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Abstract—The contribution of higher order corrections to the Stark energy is calculated in the anticrossing
region of atomic multiplet sublevels. Perturbation theory for close-lying levels is presented that is based on the
Schrödinger integral equation with a completely reduced Green’s function. Analytic formulas are obtained for
the splitting of two interacting fine-structure sublevels as a function of the field strength. These formulas take
into account fourth-order resonance and nonresonance corrections to both the diagonal and the off-diagonal
matrix elements of the dipole moment operator. By the method of the Fues model potential, a numerical anal-
ysis of radial matrix elements of the second, third, and fourth orders is carried out that determine a variation in
the transition energy between n 3P0 and n 3P2 sublevels of a helium atom for n = 2, 3, 4, 5 in a uniform electric
field. It is shown that the contribution of the fourth-order corrections in the vicinity of anticrossing of levels for
n = 2, 3, 4, 5 amounts to 0.1, 5, 10, and 15% of the total variation of energy, respectively. A comparative anal-
ysis is carried out with the results of calculations obtained by the method of diagonalization of the energy
matrix, which, together with resonance terms, takes into account other states of the discrete spectrum with n ≤ 6.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The Stark effect in a constant electric field was cal-
culated for a hydrogen atom and described in detail in
textbooks and monographs almost immediately after
the origination of quantum mechanics (see, for exam-
ple, [1, 2]). Nevertheless, this phenomenon has not yet
been completely studied and still attracts attention in
our time. The experimental studies of the Stark effect
have been stimulated by the development of precision
methods of laser spectroscopy [3–6]. Theoretical calcu-
lations of the shift and broadening of the Stark states in
hydrogen atoms carried out by the beginning of the
1980s were based on the iterative solution of the
Schrödinger equation involving the separation of vari-
ables in a parabolic system of coordinates [2]. The
development of computer programs for analytic com-
putations that allowed one to derive general expressions
for the coefficients of power series in the field strength
for both the shift and the broadening of atomic levels
[7, 8] has served as a powerful incentive for the calcu-
lation of higher order corrections to energy. Analytic
programming has also enabled one to obtain general
expressions for perturbation theory series for the wave
functions, matrix elements, and radiative transition prob-
abilities between the Stark states of hydrogen [9, 10].
1063-7761/03/9606- $24.00 © 21006
A comparison of the numerical data obtained by these
expressions with the results of measuring the field
dependence of the probability of radiative transitions
between highly excited Rydberg states [11] has shown
that the first three terms in powers of the field strength
are quite sufficient for calculating the transition proba-
bilities in virtually all situations of interest up to the
field value when the above-barrier ionization of the
upper level becomes possible.

By the end of 1970s, methods of laser spectroscopy
of Rydberg levels had been developed that allowed one
to accumulate a large volume of experimental data on
the Stark effect in highly excited multielectron atoms
[12–15]. These data stimulated the development of sim-
ple semiempirical calculation methods for the polariz-
abilities of atomic levels [16, 17] (including Rydberg
levels [18]), as well as the development of exact ab ini-
tio methods that enable one to consistently take into
consideration relativistic and quantum-electrodynamic
effects, which play a significant role in the spectra of
ions of high degree of ionization [19–22]. In [13–15,
23], it was observed that the Stark effect on multiplet
sublevels deviates from the quadratic law even in weak
fields. This phenomenon is accounted for by the Stark
interaction between sublevels that leads to their repul-
sion in a field and is determined by the hyperpolariz-
003 MAIK “Nauka/Interperiodica”
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ability of an atom. It was demonstrated that the main
(resonance) contribution to the hyperpolarizability of a
multiplet sublevel can be expressed in terms of the ten-
sor polarizability of this multiplet [24]. Therefore, pre-
cision calculation [25] and measurement [3, 5, 26] of
irreducible components of the polarizability tensor of
multiplet states of atoms becomes topical.

Precision information about the Stark effect in
higher order terms of perturbation theory plays a key
role in modern optical frequency standards based on the
application of magnetooptical traps in combination
with the methods of laser cooling of atoms up to several
nanokelvins [27], as well as in the problems of fre-
quency stabilization in atomic standards of a new gen-
eration—atomic fountains [28].

The interaction between sublevels of a multiplet in a
field may lead to an important phenomenon, the so-
called anticrossing [29]. This phenomenon manifests
itself when the polarizability of a higher energy sub-
level is greater than the polarizability of a lower energy
state. Then, in a weak field, the sublevels move closer
to each other; i.e., the fine-structure splitting decreases.
In a stronger field, the sublevels are repulsed from each
other; this repulsion is determined by the resonance
part of the hyperpolarizability. The field strength at
which attraction turns into repulsion and the minimal
value of splitting are uniquely determined by the
atomic susceptibilities—the components of the polariz-
ability and hyperpolarizability—and can be calculated
theoretically. Usually, the field value corresponding to
the anticrossing of levels is sufficiently high; therefore,
an appreciable contribution to the energies of states
may be made not only by the polarizability and the res-
onance part of the hyperpolarizability but also by non-
resonance additions to the hyperpolarizability.

In [30], fourth-order nonresonance corrections have
been calculated to the energy of separate sublevels of a
helium atom multiplet. In this case, the resonance
hyperpolarizability γ(res), which is determined by the
off-diagonal matrix elements of the interaction operator
between atom and field through the fine-structure states
and is expressed in terms of the tensor polarizability αt,
is calculated only in the second order of perturbation
theory. This is associated with the fact that, formally,
the fourth-order corrections to an off-diagonal element
make a correction of order F6/δ, where δ is a fine-struc-
ture splitting value at F = 0, to the expression for the
fine-structure splitting δ(F) depending on the field
strength F. However, in the anticrossing region, the
field amplitude may reach such values that αtF2 ~ δ;
therefore, the fourth-order corrections to diagonal and
off-diagonal matrix elements may make identical con-
tributions to the energy of the multiplet sublevels. Since
the fine-structure splitting is a rapidly decreasing func-
tion of the effective principal quantum number of an

atomic level ν = 1/  (En is the binding energy of
the level), δ ~ ν–3 [31], and the polarizabilities and

2En–
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hyperpolarizabilities are rapidly increasing functions,
α ~ ν7 and γ ~ ν17 [32], the anticrossing for higher levels
occurs in weaker fields, and the contribution of higher
order corrections becomes more significant. The first
calculations of the nonresonance hyperpolarizability
for the triplet state 3 3P in helium atoms [30] has shown
that the contribution of the fourth-order field correc-
tions to the diagonal elements may be several times
greater than experimental errors. Therefore, the deter-
mination of corrections to the off-diagonal elements
also becomes topical.

