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Abstract—The contribution of higher order corrections to the Stark energy is calculated in the anticrossing
region of atomic multiplet sublevels. Perturbation theory for close-lying levelsis presented that is based on the
Schrédinger integral equation with a completely reduced Green's function. Analytic formulas are obtained for
the splitting of two interacting fine-structure sublevels as a function of the field strength. These formulas take
into account fourth-order resonance and nonresonance corrections to both the diagonal and the off-diagonal
matrix elements of the dipole moment operator. By the method of the Fues model potential, a numerical anal-
ysis of radial matrix elements of the second, third, and fourth ordersis carried out that determine avariation in
the transition energy between n 3P, and n 3P, sublevels of a helium atom for n=2, 3, 4, 5in auniform electric
field. It is shown that the contribution of the fourth-order correctionsin the vicinity of anticrossing of levelsfor
n=2,3,4,5amountsto 0.1, 5, 10, and 15% of the total variation of energy, respectively. A comparative anal-
ysis is carried out with the results of calculations obtained by the method of diagonalization of the energy
meatrix, which, together with resonance terms, takes into account other states of the discrete spectrum withn < 6.
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1. INTRODUCTION

The Stark effect in a constant electric field was cal-
culated for a hydrogen atom and described in detail in
textbooks and monographs almost immediately after
the origination of quantum mechanics (see, for exam-
ple, [1, 2]). Nevertheless, this phenomenon has not yet
been completely studied and still attracts attention in
our time. The experimental studies of the Stark effect
have been stimulated by the development of precision
methods of |aser spectroscopy [3-6]. Theoretical calcu-
lations of the shift and broadening of the Stark statesin
hydrogen atoms carried out by the beginning of the
1980s were based on the iterative solution of the
Schrddinger equation involving the separation of vari-
ables in a parabolic system of coordinates [2]. The
development of computer programs for analytic com-
putationsthat allowed oneto derive general expressions
for the coefficients of power seriesin the field strength
for both the shift and the broadening of atomic levels
[7, 8] has served as a powerful incentive for the calcu-
lation of higher order corrections to energy. Analytic
programming has also enabled one to obtain general
expressions for perturbation theory series for the wave
functions, matrix elements, and radiative transition prob-
abilities between the Stark states of hydrogen [9, 10].

A comparison of the numerical data obtained by these
expressions with the results of measuring the field
dependence of the probability of radiative transitions
between highly excited Rydberg states [11] has shown
that the first three termsin powers of the field strength
are quite sufficient for calculating the transition proba-
bilities in virtually all situations of interest up to the
field value when the above-barrier ionization of the
upper level becomes possible.

By the end of 1970s, methods of |aser spectroscopy
of Rydberg levels had been developed that allowed one
to accumulate a large volume of experimental data on
the Stark effect in highly excited multielectron atoms
[12—15]. These data stimulated the devel opment of sim-
ple semiempirical calculation methods for the polariz-
abilities of atomic levels [16, 17] (including Rydberg
levels[18]), aswell asthe development of exact ab ini-
tio methods that enable one to consistently take into
consideration relativistic and quantum-electrodynamic
effects, which play a significant role in the spectra of
ions of high degree of ionization [19-22]. In [13-15,
23], it was observed that the Stark effect on multiplet
sublevels deviates from the quadratic law even in weak
fields. This phenomenon is accounted for by the Stark
interaction between sublevels that leads to their repul-
sion in afield and is determined by the hyperpolariz-
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ability of an atom. It was demonstrated that the main
(resonance) contribution to the hyperpolarizability of a
multiplet sublevel can be expressed in terms of the ten-
sor polarizability of this multiplet [24]. Therefore, pre-
cision calculation [25] and measurement [3, 5, 26] of
irreducible components of the polarizability tensor of
multiplet states of atoms becomes topical.

Precision information about the Stark effect in
higher order terms of perturbation theory plays a key
rolein modern optical frequency standards based on the
application of magnetooptical traps in combination
with the methods of laser cooling of atoms up to several
nanokelvins [27], as well as in the problems of fre-
guency stabilization in atomic standards of a new gen-
eration—atomic fountains [28].

The interaction between sublevels of amultipletina
field may lead to an important phenomenon, the so-
called anticrossing [29]. This phenomenon manifests
itself when the polarizahility of a higher energy sub-
level is greater than the polarizability of alower energy
state. Then, in a wesk field, the sublevels move closer
to each other; i.e., the fine-structure splitting decreases.
In astronger field, the sublevels are repul sed from each
other; this repulsion is determined by the resonance
part of the hyperpolarizability. The field strength at
which attraction turns into repulsion and the minimal
value of splitting are uniquely determined by the
atomic susceptibilities—the components of the polariz-
ability and hyperpolarizability—and can be calculated
theoretically. Usually, the field value corresponding to
the anticrossing of levelsis sufficiently high; therefore,
an appreciable contribution to the energies of states
may be made not only by the polarizability and the res-
onance part of the hyperpolarizability but also by non-
resonance additions to the hyperpolarizability.

In [30], fourth-order nonresonance corrections have
been calculated to the energy of separate sublevels of a
helium atom multiplet. In this case, the resonance
hyperpolarizability Yy, which is determined by the
off-diagonal matrix elements of the interaction operator
between atom and field through the fine-structure states
and is expressed in terms of the tensor polarizability o,
is calculated only in the second order of perturbation
theory. This is associated with the fact that, formally,
the fourth-order corrections to an off-diagonal element
make a correction of order F¢d, where d isafine-struc-
ture splitting value at F = 0, to the expression for the
fine-structure splitting &(F) depending on the field
strength F. However, in the anticrossing region, the
field amplitude may reach such values that a'F? ~ 9;
therefore, the fourth-order corrections to diagonal and
off-diagona matrix elements may make identical con-
tributionsto the energy of the multiplet sublevels. Since
the fine-structure splitting is arapidly decreasing func-
tion of the effective principal quantum number of an

atomic level v = 1/, /—2E,, (E, isthe binding energy of
the level), & ~ v=3 [31], and the polarizabilities and
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hyperpolarizabilities are rapidly increasing functions,
a ~v’andy~v17[32], theanticrossing for higher levels
occurs in weaker fields, and the contribution of higher
order corrections becomes more significant. The first
calculations of the nonresonance hyperpolarizability
for thetriplet state 3 *P in helium atoms[30] has shown
that the contribution of the fourth-order field correc-
tions to the diagonal elements may be several times
greater than experimental errors. Therefore, the deter-
mination of corrections to the off-diagonal el ements
also becomes topical.

The main goal of the present paper is to determine
the contribution of the fourth-order corrections in the
field strength to the energy of multiplet states of an
atom near the anticrossing of the fine-structure sublev-
els. In Section 2, we give a generalization of higher
order perturbation theory for degenerate states [33] to
the case of close-lying level sthat have nonzero splitting
in zero field. We abtain expansions of the matrix ele-
ments of the interaction Hamiltonian of an atom and a
field in powers of the field strength F up to the fourth
order. In Section 3, the coefficients of these expansions
are expressed in terms of irreducible parts—scalar and
tensor polarizabilities and hyperpolarizabilities—
which, in turn, are represented by linear combinations
of radia matrix elements of the second, third, and
fourth orders. In Section 4, we derive general expres-
sionsfor thefield-dependent splitting of two interacting
fine-structure sublevels. The fine-structure splitting of
n 3P states of helium (n=2, 3, 4, 5) iscalculated numer-
icaly asafunction of F; in zero field, these states have
total momentaof J=0, 2 and aprojection of M =0. The
contribution of the fourth-order correctionsin the field
region of level anticrossing is determined.

2. HIGHER ORDER PERTURBATION THEORY
FOR CLOSE-LYING LEVELS

The calculation of higher order corrections to the
Stark effect for atomic multiplet sublevels requires a
consistent development of perturbation theory for

close-lying levels. Supposethat Ho (r) isaone-electron
Hamiltonian of a valence electron with eigenfunctions
@, 5(r) and eigenvalues E, g that correspond to the
sublevels of an atomic multiplet with the principa
guantum number n and the quantum numbers of orbital

L, spin S, and total J momenta (the Hamiltonian Ho (r)
takes into account the spin—orbit interaction). Then,

|:|0(r)(|)nLSJ(r) = Engy@usa(r)- ()
Let us project the Schrédinger equation

(Flo(r)+\70(r))LPnLSJM(r) = EWosm(r) 2
for an atom in a constant €lectric field, whose interac-

tion isdescribed by the operator V (r) = Fz, onto awave
function of acertain state of degenerate basis, assuming
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that all projections of the vector of state W, ; onto the
basis vectors are of the same (zero) order in the field,

A
WoLam(N) [ @sy(r)O = &Y.

Here, J=J, ..., s A =1, 2, ..., k and kis the number
of interacting sublevels (which may not coincide with
themultiplicity of the multiplet). Takinginto account (1),
we obtain the following expression as a result of the
projection:

(Ensy—E)ay + g oV|WO = 0. 3)
Next, we project Eq. (2) onto the Green's function
Gg(r, r') of the unperturbed atom that satisfies the

inhomogeneous equation
(Ho—E)Gg(r,r') = 8(r -1, 4

whose right-hand side contains the Dirac & function,
and

R Z EnLSJ (5)

represents the mean value of the energy of interacting
sublevels. For convenience, we introduce the following
notation:

€, = Enw—-E (6)

isthe energy of asublevel with agiven J with respect to
the mean value (5), and

AE = E-E ©)

istherelative energy of theatominthefield. Asaresult
of projection, we obtain

W(r)+GE(r,r')(\7(r')—AE)|LP(r‘)D= 0. (8)

Let us select the states of the multiplet under consider-
ation from the Green’s function expressed as a spectra
expansion [16, 17],

(anSJ(r)(PnLSJ(r)

Ge(r,r') = n‘zj £y 9)
by representing the latter function as
Gg(r r) = Ge(r,r)

(10)

Z QnLsy (r)(anSJ (r )

J=9

Substitute (10) into (8). Taking into account (3) and (6),
we obtain

W(r) = ZaJ'(anSJ'(r) (11)

—Gi(r, ') (V(r') —AE)|W(r") O
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Using an iterative procedure, we represent the for-
mal expression for a wave function as the Brillouin—
Wigner series

W(r) = z ay
’ (12)

xS [Ge(r, M)AE= V()] ons(r)0

Applying the formulafor the sum of ageometrical pro-
gression, we rewrite this expression as

wir) = Z""J'[“G'E(r,r')(\A/(r')—AE)]‘l w9

X @ sy(r)t

Substituting (13) into (3), we obtain the following sys-
tem of equations for coefficients a;:

ZaJ'[WJJ'+(5J'—AE)5JJ'] =0, (14)

where
» = @uslV[1+Ge(V-AE)] |gusy0  (15)

is a matrix element of the operator of interaction V
between the atom and the field, which formally
includes al orders of perturbation theory.

In the absence of an externa field (V = 0), system (14)
issolvableif AE =¢;. Then, a;=1and a;.. ;= 0. When

V # 0, the system has a nonzero solution if AE satisfies
the secular equation
det|W,, + (5 —AE)d,;| = 0. (16)
To solve this equation, one has to know the matrix ele-
ment W;;., which depends on the strength of the exter-
nal field F. Numerical cal culations show that, when F <
Fo (Fo isthe field value at which the upper sublevel of
the multiplet |[nLSJ Coccurs above the top of the poten-
tial barrier), one can use the expansion of W,;. in powers
of F2. In spite of the fact that such a series is asymp-
totic, itsfirst several terms form a decreasing sequence
such that their sum determines W;;. to a high degree of
accuracy upto F =F. Practically, it sufficesto takeinto
consideration the first two terms of the series, in which
the coefficients of F2 and F* are determined by the
polarizability and the hyperpolarizability of the atomic
state. Since AE ~€; ~F?> AEF?>~F*> F6 ., suchan
expansion of the matrix element W,;. is given by
2,,(2) 4, (4)

W,, = FW) + F°AEU,, + F'wiY, (17)

No. 6 2003



HIGHER ORDERS OF PERTURBATION THEORY FOR THE STARK EFFECT

where

w2 = —MLSI|zGz|nLSI'[]

Uy = —LSI|Z(GL)*ZNLSI'D) (18)

W = —BLSI|2G.2G.2GZnL SI'D

are matrix elements that contain one, two, and three
Green's functions. The second and third terms on the
right-hand side of (17) are on the order of F#; moreover,
it suffices to use a quadratic approximation for the fac-
tor of AE in the second term. Applying the apparatus of
angular momentum theory [34], we can reduce these
matrix elements to a sum of irreducible parts that con-
tain scalar and tensor polarizabilities and hyperpolariz-
abilities.

The general formulas (16)—(18) of degenerate per-
turbation theory, which contain the second-, third-, and
fourth-order field corrections, can be used for calculat-
ing the Stark effect in amultielectron atom. In thiscase,
the state vector |nLSJ0is constructed within a given
scheme of coupling between angular momenta (for
example, inthe LSor JJ representations); by the opera-
tor z in (18), we mean the z component of the dipole
moment

N

D = zricosei

of the atom, and G¢ corresponds to the definition of a
reduced Green's function of the N-electron atom.

3. DECOMPOSITION OF MATRIX ELEMENTS
INTO IRREDUCIBLE PARTS

Using the Wigner—Eckart theorem and the proper-
ties of 6) symbols and the Clebsch—Gordan coefficients
[34], we obtain the following expression for the first
term in the matrix element (17):

(2)

Wiy
- _1_ Z CjNI\I/I 0|:(2J + 2) (ZJI + 1)i|]j2 SJJ), (19)
2 2 Ol Ty |

where (b), = b(b + 1)...(b + n— 1) is the Pochhammer
symbol and

() —
ayr =

(2J+1-]);.1(2] +1)T2

2(2L + 1)(:1010[ Zivs)
J

x Y (1)’ 7207+ 1)m Liig @

JJ J"
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O oo O
x Y (Chnn® Lt Tonst Y ari
v Oo1J'L'ggl1J' Lo

istheirreducible part of the matrix element. Wewill use
the standard notation for the Clebsch—-Gordan coeffi-
cients and the 6] symbols [34]. The radica factor
in (19) isintroduced in order that the coefficients of this
expansion, as well as the coefficients of the expansion
of theirreducible part (20) in terms of radial matrix ele-
ments R, should be rational numbersthat do not contain
radicals. For a matrix element of the (N + 1)th order
with N Green’s functions, we use the notation

Ludn(S)

NNz N+
Lydy Lodo, ooy

= ElLS]IrTngJl(rl, r)ry’ (21)

rN gLNJN(rN! rN+l)rNN-::1L|nLSJ'D

where g, ;(r, r') isthe radial part of the Green’s func-
tion (9) that determinesits series expansion in spherical
harmonics. The notation for the components of the
polarizability tensor that is conventionally used in the
literature is determined by the irreducible parts of the
diagonal matrix element (19): o s, =a'Y and !, s, =

agﬁ) for scalar and tensor polarizabilities, respectively.

Thus, for the diagonal matrix element (19), we have

W5 = —5| Unisy (22)

2 _ 1[ s
2

3M?—J(J+1) }
J(2J-1) ~MSp

where

" ' 2
Ons = —(2L+1)z(2J +1)(Cow)
(23)
D i
>t I ORI,
D 1 JII Ll |:|
¢ _ rlo(23-1),72
s = [3(2J+2)J (2L+1)

+ D g
J JJ'0

(24)

7

20
SL JD RLJ (S.

x (Clow) O L
) 913" L0

L'=L%

The decomposition of the matrix element uj; into
irreducible parts is described by expressions that for-
mally coincide with (19), (20), and (22)—(24) when the
radial matrix elements with a single Green's function
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are replaced by a matrix element with two Green’s
functions,

RI(S) = MLSIrg,.,(r, r')r'nLSI'O
— Ry 1 (S)
= MLSrg,.5-(r, r)g.5-(r', r")r|nLSI'0

Similarly, a fourth-order diagonal matrix element
can be expressed in terms of the hyperpolarizability
components of an atomic level that generally has three

independent irreducible parts yfﬂfw ,]=0,2,4[17, 30,
32]. The irreducible parts of the hyperpolarizability

represent a linear combination of fourth-order radial
matrix elements R, ;. (s, (S). The explicit form of
these expressions is rather awkward, but they can be
substantially simplified by neglecting the effect of the
fine structure on the radial matrix element. In this
approximation, the matrix elements (21) do not depend
on the indices of the total momenta J,, J,, ..., Jy. Asa
result, the dependence of the matrix elements on the
total angular momentum of the initial, intermediate,
and final statesis expressed only in terms of the coef-
ficients of vector summation, which can be performed
analytically, smilar to the summation over J" in (20)
[34]. Then, afourth-order matrix element can be repre-
sented as

% Z Cj!\'/\l/ljo(_l)J‘ +L+S

j=0,2.4

(25)

X[(2L+1)J+1(2J'+1)}”ZD LLijd

. ayPs,
(2L +1-)); Srasp™s

where

B _ o [(RL+1-]);, (2] +1)7%
YnLs = 24[ @L+2), ]

i10 i20 jo

X Z J(2j1+1)(2], + 1)Ci10C1016C 01,0
i1z
0 i U
xS eL+a - -0 (26)
5 OJ1 )2 LoO

Lo L0 Lo Lo OLL, j,U
X z CL010CL,010C1,010C L0100 2 11 O
01 O

Lils

[l i, O
xg e lzgri | (g
011 L0
is the irreducible part of the hyperpolarizability of the

[nLSevel that is independent of the total momentum
Jandisidentical for all components of the atomic mul-
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tiplet. Substituting the numerical values for the coeffi-

cients of the vector summation into (26), we obtain the

following expressions for three independent compo-

nents of the hyperpolarizahility:

© _ 8 2L(L-1) Jun
Ynis = 5(2L+1)[ SL—1 RIZ1L-20-1(9)

L(4L%+1
+ ﬁRF—% LS+

(L+1)(4L%+8L + 5)r
(2L+1)(2L +3)

AL+1)
2L+1

1111
L-1,L, L+ 1(8)

(27)

1111
L+1,L, L+l(S)

2(L+1)(L+2
+ %Rﬂliuz,ul(s)}

@ _ 8L 4(L—-1) jun
Ynis = 7(2L+1)[ L —1 RiZ1i-2.-1(9)

2
+8L —6L+5

P RIZIL L1

8(2L° + 2L +3) R
(2L+1)(2L +3)

L9 (28)

L (2L-1)(8L +22L +19) RIIL S
(2L+1)(2L+3)2 L+1,L,L+1

4(L+2)(2L—-1) junn
+ (2L +3) RL+1,L+2,L+1(S)i|1

@ _ _48L(L-1)
"7 35(4L2-1)

2L-3
+ mRFﬁ,L, L-1(9

R 2a(®

L2A2L-3)2L-1)

1111
(2|_ + 1)(2L + 3) L-1,L, L+1(S)

(29)

L (2L=1)*(2L-3) RIL (S
(2L+1)(2L+3)2 L+1,L,L+1

2
2L-1(L-3) Rilii,L+2,L+1(S)]
(2L +3)*(2L +5)

Thus, in the approximation used, all fourth-order
matrix elements in the basis of the multiplet states are
expressed in terms of three different components of the
hyperpolarizability tensor (27)—(29) that depend only
on the principal, spin, and orbital quantum numbers.

The dependence of W(f]). on Jand J'is described by the

coefficients of vector summation in (25). Asarule, this
approximation is fairly sufficient because the fourth-
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order matrix element determines only the quadratic (in
field) correction to the main quantity.

If we aso neglect the effect of the fine structure on
the second- and third-order matrix elements, we can
also obtain expressions analogous to (25) for these
quantities:

(2) _

Wiy = —5 z CJM]O( 1)J+L+S

]02

[(2L+1)J+1(2J +1>T25 LLjd,m

gas,
(2L +1-)); oJJsg

(30)

where al¥% = a3 s and o = a!, ¢ arethe scalar and

tensor polarizabilities of the level, respectively. Both of
these quantities can be represented as alinear combina-
tion of second-order radial matrix elements:

Giis = grap LREA9 *+ (L+ DRELS], (3D

t 2L 11
anLS - 3(2'. + 1)|:RL l(S)

Inthis case, the scalar polarizability appearsonly in the
expressionsfor the diagonal matrix elements and deter-
mines the energy shift that isidentical for al sublevels
of the multiplet, while the tensor polarizability deter-
mines the splitting into magnetic components, different
for different sublevels, and appearsin both the diagonal
and the off-diagonal matrix elements. An expression for
the third-order matrix element u;; isobtained from (30)
by replacing a®) — B0), where B{) is a superposition
of third-order radial matrix elements, which isgiven by
relations (31) and (32) in which one should make the

following substitution: R\ (S) —» R (S).

Using the definition of the Green’s function (9), one
can easily verify that the maximal contribution to the
radial matrix elements is made by the levelsn' = n. For
example, in [35], it was shown that, for 1s3p 3P, levels
of helium, the contribution of resonance terms amounts
to about 97%. For circular states withn =L + 1, the

dominant correction with n' = nisabsentin R, ; , and,

hence, theinequality R, < R{", holdsfor theradial
matrix elementsin (31) and (32). Under this condition,

we obtain the approximate equality o= —a' for the cir-
cular states.

Note aso that relation (30) for an off-diagonal
matrix element actually determines a transition from
the LS scheme of coupling of angular momentato the J
representation for the second-order scalar and tensor
components of electric susceptibilities of a multielec-
tron atom. This transition was first analyzed in [36].
The comparison of (22)—24) with (30)—«32) showsthat

2L-1_u
2L + 3RL+1(S)i| (32)
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Table 1. Coefficients of singlet—triplet mixing for a helium-
like atom

Term A B_
2 cos. sind,.
3 —sindy cosd .
3, 0 1
i 0 1

the scalar and tensor components of the polarizability
of a helium-like atom in these two representations are
related by the following simple formulas:

a’(n"3L,) — o’(n™°L),
- o (33)
a(n'Ly) —a(n'L),
a'(n’Ly,q) — a'(n’L), (34)
a'(nfL) - ﬁ’at(n L), (35)
O(t(nBl-L 1)
(L= 1)(L+1)(2L 3)(2L+3) ¢ (36)

a'(n’L).
L% (2L -1)(2L + 1)

Similar formulas for the scalar and tensor components

of hyperpolarizabilities are more cumbersome and are
not presented here to save space.

The above formulas do not take into account the sin-
glet—triplet mixing of excited states of a helium atom.
The contribution of these phenomena is quite signifi-
cant for the states with L = 3; its correct consideration
isrequired first for the comparative analysis of theoret-
ical data with the results of precision measurements.
For the quantitative and qualitative analysis of these
phenomena, one should use an intermediate scheme for
the coupling of angular momenta; in this case, the wave
functions for the atomic multiplet componentswith J =
L are determined by the superposition of states in a
“pure” LS coupling scheme of angular momenta

INLSIO= A_|n'LC+ B, |n’LO (37)
The coefficients A, and B, in (37) are calculated by the
method of diagonalization of the energy matrix with
regard to relativistic interactions (first of all, a spin—
orbit interaction) in the total Hamiltonian of an atom
(Table 1).

For ahelium atom, the numerical values of the mix-
ingangles¢,, forL =1, 2, 3, 4 are equal t0 0.02°, 0.5°,
30°, and 44°, respectively, and virtually do not depend
on the principal quantum number of a valence electron
[37]. Taking into account the singlet—triplet mixing
alters formulas (23) and (24); then, according to the
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definition (37), the components of the polarizability
tensor are expressed as

a = %ZCD(J, LY, (39)
o 5J(2J-1) Y2
@ = 4 53 90T
(39)
x Z(-l)J”H 112503, 0,11,
Z 0JJJ0
Here,
®(J, ', L, L)
_ . ALAL 11
= (23 + 1)L>[A/(2L+ DL+ 1) Ri5(0)  (40)

2
0 0
-BB.O " J1arRYD) |,
OJ L 10

and L. isthe maximum of L and L".

As a result, the use of the intermediate coupling
scheme of angular momenta requires that one should
take into account the singlet—triplet mixing not only in
the wave functions of the considered states with L = 3
but also in the spectrum of intermediate states. Note
that the weak dependence of the coefficients A, and B,
on the principal guantum number n allows one to apply
the method of Green's functions for summing over the
whole set of intermediate states.

For example, for atensor component of asinglet 1D
level of helium, one can easily obtain an approximate
formulathat takes into account the mixing phenomena
for the F component of the intermediate spectrum

a'(nd'D,) = a'(nd'D)

(41)

i 11 - 2 Ean_EnlD
357 (0)sin ¢“F[l E.-E.|

A numerical calculation has shown that the contribu-
tion of the mixing phenomena s no greater than 0.1%
for arbitrary n. The case of atensor component of the
'F; level is more interesting since, on the one hand,
there are experimental data[38] for this case and, on the
other hand, this case exhibits strong dependence of the
mixing amplitude on the principa quantum number n:

a'(nf'Fs) =a'(nf'F)

42
" sinzcl)nF[gat(nf:gF)—at(nle)] 2
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In other words, the singlet—triplet mixing is determined
by

S| 3a'CF) - a'('F) | @)
For instance, for n = 4, this phenomenon is abnormally
high (20%); for n =5, its contribution is no higher than
1%; and, again, it amounts to several percent for n > 5.

Thus, up to the fourth order in the field strength, the
matrix element (17) is determined by relations (25)—
(32), which are sufficiently universal for all multiplet
levels and can be used for calculating the variation of
energies of specific atomsin afield with regard to the
fine-structure effects in an atomic multiplet.

4. THE STARK EFFECT ON TRIPLET STATES
OF HELIUM

In this section, we calculate the energy of n3P ,
states of helium up to the fourth-order corrections with
respect to field F neglecting the singlet—triplet mixing
in the spectrum of intermediate states. The fourth-order
corrections should be taken into consideration for the
field corresponding to the anticrossing region of the
triplet sublevels where the energy difference &y, = E, —
E, isminimal. The attraction of sublevelsto each other
in a weak field and their subsequent repulsion are
observed when the polarizability of the upper sublevel
is greater than that of the lower one. This situation is
characteristic of n 3P, statesof helium (n=2, 3, ...) with
J =0, 2 and the projection of the total momentum M =
0. The statewith J=1and M = 0 remainsisolated since
there is no nonzero matrix element for the dipole elec-
tric transition to astate with adifferent value of the total
momentum J. The sublevelsn 3P, with [M|=J =2 also
remain isolated. The “repulsion” of interacting levelsis
attributed to the off-diagonal matrix element of the

operator V (r) that makes a positive contribution to the
energy of the upper level and a negative contribution to
the energy of the lower level. Note that the states with
M| =1and J =1, 2 of the multiplets considered have
identical polarizabilities and hyperpolarizabilities,
therefore, they immediately start to diverge, asthefield
strength increases, due to the interaction between sub-
levels, which is determined by the off-diagonal matrix
element.

4.1. Field Dependence for Energies
of Two Interacting Sublevels

To calculate the Stark splitting of two close-lying
sublevels with relative energy shiftse; = E, - E =
_&2 and 8‘]2 = E2_ E = 6/2, Where E = (El + Ez)/z,

one has to solve the secular equation (16) for AE. To
determine the correctionsto the energy up to the fourth
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order in F, we substitute expression (17) for the matrix
element W;,. into Eg. (16), which can be rewritten as

det| 1 2| = o, (44)
Co1 C
where
_ 0 2. (2) 2 4 (4)
Cll - _E_AE'F F W‘JlJl+ F AEUJ131+ F W‘JlJl’
2 (2 2 4 (4
Cp,=Cy =F W(JI)J2+ F°AEu, ; +F WSl)JZ, (45)

_0 2. (2) 2 4 (4)
C22 - E_AE+ F W‘]ZJ2+ F AEUJ2J2+ F W‘]Z‘]Zl

To determine AE from (44) up to the fourth-order
terms in the field, one should retain the terms up to the
sixth order in the equation:

~(AE)?F? ~ AEF?) ~ (AE)?0 ~ AEY? ~ F20? ~ F4d ~ 5.
Solving quadratic equation (44) for the field-depen-
dent splitting of two interacting sublevels of the multip-

let up to the fourth-order terms, we can obtain an
expression of the form

2

5(F) = AE'-AE = 6§1+%(ujljl+ujzjz)

2

F, @ 2) 2
+ E(WJZJZ -wj 3+ F(g;, - 931))}
(46)
AF7T o) | c2g @, @ Yaus T Usg,
+ ?[WJlJz +F S/VJlJz + WJlJz 2
12
(2) (2) 2
+u W‘]l‘]]. + WJ232|:| 0
W, 5 O E ,
where
) (2)

9y, EWy5 + Wy 3Us (47)

is the hyperpolarizability of a sublevel with the total
momentum J,. Note that the states with the total
momenta J; and J, are mixed dueto thefield, so that the
total momentum is no longer an integral of motion.

In the expression analogous to (46) that was
obtained in [30] and in which the fourth-order phenom-
enawere taken into account only in the diagonal matrix
elements, al correctionsto the off-diagonal matrix ele-
ment (the term proportional to F? in the second set of
square brackets under the sign of the radical) were
absent. The interaction of levels was not taken into
account when calculating the hyperpolarizabilities of
individual sublevelsin diagonal elements; this resulted
in other combinations of products of matrix elements
w2 and u entering into g; and led to the absence of the
second term in the first set of sguare brackets in (46).
Calculations show that the above terms have the same
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order of magnitude in the neighborhood of the anti-
crossing of levels as those taken into account in the
diagonal elements.

4.2. Polarizabilities and Hyperpolarizabilities
of Triplet Levels of Helium

Using (46), we determine the field dependence of
the fine-structure splitting for the sublevel s of triplet nP
stateswith thetotal momentaJ, = 2 (thelower sublevel)
and J, = 0 (the upper sublevel) and the projectionsM =
0 onto the field direction. According to (25) and (30),
the matrix elements are expressed in terms of irreduc-
ible parts as

1 s t
Up = —5(B. o =B, 5p)
2 (48)

1
Wy = —Zl(yﬁogp—yfgp),

@ _ a2 1
W20 —_ W02 - __a 351
/\/é n°pP
1t
Uyp = Up = —=B s,
/\/é n°p
@ _ @ 1 2
Wy = Wop = ——=VY s,
12/\/2 n°P

The same irreducible parts of polarizabilities and
hyperpolarizabilities enter into similar expressions for
the matrix elements that determine the field-depen-
dence of the splitting of statesn 3P, —n 3P, with the pro-
jection [M| = 1 of the total momentum:

(2) @ _ 1ms 1:¢

Wi = Wy = > nsp—éunslﬂ,

_ _ 1rgs 1.¢ 0
U = Uy = _égsn%_éﬁn%ﬂ'

@ _ @ _ 1o 1.o0
Wll - W22 - _24 n3P 2 n3FE|’
(49)
2 _ W2 _ 3t
Wor = Wiz = =50 sp

_ _ 34t
Uy = Up = _ZBn3P'

1
Wi = Wi = —yo(n °P).
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Table 2. Scalar and tensor polarizabilitiesas, o, B3, and Bt and hyperpolarizabilities (9 and y for the n 3P state of a helium

atom (in au)
State as at Bt VO e
2°3p 47.95 74.86 4.556(3) —3.086(3) 7.797(6) -3.427(6)
3% 17255.6 374.0 7.935(6) -1.031(6) 1.142(11) -1.911(10)
43P 1.697(5) 1.664(3) 1.863(8) —2.409(7) 1.314(14) -1.921(13)
53p 8.976(5) 7.264(3) 1.936(9) —2.477(8) 8.895(15) —1.292(15)

Note: The number in parentheses indicates a power of ten: a(k) = a x 10%,

Using (27)—(29), (31), and (32), we represent the irre-
ducible parts of polarizabilities and hyperpolarizabili-
ties entering into these expressions in terms of radial
matrix elements as

a%., = SRS+ 2RE(D),

5 1 (50)
@ = 5| R +ERD)
o _ 8 1111 1111
yn T 225(25R010 (1) + 40R012 (1) (51)
+34Ry;; (1) + 36Ry3 (1)),
@ _ 8 1111 1111
yn 5p T 1575(175R010 (1) + 280R012 (1) (52)

+49R5I (1) + 36R(1)).

Formulas (51) and (52) show that, when calculating the
scalar and tensor components of hyperpolarizabilities,
one hasto take into account the F levelsin the spectrum
of intermediate states (in the radial matrix element

Ria' (1)) that are characterized by significant singlet—

triplet mixing, ¢, = 30°. However, just as in the esti-
mates of the polarizabilities of the D levelsgiven above,
the numerical contribution of these phenomena to y©
and y@ is small (<0.1%).

Formulas (46) and (48) show that the sublevels of

the state n 3P with J =0, 2 and M = 0 become closer to
each other in awesk electric field if the tensor polariz-

ability a; 3, ISpositive. Then, theleading (first) termin

the expression under the radical sign in (46) decreases
as F increases. It continues decreasing until it becomes
equal to the increasing second term, which is propor-
tiona to F*for F = F,. When F > F,, the levels start to
diverge, which corresponds to the anticrossing of lev-
els. As one can see from relations (49), the sublevels
with J =1, 2 and |[M| = 1 are repulsed starting from
F = 0 because the upper and lower level s have identical
polarizabilities (the hyperpol arizabilities of these levels
are also identical). Thus, the anticrossing field F,, as
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well as the fine-structure splitting &(F,) in this field,
may serve as quantitative characteristics for determin-
ing the components of the polarizability and hyperpo-
larizability tensors of the states considered.

To calculate the radial matrix elements in a one-
electron approximation, we applied the Green's func-
tion method to the Fues model potential [16, 17]. The
numerical values of susceptibilities a, 3, and y for the
triplet NP states of helium atoms (n = 2, 3, 4, 5),
obtained for the parameters of the model potential cho-
senin [25], are shown in Table 2.

These parameters were used for calculating thefield
dependence of the splitting du,(F) between the n,3P,
and n, 3P, sublevels of the fine structurewithM = 0. The

results are shown in Fig. 1 for the states with () n=3
and (b) n = 5. This figure also represents the following

field dependences calculated by (46): 3% (F), which
takes into account only the quadratic (in the field) cor-

rections to the matrix elements, and & (F), which

takes into account the fourth-order corrections together
with the quadratic ones. For al values of the field
strength that are presented in the figures, the inequality

3% (F) < 82 (F) holds.

For 2 3P states, the contribution of the fourth-order
corrections is very small; it amounts to less than 0.1%
of the second-order corrections even near the anticross-
ing. For 3 3P states, the fourth-order corrections near
the anticrossing amount to 5% of the second-order cor-
rections; for 4 3P states, 10%; and for 5 3P, more than
15%. Here, the fourth-order correctionsto the off-diag-
ona elements constitute more than half of the total
fourth-order corrections.

In these calculations, we used the data available in
the literature (see, for example, [39-42]) for the fine-
structure splitting & of triplet states n 3Py—n 3P, of afree
atom. The numerical values of these quantities are
shownin Table 3. Thistable also presentsthe numerical
values of the splitting &y,(F,) at the anticrossing point
of levels, as well as the corresponding values of the
field strength F.
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Exact estimates for the contribution of continuum
were obtained in [35] when calculating the polarizabil-
ities of helium. For instance, for 1snp 3P, , (N = 2) lev-
els, this contribution to the scalar and tensor polariz-
abilities amounted to 23% and 3%, respectively, while,
for 1snp 3P, , (n > 2) levels, it was no greater than 1%.

To verify the results presented above, we aso
applied the method of diagonalization of the energy
matrix that contains dipole matrix elements of the first
order with regard to al possible fine-structure sublevels
for stateswithn< 6, n< 5, and n< 4. For the matrix ele-
ments between states withn < 4 and L = 0-3, we used
the data of precision relativistic calculations based on
the method of configuration interaction, which involves
the Coulomb and the Breit interaction operators in the
total atomic Hamiltonian [25, 30]. Inthis case, one-par-
ticle basis orbitals used in the method of configuration
interaction included s, p, d, f, and g partial waves with
the use of a spline approximation for each wave. The
relative accuracy of calculating the matrix elements
was 10%-10~°[25, 30]. For other states, the data of non-
relativistic variational calculations given in [43] were
used.

Figure 2 representsthe F dependence of the splitting
doz between n 3P, and n 3P, sublevels of the fine struc-
ture with M = 0 as a function of the dimension of the
basis setinthe original energy matrix. Thetotal number
of matrix elementsfor n < 6 with regard to dl fine-struc-
ture components is greater than 103, Figures 2a and 2b
show that, for the energy differences E(2 *P,) — E(2 °P,)
and E(3 3P,) — E(3 3P,), the result is virtually indepen-
dent of the dimension of the basis and agrees with the
numerical datapresented in Table 3 to within afew per-
cent. Thisfact may provide a basis for the applicability
of the resonance approximation discussed in Section 3.
However, for highly excited states of helium-like atoms
with n = 4, the resonance approximation is not suffi-
cient (Fig. 2c). Thisfact requires the diagonalization of

E(33Py) - EQ33P,), MHz
8800 . . : :

8600

8400

_____

8200 : ' :
0 50 100 150 200 250

E(53Py) — E(5°P,), MHz
1800

1750

1700

1650 1 1 1 1
0 5 10 15 20

F,kV/cm

Fig. 1. Fine-structure splitting &g, of sublevels with the

momenta J = 0 and J = 2 of the triplet state 1snp 3P; of a

helium atom as a function of the electric-field strength; (a)
n=3and (b) n=5. The dashed curve corresponds to cal cu-
lations with regard to the quadratic (in field) corrections to
the matrix elements, and the solid curve correspondsto cal-
culationswith regard to the second- and fourth-order terms.

the energy matrix with a substantially greater number
of basis elements.

Thus, the application of the Green's function for-
malism to calculating the Stark effect allows one to

Table3. Numerical values of the splitting between the fine-structure sublevels of the n 3P, state with the total momentaJ = 0,
2 for afree atom (J) and at the anticrossing point of levels with the projection M = 0, as well as the corresponding val ues of

the field strength F, at the anticrossing point

State 8, MHz APy, MHz | F? kviem | 8Q(FP),MHz | FY kviem
23p 31908 30081.6 617.05 30080.3 617.2
3% 8772.5 8243.8 146.31 8216.2 146.91
43p 3576.8 3348.7 44.82 33238 47.47
53p 1797.4 1687.6 15.07 1672.2 15,53

Note: The quantity 6(2%) (ng) ) is calculated with regard to the quadratic corrections alone to the matrix elements and the relativistic cor-

4)

rections to the difference between the scalar components of polarizabilities [25], while 6(20 (ng)) is calculated with regard to the
fourth-order corrections.
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EQ23Py) - EQ2°P,), MHz
32000 . . . .

31500

31000

30500

30000

| | |
0 200 400 600
E(3°3Py) - E(3°P,), MHz
8800 T T T " J/

1000

8600

8400

2 1 1
8200 50 100

E(43Py) — E(4°P,), MHz
3700

200 250

3600

3500

3400

3300 1 1 1 1 1 1
0 10 20 30 40 50 60 70

F,kV/cm

Fig. 2. Fine-structure splitting &g, of sublevels with the

momenta J = 0 and J = 2 of the triplet state 1snp 3PJ of a

helium atom as a function of the electric-field strength and
the dimension of the energy matrix. The dashed curve cor-
responds to calculations with regard to the basis set of dis-
crete states with n < 4, the dotted curve, with n < 5, and the
solid curve, withn < 6.

obtain exact values of electric susceptibilities for both
the ground and the highly excited statesby asimple and
rational method and to analyze the F dependence in the
spectra of helium-like atomic systems on the basis of
the results obtained.

For triplet states of helium with n = 3, experimental
measurements of Jy, at the anticrossing point of levels

yield &gy = 8257 + 5 MHz [26]. According to [26], the
discrepancy between the experimental and theoretical
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data (obtained without taking into account field correc-
tions ~F4) is attributed to the contribution of relativistic
corrections to the difference between scalar compo-
nents of the polarizabilities of the atomic multiplet.
However, the results of exact relativistic calcul ations of
the polarizabilities of helium levels 1s3p P, , (M = 0)
[25, 30] did not confirm this assumption; moreover, the
contribution of relativistic corrections proved to be of
opposite sign to the expected one; i.e., the consideration
of these corrections led to a greater discrepancy

between theory and experiment: 8y, = 8244 MHz [25,

30]. This fact stimulated calculations for the Stark
effect with regard to higher orders of perturbation the-
ory (hyperpolarizabilities) whose contributions to &y,
are rather substantial for strong fields (on the order of
100-200 kV/cm) at the points of anticrossing of levels
(Fig. 1). In [25, 30], together with relativistic correc-
tions to the polarizability and the resonance hyperpo-
larizability, the authors also calculated nonresonance
corrections to the hyperpolarizability of states; in this
case, the field corrections ~F# only to the diagonal
matrix elements of the secular equation (16) were taken
into account. To control the accuracy and reliability of
calculations, two different methods were used in these
works, a method of summation of relativistic forces of
oscillators for afinite set of discrete states of the inter-
mediate spectrum and a method using a Green'’s func-
tion for the model potential of Fues. These calculations
yielded 8231 MHz and 8234 MHz, respectively [30].
Theresults of calculations carried out with regard to the
full set of corrections ~F# both to the diagonal and off-
diagonal matrix elements of Eq. (16) (see Table 3) also
do not agree with the results of measurements pre-
sented above.

Thus, we should admit that there is no satisfactory
agreement between theoretical calculations of &y, and
the corresponding experimental datafor the levelswith
n = 3 [26]. This fact makes topical new measurements
of the anticrossing parameters for the triplet levels of
helium in astatic field. The details of the future experi-
mental investigations of anticrossing for singlet and
triplet levels of helium are described in [44, 45].

5. CONCLUSIONS

Thispaper hasbeeninitiated first of all by the neces-
sity to give a theoretical interpretation to the results of
precision measurements of the fine-structure intervals
in helium atoms (the method of anticrossing of levelsin
an external field with the use of high-resolution laser
spectroscopy [26]). The measurement error is£5 MHz;
however, the application of microwave techniques
combined with the methods of laser cooling of atomic
beams will alow one to reduce this error significantly
in the nearest future [44]. An adequate interpretation of
such measurements requires that one should take into
consideration not only the quadratic Stark effect but
also the contributions of higher orders of perturbation
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theory associated with nonlinear corrections to the
dipole moment of an atom induced by an external field.

In this paper, we have formulated an approach to the
calculation of the Stark effect of higher orders in the
spectra of helium-like atomic systems. For the first
time, we haveinvestigated analytically and numerically
afull set of fourth-order corrections with respect to an
external field and with regard to the fine-structure phe-
nomena. We used the Fues model potential method
[16, 17] as a basis for the numerical calculations; the
parameters of this method for metastable 3Sstates were
chosen according to [25]. The summation of intermedi-
ate states over the whole spectrum was based on the
Green's function method for a model potential. This
fact has allowed usto take into account the contribution
of discrete states and continuum and to simplify and
unify the calculations, guaranteeing a reliable control
of accuracy in al stages of theoretical analysis. We
have presented theoretical results for the scalar and ten-
sor components of the second- and fourth-order suscep-
tibilities for helium levels 1snp 3P, , (n = 2-5), deter-
mined the values of the electric-field strengths and the
differences between energy levels at the anticrossing
point, and analyzed the relative contributions of the
field corrections.

The theoretical approach presented in this work is
sufficiently universal and allows one not only to obtain
afull set of fourth-order field corrections in the spec-
trum of ahelium-like atom but al so to outline a method
for systematic calculations of the Stark effect in higher
orders of perturbation theory that are of interest from
the viewpoint of modern experiment.
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Abstract—Nonlinear wave equations describing the propagation of optical pulses of duration up to aperiod of
electromagnetic oscillations in transparent media with uniaxial optical anisotropy are derived on the basis of a
guantum-mechanical model of material response. The electron and electron-vibrational nonlinearities, electron
and ion dispersion, and diffraction are taken into account. It is shown that the inclusion of the el ectron response
alone leads to a system of two constitutive equations for the ordinary and extraordinary polarization compo-
nents. When a pul se propagates across the optical axis, this system is reduced to an inhomogeneous model of
the Henon—Heiles type and, hence, generalizes the Lorentz classical electron model. In order to take into
account stimulated Raman scattering (SRS) processes, an anisotropic analog of the Bloembergen—Shen quan-
tum-mechanical model taking into account the population dynamics of SRS sublevelsis obtained. The genera-
tion of an extraordinary wave video pulse with the help of the high-frequency ordinary component in the
Zakharov—Benney resonance mode is investigated. Some analytic soliton-like solutions in the form of propa-
gating bound states of ordinary and extraordinary video pulses corresponding to different birefringence modes

are considered and their stability to self-focusing is analyzed. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, studies devoted to the interaction of
light pulses of duration up to a period of electromag-
netic oscillations (video pulses or extremely short
pulses (ESP)) with matter have become very popular.
This interest stems mainly from the generation of ESP
inlaboratory conditions [1-6]. The absolute duration T,
of such pulsesvariesfrom hundreds of [6] to severa [7]
femtoseconds. The term “extremely short pulses’ (or
“ultimately short pulses’) is being used more and more
widely (see reviews [4, 5, 8] and article [9]), although
the terminology has not settled as yet; some authors
also usetheterms* ultrashort” or “supershort” pulsesin
their communications and papers. The latter terms
appear to be dlightly confusing since they are some-
times applied to quasimonochromatic pul sesto empha-
size their short duration in absolute meaning. The term
“few-cycle pulses’ is aso used quite often. The latter
term is employed especially frequently in foreign liter-
ature [3]. The term “video pulses’ is aso encountered
sometimes.

Since an ESP contains approximately one period of
oscillations, its spectrum is so broad that the concept of
carrier frequency loses its meaning. For obvious rea-
sons, the standard approximation of slowly varying
amplitudes and phases (SVAP) from the optics of
quasimonochromatic pulses isinapplicable for theoret-
ical investigations of the interaction between ESP and
matter. The quasimonochromaticity condition implies
that the spectral width dw~ 1/1, of a pulseis consider-

ably smaller than its carrier frequency w; i.e., wt, > 1.
The effects of nonlinear propagation of ESP in isotropic
mediahave been investigated quite thoroughly [8-26]. In
view of the existence of a symmetry center in such
media, the expansion of polarization P into a power
series in the electric field E contains only odd powers
of the field. Such an expansion can be carried out if the
spectrum of a pulse belongs to the region of optical
transparency of the medium, i.e., under the conditions
[10, 13, 22-26]

(/) <1, (/dw) " <1, (1)

where wy, is the characteristic resonance frequency of

the medium and @ is the frequency corresponding to
the center of the pul se spectrum.

The meaning of conditions (1) is that the frequen-
cies of the Fourier components of the pulse lie much
lower than the frequencies of resonance electron-opti-
cal absorption. In the case of quasimonochromatic

pulses, we have @ = w, 0w < w. In this case, the first
condition in (1) has the form (wyw)™* < 1, while the
second is satisfied automatically. In the other limiting
cae ®T, < 1 corresponding to video pulses

(W< dwll/ty), it is sufficient to require that the

second condition, which can be written in the form
(w1 < 1, issatisfied. In the general case, the fulfill-
ment of both conditionsin (1) is required.
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Fig. 1. Geometry of propagation of an ESP in a uniaxia
birefringent medium; C isthe optical axis; the pulse propa-
gates along the z axis at an angle ¢ to the { axis. The ordi-
nary component is polarized in the xz plane normal to the
plane of the figure, while the extraordinary wave is polar-
ized in the plane of the figure along the y axis.

By virtue of this condition, the ESP spectrum con-
tains no resonance Fourier components; for this reason,
theinteraction with the medium isrelatively weak [12].

Anisotropy of the medium is a necessary condition
for the presence of even powers of electric field in the
above-mentioned expansion. In the general case, the
electromagnetic wave in such a medium is not com-
pletely transverse. Inauniaxial medium, there exist two
preferred directions (along and across the optical axis)
along which thewavefield isstrictly transverse[27]. In
the former case, nonlinearities of only odd orders are
left [28, 29], while, in the latter case, even powers
appear, and quadratic nonlinearity plays the major role
[30]. When a pulse propagates at right angles to the
optical axis, we must generally take into account two
components of its electric field, ordinary E, and
extraordinary E., and assume that nonlinear suscepti-
bilities are tensor quantities. Some authors employ a
scalar model, taking into account only one electric field
component of the electric field of the ESP [31-33]. It
should be noted that quadratic nonlinearity does not
appear in media with induced anisotropy [34, 35] in
view of the weakness of applied fields (electric, mag-
netic, and deformational) as compared to intra-atomic
fields.

The theoretical models proposed in [28, 30, 31, 33,
35] are phenomenological by nature. These models are
based on the expansion of P(E) in the presence of non-
linear susceptibility tensor of rank two and/or three
[30, 35], or an anisotropic oscillator with a cubic or
quadratic nonlinearity is proposed for the material
model [28]. Under conditions (1), both approacheslead
to identical systems of nonlinear wave equations for
ordinary E, and extraordinary E, pulse components.

Here, we propose a simple quantum-mechanical
model of an optically uniaxial medium, including the
electron, eectron-vibrational, and ion responses. We
assume that anisotropy is natural, i.e., formed by a
strong intrinsic electric field in which both electrons
and ions are located. Such properties are typical of
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uniaxial single crystals, organic molecular structures,
and so on [36]. In the case of single crystals, we must
generally specify a symmetry class [36, 37]. In such
cases, it is difficult to carry out appropriate quantum-
mechanical calculations to take into account the above-
mentioned types of material response. Uniaxial crystals
include crystals of the tetragonal, trigonal, and hexa-
gonal systems with the same structure of linear suscep-
tibility tensor reduced to the principal axes: X, = X,y #
X, [38]. In the optical transparency spectral range, the
main contribution to the polarization response of the
medium is determined by linear effects; in this case,
nonlinearity plays the role of a perturbing factor. Since
the structure of the linear susceptibility tensor isinsen-
sitive to a change in the symmetry class of uniaxial
crystals and nonlinearity is weak under conditions (1),
we can disregard the dependence of nonlinear suscepti-
bility on the symmetry class. In this connection, the
guantum-mechanical model proposed by us combines
the optical properties of all mediawith natural uniaxial
anisotropy in their spectral transparency region. On the
basis of thismaterial model and Maxwell equations, we
can arrive at nonlinear wave eguations describing the
ESP dynamics in the spectral transparency range of
uniaxial media and carry out their analysis; this forms
the subject of the present paper.

2. ELECTRON AND ION RESPONSES

L et an electromagnetic pul se propagate in auniaxial
medium along the zaxis at an angle ¢ to the optical axis
(Fig. 1). The ordinary component E, of the electric field
of the ESP is perpendicular to the plane of the figure
and is parald to the x axis, while the extraordinary
component E, lies in this plane and is hormal to the z
axis (parallel to they axis).

The evolution of the state of the medium is
described by the equations for the elements of the den-

Sity matrix p:

9p,, : i
% = —1wPu *+ ;TLVHV(pW_pW)

i 2
-7 Z (ViPiv =Py Vi),

JEW,V

where 7 is Planck’s constant, V,,, is the matrix element
of the Hamiltonian of the electric-dipole interaction
between the pulse and the field, and w,, is the fre-
guency of the quantum transition i ~— v. The sub-
scriptsin Eq. (2) run through the values i, v =1, 2, 3,
..., K, where K isthe total number of €lectron quantum
levels formed by the strong intrinsic field and partici-
pating in the interaction with the ESP field (the value of
K = 3 isregarded as arbitrary). Equations for diagonal
elements can be obtained from Eq. (2) for u=v.
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ON NONLINEAR PROPAGATION OF EXTREMELY SHORT PULSES

In a strong interna electric field of the medium,
electron levels are not degenerate in the modulus of the
total angular momentum component M [39]. As a
result, 1 (AM = 0) and o (AM = 1) transitions, which
are alowed in accordance with the electric-dipole
selection rules, are formed in the electron subsystem.

In view of the uniaxial anisotropy, [Ho, I\7I2] differs
from zero (Ho istheintrinsic Hamiltonian of electrons

intheinternal electric field of themedium and M isthe
angular momentum operator). At the same time,

[Ho, M¢] =0, where M; isthe operator of the angular
momentum component along the ¢ axis, which has
eigenvalues equal to M. For this reason, the wave func-
tion of an optical electron in an axisymmetric field can
be written in the form

Wum = Ru(C r)exp(iM9), ©)

wherer, ¢, and { are the components of the cylindrical
system of coordinates (the { axis of axial symmetry
coincides with the optical axis) and p isthe set of quan-
tum numbers corresponding to the cylindrical symme-
try.

In addition, we choose the Cartesian system of coor-
dinates x, n, ¢ turned through angle ¢ relative to the x,
Yy, Z system in the (yz) plane (see Fig. 1). Using the
above expression for Y, we obtain the Cartesian
components of vector d,, of the dipole moment of the
| ~— Vv transition in the coordinate system x, n, ¢:

= |d—AM

d:lv = /\/—lAM |’ drl«]l /\/é

¢ -
dy = Dy(1—-|AM,,)),

where AM,,, =M, —M, =0, +1. The maximal values for
dipolemomentsfor o (¢ =0) and 1t(¢ = 172) transitions
can be written in the form

dyy = —ﬁnejrzdr I Ru(z 1)R,(z r)dz,
0 —00

00 00

Dy = —2nej' rdrIzRu(z, rNR,(z r)dz,
0

where e is the elementary charge.

Carrying out the above-mentioned transformation
of rotation through angle ¢ around the x axis, d' = L d,
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Whered-(du\,, " HV)Tandd (du\,, " V)T
we obtain

d, = =AM,/

“ f

d,, )
dy, = |—j§AMpvcos¢—D“V(1—|AMW|)S|n¢, (4)
z 'dV .

dy = |ﬁAMwsn¢+D“V(1—|AMW|)cos¢.

Accordingly, for the matrix elements of the interaction
Hamiltonian V , we have

d,, CE(r, 1)

Cdy,
= [Duv(1—|AMw|)S|n¢ —|—“AMHVCOS¢}Ee

2

E, (5)
iy

A/_|AM
d, .
- [Dw(l—AMw)cosqn + |EAM“Vsn¢}EZ

In the axisymmetric field, quantum levels do not
possess any definite parity. This circumstance deter-
mines the selection rules for electric-dipole transitions
in the strong field of the medium. In contrast to an iso-
tropic medium, a much larger number of transitions are
allowed in such amedium due to mixing of states with
various paritieswith certain quantum levels. Thisisthe
reason for the emergence of quadratic and all other even
nonlinearities. The internal field of the medium is
strong and isableto form initialy the electron quantum
levels. For this reason, we assume that conditions (1)
are satisfied for al (including forbidden) electron-opti-
cal transitions, except those between vibrational sub-
levels of the ground state (see below). The electric field
E of the pulse depends on coordinatesr and timet. This
dependence presumes the fulfillment of conditions (1).
In this case, system (2) can be solved by the method of
successive approximations in small parameters (in the
sense of relations (1)), which are proportional to the
timederivativesinrelation (2), aswell asthe summands
of the sum appearing on the right-hand side of this
equation. In this case, in the zero-order approximation,
we obtain from Eq. (2)

p — va(ppv pvv)
K ho,,

Substituting this expression into the terms omitted ear-

lier, we obtain p,,, in the first approximation, and so on.
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As aresult, in the second approximation, we have

pvv puuv

Puv = ho,,

hwz

A#p \Y

|:(Gv)\ a}\p)vu)\v)\v

z (AnuViaVir =0 Vi Vi) (6)

hw
n#pv
n)\V)\n avr]v)\n r]v)i|
n AV
A L 0wV
o) at mﬁv ot
whereay,, = (W, —W,)/fiw,,, W, being theinitial occu-

pancy of the pth level. In expression (6), we included
the nonlinearity of not higher than third order and took
into account the fact that, under conditions (1), the
nonlinearity and dispersion (thelast two termsinrela-
tion (6)) behave as additive quantities [12].

Substituting relation (6) into the right-hand side of
Eqg. (2), taking into account the Hermitian nature of

operator V, and integrating, we obtain the following
expressions for the diagonal elementsof p:

o = W, 5 U

AEU

w wA

|Vu)\| (7)

We obtain the values of the polarlzati on components
corresponding to the eectric field components E,, E,,
and E, of the pulse with the help of relations

_ (x.2)
Poez = de Py FC.C,

where N is the concentration of valence electrons, and
using relations (4)—(7). After cumbersome but simple
transformations, we obtain

Py = XoEo+ 2Xe EoEo+ X5 Eq

9°’E (8)
+ XY EZE, — Km—t;’,
Pe = XoEe + X.E, + XV E2 + X O EZ

0°E, 9

e t2’

(3) (3) 2
+Xe E +Xeo EoEe_K

P, = X;Ex* XezEe (10)
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where X., X,, and X, can be expressed in terms of the
principal diagonal components x; and x;, of the linear
instantaneous susceptibility tensor,

Xe = XoCoS' ¢ +X,Sin 9,

X; = XoSin'g + x,cos’9, (11)
Xez = (XD—X||)Sin¢COS¢,
|AM
= N§ 22— (W, —W,),
1-|AM (2
X = 2NZD2 #(W ~W,),
U#EV Ky

and nonzero components of the nonlinear susceptibility
tensor of rank two are given by

2 - @ - @ _ ,?
Xeo - Xxxy - Xxyx - nyx

¢Z pv z du)\dv)\(au)\ v)\)a

HEV “ AU,V

(13)

2 - @

Xe = Z-sin’e

nyy - A

Z HV z Dp)\Dv)\(ap}\ v)\)'

TERY “ AZEW,V
Cumbersome expressionsfor the third-order nonlin-

ear susceptibilities %, &, and X2 are givenin the
Appendix.

It was noted above that, owing to condition (1), the
frequencies of the Fourier components of the spectrum
are far from the resonance frequencies of the medium.
Consequently, for x@ and x©®, the zero-dispersion
approximation is realized, for which the Kleiman rule
[36] holds. According to this rule, the components of
nonlinear susceptibility tensors are invariant to any
transposition of their indices.

While deriving Egs. (8) and (9), we took into
account the above-mentioned degeneracy of electron
states in the modulus of M. The real parts of the terms
in EQ. (6), containing the first derivatives with respect
to time, correspond to o transitions (see aso Eq. (5)).
In the course of summation in the expressionsfor polar-
ization components, termswith AM = £1 and with iden-
tical values of wy,, mutually cancel out on account of
degeneracy. The imaginary parts of the terms in ques-
tion, containing |[AM,,| in 1T and o transitions (see
Egs. (5) and (6)), also cancel out during the summation
with complex conjugate quantities in the expressions
for components of P.

It should be noted in connection with the latter
remarksthat the application of aconstant external mag-
netic field removes the degeneracy in modulus of M.

(14)
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ON NONLINEAR PROPAGATION OF EXTREMELY SHORT PULSES

In this case, doublets are formed from each degenerate
level, for which AM = +1 and the frequencies w,, of the
corresponding transitions are not identical any longer.
Asaresult, theright-hand sides of expansions of type (8)
and (9) acquire the first time derivatives of E [29],
which leads to Faraday’s rotation of the polarization
plane of the pulse. However, in our case, there is no
external magnetic field, and the internal crystal electric
field removes degeneracy only in the modulus of M.

The origin of the second time derivativesin Egs. (8)
and (9) can be explained most easily by using the
dependence of linear electron susceptibilities on fre-
quency w:

2
Q)e 0

Xeo(®) = Xe, uz—’wz-

e, 0

For w/w, , < 1 (seerelations (1)), we have the expan-
sion

Xe D(w) Xe DDI-+ _D
0 wd

Using the substitution w — i0/0t, we arrive at the sec-
ond time derivativesin relations (8) and (9). Dispersion
was disregarded in expression (10) since P, < P, P,,
while dispersion in approximation (1) is an effect with
a higher order of smallness than the linear instanta-
NEeous response.

The dispersion parameters k; and K in Egs. (8) and
(9), which take into account the weak (in the sense of

conditions (1)) inertia of the electron response, can be
written in terms of X and X, respectively, in the form

_ 1D % _ 1%
“ ZDGwD " 2,

and express the extent of dependence of linear suscep-
tibilities on frequency w. In explicit form, we have

Ke = KDcoszq) + K||sin2¢,

— NZ uleM
HEV llV (15)
2 1—|aM,|

Ky = 2N D,
2.

Usually, [Xo = X| < X X, [40]. Inthis case, it can be
seen from relations (11) that X, << X, Xe- Thiscircum-
stance is responsible for the relative smallness of the
longitudinal electric field component of the ESP: E, <
E,, E. (see Section 4). For this reason, only the linear
local response to component E, istaken into account in
expansions (8)—(10).

— .
2 pv
(*)uv
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Expansions (8) and (9) can be reversed and written
in the form of a system of differential equations for P,
and P, with the right-hand sides depending on the elec-
tric field of the pulse. In the zero-order approximation,
it follows from relations (8) and (9) that E, = P/ and
E.= PJXe. Substituting these relations into the next
terms of expansions (8) and (9), we obtain

2
T Po 4 2P, — 2p2P,P, ~ pIP?
ot® (16)

~BYIPP, = wiXoE,,
o°P,

_p@p?
ot (17)
3) 3 3) 2 2
_Bt(a )Pe_B«(eo)PoPe = (*)eXeEe'
Here,
2
002=X—D wZZ)Le @ _ X(eo)
? KD' ¢ Ke’ o Xe

(2) (2) (3)
2 _ XeoXe @ _ Xe [3(3) _ Xo
— AeoAe =2e_ BY =

€o 2 1 e )

XoKe XeKe XDKD

(3) (3)
3 _— Xe 3 _ Xeo 3) _ Xeo
e — 2 oe T o eo ~ :
XeKe XeKp XDK

This system generalizes the Lorentz classical aniso-
tropic model [41] to the case when the nonlinearity of
the electron responseis taken into account. It should be
noted that this system has been derived here on the
basis of quantum-mechanical concepts concerning the
medium by using the low-frequency resonance approx-
imation (1). Inthis case, eigenfrequencies w, and w, are
determined by the entire set of electron quantum levels
(see rdlations (11), (12), (15) and expressions for
and w,). In addition, it should be noted that frequency
w, generally depends (although weakly) on angle ¢.
Obviously, in the nonresonant case, when w < w,, W,
(conditions (1) are satisfied), itispractically impossible
to single out a quantum transition which interacts with
thefield most strongly. This also explainsthe collective
nature of frequencies w, and w,. Usualy, w,, w, ~

106 s [24]. Consequently, frequencies w of thevisible
range can easily satisfy the condition w < w,, w, (see
also conditions (1)).

The system of equations (16), (17), aswell as expan-
sions (8)—(10), isinvariant to substitutions P, —= —P,
and E, —= —-E,, but is not invariant to transformations
P, —» —P, and E, — —E,. The validity of this state-
ment can easily be explained by the axial symmetry of
the medium: reflections in planes normal to the optical
axis are symmetry transformations, whilereflectionsin
planes parallel to thisaxisare not (see Fig. 1). Theonly
exception are reflections perpendicular to the optical
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Fig. 2. Diagrams of transitions taking into account the SRS
processes; 1' and 1" are the SRS sublevelsin the vicinity of
the ground electron state in an optically uniaxia medium;
w,nand w, are the frequencies of normal optical modes of
ion vibrations across and along the optical axis, respec-
tively; j are upper-lying electron levels.

axis and corresponding to ¢ = 0. This circumstance
explains the absence of nonlinearities of type P2, P2
and Pﬁ P. in Eqg. (16) and nonlinearities of type PP,
and P2P, in Eq. (17).

L et us consider two particular cases.

1. Let us assume that ¢ = 0. It follows from rela-

tions (11)—(15), formulas of the Appendix, and expres-
sions for w,, w,, and nonlinear constants that X. = X,

2 2 2 3 3 3
W, = (UevB()_ ()_B()_OandB()_ 3 - ge)z

¥ = B0, In this case, Eqs. (16) and (17) can be writ-
ten in the form of the Duffing equation for complex
polarization P = P, + iPg

0°P

5“*@ P —BPIPI°P = wixE,
t

whereE=E, + E,.

Here, the division of polarization into ordinary and
extraordinary components P, and P iscompletely arbi-
trary since both components behave as ordinary com-
ponents. Using the operation of rotation around the
optical axis, we can eguate to zero one of the compo-
nents. In this case, we aobtain for polarization the con-
ventional Duffing model, which is often used as the
constitutive equation for isotropic dielectrics [15].

2. Let us now suppose that ¢ = 172. In this case, the
guadratic nonlinearity plays a dominating role. Disre-
garding the cubic nonlinearity, we obtain from
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Egs. (16), (17) asystem of constitutive equations of the
type of the generalized Henon—Heiles model,

Gl OPp, = WX En  (18)
ot?
6 P P BeP(Z) B(Z)P — wﬁX”Ee’ (19)
at?
where o = X/K;

It should be noted that the Henon—Heiles system
permits both random and regular dynamics depending
on the relation between the coefficients [42].

lonic (vibrational) degrees of freedom, correspond-
ing to the optical branch of vibrations of atomic nuclei
at crystal lattice sites, may considerably affect the type
of dispersion [24]. The characteristic frequencies of
these vibrations are w, ~ 10%3 s%, In this case, for the

timescalet, ~ 10410 sof the ESPfor ordinary and
extraordinary ionic polarizations P\’ and P!, we have
W, <1

In this approximation, we can neglect ionic anhar-

monism as well as elastic retrieving forces in the oscil-
lator equations of motion [24]. This gives
2
oopE0 e

°Pl. _ wiE,

where wy, is the ionic plasma frequency [43].

3. DESCRIPTION OF SRS PROCESSES
WITH THE HELP
OF THE GENERALIZED BLOEMBERGEN-SHEN
MODEL

Let us now consider the stimulated Raman scatter-
ing (SRS) processes corresponding to electron-vibra
tional nonlinearity. Inview of the axial symmetry, SRS
active centers have at least two normal vibrational
modes with frequencies w,; and w,; along and across
the optical axis, respectively. We will first derive a
closed system of equations for the matrix elements of

p, corresponding to the vibrational sublevels of the
ground electron state (Fig. 2), eliminating the remain-
ing elements in the framework of the adiabatic approx-
imation (1). The subscripts of the corresponding matrix
elementswill belabeled by Latin letters. Inthiscase, in
accordance with Eg. (2) (j, k=1, 1', 1), we write

0Pk _

. [
el —Ioojkpjk—f—i Z (VixPa —Pp V). (21)

A>1"
Here, we have taken into account the fact that electron
transitions between the sublevel sin question are forbid-
den. Assuming in Eqg. (21) that j = k, we obtain equa-
tions for diagonal elementsof p.
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ON NONLINEAR PROPAGATION OF EXTREMELY SHORT PULSES

We can derive expressions for p,; (A > 1", =1, 1,
1") from Eq. (2) for 0p,;/ot = O (seerelations (1)):
Prj = . S VP
Al fi(x),\jkzl M
(22)

ﬁ(&))\] Z (V)\upp] p)\p pj)
p>1

The terms appearing in parentheses in this equation
have been taken into account in the above analysis.
These terms contribute to the el ectron polarization and,
hence, can be omitted here. Substituting Eq. (22) into
Eg. (21) and taking into account the above remark, we

obtain
oR;, : _ -

at = —|(k)ijjk+|[é, ]jk; (23)

where elements of matrix G have the form
z Vj)\V)\I
G, = ﬁ—zbl"—,

Wy 1

and matrix R contains only those elementsof p which
correspond to the three lower quantum levels 1, 1', and
1" (seeFig. 2):

5 Epr’r’ Prr pl"lé
0 Pr1 Prr P11 0
U P P Pu U

Here, we have disregarded the differencein frequencies
wy; of electron-optical transitions (A > 1",j =1, 1', 1")
for different values of j, setting w,; = w,;. It can be seen
from the figure that ;4 = w,; and Wy, = Wy

In our case, sublevels 1' and 1" have exclusively
vibrational origin; for this reason, they have identical
angular momentum components M; (j = 1, 1, 1") along
with the first level. For the sake of simplicity, we
assume that M; = 0. Following the approach developed
by Bloembergen and Shen [44], we assume that D,; =
D, and dy; = dy; in view of the small spacing between
the vibrational sublevels. Taking into account the above
arguments, using relation (5), and neglecting compo-

nent E,, we obtain for matrix G

6= S(EFXENE-D, (24
where | isaunit operator and S ismatrix all of whose
elements are equal to unity.

We can assume that the system of equations (23)
derived by ustogether with relation (24) generalizesthe
guantum-mechanical Bloembergen—Shen model [45]
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to the description of SRS processes in an optically
uniaxial medium. It should be noted in this connection
that system (23) is completely equivalent to the equa-
tions for the density matrix for a three-level atom in
which all three transitions excited by the square of the
field are alowed. It is well known that the Bloember-
gen—Shen model [44, 45] has the corresponding anal-
ogy with atwo-level atom.

Since w, g, Wy~ 108 s, we have w, T, < 1. Con-
sequently, we can disregard the first term on the right-
hand side of Eq. (23) in the zeroth approximation and
write this equation in the following symbolic form:

R _ . a e
5 =ilGR.

Matrix 5 commutes with itself at various instants.

Inthiscase, the solution to this operator equation can be
written in the form

Rt) = UR(»)0", 0 = exp(ib/3). (25)

Here,

(26)

Obviously operators $ and | commute with each
other; consequently, we have

= exp 18001260

0 = expg—mep3 o
Since 3’ =(K+1)35, 5 =(K+125, ..., 5= (K +
1)k-15 ..., the series corresponding to the exponential

inthelast expression can be easily summed. Asaresult,
neglecting an insignificant C-number factor exp(—i6/3),

we obtain
=1 ——%sn -—|smd§

Matrix R(—) isdiagonal. The corresponding occu-
pancies of the electron state and of the SRS sublevels
are W;, W;,, and W;.. Using expressions (25)—27), we
obtain the following expression for j # k:

(27)

1 .0 . .
Ry = 5[2(3W,—1)S|n2§—3|(Wk—Wj)S|n9}, 8)

1#], k.

The expression for the electron contribution P to
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polarization has the form

1"

P = N, Y S dipy+ee

A>1j=1

1
=N, Z dflz Py * C.C.,

A>1T =1
where N, isthe concentration of molecules contributing

to SRS.

Substituting Eq. (22) into this relation and subtract-
ing the second sum taking into account the electron
polarization considered above, we obtain

P = _N, Y 5 szJ+cc

A>1" k>J

lv)\ 1 (29)

It can easily be seen from relation (5) that the factors
infront of the second sumin Eq. (29) arereal valued for
both the ordinary and the extraordinary components.
Using relation (28), we obtain

Z R +cc. = 0.

k>j

In the first approximation in parameter w, )T, we
obtain from Eq. (21)

0 .
ﬁz R +cc. = |Zookj(R’|fj —-Ry).

k>j k>j

This relation together with Eq. (29) gives

0 2 .
k>j k> j

Integrating this expression with respect to t, substitut-
ing the result into Eq. (29), and using relation (5), we
obtain

t

v NV . f
P<;O> - 3,—vaxe,oEe, °.[ sinodt', (30)

where

w, = 0, (W =Wy) + w,n(W; —W;.)

+ (W=, ) (W —W;.).

L et us estimate the val ue of the quantity 6 appearing
in the argument of the sine in expression (30). Consid-
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ering that E2 = (417c)l, where | isthe ESP intensity, we
obtain
X 1T,
0 D3nN o

Taking polarizability x/N ~ 1026 cm3, | ~ 10% W/cm?,
and 1, ~ 10 s, we have 6 ~ 10102 < 1. In these
cases, we can set sind = 6 in Eq. (30). Then, the expres-
sionfor Pfor ¢ =0 assumestheformderivedin[24] for
an isotropic dielectric disregarding the variation of
occupanciesin SRS sublevels. This estimate shows that
the dynamics of populations of SRS sublevels can
indeed be neglected for intensities of 10 W/cm? and
for ESP durations of 10 fs. However, for | ~ 101 W/cm?
and 1, ~ 100 fs, we must take into account the change
in occupancies since 6 ~ 1 in this case.

L et us estimate the rel ative contribution to the polar-
ization from the electron cubic nonlinearity and the
SRS nonlinearity. The above estimate, relations (8), (9),
(12), (30), and the expressions for X (see the Appen-
dix) imply that

Nd'w, T5E°

2 4
Nd* ®Qq Nd <23
huy

: P O
g (hwy)’

X O

(here, N, = N and d is the characteristic value of the
dipole moments of the electron-optical transitions).
Then, the sought ratio is

P(eV)
P(3) ((.00 p)

where P® is the third-order nonlinear €lectron polar-
ization. Setting w, ~ 10® s, wy, ~ 10 s, and 1, ~
10715 s, we obtain P®/P® ~ 0.1; i.e., the contribution
of SRS can be disregarded as compared to the cubic
electron nonlinearity for an ESP duration of severa
femtoseconds. This estimate is in accordance with the
datagivenin[24].

A similar estimate shows that

I:)(ev) (W Tp)
(2)

For d ~ 10° CGSE units, (w,1,)? ~ 0.1, w, ~ 103 s,
and | ~ 10" W/cm?, we obtain P©)/P@ ~0.1. Consid-
ering that the quadratic nonlinearity plays the major
role in the electron response for propagation across the
optical axis, we arrive at the conclusion that thisnonlin-
earity in such geometry also dominates over the SRS

No. 6 2003



ON NONLINEAR PROPAGATION OF EXTREMELY SHORT PULSES

mechanism for pulse durations on the order of a few
tens of femtoseconds.

L et us now estimate the rel ative dispersion contribu-
tion of the ionic P® and electronic P degrees of free-
dom. From relations (8), (9), (15), and (20), we have

where w;, = 41d?N/# is the cooperation frequency.

Setting w, ~ w, ~ 1012-10" s, w, ~ 10" s, and
T,~ 105 s, we obtain the following estimate: PO/P ~
1-10. It can be seen that this ratio strongly depends on
parameter Wyt

4. NONLINEAR WAVE EQUATIONS

In order to analyze the self-consistent dynamics of
pulses and the medium, the relations derived above for
material responses should be supplemented with the
Maxwell equations

10°E _ 4mo°P*
AE-0O0 [E)-=2==22" 31
¢ ) cat? & at? (31)

where the total polarization P> = P + PO + PV,

Henceforth, we will assume that diffraction effects
are weak, considering that the pulse field components
depend mainly on zand t. It was mentioned above that
the longitudinal field component is much smaller than
the transverse component. For this reason, we can dis-
regard the derivatives with respect to transverse compo-
nents in the equation for E,, taking them into account
for components E, and E, only. Integrating twice the

z component of Eq. (31) and considering that P{’ =

Pe) = 0, we obtain E, = —4nP,. This expression
together with Eq. (10) gives

ATy, E.

z 1+4my,

In order to write equations for E, and E,, we first
represent components P, and P, of the el ectronic part of
polarization in the form

0°E, .

