in good agreement with the model.

Estimates of the microwave fields at which steps first appear give an amplitdde
mV for the microwave potential on an individual junction, which is comparable to a
degree of modulation of the potent}, across the layers-A=15-30 mV.

Two steps were clearly seen in the experiments. Their amplitudes in terms of the
current depended nonmonotonically on the power of the radiation, and the peak ampli-
tude of the first step approximately corresponded in terms of power to the appearance of
a second step and the peak amplitude of the second step corresponded to vanishing of the
first step. The steps exhibit hysteresis as a function of the current. This behavior is in
many ways reminiscent of the behavior of the Shapiro steps in the underdamped regime.
In all probability, the second step corresponds to a resonance at the second harmonic
relative to the first step.

In summary, the proposed model describes the observed phenomenon qualitatively.
It is still unclear how the system adjusts, preserving under resonance conditions the
parameterx~1, and how this parameter will depend on the dimensions of the junction,
the number of elementary layers, and other characteristics of the system.

This work was reported in part at the 1st International Conference on the Internal
Josephson Effect and Terahertz Plasma Oscillations, Sendai, 1997. | wish to thank the
participants of the conference S. N. Artemenko, |. Bozovich, N. Ong, HleMand A.
Ustinov as well as P. Monceau and O. Buisson for a discussion of the results. This work
was supported by the Russian State Program on HijgiSuperconductivity(Project
95028. | am grateful to the Center for Low-Temperature Resed@RTBT-CNRS,
Grenoble, where part of this work was performed.
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Spectrum of flexural oscillations of a domain wall with
drifting Bloch lines

A. B. Shumm, L. M. Dedukh,® and Yu. P. Kabanov

Institute of Solid-State Physics, Russian Academy of Sciences, 142432 Chernogolovka,
Moscow District, Russia

(Submitted 5 December 1997
Pis'ma Zh. Ksp. Teor. Fiz67, No. 1, 72-7510 January 1998

It is observed that in single-crystalline yttrium iron garnet the ampli-
tude of characteristic flexural oscillations of a 180° domain wall con-
taining Bloch lines increases sharply when drift of the Bloch lines is
excited. The resonance frequencies of these oscillations are virtually
identical to those of flexural oscillations of a monopolar wall. It is
shown experimentally that this phenomenon is most likely caused by a
magnetic aftereffect. €1998 American Institute of Physics.
[S0021-364(©8)01401-1

PACS numbers: 75.60.Ch, 75.50.Cc

It is now well known that the dynamic properties of domain walVs) in ferro-
magnetic crystals depend strongly on the state of the DW structure. For example, an
expression for DW mobility in a ferromagnet was derived on the basis of a specific spin
distribution in the waltt The “low mobility” paradox, which subsequently existed for a
long time, for DWs in single crystals of yttrium iron garn@tiG)%3 was explained by
taking account of Bloch lines in the DW structdrén addition, it was found that the
Bloch lines strongly decrease not only the DW mobility but also the amplitude of the
characteristic flexural oscillations of a DWIhe effect of the dynamic transformation of
DW structure on the DW velocity in uniaxial garnet films has also been well stidted.
has been established that the initiation of dynamic conversion of DW structure as a result
of the creation, motion, and vanishing of Bloch lines sharply decreases the DW velocity
in these materials in an external magnetic field which exceeds some critical field. In the
present letter we report the results of investigations in which the opposite effect was
observed: It is shown experimentally that when drift of Bloch liiesexcited in DWs in
YIG the influence of Bloch lines on the amplitude and frequency of the flexural oscilla-
tions of DWs sharply diminishes.

The investigations were performed on single-crystalline YIG plates cut out in the
form of a 3.2<0.7xX0.03 mm rectangular prism extended along ffié1] axis. The
sample contained one 180-degree DW, separating domains magnetizedlibZhglane
of the plate. The DW in the initial state contained vertical Bloch lines. When required, a
monopolar state of the DW was produced and maintained, by means of a constant mag-
netic field H, oriented perpendicular to the plane of the plate, in the course of the
measurements of the spectra. The magnetic fields were produced with Helmholtz coils
with a radius of 6 mm. When the spectral curves were recorded, the amplitude of the
current in the coil producing the excitation field was not stabilized and, for this reason,
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FIG. 1. Curves of the amplitudg of the induction signal as a function of the frequeriogf the exciting field
H, . The curves were recorded for monopalar and demagnetize(®,3) DWs. The amplituded,=0.48 A/m
(1,2 and 2.38(3), H,=2.07 kA/m (1).

decreased slightly with frequency. The motion of the DW was detected on a SK4-59
spectrum analyzer with the aid of a compensated detection coil wound directly on the
sample.

Curve 1l in Fig. 1 characterizes the excitation spectrum of a DW in a monopolar
state. The spectrum was recorded in a relatively weak exciting igldcting along the
magnetization in the domains. The curve shows resonance peaks corresponding to the
appearance in the DW of flexural standing waves with wave vécparpendicular to the
magnetization in the domaifsResonance flexural oscillations of the DW are not ob-
served in curve? (in Fig. 1), which was recorded in the same excitation field for a DW
containing Bloch lines. Under these conditions, as direct observations of DWs showed,
the Bloch lines fluctuated near the positions of equilibrium. However, as the amplitude of
the exciting field increased up to a value producing drift of the Bloch finesonance
peaks associated with flexural oscillations of the DW appeared in the spectrum of the
received signalcurve 3 in Fig. 1). One can see that the resonance frequencies of the
flexural oscillations of the DW in both states are practically identical. However, the width
of the peaks in the spectrum of the demagnetized DW is much larger than in the case of
a monopolar DW. This can be due to the additional energy losses occurring with stronger
excitation of the spin system.

Curvelin Fig. 2 shows an example of a spectrum of oscillations of a demagnetized
DW. The spectrum was recorded in an exciting field whose amplitude was close to the
critical value. Only two resonance peaks due to flexural oscillations of the DW are clearly
shown in it. Direct observation showed that under these conditions the drift of Bloch lines
is irregular and it is stable only at frequencies at which the high-amplitude resonance
peaks are observed. In repeated measurements the spectra had a different form: The
resonance peaks could arise and vanish, but they arose precisely at the resonance fre-
quencies at which drift of the Bloch lines occurred. When an additional constantifjeld

was applied perpendicular to the plane of the DW, influencing the drifting of the8ines,
the behavior of the Bloch lines and the form of the spectrum changed as a function of the
magnitude and polarity dfi, . For one polarity of this field, increasing the field stabilized

79 JETP Lett., Vol. 67, No. 1, 10 Jan. 1998 Shumm et al. 79



—— £ (arb. units)
=N

i

W4
0 3 6 9
f (MHz)

FIG. 2. E(f) curves recorded with field amplitudd,=1.2 A/m. Curves2, 3, and4 were recorded in the
presence of the additional field,=0.48 kA/m (2), —0.64(3), and—1.12(4).

the drift of the Bloch lines and simultaneously intensified the flexural oscillations of the
DW (curve?2, Fig. 2. Drift of the lines occurred at all resonance frequencies. When the
polarity of the fieldH, was reversed and the field was subsequently increased, at first the
drift of the Bloch lines completely stopped and, at the same time, the flexural oscillations
of the wall vanishedcurve3, Fig. 2), after which both the drift of the Bloch lines and the
flexural oscillations of the DW reappearéclrved, Fig. 2). These data show that when
drift of Bloch lines along the DW is initiated, the resonance flexural oscillations of the
wall intensify. In addition, it follows from these measurements that an effectiveHigid

of the order of 0.65 kA/m is present in the experimental sample; this field was observed
in YIG single crystals and in earlier experimefts.