The main goal of the present paper is to determine
the contribution of the fourth-order corrections in the
field strength to the energy of multiplet states of an
atom near the anticrossing of the fine-structure sublev-
els. In Section 2, we give a generalization of higher
order perturbation theory for degenerate states [33] to
the case of close-lying levels that have nonzero splitting
in zero field. We obtain expansions of the matrix ele-
ments of the interaction Hamiltonian of an atom and a
field in powers of the field strength F up to the fourth
order. In Section 3, the coefficients of these expansions
are expressed in terms of irreducible parts—scalar and
tensor polarizabilities and hyperpolarizabilities—
which, in turn, are represented by linear combinations
of radial matrix elements of the second, third, and
fourth orders. In Section 4, we derive general expres-
sions for the field-dependent splitting of two interacting
fine-structure sublevels. The fine-structure splitting of
n 3P states of helium (n = 2, 3, 4, 5) is calculated numer-
ically as a function of F; in zero field, these states have
total momenta of J = 0, 2 and a projection of M = 0. The
contribution of the fourth-order corrections in the field
region of level anticrossing is determined.

2. HIGHER ORDER PERTURBATION THEORY 
FOR CLOSE-LYING LEVELS

The calculation of higher order corrections to the
Stark effect for atomic multiplet sublevels requires a
consistent development of perturbation theory for

close-lying levels. Suppose that (r) is a one-electron
Hamiltonian of a valence electron with eigenfunctions
φnLSJ(r) and eigenvalues EnLSJ  that correspond to the
sublevels of an atomic multiplet with the principal
quantum number n and the quantum numbers of orbital

L, spin S, and total J momenta (the Hamiltonian (r)
takes into account the spin–orbit interaction). Then,

(1)

Let us project the Schrödinger equation

(2)

for an atom in a constant electric field, whose interac-

tion is described by the operator (r) = Fz, onto a wave
function of a certain state of degenerate basis, assuming

Ĥ0

Ĥ0

Ĥ0 r( )φnLSJ r( ) EnLSJφnLSJ r( ).=

Ĥ0 r( ) V̂0 r( )+( )ΨnLSJM r( ) EΨnLSJM r( )=

V̂
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that all projections of the vector of state ΨnLSJM  onto the
basis vectors are of the same (zero) order in the field,

Here, J = J1, …, Jk; λ = 1, 2, …, k; and k is the number
of interacting sublevels (which may not coincide with
the multiplicity of the multiplet). Taking into account (1),
we obtain the following expression as a result of the
projection:

(3)

Next, we project Eq. (2) onto the Green’s function
(r, r') of the unperturbed atom that satisfies the

inhomogeneous equation

(4)

whose right-hand side contains the Dirac δ function,
and

(5)

represents the mean value of the energy of interacting
sublevels. For convenience, we introduce the following
notation:

(6)

is the energy of a sublevel with a given J with respect to
the mean value (5), and

(7)

is the relative energy of the atom in the field. As a result
of projection, we obtain

(8)

Let us select the states of the multiplet under consider-
ation from the Green’s function expressed as a spectral
expansion [16, 17],

(9)

by representing the latter function as

(10)

Substitute (10) into (8). Taking into account (3) and (6),
we obtain

(11)

ΨnLSJM r( ) φnLSJ r( )〈 〉 aJ
λ( ).=

EnLSJ E–( )aJ φnLSJ V̂ Ψ〈 〉+ 0.=

GE

Ĥ0 E–( )GE r r',( ) δ r r'–( ),=

E
1
k
--- EnLSJ

J J1=

Jk

∑=

εJ EnLSJ E–=

∆E E E–=

Ψ r( ) GE r r',( ) V̂ r'( ) ∆E–( ) Ψ r'( )| 〉+ 0.=

GE r r',( )
φn'L'S 'J ' r( )φn'L'S 'J '* r'( )

En'L'S 'J ' E–
------------------------------------------------,

n'L'S 'J '

∑=

GE r r',( ) GE
' r r',( )=

+
φnLSJ ' r( )φnLSJ '* r'( )

EJ '
-------------------------------------------.

J ' J1=

Jk

∑

Ψ r( ) aJ 'φnLSJ ' r( )
J '

∑=

– GE
' r r',( ) V̂ r'( ) ∆E–( ) Ψ r'( )| 〉 .
JOURNAL OF EXPERIMENTAL
Using an iterative procedure, we represent the for-
mal expression for a wave function as the Brillouin–
Wigner series

(12)

Applying the formula for the sum of a geometrical pro-
gression, we rewrite this expression as

(13)

Substituting (13) into (3), we obtain the following sys-
tem of equations for coefficients aJ:

(14)

where

(15)

is a matrix element of the operator of interaction 
between the atom and the field, which formally
includes all orders of perturbation theory.

In the absence of an external field (  = 0), system (14)
is solvable if ∆E = εJ . Then, aJ = 1 and aJ ' ≠ J = 0. When

 ≠ 0, the system has a nonzero solution if ∆E satisfies
the secular equation

(16)

To solve this equation, one has to know the matrix ele-
ment WJJ ' , which depends on the strength of the exter-
nal field F. Numerical calculations show that, when F <
F0 (F0 is the field value at which the upper sublevel of
the multiplet |nLSJ 〉  occurs above the top of the poten-
tial barrier), one can use the expansion of WJJ ' in powers
of F2. In spite of the fact that such a series is asymp-
totic, its first several terms form a decreasing sequence
such that their sum determines WJJ ' to a high degree of
accuracy up to F = F0. Practically, it suffices to take into
consideration the first two terms of the series, in which
the coefficients of F2 and F4 are determined by the
polarizability and the hyperpolarizability of the atomic
state. Since ∆E ~ εJ ' ~ F2 @ ∆EF2 ~ F4 @ F6 …, such an
expansion of the matrix element WJJ ' is given by

(17)

Ψ r( ) aJ '

J '

∑=

× GE
' r r',( ) ∆E V̂ r'( )–( )[ ] q φnLSJ ' r'( )| 〉 .

q 0=

∞

∑

Ψ r( ) aJ ' 1 G+ E
' r r',( ) V̂ r'( ) ∆E–( )[ ] 1–

J '

∑=

× φnLSJ ' r'( )| 〉 .

aJ ' WJJ ' εJ ' ∆E–( )δJJ '+[ ]
J '

∑ 0,=

WJJ ' φnLSJ〈 |V̂ 1 G+ E
' V̂ ∆E–( )[ ] 1– φnLSJ '| 〉=

V̂

V̂

V̂

det WJJ ' εJ ' ∆E–( )δJJ '+ 0.=

WJJ ' F2wJJ '
2( ) F2∆EuJJ ' F4wJJ '

4( ),+ +=
 AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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where

(18)

are matrix elements that contain one, two, and three
Green’s functions. The second and third terms on the
right-hand side of (17) are on the order of F4; moreover,
it suffices to use a quadratic approximation for the fac-
tor of ∆E in the second term. Applying the apparatus of
angular momentum theory [34], we can reduce these
matrix elements to a sum of irreducible parts that con-
tain scalar and tensor polarizabilities and hyperpolariz-
abilities.