, |
Po,e = XD,eEo,e_KD,e atz + P(n)

o, e

where P{'Y are the parts of the electron polarization
containing quadratic and cubic nonlinearities.
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In this case, we obtain the following equation in the
x and y components from Eq. (31):
0’Ee Ne0’Eoe

Mo _4nd’
07 ¢ ot

ot

O°E -
<[P SRl s ack

wheren, . = /1 + 41), . arethe refractive indices of
the ordinary and extraordinary waves and A is the
transverse Laplacian.

The right-hand sides of these equations describe
nonlinearity, dispersion, and diffraction (which are
effects with a higher order of smallness as compared to
the instantaneous linear response appearing on the
left-hand sides) through renormalization of the rates
of field components with the help of refractive indices
n, and n,.

This circumstance allows us to use the slowly vary-
ing profile approximation in the comoving frame of ref-
erence [46]. In accordance with this method, we can
assume that the right-hand sides are equal to zero in the
zeroth approximation in nonlinearity and dispersion
and assume that the two components propagate in only
one direction (along the zaxis). Then, E, = E, «(T, o),
where 1, . =t —n, Z/C. In the first approximation, the
effect of the right-hand sides will be taken into account
by introducing the “slow” coordinate Z = €z in addition
to 1, in the arguments of E, and E, [46]: E, =
Eo o(To, e Z), Where € < 1 is a small dimensionless
parameter taking into account the effect of the right-
hand sides of the latter equations. Passing from vari-
ablest and zto variables T,  and Z in the equations for
E, and E,, we can write

0.0 9 Med 0
ot 01, 0z C 0T,, 0Z’
0 Moo 0° 26y, O
07 o, C 07,07

where we have neglected the term of the order of €2 in
the last relation. This alows us to integrate the wave
equationsfor E, and E, with respect to 1, and 1., respec-
tively, in view of the fact that the field of the pulse and
all its derivatives tend to zero at infinity:

_2 N, esd Eo, e _ @L
¢ 07 20T,
aZE - To,e
ey pl) 4 Pﬁf?} 0, [ Byl
o,e -

(nl)
x |:Po,e - KD,e

Returning to the initial variablest and z and using
formulas (8), (9), (20), and (29), we arrive at the foll ow-
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ing system of nonlinear wave equationsfor the ordinary
and extraordinary components of the pulse:

0, , N0,  0(EE) ,  O(EE)
dz cot ° ot ® ot
26E ou
+ by Eg—— Fn OOtEE J'Slnedﬂ] (32)
3 t c t
0 - 2_nOADJ.E0dt,
0E, n.OE, oE, JE,
—+ ==+ ° +
52 "o ot By thaEey
d(EZE,) ]=
+ag—— = + by, ia—te eat[E J’smedtD (33)
3 t c t
- = Z—nOADIEedt.
Here,

N s O
27 e 2T Thco BT nc’
o el oY _ 2N,
" nc’' * nc’' "° 3Nnc '
A = 21N, W, Xe _ 2TIKy
© 3Nn,c ' ° n,c '’
ke wp
¢ n,c’ 2n,C’

and the dynamic parameter 6 is defined by formula (26).

The system of nonlinear wave equations (32), (33)
describes the propagation of an ESP in a uniaxia
medium at an arbitrary angle to the optical axis. These
eguations take into account the electron and electron-
vibrational nonlinearitiesaswell asthe electron andion
dispersions. The terms on the right-hand sides describe
the pulse diffraction.

It should be noted that the SV P approximation is not
connected in any way with the approximation of sowly
varying envelopes [47], which is traditional for quasi-
monochromatic pulse optics, where the reduction in
derivativesis attained due to the fact that the field enve-
lope covers a large number of electromagnetic oscilla
tions. System (32), (33) is written not for envelopes
(which cannot be introduced for ESP), but directly for
the electric field components E, and E,.

If the signal propagates along the optical axis (¢ =
0), coefficients a,, by, and X, vanish; in this case, n, =
Noy Xe = Xo» Op = Og 85 = 3bg, = 3bge, and A, = A, and
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system (32), (33) is transformed into the following
equationin E=E, +iE.

T

3
0E 0 2 aE+OIEdT'

FERd asﬁ(lEl E) _6OF

T

A== smeer = —A Edt';
0 0 I DI
here, 1 =t-nz/c.

Disregarding the dynamics of population of SRS
sublevels, we obtain

sn6=0 = 4hNI|El dr

Inthis case, the last equation exactly coincides with the
one derived in [24] for the ESP propagation in isotropic
dielectrics.

Let us now suppose that ¢ = 172. It was mentioned
in the previous section that we can neglect the elec-
tronic cubic and electron-vibrational nonlinearities for
pulses of intensity | ~ 10" W/cm? and of duration T, ~
1-100fs. In addition, X, = 0 (seeformula (11)). In this
case, Egs. (32), (33) assume the form

OF, , NOE, ,  O(EE) , O,
dz ¢ ot ot ot
{ t (34
(R _C_ 1
+ GJ' E,dt' = ZHOADI E,dt',
0E, E—“E—‘ aE +b aE
9z c ot Eot * PaeBear
t t (35)
a3Ee ,_ ¢ ‘
—66F + O'J- Eedt = Z—nOADI Eedt .

It should be noted that, if a pulse polarized in the
plane of the principle cross section (i.e., in the plane
formed by the optical axis and the direction of pulse
propagation) enters the medium, it can be seen from
Egs. (34) and (35) that E, = 0. In an anisotropic
medium, only the extraordinary component of the ESP
can propagate. If, in addition, we disregard ionic dis-
persion, the one-dimensional dynamics of this compo-
nent will be described by the Korteweg—de Vries equa-
tion, which has soliton video-pulse solutions among
other solutions. However, the input signals required for
obtaining such solutions must aso be in the form of
video pulses, which can subsequently split into several
solitons. A more interesting case when ESP (or video
pulses) can be generated by the envel ope pulses will be
considered in the next section.
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5. GENERATION OF EXTRAORDINARY
COMPONENT VIDEO PULSE
IN THE ZAKHAROV-BENNEY RESONANCE
MODE WITH ORDINARY WAVE

L et uswritethe ordinary component of apulseinthe
form of the envelope pulse with a carrier frequency w
and wave number k:

E, = &(t, z, rp)exp[i(wt —kz)] + c.c., (36)

where & is the slowly varying complex envelope:
|0&/0T| < w|&} |0&/dZ] < k|¢]. In this case, E, has no
carrier frequency.

Substituting Eq. (36) into Egs. (34) and (35),
neglecting rapidly oscillating terms, and using the
asymptotic expansion [24, 47]

t t

J’Eodt' = IEexp[i(oot—kz)] dt' +c.c.

_ &, L0E i0% Oy

N Im+ ot w36t2 + ...Dexp[l(wt kz)] +c.c.,
we obtain, after simple transformations, a system of
equationsfor & and E, interacting in the Zakharov—Ben-
ney resonance mode:

GE __g _ Cc
aZ+ga = QWEE, + ZHOwADE' (37)
dE, dE, _°E., .
-52 + by e—a—_[——6e a-[3 +O'J.Eed1'
T (39)
azaT(|E| )t 5 ADI E.dt'.

Here, g = 33,w — a/w?, T = t — Z/v,, the group velocity
v, of the ordinary component is defined as

W+l

Tdo c i
and the dispersion equation has the form
_ NoW 3 0O

(0]

In Eqg. (38), the Zakharov—Benney resonance condi-
tion [48] is taken into account, according to which the
group velocity of the short-wave (ordinary) component
isequal to the phase velocity of the long-wave (extraor-
dinary) component: v, = c/ne.

If we disregard diffraction (A5 = 0) and ionic disper-
sion (o = 0), we arrive at the system analyzed in [49].
If, in addition, by, = . = 0, system (37), (38) is trans-
formed into the Yadjima—Oikawa equations [50],
whichisaunidirectional version of the Zakharov equa-
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tions [51]. TheYadjima—Oikawa system isintegrable by
the method of the inverse scattering problem [50]. The
corresponding single-soliton two-parametric solution in
the laboratory system of coordinates has the form

£ = &epl-i(Qt-g2)] sech =210

p 0
» (39)
_ 2[i—2Zlv
E. = —E,;sech O i 0
Here,
63,
a,Ts
_Q 2,10
q-= 7"‘9%2 +1'_2D
p
the velocity of the pulse satisfies the relation
1_1
=7 29Q, (40)

g

parameter Q determines the nonlinear frequency shift
of the short-wave component to the red region since
Q > 0 (see expression for &, and Eq. (36)), while the
other free parameter 1, which has the meaning of soli-
ton duration, determines the spectral width: Aw ~ U1,

The ordinary component of the pulseis an envelope
soliton, while the extraordinary component is a video
soliton. It follows from Egs. (37) and 38) that, if E.=0
at the input, a pulse of the envelope of the ordinary
wave in the medium can generate an ESP of the extraor-
dinary wave. In this case, each photon of the ordinary
component increases the wavelength by transferring its
energy to the extraordinary wave, which explains the
nonlinear shift of the spectral peak of the pulse: w —
w—Q. Inview of the positive value of electron disper-
sion, the group velocity of the ordinary component
(and, accordingly, of the extraordinary component)
acquires a positive shift:

1 n, 2 N, 2

= =24 — 4+ —

T 38,0" —= 2+ 38,(w- Q)
N,

=0 35, 02— 6008,Q = ——2gQ,
C Vg 9

which coincides with formula (40)

It should be noted that the mechanism of ESP gen-
eration associated with the Zakharov—Benney reso-
nance is very close to the corresponding Cherenkov
mechanism analyzed for thefirst timein [52]. The only
difference is that the generation mode in the latter case
isnoncollinear: angle y between the directions of prop-
agation of ESP and the pulse generating it in a quadrat-
ically nonlinear medium, whose spectrum contains
two close extreme frequencies w; and w, correspond-
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ing to wave numbers k; and ks, is determined by the
formula[52, 47]

Ko(,) —ky(w,)

O = Tk, —wy)

The velocity of the nonlinear polarization wave at fre-
guency w, — w; must be larger than the phase velocity
of the wave in this medium at the same frequency:

0, — 0y > 0, — Wy
Ka(wy) —ky(wy)  k(w,—wy)

Proceeding to the limit w, — ), inthisinequality and
assuming that y = 0 in the preceding equality, we arrive
at the condition dw/dk = v(0), where v,,(0) is the
phase velocity in the low-frequency dispersion-free
limit. This case corresponds to the Zakharov—Benney
resonance condition. This synchronism condition is
usually difficult to satisfy in the collinear propagation
mode [47]. In our case, the Zakharov—Benney reso-
nance condition can be written in the form

”e—cn° = 35, (41)
Since the electron dispersion is positive in the transpar-
ency region (o, > 0), the Zakharov—Benney resonance
condition can be satisfied for n, > n; i.e., the medium
must possess positive birefringence. This conclusion
remains unchanged if wetakeinto account ionic disper-
sion (it can easily be seen from the expression for v,
that the substitution 30,0 — 30,0 + o/w? has been
carried out on the right-hand side of the last relation).
Taking into account the closeness of the values of n,
and n,, we can write
Ne—1G _ 2M(X—Xo)

Ne—Ny = = :
¢ % 2n, N,

In addition, we have
_ 2TKy _ 27X,

)
°  nsC

N,CO
In this case, condition (41) can be written in the form

Xe—Xo ~ DEDZ
3Xo o

For crystalline quartz, n, = 1.55 and n, = 1.54 [40Q].
Then, (Xe — Xo)/3Xo = 0.01. Consequently, wuwy, = 0.1.
Setting wy, ~ 10'° s, we obtain w ~ 10*° s, For the
input pulse, we have wt, > 1; hence, its duration 1, ~
10-100 fs. In accordance with Eq. (39), the generated
ESP (or video soliton) will have a duration of approxi-
mately the same order of magnitude. Selecting appro-
priately the carrier frequency of theinput signal, we can
satisfy the Zakharov—Benney resonance condition and,

hence, redlize the effective generation of ESP,
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Nonlinearity and dispersion of the extraordinary
component in Eq. (38) are effects of the same order of
smallness. Consequently, the condition under which these
effects can be neglected and for which solutions (39)

were written can be represented in the form bZQEﬁ1 <
a,&2,. Substituting the above expressions for EZ, and
Eﬁq into this condition, we obtain wT,QT, > byJ/a,.

Considering that b,, and a, are quantities of the
same order of magnitude and taking into account the
quasimonochromaticity condition wt, > 1 of the ordi-
nary component, we conclude that the condition in
guestion can easily be satisfied in awide range of free
parameters Q and T,,.

The generation of the extraordinary component with
the help of the ordinary component in the second har-
monic generation mode was considered in [30]. Thesit-
uation of long-wave-short-wave resonance considered
here corresponds to energy pumping from the high-fre-
guency ordinary wave to the zeroth harmonic; as a
result, ESPs of the extraordinary wave are generated. It
can easily be proved that, using a representation of
form (36) for E, and taking into account the substitu-
tionsw — 2wand § — &, Egs. (34) and (35) in the
SVAP approximation lead to the well-known system
[47] describing the nonstationary process of second
harmonic generation. It can easily be found, using the
dispersion relations that takes into account the electron
dispersion alone, that the phase synchronism condition
2K, (w) = k(2w) for the second harmonic generation in
our case has the form

Tl = (45,-8,)0’ = 35,67,

which has the sign opposite to that in condition (41).
This means that the collinear mode of the second har-
monic generation can be realized in media with nega
tive birefringence. This must enable us to distinguish
between the two effects under the experimental condi-
tions.

The stability of solutions (39) is an equally impor-
tant factor. Let us analyze the stability using the Ritz—
Whitham method of averaged Lagrangian [53]. Since
solution (39) corresponds to b,, = &, = 6 = 0, we will
consider the stability under the same conditions. It
should be noted that this problem can also be solved for
b.e, 0., O % 0, but the expressions will be cumbersome.
In view of the above remarks, system (37), (38) can be
obtained from the Lagrangian density

i gogl & 98]2_ _C 2
L= —=xX—=-¢ + 30,28 — |O€]
2w 0z 041 ~° 210
0t  2n,w (42)
10UoU ¢ 2 20U
+§EE_2_nO(DDU) +aglEl 5
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Here, the electric field of the extraordinary waveisE, =
ou/ot.

In accordance with Eq. (39), we choose the tria
solution in the form

& = Aexp[—i%)Hmno%}%ch[RB—éE}
(43)
U= Btanh[RB—é%}.

where A, B, and R are dlowly varying functions of zand
ro; @ is arapidly varying function of the same vari-
ables; and Q and v are constant parameters connected
through relation (40).

Substituting relations (43) into Eq. (42), taking into
account the derivatives of “fast” variables only [53],
and integrating with respect to t, we obtain the “aver-
age” Lagrangian

35, Q°A?
D——J’Ldt = —;{Aza—q)—a A’R— °R
2

whose variation over dynamic parameters A, B, R, and
@ |eads to the following system of equations in planar
fluid dynamics of an ideal liquid (continuity equations
and Cauchy integral):

0
6_2"' On(pvp) = 0,

J‘___

Here, the z coordinate plays the role of time, vy = 0P,

and “pressure” P is connected with “density” p = AR
through the equation

dP Cs 0 p
no Lk, A/ 63
Parameters A and B are given by

65,R/0Q

A = B%RVOQ o _GBOR'
a Q

acb v (44)

(45)

In the one-dimensional case, R = 1/1,,, the solutions
obtained here are transformed into solution (39) on
account of the fact that E, = 0U/dt. Obviously, the sta-
bility of the solutions in question is equivalent to the
stability of the ideal liquid flow of type (44), (45). In
this case, soliton (39) isstablefor dP/dp > 0, which fol-
lows from Eq. (45). Thus, the above analysis leads to
the conclusion that soliton solutions (39) exhibit trans-
verse stability. Consequently, a video pulse of the
extraordinary wave can be generated with the help of
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the ordinary component through the Zakharov—Benney
mechanism under the experimental conditions.

Let us estimate the intensity of the input pulse for
which a video soliton can be formed in the medium.
Equation (38) for by, = 8. =0 =A;=0leadsto

e, ot _ 10 A

v 20Q°

Substituting this estimate into Eq. (37), we arrive at the
nonlinear Schrodinger equati on (NSE)

GE

a2|5.|2 O—

+q|EI §=0,

where g = wa?/2gQ (naturally, we can speak about an
equation only conditionally since the expression for
coefficient q contains parameter Q of the soliton solu-
tion of system (37), (38)). It iswell known [48] that the
formation of a soliton of the NSE requires the fulfill-
ment of the threshold condition

5 Xo /WQ
0 .
Xeo (,00
Since
Xo DX |] fﬂ)
Xeo X(z) d

(see [3]), where d is the characteristic value of the
dipole moment of quantum transitions participating in
the interaction with the pulse, we have

ﬁA/ Q

du%r

Setting Q ~ Ut, ~ 10" s, w ~ 10" s, wy ~ 10 s,
and d ~ 102° CGSE units, we obtain the following esti-
mate for the threshold intensity: I, ~ c&2, /4Tt ~ 10%3—

10 W/cm?. Then, the intensity of the video soliton
being generated is

€o>&m U

| OcEL/4T0 c&r/4TiwT,
00.11,, 010%-10" W/cm®.

Such an estimation procedure cannot be regarded as
rigorous, but nevertheless provides reasonable values
of threshold intensities attainable in modern lasers.

6. SOLITON-LIKE SOLUTIONS
OF THE TYPE OF VIDEO PULSES

In this section, we consider two solutions of sys-
tem (34), (35) in the form of bound states of the ordi-
nary and extraordinary components of an ESP, propa
gating across the optical axis. As before, we will disre-
gard ionic dispersion.
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om>
.
E,, .

0 1.2

Fig. 3. Amplitudes of the ordinary (1) and extraordinary (2)
components of a soliton-like ESP of type (46) as functions
of the square of reciprocal duration. Dashed segments of the
curves correspond to the instability region.

Direct substitution readily shows that, for b,J/a, =
60,/0,, system (34), (35) has one-dimensional solutions

+E,sech d-2/vQ

EO = D _[p D!
» (46)
—2lv|
E, = ~Eapsech =270
p
where
2 Me—N, 40,—04]
Eom 60D - 2 [
LT, C T
125
Eem __:v
D¢ T}

and velocity v is connected with pulse duration T,
through the relation

(47)

<l|lrk

Ny
Cc

U‘_"\J. I OOI

The spectral widths of the ordinary and extraordi-
nary components (46) can be estimated as Aw, ~ 11,
and Aw, ~ 21, ~ 2Aw,. Thus, the spectrum of the
extraordinary component is twice as wide as that of the
ordinary component. Consequently, solutions (46) can
be regarded as an anal og of the second harmonic gener-
ation for quasimonochromatic pulses.

It follows from the expressions for E,,, and E, that
solution (46) can berealized, for example, in amedium
with positive birefringence (n, > n); in the transpar-
ency region of this medium, we can disregard the dif-
ference in the dispersion of the ordinary and extraordi-
nary refractive indices (i.e., we assume that &, = 9,). In
the case of strict equality &, = d,, the condition for the
existence of the exact solution (46) has the form b, =
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6a,, which corresponds to one of the cases of integra-
bility of the Henon-Heiles model [42].

Analysis shows that, in the case under investigation
the duration of an ESP (and, hence, the velocity of its
propagation) is bounded from below. This question is
closely related to the stability of solution (46) and will
therefore be considered in greater detail. Asin the pre-
vious section, we will use the method of averaged
Lagrangian. The density of the Lagrangian correspond-
ing to system (34), (35) in the absence of ionic disper-
sion has the form

p2ud’
‘0ot 0

_1
L=32

i=oe

Lot U

2
oU;0U;  mpoUpy |
0z ot cC

(48)
by U7, BorpUg 10U,

C
T on 6 Uot0 " 20ot0 ot -

(%wﬂ

2n,

Here, the ESP field components can be expressed in
terms of “potentials’ U, and U, as E, = dU, /ot and
E.=dUJot.

In accordance with Egs. (46), we choose tria solu-
tionsin the form

U, = %’arctan{sinh[R(t—CD)]} :

U, = —%etanh[R(t—dJ)],

where A, A,, and R are slowly varying functions of
variableszand r 5, while ®@ isarapidly varying function
of the same variables.

Substituting these expressions into Eq. (48) and
integrating with respect tot, we arrive at the “ averaged”
Lagrangian which leads to equations of motion of
type (44) except for the substitution 3cd,/n, — nJ/cin
the Cauchy integral. In this case, v = Oy® and
“density” p is connected with parameter R through the
relation

o= 43,(n.—ny)R _285:R’

2 2
a,c 3a;

Quantities A, and A, coincide with E,,, and E,,, upon
the substitution 1/t, — Rand for &, = &, b, = 6a,.
The relation between the “pressure” and “density” is

given by the equation I dP/p =d,R?, whence

dP _ dPrdp™ _ 05 Rz(ne—no)/c—(760/3)R2
dp  dRLIRY " (ng—ny)/c—-78,R*
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In this case, the stahility criterion dP/dp > 0 taking
into account the fact that R = 1/t, can be written in the
form

79,C

T,>T.= .
Ne—Ng

P C

It follows hence that, in accordance with Eq. (47), the
value of velocity v liesin the interval

n.—n
E—<v<—C-%L+ e” d]
No N, 7n, U

Here, we have used the fact that (n,—n,)/7n, < 1.

On segment 1, > 1, the amplitudes of both compo-
nents increase with decreasing 1, (Fig. 3). Conse-
guently, the intense central part of the ESP in the cross
section leadsthe peripheral parts, and the pulseisstable
on the whole.

Using the estimates obtained in the previous section,

2 =X) 5 2K

Ne— N, :
2
No N,CL,

we can write the expression for 1. in the form

a7
T, = Wy Xi(;(’
e [¢]

which at least does not contradict condition (1).

As in the case of solutions (46), we can verify by
direct substitution that, for n, = n, and 3b,J/a, = 1 +
20/0,, system (34), (35) has the solutions

_ a-zZvo_ . ..0=-2vg
E, = iEomtanhD T DsechD - ,

» (49)
=2V
E. = —Eemsechzg . E,
p
where
2 60
Eom = _/\/360(60_468)’ Eem = _021
A1) a,T),

and the velocity and duration are connected through
relation (47) as before.

The profile of the ordinary component in (49) has a
bipolar form; consequently, its spectrum is centered at
frequency w, ~ U/1,,. In view of the unipolarity of E,
the spectrum of the extraordinary component of the
ESP is centered at zero frequency.
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Fig. 4. Dispersion dependences of the ordinary (1) and
extraordinary (2) refractive indices in the low-frequency
transparency regions, corresponding to solution (49).

For testing relations (49) for stahility, we choose the
corresponding test solutionsin the form

Uo

FRsech[R(t—®)],

Ue

Ac
—Ztanh[R(t—®)].

The application of averaged variationa principle
using these expressions and Lagrangian (48) also leads
in this case to a system of equations of type (44) taking
into account the substitution 3cd,/n, —= ny/c in the

Cauchy integral. As in the previous case, J'dP/p =

d,R?, and the relation between R and “density” p is
given by the relation

_ 128%(3a,—2b,)R®
p - 3 .
a,

Consequently, dP/dp = 2p?/3 > 0 and an ESP of type (49)
is stable to self-focusing. This conclusion is also con-
firmed by qualitative considerations formulated above
for solution (46) taking into account the fact that the
amplitudes of both components and the velocity
increase with decreasing duration. It can be seen from
the expression for E,,, that solution (49) can be realized
for o, > 49,. At the sametime, n,=n,. Thus, solution (49)
corresponds to the situation when birefringence
emerges exclusively due to dispersion and is absent in
the dispersion-free (low-frequency) region. From
expressions (18) and (19) for the ordinary (X(w)) and
extraordinary (x,(w)) electron susceptibilities, we
obtain the following dispersion relations:

2 2
_ WoXo _ WX
XD(('O) - 2 2! X||(('0) - T o
Wy — 0 — W
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At the same time, we have

4 B0
o,e — —BMD = l)ﬂ
' CnOD a(k)z DQ)=O CnO(A)i”

Since Ne = Ny, X = Xn(0) = X, = X(0). From these rela-
tions and from the condition &, > 4d,, we obtain wy, >
20,. It can be seen from relation (12) that the suscepti-
bilities of the ordinary and extraordinary waves are
formed by o and 1t transitions, respectively. Conse-
guently, the characteristic frequency of Tt transitions
must be more than twice the frequency of o transitions
for the realization of solution (49).

Thus, solution (49) can be redlized in media with
dispersion origin of birefringence (Fig. 4). In this case,
Ny(w) > ny(w); i.e., the medium must possess negative
birefringence in the dispersion frequency range.

7. CONCLUSIONS

The analysis carried out by us here reveals differ-
ences in the ESP dynamics in isotropic and optically
uniaxial media. In the latter media, the quadratic non-
linearity of the electron response, whichis absent in an
isotropic dielectric, playsasignificant role. The system
of congtitutive equations (16), (17) as an analog of the
Lorentz classical model, which receives its quantum-
mechanical substantiation here, can be used in subse-
guent investigations for describing the electron
response in the low-frequency transparency range. In
the Voigt geometry (when ESP propagates at right
angles to the optical axis), these equations are trans-
formed into the Henon—Heiles system (18), (19). It is
remarkabl e that the Henon—Heiles system (its homoge-
neous version) permits both regular and chaotic motion
depending on the rel ation between the coefficients[42].
Conseguently, it cannot be ruled out that chaotic modes
of ESP propagation can be observed in some anisotro-
pic media.

The Henon—Heiles system is an analog of the
Duffing equation describing a nonresonant nonlinear
response of an isotropic medium in the low-frequency
region. It was shown in [21] that the Duffing eguation
fails to provide an adequate response of an isotropic
dielectric to an intense external action in the high-
frequency region. In the same publication, a nonlinear
model is proposed in the form of two parametrically
coupled oscillators; it was found that this model holds
in the low- and high-frequency regions. Proceeding
from this remark, we can say that an analogous
modification of the Henon—Heiles model is forth-
coming.

The generalization of the Bloembergen—Shen quan-
tum-mechanical system proposed by us here for
describing SRS processes in media with uniaxia
anisotropy enabled usto derive expressions (30) for the
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electron-vibrational response taking into account the
dynamics of population of the SRS sublevels.

The obtained system of wave equations (32), (33) is
written directly for the ordinary and extraordinary com-
ponents of the electric field of the pulse, and not for
their envelopes as in earlier publications. This circum-
stance makes it possible to use this system for analyz-
ing the propagation of guasimonochromatic pulses as
well as optical pulses of duration of only afew periods
(including video pulses). The mechanism of generation
of a video pulse of the extraordinary wave in the
Zakharov—Benney resonance mode with a quasimono-
chromatic ordinary component (see Section 5), which
can be realized in media with positive birefringence,
may serve as an illustration of the previous statement.
The role of SRS processes in the generation of video
pulses due to continuous energy pumping from high-
frequency Fourier components to the Stokes compo-
nents of the spectrum is well known [45]. In this con-
nection, the investigation of the combined effect of the
electron quadratic nonlinearity and SRS on the process
of ESP generation with the help of pulsesinitially pos-
sessing aclearly manifested carrier frequency isof con-
siderable interest.

The soliton-like solutions (46) and (49) in theform
of coupled states of the ordinary and extraordinary
ESP components presented here are, in addition to
relations (39), only a minor illustration of possible
solutions contained in Egs. (32), (33). In all probability,
other solutions will mainly be obtained with the help of
numerical experiments, which does not preclude fur-
ther analytic investigations.
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APPENDIX

The expressions for third-order nonlinear suscepti-
bilities in terms of the microscopic parameters of the
medium have the form

2NO
(e?)) = XE(?/)yx = Xgli)xy = ?%QUZVAW@))

—cos"d Z dy,

a .2 D
;V+S|n (I)Z uv
Q)“V
Uzv

(‘OHV TERY
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where

The expression for X,

dj .
B,($) = —5*cos'p + Dy, sn’d.

EJE)

X XXXX

can be obtained from

the formulafor x{¥ for ¢ = 0.
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Abstract—Spatial variation of dust particle charges are estimated numerically for typical laboratory experi-
ment conditionsin aradio-frequency (rf) capacitive discharge. The surface potentials of macroparticleslevitat-
ing in the upper part of the near-electrode layer of the rf discharge are measured. A model is proposed for the
formation of irregular dust oscillations due to stochastic motion of dust inthe bulk of aspatially inhomogeneous
plasma (in the presence of a dust charge gradient). This mechanism is used for analyzing the results of mea-
surements of the amplitude of vertical vibrations of dust particlesin the near-electrode layer of the rf discharge.
It is found that the dust charge gradient may be responsible for the development of such vibrations. © 2003

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The charge of adust particle is an important param-
eter for investigating various transport processes in
dusty plasmas, such as phase transitions, diffusion pro-
cesses, propagation of waves, and formation of self-
excited dust vibrations. Considerable attention in the
study of plasmas is paid to the methods and results of
measurements of dust particle charges. A large number
of methods for determining macroparticle charges are
based on the measurement of the dynamic response of
dust particles to various external perturbations [1-9].
The charges of macroparticles can also be determined
without perturbing the system in question by external
agencies, but from an analysis of their diffusion or from
the equilibrium conditions for a stationary particle in
the gravitational field of the Earth and in the electric
field of the trap [9-11].

Sincethe charge of dust particlesisafunction of the
parameters of the surrounding plasma (concentrations
Ng;) and velocities v, of electrons and ions), the varia-
tion of these parameters may lead to a change in the
macroparticle charge and to evolution of various insta-
bilities in plasma-dust systems [12, 13]. Available
experimental observations demonstrate that, under cer-
tain conditions (upon a variation of pressure or an
increasein the number of particles), dust particlesinthe
strata of a dc glow discharge or in the near-electrode
layer of a capacitive rf discharge may acquire energies
on the order of 1-100 eV and perform regular or sto-
chastic vertical vibrations (in the direction of the grav-
itational field) [13-17].

The reason for the evolution of such vibrations may
be related to the inhomogeneity of the surrounding

plasma. The formation of various self-induced dust
vibrationsin the field the gravitational force orthogonal
to the macroparticle charge gradient was considered
in[12]. However, this mechanism can hardly be
responsible for the evolution of the observed vibrations
of dust particles in capacitive rf discharges in view of
considerable uniformity of the parameters of the capac-
itive rf discharge plasmain the radial direction (ortho-
gonal to the gravitational force). Stochastic fluctuations
of dust charges due to discreteness of plasma currents
charging a macroparticle may lead to “anomalous heat-
ing” of dust particles in gas-discharge plasmas [18], but
cannot be responsiblefor high kinetic energies (>0.1eV)
acquired by light particles of radius 1-2 um (density
p = 1.5-2 g/cm3) under gas pressures P > 0.02 Torr.

One of the possible mechanisms of evolution of
irregular vibrations of dust particles is associated with
stochastic changes in their charge, which are deter-
mined by the random position of aparticlein aspatially
inhomogeneous plasma (in the presence of a dust
charge gradient in the direction of gravity) due to ther-
mal or other fluctuations, e.g., due to the above-men-
tioned discreteness of the charging current. This mech-
anism was considered for the first time in [14]. How-
ever, in the proposed model, it was proposed that
particles move in the free diffusion mode, which is
unsuitable for describing spatially bounded trajectories
of macroparticles, which are observed both in the dust
layer formed in the rf discharge and under the condi-
tions of abulk dust cloud in adc glow discharge[13, 16,
17, 19]. It should also be noted that the very possibility
of formation of irregular dust vibrations in the frame-
work of thismodel was determined by theinitial energy
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of the system, which is not aways observed in rea
experiments, including the one described below.

Here, we propose amodel of formation of irregular
dust vibrations due to stochastic motion of dust in a
spatially inhomogeneous plasma, which takes into
account the limitations imposed by an electric field on
the displacements of macroparticles in a preferred
direction. This mechanism is used for analyzing verti-
cal vibrations of macroparticles in the near-electrode
layer of a capacitive rf discharge. The material is
arranged in the following order. In Section 2, the esti-
mates of spatial variation of the charge of adust particle
inthe near electrode layer of the discharge are obtained.
In Section 3, basic relations are derived for estimating
the kinetic energy acquired by adust particlein aninho-
mogeneous plasma. Thelast two sections are devoted to
experiments on dust particle charging and on the
dynamics of formation of stochastic dust vibrations in
the rf discharge plasma.

2. SPATIAL VARIATIONS
OF THE MACROPARTICLE CHARGE
IN GAS-DISCHARGE PLASMAS

In gas-discharge plasmas, where emission processes
are insignificant as arule, the charge of a dust particle
is negative. The estimate of the macroparticle surface
potential obtained in the orbital-motion-limited (OML)
approximation gives the following expression for its
value:

_ ez _ T,
b= — =%
p

here, [Z,[is the equilibrium (time-averaged) charge of
a dust particle, T, is the electron temperature in elec-
tronvolts, and z = 24 for most experiments on dusty
plasmas under the discharge conditions in inert gases
[20, 21].

Using the formulas of the OML approximation, we
can estimate the small variation A,Z, of the equilibrium
charge [Z,[bf amacroparticle dueto violation of electro-
neutrality of the surrounding plasma, én =n; —n,[19]:

Aan ~ divE (1)
[z 4meny(1+2z)
Here, E is the electric field strength and n, is the con-
centration of the neutral plasma, where n, = n, = n,.

Obvioudly, as long as condition dn < n, holds, the
requirement of the smallness of charge variation,

AZ,<[Z[]
is satisfied automatically.
A similar relation
nNZ,=2,-Zd<[Z[O
for estimating the charge variationin aplasmalayer can
be obtained under the assumption |ed/T,| < 1 (where
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¢ isthe electric potential) provided that the directional
velocity of ions u; is much higher than their thermal

. T,
velocity v; :

NZ, _
Z

2zdn/ny—ed(z-9s)/T,
z(1+s+2)

)

Here, [Z,[is the equilibrium charge in a plasma layer

with n = 0 and concentration n, and s = mu’/2T,.
Relation (2) can be used for estimating the charge vari-
ation in the vicinity of the upper boundary of the elec-
trode layer, where levitation of macroparticles is nor-
mally observed. In this case, s = 0.5, considering that

ions enter the layer at the Bohm velocity vg = /T/m,

and ny = ng = n§ /2.7, where n§ isthe concentration of

the unperturbed plasma. It should be noted that such an
approach is suitable only for very low pressures, when
the mean free path |, for ions colliding with gas neutrals
is much longer than the el ectron Debye radius Ap,. For
average pressures (0.05-1 Torr), which are working
pressures in most experiments on dusty plasmas, I; ~
Ape- IN this case, the velocity of ions u;(0) at the layer
boundary is smaller than the Bohm velocity vg by

approximately afactor of ,/TtAy/2l; [22].

It should be noted that we assumed, while deriving
relation (2), that ionization processes in the plasma
layer can be neglected (nu; = const). The analytic the-
ory of the near-electrode layer in an rf discharge devel-
oped for this case is described in [22]. In thiscasg, it is
assumed that the layer isin contact not with the unper-
turbed plasma, but with a preliminary layer in which
the electroneutrality of the plasma is quite high:
on/ng < 1. An analysis of the proposed system of equa-
tionsfor low pressures (Ape << |;) givesfor the averaged
electric field E(y) of the near-electrode layer in the
vicinity of its upper boundary a distribution close to a
linear function:

E(y) = Cyy. 3

For average pressures (Ape ~ |;), the solution of the
equations of the analytic theory [22] leads to the fol-
lowing linear approximation for the gradient E(y) of
thisfield:

Ey) = Cy”. (4)

Let us analyze the conditions realized in some
experiments in a dusty plasma of a capacitive rf dis-
charge[16, 17]. These experiments show that levitation
of macroparticlesis observed in the vicinity of the upper
boundary of the near-electrode layer whose thickness
d.ox lies approximately between 0.5 and 1.5 cm under
experimental conditions (P = 0.015-0.2 Torr).
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We can estimate the macroparticle charge gradients

dz,_d(aZy)

Pr= oy = " ay

arising asaresult of achangein the charging conditions
for light particles of radiusa, = 1-2 um and density p =
1.5-2 g/cm?®, assuming that the electric fields E confin-
ing particles in the gravitational field of the Earth are
equa to 1-4 V/cm, the plasma density at the layer
boundary isn, = 108-10° cm~3, the el ectron temperature
is T, = 2 eV, and the gas used in experiments is argon
(z=3-41[20, 21]). Then, in the case of linear field (3)
for C, = 12 V/cm?, the particle in question will be sus-
pended at distancey =y, = 0.1-0.33 cm from the upper
boundary of the layer, where the condition of balance
between the gravitational force and the electric field is
observed:

m,g + [(ZJeE(y,) = O. ©)

The relative change in the macroparticle charge gradi-
ent B,/[Z,[in this region, which is obtained from joint
solution of Egs. (2) and (3) for the conditions of the
problem, varies from —0.1 to —0.3 cmr™. Thus, in the
model described here, the charge of a dust particle
decreases as it approaches the electrode, the rate of this
approach being the higher, the lower this particle is
located. The same qualitative pattern is observed for
nonlinear field (4) aso. In this case, the charge gradi-
ents B,/[Z,[of macroparticles levitating at distance y, =
0.25-0.5 cm from the upper boundary of the layer
(C, = 12V/cm?®) changes with increasing y, from —0.15

to -0.39 cm.

Concluding the section, we notethat, in spite of con-
siderable charge gradients B,/(Z,(0= —(0.1-0.4) cm™,
the relative change in its value [(Z,[Idid not exceed 7%
(IAZJZ,[11< 0.07) in al analyzed cases. The perturba-
tion of plasma electroneutrality was |on/ny| < 0.09, and
|ed/T,| < 0.35, which isagood approximation for linear-
izing equations of the analytical theory of the layer [22]
aswell as equations of the OLM approximation [20, 21]
and, accordingly, for estimating the charge variation in
the layer from relations (2)—(4).

3. EFFECT OF CHARGE FLUCTUATIONS
OF MACROPARTICLES
ON THEIR KINETIC TEMPERATURE
IN A SPATIALLY INHOMOGENEOUS PLASMA

Let us consider the 2D problem in the cylindrical ry
geometry, simulating a layer of macroparticles levitat-
ing above an electrode of the rf oscillator (see Fig. 1
below) in the presence of a dust charge gradient B, =
dZ,/dy in the direction of gravity (y axis), taking into
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Fig. 1. Simplified diagram of experimental setup.

account the fluctuations of particle interaction forces
determined by particle charge variations

25 = Byyz

due to arandom variation in their positionsin the layer
in question. Deviations (r, y) of anindividual particlein
such alayer fromitsequilibrium (r,, y,) position can be
described by the linearized system of equations

mpy" = —mvyy —aelZly+epEy+F,, (63

myr* = —myver'—a.elZJt +eZE +F,,

p

(6b)

where v;, is the friction coefficient, which is defined in
the free-mol ecul e approximation as

C,P[Torr]
a, [um] p [g/cm’]

Ve [s7] =

(where C, = 820 um g/s Torr cm? for argon); primes
denote the time derivatives of coordinates; F = (F,, F,)
isarandom force leading to stochastic motion of parti-
cles, anda, , = dE, ,/dy arethe gradients of the external
electricfield E = (E,, E;). Here,

my,g
E, = —2=
Y oelz[

is determined by the balance between the vertical elec-
tric force and the gravitational force of the Earth; the
value of E, can be estimated by taking into account the
balance of the radial electric force and the forces of
interaction between particles. For a homogeneous
extended layer of particles, we can assume that radia
fieldsarelinear, i.e.,

E =a,r=aoNl,,
where | is the average particle spacing and N; is the
number of particles located in the region between the
axis of the cylindrical system and the particle in ques-
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tion, the gradient of this field for a planar dust cloud
being

It should be recalled that the origin of force ek, Zs
in(6b) is determined by the collective action of the
remaining particles of the layer on an individual parti-
cle. In the formulation considered here, the change in

Z, is determined by the random quantity ys defined by
Eq. (6a) with a different value of random force IES,y #
F,, whose parameters can be determined using the pro-
cedure described in [18]. It should be noted that, in
order to solvethe problem, it is sufficient to assume that
the action of the random forces considered here is not
correlated ( [FsF = Q); the correlation of these forces
with “dow” displacements| = (r, y) of particlesis aso
absent ((FIC=0and [FsI00=0) [23, 24]. Inthiscase, an
additional kinetic energy AST,, proportional to the
amplitude of charge fluctuations

Zd =i

is supplied to the system in the radial direction r

(see [18]), where G/’ is the mean square deviation in
the y direction:

f
_T,+A T+AT,

2
mpwy

0 @)

In this equation,

2 _ eEzpm y_ByEy.
(JL)y = mp X

T, isthe temperature of the surrounding gas; A' T isthe
stochastic energy acquired by a particle in the plasma
due to other mechanisms, e.g., due to discreteness of
charging currents; and AT, is a part of the kinetic

energy AST, transferred in the y direction through the
particle interaction. The coefficient

S.
_ A7,
A°T,

Y

of energy transfer due to particle interaction in the dust
cloud differs from zero and is determined by the reac-
tion of the dust system to transverse perturbations of the
system and by the amplitude of particle displacement
[12, 18]. The derivatives corresponding to these pertur-
bations are excluded from system (6a), (6b) since we
will henceforth assume that the kinetic energy acquired
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by a macroparticle is redistributed uniformly over
degrees of freedom:

AT, =N°T, = A°T.
Simulation shows that, for parameters close to experi-
mental conditions, such an assumption isjustified for a
large number of particles (n,), low buffer gas pressures
(small vy), and the formation of additional dust layers
[12, 18]. In this case, the value of the kinetic energy AST

acquired by adust particle due to random variation of its
charge in an inhomogeneous plasma can be defined as

o To+A'T
AT=—1—5— (8)
where
2 2 2
o, = 1B’ €ETEW (©)
Ey Al MoV (6 + ) )
Here,
el
(.Orz = %

p

If necessary, relation (8) can take into account the frac-
tion y of redistributed energy:

o _ (To+AT)(1+(1-y)8))

T = .
1-y6,

Thus, for y= 1, the value of kinetic energy AST is deter-

mined by the value of coefficient 8,, which strongly

depends on the parameters of the dust system. If we
take into account the fact that

A

(10)

B .3
Z0 " E,

in the vicinity of the upper boundary of the near-elec-
trode layer (see Section 2) and also assume that

E =NelZJl;, o=,

we can obtain asimpler relation for estimating 6;:

0By (PN 2T
Pz om il
which gives 8; = 0.25 for N, = 10, Ip =300 pm, [Z,[=
5x 10%, | B /Z,0= 0.2 cm™, v, = 13 s (argon, P =
0.03Torr), a,=1 um, and p = 2 g/cm3. It can easily be
seen that coefficient 8, tends to unity under the same

conditions if N, — 20 or |B|/(Z,l0— 0.4. In this

case, we find that kinetic energy AST increases indefi-
nitely with an increase in deviation (y, r) of particles
from their equilibrium positions. However, the linear-
ized system of equations (6a), (6b) in this case does not
provide a correct analysis of the dynamics of particles
since the amplitude of their motion can be limited due

0
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Table
R, um r,gcms h, mm 0L)ecp, E, V/cm Z,0 ztno 3, %

9 ’ ’ V2/Cm 1 p p ’

1 2 10.06 7.38 112 4579 4632 1
1.39 15 9.65 10.71 1.67 6200 6438 4
212 15 7.70 24.89 3.93 9332 9820 5
3.07 15 4.80 52.21 7.38 15079 14220 6

to various nonlinear effects. In addition, relation (8)
was obtained under the assumption of smallness of
mean sguare deviations of particles,

yO<lo=15+ D

where |, and |, are particle spacings in the perturbed
and unperturbed layers of macroparticles.

An estimate of the maximum value AST™ of kinetic
energy (disregarding nonlinear effects and possible
variation of system parameters within the trajectory of
particles) can be obtained by additionally taking into

account deviations EyZD (7) in Eq. (6b) through varia-
tionof fieldE, O IS. Inthiscase, for 8; — 1, weobtain

AT™ = ZISwom (12)

while the maximum amplitude Aj™ = /230 of par-
ticle displacement in the y direction is given by

AT =161, (12)

For the example considered above (a, = 1 um, p =
2¢g/emd, |, = 300 pm, and 6, — 1), for a, = 6-
12V/cm? (see Section 2), the value of AST™ = 25—

50 eV and A =480 pm. It should be noted that the

growth of amplitude and kinetic energy is limited both
in real experiments and in simulation of systemswith a
macroparticle charge gradient [15, 16].

It should be noted in conclusion that the mechanism
considered here can explain parametric buildup of
vibrations of particles with charge gradients, which is
observed in a numerical experiment [12] upon a
decreasein thefrictional force (vy,) below acertain crit-
ical value. The reason behind such a buildup remains
unclear in the framework of [12] since the effects asso-
ciated with collective thermal fluctuations of particles
in a dust cloud were eliminated from the theoretical
analysis. In the case of “anomalous heating” of macro-
particles dueto discreteness of charging currents, exter-
nal electric forces also serve as the main source of addi-
tiona energy of adust particle[18]. On the other hand,
the proposed mechanism is ensured by collective
effects, which are possible only when the number of
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particles in a dust cloud is large enough and, accord-
ingly, can develop upon an increase in the concentra-
tion of the dust component.

4. DETERMINING PARTICLE CHARGE
IN THE NEAR-ELECTRODE LAYER
OF RF DISCHARGE

The experiment was carried out in a capacitive rf
dischargein argon under pressure P = 0.1 Torr for adis-
charge power W= 60 W. The schematic diagram of the
experimental setup is shownisFig. 1. Melamine form-
adehyde particles with different sizes a, were sus-
pended above the lower electrode at different distances
h from its surface (see table). The surface potential ¢
of macroparticles could be derived from balance equa-
tion (5) for the gravitational force m,g and the electric
force elZ,[E(y); proceeding from this equation, the
relation between the value of ¢ and electric field E(y)
can be defined by the relation

myg
a 1)

d(YE(Y) = (13)

p

which can be used for determining the dependence of
function ¢(y)E(y) on height h from the results of mea-
surements (see table and Figs. 2a and 2b).

The spatial potential ¢ in the near-electrode plasma
layer was measured by a compensated Langmuir probe
at various heights relative to the electrode. The mea-
sured potential difference A between points h =
1.1 cm and h = 0.6 cm amounted to 1.5 V. Then, the
experimental data were approximated under the
assumption of small variation of charge [Z,[{$s= const,
see Section 2) by linear (3) and quadratic (4) functions
for E, where y = d,, — h. The near-electrode layer
thickness d,.,, and coefficients C; and C, in these
approximations were obtained through the best fitting
of experimental dataand were C, = 12V/cm? and d, o =
1.1 cm for the linear field (3), and C, = 16.2 V/cm? and
dyax = 1.26 cm for the quadratic dependence (4). The
results of approximation are shown in Figs. 2aand 2b.
The mean-square errors of the linear and quadratic
approximations are approximately egua to 4% and
10%, respectively. The higher value of error in the latter
case is explained by the strong mismatching between
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Fig. 2. Dependence of (a) ¢<E and (b) the ratio of various approximations (¢<E),, to experimental values (¢sE) e, 0N the height h
over the electrode cut for alinear field E (3) (1), formula (154a) (2), formula (15b) (3), and quadratic approximation of E (4) (4). The

dots show the results of measurements.

the nonlinear approximation (4) and the results of mea-
surementsthat is observed aswe approach the electrode
(upon adecreasein h).

The electric fields and charges [Z,[Jof macroparti-
clesreconstructed in thelinear el ectric field approxima-
tion are given in the table. It can easily be seen that the
error

5= | EZDD_ [Zf)lj
()
in the measured charge [(Z,[relative to the value given
by the relation

7= _ql.sef‘f = Ca,, (14)

where C = 4632 um, is completely determined by the
error in the linear approximation of E. Sincethefield E
was determined by gravity both in the linear (3) and in
quadratic (4) approximation, a close coefficient C =
4598 um for relation (14) was determined with an
error & from 7% (for h =0.77 cm) to 30% (h = 0.48 cm)
in this case also (see Figs. 2a and 2b). Thus, we could
not detect in our experiments any appreciable changes
in the charge of macroparticles dueto achangein their
charging conditions in the layer, which is in complete
accordance with thetheoretical predictionsdescribedin
Section 2.

Considering that ¢ =—zT/ein the OLM approxima-
tion (z= 34 for argon [19, 20]), we can estimate the
electron temperature from the reconstructed value of
C =4600 pm™: T,= 1.7-2.2 eV. Thisvalue matches the
values of T,= 1.9 + 0.3 eV obtained from independent
probe measurements of electron temperature in the
near-electrode layer of the experimental setup in the
absence of dust.
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In spite of alow probability of determining the mac-
roparticle charge gradient 3, = dZ,/dy correctly, we
approximated the experimental data by the following
functions:

0.E = Cy(y+Byy),

0.E = Cy(y +B,y°).

Thus, we have taken into account possible gradients of
macroparticle charges in the linear (3) and in qua-
dratic (4) approximations of the field for the measured
function (¢.E) (13). As aresult, we obtained close val-
ues of fields E(y), charges Z,,, and the layer thickness
d...x in both cases. The charge gradient for the linear
field (15a) turned out to be positive (B,/(Z,= 0.2 cm™),
which readily follows from the behavior of the linear
approximation (curve 1 in Fig. 28) of the results of
measurements, but contradicts the theoretical predic-
tions (see Section 2). For (15b), the reconstructed
charge gradient was B,/[Z,[ —0.37 cm™, which may be
true in fact since the relative changes in the charge,
AZJIZ[]did not exceed 20% in this case even for the
closest point to the electrode with h = 0.48 cm.

(159)

(15b)

5. ANALY SIS OF THE RESULTS
OF EXPERIMENTAL OBSERVATIONS
OF VERTICAL VIBRATIONS OF PARTICLES
IN THE NEAR-ELECTRODE LAYER
OF AN RF DISCHARGE

The results of experiments described in the previous
section indicate that variations of the charging condi-
tions in the upper part of the near-electrode layer of an
rf discharge do not affect significantly the charge of
light macroparticles levitating in this region. However,
even an insignificant change in the dust charge (see
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Fig. 3. Dependence of (a) amplitude A, of vertical vibrations and (b) theratio A/(P;)/A/(Po) on pressure P of the rf dischargein argon
for particles of radius a, = 1 (1) and 2.1 pm (2). Dashed lines correspond to the values of A;qax (a) and Ayax IA/(Pog) (b), while

solid linesin (b) correspond to approximation (16).

Section 3) may cause gradients 3, sufficient for the evo-
lution of stochastic dust vibrations.

Experiments were conducted for particles with dif-
ferent sizes (a, = 1 and 2.1 pm) in the near-€lectrode
layer of a capacitive rf discharge in argon under pres-
sures from 0.1 to 0.015 Torr. Under certain conditions
(upon adecrease in pressure or upon an increase in the
number of particles), dust particles acquired energies
on the order of 1-10 eV and performed irregular verti-
cal vibrations (in the direction of the gravitational
field). Here, we consider only one of the possible mech-
anisms of evolution of such vibrations due to stochastic
variation of their chargesin a spatially inhomogeneous
plasma on the basis of the numerical estimates
described in Section 3. Sincethevalue of kinetic energy
AST acquired by a dust particle due to macroparticle
charge gradients strongly depends on the accuracy of
determining the parameters of particles and the sur-
rounding plasma, we will analyze the relative changes
in the amplitude A, of vibrations of dust particles upon
a decrease in pressure P in the discharge. We will
assume that such a decrease in P changes the friction
coefficient vy, for macroparticles, but does not lead to a
noticeable perturbation of the surrounding plasma
parameters. In this case, we obtain from relations (7)

Ay(Pi) —

and (8)
_ =8Py
Ay(Po) 1-6,(P)’

where A (P)) is the amplitude of vibrations of particles
for various pressures P, (i =1, 2, ..., N).

Dependences A(P) measured for particles of two
sizes are shown in Fig. 3a. The dashed line in the
same figure shows the boundaries at which the ampli-
tude of particle vibrations attains a value close to
A = 1.6l, (12), where |, corresponds to the radial
particle spacing in an unperturbed dust layer. The aver-

(16)
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age kinetic energy of lighter particles of radius a, =
1 um, which was obtained from an analysis of their
velocity spectrum for the minimal pressure, exceeded
3 eV, while the energy of particles with a; = 2.1 pm
attained ~10 eV.

Considering that P20,(P) = P26,(P,) (see rela-
tion (10)), the value of 6,(P,) can be obtained from
relation (16) with the help of best matching of calcu-
lated and experimental datain the range where A(P;) <
lo. This procedure gives 8, = 0.5 for P, = 0.05 Torr for
particles of radius a, = 1 um and 6, = 0.28 (P, =
0.1 Torr) for particles with a, = 2.1 pm. The results of
calculation of A(P)/A(Py) (solid line) are shown in
Fig. 3b. The dashed line showsthe ratio of the maximal

amplitude AJ™ (12) of particle displacement to itsini-
tial value A (P,) measured in experiments.

Thus, the evolution of the amplitudes of vibrations
being analyzed upon a changein the discharge pressure
is in qualitative agreement with the proposed mecha-
nism of formation of such vibrations. The quantitative
difference between the proposed approximations and
the results of measurements can be due to the fact that
the possible change in the plasma parameters upon a
decreasein pressure or within the trajectory of dust par-
ticles was disregarded in the calculation of amplitude

AJ™ and function 6,(P,).

6. CONCLUSIONS

The effect of nonuniform conditions on dust particle
charging in the upper part of the near-electrode layer of
an rf discharge is analyzed numerically. Simple ana-
Iytic expressions are given for determining the macro-
particle charge gradients. The surface potentials of
macroparticles of different sizes are measured in the
near-el ectrode plasmaof therf discharge. The measure-
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ments show that the inhomogeneity of the surrounding
plasma does not noticeably affect the charges of light
dust particles levitating in the upper part of the near-
electrode layer of the discharge in question (|, [/(Z,[

0.4 cm™). The results of measurements are in good
agreement with the analytic estimates of the macropar-
ticle charge gradients obtained in the OLM approxi-
mation.

A possible mechanism of evolution of random
vibrations of macroparticles due to their stochastic
motion in the bulk of a spatially inhomogeneous
plasmais proposed (in the presence of dlight variation
of dust charges). Anaytic expressions are derived for
estimating the amount of kinetic energy acquired by
macroparticles due to the given mechanism. These esti-
mates show that the kinetic energy of light dust parti-
clesmay attain values on the order of 1-10 eV, whichis
closeto the experimentally observed energies. The pro-
posed mechanism formsthe basis of analysis of theval-
ues of amplitude of macroparticle vibrations with dif-
ferent sizes measured in the near-electrode layer of the
rf discharge under various pressures. It is shown that
the given mechanism may be responsible for the evolu-
tion of stochastic vertical vibrations.

ACKNOWLEDGMENTS

Thiswork was partly financed by the Russian Foun-
dation for Basic Research (project nos. 01-02-16658
and 00-02-17520), INTAS (grant no. 01-0391), and
Australian Council of Scientific Research. Theresearch
work of A.A. Samarian was supported by the Univer-
sity of Sydney research scholarship U2000.

REFERENCES

1. T. Trottenberg, A. Melzer, and A. Piel, Plasma Sources
Sci. Technal. 4, 450 (1995).

2. J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137
(1996).

3. A. A. Homann, A. Melzer, S. Petrs, and A. Piel, Phys.
Rev. E 56, 7138 (1997).

4. A.A.Homann, A. Melzer, and A. Pidl, Phys. Rev. E 59,
R3835 (1999).

5. U.Konopka, G. E. Morfill, and L. Ratke, Phys. Rev. Lett.
84, 891 (2000).

6. A. A Samaryan, A. V. Chernyshev, O. F. Petrov, et al.,
Zh. Eksp. Teor. Fiz. 119, 524 (2001) [JETP 92, 454
(2001)].

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96

7.

8.

9.

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24,

25.

VAULINA et al.

V. Fortov, A. Nefedov, V. Molotkov, et al., Phys. Rev.
Lett. 87, 205002 (2001).

C. Zafiu, A. Melzer, andA. Piel, Phys. Rev. E 63, 066403
(2001).

E. B. Tomme, D. A. Low, B. M. Anaratone, and
J. E. Allen, Phys. Rev. Lett. 85, 2518 (2000).

E. Thomas, B. Annaratone, G. Morfill, and H. Rother-
mel, Phys. Rev. E 66, 016405 (2002).

A. P. Nefedov, O. S. Vaulina, O. F. Petrov, €t al., Zh.
Eksp. Teor. Fiz. 122, 778 (2002) [JETP 95, 673 (2002)].

O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and V. E. For-
tov, Zh. Eksp. Teor. Fiz. 118, 1319 (2000) [JETP 91,
1147 (2000)].

S. Nunomura, T. Misawa, N. Ohno, and S. Takamura,
Phys. Rev. Lett. 83, 1970 (1999).

V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Phys.
Plasmas 7, 1374 (2000).

V. V. Zhakhovskii, V. I. Molotkov, A. P. Nefedov, et al.,
Pis'ma Zh. Eksp. Teor. Fiz. 66, 392 (1997) [JETP Lett.
66, 419 (1997)].

A. Samarian, B. James, O. Vauling, et al., in Proceedings
of 25th International Conference on Phenomenain lon-
ized Gases, Nagoya Univ., Nagoya, Japan (2001), Vol. 1,
p. 17.

A. Samarian, B. James, S. Vladimirov, and N. Cramer,
Phys. Rev. E 64, 025402 (2001).

O. S. Vaulina, S. A. Khrapak, A. P. Nefedov, and
O. F. Petrov, Phys. Rev. E 60, 5959 (1999).

0. S. Vaulina, A. P. Nefedov, O. F. Petrov, et al., Zh.
Eksp. Teor. Fiz. 120, 1369 (2001) [JETP 93, 1184
(2001)].

S. A. Khrapak, A. P. Nefedov, O. F. Petrov, et al., Phys.
Rev. E 59, 6017 (1999).

J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994).

Yu. P. Raizer, M. N. Shneider, and N. A. Yatsenko, High-
Frequency Capacitive Discharge: Physics, Experiment
Technology; Applications (MFTI-Nauka “Fizmatlit,”
Moscow, 1995).

A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyji,
Kinetics of Diffusaly-Controlled Chemical Processes
(Khimiya, Moscow, 1986).

Photon Correlation and Light Beating Spectroscopy, Ed.
by H. Z. Cummins and E. R. Pike (Plenum, New York,
1974; Mir, Moscow, 1978).

A.A. Samarian and B. W. James, Phys. Lett. A 287, 125
(2001).

Translated by N. Wadhwa

No. 6 2003



Journal of Experimental and Theoretical Physics, Vol. 96, No. 6, 2003, pp. 1045-1054.

Trangated from Zhurnal Eksperimental’ noi i Teoreticheskor Fiziki, Vol. 123, No. 6, 2003, pp. 1188-1199.

Original Russian Text Copyright © 2003 by Anshukova, Golovashkin, Ivanova, Rusakov.

SOLIDS

Structure

The Effect of Superstructural Ordering on the Properties
of High-Temperature Oxide Superconductor Systems

N. V. Anshukova? A. I. Golovashkin®*, L. I. Ivanova®, and A. P. RusakovP
8_ebedev Institute of Physics, Russian Academy of Sciences, Moscow, 119991 Russia
bMoscow Institute of Steel and Alloys, Moscow, 117936 Russia
*e-mail: golov@sci.lebedev.ru
Received November 12, 2002

Abstract—The effect of superstructural ordering in the oxygen sublattice (in addition to the influence of the
antiferromagnetic interaction of copper ions) on the electron and phonon characteristics of oxide high-temper-
ature superconductor (HTSC) systems has been studied. Taking into account this ordering effect, it is possible
to explain awide range of experimental data, including doping-induced changesin shape of the Fermi surface,
features of the phonon spectra, the existence of stripes, the presence of a pseudogap and its coexistence with
the superconducting gap, and some peculiaritiesin the phase diagrams of HTSCs. © 2003 MAIK “ Nauka/Inter-

periodica’ .

1. INTRODUCTION

In recent years, there was considerable progress in
the development of methods for the synthesis of high-
quality single crystals of various high-temperature
superconductor (HTSC) systems—compounds charac-
terized by high T, valuesin a certain range of composi-
tions. By changing the level of doping, it is possible to
vary the state of such compounds from insulating to
metallic. The availability of high-quality samples
allowed the electron, phonon, and other characteristics
of oxide superconductors, as a function of the level of
doping, to be thoroughly studied. Such investigations
have been performed for HTSC compounds belonging
to various systems, including La,_,Sr,CuO,_s;,
Y Ba,Cu30g4, «, BinSr,Cay _, Y Cu,Og_ 5, €tC. Some new
features in the electron and phonon properties were
found for HTSCs at low doping levels and in the vicin-
ity of the dielectric-metal transition. For example, the
data of angle-resolved photoelectron spectroscopy
(ARPES) showed [1, 2] that compounds of the
La, _,Sr,CuO,_5 system with x = 0.05 are character-
ized, in the vicinity of the dielectric-metal transition,
by aFermi surface with wideflat regionsin the plane of
(ke k) wavevectors, these regions being parallel to the
[100] and equivalent directions. The cross section of
this Fermi surface initially possesses a finite area close
to that characteristic of the optimum doping level,
rather than changing in proportion to the parameter x.
Asthe x valueincreases up to x = 0.15, the shape of the
Fermi surface remains virtually unchanged, since only
intensity of the ARPES linesincreases. Only upon dop-
ingto alevel exceeding the optimum (x = 0.17) doesthe
Fermi surface exhibit significant changes, and, on
reaching x = 0.25, it becomes parallel to directions of
the [110] type.

Inalow-doped La, _,Sr,CuO, _5 compound (x= 0.07)
occurring in the metallic state, ARPES measurements
revealed coexisting dielectric and metallic phases on a
microscopic level [1, 2]. In these experiments, asample
exhibited two branches in the plot of energy E versus
wavevector k, one of these branches being characteris-
tic of apurely dielectric phase and the other, of an opti-
mum doped metallic phase. Only one of these branches
E(k)—namely, that with a higher binding energy—is
retained inthe dielectric state at x < 0.05, while only the
second branch remains in the metallic state at a high
level of doping (x = 015).

Analogous coexistence of two phases (dielectric and
metallic) on the microscopic level wasrevea ed by neu-
tron diffraction in the study of the dispersion of high-
frequency longitudinal optical (LO) phonons in
La, _,SrCuO,_5I3, 4], YBa,CuzO4 .« [5, 6], and other
HTSC systems. At an intermediate level of doping, two
LO phonon frequencies w, o were observed, one of
these being characteristic of ametallic phase (observed
in strongly doped compounds) and the other, of apurely
dielectric low-doped phase. When the level of doping
was varied, both w, o values remained virtualy
unchanged and only the intensities of the correspond-
ing neutron diffraction lines exhibited redistribution.
As the x value increased, the volume of the metallic
phase exhibited growth at the expense of decreasing
content of the dielectric phase.

The whole body of these and other experimental
observations (including data on the static and dynamic
magnetic superstructure modulation [7], negative ther-
mal expansion at low temperatures [8], €tc.) poses a
question about coexistence and mutual ordering of the
metallic and dielectric phases on the microscopic level
in HTSCs. All these experimental data can hardly be
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explained within the framework of the existing theoret-
ica models assuming uniform electron density distri-
bution in the course of doping.

Aswill be demonstrated below, the new data have a
natural explanation if we take into account the presence
of a superstructura charge order in the oxygen sublat-
tice, in addition to the well-known antiferromagnetic
order in the sublattice of copper ionsin cuprate HTSCs.
We will consider some features of the superstructural
order in the oxygen sublattice, which influence the
electron and phonon spectra of these HTSC systems.
Allowance for this superstructural charge order in the
oxygen sublattice explains the nature of coexisting
dielectric and metallic phases on the microscopic level
observed in doped samples of high-T, cuprate super-
conductors.

2. DIELECTRIC STATE OF HTSC SYSTEMS

L et us consider the dielectric state of HTSC systems
using an example of the La,_,Sr,CuO,_5 System,
beginning with a compound with x=0and 6 = 0. The-
oretical calculations show that this undoped compound
in the initial state must occur in the metalic state [9].
According to these calculations, the lower and upper
Hubbard bands (composed mostly of the 3d states of
copper) are separated by a wide band composed pre-
dominantly of the 2p states of oxygen. It isthe presence
of the latter band that imparts metallic propertiesto the
compound; such ametal is referred to as the praphase.
Previoudly [10], we have demonstrated that oxygen
ionsin the CuO, planes of the praphase can exist in two
charged states, O and O, which correspond to the
Cu-O~ ionic bonds and the Cu—O% ionic-covalent
bonds, respectively. Ordering of the latter covalent
bonds, with allowance of the antiferromagnetic order-
ing of copper ions, leads to doubling of the lattice
period of the metallic praphase of the CuO, planein the
[100] and equivalent directions. This situation is equiv-
aent to the appearance of a charge density wave
(CDW) inthe sublattice of oxygenions. For thisreason,
a narrow oxygen band (instead of the aforementioned
wide band) and a dielectric gap with a width of Ej ~
2 eV appear at the top of the lower Hubbard band. Asa
result, a dielectric state rather than a metalic state is
observed in real undoped HTSC systems of the type
under consideration.

In the neighboring CuO, plane, the Cu—-O cova-
lent bonds are ordered in the perpendicular direction,
whereby a dielectric gap appearsin the c-axis direction
aswell. As aresult, anew unit cell isformed that con-
tainsfour O1%ionsin addition to the O2ions. An exact
chemical formula describing the dielectric compound
La,CuO, with alowance for the period doubling in all
three directions can be written as

8(La,Cu0,) = LajsCus" "0, 0. (1)
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This formula unit precisely corresponds to the unit cell
of the dielectric compound La,CuQ,.

The above mechanism of period doubling is essen-
tially a manifestation of the Jahn—Teller effect typical
of oxygen-containing copper compounds. This effect
removes degeneracy between the 2p, and 2p, states of
oxygen ionsin the CuO, planes, which is accompanied
both by elastic straining and by charge redistribution
between ions in the lattice. As a result, the system
achieves an energy gain, typically of about 1 eV per
unit cell [11]. In the case under consideration, this is
manifested by the appearance of a bandgap E; ~ 2 V.
According to the neutron diffraction data [12, 13], a
characteristic displacement of oxygen ionsin the CuO,
plane for a period modulation comparable with the
|attice period is on the order of 0.004 A. Such changes
can hardly be detected at the existing level of accuracy
in phonon dispersion measurements or X-ray diffrac-
tion analysis.

Four oxygen ionsin the charged state O~1° (per unit
cell with a period doubled in three directions) is the
minimum number of ions for which the degeneracy is
removed for all oxygen octahedra. The lattice period
doubling leads to the appearance of a hew reciprocal
lattice vector G, = G/2 = (1W/a)[100], where G =
(2ma)[100] is the vector of areciprocal lattice without
period doubling and a is the Cu—Cu distance in the
CuO, plane. Recently, Sachdev [14] has independently
demonstrated that the period doubling follows from a
general theoretical analysis of HTSC systems.

Since O % ionsareless strongly bound to the | attice
than the O ions, the electron states of the former ions
are situated most closely to the chemical potential i of
the dielectric. Therefore, these states are at the top of a
complex valence band including a narrow oxygen band
and the lower Hubbard band. The aforementioned
ordering of these weakly bound O° ions leads, as
noted above, to the appearance of a narrow about
(0.3 eV), amost purely oxygen valence band formed
by 2p states of O~1® ions, lying above the wide (~3 €V)
mixed copper—oxygen Hubbard band formed by
Cu(3d)-02?(2p) states. This energy band diagram is
schematically depicted in Fig. 1a, indicating typical
experimental energy values [15]. A small width of the
upper valence band formed by the 2p statesof O*°ions
is determined by a relatively small overlap of these
states, since the unit cell contains only four such ions
(against 28 of O2ions).

The upper valence oxygen band formed by 2p states
of O'% ions contains 4 x 1.5 = 6 electrons per cell.
These electrons fill the Brillouin zones for a square
quasi-two-dimensional lattice including two CuO,
planes. In the case of a dielectric, the structure of three
first Brillouin zones filled with electrons is schemati-
cally depicted in Fig. 2a. The third Brillouin zone con-
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Fig. 1. Energy band diagram of cuprate HTSCsin the (a) dielectric and (b) metallic state at an optimum level of doping. The arrow

in (a) indicates a narrow band formed by the 2p states of 015 jons; blackened region in (b) isfilled by holes upon doping (E isthe
energy; M isthe chemical potential; Eg isthe Fermi energy; N(E) isthe density of electron states; A* is the Peierls energy gap).

tainstwo electrons, which correspondsto x =x, = 1/8 =
0.25 electron per copper ion in formula unit (1).

3. DOPING AND ELECTRON STRUCTURE

In La,_,Sr,CuO, dlightly doped with strontium,
charge carriers (holes) might be expected at the top of
the narrow oxygen valence band. In the case of degen-
eracy, the Fermi surface would pass near the boundaries
of the third Brillouin zone. The distance between the
boundaries of the third Brillouin zone and the Fermi
surface must be proportional to the dopant concentra-
tion (i.e., to the x value). However, as mentioned above,
ARPES reveals the Fermi surface far from the bound-
aries of the third Brillouin zone (Fig. 2b). For example,
the Fermi surface passes approximately in the middle
between points (0, 1) and (1/2, 1), that is, close to the
point (1/4, 1). This boundary remains almost unshifted
when the level of doping increases up to the optimum
level of x=0.15[1]. In the case on weak doping (0.05 <
X < 0.13), the system exhibits, as was also noted above,
coexistence of the metallic and dielectric phases[2].

These and other new experimental data can be
explained within the framework of the model consid-
ered below. The results presented in Fig. 2 are obtained
by direct calculations of the electron structure. The val-
ues of the dispersion E(k) obtained by these calcula-
tions for the upper valence bands can be approximated,
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within the framework of the tight binding method, by
the formula[16-18]

E(k) = —2t(cosk, + cosk,) — 4t cosk, cosk, @
2

— 2t"(cos2k, + cos3k,) —ts(cosk, — cosk,)’/4,

where k = (k,, k) is the dimensionless wavevector of
the quasi-two-dimensional reciprocal lattice; t,t', and t"
are the overlap integrals with the nearest neighbor,
next-to-nearest, and third-shell ions; and t is the over-
lap integral for the interaction between adjacent CuO,
planes. The maxima calculated for the valence bands
coincide with the boundaries of the Brillouin zones for
the dielectric state (Fig. 2a) corresponding to t =
386 meV, t'/t = -0.272, t"/t = 0.223, and t; = 150 meV.

Figure 2b presents the shape of the Fermi surface
calculated [16] for doped La _,Sr,CuO, with x =
3x/4 = 0.1875, which correspondstot = 0.5 eV, t'/t =
-0.3,t"t=0.2,and t; = 0.15 eV informula(2). Using
the overlap integrals, it is possible to estimate the dis-
persion E(k) for the line between points (0, 1) and
(1/2, 1). The corresponding dispersion curves are con-
structed in Fig. 3 for both pure dielectric and a doped
compound. In Fig. 3a, point (1/2, 1) corresponds to the
boundary of the third Brillouin zone. The width of the
band filled with electronsis about 0.3 V. In the case of
dlight doping, holes might appear at the top of this
valence band as depicted in Fig. 3b. In the case of
degeneracy, the Fermi surface would pass near the
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Fig. 2. The Brillouin zones and the Fermi surface shapesin
cuprate HTSCs at various levels of doping. Positions of the
symmetry points are indicated in 1va units (a is the mini-
mum Cu—Cu distance). Crosses indicate the experimental
ARPES data[1, 2]: (a) thefirst three Brillouin zones (indi-
cated by numbers) for a flat CuO, lattice with doubled

period (for the dielectric phase); dashed line shows the first
Brillouin zone for the flat CuO, lattice without period dou-
bling; (b) the Fermi surface (solid curve) for Lay, _ ,Sr,CuOy
with 0.05 < x < 0.15; dashed line shows the boundary of the
third Brillouin zone; cross-hatched region corresponds to
filled electron states;, G4 = G,/2 = G/4 are reciprocal lattice

vectors, where G = (217a)[100]; (c) the Fermi surface (solid
curve) in the case of strong doping (x > 0.25); dashed line
shows the boundary of the second and third Brillouin zones
(for x = 0.25, the Fermi surface coincides with the bound-
aries of the second Brillouin zone); cross-hatched region
corresponds to filled electron states (for x = 0.3).

boundaries of the third Brillouin zone. However, in the
case of anarrow band and weak screening, asinthe sys-
tem under consideration, it is energetically favorable to
fill thisband in separate regions of the crystal to half of
the reciprocal lattice vector (Fig. 3c) at the expense of
holes liberated from some intermediate regions. For
such regions half-filled with holes, the lattice period
can exhibit another doubling in the [100] direction.
These regions are characterized by thereciprocal lattice
vector G, = G/4 (Fig. 3d) representing the nesting vec-
tor (here, G isthereciprocal lattice vector for theinitial
undoubled direct lattice).

As is well known, nesting gives rise to the Peierls
instability with the formation of a dielectric gap A*
(Fig. 3d). Asaresult, instead of the uniform band filling
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Fig. 3. Schematic dispersion curves E(k) for cuprate
HTSCs in the direction between points (0, 1) and (1/2, 1):
(a) dielectric state; (b) the case of weak doping in the model
of uniform hole distribution (shaded region corresponds to
the states occupied by holes); (c) the case of a Brillouin
zone half-filled with holes with respect to the momentum,
i.e., up to the point (1/4, 1); (d) the formation of the Peierls
gap A* and the new reciprocal lattice vector as a result of
nesting by the vector G, = G/4.

over thewhole sample asdepictedin Fig. 3b, thecrysta
exhibits separation into dielectric regions free of holes
(with the dispersion such as in Fig. 3a) and half-filled
regions with the Peierls gap and fourfold lattice period
(with the dispersion such asin Fig. 3d). The densities of
states corresponding to the dielectric regions and the
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regions with Pelerls gaps A* are presented in Figs. 1a
and 1b, respectively. This scheme providesfor acertain
energy gain: the dielectric regions are characterized by
adecreasein the Coulomb energy of repulsion between
holes, while the regions with Peierls gaps exhibit a
decrease in the kinetic energy as a result of the for-
mation of gap A*. It should be emphasized that this
phase separation takes placein the crystal with ordered
Cu-O% covalent bonds.