Figure 3 shows single oscillograms of the magnetooptical signal, which were re-
corded using a photomultiplier and a storage oscillograph in a local section of the DW at
the resonancél) and intermediat€2) frequencies of the fieléh, . The wide and narrow
peaks in these oscillograms reflect the passage of subdomains, separated by Bloch lines,
through the photometric measurement secfibiComparing these oscillograms shows
that the drift of the Bloch lines is more intense in the case of the resonance oscillation of
the DW than at intermediate frequencies.

In summary, the results presented above show that the excitation of drift of Bloch
lines results in an effective intensification of resonance oscillations of a DW as compared
with DW oscillations under conditions when the Bloch lines fluctuate about the positions
of equilibrium. This behavior of a DW can be explained by taking into account the

WSl
VALY

0.01s

—— e 1

FIG. 3. Magnetooptical single oscillograms reflecting the successive passage of Bloch lines along a DW
through the photometric measurement section Wit=5.0 A/m, f=1.8 MHz (1) and 1.1(2).
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FIG. 4. E(f) curves recorded with a higher sensitivity of the SK4-59 oscillograph than in preceding cases for
a demagnetized DW in a field, . The amplitudeH,=0.04 A/m. Curve2 was recorded in the presence of an
additional fieldH, with amplitude 120 A/m and frequency 100 kHz.

magnetic aftereffect phenomenon, determined by the interaction of Bloch lines with point
defects, whose state depends on the direction of the magnetiZaticrording to the
theory of this phenomenon, both DWand Bloch lines? interacting with point defects,
produce a potential relief whose height is all the smaller the higher the amplitude of their
oscillations and the velocity of their motion. Drifting Bloch lines do not have enough
time to produce a potential relief for their own motion, so that their effect on the motion
of DWSs should diminish substantially. To check this conjecture, we performed an experi-
ment in which in the course of recording the spectrum of oscillations of a wall an
additional low-frequency fieltH, was applied to the crystal, giving rise to forced oscil-
lations of the lines along the wall. An example of such measurements is shown in Fig. 4.
Curvel in Fig. 4 represents the spectrum of oscillations of a DW with Bloch lines. The
spectrum was recorded with a higher sensitivity of the SK4-59 oscillograph than in the
case of the curves presented above. In contrast to cuimeFig. 1, curvel in Fig. 4
shows peaks with a complicated shape which are associated with the flexural oscillations
of a demagnetized DWCurve2 in Fig. 4 was recorded in the presence of an additional
field H,. One can see that in the case when low-frequency oscillations of Bloch lines are
excited along the DW by a fieltl,, the characteristic oscillations of the wall intensify
and the resonance frequencies decrease. Such measurements showed that the character-
istic oscillations of a DW are intensified all the more the higher the amplitude and
frequency of the fieldd, and the lower the amplitude of the exciting figH,. In other
words, the effect of the fielth, on the oscillations of a DW is strongest when the wall
oscillates in the deepest potential relief, determined by the interaction of the wall with
point defects. However, when the lines start to drift the intensification of flexural oscil-
lations of the DW is an order of magnitude greater.

This work was supported by the Russian Fund for Fundamental Research, Grant
97-02-16879.
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Forward coherent inelastic Mo ~ssbauer scattering of
synchrotron radiation

V. A. Belyakov®
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A theoretical analysis is presented of the possibilities of satisfying the
conditions of phase matchi@M) in the coherent inelastic Msbauer
scattering(CIMS, which is scattering accompanied by the creation or
annihilation of phononsof synchrotron radiatiofSR) and the condi-
tions under which the maximum intensity of CIMS obtains are studied.
Of the two types of CIMS — JLparticipation of phonons in a scattering
event only in the stage of absorption or only during re-emission of a
photon, and 2patrticipation of phonons in both stages of scattering —
PM is possible only in the first. The process in which phonons partici-
pate only at the photon absorption stage leads to efficient conversion of
the SR from a wide spectral line into a narrow line, determined by the
width of the Mssbauer transition. Photons of this type of CIMS effec-
tively possess a higher penetrating power than the standassbdaer
radiation, and their spectral distribution is shifted somewhat in the di-
rection of low frequencies. €1998 American Institute of Physics.
[S0021-364(©8)00201-1

PACS numbers: 76.8@y, 41.60.Ap

Rapid progress in Mesbauer spectroscopy using synchrotron radiati®®) has led
to a new type of spectroscopy with a uniquely high energy resolution, limited only by the
width of the Massbauer lingfor example, 108 eV for the most popular Mesbauer
isotope F’). Recent experiments in this field have made it possible to measure directly
phonon spectra for condensed media, specifically, for crystalline mateaiadsliquids
and to measure inelastic scattering spectra of aBeswvard Mssbauer scattering of SR
is important in this field.

The present letter is devoted to a detailed theoretical analysis of the CIMS of SR and
it shows a number of specific properties of the forward CIMS that have not been previ-
ously investigated. Attention is focused mainly on investigating the possibilities of
achieving phase matchin@gM) in forward CIMS of SR and the relation between the
maximum achievable intensity of forward CIMS in samples of finite thickness and the
degree of deviation from PM. Specifically, it is shown that on account of CIMS the
maximum intensity of the resonant-energy fraction of the scattered SR obtains for sample
thicknesses much greater than the absorption length of thesibémier photons. This is
explained by the “pumping” of nonresonant SR photons into thesshauer line. It is
shown that a shiftby an amount of the order of the width of the B&bauer lingof the
spectral distribution of the resonant fraction of the CIMS in the direction of lower ener-
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gies with respect to the resonance energy occurs as a result of coherence effects.