The general formulas (16)–(18) of degenerate per-
turbation theory, which contain the second-, third-, and
fourth-order field corrections, can be used for calculat-
ing the Stark effect in a multielectron atom. In this case,
the state vector |nLSJ 〉  is constructed within a given
scheme of coupling between angular momenta (for
example, in the LS or JJ representations); by the opera-
tor z in (18), we mean the z component of the dipole
moment

of the atom, and  corresponds to the definition of a
reduced Green’s function of the N-electron atom.

3. DECOMPOSITION OF MATRIX ELEMENTS 
INTO IRREDUCIBLE PARTS

Using the Wigner–Eckart theorem and the proper-
ties of 6j symbols and the Clebsch–Gordan coefficients
[34], we obtain the following expression for the first
term in the matrix element (17):

(19)

where (b)n = b(b + 1)…(b + n – 1) is the Pochhammer
symbol and

(20)

wJJ '
2( ) nLSJ〈 |zGE

' z nLSJ '| 〉 ,–=

uJJ ' nLSJ〈 |z GE
'( )2

z nLSJ '| 〉 ,–=

wJJ '
4( ) nLSJ〈 |zGE

' zGE
' zGE

' z nLSJ '| 〉–=

D ri θicos
i

N

∑=

GE'

wJJ '
2( )

=  –
1
2
--- CJ 'Mj0

JM 2J 2+( ) j 2J ' 1+( )
2J 1 j–+( ) j 1+

--------------------------------------------
1/2

aJJ '
j( ) ,

j 0 2,=

∑

aJJ '
j( ) 2 2L 1+( )C1010

j0 2J 1 j–+( ) j 1+ 2 j 1+( )
2J 2+( ) j

--------------------------------------------------------
1/2

=

× 1–( )J J ''+ 2J '' 1+( ) 1 1 j

J J ' J '' 
 
 

J ''

∑

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
is the irreducible part of the matrix element. We will use
the standard notation for the Clebsch–Gordan coeffi-
cients and the 6j symbols [34]. The radical factor
in (19) is introduced in order that the coefficients of this
expansion, as well as the coefficients of the expansion
of the irreducible part (20) in terms of radial matrix ele-
ments R, should be rational numbers that do not contain
radicals. For a matrix element of the (N + 1)th order
with N Green’s functions, we use the notation

(21)

where gL'J '(r, r') is the radial part of the Green’s func-
tion (9) that determines its series expansion in spherical
harmonics. The notation for the components of the
polarizability tensor that is conventionally used in the
literature is determined by the irreducible parts of the

diagonal matrix element (19):  =  and  =

 for scalar and tensor polarizabilities, respectively.
Thus, for the diagonal matrix element (19), we have

(22)

where

(23)

(24)

The decomposition of the matrix element uJJ' into
irreducible parts is described by expressions that for-
mally coincide with (19), (20), and (22)–(24) when the
radial matrix elements with a single Green’s function

× CL010
L'0( ) S L J

1 J '' L' 
 
  S L J'

1 J '' L' 
 
 

RL'J ''
11 S( )

L' L 1±=

∑

RL1 J1 L2 J2 … LN JN, , ,
n1n2…nN 1+ S( )

≡ nLSJ〈 |r1
n1gL1 J1

r1 r2,( )r2
n2

…rN
nNgLN JN

rN rN 1+,( )rN 1+
nN 1+ nLSJ '| 〉 ,

αnLSJ
s aJJ

0( ) αnLSJ
t

aJJ
2( )

wJJ
2( ) 1

2
--- αnLSJ

s 3M2 J J 1+( )–
J 2J 1–( )

-------------------------------------αnLSJ
t+ ,–=

αnLSJ
s 2

3
--- 2L 1+( ) 2J '' 1+( ) CL010

L'0( )2

L'J ''

∑=

× S L J

1 J '' L' 
 
 

2

RL'J ''
11 S( ),

αnLSJ
t 10 2J 1–( )3

3 2J 2+( )2
----------------------------

1/2

2L 1+( )=

× 1–( )J J ''+ 2J '' 1+( ) 1 1 2

J J J '' 
 
 

J ''

∑

× CL010
L'0( )2 S L J

1 J '' L' 
 
 

2

RL'J ''
11 S( ).

L' L 1±=

∑
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are replaced by a matrix element with two Green’s
functions,

Similarly, a fourth-order diagonal matrix element
can be expressed in terms of the hyperpolarizability
components of an atomic level that generally has three

independent irreducible parts , j = 0, 2, 4 [17, 30,
32]. The irreducible parts of the hyperpolarizability
represent a linear combination of fourth-order radial

matrix elements (S). The explicit form of
these expressions is rather awkward, but they can be
substantially simplified by neglecting the effect of the
fine structure on the radial matrix element. In this
approximation, the matrix elements (21) do not depend
on the indices of the total momenta J1, J2, …, JN . As a
result, the dependence of the matrix elements on the
total angular momentum of the initial, intermediate,
and final states is expressed only in terms of the coef-
ficients of vector summation, which can be performed
analytically, similar to the summation over J '' in (20)
[34]. Then, a fourth-order matrix element can be repre-
sented as

(25)

where

(26)

is the irreducible part of the hyperpolarizability of the
|nLS 〉  level that is independent of the total momentum
J and is identical for all components of the atomic mul-

RL'J ''
11 S( ) nLSJ〈 |rgL'J '' r r',( )r' nLSJ '| 〉=

RL'J '' L'J '',
101 S( )

=  nLSJ〈 |rgL'J '' r r',( )gL'J '' r' r'',( )r'' nLSJ '| 〉 .