In the above scheme, the system separates into the
metallic stripes with half-filled zone and the intermedi-
ate dielectric regions. Degeneracy of the charge carriers
(holes) appears upon the formation of the first metallic
stripes. For example, in La,_,Sr,CuO, the degeneracy
is experimentally observed for x = 0.02-0.05, depend-
ing on the crystal quality [20].

Figure 4a shows schematic dispersion curves E(k)
for the upper valence band along some symmetric
directionsin the Brillouin zone of cuprate HTSCs. The
curves, obtained from an analysis of relation (2), refer
to adielectric state (Fig. 4a) and ametallic state at opti-
mum doping (X = X, = 0.1875).

Since doping in L& _,Sr,CuO, is redlized in the
form of homogeneoudly distributed strontium ions, the
inhomogeneous distribution of holes must lead
(according to the above scheme) to an additional Cou-
lomb interaction between the metallic regions, result-
ing in a certain ordering of these regions (Fig. 5).
Owing to the charge density fluctuations, this order can
possess a dynamic character. Indeed, a dynamic order
of this kind was observed in La,_,Sr,CuO, [19]. On
the other hand, in the presence of defects (appearing
upon doping with atoms possessing strongly different
atomic dimensions, such as La and Nd), a static order
in the metallic regions can appear as well. Such a
static ordering was also experimentally observed in
(La,Nd),_,Sr,Cu0, [12, 20] and La,CuQ,, 5[21].

Experimental data [22] showed that ordering leads
to the formation of a stripe structure. The stripes are
spatially separated and oriented either along vector
[100Q] or along [010Q] [22]. In the case under consider-
ation, with the unit cell containing two CuQO, planes, it
would be natural to assume that direction [100] is char-
acteristic of one of these planes and direction [010], of
the adjacent plane. Thisordering of stripesin two mutu-
aly perpendicular directions in the adjacent CuO,
planes in a particular case of (La,Nd),_,Sr,CuO, was
experimentally revealed [12] by analysis of the experi-
mental neutron diffraction data.

Figure 5 schematically illustrates the distribution of
charge density in one of the symmetric directionsin the
CuO, plane. An analogous pattern is observed in the
perpendicular direction in the adjacent CuO, plane. As
can beseenin Fig. 2b, the conditions of nesting with the
vector G, = G/4 are satisfied on a considerable part of
the Fermi surface, so that this pattern holds for almost
all these states (except regions of the vicinity of points
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Fig. 4. Schematic dispersion curves E(k) for the upper
valence band of cuprate HTSCs along some symmetric
directions in the Brillouin zone: (a) dielectric dtate;
(b) metallic state at the optimum doping (x = Xg); cross-
hatched regions correspond to the states filled by holes.
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Fig. 5. Schematic diagrams of charge distribution in one of
the symmetric directions in the CuO, plane (a) in the case
of intermediate doping (0 < x < xg) and (b) in the absence of
dielectric spacers between metallic stripes (X = Xy = 0.1875)
(p is the hole density; pg = 0.1875 is the hole density per

copper ionin ameta stripe; L isthe period of charge mod-
ulation).

of the (1/4, 1/4) type. Note also that the Peierlsgap is
not formed along the stripes.

According to the scheme under consideration, the
metallic conductivity of doped samplesisrelated to the
fact that the Peierls gap is not formed in the vicinity of
points of the (1/4, 1/4) type. According to this, the
Peierlsgap A* in Fig. 1bisdepicted as partly filled and
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Fig. 6. Schematic diagrams showing the pattern of Bragg
reflections and their splitting for the reciprocal lattice of
oxide HTSCs in the region of coexistence of the dielectric
and metal phases according to the proposed model of super-
structural ordering: large black circles indicate reflections
from the lattice without superstructural modulation; open
circles indicate reflections due to the lattice period dou-
bling; dots indicate reflections due to fourfold lattice peri-
ods; squares indicate reflections due to the distribution of
metallic stripes with the period L (2e = 217L); crosses indi-
cate reflections due to the antiferromagnetic ordering of
copper ions. Positions of the symmetry points are indicated
in 2/a units; G, = Gy/2 = G/4 = (2rWa)/4;, 0< 26 < G4. The
intensity of superstructural reflections is lower by many
orders of magnitude than that of the main Bragg reflections.

the Fermi level (Eg) isindicated rather than the chemi-
cal potential.

The charge ordering depicted in Fig. 5 must be
accompanied by elastic straining with the same spatia
period. According to the neutron diffraction data for
(La,Nd),_,Sr,CuQ, [12, 13], the deformation (e.g., the
shift of oxygen ions in the CuO, plane) amounts to
approximately 0.004 A for x = 0.12. The period L of
charge ordering in Fig. 5isrelated to the doping level
X as

L = 3a/4x, 3

where x can vary withintheinterval 0 < x < x,=0.1875.
Theoretical calculations (reviewed in[12]) indicate that
charged metalic stripes in the strained CuO, planes
with antiferromagnetically ordered spins of copper ions
play the role of the boundaries of domains with differ-
ent phases of antiferromagnetic order. From this, it fol-
lows that the charge modulation period L corresponds
to the superstructural antiferromagnetic modulation
with aperiod of 2L. In the reciprocal space, the charge
ordering corresponds to the vector 2¢ with the modulus
2¢ = 217L, and the antiferromagnetic ordering corre-
spondsto the vector € with the modulus € = 2172L = T7L.

The relationship between the charge and magnetic
ordering in the reciprocal space according to the pro-
posed schemeisillustrated in Fig. 6, which shows the
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main Bragg diffraction reflections and their splitting
upon superstructural modulation. The superstructural
reflections differ in intensity by many orders of magni-
tude from the main reflections (observed for the lattice
without superstructural modulation). All the super-
structural reflections were separately observed in
experiment [12, 14, 20]. In particular, reflections corre-
sponding to the period doubling were reported in [14].
Reflections related to the antiferromagnetic ordering of
copper ions, as well as the 2¢ reflections due to a peri-
odic distribution of metallic regions with the spatia
period L, we reported in [12, 20] and in some other
papers. Theintensity of, for example, 2¢ reflectionswas
smaller by six orders of magnitude (about one million
times) as compared to that of the main Bragg reflections
[12]. Theintensity of superstructural reflections related
to the period doubling can be even smaller. Apparently,
this smallness accounts for the absence of experimental
data simultaneously revealing al types of reflections
depicted in Fig. 6.

The value of 2¢ varies, depending on the level of
doping, from2c =0forx=0(i.e, for L —= o) to 2¢ =
Gl/4for L =4a (G isthe absolute value of vector G). The
latter case (depicted in Fig. 5b) corresponds to the
absence of dielectric spacers between metalic stripes,
whereby the entire crystal consists of regionswith four-
fold lattice period. In this case, holesfill three-quarters
of states in the third Brillouin zone (see the cross-
hatched region in Fig. 7a). Complete filling of the third
Brillouin zone is attained at a hole density correspond-
ing to x = 0.25 per copper ion, whilefilling of the three-
quarters of states in this zone corresponds to a doping
level of x =x,=0.25 x 3/4 = 0.1875.

Figure 7b shows dependence of the superstructural
charge modulation 2¢ on the doping level x. Here, the
dashed curve shows our estimate constructed as

2e(X) = (4x/3)(21/a), 0< X< X, (@)
2e(x) = (V/4)(21Ma), X,<x<0.25. (5)

Symbolsin Fig. 7b represent the experimental data for
La,_,Sr,CuQ, and (La,Nd),_,Sr,CuO, [12]. Ascan be
seen, the experimental points fit the calculated curve
well. At x > 0.1875, the value of 2¢ ceases to change
and remains equal to 2¢ = G, = G/4 = 0.25. The corre-
sponding magnetic modulation is € = 0.125. The value
of X, = 0.1875 corresponds to a certain critical point on
the T(x) phase diagram.

For x = 0.1875, holes appear at the top of thevalence
band (below the Peierls gap A*) near the point (1/4, 1)
asdepicted in Fig. 3d. A further increase in the level of
doping (x > 0.1875) leads to a decrease in the Peierls
gap width A* (related to an increase in the hole screen-
ing) and is accompanied by a decrease in intensity of
the neutron diffraction lines corresponding to super-
structural charge and spin ordering. In addition, it is
possible to calculate a change in the Fermi surface for
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X > 0.1875 by formula (2) taking into account the
dependence of t' and t" on x,

t = t,(0.25—x)/0.25, (6)

t" = t3(0.25—x)/0.25, 7

where t; =—0.15€V and t; =0.1eV arethe parameters

for the state with x = 0.1875 (Figs. 2b and 3c) in which
the metallic stripes are not separated by dielectric
spacers.

A maximum value of x, corresponding to the third
Brillouin zone completely filled with holes, is 0.25 per
copper ion. For x = 0.25, the Fermi surface acquiresthe
shape represented by the solid curve in Fig. 2c, where
crosses represent the experimental data[1] for x = 0.3.
As can be seen, the calculated shape of the Fermi sur-
face qualitatively agrees with experiment. At x = 0.25,
the Fermi surface coincides with the boundaries of the
second Brillouin zone. In this case, according to the
proposed model, the Fermi surface acquires an electron
character. This fact has been established in numerous
experiments.

Thus, the proposed scheme for x < 01875 features
coexistence of two phases, dielectric and metallic, on a
local level. This situation is reflected by the ARPES
data[2]. At ahigher level of doping, there existsasingle
(metallic) phase, as experimentally confirmed in [1].

4. EFFECT OF DOPING
ON THE PHONON SPECTRUM

As noted above, doped HTSC systems exhibit an
anomaly in the high-frequency LO phonon dispersion
curve W o(Q) inthemetallic phase. The presence of such
anomaly a so follows from the proposed scheme of elec-
tron ordering in HTSCs. Asisknown [23], the longitudi-
nal optical phonons obey an approximate relation

W o(Q) = Wio + WH/E(Q), (8)

where wyq is the frequency of transverse optical
phonons (for simplicity, the dispersion of these
phononsisignored), w, isthe plasmafrequency of ions
given by the formula

W = 4nN(eD)/QM, 9)

e* is the effective charge of oxygen ions, N/Q is the
number of oxygen ions per unit cell, €(Q) isthe macro-
scopic permittivity of the electron subsystem, and M is
the mass of an oxygen ion. For the dielectric phase (x =
0 for La,_,Sr,CuQ,) in the long-wave approximation
(Q — 0), wehavee(Q) — &, Wwheree,, isthe optical
dielectric constant. As the Q value increases from 0 to
Q = G/2, the permittivity €(Q) remains positive.
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Fig. 7. Superstructural modulation 2¢ and filling of the third
Brillouin zone with holes: (a) three-quarters of the zone are
filled with holes for x = xg = 0.1875; (b) the dependence of

2¢ on x calculated by Egs. (4) and (5) (dashed line) and plot-
ted from the experimental data for Lay g_,Ndq 4SrCuO,

and Lay, _,Sr,CuO, (dots and squares, respectively) [12].
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Fig. 8. The effect of doping on the dispersion of the phonon
frequency wy_ o for HTSCs (@) in the dielectric state (the dis-
persion of wrg isignored), (b) in the case of intermediate

doping (0.05 < x < 0.1875; the thickness of lines approxi-
mately reflects the dielectric to metallic phase ratio in the
crystal), and (c) for x > 0.1875.

Figure 8ashowsaschematic diagram illustrating the
dispersion of w, o and wyg in the dielectric state (with
neglect of the dispersion of £(Q)). Upon doping, the
system exhibits separation into the dielectric and metal -
lic phases on the microscopic level. For the dielectric
phase, the dependence of w, o on Q remains qualita-
tively the same asin Fig. 8afor x = 0. In contrast, the
metallic phase exhibits significant changes. The
phonons with G/4 < Q < G/2 connect flat congruent
regions of the Fermi surface as depicted in Fig. 9.

Asis known [24]-27], in the presence of congruent
regions of the Fermi surface and nesting for the
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Fig. 9. Schematic diagram showing reciprocal |attice vector
G,4 = G/4 connecting flat congruent regions of the Fermi
surface (solid arrow) and G, + Q vector connecting states

on the Fermi surface that are symmetric relative to the point
(0, 1) (dashed arrow).

wavevectors Q, whereby E(k) = E(k + Q), the static
electron susceptibility

(10)

+(Q) = QZ 1) = f(k+Q)

E(k + Q) — E(k)

exhibits divergence when Q isequal to the nesting vec-
tor (fisthedistribution function). In the case under con-
sideration, thismust take placefor Q = G, = G/4. Under
these conditions, the macroscopic permittivity £(Q) of
the electron subsystem becomes negative. This follows
from the relation [24, 26, 27]

(41e”/ Q1) X(Q)
1-(41e’/Q*)LIQ)X(Q)

where e is the electron charge, Ac is the nonspecific
contribution to the permittivity, and L(Q) isacorrection
for the local crystal field (0 < L(Q) < 1). In Eq. (11),
X (Q) denotes the modulus of the static electron suscep-
tibility. In the case under consideration,

+ Ag,

eQ) = 1+ (11)

W o(Q) = Wio— Wi/ (G| (12)

forG,<Q < G,.
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Thus, the frequency w, o a Q = G, = G/4 must

decreasein ajumplike manner by the value 2(1),2J HE(EH]
as schematically depicted in Fig. 8b. Taking into
account that a crystal with 0.05 < x < 0.1875 contains
two phases, the real spectrum will display two lines
with different frequencies w, 5. The intensity of these
phonon lines will be proportional to the volume of the
corresponding phasein the crystal. Asthe content of the
metallic phase increases with the level of doping, the
intensity of the neutron diffraction lines corresponding
to the w, o value of this phase grows, while theintensity
of lines corresponding to the dielectric phase in the
interval Q, < Q < G, drops. Thisis reflected by differ-
ent line thicknessesin Fig. 8b.

For x = 0.1875, whereby there is no dielectric spac-
ers between metallic stripes, the dispersion of w o
acquires the shape schematically depicted in Fig. 8c.
When x — 0.25, the shape of the Fermi surface
changes, as can be seen from the comparison of Figs. 2b
and 2c. Thismust be accompanied by qualitative changes
inthe dispersion of w, 5, but these effects are beyond the
scope of this paper. The model described above is quali-
tative corroborated by experiment [3-6, 15].

As was nhoted above, the appearance of double and
fourfold lattice periods is accompanied by very small
shifts of ions (on the order of 0.004 A). Direct observa-
tion of such shifts through the measurement of phonon
dispersion is difficult, but the effect can be detected
through broadening of the neutron diffraction lines[3, 4].
It was established [4] that the line half-width signifi-
cantly increases and exhibits a maximum for the
wavevectors corresponding to a doubled lattice period.
It was also demonstrated [ 3] that the appearance of the
fourfold | attice period a so leads to considerabl e broad-
ening of the lines.

With decreasing temperature, the low-frequency
transverse acoustic phonon branches wy, exhibit soft-
ening at the boundaries of the Brillouin zone. It can be
shown that, without allowance for the interaction
between ions and the charge density wave, the HTSC
structure would be unstable [10]. The structure stabi-
lizes(i.e., wr, becomes positive at the boundaries of the
Brillouin zone) only in the presence of this interaction.
On heating from T = 0, the amplitude of the charge den-
sity wave and, hence, the intensity of this interaction
decrease, which must lead to contraction of the crystal
(in the temperature range where the charge density
wave contribution is decisive). Thus, HTSC systems
(especialy their dielectric phases) must exhibit nega-
tivethermal expansion at low temperatures. Thisanom-
alous therma expansion was actually observed in
experiment [34-37].

5. SUPERCONDUCTIVITY IN HTSC SYSTEMS
L et us study the possibility of superconducting pair-
ing within the framework of the model proposed above.
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InFig. 9, the vector G, = G/2 = (1/a)[100] isatranda-
tion vector and the point (0, 1) can be considered asthe
center of symmetry. The pairing of carriers occurring
on the Fermi surface and connected by vectors G, + Q
passing through the point (0, 1) yields zero tota
momentum and can be superconducting (such a vector
is shown by the dashed arrow in Fig. 9). These vectors
can be the wavevectors of phonons. Thus, at a suffi-
ciently low temperature, the states on the Fermi surface
that satisfy the condition of nesting and are symmetric
with respect to point (0, 1) are involved in interactions
of two types. One interaction leads to the formation of
the dielectric Peierlsgap A*, whilethe other leadsto the
appearance of a superconducting gap A..

The spectrum of single-particle excitations E(k) in
such cases can be described by the formula[24, 28]

E() = [(K/2m+aD)"+a ", (13)

wherek isthe el ectron wavevector for the states near E¢

and misthe electron mass. Thisleadsto the appearance
of acommon temperature-dependent gap

AM) = @0+ 8%,

At low temperatures (T < T,), the total gap width A
exceeds A, and the material is superconducting. At T >
T, A(T) = 0 and A(T) = A*. As can be seen from for-
mula(14), thevalue of A (and T,) with an allowance for
the Peierls pairing can be significantly greater than in
the absence of such pairing, even for a usual phonon
mechanism of superconductivity. The dependence of
the A* value on the position of the state on the Fermi
surfaceisillustrated by Fig. 2b, showing that no Peierls
gap appears (i.e., A* = 0) in the vicinity of points
(xV/4, +1/4) where the conditions of nesting are vio-
lated.

Thus, A* depends on the direction in the (k,, k)
plane as described by the solid curve in Fig. 10. This
figure shows an approximate position of the point
where A* = 0 (exact calculation of the dispersion curve
isdifficult, since the regionsof all three Brillouin zones
occur in the vicinity of this point). The dashed curvein
Fig. 10 shows variation of the gap A(T) depending on
thedirectionat T < T, according to formula(14). Ascan
be seen, A* and A vary in asimilar manner. Analogous
curves are obtained even for s pairing (imitating the
behavior for d pairing). Such dependences for HTSCs
are observed experimentally, for example, by ARPES,
for the superconducting gap A [29, 30] and pseudogap
A* [31].

The existence of a pseudogap A* at T > T. and of a
superconducting gap A(T) described by formula (14) at
T < T, was confirmed by the tunneling study of the tem-
perature dependence of the gap (see, e.g., [32, 33]).
Qualitative agreement of the experimental datawith the
behavior predicted by the proposed model allows usto

(14)
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Fig. 10. Dependence of the superconducting gap A (dashed
curve) and the Peierls gap A* (solid curve) on the direction
inthe (ky, ky) plane of an HTSC crystal.

conclude that the experimentally observed pseudogap
is essentially the Peierls gap A*.

6. CONCLUSION

New experimental data obtained using high-quality
single crystals can be explained within the framework
of the model of superstructural ordering in the oxygen
sublattice, with alowance for the antiferromagnetic
ordering of copper ions. In particular, the metalic
stripes with a width of 4a and dielectric spacers pre-
dicted by the model agree well with the stripe models
discussed in the literature.

According to formula (3), the distance between the
metallic stripes in the La, _,Sr,CuO, system with x =
0.06 isabout 30 A. Thisvalueis close to the coherence
(correlation) length &(T) in the ab plane of CuO,. In
these compositions, the stripes exhibit Josephson’'s
coupling and the entire crystal occurs in a coherent
state. This behavior is qualitatively consistent with the
experimental phase diagram Ty(x) of La,_,Sr,CuQ,.
The same conclusion follows from an analysis of the
effect of doping on T, in some other HTSC systems. At
x = 0.25, the third Brillouin zone is fully depleted of
electrons and the Fermi surface acquires the shape
depicted in Fig. 2c. The conditions of nesting for vector
G, = G/4 are violated and the Peierls gap disappears,
which leads to breakage of the superconducting state.
The proposed model provides for a natural explanation
of the shape of the Fermi surfacefor La,_,Sr,CuO, and
other HTSC systems.

The dielectric Peierls gap A* formed according to
the proposed mode is identified with the experimen-
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tally observed pseudogap. The dependences of the
superconducting gap (A) and the dielectric gap (A*) on
the direction in the (k,, k) plane predicted by the model
agree well with experiment even in the case of spairing.

The proposed model quditatively explains the
nature of the anomalous phonon dispersion, the onset
and breakage of superconductivity in doped HTSC sys-
tems, and the origin of superstructural reflectionsin the
neutron diffraction patterns. High critical temperatures
observed for cuprate HTSCs are related to their quasi-
two-dimensional character and the coexistence of
dielectric and metallic pairing in such systems.
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Abstract—The crystal structure and magnetic and electric transport properties of polycrystalline
L&y 50D050MNO;_,, manganites (D = Ca, Sr) were studied experimentally depending on the concentration of
oxygen vacancies. The La 50Srg 50MNO; _, System of anion-deficient compositions was found to be stable and
possess a perovskite structure only up to the y = 0.25 concentration of oxygen vacancies, whereas, for the
Lag 50Ca9.50MNO; _, system, we were able to obtain samples with the concentrations of oxygen vacancies up
toy = 0.50. The stoichiometric Lag 59D 50MNO5 (D = Ca, Sr) compositions had O-orthorhombic (Ca) and tet-
ragonal (Sr) unit cells. The unit cell of the anion-deficient Lay 5,50 50MNO;_, manganites also became
O-orthorhombic when the concentration of oxygen vacancies increased (y > 0.16). Oxygen deficiency in
Lay505050MNO;_ first caused the transition from the antiferromagnetic to the ferromagnetic state (y ~ 0.06) and
then to the spin glass state (y ~ 0.16). Supposedly, the oxygen vacancies in the reduced L& 5,S7050MnO; _,, sam-
ples with y > 0.16 were disordered. The special feature of the La, 50Ca,50MNnO3_, manganites was a nonuni-
form distribution of oxygen vacanciesin the Lay 50Cay 50MnNO, 75 phase. In the L&, 55Cay 50MNO; 54 phase, the
type of oxygen vacancy ordering corresponded to that in SroFe,Os, which led to antiferromagnetic ordering.
The specific electric resistance of the Lag 50D 50MNO;_, anion-deficient samples increased with increasing
oxygen deficiency. The magnetoresistance of all samples gradually increased as aresult of the transition to the
magnetically ordered state. Supposedly, the Lay 50Cay50MNO3_, manganites in the range of oxygen vacancy
concentrations 0.09 < y < 0.50 had a mixed state and contained microdomains with different types of magnetic
ordering. The experimentally observed properties can be interpreted based on the model of phase layering and

the model of superexchange magnetic ordering. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The discovery of such collective electron phenom-
ena as giant magnetoresistance and metal—dielectric
or charge order—disorder phase transitions induced by
an external magnetic field aroused interest in
Ln; _,D,MnO;-type compounds, where Ln is a triva-
lent rare-earth metal (La** or Y®*) and D is a divalent
metal such as C&*, Sr?*, Ba?*, Cd?*, and Pb?* or Bi3*
[1-3]. The magnetic and electric properties of these
hole-substituted manganites have been the object of
many experimental and theoretical studies [4—7]. The
reason for thisinterest isthe abundance and diversity of
properties of metals and dielectrics combined in com-
pounds of one type, which include systems with crystal
structure, spin, orbital, and charge ordering and, lastly,
systems that experience phase layering. These proper-
ties are a consequence of close interactions between the
lattice, charge, and spin degrees of freedom, which
result in complex phase diagrams of compounds of this
class[8-10].

Currently, the systems studied most thoroughly are
La" ,DZ'Mn;" ,Mn; O, (D = Ca*, Sr?*). The base
compound for the type of compositions under consider-
ation is LaMnO;. It exhibits antiferromagnetic dielec-
tric properties [5], and its magnetic structureis of the A
type and represents a collection of antiferromagneti-
cally arranged (001) ferromagnetic planes. The small
ferromagnetic component, which is a consequence of
the noncollinearity of the magnetic moments of manga-
neseions, arises because of antisymmetric Dzyaloshin-
ski-Moriya exchange [11]; LaMnO; is therefore a
weak ferromagnet.

The replacement of La** by Ca&* (Sr?*) ions
increases the mean manganese valence, which pre-
serves compound el ectroneutrality, and formally results
in the formation of Mn** ions with the t3, electronic
configuration (total spin S = 3/2) [12]. It is assumed
that, in these systems, the g, electrons of M n3* are delo-
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calized and play the role of charge carriers. Such sub-
stituted manganite systems exhibit metal—dielectric
concentration phase transitions at 0.12 < x < 0.50 [12].
The properties of ferromagnets and metals appear in the
La _,CaMnO; and La, _,Sr,MnO; systems amost
simultaneoudly. It is, however, not completely clear
whether or not the arising of properties of one type
favors the appearance of properties of another [13].

Two special concentrations x of substituent ions are
of interest for the La, _,CaMnO; system. Most of the
recent works on these materials were concentrated on
the compositions with x = 0.30, which exhibit giant
magnetoresistance (on the order of 10%% [14]) related
to the first-order phase transition from the paramag-
netic dielectric to the ferromagnetic metallic state at
T = 270 K [15]. Ancther critical level of doping isx =
0.50. In contrast to x = 0.30, the magnetoresistance of
this composition is related to the first-order antiferro-
magnet—ferromagnet transition and the dielectric-metal
trangition induced by an externa magnetic field [16, 17].

The La, 5,Cay5,MNO; compound is a paramagnetic
semiconductor above T = 260 K and a charge-ordered
antiferromagnet (of the CE type) below Ty = 180 K
(during heating). The CE magnetic structure type is a
chessboard ordering of C- and E-type magnetic unit
cells. The C magnetic structure typeisin turn a collec-
tion of antiferromagnetically coupled (110) ferromag-
netic planes, and the E structure type is a collection of
antiferromagnetically coupled (110) ferromagnetic
planes. Between T and Ty, Lay 5,Cay5MNO; consists
of ferromagnetic and paramagnetic phases [18, 19]. In
zero field, Lay50Cay50MNO; isadielectric in the whole
temperature range. Note that long-range charge and
antiferromagnetic ordersin L&, 50Ca, 50MnNO; are estab-
lished simultaneously (Ty = T, ). Short-range charge
ordering, however, begins to arise at about 210 K, that
is, at atemperature much higher than that of the ferro-
magnet—antiferromagnet phase transition [20]. The g,
electronsin the charge-ordered state arelocalized in the
crystal lattice, which resultsin atime-independent peri-
odic distribution of the Mn** and Mn** ions.

The properties of Lay5,Sro5,MNO; resemble those
of Lays0Cay5oMNnO; in many respects. Ferromagnetic
ordering occurs in the Layg,Srg50MNO; manganite at
Te= 320 K [12, 21]. Long-range antiferromagnetic
order arises at Ty, = 180 K, and the ferromagnetic and
antiferromagnetic phases coexist even to helium tem-
peratures [22]. No ordering of manganese ions of dif-
ferent valences (no charge ordering) occurs in the
L&y s0Sr050MNO; manganite; accordingly, an A-type
antiferromagnetic structure is formed.

In is generally believed that double exchange
between Mn**-Mn** pairs determines the magnetic and
electric properties of manganites with perovskite struc-
tures [23, 24]. This model is based on rea electron
exchange between two partialy filled d shells of Mn3*
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and Mn*. However, the ferromagnetic properties of
manganites cannot be explained solely by double
exchange. According to Goodenough [25], the ferro-
magnetic properties are determined not only by double
exchange but also by the special nature of superex-
changeinteractionsin the Mn*-O-Mn®* and Mn**—-O—
Mn* Jahn-Teller ionic systems. The orbital configura-
tion of 3d electrons depends on the positions of manga-
nesenuclei if static Jahn—Teller distortions are removed
(the Goodenough quasi-static hypothesis). In the super-
exchange modéd, the ferromagnetic contribution is deter-
mined by the virtual electron transitions from the Mn®*
half-filled e, orbitals to the unoccupied g, orhitals.

The contributions of double exchange and superex-
change interactions can be controlled by varying the
Mn3/Mn* ratio. It is, therefore, of interest to study the
properties of the La, _,D,MnO;_, compounds depend-
ing on the mean valence of manganese ions. The
Mn3*/Mn** ratio can be varied by at least three meth-
ods: (1) by the replacement of lanthanum with divalent
alkaline-earth metal ions, (2) by the replacement of
manganese by magnetic and nonmagnetic ions of vari-
ous valences, and (3) by controlling oxygen nonstoichi-
ometry [26].

The dependence of magnetic and magnetoresistive
properties on oxygen nonstoichiometry in hole-substi-
tuted manganites with perovskite structures has scarcely
been studied. The removal of oxygen anions from the
crystal lattice of La;~, D5 Mn;,,,Mn} 505,
transforms Mn** ionsinto Mn3* and decreases the coor-
dination number of manganese (6 — 5).

Very interesting magnetic and magnetoresistive
properties have recently been reported for the
La _,CaMnO,_, [27-29] and L& _,BaMnO;_, [30, 31]
oxygen-deficient compositions. The results of these
studies were evidence of such unusua properties of
these strongly reduced manganites as alarge ferromag-
netic component, a high magnetic ordering tempera-
ture, and a large magnetoresistance in spite of the
absence of Mn¥*~Mn*" pairs.

In this work, we studied the magnetic and electric
properties of the anion-deficient Lays0Dg50MNO;_,
manganites (D = Sr, Ca). In spite of equal substitution
levels, the reduced samples exhibited quite different
properties determined by the special features of the
arrangement of oxygen vacancies.

2. EXPERIMENTAL

Polycrystalline  stoichiometric L&y 50Do50MNO;
(D = Sr, Ca) samples were prepared by the standard
ceramic technique; namely, La,0; (99.99%), CaCO,
(99.99%), and MnO, (99.99%) were mixed in the
required ratio between the cations and thoroughly
ground. Prior to weighing, La,0O; was annealed at
1000°C for 5 h to remove H,0O and CO,. The mixtures
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were pressed into pellets 2 cm in diameter and 1.5 cm
high with a hydraulic pressin a steel press mold under
an approximately 10° Pa pressure and calcined at
1100°C for 2 hin air. The pellets were then reground,
pressed, and sintered at 1550°C for 2 h in air, which
wasfollowed by slow cooling in afurnaceto room tem-
perature. The rate of cooling was 100 K h™L. During the
synthesis, the samples were on the surface of platinum.
The temperature in the furnace with chromide-antha-
num heaters was measured by a platinum—platinum—
rhodium (10%) thermocouple. The cold thermocouple
junction wasin ice. Therate of heating and cooling the
samples was controlled by an RIF-101 device.

The chemical reaction of the synthesis of
L &g 50D0.50MNO5; manganites (D = Sr, Ca) can be writ-
ten as

0.25La,05 + 0.50Ca(Sr) CO; + 0.50M n, O,

The content of oxygen in all synthesized samples
was determined thermogravimetricaly. It was found
that oxygen concentrations were dlightly lower than
stoichiometric and corresponded to the formula
L3y50D050MNO; 994 001 (D = Ca, Sr). The X-ray powder
patterns were obtained at room temperature on a
DRON-3 diffractometer (CrK, radiation) in the angle
range 30° < 20 < 100°. The neutron diffraction patterns
of Lays50Cay50MN0O, 5, Were recorded at the Neutron
Scattering Center (BENSC, Hahn—Meitner Ingtitute,
Berlin) on an E9 (FIREPOD) neutron powder diffracto-
meter with a A = 1.79686 A wavelength and a A6 ~
0.002 scan step.

Oxygen vacancies in the samples synthesized as
described above were formed by annealing the samples
in evacuated quartz ampules at 900°C for 24 h with the
use of tantalum metal as an oxygen absorber. The fol-
lowing anion-deficient compositions were prepared:
L3y 50Cay50MNO;_,, (y = 0.01, 0.04, 0.10, 0.12, 0.17,
0.20, 0.22, 0.25, 0.27, 0.30, 0.31, 0.32, 0.35, 0.37, 0.45,
0.48, and 0.50) and L &y 50Sro50MnO;_, (y = 0.01, 0.06,
0.09, 0.12, 0.16, 0.17, 0.20, and 0.25). The reduction
followed the reaction

Lays5,Ca(Sr)g5oMn0O, + %y Ta

)
- L%.soca(sr)olsoM nOS_y + %Tazos

The final oxygen contents were calculated from
sample mass changes after the reduction. Usualy, a
2-3 g sample was loaded into the ampule to decrease
the error of measurements. The relative error of mea
surements did not exceed 0.3%. The content of oxygen
in the reduced samples was controlled by subjecting
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them to oxidation in air at 900°C for 24 h. The corre-
sponding chemical reaction can be written as

Yy
Lay5Ca(Sr)osoMnO;_, + 2O
50 )oso 3-y T 5002 3)

Anincrease in the weight of the samples after their
oxidation corresponded to the weight lossin the reduc-
tion. Thisis evidence of atopotactic reduction charac-
ter. Notethat an important feature of the anion-deficient
perovskite compounds is the possibility of their oxida
tion with restoration of the initial composition, struc-
ture, and physical properties.

The magnetization measurements were performed
on an MPMS-7 quantum SQUID magnetometer and an
OI-3001 commercial vibrating-coil magnetometer in
the temperature range 4-380 K. The magnetic transi-
tion temperature was assumed to correspond to the
onset of a sharp increase in the dynamic magnetic sus-
ceptibility or static magnetization measured in a
100-Oe field. Dynamic magnetic susceptibilities were
measured with amutual induction bridge in the temper-
ature range 77-350 K. The field amplitude was
200 A/m, and the field frequency was 1200 Hz. The
specific resistance of the samples was measured by the
standard four-point technique in the temperature range
77-350 K. Indium contacts were formed by ultrasonic
deposition. Magnetoresistance calculations were per-
formed by the equation

MR[%] = {[p(H)-p(0)]/p(0)} x100%,  (4)

where MR[%] is the negative isotropic magnetoresis-
tance, p(H) isthe specific electric resistancein a 9-kOe
magnetic field, and p(0) is the specific electric resis-
tance in zero magnetic field. The electric current was
directed along the longer side of the samples. The mag-
netic field was applied parallel to the electric current in
the sample.

3. RESULTS AND DISCUSSION

The anion-deficient samples of the
L3y 505r050MNO; _, series (La-Sr) were obtained in the
single-phase state up to the y = 0.25 concentration of
oxygen vacancies. The sample with the nominal con-
tent of oxygen vacancies y = 0.30 contained small
amounts of two impurity phases with K,NiF* and
NaCl-type structuresin addition to the major perovskite
phase. Supposedly, these impurities were the
La,_,Sr,MnO, and MnO oxides. According to the X-
ray data, the La—Sr samples with 0 < y < 0.16 had tet-
ragonal unit cells (Fig. 1). Anincrease in the concentra-
tion of oxygen vacancies above y = 0.16 resulted in the
formation of O-orthorhombic unit cells, athough the
degree of symmetry distortion decreased. The unit cell
parameters for the anion-deficient Lay5,Srg50MNO;_,
compositions are listed in the table.
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Fig. 1. X-ray powder patterns of LaggoSros5oMnOs_y
anion-deficient samples with (&) y = 0.01, (b) y = 0.12, and
(c) y = 0.17 recorded at room temperature. Shown in the
insets are the (211) X-ray reflections for the corresponding
samples.
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The anion-deficient samples of the
L3y50Cay50MNO;_, series (La-Ca) had O-orthorhom-
bic unit cells. Starting with y = 0.27, X-ray crysta

TROYANCHUK et al.

M, G cm’/g
T

/

4r Lag 50519, 50MnO; g9

M, G cm3/g
80 '
/ 60 EC b

H =15kOe

20¢ ] 1 1
0 40 80 120
, I, K
150 200
T,K

H =100 Oe

250 300

0 50

|
100 350

Fig. 2. Temperature dependence of magnetization for the
Lag 50S19.50MNO, g9 anion-deficient sample in a 100-Oe
external magnetic field. Shown in the inset is the low-tem-
perature dependence of magnetization of the same sample
ina15-kOefield. Measurements were performed after cool-
ing the sample in the corresponding magnetic field (FC).
Arrows indicate the direction of measurements.

structure reflections corresponded to those characteris-
tic of an Sr,Fe,Oc-type structure with MnO, tetrahedra
and MnQOg octahedra as basic structure units [32, 33].
The unit cell parameters of several anion-deficient
L3y 50Cay50MNO; _, samples were reported in [28, 29].

According to the dynamic magnetic susceptibility
data, the L&y 555rg,50MNO, o9 anion-deficient sample has
a magnetic ordering temperature of 320 K, which is
amost equal to the temperature T of stoichiometric
L &y.505r0.50MNO; [22]. The temperature of the magnetic
transition from the antiferromagnetic to the ferromag-
netic state, however, sharply decreases compared with the
stoichiometric sample, for which it equals 180 K [22].
According to magnetization measurements, the transi-
tion in LaysSros0MNO, e in a 100-Oe field during
heating beginsat 55K and endsat 100K (Fig. 2).A 5K

Symmetry type and parameters a, b, ¢, and V of unit cellsfor Lay 5,55 50MNO;_, (0 <y < 0.25) anion-deficient compositions

Chemical composition |  Unit cell symmetry a A b, A c, A vV, A3
L3y 565r0.50MNO5 g9 Tetragonal 5.457 7.760 231.08
L3950 0.50MNO5 g4 Tetragonal 5.454 7.792 231.76
Lag 50Sr050MNO, o1 Tetragonal 5.454 7.793 231.78
Lag 50510.50MNO; gg Tetragonal 5.484 7.753 233.19
L3y 50510 50MNO, g4 O-Orthorhombic 5.462 5.484 7.757 232.37
L3y 565r0.50MNO, g3 O-Orthorhombic 5.462 5.484 7.757 233.88
Lag 505r050MNO, g0 O-Orthorhombic 5.480 5.487 7.759 233.52
Lag 505r050MNO, 75 O-Orthorhombic 5.506 5511 7.783 236.16
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H, kOe

Fig. 3. Field dependences of magnetization for the
Lag 505r0.50MNO3 _y anion-deficient sampleswith y=0.01,
0.06, 0.12, and 0.25 at (a) 5 and (b) 40 K. The sampleswere
zero-field-cooled (ZFC). The arrows denote the directions
of field variations. The measurements shown in the upper
figure were performed in the field decreasing mode.

temperature hysteresisis evidence of afirst-order phase
transition.

Anincreaseinthefield to 15 kOe weakly influences
the temperature interval of the phase transition in the
L &y,505r0,50MNO, o9 anion-deficient sample during heat-
ing. During cooling, alarge magnetization hysteresisis
observed, which is evidence that the magnetic field
effectively stabilizes the ferromagnetic phase in
L8y 50Sr050MNO, o9. The magnetic moment in the ferro-
magnetic phase of this Lays,Sro50MN0O, 49 Sample is
close to the expected value for the parallel orientation
of all manganese ion spins, the magnetic moments of
Mn3* and Mn* being equal to 4ug and 3pg, respec-
tively (Fig. 2).

The field dependences of magnetization at various
temperatures for the anion-deficient La, 50Srs0MNO;_,
samplesare shownin Fig. 3. Anincreasein the concen-
tration of oxygen vacanciesinitially causes an increase

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96

1059

M, G cm’/g

Lay 50519 50MnO3 _y,

0.031 (b) .
H =100 Oe
0.02 .
0.01r .
| | |
0 100 200 300

T,K

Fig. 4. Temperature dependences of FC magnetization in a
100-Oe field for the Lay50Srg50MNnO3_y, anion-deficient

samples with y = 0.09, 0.12, and 0.16 (a) and 0.25 (b).

in the spontaneous magnetic moment, which then grad-
ually decreases. A maximum spontaneous magnetic
moment is observed for the Lay5,Srg50MNO, g, anion-
deficient sample; it equals 2.97ug/formula unit. This
valueisbelow that calculated for completely ferromag-
netic ordering of manganese ion spins (3.62ug/formula
unit). Below 100 K, the L&y 5,51 50MNO; _, anion-defi-
cient compositions exhibit metamagnetic behavior in
fields higher than 6 kOe. The highest attainablefield on
the unit that we used, 16 kOe, however, proved to betoo
low for effecting the complete transition to the ferro-
magnetic state. A field magnetization hysteresis was
observed for the La,g,Sros0Mn0O, 4 sample at 40 K

(Fig. 3).

An increase in the concentration of oxygen vacan-
cies to y = 0.06 lowers the Curie temperature to T =
300 K, and the low-temperature phase transition from
the antiferromagnetic to the ferromagnetic state disap-
pears. In Lays50Sr050MN0O, ., the Curie temperature
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Fig. 6. Magnetic phase diagram of the system of
Lag50S050MNO3_y  anion-deficient compositions; A
stands for antiferromagnet; F, for ferromagnet; P, for para-
magnet; and SG, for spin glass.

decreases to 212 K (Fig. 4). No magnetization satura-
tion is observed in fields up to 16 kOe, asis character-
istic of magnets with weakened cooperative magnetic
interactions. The Curie temperatures for the
L&y 50Sr0.50MNO; g5 and L &y 5050 50MNO, g4 SAMples are
248 and 209 K, respectively (Fig. 4). For the samples
with 0.17 < y< 0.25, the temperature of thetransition to
the paramagnetic state is difficult to determine because
of substantial transition smearing. The temperature
dependences of zero-field-cooled (ZFC) and field-
cooled (FC) magnetizations differ insignificantly for
the compositions with 0 < y < 0.16. Such a magnetiza-
tion behavior is evidence that these compounds retain
long-range ferromagnetic order in the temperature
interval under consideration.
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The smeared phase transition and the characteristic
temperature behavior of the ZFC magnetization show
that the magnetic state of the 0.17 < y < 0.25 anion-defi-
cient compositions is drastically different. The
L &y.505r0.50MNO, g3 composition exhibits different ZFC
and FC magnetization behaviors. The temperature
dependences of magnetization obtained by heating this
composition in a 100-Oe field after field cooling (FC)
and zero field cooling (ZFC) are shown in Fig. 5. Both
curves have maxima at about T; = 50 K. The ZFC and
FC magnetizations are approximately equal above this
temperature but substantially different below it. The
ZFC magnetization first increases to its maximum
value at 50 K as temperature grows and then smoothly
decreases to zero, whereas the FC magnetization is
almost constant at low temperatures. A sharp increase
in the ZFC magnetization in the temperature interval
4045 K is evidence of a strong decrease in magnetic
anisotropy, which is characteristic of cooperative phe-
nomena. Above T;, no anomal ous magneti zation behav-
ior isobserved. Thelow spontaneous magnetic moment
value corresponding to the Layg,Srg50MnO, g5 anion-
deficient composition is likely caused by a nonuniform
magnetic state, which is a collection of antiferromagnet-
ically and ferromagnetically ordered clusters. The com-
petition between antiferromagnetic and ferromagnetic
cluster interactions can lead to the spin glass state [34].
Also note that atemperature of 50 K istypicd of cluster
spin glass satesin manganites [ 35]. Spontaneous magne-
tization measurements for La, 555r550MNO, g3 encounter
certain difficulties because of the Langevin shape of the
field dependence of its magnetization, which is charac-
teristic of spin glasses or superparamagnets.

A further decrease in the content of oxygentoy =
0.25 sharply decreases the magnetic susceptibility of
the La—Sr sampl es, but the field and temperature depen-
dences of magnetization remain qualitatively
unchanged (Figs. 3, 4). The temperature corresponding
to the ZFC and FC curve maxima for the
L&y505r0.50MNO, 75 sample (T; = 40 K) isslightly lower
than that for the La—Sr sample with y=0.17.

Magnetic property measurementsallowed usto con-
struct the magnetic phase diagram shown in Fig. 6. The
loss of oxygen causes a sharp decrease in the tempera-
ture and then the disappearance of the transition to the
antiferromagnetic state for the La-Sr samples with
0.01< y < 0.06, whereas the Curie temperature and
spontaneous magnetization decrease comparatively
insignificantly. The transition from the long-range to
short-range ferromagnetic order occurs close to the
threshold value of the concentration of oxygen vacan-
cies, at y ~ 0.16. Simultaneously, the critical tempera-
ture decreases severafold in a very narrow interval of
vacancy concentrations. We observe a well-defined
trend of magnetic susceptibility and spontaneous mag-
netization lowering as the concentration of oxygen
vacancies increases.
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A fundamentally different trend is observed for the
La—Ca series. According to [28, 29], the behavior of
L3y 50Cay50MNO;_, at y< 0.15isin many respects sim-
ilar to that of the La—Sr samples. In both systems, the
low-temperature antiferromagnetic state is suppressed
because of the development of the ferromagnetic com-
ponent, which is subsequently replaced by the spin
glass component. However, at concentrations of vacan-
cies above y = 0.15, the behaviors of the two systems
become qualitatively different. In the La—Sr series, an
increase in the concentration of oxygen vacancies
causes a sharp decrease in magnetic susceptibility,
whereas, in the La—Ca series, the ferromagnetic com-
ponent sharply increases and reaches a maximum at a
y~0.30 concentration of vacancies [29]. A further
increase in the number of oxygen vacancies (y > 0.30)
inthe La—Casamplesfairly smoothly decreasesthe fer-
romagnetic component and the temperature of the tran-
sition to the paramagnetic state. The decreasein thefer-
romagnetic component coincides with the devel opment
of aperovskite-like structure of the Sr,Fe,Os type based
on theinitial perovskite cell.

In order to understand what happens with the mag-
netic structure at high oxygen vacancy concentrations,
we peformed a neutron diffraction study of
L&y 505r050MN0O, 54 at various temperatures. The neu-
tron diffraction patterns show that additional reflections
begin to appear below 100 K (Fig. 7). Asthe transition
from the magnetically ordered to the paramagnetic
state occurs at 120 K (this follows from the results of
magnetic measurements), the conclusion can be made
that the additional reflections have a magnetic nature.
Note that the intensity of different magnetic reflections
increases differently as temperature lowers, which can
be caused by arearrangement of the magnetic structure
or the presence of a weak magnetic sublattice. The
spontaneous magnetization valueis very small, and the
magnetic contribution to nuclear reflectionsisinsignif-
icant. Thisleads usto conclude that the magnetic struc-
tureis antiferromagnetic.

The electric resistance of the Lgys,Cay50MNO;_,
anion-deficient samples with 0.09 < y < 0.50 is charac-
teristic of semiconductors and continuously increases
astemperature lowers (Fig. 8). At low temperatures, the
specific resistance of the La—Ca samples satisfies the
equation In(p) O T (seeinset in Fig. 8). The behavior
of the magnetoresi stance of the sampleswith 0.09<y <
0.50 correlates with the absence of any electric resis-
tance anomalies close to the temperature of the transi-
tion to the magnetically ordered state. Below this tem-
perature, magnetoresi stance beginsto increase continu-
ously toward liquid nitrogen temperatures without a
peak on itstemperature dependence. Note that the elec-
tric transport properties of the La—Sr samples with
0.06 < y < 0.25 are similar to those of the La—Ca sam-
ples shownin Fig. 8.

We modernized the magnetic phase diagram of the
L3y 50Cay50MNO;_,, system, which was initially sug-
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Fig. 7. Neutron diffraction powder patterns of the
Lag 50Cap 50MNO, 5o anion-deficient sample at (&) 300,

(b) 100, and (c) 10 K.

gested in [28], taking into account the new experimen-
tal data. The evolution of the magnetic state of the
La—Casystemisdepicted in the phase diagram (Fig. 9).
Long-range ferromagnetic order in the stoichiometric
L&y 50Ca,50MNO; sample is established at T = 250 K,
and long-range antiferromagnetic order, at T = 180 K
[18, 19]. Deviations from stoichiometry weakly influ-
ence the ferromagnetic critical point, whereas the anti-
ferromagnetic state becomes sharply suppressed by the
ferromagnetic state. In the concentration range 0.02 <
y< 0.09, the samples behave as ferromagnets with
inclusions of clusters with substantially weakened
exchange interactions. Below 40 K, the ZFC magneti-
zation of the anion-deficient compositions increases as
temperature grows. This is evidence of changes in
anisotropy likely caused by sample inhomogeneity. At
y > 0.09, we observe a sharp decrease in spontaneous
magnetization, whereas the anomalous behavior of
magnetization below 40 K becomes more pronounced.
Nevertheless, the divergence of the ZFC and FC mag-
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theinset are the dependences of the logarithm of the specific
electric resistances of the same samples on reciprocal tem-
perature.

netizations begins at fairly high temperatures and lin-
early decreases as the concentration of vacancies
increases. Closeto they = 0.30 concentration of oxygen
vacancies, spontaneous magnetization  sharply
increases (Fig. 9) and reaches a maximum of about
40% of the value calculated for purely ferromagnetic
ordering of the manganese ion spins. According to
Gonzédes-Calbet et al. [36-38], the Lay 50Cay50MNO, 75
sample is a pure phase with a unique temperature
dependence of the distribution of oxygen vacancies.
Judging from high-resolution electron microscopy
data, oxygen vacancies predominantly concentrate in
the domain walls of microdomains, which have asmal
thickness compared with the other two dimensions.
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Fig. 9. (a) Dependence of spontaneous magnetic moment
on the concentration of oxygen vacancies and (b) magnetic
phase diagram of the LaysoCays50MnOz_y System of
anion-deficient compositions; A, stands for charge-ordered
antiferromagnet; A,, for charge-disordered antiferromag-
net; F + P, for inhomogeneous ferromagnet; P, for paramag-
net; and SG, for spin glass.

The behavior of magnetic properties shows that
vacancy distributions of the same type as in the
L&y 50Ca,50M N0, 45 phase are observed in afairly wide
range of oxygen vacancy concentrations, namely,
0.09< y < 0.50. It is most likely that spin-glass-type
systems with a fairly uniform distribution of oxygen
vacancies and phases of the Lays,Cay50MNnO, 75 type
coexist in the 0.09 < y < 0.30 concentration interval. In
the 0.30 < y < 0.50 interval, the Lays,Cay50MNO, 5y
antiferromagnetic phase gradualy replaces the
Lay50Cay50M N0, 45 phase. As the Curie (Néel) temper-
ature depends on the concentration of vacancies almost
linearly, it can be suggested that either the composition
of the Lay 50Cay50MNO, 75 phaseis not strictly constant,
or microdomains of this phase are exceedingly small,
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and the Curie point is determined by the interaction of
magnetic domains of different types. La,5,Cay 50MNO, 75~
type phases are not formed in the La-Sr samples,
because the perovskite phase becomes thermodynami-
cally unstable in these systems.

The Mn*-O-Mn3* superexchange interactions are
anisotropic in orbitally ordered phases (positive in the
(001) plane and negativein the[001] direction) and iso-
tropic in orbitally disordered phases (positive in all
directions). The Lays,Ca(Sr)os50MNO; stoichiometric
compositions are orbitally ordered in the ground state.
For this reason, Mn**—O-Mn®" superexchange is nega-
tive and does not contribute to magnetization. The
appearance of oxygen vacancies removes orbital order-
ing and increases double exchange (Mn**-O-Mn*)
and superexchange (Mn3**-O-Mn3*) contributions to
the resultant magnetization. The mean valence and the
coordination number of manganese ions and, accord-
ingly, the ferromagnetic double exchange contribution
decrease as the concentration of oxygen vacancies
increases. A decrease in the coordination number of
manganese changes the sign of Mn¥*—0O-Mn3* superex-
change from positive to negative. It follows that the
antiferromagnetic component of exchange interactions
increases as the concentration of oxygen vacancies
grows. In the La—Sr compositionswith 0.06 < y < 0.16,
this results in a gradual Curie temperature and sponta-
neous magnetic moment lowering without radical
changes in the magnetic state. The y = 0.17 concentra-
tion of oxygen vacancies is likely to be critical; at this
concentration, the volumes of two phases (ferromag-
netic and antiferromagnetic) become comparable. The
system is divided into clusters with different types of
magnetic ordering. The competition between ferromag-
netically and antiferromagnetically ordered cluster
interactions results in the arising of a spin-glass-type
state with an approximately 50 K temperature of freez-
ing the magnetic moments of clusters.

4. CONCLUSIONS

We performed an experimental study of the crystal
structure, magnetic, and electric transport properties of
the LaysoDosoMNO;_, (D = Ca, Sr) anion-deficient
manganites  with  perovskite  structures. The
L3y 505r0,50MNO; _,, anion-deficient compositions were
found to be stable and form perovskite structures only
up to the y = 0.25 concentration of oxygen vacancies,
whereas we were able to obtain samples with oxygen
vacancy concentrations up to y = 0.50 for
L3y 50Cay50MNO;_,. Thecritical concentrations of oxy-
gen vacancies at which unit cell symmetry type
changed were observed. An increase in the concentra-
tion of oxygen vacancies first suppressed the orbitally
ordered antiferromagnetic state and established long-
range ferromagnetic order and then caused long-range
ferromagnetic order destruction. The competition
between ferromagnetically and antiferromagnetically
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ordered clusters resulted in the formation of the spin
glass state. The specific electric resistance of
L3y 50D050MNO;_, anion-deficient samples grew and
the metal-semiconductor transition disappeared as
oxygen deficiency increased. The magnetoresi stance of
al anion-deficient samples gradually increased
depending on temperature in the transition to the mag-
netically ordered state. Supposedly, oxygen vacancies
were disordered in the LaggoSrosoMnO;_,, reduced
compositions with y = 0.16. The specia feature of the
L8y 50Cay 50MNO; _, manganites was a nonuniform dis-
tribution of oxygen vacanciesin the La, 5,Cay50MNO, 75
phase. This increased the ferromagnetic component. In
the Lay 55Cay5MNO, 5, phase, oxygen vacancies were
ordered asin Sr,Fe,O5, which resulted in antiferromag-
netic ordering. The observed experimental properties
can beinterpreted based on the model of phase layering
and the superexchange magnetic ordering model.
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Abstract—A system of Abrikosov vortices in a quasi-two-dimensional HTSC plate is considered for various
periodic lattices of pinning centers. The magnetization and equilibrium configurations of the vortex density for
various values of external magnetic field and temperature are calculated using the Monte Carlo method. It is
found that the interaction of the vortex system with the periodic lattice of pinning centersleadsto the formation
of various ordered vortex states through which the vortex system passes upon an increase or a decrease in the
magnetic field. It is shown that ordered vortex states, as well as magnetic field screening processes, are respon-
sible for the emergence of clearly manifested peaks on the magnetization curves. Extended pinning centers and
the effect of multiple trapping of vortices on the behavior of magnetization are considered. Melting and crys-
tallization of the vortex system under the periodic pinning conditions areinvestigated. It isfound that the vortex
system can crystallize upon heating in the case of periodic pinning. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

A large number of recent publications are devoted to
experimental investigations on the interaction of an
Abrikosov vortex lattice with aperiodic artificially cre-
ated structure of pinning centers in the form of micro-
holes as well as submicrometer particles of a magnetic
or nonmagnetic material (see, for example, [1-3] and
the literature cited therein). Experiments reveal singu-
larities on the magnetization curves as well as on the
curves describing the magnetic field dependence of the
critical current and resistivity, which are interpreted as
regimes of matching between the vortex lattice and the
lattice of pinning centers. Direct observation of the
regimes of matching the vortex system to the periodic
lattice of pinning centers was carried out using
Lorentz force microscopy [4] and scanning Hall magne-
tometry [5].

The complexity of such experiments and the inter-
pretation of the observed effect necessitate the use of
numerical simulation, including that based on the
Monte Carlo method. The Monte Carlo technique was
used earlier for obtaining new results for phase transi-
tions and the dynamics of atwo-dimensional Abrikosov
vortex lattice in amodel system imitating layered high-
temperature superconductors (HTSC). For example, it
was shown in [6-11] that a phase transition (melting of
atriangular lattice resulting in the formation of vortex
liquid) is observed in the absence of defects. In the
presence of defects, a phase of “rotating lattice” is
formed between the phases of the vortex crystal and the
vortex liquid. The vortex system in this phase has the
form of lattice islands rotating around pinning centers.
The results of numerical calculation of magnetization

and magnetic flux distribution in a quasi-two-dimen-
siona HTSC plate with a random distribution of pin-
ning centers were reported in our earlier publications
[12-14], where a new method based on the Monte
Carlo agorithm was developed for a large canonical
ensemble with a number of singularities reflecting the
behavior of vortex systemsin layered HTSC materials.
This method enabled usto obtain the equilibrium distri-
bution of vortex density upon a change in the external
magnetic field H and to calculate the M(H) depen-
dences for an arbitrary arrangement of pinning centers
at various temperatures.

Here, we report on new results of simulation of the
Abrikosov vortex system using the Monte Carlo
method in the case of periodic pinning. The magnetiza-
tion curves and the patterns of vortex density distribu-
tion are calculated for various defect lattices in awide
range of temperatures and fields. It is shown that, in the
case of periodic pinning, the curves describing the mag-
netic field dependence of magnetization display anum-
ber of peaks associated with theinteraction between the
vortex lattice and the lattice of pinning centers. Differ-
ent reasons for the emergence of these singularities on
the magnetization curve are indicated for the first time.

In addition, we discovered an ordering of the vortex
system with periodic pinning upon heating, viz., the
inverse crystalization effect. Such a peculiar behavior
of correlated systems is extremely uncommon in
nature. Inverse crystallization was observed in some
magnetic materials [15] as well as in polymer systems
[16]. Inarecent publication[17], inversecrystallization
was discovered in a system of vortices with random
pinning. Inverse crystallization in a system of Abriko-
sov vorticeswith periodic pinning is predicted by usfor

1063-7761/03/9606-1065%24.00 © 2003 MAIK “Nauka/Interperiodica’
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the first time and has afundamentally different physical
origin as compared to random pinning.

2. MODEL
AND COMPUTATIONAL PROCEDURE

Let us consider athree-dimensional bulk sample of
a layered (in the xy plane) HTSC. The sample has a
finitesizel inthexdirection and isinfinitely largeinthe
y and zdirections. It is placed in amagnetic field paral-
lel to the z axis, which rules out demagnetization
effects. Assuming that the interaction between layersin
HTSC is weak, we will carry out calculations for a
quasi-two-dimensional (in the xy plane) plate of thick-
ness d, which simulates a superconducting layer. In
other words, we“cut” alayer of thicknessd, which will
be treated below, along the z axis.

We consider a 2D system of Abrikosov vortices in
the form of model classical particles with along-range
potentia in the plate placed in an external magnetic
field H. The thermodynamic Gibbs potential of the vor-
tex system in such aplate has the form

G = PyH

O I X
+d—47{2[eXPD )\D+exp )\ D}

z U(ru) + z Up(rl) + Usurf;

i#]

where N is the number of vorticesin the system,;

+052

is the self-energy of avortex [18]; @, = hc/2e; A isthe
magnetic field penetration depth in the superconductor;
Ao = A(T =0); disthe superconducting layer thickness;
NddyH/4Ttis the energy of interaction of avortex with
the external field H; U(r;;) = UoK(r;/A) is the energy of
paired interaction of vortices; U, = ®2d/81°A%; K, is
the Bessel function of the imaginary argument; r;; isthe
distance between vortices;

o = Brefl B

®H X0 4 e = X0
d— A [expD 30 + exp y D}

is the energy of interaction between the ith vortex and
Meissner currents passing in the y direction over the
plate surface; U(r) is the energy of interaction
between the ith vortex and pinning centers; Ug; is the
energy of interaction of the vortex system with the
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superconductor surface [14]; and &, is the vortex core
sizefor T=0.

We introduce pinning centers to study the behavior
of a system with defects. In this case, the energy of
interaction with a pinning center was chosen in the
model form,

UgT) 1 el L0

UlT.0) = g i+ 1P 2

where a isthe parameter characterizing the depth of the
potential well of adefect and € isthe coherence length.
Such a choice of the sizes and depth of pinning corre-
sponds to the case when only one vortex can be pinned
at the center.

The magnetic field induction in the given geometry
was calculated using the following formula taking into
account the contribution of Meissner currents:

We have aso taken into account the fact that the flux
carried by each vortex depends on the distance from the
plate edge [14].

In our computations, we used the approach devel-
oped earlier and based on the Monte Carlo algorithm
for a grand canonical ensemble [13, 14]. The method
enables us to obtain the equilibrium vortex density dis-
tribution for given extrinsic parameters (magnetic field
H, temperature T, and the distribution and type of pin-
ning centers). Using this distribution, we can calculate
magnetization M and induction B. Thus, the method
makes it possible to determine both integrated charac-
teristics of a superconductor and visual patterns of
magnetic flux distribution. Such an approach differs
fundamentally in some respectsfrom familiar computa-
tiona methods; namely, it ensures the most correct
inclusion of the effect of the plate boundary, operation
in awide range of temperatures0 < T < T, and inclu-
sion of any distribution of any type of defects.

For simulating, we use parameters of a layered
superconductor Bi,Sr,CaCu,Og: d = 0.27 nm, Ag =
180 nm, &, =2 nm, and T, = 84 K [19]. The temperature

dependence of the magnetic field penetration depth is
givenin the form [11]

AO)

Computations were made for plates having asize of 5 x
3and 5 x 2.25 um?. The x sizein the region in question
was chosen so that our analysis could be confined to
only thefirst termsin the expression for the interaction
of vorticeswith the surface and, on the other hand, con-
siderable errors due to the application of periodic

AT) =
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boundary conditionsin the computation of vortex inter-
action could be avoided. They size varied depending on
the pinning lattice period so that the periodic boundary
conditions were not violated. The maxima range of
variation of the external field H is limited only by the
computer power and, accordingly, computer time. In
the computations described here, the range of the exter-
nal field variationwas-0.1T<H<O0.1T.

3. RESULTS AND DISCUSSION

The presence of the lattice of pinning centers leads
to the emergence of commensurability effects between
the number of vortices and the number of defects
responsible for the formation of ordered configurations
of the system of vortices, which often differ consider-
ably from the conventional triangular lattice. In turn,
the ordered structure of the vortex system leads to sin-
gularitiesin the magnetization and in the magnetic field
dependences of the critical current and resistivity.

Reichhardt et al. [20] used the molecular dynamics
method to analyze the behavior of a vortex system in
the presence of square and triangular lattices of point
defects and discovered a variety of ordered configura-
tions. They discovered that the vortex system isordered
only for definite matching fields, when the number of
vortices is multiple to the number of defects. However,
the calculations in [20] were made under periodic
boundary conditionsin the canonical ensemble, i.e., for
a given fixed number of vortices. In addition, the
authors of [20] considered the behavior of the vortex
systemonly at T =0.

The formation of ordered configurations in the case
of matching between the number of vortices and the
number of defects can aso be demonstrated in the
framework of acanonical ensemblefor periodic bound-
ary conditions. However, while studying the effect of
the defect structure geometry on the magnetic flux pen-
etration and distribution, we must allow for the vortex
production/destruction, i.e., consider agrand canonical
ensemble and take into account surface effects.

We carried out computations for the following lat-
tices of point pinning centers. sguare, triangular, and
kagome lattices.! We also considered square Iattices of
extended pinning centers, at which more than one vor-
tex could be pinned. We will analyze in detail al the
above-mentioned configurations of pinning centers.

3.1. Triangular Lattice of Point Defects

Figure 1 shows the magnetization curves obtained
for various concentrations of defectsforming atriangu-
lar | attice. We considered the concentrationsng = 11.18,
5.7, and 3.63 pm~ corresponding to the triangular lat-
tice periods a = 0.32, 0.45, and 0.56 pm. The depen-
dence exhibits a number of singularities. It is expedient

1 This term indicates a superlattice with an increased period super-
imposed on theinitia lattice and is often used for spin systems.
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Fig. 1. Magnetization curvesfor atriangular lattice of point
pinning centers for different concentrations of defects ng,

um—2: 11.18 (1), 5.7 (2), and 3.63 (3). Temperature T= 1 K.
Points a—g correspond to vortex density distributions in
Fig. 2.

to consider the difference between the value of magne-
tization in the case of ordered arrangement of defects
and itsvaluein the case of random pinning for the same
concentration of defects as a quantitative characteristic
of singularities emerging on the magnetization curve.
The results of calculations show that, in the case of ran-
dom pinning with concentration ny = 11.18 um, the
initial segment of the magnetization curve coincides
with the magnetization of adefect-free superconductor.
The effect of random pinning on the behavior of mag-
netization is manifested for concentrations ny >

16.7 um [14]. For this reason, the emergence of sin-
gularities on the magnetization curves for concentra-
tions ny < 11.18 um should be attributed just to the
ordered arrangement of pinning centers.

Table 1 showsthe number and characteristics of sin-
gularities emerging on the magnetization curvesfor the
investigated defect concentrations ny = 11.8, 5.7, and
5.63 um, corresponding to the defect spacing a =
0.32, 0.45, and 0.56 pum. Line H gives the positions of
peaks corresponding to the point of maximal ascent of
magnetization (it will be shown below that ordered con-
figurations are formed at the peak base), while line AM
gives the heights of the peaks measured from the mag-
netization M, of a defect-free superconductor, and & =
AM/M,. Letters S and M in the line Reason indicate,
respectively, that a singularity appears due to screening
or due to matching of the vortex system with the lattice
of pinning centers (formation of an ordered configura-
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Fig. 2. Vortex density distribution for ny = 11.18 um‘z, H =0.049 (a), 0.07 (b), 0.074 (c), 0.09 (d), 0.096 T (e); for ny=5.7 pm‘z,
H = 0.068 (), 0.1 T (g); and for ny = 11.18 um 2, H = 0 (h). The size of the system is 5 x 2.25 um?. Temperature T = 1 K.

tion). We will cal the singularities associated with
screening first-type singularities, while the singularities  be explained by comparing the vortex density distri-
associated with matching the vortex system to thedefect  bution with corresponding points on the magnetiza-

structure will be called second-type singularities.

tion curves.

The reasons for the emergence of singularities can

Table 1. Characteristics of singularities on the magnetization curves for atriangular lattice of point defects (see text)

a, um 0.32 0.45 0.56
Ng, UM 11.18 5.7 3.63
Number of peaks 3 3 2
H T 0.051 0.05 0.048
AM, 103 T 13.67 4.34 1.01
Peak 1 3, % 62.7 19.9 45
N, /Ng - 2 3
Reason S M M
H T 0.071 0.06 0.054
AM, 103 T 5.05 2.06 0.77
Peak 2 3, % 25.9 10.6 1.9
N, /Ny 2 3 4
Reason M M M
H T 0.094 0.072 -
AM, 103 T 3.26 1.73 -
Peak 3 3, % 17.1 8.9 -
N, /Ny 3 4 -
Reason M M -
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96 No.6 2003
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For H=10.049 T, ny = 11.18 pum (Fig. 2a), lines
from pinned vortices formed in the surface regions pre-
vent further penetration of the magnetic flux. Free vor-
tices, which cannot enter the plate as yet, also form
lines. A delay in the magnetic flux penetration leads to
aconsiderable increase in magnetization. It can be seen
from the vortex density distribution that this singularity
on the magnetization curve is due not to the formation
of an ordered configuration of the vortex system, but to
the screening of the surface regions by pinned vortices.

It should be noted that a certain number of vortices
managed to penetrate to the bulk of the sample even
prior to the formation of lines of pinned vortices. This
indicates the low efficiency of point pinning centers as
far as the probability of vortex pinning is concerned.

For H=0.07 T, ny = 11.18 um= (Fig. 2b), alattice
corresponding to N, /Ny = 2 isformed, where N, and Ny
are the numbers of vortices and defects, respectively. A
local ordering is observed: the number of vortices at the
center is insufficient, while an excess concentration
emerges in the surface regions. However, the formation
of the given configuration leads to a singularity on the
magnetization curve. The point lies at the base of the
peak.

For H=0.074T, ny=11.18 um=2 (Fig. 2c), aninsig-
nificant changein the external field leadsto the destruc-
tion of the vortex lattice. Thelines of entrance of “new”
vortices can be clearly seen. The destruction of the
ordered structure is accompanied by adecreasein mag-
netization.

For H=0.09T, ny=11.18 um (Fig. 2d), the vortex
system forms a nearly perfect triangular lattice. The
given matching is characterized by theratio N, /Ny = 3.
The point lies at the base of apeak on the magnetization
curve.

For H=0.096 T, ngy=11.18 um2 (Fig. 2e), destruc-
tion of the ordered configuration is observed, which
leads to adecrease in magnetization. The limited power
of computer equipment does not permit the tracing of
higher order matching in the case of alarge number of
pinning centers. However, by reducing the number of
defects, we can obtain other configurations of the vortex
system in the same range of fields. For example, for ny =

5.7 um2, the effect associated with the screening of the
surface by pinned vortices is a'so observed. However,
in contrast to the previous case, adelay in the magnetic
flux propagation does not lead to the emergence of a
peak, but is accompanied just by a change in the slope
of the curve. The magnetization curve displays three
singularities associated with the formation of ordered
configurations. As expected (Figs. 2f and 2g), a
decreasein the defect concentration leads to a displace-
ment of singularities towards lower fields and to a
decrease in the magnitude of the singularities. For H =
0.048 and 0.057 T (these cases are not shown in the fig-
ure), the second and third matching are realized,
respectively (the fields correspond to the beginning of
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Fig. 3. Magnetization loop for atriangular lattice of pinning
centers with defect concentration ny=11.18 pm‘z. Temper-
ature T=1K.

the peaks and are not shown in the figures). Field H =
0.068 T is characterized by the formation of a lattice
withN,/Ny=4 (Fig. 2f). Inthestrongest fieldH=0.1T
(Fig. 2g), even the seventh matching is realized
(N, /Ny =7). In this case, several regions with different
orientations of the vortex lattice are observed. All the
ordered configurations of the vortex structure described
above are in accordance with the results obtained
in [20], in which the behavior of the vortex system was
also investigated for stronger fields and the existence of
atriangular lattice was detected for N,/Ny =9, 12, 13,
16, 19, 21, 25, and 28.

In the case of astill lower defect concentration ny =

3.63 um?, the effects associated with screening are not
observed. Insignificant singularities corresponding to
the third and fourth matching are observed. An analysis
of the vortex density distribution shows that ordered
configurations are extremely sensitive to a change in
the external magnetic field. Lattices are destroyed even
for small variations of the external field, which does not
result in noticeable singularities on the magnetization
curves.

It should be noted that a decrease in the number of
defects leads to coordinated disappearance of singular-
ities associated with screening as well as singularities
associated with the formation of vortex lattices. Thisis
not surprising since both types of defects appear dueto
the interaction of free vortices with vortices pinned at
pinning centers. Figure 3 shows a complete magnetiza-
tion loop in the case of a high concentration of defects,
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Fig. 4. Magnetization curves for a square lattice of point
pinning centers for different concentrations of defects

Ng, M2 9.68 (1), 7.11 (2), and 4.94 (3). Temperature T =
1 K. Pointsa—g correspond to vortex density distributionsin
Fig. 5.

ng = 11.18 um. In the reverse direction, no singulari-
ties are observed on the magnetization curve. This is
apparently due to the fact that singularities appear on
the magnetization curve due to repulsion between vor-
tices. As the applied magnetic field increases, the
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“rigid” vortex lattice prevents the magnetic flux pene-
tration. When the field is removed, the vortex system
tends to expand upon a decrease in the surface barrier;
as a result, some of the vortices are expelled from the
plate. The vortex density distribution after the removal
of the magnetic field (H = 0) is shown in Fig. 2h for
defect concentration ny = 11.18 um. Vortex trapping is
observed both due to pinning at the pinning centersand
due to callective interaction with pinned vortices.

When the overheating field of the Meissner state is
attained, vortices of the opposite sign (antivortices)
start entering the plate. However, antivortices are
pinned at the surface pinning centers and prevent sub-
sequent penetration of the magnetic flux, leading to the
emergence of asingularity on the magnetization curve.
It can be seen from Fig. 3 that this singularity is
observed in the same fields as for the singularity
appearing during initial magnetization and associated
with screening.

3.2. Square Lattice of Point Defects

Figure 4 shows the magnetization curvesfor various
concentrations of pinning centers forming a square
lattice.

For ahigh concentration of defects (ng = 9.68 pm),
strong effects associated with the screening of the sur-
face by pinned vortices are observed (Fig. 5afor H =
0.043 T and Fig. 5b for H = 0.054 T). The vortex den-
sity distribution shown in Fig. 5¢ (H = 0.068 T) corre-
sponds to the penetration of vortices into the sample.
The sguare lattice of defects forms peculiar channels

......

Fig. 5. Vortex density distribution for ny = 9.68 pm, H = 0.043 (a), 0.054 (b), 0.068 T (c); for ny = 4.94 um™2, H = 0.046 (d),
0.062 (€), 0.066 (f), 0.072 T (g); and for ny = 9.68 um2, H = 0 (h) (magnetic field trapping). The size of the system is 5 x 2.25 um?.

Temperature T = 1 K.
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Table 2. Characteristics of singularities on the magnetization curves for a square lattice of point defects (see text)

a, um 0.32 0.375 0.45
Ny, pm-2 9.68 7.11 4.94
Number of peaks 3 3
H T 0.048 0.044 0.043
AM, 103 T 12.7 10.29 7.37
Peak 1 0, % 55.3 41.7 29.3
N, /Ng - -
Reason S S
H T 0.057 0.0+4 0.047
AM, 103 T 13.02 9.93 5.39
Peak 2 3, % 62.4 47.1 23.1
N, /Ny - 2
Reason S M
H,T 0.079 0.064
AM, 103 T 0.31 1.59
Peak 3 0, % 0.95 4.68
N, /Ny 4 4
Reason M M

along which the magnetic flux propagates. Naturally,
the active entrance of vorticesinto the sampleisaccom-
panied by a decrease in magnetization.

Even the defect concentration ny = 4.94 um is suf-
ficient for the emergence of new singularities associ-
ated both with screening and with matching. In a field
H = 0.043 T, a singularity associated with screening is
observed. In afield of 0.047 T (Fig. 5d), a square cen-
tered lattices is formed but only in the surface regions,
thisisreflected in the emergence of a peak on the mag-
netization curve (see Fig. 4).