BASIC EQUATIONS

Let us consider CIMS processes occurring during the propagation of a SR pulse in
a sample containing nuclei of a Mdsbauer isotope. Since the Bbauer scattering oc-
curs in two distinct stages — the absorption ofyaay by a nucleus and subsequent
re-emission of they ray, there exist three different possibilities for CIMS:dbsorption
or creation of a phonon only at theray absorption stage) 2bsorption or creation of a
phonon only at they-ray re-emission stage, andl &sorption or creation of a phonon at
both they-ray absorption are re-emission stages. Following the terminology of Ref. 6, we
shall call these possibilities CIMS1 — from a nonresonant component of SR into a
resonant component, CIMS2 — from a resonant component of SR into a nonresonant
component, and CIMS3 — from a nonresonant component of SR into a nonresonant
component.

In a typical Massbauer experiment with SR, the SR pulse durafidrthe order of
1012 9) is much shorter than the duration of the 8ébauer scattering proce@s the
order of 10°-10? ), so that the SR pulse can be assumed to be a delta function in
time, propagating in the sample with the group velocity of the SR pulse. For the CIMS1
and CIMS3 processes the interaction of the SR with thessdauer nuclei in the sample
can be regarded as a perturbation, and the electromagnetic field in the sample can there-
fore be represented as a sum of two componErt&,+ E;, whereE, is the unperturbed
SR field andg; is the perturbation due to the interaction of the SR with thessbauer
nuclei. The equation foE; assumes the form

—VXVXE;=C"?(ey+ €1)9°E1/9t?+c~2€,0°Eq/ dt2, (1)

where ¢, is the dielectric constant in the absence of nuclear interactioneans the
correction to the dielectric constant due to the nuclear interaction. The explicit foem of
depends on the type of process, among the processes indicated above, and is determined
by the corresponding Misbauer scattering amplitude.

Since the SR pulse can be regarded as a delta function in time, the last term on the
right-hand side of Eq(1) can be represented in the fornag/c)?e;Eq( ws,2) o(z—vg4t),
where w; is the SR frequencyyq is the group velocity of the SR pulse, amds the
coordinate in the direction of propagation of the pulse. Representing the solution of Eq.
(1) in the formE,;=ENex(i(kz— wt)], we obtain forEN the equation

EN[K?— (€o+ €1)(@/€)?]= (w4/€) X NEod(wlvg—K), ()

where xN is the analog of the familiar nonlinear susceptibility in nonlinear ophtics.
Equation(2) implies the condition

olvy=k,=Kk, 3)

which can be regarded as the phase matckidg) condition.

COHERENCE LENGTH

Let us examine CIMS in a plane-parallel plate, assuming that the SR propagates in
a direction perpendicular to the surface of the plate. According to Ref. 6, the solution of
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equation(2) can be represented as a sum of the particular solution of the inhomogeneous
equation and a solution of the homogeneous equation. The coefficient in front of the
homogeneous solution in this superposition is determined from the boundary conditions,
which require that the CIMS intensity vanishes on the entrance surface. As a result, we
have for the CIMS amplitude

E1=(ws/C)2XNEo[K?— (€0 + €1)(w/c)?] Hexdi(kyz— wt)]—exdi(kz— wt)]},
(4

wherek,=w/vy. The quantity in braces in E¢4) is proportional to sif(k—k,)z/2], so

that growth of the CIMS intensity in the sample is limited to the distance
lc=m(k—=kp) ~1 called the coherence length. If the PM conditi8his satisfied, then the
coherence length diverges and the CIMS amplitude at the exit surface increases in pro-
portion to the thickness of the plate. In a real situation, absorption is very strong and
limits the unbounded growth of the CIMS intensity with sample thickness.

CONDITIONS OF MAXIMUM CIMS INTENSITY

Let us consider the case of CIMS1 — scattering from a nonresonant into a resonant
component. In this case the factep+e; in Egs. (1) and (2) assumes the form
€0t e,=1—Ae,+ A€y, WhereAe, andAey, are the electronic and \ésbauer contri-
butions to the dielectric constant. The quantity,, deriving from the M@sbauer inter-
action depends in a resonance manner on the frequency, and its real part changes sign at
the resonance frequency of the s&bauer transition, thereby opening up the possibility
for satisfying the PM conditior{3). To obtain a quantitative description of the corre-
sponding possibility, we employ expressions fo¢,, andAe,, . The expression for the
electronic contribution is well known:

Aeg=(wp/w)?, 5)

wherew, is the plasma frequency for the sample. The explicit fornAef, depends on
the characteristics of the fdebauer transitiofsee, for example, Refs. 1 angl @&nd will
be presented below in the form

Aey=—fIN(Eg— Eg+il'/2) 71, (6)

wheref is the Lamb—Masbauer factod’; andI” are the natural and total widths of the
Mossbauer transitiorl depends on the characteristics of théddsauer transitiohand

Es andEg are the SR and resonance energy, respectively. Now it is easy t&fiadd

k for all the specific cases listed above. For example, for the case of CIMS1, scattering
from a nonresonant into a resonant component, one has

kp=(w/C)(€e) "= (w/C)(1+A€ef2), k=(w/C)(1—Aee/2+Aeyl2), (7)
and the PM conditior{3) can be represented in the form
Re(Aeg+Aey/2)=0. (8

It follows from the form ofA ey, (Ref. 1) that PM for case 1 can be achieved at a
frequency close to and somewhat below the resonance frequency. If cor(8jtioolds,
an expression for the sample thickness corresponding to maximum intensity of the reso-
nant CIMS component can be found from E4):
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hm:(1/MMp)|n[(MMp+Me)/Me]a 9)

where u, is the absorption coefficient for S@vithout the nuclear interactiorand .y,
is the absorption coefficient for the Msbauer radiatiorwithout the interaction with
electron$ at a frequency satisfying PM.

It follows from Eg. (9) that in a typical situation the sample thickndss corre-
sponding to the maximum of the resonant component of CIMS is greater than the ab-
sorption length 1, (Whereuy, is the value of the Mssbauer absorption coefficient at
exact resonangeFor this reason, it follows from Ed9) that in case 1 the penetrating
power of the effectively resonant CIMS component is greater than that of the ordinary
Mossbauer radiation, and the maximum of the intensity of this component is shifted to
lower frequencies.

For case 3, PM requires thate,;=0, which cannot be satisfied exactly. For this
reason, there exist beats and limits on the intensity as a function of sample thickness even
if there is no absorption. Now the maximum intensity corresponds to the following
thickness:

hm=(1/AK)tan Y(AK/ we), (10
whereAk=(w/c)Re(Ae)).