γnLSJ
j( )

RL1 J1 L2 J2 L3 J3, ,
1111

wJJ '
4( ) 1

24
------ CJ 'Mj0

JM 1–( )J ' L S+ +

j 0 2 4, ,=

∑–=

×
2L 1+( )J 1+ 2J ' 1+( )

2L 1 j–+( ) j

---------------------------------------------------
1/2

L L j

J ' J S 
 
 

γnLS
j( ) ,

γNLS
j( ) 24

2L 1 j–+( )J 1+ 2 j 1+( )
2L 2+( ) j

---------------------------------------------------------
1/2

=

× 2 j1 1+( ) 2 j2 1+( )C1010
j10

C1010
j20

C j10 j20
j0

j1 j2

∑

× 2L2 1+( ) L L j

j1 j2 L2 
 
 

L2

∑

× CL0 10
L10

CL20 10
L10

CL20 10
L30

CL0 10
L30 L L2 j1

1 1 L1 
 
 

L1L3

∑

× L L2 j2

1 1 L3 
 
 

RL1 L2 L3, ,
1111 S( )
JOURNAL OF EXPERIMENTAL
tiplet. Substituting the numerical values for the coeffi-
cients of the vector summation into (26), we obtain the
following expressions for three independent compo-
nents of the hyperpolarizability:

(27)

(28)

(29)

Thus, in the approximation used, all fourth-order
matrix elements in the basis of the multiplet states are
expressed in terms of three different components of the
hyperpolarizability tensor (27)–(29) that depend only
on the principal, spin, and orbital quantum numbers.

The dependence of  on J and J ' is described by the
coefficients of vector summation in (25). As a rule, this
approximation is fairly sufficient because the fourth-

γnLS
0( ) 8

5 2L 1+( )
------------------------ 2L L 1–( )

2L 1–
------------------------RL 1– L 2– L 1–, ,

1111 S( )=

+
L 4L2 1+( )

4L2 1–
-------------------------RL 1– L,  L 1– ,  

1111
 S ( )

4
 

L L
 

1+( )
2 L 1+

----------------------- R L 1– L ,  L 1+ ,  
1111

 S ( )+

+

 

L

 

1+

 

( )

 

4

 

L

 

2

 

8

 

L 5+ +( )
2L 1+( ) 2L 3+( )

------------------------------------------------------RL 1+ L,  L 1+ ,  
1111

 S ( )

+
2 L 1+( ) L 2+( )

2L 3+
---------------------------------------RL 1+ L 2+ L 1+, ,

1111 S( ) ,

γnLS
2( ) –

8L
7 2L 1+( )
------------------------ 4 L 1–( )

2L 1–
--------------------RL 1– L 2– L 1–, ,

1111 S( )=

+
8L2 6L– 5+

4L2 1–
-------------------------------RL 1– L,  L 1– ,  

1111
 S ( )

+
8 2L2 2L 3+ +( )
2L 1+( ) 2L 3+( )

------------------------------------------RL 1– L,  L 1+ ,  
1111

 S ( )

+
2L 1–( ) 8L2 22L 19+ +( )

2L 1+( ) 2L 3+( )2
---------------------------------------------------------------RL 1+ L,  L 1+ ,  

1111
 S ( )

+
4 L 2+( ) 2L 1–( )

2L 3+( )2
-----------------------------------------RL 1+ L 2+ L 1+, ,

1111 S( ) ,

γnLS
4( ) –

48L L 1–( )
35 4L2 1–( )
----------------------------- RL 1– L 2– L 1–, ,

1111 S( )-=

+
2L 3–
2L 1+
----------------RL 1– L,  L 1– ,  

1111
 S ( )

+
2 2L 3–( ) 2L 1–( )

2L 1+( ) 2L 3+( )
--------------------------------------------RL 1– L,  L 1+ ,  

1111
 S ( )

+
2L 1–( )2 2L 3–( )
2L 1+( ) 2L 3+( )2

--------------------------------------------RL 1+ L,  L 1+ ,  
1111

 S ( )

+
2L 1–( )2 2L 3–( )
2L 3+( )2 2L 5+( )

--------------------------------------------RL 1+ L 2+ L 1+, ,
1111 S( ) .

wJJ '
4( )
 AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003



        

HIGHER ORDERS OF PERTURBATION THEORY FOR THE STARK EFFECT 1011

     
order matrix element determines only the quadratic (in
field) correction to the main quantity.

If we also neglect the effect of the fine structure on
the second- and third-order matrix elements, we can
also obtain expressions analogous to (25) for these
quantities:

(30)

where  ≡  and  ≡  are the scalar and
tensor polarizabilities of the level, respectively. Both of
these quantities can be represented as a linear combina-
tion of second-order radial matrix elements:

(31)

(32)

In this case, the scalar polarizability appears only in the
expressions for the diagonal matrix elements and deter-
mines the energy shift that is identical for all sublevels
of the multiplet, while the tensor polarizability deter-
mines the splitting into magnetic components, different
for different sublevels, and appears in both the diagonal
and the off-diagonal matrix elements. An expression for
the third-order matrix element uJJ ' is obtained from (30)
by replacing α(j)  β(j), where β(j) is a superposition
of third-order radial matrix elements, which is given by
relations (31) and (32) in which one should make the

following substitution: (S)  (S).

Using the definition of the Green’s function (9), one
can easily verify that the maximal contribution to the
radial matrix elements is made by the levels n' = n. For
example, in [35], it was shown that, for 1s3p 3PJ levels
of helium, the contribution of resonance terms amounts
to about 97%. For circular states with n = L + 1, the

dominant correction with n' = n is absent in , and,

hence, the inequality  !  holds for the radial
matrix elements in (31) and (32). Under this condition,
we obtain the approximate equality αs ≈ –αt for the cir-
cular states.

Note also that relation (30) for an off-diagonal
matrix element actually determines a transition from
the LS scheme of coupling of angular momenta to the J
representation for the second-order scalar and tensor
components of electric susceptibilities of a multielec-
tron atom. This transition was first analyzed in [36].
The comparison of (22)–(24) with (30)–(32) shows that
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the scalar and tensor components of the polarizability
of a helium-like atom in these two representations are
related by the following simple formulas:

(33)

(34)

(35)

(36)

Similar formulas for the scalar and tensor components
of hyperpolarizabilities are more cumbersome and are
not presented here to save space.