The vortex density distributions shown in Figs. 5e
and 5g show that the vortex system forms ordered con-
figurations in stronger fields also. However, the forma-
tion of latticesis not accompanied by the emergence of
noticeable singularities on the magnetization curve.
The point with H = 0.062 T can be put in correspon-
dence with the beginning of a magnetization peak,
while the point with H = 0.072 T corresponding to the
emergence of a configuration with N, /Ny = 5 (Fig. 5g)
is not singled out on the magnetization curve.

The competition between the tendency of the vortex
system to form atriangular lattice and the symmetry of
the square lattice of defects leads to the emergence of
various ordered configurations. For example, the vortex
system exhibits a structural transition from the triangu-
lar lattice of pinning centers to the square lattice via a
disordered state; this is illustrated by the sequence of
Figs. 5e-5bg.
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Asin the case of atriangular lattice of pinning cen-
ters, an ordered system of trapped vortices (Fig. 5h) is
left in a superconductor with a square | attice of pinning
centers after the removal of the applied field.

On the whole, noticeable singularities associated
with the screening of the surface (often even more sig-
nificant than in the case of atriangular lattice with the
same period) are observed in the case of a square lat-
tice. However, the formation of vortex lattices either
does not affect the magnetization at al or is accompa-
nied by extremely wesak effects, which are observed
predominantly when the vortex system formstriangular
lattices.

Basic characteristics of singularities on the magne-
tization curve are given in Table 2.

3.3. Kagome Lattice of Point Defects

A kagome lattice can be obtained from a triangular
lattice by eliminating alternate defectsin alternate rows
(Fig. 6a). For the same period, the density of the kag-
omelatticeis 3/4 of the density of the triangular lattice.
By virtue of symmetry, we can expect the formation of
triangular lattices in the vortex system, which is con-
firmed by simulation (Figs. 6b and 6d). However, the
ratios N, /Ny are different in the configuration formed:
N,/Ny = 4 (Fig. 6b) and N,/Ny = 16/3 (Fig. 6d) as
against N,/Ny = 3 and N,/Ny = 4 for the triangular
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Fig. 6. Configuration of pinning centers (a) and vortex density distribution for ny = 4.27 um‘z, H =0.057 (b), 0.06 (c), 0.068 T (d),
and for ny = 10.95 um=>, H = 0.077 (e), 0.091 T (f). Temperature T = 1 K.

defect lattice. In intermediate fields, no configurations
with along-range order are formed.

Since the kagome lattice was obtained from the tri-
angular lattice, it would be interesting to compare the
singularities on the magnetization curve in the cases of
kagome and triangular lattices. It was noted above that,
for the same lattice period, the vortex system forms
identical ordered configurations in the same fields (see
Figs. 6b and 6d), which is reflected in the behavior of
magnetization. Figure 7 shows the magnetization
curves for triangular (curve 1) and kagome (curve 3)
lattices of pinning centers with a period a = 0.45 pm.
However, the height of the peaks on the magnetization
curvefor the kagome lattice is smaller since the density
of the kagome lattice is 3/4 of the density of the trian-
gular lattice with the same period.

Inthe case of identical density, the period of the kag-
ome lattice is smaller than the period of the triangular
lattice (curve 2 in Fig. 7 depicts the magnetization
curve with a density close to that of the triangular lat-
tice and with period a = 0.375 pum); for this reason, a
noticeable peak associated with the screening effect is
observed. Since ordered configurations are formed for
the kagome lattice for larger values of N, /Ny , the sin-
gularities associated with the matching of the vortex
system to the lattice of pinning centers are observed in
stronger fields. For example, a peak observed for H =
0.091 T due to the emergence of a configuration with
N, /N4 = 16/3 has a height approximately equal to that
of the peak for the triangular lattice in the field H =
0.072T.

The configurations realized in the structure consid-
ered here were called by Lagunaet al. [21] an intersti-
tial phase (Fig. 6f). Interstitial configurations are char-
acterized by filling of the second coordination sphere
(we are speaking of the second coordination sphere for
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the triangular lattice); as aresult, cellsin which vortex
rotation takes place are formed.

Figures 6e and 6f show the configurations of the
vortex system, illustrating atransition to the interstitial
phase. For H = 0.077 T, interstitial positions are still
vacant, and the cells between defects contain three lat-
tices each and no rotation is observed. As the applied
magnetic field increases, the second coordination

—4TM, T

T T T T T T T T T T T
0.03}- 3 -
0.02} 1
L b i

d

0.01} 1

1 1 1 1 1 1 1 1 1 1 1

0 0.05 0.10
H,T

Fig. 7. Magnetization curves for different concentrations of
point defects: triangular lattice, ny = 5.7 um‘z (2); kagome
lattice, ny = 6.15 um‘z (2); and kagome lattice, ny =

4.27 um2 (3). Temperature T = 1 K. Marked points corre-
spond to the vortex density distributions shown in Fig. 6.
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sphere is filled, which is accompanied by active rota-
tion of vortices in the “cells” This transition is not
accompanied by the formation of a singularity on the
magneti zation curve.

3.4. Square Lattice of Extended Defects

We have considered so far the lattices of point pin-
ning centers at which only one vortex can be pinned.
However, artificially created defects are not point
defects as a rule. Recent experiments proved that sev-
eral vortices could be trapped at an “extended” pinning
center [22].

Reichhardt et al. [23] analyzed the effect of multiple
trapping of vortices on the current—voltage characteris-
ticsin the case of a square defect lattice by the molecu-
lar dynamics method. It was shown that the matching
effects between the number of vortices and the number
of defects must also be observed in the case of multiple
trapping, the critical depinning force being larger inthe
case of multiple trapping of vortices at a pinning center.

Here, we consider the effect of multiple trapping of
vortices on the behavior of magnetization. Following
Reichhardt et al. [23], we choose the potential of inter-
action of a vortex with an extended pinning center in
the following model form:

Iy =1 <Tpin,

where a is a coefficient with the dimensions of energy
characterizing the depth of the pinning center; r;,isthe
radius of the pinning center; andr, andr, aretheradius
vectors of the vortex and the pinning center, respec-
tively.

Calculations were made for a square lattice of pin-
ning centers with a period a = 0.6 um, which corre-
sponds to density ny = 4 pm. We analyzed pinning
centers of radiusr, = 0.15 pmand deptha =0.1eV as
well as of radiusry, = 0.2 um and deptha = 0.2eV. A
stronger pinning will be considered below. Figure 8
shows the magnetization curves for extended pinning
centers arranged chagtically and forming a square lat-
tice. In the case of arandom distribution of defects, the
magnetization curve displays no effects, while, in the
case of the square lattice of pinning centers, the curve
hasanumber of singularities. Let us consider the vortex
density distributionsin greater detail and comparethese
distributions with the behavior of magnetization.

For H=0.043 T (Fig. 99), extended defects effec-
tively trap vortices. In the rows of surface defects, two
vortices are pinned simultaneously at each defect. The
rotation of pinned vortex pairs takes place.

For H = 0.048 T (Fig. 9b), the propagation of the
magnetic flux to the bulk of the semiconductor istermi-
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Fig. 8. Magnetization curves for extended pinning centers
with concentration ng = 4 pum2, distributed chaotically
(curve 1) and forming a square lattice (curve 2). Tempera-
ture T=1K. Marked points correspond to the vortex density
distributions shown in Fig. 9.

nated since two vortices are pinned at each defect near
the surface. The magnetization curve displays a clearly
manifested peak.

For H =0.054 T (Fig. 9c), three vortices are pinned
at each pinning center in the surface rows of defects,
preventing the penetration of new vortices. This leads
to an increase in the magnetization.

For H = 0.064 T (Fig. 9d), an interstitial center
between defects exhibits atendency to the formation of
a triangular lattice; two vortices are pinned at each
defect. In the surface region, three vortices are trapped
at adefect.

For H=0.076 T (Fig. 9¢), an ordered configuration
is observed. Three vortices are pinned at each defect.
The trapped vortices rotate. Free vortices form alattice
arranged between defects and having fourfold symme-
try. The formation of this configuration leads to an
increase in the magnetization.

For H=0.079T (Fig. 9f), the previous configuration
isdestroyed. Vortices flow along the channelsformed in
the square lattice of defects. Point f in Fig. 8 corre-
sponding to this case lies in the region of decreasing
magnetization.

For H=0.09T (Fig. 9g), four vortices are trapped at
each defect. Free vortices form a sguare lattice with
interstitial vortices.

For H=0.1T (Fig. 9h), five vortices are trapped at
a defect in the surface region and four vortices are
pinned at each defect at the center. Free vorticesform a
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0.054 (c), 0.064 (d), 0.076 (€), 0.079 (f), 0.09 (g), and 0.1 T (h). The size of the system is 5 x 3 um?. Temperature T= 1 K.

fourfold symmetry lattice with interstitial vortices. Vor-
tices flow along the channels, in which free vortices
rotate in the regions between defects.

Thus, the analysis of the vortex density distribution
leads to the conclusion that singularities on the magne-
tization curve in the case of extended pinning centers
appear asaresult of structural transitions aswell asthe
screening of the plate surface by pinned vortices. On
thewhole, it can be stated that multiple trapping of vor-
ticesleads to a considerable enhancement of both types
of singularities (associated both with matching and
with screening) on the magnetization curve. It should
be recalled that, according to our calculations, a square
lattice of point defects with density ny = 4.94 um (see
Fig. 4) does not lead to any appreciable effects in the
behavior of magnetization. However, in view of the
large size of extended defects, their density cannot be
increased further. At the same time, the results of com-
putations proved that an increasein the density of point
defects|eads to considerabl e effects associated with the
surface screening.

In the case of multiple trapping of vortices at
defects, the process of magnetization reversal of the
superconductor can be demonstrated more visually on
the magnetic induction distribution. This structure is
distinguished by the fact that several vortices can be
pinned at a defect, and the front of the magnetic flux
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annihilation [14] cannot propagate any further to the
bulk of the superconductor until all vortices at a defect
are suppressed (Fig. 10). Thisleadsto a partial arrest of
the annihilation front at the rows of pinned vortices.

3.5. Behavior of the Vortex System
upon a Change in Temperature in the Case
of a Triangular Lattice of Point Defects

Ordered configurations of the vortex system are
obviously observed at quite low temperatures. For this
reason, we analyzed in the previous sections the effect
of ordered configurations of the vortex system on the
behavior of magnetization using curves calculated for
T=1K. In this section, we consider the effect of tem-
perature of a triangular lattice of point defects on the
behavior of the vortex system in the case of periodic
pinning.

Figure 11 showsthe magnetization curves obtained at
different temperaturesfor concentration ng=5.7 um=. It
was established in Section 3.1 that, for such a concen-

tration, all three singularities appear as a result of
matching of the vortex lattice to the lattice of defects.

As the temperature increases, the Meissner state
overheating field decreases for all magnetization
curves, and the curves become lower. The peaks associ-
ated with the formation of ordered configurations are
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Fig. 10. Magnetic field distribution (dark regions correspond to the field) for a square | attice of extended defects with concentration
Ng = 4 um2, H = -0.025 (a), -0.03 (b), —0.035 (c), —0.04 (d), —0.045 (e), and —0.046 T (f). The size of the system is 5 x 3 um?.

Temperature T = 1 K.

displaced towards lower fields, and the peak heights
decrease upon heating. A further increase in tempera-
ture suppresses the singul arities associ ated with match-
ing. Analysis of the vortex density distributions indi-
cates that the peaks vanish due to melting of the vortex
lattice.

-4, T

0.04 T T T T T T T T T T T

0.03F 7

0.02f ! |
2
3

0.01} .

I I I I I I I I I I I
0 0.05 0.10

H, T

Fig. 11. Magnetization curves for a triangular lattice of
point pinning centers with concentration ny = 5.7 pm~2 for
different temperatures T, K: 1 (1), 5 (2), and 10 (3). The
arrow corresponds to the magnetic field in which inverse
crystallization of the vortex system is observed.

It was noted in Section 3.1 that ordered configura-
tions are observed at the base of the peaks on the mag-
netization curve, and the segments on which the mag-
netization decreases correspond to the disordered state
of the vortex system. Since the positions of the peaks
change with temperature, a situation is possible where

S¢. rel. units
0-7 T T T T T T

0.6

0.5

0.4

0.3

0.2

0.1

T,K

Fig. 12. Temperature dependence of structural factor S for
atriangular lattice of defects, ng=5.7 pm2 (1); random dis-
tribution of defects, ny = 5.7 um‘2 (2); and pure supercon-
ductor (3).
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the region of decrease at alow temperature corresponds
to the base of the peak at a higher temperature (e.g., the
region of decrease behind the peak marked by the arrow
at T=1K andthebaseof thepeak at T=5K inFig. 11).
Thus, asthe temperatureincreases, it is possibleto pass
from a disordered configuration to the ordered one.

In order to verify this assumption, we calculated the
configurations of the vortex system for afixed field H =
0.062 T at various temperatures. We analyzed the fol-
lowing situations. a triangular lattice of point defects
(ng = 5.7 um2), arandom distribution of point defects
(ng = 5.7 pm2), and a pure sample.

In order to characterize the extent of ordering of the
system, we calculated the standard structural factor S
reflecting the tendency of the system to be aligned into
atriangular lattice:

where Z is the number of nearest neighbors of the ith
vortex and §; is the angle between the nearest neigh-
bors.

Figure 12 shows the temperature dependences of
factor S;. In the case of a periodic arrangement of pin-
ning centersintherange T = 1-5.8 K, anincreasein the
value of S; is observed; i.e., the system of vortices
becomes ordered upon heating. At T= 1 K (Fig. 13a),
the vortex system is disordered despite the low temper-
ature because the number of vortices is not a multiple
of the number of defects. Asthe temperature increases,
new vortices enter the sampl e, and astable ordered con-
figuration isformed (Fig. 13b); upon afurther increase
in temperature, it melts (Figs. 13c and 13d). Thus, in
the case of aperiodic arrangement of defects, the“ crys-
tallization” of the vortex system is possible upon heat-
ing. It should be noted that a gradual decrease in the
structural parameters is observed upon an increase in
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temperature both in the case of arandom distribution of
defects and for a pure defect-free sample.

It should be observed that inverse crystallization of
the system of vortices was experimentally observed in
the case of chaotic pinning by Avraham et al. [17]. For
a random distribution of defects, the vortex system
ordering is due to the fact that the effect of pinning
becomes weaker upon heating and the interaction of
vorticesleadsto theformation of atriangular vortex lat-
tice. It was noted above that pinning centers were
assumed to be rather deep to exclude temperature-
induced depinning. For this reason, inverse crystalliza-
tion in the case considered hereis of fundamentally dif-
ferent physical origin. The ordering of the system upon
heating occurs due to matching between the number of
vortices and the number of defects[24].

4. CONCLUSIONS

We have considered the effect of periodic pinning
on the behavior of magnetization and on the magnetic
flux penetration, distribution, and trapping. It is shown
that, for a periodic pinning, there exist two types of
effects leading to the emergence of singularities on
magnetization curves, namely, the screening of the
superconductor surface by the vortices pinned in the
surface region and the formation of ordered configura-
tions by the vortex system. Effects of the first type are
observed in weak fields, while effects of the second
type occur in fields in which the number of vorticesis
multiple to the number of defects.

It is found that ordered configurations are not
located at the point of alocal magnetization peak, but
lie at the base of the segment of increasing magnetiza-
tion. On segments where magnetization decreases, the
destruction of vortex lattices takes place. The position
of singularities on the magnetization curve is deter-
mined by the density of defects. As the density of
defects decreases, the singularities are displaced
towards weaker fields and their absolute magnitude
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decreases. A decrease in the density of defectsleadsto
a correlated disappearance of singularities associated
both with screening and with the formation of ordered
configurations.

We have anayzed the behavior of magnetization
upon achange in temperaturein the case of atriangular
lattice of point defects. It is found that an increase in
temperature suppresses the singularities, which aredis-
placed to the region of weak fields. After the attainment
of the melting point for the vortex lattice, the singular-
ities associated with the formation of ordered configu-
rations disappear.

It is shown that inverse crystallization of the vortex
system, which is caused by the entrance of new vortices
and the formation of a stable configuration, is possible
in the case of periodic pinning. Inverse crystallization
of the vortex system can be observed visually on super-
conductors with a periodic arrangement of artificial
pinning centers with the help of magnetooptical meth-
ods or using high-resolution scanning magnetometry.

Various lattices of pinning centers are considered. It
is found that the most striking effects associated with
the matching of the vortex system to the defect lattice
are observed for atriangular lattice of defects.

The effect of multiple trapping of vortices on the
behavior of magnetization is analyzed. In the case of
extended pinning centers at which more than one vortex
can be pinned, the magnetization curve displays con-
siderable effects associated both with screening and
with matching.
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Abstract—A strong dependence of the thermopower of germanium crystals on the isotopic composition is
experimentally found. The theory of phonon drag of electronsin semiconductors with nondegenerate statistics
of current carriers is developed, which takes into account the special features of the relaxation of phonon
momentum in the normal processes of phonon—phonon scattering. The effect of the drift motion of phononson
the drag thermopower in germanium crystals of different isotopic compositionsis analyzed for two options of
relaxation of phonon momentum in the normal processes of phonon scattering. The phonon relaxation times
determined from the data on the thermal conductivity of germanium are used in calculating the thermopower.
The importance of the inelasticity of el ectron—phonon scattering in the drag thermopower in semiconductorsis
analyzed. A qualitative explanation of theisotope effect in the drag thermopower is provided. It isdemonstrated
that this effect is associated with the drift motion of phonons, which turns out to be very sensitive to isotopic
disorder in germanium crystals. © 2003 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

Recently, high-quality single crystals of germanium
of different chemical compositions have been success-
fully grown, including a uniquely pure (both chemi-
caly and isotopically) crystal with 99.99% °Ge isoto-
pic enrichment [1], hereinafter referred to as °Ge
(99.99%). Experimental investigations of the thermal
conductivity [2, 3] of these crystals have reveaed that,
for monoisotopic samples of °Ge (99.99%), the maxi-
mal values of thermal conductivity are an order of mag-
nitude higher than those for crystals with natural isoto-
pic composition. It is evident that this effect is associ-
ated with the increase in the free path of thermal
phonons because of the decrease in the scattering by
“impurity” isotopes; the normal processes of phonon—
phonon scattering play an important part in the case of
isotopically pure crystals at temperaturesin the vicinity
of the maximum of thermal conductivity [3-5]. A vari-
ation in the isotopic composition must also affect the
thermoelectric phenomenon of the phonon drag ther-
mopower ap,(T), which explicitly depends on phonon

lifetime. Therefore, adecrease in the degree of isotopic
disorder must further result in an increase in the abso-
lute values of the phonon drag thermopower. However,
the Herring theory [6] predicts avery weak dependence
of a,,(T) on the impurity concentration in the case of a
fairly pure semiconductor (see also [7-9]). Within a
standard one-parameter approximation, the phonon
relaxation rate in the normal processes (N processes) of
phonon—phonon scattering was included in the total
phonon relaxation rate, which was the only parameter
defining the nonequilibrium phonon distribution func-
tion. This approach is justified in the case of “i impure”
semiconductors, when the phonon relaxation ratein the
N processes, Vyn(d), is much lower than the phonon
relaxation rate in the resistive processes of scattering,
Vpr(0), caused by the phonon—phonon scattering in the
umklapp processes, and from the defects and bound-
aries of the sample. In the opposite extreme case of
fairly pure semiconductors, one must take into account
the phonon system drift caused by the N processes of
phonon—phonon scattering [10, 11].

1063-7761/03/9606-1078%24.00 © 2003 MAIK “Nauka/ Interperiodica’
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In nondegenerate conductors, the electrons interact
only with long-wavel ength phonons whose wave vector
is much less than the wave vector of thermal phonons
making the main contribution to thermal conductivity.
Because the probability of isotopic scattering of a
phonon is proportional to the fourth power of its wave
vector g, the thermopower calculated within a one-
parameter approximation turns out to be insensitive to
the degree of isotopic disorder. Kozlov and Nagaev [12]
called attention to the anomalies of thermopower aris-
ing in such a situation as long as 30 years ago. They
have demonstrated that, in the case of very perfect crys-
tals, the thermal phonon drag of long-wavelength
phonons may cause anomalously high values of ther-
mopower. In contrast to the Herring thermopower, this
thermopower (two-stage drag thermopower) isinversely
proportiona to the impurity concentration [13] and is
closely associated with the mechanism of relaxation of
long-wavelength phonons from thermal phononsin the
normal processes of phonon—phonon scattering.

The first attempt at detecting the effect of isotopic
phonon scattering on the thermopower was made by
Oskotskii et al. [14], who investigated the thermal con-
ductivity and thermopower of Te crystals with two dif-
ferent isotopic compositions, of which one was sub-
jected to 92% '%Te isotopic enrichment. The isotopic
enrichment resulted in a threefold increase in the max-
imal values of thermal conductivity; however, Oskot-
skii et al. [14] observed no effect of isotopic disorder on
the phonon drag thermopower at low temperatures.
This negative result is possibly due either to the differ-
ent concentrations of charged impurities in the investi-
gated samples or to the relatively weak contribution of
the N processes to the overall phonon relaxation rate.

In recent measurements of the thermopower in ger-
manium crystals of different i sotopic compositions, we
found an almost twofold increase in the thermopower at
low temperatures in a monoisotopic sample of °Ge
(99.99%) compared to Ge of natural isotopic composi-
tion [15]. Thisresult is indicative of the important part
played by the N processes in the relaxation of the
phonon system for isotopically enriched germanium
crystals. The importance of these processes in the lat-
tice thermal conductivity without the separation of the
contributions made by longitudinal and transverse
phonons is studied quite well [16-18]. In the N pro-
cesses of scattering, the phonon momentum is con-
served. These processes make no direct contribution to
the thermal resistance; they provide for the relaxation
of the phonon subsystem to the drift locally equilibrium
distribution. Therefore, the N processes redistribute the
energy and momentum between different phonon
modes to form the nonequilibrium phonon distribution
function and prevent a strong deviation of each phonon
mode from the equilibrium distribution. Thisis accom-
panied by avariation of the relative contribution by var-
ious resistive processes of scattering (scattering from
defects and boundaries of the sample and in the
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phonon—phonon umklapp processes) to thermal resis-
tance. The drift motion of phonons must be taken into
account under conditions in which the phonon relax-
ation rate in the N processes, v, (0), is higher than or
comparable to the rate of relaxation in resistive pro-
cesses of scattering, vne(). It is evident that, in isoto-
pically pure Ge samples at low temperatures, when the
phonon—phonon umklapp processes are largely frozen,
the rate of relaxation of longitudinal phonons in the N
processes significantly exceeds the resistive rate of
relaxation v,,r(d) which is mainly due to isotopic dis-
order. In this paper, we will demonstrate that the inclu-
sion of the phonon drift caused by the N processes
enables one to qualitatively explain the significant
effect of isotopic disorder on the drag thermopower in
Ge crystals.

In describing the drag thermopower, in contrast to
the previous investigations, we will separate the contri-
butions by longitudinal and transverse phonons and
take into account the redistribution of the phonon
momentum in the N processes of scattering both within
each vibrational branch (Simons mechanism [19]) and
between different vibrational branches of phonons
(Herring mechanism [20]). In this approximation, the
nonequilibrium of the phonon system is described by
six parameters, namely, by the rates of phonon relax-
ation in the resistive and normal processes of scattering
and by the average drift velocities for each branch of
the phonon spectrum. This description of phonon non-
equilibrium enables one to reveal new features of relax-
ation of the momentum of quasi-particles and their
effect on the thermopower and thermal conductivity of
semiconductors. We will demonstrate below that the
drift velocity of phonons (as well as the thermal con-
ductivity) is largely defined by therma phonons for
which the scattering from defects plays a significant
part. Therefore, when the drift of the phonon system is
taken into account, the thermopower becomes sensitive
to the degree of isotopic disorder. We further give the
results of measurements and quantitative analysis of the
isotope effect in the drag thermopower.

2. EXPERIMENTAL RESULTS

In this paper, we analyze the experimental data on
the thermopower a(T) of single crystals of germanium
with three different isotopic compositions, namely, the
natural composition and compositions subjected to
0Ge isotopic enrichment of 96.3% and up to 99.99%.
Ge crystals of the n and p types with the concentration
of charged impurities of [Ny —N,| < 2 x 10*3 cm were
used. Note that Geballe and Hull [21] found that, in the
case of highly pure samples of Ge of the n and p types,
the phonon drag thermopower very weakly depends on
the concentration of electrically active impurities at a
doping level below 10 cm and decreases in magni-
tude at higher concentrations. Our sampleswere shaped
as parallelepipeds of sguare cross section. The samples
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Fig. 1. The magnitude of differential thermopower as a
function of temperature for samples of germanium crystals
with different isotopic compositions: (1) sample no. G2,
(2) G7, (3) G70, (4) Gn21, (5) S1.

had a total length of approximately 40 mm, with the
sguare side in cross section of approximately 2.5 mm.
The thermopower was measured using the method of
steady longitudinal heat flux in vacuum in the tempera-
ture range from 8 to 300 K. The heat flux was directed
along thelonger axis of the sample; the temperature dif-
ference along the sample did not exceed 1% of its aver-
age temperature. The parameters of five investigated
samples are given in the table.

The experimental data on the temperature depen-
dence of the thermopower are given in Fig. 1. One can
see in the figure that, at temperatures above 70 K, the
thermopower is amost independent of temperature.
The diffusion component of thermopower a(T) pre-
dominates in this temperature range; this component is
defined by the degree of doping and by the band param-
eters of the semiconductor and is independent of the
phonon lifetime. At low temperatures, where the
phonon drag thermopower a,,(T) predominates, a(T)
increases with decreasing isotopic disorder; in so

Parameters of investigated samples of Ge crystals

doing, the thermopower at the maximum for isotopi-
caly pure °Ge (99.99%) is approximately twice as
high as that for germanium with the natural isotopic
composition ("™Ge). Compared to the thermal conduc-
tivity, the thermopower of germanium turned out to be
approximately five times less sensitive to the variation
of the degree of isotopic disorder. Note that, in the case
of samples with the same isotopic composition, the
thermopower is independent of the degree of doping
within the experimental error. This is in good agree-
ment with the well-known fact of the weak sensitivity
of the magnitude of the drag thermopower to the dopant
concentration in fairly pure germanium crystals[6, 21].
These special features of thermopower call for detailed
theoretical treatment.

Given below are the results of quantitative analysis
of the isotope effect in the thermopower of germanium.
Attention isfocused on the investigation of the effect of
the drift motion of the phonon system, due to the nor-
mal processes of phonon scattering, and of the inelas-
ticity of electron—phonon scattering on the drag ther-
mopower. The effect of the normal processes of phonon
scattering on the mutual drag of electrons and phonons
in metals and in degenerate semiconductors is treated
in[10, 11]. In our paper, this theory is generalized to
the case of semiconductors with nondegenerate statis-
tics of current carriers. We have treated the redistribu-
tion of the momentum of longitudinal and transverse
phonons in the N processes of scattering both within
each vibrational branch and between different vibra-
tiona branches. Previoudly, this approach made it pos-
sible to successfully explain the effect of the isotopic
composition on the thermal conductivity of germanium
and silicon crystals [22, 23]. Here, this method is used
to investigate the effect of isotopic disorder on the drag
thermopower. In calculating the emf, we used the times
of phonon relaxation determined from the data on the
thermal conductivity for the same samples of germa-
nium [3, 22]. It is demonstrated that, in fairly pure
semiconductors, both the thermopower and the lattice
thermal conductivity [22] (with the separation of the
contributions by longitudinal and transverse phonons)

Sample no. sotopiC composition, g, 10 Axis INg = N, 1012 cr3
G2 99.99 0.008 [100] 2.7
G7 99.99 0.008 [111] 20
G70 96.6 7.75 [100] 2
Gn21 natural 58.9 [100] 0.5
S1 natural 58.9 [111] 4
ote: g= Z fiD =0 isthe factor characterizing the isotopic disorder of the crystal [3].
1
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largely depend on the mechanism of relaxation of the
phonon momentum in the N processes of scattering.

3. THE EFFECT OF THE N PROCESSES
OF PHONON-PHONON SCATTERING
ON THE RELAXATION OF MOMENTUM
OF ELECTRONS AND PHONONS
IN A NONEQUILIBRIUM ELECTRON-PHONON
SYSTEM

For simplicity, we will treat a semiconductor with
the isotropic law of dispersion of current carriers. We
will calculate a charge flow caused by the effect of
electricfield E ={E,, 0, 0} and thetemperature gradient
OT = (O,T, 0, 0). The set of kinetic equations for the

nonequilibrium electron f(k, r) and phonon N*(q, r)
distribution functions in view of the N processes of
scattering has the form [11]

e f
Eo D%_kk + (Vi ) e = Ta(F) + e pn(fis Nz),
VA [0,ND = ~(NA = NQ)y (1)
_(Ng_ N(q |j"l)\))vghN + Iphe(Nq, fk)

Here, vz = s5,0/q is the group velocity of acoustic

phonons with polarization A; NgA is the Planck func-

tion; vghN(q) isthe phonon relaxation rate in the N pro-
cesses of scattering; and the rate

(m

(Q) - Vphl(q) + VphB(q) + VphU(q)

includes all of the nonelectron resistive rates of phonon
relaxation, due to the phonon scattering from phonons

in the umklapp processes, vy,,(q), from defects and
isotopic disorder, v,ﬁhi(q) , and from the boundaries of

the sample, vghB(q) . Thecollision integrals of electrons
with impurities, 14, and with phonons, Iy, and of
phonons with electrons, 1, ., were determined in [7-9,
24-27]. In Eq. (2), it is taken into account that the
N processes of scattering bring the phonon subsystem
to the locally equilibrium Planck distribution with the
drift velocity u, which may be different for phonons of
different polarizations [16-18],

Z 4
N, uy) = [%ME 1]
(2

We will represent the electron and phonon distribu-
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tion functions in the form [3-5]

0
fy = fo(g) +0fy, Of = —=— Vk O (),

(©)
Nz = Ng)\ +0,(0),

where fy(g) is the equilibrium electron distribution
function, and of, and g,(q) are nonequilibrium addi-
tions to the distribution functions, which are linear as
regards the externa effects. We will linearize the colli-
sion integrals with respect to these additions. We will
represent the collisionintegral s I;(f,) and I, «(fo, 91(0)),

aswell as | g(Ofy, NSA) in the approximation of elastic

scattering, in terms of relaxation rates [27]. In calculat-
ing the collision integral Iy, ¢(fo, 9,(a)), we will not
restrict ourselves to the linear approximation with
respect to the inelasticity parameter [7-9, 24-28] and
will take into account the inelagticity of collisions
between nonequilibrium phonons and equilibrium el ec-
trons.

We will substitute expressions (2) and (3) into (1) to
derive, similar to [11], the expression for the phonon
distribution function g,(q),

Ngx( Ngx + 1)ﬁquVA

o) = T
VAR(S) B @
Jhan o V(@)
Ngy (N + 1) -2
keT T @)
Here,
Van(@ = V@) + Vi Q) + Vin(9)

= Vinn(@) + Vinr(0)

isthe total rate of relaxation of phonons with the wave

vector g and polarization A, and vgh Q) isthe rate of
relaxation of momentum of phonons from electrons
[24-27]. The first term in expression (4) is defined by
the diffusion motion of phonons, and the second term
takes into account the drift phonon motion and is asso-
ciated with the normal processes of phonon—phonon
scattering. The phonon drift velocity u, is found from
the balance equation for phonon momentum, which fol-
lows from the law of conservation of momentum in the
normal processes of phonon—phonon scattering,

1 1
7> Raven@(NG=N(@, 1) = &5 Aavpn(@)
4% 43X (5)
hq LU
x| 9@~ NN+ D) = 0.
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Fig. 2. A schemeillustrating the relaxation of momentumin
a phonon system for two mechanisms of phonon scattering
in the normal processes: (a) for the Herring mechanism,
(b) for the Simons mechanism.

A scheme illustrating the redistribution and relaxation
of the momentum received by a phonon system from
the temperature gradient isgiven in Fig. 2. The phonon
scattering in the resistive processes of scattering (R)
(from isotopic disorder, electrons, and sample bound-
aries, and the phonon-phonon scattering in the
umklapp processes) brings about the relaxation of the
momentum of the phonon system. The N processes
redistribute the momentum between different phonon
modes (L-ph and t-ph) and bring about the phonon drift
with an average velocity u, . Asin[10, 11, 16-18], we
assume that the drift velocity is independent of the
wave vector of phonons. Two mechanisms of normal
three-phonon processes of scattering are usually exam-
ined, namely, the Herring [20] and Simons [19] mech-
anisms. In the Herring mechanism of N processes,
phonons of different polarizations are involved: therate
of relaxation of transverse phonons in the Herring
mechanism is defined by the scattering processes (t +
L = L) in which one transverse and two longitudinal
phonons are involved; in this case, the main contribu-
tion to the rate of relaxation of longitudinal phononsis
made either by the processes of decay of alongitudinal
phonon into two transverse phonons belonging to dif-
ferent branches or by the fusion of two transverse
phononsto form alongitudinal phonon (L ~——t; + t,).
This relaxation mechanism provides for redistribution
of the drift momentum between longitudinal and trans-
verse phonons (see Fig. 2) and tends to establish a
locally equilibrium distribution with a drift velocity
that is the same for phonons of both polarizations, u, =
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U; = Uy. The Simons mechanism of relaxation [19]
involves phonons of one polarization. In the case of this
mechanism of scattering, the law of conservation of
momentum in the N processes is valid for each branch
of the phonon spectrum, and the drift velocity of longi-
tudina phonons differs from that of transverse
phonons. Therefore, wewill treat bel ow two optionsfor
the relaxation of the phonon momentum in the N pro-
CeSSes.

We use expressions (4) and the balance equation for
phonon momentum (5) to find the phonon drift velocity
u,, for the Herring (H) and Simons (S) mechanisms of
relaxation, as was done in [11]. After this, we derive,
for the phonon distribution function g,(q),

NS (NS + 17w,
o) = “‘Eﬁ” ) Py, T,
Von(@)  KkgT (6)

(@) = U@L+ Vpn(@Bis )

A

Wy B, - SE Wi+ 2S Wy
)\ )

Bs = - & .
° Wir "0 LPII:IR+ 2§ l'IJtNR

(7)

Here, S, = 5/s, and the remaining functions are defined
by the expressions

W = <v¢,:N(q)>
Vph(q) Zdx

Zon A
O AT PO
. Von(Q)

ph

W <v?,hR(q)vﬁhN(q)>
NR — iy )
Vph(q) Zgn

where

(wy, isthe Debye frequency of phonons with polariza-
tion A). One can seein expression (6) that the inclusion
of the normal processes of phonon—phonon scattering
reduces to the renormalization of the rate of relaxation
of phonon momentum. The phonon drift motion caused
by the N processes leads to a decrease in the effective
phonon relaxation rate; this decrease is different for the
Herring [20] and Simons [19] relaxation mechanisms.
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We will now consider the electron subsystem. The
electron scattering from impurities, vy, results in the
relaxation of electron momentum, and the mechanisms
of electron—phonon relaxation characterized by the
rates Ve, and vy, ¢ bring about the redistribution of
momentum within an electron—phonon system; in so
doing, the electronsinteract only with long-wavelength
phonons. We do not treat the renormalization of the
thermopower due to the mutual drag of electrons and
phonons. Note that the quantities such as the ther-
mopower and thermal conductivity are found from the
condition that the total current through the sample is
zero. In this case, the average velocity of ordered elec-
tron motion in any physically small sample volume is
zero. Therefore, the transfer of momentum of ordered
electron motion to the phonon subsystemislow, and the
effect of electron nonequilibrium on the electrons via
the phonon subsystem may be ignored [11]. On the
other hand, a steady phonon flow from the hot end of
the sample to the cold end exists in the presence of a
temperature gradient, and the magnitude of ther-
mopower is largely defined by the transfer of momen-
tum of ordered phonon motion to electrons. Note that,
for longitudinal phononsin Ge crystals at low temper-
atures, when the el ectron—phonon drag makes amarked
contribution to the thermopower, the relaxation rate
Vorn(d) > V() [22]. 1t follows from the foregoing
that the relaxation of phonon momentum in a nonequi-
librium electron—phonon system must be taken into
account more rigorously than was done in the case of
one-parameter approximation [7-9, 24-28].

The purpose of thistheoretical analysisisto investi-
gate the effect of the phonon drift caused by the N pro-
cesses on the drag thermopower. In this case, one can
ignore the mutual drag of electrons and phonons and
obtain, as was done in [27], the following solution for
the function y(€):

kg
X(©) = —et(e)] E + 2Hun(e) + 5= _I%DT} )
Aph(e) — mS)\ eph(k q) (10)

; kBTI Eo@ U@

Here, 1(¢) isthe total relaxation time of electrons;

T = VelK) = Vei(K) + Veo(K) + Ve pr(K);

the rates of electron relaxation from neutral, v(K), and
charged, v4(K), impurities have the known form (see,
for example, [ 7], formulas (10.29) and (10.50)); and the
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electron—phonon collision rateis defined by the expres-
sion

Ver(®) = Y ek, ),
A

m,|C
Vepn(K, @) = > L ﬁ°:('3q Nax(Ng + 1)
(1)
Lo, 2ms_+ 2ms
X F + +—-— F
E%L sl RS (k)
where
Fey = + 0B TolE2Aw) o o Eaf
-t N T S

E,, is the deformation potential constant, and p is the
density. For semiconductors with nondegenerate statis-
tics of current carriers,

8 —_
fo(e) = e 3

the F* functions may be represented in the form

then, in view of the inelasticity of electron—phonon
scattering, we find

(Tem(®) " = z(rom) IR,

In() = 33509 + In()),

+
Zmax, A

JJIrA(X) = I Ji\(z)dZ,
0

(12)
3
+ Z(z-9,)
Ih@ = ——>,
e -1
. 2(z+8)
In@ = ——>e7,
e -1
C .
(Tge ph) 2| ;:Al TA5A3/2-
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The upper limits of integration in Egs. (12) are defined
by the expressions

Zoor = Ziiis_?k = 28" +3,,
B
— 2mesi - Ts)\
6}\ - kBT - T ’ (13)
_2ms, _ &
TS}\ - kB 1 X = kOT’

where 9, is the inelagticity parameter. In the case of
semiconductors, the effective temperature T, defining
the indlasticity of electron—phonon scattering is, as a
rule, lessthan 1 K; for example, in the case of Ge, Ty =
0.8K at 5 =5.21 x 10° cm/s, m, = 0.22m,. Therefore,
evenat T>10K, 9, < 1and z,, < 1; therefore, expres-
sions (12) may be expanded in powers of z. In a zero
approximation with respect to the inelasticity parame-
ter &,, wewill derive from Egs. (12) the known expres-
sion for the electron—phonon relaxation time,

-2 —JJZ

eph(s) = TOeph(26)\) X (14)

In the same approximation, the expression for theinverse
time of phonon—€lectron relaxation has the form

Vilk Q) = %‘”e (1-e9e™,
(15)
N AV
m 45,

The concentrations of electrons, n,, and of charged
donors, Ng,, and the reduced Fermi level n = {/kgT are
found from the condition of electroneutrality for ger-
manium (see [7], formula (6.9)): Ny = 10%-10"% cm3,
€4 = 0.01 eV, and m, = 0.22my,. For these values of the
parameters, the criterion of nondegenerate statistics is
well valid.

In the approximation we adopted, the % (€) function
allowsfor the direct effect of the electric field and tem-
perature gradient on the electron subsystem, as well as
for the effect of the phonon drag of electrons.

4. THE DRAG THERMOPOWER
IN SEMICONDUCTORS
WITH NONDEGENERATE STATISTICS
OF CURRENT CARRIERS

We will examine the effect of the normal processes
of phonon-phonon scattering on the thermal electro-
motive force of semiconductors with nondegenerate
statistics of current carriers. We will calculate the con-
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duction current j by dividing it into three parts propor-
tional to nonequilibrium additionsto the electron distri-
bution function y(€),

3n2.[ el fsdar:(e) © (16)
=jar +Jaeg tlar = O.
From the conditionj = 0, wefind
O = Opy+ O g a7

We will not consider below the diffusion component of
thermopower: for germanium crystalsat T< 100 K, this
contribution is small. In the case of nondegenerate sta-
tistics, the expression for the phonon drag thermopower
may be represented in the form

o = _Ke[TTE) Au(e)T
ph e [I@E)DM °
I dxe *x**f (¢) (18)
)= & x= =,
( ) [ i kOT
I dxe™x

- C a .
Aule) = 3 0 53 0 + 5,0,

g (19)
L T(@dz
In(X¥) = 2
’ I (@)
s = 2 20
3
5@ = Ter ke

The upper integration limitsin Egs. (20) are defined
by expressions (13). First of all, note that the drag ther-
mopower includes, as does the lattice thermal conduc-
tivity [11, 22], the phonon momentum relaxation rate
renormalized by the N processes. Unlike standard
one-parameter approximations for the drag ther-
mopower [7-9, 24-28], expressions (18)—(20) include
the inelagticity of electron—phonon scattering, as well
as the contribution made by the phonon drift motion.
This contribution has different forms for the Herring
and Simons mechanisms of relaxation. Because the
phonon drift velocity isdefined by all thermally excited
phonons, the thermopower becomes sensitive to the
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degree of isotopic disorder. It follows from formulas (6),
(19), and (20) that the inclusion of the drift of the
phonon subsystem, which is associated with the normal
processes of phonon scattering, brings about a decrease
in the effective relaxation rate of phonons and, accord-
ingly, an increase in the fraction of momentum trans-
ferred to electrons by phonons. Thisresult is of practi-
cal importance as regards the interpretation of experi-
mental dataon the thermopower of germanium crystals
with isotopic disorder.

~In the extreme case of Vpun(Q) < vth(q), one can
ignore the contribution of the phonon drift motion and
use the expression for the drag thermopower that was
previously derived with a one-parameter approximation
[7-9, 24-28]. With v,,\(0) > Vyhg(d), the normal pro-
cesses of phonon—phonon scattering and the drift of the
phonon system associated with this scattering lead to a
significant increase in the absolute values of ther-
mopower. Note that, in interpreting the experimental
data on the drag thermopower in previous studies
involving the use of a one-parameter approximation
(see [7-9, 24-28]), the relaxation rate in the normal
processes v, () was included in the total phonon

relaxation rate vgh(q) as the resistive mechanism of

phonon scattering, and, at vgn(Q) > Vpnr(Q), it was
treated as the only mechanism of relaxation of momen-
tum of long-wavelength phonons [7, 8]. However, it
followsfrom expressions (18)—(20) that, in thisextreme
case, the relaxation rate vp,,\(q) is eliminated from the
drag thermopower, and o, is fully defined by the aver-
aged relaxation rate of phonons in the resistive pro-
cesses of scattering,

(60 Ko MeS,  TH(E)Von() D
pho T SH) )
& kel ) (o Tae)™
A
s 0
Wh(@D” = =2
J;
(21)
o (@ = Do 25 Wyl
phR Jf_4)+2§J§4) !
Zgh
dzz'¢e*

W= —=.
V4 2
{(e -1

A one-parameter approximation yields in this case an
entirely different result,

sH _ Ks

a
ph e

, (22)
oM 1
2 keT LLI(E)
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d eph
©fda @
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Therefore, the inferences previously made with respect to
the temperature and field dependences of the drag ther-
mopower [7-9, 24-28] need to be refined. It is evident
that, in the case of one-parameter approximation (22), the
drag thermopower o, is insensitive to the degree of
isotopic disorder. Note that a different approach to the
calculation of the drag thermopower was suggested
in[12, 13]. This approach is based on dividing the
entire system into two subsystems, namely, the sub-
system of long-wavelength phonons (g < 2k) with
which electrons interact and the subsystem of thermal
phonons (g > gy,). The authors of [12, 13] suggested a
mechanism of two-stage drag: the phonon drift motion
is defined by the thermal phonons, which, in turn, drag
the long-wavelength phonons. By their physical con-
tent, our method and the approach developedin[12, 13]
coincide, because, in our theory, it is the therma
phonons that define the phonon drift motion, aswell as
the thermal conductivity. However, our method is more
general: wetreat correctly the N processes of scattering
of thermal phononswith regard for their drift and diffu-
sion motion, identify the contributions by phonons of
different polarizations, and treat both the intrabranch
and interbranch redistribution of the phonon momen-
tum in the N processes of scattering.

5. THE RESULTS OF CALCULATION
OF THE DRAG THERMOPOWER
OF GERMANIUM CRYSTALS
OF DIFFERENT ISOTOPIC COMPOSITIONS

Given below are the results of numerical analysis of
the drag thermopower in germanium crystals of differ-
ent isotopic compositions, which, in view of the
assumptions made, may only pretend to be aqualitative
explanation of the effect. The main results include the
isotropic band approximation and the assumption that
the phonon drift velocity is independent of the wave
vector, i.e., the drift velocities of thermal and long-
wavelength phonons are the same. The calculation of
the drag thermopower with areal band structure of ger-
manium within the suggested method of inclusion of
the normal processes of phonon scattering, with the
long-wavelength and thermal phonons treated sepa-
rately, is of interest per se. In this analysis, we restrict
ourselves to examining the effect of the phonon drift
motion and of the inelasticity of electron—phonon scat-
tering on the drag thermopower in germanium crystals.
Thevalues of the parameters defining the phonon relax-
ation rate were borrowed from the results of analysis of
the data on the thermal conductivity of Ge crystals of
different isotopic compositions, obtainedin[3, 22]. The
use of these parameters made it possible to fit the
results of calculations of thermal conductivity for the
Herring mechanism of relaxation [22] to the experi-
mental data of [3] in a wide temperature range in the
entire investigated range of isotopic enrichment. In our
calculation of the drag thermopower, these parameters
are not varied. Thefitting parameter of the theory isthe
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Fig. 3. The temperature dependence of the drag ther-
mopower for the following values of parameters: (a) mg =
0.22mg, Eg. = 16 €V; (b) mg = my, Eg. = 4 €V. Curves 1
and 1a are for germanium of natura isotopic composition
(Ng = 4 x 1012 cm™), and curves 2 and 2a are for germa-
nium with 99.99% °Ge (Nq = 2 x 10%3 cm™). Curves 1
and 2 allow for the inelasticity of electron—phonon scatter-
ing, and curves 1a and 2a are plotted in alinear approxima-

tion with respect to the parameter of inelasticity of electron—
phonon scattering.

deformation potential constant. Given a fixed effective
mass of electrons, this constant is selected on the basis
of the condition of agreement between the calculated
value of absolute thermopower at the point of maxi-
mum and the experimentally obtained values for ger-
manium of natural isotopic composition and is then
used to calculate the thermopower of °Ge (99.99%).
Because the effective mass of one of four elipsoidsin
the crystallographic direction [111] is m, = 1.68m, its
average magnitude was varied from the value of the
effective mass of the density of statesm, = 0.22m, to the
value of m,=m,.

We will first examine the part played by the inelas-
ticity during the transfer of momentum from nonequi-
librium phonons to equilibrium electrons. Figures 3a
and 3b give the results of calculations of the drag ther-
mopower for "™Ge and "°Ge (99.99%) at m, = 0.22m,
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and m, = m,. One can see in the figures that the exact
inclusion of theinelasticity of electron—phonon scatter-
ing brings about a marked suppression of the contribu-
tion of phonon drag in the thermopower. The maximal
values of thermopower |a,,,| decrease by a factor of
1.6-1.7 for the value of m, = 0.22m,. However, the
importance of inelasticity increases with the effective
mass of electrons. a m, = my,, the value of |04
decreases by afactor of 3 for "Ge and by afactor of 2.2
for °Ge (99.99%). Thisresult came as a surprise to us.
The thing is that analysis of the time of relaxation of
electrons from phonons[7—9] reveal ed that, for temper-
aures T > T, (Ty = 0.8 K for Ge at m, = 0.22m), the
importance of inelasticity isminor and, at temperatures
above 5 K, it may be ignored. Therefore, in the previ-
ously published papers deding with the drag ther-
mopower in semiconductors [6-9, 24-30], the inelas-
ticity of electron—phonon scattering was taken into
account in a linear approximation with respect to the
inelasticity parameter 7.0, /KgT.

Note that the inclusion of scattering from charged
and neutral donor impurities at concentrations of the
order of 10%-10% cm=3 has little effect on the magni-
tude of the thermopower (this scattering introduces a
contribution of less than 3%), while the magnitude of
the electron mobility varies more significantly in the
low-temperature region.

Figure 4 gives the contributions of the phonon drift
and diffusion motions into the drag thermopower for
ndGe and "°Ge (99.99%). One can seein the figure that,
in the case of "™Ge, the predominant contribution to the
thermopower is made by the phonon diffusion mation.
The contribution by the drift motion is small and
amounts to 21% of the diffusion contribution at the
maximum of |al. In contrast, in the case of °Ge
(99.99%), the drift contribution to the drag ther-
mopower predominates. It is six times the diffusion
contribution. Inview of theforegoing, indeed, theisotope
effect in the thermopower for Ge is associated with the
drift motion of therma phonons. As was aready
observed in analyzing thethermal conductivity of Geand
Si crystals of different isotopic compositions [22, 23], a
decreasein the degree of isotopic disorder brings about
an abrupt increase in the contribution made by the drift
motion of longitudinal phononsto the thermal conduc-
tivity. The same effect shows up in the drag ther-
mopower.

Figure 5 gives the theoretically and experimentally
obtained temperature dependence of the drag ther-
mopower for "®Ge and °Ge (99.99%). One can seein
the figure that the theory provides aqualitative explana-
tion of the isotope effect in the thermopower: the max-
imal values of |0, in the case of transition from "™Ge
to °Ge (99.99%) increase by a factor of 1.3 for the
value of m, = 0.22m, and by afactor of 2.25for m,=m,
which actually agreeswith the experimentally observed
increase in the direction [111]. This may point to the
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Fig. 4. The temperature dependence of (1, 2) the drag ther-
mopower, aswell as of the contributions by (1a, 2a) the dif-
fusion and (1b, 2b) drift of phonons for germanium of dif-
ferent isotopic compositions (m, = My, Eq_ = 4 V) alow-
ing for the inelasticity of electron—phonon scattering.
Curves 1, 1a, and 1b are for germanium of natural isotopic
composition (Ng = 4 x 1012 cm3), and curves 2, 2a, and 2b

arefor germanium with 99.99% "°Ge (Ng = 2 x 103 cm™).

predominant part played by one of four ellipsoids with
the maximal effective mass along the direction [111].
However, the position of maxima for "Ge (see Figs. 3,
4, and 5) turns out to be shifted to the low-temperature
region, T, = 6 K, while experiment gives T, = 17 K.
For "°Ge (99.99%), calculation gives T, = 10 K, while
experiment produces T, = 15 K. In caculating the
thermopower in the direction [100] (see Fig. 5, curve
3), the deformation potential constant was not varied,
and the velocities of sound weretakento bes =4.92 x
10° cm/s and s, = 3.55 x 10° cm/s, in accordance with
[31]. Inthis case, the isotope effect in the thermopower
with the same constant of deformation potential turned
out to be 35% lower, which may be indicative of some
anisotropy of the drag thermopower.

Note that the contribution by longitudinal phonons
alone was taken into account in the calculation of the
drag thermopower. Analysis revealed that, within the
assumptions made, the isotope effect for transverse
phonons was low and, upon transition from "Ge to
highly enriched germanium, this contribution increased
by approximately 10%. Thisis associated with the pre-
dominant part played by the diffusion motion of trans-
verse phonons (for more detail, see [22]). Therefore, in
this analysis, we ignored the contribution of transverse
phonons, athough the position of the maximum of

|0(;,h| isfound at approximately 2022 K. Theinclusion

of this contribution could have markedly improved the
agreement between the cal culated curves and the exper-
imental data at temperatures above the maximum.
However, the introduction of an additional fitting
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Fig. 5. The temperature dependence of the drag ther-
mopower (Eg. =4 eV). Curve 1isfor germanium of natural
isotopic composition (M = My, Ng = 4 x 1012 cm™), curve 2
is for germanium with 99.99% °Ge (m, = my, Ny = 2 x
10™2 cm3) in the direction [111], and curve 3 isfor germa-
nium with 99.99% "°Ge (m, = 0.9my, Ny = 2 x 10'2 cm™)
in the direction [100]; the symbols indicate the experimen-
tal data.

parameter into the theory hardly added anything to the
physical content of this paper.

6. CONCLUSIONS

Inthis paper, we haveinterpreted the experimentally
found strong dependence of the thermopower of germa-
nium crystals on the isotopic composition. We have
devel oped atheory of phonon drag of electronsin semi-
conductors with nondegenerate statistics of current car-
riers, which takes into account the effect of the phonon
drift motion associated with the normal processes of
phonon scattering. A qualitative explanation has been
given of the isotope effect in the drag thermopower. 1t
has been demonstrated that the rigorous inclusion of
inelastic electron scattering brings about a significant
(by factor of more than two) reduction of the absolute
values of the drag thermopower. In our opinion, theiso-
tropic band approximation for conduction electrons, as
well asthe assumption of the equality of the drift veloc-
ities of long-wavelength and thermal phonons, failed to
provide for quantitative agreement with the experimen-
tal data on the drag thermopower, in contrast to calcu-
lations of thermal conductivity [22].

Theinclusion of both of the above-identified factors
requires significant mathematical effort, namely, a sep-
arate study of the relaxation of thermal and long-wave-
length phonons and analysis of the Simons mechanism
of normal processes of scattering, which leads to the
redistribution of momentum between the thermal and
long-wavelength phonons of different vibrational
branches.
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Abstract—We study the bipartial interaction of longitudinal and transverse acoustic pulses with a system of
paramagnetic impurities with an effective spin S= 1/2 in a crystalline layer or on a surface in the presence of
an arbitrarily directed external constant magnetic field. We derive a new system of evolution equations that
describes this interaction and show that, in the absence of losses, for equal phase velocities of these acoustic
components, and under the condition of their unidirectional propagation, the original system reduces to a new
integrable system of equations. The derived integrable system describes the pul se dynamics outside the scope
of the slow-envel ope approximation. For one of the reductions of the general model that correspondsto the new
integrable model, we give the corresponding equations of the inverse scattering transform method and find soli-
ton solutions. We investigate the dynamics and formation conditions of the phonon avalanche that arises when
the initial completely or incompletely inverted state of the spin system decays. We discuss the application of
our resultsto describing the interaction dynamics of spins and acoustic pulsesin various systems with an exter-
nal magnetic field. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, the nonlinear coherent optical phenom-
ena associated with soliton and other self-similar solu-
tions [1, 2] have been analytically studied in detail in
terms of integrable models [3]. When elastic waves
propagate in paramagnetic crystals, similar soliton-like
pulses can be produced by effects related to anhar-
monic oscillations and dispersion [4] as well as under
conditions of nonlinear coherent interaction between
acoustic waves and paramagnetic impurities in the
medium and in the case of acoustic self-induced trans-
parency (ASIT) [5-8]. The nonlinear coherent phenom-
ena associated with the acoustic paramagnetic reso-
nance and the propagation of acoustic pulses have aso
been studied for a long time. In several studies (see,
e.g., [5-10]), the authors constructed models for the
evolution of acoustic pulsesin bulk crystals with impu-
rity paramagnetic particles and found the simplest soli-
ton solutions. The coherent effects that arise during the
evolution of Rayleigh-type surface acoustic waveswere
investigated in [6, 10] and other works. Such waves can
propagate along the interface. Similar phenomena can
be observed during the evolution of planewavesin bulk
media [11-14].

As arule, the authors of the above papers used an
analogy between optical and acoustic effects. At the
same time, the evolution of an acoustic pulsein acrys-
tal with paramagnetic impurities has a number of qual-
itative distinctions from the dynamics of light wavesin
a medium, which stem, for example, from the fact that
an acoustic wave in acrystal can be longitudinal—trans-

verse, i.e., generally, athree-component one[7, 8]. The
approximation of a quasi-monochromatic wave was
used to find soliton solutions of the equations that
described the surface acoustic waves in the papers
known to us, except [7] and our paper [15]. In general,
the characteristic length of an acoustic pulseis no less
than 10~ cm, i.e., much larger than the lattice constant.
At the same time, for a picosecond acoustic pulse of
duration T, ~ 10 pc, itslength is 107106 cm, and pros-
pects for the physics and engineering of such ultrashort
acoustic pulses look appealing. The spatial extent of
such a pulse in a solid is only an order of magnitude
larger than the characteristic size of the lattice cell,
which is of fundamental interest in acoustic spectros-
copy and diagnostics. Therefore, idealy, media with
lengths of only hundreds or tens of characteristic lattice
sizes can be used to produce such pulses. In spectra
language, the passage to picosecond acoustic pulses
implies mastering the hitherto inaccessible frequency
range above 100 GHz. The concentration of acoustic
energy for such short intervals also allows strong
acoustic pressures exceeding 10° bars to be produced.

Recently [4], the generation of picosecond acoustic
solitons has been observed experimentally. The solitons
were formed at a distance much smaller than 1 mm due
to the balance between the dispersion attributable to the
positions of atoms in the crystal |attice and the nonlin-
earity that arose from the anharmonicity of interatomic
forces. An acoustic resonance effect, an analogue of
optical self-induced transparency, was observed in low-
temperature crystalline samples with paramagnetic
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impurities. This effect was observed on Fe?* impurities
in MgO [11] and LiNbO; [12] crystal matrices when
the longitudinal acoustic pulse propagated at an angle
to the external field.

In general, the group velocities of the longitudinal
(v)) and transverse (vp) components of an acoustic
pulsein asolid are different. Asaresult, thelocal inter-
action between the pulses of these components with a
characteristic length I, islimited by the time

|
t, 0——.
V“—VD

The interaction of the pulsesis most effective at close
group velocities, v = v This situation takes place in
elastic-isotropic crystals, in which the velocities of the
longitudinal and transverse elastic field components do
not depend on the direction. These conditions are best
satisfied for ion crystals of akali metal galogenides
with central forces of interatomic interaction, for exam-
ple, in NaBr [16].

The theory of ASIT in a medium of paramagnetic
impurities with spin 1/2 for longitudinal—transverse
acoustic waves was developed by Voronkov and
Sazonov [7, 8], who derived the eguations describing
the dynamics of acoustic pulses. These authors used
severa constraints on the interaction geometry and
dynamicsto solve the general evolution equations. Asa
result, they obtained complex (for analysis), exactly
nonintegrable systems of equations and then reduced
the problem either to the standard (sine-Gordon-type)
equations or to the dispersion equations that corre-
sponded to the evolution of low-amplitude pulses. The
latter equations cannot be used to describe the dynam-
ics of intense picosecond acoustic pul ses.

At the same time, the rich structure of the evolution
equations that describe the dynamics of acoustic waves
in paramagnetic media makes it possible to reduce
them, for quite realistic approximations, to integrable
models without imposing similar stringent constraints.
These equations not only can correspond to amore gen-
eral physical model but also alow new physical phe-
nomenain asimilar or different interaction geometry to
be described analytically. This paper is a continuation
of our paper [15], in which we derived such integrable
equations and used them to describe ASIT. Here, how-
ever, we consider a completely different interaction
geometry of acoustic waves described by a different
(than the system found in [15]) new origina physical
system of equations and, accordingly, by qualitatively
new integrable reductions of this system.

In contrast to [15], in which we studied the interac-
tion dynamics of three acoustic pulse components,
here, we consider the “bipartial” dynamics of acoustic
waves; i.e., we take into account the interaction of one
transverse and one longitudinal acoustic wave compo-
nent in the xz plane. The contribution of the y acoustic
field component was disregarded. The simplest types of
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surface waves—bipartial Rayleigh surface waves and
shear surface waves (see, e.g., [17])—can correspond
to thiscase. Other physical prerequisitesfor therealiza-
tion of this model in a bulk crystal can be associated
with its strong anisotropy, for example, when the spin—
phonon coupling coefficients that correspond to the y
acoustic wave component are relatively small. Other
conditions can be asimilarity of the group velocitiesfor
the longitudinal and transverse waves and their large
deviation from the group velocity of another transverse
component (see below and [17]).

In this interaction geometry, we show that, to pass
from the original evolution equations that describe the
coherent dynamics of acoustic pulses to an integrable
system of equations, it will suffice to use the approxi-
mation of unidirectional wave propagation and the con-
dition of equal phase velocities for the longitudinal and
transverse acoustic waves.

Since our new integrable system of evolution equa-
tionsis complex for analysis, we devel oped the appara-
tus of the inverse scattering transform method (ISTM)
[3] for its special case. The ISTM application to this
model alows the various evolution regimes of picosec-
ond acoustic pulses to be studied outside the scope of
the slow-envel ope approximation. Based on the ISTM,
we found a soliton solution of the model that explicitly
described, in particular, the dependence of the soliton
shape on the relative contribution of the longitudinal
and transverse components.

Apart from the soliton solutions associated with
ASIT, other pulse evolution regimes can also be ana-
lyzed in terms of the ISTM. For example, an unstable
state of the system arises in the case of initially com-
plete or incomplete spin inversion, with a weak seed
acoustic wave being sufficient to remove it from this
state (in the case of complete inversion). We discussthe
use of the ISTM to describe the emerging phonon ava
lanche that was observed experimentally [13, 14] and
for other physical situations related to the dynamics of
spin—phonon systemsin amagnetic field.

This paper has the following structure. The basic
system of evolution equations that describes the
dynamics of alongitudinal—transverse wave is derived
in the next section. The most general integrable reduc-
tion of the original system of equations for this system
is found in Section 3. The ISTM apparatus for the
reduction of the general model is developed in the next
section, and a one-soliton solution of this model is
found. In Section 5, we discuss our results and their
applications. In the Appendix, we give the Lax repre-
sentation for the general integrable model and integra-
ble reductions of the general model.

2. THE DERIVATION
OF BASIC EQUATIONS

Below, we derive the equations that describe the
dynamics of alongitudinal—transversewavein acrysta
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with paramagnetic impurities following [7, 15]. The
external constant and uniform magnetic field B is
assumed to be directed along the z axis. The Zeeman
interaction of the magnetic moment ﬁ(a) a point a
gives the following contribution to the total Hamilto-
nian:

Ha = -0®B.

The ﬁ(a) components can be expressed in terms of the
S@(r,) spin components, where r, is the radius vector
of spina, as

p = zusg,ks«

Here, g is the Bohr magneton and gy, are the Lande
tensor components. Thus,

ngjkAS(Ka), (1)
a=1

where N is the total number of spins. The diagonal val-
ues of the Lande tensor can differ.

Sincethe effective spin is 1/2, it can be decomposed
into Pauli matrices:

. On10 . Oq 0
§=-1g01 §=10-g
201 00 20i 00
2
. 0 0
g-1g10g
200 10

We assume that the x, y, and z coordinates aong the
principal Lande tensor axes coincide with the crystal
symmetry axes. The Lande tensor is then diagonal in a
nondeformed unperturbed medium:

Oik = 0¥ = 95
where 9, is the delta function. The deformation of the

crystal by an acoustic wave is described by linear cor-
rections to the Lande tensor:

09
= o9 4 zl] ik[]
gjk @% o O% pq (3)

where € isthe elastic strain tensor of the crystal at the
spin location. The derivatives are taken at the point of
zero deformation. The strain tensor components can be
expressed in terms of the components of displacement
vector U = (U,, U yi U, as

133U J @)

Epq = ZDax

p
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Hamiltonian (1) takes the form

ZZHBQHBI (a)- (5)

The spin—phonon interaction in the linear (in €y)
approximation is described by the Hamiltonian

z Z HeBiFjk pq pqsk (6)

o jkpg
Here, Fj ,q = (09,/0€ ) are the spin—phonon coupling
constants [12, 18].

The dynamics of the acoustic field in acrystal with-
out anharmonicity is described by the Hamiltonian

Hint -

I%Z pj ]klmgu %ﬁgd ’ (7)

J k

where n, is the mean crystal densty, p(=xY 2 are
the momentum density components that arise during
dynamic displacements, and A, is the €lastic modulus
tensor of the crystal [19]. The integral in (7) is taken
over the crystal volume. We assume that the number of
phononsislarge and that the classical description of the
acoustic-field dynamics is valid. At the same time, a
two-level spin system requires a quantum-mechanical
description. For S= 1/2 and in the presence of a suffi-
ciently strong magnetic field, the terms quadratic in
spin operators can be disregarded (for more detail,
see[20]). Here, an analogy with the interaction of a
classical electromagnetic field with an optical quantum
two-level medium holds[21].

As in the case of an optical medium, we can pass
from the description of the spin dynamicsto the evolu-
tion equations for the density matrix elements p of the
two-level medium:

aﬁ

0U _9H 9dp_ OH
ot op’ ot T AU ©)
Here,
H = H,+ (HinJ

where the interaction between the spin and the field of
an elagtic pulse is described by the classical Hamilto-
nian equations for a continuous medium:

" &)
FinD =5 5 HeBiFicpa[Eplr) [8(r)r . (10)
a ik pg
Here, nisthe paramagnetic impurity density. The sum-
mation over the spin-1/2 ions uniformly distributed in
the crystal is substituted with integration over the entire
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space. The angular brackets denote an averaging over
the quantum states:

EAS(f)(r)D = TrS((a)f).

We consider the bipartial dynamics of the acoustic
fields; i.e., we assume that only the longitudina and
transverse field components (€, and €, contribute to
the interaction. Such a situation is possible if the coef-
ficientsF,, ,, and F,, ,, are much smaller than the coef-
ficients Fy, 5, Fyg x2» @nd F,, 5. A different mechanism
that leads to quasi-two-dimensional dynamics can be
associated with the difference between the elasticity
coefficient A, and the coefficients A,, = A,,. The phase
velocities of the acoustic wave components are propor-

tional to /A, . Sincetheinteraction efficiency inanon-

linear pulse regime is determined by the interaction
length, for waves with ailmost equal phase velocities
(vi= v, = v), this interaction is much more effective
than the interaction with a wave whose phase velocity
significantly differsfrom v. The “escape’ of the acous-
tic wave component from the interaction region is a'so
used to motivate the passage to the “bipartial” descrip-
tion of the dynamics of acoustic waves (see, e.g., [17]),
i.e., with the contribution of the y acoustic wave com-
ponent disregarded. Since, aswe show below, the group
velocities of the generated acoustic pulses in the mod-
els under study are close to the phase velocities, the
restriction to the bipartial interaction isjustified. Taking
into account these conditions (see aso the Introduc-
tion), we may formally set the transverse field compo-
nent equal to zero (€,,=0).

We assume that the acoustic waves propagate along
thezaxis. Thedirection of the magnetic field B in space
can be arbitrary. Since only the B projection onto the xz
plane contributesto the interaction, we assume, without
loss of generality, that

where B; are the components of vector B. Under these
conditions, the following arbitrary real effective spin—
phonon coupling coefficients remain:

_1
fl - EZ Bijz,xp
i=xz2
_1
f2 - EZ BijZ,ZZl
=% (12)
1
f3 = E BijX,XZ’
j=xz
_1
1:4 - E BijX,ZZ'

i=xz

x
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Below, when deriving the general integrable system of
equations, we impose no additional constraints on the
coefficientsf,, k = 1-4. Given the above conditions, the

expressions for Hs and Hiy take the form

A = J'z nhowgSdr, (12)
No— e MW
Hmt - J.Z g (13)

x{(F185,+ 1,887 + (F,8,,+ ,€,)S} dr.

Here, wy = gugB/7i isthe Zeeman splitting frequency of
the Kramers doublet, g = [|§|| , and n is the ion density
in the medium. The coefficientsf,, k= 1-4, describe the
coupling of the longitudinal and transverse acoustic
fields with the spin system; the first two of these coeffi-
cients correspond to the frequency shift that dependson
the acoustic-field amplitude. The physical nature of this
shift can be different. By analogy with the case of an
optical medium with a constant dipole moment
described above (see [22]), the nonzero f, may result
from the presence of aconstant magnetic moment inthe
two-level medium. The mechanism described in [10]
gives asimilar contribution to the frequency shift.

Under the above symmetry conditions, the Hamilto-
nian H, takes the form

~ _1.0p2+p’ U7 PU,10
Ha - EID _—no +)\11D—5;|:| +}\44|:|—5;D Edr (14)

Here, the Vogt notation [18] is used for the subscripts:

XX —1, zz—3, Xz— 5.

Since the anharmonic effects are disregarded, there
is no direct interaction between the longitudinal and
transverse fields (it arises indirectly, only through their
interaction with the spin system). This and the condition
of equal phase velocities (see below) dlow usto passto
a new effective transverse (or quasi-transverse [17])
field—alinear combination of the stress tensor compo-
nents, which interacts with the x spin component (see
Hamiltonian (13)):

W= &+ 128

zz*
fs

(15

With this substitution, the interaction of the acoustic
field W with atwo-level spin medium (seeformula(8))
is described by the Hamiltonian

N#wWg

g

Hs+ Hin = J- [o3(g + F€2) + f,0W]dr, (16)
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where

The effective magnetic operator moment gV , where

O
p=pal
O

a (17)
1-a

OOom

and a = f,/f5 is the constant magnetic moment, corre-
spondsto the last term in (16).

Using (8)—10) and (16), we derive the equations of
motion for the components of spin S describing the
trangitions in an effective two-level medium arising
during Zeeman splitting:

0o _ fs
ax =7 IS,

9 fo, f f
=5, = Rop 3 €+ ZWES - WS, (18)

0. _ f fq
ot = et pat FWES,
where

S = T8, y=xvy.z

S = %(pn—pzz)v S = %([312"'[321),

S = ié(plZ_p21)-

It is easy to show that
§+§+§ = (pll+pzz)251

(here, the spin length was normalized to unity). In
deriving system (18), we assume that the classical
description of the acoustic field (the number of phonons
islarge) isvalid.

To derive the evolution equations that describe the
dynamics of the classical fields (linear combinations of
the stress tensor components) W' and €, we first
obtain the wave equations for the displacements U and
then differentiate them with respect to z and use the
expressions for these fields in terms of the differentials
of the displacements with respect to z that follow from
definition (4). We also assume that the phase velocities
that correspond to the displacement components U, and

(19)
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U, are equal. As aresult, we obtain the system of evo-
lution equations for the acoustic fields with averaging
over the quantum states

OZOW_ 20°W _ N wg f30°Trop
2

, 20
ot o7 g, oz (20)
0%6,, 20°€,, 2nkwgfd’

z_ 20 ln  WRI0 Sy
ot 07 an, 9z

where

On the right-hand side of (20),
Trup = 2aS,+2S,.

The derived new system of evolution equations (18)—
(21) describes the propagation of acoustic pulsesin a
two-level medium. In the Bloch equations (18), thelon-
gitudinal acoustic field component €, leads only to
nonlinear phase modulation. However, as we show
below, the longitudinal component is related to the
transverse component and its allowance leads to quali-
tatively new acoustic-pulse dynamics.

3. THE DERIVATION
OF A GENERAL INTEGRABLE MODEL

In this section, we derive the most general integrable
reduction of the basic system of equations (18)—(21),
which arises for a minimum number of physical con-
straints. To be more precise, wefind the reduction of the
physical system of nonlinear equations (18)—21)
derived above in the Lax representation and show that
the ISTM apparatus is applicable.

Above, we have aready assumed that the phase
velocities of the effective longitudinal and transverse
acoustic waves are equal:

V=V, = V.

We seek additional integrability conditions by assum-
ing that the reduction of the origina system (18)—(21)
must describe the dynamics of acoustic pulses with a

duration of the order of or shorter than thogl. Under
this condition, the slow-envelope approximation is
inapplicable. As was noted above, in real media, pico-
second acoustic pulses can correspond to this case. We
also disregard the relaxation effects, which is valid for
the chosen range of pulse durations.

The equations that describe the dynamics of such
pulses are complex for analysis, but system (20) and
(21) can be simplified at a sufficiently low density of
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paramagnetic impurities. Such a physical situation
takes place in al of the known cases. This approxima-
tion is similar to the approximation used in [23] to
derivethe reduced Maxwell-Bloch equationsfor atwo-
level optical medium and is called the condition of uni-
directional wave propagation. The latter condition cor-
responds to the following approximate formal equality:

d,=—v 9, +O(e),

wheree isasmall parameter. Physically, thismeansthat
the acoustic pul ses propagate in the medium at aveloc-
ity closeto the phase velocity v . The fulfillment condi-
tion for the approximation is that the normalized impu-
rity density is of the same order of smallness as the
derivative of the acoustic-field amplitudes

0 = 9,+ v,

In this approximation, the derivative with respect to z
on theright-hand sides of Egs. (20) and (21) can be sub-
stituted with v 19, with an accuracy O(e?). Thus, when
the condition of unidirectional acoustic pulse propaga-
tion is satisfied, system (20) and (21) reduces to

ow - nﬁwsfgaTr(Oﬁ))

—_— , 22
0X 2v’n,g Ot @)

0€,, nhwgfdS;
—_ = - 23
6)( Vznog ot ( )

Here, we chose f # 0. Thecase f — 0O isdiscussed in
the Appendix. When calculating the derivatives with
respect tot, wetakeinto account the Bloch equations (18)
and reduce Egs. (22) and (23) to

ow nfiwgf 3o 0
— = +C£Z , 24
oxX vingg U f o @9
0,  nhwgffs
= WS,. 25
) v2n,g > ()

It is now easy to find from Egs. (24) and (25) that the
amplitudes of the longitudinal and effective transverse
fields are related by

w 2
W2+ %Zz + TBhE = Ua(1). (26)
Here, the arbitrary real function U(t) # O is determined
by the boundary conditions. The dependence of Uy on't
leads only to arenormalization of the variablet and the
functions €, and W' It follows from (26) that [t
Uy(t) # 0 and the ISTM apparatus devel oped for an infi-
nite interval can be used. On the other hand, acoustic
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solitons and other coherent structures can be formed in
crystals less than one millimeter in thickness [4].
Therefore, we can easily create conditions under which
the interval where

wWgh

Uolt) # =2

ismuch larger than the formation time scales of solitons
and other nonlinear structures.

Using (26), we obtain a new integrable system of
evolution equations from (18), (24), and (25):

J,E = -bUS,,
0.S, = (aE+bU)S,-ES,
0.:S, = (aE+bU)S,
2.S, = ES,.