INTENSITY OF THE RESONANT COMPONENT OF CIMS

The expression for the absolute intensity of CIMS in a sample of finite thickness can
be obtained from expressio@d) by squaring its modulus and integrating over the SR
frequencies. The corresponding range of integration around thesibaoier resonance
frequency is estimated asTg, where T is the Debye temperature of the sample.
However, it is difficult to perform such an integration. For this reason, we shall estimate
the intensity of the resonant component of the CIMS under the simple assumption that
scattering occurs with the participation of phonons. We shall assume that the cross
sectiona,;, for such scattering does not depend on the phonon energy and is constant in
an integration interval of 2, around the resonance frequency. Then, we obtain for the
cross section for scattering into the resonant component with phonon participation

opn=0o(T12Tp) f(1-1), (1)

where o is the maximum Mesbauer elastic scattering cross section. Since the typical
value of the ratiol'/2T, is very small(of the order of 10° for the case of F¥), the
effect of this scattering channel on SR absorption in the sample is negligible.

On this basis, we obtain for the intensity of the resonant component of CIMS
generated under the phase-matching conditi8nhshe following equation describing the
variation of the intensity with sample thickness:

di,()/dx="f(ap/00) (ppn)(@+1) " (X) = (rmp+ pe)l (%), 12

whereo, is the Massbauer absorption cross section at the phase-matching frequency,
is the internal conversion coefficiemt(x) is the SR intensity as a function of penetration

depth in the sample, anch(,h)*l is the SR absorption length with respect to nuclear
absorption with phonon participation.
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Since the CIMS intensity at the entrance surface of the sample equals zero, taking
into account relatior11) for the cross sections of the process with and without phonon
participation, we obtain from Eq12) the following expression for the thickness depen-
dence of the spectral intensity of the resonant component of the CIMS integrated over the
SR frequency:

I (X)i=(oplog)f(1—f)(a+ 1)‘1IS(O)(l—exp(—,uMpx))exp(—,uex), (13
wherel(0) is the spectral density of the SR at the entrance surface of the sample.

The maximum of expressiofi3) is reached at a depth determined by relaii®n
For this thickness of the sample, the ratio of the number of photons of the resonant
component of CIMS in an energy interval of the ordedofo the number of photons in
the same energy interval in the initial SR beam is estimated as

N, /Ngy=f(1—f)(a+1)" 2. (14

According to Eq.(14), the maximum number of resonant phonons that can be
obtained on account of the resonant component of CIMS is less than their number in the
initial SR beam. However, the ratio of their number to the number of resonant photons
that have penetrated through the sample can be much greater than 1:

N (X)/Ny () = (1= F)(@+1)"H(1—exp — umpX)) eXH — peX+ uX). (15

The ratio of their number to the number of resonantly elastically scattered photons is
estimated as

N (X)/Nys(X) = (1= F)f TH(1—exp( — ppmpX)) expl umX)/ (1= exp(— uux)), (16)

where at thicknesses greater than,( ~* relation (16) approaches (% f)f ~*exp(uyx),
i.e., it becomes exponentially large.

COMPUTATIONAL RESULTS

In the present section the results of the general analysis are illustrated by calcula-
tions for specific values of the parameters of the problem. The parameters employed in
the calculations correspond approximately to the interaction of SR with a sample of iron
highly enriched with°’Fe. The corresponding \sbauer transition energy equals 14.4
keV.

The following values of the other parameters were used in the calculations:
Re(Aee)=107°, Im(Ae.)=2%X107, and Max Refey) =10 Re(A€,)).

As was mentioned above, for the case of CIMS1 the closeness to the PM conditions
(3) and (8) depends on the shift of the frequency relative to thesthmuer resonance.
Figure 1 displays curves of the amplitude of the resonant component of the CIMS versus
the penetration depth of this component in the sample for several values of the deviation
of the frequency from resonance.

Since the spectral distribution of the resonant component of CIMS changes as the
component propagates in the sample, the spectral distributions of the resonant component
of the CIMS at the exit surface are presented in Fig. 2 for samples of different thickness.
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FIG. 1. Amplitude of the resonant component of CIM&hbitrary unitg versus the dimensionless sample
thicknesst=h(w/c)Re(A €g) for different deviations of the frequency from resonance: cdrve Aw/I'=5;
curve2 — Aw/T'=—10; curve3 — Aw/I'=—-5 — a frequency satisfying the PM conditions.

Figure 3 makes it possible to compare the ordinary decay of the intensity §-Mo
bauer radiation in the sample with the behavior of the amplitudes of different components
of CIMS.

DISCUSSION OF THE RESULTS

As the results of our analysis show, forward CIMS exhibits many characteristic
features, the most pronounced of which are an effective increase in the penetrating power
of the resonant component of the CIMS and a shift of its spectral distribution to below the
resonance frequency. The amplitude of forward CIMS for frequencies close to PM would
increase linearly with sample thickness if there were no nonresonant absorption. How-
ever, since nonresonant absorption is present, this linear growth is limited by the electron
absorption length }{,. The physics of the increase in the penetrating power of the
resonant component of CIMS is related with the pumping of the nonresonant component
of the SR into the resonant component.

I
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FIG. 2. Spectral distributiorfarbitrary unit$ of the intensity of the resonant component of CIMS versus

dimensionless sample thickndssh(w/c)Re(Aeg)): curvel —t=1; curve2 — t=5; curve3 — t=15; curve
4 —t=25.
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FIG. 3. Amplitude of the resonant component of CINEbitrary unit$ (curve 1), nonresonant component of
CIMS (2), and ordinary Mesbauer radiation incident on the samg® versus the dimensionless sample
thicknesst=h(w/c)Re(A€)) (curvesl and3 pertain to the same frequendyw/I"=—5, which satisfies the
PM conditions.

The nonresonant component of CIMS undergoes beats as a function of sample
thickness, and it reaches its maximum value when the thickness equals the corresponding
coherence length. On the whole, however, the nonresonant components of CIMS are
smeared over an energy of the order @2 and their spectral density is much lower
than the corresponding spectral density in the initial SR beam.

There are several possibilities for observing experimentally the above-discussed
properties of forward CIMS. An increase in the penetrating power of the resonant com-
ponent of the CIMS can be observed directly by observing forward CIMS for samples
whose thickness is greater than thé 9dbauer absorption lengthuly; . The transforma-
tion of the spectral distribution of the resonant component of CIMS with sample thick-
ness can be observed by the traditional sslwauer spectroscopy combined with the
time-delay technique. An obvious way of changing the effective sample thickness is to
change the angle of incidence of the beam.
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Interaction of Anderson impurities with high orbital
angular momenta: non-RKKY behavior and instability of
Kondo lattice
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The hybridization-induced interaction of Anderson impurities with or-
bital angular momentuni is revisited. At short distanceR<R,
«(l1+1)/ke the interaction has antiferromagnetic sign and decays as
(R./R)¥. At larger distance®> R, the RKKY-like oscillatory inter-
action sets in. A$ increases, the system will sooner or later enter the
“short-distance” domain, where the intersite magnetic interaction
dominates over the screening processes. This means that, contrary to
previous expectations, the nonmagnetic state of the Anderson lattice is
unstable at |—o. © 1998 American Institute of Physics.
[S0021-364(98)01501-1