The above formulas do not take into account the sin-
glet–triplet mixing of excited states of a helium atom.
The contribution of these phenomena is quite signifi-
cant for the states with L ≥ 3; its correct consideration
is required first for the comparative analysis of theoret-
ical data with the results of precision measurements.
For the quantitative and qualitative analysis of these
phenomena, one should use an intermediate scheme for
the coupling of angular momenta; in this case, the wave
functions for the atomic multiplet components with J =
L are determined by the superposition of states in a
“pure” LS coupling scheme of angular momenta

(37)

The coefficients AL and BL in (37) are calculated by the
method of diagonalization of the energy matrix with
regard to relativistic interactions (first of all, a spin–
orbit interaction) in the total Hamiltonian of an atom
(Table 1).

For a helium atom, the numerical values of the mix-
ing angles ϕnL for L = 1, 2, 3, 4 are equal to 0.02°, 0.5°,
30°, and 44°, respectively, and virtually do not depend
on the principal quantum number of a valence electron
[37]. Taking into account the singlet–triplet mixing
alters formulas (23) and (24); then, according to the

α s n1 3, LJ( ) α s n1 3, L( ),

α t n1LL( ) α t n1L( ),

α t n3LL 1+( ) α t n3L( ),

α t n3LL( ) L2 L 3–+
L L 1+( )

------------------------α t n3L( ),

α t n3LL 1–( )
L 1–( ) L 1+( ) 2L 3–( ) 2L 3+( )

L2 2L 1–( ) 2L 1+( )
-----------------------------------------------------------------------------α t n3L( ).

nLSJ| 〉 AL n1L| 〉 BL n3L| 〉 .+=

Table 1.  Coefficients of singlet–triplet mixing for a helium-
like atom

Term AL BL

1LL cosϕnL sinϕnL

3LL –sinϕnL cosϕnL

3LL – 1 0 1
3LL + 1 0 1
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definition (37), the components of the polarizability
tensor are expressed as

(38)

(39)

Here,

(40)

and L> is the maximum of L and L'.

As a result, the use of the intermediate coupling
scheme of angular momenta requires that one should
take into account the singlet–triplet mixing not only in
the wave functions of the considered states with L ≥ 3
but also in the spectrum of intermediate states. Note
that the weak dependence of the coefficients AL and BL

on the principal quantum number n allows one to apply
the method of Green’s functions for summing over the
whole set of intermediate states.

For example, for a tensor component of a singlet 1D
level of helium, one can easily obtain an approximate
formula that takes into account the mixing phenomena
for the F component of the intermediate spectrum

(41)

A numerical calculation has shown that the contribu-
tion of the mixing phenomena is no greater than 0.1%
for arbitrary n. The case of a tensor component of the
1F3 level is more interesting since, on the one hand,
there are experimental data [38] for this case and, on the
other hand, this case exhibits strong dependence of the
mixing amplitude on the principal quantum number n:

(42)
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In other words, the singlet–triplet mixing is determined
by

(43)

For instance, for n = 4, this phenomenon is abnormally
high (20%); for n = 5, its contribution is no higher than
1%; and, again, it amounts to several percent for n > 5.

Thus, up to the fourth order in the field strength, the
matrix element (17) is determined by relations (25)–
(32), which are sufficiently universal for all multiplet
levels and can be used for calculating the variation of
energies of specific atoms in a field with regard to the
fine-structure effects in an atomic multiplet.

4. THE STARK EFFECT ON TRIPLET STATES
OF HELIUM

In this section, we calculate the energy of n 3P0, 2
states of helium up to the fourth-order corrections with
respect to field F neglecting the singlet–triplet mixing
in the spectrum of intermediate states. The fourth-order
corrections should be taken into consideration for the
field corresponding to the anticrossing region of the
triplet sublevels where the energy difference δ02 = E0 –
E2 is minimal. The attraction of sublevels to each other
in a weak field and their subsequent repulsion are
observed when the polarizability of the upper sublevel
is greater than that of the lower one. This situation is
characteristic of n 3PJ states of helium (n = 2, 3, ...) with
J = 0, 2 and the projection of the total momentum M =
0. The state with J = 1 and M = 0 remains isolated since
there is no nonzero matrix element for the dipole elec-
tric transition to a state with a different value of the total
momentum J. The sublevels n 3PJ with |M | = J = 2 also
remain isolated. The “repulsion” of interacting levels is
attributed to the off-diagonal matrix element of the

operator (r) that makes a positive contribution to the
energy of the upper level and a negative contribution to
the energy of the lower level. Note that the states with
|M | = 1 and J = 1, 2 of the multiplets considered have
identical polarizabilities and hyperpolarizabilities;
therefore, they immediately start to diverge, as the field
strength increases, due to the interaction between sub-
levels, which is determined by the off-diagonal matrix
element.

4.1. Field Dependence for Energies 
of Two Interacting Sublevels 

To calculate the Stark splitting of two close-lying
sublevels with relative energy shifts  = E1 –  =

−δ/2 and  = E2 –  = δ/2, where  = (E1 + E2)/2,
one has to solve the secular equation (16) for ∆E. To
determine the corrections to the energy up to the fourth

ϕnF
3
4
---α t F3( ) α t F1( )– .sin

2

V̂

εJ1
E

εJ2
E E
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order in F, we substitute expression (17) for the matrix
element WJJ ' into Eq. (16), which can be rewritten as

(44)

where

(45)

To determine ∆E from (44) up to the fourth-order
terms in the field, one should retain the terms up to the
sixth order in the equation:

~(∆E)2F2 ~ ∆EF2δ ~ (∆E)2δ ~ ∆Eδ2 ~ F2δ2 ~ F4δ ~ F6.

Solving quadratic equation (44) for the field-depen-
dent splitting of two interacting sublevels of the multip-
let up to the fourth-order terms, we can obtain an
expression of the form

(46)

where

(47)

is the hyperpolarizability of a sublevel with the total
momentum Ji . Note that the states with the total
momenta J1 and J2 are mixed due to the field, so that the
total momentum is no longer an integral of motion.

In the expression analogous to (46) that was
obtained in [30] and in which the fourth-order phenom-
ena were taken into account only in the diagonal matrix
elements, all corrections to the off-diagonal matrix ele-
ment (the term proportional to F2 in the second set of
square brackets under the sign of the radical) were
absent. The interaction of levels was not taken into
account when calculating the hyperpolarizabilities of
individual sublevels in diagonal elements; this resulted
in other combinations of products of matrix elements
w(2) and u entering into gJ ' and led to the absence of the
second term in the first set of square brackets in (46).
Calculations show that the above terms have the same
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order of magnitude in the neighborhood of the anti-
crossing of levels as those taken into account in the
diagonal elements.