Here, dll functions arereal and

(27)

WX, 1) 2 2
E(x,T) = —2—~, U, T)+E(x,1) =1,
X 1) ) XD+EX T

nog 2 fl! f
= y—22 1= Z2fU, ()dt', b= —.
X XgnOV2 h_[ O() f3

The representations of this system asacondition for the
simultaneity of two linear systems with an arbitrary
(spectral) parameter aregivenintheAppendix. Itisalso
pointed out in the Appendix that system (27) iscomplex
enough for the ISTM to be applied. Therefore, here, we
restrict our analysis to its physically interesting reduc-
tion that arisesif we set a= 0. Thisreduction, probably,
also corresponds to the new integrable system of equa-
tions.

4. THE ISTM APPARATUS FOR a =0

The condition a = 0 implies that the contribution of
the effective transverse acoustic field to the frequency
modulation of the density matrix component p,, isdis-
regarded. Such a physical situation arisesif thex and z
coordinates along the principal Lande tensor axes coin-
cide with the crystal symmetry axes. In this case, the
Landetensor isdiagonal in anondeformed unperturbed
medium. The magnetic field B is assumed to be
directed along the zaxis, i.e., along the axis of propaga-
tion of the acoustic waves.

We solve the problem on the entire axisfor arapidly
decaying field at infinity:
E(t)— O,

We assume that the spin system at the initial and final
timesisin astable ground state corresponding to mini-

T— f00,
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mum energy, i.e.,

SZ(T’ X) = _11

A pulse of acoustic field E(t, 0) with an area large
enough for the formation of solitons is assumed to be
injected into the crystal. To describe the corresponding
soliton dynamics, it is convenient to choose the follow-
ing Lax representation for the system of equations (27)
aa=0:

T— 0,

o0=0 "M A+BEFp - (o (29
O-(A-B)E AU O
- _b
X b2—4)\2
(29)
5 —iAS, (A +B)(bS,—2iAS) H,
O(B-A)(2iAS, +bS) iAS, 0O
= AOCD.
Here,

UP+E2=1, B= %A/bZ—L

where A is the spectral parameter.

The spectral problem (28) for rea fields may be
considered to be related to the problems for complex
fields that arise when solving the integrable Landau—
Lifshitz equations [24] and the equations of Raman
scattering or four-wave mixing [25] in terms of the
ISTM. The ISTM apparatus for these problems has
been devel oped in sufficient detail. Soliton and periodic
solutions were found for these related models. Previ-
ously [26], we found an expression that defined the
quasi-self-similar asymptotics describing the decay of
aninitial unstable state. Given the specifics attributable
to the fact that thefield E isreal and that the problemis
symmetric, these results can be used for model (28)
after appropriate modification.

The solutions of the spectral problem (28) have the
involution

® = Mo(\OEV ™, (30)
where
. Ogq .0 DB st
M=009Kg, k= -B b (31)
0-100

E,h, b < 1.

In finding soliton solutions, we should determinethe
stable ground state of the system against the back-
ground of which the solitons propagate. Consider the
regime in which the asymptotic limits T — oo corre-
spond to the stable ground states that, in turn, corre-
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spond to a zero field, E(X, T) = 0. These states are dif-
ferent for different |b|. It is easy to show that the follow-
ing ground states of the system are stable in the linear
approximation:

E=0, S=#%1, S =0,

32
S =0 |b>1 (32)
E=0, S=-1, S =1,
> (39
S =0, |b<1,
ES,=-S.U, S =0, |b=L1 (34)

For |b| = 1, the ground state (34) isindifferently stable.
For apotential that vanishes at infinity (T = ), we

introduce the Jost function W* in a standard way (the
solutions of (28) with asymptotics):

W* = exp(—iAosT), T—»=+00, |b<1, (35)
O O
0 et

o = ~ M Sexp(—iAa,T),
[l [l
DL 1 0 (36)
OB+ A 0
T—> %00, |b>1.

The symmetry properties (30) and (31) correspond to
the following matrix form of the Jost functions:

O + .0

Wt = Oy —wztk U

O, .o

Ugz ¢ U
These solutions are related by the scattering matrix T :
Y= YT, (37)

It follows from the symmetry properties (30) and (31)
that the scattering matrix can be chosen in the form

0 O 0
g - By
O_g0 ¢ O
The Jost functions have standard analytical properties
(cf., eq., [27]). Thefunction a(A) is holomorphicin the

upper half-plane A, where its zeros correspond to the
soliton solutions.

L et us represent the Jost functions as

W(t) = exp(-iAosT)

T= (38)

+}D MG A+BK(L YD 5
O-(A-B)K3(t,9 AKi(ty O

x exp(—iAa;s)ds.
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It follows from system (37) that

+|] %

S By, (40)
-0
T (@)

We substitute the components of these functions
from (39) into (40) and (41) and integrate the resulting
equations (40) and (41) over A from —oo to o with the
weights exp(—iAy)[2r(A — B)]™ and exp(—iAy)(2TN),
respectively. As a result, we obtain the Marchenko
equations for the right end of the axis (y = 1):

[

K3(t,y) = Fp(t+y) + iIKl(T, 9)id,Fe(s+y)ds, (42)

[

Ki(t,y) = —[Ky(T,s)(B +i0,)Fo(s +y)ds.

T

(43)

On the right-hand side of Eq. (43), the plus (+) and
minus (=) signsin front of B correspond to b® > 1 and
b? < 1, respectively. The kernel F is defined as

—iAy

Faly) = I%(X) e

A0 2O (“44)

where € is the contour that includes the real axis and
that passes above all polesin the upper half of the com-
plex plane, Fo = Fg (B = 0).

Given the residues at poles A, in the upper half-
plane, the kernel F, can be represented as

e—| Ay

Foly) = I A=

oy (495)
. 9B e -
- Zmﬁo\ AP

The Marchenko equations for the left end of the axis
(for y y < 1) can be found in a similar way. Using the
results obtained bel ow, we can then easily show that the
corresponding solutions are joined at y = T (for more
detail, see [27]).
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Substituting expression (39) for W* into the spectral
problem (28) and equating the expressions for different
powers of A yields, in particular,

KAt D1+ U] = EM[1-iKy(T,T)].  (46)

Using this relation, we can easily find a relationship
between the potential F; and the kernels K, , in the
form

2[1-iKy(1, D]IK3(T, 1)
[1+iKE(T,D][1 - Ky, T)] + KA1, T)[*

E(t) =

4.1. A One-Soliton Solution
of the Model for |b|< 1

The soliton solutions associated with ASI T describe
the propagation of acoustic pulses without any change
of their shape against the background of a stable ground
state. This state for system (28) at |b| < 1is (33). The
condition for the field E being real imposes constraints
on the soliton parameters. In particular, the discrete
eigenvalues must either be imaginary or enter into the
form of anticonjugate pairs{A, —-A*}.

Let us find the one-soliton solution of the problem
associated with the only eigenvalue A. We represent the

kernel F that corresponds to thisvalue of A =in as
ICy(X) exp(—iA
Fyly) = 1) exp(=iAy) (49)
n—Bo
Here,
B =iBo IMpB, = 0.
The dependence of the real quantity
Cl = 9B(X: )\)
00X )|, 2

on X is derived below.

To solve the Marchenko equations, we introduce
new functions:

[

Q. (1) = J’Kn(T, se™ds, n=1,2.

Substituting these functions into the Marchenko equa-
tions (43) and (44) and integrating them over y yields

@2 = — —ilvllzexrl(4nz) g
201+ |y.(X)|“exp(4n2)]
K22 = CleXp(2n22) . (50)
(N —Bo)[1+ |y:(X)|"exp(4nz)]
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where we denoted

Cl(X)
n
Next, it is necessary to find the function Cy(X),
which can be determined from system (29) for
Sfxe,X) =1, E(tw,x) = 0.

Inamore general case, for thetimeinterval [T, o], this
function can be found by using the formula (see [26]
and the derivation in [27])

yi(X) =

0, T = —TVoA(Te, X)Vo + Vuhdo, X)VaT. (51)
Here, Vo and V.. are the matrices composed of the
eigenvectors, the solutions of problem (27) that were
found at the initial time 1y and for T = oo, respectively.

Let
E(t,0) =0, T = T1p o,

then

Vo = Vi = exp(—iozAT), T = Tg

Hence, for the chosen initial and boundary conditions
that correspond to soliton dynamics, we obtain

bxrl D

Yi(X) = voexpD4 > (52)

wherey, isaconstant. Using (47), (49), (50), and (52),
wefind aone-soliton solution of model (28) fora=0in
the form

4yon(n —Bo) (1 + |vo|2e2*°)e‘°

E(T'X) 2.2 2 2(p
(n—Bo) [1+|Vo| eq)] +(2|ygn)€

where

_ bx 0
0= 2”%_b2+4nﬂ'

We see from solution (53) that the soliton shape and
velocity depend on the coefficient b. The soliton veloc-
ity decreases with increasing b, starting from the phase
velocity v in the medium. At b ~ 2n, the velocity
reaches a minimum and then again tends to the phase
velocity. In Fig. 1, the soliton amplitude E(t) is plotted
againgt T for different values of b. We see from the fig-
ure that E(T) has a dip to zero at the center. As b
decreases, a breakup into a soliton and an antisoliton
whose separation tends to infinity when b — 0 takes
place.

It also follows from formula (50) that the normal-
ized soliton amplitude does not exceed unity. Therein
lies an important difference between the acoustic-field
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0 5 10 15 20 25

Fig. 1. The amplitude of the effective transverse acoustic
pulse component E versus 1. The solid line corresponds to
b= 0.9, and the dashed line corresponds to b = 0.1 and
n = 0.5. The soliton position on the T axisis arbitrary.

S.
1.0 S N e

0.5 , \ i

-0.5F

Fig. 2. The amplitude of the level population difference ver-
susT for asoliton regime. The solid and dashed lines corre-
spond to b = 0.9 and 0.1, respectively.

dynamics in our model and the dynamics studied, e.g.,
in [5]. The soliton solution (53) describes the energy
transfer between the longitudinal and transverse field
components caused by the interaction with the spin sys-
tem. In Fig. 2, the level population difference is plotted
against T.

4.2. The Decay of an Inverted Initial State
of the Spin System

A completely inverted spin system is unstable and
tendsto a stable ground state after the action of aweak
perturbation. This dynamics in nonlinear two-level
optical media is described by the self-similar asymp-
totic solution. In [26], we showed that the asymptotic
behavior of the fields in the case of Raman scattering
for general initial and boundary conditionsis described
by a complex first-order differential equation with the
right-hand side proportional to a known function. This
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function can be expressed in terms of the solution to the
transcendental Painleve equation of the third type (P,
[28]. The solution corresponds to the nonsoliton, radia-
tion dynamics associated with the continuum of the
corresponding spectral problem. Following the results
of [26], we can show that thisdynamicsis characteristic
of arbitrary S(x, 0) slowly changing with x and a suffi-
ciently small seed acoustic field pulse |[E(T, 0)| < 1. For
such small field amplitudes and its derivatives, it is easy
to determine the scattering coefficient

_ BN
AX; A)
at x = 0 by using the spectral problem (28):

_ B(O; \)
SA(0: M)

P(X; A)

P(O; A) = po

A j 2i AT 9
:-Z—J'EE(T, 0)e""dr.

If E(t, 0) = congt, then the scattering coefficient p, does
not depend on A.

We solve the initial-value (for x = 0) problem with
the trivial boundary conditions that correspond to an
unstable (at T = 0) state (complete inversion) and a
small (seed) acoustic deformation of the crystal:

|[E(t,0)] = const <1, S(0,%) = 1. (55)

The seed field E(t, 0) causes this state to decay and the
system tends to a stable state,

E= O! Sz(o! X) = _11

which isreached for x —» .

The scattering coefficient py(x) depends on A. Let
us calculate the kernel F (45) by taking into account
the dependence of the scattering data on x and condi-
tions (55), i.e., with the discrete spectrum disregarded.
For theinitial and boundary conditions (55), it will suf-
fice to take into account the contribution of only the
continuous spectrum of the problem. The dependence
p(X) can be determined by using expression (51):

_ []2ibXA ]
= ex .
P(X) = Po Pz i

(56)

Let us now find the linear solution of the problem that
corresponds to the initial stage of the decay of an
inverted state and the formation of a phonon avalanche.
Since, as we show below, the range of large |A| mainly
contributes to the solution, we assume that 4|\ > b2
To calculate the kernels, we introduce anew integration
variable on the right-hand side of (45),

iv

A= ,
2./bx/t
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and reduce it to the form

Po - exp[(9/2)(v=1/W)]
2rt] v —2B./t/by

=ipo| 1o(9) +280ij—Xll(6) +el,

where |, ; are modified Bessel functions and & =
A/4bxT . We assumed that

Fe(X, 1) =
(57)

403,4/1/bx < 1.

It followsfrom (42), (47), and (57) that the field ampli-
tude increases at the linear stage:

E(X, T) = 2K,(X, T,T) = 2F (X, 21) Opee’.  (58)
Another conclusion that follows from the derived
expressions for kernel (57) is that the solution for the
acoustic field is concentrated in the range 9 > 1 for
small pg such that —In|py| > 1. In this range, the inte-
grals in the Marchenko equations (41) and (43) can be
approximately calculated by the saddle-point method.
It follows from the Marchenko equations that the ker-
nels K, , exponentially increase with t at the initial
stage; i.e., the solution for |E| can reach values of the
order of unity for arbitrarily small seed field amplitudes
E(O, 1).

Complete spin inversion can be achieved by using
sufficiently strong laser radiation [13]. Incomplete ini-
tial inversion of the medium, i.e,,

-1<S5/(0,%) <1,

corresponds to a more general situation. In this case, a
mixed initial-value-boundary-value problem arises on
the semiaxis (1 U [0, )), whose solution is much more
complex than the cases where S0, x) = +1. For some
of the nonlinear systems of equations, this problem was
solved in the case where E(t, 0) = 0 (the Dirichlet prob-
lem [26, 29]; see aso the method for solving a more
general problemin[30, 31]).

Below, we use the results of [26] to find the asymp-
totic solution of the Dirichlet problem that is applicable
to describing the dynamics of the phonon and spin ava-
lanchesthat arise under the followinginitial and bound-
ary conditions:

S0, X) =S(0,0) = S,

S(0,X)=S(0,0) = P,
S(0,X)=0, E(,0)=0.

To thisend, following [26], we will reduce the spectral
problem (28) to the Zakharov—Shabat problem [3] by a

(59)
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simple gauge transformation of the form

-0, Lp-DLd Do,
A . (60)
D = Tcos(v/2) +i6,sin(v/2).

Here, | and 6, arethe unit and Pauli matrices, respec-

tively. We use the following notation:
E = sinv, U = cosv.

Transformation (60) reduces the spectral problem (28) to

_boian vy,
oW =0 ow=L,¥, (61)
O-vUixOo
V(X, 1) = lZ(A/l—bzsinv+atv), (62)

where we assume that b? < 1. The solution of the prob-
lem reduced to analyzing a simpler spectral problem
and restoring E from the known solution V(t, X) using
(62).

The Marchenko eguations for the Zakharov—Shabat
problem arewell known (for more detail, see[3]). They
are given in the Appendix for reference. For an arbi-

trarily inverted medium at theinitial time(SfKO) #0), the

scattering coefficient p(x) and the kernelsin the March-
enko equations can be calculated by the asymptotic
method suggested in [26]. To determine the dependence
of the scattering data on X using formula (51), we
should find the values of the matrix

Ay(t) = Vo(DAD ™ -Da, DV (63)

at theends of theinterval (t =0, ). In[26], we showed
that the large [A| = |A, i.e., in the case under consid-

eration,|A,| > b, »/1—b’/2, mainly contributed to the
radiation asymptotic solution. For this asymptotics and
conditions (59), the components of matrix Ao are

ibs”

(A0 = A0 2=

0)
(AL, = -IAO] = B
[A)]: = (AN = 2

(64)

[AxO)] 1, = (-[Ao()],) = 0.

These boundary conditions giveriseto an infinite series
of p(x) poles whose positions depend on x. To find the
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Fig. 3. The acoustic-pulse amplitude E versus T for incom-
pleteinitial inversion of the medium S = sin(172.7). The

solid line correspondsto b = 0.9, and the dashed line corre-
spondstob=0.1and n = 0.5.

solution for nonsmall x, we should determine the total
contribution of all these poles. For sufficiently large X,
the kernels F, in the Marchenko equations (76) and (77)
can be calculated asymptotically in the same way as
was done in [26] for a different problem. Using the
results of [26], after modification associated with the

values of matrix Ay at zero, it is easy to show that the
kernel F, for conditions (59) and large x is

2xb|s?]

F, " =
(T+1,%) 9'[Qo+|520)|]2

11(8), (65)

where

0 = ,—2(T+T')b Q= [1_§<0)2(1_b2)]112’

I, is aBessal function. This kernel corresponds to the
condition

W2>0,>14, S = sind,.

For 174 = a,, > 0, we should substitute |, — J;.

For this kernel, in [26], we found a solution to the
Marchenko equations (76) and (77) and an explicit
solution for V(t, X) composed of a set of oscillations
that were damped with increasing X. This solution, to
within the factor x, is a self-similar solution that

depends on the variable 6 = 2./bty .

Inthelimit b —» 1, the asymptotic solution for the
acoustic-wave amplitude is described by the equation

d.v = %%(G), (66)
where %B(0) isthe self-similar solution of the sine-Gor-
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don equation

2
de%+li%

a0 2 g = SnAO),

(67)

with the boundary conditions

= g0 dBE)| =
R(0) = SV, 36 s 0.

This self-similar solution can be expressed in terms
of the solution to P, in a standard way [28].

Theresults of our numerical calculations of the orig-
inal system for conditions (59) are shown in Fig. 3.
These results and analysis of the asymptotics for the
original system of equations and solutions (66) indicate
that the general solution consists of a packet of damped
nonlinear pulsationswith an increasing duration. In real
media, the relaxation and diffraction processes lead to
a significant relative suppression of the oscillation
amplitudes compared to the leading edge. Therefore, in
practice, it is often sufficient to find an expression for
the first nonlinear oscillation. Our solution shows that
the asymptotics (at large X) is a nonsoliton one and

characterized by the self-similar variable ./bxt. This
solution for the acoustic-wave amplitude describes the
phonon avalanche and the avalanche transition of the
spin system to a stable state.

5. DISCUSSION OF THE RESULTS
AND THEIR PHYSICAL APPLICATIONS

We studied the dynamics of acoustic pulses with a

duration closeto mgl in terms of integrable reductions

of the evolution equations. These systems of equations
describe the evolution of longitudinal—transverse waves
that propagate along the magnetic field in a medium of
impurity ions with an effective spin of 1/2. In studying
the coherent dynamics of acoustic pulses, we used only
the condition of equal phase velocities for the longitu-
dinal and transverse waves and the approximation of
unidirectional acoustic-wave propagation. As a result,
we were able to find an integrable model that corre-
sponded to the most general physical situation for the
interaction geometry under consideration. On the other
hand, milder physical conditionsthan thosein the mod-
els constructed and studied by other authors, for exam-
ple, by Voronkov and Sazonov [7], are required to
observe the behavior of the field described here,
because our models can be applied at higher tempera
tures and lower magnetic-field strengths.

In pure form, the soliton dynamics associated with
ASIT requires producing a sufficiently intense pulse
with a nearly soliton shape at the boundary of the
medium for its observation. On the other hand, as we
showed above, if the spin system isinitially partially or
completely inverted and isin an unstable state, then the
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solution that describes the transition to a stable state is
a nonsoliton one. Similar phonon dynamics was
observed in a series of experiments by the authors
of [13, 14]. These authors investigated the stimulated
emission of resonant acoustic phonons produced by the
decay of the initial population inversion in a system of

Kramers doublets E(°E) of impurity Cr* ions in a
ruby (Al,O3). An external magnetic field of approxi-
mately 3.48 T in strength led to Zeeman doublet split-
ting. The crystal was at atemperature of 1.8 K. Theini-
tial level population inversion, i.e., the spin inversion,
was caused by laser pumping at a wavelength of
693 nm. These authors found that a nonmonatonic time
dependence of the lower level population arose for a
sufficiently large effective length of the inverted
medium. This kind of field dynamics can be described
in terms of model (27) under the initial condition (59).
In [13, 14], this effect, called a phonon avalanche, is
explained by using an anal ogy between the dynamics of
transverse acoustic waves and the dynamics of photons
during superfluorescence for quasi-monochromatic
waves. Our results indicate that a similar phonon ava-
lanche can be observed for acoustic pulses with adura-

tion closeto oogl and in the more general case of alon-

gitudinal—transverse wave and for incomplete inver-
sion.

The new integrable models obtained here can also
be used in other fields of physics, for example, in sys-
tems with spatially localized electrons. Let us consider
aphonon-induced transition with the changein el ectron
orientation between the Zeeman sublevels in a system
of quantum dotsin GaAs. In [32], the rate of this tran-
sition was estimated for various spin—orbit interaction
mechanisms. The spin-attice relaxation for the elec-
trons localized at quantum dots was shown to be much
smaller than that for free electrons. For a sufficiently
large strength of the applied magnetic field, the contri-
bution of the spin—phonon interaction can be signifi-
cant. It wasshown in [32] that, for aphonon wavelength
much larger than the size of one quantum dot (gyUgB <

A/mvzﬁwo, where v is the speed of sound, mis the

electron mass, and fwy, is the typical separation
between the orbital levelsat aquantum point), the spin—
phonon interaction is described by a Hamiltonian simi-
lar to (13). Taking into account the evolution of the lon-
gitudinal—transverse acoustic wave in a system of such
guantum dots and following the above assumptions, we
obtain a system similar to (27). Since the picosecond
duration of an acoustic pulse correspondsto itslimiting
length I~ 10~ cm and since an acoustic soliton can be
formed at severa lengthsl,, an allowance for the coher-
ent phonon dynamics for such evolution scales can be
of importance in controlling the electron behavior in an
ensemble of quantum dots.

Analysis of the soliton solutions (53) indicates that
the time dependence of the spin direction for alongitu-
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dinal—transverse wave depends on the rel ative contribu-
tion of the longitudinal wave. The relation between E
and S, for a one-phase soliton solution can be easily
derived from system (27). For solution (53) and the
conditionswhen T —» —oo, we find that

— S0 y)——Y
Sz - Sz( !X) b2+4r]2’
1 (68)
S0, X) = 7——-1
b”+4n

The dependence S(t) for different bisshownin Fig. 2.

Below, we give another example of the physical sit-
uation that can be described by using the qualitative
results obtained above. The relaxation of magnetic
spins from an inverted initial state to a final (stable)
state in the presence of a magnetic field at low temper-
atures (1-5 K) can be accompanied by elastic crysta

deformations [33]. A Hamiltonian similar to Hin (13)
can be used to describe this spin—phonon interaction.
This interaction gives rise to a spin—phonon avalanche
[33], which was observed in experiments aimed at
studying the decays of Mn;, magnetization in the pres-
ence of amagnetic field and at temperatures of 1.9-5K.
In contrast to the model considered above, which leads
to atwo-level medium, the situation studied in[33] cor-
responds to a multilevel (more precisely, 21-sublevel)
medium. In this case, the cascade transitions (or, fol-
lowing the terminology of [33], the phonon-induced
tunneling) between sublevels can be described in the
quasi-classical approximation in terms of the model of
an adiabatically changing spin. Since we consider the
time range of acoustic pulses that corresponds to the
spectral range including all sublevel transitions, the
effective Hamiltonian of the spin—phonon interactionin
this approximation is similar to (10). Some of the qual-
itative results obtained above can be used to explain the
dynamics of spins in such a multilevel medium with
cascade tunneling, for example, the behavior of the sys-
tem during the decay of an inverted state.

At the same time, when the cascade transition in the
adiabatic approximation is replaced with a two-level
medium, the smoothing of the oscillating tail structure
of the phonon avalancheis disregarded. Indeed, the for-
mation time of the leading edge of the avalanche is
determined by the initia fluctuation (noise), to which
the system is insensitive. To be more precise, the delay
of the leading edge is determined by the logarithm of
the seed area (proportional to Inpy; cf. (57)). On the
other hand, a phase difference of the order of Ttbetween
the pulses generated at different transitions is accumu-
lated in a time of the order of the duration of the first
pul se, because the coupling constants between phonons
and different tunneling transitions differ significantly
(by several times). As aresult, the shapes of the gener-
ated phonon and spin avalanches must consist of one
intense pulse. The subsequent pulses that must have
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been observed in a two-level medium suppress each
other. This picture was observed experimentally [33].

Here, we disregarded the nonlinear effectsrelated to
the anharmonicity of the crystal lattice. They can be
included in the integrable models found above in the
form of additional perturbing terms.
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APPENDIX

The Lax representation for the system of equa-
tions (27) is

O
0 : a 0
0 —iAU GEbZU+ 0
0.9 = 0d, (69)
O ~[a . |
O0G=ZU + iAU O
O Cb i 0
Ui —_ U
0, = D|Y)\b( S, +as) | A 0%, (70)
O A, iYAb(S,—aS,) O

where U2 + E? = 1, A isthe spectral parameter,

A, = G[aYZS,+ (1+4A°Y)S, —i2YbAS],
Ay = G[aYZS, + (1+4N°Y)S, +i2YDAS],
Y
-2

AN —1—al—b2+ J(AN2+ 1+ &% —b)? + 4alb?

z=1a-1-a+0
2a

+ (4N + 1+ a0 —1%)’ + 42°D7].

Here, é()\) and G(A) are arbitrary piecewise smooth
functions that are not identically equal to zero and that
arerelated by

GG = —%[4)\2+ 1+a’—b?
(71)

+ A/(4?\2 +1+a>-b%)° +4a%p?).

This parametrization contains ambiguities related to
the square roots of the powers of A in the matrix ele-
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ments on the right-hand sides of (69) and (70). Below,
we give a different specia form of the Lax representa-

E _ BeonE, Kdn@E, k) |
3.0 = JesnE. K
E ab ,_ Bk
0 ~/2B.sn(E, K) /8
a,® = b
© 2B, K[2(1 +a%) - BIsn(E, k)]
(73)

L JiA(-s,+as)
A

 Pe fo
i1Ay(S,—-aS) 0

Here, U2 + E2 = 1; € is the spectral parameter; sn(E, K),
cn(&, K), and dn(&, k) are the Jacobi elliptic functions
with the modulus

kz—B—;

B. = {1+a’-b?[(1+a’—b?) +4a%9 "} ™,
A, = B_B,cn(E, K)dn(E, k),

Ay, = 2abS,—b[2a® - B’sn’(, K)] S,
+i2B_B,cn(E, K)dn(E, k)S,,

A, = —2abS,+ b[2a% - B*n’({, K] S,
+i2B_B,cn(E, K)dn(E, K)S,,.

This system can be solved in terms of the ISTM on a
torus in a way similar to the cases of a biaxia chiral
field [34] and related Landau—Lifshitz equations [35].
However, the following additional difficulty arises
here: the nondiagonal matrix elements on the right-
hand sides of (69) and (70) do not become zero for the
vacuum solution E = 0 against the background of which
the solitons propagate. Therefore, in contrast to the
main chira field and the Landau-Lifshitz equations,
another ambiguity arises here. This ambiguity makes
the analytical properties of the problem much more
complicated.

For the specia casea =0, the Lax representation (69)
and (70) transformsinto (28) and (29), respectively.
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tion for system (27) with the parametrization of the
coefficients via the Jacobi dliptic functions:

ab ,,BsEK
J2B_sn(§, K) /8
| B..cn(&, K)dn(g, k) U
J8sn(E, K)

E
@, (72)

o o o o

Formally passing to the limit in (27),

az0, b—0, bx —x, (74)
where X' is a new variable, we obtain the well-known
integrable system [28]—the reduction of the original
system of equations (27):

d,E = -Usine, (75)

where
T
9= A/1+a2J'E(T')dT', S, = sind,
0

aS,—S, = J1+a’cosh.

However, we made this passageto thelimit in system (27)
after applying the unidirectionality approximation and
then used relation (26) between the longitudinal and
guasi-transverse fields. If we take the origina physical
system (18), (20), and (21) with f = b = 0 as the basic
one, then we will obtain (after applying the same
approximations) a different integrable system of equa-
tions that is formally equivaent to the integrable sys-
tem recently found by Agrotis et al. [22] and used by
these authors to describe the dynamics of optical soli-
tons in a two-level medium with a constant dipole
moment. The same (to within the notation) system
emerges as the reduction (27) in the low-amplitude
limit, E < 1, for which thefunction U in thissystem can
be formally substituted with unity.

Below, we give the Marchenko equations for the
Zakharov—Shabat problem (61) [3] on the entire axis
T 0 (—0, ) and for the field V(t, 0) and its derivatives
that rapidly become zero at infinity:

T

K(T,T)+F(T +T1) +J'F(T‘ +9)K,(1,9)ds = 0, (76)

T

Ko(T, 1) —J'Kl(T, SF(T'+9)ds = 0. (77)
0
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Here, the kernel
exp(—iAt
Fo= Fx) = [eo; NEREAay (79
R

for conditions (59) is completely determined by thereal
spectrum of problem (61). The relation between the
potential V and the kernel K, has the standard form

V(T X) = 4Ky(T,T,X). (79)

REFERENCES

. A.l. Maimistov and A. M. Basharov, Nonlinear Optical
Waves (Kluwer Academic, Dordrecht, 1999).

2. A. |. Maimistov, Kvantovaya Elektron. (Moscow) 30,
287 (2000).

3. V. E. Zakharov, S. V. Manakov, S. P. Novikov, and
L. P. Pitaevskii, Theory of Solitons: the Inverse Scatter-
ing Method (Nauka, M oscow, 1980; Consultants Bureau,
New York, 1984).

4. H.-Y. Hao and H. J. Maris, Phys. Rev. B 64, 064302
(2001).

5. G. A. Denisenko, Zh. Eksp. Teor. Fiz. 60, 2269 (1971)
[Sov. Phys. JETP 33, 1220 (1971)].

6. G. T. Adamashvili, Zh. Eksp. Teor. Fiz. 97, 235 (1990)
[Sov. Phys. JETP 70, 131 (1990)].

7. S. V. Voronkov and S. V. Sazonov, Fiz. Tverd. Tela (St.
Petersburg) 43, 1969 (2001) [Phys. Solid State 43, 2051
(2001)].

8. S.V. Voronkov and S. V. Sazonov, Zh. Eksp. Teor. Fiz.

120, 269 (2001) [JETP 93, 236 (2001)].

9. P A. Fedders, Phys. Rev. B 12, 2046 (1975).

10. G. T. Adamashvili, Physica B (Amsterdam) 266, 173
(1999).

11. N. S. Shiren, Phys. Rev. B 2, 2471 (1970).

12. V. V. Samartsev, B. P. Smolyakov, and R. Z. Sharipov,
Pis'ma Zh. Eksp. Teor. Fiz. 20, 644 (1974) [JETP Lett.
20, 296 (1974)].

13. H.W. deWijn, P.A. vanWalree, andA. F. M. Arts, Phys-
icaB (Amsterdam) 263-264, 30 (1999).

14. L. G. Tilstra, A. F. M. Arts, and H. W. de Wijn, Physica
B (Amsterdam) 316-317, 311 (2002).

15. A. A. Zabolotskii, Pis ma Zh. Eksp. Teor. Fiz. 76, 709
(2002) [JETP Lett. 76, 607 (2002)].

=

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31

32
33.

34
35

C. Kittel, Introduction to Solid State Physics, 4th ed.
(Wiley, New York, 1971; Nauka, Moscow, 1974).

M. K. Balakirev and |. A. Gilinskii, Waves in Piezoel ec-
tric Crystals (Nauka, Novosibirsk, 1982).

J. W. Tucker and V. W. Rampton, Microwave Ultrasonics
in Solid State Physics (North-Holland, Amsterdam,
1972; Mir, Moscow, 1975).

L. D. Landau and E. M. Lifshitz, Course of Theoretical
Physics, Vol. 7: Theory of Elasticity, 3rd ed. (Nauka,
Moscow, 1987; Pergamon, New York, 1986).

S.A. Al'tshuller and B. M. Kozyrev, Electron Paramag-
netic Resonance in Compounds of Transition Elements,
3rd ed. (Nauka, Moscow, 1981; Halsted, New York,
1975).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley,
New York, 1984; Nauka, Moscow, 1989).

M. Agrotis, N. M. Ercolani, S. A. Glasgow, and
J. V. Moloney, PhysicaD (Amsterdam) 138, 134 (2000).
J. D. Gibbon, P. J. Coudrey, J. K. Eilbeck, and R. K. Bul-
lough, J. Phys. A: Math. Gen. 6, 1237 (1973).

A. E. Borovik and S. I. Kulinich, Pis' ma Zh. Eksp. Teor.
Fiz. 39, 320 (1984) [JETP Lett. 39, 384 (1984)].

A. A. Zabolotskii, Physica D (Amsterdam) 40, 283
(1989).

A.A. Zabolotskii, Zh. Eksp. Teor. Fiz. 115, 1158 (1999)
[JETP 88, 642 (1999)].

L. A. Faddeev and L. A. Takhtajan, Hamiltonian Meth-
ods in the Theory of Solitons (Nauka, Moscow, 1986;
Springer, Berlin, 1987).

A. C. Newdll, Solitons in Mathematics and Physics
(SIAM, Philadelphia, PA, 1985; Mir, Moscow, 1989),
CBMS-NSF Regional Conference Series, Vol. 48.
J.LeonandA. V. Mikhailov, Phys. Lett. A 53, 33 (1999);
M. Boiti, J-G. Caputo, J. Leon, and F. Pempinelli,
Inverse Probl. 16, 303 (2000).

A. Fokas, J. Math. Phys. 41, 4188 (2000).

A. Degasperis, S. V. Manakov, and P. M. Santini,
nlin.S1/0210058.

A.V. Khaetskii, Physica E (Amsterdam) 10, 27 (2001).

E. del Barco, J. M. Hernandez, M. Sdles, et al., Phys.
Rev. B 60, 11898 (1999).

I. V. Cherednik, Teor. Mat. Fiz. 47, 755 (1981).
A. M. Mikhailov, Phys. Lett. A 92, 51 (1982).

Trandated by V. Astakhov

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96 No. 6 2003



Journal of Experimental and Theoretical Physics, Vol. 96, No. 6, 2003, pp. 1104-1112.

Trangated from Zhurnal Eksperimental’ nor i Teoreticheskor F|Z|k| \ol. 123, No. 6, 2003, pp. 1256-1265.
Original Russian Text Copyright © 2003 by Granovsky, Bykov, Gan'shi na, Gushchin, Inoue, Kalinin, Kozlov, Yurasov.

SOLIDS

Structure

M agnetor efr active Effect in M agnetic Nanocomposites

A.B. Granovsky?*, 1.V, Bykov E. A. Gan’'shina?, V. S. Gushchin® M. Inoue®C,
Yu. E. Kalinin, A.A. Kozlov?, and A.N. Y urasov?
aMoscow Sate Unlversty, \orob' evy gory, Moscow, 119992 Russia
bToyohashi University of Technology, Toyohashi 441-8580, Japan
CCREST, Japan Science & Technology Corporation, Kawaguchi 332-0012, Japan
d\oronezh State Technical University, Moskovski pr. 14, Voronezh, 394026 Russia
*e-mail: granov@magn.ru
Received December 30, 2002

Abstract—The magnetorefractive effect in ferromagnetic metal—insulator granular nanostructures (CoFeZr)—
SiO,,, Co-Al-0O, FeSIO,,, and (CoFe)(Mg—F) is investigated in the infrared spectra region in a wavelength
range from 5 to 20 um. The magnitude of the effect varies from 0.1 to 1.5% for different nanocomposites and
strongly depends on the frequency of light and magnetoresistance. It is shown that the reflection coefficient
changesin amagnetic field not only due to the magnetorefractive effect, but al so due to the even magnetooptical
effect. Simple relations describing this effect are given for the case when the reflection from the substrate is
insignificant and in the case of athree-layer (insulator—film—substrate) system. The expression for the frequency
dependence of the magnetorefractive effect in nanocomposites is derived and its features in the case of high-
frequency spin-dependent tunneling are analyzed. © 2003 MAIK “ Nauka/lInterperiodica” .

1. INTRODUCTION

The magnetorefractive effect (MRE) is a frequency
analog of giant magnetoresistance and is manifested in
a change in light reflectance R, transmittance T, and
absorptance A for samples with a considerable magne-
toresi stance upon their magnetization [1, 2].

Traditional magnetooptical effects (MOE), even and
odd in magnetization, are associated with the influence
of spin—orbit interaction onintraband (in the IR spectral
region) or interband (in the visible spectral region) opti-
cal transitions. The MRE is not associated with the
spin—orbit interaction and is due to spin-dependent
scattering or tunneling. The conductivity o(w) of mag-
netic materials with a giant, tunnel, or colossal magne-
toresistance changes significantly upon magnetization;
for this reason, the permittivity

g(w) = ¢ (w)_|4n0(oo)

which determines the refractive indices and is a linear
function of conductivity o(w), is a function of the
applied magneticfield aso. Here, €,(w) isthe permittiv-
ity taking into account the contributions of displace-
ment currents. The MRE must be manifested most
clearly in the IR spectral region, in which intraband
transitions dominate.

It should be noted that, in the case of reflection in
ferromagnetic metals as well as in alloys and compos-
ites based on such metals in the IR spectral region, tra-
ditional magnetooptical effects odd and evenin magne-

tization do not exceed 0.01%. For this reason, the
search for materials with astrong MRE is of consider-
able practical importance. The MRE can also be used
for a contactless analysis of giant magnetoresistance
[3]. Findly, the study of the MRE in metal—insulator
systems is a direct method for investigating high-fre-
guency spin-dependent tunneling.

The MRE was investigated theoretically and con-
firmed experimentally for the first time for Fe/Cr mul-
tilayers [1]. The MRE theory for metallic multilayers
was aso developed in [4-6]. In spite of certain incon-
sistencies in the results of these publications (see, for
example, discussion in [6]) concerning the relative
magnitude and frequency dependence of the MRE, this
effectisreliably observed in the near-IR spectral region
and amounts to 0.1-0.5% for reflection [1, 6].

The MRE theory for granular metal-metal alloys
was constructed in [2] and modified recently in[7]. The
experimentally measured values of MRE for Co-Ag
granular systems|3, 7] in strong magnetic fields did not
exceed 1%. The ssimplest relation for the MRE in metal -
lic systems was derived in [2] for the Hagen—Rubens
spectral range (wt < 1, where T is the electron relax-
ation time) for the normal incidence of light:

AR _ R(H = 0)=R(H)
R R(H = 0) "
P(H 0) p(H) _
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Here, R(H = 0) and R(H) are the coefficients of light
reflection from samplesin zero magnetic field and in a
magneticfield H, p(H = 0) and p(H) arethe correspond-
ing resistivities, and Ap/p isthe absolute value of mag-
netoresistance. Expression (1) implies that high values
of the MRE must be observed in systems with alarge
magnetoresistance and with a low reflectance, i.e., in
nonmetallic systems. Indeed, a considerable MRE was
recently detected in granular metal—insulator films of
Co-Al-0[8, 9] and CoFe-MgF [10].

In this study, an attempt is made at adetailed inves-
tigation of the MRE in magnetic composites. Section 2
is devoted to analysis of possible contributions to the
measured reflectance from the MRE and from even
magnetooptical effects. It was assumed earlier (see, for
example, [1-10]) that the change in the reflectancein a
magnetic field is precisely the magnetorefractive effect;
however, thisisjustified only if the M RE exceeds 0.1%.
In the same section, simple relations are given for cal-
culating the MRE in the model of a semi-infinite space
(insulator—magnetic medium) and possible features of
the MRE are analyzed in the case of high-frequency
spin-dependent tunneling. It should be noted in this
connection that expression (1) is obviously inapplica-
ble for describing the MRE in nanocomposites since it
has been derived on the basis of the frequency depen-
dence of a Drude-L orentz-type metallic conductivity.
The methods for preparing samples are described in
Section 3. Section 4 deals with the experimental meth-
ods and details and, in particular, describes a setup
modified as compared to that in [8]. The results of
experiments for a number of nanocomposites and their
analysis are given in Section 5. Main attention is paid
to analysis of the frequency dependence of the MRE,
the dependence of the signal on the polarization of radi-
ation, the correlation between the M RE and magnetore-
sistance, and the influence of optical parameters on the
MRE. The results are summarized in the Conclusions.

2. THEORY

The permittivity tensor for a medium magnetized
along the z axis has the form

: )

where it follows from symmetry considerations that
€« = €, and g, = —€,,. The nondiagonal components
arelinear, while the diagonal components are quadratic
in magnetization M; i.e.,

€ = Eq(1+DbM?), b=Db,+byge, &,=aM. (3)

Here, b, characterizes the contribution due to induced
anisotropy of the magnet [11-13], while by,re describes
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the MRE contribution. The nondiagonal elements of
the permittivity tensor are responsible for the magne-
tooptical Kerr and Faraday effects, which are linear in
magnetization, while the orientational magnetooptical
effect, which is even in magnetization [12, 13], is asso-
ciated both with the contribution €4b,M? to the diagonal
elements and with nondiagonal elements. Conse-
quently, the results of MRE measurements always con-
tain the contribution from the even magnetooptical
effect along with the true MRE.

2.1. Mode of Semi-infinite Space

Let us first consider a thick sample for which the
reflection from the substrate can be disregarded. For
p-polarized light incident in the xy plane from atranspar-
ent insulator (medium 1 with areal refractiveindex n,) at
an angle @, on the sample (medium 2 with a complex
refractive index n, = n, —iky), the reflectance R can be
written in the form [14]

2
R = |r§’2| ,
o _ GNI-GNi  GiNaEy @
2= > > > ° —
9:N2+ 92N goNni(g9:N2 + g.n7)
g = Jni—nisin’@, g, = Jno—nisn‘g,. (5)

Since (€)= N5 = (N, —iky)2 by definition, it can easily
be seen, in view of relations (2) and (3), that the term
guadratic in magnetization in relation (4) is determined
by the MRE, induced anisotropy, and nondiagonal
terms. The contributions of induced anisotropy and
nondiagonal terms are on the order of the square of the
magnetooptical factor Q, i.e., are quadratic in the spin—
orbit interaction. The magnetooptical factor Q in the
visible spectral region does not exceed 0.02, and there
are no groundsto expect an increasein thisfactor in the

IR spectral regi on.t Conseguently, the even magne-
tooptical effect may lead to a change in R upon magne-
tization by not more than 0.1%. The numerical calcula-
tions made for specific aloys with experimentally
determined optical and magnetooptical parameters[15]
confirmed this estimate. Thus, the influence of the even
magnetooptical effect on the MRE can be neglected in
all caseswhen the MRE exceeds 0.1%. Then we can set
a=0andb,=0inrelation (3),

n, = na(1+cM?), k, = ka(1+dMm?), (6)

1 The nondiagonal components of the permittivity tensor depend
on the ratio of the anomalous Hall coefficient to the square of
resistance. The anomalous Hall effect in nanocomposites in the
vicinity of the percolation threshold attains giant values which
are four orders of magnitude larger than in metals;, however, the
resistivity increases even more strongly in this case.
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where coefficients ¢ and d are determined by spin-
dependent scattering or tunneling.

If medium 1 isvacuum (n, = 1) and the incidence of
light is close to normal (g, = 0), expression (4) issim-
plified considerably,

_(1-n)’+k

v+ ¥

and then

AR
== = (1-R)M?
= = (1-R)

[ 1- (nz) +(k2)
(1- nz) "'(kz)

()" ©
(1-n9)°+ (k‘;)z}'

2.2. The Insulator—-Magnetic Film-Substrate
Three-Layer System

In the case of a three-layer system consisting of a
magnetic film (medium 2) of thickness h on asubstrate
(medium 3) and an insulator (medium 1), the expres-
sion for the reflectance of p-polarized radiation incident
from medium 1 has the form

|r kl| N = —ka+ Fik
] 4 1+F2 errk|
) 9
ka _ gjnk gkrlj, gj - lrljz_rlisinz(po’
g; ﬂk"‘gkrh
F, = exp(=2miA"ghy), (10)

where the presence of factor F,, which appears due to
transmission of light through the film and reflection
from the substrate and contains the complex refractive
index of the magnetic medium, may lead to a consider-
able enhancement of the MRE. Some examples of the
results of calculations based on formulas (4) and (9)
will be given below together with microscopic expres-
sions for parameters ¢ and d.

2.3. Peculiarities of the Frequency Dependence
of Magnetorefractive Effect for Nanocomposites

At low frequencies, tunneling probability is inde-
pendent of frequency. However, at high frequencies,
both a decrease in the tunnel transparency (when the
period of an electromagnetic wave becomes smaller
than the characteristic time of tunneling) and an
increase in the tunneling probability due to absorption
may be observed. In addition, a tunnel junction is
essentially a capacitor; for this reason, the conductance
of thetunnel junction at finite frequenciesisdetermined
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by the resistive and capacitive components. We will
prove that the former two factors are insignificant for
the formation of the MRE, while the latter factor con-
siderably modifies the frequency dependence as com-
pared to a dependence for metallic systems.

The simplest estimate for the tunneling time T isthe
ratio of thetunnel gap width, i.e., the spacing s between
granules, to the Fermi velocity ve. For a spacing s =
1-3 nm typical of tunneling, we find that the tunneling
time is on the order of 10¢ s; i.e, in the IR range
wT < 1, when A = 1-10 um, and the tunneling proba-
bility isthe same asinthe static case[16]. Sincewt < 1
and the electron tunneling probability at frequency
Er + i depends on thefactor [€2T— 1]? and on theinci-
dent radiation power [16], the tunnel resistivity p inthe
IR range is independent of frequency for a radiation
power in the flare spot much lower than 1 W/cm?
(which is obviously the case). However, the tunnel gap
can be regarded a resistor and a capacitor with permit-
tivity €, connected in parallel. Then, the expression for
the conductance of such a system and of the granular
film as a hole at finite frequencies can be written in the
form

1+iwg,p(H)/4TT
p(H) ’

which differssignificantly from the Drude-L orentz fre-
guency dependence for metalic systems. It should be
noted that expression (11) was successfully usedin [17]
for interpreting the experimental data on magne-
toimpedance of tunnel systems. By definition, we have

o(w,H) =

(11)

_ Amo(w) _
Ex — Sr—IT =€

—ig". (12
Here, € = n?> — k?, €" = 2nk, and ¢, = 1 for the Drude
model. It follows from relations (11) and (12) that only
the imaginary part of the permittivity depends on the
tunnel resistivity of nanocomposites. Assuming that the
magnetoresistance

Ap(H) _ p(0)—p(H)
p p(0)

is small and using relations (8), (12), and (13), we
obtain

(13)

_Bp o _ KT
(c+d)M? A Tl (19
which is equivalent to the relations
dM? = Ap 1
P 1+ (K’ )
(15)
cM? = Ap (K’ /n)

P 1+ (K/n%)%
in which index “2” indicating the magnetic medium
has been omitted. Expression (15) combined with for-
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mulas (4) or (10) for the reflectance compl etely defines
the MRE in nanocomposites for p-polarized light in
terms of magnetoresistance and optical parameters. In
the particular case of normal incidence, it follows from
Egs. (8) and (15) that

2 2
AR _ _(1_R)_A_pkz[ 3n’—K*-1

R P LN +K)[(1-n)*+KI]

}. (16)

This expression represents the main result of this sec-
tion. It shows that the MRE in nanocomposites with a
tunnel magnetoresistanceisacomplex function of opti-
cal parameters. In particular, the MRE must be mani-
fested most clearly in the spectral regions where weak
reflection takes place and both negative and positive
MRE are possible; this enablesusto interpret the exper-
imental data obtained in [9].

3. SAMPLES

The objects of investigations were nanocomposite
films with a considerable tunnel magnetoresi stance.

The films of amorphous ferromagnetic alloy
CoysFeysZryg in the amorphous matrix of silicon diox-
ide a-SiO, were obtained by ion-beam sputtering of
compound targets. A multicomponent target had the
form of a molded base having a size of 270 x 80 mm?
and made of the corresponding ferromagnetic alloy.
Quartz plates having a width of 9 mm were placed on
the surface of the base at right anglesto itslongitudinal
axis. Sputtering was carried out in a vacuum of 1 x
107° Torr onto fixed glass-ceramic substrates. A granu-
lar structure with a wide and continuous set of metal-
phase concentrations was formed in asingle production
cycle during simultaneous sputtering of the metallic
alloy and the dielectric from the compound target with
avarying spacing between the quartz plates. The values
of the metal phase concentration x varied from 30 to
65 at. %. The middle of thisinterval (so-called percola-
tion threshold) corresponds to samples with structures
in which the highest values of magnetoresistance are
observed. The film thicknessin the region of the perco-
lation threshold amounted to approximately 4 upm.
According to the results of electron microscopic inves-
tigations carried out with the help of a high-resolution
transmission electron microscope, the synthesized
composites consisted of amorphous metallic grains
withasizefrom 2to 5 nm, distributed in the amorphous
matrix. Smaller grain sizes correspond to lower con-
centrations of the metallic phase, while larger sizes are
typical of samples with concentration x exceeding
60 at. %. The grainsformed asaresult of growth are not
insulated absolutely in the dielectric matrix (evenin the
case of ahigh SIO, concentration), but form small con-
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glomerates and chains, which in turn form a labyrinth
structure.

The use of CoFeZr-SiQ, films for studying the
MRE makesit possible to minimize the influence of the
even magnetooptical effect on the MRE since the
induced anisotropy effect is obvioudy insignificant for
amorphous metd s (see discussion following formula (5)
in Section 1). In addition, the wide range of composi-
tions obtained makes it possible to study the MRE in
the range of metal and insulator phases as well as near
the percolation threshold.

Granular ferromagnetic metal-insulator films of
Co,(Al,05); _, with a high magnetoresi stance attaining
8% in afield of 12 kOe at room temperature were pre-
pared by the method of tandem rf magnetron sputtering
from various targets of CoAl,_, aloys in argon and
oxygen atmosphere onto uncooled glass substrates.
The film thickness was 2 um and the size of Co grains
varied from 2 to 5 nm. A detailed description of the
sample preparation procedure, as well as the methods
and results of measurements of chemical, structural,
electrical, and magnetic parameters of the samples, is
given in[18, 19]. Nanogranular samples of the
(FeCo)-(MgF) system, whose magnetoresistance
attained 13.3% at room temperature in amagnetic field
of 10 kOe, were synthesized according to basically the
same technology [20].

Films of the Fe-SiO,, system were prepared by the
doubleion-beam sputtering of Fe and SiO, from acom-
pound target onto silicon substrates, which permitted
oneto vary the proportion between the ferromagnet and
the insulator. The characteristic grain size was approx-
imately equal to 4 nm and the film thickness was
0.2-0.8 um. The maximal value of magnetoresistance
inafield of 10 kOe at room temperature attained values
of 1-3% depending on the film composition. The struc-
tural, electrical, and magnetoresistive properties of
films belonging to this system are described in [21].

4. METHODS OF INVESTIGATION
AND EXPERIMENTAL DETAILS

Optical reflection and magnetooptical effects in
magnetic nanocomposites were studied in a wide range
of wavelengths from 1.43 to 20 um (7000-500 cm ). In
the frequency range 500-7000 cn?, we used a FTIR
PU9800 commercial Fourier spectrometer with a spec-
tral resolution of approximately 4 cm and a photomet-
ric transmission accuracy AT = 0.1-0.01%. Optical
reflection will be represented below by the frequency
dependence of energy reflectance R(w), while the mag-
netooptical effects will be characterized by the relative
variation of the intensity of radiation reflected from the
ferromagnet during its magnetization. In the experi-
mental geometry used for observing the magnetoopti-
cal effect for a p wave of linearly polarized light
(E O M), three intense effects can be detected simulta-
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Fig. 1. Frequency dependence of the reflectance of granular
(CoysFesZrip)(Si0; 7)100-x films: x = 57 (1), 47 (2),
40 (3), and 34 (4); ¢ = 10°.

neoudly, viz., thetransversal Kerr effect (whichislinear
in magnetization M) and two effects which are qua-
draticin M (the orientation effect and the MRE).

We measured the magnetorefractive effect on a
setup described in [8] with a number of modifications
concerning mainly the design of the magnetooptical
attachment of the Fourier spectrometer.

First, the radiation from the IR spectrometer was
turned through 90° with the help of plane and aspheri-
cal off-axis mirrors, which made it possible to direct
radiation at an angle ¢ = 10° to the normal of the sam-
ple placed in the gap of the magnet. The M RE measure-
ments for an angle of light incidence close to the nor-
mal allowed usto avoid the influence of the transversal
Kerr effect (which is equal to zero for the normal inci-
dence); such a geometry is most convenient for inter-
preting the experimental results. Second, the rotating
permanent magnet was replaced by an el ectromagnet,
which created (in agap of 7 x 10 mm?) either aconstant
magnetic field H,,,,, = 1700 Oe or avarying field whose
amplitude value also attained 1700 Oe depending on
whether a dc or an ac current was fed to the magnet
winding. By reducing the varying field to zero, we
could demagnetize the sample almost completely (i.e.,
obtain a state with M, = 0).

We also developed a new method for measuring the
difference in the intensities 1(0) and I(H) of radiation
reflected from the sample in the demagnetized and
magnetized states instead of the ratio of these intensi-
ties, as was done earlier [8]. This allowed us to reduce
the “contribution” from noise, which is especially
important for small values of the effects being mea-
sured. The division of difference Al by the intensity of
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light measured for H = O determines the value of the
MRE, which is given by the formula

1(0)—1(H) _ R(0)=R(H)
100 ~ RO

where the light intensities are replaced by the energy
reflectances, which are proportional to them.

Such modifications and improvements enabled usto
measure the optical reflectance and the MRE not only
in the case of oblique incidence of light, but also for
angles close to normal incidence and not in the state of
residual magnetization, as before, but on completely
demagnetized samples. Despite the complication of the
optical path of the setup, the noise level did not exceed
that in [8]. The noise level was lowered to 1 x 10 in
the frequency range 500-1000 cm and to 3 x 10~ for
2000 cmt due to the application of storage operations
(over 1000 scans), mutualy reversible cycles, and
smoothing. Optical reflection and MRE measurements
were made for angles of incidence ¢ = 10° and 50° in
the frequency range 500-5000 cm* with a spectral res-
olution of 2 c™ at room temperature.

¢(w) =

(17)

Magnetoresi stance was measured using a two-point
potentiometer at room temperature in a magnetic field
of strength up to 12 kOe oriented parallel to the sample
surface and was determined, as usual, in accordance
with formula (13).

5. EXPERIMENTAL RESULTS
AND DISCUSSION

An analysis of the frequency dependence of optical
reflection in  nanocomposites belonging to the
(CoFeZr),(SI0,) 100« System proved (Fig. 1) that the
reflectance R(v)) is 2-3 times lower than for pure met-
als congtituting grains for al concentrations in the fre-
quency range 500-7000 cm and is practically inde-
pendent of frequency in the range 2500-7000 cm. For
frequencies below 2500 cm™, the value of R(v)
decreases insignificantly for samples with concentra-
tions below 47 at. %. In the frequency range 1100—
1400 cm™, a sharp decrease in R(v) followed by its
increase associated with absorption in the silicon diox-
ide matrix is observed. The minimal values of R(v) cor-
respond to samples with concentrations from the range
34-47 at. %, which corresponds to the region of perco-
lation threshold. The oscillatory behavior of R(v) for
samples in this concentration range in the frequency
interval 1100-1400 cm is associated with the interfer-
ence of light reflected at the film—air and film—substrate
interfaces. The strongest changesin R(v) correspond to
a narrow interval of 1300 + 100 cm™ in which the
reflectance changes by afactor larger than 2. Thereflec-
tion spectra for IR radiation in Fig. 1 correspond to an
angle of incidence ¢ = 10°. For ¢ = 50°, individual
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absorption bands are shifted by 2040 cm™ towards
higher frequencies.

Figures 2 and 3 show the results of measurements of
magnetoresi stance and M RE of the (CoFeZr),(S0,) 100«
system. The data on magnetoresistance and MRE are
given for the same value of field (1700 Oeg).

The percolation threshold determined from the
results of resistance measurements for this system of
amorphous granular aloys amounts to x = 43 at. %;
near this threshold, the magnetoresistance attains its
maximal value of 3.5%. For samples with a high con-
centration of the metal phase (x = 57 at. %), the magne-
toresistance is close to zero (Ap/p = 0.2%), which cor-
related with an insignificant MRE in accordance with
the theory developed in Section 1. It is interesting to
compare the MRE for samples with the same magne-
toresistance, but with concentrations x smaler and
larger than 43 at. %, i.e., on theleft and right of the per-
colation threshold. It can be seen from Fig. 3 that the
MRE for samplesin thedielectric phaseis stronger than
in the metallic phase (x > 47 at. %) for virtualy equal
values of magnetoresistance (see Fig. 2). In accordance
with formula (16), this is due to smaller values of the
reflectance for the “dielectric’ sample (see Fig. 1).
Finally, the frequency for which the maximal value of
MRE is observed exactly coincides with the frequency
(1200 cm™) for which the reflectance has the minimal
value.

Since the MRE isweak (less than 0.1% on the aver-
age) in this system of alloys, we had to prove that the
measured dependences are associated precisely with
the MRE. Figure 4 showsthe frequency dependences of
MRE for one of the samples for natural light and for a
p wave of linearly polarized light. It can be seen that the
polarization dependence is practically absent in the
spectral region where the signal exceeds 0.05%, which
isdirect proof of the fact that the signal being measured
isjust the MRE. However, the situation is different in
the frequency ranges 2500-1300 and 1000-800 cm,
where the signal is weaker than 0.05% and the influ-
ence of the even orientation effect becomes noticeable.

A correlation between magnetoresistance and MRE
isreliably observed for all nanocomposites. For exam-
ple, the magnetoresistance of Fe-SiO,, compositesin a
field of 2.2 kOe does not exceed 1.2%; accordingly, the
frequency dependence of the MRE shows that the mag-
nitude of this effect attains a value of 0.2% (Fig. 5).

In the vicinity of the percolation threshold, nano-
composites become relatively transparent (see Fig. 1);
consequently, the interference of light associated with
the reflection from the substrate cannot be disregarded
completely even for relatively thick films. In particular,
interference beats of the reflectance can be clearly seen
in Fig. 1 for filmswith x = 40, 34 a. %. A quantitative
description of the effect must be based on the theory for
themodel of athree-layer system described in Section 1.
Figure 6 shows the spectra describing the frequency
dependence of the MRE for a CoyAl,,04; sample,
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Fig. 2. Concentration dependence of the magnetoresi stance
of granular (CogsFess2r10)x(SiO1 7)100 — x COMpOsite.
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Fig. 3. Frequency dependence of the magnetorefractive
effect of granular (CogsFess2r10)x(SiO1.7)100—x COMpPOS-

ites: x =57 (1), 47 (2), 40 (3), and 34 (4); magnetic field is
1700 Oe; ¢ = 10°.

which were obtained for an angle of incidence of 10°
and for which the effect of interference is pronounced
most clearly. The theoretical §(v) dependences corre-
sponding to these spectra are shown in Fig. 7.

Figure 8 shows the experimental data on dispersion
of the MRE (for two values of magnetic field of 1500
and 1700 Oe) and of the reflectance of ananocomposite
(Cop4Fepe)as(Mgs,F) film with a tunnel conductivity
and a high magnetoresistance (7.5% in a field of
1700 Oe) for an angle of incidence ¢ = 10°. It can be
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Fig. 4. Frequency dependences of the MRE for natural (dot-
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(CoygsFes52r10)47(Si01 7)s3 film in a magnetic field of
1700 Oe; ¢ = 10°.
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Fig. 6. Frequency dependences of the MRE of a
Co43Al»035 film for two values of field AH = 2200 and

100 Oe: solid and dotted curves correspond to angles of
incidence ¢ = 45° and 10°, respectively.

seen from the figure that the MRE attains a value of
1.5%, which is arecord high for all metallic and non-
metallic systems studied and is two orders of magni-
tude stronger than the traditional magnetooptical
effects. In accordance with relation (16), such amagni-
tude of the MRE is due to alow reflectance and a high
magnetoresistance. It should be emphasized that
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Fig. 5. Frequency dependences of the reflectance (dotted
curve) of aFe-SiO, film on a Si substrate and of the MRE

(solid curve) for amagnetic field H = 2200 Oe.
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Fig. 7. Theoretica dependences of the MRE for a
Coy3A155035 film: Ap/p = 3% (solid curve); Ap/p = 1%,
¢ =45° (dotted curve); and Ap/p = 1%, ¢ = 10° (dashed
curve).

expression (16) does not rule out higher values (on the
order of 10%). Figure 9 shows the spectra of frequency
dependences of the MRE for the same sample in a
wider frequency range for ¢ = 45° and for three values
of the magnetizing field H = 0, 1500, and 1700 Oe. The
spectrum for H = 0 shows the noise level from which
the response of the investigated signal to the action of
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aging over 300 scans; ¢ = 45°.

the magnetic field is separated. The magnitudes of the
MRE for the above values of the field imply that the
&(H) dependenceis nonlinear.

The following two facts, which cannot be described
in the framework of the theory developed in Section 1,
are worth noting. First, it can be seen from Fig. 8 that
the values of reflectance for A = 20, 5 um differ by a
factor of 4, while the magnitude of the MRE is practi-
cally the same for these wavel engths. Second, the pres-
ence of two narrow and sharp MRE peaks in the vicin-
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ity of A = 10 um does not correlate with the behavior of
the reflectance either. Finally, we cannot explain a con-
Siderable MRE “noise” infieldsof 1.5and 1.7 kOein a
wavelength range of 15-10 um. These features are
probably associated with an additional influence of the
magnetic field on elementary excitations in the dielec-
tric MgF matrix. It should aso be bornein mind that the
simple theory of high-frequency tunneling developed
above disregards such factors as, for exampl e, the effect
of electron—electron interaction [20].

6. CONCLUSIONS

The experiments described here prove the existence
of a new magnetooptical effect, viz., MRE, associated
with spin-dependent tunneling in magnetic nanocom-
positesin the vicinity of the percolation threshold. The
MRE obviously correlates with the tunnel magnetore-
sistance. Depending on the magnetoresi stance and opti-
cal properties of the nanocompasite, the magnitude of
the MRE varies over a wide range from 0.1 to 1.5%,
which isone or two orders of magnitude higher than the
even magnetooptical effect. The devel oped theory pro-
vides aqualitative and semiquantitative explanation for
anumber of experimental data and promises the attain-
ment of even higher magnitudes of the MRE. It would
undoubtedly beinteresting to continue the investigation
of the angular, polarization, and temperature depen-
dences of the MRE; the search for mechanisms respon-
sible for the MRE in metal—semiconductor systems;
and the advancement to the far-IR spectral region as
well asto the visible region for which new effects asso-
ciated with the dependence of the tunnel transparency
on the light frequency should be expected.
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Abstract—The experimental data on the spectra of elementary excitations measured by inelastic neutron scat-
tering and on the heat capacity and the coefficient of thermal expansion are used to analyze the correlation
between the spectral characteristics of the electron and phonon subsystems and the specia features of the tem-
perature dependence of the thermodynamic properties of anumber of unstable valence Sm- and Ce-based com-
pounds. The anomal ous behavior of the thermodynamic properties of these compoundsis defined by the special
features of their phonon and electron (4f and conduction electrons) spectra. The rearrangement of the 4f-elec-
tron spectrum as a result of temperature variation plays a decisive part in the formation of temperature depen-
dences of the heat capacity and the coefficient of thermal expansion of unstable valence systems. © 2003 MAIK

“ Nauka/lInterperiodica” .

1. INTRODUCTION

Unstable valence compounds on the basis of rare-
earth elements are characterized by the presence of a
fairly large anomalous (or additional) contribution to
the temperature dependences of the heat capacity and
the coefficient of thermal expansion as compared to
their isostructural analogs with an open or filled 4f shell
[1, 2]. It is known that, in the case of rare-earth com-
pounds with a stable magnetic moment, the anomal ous
contribution to the thermodynamic properties is due to
the presence of 4f multiplets split in a crystal electric
field [3]. This “traditiona” interpretation of the anom-
alous contribution to thermodynamics cannot be
employed in the case of unstable valence compounds,
because no effects in a crystal electric field in the ordi-
nary sense are present in these systems as a result of
partial delocalization of 4f electrons.

As arule, the anomalous contribution in unstable
valence compounds, which isobtained asthe difference
between the heat capacities or the coefficients of ther-
mal expansion of an unstable valence compound and its
structural analog, istaken to be electronic by nature and
directly associated only with the valence instability,
i.e., with anonintegral population of the 4f shell. In one
of the early papers [4], the electron anomaly of the
coefficient of therma expansion of unstable valence
compounds was interpreted as a result of variation of
the population of the 4f shell of a rare-earth ion with
temperature. Asamatter of fact, in all of the subsequent
papers, the population of the 4f shell was one of the
main parameters treated in analyzing the thermody-

namic properties [5-7]. The development of concepts
of the effect of valence was marked by the need for tak-
ing into account various interactions observed in unsta-
ble valence systems (in particular, the el ectron—phonon
interaction [8]) and leading to avariation of theinternal
energy and entropy of unstable valence systems. Note
that the treatment of partial components associated
with different interactions made it possible to interpret
the thermal properties of heavy-fermion compoundsin a
wide temperature range, in particular, of CeRu,Si, [9].
However, in the case of quantitative calculations of the
anomalous thermodynamic and elastic properties of
unstable valence compounds, an integral characteristic
wasintroduced, asarule. In particular, Takke et al. [10]
used a phenomenological scaling function for the elec-
tron part of free energy, proportional to the universal
energy scale T, characteristic of the systems being
treated. The volume dependence of the electron part of
free energy is defined by the volume dependence of T,.
This enables one to introduce the electron Grueneisen
parameter 'y = —d[InTy)/d[InV] (where V is the vol-
ume) for the description of the electron and electron—
phonon contributions: in terms of this parameter, the
majority of thermodynamic quantities may be calcu-
lated. The above-described approach produces adequate
agreement between theory and experiment a T < T,
however, the problem of physical understanding of spe-
cial features of the anomalies of the thermal expansion
coefficient for different compounds (sign, amplitude,
range of existence) cannot be fully solved. For exam-
ple, in spite of the fact that the characteristic tempera-
ture (T, ~ 150 K) and the values of variation of valence
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inthetemperaturerangefrom 4t0 300K (JAvge| ~ 0.05)
are comparable for SmBg [11] and CeNi [12], the
anomalous contributions to the coefficient of thermal
expansion of SmBg [13, 14] and CeNi [15, 16] have
opposite signs, as well as essentially different scales
and ranges of this anomaly.

In analyzing the thermodynamic properties of a
number of specific unstable valence compounds (the
so-called Kondo-insulators) in which, at alow temper-
ature, agap isformed in the electron density of statesin
the vicinity of the Fermi energy, it isthe presence of the
gap that is regarded as the main reason for the emer-
gence of asignificant additional contribution to the heat
capacity and to the coefficient of thermal expansion.
For example, the marked anomaly revealed in the elec-
tron component of heat capacity and coefficient of ther-
mal expansion of SmBg wasinterpreted asthe contribu-
tion arising as a result of excitation of electrons via a
semiconductor gap of the order of 5 meV [17]. Ade-
guate agreement was obtained between a model calcu-
lation and experiment; however, in this case, Mandrus
et al. [17] examined afairly narrow temperature range
(T <80 K) and restricted themsel ves to one binary com-
pound. The significant negative component of the coef-
ficient of thermal expansion in the higher temperature
range (T > 100 K) [14]) remained unexplained.

Therefore, in analyzing the thermodynamic proper-
ties, the authors of the publications known to us either
introduced (within the phenomenological approach)
the universal integral parameter or treated a concrete
special feature of the system being examined. However,
they have, first of al, failed to take into account the real
energy spectrum of excitations of 4f electrons and its
rearrangement with temperature, which is known to be
significant. The second important point to be noted is
the need for taking into account the electron—phonon
interaction. Indeed, a number of Sm- and Ce-based
unstable vaence compounds exhibit significant
changes in the phonon dispersion curves compared to
structural analogs [18, 19]. A renormalization of
phonon frequencies in unstable valence compounds
may bring about the emergence of an additional contri-
bution to the heat capacity and coefficient of thermal
expansion compared to the data for an isostructura
analog. And, thirdly, in treating Kondo insulators, i.e.,
systems with avaenceinstability and agap in the elec-
tron density of statesin thevicinity of the Fermi energy,
one must take into account the specia features of the
density of states of conduction electrons in the vicinity
of the Fermi energy along with (rather than instead of)
the 4f-electron contribution and the special features of
the lattice vibration spectrum.

It was the objective of our study to estimate, using
the example of Sm,_,LaBs; and Ce,_,LaNi com-
pounds, the contribution made to the thermodynamics
of unstable valence compounds due to the special fea-
tures of the real spectral characteristics of the electron
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(4f and conduction €electrons) and lattice subsystems
and to use the resultant estimates to determine the part
played by separate contributions in the formation of
anomalous heat capacity and coefficient of thermal
expansion in a wide temperature range. Samarium
hexaboride (SmBg) is known as a “classical” unstable
valence compound with a “strong” intermediate
valence. The valence of Smionsat room temperatureis
Vs, ~ 2.55 and decreases with cooling to v, ~2.50 [11].
An important feature of SmB; is the presence of a nar-
row gap in the electron density of states in the vicinity
of the Fermi energy, which was estimated in early
papers at approximately 5-10 meV [2, 13]. Detailed
investigations of the kinetic characteristics of SmBg
were recently performed using high-quality samples
[20-22]. It was experimentally shown in the latter
papers and theoretically substantiated in [23] that the
electron transport in SmBg isdefined by at least two dif-
ferent energy scales, namely, the hybridization gap of
approximately 10-20 meV and the “impurity” band in
the vicinity of the bottom of the conduction band (A ~
3 meV). The smaller energy scale is defined by the for-
mation of abound electron—polaron complex asaresult
of fast valence fluctuations on each Smion. The carrier
concentration in the “impurity” band is estimated at
approximately 10*” cm3[23]. CeNi is an intermetallic
unstable valence compound with a “moderate” inter-
mediate valence (v, ~ 3.11 at room temperature and
Vee ~ 3.14 at T=10K [12]). The spectra of lattice and
4f-electron excitations of SmBg and CeNi have been
studied in sufficient detail [24]. In addition, the valent
state of arare-earth ion in both compounds may be pur-
posefully varied when a Sm (or Ce) ion is replaced by
alLaion. A variation of the valent state leads to amarked
transformation of the 4f-electron and phonon spectra.
Therefore, a study of dilute systems (Sm, _,LaBg and
Ce, _,LaNi) offers apossibility of checking the gener-
aity of the inferences made for stoichiometric com-
pounds and of more reliably determining the general
regularities of the formation of anomalies in the ther-
modynamic properties.

2. CALCULATION
OF THERMODY NAMIC PROPERTIES

Anomal ous contributions to the thermodynamic prop-
erties of unstable valence Sm,; _,LaB; and Ce, _,LaNi
compounds were treated within a unified approach as a
result of summation of independent (in afirst approxi-
mation) components associated with the actual special
features of the phonon and electron (4f electrons and
conduction electrons) spectra.

The following expression was used to calculate the
anomal ous contribution to the heat capacity:

AC(T) = C(T) + AC(T) + Cy(T), (D)
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where C; isthe heat capacity due to the special features
of the 4f-electron excitation spectrum. The value of C;
was determined on the basis of the experimentally mea-
sured 4f-electron excitation spectrum for unstable
valence compounds; the structure of this latter spec-
trum providesinformation about the density of states of
4f electrons. In calculating the heat capacity, the multi-
plicity of degeneracy of the ground state of arare-earth
ion wastaken into account; AC,; isthe additional lattice
contribution to the heat capacity of unstable valence
compounds, which arises as aresult of renormalization
of phonon frequencies in unstable valence compounds
compared to isostructural materials. This latter contri-
bution was obtained as a difference between the lattice
contribution to the heat capacity of an unstable valence
compound and the corresponding contribution to the
heat capacity of an isostructural analog containing no
4f electrons. Inthe case of SmBg, the density of phonon
states was obtained from the experimentally measured
dispersion curves [18] on the basis of model calcula-
tions which take into account the contribution by the
exciton—-phonon interaction. For CeNi, we used the
phonon density of states obtained from experimentsin
inelastic neutron scattering [25]; the value of C, isthe
contribution to the heat capacity, which is due to the
gap inthe electron density of statesin thevicinity of the
Fermi level. This contribution was obtained for
Sm, _,LaBg compounds as the difference between the
total experimentally obtained anomalous contribution
to the heat capacity and the calculated contributions C;
and AC 4.

The corresponding partial contributions to the coef-
ficient of thermal expansion of unstable valence com-
pounds (a;) were determined on the basis of the Grue-
neisen relation by fitting the Grueneisen coefficients
(). Inthe calculation, the possible temperature depen-
dence of the Grueneisen coefficients was ignored. The
total anomalous contribution to the coefficient of ther-
mal expansion (Aa) was obtained as the sum of sepa-
rate partial contributions,

Aa(T) = o (T) +Aa(T) + ay(T)
2
= VX[ Co(T) + TiAC4(T) + T4 Cy(T], @

where q; is the contribution defined by the 4f-electron
excitation spectrum, Aa,; is the additional lattice con-
tribution associated with the transformation of phonon
Spectra, 0 is the contribution by the gap in the density
of electron states in the vicinity of the Fermi energy, V
isthe molar volume, and X; istheisothermal compress-
ibility. For the compounds treated by us, the molar vol-
ume and isothermal compressibility depend little on
temperature. In the calculation, their values were taken
to be constant parameters. The values of isothermal
compressibility for SmBg (0.125 x 10* cm® J*) and
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Fig. 1. The temperature dependence of the experimentally
obtained anomalous contribution to the heat capacity of
SmBg (@) [14] and the calculated partial contributions. The

dashed line indicates the contribution associated with the
4f-electron states (Cy). The dotted line indicates the addi-

tional lattice contribution (AC,4). The dot-and-dash line

indicates the contribution describing the electron gap in the
vicinity of the Fermi energy (Cg). The solid line indicates

the total calculated contribution to the anomalous heat
capacity of SmBg. Shown in theinset isthe low-energy part

of the magnetic response for SmBg [24]. The bold arrow
indicates the low-energy excitation at E,, = 14 meV, and the
thin arrow indicates the strongly broadened spin—orbit tran-
sition Jy — J; for SM?* (E = 36 meV).