PACS numbers: 75.30.Mb

The steady interest of theorists in the Anderson lattice nfddelue to a nontrivial
nonmagnetic ground statondo latticg, which is expected to occur in this model under
certain conditiongsee reviews®). Initially such a nonmagnetic state was viewed as a
simple collection of basically independent Kondo ions, but it was quickly understood that
the situation is not that simple. At any reasonable concentration of magnetic ions the
Kondo clouds strongly overlap, so that the nonmagnetic $thtny) could only be a
result of some sophisticated collective screening effect. A severe limitation on the non-
magnetic scenarfds imposed by the conduction-electron-mediated magnetic interaction
of Anderson ions;® tending to form a magnetically ordered state. The magnetic inter-
action energyE ,,4is proportional to the fourth order of the hybridization matrix element
V, while the “Kondo energy”Ex, characteristic for screening processes, is exponen-
tially small in |V|~2. This means that a controlled theoretical analysis of the nonmagnetic
state can only make sense if there is an additional parameter in the model, which can help
to overcome the tendency to the magnetic order formation. It is widely believed now that
the degree of “orbital” degeneracy of the Anderson ion may be such a parameter. It
was first argued by Colem&mnd Read, Newns, and Donia€lihat the screening pro-
cesses can dominate over the intersite interaction for the Anderson ions witN&igh
The nonmagnetic state itself was extensively studied both for the so-call§l)
Anderson lattice mod&t? with unspecified external origin for the degeneracy, and for a
more realistic model with genuine orbital degeneracy related to the orbital angular mo-
mentuml of a magnetic iort?2 For the former model the enerdym,q of the competing
magnetic state is easy to find, and the criterion of stability of the Kondo lattice can be
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easily checked: it is indeed fulfilled at largé. For the latter model only tentative
estimates ofE,4 have been foundsee Refs. 12,3)8they also seemed to favor a
nonmagnetic state. In Refs. 12 and 8, however, only the angular dependence of the matrix
elements was taken into account, while, as we will see below, the dependejkdasoof

crucial importance for high angular momerta

The goal of this paper isfi) to study the dependence of the effective magnetic
interaction of Anderson ions on the distance between ions, (@ndto reconsider
the question of stability of the nonmagnetic state of the Anderson lattice at high
degenerac\\.

A mechanism of indirect interaction of magnetic atoms, originating from the hybrid-
ization of localized and delocalized electrons was proposed in the pioneering pgper
Cogblin and Schrieffefsee also Ref.)6 This interaction is presumably essentia., it
can dominate over the conventional exchange-induced RKKY interadtionthe reso-
nant case, when the localized lewglis situated only slightly below the Fermi leve} ,
which is supposedly the case for the metals with considerable valence fluctuatigns
cerium. The original derivation® of the interaction, based on the repeated application of
the second order Schrieffer—Wolff transformatiénywas, however, incomplete. A
straightforward fourth-order Schrieffer—Wolff transformatitsee Refs. 7,8 gives rise
to, besides the RKKY-likéthough highly anisotropicCogblin—Schrieffer interaction, an
additional important term which is reminiscent of ordinary superexch&hg@his term
alters the interaction quite dramatically, especially at short distances, where it dominates
and changes the sign of the interaction to antiferromagnetic.

In this letter we restrict consideration to the case of one electron in the magnetic
shell (e.g., onef electron for cerium ionsand consider only the lower spin—orbital
multiplet, characterized by the total angular momentisi —1/2 orl+1/2, the degen-
eracy of the localized state beifNy=2J+ 1. We describe a system of two magnetic ions
(a andb) by the Anderson Hamiltoniat=Hq+ Hpy,, Where

U
_ +
Ho—z €kCryCrot €0 2 niM+§ 2 NimNim s
ko M,i=a,b iM#M’

U is the energy of the Hubbard repulsiome setU = + for simplicity); niy = fl fim »
f1, creates an electron with,=M in the unclosed shell of theth magnetic ion;clg
creates a conduction electron with momentimand spin projectionc=*+1/2. The
hybridization Hamiltonian is

thb=ik%a e Rivy (ko)el, fim+ h.c.

The initial Hamiltonian{ can be reduced to an effective interactibinof magnetic
moments, by means of a fourth-order Schrieffer—Wolff transformatsee Ref. 8
Consider degenerate ground states of the unperturbed Hamiltbfgiacharacterized by
quantum numbers={M_,,M}. Then, specifying all possible intermediate stdt¢swe
obtain composite fourth-order matrix elements between stajeand |v’):
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A= S (' [Hnyoli 3)(i sl Hnypli2) (i 2l Hiypli 1){1 1| Hnyol )
- (E,—Ei)(E,—E)(E,—Ej)

i1igig# v,v'

__ E (i3 0(e— €r) , (1)

koo’ (€x— €xr) (e €o)?

‘Dmimfjfcmﬂk— KORH V(Ko )WViy (ko) Vi (ko) Vi (K'o") +(a—b)}.

Note that expressiofil) comprises both usual RKKY-like indirect exchange processes
with electron—hole excitation in the intermediate state>kr, k’'<kg), and the
superexchange-like processes with two-electron excitations in the intermediate state
(k,k">kg).

In order to proceed with the calculation of the matrix elemétdescribed by the
general formula(l), we adopt the “free electron” modelsee Ref. 3 in which the
conduction electrons are described by plane waves,egrd?/2m. Having in mind an
application to rare earths, we assume that the spatial size of the localized,stasenall
(see Ref. 1§ much less than botR and k;l, so that only the contributions of leading
order inkrg should be kept. Then the matrix elements of the hybridization Hamiltonian
are

Vi(ka)=CL, f Ar g (1) Yo (Q)V(1)E™,

b1 43-1oM\|?
Che=—=|1+ ——75—| .
v I+1/2

V2

whereV(r) is the hybridization potential, which is spherically symmetric at the relevant
small distances ~rq, and (r) is the radial part of the localized wave function. Per-
forming the angular integration, we getlaty<1

Vi (k,0)=CR,(KIke) Vi VAT Yy (20, @

WhererFoc(kFro)' is a constant. The factok(,)', very important in the case of high
arises due to tunneling under the centrifugal barrier. Choosing the quantization axis

parallel toR, we can now rewritgl) in a form
(k/kg)?'k2dk

. 2. °°
T f kR
a0 9am,( )(k2—2meo)2

XPF gory KK by 3
0 g‘]Mb (k2_k12) a=Db),

where|0=|VkF|4(m/7r)3, the symbolP means the principal value of the integral, and
p= 5MgMb5M{)Ma is the “exchange operator.” The real function
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g(0=3 (CB,)2 [ 400708 cos ),

depends only ord and [M|, not onl, and not on the sign oM. It is convenient to

represeng;yu(x) as the real part of a complex functi@)M(x) with appropriate analyti-
cal behavior

Tom(0=— mf{(JHMl)ZlP'M%<t>|2+IP'M“%(t)lzdté“”‘m

Jou SO -3 -3 !

whereP]!' are associated Legendre polynomials. For the nondegenerate Anderson model
(J=1/2) one getsgii(x)=e"/ix. In general,g;u(x)=e*Qyu(1/), whereQ,y are
polynomials of degree 2 Their explicit form for not very higl (e.g., forJ=5/2 in case

of cerium can be easily found using a program of analytical calculations. The study of

properties ofg for generald,M is a quite involved mathematical exercise; here we give
only a few asymptotic forms without derivation:

o) Bywe™ (J+|M])!
Xm—l = ]
GO = M2 SN TSI M= 1721 (3— M)

for x>, (4)

D yux?