4.2. Polarizabilities and Hyperpolarizabilities
of Triplet Levels of Helium 

Using (46), we determine the field dependence of
the fine-structure splitting for the sublevels of triplet nP
states with the total momenta J1 = 2 (the lower sublevel)
and J2 = 0 (the upper sublevel) and the projections M =
0 onto the field direction. According to (25) and (30),
the matrix elements are expressed in terms of irreduc-
ible parts as

(48)

The same irreducible parts of polarizabilities and
hyperpolarizabilities enter into similar expressions for
the matrix elements that determine the field-depen-
dence of the splitting of states n 3P1 – n 3P2 with the pro-
jection |M | = 1 of the total momentum:

(49)
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Table 2.  Scalar and tensor polarizabilities αs, αt, βs, and βt and hyperpolarizabilities γ(0) and γ(2) for the n 3P state of a helium
atom (in au)

State αs αt βs βt γ(0) γ(2)

2 3P 47.95 74.86 4.556(3) –3.086(3) 7.797(6) –3.427(6)

3 3P 17 255.6 374.0 7.935(6) –1.031(6) 1.142(11) –1.911(10)

4 3P 1.697(5) 1.664(3) 1.863(8) –2.409(7) 1.314(14) –1.921(13)

5 3P 8.976(5) 7.264(3) 1.936(9) –2.477(8) 8.895(15) –1.292(15)

Note: The number in parentheses indicates a power of ten: a(k) ≡ a × 10k.
                 
Using (27)–(29), (31), and (32), we represent the irre-
ducible parts of polarizabilities and hyperpolarizabili-
ties entering into these expressions in terms of radial
matrix elements as

(50)

(51)

(52)

Formulas (51) and (52) show that, when calculating the
scalar and tensor components of hyperpolarizabilities,
one has to take into account the F levels in the spectrum
of intermediate states (in the radial matrix element

(1)) that are characterized by significant singlet–
triplet mixing, ϕnF ≈ 30°. However, just as in the esti-
mates of the polarizabilities of the D levels given above,
the numerical contribution of these phenomena to γ(0)

and γ(2) is small (≤0.1%).
Formulas (46) and (48) show that the sublevels of

the state n 3P with J = 0, 2 and M = 0 become closer to
each other in a weak electric field if the tensor polariz-

ability  is positive. Then, the leading (first) term in

the expression under the radical sign in (46) decreases
as F increases. It continues decreasing until it becomes
equal to the increasing second term, which is propor-
tional to F4 for F = Fa . When F > Fa , the levels start to
diverge, which corresponds to the anticrossing of lev-
els. As one can see from relations (49), the sublevels
with J = 1, 2 and |M | = 1 are repulsed starting from
F = 0 because the upper and lower levels have identical
polarizabilities (the hyperpolarizabilities of these levels
are also identical). Thus, the anticrossing field Fa , as
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well as the fine-structure splitting δ(Fa) in this field,
may serve as quantitative characteristics for determin-
ing the components of the polarizability and hyperpo-
larizability tensors of the states considered.

To calculate the radial matrix elements in a one-
electron approximation, we applied the Green’s func-
tion method to the Fues model potential [16, 17]. The
numerical values of susceptibilities α, β, and γ for the
triplet nP states of helium atoms (n = 2, 3, 4, 5),
obtained for the parameters of the model potential cho-
sen in [25], are shown in Table 2.

These parameters were used for calculating the field
dependence of the splitting δ02(F) between the n,3P2

and n,3P0 sublevels of the fine structure with M = 0. The
results are shown in Fig. 1 for the states with (a) n = 3
and (b) n = 5. This figure also represents the following

field dependences calculated by (46): (F), which
takes into account only the quadratic (in the field) cor-

rections to the matrix elements, and (F), which
takes into account the fourth-order corrections together
with the quadratic ones. For all values of the field
strength that are presented in the figures, the inequality

(F) < (F) holds.

For 2 3P states, the contribution of the fourth-order
corrections is very small; it amounts to less than 0.1%
of the second-order corrections even near the anticross-
ing. For 3 3P states, the fourth-order corrections near
the anticrossing amount to 5% of the second-order cor-
rections; for 4 3P states, 10%; and for 5 3P, more than
15%. Here, the fourth-order corrections to the off-diag-
onal elements constitute more than half of the total
fourth-order corrections.

In these calculations, we used the data available in
the literature (see, for example, [39–42]) for the fine-
structure splitting δ of triplet states n 3P0–n 3P2 of a free
atom. The numerical values of these quantities are
shown in Table 3. This table also presents the numerical
values of the splitting δ02(Fa) at the anticrossing point
of levels, as well as the corresponding values of the
field strength Fa

 

.

δ02
2( )

δ02
4( )

δ02
4( ) δ02
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Exact estimates for the contribution of continuum
were obtained in [35] when calculating the polarizabil-
ities of helium. For instance, for 1snp 3P0, 2 (n = 2) lev-
els, this contribution to the scalar and tensor polariz-
abilities amounted to 23% and 3%, respectively, while,
for 1snp 3P0, 2 (n > 2) levels, it was no greater than 1%.

To verify the results presented above, we also
applied the method of diagonalization of the energy
matrix that contains dipole matrix elements of the first
order with regard to all possible fine-structure sublevels
for states with n ≤ 6, n ≤ 5, and n ≤ 4. For the matrix ele-
ments between states with n ≤ 4 and L = 0–3, we used
the data of precision relativistic calculations based on
the method of configuration interaction, which involves
the Coulomb and the Breit interaction operators in the
total atomic Hamiltonian [25, 30]. In this case, one-par-
ticle basis orbitals used in the method of configuration
interaction included s, p, d, f, and g partial waves with
the use of a spline approximation for each wave. The
relative accuracy of calculating the matrix elements
was 10–4–10–5 [25, 30]. For other states, the data of non-
relativistic variational calculations given in [43] were
used.

Figure 2 represents the F dependence of the splitting
δ02 between n 3P0 and n 3P2 sublevels of the fine struc-
ture with M = 0 as a function of the dimension of the
basis set in the original energy matrix. The total number
of matrix elements for n ≤ 6 with regard to all fine-struc-
ture components is greater than 103. Figures 2a and 2b
show that, for the energy differences E(2 3P0) – E(2 3P2)
and E(3 3P0) – E(3 3P2), the result is virtually indepen-
dent of the dimension of the basis and agrees with the
numerical data presented in Table 3 to within a few per-
cent. This fact may provide a basis for the applicability
of the resonance approximation discussed in Section 3.
However, for highly excited states of helium-like atoms
with n ≥ 4, the resonance approximation is not suffi-
cient (Fig. 2c). This fact requires the diagonalization of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the energy matrix with a substantially greater number
of basis elements.