CeNi (1.02 x 10* cm?® J1) were borrowed from [26]
and [27], respectively.

3. RESULTS AND DISCUSSION

All of the calculations and analysis were based on
the experimental information obtained by us over a
number of years for spectra of 4f-electron and lattice
excitations[14, 18, 19, 24, 25] and detailed data on the
temperature dependences of the coefficient of thermal
expansion for Sm,_,LaBg; and Ce,_,LaNi [14, 16]
and of the heat capacity for Sm; _,LaBg[14].

3.1. Sn, _,La,Bs Compound

Wewill examinethe possible components (or reasons
for) the anomalous heat capacity of SmBg. Figure 1
gives the temperature dependences of the experimen-
tally observed anomalous contribution to the heat
capacity of SmBg [14] in the low-temperature region,
which was already analyzed in the literature [2, 17], as
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Fig. 2. The temperature dependence of the lattice contribu-
tion to the heat capacity for SmBg (solid line) and LaBg

(dashed line), calculated from the phonon density of states
(see the text). Shown in the inset is the phonon density of
states of acoustic branches in SmBg (solid line) and LaBg
(dashed line).

well asthe calculated (total and partial) contributionsto
the heat capacity of SmB;g.

The phonon dispersion curves of SmBg significantly
differ from those of its isostructural analog LaBg [18].
These differences are associated with the presence of
resonant interaction of normal lattice vibrations with
dipole (f—-d) and monopole (f—f) excitations of the
4f shell of Sm; i.e., it would appear that the electron—
phonon interaction is superimposed on the phonon
spectrum of LaBg and distortsthis spectrum by virtue of
the nonadiabaticity of the electron subsystem that
arises upon formation of the unstable valence state. As
a result, the density of phonon states of SmBg shift to
the region of lower frequencies with respect to LaBg
(Fig. 2, inset). This cannot but reflect on the tempera-
ture behavior of the heat capacity. Figure 2 gives the
calculated lattice components of heat capacity C, for
SmB; and LaB,. One can see that the value of heat
capacity C,; for SmB; markedly exceeds that for LaBg
in awide temperature range. Consequently, because of
the strong el ectron—phonon interaction and correspond-
ing renormalization of the phonon frequencies, the
unstable valence state of Sm brings about the emer-
gence of an additional contribution to the lattice heat
capacity (AC;) a T < 300 K in SmBg (compared to
LaBg), which represents an appreciable fraction of the
entire anomalous heat capacity of SmBg (Fig. 1).

Along with singularities in the atomic vibration
spectrum, samarium hexaboride has a specific spec-
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trum of 4f-electron excitations [24] (Fig. 1, inset). The
main specia features of the 4f-electron spectrum of
SmBg include the great width of spin—orbit excitation
(Jo — Jy) and the presence of additional narrow low-
energy excitation (marked by arrow in the inset in
Fig. 1) associated with the formation, at low tempera-
ture, of a new ground, quantum-mechanically mixed
state of samarium ion. As the temperature rises, the
intensity of low-energy excitation decreases, however,
a quasi-elastic component arises. Such a spectrum of
4f-electron states and its transformation with tempera-
ture produce additionally a significant contribution C;
to the anomal ous heat capacity of SmBg (Fig. 1).

After the sum of two components (C,; + C;) is sub-
tracted from the experimentally determined anomal ous
heat capacity of SmBg, the part withamaximumat T =
30 K remains in AC(T); this latter part is apparently
associated with the effect of excitation of electronsvia
the gap in the spectrum of electron statesin the vicinity
of the Fermi energy (C,). As was mentioned in the
Introduction, it has now been reliably found that two
energy scales are characteristic of SmBg, namely, the
hybridization gap and “impurity” band [21]. If a two-
level model isused to eval uate the gap from the temper-
ature dependence C,(T), avalue on the order of 60K is
obtained. This value is close to the scale of hybridiza-
tion effects (in this case, one must take into account the
possible temperature dependence of the gap size
proper). The absence of a marked effect of the “impu-
rity” band on the thermodynamic properties is appar-
ently due, first, to the low density of statesin this band
and, second, to the thermal dissociation of the “impu-
rity” statesat T~ 15K [23].

Therefore, the formation of an anomalous contribu-
tion to the heat capacity of samarium hexaboride is
associated with three special features of this system,
namely, the strong electron—phonon interaction, the
specific spectrum of 4f-electron states, and the exist-
ence of a gap in the density of electron states in the
vicinity of the Fermi energy. In accordance with the
Grueneisen relation given by Eg. (2), the anomalous
contribution to the coefficient of thermal expansion of
SmB; must also have three components. Figure 3a
gives the anomal ous contribution to the experimentally
obtained coefficient of thermal expansion of SmBg [14]
and the calculated components of the coefficient of
thermal expansion. One can see that the overall calcu-
lated coefficient of thermal expansion reproduces the
main special features of the temperature dependence of
the experimentally determined anomal ous contribution
to the coefficient of thermal expansion. However, the
temperature dependence curve of the calculated coeffi-
cient of thermal expansion is smoother than that of the
experimentally obtained coefficient. This is possibly
associated with the somewhat simplified approach
employed by us. It was assumed in the calculation that
the Grueneisen coefficient was temperature-indepen-
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dent. Apparently, when treating systems with a strong
interaction of the electron and lattice subsystems, one
must take into account some temperature dependence
of the Grueneisen coefficient.

The calculated negative values of partial Grueneisen
coefficients (Table 1) are experimentally validated. The
information about the sign of ' may be provided, for
example, by experiments performed under pressure,
because I' 00 d(InE)/dP (where E is the characteristic
energy of the subsystem and P isthe pressure). Investi-
gations of the electric resistance of samarium
hexaboride as a function of pressure revealed a linear
decrease in the gap size with increasing pressure [28].
Consequently, the Grueneisen coefficient g must be
negative.

Neutron experiments performed under pressure
haverevealed that, at E,, = 14 meV (theinsetin Fig. 1),
the exciton-like magnetic excitation observed under
normal external pressure shifts to the region of lower
energies (Eo = 7meV at P=7 GPa) [29]. Thisindicates
that the value of I'; is negative.

The situation is somewhat more complicated in the
case of the Grueneisen coefficient for the additional |at-
tice contribution. No measurements have been per-
formed up to now of the phonon dispersion curves of
SmBg under pressure. Therefore, we restrict ourselves
to qualitative considerations with respect to the possi-

bility of emergence of a negative value of I'};,. In nor-

mal cubic systems with integral valence, a decrease in
the volume of a unit cell leads to an increase in the
phonon frequencies. In SmBg, which is characterized
by partly delocalized 4f electrons, a softening of the
photon spectrum has been experimentally observed as
compared to LaBg [18], in spite of the significantly
smaller volume of a unit cell of samarium hexaboride.
Because, when a minor externa pressure is applied,
samariumionsbecome more*“intermediately valent” [29]
(the valence of samarium ions under pressure is
Ven — 37[30]), itislogical to assume that thisresults
in astill further softening of the phonon frequenciesin
SmBg. That is, the negative value of the Grueneisen

coefficient I';, doesnot contradict the physical patterns
discussed abovefor this compound. In order to arrive at

afinal conclusion with respect to the sign of I'};;, one

needs to perform direct measurements of phonon dis-
persion curves under pressure.

Analysis of the anomalous coefficient of thermal
expansion of SmBg has revealed (Fig. 3a) that, at alow
temperature (T < 100 K), coefficient Aa(T) is largely
associated with specia features of the 4f-electron spec-
trum and with the gap in the density of electron states
in the vicinity of the Fermi energy. Previoudly, the
anomalous contribution to the coefficient of thermal
expansionat T <100 K wasinterpreted either asaresult
of the presence of the gap [17] or as aresult of the tem-
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Aa, 1070 K!

200

0 100
T,.K

Fig. 3. The temperature dependence of the experimentally
obtained anomalous contribution to the coefficient of ther-
mal expansion for Sm; _,L a,Bg[14] and the cal cul ated par-
tia contributions: () x=0, (b) x=0.22, (c) x=0.5. Thedot-
ted line indicates the additional lattice contribution (Aa ).
The dashed line indicates the contribution associated with
the 4f-electron states (05). The dot-and-dash line indicates

the contribution describing the electron gap in the vicinity
of the Fermi energy (og). The solid line indicates the total

calculated contribution to the coefficient of thermal expan-
sion of Sm; _,LaBs.

perature variation of thevalenceof aSmion [2]. At T >
100 K, the significant negative contribution is largely
defined by the strong electron—phonon interaction.
Note that the reasons for the emergence of the addi-
tional component of the coefficient of thermal expan-
son a T > 100 K were not understood heretofore,
because the valence of samarium ions at temperatures
above 110 K remains a constant quantity [11], and the

No. 6 2003



1118

Table 1. The Grueneisen coefficients of partial components
of the anomalous contribution to the coefficient of thermal
expansion for Sm; _,La,Bg compounds

Sample ¢ [ Mg
SmBg -15 -04 -1.5
SMo78L-39 2B 1.2 -0.9 -1.0
SMgsLay 5B -1.0 -1.2 -1.0

effect of the electron components is significantly
weakened.

We will treat SmBg-based compounds for which the
valent state of samarium ion varies upon substitution of
Sm by La (Sm;_,LaBg). All ternary compounds are
likewise characterized by the presence of the additional
negative contribution to the coefficient of thermal
expansion (Figs. 3b and 3c); however, the main singu-
larity (aminimum of Aa(T) at T < 100 K) shiftsto the
region of higher temperatures. We will discuss the
dependence Aa(T) for dilute compounds from the
standpoint of the importance of all components respon-
sible for the anomalous coefficient of thermal expan-
sion in SmBg. An investigation of spectra of lattice
excitations of Sm, _,LaBg has revealed that al dilute
compounds exhibit a general softening of acoustical
phonons compared with LaB; however, compared with
SmBg, the variation of the phonon frequenciesin those
dilute compounds is insignificant [14]. Therefore, the
exciton model suggested for the description of spectra
of lattice vibrations for SmBg is apparently valid for
dilute systems as well. Consequently, the anomalous
coefficient of thermal expansion of dilute samples must
incorporate the component Aa,,; associated with the
electron—phonon interaction. Because the lanthanum
doping failed to bring about significant changes in the
phonon spectrum of samarium hexaboride, the value of
Aq, in dilute systems remained the same as in SmBg
(Figs. 3b and 3c).

In Sm; _,LaBg compounds, the component a;(T)
due to the presence of 4f electrons significantly differs
from the analogous component for SmB; thisis asso-
ciated with qualitative changes in the 4f-electron exci-
tation spectra. According to the data on the inelastic
magnetic scattering of neutrons, the low-energy excita-
tionin La-substituted samples, which isassociated with
the new ground state of samarium ions, is characterized
by different experimentally observed values of param-
eters such as the energy, intensity, and temperature
dependence [29]. The substitution by La brings about
an increase in the energy of “low-energy excitation”
observed in SmBg to 25-30 meV; in so doing, the tem-
perature dependence of the intensity also varies and
becomes smoother. This leads to a marked shift of the
o;(T) maximum to the region of higher temperatures
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and to its weakening. Finaly, the oy(T) component
remains in dilute samples, which is largely due to the
gap inthe vicinity of the Fermi energy, by analogy with
SmBg. This fact must be given specia attention,
because it is generally taken that, when SmBg is doped
with lanthanum, the gap in the spectrum of electron
states disappears even at alow concentration of La[2].
The results of our thermodynamic measurements [14]
point to the existence of agap in al dilute samples up
to x = 0.5. The statement about the absence of agap in
dilute samplesis based on the results of measurements of
electric resistance aone and apparently fails to fully
reflect the mi croscopic properties, because the additional
states introduced by lanthanum ions “shunt” the gap in
kinetic measurements. However, the form of the density
of states suffers no cardina changes. Additional states
show up, for example, inthemarked increasein thevalue
of the Sommerfeld coefficient at low temperatures [14].

By and large, the values of Aa,(T) for Sm, _,LaBg
are in adequate agreement with experiment. Conse-
quently, the anomalous contribution to the coefficient
of thermal expansion for Sm; _,L a B¢ has three compo-
nents. For dilute systems, the high-temperature anoma-
lous negative contribution to the coefficient of thermal
expansion is largely defined by the electron—phonon
interaction and, at T < 150 K, it isdefined by the special
features of the spectrum of states of 4f electrons. One
can clearly seethat the shift of position of the minimum
of Aa(T) at T <100 K in dilute compounds relative to
SmBg islargely theresult of qualitative variation of the
4f-electron spectrum.

Analysis of the temperature dependence of the coef-
ficient of thermal expansion in a wide temperature
range for Sm, _,La B compounds revealed the follow-
ing. For al of the treated compounds, the anomalous
contribution Aa(T) may be interpreted in view of the
main special features of these compounds, namely, the
presence of a narrow gap in the spectrum of electron
states in the vicinity of the Fermi energy and the unsta-
ble valence state of samarium ion, which affects the
parameters of spectra of magnetic and lattice excita
tions. It was found that, at low temperatures, the value
of Aa(T) islargely defined by the contribution associ-
ated with the 4f-electron spectrum and by the presence
of agap in the spectrum of electron states. The signifi-
cant contribution to the coefficient of thermal expan-
sion and to the heat capacity at T > 80-100 K is associ-
ated with the manifestation of el ectron—phonon interac-
tion, i.e., with the result of the effect of the unstable
valence state of Sm ions on the lattice dynamics.

3.2. Ce;_,LaNi Compound

Since CeNi is a metal, AC(T) and Aa(T) will be
determined only by the effect of the unstable valence
state on the spectrum of magnetic and lattice excita-
tions.
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We will treat the temperature dependence of the
anomalous contribution to the heat capacity of CeNi. In
CeNi, asin SmBg, one can expect the emergence of a
contribution associated with the renormalization of
phonon frequencies, because a strong softening of
phonon vibrations in CeNi compared to LaNi was
experimentally observed recently [19]. In contrast to
SmBg, the difference between the spectra of lattice
vibrations of CeNi and LaNi leads to the emergence of
the heat capacity component AC,; only at low tempera-
tures (Fig. 4). Thereason for the difference between the
additional lattice contributions AC,; in CeNi and SmBg
is associated with the much “softer” vibrational spec-
trum of CeNi (Fig. 4, inset). The entire RNi spectrum
fitsthe 0-5 THz range; the acoustic region in which the
softening is observed correspondsto the 0-2 THz range
[24]. The total SmBg spectrum extends up to 40 THz.
Theinset in Fig. 2 shows only the acoustic region for
S‘T]B6.

The heat capacity component C; due to the presence
of 4f electrons was calculated using the experimental
data on the 4f-electron spectrum in CeNi in view of the
temperature dependence of the latter spectrum [24].
Figure 4 shows that the cal culated heat capacity by and
large enables one to describe the main special features
of the experimentally obtained heat capacity. The main
reason for the formation of an anomalous contribution
to the heat capacity of CeNi was found to be due to the
existence of an unusual spectrum of states of 4f elec-
tronsat alow temperature and to its rearrangement with
increasing temperature. However, the experimentally
observed anomalous contribution to the heat capacity
differsin magnitude from that calculated at T < 200 K.
The value of entropy for the 4f-electron contribution
(about 9 J (mol K)™ = RIn3, where R is the gas con-
stant) obtained upon integration of the calculated
anomalous contribution to the heat capacity is much
lower than the value of entropy determined by integra-
tion of the experimentally obtained value in the same
temperature range (about 13.5 J(mol K)== RIn5). This
fact indicates that, along with the treated contributions,
this system is characterized by additional degrees of
freedom which were disregarded in our calcul ations but
could have resulted in changes of theinternal energy of
the system. In particular, the presence of coherence in
therare-earth ion sublattice, most likely associated with
magnetic interaction, and itsimportance in theformation
of low-temperature properties were observed during
investigations of Ce; _,(Y,La),Ni compounds[12, 16].

We will now turn to the anomalous contribution to
the coefficient of thermal expansion, Aa(T), for CeNi
(Fig. 5a). The anomal ous contribution to the coefficient
of thermal expansion of CeNi, Aa(T), is adequately
described in awide temperature range in the case of the
values of the partial Grueneisen coefficient of ' ~ 2
(Table 2). Unlike SmBg-based compounds, the Grue-

neisen coefficients ', and I}, of CeNi have positive
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Fig. 4. The temperature dependence of the experimentally
obtained anomalous contribution to the heat capacity of
CeNi (0) [15] and the calculated partial contributions. The
dashed line indicates the contribution associated with the
4f-electron states (Cy). The dotted line indicates the addi-

tional lattice contribution (Aa,). The solid line indicates

the total calculated contribution to the anomalous heat
capacity of CeNi. Shown in theinset isthe generalized func-
tion of phonon statesfor CeNi (o) and LaNi (o) obtained from
experimentsin inelastic neutron scattering [25].

values. The positive value of 'y may be validated by the
results of investigation of the spectrum of magnetic
excitations with applied “chemical” pressure. Indeed,
the substitution of Ce by La (theintroduction of lantha-
num ions into the CeNi lattice causes the latter to
expand, which is equivalent to the application of “neg-
ative” external pressure) brings about the shift of the 4f-
electron spectrum to the region of lower energies [25].

In order to validate the positive sign of '}, , additional

experiments are required to investigate phonon curves
under pressure or with chemical substitution.

One can seein Fig. 5athat, for CeNi, the great pos-
itive anomaly in Aa(T) is largely defined by the spec-
trum of states of 4f electrons. This inference was
strongly supported by the results of calculation of
Aa(T) for Ce, _,LaNi compoundsinwhich the valence

of a cerium ion approaches 3* as Ce is substituted by
La In studying the spectra of excitations of 4f electrons

Table 2. The Grueneisen coefficients of partial components
of the anomalous contribution to the coefficient of thermal
expansion for Ce; _,LaNi compounds

Sample I (8

CeNi 2.0 2.0

CepslagsNi 15 1.0
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Fig. 5. The temperature dependence of the experimentally
obtained anomalous contribution to the coefficient of ther-
mal expansion for Ce; _,LaNi [16] and the calculated par-
tial contributions: (a) x =0, (b) x = 0.5. The dotted lineindi-
cates the additional lattice contribution (Aa4). The dashed

line indicates the contribution associated with the 4f-elec-
tron states (o). The solid line indicates the total calculated

contribution to the coefficient of thermal expansion. The
insets show the magnetic response for CeNi and
CepsLagsNi. Thelinesintheinsetsindicate the result of fit-
ting [25].

using the method of inelastic neutron scattering [25], it
was observed that aqualitative transformation of the 4f-
electron spectrum occurs when CeNi is doped with lan-
thanum (insets in Figs. 5a and 5b). The reason for this
transformation is associated with the transition of Ce
ions from a state with intermediate valence to a state
with an almost localized magnetic moment (Kondo
state). One can see that the calculated contribution
Aa(T) for the Ceyslay sNi compound agrees well with
the experimentally observed anomalous contribution;
this calculated contribution both allows for the shift of
the maximum to the region of lower temperatures and
reflects a gradual decrease in this maximum (Fig. 5b).
The dilution resultsin the violation of coherencein the
rare-earth ion sublattice; i.e., the possible additional
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contribution to the coefficient of thermal expansion,
which was discussed when analyzing CeNi, disappears
in dilute compounds. Indeed, the description of the
temperature dependence of the coefficient of thermal
expansion is significantly improved in the case of a
dilute compound. Therefore, the main reason for the
strong variation in Aa(T) in Ce;_,LaNi is due to the
modification of the spectrum of excitations of 4f elec-
trons as a result of transition of a Ce ion from a state
with intermediate valence to a state with an almost
localized magnetic moment. It will be recalled that the
substitution with lanthanum in SmBg did not cause the
disappearance of either the calculated or the experi-
mentally obtained extremum of the coefficient of ther-
mal expansion. The unstable valence state of a Smion
is characteristic of all of the samarium compounds
treated by us[14].

In view of the foregoing, the temperature depen-
dence of the coefficient of thermal expansion of
Ce, _,LaNi islargely defined by the spectrum of exci-
tations of 4f electrons. At low temperatures, however,
one cannot but take into account the component associ-
ated with the special features of the spectrum of lattice
excitations.

4. CONCLUSIONS

The anomalous contribution to the temperature
dependence of the thermodynamic quantities of Ce-
and Sm-based unstable valence systemsin awide tem-
perature range may be described in view of the actual
special features of the excitation spectra of the electron
and phonon subsystems. It has been found that the rea-
son for the emergence of alow-temperature (T < 80 K)
anomaly of the heat capacity and of the coefficient of
thermal expansion of SmBg is due to the specific spec-
trum of 4f-electron states and to the presence of a gap
in the electron density of states in the vicinity of the
Fermi energy. At T > 100 K, a significant negative
anomaly of the coefficient of thermal expansion arises
because of the strong el ectron—phonon interaction and
associated variation of the phonon frequencies. The
renormalization of the phonon frequenciesin CeNi rel-
ative to LaNi leads to the emergence of a marked com-
ponent at a low temperature. The anomalous contribu-
tion to the heat capacity and the great positive anoma-
lous contribution to the coefficient of thermal
expansion of CeNi are largely defined by the unusual
spectrum of 4f electrons. The general and main reason
for the strong modification of the temperature depen-
dence of the coefficient of thermal expansion for Sm-
and Ce-based compounds consists in the transforma-
tion of the spectrum of 4f-electron states.
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Abstract—The emission spectrum of an injection GaAs laser with afour-sided resonator with a square cross
section of size 13 x 13 pm? is presented. This laser is the world's smallest laser, having the threshold current
lth= 0.7 mA and a photon flight time in the resonator that is shorter than the thermal relaxation time T,. It is
shown that the emission spectrum of the laser drastically differs from the spectrum emitted by lasers of usual

size. © 2003 MAIK “ Nauka/lInterperiodica” .

It has been shown in paper [1] that the spontaneous
emission of injection lasers with afour-sided resonator
of small size (30 x 30 um?) saturates above the lasing
threshold, and single-frequency lasing lasts up to the
tenfold excess over the lasing threshold.

The study was continued with lasers of even smaller
size. Lasers of asquare shape with afour-sided resona-
tor of size 13 x 13 pm? were fabricated. It isimportant
that the length of such aresonator isL < 37 um, and the
photon flight time in the resonator ist < 5 x 1023 s,
which is shorter than the thermal relaxation time T, in
semiconductors at 77 K.

The lasing spectrum shown in the figure drastically
differs from typical single-frequency emission spectra
obtained in [1]. Here, a is the spontaneous emission
spectrum observed when the current is slightly below
the threshold; b and c¢ are the lasing spectra at the
threshold I, = 0.7 mA recorded with wide and narrow
dlits of a spectrometer, respectively. Lasing appears at
the threshold simultaneously on all equidistant axial
modesin the long-wavel ength part of the gain band and
is observed up to two- to threefold excess over I;,; then,
asarule, the laser is destroyed. The width of the emis-
sion spectrum exceeds 100 A, and the mode interval is
AN = 21 A, corresponding to the resonator length L =
37 um. Note that an amplification deficit exists for the
longest wavelength modes, and no lasing should be
observed at these wavelengths under usual conditions.
The width of the emission spectrum of usual lasersis
20-30 A, while lasers with a four-sided resonator of a
larger size (30 x 30 um?) exhibit single-mode lasing.
Only in the presence of a dominating short-wavelength
mode developing for thetime t < 10 sis an anomaly

produced in the active region, resulting in the unusual
development of lasing.

The possihility of the appearance of two modesin
the spectra of semiconductor lasers was discussed
in [2]; however, this cannot explain the result pre-
sented above. | would be grateful to V.F. Elesin and
Yu.V. Kopaev if they would explain this result theoreti-
caly.

8500 A
8620
8800
8500
8750
8800

Emission spectrum of a subminiature |aser.
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Unfortunately, lasers of such a small size are of 10 um2, which can only be achieved using advanced
one-time use. Stresses produced upon mounting such  nanotechnology.
a miniature laser with a cross section as small as

1076 cm? give rise to pressures up to thousands of REFERENCES
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room temperature, but because T, at 300 K is even

shorter, the resonator size should be smaller than 10 x Translated by M. Sapozhnikov
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Abstract—The spinsof Ru®* ionsin Sr,Y RuOg form aface-centered cubic | attice with antiferromagnetic near-
est neighbor interaction J = 25 meV. The antiferromagnetic structure of the first type experimentally observed
below the Nédl temperature Ty, = 26 K corresponds to four frustrated spins of 12 nearest neighbors. In the
Heisenberg model in the spin-wave approximation, the frustrations already cause instability of the antiferro-
magnetic stateat T = 0 K. Thisstateis stabilized by weak anisotropy D or exchange interaction | with the next-
nearest neighbors. Low D/J ~ 1/J ~ 1073 values correspond to the experimental Ty and sublattice magnetic
moment values. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Like cuprates and manganates, perovskite-like ruth-
enates have been attracting much interest of researchers
in recent years. Initially, thisinterest was caused by the
discovery of exotic superconductivity in Sr,RuO, [1].
This is the only oxide superconductor isostructural to
cuprates that does not contain copper. Later, it was
found that other ruthenates have very interesting mag-
netic and electric properties. Increasing x in the
Sr,_,CaRuO, system resultsin acomplex sequence of
structural phase transitions, competition between ferro-
magnetic and antiferromagnetic exchange interactions,
and the Mott—Hubbard metal—dielectric transition in
Ca,RuQ, [2, 3]. Another ruthenate, SrRuQ;, isthe only
metallic ferromagnet with T = 165 K and magnetiza-
tion m= 1.6 per Ruion among 4d metal oxides[4, 5].
The Sr,YRuUOg double perovskite has an elpasolite
structure, which can be obtained from SrRuO; by
replacing each second Ru ion with nonmagnetic Y;
below Ty = 26 K, the face-centered cubic (FCC) lattice
of Ru® spins experiences ordering to produce an anti-
ferromagnetic structure of the first type [6, 7]. In this
structure, (001) ferromagnetic planes exhibit antiparal-
lel ordering along the c axis.

One of the reasons for our interest in the magnetic
properties of Sr,YRuUO; is its low Ty temperature and
small value of the sublattice magnetic moment per
ruthenium ion, m = 1.85ug, compared with the
exchange integral J = 25 meV and the nominal m(S =
3/2) = 3ug per Ruion for the d® configuration of Ru®*.
The mvaluewas measured by neutron diffraction[6, 7],
and the J value was calculated theoreticaly [8].

Another reason for our interest in the double perovskite
is the appearance of superconductivity with T, = 50 K
after doping it with copper [9, 10]. A study of apossible
magnetic mechanism of superconductivity in this sys-
tem requires understanding the magnetic properties of
undoped Sr,Y RuQg.

Earlier, an attempt was made to explain the small-
ness of Ty, by frustration effectsin the Ising model, but
the suppression of Ty in the Ising model proved to be
too weak [8]. In this paper, we show that the major con-
tribution is made by fluctuations of transverse spin
components in the Heisenberg model. If only the near-
est neighbors are taken into account, the antiferromag-
netic state is unstable in the spin-wave approximation.
Its stabilization requires including exchange with the
next-nearest neighbors | or anisotropy D. Our calcula
tions show that very small 1/J ~ D/J ~ 103 values are
sufficient for obtaining the observed Ty and magnetic
moment values.

2. THE SPECIAL FEATURES
OF THE STRUCTURE
AND EXCHANGE INTERACTION IN Sr,YRuOg

As distinct from other ruthenates and cuprates,
neighboring RuOg octahedrain Sr,Y RuOg do not share
anions (Fig. 1). This justifies applying the cluster
approach to the description of its magnetic structure.
Similarly, the electronic structure of Sr,Y RuQOg is well
modeled in first-principles band calculations by a sys-
tem of RuQq clusters, which form an FCC lattice [8].
From the magnetic point of view, the replacement of
Ru®* magnetic by Y ** nonmagnetic ionsis diamagnetic
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substitution. The FCC lattice of spinsin Sr,Y RuO; can
therefore be treated as produced by diamagnetic dilu-
tion of spinsin the SrRuO; perovskite to a 0.5 concen-
tration of nonmagnetic vacancies, which are spatially
ordered (Fig. 1b). The presence of vacancies consider-
ably changes the exchange interaction between neigh-
boring Ru spins. Whereas ferromagnetic exchange
interaction is characteristic of STRuQ;, strong competi-
tion between ferromagnetic and antiferromagnetic inter-
actions is observed in Sr,RuQ, [11], Sr,_,CaRuO,
exhibits a trend toward antiferromagnetism as x
increases (see discussion in review [12]), and
Sr,Y RuQg is characterized by strong antiferromagnetic
interaction. It followsthat exchange interactionsin var-
ious ruthenates vary to agreater extent than in cuprates,
where these interactions are always antiferromagnetic.

Thereason for the diversity of exchangeinteractions
in ruthenates is the specia features of their electronic
structure formed by the (t,q — p)—TT bonds. The orbital
degeneracy of the t,, states results in the presence of
three intersecting bands at the Fermi level and the
metallic state of undoped SrRuO; and Sr,RuQ,. The
estimation of correlation effects in SrRuO; and
Sr,RUO, shows that intermediate correlations U < W,
where U is the Hubbard Coulomb parameter and W =
Z|t| is the band half-width, occur in these compounds
[12]. Because of thediamagnetic dilutionin Sr,Y RuQg,
the nearest neighbor Ru-Ru hopping integral t is
strongly suppressed, and the substance isin the mode of
strong electron correlations with the dielectric ground
state. In the zeroth approximation with respect to hop-
ping t, we have a system of independent RuOg clusters.

Consider the electronic structure of the RuQ; clus-
ter. The crystal field splits the Ru 4d level into the ty,
and e, sublevels. The p orbitals of oxygen participatein
the pdrtand pdo bonds with Ru. A detailed calculation
of molecular orbitals and their comparison with first-
principles calculations by the linearized augmented
plane wave method were performed in [8]; in thiswork,
we only give the results necessary for analyzing
exchange interactions. After the inclusion of intraclus-
ter p—d Ru—O hoppings, we obtain the following cluster
molecular orbitals: 13 nonbonding molecular orbitals
4 x Eg(py) + 9 x Eg(pr), 5 bonding orbitals 2 x E_(Eg) +
3 x E(T,y), and 5 antibonding molecular orbitals 2 x
E.(Ey) + 3 x E.(T,). Here, Eq are the ionic levels, and
the energies of the bonding and antibonding terms are

Et(Eg) = 05{ Eo(pc) + Eo(eg)

+ [(EoPo) — Eoley)” + 16t "},
E.(T2g) = 0.5{ Eo(py) + Eq(ty)

+ [(Eo(py) — Eoltzg)? + 1617 "},

)
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(a) (d)

Fig. 1. Ordered diamagnetic replacement of every second
Ruion by Y ionin (a) SrRuO3 leads to (b) the SroY RuOg
lattice: (X) Ru; (O) O; (D) Y.

The order of the levelsis determined by the conditions

E—(TZQ) = E—(Eg) < EO( po) < EO( prr) < E+(TZQ) < E+(Eg)v

and their filling with 39 valence electrons is such that
36 electrons completely fill the E_(T,g), E_(Ey), Eo(Ps),
and Ey(p,) molecular orbitals. The remaining three
electronsfill three E,(T,,) orbitalswith parallel spinsto
form the S = 3/2 high-spin state. T,, symmetry of
molecular orbitals coincides with t,; symmetry of Ru
atomic orbitals.

The true crystal lattice of Sr,YRuOg is somewhat
more complex than that shown in Fig. 1; RuQOg clusters
are rotated through ¢ = 12°, which results in P21/n
monoclinic symmetry. We will, however, analyze
exchange interactions in terms of the undistorted struc-
ture (Fig. 1). Including distortions gives corrections
which prove to be small according to the estimates
made in [8]. From the point of view of the indirect
exchange mechanism, exchange between the nearest
neighbors J is formed by the Ru—O-O-Ru coupling.
However, in terms of molecular orbitals, the same cou-
pling of neighboring RuO; clusters is effected by the
xy—xy hopping with the amplitude 1, = 0.75t4; -

The arising exchange energy per cluster can be esti-

mated as 2J, ~ Tf, /A, where A is the exchange splitting
of the T,4 molecular orbitals. The estimation of the 1,
and A parameters by linearized augmented plane wave
calculationsin [8] gives 2J,= 0.05 eV; this J value also
correspondsto the energy difference between the ferro-
magnetic and antiferromagnetic states per cluster in
spin polarization calculations [8], which equals
0.095 eV with and 0.12 eV without allowance for octa-
hedron turns.

The magnetic properties of a system of localized
spinswill be described in terms of the isotropic Heisen-
berg model with the Hamiltonian

_ 1
H =33 IR Bir ©

IR) = I-R), JO) = 0.
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The FCC lattice contains z = 12 nearest neighbors
with the exchange J(R,) = —J. We a so take into account
exchange with the next-nearest spins J(R;) = | on the
assumption of ferromagnetic exchange. Exchange for
the next-nearest spins arises asthe Ru-O-O—-Ru—0-0O—
Ru coupling; it can be estimated as

| OT4/A° < 10727,

In order to describe the antiferromagnetic state, we
introduce sublattices A (sites o) with spins upward

and B (sites B) with spins downward, [5,=—[50=
S, where the magnetization of the sublattices depends
on temperature. For the antiferromagnetic state of the
first type, we have ferromagnetically ordered xy planes
with an antiferromagnetic aternation of the planes. Set
lattice parameter a = 1; the length of the R; = A vectors

connecting the nearest neighborsisthen A = 1/./2 , and
that of the R, =a vectors, a= 1. Let usdividethe A vec-
torsinto two groups, those lying in the xy planes d and
interplanar vectors 9,

d = B35 Ho),
= b.+5,ev2), 8, = 35,0230,

The distribution of the [5{J means in this mode! is as
follows:

BO0=S, [E.40=S [E,.0=-S
[5,.1=S, [BI=-S E.d=-S O
[5.:0=S [B.d=-S.

Because of the ferromagnetic order in the xy plane, al
four antiferromagnetic bonds in this plane are frus-
trated (energetically unfavorable). Eight interplanar
antiferromagnetic bonds, however, give energy gain for
the antiferromagnetic state. For thisreason, frustrations
decrease the mean field acting on a spin even in the
molecular field approximation. Without frustrations,

the mean field is h = 2JS = 12JS; taking frustrations
into account makesit h = 4JS. Without frustrations in

the mean-field approximation, Tyn™ = zIYS + 1)/3,
which ismuch higher than the experimental Ty value. A
decrease in Ty by afactor of 3 caused by frustrationsin
the mean-field approximation does not solve the prob-
lem. A similar result is obtained for the Ising model,
wherefrustrations decrease Ty [13]. The Ty, value (700—
900 K [8]) is, however, as previously, high compared
with the experimental one. In the next section, we con-
sider the spin-wave theory of afrustrated antiferromag-
net to take into account transverse spin component fluc-
tuations.
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3. THE SPIN-WAVE THEORY
OF A FRUSTRATED ANTIFERROMAGNET
ON AN FCC LATTICE

The exact equation of motion (% = 1) for S; islin-
earized in the Tyablikov approximation:

|§:ZJ(R)([§+RES:_[§E5++R) (4)

The h = H/zJ dimensionless Hamiltonian can conve-
niently be used. For the antiferromagnetic state of the
first type, taking into account (3) then allows (4) to be
written as (A = 1/J)

- if[z(s;m—s;w z<s;+a+s;>}
d o
ZZZZ( So-a)
|S|§ = —g{Z(SEm*‘SE)"‘ Z(SE+8+S[+5)i|
o

d

©)

z(sB Sa)

Performing the Fourier transform over the sublattices

S\(@) = V2IN'y S,exp(iq L),

S:(a) = V2IN'y Syexp(iq (B),
B
we obtain
iSa(@) = (@ Sa(@) + BeSH(a)), ©
iSe(0) = ~(0,SH(a) + B4SA(@)),

where
ag, = 0.33(1+c,c,) +0.5A(1-y,),
By = 0.33(c,+cy)c,,
¢ = cos(qi/2), 1= XY,z
Yq = 0.33(cosqy + cosq, + cosq,).

The thermodynamic properties will be cal culated using
two-time retarded commutator Green's functions at
finite temperatures

[T5:(0) | Se(-9)T, = Geo(d, w).

Here, sublattice indices F and G take on two values, A
and B. For simplicity, we will only consider the spin
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S=1/2. Of course, spin-wave theory aso can be con-
structed for an arbitrary spin S, including S = 3/2 for
Sr,Y RuQg. Such atheory will, however, be fairly cum-

bersome, whereas the main results for S and Ty will
differ by unimportant multipliers of the S+ 1) type.
Equations of mation (6) allow us to easily obtain the
corresponding Green's functions

G = 25(w + Sa,) _ 28(w—Say)
M7 D(gw) T T® T D@ w
_ (7)
. _ 258,
AB BA D(q, (A))’
D(gw) = &’ —QF Q, = S,
q q q (8)

= (o’ -

Applying the standard procedure yields the spectral
density

Naa(d, W)

- B+ to-a)
and the transverse spin correlator
CAA(q) = [By(O)Sx-a)0

exp(w/T)
B Iexp(oo/r) 1

_3%1

Here, T = T/z]) is the dimensionless temperature. For
S=1/2,

1
= —]‘.[l MGaa(d, W)

Naa(d, w)dw

9)

9 coth

£ Coul@ = 2Y BSD=3+5  (10)
q a

and the equation for the order parameter S therefore

reads

12 a
ok NZ coth=5—

At 1 =0, the hyperbolic cotangent equals one, and

agA)
€q(A)’

S(r) €q

o) = (11)

05
1,(A)’

S0) = L) = 2N‘1z (12)

In the other limitt —» 1y, S —> 0 (cothx — 1/xas
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x —= 0), Eq. (11) yields the Néel temperature

q(7\)

1 -1
v = 71200, 1A) = 2N Z (13)

Consider the integrands in the expressmnsfor lyand 1,
in the neighborhood of the Brillouin zone points ' =
(0,0, 0) and X = (0, 0, 2m). In the neighborhood of T,
we have

1 X A
=32 AT o =gl
2 2 2 2 2
M, %tdy %) 2 - 9 *AQ
N L e T e

and the integrand in I, takes the form

aq()\) 2— (qx+qy)/8+)\q /4
£M) (c + A"

If only exchange J between the nearest neighbors is
taken into account, the A = 0 spectrum in the vicinity of
I becomes one-dimensional with the special direction
z, dlong which A and B layer spins aternate. At A =0,
the integral |, logarithmically diverges, which means

that S(0) —= O; that is, the antiferromagnetic state is
aready unstable at T = 0. Theintegral |, in the vicinity

of I behavesasJ’qu/qz O 1/q, that is, diverges by a

power law. As aresult, Ty — 0. In the vicinity of X,
the I, and |, integrals exhibit similar behaviors. It fol-

Iowsthat, if only nearest neighbor exchange J is taken
into account, the effect of frustrations is strong to the
extent that the antiferromagnetic state is completely
suppressed. Precisaly thisis, in our view, the main rea-
sonwhy Ty and S are small in Sr,Y RuOg. The antifer-
romagnetic state can be stabilized both by exchange
with the next-nearest spins | and by anisotropy.

(14)

4. THE STABILIZATION
OF ANTIFERROMAGNETIC STATES
BY NEXT-NEAREST-NEIGHBOR EXCHANGE

Theinstability of the antiferromagnetic statein FCC
lattices has long been known and treated within the
frameworks of both the spin-wave approach and the
BetePeierls-Weiss cluster approximation [14-16].
The stabilization of the antiferromagnetic state by next-
nearest-neighbor exchange has been considered in
detail in [17, 18]. Ferromagnetic exchange | stabilizes
the antiferromagnetic phase of the first type, which is
observed in Sr,YRuQ;, and antiferromagnetic
exchange | stabilizes the phase of the third type. The
Néel temperature as a function of the A = 1/J ratio was
calculated in [17, 18] only numerically, and the Ty(A)
plots with a characteristic nonanalytic dependence for
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Fig. 2. Brillouin zone of a face-centered cubic lattice.
Squares indicate dangerous directions leading to magnetic
moment and Néel temperature divergences.

S
05 T T T T T

0.4 ;

| |
0 0.02 0.0 0.06 0.08 0.10
D

Fig. 3. Dependence of sublattice magnetic moment S on
exchange anisotropy D.

Tyl

0.6+

0.5

0.4

0.3

0.2

0.1

| | |
0.04 0.06 0.08

D

Fig. 4. Dependence of the Néel temperature on exchange
anisotropy D.

|
0 0.02 0.10

A — 0 were similar to the T\(D) plot (see Fig. 4
below). At the sametime, itwasclaimedin[17, 18] that
anisotropy of exchange interactions per se, without tak-
ing exchange into account, could not stabilize the anti-
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ferromagnetic state of the first type. This conclusion is
at variance with our results. Indeed, anisotropy creates
agap in the spectrum of magnonsthat cuts off the diver-
gences as A tends to 0. This problem is considered in
more detail in the next section.

5. THE STABILIZATION
OF THE ANTIFERROMAGNETIC STATE
BY ANISOTROPY

The turns of the octahedra and the monoclinic dis-
tortion of the Sr,Y RuOg lattice can cause anisotropy of

two types, namely, single-ion anisotropy of the DSZ.Z

type or exchange coupling anisotropy. In our smplified
model with S= 1/2, the single-ion anisotropy is absent;
therefore, consider the exchange anisotropy. The
Hamiltonian of the system can then be written as

H = _%fZR‘](R)(SJer;+R+ERS?S§+R)1 Er# Ll

Equation (4) now transforms into
IS =Y I(R)(Er S oS ~ (55 ).
R

In the simplest situation, it suffices to take into account
exchange anisotropy for the nearest neighborsignoring
exchange anisotropy for the next-nearest spins. This
implies that

€A=1+Dl Eazl,

where D isthe dimensionless anisotropy parameter. As
the lattice distortions are small, we can assume that
D < 1. The spin-wavetheory described in Section 3 can
easily be generalized to systems with anisotropy. After
the oy — ay(D) renormaization,

a4\, D) = 0.33(1+ D +c,c,) + 0.5N(1-Vy),
£,D) = (a’(A, D) B2,

al the other equations obtained in Section 3 remain
valid. The order parameter at T=0is

< _ 05
RN
(16)
_ 2<04(A, D)
I,(A,D) = Ng—eq()\, D)
For the Néel temperature, we obtain
0.25
W, D) = 0. D)’
17)
2 < %A, D)
ILAA\,D) = =§ = 2——.
2( ) N% gé(}\, D)
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If A =0and D — O, both integrals |, and |, diverge,

whichyields S =0and 1y = 0. It followsthat anisotropy
per se, in the absence of next-nearest-neighbor spin
exchange, stabilizes the antiferromagnetic state in an
FCC lattice.

To single out the diverging asymptotic functions, we
analytically calculated the contributions to the integrals
in the neighborhood of the dangerous Brillouin zone
points " and X (see Fig. 2). The high-symmetry points
will be denoted as follows:

r0,0,0, L=(mmnmn, K= (32 3mw20)

Z(0,0,2m, W, (m,0,2m), W, = (0, 2m),

X =(2m0,0), Wi=(2m m0), W,=(2m0,T),

Y=(0,2m 0), Wi =(m2m0), W; =(0,2m m.

Along several Brillouin zone directions shown by
squaresin Fig. 2, ;= 0 a D = A = 0. Some points of
this set are dangerousin the sensethat thel, and I, inte-
grals diverge a D = A = 0. Further, we will study the
role played by anisotropy D on the assumption A = 0.

Consider the small volume v = (174)2 in the neigh-
borhood of I (recall that the total Brillouin zone vol-
umeis 321). All integrals normalized with respect to v
will be denoted by | . Expanding all cosinesinto series
and performing fairly simple calculations, we can ana-

Iytically find the contributions that divergeasD —~ 0.
For instance, for |, we abtain

14(D) = 0.5InD - 1.9.
For the integral 12, analytic calculations give
(D) = 12/./D.

Similar asymptotic behaviors(InD for I, and /D for 1)
can also be obtained for the other dangerous Brillouin

zone points. As aresult, we find (D) and Ty(D)/J.
The §D) and Ty(D)/J dependences at A = 0 are

shown in Figs. 3 and 4. The curves labeled by squares
are described by the approximations

. 1/2
B)= 0.043InD + 1.256'

(18)

J%MB/(l +4.,/D), 0<D<0.05,

Tn(D) =
[0.342+2.6D, 0.05<D<0.1.

(19)

6. RESULTS AND DISCUSSION

Our results are based on a study of the Tyablikov
approximation, which is, in essence, a mean-field
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approximation variant. However, as distinct from the
which does not depend on the space dimension, the
Tyablikov approximation takes into account transverse
spin density fluctuations in the form of collective exci-
tations, that is, spin waves. As a result, the Tyablikov
approximation reveal s the absence of long-range order
at finite temperatures in agreement with the exact Mer-
min-Wagner theorem [17, 18]. Aslong asthereislong-
range magnetic order in the system and spin fluctua-
tions at low temperatures can be described in terms of
spin waves, we can hope that the results obtained using
the Tyablikov approximation will bein at least qualita-
tive agreement with experiment.

Note that the stabilization of the antiferromagnetic
state of thefirst type takes place not at arbitrary signs of
exchange and anisotropy, but only at ferromagnetic
next-nearest-neighbor exchange | and anisotropy D > 0.
Indeed, ferromagnetic exchange | prevents frustrations
and is intrasublattice. Conversely, antiferromagnetic
next-nearest-neighbor exchange would only strengthen
the effect of frustrations. As far as anisotropy is con-
cerned, D > O is evidence of Ising-type anisotropy, J, >
Jo- Inthelimit D — oo, we can ignore transverse spin
components and obtain the Ising model, for which frus-
trations partially suppress the antiferromagnetic phase,

but Ty and S remain finite [13]. At al D > 0 values, a
gap appears in the spectrum of magnons, which is the
factor that stabilizes the antiferromagnetic phase. At
D <0, the g,(D) spectrum of magnons becomes imagi-
nary at certain wave vectors, which is evidence of anti-
ferromagnetic phaseinstability. At D = 0, the antiferro-
magnetic state with along-range order is unstable and
is replaced by a state with a spin-liquid-type short-
range order [19, 20].

A comparison of our results with the experimental
data on Sr,YRuOg should be performed bearing in
mind that the monoclinic distortion of the lattice and

the spin S = 3/2 can lead not only to exchange but also
to single-ion anisotropy. The Dzyaloshinski—Moriya
anisotropic exchangeisalso possible. Clearly, al aniso-
tropic interactions are weak compared with J, which
allows us to qualitatively compare our results with
experiment taking into account exchange anisotropy
with D < J only. It follows from (18) and (19) that, to
obtain Ty =30 K and J =300 K, we must set D = 8 x
10, This means that the exchange anisotropy J;,—J; =
D;=0.24 K isexceedingly small. At such an anisotropy
value,

5(8x 107" = 0.32,

which amounts to 64% of the nominal spin and very
closely agrees with the neutron data on the magnetic
moment of ruthenium.

Note in conclusion that frustrationsin an FCC sys-
tem with nearest neighbor exchange lead to soft mag-

No. 6 2003



1130

non modes along several Brillouin zone directions. In
particular, in the vicinity of the I' point, the spectrum
becomes one-dimensional. For this reason, divergences
in spin-wave theory similar to divergences in low-
dimensional systems are not surprising. Very weak per-
turbations in the form of ferromagnetic next-nearest-
neighbor exchange or an Ising-type exchange anisot-
ropy are sufficient for the antiferromagnetic state to be
stabilized.
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Abstract—The effect of aspiral spin structure on superconducting (SC) pairing in athree-band Hubbard model
related to Sr,RUQ, is analyzed in the mean-field approximation. Such a structure with incommensurate vector
Q = 2m(U/3, 1/3) is the simplest one that removes the nesting instability of a and 3 bands. It is assumed that
thereis an intralayer pairing interaction between two types of neighbor sites, those with attraction in a singlet
channel and with attraction in both two-singlet and triplet channels. In both cases, a mixed singlet—triplet SC
order is observed in the y band: a d-wave singlet order is accompanied by the formation of p-wavetriplet pairs
(k, k- Q),, and (k, k + Q),, with largetotal momenta ¥Q and the spin projections 1 onto an axis perpen-
dicular to the spin rotation plane of the spiral spin structure. Both the SC and normal states are states with bro-
ken time-reversal symmetry. In contradiction to the experiment, the models give different scales of T, for they
band and for a and 3 bands. This fact shows that the models with intralayer interactions or with the spin struc-
ture assumed are insufficient. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The problem of interplay between superconducting
(SC) and spin orders still remains topical for systems
with strong electron correl ations. Among such systems,
asingle-layer quasi-two-dimensional ruthenate attracts
considerable attention as a superconductor (T, ~ 1.5 K)
with a possible triplet type of pairing [1, 2]. One of
argumentsin favor of thistype of pairing isthe behavior
of the Knight shift [3]. It was aso assumed that the
pairing is determined by ferromagnetic (FM) fluctua-
tionsthat clearly manifest themselvesin the parent FM
compound SrRuO;. The spin-triplet SC order parame-
ter (OP) A(K) = (10,07)di (K) with d(K) O k, + ik, sug-
gestedin[4, 5], agreeswith the fact that the Knight shift
is invariant under the SC transition [3] and with an
increase in the rate of the muon spin relaxation
observed for T < T, [6]. Such an order parameter corre-
sponds to a nodeless gap function on the quasi-two-
dimensional Fermi surface. These nodeless gaps are
naturally derived from weak-coupling theory [5]. How-
ever, the experimentally observed power-law behavior,
asT —~ 0, of the specific heat, C(T) 0 T2[7]; the NMR
relaxation rate, T[l 0 T3[8]; the thermal conductivity,
K(T) O T2[9, 10]; the penetration depth [11]; and the

ultrasonic attenuation [12] points to the existence of
node linesin the SC gap.

Inview of theseresults, other possible types of sym-
metry of the SC gap were discussed in [13-17]. In par-
ticular, the f-wave symmetry of the gap with a horizon-
tal node plane was assumed in [13]. This type of sym-
metry is likely to support the observed fourfold

symmetry of anisotropic thermal conductivity in
Sr,RuQ, in a magnetic field with the field vector lying
in the RuO, plane [9, 10]. However, the observed
anisotropy also agrees with the conventional d-wave
SC order. However, this assumption requires a new
interpretation for the behavior of the Knight shift.

Recently, models with pairing interaction of elec-
trons in adjacent sites (including the interlayer interac-
tion of orbitals with xz and yz symmetries) have been
considered; the constants of these models were chosen
to describe a simultaneous transition to the p-wave SC
statein al three bands [18, 19]. In all SC state tests, it
is usually assumed that the bands have already been
renormalized by correlations due to a strong on-site
repulsion. Such a renormalization is necessary for
matching the band widths obtained from LDA calcula
tions to those obtained from photoemission data. The
renormalization mechanism is certainly determined by
spin correlations or, in the static limit, by local spin
structures in a system that should substantially affect
the SC order. Therefore, the study of the effect of the
spin order on SC pairing in the ruthenate models
remains atopical problem.

The situation with the SC order and magnetic prop-
erties may be complicated if the normal state of the
RuQ, plane possesses a certain static or dynamic spin
structure. In particular, spiral spin structures have
recently been studied [20] as the simplest structures
that describe an incommensurate peak in the spin sus-
ceptibility x"(g, w) for g ~ Q = 2m(V/3, 1/3) that was
observed in inelastic neutron scattering (INS) [21, 22]
and some features of the ARPES spectra [23] for
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Sr,RUO,. The quasi-one-dimensional sheets of the
Fermi surface for a and 3 valence bands with a full
population of four electrons per site in the RuO, plane
are characterized by the nesting with g = Q [24, 25].
The spiral structure with g = Q removes the instability
due to nesting simultaneously in two quasi-one-dimen-
sional bands and reduces the on-site interaction energy.
The spira sructure is not the only structure that
removes this type of instability of the system. Periodic
spin structures with a 3 x 3 unit cell in the RuQ, plane
may also be responsible for the incommensurate peak
at g = Q observed in INS. However, the spira stateis
the simplest state that allows one to study the effect of
the spin structure and umklapp processes on SC pair-
ing. In the mean-field approximation, the energy of the
spiral state is indeed lower than the energies of para-,
ferro-, and antiferromagnetic states [20]. The coexist-
ence of SC pairing and the spiral spin order, as well as
the coexistence of antiferromagnetic (AF) and SC
orders in cuprates, remains an intriguing problem.
These questions are of interest due to the facts that even
anormal state with aspiral spin structureis a state with
broken time-reversal symmetry and that awhole series
of new mixed SC states with a simultaneous formation
of singlet and triplet pairs arises in the system.

The aim of the present paper isto study the possibil-
ity of coexistence of a spiral spin order and supercon-
ductivity in models related to Sr,RuO,. We consider
models with pairing interactions of neighbor sites
within the RuQ, plane. We will study the symmetry and
the interplay of triplet and singlet SC OPs. We will
demonstrate that both types of pairs survive simulta-
neously in the SC state in the presence of a spiral spin
structure. In the models under test, oney band is distin-
guished as an active band with respect to the SC transi-
tion. Inthisband, singlet d-wave pairs coexist with trip-
let bands. Earlier [16], the possibility of a mixed SC
order in Sr,RuQ, was presumed because the energies of
states with different SC-order symmetries are close to
each other. The SC order was described by the spin sus-
ceptibility with a peak at the incommensurate momen-
tum. In contrast to [16], aspiral spin structure givesrise
to microscopic mixing of d-wave singlet and p-wave
triplet orders. First, we analyze models with large con-
stants K of pairing interactions. Then, we calculate the
phase curves T(k) for more realistic values of k.

First, we have to stress several points.
1. Supposing that the attraction between electrons

has an electronic (correlation) nature, we simulate it by
the interaction

V = z anvnnvm+‘]vsvnsvm (1)

Chnjv
between two adjacent sites for each of the three bands
v = a, B, y. This situation corresponds to taking into
consideration the lowest k harmonicsin the momentum
representation of the pairing interaction V,y, as was
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donein [4]. Interaction (1) corresponds to the SC pair-
ing constantsks=2V + J/2 and k' =2V —3J/2inthesin-
glet and triplet channelsfor every bond hmCI The natu-
ral signsV > 0 and J > 0 are expected from the theory
of strongly correlated systems. In single-band models,
these signs correspond to k' > 0 and kS< O in thetriplet
and singlet channels. They correspond to attraction in
the singlet rather than in the triplet channel. In the
present paper, however, we consider models with either
sign of the triplet constant k.

2. The éectron structure of Sro,RuQ, is determined
by three ailmost independent bands a, (3, and y con-
structed from the d orbitals of Ru*? of xz, yz, and xy
symmetries and the corresponding combinations of the
Ttorbitals of oxygen [24, 25]. A small hybridization of
bands of xz and yz nature occurs only in their intersec-
tion domain for k, = £k,. According to [4, 5], the orbital
symmetry also significantly suppresses the interband
scattering of Cooper pairs. Therefore, we study the SC
order arising in each separate band and choose the most
active band from the viewpoint of SCinstability. We do
not touch upon the interband scattering and the proxim-
ity phenomenadiscussed in [4].

3. In contrast to [4], we begin with a normal mean-
field state with broken time-reversal symmetry, namely,
the state with alocal spiral spin structure characterized
by adiagonal vector Q = 2m(1/3, 1/3). Thisisanormal
state with nonzero spin currents j, = -, of opposite
directionsfor two spin polarizationsthat are perpendic-
ular to the spin rotation plane of the spiral structure.
Thismeansthat electronswith polarizations + or | pre-
dominantly occupy k stateswithk -Q <0ork - Q >0,
respectively. According to [20], thisleadsto a polariza-
tion asymmetry of the Fermi surface and may lead to
the formation of amixed triplet—singlet SC order in the
system.

2. MEAN-FIELD APPROXIMATION
IN A SPIRAL SPIN CONFIGURATION

A three-band mode of the RuO, plane is described
by the Hamiltonian [25]

+
H=T+ HU +V, T= zzevkcvkocvkoi
v,0 k (2)

1 [
Z |:U221nvnnv'n - JSvnSvniE

V'£V

HU = ZEUnvmnvm +
n,v|:|

Here,v =1, 2, 3 (or a, B, y) correspond to bands of xz,
yz, and Xy natures; €,  and Hy, are zero band energies
and on-cite interactions with the parameters defined
in [25]. Theinterband interaction

. . +
Top = Z4taBskasmky(clkoc2ko+ H.c.)
k,o
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issmall. Thus, in the normal state with an arbitrary spin
structure, there are three almost independent bands
with weak mixing of a and 3 bands at the crossing point
of their Fermi surfaces. We will neglect thismixing. For
simplicity, we retain the notation o and 3 for unmixed
bands of xz and yz natures. The interaction between
bands occurs through the common value of the chemi-
cal potential and the mean fields produced by the elec-
trons of al three bands. These fields depend on spins
due to the on-site exchange interaction. The interaction
VemoOf type (1) of nearest neighborsisincluded in the
simulation of the possible SC pairing in the system.

In the mean-field approximation, the energy aver-
aged over an arbitrary BCS-type state is calculated as
an explicit function

H = H"(y) + AW, 8)) ®)

that depends on normal (y;) and anomalous (w;, 6;) one-
electron means. The norma OPs {y;} include on-site
(I=0) and bond (I = e, &) densities

1
rv(l) = <§zcl,v,ccn+l,v,c>’
o

the mean kinetic energies

TV = < 1/N ZKG €\;|<C\T)kccvk0> '

and local (I = 0) or nonlocal ((I = e,, &) spin densities
d(l) in each band v. The local spin densities

d'(0) = [d"(0)]" = @Ec),, co. 0 (4)

determine the spiral spin structure with the spirality
vector Q = 21(1/3, 1/3):

(5,0 = d,[e,cosQn+e,snQn]. 5)

Previous calculations [20] have shown that the energy
of the normal state with a spin structure with such Q is
lower than the energies of similar para-, ferro-, and
antiferromagnetic mean-field solutions. Such a spin
structure removes the instability due to the nesting of o
and B bands. Simultaneously, exchange fields also
induce a similar spin structure in the y band. The solu-
tions give collinear contributions to the total local spin
of the site from each band.

Three-band models that describe Sr,RuO, were
derived in [24, 25]. In the case of the spiral spin struc-
ture, the normal state Fermi surfaces were studied
in[20]. It was shown that, for a certain spin polariza-
tion, a spiral SDW order opens up a gap along half of
the unperturbed Fermi boundary of a paramagnetic
solution. Other regions of the Fermi surface remain
metallic (gapless). In addition, a number of new
shadow Fermi boundaries arise that are attributed to
umklapp processes. As aresult, the bands are split into
the lower and upper Hubbard subbands; this increases
the densities of statesin the subbands and on the Fermi
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level. Therefore, one can expect that (any) spin struc-
ture increases T, as compared with the T, in paramag-
netic solutions.

Since the Fermi surfaces are different for al three
bands, it sufficesto take into account only theintraband
anomalous means. Only these means are determined by
the contributions of a large phase volume aong the
entire Fermi surface. The formation of electron pairs

(cly, ') that belong to different bandsv # v' can be

effective only in a small domain of k near the intersec-
tion of their Fermi surfaces. Therefore, we retain only
anomal ous means within each subband and neglect the
interband scattering of pairs. Then, the expression for

the contribution H>® to the mean energy (3) has the
form

A = U|w,(0)

Zlr

©
D COCTOIRTRON e R st

vil=e,e, p=021

Here, w(l) and 6(1) are singlet and triplet SC OPs either
at the same site (I = 0) or at neighboring sites (I = e, or
| = e). These quantities are given by the expressions

_ 1l ot
Wv(l) - 2N2|0'| B-N'\),n,crcv,n+l,—0|] (7)
n, o

and
8,.()
(8)

1 iLQ(n+1/2) t U
Z—Nze (Gpcy)ss |:(tv,n,scv,n+l,s‘|:l
n,o

Here, the matrices o, areequal to g, or ¥(o, tic,) for
u =0, £1, respectively, and o, , , are Pauli matrices.
The phases@(n, 1) = uQ(n +1/2) for u =0, £1 in the def-
inition of thetriplet OPs (8) guarantee that each term of
the sumin (8) for each bond [, n + [[isindependent of
the bond number n. This is analogous to the situation
when cyclic spin components [, ,e*"for p = +1 are
independent of n for astate with aspiral spin structure.
These phases are associated with the existence of spin
currentsin the spiral state. Below, we will show that the
triplet Cooper pairs(t1)or (11 ) withspinp=21o0r u=
-1 aremoving pairsthat carry large total momenta+Q.
The constants kSt of SC pairing in (6) are related to the
constants V(l) and J(I) of interaction between neighbor-
ing sitesin Eq. (1).

Let us take into account that the a and 3 bands are
independent of the y band. This is associated with the
fact that the symmetry of the a and 3 bandswith respect
to the reflection about the ab plane of ruthenate bands
isdifferent from that of they band. For instance, adirect
interband mixing of these bands due to hopping within
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the RuQ, plane is forbidden. This property of bands
was discussed in [4, 17], where the authors also evalu-
ated asmall interband interaction dueto interlayer hop-
ping. We will neglect interlayer interactions and will
analyze apossible SC order in each band separately, as
well asits symmetry and compatibility with the spiral
spin order. We will also neglect theinterband scattering
of pairs and take into account only the intraband con-
stantskSand k' in (7). To reduce the number of SC OPs,
we apply arguments typical for all strongly correlated
systems. For any interaction Vg,qjin (1), alarge on-site
repulsion U > 0 suppresses the singlet s-wave OP w(0)
in the y band according to (6), so that, of the singlet

OPs, we retain only the dxz_yz wave OP, i.e., we set

Wy_(O) =0 'and_ w,(e) =-w(g). This guarantees that th_e
pair function is orthogonal to the forbidden s-wave pair
function. For quasi-one-dimensional bands a and 3
(here, a and B refer to the bands of xz and yx natures
rather than to their combinations), the same on-site
interaction suppressesall singlet OPs, i.e., those of both
s and d symmetries. As a result, we set W,(0) =
Wy (8) =wg(€,) = 0 because both combinations w,(g,) +
W,(g,) are nonorthogonal to the on-site pair function
w(0) for quasi-one-dimensional bands with a broken
tetragonal symmetry.

In the BCS approximation, an interaction of type (1)
may induce an SC order only under the condition that

some of the constants K, or KtV in (6) are negative. One
may assume that such an attraction is of correlational or
kinematic origin or is attributed to the hybrid nature of
the site orbitals composed of the d and p,; orbitals of
ruthenium and oxygen. Therefore, we may assume that

the corresponding parameters k; (1) and KtV (1) or,
equivalently, the parameters V,(I) and J,(I) in the

model interaction (1) take nonzero valuesonly for those
bonds (hmJm = n + |, and orbitals for which the hop-

ping integral t,, is different from zero. This assump-

tion has been inspired by the expression J,,,, O 4tﬁm/U
for the exchange interaction in the t-J model. In light of
the aforesaid, of all the constants, we assign nonzero
values only to the following singlet (s) and triplet (t)
pairing constants:

k(&) = k3'@) = K@) = k(&) = k¥ (9)

By the same analogy with the t—J model, one could
expect that these constants have the following signs:
K= —' < 0. However, in view of the expected triplet
type of the SC order in Sr,RuQ, [1], we extend the cal-
culationsto thetwo limiting cases of triplet constants of
different signs

K® = k'<0.

I k°=—«'<0, I (10)

The first case corresponds to the attraction of particles
only in the singlet channel and repulsion in the triplet
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channel. The second case corresponds to the attraction
in both channels.

To solve the prablem, we apply the standard proce-
dure of mean-field approximation. From the explicit
dependence of the mean energy H(z) on the one-parti-
cleOPsz ={y;, w, 6}, we obtain the linearized Hamil-
tonian
Hup =i = 2B —2) + Hz) -, (1)
where 2, are operators corresponding the appropriate
meansz. The BCS-type stateisan eigenstate of H, ;,,; it
allows one to calculate, in turn, the values of z. In this
waly, one obtains a self-consistent solution.

For the state with a spiral spin structure, the most

convenient basis set of the Nambu representation is a
basis of the following Fermi operators for each band v:

T T T
bivk - {Cvkrl CV,k+Q,UCV,—(k+Q),T7CV,—k, l}i . (12)

Here, i =1, ..., 4, and the quasimomentum k runs over
the domain F that constitutes half of the total momen-
tum space and is bounded by the conditions

kOF: (k+Q/2)Q<0. (13)

For a vector Q with Q, = Q, = 2173, Eq. (13) implies
that the components k, and k, range within the limits

Qx Qx

== <kx,y<"—7, ky+k,+Q,<0.
Thelinearized Hamiltonian H;,, is determined by inde-

pendent contributions each of which refers to the basis
set (12):

Hiin = Z F‘\I: F‘\I: = hivjbiTvkijk-

kOF

(14)

The Hermitian matrix hj; of rank four is determined by

the matrix elements (here, the omitted band index v is
implied)

hiy = e(k) — K,
hy, = —%aH/adv,

hy, = €,(k) — U,

hy = Ay + By(ky), (15)
hys = —A(k) + Bo(Kp),  hizpg = Bu(K),
hgs = =Ny, Ny = —hy, g, = —hy,
where
k, =k, ky, = k+Q, k= (k,+ky)/2
No. 6 2003
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and the functions A and By, are given by

AK) = Z Ko(Hw, (1) coskl,

l=e,e€

o (16)
B = 3 Ki()8,()sinkl.

I=e,e

For the y band, the d symmetry of the singlet OP
requires the antisymmetry A¥(k,, k) = -AY(k, k,) of
functions with respect to the replacement k, ~—
The solution also yields identical values for the triplet
OPs 6, for p = £1. Thus, we actually have only three
real OPs for the y band:

Zi = (Wdle!eo)il I = 1; 2,31

Wy = 2[w(e) ~w(e,)]

80 = 310:(e) — Bo(e))], (17

6=3 [8,6)-0,).

H==1

We apply the same symmetry with respect to the
replacement x —— y to the solutions in the a and
bands subject to the simultaneous replacement o ~—
B (xz-——= y2). The solution yields identical values 6,
for two projections u = 1 inthe a and 3 bands aswell.
As aresult, we retain the following triplet OPs for the
o and 3 bands that correspond to a nonzero triplet con-
stant in (9):

eu,u(ex) = _eu, B(ey)v “J-l = O’ 1. (18)

If theinitial values of the OP satisfy Egs. (17) and (18),
subsequent iterations of the self-consistency procedure
preserve the same symmetry of the solution.

There was one more ssimplification. In fact, an inter-
action of type (1) yields contributions to both parts

Hn(y;) and Hsc of the mean energy (3). We may

assumethat the first contribution, which depends on the
normal means—the charge and spin densities—has
already been taken into account in the renormalized
band energies e, (k) whose parameters were chosen ear-
lier [25] for the correct description of the observed
magnetic quantum oscillations. Thus, we retain only

the part of [W[in H that depends on anomal ous means.
The definitions of triplet OPs (8) allow oneto deal with
real solutions. They have a certain symmetry with
respect to the reflection in the diagonal plane (z, x =)
that contains the spirality vector Q under a simulta-
neous permutation of bands xz <~ yz, as well as a
symmetry with respect to the reflection in the plane (z,
X=-y) (Q — —Q) with the change 0 — —0.
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Therequired BCS-type spiral stateis determined by

the occupation of one-particle eigenstates lek corre-
sponding to the energy levels E, (K),

Xivk = biJrkS)\(k)s
hij(KSa(k) = SAK)EAK).

Here, the omitted index v is implied. The matrices
S,(K) of the eigenvectors and the Fermi populations
f(Ej,) Of levels determine the normal and anomalous
OPs (7) and (8). This completes the self-consistency
procedure.

(19)

3. RESULTS

Since a complete solution with SC order is easily
obtained for large pairing constants, we first consider
models with large k%9 and then calculate the phase
curves T(k%) for more realistic models with small k®
and K. The results are obtained for two types of models
in (10), with attraction in the singlet channel alone
(casel) andin both singlet and triplet channels (caselll).
In the first case, the a and 3 bands do not display any
SC order. The reason is that the singlet d-wave order,
just as the swave one, is suppressed by an on-site
repulsion in bands with inequivalent hopping integrals
in the x and y directions: t; > t; or tb > t© (seethe
parameters of the three-band model [25]). In contrast to
the o and 3 bands, a mixed-type SC order arises in the

y band of a system with aspiral spin configuration. The
d-wave singlet order is accompanied by the formation

of triplet pairs even for k, > 0. Figure 1 shows the tem-
perature dependence of the singlet and triplet OPs (17)
in the y band for k= —«' = —-0.6 eV. The values of the
triplet OPs obtained satisfy the relation 6,, , = 6_; , >
Bo,y- Taking into account the definition of triplet OPs
in (17) and (18) and their momentum representation,
one can conclude that coupled triplet pairs of particles
intheyband arise mainly intheform (11 ) or (11 ) with
the total quasimomenta—Q or Q, respectively. Thisfact
distinguishes between triplet SC orders in the spira
state and in an isotropic Fermi liquid, where only Coo-
per-type pairs (k 1, —k 1) or (k {, —k 1) with zero total
momentum are possible. Moreover, unlike theisotropic
model, triplet pairs can arise in the state with the spin
structure even for a positive triplet constant k' > 0,
which corresponds to repulsion in the triplet channel,
due to the coupling between singlet and triplet OPs.

The Cooper pairs with nonzero total momenta Q
were first predicted in the Fulde-Ferrel-Larkin—
Ovchinnikov (FFLO) states[26]. The latter have spatia
variations of the OPs and can actually exist only if the
scale of 217Q ismuch smaller than the coherencelength
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Fig. 1. Tota specific heat divided by T, C(T)/T, and super-
conducting order parameters in the y band as functions of
temperature for a model with large interaction constants

kS= —«' = —0.6 eV. Curves 1-3 refer to wy, -8, and -8,
respectively, that are defined by Egs. (17).

&. In our case of coexisting spiral spin and mixed SC
orders, only the anomalous triplet components

Ui 0
|]:\J£n<)(:\1:mcrljlzl exp E'I'ZUQ(n + m)gev 201

m = nte,

M= 20,

are characterized by the spatial phase modulation
according to Eq. (8). At the same time, the leading sin-
glet component w,, in (7) is constant and isindependent
of the number of bond hm Therefore, thereisno con-
straint on the relation between & and 1/Q in these solu-
tions.

The emergence of coupled pairs with large total
momentaof 2k, equal to the nesting vector, isalso sub-
stantiated in the new theory of high-temperature super-
conductivity (HTSC) [27]. In [27], such pairs are
assumed to be singlet and are associated with the stripe
structure. In our model, such moving pairs are triplet
and are synchronized by the static spin structure. Note
that a photoemission technique capable of distinguish-
ing between the spin polarizations of photoelectrons
could also distinguish between the polarization asym-
metries of photospectra. The latter are associated with
the spiral spin structure that breaks the time-reversal
symmetry in both the normal and the SC state. In[20], it
isdemongtrated that electrons from different segments of
the Fermi boundary—with kQ < 0 (or kQ > Q)—are
characterized by different spin polarizations k t (or
k 1). When the spin order has alocal or dynamic char-
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acter and manifestsitself within finite domains or finite
time intervals, the asymmetry phenomena are sup-
pressed.

Thus, in states with the spira structure due to the
nesting of a and 3 bands, the attraction solely inthesin-
glet channel gives rise to both singlet and triplet pairs.
Figure 1 also represents the specific heat of the system.
Thefinite limit of C(T)/T asT — Oisattributed to the
contribution of thea and 3 bandsthat remain in the nor-
mal state. This fact does not agree with the observed
behavior of C(T)/[TOTasT — 0.

Now, let us consider amodel of the second type with
attraction in both channels: kS=k!'< 0in (10). For large
|k®| and |k!| and small T, an SC order arisesin al three
bands. For equal values of constants (9) on each bond
with alarge hopping integral, the SC order in the y band
is more clearly pronounced than that in the a and 3
bands. For kS< 0.65 eV and T ~ 103 eV, the SC order
inthea and 3 bands vanishes. The ensembl e of coupled
pairs in the y band mainly consists of d-wave singlet
Cooper pairs {k 1, —k 1}° and moving triplet pairs
{kt,«k+Q) 1} and{k |, «(k—Q) |} with the total
momenta—Q or Q, respectively.

Inthea and 3 bands, only atriplet order is possible
for k' < 0. The corresponding transition temperatures

are significantly lower than T, in the y band: T‘CXB (K=

k%) < T!. The triplet p-wave SC order in the o and
bands is mainly attributed to the formation of triplet
pairs{k 1,—k { }*with zero total momenta. They corre-

spond to the OP 85(e,) =—65(e,) # O. Figure 2 shows
the temperature dependence of the SC OP in the a, 3,
and y bands for large constants k® = k' = —0.8 eV. Note
that the relation |6y(1)| > |6.4(1)| for thetriplet compo-
nents for | = g,y in the a and B bands differs from the
relation |0y(1)| < |6.4(1)| for the OPintheyband. The
differences in T, and the symmetry of the SC order in
the a, B, and y bands are associated with the quasi-one-
dimensional or quasi-two-dimensional character of the

bands and with different densities of states on the Fermi
level.

Thus, for models with intralayer interaction of
neighboring sites, only the y band is characterized by
large T.. Modelswith different scales of T, intheyband
andinthea and 3 bands are characterized by atwo-step
behavior of the specific heat (Fig. 2). This fact contra-
dicts the observed dependence C(T)/T which isindica
tive of the simultaneous SC transition in all three bands.
Nevertheless, the solutions obtained are instructive
because they show the possibility of new mixed types
of SC order that are compatible with the spiral spin
order in acorrelated system.

No. 6 2003



COEXISTENCE OF SUPERCONDUCTING AND SPIRAL SPIN ORDERS

0.06 | |

0.04

0 0.02
T,eV

Fig. 2. Same asin Fig. 1, but for a model with k3= —«' =
-0.8 eV. Curves 1-3 refer to the same SC OPsfor they band

asthose in Fig. 1; curves 4 and 5 correspond to eg(ex =

-8h(e,) and 6%(e,) =-05,(e,) .