EJM<x>~Jo[x¢1—(M/J>2]—iA%”exp( 23
X

: ®

for x<J, whereJ, is a standard Bessel function, and

C(—1MM20)![(29)11]? 5 JJ-2)+M?
M 2323 M) I+ M)! M (g-1)2

Comparison of the asymptotic fornt4) and (5) shows that they match at~J for all
values ofM andJ.

Since g u(X) is an analytic function in the upper half plane, one can perform the
integration overk’ in Eqg. (3) by the residue theorem; introducing the dimensionless
variablez=kR, we arrive at

o _Flo_, f D (DT, (2 ®)
=— m —_ z 2).

(eR) iR (22— 2megR?)? OMa' ) 9am,

Let us start the discussion with the case of the nondegenerate Anderson model:
=0, J=1/2, where the interaction is isotropigt=(J®.J®)|(R). In the nonresonant
case (when ¢y is not especially close t@&g) there is only one spatial scale, viz.,
R.~ 7/kg , and the “exchange constant(R) has the following asymptotic behavior for
R<R;:

o [ 1 1+Ve 2
|(R):kF—R[$|nm+E]>O,
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wheree = €y/ex . This asymptotic behavior is dominated by the antiferromagnetic con-
tribution of the superexchange processes. R&fR. we getl=1q(er/A)2(keR) 3

X cos X:R, which coincides with the asymptotic behavior of the conventional RKKY
interaction.

In the resonant case, whén= e — eg<<eg, the main contribution to the interaction
comes from a narrow strip of widtkt A above the Fermi surface. As a consequence, a
new spatial scaleR.~er/keA>R;, and a new intermediate asymptotic form
I=1o(er/A)(KeR) ~2sin &R, valid in the rangeR.<r <R, arises. This asymptotic
form has a shifted phase of oscillations and a slower decay of the amplitude in compari-
son to the RKKY behavior.

Let us now discuss the general calse0, J>1/2. It can be shown that, at “short”
distancekgR<J, the main contribution t¢6) comes from the residues of the integrand,
so that

7T|0A|,:\) 4 mfoRz

H=Awm, JMb(k,:R)‘”eX 25 (Dom,+Domp) 1 ™

where A =2mR2¢, for J=1—1/2 andA=(DJMa+ DJMb)/lﬁJ for J=1+1/2. Note that
the interaction does not start to oscillate Rt 7/kg, as in the conventional RKKY

interaction, but decreases monotonically, without changingait$iferromagneticsign,
up toR~R.~J/kg.

The physical interpretation of this result is as follows: The main contribution to the
interaction comes from electrons which pass by the magnetic ions with impact parameters
pa~pp~R. On the other hand, these electrons should have angular moméntam

therefore their moment&k~k* =I1/R. The composite matrix elemer1%if><|V(k*)|4
~(I/keR)*, which explains the principal features 6f. Note that for short distances,
whenk* >kg, the only processes in which both electrons involved may have such high
momenta are the superexchange processes. Note also that the position of the Fermi level
does not appear in expressior). For large distanceskfR>J), all factors in the inte-

grand of(6), except the oscillating ones, can be replaced by their valae-&tR. Then,

using (4), we get

. A(e,:)z 1oBam,Bam,

. a
H=—P A 2(kgR)Mal+IMyl +2 sin ZKFR_E(lMaH'Mb') ' ®

For |M,|=|M|=1/2 it matches with the result of Ref. 6.

In the resonant situation we obtain, as in the nondegenerate case, an additional
intermediate  asymptotic form:Hoc Im{g;y_(keR)gm,(KeR)}. In particular, at
R.<R<R,it leads to a phase shift af/2 and to an additional factokfR)A/ e in the
amplitude of oscillations, exactly as in the nondegenerate case.

At moderate distances the spatial form of interaction differs considerably from the
RKKY form even in the nonresonant case, though in the resonant case the difference is,
of course, stronger. We have calculated the largest matrix element of interaction,

H12 14x=2keR), numerically for two systems: the nondegenerate Anderson model,
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and f levels (cerium). The complete plots will be published elsewhere; here we only
mention that the resulting dependences approach the standard Fgpe (X)
=x"3cosx—x“4sinx only for x>15 (for |=0) and forx>30 (for |=3). In rare earths,
however, typically XR~10 for nearest neighbors, and at these distances the spatial
shape of the interaction is quite far from the RKKY form, even without resonance. Thus
neither the long-distance asymptotic foii® nor the simple RKKY function may be
used for interpretation of experimental data on cerium compound&:-tiependence of
matrix elements is essential for all practically important distances. Note, that this
k-dependence arises here already in the leading orderyi1, contrary to the case of
the standard exchange-induced RKKY interaction, wherektdependence of matrix
elements occurs only due to corrections of higher ordéarijn(see Ref. 138

There is an important message concerning the stability of the nonmagnetic Kondo-
lattice state in the above results. Sinkg,~ (41/e)* at largel (and smallM), we can
conclude from(7) that the energyper sitg in the magnetic state of a lattice of Anderson
impurities is

Emag® — Vi [*(Re/ag)®™,  Re=2N/eke, )

provided that the distance between nearest neighbgrR.. The energy of the non-
magnetic(Kondo) state isEx o — e exp(—A/Np|VkF|2), wherep is the density of states at

the Fermi surfacé Which energy is lower at high degenerady= 2| —? To answer this
question one rescales the parametég(s andkra, so thatEy does not change withl,

and then looks to see whethgr,,i/Ex goes to zero or to infinity aN—o. It was
argued®3that in order to get a proper nonmagnetic state, the rescaling should be done in
such a way that both the effective coupling COI’ISthIﬂ1‘t/KF|2/A and the number of

conduction electrons “per subband per sitek-6,)°/N remain fixed. The latter means
that R./a, scales adN?® and, consequently, the conditiay<R, of the non-RKKY
behavior is fulfilled at largéN, so that one should indeed use E®).for E,,5. Then one
0btaiNSE g/ Exx N*N3— 0, which means that the magnetic state, not the Kondo lattice,
is preferable at larghl, and the largeN Kondo-lattice scenario is inconsistent in a model
in which the physical origin of the largd is the orbital degeneracy.