Thus, the application of the Green’s function for-
malism to calculating the Stark effect allows one to

(a)

(b)

0 50 100 150 200 250

8800

8600

8400

8200

E(3 3P0) – E(3 3P2), MHz

E(5 3P0) – E(5 3P2), MHz
1800

1750

1700

1650
0 5 10 15 20

F, kV/cm

Fig. 1. Fine-structure splitting δ02 of sublevels with the

momenta J = 0 and J = 2 of the triplet state 1snp 3PJ of a
helium atom as a function of the electric-field strength; (a)
n = 3 and (b) n = 5. The dashed curve corresponds to calcu-
lations with regard to the quadratic (in field) corrections to
the matrix elements, and the solid curve corresponds to cal-
culations with regard to the second- and fourth-order terms.
               
                                    

Table 3.  Numerical values of the splitting between the fine-structure sublevels of the n 3PJ state with the total momenta J = 0,
2 for a free atom (δ) and at the anticrossing point of levels with the projection M = 0, as well as the corresponding values of
the field strength Fa at the anticrossing point

State δ, MHz , MHz , kV/cm , MHz , kV/cm

2 3P 31908 30081.6 617.05 30080.3 617.2

3 3P 8772.5 8243.8 146.31 8216.2 146.91

4 3P 3576.8 3348.7 44.82 3323.8 47.47

5 3P 1797.4 1687.6 15.07 1672.2 15.53

Note: The quantity  is calculated with regard to the quadratic corrections alone to the matrix elements and the relativistic cor-

rections to the difference between the scalar components of polarizabilities [25], while  is calculated with regard to the

fourth-order corrections.

δ20
2( ) Fa
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δ20
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2( )( )

δ20
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obtain exact values of electric susceptibilities for both
the ground and the highly excited states by a simple and
rational method and to analyze the F dependence in the
spectra of helium-like atomic systems on the basis of
the results obtained.

For triplet states of helium with n = 3, experimental
measurements of δ02 at the anticrossing point of levels

yield  = 8257 ± 5 MHz [26]. According to [26], the
discrepancy between the experimental and theoretical

δ02
exp
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E(3 3P0) – E(3 3P2), MHz
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50 100 150 200 250
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Fig. 2. Fine-structure splitting δ02 of sublevels with the

momenta J = 0 and J = 2 of the triplet state 1snp 3PJ of a
helium atom as a function of the electric-field strength and
the dimension of the energy matrix. The dashed curve cor-
responds to calculations with regard to the basis set of dis-
crete states with n ≤ 4, the dotted curve, with n ≤ 5, and the
solid curve, with n ≤ 6.
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data (obtained without taking into account field correc-
tions ~F4) is attributed to the contribution of relativistic
corrections to the difference between scalar compo-
nents of the polarizabilities of the atomic multiplet.
However, the results of exact relativistic calculations of
the polarizabilities of helium levels 1s3p 3P0, 2 (M = 0)
[25, 30] did not confirm this assumption; moreover, the
contribution of relativistic corrections proved to be of
opposite sign to the expected one; i.e., the consideration
of these corrections led to a greater discrepancy

between theory and experiment:  = 8244 MHz [25,
30]. This fact stimulated calculations for the Stark
effect with regard to higher orders of perturbation the-
ory (hyperpolarizabilities) whose contributions to δ02
are rather substantial for strong fields (on the order of
100–200 kV/cm) at the points of anticrossing of levels
(Fig. 1). In [25, 30], together with relativistic correc-
tions to the polarizability and the resonance hyperpo-
larizability, the authors also calculated nonresonance
corrections to the hyperpolarizability of states; in this
case, the field corrections ~F4 only to the diagonal
matrix elements of the secular equation (16) were taken
into account. To control the accuracy and reliability of
calculations, two different methods were used in these
works, a method of summation of relativistic forces of
oscillators for a finite set of discrete states of the inter-
mediate spectrum and a method using a Green’s func-
tion for the model potential of Fues. These calculations
yielded 8231 MHz and 8234 MHz, respectively [30].
The results of calculations carried out with regard to the
full set of corrections ~F4 both to the diagonal and off-
diagonal matrix elements of Eq. (16) (see Table 3) also
do not agree with the results of measurements pre-
sented above. 

Thus, we should admit that there is no satisfactory
agreement between theoretical calculations of δ02 and
the corresponding experimental data for the levels with
n = 3 [26]. This fact makes topical new measurements
of the anticrossing parameters for the triplet levels of
helium in a static field. The details of the future experi-
mental investigations of anticrossing for singlet and
triplet levels of helium are described in [44, 45].

5. CONCLUSIONS

This paper has been initiated first of all by the neces-
sity to give a theoretical interpretation to the results of
precision measurements of the fine-structure intervals
in helium atoms (the method of anticrossing of levels in
an external field with the use of high-resolution laser
spectroscopy [26]). The measurement error is ±5 MHz;
however, the application of microwave techniques
combined with the methods of laser cooling of atomic
beams will allow one to reduce this error significantly
in the nearest future [44]. An adequate interpretation of
such measurements requires that one should take into
consideration not only the quadratic Stark effect but
also the contributions of higher orders of perturbation

δ02
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theory associated with nonlinear corrections to the
dipole moment of an atom induced by an external field.

In this paper, we have formulated an approach to the
calculation of the Stark effect of higher orders in the
spectra of helium-like atomic systems. For the first
time, we have investigated analytically and numerically
a full set of fourth-order corrections with respect to an
external field and with regard to the fine-structure phe-
nomena. We used the Fues model potential method
[16, 17] as a basis for the numerical calculations; the
parameters of this method for metastable 3S states were
chosen according to [25]. The summation of intermedi-
ate states over the whole spectrum was based on the
Green’s function method for a model potential. This
fact has allowed us to take into account the contribution
of discrete states and continuum and to simplify and
unify the calculations, guaranteeing a reliable control
of accuracy in all stages of theoretical analysis. We
have presented theoretical results for the scalar and ten-
sor components of the second- and fourth-order suscep-
tibilities for helium levels 1snp 3P0, 2 (n = 2–5), deter-
mined the values of the electric-field strengths and the
differences between energy levels at the anticrossing
point, and analyzed the relative contributions of the
field corrections.