Pairing potentials in the active y band with the SC
OPs (17) can be represented as

sC _
HLin -

S {[A®K) + By oy, ¢l

kOG

t t t T
+Bi(K[C_q2 1 Ck—q2,+ + Ckr 2 Cokr iz ] ¥ H.C.

(20)

Here, k runs over the entire region G of the phase space
(in contrast to representation (14), where k runs over
half of the entire region G), and the omitted band index
v =y is implied. The functions A(k) and B(k) are
defined by Egs. (16) and are given by

AK) = K°wy(cosk, — cosk,),

R (21)
Bu(K) = kK'6,(sink,—sink,).
These functions have the following symmetry:
Ak, k) =—A(k, k) and B(k,, k) =-B(k,, k,); hence, the
diagonal k, = k, along the vector Q isanode line for the
SC gap in the solution with a mixed d-wave singlet and
p-wave triplet SC order. In the case of an isotropic nor-
mal state without aspiral spin structure (d, =0, Q = 0),
the pairing potential (21) would correspond to the
superposition of contributions corresponding to differ-
ent representations of a tetragonal point group classi-
fiedin [5]. In the notation of [5], this superposition can
schematically be represented as {0;(Ay, — By, — Ay t+
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1

ky/n
()

-1

kT

Fig. 3. Contour map of the gap function (23) for the same
model asin Fig. 1 in the entire domain of the momentum

space \kx(y)‘ < 1t Solid (dashed) lines correspond to posi-
tive (negative) values of the gap function G(k,, k) defined
by Eq. (22).

Boy) + 0(Ewx — Ey)} - In contrast to the paramagnetic
state, inthe spiral state, the coupled pairs(11), (11 ) are
moving pairswith the total momenta ¥Q . The spin cur-
rentsj,, =—,, associated with the motion of pairs have
the same sign asthe spin currentsj, =—j, inthe normal
state with the spiral spin structure. Recall that the spins
are projected here onto an axis perpendicular to the spin
rotation plane in the spiral structure.

The SC band, as a function of k, which corresponds
to the pairing potential (21) for the y band, is deter-
mined by the real matrix element

G(K = (n.lH*ny

between electron and hole quasiparticles n', n of the
upper Hubbard band of the normal spiral state.

Figure 3 represents a level map of the gap function
G(k) for theyband for kS=—k! < 0. Thisfunctionisanti-
symmetric with respect to the change k, —— k; but
does not possess the inversion symmetry. However, a
hypothetical photoemission experiment for the y band
would give two different gaps |G(k)| and |G(—k)| for
every k for different polarizations (1 and 1) of photo-
electrons. Note that, for aquasimomentum k that varies
along the known Fermi boundary of the y band, the
function G(K) is close to the d-wave function propor-
tional to cosk, —cosk,. Thisfact correspondsto the four-
fold anisotropy of thermal conductivity in alongitudi-
nal (in the ab plane) magnetic field [9, 10].

(22)
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-0.5}

0.06/-
~ 0.04F

0.02

Fig. 4. Phase curves T.(k®) and relative normalized values

of the superconducting OPs (25) and (17) in the y band as
functions of the interaction constantsin the singlet channel.

Solid (dashed) curves refer to modelswith k' = +kSand k! =
-kS, respectively. Curves 1, 2, and 3 correspond to Z =1,
2, 3, obtained from the solution of homogeneous equa-
tions (25) (T — T,). Symbols (circles and squares) cor-
respond to the same quantities at T = 0.6T obtained from

the full mean-field solution for models represented in
Figs. 1 and 2, respectively.

Up to now, the results referred to models with unre-
alistically large interaction constants and temperatures
T.. For more realistic models that correspond to small
T. and constants (10) of both types, we calculated the
phase curves T.(kS). The function Tk for the
SC-transition temperature in the y band is determined
by the equation obtained by a linear expansion of
Egs. (7) and (8) in terms of the arising SC OPs w,, and
B, - This equation for T,(k%) has the form

det||d;; — Ri;k;| = O. (23)
Here, i and j number the SC OPs {z} defined by
Eq. (17), and the matrix R is given by

Ri = N3 MM

k AN

f(EN - f(Ey)

~E+E (24)
whereE, = E, (k) and f(E,) arethe normal-state energies
and the Fermi populations of one-electron levels,
respectively. ThematricesMi(K), i = 1, 2, 3, correspond-
ing to the SC OPs (17) are given in the Appendix, while
the constants k; in (23) are given by k; = {K®, K, K'};.
Theindices A, A' = 1, 2 number the normal-state levels
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of the upper and lower Hubbard subbands of the y band.
At the SC-transition point T =T, where Eq. (23) is sat-
isfied, the solution of the corresponding homogeneous
equations

(3;—RiK)Z =0, Z =2ZIJA+24+7 (25

gives relative normalized values z; of the SC OPs. Fig-
ure 4 showsthe phase curves T(k®) and therelative val-
uesof the OPs z; for T—» T, asfunctions of ks for two

signsof thetriplet constant k! in (10). The symbolsrefer
to the values of z; for T ~ 0.6T, obtained from full

mean-field calculations for the models with large con-
stants |k®| discussed above. These values agree with
those obtained from Egs. (25). The models with realis-
tic T, ~ 10 eV display the same symmetry properties
as the models with large kS and T... The transition tem-
peratures T, = 1.5 K observed in Sr,RuQ, correspond to
the constants ks = —0.145 eV or k% = -0.12 eV, respec-
tively, for two types (10) of models. In the first case,
when k! = k8> 0, the SC transition occursonly inthey
band. In the second case, when k' = k® < 0, transition
temperatures in the a and 3 bands are esti mated to be
T.~ 102 K. Actually, thismeansanormal metallic state
of the a and 3 bands for models of both types (10).

4. CONCLUSIONS

Thus, models with intralayer pairing interactions of
neighboring sites admit the SC order only in they band.
Thisfact does not agree with the situation in supercon-
ducting Sr,RuO,. Nevertheless, the models considered
are instructive in that they demonstrate the possibility
of new mixed types of SC order when a correlated sys-
tem possesses a spin structure. We have shown that the
SC order in the y band may coexist with a spiral spin
order due to the nesting of the a and 3 bands in
Sr,RuQ,. The mixed d-wave singlet and p-wave triplet
SC orders emerge from the pairing interactions of adja-
cent sites on the basis of the normal state with a spiral
structure with the nesting vector Q = 2r(1/3, 1/3). For
two types of constants of pairing interactions—with
attraction in both (singlet and triplet) channels or only
in the singlet channel—the main coupled pairs in the

system are the singlet d-wave pairs (k, —k);, and the
triplet pairs (k—Q/2,—k—Q/2)},
(k+Q/2,—k + Q/2)|, with large total quasimomenta

FQ and the spin projections = +1 onto an axis per-
pendicular to the spin rotation plane of the spiral struc-
ture. The predominant d-wave SC order inthey band is
consistent with the observed fourfold anisotropy of
thermal conductivity in Sr,RuQ, in a longitudinal (in
the plane of RuO,) magneticfield [9, 10]. The problems

moving and
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of SC order inthe a and 3 bands and of the Knight shift
behavior remain unsolved within the models consid-
ered. The extension of the calculationsto other periodic
spin structures requires the consideration of other, in
particular, interlayer interactions. The cal culation of the
behavior of the spin susceptibility under the SC transi-
tion should clear up the following question: Can the
triplet pairs accompanying the d-wave SC order guar-
antee the invariance of the Knight shift under the SC
transition?
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APPENDIX
The matrices Mi in (24) are given by

i [DC s 005 D}
Mk = |0 oMos ol (26)

Os—cO Oc-sO W\

.0
M=o ©

O—cqy(ko)

Ca(k)
0 D

p(kl)
0 D

0
0 -sq(k2)

a
3 = Sp(k)Dlo
0o10

M

Here, s=dng, c=cosd, and ¢ = ¢ (K) for band v are deter-
mined by the equation tan(2¢) = —{0H /od][e(k,) —
€(ky)]™. Other functions are given by c4(k) = (cosk, —
cosk,)/2, s,(K) = (sink,—sink))/2; k; =k, k, =k +Q, and
k =k+Q/2.
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Abstract—The structures of order parameters which determine the bounds of the phase stateswithin the frame-
work of the CP* Ginzburg-L andau mode! are considered. Using the formulation of this model [1] in terms of
the gauged order parameters (the unit vector field n, density p? and momentum c of particles), we found that
some universal properties of phases and field configurations are determined by the Hopf invariant Q and itsgen-
eralizations. At asufficiently high level of doping, itisfound that, outside the superconducting phase, the charge
distributions in the form of loops may be more preferable than those in the form of stripes. It is shown that, in
phase with its mutual linking number L < Q, the transition to an inhomogeneous superconducting state with
nonzero total momentum of pairs takes place. A universal mechanism of breaking of the topological coherence
of the superconducting state due to a decrease of the charge density is discussed. © 2003 MAIK “ Nauka/ I nter-

periodica” .

1. INTRODUCTION

Among the challenging problems of cooperative
phenomena in planar systems near Mott transition,
there are such that, at first glance, may not be associated
with the appearance of high-temperature superconduct-
ing states in doped antiferromagnetic insulators. For
example, we are interested in the origins of qualita-
tively similar cooperative behavior in various com-
pounds and very rich content of their phase diagram, as
well as in origin of the emergence of inhomogeneous
states typical of such systems [2—6]. Low-dimensional
structures in the distribution of spin [2, 3] and charge
[4-6] degrees of freedom exist in the state which pre-
cedes a high-temperature superconducting phase.
Keeping this property in mind [7], we should choose a
model for describing the aforementioned phases that
contains them as limiting cases. The mean-field Gin-
Zburg—L andau theory with the appropriate choice of the
order parameters may be used for understanding gen-
eral problems of such kind. A key question in this uni-
versal approach isthe method with the aid of which the
order parameters encode simultaneously the content
and the distribution of charge and spin degrees of free-
dom of excitations in various phase states.

The recent progress in solving analogous problems
in the non-Abelian field theory [8] and its devel opment
in the physics of condensed matter [1] showed that the
CP! Ginzburg—Landau model is preferable. The two-
component order parameter of this model is used for
solving the problems of two-gap superconductivity [9].
In the theory of electroweak interaction [10], this
parameter has the sense of the Higgs doublet of the
standard model. In this paper, we will assume that the

order parameter isaspinor realizing atwo-dimensional
representation of the braid group which arises due to
classification of the quantum states upon permutations
of particlesin (2 + 1)-dimensional systems. Consider-
ing factorization with respect to the center of this non-
Abelian group, we obtain the gauged CP* Ginzburg—
Landau model. Note that the order parameter of this
model istwo-dimensional [1, 11]. Only in this case can
we introduce the unit vector field which describes the
distribution of one-half spin degrees of freedom in the
long-wavelength limit aswell as use the Hopf invariant
for classifying n-field configurations and consider cor-
rectly the phases with different distribution of charge
degrees of freedom. For the above reasons, we use the
generalized n-field model which, after the exact map-
ping of the CP! Ginzburg-Landau model [1], includes
the Faddeev term [12]. Because of the non-Abelian
gaugetheory origin of thissignificant part of the model,
we hope that the obtained answers are universal and
will give a deeper insight into the problems under con-
Sideration.

The Hopf invariant describes the degree of linking
or knotting of the filament manifolds where the field of
the unit vector n is defined. The study of the behavior
of the vortex filament tangle is a separate problem and
attracts attention for several reasons. First, at small dis-
tances, the topological order associated with thelinking
exists against the background of the disorder caused by
arbitrary motion of separate parts of the system of
entangled vortex filaments. Thus, unlike point particles,
the properties of the tangle are determined by the
behavior of itsfragmentsin the ultraviolet and infrared
limits. Since the coordinates of the vortex core are
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canonically conjugated, the indicated circumstances
are manifested by noncommutativity of these variables
depending on the degree of linking. Second, a soft
medium such as the tangle of linked filaments is a hot
problem in the physics condensed matter and beyond,
in particular, in connection with the DNA problem.
When the coupling constants are transformed into the
sought functions, the appearance of a double helix as
the solution of the equations of motion in the soft vari-
ant [13] of the n-field model isits general property.

In the present paper, we consider some properties of
the field configuration in the CP! Ginzburg-Landau
model defined in the following section. The main goal
of the paper is to find the bounds of free energy in the
superconducting state and in the inhomogeneous phase
with broken antiferromagnetic order, as well as to
describe the properties of the charge density distribu-
tions corresponding to this state. Considering the
nonsuperconducting phase in the soft version of the
model [13], we analyze the contribution to the free
energy from the charge density distributionsin theform
of loops and stripes. In the third and fourth sections,
we discuss, along with the results from brief publica-
tions [14-16], the properties of the inhomogeneous
superconducting state with nonzero total momentum of
pairs and compare this with the LOFF states [17, 18]
and with the results from the recently proposed [19]
BCS-like model with two types of particles. We also
pay attention to the dependence of the bounds of phase
states on the generalized (2 + 1)D Hopf invariant in the
caseof xSt —» SFand St x St x St —»~ S mapping
classes and on the external magnetic field. In the Con-
clusions, we discuss some open problems. The Appen-
dix gives the proof of the inequality which determines
the relation between the contributionsto the free energy
of n- and c-field configurations.

2. CP! GINZBURG-LANDAU MODEL
We will use the Ginzburg—L andau model

F = [d X{zz—‘%ak+l Algw

1
2 B
+ zg_ba|wa| +2 ILPGI‘H Sn}
a
with atwo-component order parameter,
i
Wo = ¥2MPXa, Xa = [Xdl€ ™, 2

which satisfies the condition [x, |* + [X,|* = 1. This cou-
pling of two components ¥, takes place in the complex

projective space CP!, for which the given model is
defined. The model (1), (2) with different masses was
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used before[1, 6, 9] inthe context of two-gap supercon-
ductivity, as well as in the standard model of the non-
Abelian field theory [8, 10]. In the present paper, we
consider the states in planar systems and suppose that
W has the sense of the order parameter realizing two-
dimensional non-Abelian representations of the braid
group used for classifying quantum states upon permu-
tations of particles in systems with two spatial dimen-
sions. Realizing Abelian projection [20], the vector A,
compensates the local choice of the phase of the func-
tion W. The last terms in (1) describe the Ginzburg—
Landau potential V(¥;, W,) and the self-energy of the
gauge field.

It has been shown recently [1] that there is an exact
mapping of themodel (1), (2) into thefollowing version
of the n-field model:

F = [d" Z0°0n)" + (@)’
3
#360°C"+ (Fu—Hi)* + V(p.ny) |

Thefreeenergy in Eq. (3) isdefined by ascalar—the
density of particles p?, the field of the unit vector n? =
X o2 (where X = (X7, X5 ), and o? is the Pauli
matrix), and the field of the momentum ¢ =J/p?=2(j —
4A). Thetotal current J contains the paramagnetic part
j =i[(x;0x7 —c.c.)+ (x,0x5 —c.c.)] and the diamag-
netic term —4A. Equation (3) is written with the use of
the following notation: F;, = d,c,—0,C;, Hj, =n - [9;n x
0,n], and dimensionless units of the length L = (&, +

&,)I2 (with the coherence length &, = #/,/2mb, ), the
momentum #/L (as the unit of momentum c), the parti-
cle density ¢%(512me’L?) (per unit mass for the param-
etrization of W, in the form (2)), and the energy y/L
with y = (cfi/e)?/5121

In formulation (3), the Ginzburg—L andau functional
depends on gauged order parameters p?, ¢, and n. They
characterize spatial distributions of the charge and spin
degrees of freedom with or without current. The func-
tions X, determine the orientation of the unit vector n
which describes (in the long-wavelength limit) the
properties of the magnetic order. In addition, functions
X define the value of the paramagnetic part of the cur-
rent. Comparing different forms of representation of
the CP! Ginzburg—Landau model, we note that vortex
field configurations W, in the model (1), (2) are equiv-
alent to textures of thefield n in terms of the model (3).
We must also note that the ansatz (2) has the sense of
factorization of the longitudinal p and transversal X,
degrees of freedom. In the superconducting state, the
composition of spin j and charge degrees of freedom is
important, since the current contains diamagnetic U(1)
gauge component —4A.
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Inthe soft variant of the extended model of n field (3),
the multipliers of the first term describe the distribu-
tions of spin stiffness and the square of the inverse
length of the density screening. It is seen from this
exampl e that the competition of the order parameters p,
n, and ¢ may account for the coexistence of the phase
states with different ordering of charge and spin
degrees of freedom. We enumerate the limiting cases of
the model (3) ininhomogeneous (n # const) situations:

(1) a state with broken antiferromagnetic order: ¢ =
0, p = const;

(2) a state with quasi-one-dimensional density dis-
tributions: ¢ =0, p # const;

(3) an inhomogeneous superconducting state: ¢ £ 0,
p = const;

(4) c£0, p £ const.

In the case of n = const and ¢ # O, p # const, func-
tiona (1) is equivalent to the one-component Ginz-
burg—Landau model.

3. THE BOUNDS OF THE FREE ENERGY

3.1. APhase Sate
with Broken Antiferromagnetic Order

Let us consider thefirst casein the abovelist. In this
limit, the free energy is

F = fdsx[gl(akn)z +gy(nanxon)). (4

We supposed that, in the phase under consideration,
the constant value p = p, can be found from the mini-
mum of the potential V, and we introduced the notation
g, for the coupling constants. The properties of the
model (4) were studied in detail in [21-27]. The analy-
sis of the dimensionality shows that the first term in
Eq. (4) is proportional to the characteristic size R, of
the n-field configurations, and the second term is
inversely proportional to this scale. Therefore, the
energy (4) has a minimum which is achieved at R, =

J9./9; . This explains why the second term in Fad-
deev—Niemi model (4) alows us to avoid Derrik’'s
restriction of the existence of three-dimensional static
configurations with finite size. Inthe infrared limit, this
term characterizes the mean degree of noncollinearity
[0S, - [S; x S3]|00in the orientation of three spins
located at the sites of the quadratic plaguette.

It was shown [25-27] that the lower energy bound in
the model (4)

F>321°|Q* (5)
is determined by the Hopf invariant
_ 1 3
= Tor? J’ d xe;a,0,a. (6)

In this equation, the vector a, denotes the gauge poten-
tial which parametrizes the mean degree of the noncol-
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linearity of the orientation of neighboring spinsin the
following way:

H, = nonxodn] =d,a,—0d,a.

The dependence F;,, O |Q[** (5) with the boundary
conditionsn — (0, 0, 1) in the spaceinfinity was ver-
ified in [22—24] in smulation of the n-field configura-
tions. Such a boundary condition means that the space
[R3 of the n-field definition effectively compactsinto a
three-dimensional sphere S2. Thus, the unit vector n
accomplishes the mapping of the S® sphere into the
space of the two-dimensional sphere S?. Let the vector
n be directed to some general point of a two-dimen-
siona sphere. We are interested in answering the fol-
lowing question: what isthe pullback of thispoint inthe
space S° or, in other words, what set of points from the
domain of definition of the vector n(x, y, 2) contributes
to a given point of the target two-dimensiona sphere?
Since the space S® is compact and its dimensiondity is
greater by unity than that of the sphere S?, the pullbacks
of points on the sphere S? are closed and, in the general
case, linked lines on the S3 sphere.

The Hopf invariant Q (6) describes the degree of
linking or knotting of these lines. It belongs to a set of
integers Z to which the considered homotopy group
,(S?) = Z is equal. In particular, for two once-linked
circles, Q = 1; for one of the simplest knots (a trefail),
Q = 6; etc. As aresult, the n-field configurations are
divided into classes corresponding to the values of the
Hopf invariant. We should emphasize once again that
linked or knotted configurations may be numbered by
the Hopf index only in the case of the CP* Ginzburg—
Landau model with its two-component order parame-
ter, because at M > 1 the homotopy group 1,(CPV) =0
istrivial [11].

3.2. Quasi-One-Dimensional Density Distributions

Let us consider the states outside the superconduct-
ing phase from the second line of the list of limiting
cases, to which the CP! Ginzburg—L andau model leads.
In this soft version of the model, the functional (3) has
the form

F= J’d3x

U
<[ Z0°@)7 + @9+ Hi,—bp™+ 5],

In Eq. (7), the positive constant b corresponds to the
phase with broken antiferromagnetic order.

The state with the broken antiferromagnetic order
considered above has a lower energy than the “soft”
state we are interested in now. The latter may be meta-
stable [28]. In this section, we will consider only such
states and compare their contribution to the Ginzburg—
Landau energy without studying the problems of their

No. 6 2003



STRUCTURES OF ORDER PARAMETERS IN INHOMOGENEOUS PHASE STATES

relaxation, the critical sizes of nuclel of different
phases, etc., which are of separate interest.

Under the condition that the electron spin and
charge are transferred from one of four sites of some
plaguettes to the dopant reservoir, the terms with H;, in
Eqg. (1) characterize (in the infrared limit) the mean
degree of noncollinearity [0[S, - [S, x S;]|0Cin the ori-
entation of three spins, which remain in the sites of a
guadratic | attice plaquettes. Therewith, the deficit of the

charge density pﬁ relates to the density p?, describing
the distribution of the exchange integral in (1), by the

relation p2 + p. = const. From the long-wavelength

point of view, the distribution of the spin density p? in
alimited region with an exponential law of decrease at
the boundary (for example, for adistribution in acircle
with radius ry, with an exponential decrease over a
length R < ry) will be accompanied by a quasi-one-

dimensional distribution of the charge density pﬁ along
the boundary of thisregion, i.e., along aring with thick-
ness R and radiusr,. From this, it is seen that studying
spatial configurations of the density field p? in planar
systems makes it possible to find the form of one-
dimensional distributions of the electric charge density
with the aid of the above-mentioned holographic pro-
jection.

It has been known for a long time that, in such a
phase state, the distributions of the charge density
(9,p)? have the form of stripes.! Due to the gradient

term (0,p)? in (7), quasi-one-dimensional field p con-
figurations are really preferable. It seems almost obvi-
ous that a density distribution in the form of rings give
the smallest contribution to the energy. Let us find the
contribution to the free energy (7) from quasi-one-
dimensional density distributions p? in the form of
rings and stripes and compare the computation results
with the experimenta data. We will choose the foll ow-
ing trial functions for the field p configurations in the
form of aring and a stripe:

P = poexp[—(r —ro)’/2R] (8)
and
O x20
P = PoeXPF
2L
e (9)
]
x 0 (Iyl - y)
X . lyl>L,.
ol ) e

1 We suppose that the characteristic size of the stripe is substan-
tially greater than the lattice scale. In this case, the use of a phe-
nomenological approach of the mean-field Ginzburg—L andau the-
ory isjustified.
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Here p, = /b/d, r, is the ring radius, R is its width,
2L, = 21w, is the stripe length, and L, = Ris its width.
Since configurations (8) and (9) do not depend on the
third coordinate, we will assume that the size in this
directionislimited by thelength L, and also that R<r,,.

The calculation of energy (7) with theaid of (8) and
(9) yields the following results for the contribution to
the free energy from the ring F, (at R <€ rp) and the
stripe Fyy:

= mefL, 2+ B 25, (10)
Fa = 1'[ng [1+—+ +%1 _}. (11)
Here,
fo = J/Try, 1/8° = 2[n,—(1-1//8)b],

Ny IS a certain characteristic value of the “multiplier”
()2 in (7), which is of the order ¢;R?, whereas b =
c,R20T, wherec, ~1and 8T = (T,—T)/T,. Inthese equa-

tions, we omitted the term Hizk from Eq. (7) since we

consider that it isapproximately the samefor both types
of distributions.

The exact equation for F, (in units npS L,) contains
theterm

OF, = 2[15(Xe) — Xol 2(Xo)]

+ _[ 11 (Xon/2) = Xon/21o(Xon/2)]

+ ;\R‘z[ [1(Xo) —Xol o(Xo)] ,

R 1
Xo = =, = = 2(ng—b),

_ m_—x
. ln(2) = J’x e’ dx.

However, this value is already exponentially small
at RIry~ 1/4 and R~ A\ with /A% = 2(n,—b): oF, ~10~".

For the optimum width R= € (at R < ry), the differ-
ence in free energies AF = F,, — F, in units npg L, has
the form

_ 3
From this equation, one can see that, at 4(1 + ¢,)/3c, <
1 in the temperature range
[1-4(1+¢cy)/3¢c,)) T, <T<T,

bordering on the critical temperature T, of thetransition
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Schematic representation of closed (1) and open (2) quasi-
one-dimensional structures of the charge density (see [29])
around antiferromagnetic dielectric nanoclusters (3).

to the state with the spin pseudogap, rings are prefera-
ble (see figure). In the temperature range

T<TJ1-4(1+c,)/3c)],

stripes are the main configurations. As is known, one
may approach T, keeping the temperature constant by
increasing the level of doping. The recent paper [29]
gave evidence of the existence of ring-shaped charge
structures obtained just under such experimental condi-
tions. In a certain sense, the tunneling microscope in
this experiment [29] collects data from a two-dimen-
sional dice of knots[21].

Let us make severa remarks concerning the spin
density p? distribution in the disk surrounded by aring
charge distribution. The above considerations referred
to the case when the spin disorder arose only in the
region directly adjacent to the disk edge, and, as a
result, we had an antiferromagnetic phase inside. If the
antiferromagnetic order is broken everywhere in the
disk, it is necessary to consider the corresponding dis-
tribution of the density p? in the form of adisk in order
to compare its contribution with F,. When we consider
the contribution of the density distributions p? to the
free energy in the form of adisk, we get adouble gain
(in comparison with rings) due to the existence of one
edge and have a loss due to the area. The calculation
shows that at small R/r, the distributions in the form of
rings appear to be more preferable.

Let us consider the dependence of the critical tem-
perature T, onthelevel of doping. To do this, we present
the relation of F, to F,, in the following form:

F
FL = TrR a2
where
5 = l[1+1 n,—3b/4 } _ §n0—0.68b.
2 2n,—(1-1/./8)b 4n,—0.65b
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One can see that configurations in the form of
stripes are more preferable in the range 0.65 < nyb <

0.68, where F,, < F,. Normalizing the density pj to the

particle number N by the condition N = 2rr,EL,mp3,

we obtain a relation between the parameters n, and b,
which we writein the form

x = b/./ny—0.65D,

where x = Nd/(/2 mmiLr,). Thus, for the bounds of the
range considered above, where ny ~ b ~ oT, we have
T(X) = T(1 — Ax?) with a certain constant A. Therefore,
inside the region belonging to the phase state with bro-
ken antiferromagnetic order, there is anarrower region,
located between the parabolas T(x), where the charge
structures have the form of stripes.

3.3. The Inhomogeneous Superconducting Sate

Let us consider a superconducting state with finite
value of the total current J which exists against the
background of a certain n-field distribution, assuming
that p = pp = const. In this case, the free energy is

F= I:n-'-I:c_Fint

= Idax[((akn)z +Hiy) + %Cz + Fizlg_ZFikHik] )

The negative sign of the interaction energy F;,, of ¢
and n fields appears because of diamagnetism of the con-
sidered state. As aresult, the coupling constant g, = 1 of

the term Hi2k decreases due to renormalization in such

away that energy of the superconducting statecz0is
smaller than the minimum valuein inequality (5). To find
the exact lower bound of the free energy in the super-
conducting state ¢ # 0, we will use the auxiliary ine-
quality

FIORY2 5 (3212) "L, (14)
where the invariant
1
L = _2 dSXEiHCiaka, (15)

161t

determines the degree of the mutual linking [30, 31] of
the current lines and the lines of the magnetic field H =
[Oxa].LikeQ, itistheintegral of motion [31, 32] inthe
considered barotropic state. The proof of inequality (14)
[14] isgiven in the Appendix.

Linking indices, which characterize the correlations
of spin and charge degrees of freedom, form the follow-
ing matrix:

O 0
KGB = —:‘L_Z d3X€ik|C(iaaka|B = Q L D (16)
16Tt OL QO
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In this symmetric matrix (L = L") with a] =g and a’ =
G, theintegral might also be determined by the asymp-
totic linking number [30]. Let us pay attention to a cir-
cumstance which will be important below. Being nor-
malized to the charge density, unlike the unit vector n,
the vector of momentum ¢ = J/p? belongs to the non-
compact manifold. Because of this, the Hopf numbers
defined with the aid of this vector in (16) are not inte-
gers in generd: (L, Q) O Z. In the superconducting
state, where Abelian U(1) gauge symmetry is broken
and the charge is not conserved, the numbers L and Q'
play the role of continuous interpolation parameters
which unite the compressed and uncompressed (K [
Z) phases under consideration. From this point of view,
the superconducting states with K,s 0 Z and K 0 Z
belong to one and the same class of universality [33].

To find the lower bound of the functional (13), along
with Eq. (14), we will use the Schwarz—Cauchy—Buny-
akovski inequality

Fine < 2|Fidl, OIHid, < 2F22F 2, (17)

where [IF,|b = [[d°xF2] . Note that the equality on

the right-hand side of Eqg. (17) is achieved in the ultra-
violet limit, when the size of linked vortex configura-
tionsis small enough. Substituting the boundary value
Fi. into (13), we obtain

F2Fp, = (F-F) (18)

The Hopf configuration with Q = 1, for which the
lower limit occurs in Eq. (5), represents two linked
rings with radius R and

8 ., 8
(Fo)mn = 2TPR°EE + 2
nmn I:hz R4:| R=1

We will assume that, in our case of ¢ # 0, there are
configurations for which the equality in Eq. (14) is
valid. Let us emphasize an important circumstance
which will be discussed more thoroughly in the next
section. For small values of p and, therefore, for large
values of the field ¢ (since all termsin (13) are of the
same order), we encounter the instability of linked con-
figurations with respect to small perturbations. This
leads to the restriction of values F, from above. Keep-
ing in mind thisremark and using in Eq. (18) for F. the
lower bound

= 3217,

F2 = (32r) °F,°|L,

we obtain from Eq. (14) and relation F,, = 3212|Q|*, for
the states with Q # 0, that

F>3217Q¥*(1 - L/|Q))% (19)
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One can see from Eq. (19) that, for all numbersL <
Q, the energy of the ground state is smaller than that in
model (4), for which inequality (5) isvalid. The origin
of the energy decrease may be understood by compar-
ing the values of different termsin Eq. (13). Even under
the conditions of aconsiderabl e paramagnetic contribu-
tion j to the current, the diamagnetic interaction in the
superconducting state for all classes of states with L <
Q reduces in (13) its own energy F. of the current and
part of the energy F, associated with dynamics of the
nfield. In the state under consideration, the tota
momentum of superconducting pairs ¢ is not equal
zero. In this respect, the inhomogeneous state with cur-
rent is analogous [ 34] to the state proposed in [17, 18].

4. THE PROPERTIES OF PHASE STATES

The phase state with a broken antiferromagnetic
order at (0,p)? # 0 isabackground on which the transi-
tion to the inhomogeneous superconducting phase with
F, # 0 occurs. It is convenient to discuss the character-
istics of this transition upon a change in the density p?,
beginning with the superconducting state. In this phase,
the constant value of the charge density, related to the
breakage of the gauge invariance U(1), playstherole of
the tuning parameter of the system.

L et the parameter p, changein somerange. Sinceall
termsin Eq. (3) are of the same order, the momentum ¢
and, consequently, the index of the mutua linking L
decrease when p, increases. In this case, for sufficiently
small L, the smallest superconducting gap decreases
with an increase in Q against the background of alarge
value of 3212|Q[*¥* of the spin pseudogap.

When p, decreases, the following effect takes place.

Being proportional to g;* O py', theradius % of com-

pactification R® —» S® grows until it exceeds some
critical value R, . At R >R, , the Hopf mapping is not
stable [27] relative to small perturbations of linked vor-
tex field configurations. As aresult, the U(2) symmetry
which is associated with identical Hopf mapping
appears to be spontaneously broken. This means that
the topological configurations of field n and c, instead
of being spread out over the whole space S°, localize
around a particular point (the base point of the stereo-
graphic projection R® — S®) and collapseto localized
structures [27]. We can see that there is an optimal
value of p, and, consequently, values of the character-
istic momentum ¢ and the relation |L|/|Q]| for which
there arises the greatest gain upon the transition to the
superconducting state.

Until now, the vector A has characterized the
degrees of freedom, associated with the internal charge
gauge symmetry U(1). If the externa electromagnetic
field is applied, the vector A equals the sum of internal
and external gauge potentials. In the external magnetic
field, due to diamagnetism of the superconducting
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state, the momentum ¢ decreases. Similar to the case of
increasing p,, thisleads to suppression of the supercon-
ducting gap. Playing therole of asmooth tuning param-
eter, the external magnetic field determines the bound-
ary conditions of the problem. Asaresult, the answer to
the question of compl eteness of the Meissner screening
depends on the results of the competition of contribu-
tions from a paramagnetic (spin) j and diamagnetic
(charge) —4A parts of the total current J.

Similar to energy distribution in the fractional quan-
tum Hall effect with thefilling factor v =p/gqand p, g O
Z, the energy gain in Eq. (19) depends on the relation
ILV/|Q|. The Hopf invariant Q O Z numbers vacuums
[35] and is equivalent to the degree of degeneracy q of
theground state. Theindex L playstherole of thefilling
degree p of incompressible charged fluid state in the
fractional quantum Hall effect. From this point of view,
the multiplier (1 — |L}/|Q]) in Eq. (19) is equivalent to
the filling factor 1 — v for holes. The distinction of our
system from the states in the fractional quantum Hall
effect is that the superconducting state is compressible
and here (as was mentioned above) the effective num-
ber L of the charge degrees of freedom is not an integer
in the general case. The configurations of fields n and
c = awiththeintegers L = Q, satisfying the relation of
self-duality F,, = F., correspond to the minimum value
of free energy (13). In this limit, K,g is proportional to

0910 . .
thematrix 00~ ~ [, which was used in [36] to describe

011d

the topological order in the theory of fractional quan-
tum Hall effect with the filling factor 1 —v at v = 1/2.

The boundary conditions which determine the
momentum ¢ and the topological invariants L, Q
depend not only on the values of the tuning parameter
P, of the model and the external magnetic field. Their
physical sense and value also depend on the dimension-
ality of the manifold for which the model is defined. In
the (3 + 0)-dimensional case of the free energy (3), the
Hopf invariant (6) is analogous to the Chern—Simons
action

%TJdtdzxamaudvah.

Thisterm in the action of (2 + 1)-dimensional systems
describes the dependence of the contribution of non-
linear modesto the free energy on the statistical param-
eter k. The coefficient k in the Chern—Simons action has
the geometrical sense of the braiding number of the
excitation world lines. In particular, when semifermion
excitations (semions) permutate and return to theinitial
positions on the plane, the world lines braid twice and
k = 2. Therewith, the statistical correlations of nonlinear
modes have the character of attraction, and for the val-
ues k ~ 2 their greatest contribution to the energy is of
the order of several percent [37]. For the energy scale
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(0.1-1) eV, this gives severa tens or hundreds of
degrees. Taking into account the relation between the
dimensionality of the systems at their dynamic and sta-
tistical descriptions, we note that the (2 + 1)-dimen-
sional case k = 2 with the open ends of excitation world
lines is equivalent (after identification of the ends) to
the compact statistical (3 + 0)-dimensional example of
the Hopf linking with Q = 1.

The (3 + 0)-dimensional and (2 + 1)-dimensional
situations differ by the topology of the regions of the
field definition n [38—40]. When the system is periodic
in one of the space variables and aso when calculating
the partition function in planar systems, one of three
coordinates—M atsubara variable—is a periodic vari-
able. This means that instead of the sphere S3, we deal
with the topology of athree-dimensional torus T2*1 =
S? x Stor T3=S! x St x St and with the corresponding
mapping classes. The content of Hopf invariant in this
case appears to be richer [38-40]. For a three-dimen-
sional torus T2, the Hopf invariant is defined modulo 2q,
where q isthe greatest common divisor of the numbers
{a1, Op G} O Z. Here, q; is the degree of mapping
T2 — 2, where T2isthe section of T3 with the fixed
ith coordinate. Four integral numbers{q;, Q}, where Q
is defined by modulo value 2q, give us the complete
homotopic classification of mappings T3 — S? with
Ty[Mapy(S? — S?)] = Z,, and afixed degree q [38-
40]. The geometrical meaning of this modified Hopf
invariant (an integer from the range {0, 2q — 1}) isthe
same. It is a linking index of the preimages of two
generic pointsin T3 — S?. Thecases T2* 1 and T3 are
characterized physically by different boundary condi-
tions. The boundary conditions change if an angular
velocity of the rotation of the neutral superfluid phase
in 3He increases [38, 39] or an external magnetic field
in our charged system grows. Restricting the Hopf
invariant change, the transition T2** — T3 promotes
the appearance of the incompressible phase.

5. CONCLUSION

One can see from the above analysis that the gain of
the free energy upon the transition to the superconduct-
ing statewith ¢ # 0 ariseswhen thereisacoherent phase
associated with the spin degrees of freedom. This phase
is characterized by a pseudogap (5) and a topological

order associated with linking. If the density pj israther
large, the momentum c is small and the transition to the
superconducting state is not preferable. According to
our classification, this second state is characterized by
changing values of the order parameters p and n. The
energy loss due to the term (9,p)> may be reduced
because of the development of one-dimensional struc-
tures. Whether these one-dimensional charge structures
will be open, forming stripes, or closed amost one-
dimensional structuresin the form of rings depends on
the parameters of the potential V(p, ny). In the phase
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n; = const with neutral spin currents, the answer will
depend on the value and the sign of the multiplier b(ny)
in the potential

d
V(p.ng) = —bp°+2p".

If b >0, then far from T, charge structures with open
ends are preferable [13], and inthecase T — T, we
should prefer rings. The first experiments that verified
the existence of charge structuresin theform of ringsin
the underdoped phase of planar systemswere described
in[29].

On the “temperature—charge density” phase dia-
gram, the superconducting phase occupies only part of
the region belonging to the phase with the broken anti-
ferromagnetic order. The bounds of its existence on the
phase diagram, associated with the characteristic values

of the density pg, are determined for great py by the

inequality (14) [14], while for small p, these bounds
depend on the critical size of the knot [27], beginning
from which instability of the Hopf mapping arises.

Comparing the results of this paper based on consid-
eration of the local fields with the conclusions follow-
ing from the BCS-like model [19] with two species of
fermions, we pay attention to the following qualitative
coincidence. One can conclude from Eq. (3) that the
parameter p, determines the value of the coupling con-
stant. Therefore, the appearance of the solutions (differ-
ent from the standard BCS model) for the supercon-
ducting gap in the paper [19] with a finite value of the
coupling constant is analogous to the existence of the
threshold for small values of p, in this paper.

In contrast to the model [19], the states considered
in the present paper are significantly inhomogeneous.
The analysis of the state F;, # 0, p # const is ill an
open problem. Here, we only mention that the super-
conducting current with the amplitude c,, flowing

around the rings (8), gives the additional term c2R® to
the multiplier in Eq. (10). This explains, in particular,
why the superconducting region on the “temperature—
doping level” phase diagram is shifted to the line

o0T(X) =0 of the transition to the state with the spin
pseudogap. Indeed, in this case,

d
Vgi(p, N3) = _beffp2 + 5941
with

const
RZ

by = b—(ny+¢2) = 5T.

Therefore, thefinite value of the momentum c of super-

conducting pairs decreases dT. In addition, the contri-
bution to the free energy in the inhomogeneous state

dueto (9,p)? # O decreases the gain in Eq. (19).
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The superconductivity in cluster systems may evi-
dently be studied on the basis of approaches beyond the
mean field theory. For example, we may use the exact
Richardson solution and Bethe ansatz equation [41], as
well as the methods of the conformal field theory [42].
The exact solution of the ground state problem under
the condition of afinite value of the total momentum of
pairsin such an approach is one of the important prob-
lems. Since the conformal nature of the dimensionality
3/4[30] in (5) and (14) influences the character of the
scale which enters into energy dependent response
functions (which is proportional to T%4[43]), it should
also be studied carefully.
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APPENDIX

The proof of Eg. (14) uses the following chain of
inequalities:

LI <lclls OHlgs < 6”0 x c]ll, OlHllgs

< 6"°I[0 x ][ IHIT*IHIZ® (20)

—4/3

< (3217) FPF2PFYe = (32rd) R

Here, |H|}, = (J'dslel”)l/p. At thefirst and third steps,
we used the Holder inequality

If Coll < [ifll, Clglq

with 1/p + 1/q = 1. Under the condition [0 - ¢ = 0, we
employ at the second step the Ladyzhenskaya inequal-
ity [40, 44]:

Ielle< 6”10 x c]l.

The fourth step in the set of inequalities arises after the
comparison of the terms |[[O x c]|| and |[H|| with the
terms F,, and F. in EQ. (13). The last line a'so shows
separate contributions from n and c¢ parts of the free
energy (13) to the finite result (14). Using a chain of
Hoélder and Ladyzhenskaya inequalities, analogously
one may find that

F2EY > (1617) "L

The coefficient in this inequality differs from (14)
due to the coefficient 1/4 (because of the charge 2e of
superconducting pairs) of the first term of the free
energy F.in (13).

4/3
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Abstract—A theory of generation in atwo-subband “ Stark ladder” with acoherent electron subsystem isdevel -
oped. In the proposed model, electrons reach the upper level of a quantum well due to resonant tunneling and
passtothelower level of thewell (vertical transitions), emitting aphoton A, then tunnel resonantly to the upper
level of aneighboring well, performing a radiative transition, and so on until electrons |eave the lower level of
the last well. A static electric field applied to the superlattice shifts the levels so that the lower level of the nth
well coincideswith the upper level of the (n + 1)th well. Analytic expressions are derived for the wave functions
and polarization currents of an N-well structure. The possibility of bulk oscillation of the N-well structurein the
optimal mode with an efficiency close to unity, weak reflection, and a linear dependence of the power on the
pumping current is demonstrated. The total generation power is proportional to the number of wells. For struc-
tureswith an even number of wells, the energy of electrons from the emitter must simply coincide with the res-
onance energy for any laser fields; i.e., the energy tuning which is necessary in a single-well structure is not
required. Universal relations are derived for parameters of the N-well structure, which ensure the simultaneous
fulfillment of resonance conditions in al the wells. The possibility of coherent lasing in a one-subband Stark

ladder with alower gainis aso indicated. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In 1972, Kazarinov and Suris [1] proposed a new
type of a semiconductor laser in which radiative transi-
tions occur between size-quantization levels (sub-
bands). This idea was implemented in 1994 in nano-
structures (so-called cascade lasers) [2, 3], inwhich the
main elements are two quantum wells (QWSs) with
working levelsin each well [2] (“diagonal transitions’)
or asingle QW with two working levels[3, 4] (“vertica
transitions”).

The main advantage of cascade lasers is the possi-
bility of wavelength tuning from the infrared to the sub-
millimeter range. Cascade |lasers are characterized by
unipolarity, identical masses of subbands, etc. Another
fundamental feature is the coherent nature of resonant
tunneling ensuring pumping. This leads to the possibil-
ity of lasing without participation of dissipative pro-
cesses. Indeed, an electron reaches the upper level asa
result of coherent resonant tunneling; passes to the
lower level, emitting a photon; and leavesthe well, thus
interrupting the process of interaction with the electro-
magnetic field (in conventional lasers, lasing is inter-
rupted dueto dissipative processes such asthe emission
of a phonon [5]). Such a single-quantum-well laser
(referred to as a coherent laser) was proposed and ana-
lyzed theoretically in [6]. It was shown that a strong
field can be generated in the absence of population
inversion. The optimal operating conditions were deter-
mined, for which the efficiency is close to unity [6, 7],

the reflection from the structure is equal to zero, and
amplification line broadening due to the field is absent.

A natural question arises: Iseffective lasing possible
for a structure consisting of N tunnel-coupled QWs?
This problem is closely related to the problem of Stark
ladder lasing, for which a certain difficulty exists.
According to Bastard et al. [8], Stark ladder lasing isa
surface effect. The reason isthat radiative transitionsin
the sample are compensated, and the gain is determined
by the population inversion between the levels at the
left and right boundaries.

However, thisconclusionisvalidif the el ectron sub-
system is incoherent and the concept of radiative tran-
sition probability per unit timeis applicable. The situa-
tion in a coherent system is fundamentaly different.
Under certain conditions, an electron supplied to aQW
performs coherently radiative transitionsirrespective of
the difference in the occupancies of the levels[6]. Con-
sequently, we can expect that lasing takes place in the
entire volume of the N-well structure.

It should be noted that radiative transitions in the
one-subband model occur between the Stark levelsin
neighboring QWSs (diagonal transitions). It was shown
in [4, 9] that diagonal transitions lead to a much lower
gain as compared to transitions between two energy
levels in the same QW (vertical transitions). For this
reason, we consider here a superlattice with vertical
radiative transitions (see figure). After the transition of
an electron from the upper to the lower level of the nth

1063-7761/03/9606-1149$24.00 © 2003 MAIK “Nauka/ Interperiodica’
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Schematic diagram of afour-well structure (N = 4).

QW, accompanied by the emission of a photon, the
electron performs resonant tunneling to the upper level
of the neighboring QW, and so on. Thisisthe model of
a coherent laser in which an electron passes through N
QWs, emitting photons in each QW. It is well known
that an electron in a cascade laser [2, 3] after each radi-
ative transition getsinto the relaxation region, whereits
state is prepared for the next radiative transition.

Thisstudy isaimed at the development of the theory
of a coherent laser for N QWswith vertical transitions.
It should be noted that some preliminary results were
obtained in [10]. However, the formalism used in [10]
for solving the system of 4N x 4N algebraic equations
is quite cumbersome, which did not permit oneto carry
out acomprehensive analysis and to clarify the optimal
lasing conditions.

We succeeded in deriving exact analytic solutionsto
this system of equations for 2, 3, 4, and N wells. It is
shown that optimal bulk lasing of a structure with
N wells can be obtained with an efficiency close to
unity, a small reflectance, and a linear dependence of
the power on the pumping current. For structures with
an even number of wells, the energy of supplied elec-
trons must simply coincide with the resonant energy for
any fields. In other words, the energy tuning, which is
inevitable in a structure with asingle well [6, 7], is not
required. Universal relations are derived for the param-
eters of an N-well structure, ensuring the fulfillment of
the resonance conditions in al the wells simulta-
neously.

The article has the following structure. In Section 2,
the model is described and the steady-state solution to
the time-dependent Schrddinger equation is given; the
boundary conditions and expressions for currents are
also derived. Section 3 isdevoted to asingle-well struc-
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ture; the results obtained in this section are used in the
subsequent analysis. The wave functions of an N-well
structure, which are valid both for weak and strong
fields, are determined in Section 4. A detailed analysis
of atwo-well structure is carried out in Sections 5 and
6, while a three-well structure is treated in Section 7.
Structures with an even number of wellsN = 4 are ana-
lyzed in Section 8. An analysis of resonance conditions
is carried out in the Appendix.

2. DESCRIPTION OF THE MODEL:
BASIC EQUATIONS

Let usconsider thefollowing model of aone-dimen-
sional N-well structure (see figure), which is a general-
ization of the models described in [7, 10]. The figure
shows schematically the structure in the form of aset of
o-functional barrierspositioned at pointsx=an, n=-1,
0,1, ..., N—1. The parameters of the QWs are chosen
so that the energies €,5 and €, of the two lower levels
of an isolated well differ by a value approximately
equal to the electromagnetic field frequency w (& = 1):
&r — &1r = W The application of a constant external
electric field shiftsthe energy of the nth well relative to
the (n— 1)th well by quantity E, equal to w. The energy

e of the lower level of the (n — 1)th well coincides
(n)

with the energy €55 of the upper level of the nth well.
The steady-state electron flux with a density propor-
tional to g? and with energy € approximately equal to
8(21& is supplied to the system from the left (x = —).

Theeectromagnetic field, whichisregarded as clas-
sical,

E(z t) = Esin(kz)cos(wt + ¢),

is emitted during electron transitions from levels“2” to
levels“1” of the QWs. We assumethat thefield is polar-
ized at right anglesto the plane of awell (i.e., aong the
x axis), while the wave vector lies in the plane (along
the z axis). The optical resonator of length L separates
the modes. We confine our analysis to single-mode las-
ing. The equations for the stationary amplitude E and
phase ¢ (frequency w) can be written in the form [5]

E _ 2mm
21, K e @
_2n
(0= QE = ~=73(N), 2
1 (N-1)a
3e = Na [ e, ©)
-a
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where J, and J, are the reduced polarization currents
coinciding in phase with thefield (J.) and shifted by 12
relativeto thefield (J). Currents J, and J, describe tran-
sition between energy levels. Here, 1y isthe photon life-
time in the resonator, K is the dielectric constant, Q is
the natural frequency of the resonator, and c is the
velocity of light (wewill henceforth assume that ¢ = 1).

Currents J.(xX) and J{(X) can be determined using the
well-known expression

J(x, t) = i eEPE%J—c.c%, (@]

where the wave function W(x, t) of the system obeysthe
Schrddinger equation

v v

iS5 = —W+U(X)LI—’+\A/(X,t)‘P. (5)

Here,
N

U(X) = a,d(x+a) + Z ad(x—an) ©)
n=0

+0a,0(x—a(N-1)) - E(x),

609 = ¥ Ox—(n-1)a),

(7)
0L, x>0,

oK) = Ep, < 0:

a; are the barrier intensities, a5, a,, and a being the
barrier heights of the left, extreme right, and internal
wells, respectively; and 2m = A = 1. The last term in
Eqg. (5),i.e,

. Lo OV
V(xt) = 2e|AXaX,

describes the interaction between electrons and the
electromagnetic field and A, is the vector potentia in
the Coulomb gauge, which differs from zero in the
nanostructure region. Expressing A, in termsof thefield
amplitude, we can write the last term in the form

~ ot —iotyV eE

VY = V(e —-e )ax’ VvV = ™~ (8)

It should be noted that we have omitted in this

expression the term quadratic in A,. This approxima-
tion, which is usually employed in the theory of lasers,
isalso valid hereif parameter V/pissmal; i.e,

Voo

p pw

where p isthe electron momentum. Equation (5) should
be supplemented with boundary conditions. The form
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of the boundary conditionswill be specified bel ow after
obtaining a solution for W(x, t).

Following [6], we seek the steady-state solution to
Eq. (5) intheform

W(x, t) = ZZexp[—it(s+moo—Eo(n+1))]
n m (9)
X Wnn(N, ),
m=0,%1,+2, ..., 1<n<N.

Functions Y,,(X, N) describe the states with quasi-

energies € + mw in the nth well and satisfy the follow-
ing system of equations:

d’y,,

[8+mw—E0(n+1)]qJnm+ 2

(10)

— dlI*'n,m—l_dlIJn,m+1
_V[ dx dx ]

It iswell known that the main contribution to lasing
comes from two resonance levels with the energy dif-
ference equal to frequency w. In the present case, for
the nth well, these levelsare the upper level with energy
e and the lower level with energy €!}). The corre-
sponding wave functions are Y»(X) and Y;(X), so that
wave function (9) can be reduced to two termsin each
well:

WX 1) = Wna(x)exp[-it(e —Ey(n—1))]
+ Wni(X)exp[-it(e —w—Ey(n—-1))],
(n—-2)asx<(n-1)a, 1<n<N.

(11)

Functions U, and @, satisfy the system of equa-
tions

AW, _ |0,
[e~Eo(n-Dw + 2 = VERE (12
d’y, dy,
[e—w—Eon—Dlwm + —=% = V== (13)

with the following boundary conditions (see [6]):

Opry, 1 dygy(-a) _
LIJlZ(_a)%‘_Ep-'— |p2 dx =dq,

P(0) = 0, Wyu(-a) =0, Yyp(@ =0,

dy,,(0) dyy,(0
quZ;( )_ qu1)1(( ) - ay;,(0),
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P((N=2)a) = 0, Wp((N-1)a) = 0, (14) field. The strong-field parameter will be determined
below.

We seek the solution to system (16) in the form

_ _4n
Pral(N 1)a)%l- ip P, = Ae”, g, = Ae™ (18)
_iquNl((N—l)a) - 0 The eigenvalues y satisfy the equation
ip; dx ’ ¥

4 2 -], .2 _
y +2y £+ +e°—we=0
W((N=2)a)  dpy_r.(N-2)a) AN

dx dx and are given by
= aPp_1,1((N=2)a). ; > -
o . ylzziiA/s+V | Ul NPV
The boundary conditions describe the electron flux * 2 0o 2 0
from x = —oo, their reflection and departure to x = o, and (19)
the continuity conditions for the wave functions as well _ Viow  |pV-wf 5
as the jump in their derivatives at the boundaries of Yau = 2 et ——+ |F—— + AV

the QWs.

For N =1, Egs. (12) and (13) and boundary condi-
tions (14) are transformed into their counterparts for a 4
single well [7]. It should be noted that the boundary P(x) = Z Alexp(y;x), | =12 (20)
conditions prohibit the departure of electrons from the =
energy levels of internal wellsaswell asfrom the lower .

level of thefirst well and the upper level of thelast well.  Coefficients Al and Al, are connected through the rela-
Thissituation optimizeslasingandisrealizedinpractice.  ons followi ng from Egs. (16)

The genera solution to Egs. (16) has the form

Using the form of wave function (11), we can , ‘ avY;
express current (4) in terms of functions ,,(X): AL = gA;, g = ———. (22)
E—WH+Y]
N
J(N, x) = Z J (%), Substituting Y, from Eq. (20) and A! from Eq. (21)
n=1 (15) into boundary conditions (17), we arrive at the system

of algebraic equations for the coefficients,

H * d n * d n
Jne(¥) = —m[BpM%H Wk gxﬁ—c.c.].

N 4
ZAlzeXp(—Vja)(l—Bj) =q, ZAlz =0,
j=1 j=1

3. SINGLE-WELL STRUCTURE N

j -

For N = 1, the general system of equations and Z g/Azexp(-y;a) = 0, (22)

boundary conditions described in Section 2 is trans- I
formed into the corresponding system for asingle well:

:;Ll | )
S &A(1-B) = 0,
B+ W3 = VUL, (E- @)Uy + W = -V,

d (16) where
W=, W=y, UJ'E&1
_Ox=Y) 5 _Opty;
- TR T
a —a
vaB- 25 = g 0 = 0
Y P2 2 _ 2 _
a7) P =¢& P =E-W.
Y.(—a) = 0, q;l(o)%__a_lm_w_l_(o) =0. The solution to system (22) can be written in the form
ipt ip,
j 2 +1+ "
Following [6], wewill find the exact solution to sys- A = AT?I) Y (D) el (239)
tem (16), (17) without using perturbation theory in the EReTEY
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Here, A;(1) isthe determinant of system (22),

AL =Y (D) Ay,

i#jzk#l

(24)

where
B = exp(y;a)(1-B;) — exp(y:a)(1-B),

A = exp(-y;2)(1-B;) —exp(-yia)(1-Bi).

The expressions for y; and g can be simplified by
taking into account the smallness of ratio V/p:

, v? : V2
Yi,2= %I pz%L + ZE’ Y34 =%l pl%l—zg, (26)

(25)

_iw iVp, 2
€ [ o , £,& = —,
1,2 V|O1 3.4 0 1&2 g o
2
. o2 2
£,65= Ei Ve = wzpl < 1.

These results are also valid for an N-well structure and
will be used in the subsequent analysis. We assume that
one more inequality, which is universal for any N, is
satisfied:

s
Pj
This inequality corresponds to a small resonance level
width I'; as compared to the resonance energy €. It is
well known that resonant tunneling exhibits most
clearly its remarkable properties precisely when ine-
qualities (28) are satisfied.
It was shown in [6] that determinant (24) and coef-

ficients Ain (23) can be represented in the form of

(28)

expansionsin V2 . Omitti ng terms on the order of V <

1and V* o/p < 1, wearrive a the following expression
for A;(2):

8a,a
Al(l) = —8182%12A34—V2 L zl%
pl
0,0, ~
= 81821—22A1(1)1
P1P2
Di(1) = N —(E+ily)(E+il ),
~ 2
N2 - 18PV 2p; (29)
2 ! ] 2!
a aa]
_ 2 _
R = Pjre & = €—Eup,
. Toy _ 2mo,
Pir = 1+0,a’ Por = 1+a,a’
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It can easily be seen from these expressions that the
electromagnetic field starts influencing the resonant
tunneling significantly if

pl pz
2003

A2>T T, or Vo> L2 (30)

Sincea/p > 1, condition (30) holds simultaneoudly with
the inequality V < 1. A field satisfying condition (30)
will bereferred to as a strong field.

Assuming that ratio Va a/pissmall, we derive coef-
ficients A(zj) from relations (23):

2
A(s) - A(4) _ A(ql) 182A12,
31
AD =A@ 8gp,ia; (31)
2 2 2"
A(1) py

Using relations (31), (20), and (15), we obtain current (3)
in the form

J(1) = —dieg,M,K(1),

K(1) = [AP(D)AP Q) +c.c]

_ (4q)2p20(1£1£22Im5121 )

palA()?

la .
My, = EJdX[ p1SiN(p,X)cos(p;x)
0
—p,sin(p,x)cos(p,Xx)] = 8
P2 Py P2 = 33

Substituting relations (25) and (29), carrying out some

transformations, and assuming that a, = 2./2a, and
I, =T, =T for the optimal mode [7], we obtain

_ F Qn(l) _ 64e2p1p2
J.(1) = , 1) = ——,
W= F R "W Sdd @
A@DP=£(1,8) = (VP +T2-8%)" +4r’%’

The equation for the laser field can be derived from
Eqg. (1):

_ Qr* & 4mnQn)
Al K

(34)

The basic quantity determining the dependence of
current J(1) and of the laser field corresponding to
wavelength A on & is the square of resonance determi-
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nant f(1, &). The minimum of (1, &) correspondsto the
maximum of the current and of the laser field. The
equation for the extreme values of &, i.e.,

df(, &) _ 4 - 2,12 42
T T 0= EE TN,
hastwo solutions. Thefirst solution, &, = 0, corresponds

to the minimum of f for A < T and to its maximum for
A >T. The second solution,

2= N=T% A>T, (35)

givesaminimum of f(1, &) for astrong field for A > T.
Using relations (34), we abtain the laser power P(1)
which is a linear function of pumping current Q for

E:EZ!

P(1) = A* = %, (36)

and aroot function of Q for§ =¢,=0,

P(1) = F(/O-n).

The physical meaning of solution &, becomes clear
after calculating the reflectance

_ (B2 HrPoay’

RE) = =———22 RE) =0 (37)
A)|

It follows hence that energy €, = €,5 + &, coincides with
the resonant energy of the structurein an ac field.

4. GENERAL SOLUTION
FOR AN N-WELL STRUCTURE

Let us consider a structure with N QWs. The wave
function satisfies the system of equations (12), (13) with
boundary conditions (14). In analogy with the case of a
single well, we seek the solution in the form (see Sec-
tion 3)

4
Wn1 = ZAéleXp(ij),

e (39)
Wno = ZA#ZGXD(V,-X),

i=1

where y is defined by expression (19) or (26) (for

V < 1), and coefficients Al are connected through

therelation
Ay = gA, (39)

Substituting qJLm from Egs. (38) into boundary condi-
tions (14) and expressing Af11 in terms of ALz, we
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arrive at the following system of inhomogeneous alge-
braic equations for Al,:

4 ) 4 .
Z AjlzeXp(—Vja)(l—Bj) =q, Z Ay, =0,
j=1 j=1

j
4 .

Z 8j'A\leexp(—\/ja) =0,

i=1

4
Z(SjAllz—Alzz) =0,
=1
4 .

S Abe(y,a) = 0,

i=1

(40)

4
Z(AIZZVj_A]lzijj_aAJlZSj) =0,

Azt exply;(N-1)a] (1-B;) = 0.
j=1
The solution to this system of eguations for an

N-well structure can be written in compact form. In par-
ticular, for the first well, we have

AL(N) = (1) DN P AN, (@)
d, = (_1)k+|+j€kslrkl! (42)
K#1# ]
P, = (—1)k+|+j8k€|AE|v (43)
K#1#]
A(N) = —A(1)D(N) + AD)MN(N). (44)

Determinants D(N) and T(N) satisfy the recurrence
relations

D(n) = —AD(n-1) + AM(n-1), (45)
Nnmn) = -AD)(n—1) +AMN(n-1), n=3.

The remaining “elementary” determinants have the
form

(46)

—Y.a —=Y,a —Yaa —Yaa
m, e Y1 m,e Y2 m,e Y3 m,e Ya
1 1 1 1
AQ) = @7
( ) —Yi@ —Y,a —Y3a —Ysa ( )
g€ g,e €36 €46
€1 & &3 €4
No. 6 2003
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—Yi.a —=Y-.a —Yaia —Yaa
m, e Y1 m,e Y2 m,e Y3 3 Ya
_ 1 1 1 1
A1) = va s va ya (48)
g8 g0 70 g8 ° g0
€N, &N, &Ny &N,
Y1 Y2 Ys Ya
S Yoa Y32 Y8
r = ¢ ¢ & C 1 (9
€ & & &
y.a Y,a %) y,a
g6 g7 g7 gue”
Y1 Y2 Y3 Ya
Y@ Yo Y3a Y,
s= ¢ ¢ °F (50)
€, €, €3 €,
a a a a
g€ £,n,e"" g4ne™" €40 8"
1 1 1 1
Y,a Yoa Yaa Y4a
~ e e e e
A2 = (51)
€, €, €3 €,
a a a a
g.n.e™ g,n,e"”" g5 g,n,€"
1 1 1 1
Y2 Y22 Y3a Yaa
~ e e e e
A2) = : (52)
€ & & &
y.a Yoa Yaa %!
€. €67 g7 g0
Yi Y2 Y3 VYa
yid Yxa Yz Y2
D@=D=|¢ €& €& €& | (53)
€ & & &
€ € £ &
1 1 1 1
yid Ya Ysa ysa
—q-|e"e“eve
n@s=n = (54)
€ € & &
€ € £ &

Here, we have introduced the following notation for the
determinants: A(1) is the determinant for the first well,

A(1) is that with a different lower line, and A(2) =
AR) = ... A(n) = A are determlnants for the internal

wells(2<n< N), where A, A andA are the determi-
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nants with other lower, upper, and upper and lower
lines, respectively. Determinants D(2) and M(2) corre-
spond to the last well of the structure. In order to sim-

plify the notation, we wrote the expression for Ajlz(N)

for the first well only, assuming that the internal wells
areidentical. These coefficients are sufficient for calcu-
lating the reduced current in the first well. There is no
need to find the currents in the remaining wells since
these currents are identical in the model considered
here and for steady-state solution (9). Nevertheless, the
proof for a two-well structure will be carried out
through direct calculations.

The expressions for the determinants and coeffi-
cients can be simplified if we take into account the

smallness of parameters Y , p/a, and a a/p:

D(2) = D = 8]}‘52&12634,

~ 280
M@ =N=e.e,Pul2-i p%,

. (55)
200
A(D) = s, [l 2 =V

~->800
A1) = E152%334A12 o, %:

A = 8182F12634,

~ ~ ~28p
A= Slszazlzru \ 0, %,

A= 5152&;2534’

~ ~ ~ >80
ézslsz%gﬂ_%— ’ pp%,
1

(56)

~220 pzD
py U

P3’4 = 8182%12 + V
Here, the following definitions have been introduced:
a

Aj; = nexp(-y;a) —n;exp(-y;a),

A

n;exp(y;a) —n;exp(y;a),
O = viexp(y;a) —y;exp(y;a),
My = exp(-y,a)-exp(-ya) = I, (57)

g = g;Mexp(y;a),
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m = 1-B;, ﬁ]j = 1—Bi,
n, = a+y;.
Using relations (55) and (56), we can derive simpli-
fied expressions for the remaining determinants and
coefficients A, for an N-well structure.

5. TWO-WELL STRUCTURE

Many basic features of a multiwell structure are
manifested even for N = 2. In view of the relative sim-
plicity of this structure, we will analyze it in detail.
Wave functions (38) for N = 2 assume the form

Po(d) = 5 A2 exp(y;x),
j=1

(58)

Pa@ = Y ALz ep(yx), k=12

Here, Uu(2) (U(2) is the wave function of the kth
well (k=1, 2) of the upper (lower) level of the two-well
structure. In accordancewith relations (41)—(44), corre-
sponding coefficients Al, (2) and determinant A(2) are
given by

. _ i 2q
AL(2) = (-1)*" Ay (@0 —PiM), (59)
A(2) = —A(1)D + A1), (60)

Using approximate expressions for D, IM, A(1), and
A(L) (seerelations (55) and (56)), we obtain

AR = M) = —eie,Zd 2 Rha0,, (6
A(3)(2) — _A(4)(2)

62
o oV ©

216[)20(1(1) |:|,
p1

16
A2) = (&182) %12A34¢0 v pfz 4

(63)

Here, we have introduced the notation

®y = AL 2 —8,,T 1, = 4[asin(p,a)cos(p,a)

+ pycos(p,a)sin(p,a) + p,cos(p,a)sin(p,a)],
@, = asin(p;a) + p,cos(p,a),

(DZ =qa sin(pga) + p2COS( pza)’ (65)

O, a,
b, = =Apd,——NA,D,.
“= 5, 2P, p, P
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Taking into account relations (61) and (62), we can
write the wave functions for the first well in the form

W2 = 2iA3(2)sin(p,x),

o AD : (66)
Pu(2) = 2ig; Az (2)sin(pX).
Substituting these expressions into Eq. (15), we
obtain the reduced current in the first well:

0

1@ =3 [0 -

= —diee,M,[AS* 2 AD©2) +ccl.
Using relations (61) and (62), we arrive at the fol-

lowing expression:

. 8Qd,
Ji(2) = 4'951'\/'12(5152)3
APy
(68)
~>16 DA
[D|A12|CDO 24a1p2 U0 c.c}.
P1 O

It can easily be seen that thefirst term in thisexpression
vanishes, and a contribution comes only from the sec-

ond term proportional to the square of the field vV and
to theimaginary part of Ai2,

ee;M 12(8182)2160( 1Q&)(A’lr2 - 812)
P1IA@)°

&)=64p2

Ji(2) =
(69)

®, D,

1

This fundamental result indicates that the attenua-
tion responsible for radiative transitions between the
energy levelsin the first well isinduced by the current

of the second (right) well and is proportional to V. The
result is also valid for any number of wells N = 2, but

the attenuation will be proportional to v ™Y Since
there are no dissipative processes in a coherent system,
the attenuation in the extreme right well, which is
“transported” by the current, is responsible for lasing.
For this reason, a description of coherent systems
requires that the boundary conditions be taken into
account correctly.

Let us analyze current J,(2) in the first well of a
two-well structure. The key quantity is the resonance
determinant A(2) defined by expression (63). The basic
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difference between A(2) and A(L) (see relations (29))
lies in the emergence of a new resonant determinant
d, (64).

The equality
P, =0 (70)

leads to the equation for the spectrum of two tunnel-
coupled QWs. Equation (70) has two solutions. an anti-
symmetric solution with an unshifted energy and a
symmetric solution. The energy of the latter solutionis
shifted downwards and the levels split (see the Appen-
dix). The upper level in thefirst well and the lower level
in the second well are also displaced downwards on the
energy scale due to finite heights a, and a, of extreme
barriers. Their shift is determined by the equations

ReA;, = 0, Rely, = 0. (71)
Obviously, the resonance conditions
ER—EIR = O, ER—ER = O (72)

are satisfied only if the levels are shifted identically. In
particular, this means that a sharp resonance is possible
only for a symmetric solution to Eq. (70). It will be
proved below (see the Appendix) that resonance condi-
tions (72) and Egs. (70) and (71) can be satisfied simul-
taneously if the following relations hold for any a:
a, = 4a 0, = 2, 0,40, =
2 5 1 1 5’ 1 2 "
These relations are preserved for multiwell structures
also; in this case, 0, and o are the depths of the first
and last wells, respectively.

Assuming that relations (73) and (72) are satisfied
and that the energy € of supplied electrons is close to
the resonance energy €,z, We can write the resonance
determinant and ®, in the form

(73)

Bro = HE+IMY), Dy = —2(E+iT,), (74)

Py P2
D=5, & = £—¢gyp, (75)
p
®,=2p,, &, = —'2‘11
50(1 3 |:|
CD4 pi +5r1l:|1
2p; r (70
p.
r ==, r2~§1.
ad

In relations (75) and (76), the terms on the order of

&/d¢ have been omitted and d¢ = p%aa is the energy
shift exceeding considerably the level width I". Thus,
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relations (74)—76) are valid for values of & from the
interval 0 < & < d¢.

In this approximation, current (69) in the first well
assumes the form

) = VLIS
e w
N@) = 4e./2My,—L2,
5(5152) a,0,~
A2,8) = ——==—A(2,9),
1p2 (78)
" 2 3 1
A2 ¢) = [ e —r—ﬂ ; —%7\%}.

It followsfrom relations (77) that the dependence of the
current on the electron energy & (and, hence, on the
laser field) is determined only by the square of the mod-

ulus of the reduced determinant |A(2, £)|:
12,9 = 8@
_ Ez%z_Az_r:lD 9Fi 2_2)\52 (79)
20 " 4 5°0°
The optimal values of the energy & of supplied elec-

trons can be determined from the condition for the min-
imum of (2, &) (or for the maximum of A%(§)):

2 2
df(2, &) _ A2
= ARV
(80)
FJD 9 > 2, 7]
T N I e % SAD} 0.
This equation has three solutions:
_ 2 _1rg,2 54
€& =0, &3= é[% — 0
22
J_%/ «_13MTT 13r) (81)
5 16
2
g%, 8= asry

Solutions &; and &; correspond to a minimum of
f(2, &), while &, corresponds to a maximum of this
function, so that

f(0) = 17\ %) =

100 FinY,

e (82)
0.4

fo30™ 27A
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In contrast to a single-well structure, the minimum
of f(2) for &, = 0 existsfor any A. It should be noted that
this minimum is lower than that for §; = A. In addition,
it is more convenient since it does not require electron
energy tuning. Itissolution &, that is of greatest impor-
tance.

The corresponding values of current J,(2) for &, =
Oand&;=A are

Qez«/éMlz

=3
O) - 9V - 4‘]1(:(2! )\)

J1d2, &, = (83)

A comparison of current J;(2, 0) (83) in the first
well with current J,(1, A) (33) inasingle-well structure
shows that these currents are virtually identical:

8
ch(2, O) = §ch(1’ )\)
It should be noted that solutions &, and ¢4 lead to a

linear dependence of the lasing power on the pumping
current, while &, leads to a root dependence.

Let us now determine the wave functions and the
current for the second well, which will enable us to
prove the equality of currents in the first and second
wells and to calculate the populations of the levels.

(84)

Coefficients A(z‘l) and A(Z‘Z) of wave functions i,(2)

and y,,(2) can be determined from Egs. (40) for N = 2.
We can write approximate expressions with the above
accuracy:

29)D,4a,p

AL = p@ 1(29) D240, p,

22 22 A(Z) p]_

(85)

2gD, 220,
Lt 182DA128X|O(V4 3d) = iV p%,

AGYD
A(Z) pl O

where the matrix is given by

1 1 1 1

b \ra Y3a 2t
€. €, g7 g0

€, & & &

(86)

Accordingly, the wave functions assume the form

W2 %) = - %?ﬁGMMme
80,p,20D, /2 (67)
Y2 %) = - —ﬁfé—nmm

Using these functions, we can find the reduced current
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in the second well:

a

_ (2q)
Jod(2 dxJ,«(2, X) =
2((2) = J’ 22, %) = IA(2)|2
(83)
4./2|D,|"8a ~eom
—[er—lT—l-Bg M, (A12 — D12).
V' p1
Substituting the approximate value
m=ﬁ€W (89)

into expression (88), we find that J,,(2) coincides with
current J,(2) (83) in the first well. Thus, reduced cur-
rent (3) of atwo-well structure is equal to the reduced
current in the first well: J.(2) = J,(2). Since currents
Ji(2, 0) and J(1, A) coincide in accordance with rela-
tion (84) (to within a factor of 8/9), the field gener-
ated by the two-well structure for § = 0 is given by

formula (36) (with Q —= (8/9)Q). The total power
P(2) is naturally doubled:

P() = 22Q (90)

6. LEVEL POPULATIONS AND REFLECTANCE
FOR A TWO-WELL STRUCTURE

It would be interesting to compare the level popula-

tionsny,

1a
0

Calculations made for §; = 0 lead to the following
results:

2 2

_ _do
Ny = E]—_lg Ny, Ny = m\a 7 (92)

Ny = 4Ny, Ny = 4ng,.

It can be seen that the mutual population of thelevelsin
same well changes upon an increase in the field of
wavelength A. At the sametime, theratio of populations
of the upper level in the first well and the lower level in
the second well is preserved. For A > I;, we have
Ny = Ny, While Ny, << Ny ile, the first well exhibits
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population inversion, while the second well does not. It
follows hence that the inverse population condition is
not required for coherent lasing. Thisconclusioniscon-
firmed for {5 = A also. Indeed, in the case of tuning & =
A > I, thelevel populationsin each well areidentical:

Nip = Ny, Ny = Ny, 4N = Ny, (93)

It should be noted that atwo-well structurefor & =0and
& = A behaves as asingle-well structurefor & = A in the
sense that the ratio of populations of “extreme levels’
(the upper level of the first well and the lower level of
the second well) is independent of the field.

It was proved earlier for N = 1 [7] (see Section 3)
that the optimal values of energy & correspond to ares-
onance of the nanostructure in the field in which the
reflection from the structure becomes minimal. Let us
find the reflectance for atwo-well structure. The reflec-
tance is defined as

2

R = Pa(2, _a)—l '

3 (94)

Using formula (66) for Y;,(2, X), we obtain the reflec-
tance

_ [T ®s 1‘2
5A2) |
64 )
®, = ——BD0A12+V2 p2q> = BE(E +il;) —4A2.

Thereflectancein the & = 0 and &2 = A> modes is given,
respectively, by

1

R2,0) = 5, 49

4
R2 N = 5.

(96)

It follows hence that the mode with & = 0 is much more
effective (90%) than that with & = A\ (40%).

Let us prove that the law of conservation of the num-
ber of transmitted and reflected el ectrons holds. For this
purpose, we find the number of electrons performing a
transition between the energy levelsin the first well:

2w

l a
SefOx [ dtdsc(2 X DEW).
0 0

It is found that, for & = O, it is equal to 8/9 of the flux
supplied to the structure, which gives unity together
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with the reflected fraction (1/9). A similar conservation
law holdsfor & = A also.