The author is indebted to H. Capellmann for discussions.
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Does the phase transition exist in the one-component
plasma model?

S. M. Stishov
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Explanations are given for why there is no real first-order phase tran-
sition in the one-component plasn@CP model. The fluid(liquid)

and crystalline states of the OCP observed in computer experiments are
not in equilibrium, on account of instability of the system. However,
specific features of the free energy suggest that some sort of a “vir-
tual” phase transition occurs in the model. Such a transition can be
turned real by choosing the right form of the background energy.
© 1998 American Institute of Physids$0021-364(1®8)01601-9

PACS numbers: 52.25.Kn

The purpose of this note is to clarify some subtle questions concerning the existence
and properties of the phase transition in the so called one-component p{@sDix
model. The OCP is a system of identical charged point particles, immersed in a homo-
geneous neutralizing background of opposite charge. The properties of the classical OCP
can be described in terms of a single dimensionless paramet¢Ze)?/r T, whereZe
is the charge of a particle, is the radius of a sphere containing one particle, Bislthe
temperature. In the qguantum case one more paramegter,T, is needed to characterize
the system.

The first indications of the existence of a crystalline phase in the quantum OCP
model were obtained by Wigner in his classical paper devoted to correlation effects in an
electron gas. The terms “Wigner solid” and “Wigner crystallization” have become
common in physics since that time. Later on, Brush, Sahlin, and Tafieheir pioneer-
ing Monte Carlo simulation of the OCP discovered that the radial distribution function
g(r) indicates the existence of crystalline structure in the classical OCIP>&t20.

Brush, Sahlin, and Teller were probably the first to use the term “phase transition” in
discussing two states of the OCP: liquid and solid. Then Hahsed Pollock and
Hansefl carried out an extensive study of the OCP using an improved Monte Carlo
technique, and again they observed existence of liquid and solid states in the OCP model
and announced that the liquid—solid transition in the OCP model occurred at
I'=155+10. It should be emphasized here that by this time nobody doubted the exist-
ence of the phase transition in the OCP, and most of the subsequent papers have been
devoted to determination of a more precise valu€' gf to quantum effects, etc. Current
estimates of ,, are confined to the interval 172—17&uantum Monte Carlo simulations

of the OCP should be mentioned héreln general their results are considered to have
confirmed the expectation of so-called “cold” melting in quantum Coulomb systéms.
The result of the latest simulation data of this §istshown in Fig. 1. It would seem that
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FIG. 1. The “phase” diagram of the OCP after Jones and Cepéflye conditionl” = const corresponds to the
classical “transition.” The strong deviation of the “transition” curve from the= const line at high density is
a result of quantum effects. It follows from the numerical daket\;/L~0.5 at the maximum of the curve,
where\; is the thermal de Broglie wavelength ahds the average interparticle distance.

all the OCP calculation and simulation data that have been obtained create very reliable
grounds for discussing numerous problems of condensed matter physics connected in
various ways with the existence of a solid and a liquid phase in the OCP. The state of the
plasma in the interior of white dwarfs is one of the most intriguing prob&#But first

we should have better understanding of what actually occurs in the OCP at the critical
valueTl',,. Let's see how the numbers fdt,, are being obtained. Normally all calcula-
tions in the OCP model are carried out in the canonical ensemble, and the natural output
is the Helmholtz free enerdy for various values of'. The intersection of two branches

of the Helmholtz free energy is taken as the phase transition coordihatéig. 2).
Actually this procedure is incorrect: a phase transition occurs when the Gibbs free ener-
gies of two phases are equal, and one has to use the double-tangent construction in the
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FIG. 2. The Helmholtz free enerdy divided byNKT as a function of" =3 (I' "3« V) for the OCP, as follows

from Monte Carlo calculationgH. E. DeWitt — private communicationV is the specific volume. The plot
contains two systems of data which are almost on top of each other. The crosses and circles correspond to the
fluid phase and solid phase, respectively. The intersection point occlirs- 475 (H. E. DeWitt — private
communication
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FIG. 3. An exaggerated version of the diagram of Fig. 2. It is seen that a correct double-tangent construction is
impossible for convex potentials.

F-V plane or an equivalent to get a correct regkig. 3). But usually it has been said

that the volume change at the transition is too small to distinguish between the two
procedures mentioned. Moreover, the subsequent claim that volume change at the liquid—
solid transition in the OCP always equals zero eliminated any potential intfuiry.

Meanwhile, the fact that the double-tangent construction is wrong in principle in the
case of the OCP was missed by a whole generation of researchers in the field. Figure 3,
where the “impossible” double-tangent construction is depicted, illustrates the situation.
The point is that the OCP is thermodynamically unstabl€ &t3, and the pressure and
compressibility of the system are negati¥égs. 2 and R'! Due to the negative value of
the compressibility the free enerdiyof the OCP is a convex function of the volurig
and hence a common tangent to two branches of the free energy does not make any sense.
The conclusion is that there is not any kind of first-order phase transition in the system,
at least for the reason that one of the necessary conditions, which is equality of pressure
in coexisting phases, cannot be satisfied. So a question arises what does take place at the
intersection point, wherg ;= F, (see Figs. 2 and)3A slope change is obvious at this
point, and because’F/dV);= —p, wherep is the pressure, the liquid and solid at the
intersection point have different pressures and cannot be in equilibrium. But for the
reason that will be explained below, the intersection point under discussion may be called
the point of a “virtual” phase transition. Note that the density is by definition unchanged
at the intersection point, and the long discussion of this problem in Ref. 10 is senseless.

From the equalityF ;= F s, 0ne can get an analog of the Clausius—Clapeyron equa-
tion in the formdT/dV=AP/AS, which describes behavior of the intersection point in
the T-V plane. This equation is applicable to the quantum case as well, where a tem-
perature maximum is observé#ig. 1). As follows from the above equation, the tem-
perature maximum is reached when the pressure difference in the liquid and solid
AP=0, provided, of course, that one assumes that the corresponding entropy difference
AS is finite at finite temperatures. This situation is illustrated by Fig. 4, where the
temperature of the virtual phase transition as a function of pressure, which is of course
negative, is shown in qualitative way.

It is obvious that the OCP model is not quite physical, but as was emphasized
earlier, if one would think of the neutralizing background as a degenerate electron gas
and would add the corresponding Fermi energy to the total energy of the system, then the
situation would change drasticaftyThe pressure and the compressibility would become
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FIG. 4. The “phase” diagram of the OCP in the-T plane(compare with Fig. L

positive and the tangent construction would be feasible. That is why we may call the
transition in the OCP a virtual phase transition. Figure 5 illustrates the transformation of
the compression isotherm of the OCP with the quantum effects taken into account, when
the Fermi energy of the background is added. However one should keep in mind that in
the given case the role of the electronic background is restricted to charge neutralization,
and Fig. 5b is drawn under the assumption that there is no other interaction between the
point charges, which could be ions, and the electrons. We also assume that the quantum
kinetic energy of the ions is not influenced by the nature of the background. As a result,
the intersection points of the free energy curves do not change their volume coordinates
(Fig. 5).

Both of the assumptions are valid in the high-density limit, which almost exactly
corresponds to the interior of white dwarfs. However, the free energy difference of the

Helmholtz free energy, F

FIG. 5. The double crossing of free energy curves in case of strong quantum effects in the OCP model: a —
standard OCP modésee Fig. 1, b — OCP model with a realistic background; the double-tangent constructions
reveal two phase transitions with volume chanles-V, andV;—V,. The second, high-density crossing is

due to the fact that the quantum contribution turns out to be structure-sensitive and increases the energy of the
solid as compared to the liquid.
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liquid and solid in the OCP is so smdliee Fig. 2 that hardly any certain prediction
about quantungcold) melting at very high positive pressure can be made on the basis of
OCP calculations that do not take into account the realistic structure of the background.
In this connection it is instructive to refer to Refs. 12 and 13, where proofs were found
that in case of metallic hydrogen the zero-point energy favors highly symmetrical struc-
tures in a certain density range. In other words, one may expect that the quantum effects
not necessarily decrease the melting temperature of a Coulomb system on compression,
and further and more-sophisticated studies are needed to reach a definite conclusion.

I acknowledge emphatically the discussions | had directly or indirectly with Hugh
De Witt, David Kirzhnits, David Young, Francis Ree, Gilles Chabrier, Neil Ashcroft, and
Efim Katz. | am specially thankful to Hugh De Witt for sending me some results of his
calculations.
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Comment on the paper: Does the Unruh effect exist?

A. A. Grib
A. A. Friedman Theoretical Physics Laboratory, 191023 St. Petersburg, Russia

(Submitted 25 November 1997
Pis'ma Zh. Ksp. Teor. Fiz67, No. 1, 86—86(10 January 1998

[S0021-364(®8)01701-0
PACS numbers: 03.7¢Kk, 04.60—m

An article with the above title by V. A. BelinskiB. M. Karnakov, V. D. Mur, and
N. B. Narozhny was published in a recent issue of JETP Lettefae authors make the
following assertion in the article: “It is shown that quantization on the Fulling modes
presupposes that the field vanishes on the spatial boundaries of the Rindler manifold. For
this reason, Rindler space is physically unrelated with Minkowski space and the state of
a Rindler observer cannot be described by the equilibrium density matrix with the
Fulling-Unruh temperature. Therefore it is pointless to talk about the Unruh effect.”
Later in the text of the articlépage 906 the authors talk about a boundary condition that
“corresponds to the presence of an impenetrable wall.” | wish to make some brief
remarks concerning these assertions.

The boundary conditions in the Unruh effect and their difference from the boundary
conditions in the Casimir effect or in the problem of a mirror, where an “impenetrable
wall” is actually present, have been analyzed by N. Sh. Uru$dyausova noted that in
the Unruh effect these boundary conditions are, as is well knidhoonditions on the
light cone(on the left half of the cone for the right-hand Rindler angle and vice versa for
the left-hand angle which in turn is a characteristic surface for the wave equation. A
characteristic surface, by virtue of the definition of its properfigse, for example,
Ref. 5, is not an “impenetrable wall,” and conditions on it do not violate the equation.
| note, in passing, that the conditio(i® presented in Ref. 1 likewise are conditions on
the light cone and not on a “time-like surface,” since there are no other conditions in the
problem of the Unruh effect. Thus in my opinion the Unruh effect does exist and its
generally accepted interpretation is correct, and the criticism in Ref. 1 is based on a
misunderstanding.
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The authors reply

V. A. Belinskil, B. M. Karnakov, V. D. Mur, and N. B. Narozhnyt

(Submitted 17 December 1997
Pis'ma Zh. Ksp. Teor. Fiz67, No. 1, 87—-88(10 January 1998

[S0021-364(98)01801-3

PACS numbers: 03.78k, 04.60—m

The boundary conditiofi7) of our papet is not a condition on the light cone. To see
this it is sufficient to glance at Eq$8) of that paper, which relate the Minkowski and
Rindler coordinates. It follows from these equations that the time axis in Rindler space
(p=0, 7 finite and arbitrary maps into a single point in Minkowski space, specifically,
the origin of coordinates=z=0.

The pointp=0 is a boundary point in Rindler space for any Cauchy surface, for
which one can take, for example, the “space-like” surfage const. In Minkowski
space, to such a surface there corresponds a ray emanating from the origin of coordinates
and lying outside the light cone. Light-cone surfaces in Minkowski spgeet?=0,
z#0, t>0 (<0) correspond in Rindler space to the poipts 0, »=*«, and the
boundary conditions at these points are not important for our analysis.

As was shown in our papérthe condition(7) arising at the apex of the light cone
ensures that the operat@(p) in Eq. (2) of Ref. 1 is self-adjointthe case of a limit
point), as is required in order to solve the Cauchy problem by the Fourier method and
therefore in quantizing the fielgee Eq(6) of Ref. 1). We shall clarify this assertion on
a specific example.

The condition(7) for the quantized fieldpg(p,7) should be understood, strictly
speaking, as an assertion concerning the matrix elements of this operator, for example,
for the single-particle amplitude;(p, ) =(0g| #r(p,7)|f), where|f)=c™(f)|0g) and
c*(f)=f5duf(u)c, .

Let us examine the single-particle amplitude for which#iRg, 7) = m*/%e~mecosh,

It satisfies the Klein—Fock—Gordon equation but it does not satisfy the boundary condi-
tion. The weight functiorf ,, which is a Kontorovich—Lebedev transform of this ampli-
tude, equals , = 2m*? (sinhw)Y2 Thereforef|f(w)|?du diverges at the lower limit, so

that the single-particle statd) is physically unrealizable. If, however, the boundary
condition ¢¢(0,77) =0 is satisfied, then Parseval’s equafitwlds,

o dp 1~ du
207 _ T 21

and the corresponding single-particle state is certainly normalizable.
Finally, following the logic of Sec. 12 of Ref. 4, we calculate the matrix element
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= du
Oc*fchzJ—fz. 2
(Oule" (he(hlow)= | a1 @
If this matrix element is finite, then according to E€l) the boundary condition
#+(0,7)=0 should be satisfied. This means that Rindler and Minkowski spaces are in no
way physically related, so that the calculation of the matrix element if&ds mean-
ingless. The latter assertion is a central point of our paped justifies its title and
results.
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