7. THREE-WELL STRUCTURE

It will be shown below that the properties of struc-
tureswith even and odd numbers of wells differ consid-
erably. By way of the ssmplest example of anodd N, we
consider a three-well structure. The expressions for
coefficients of the first well in the three-well structure
can be obtained from the general formulas (41)—(44):

AL(3) = (1) 2L [d;DE)-PNE)],  (97)

AQ3)
A(3) = -A(1)DEB) +A(H)N(3),

DA (98)
D@3) = —AD+AMN, M(3) = —AD +ATl.

Using the smallness of parameters Vv, p/a, and

\72a/p and approximate expressions for A, D, and I,
we obtain

8ia
D(3) = —(£,£5) 63@12@0 + VAP

28ip,

O~ ~
N(3) = ~(&4,) ol 24+ V° - (99)
] 1

~ Ay~a = ~464i00, >0
x [—2A12<D2 + —lA‘l’zr?A} Mypatonbl
Py o) 0

Using these expressions, we derive from Eq. (97)

~-8ip,
A(3) (8182) EAqu)O + V pl

(100)

AR(3) = -AZ(3) =

6diaa O
4 1p g
pl O

(0]
[A‘l‘zo‘l 0 _2A% A }
p

1

24p2

(2)
(3) A(3) (8182) 1

(1)(3)

O - -,16ip, 2 -
X [Ri A ®y®, — V2 IPZCDZ[ alq)l—O(Alg}
0

1 Py

-2 2
+\~/464|0( glpz%
P1 O
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16
@) = (£16,) 0 Aualgg @2+ V2 aP2
0 P1
40,0 CD O
X [ DD, — 2D1205, P, D,] + VI 2222
pl 0
250,
= (g,8,)° > p —A(3), (102)
1M2

AB) = —E(E+iT)(E+il)
+)\2D295 +|EI’D i
~ 3

rzgrl

It should be noted that, in the case of a three-well

structure, we must retain the fourth-order term \74 in
the expression for A(3) .

4
+ z,:—')(rl +1,).

Let us begin our analysis with the resonance deter-

minant f(3) = |A(3)|2 . It can easily be demonstrated that
f(3) has four extrema &; (we give &; for large values of
EA>T):

g=0 &= 8= &=200

which correspond to maximafor &, and &, and to min-
imafor &, and &,.

Thus, solutions &; = 0 and &, = A in the three-well
structure correspond to a maximum and a minimum of
f(3), respectively. Consequently, the three-well struc-
tureisacombination of one- and two-well structures. It
behaves analogoudly to a structure with N =1 for &, =
Oand & = A and to astructurewithN=2for & = A.

Let us determine the current in the first well of a
three-well structure:
(20) (81 2)

1AQ3)*p
+V q;§32p2 1(13 CDZ
pl

+ V' 020%0,i (D — A).

33 = (2ilau ®ip, +c.c.)

(Alz - Alz) (104)

The last term in this expression corresponds to & = 0
sincefor & ~ A the omitted termsare proportional to Ve

It can be seen from Eq. (104) that the first term is
equal to zero, as in the case of a structure with N = 2.

The last two terms are proportional to VImAL (see
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formula (68)). Indeed, for & = 0 and ®, = 0, the second
termis zero, whilefor & ~ A it gives v
Solution &, = 0 corresponding to a maximum of f(3)

isnot optimal for N = 3. Indeed, substituting §; = 0into
formula (104) for current, we obtain

1

J1(3) U =, (105)
v

i.e., the root dependence Yaln QV? (see Section 3), as
in the case of asingle well.

The optimal solution is &, = A, for which J;(3) O
UV and V* 0 Q; thesituationissimilar tothat inasin-
gle-well structure. Since the solution with § = A was
analyzed in detail for N =1 [6, 7] (see Section 3), we
will consider below only even structures. This s justi-
fied the more so that the optimal situation in thiscaseis

that with & = 0, which can be realized in experiments
more easily.

8. EVEN STRUCTURESWITH N = 4

We will start with a four-well structure. In order to
find determinant A(4) aswell asD(4) and N(4), i.e.,

A(4) = —A(L)D(@) +ALN(4),
D(4) = —AD3) +AN(3),
N(4) = -ADQ) +AN(3),

wewill useformula(99). In the approximation adopted
here, we have

(106)

D,.,
A4) = —(elez)zgmzAm

216 pz 464p§

[qa B, — 4D ALD, D] +V

pl

x 2[%81%

The structure of the determinant has a clear physical
meaning. The first term is the product of the determi-
nants for the outer wells and three determinants of col-
lectivized energy levels of the inner wells. It is impor-

tant that the second term with \~/2 also contains deter-
minant @,. In addition, we must retain the terms with

V' asinA®).
It can be proved that solution &, = 0 corresponds to
aminimum of |A(4)]? and is optimal. This property is

universal for structures with an even N (in particular,
for N = 2).

0
H+ 40,0,0, |0
O
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For the optimal solution &, = 0, ®, = 0, determinant
A(4) and coefficients A 12(4) assumetheform

40,48,

AD) = —(g,8,) Y, ?¢4CD (108)

(3)(4) 2q(£1£2) 8p24 1¢1a)’
A(4) p1
sa(ess (109)
0 <q(&,€5) ol Py
A4 = ) _pl JAYPLON ¢’

It should be noted that, in the expression for Af2(4) ,we

have omitted the term proportional to iA12, which is
compensated in the current in analogy with structures
with N = 2 or 3. Comparing relations (108) and (109)
with the corresponding formulas (for ®, = 0) (61)—63)
for a two-well structure, we can derive the following
relations:

A4) = DQR)(g,E,) P, (110)

AP@) = AD@), AY@ =AP@. 1)

Thus, the coefficients for the first well of a four-well
structure coincide with the coefficients for a two-well
structure. Consequently, the reduced current of a struc-
turewith N = 4 is given by

Jd4,0) = J.(2,0). (112)

Property (111) is preserved for any even N, so that the
reduced current for such a structure has the form

JAN,0) = J,(2, 0). (113)

Generalizing formula (90), we find that the total power
of an N-well structureis

P(N) = N2Q (114)

i.e., is proportional to the number N of wells.

Obviously, the reflectance remains unchanged (R =
1/9) and independent of N since the reflection is deter-
mined by the wave function for the first well.

9. CONCLUSIONS

We have proved the possibility of coherent lasing of
a structure consisting of any number of wells in the
absence of dissipative processes. It iswell known (see,
for example, [5]) that the emission of a photon requires
attenuation determined by the interaction with phonons
in bulk systems. In the structure studied by us here,
attenuation is associated with the departure of electrons
from the lower level of the extreme right well. The
steady-state intersubband current “transports’ this
attenuation to all wells and causes the emission of pho-
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tons in each well. The electrons supplied due to reso-
nant tunneling perform N transitions from the upper to
the lower levels, preserving their phase, this process
being independent of the level occupancy. Conse-
guently, the gain and lasing in such asystem are volume
effects in contrast to the incoherent case [8]. The total
lasing power is proportional to the number N of the
wells.

Thus, we can assume that lasing at vertical transi-
tions (see the Introduction) in a superlattice with a
strong constant field (Stark ladder) is possible. Pro-
ceeding from the results obtained in [9], we can expect
Stark ladder lasing with diagonal transitions also.

It has been found that effective lasing requires the
fulfillment of the following conditions: observance of
resonance in each well, the choice of optimal energy of
supplied electrons, the sharpness of the electron energy
distribution Ag, and, finally, the fulfillment of the coher-
ence conditions for the electron subsystem.

We have proved that the resonance conditions can
be satisfied by choosing the barrier parameters (see the
Appendix). For structures with an even N, the problem
of choosing energy can be solved quite easily: the
energy must be equal to the resonance energy (€ = €,r)
for any fields.

As regards the width Ag, the optimal situation is
attained for Ac < I'. If Ae > T, the lasing parameters
(efficiency, reflectance, and current) naturally decrease.
However, the equality Ac =" can be attained in differ-
ent ways, e.g., by using energy filters based on QWs.

Naturally, the requirement of coherence is the most
stringent: the time 1, of coherence breakdown must be
longer than the time Ty of passage through the struc-
ture. Thistime can beestimated as Ty =Nl *forA <T
or Ty = NA=for A > T. In al cases, the length of the
structure isfinite:

(115)

Parameter 1, for high-quality QWs can in principle
be much greater than unity. For example, in[11], a
coherent effect of superfluorescence on ten wells (i.e.,
'ty > 10) was observed.

Condition (115) becomes less stringent if we take
into account the fact that the fields being generated can
be strong; i.e., A > I'. The use of quantum wires and
dots weakens condition (115) still further. The techno-
logical breakthrough in producing ensembles of
extremely high quality quantum dots [12] renders them
quite promising for designing lasers with a coherent
subsystem on their basis.

Nimax < Tonl s Tpnh.
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APPENDIX

In order to satisfy the resonance condition in a mul-
tiwell structure, it is necessary that the energy differ-
ence between the resonance levels of the wells be the
same and equal to the frequency w of the electromag-
netic field. If the wells were isolated, these conditions
could be satisfied by choosing identical wells. How-
ever, in order to ensure the passage of current, the
heightsa,, a,, and a of the barriers must be finite. This
leadsto splitting of degeneratelevelsand to alevel shift
in the outer wells, which is described by Egs. (70)
and (71). We will first prove that these equations are
satisfied simultaneously when the last equality in (73)
holds. It follows from Egs. (71) that

picos(p;a) = —a,sin(p,a),

. (A.2)
P,Cos(p,a) = —0,SN(pP,0).

Substituting these relations into Eq. (70), we obtain
@, = 4sin(p;a)sin(p,a)(a—-a;—a,) = 0. (A.2)

Thisleadsto the last equality in (73).

We can now find the resonance values of energy for
Eq. (70):

4 (A.3)

AS 2 S ™ 10
is = T[Z/a y is = 7%—_D
a
Energies €55 and €5 correspond to the antisymmetric

and symmetric solutions, respectively. The energy of the
upper level in thefirst well is given by (see Section 3)

@ _ att 20
= —=H-—F A4
€2r i a,a) (A4)
The resonance condition (72)
3’
Er—ER = W = _a2 (A.5)

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96

ELESIN, KOPAEV

together with formulas (A.2)—(A.4) leads to the rela-
tions

4a a
a, = g, a, = g (AG)
It can easily be proved that the resonance condition (72)
for the second well is also observed if relation (A.6)
holds; a can assume any value. It should be noted that,
if we choose

4a . 9 _a 9
10 T 5T

a, = — A.
=5 (A7)
the resonance conditions are observed to within the
terms quadratic in 1/a.
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Abstract—The evolution and collapse of agaseoustoroidal vortex under the action of self-gravitation are con-
sidered using the Hamiltonian mechanics approach. It is shown that evolution occursin three main stages sep-
arated by characteristic time scales. First, a compression along the small radius to a quasi-equilibrium state
takes place, followed by a slower compression along the large radius to a more stable compact vortex object.
In the latter stage, the possibility of effective scattering and ejection of particles along the vortex axis
(jet formation) isdetected. Asaresult, mass, energy, and momentum losses take place, and the vortex collapses.
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1. INTRODUCTION

Vortices, which are traditionally described in the
framework of incompressible fluid dynamics[1, 2], are
special objects of application of Hamiltonian methods.
In the epoch of solitons, theinterest in vorticesasallied
localized formations has grown considerably. The cur-
rent state of this problem is described in reviews and
articles[3—7] and in the references cited therein.

Compressibility and self-gravitation of such objects
may play a significant role in astrophysical applica-
tions[8-10]. In some cases (e.g., inthevicinity of com-
pact objects at the centers of galaxies), the effect of the
external gravitational field on these objects may be sig-
nificant. Both of these possibilities will be taken into
account in this study.

Another extremely important problem in contem-
porary astrophysics is associated with the origin of
cosmic jets arising, according to prevailing concepts,
in accretion disks of various origins and scales (from
galactic[11] to stellar [12]). Theinterpretation of such
jets is a nontrivial problem. In spite of considerable
advances made in this direction in the framework of
magnetohydrodynamics (MHD) [13], serious difficul -
tiesstill remain since solutionswere obtained in a spe-
cial geometry and strong magnetic fields are required.
It will be shown below that the formation of (unidirec-
tional) jetsisanatural consequence of the evolution of
self-gravitating vortices and is an indispensable con-
dition of their collapse. Jets are also generated in zero
magnetic fields.

A possible relation between this problem and the
existence of occluding toroids® in the vicinity of central
compact objects in the active galactic nuclei is men-
tioned [14].

2. FIRST STAGE:
EVOLUTION OF A THIN VORTEX

We assume that the shape of a vortex at the initial
stageisathintoroid (Fig. 1) whoseradii satisfy theine-
quality

r<R (@D}

(An anaog of such avortex in fluid dynamicsisaMax-
wellian vortex [1, 2].) We will henceforth assume that
the vortex evolution at the initial stage occurswithout a
changeinthetoroidal shape. Thus, in additionto arota-
tional degree of freedom, the system possesses two
trandlational degrees of freedom corresponding to
changes in r and R (we disregard the trandationa
motion of the vortex as a whole). It should be noted
that, in view of condition (1), the motion in r and rota-
tion constitute alocal compression of a rotating cylin-
der, while the motion in R indicates the collapse of a
thin ring.

We write the system Hamiltonian in the form

1 2. 5 P
H = m[pr + pR+r—§}+U(r, R). )

1 We do not touch upon the classical problem of stability of toroids
rotating as a single entity, which dates back to Poincaré and
Dyson. The modern state of affairs in the framework of the gen-
eral theory of relativity and references can be found in [15].
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Fig. 1. Thin toroidal vortex of the Maxwellian type.

Here, M is the total mass of the vortex, p; are the
momenta corresponding to coordinatess, ¢ isthecyclic
coordinate of rotation, and U isthe gravitational poten-
tial energy of the system. Hamilton equations corre-
sponding to Hamiltonian (2) have the form

.- P 5 _ Pr - Py
r= Ml R M! (l) Mrzl
p; U U )
y = o Y- = = ), =
pr Mr3 arl pR aRl p(l) 0.

This leads to the equations of motion for the tranda
tional degrees of freedom,

2
. 10U
" e Mo “e
10U
“MoR' (40)

andto theintegral of motion for therotational degree of
freedom:

Py = Mr¢ = const. (5)

Thisintegral of motion expresses the angular momen-
tum conservation law (the quantity 2mp,/M in fluid
dynamics corresponds to vorticity).

Let us now define function U(r, R). We consider first
Eq. (4a) describing the evolution of arotating cylinder
of radiusr. The gravitational force acting on atest par-
ticle on the surface of the cylinder is given by

F, = -G, ©)

where G is the gravitational constant, X is the mass of
the cylinder per unit length, and misthe mass of thetest
particle. Thus, the gravitational force appearing on the
right-hand side of Eqg. (4a) hasthe form

10U _ _o2x

Mor r ()
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In the present case of athintoroid, we have x = M/21R,
whence

M2

U, R) = Gn—RIn£R+ ¢ (R). (8)

In order to determine the dependence of potential
energy U on large radius R, we consider the second
equation of motion, Eq. (4b). It must describe the grav-
itational contraction of athinring of radiusR. Theforce
acting on atest particlelocated on aninfinitely thinring
is given by

1
- _oMm d®2) _
] ETTCT7 R ©
0
Thisformula can be derived by direct integration of the
contributions from the interaction of the particle with
all elements of thering. In order to avoid divergence for
9 — 0, we must take into account the finite thickness
of the ring. For this purpose, we truncate the diverging
part of expression (9), replacing the integration domain
(0, M by (B, M), whered.=ar/R(a ~ 1isanumerical
factor). This gives

2 ~
M ar
—|n=

u(r,R) = GZT[R =

+ (), (10)

where a = a/e. Setting
c, =0
in Eq. (10) and

GM?
TR

in Eq. (8), we note that formulas (8) and (10) can be
reduced to the sameform (the difference will beonly in
the coefficient 1/2). Such a difference is insignificant
for our analysis, and we assume the true numerical
coefficient in formula (8).

We can now write the Hamiltonian (2) of athin tor-
oidal vortex:

2 2 ~
H = = {pf+p2R+£)§’}+GM—Inﬂ
r

Ina

c(R) =

- oM m R (11)

In this case, the equations of motion (4) assume the
form

2

P M
r= Mzrs—Gﬁ, (12a)
5 = —G;['\g—zln%. (120)
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In view of condition (1), we have

ro.r
Rln = <1

Then, the force of gravitational attraction along r (12a)
ismuch stronger than the force of gravitational contrac-
tion along R (12b). This allows us to divide the evolu-
tion of the system over different scales: fast (inr) and
dow (in R). It is natural to assume that fast evolution
(for practically constant R) leadsto the establishment of
equilibrium in Eq. (12a). In this case, the force of grav-
itational attraction is compensated by the centrifugal
rotational force:

2
%_G& =0,
r

TIRr
oo [mpgR
o GM®

This expression determines the equilibrium small
radius asafunction of the largeradius, ro, = r(R), while
the inequality r > r, corresponds to the criterion of
gravitational instability with the Jeans scale ro,. The
latter becomes obvious if we assume that the toroid
massis M = pTr?R, where p isits density [8-10].
Asarough estimate of thetime of vortex contraction

along small radius r to the quasi-equilibrium state, we
can use the expression

tl 0 ' rO_Feq(RO)‘
Fr(rO! RO)

MZR; — Pyl on/TMR,/G
whererg, Ry, and F, are the initial values of the small

Ps — GM°re/mR,
and large radii of the vortex and the force appearing on
the right-hand side of Eq. (12a), respectively.

If inequality (1) holds at the initial instant, the toroi-
dal vortex will experience, in accordance with the equa-
tion of motion (12b) and relation (13), a Slow contrac-
tion along both radii until they become on the same
order of magnitude:

(13)

whence

(14)

(15

At this stage, the initial assumptions (1) are violated,
and the description used above becomesinapplicable. It
isimpossible in this case to divide the vortex evolution
over two trandational degrees of freedom r and R, and
the vortex should be described as a single compact
object with a complex internal structure.
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Let us determine some of the most important
parameters of the vortex, characterizing it at the sec-
ond stage (15). Using the angular momentum conser-
vation law (5) and (13), we obtain the following expres-
sion for the velocity of particles on the vortex surface:

2
_ Po [GM; GMr
Mr MR 1p, R
It can be seen that the rotational velocity of a vortex,
which isin equilibrium in r, is determined only by its
mass and the large radius and increases upon contrac-
tion along R?

When the vortex reaches the end of the first stage,
the velocity attains the value

CM?
= 1
0, (17)

and becomes much larger than the initial velocity vy

Vin Ro— e, Ro
Zing 20 4 s g
Vo R. R 1o

In analogy with relation (14), we can estimate the
time of the vortex contraction along the large radius as

Ro— R,
25 E (R, Ra

_ J TIRS(R, — P2/ GM®)
GMIn(a Jmp;/GM°Ry)

where Fy is the force appearing on the right-hand side
of Eq. (12b).

Let us also consider the distribution of the kinetic
energy acquired by the vortex over the degrees of free-
dom. We assume that the substance in the vortex is
initially almost free and its potential energy and
kinetic energy (11) are small ascompared to GM?/TR...
Then, at the critica stage (15) of the collapse, the
potential and kinetic energies of the substance can be
estimated as

v

(16)

Viin U

(18)

(19)

>t

2 2 2n 93
GM? = GM’ _ G'M

T[RC T[RC _,_[2 pqz) '

Ufin O—

(20)
Py _ G'M°
21tp;

2MR:
(It should be noted that thisresult isin accordance with
the viria theorem for U ~ R i.e, E=-T <0.) Since
the total energy is an integral of motion and its initial

T(rot) 0

fin

21t should be noted that this is due to the fact that momentum Py is
canceled out in relation (16). Thisis a consequence of the equilib-
rium condition (13), whose form is determined in turn by the
form of potential (11).
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Fig. 2. Cross section of a compact spheroidal vortex of the
Hill vortex type.

energy is close to zero, relations (11) and (20) imply
that the kinetic energy of trandational motion is of the
same order of magnitude. Thus, we can conclude that
the kinetic energy released during the contraction is
distributed uniformly (in order of magnitude) between
the rotational and translational degrees of freedom.
Thisfact will be important for the subsequent analysis;
in particular, this means that, if the rotational velocity
of aparticle of the substanceislessthan doubled at ran-
dom, it is sufficient for the particle detachment and
escape from the system.

3. SECOND STAGE:
EVOLUTION OF A COMPACT VORTEX

Let ustry to imagine the scenario of contraction of
a gravitating vortex, when it is a compact object topo-
logically equivalent to a toroid. We can expect that,
under the action of gravitational forces, it will approach
a certain spheroidal configuration resembling a Hill
vortex [1, 2] (Fig. 2). If we consider such an object as
an estimate, we can assumethat it possessesarotational
and a trandational degree of freedom. The latter is
determined by a change in its radius R. The rotational
radius of particles (which was the independent quantity
r in the previous section) isnow approximately equal to
R/2. The Hamiltonian of such avortex can bewrittenin
the form

2

_ Pr, 2P, GM’
2M Mg R

(21)

Here, we have assumed that the form of the second term
is the same as in relation (11) with r = R/2 and have
taken the potential energy of a sphere for the potential
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energy of the vortex. Hamiltonian (21) corresponds to
the equation of motion

2

4py, GM

T WMR R =2
This equation has an equilibrium position, when
ap2 4p3

where R, plays the role of the Jeans scale as before.
Thus, this object is in equilibrium for a radius on the
same order of magnitude asthat at which the first stage
of evolution terminates (cf. relation (15)). This means
that, in the problem on the collapse of a thin toroidal
vortex, there is no need to consider the evolution of a
compact vortex separately. We can assume that equilib-
rium setsin immediately after the ring acquires param-
eters (15)—18).

On the other hand, we can consider the problem of
contraction of a vortex, which resembles a Hill vortex
from the very outset (Fig. 2), but is initialy far from
equilibrium. Then, we ultimately arrive at an equilib-
rium compact vortex with aradius on the same order of
magnitude asthe radiusin (23). The rotational velocity
of particlesin this caseis of the order of velocity (16):

(24)

where

Similarly, it can be easily proved that, upon the
establishment of equilibrium (23), at least half the
released potential energy istransformed into thekinetic
energy of rotation (the remaining part being trans-
formed into heat).

4. SCATTERING AND DETACHMENT
OF PARTICLES

Thus, after various possible stages of evolution, a
toroidal vortex is transformed into a compact object
with characteristic parameters (15), (17), and (18)
(or (23) and (24)) (see Fig. 2). The rotation velocity of
the substancein it ismuch higher than in theinitial vor-
tex. It is worth noting that flows of matter passing
through the vortex in the vicinity of its axis are closely
spaced. This meansthat effective scattering of particles
may take place in this region. Such a scattering will
obviously increase the velocity of a certain fraction of
particles. In accordance with the arguments given at the
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Fig. 3. Typical finite trgjectories of aparticlein the gravitationa field of thering. In the plane (p = r/rq, & = ZIr ), the particle moves
around two attracting centers formed as aresult of the dissection of thering. Theinitial conditionsarep=1+pg, =0, p =0, and
¢ = /2 (thevaueof € ischosen to coincide with the “orbital velocity” in Eq. (12a), which is valid in the vicinity of attracting
centers). (a) pg = 0.08, rotation around a single center; (b) pg = 0.17, “ dovetail”-type motion around a single center; (c) pg = 0.22,
motion of the double “figure-of-eight” type around two centers; (d) pg = 0.42, motion of the “figure-of-eight” type around two cen-
ters; (e) pp = 0.81, motion of the “dovetail” type around two centers; (f) pg = 2, rotation around two centers.

end of the previous two sections, a less than double
increasein therotational velocity of particlesisenough
for gathering a kinetic energy sufficient for the detach-
ment. Conseguently, we can expect that a certain frac-
tion of particles from the flows passing along the axis

of a compact vortex acquire a sufficient energy as a
result of scattering and are gected from the vortex.
Thus, a directional jet carrying away the matter from
the center of the vortex can be formed. (Here, we dis-
regard the change in the vortex configuration that
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may take place as a result of the mass loss due to such
gjection.)

Let us consider one more argument illustrating the
above scenario. In the Appendix, we will consider the
motion of atest particle in the gravitational field of a
ring (thin toroid) with a fixed radius (Fig. 3). For low
energies, the particle rotates in a small-radius orbit
wound around the ring (Fig. 3a@). This motion corre-
sponds to a thin vortex (the possible first stage of the
evolution). As the particle energy increases, various
complex trajectories appear; however, the orientations
of these trgjectories do not correspond to vortex motion
and we will not consider such trajectories here. Finally,
starting from a certain energy value, the particle passes
to almost closed trajectories of a figure-of-eight shape
(Fig. 3d). Therotational radius of particles becomes on
the order of the ring radius (15), which corresponds
precisely to the final sage of vortex contraction. The
kinetic energy of a particle in such tragjectoriesis close
to the energy required for the detachment of particles.
The motion of particles in “figures-of-eight” will lead
to their effective callisions and scattering in the vicinity
of the vortex axis.>

We can state that the toroid contraction has qualita-
tively the same consequencesfor moving particlesasan
increase in their energy for a fixed size of the toroid.
Obvioudly, atendency ultimately leading to the detach-
ment of afraction of particles exists, the most favorable
conditionsfor thiseffect being created in the vicinity of
the vortex axis. In the long run, this leads to the emer-
gence of an axia (unilateral) jet carrying away the
energy, mass, and angular momentum of the vortex. As
aresult, the vortex contraction will continue (resulting
in collapse), the contraction rate dR/dt being deter-
mined by the vortex mass loss rate (particle flux in the
jet; see below). Thus, the vortex collapse and the emer-
gence of ajet are correlated unambiguously.

5. VORTEX COLLAPSE

Let us consider the consequences of the gection of
particles from a vortex according to the scenario pro-
posed in the previous section. The particle flow carries
away the mass, energy, and angular momentum of the
vortex. The latter quantities can be estimated as

MRv

E |:| _T ) p¢ |:| T ]
where al the quantities correspond to an equilibrium
compact vortex (see Section 3) and E = —T (see above).
Relations (25) lead to

Mv? (25)

TME

3 The existence of flows of matter of the fi gure-of-eight type also
follows from the hydrodynamic model of a Maxwell vortex (see,
for example, [2]).

(26)
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Differentiating this relation with respect to time, we
obtain

1 Dg — Py
JME ! 2(-ME)*?

We assume that the particle flux is comparatively
small and this process occurs at a much lower rate than
the rate of establishment of equilibrium of the compact
vortex. In this case, we can estimate the change in the
characteristics of thevortex carried away by the particle
flow as

R (ME + EM). (27)

2
. . v J
M = -], EDJZD I\/IE’

R J (28)
. "4
By D=3~ D=7 Pe.

where Jisthe massflux inthe g ected jet of matter. Sub-
stituting relations (28) into (27) and taking into account
relation (26), we obtain

- gM

R D_RM = Ry (29
The solution to this equation has the form
B
R() = RO)MOD (30)

MO -

Here, 3 ~ 1isacertain positive constant (emerging due
to the fact that we obtained above only order-of-magni-
tude estimatesfor the vortex parameters), and theinitial
instant of time corresponds to the arrival of the vortex
at the compact equilibrium state and to the beginning of
the effective scattering and detachment of particles.
The time dependence of the vortex mass M(t) is deter-
mined for the specific mechanism of particle scattering.

In the general case, the mass flux of matter, J=—-M, is
afunction of the main vortex parameters: mass, energy,
and angular momentum. If we assume in the simplest
case that the flux of matter is proportional to the vortex
mass and weakly depends on other parameters
(J=kM), Egs. (28)—30) will lead to the exponentia
laws

M(t) = M(0)e™, R(t) = RO)e™. (31)

Thus, Egs. (29)—(31) show that the scattering of par-
ticles and gjection of matter indeed lead to the collapse
of acompact vortex.

The characteristic time scale of the collapse is
defined as

t O/M/M. (32)

In accordance with the above assumptions, the collapse
must be slow as compared to the characteristic time of
the vortex contraction to the equilibrium state, which
correspondsto t., > t.
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6. GENERALIZATIONS

We can easily generalize the above analysis to the
case when a system contains a massive body at its cen-
ter and when the vortex rotates about its axis. Thesefac-
tors lead to the emergence of additional terms in
Eqg. (12):

~ 2
RM2 ' MIZBR3'

5 - _gM LA
R = GHRZInR G (33)

Here, M is the mass of the central object and ps =

MR?9 = const is the angular momentum associated
with the rotation of the toroid about its axis. The sup-
plementary terms do not affect in any way the evolution
of the system along the small radius. Their effect on the
vortex evolution along R can be divided into the follow-
ing limiting cases.

1. If max(GM/RZ, p;/M2R}) < GMITR], the
effect of these terms can be disregarded, and the entire
dynamic analysis carried out in Sections 2 and 3, as
well as the corresponding conclusions, remains in
force. However, the presence of the central massin the
region of the most probable intersection of particle
flows may affect their scattering and detachment.

2. 1f TM /M < 1 and Tip2 /IGM3R, > 1, the rotation
of the toroid about its axis arrests contraction before it
reaches its critical stage r ~ R ~ R;. The equilibrium
state correspondsto the large radius defined by therela-
tion

3R O 2 0
SM Rinmm |2 =g
mps 0O NGM™RJ

and to the small radius defined by substituting the large
radius into relation (18). In this case, the probability of
effective scattering and detachment of particles at the
middle of the vortex virtually vanishes and, hence, col-
lapse does not take place.

3. 1f tM/M > 1 and nip; /IGMR, < 1, the revolu-

tion of avortex around its axis is insignificant, and the
central mass enhances the contraction. The vortex con-
tracts to a compact object and its subsequent behavior
depends on the scenario of direct interaction of the ver-
tex with the central mass. Naturally, the scattering of
particles and the possible vortex collapse in this case
also depend to a considerable extent on the interaction
of the matter with the central mass.

4.1 ™M /M > 1 and Ttp2 /IGM3R, > 1, the last two

terms on the right-hand side of Eqg. (33) compete. If the
first termisgreater than the second (the attraction of the
central object prevails), the situation corresponds to
case 3; for the opposite relation, we have case 2.
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APPENDIX

Motion of Particlesin the Gravitational Field
of the Ring

We assume that the gravitational field of athin tor-
oid is close to the field of an infinitely thin ring of the
same mass. Let thering radius beryand r, ¢, and z be
the cylindrical coordinates, z = 0 corresponding to the
plane of the ring. The gravitational potential of thering
isgiven by

2n

GMI dé
2t} [Z + 1%+ 12 - 2rrycosd
Introducing the dimensionless variables & = Z/r, and

p =rlryand timet = t,/GM/2Try, we obtain the equa-
tions of motion of atest particle in this potential:

u(r,2 =

_}" (p-cosp)
} (8 +p°+1-2pcosp)™

e)
1]

21
_I S 3/2d
) (82 +p°+1-2pcosh)

’

where the primes indicate differentiation with respect
to 1, and we assume that ¢ = O for a particle.

Figure 3 showstypical results of numerical calcula-
tions based on these equations for a finite motion. The
trajectories lie in the (p, &) plane and are given in
increasing order of the particle energy. It can easily be
seen that, in tragjectories of the “dovetail” type (see
Figs. 3b and 3e), a particle moves practically along the
same curve in opposite directions; consequently, such
motion cannot be maintained in the framework of col-
lective motion of particles since the latter motion would
inevitably lead to collisions and strong scattering. In
addition, the trgjectories in Fig. 3c and 3f cannot exist
for a collective vortex motion of particles since differ-
ent segments of a trgjectory correspond to opposite
directions of vorticity. Thus, only the trgjectories in
Figs. 3aand 3d can exist in the framework of collective
vortex motion of particles. The trajectory in Fig. 3ais
the cross section of athin toroidal vortex of the Max-
wellian vortex type considered in Section 2, while the
“figure-of-eight” in Fig. 3d can appear during motion
of particlesin acompact vortex of thetype of aHill vor-
tex emerging at the late stage of contraction (see Sec-
tion 3).
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Abstract—A self-consistent quantum theory is developed for an atomic laser utilizing cooling of atomsin a
trap by the method of stimulated evaporation. The model describes the pumping and extraction of the atomic
field from a trap upon its interaction with independent atomic reservoirs. The stimulated collisions between
atomsin thetrap, which produce aBose condensate in the lower state of thetrap, are considered. Theinteraction
of atomswith aphonon field causes spontaneous transitions between the discrete states of the trap. Cal culations
performed for the three- and four-level models of the trap showed the possibility of generation of a strongly
squeezed sub-Poisson Bose condensate. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The recent successful experiments on the produc-
tion of a Bose condensate in traps showed the possibil-
ity of creation of coherent sources of material waves
(atomic lasers) [1, 2]. As the resonator of an atomic
laser, a parabolic magnetic trap is used, the discrete
energy levels of the trap pumped by an external source
of cooled atoms representing the resonator modes. The
conditions for producing a Bose condensate are real-
ized at least for the lower state of the trap (the conden-
sate mode). The excitation of atoms from their inner
states to the electronic states, in which atoms can be
captured by atrap or extracted from it, is performed by
aradio- or microwave electromagnetic field. The con-
tinuous and pulsed lasing regimes are achieved in
atomic lasers by the same means, but at different values
of the parameters of the electromagnetic field used for
pumping and extraction of the atomic field from the
trap. The lasing dynamics of the atomic laser is deter-
mined by the balance between the introduction of
atomsto the trap and the extraction of the Bose conden-
sate from the trap taking into account the cooling rate
(population of the lower states of the trap), which is
also stimulated by the external electromagnetic field. A
fundamental property of the atomic laser is the coher-
ence of the field produced. The coherence and quan-
tum-statistical properties of the field are studied in the
quantum optics of atomic fields [3-11]. The modern
phenomenological semiclassical theories [12-18] and
guantum-mechanical theories [3-11, 19-29], which
consider models of the atomic laser with different
schemes of pumping, cooling, and extraction of the
field from the trap, predict the presence of the lasing
threshold, saturation, and a high degree of coherence of
the Bose condensate generated by the atomic laser [3, 9,
10, 23]. Notethat the semiclassical theory of the atomic

laser based on the mean field approximation [16-18]
doesnot allow oneto study the quantum statistics of the
field because in this case the preliminarily specified
phenomenological statistics of the atomic gas are used.
Only acompletely quantum-mechanical theory permits
one to investigate quantum-statistical effects and to
determine the coherent properties of the atomic-laser
field. The quantum-mechanical theories of the atomic
laser being currently developed use a model with a
finite number of atomic-field modesin thetrap. Such an
approach alows one to study the effect of collisions
between atomsinside the trap on the dynamics and sta-
tistics of a Bose condensate generated by the atomic
laser. Thismodel of the laser corresponds to the exper-
imental conditions under which processes of stimulated
cooling (evaporation) rapidly deplete the upper energy
levels of the trap. In this paper, the self-consistent the-
ory of Bose condensation is developed for an atomic
gas in a trap, taking into account collisions between
atoms under thermally nonequilibrium conditions. The
theory is based on the solution of the control equation
for the density matrix simultaneously with the system
of generalized Hartree—-Fock equations for the wave
functions of the atomic field in the states of the trap.

The numerical calculations of the dynamics and sta-
tistics of an atomic field are performed in the approxi-
mation of the eigenfunctions of the trap for the three-
and four-level models of a laser. The model describes
pumping processes, the extraction of the field from the
ground state of the trap, and spontaneoustransitions, as
well as the collision redistribution of atoms among the
states of the trap. The lasing dynamics of an atomic
laser is analyzed for different pump rates and different
frequencies of collisions between atoms, and the rates
of spontaneous transitions of atoms between the trap
levels are calculated. It is shown that the Bose conden-
sate generated by an atomic laser exists in a squeezed
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guantum state with sub-Poisson fluctuations of the
number of atoms. For large Bose condensates with the
average number of atoms of the order of 109, the ratio
of the dispersion of the number of atoms to their aver-
age number (the Fano factor for the atomic field) can
achieve 0.5.

The model of an atomic laser is presented in Sec-
tion 2. The effective many-particle Hamiltonian is con-
sidered for the open system of colliding Bose atomsin
atrap, which describestheir interaction with the atomic
pump and loss reservoirs, as well as the phonon field
inducing spontaneous transitions between the discrete
energy levels of the trap. Section 3 is devoted to the
analysis of the self-consistent dynamics of atomic
fields. Approximations are considered which are used
for calculations of the wave functions of the atomic
field in the trap simultaneously with the solution to the
equation for the reduced density matrix. In Section 4,
the control equation is obtained, within the framework
of the Born—Markoff approximation, for the density
operator in the model of an atomic laser with a finite
number of levels in the approximation of the eigen-
states of the trap. The approximation is considered at
which collisions of atoms in the trap do not affect the
spatia distribution of the atomic field. The results of
numerical calculations of the dynamics and statistics of
the Bose gas are presented in Section 5. Conclusions
are formulated in Section 6.

2. MODEL
OF AN EVAPORATION-BASED ATOMIC LASER

We will describe the open system of atomsin atrap,
which interact with reservoirs, by the method of sec-
ondary quantization of atomic fields using the creation
and annihilation operators, which are defined as

Wi = Yaem). & = [drermwdan. @
i

l'IJCX(r) = ba L|ch (r)v
)\ZO e ()]

bm=pﬂ%mwm,a=nwn

where W(r) and llJl(r) are the annihilation and cre-
ation operators for an atom at the point r in the trap,
respectively, and W, (r) and LIJCT,(r) are the annihilation
and creation operators, respectively, for particles in
pump reservoirs (a = p) and in reservoirs performing
the extraction of the atomic field from the trap (a =
out). The c-numerical functions @;(r) and Y, (r) enter-
ing the right-hand sides of Egs. (1) and (2) determine
the spatial distributions of the fields.
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The above operators satisfy the boson permutation
relations

[Wo(r), Wh(r)] = 840 —17),
a,a' = s, p,out, 3
[Wo(r), We(r)] = [Wir), Wi(r)] = 0.

The quantum-mechanical average number of atoms
captured by thetrap is

J’dsr W(NWo=y mad= N. (4)
j

Along with the atomic reservoirs described above, we
will consider the reservoir of aphonon field, whichisa
source of spontaneous transitions between the states of
thetrap (seealso[27, 28]). In addition, wewill consider
an electromagnetic field involved in the processes of
extraction of the field from the trap and trap pumping,
aswell asin the process of stimulated cooling of atoms
inthetrap [1, 2].

We consider the effective many-particle Hamilto-
nian of the problem, which contains the free-energy
terms and the operators of interaction of the system
with reservoirs, as well as operators describing the
interaction between atomsin the trap, in the form

H = HS+ZHRB+ZVSRB+VCOII- %)
B B

The Hamiltonian (4) describing the atomic Bose con-
densate in the Hartree approximation can be written,
using the field operators (1) and (2), asasum of thefol-
lowing terms:

the energy of atomsin the trap,
Hs = J’d3r

Byt : (6)
x [_%EP SN (r) + ‘Ps(f)Vtr(r)‘PS(r)};

the energy operators of the atomic pump reservoir and
the reservoir of extraction of atoms from the trap (f =
p, out),

HRI3 = J'dgr
Byt ; Y
x [—%EP p(N) W g(r) + wB(r)VB(r)wB(r)},

the energy operator of the electromagnetic field applied
tothetrap (B = EM),

Hrem = zﬁwjbEM,jbEM,j; (8)
i
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and the free energy of the phonon field (3 = phon),

_ T
H R, phon — Z ﬁwphon, A bphon, A bphon, At (9)
A=0

The terms describing the interaction of the system of
atoms in the trap with the reservoirs have the form

Vo = ﬁJ'dsrLlJzut(r)/\out(r,t)LIJS(r) +hc., (10
Verp = hfdgfq’l(f)/\p(r, HW(r) +he,  (12)
Vsthon =h dBrl'P;r(r)
AZOI (12)
X bphon,)\/\sp,)\(r)ws(r) + h.C.,
1.3 3.0t +
Vco = =[dr dl"l'PSI' l-PSI"
= erelovie

xU(r —r)Wyrwyr.

The functions A entering (10)—<12) are the coupling
constants of the atomic field of the trap with the fields
of reservoirs.

We will consider the electromagnetic field applied
tothetrap classically. In this case, the operator (8) rep-
resents a c-numerical constant.

Neutral atoms forming the Bose condensate are
located in a parabolic trap with the potential

m
Vi) =5 Y wire,

a=xYy,z

where m is the atom mass. The effective interaction
between atoms in the trap is described by the pseudo-
potential

V(r=r") = ud(r —r'), u = 4mayh’/m,

(where a, is the callision length for the scattering of
Swaves) and by the dipole—dipole two-particle interac-
tion potential Vy4(r —r",i.e,

U —r") = V(r—r") +Vy(r-r.

The terms in (11) and (10) containing the operators
Wy(r) and W,,(r) are related to the reservoirs from
which the trap levels are pumped by external sources
and the atoms are extracted from the trap. In particular,
the atomic field can be extracted during the interaction
of atoms with aresonance radio-frequency field, which
induces electronic transitions between the Zeeman sub-
levels of the atoms [1, 2]. In this case, Ayu(r, t) =
Q(r, t), where Q(r, t) = u - B(r, t)/% is the Rabi fre-
guency of an atom in the magnetic field B(r, t), p isthe
transition magnetic moment, and W,,(r) isthe creation
operator for a free atom extracted from the trap. The
pump operator (11) is defined similarly with the help of
the annihilation operator W,(r) for an atom in the inco-
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herent pump reservoir, which is, in this particular case,
in thermodynamic equilibrium. We will assume below
that the interaction of atoms with the fields performing
pumping, the extraction of the condensate, and stimu-
lated evaporation are weak (low Rabi frequencies); i.e.,
we will consider the case of a cw atomic laser [1]. At
the same time, we will take into account the time
dependence of the coupling constants.

Using the field operators (1) and (2), we can write
the Hamiltonian (5) in the form

H = Zhwjaj*aj oy ihwaxb;)\ba)\
j

o = p, out, phonA =0

>0
+ z 52 ATy 1. iBapon n@i@, + h.c.)
A=0—>]

+ z Ky (H)bp & +h.c) (14)

g
+ 3 fi(k, (Do 8, +h.C.) O

1
+ Ezﬁgi, j,k,IaiTa}Lakalf
ijkl
where the energy of the jth state of the trap is
hoj = [dTel (KM@,

hZ
" 2m

(15)
K(r) = —5=0%+V,(n),
and 7w, is the energy of the harmonic oscillator A in
thereservoir a.

The coupling constants characterizing the interac-
tion with reservoirs are defined as

Hyit) = jdwzm,x(r)/\om(r,t)cp.(r), (16)
Ky, () = jd3rwp,x(r)/\p(r,t)cp?(r), (17)
Maij = jdarcpr(r>Asp,A(r)<|>.(r). (18)

The coupling constants for elastic and inelastic colli-
sions between atomsin the trap are

6.1 = 5 [T )0 VAN
(19
# 36 [0 ()0 WVl —r )R,

The first two termsin (14) are the energy of atoms
in the trap and the intrinsic energy of oscillatorsin res-
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ervoirs, respectively. The next three termsin (14), cor-
responding to Vg in (4), are the sum of potentials of
interaction of atoms in the trap with reservoirs, which
cause the spontaneous decay from the discrete energy
levels of the trap, the extraction of atoms from the trap,
and pumping. The last term is the interaction potential
Vo for elastic and inelastic binary collisions between
atoms captured by the trap.

In this paper, we consider the model of an atomic
laser in which atoms are cooled during evaporation
[1, 2]. Preliminarily cooled atoms enter atrap of reser-
voirs, which are in thermodynamic equilibrium. It is
assumed that atoms in the trap can be in four energy
states and are characterized by a set of creation (annihi-
lation) operators af (&), wherei=0, 1,2, 3. Itisaso
assumed that the high-lying energy states of thetrap are
weakly populated due to stimulated evaporation per-
formed with the help of a radio-frequency electromag-
netic field applied to the trap [1, 2]. A Bose condensate
isobtained in the lower energy state |OL]from which the
accumulated condensate enters, at the rate K, areser-
voir of the continuous spectrum of vacuum states (out-
put laser radiation). Different methods for the extrac-
tion of the Bose condensate from a trap were consid-
ered in papers[17, 25]. Each of the states of thetrapis
pumped independently at the rate p; from the corre-
sponding incoherent reservoirs with the average occu-

pation numbers Ni*"™ . Dissipation processes related to
the exchange of atoms in the trap with the correspond-
ing reservoirs with the average occupation numbers

N occur at the rates y.. The pumping of an atomic

laser from thermal reservoirs was considered in papers
[10, 19-21].

For binary collisions between atomsin thetrapina
particular case of four levels considered below, the last
term in (14) represents the interaction energy of collid-
ing atoms in the dipole approximation and consists of
the elastic and inelastic contributions

Vel = Veast * Vindasts (20)
where
Veaa = VitV
3
t2_2 ot
= hggaa S Agaaaa;,
i=o Li=0i<i
t_ot.2 12
Vindas = 100211808287 + 710110081 Aoy
ot Tt
+ 7100312818838 + 7101203808381 7 (21)

tot.2 +2
+ 71013208385 + 7100138, A3,

Gijw = Giu-

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 96

KOZLOVSKII

3. SPATIAL DISTRIBUTION
OF ATOMS IN TRAP MODES

We will use the variational principleto derive equa-
tions determining the spatial dependences {@(r)} of
field operators (1). We will require the stationarity of
the functional

Elg(r), ()] = jd3r CH(r)O

at each instant upon variation of {¢(r)}. By imposing
the orthonormality condition

Id3r(p,* (M) = 9,

for adiscrete spectrum on the basis of functions{ @ (r)},
we will use the Lagrange method of multipliers. In this
case, the variational equation will take the form

6E—Zejajd3rcpr(r)cpj(r) =0, (22)
i
which givesthe equationsfor the level energy eigenval-

ues {g} and functions {@(r)}, whose form can be
found from the relation

O 3 _
6¢]*Id rH(r)d = 0, (23)
following from (22), where
CH(NO = HIg(nef ()]0
(24)

- zsjfpj(r)q’?(r) [hill
j

L et us define now the mean value of the total Hamil-
tonian (4) as

(HI@;(r, 1), @7 (r, Y]0 = Sp(Orea (Y HI@;(), @7 (N)]),

where 0, IS the total density operator of the system
and reservoirs interacting with the system. Upon aver-
aging with atime-dependent density operator, one-par-
ticle eigenfunctions {@(r, t)} and eigenvalues {g(t)}
acquire a parametric dependence on time. By using the
assumption of a weak interaction between the system
and reservoirs (the Born approximation), we consider
the total density operator in the form of asum

Ot = p(E) o+ 2pM(0), (25)

where p(t) = Spr(0ia(t)) is the reduced density opera-
tor of the system representing the trace of the total den-
sity operator over the variables of reservoirs. The quan-
tity fo in (25) is the product of the density operators of
independent reservoirs in thermodynamic equilibrium.
In the interaction representation, thelast termin (25) in
the first approximation over the potential of interaction
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Vg =
form

zBVSRB of the system with reservoirs has the

8p70) = F[Val) PO T, (29)
0

where [..., ...] is a commutator. By performing func-
tiona differentiation in the variational equation (23)
and using (14)—(19), we obtain the system of coupled
eigenvalue differential equations of the type (for any j)

Leonl@(r, )] + Lin[@(r, 1)] = O. (27)

The coherent part of Eq. (27) appears after the calcula-
tion of the guantum-mechanical mean for the terms
containing the system operators with the help of the
first term in (25). The terms determining the change of
the wave functions of atoms in the trap caused by the
interaction with reservoirs (irreversible processes) are
contained in the second term in Eq. (27). For coherent
terms, we obtain

Leonl@(r, )] = K;(r, t)o;(r, t) Ohy()0+ Z(Pk(r,t)
ikl (28)

x J'dsr'cpl*(r‘, HU(r e, B [ aBadtats
where

ﬁz
Ki(r, 1) = =507+ Vi(r) —&,(0).

The irreversible termsin (27), which appear after the
calculation of the mean using the total density opera-
tor (25), prove to be, within the framework of our
model, proportional to the mean values of the reservoir
operators. Since we assume in our calculations that the
reservoirsare incoherent or arein thermodynamic equi-
librium, it is easy to see that

[b,0= [bg,0= 0,
[bg \bg »0 = [bj ybg 0= 0,
Ebs,xbg', A =0, 0 B~(N§\a) +1),
[bp, \by 0 = 85 185 xNA.
By virtue of these relations, the irreversible terms
in (27) proportiona to bg,, [bg,0 [by by Ol

[by by, 0 are zero. Therefore, in the Born-Markoff

approximation for the interaction of the system with
reservoirs, we have

Lie[@(r, ] = 0. (30)

This means that the irreversible processes under con-
sideration lead to the appearance of additional termsin
equations for the wave functions and introduce

(29)
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changes in the time of average values [y(t)U and
DBJ-T(t)aiT(t)ak(t)aI (t)d entering into these equations.

The distribution of the Bose condensate density can
be calculated using different approximate equations,
which follow directly from the general equation (28).
By considering a system of atomsin atrap as a canon-
ica ensemble in thermodynamic equilibrium and
assuming that the number of atoms in the trap is fixed
[27-35], we obtain for the density operator, which is
stationary in this case,

exp[-B(Ho—uN)]
Sp[exp(—BHy)]

Pean = (31)

where

— T, = _ 1
HO— zsjajaj=zsjl\|], B=EB‘_T_,
j j

and p isthe chemical potential.

The quantum-mechanical mean for the operators O
of the system is defined in this case as

(O = Sp(PeanO)/ SP(Pean) - (32)
By using (31) and (32), we obtain from (28) the system
of equationsfor {g;, @}
Kj(r)@(r) thilk

3
+ (Pj(r)Id rer (U —r)ey(r’) Ohy(n; — )5 (33)
+ 3 OO[draEUE -reE) mE M = 0
iZ]
The value of the chemical potential 1 can be deter-

mined for any fixed number of atoms in the trap
because the condition

N=mDNDO=S{epBle,-mI-3~" (39
i

isfulfilled in the case of thermal equilibrium.

The calculation of the spatia distribution of the
Bose condensateis greatly ssmplified if we assume that
the temperature of the canonical ensemble T = 0 and
only the lower state of the trap with the wave function
@, is populated, and g, = .. Because the number of par-
ticles in the canonical ensemble is fixed, the creation

(annihilation) operators a, (af)) should be replaced by
¢ numbers equal to /N, . Then, we obtain from (28)

[Ko(r) ¥ Noydsr'cpé(r')U(r —r')%(r')}po(r) = 0, (35)
where

ﬁZ

Ko(r) = =507+ Vo)~ & = W.
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Equation (35) is reduced to the usual Gross—Pitaevskii
equation if we assume that the effective interaction
between atoms of the type

U@ —r") = ud(r—r")+Vy(r—-r"

contains only the first term (pseudopotential).

As the crudest approximation for the density distri-
bution, we can consider the equation

T(Ne(r) = &),

T(r) = —ﬁ—252+v (r)

2m tr
for the eigenfunctions and energy eigenvalues of the
trap. It is assumed that collisions of atoms in the trap
have no effect on the spatial distribution of the atomic
field.

The approximation of the trap eigenstates was used
in the quantum-mechanical models of an atomic laser
[3-11], the coupling parameters (16), (17), and (19)
being constant in time due to the assumption that the
atomic-field distributionsfor all modes of the trap were
independent of time.

4. CONTROL EQUATION
FOR THE REDUCED DENSITY OPERATOR
OF THE SYSTEM

By excluding variable reservoirs in a standard way
using the Born—-Markoff approximation, we obtained
the “control” equation for the reduced density operator
of the system. The presence of the reservoirs leads to
the appearance of the irreversible processes of dissipa-
tion and extraction of the field from the trap, pumping,
and spontaneous decay in the equation of motion. Inthe
self-consistent model of the nonequilibrium Bose gas
considered here, the coupling parameters p, ;(t) and
K, i(t) entering the Hamiltonian (14), which are deter-
mined by integrating the wave functions of the field
over spatial variables [expressions (16)—(19)], depend
on time in the general case. Because the self-consistent
scheme assumes the calculation of the wave function
@(r, ) by solving Egs. (27) and (28) at each instant of
time, the coupling parameters also depend ontime. The
simplest approximation of the trap eigenstates used at
present in the models of an atomic laser [3—-11, 19-29]
leads in general to the violation of the self-consistency
in the calculation of the dynamics of the nonequilib-
rium Bose gas. In this paper, we consider the time
dependence of the coupling parameters describing
pumping processes and losses in the trap caused by the
time dependence of the wave functions of the trap
modes.

Because all the operators (20), (21) entering the
Hamiltonian are bilinear in the creation and annihila-
tion operators, the contribution to the coherent (unitary)
component of the evolution of diagonal matrix ele-
mentsis zero. All elastic collision processes have adis-
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persion nature and affect the time dependence of non-
diagonal matrix elements and, hence, determine the
degree of coherence of the first-order field.

The equation of motion for the reduced density
operator of the system p(t) = Spr(Tia) IS @ SUM of
terms responsible for the irreversible processes of
pumping and extraction of atoms from the trap and of
losses and spontaneous transitions in atoms. In the
interaction representation, we have

p(t) = ;_i[p’ Vcoll]
1o (36)
- ﬁ_z ZISpR{ [Vsrp(), [Verp(t), p(t) fol I} dt'.
B o

In this representation, the time dependences of the cre-
ation (annihilation) operators related to the system and
reservoirs are determined by the equations

O,(t) = O;exp(-imgt), O](t) = Ofexp(it),

where wy, is the eigenfrequency of the jth oscillator of
the field. By substituting expression (25) for the total
density operator into (36), we will keep in the obtained
eguation the terms up to second order inclusive in the
interaction potential. Then, we will use the expressions
for the interaction potentials of the type (14) in the
equation obtained. Assuming that the coupling con-
stantsin (14) are independent of coordinates and using
the Born and Markoff approximations [36], we obtain
the control equation

p = _%[Vcollv p]
~23 (W INI™D[a]] + (N + 1)D[a]]
i

+p[N["™D[a]] + (N["™ +1)D[a]l}p  (37)

1 —phon
+ é z { Ysp, i [ N?—Olj D[a}r—laj]
j>0

+(N]7"1 +1)D[a; safll}p
for the reduced density operator, where D[O]p =
20p0" — O'Op — pO'O for the corresponding opera-
tor O. Thetermsin the control equation that are propor-
tional to the frequency shift caused by theinteraction of
the system with reservoirs are omitted in (37), and they
are assumed to be small below. Equation (37) was
derived using the stationarity of random processes

[0,(T)O,(0)1 = [0,(0)O,(-1)]

where O,(t) and O,(t) are the operators of random pro-
cesses related to reservoirs.
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Theloss and pump rates entering (37) have theform

yi _ o |:loo . .
2 _ZOReE[dTeXp(ImiT)uout,j,i(o)uout,j,i(T)
1= 0

t t o (38
X ( IjJout, j(T) bout, j(O)D_ D)out, J(O) bout, j(T)D) El
i >0,
Pi C uj . %
5 = z Regl’drexp(lwir)r(p,jyi(O)Kp'j,i(r)
j=o o (39)

x [ by, ;(V)b}, ,(0)0- b}, ;(0)b,, (1) E;

and the average occupation numbers of the pump and
loss reservoirs are

N = 52 Reéfdtexp(iwﬂ)u’;,j,i(o)
=0 o (40)

N
X Hp ;.i(T) bhy ;(0) by, ,—(r)D%
NP = 2 . ReDmdrex (iwT)K* ; (0)
i - plz O p i P ,i
=0 o (41)

0
x Ky, ;.i(T) by, ;(0)b, j(r)mg

Note that the quantitiesp;, N™™, andy,, N'*% can be

both positive and negative, depending on the reservoir
properties and the interaction dynamics.

As mentioned above, we will consider a simplified
model of an atomic laser that takesinto account the four
lower states of atrap. We assume that pumping is per-
formed only into the first |10excited state of the trap,
i.e, pp=0if j # 1. The Bose condensate is extracted
from the lower |OCktate to vacuum. Inthiscase, Eq. (37)
can be written in the form

p = _fl«t[vcollv p]
+ 23 {y,[ND[a]] + (N + 1)D[a]]}p
j

1 1 eff eff 1. off —eff (42)
* 5KauD[aglp + 5[ Py N1 Dlaj] +v1 N1 Dlag]p
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1 ~—phon t
+ ézo{ Ysp, j[va i —1D[aj —1aj]
J>
phon

+ (Nj,j—1+ 1)D[aj_1aj1-]]}p ’
where

ff —eff
pr Ni

= legecay + plmgump-

VE(NT +2) = vy (NI + 1) + py (N + 1)
are the effective pump and loss rates for the |[10state.
The superscript “eff” will be omitted below.

In the model under study, the stimulated cooling of
atoms in the trap is performed by the evaporation
method, where the atoms are removed from the states
[2Cand [3Chy aradio-frequency field that changes their
electronic states. Assuming that the rates of extraction
of atoms in the upper states from the trap are high, i.e.,

y21 y3 > plv Koutl Qjaysp,ia

43
i=123, j=12 @)

for the density operator, we perform the adiabatic
exclusion of modes |200and |30

Using the Hamiltonian (14), we write the stochastic
Heisenberg-Langevin equations for the operators a,
and a; in the interaction representation (see, for exam-
ple, [35] in the form

8, = 1ag Veul -2, + 1,80, (44)
B0 = 1oy Voul S+ 1B, (49

wherethe operators B, and B; of random sources satisfy
the conditions

(Bi(t)k = 0, [B/(®B(t)k = O,

B,(t)B/ ()% = 3(t-t), i=23.

By using in (44) and (45) the terms V,, from (20)
and (21) and neglecting the dispersion terms of thetype
iAya,, 1Az85, which are caused by inelastic collisions,
i.e., assuming that A,, A; < Y,, Y3, We can easily obtain

a = - y§23—2 ~iG012081 + /V2B(1), (46)
a3 = - y§3a3 — i Qoar@80ay + JY3Bs(). (47)

According to the assumption of adiabaticity, we
have da,/dt = 0 and da,/dt = 0. By solving algebraic
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equations, we find

2
ay = —i gz, 2 gy, (49)
Yz N
2 = |49031290211 + a3
s YsY2 (49)
+2p ) —i29eug

Ys Vs«/_z

By substituting adiabatic values (48) and (49) into the
terms y,D[a,]p/2 and y;D[ag]p/2 in EQ. (42) and aver-
aging over the reservoirs, we obtain the terms

Q
- Dlagailp, ’Dlag ailp
of the control equation, where
Ql — 4|g0211|2, QZ — 16|90213;|2|90312|2. (50)
Y2 Y2oY3

As aresult, the “control” equation for irreversible pro-
cesses can be written in the form

out + YO( NO + 1)

plirr =0 2 D[ ]+ NoD[aO]
O
+ 2N, +1)D[a)] + 2NiD[a]
(51

+ L2( (Noy + 1) D[alay] + NouD[alag])

+2D[ala) + 52D[a}

2 al] |:p
Here, v, is the rate of spontaneous transitions between

the modes [1Cand |0Cof the trap and No; = N(Wpnon, 2) =

(Dgon, ABpron, 30 7inon, . = 70y — @) = ficayy is the
average number of phonons in the thermal reservoir of
spontaneous decay at the frequency of the |10— |00
transition in the trap. The spontaneous decay is ana-
lyzed under the assumption that the density of states of
oscillators in the phonon reservoir weakly depends on
the frequency [27, 28]. The parameters Np and N;
in (51) are the average numbers of atoms in reservoirs
related to the |O0and |10states, respectively. They are
calculated in the general case from expressions (40)
and (41).

The rates Q, and Q, defined in (50) represent the
effectiverates of inelastic collisionsinvolved in the cre-
ation of the Bose condensate in the ground state of the
trap and corresponding, therefore, to stimulated transi-
tionin ausua laser.
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Note also that condition (43), which means that the
loss rates for nonlasing modes of the field are much
higher than the pump rate, the rate of the coherent out-
put of the lasing mode, and the effective rates of inelas-
tic collisions, provides the low population of modes 201
and |3L]

Thediagonal matrix elements of the reduced density
matrix pn.n,(t) = Bgny|p(t) [non,Chave the form

pnon1 = [Kout + VO(NO + 1)]
X [(nO + 1) pn0+ 1Ln nOpnOnl]

+ pONO[nopno—l, n, (nO + 1) pnonl]
+ yl(Nl + l)[(nl + l)pno, n+17 nlpnonl]

+ plml[nlpno, n-1-" (nl + 1)pnonl] (52)

*+ Yl (Now + 1)[No(Ny + 1) P —1,n,+ 1= Mo + 1)Prn ]
+ Noi[ny(No = 1)Pry+ 1,n,-1 = No(Ny + 1) Prn ]}
+Qy[ng(ny +1)(Ny+2)P 15,42
—(no + 1)ny(n; —1)Ppn,]

+ Qo[ (Ng—1)Ng(ny + 1)(Ny +2)(Ny + 3)Pp,—2n,+3

—(ng +2)(ng + 1)ny(ny —1)(Ny = 2) P, 1-

The quantum-mechanical means of the operators of the
number of atoms in the lower energy state of the trap
(lasing mode) and of dispersion (fluctuation) of the
number of atoms are calculated using the diagonal ele-
ments of the density matrix:

(e = Sp(agaeP(t) = Y Moo, (t).  (53)

Ng, Ny

[{An(Y)T=Varn, = Sp(aaaap(t)) =

= z (ni - Ij]ilzbzpnonl(t)’ i = O, 1 (54)

Ng, Ny

The Fano factors for the Bose condensate in the ground
state and in the first excited state of the trap are defined
as

F, = QAn)Dhd i =0 1 (55)

We will neglect below the pump rates for all modes
except the |10mode. The transitions of atoms from the
lasing |0Cmode to the thermostat will also be neglected.
We also assume that the Bose condensate is extracted
from the lower state of the trap to vacuum at the rate

Kout > VO( NO + l)
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5. QUANTUM DYNAMICS AND STATISTICS
OF AN ATOMIC LASER

The self-consistent theory of an atomic laser devel-
oped above assumes that Egs. (27) and (28) for the
wave functions{@(r, t)} of thefield representing asys-
tem of coupled eigenvalue equations are solved by the
iteration method simultaneously with the solution of
the control equation (51) for the reduced density oper-
ator for an open system. Such a coupled system of
equations can be solved only numerically. Its solution
seems impossible at present because it is too cumber-
some. In this paper, we calculated numerically the den-
sity matrix of the system in the approximation of the
eigenstates of the trap, when the dissipation and pump
rates are independent of time, i.e., in the approximation
usedin [3-9, 11, 19-24, 27, 28].

We solved numerically the system of coupled differ-
entia equations (52) for matrix elements p, , (t) using
the initial conditions p,,(0) = 0, o0 0, i-€, When
atoms were initially absent in the trap.

The generation dynamics of the atomic field for the
three-level model of an atomic laser considered here
depends qualitatively on the relations between the rate
p, of pumping of the |[LOstate of the atomic trap, the
extraction rate K, for the Bose condensate in the
ground [0Cstate, the rate Q; of stimulated transitions
from the |1 Ktate to the [OCand |2[Btates, and therate ys,
of spontaneous transitions from the |10state to the |00
state due to the interaction with the reservoir. Under the
assumption that the rate yg, is much lower than all other
rates mentioned above, the lasing regimes of an atomic
laser can be divided into two characteristic types. If
p; > Q; and p;, Q; ~ Koy, then two stages of lasing
dynamics are typical (see Figs. laand 1b). At first, the
|10state is populated, and the number of particles of a
slowly accumulated Bose condensate in the [OCstate is
small, the fluctuations in the number of particles drasti-
cally increasing up to values that are typical for a ran-

dom thermal field: [{Ange)T = (M,0+ 1)M,0 At the
next stage, the number [, Cof atoms decreases, whereas
0 increases and fluctuations [{Any)?0] decrease,
approaching the Poisson value equal to [y in the sta-
tionary state. For p; < Q, and py, Q; > Ko, the station-
ary Bose condensate in the |00state can be in aweakly
squeezed sub-Poisson state Fy < 1 (Fig. 1c).

When p; < Q; and py, p1, Q1 = K, @nother regime
of generation of the Bose condensate is realized
(Fig. 2). Thereis no stage of population of the |1[state;
a drastic increase in the fluctuations of the Bose con-
densate in the |00state is also absent. The fluctuations
of the Bose condensate can achieve the sub-Poisson
values of the squeezed state (Fig. 2a). The population n,
of the [10state proves to be low at any time until the
establishment of the stationary state, and the fluctua-
tions [{An,)?Cof the number of particles become essen-
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Fig. 1. (a) Dependences of the average number ny of atoms
of the Bose condensate, the dispersion (fluctuations)
EﬂAno)zDof the number of atoms, and the Fano factor Fq =
[{Ang)*Dmyon the reduced time Kot for the pump rate
p1 = 100K, the rate of collision transitions Q1 = K, the
average number of particles in the reservoir N; = 1, and
Yo < Qi. (b) Dynamics of Mgl {An)%0) and Fy =
[{An,)2(m, Cifor the first excited state of the trap for the

same parameters as in Fig. la. (c) Comparison of the
dynamics of the Fano factors Fy and F4 for the same param-

etersasin Fig. la
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Fig. 2. () Dynamics of the Fano factors Fy and Fq for p; =
10% gy, Q1 = 10% gy, Ny = 1, and g < Koy (b) Dynam-
ics of [ [{Ang)?C) and F; for the same parameters as in
Fig. 2a Q1 > p1 > Koyt > Y- (€) Dynamics of ng and
[{Ang)>Cfor the same parameters asin Fig. 2a.

tidly sub-Poisson: F; < 1. Inthisregime, p;, Q1 = Ky
and irrespective of the values of transition rates, the
population [ is equal to 0.333 for the dispersion of
the number of particles [{An,)?[L = 0.6670} [ (Fig. 2b).

Systematic calculations showed that the condition
for the creation of a Bose condensate in a squeezed sub-
Poisson state isthe relation Q; > p; > Ky >y, irre-

spective of the value of N;. The degree of squeezing
increases with increasing number of bosonsin the con-
densate, o[l > 1, when Q,, p, > K. For the values
of the laser parameters satisfying the inequalities Q, >
Py > Koy > Y, @ Which L, ~ 108, the maximum sup-
pression of fluctuations achieves ailmost half the level
of the shot noise. In this case, the Fano factor can
achieve the value F, = 0.54 (Fig. 2a).

The calculations showed that, for p; > N; > Qg

P N1 > K S Y, the stationary average number of

atomsin the Bose condensate can be estimated from the
expression

P1 1 1, Ko
=~ — T+ [z 4o
[yl 2@31 2+l oh (56)

In [23], the control equation for the density operator in
the model of an atomic laser, similar to that considered
here, was transformed to the Fokker—Planck equation
for the quasi-probability P function in the phase space
of the amplitude and phase of the atomic field. The sto-
chastic differential equations for the number of parti-
cles and phases of the fields in the trap modes, which
were obtained from the Fokker—Planck equation, were
solved in [23] under stationary conditions for average
values. In the limit [hy[> 1, the semiclassical average
number of atoms in the lower state of the trap was
foundin[23, 26] inaform similar to (56). However, the
sign of the square root, which was arbitrary within the
framework of calculations performed in these papers,
was chosen to be negative. Our exact quantum-mechan-
ical calculations confirm the validity of expression (56),
where the sign of the root is positive.

At the sametime, for p, ~ N1, Q,, the average num-
ber of atomsin the Bose condensate is described by the
expression My = np;Ni/Kyy, Where n = 2. This
expression agrees qualitatively with calculations per-
formed in [3] for a similar laser scheme, according to
which L = 2p, N1 /3K, for the case Q; > p;, N; >
Ko considered in [3]. The lasing threshold for the laser

we considered is determined by therelation p; N1 > K.

It was assumed in cal cul ations discussed above that
the rate of spontaneous transitions between trap modes
ismuch lower than the rates of other processes. Thecal-
culations performed under conditions when the rate of
spontaneous transitions is comparable with the rate of
extraction of the coherent condensate from the trap
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(Ysp = 0.5Kq fOr Noi = 1) are presented in Fig. 3. A
comparison of the parameters characterizing the con-
densate under such conditions with the case of the
absence of spontaneous decay (Vg < Kqy) Shows that
spontaneous transitions have no effect on the stationary
mean value [yl but substantially enhance fluctuations

[{Any)2LL of the Bose condensate and change the lasing
dynamics of an atomic laser.

The calculations of the lasing dynamics presented
above were performed within the framework of the
three-level model assuming that Q, < K;. To estimate
the effect of high-lying energy levels of the trap on the
dynamics and statistics of the generated condensate, we
performed calculationsfor thecase Q, ~ Q,, i.e., for the
four-level model of an atomic laser. Figure 4 shows the
time dependences of the Fano factor for the four-level
scheme at Q; = Q, and for the three-level scheme at
Q, = 0. The comparison shows that, even when the
upper levels are substantially populated, the fluctua
tions of the Bose condensate in the ground state of the
trap increase only dlightly (by several percent) at high
rates of collision transitions.

Our calculations showed that a Bose condensate
with minimal sub-Poisson fluctuations of the number of
particles can be produced by the stimulated cooling of
atoms, when the populations of the upper levels of the
trap are aways much lower than the population of the
[0Cground state of the trap and of the |10state through
which pumping is performed.

The fluctuations of the number of particlesinaBose
condensate were studied in [27-35] in thermal equilib-
rium for afixed number of particlesin atrap within the
framework of a standard description of an ideal gas
with the help of acanonical or amicrocanonical ensem-
ble. The numerical and analytic calculations of fluctua-
tions in a canonical ensemble of noninteracting parti-
cles were performed in [31]. It was shown that the
fluctuations of the Bose condensate consisting of
10%-10° atomsin the trap approached almost linearly to
zero at T/T, — 0, where T, is the critical temperature
of the Bose condensation. The results obtained in [30,
32, 34, 35] for amicrocanonical ensemble (the isolated
state of atoms in the trap) agree qualitatively with
data[31], fluctuations in a microcanonical ensemble
always being greater than those in a canonical ensem-
ble. It was found in [35] that, for small values of T/T.,
the magnitude of fluctuations was independent of the
total number N of particles. Similar results were
obtained in paper [32] for both canonical and microca-
nonical ensembles.

A canonical ensemble of particles with spontaneous
transitions between the trap stateswas studied in [27-29].
Quantum-mechanical calculations performed in these
papers al so showed the achievement of the Fock state of
an ideal Bose condensate at T/T, — 0.
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Fig. 3. Effect of spontaneous transitions on the dynamics of
an atomic laser. The solid curves show the dynamics of the
characteristics of the Bose condensate for the parameters of

spontaneous transitions yg, = 0.001Kq,; and Np; = 0.001.
The dashed curves show the same quantities for yg, =
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Fig. 4. Comparison of the dynamics of the Fano factor for
thethree- and four-level schemes of an atomic laser for p; =

B00Kgy, Q1 = Qp = 16 x 10%4y, Ny = 1, Vep/Kou,

No: < 1 (four-level scheme: the solid curve) and Q, = 0

(three-level scheme: the dashed curve); other parameters
arethe same.

The authors of [35] have drawn other conclusions.
The Hartree—Fock—Bogolubov—Popov theory used in
this paper, which takes into account collisions between
atomsin atrap at afixed number of atoms and constant
temperature, shows that the quantum statistics of the
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atomic field tendsto the Poisson statistics, which istyp-
ical for the coherent state of a Bose condensate when
T/T, — 0. The caculations [33] were performed
under conditions of thermodynamic equilibrium (T # 0)
for a large canonical ensemble of atoms taking into
account collisions between atoms in atrap. A compari-
son of theresults obtained in this paper with the datafor
the canonical and microcanonica ensembles of anideal
gas suggests that the Fock state with the sub-Poisson
fluctuations of the number of particles can be obtained
in thermal equilibrium only for an ideal gas when the
number of particlesis fixed. If the number of particles
depends on other parameters of the system (a large
canonical ensemble), an ideal Bose gas exhibits ther-
mal (random) fluctuations at any temperature. How-
ever, collisions between atoms at low temperatures
(T < T,) reduce fluctuations to the Poisson level, which
istypical for the coherent state of the field.

It has been shown in this paper that, under nonequi-
librium thermodynamic conditions, a Bose condensate
can be produced in a partially squeezed state. The
model of an atomic laser considered in the paper pro-
vides atwofold reduction of fluctuations of the atomic
field compared the Poisson level.

6. CONCLUSIONS

The model of interaction of a system of Bose parti-
cles in a trap with reservoirs considered in this paper
predicts the possibility of realization of super-Poisson
and sub-Poisson statistics of a Bose condensate pro-
duced in the trap. In the scheme of stimulated evapora-
tion cooling, when only a small number of the lower
energy states of the trap are noticeably populated dur-
ing the establishment of a stationary regime, the sub-
Poisson sgueezing of the Bose condensate in the
ground state of the trap is not stronger than twofold.

Our calculations have shown that the effect of the
upper states of the trap on the statistics of the Bose con-
densate is negligible. At the same time, spontaneous
transitions between the states of the trap lead to a con-
siderable increase in the fluctuations in the number of
particles.

Our calculations have shown that an evaporation-
cooled cw atomic laser can produce both the Bose
microcondensate with the average number of particles
[y~ 10 and the Bose macrocondensate with [y~ 10°
in a squeezed sub-Poisson state. However, the fluctua-
tions in the number of particlesin the microcondensate
only dlightly differ from the Poisson level, whereas, in
the macrocondensate, a large, amost twofold, reduc-
tion of fluctuations is observed (the Fano factor
Fgc — 0.5). The conditions for the generation of a
squeezed Bose condensate are the low rates of extrac-
tion of the coherent atomic field from the trap and of
spontaneous transitions between the trap modes com-
pared to the rates of incoherent pumping and stimulated
transitions in collisions between atomsin the trap. The
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results obtained in the paper suggest the existence of
atomic lasers capable of generating relatively small
Bose condensatesin the states that are close to the Fock
state. Such lasers can be considered as sources of indi-
vidual groups of ultracold atoms with a prescribed
exact number of atoms, which are reguired for a num-
ber of experiments of current interest in the optics of
atoms and photons.
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