The theoretical approach presented in this work is
sufficiently universal and allows one not only to obtain
a full set of fourth-order field corrections in the spec-
trum of a helium-like atom but also to outline a method
for systematic calculations of the Stark effect in higher
orders of perturbation theory that are of interest from
the viewpoint of modern experiment.
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Abstract—Nonlinear wave equations describing the propagation of optical pulses of duration up to a period of
electromagnetic oscillations in transparent media with uniaxial optical anisotropy are derived on the basis of a
quantum-mechanical model of material response. The electron and electron-vibrational nonlinearities, electron
and ion dispersion, and diffraction are taken into account. It is shown that the inclusion of the electron response
alone leads to a system of two constitutive equations for the ordinary and extraordinary polarization compo-
nents. When a pulse propagates across the optical axis, this system is reduced to an inhomogeneous model of
the Henon–Heiles type and, hence, generalizes the Lorentz classical electron model. In order to take into
account stimulated Raman scattering (SRS) processes, an anisotropic analog of the Bloembergen–Shen quan-
tum-mechanical model taking into account the population dynamics of SRS sublevels is obtained. The genera-
tion of an extraordinary wave video pulse with the help of the high-frequency ordinary component in the
Zakharov–Benney resonance mode is investigated. Some analytic soliton-like solutions in the form of propa-
gating bound states of ordinary and extraordinary video pulses corresponding to different birefringence modes
are considered and their stability to self-focusing is analyzed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, studies devoted to the interaction of
light pulses of duration up to a period of electromag-
netic oscillations (video pulses or extremely short
pulses (ESP)) with matter have become very popular.
This interest stems mainly from the generation of ESP
in laboratory conditions [1–6]. The absolute duration τp

of such pulses varies from hundreds of [6] to several [7]
femtoseconds. The term “extremely short pulses” (or
“ultimately short pulses”) is being used more and more
widely (see reviews [4, 5, 8] and article [9]), although
the terminology has not settled as yet; some authors
also use the terms “ultrashort” or “supershort” pulses in
their communications and papers. The latter terms
appear to be slightly confusing since they are some-
times applied to quasimonochromatic pulses to empha-
size their short duration in absolute meaning. The term
“few-cycle pulses” is also used quite often. The latter
term is employed especially frequently in foreign liter-
ature [3]. The term “video pulses” is also encountered
sometimes.

Since an ESP contains approximately one period of
oscillations, its spectrum is so broad that the concept of
carrier frequency loses its meaning. For obvious rea-
sons, the standard approximation of slowly varying
amplitudes and phases (SVAP) from the optics of
quasimonochromatic pulses is inapplicable for theoret-
ical investigations of the interaction between ESP and
matter. The quasimonochromaticity condition implies
that the spectral width δω ~ 1/τp of a pulse is consider-
1063-7761/03/9606- $24.00 © 21019
ably smaller than its carrier frequency ω; i.e., ωτp @ 1.
The effects of nonlinear propagation of ESP in isotropic
media have been investigated quite thoroughly [8–26]. In
view of the existence of a symmetry center in such
media, the expansion of polarization P into a power
series in the electric field E contains only odd powers
of the field. Such an expansion can be carried out if the
spectrum of a pulse belongs to the region of optical
transparency of the medium, i.e., under the conditions
[10, 13, 22–26]

(1)

where ω0 is the characteristic resonance frequency of
the medium and  is the frequency corresponding to
the center of the pulse spectrum.

The meaning of conditions (1) is that the frequen-
cies of the Fourier components of the pulse lie much
lower than the frequencies of resonance electron-opti-
cal absorption. In the case of quasimonochromatic
pulses, we have  ≈ ω, δω ! ω. In this case, the first
condition in (1) has the form (ω0/ω)–1 ! 1, while the
second is satisfied automatically. In the other limiting
case τp ! 1 corresponding to video pulses

( ), it is sufficient to require that the
second condition, which can be written in the form
(ω0τp)–1 ! 1, is satisfied. In the general case, the fulfill-
ment of both conditions in (1) is required.

ω0/ω( ) 1–
 ! 1, ω0/δω( ) 1–

 ! 1,

ω

ω

ω
ω ! δω 1/τ p∼
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By virtue of this condition, the ESP spectrum con-
tains no resonance Fourier components; for this reason,
the interaction with the medium is relatively weak [12].

Anisotropy of the medium is a necessary condition
for the presence of even powers of electric field in the
above-mentioned expansion. In the general case, the
electromagnetic wave in such a medium is not com-
pletely transverse. In a uniaxial medium, there exist two
preferred directions (along and across the optical axis)
along which the wave field is strictly transverse [27]. In
the former case, nonlinearities of only odd orders are
left [28, 29], while, in the latter case, even powers
appear, and quadratic nonlinearity plays the major role
[30]. When a pulse propagates at right angles to the
optical axis, we must generally take into account two
components of its electric field, ordinary Eo and
extraordinary Ee , and assume that nonlinear suscepti-
bilities are tensor quantities. Some authors employ a
scalar model, taking into account only one electric field
component of the electric field of the ESP [31–33]. It
should be noted that quadratic nonlinearity does not
appear in media with induced anisotropy [34, 35] in
view of the weakness of applied fields (electric, mag-
netic, and deformational) as compared to intra-atomic
fields.

The theoretical models proposed in [28, 30, 31, 33,
35] are phenomenological by nature. These models are
based on the expansion of P(E) in the presence of non-
linear susceptibility tensor of rank two and/or three
[30, 35], or an anisotropic oscillator with a cubic or
quadratic nonlinearity is proposed for the material
model [28]. Under conditions (1), both approaches lead
to identical systems of nonlinear wave equations for
ordinary Eo and extraordinary Ee pulse components.

Here, we propose a simple quantum-mechanical
model of an optically uniaxial medium, including the
electron, electron-vibrational, and ion responses. We
assume that anisotropy is natural, i.e., formed by a
strong intrinsic electric field in which both electrons
and ions are located. Such properties are typical of

y

x

z

ϕ
ζ

η

Fig. 1. Geometry of propagation of an ESP in a uniaxial
birefringent medium; ζ is the optical axis; the pulse propa-
gates along the z axis at an angle ϕ to the ζ axis. The ordi-
nary component is polarized in the xz plane normal to the
plane of the figure, while the extraordinary wave is polar-
ized in the plane of the figure along the y axis.
JOURNAL OF EXPERIMENTAL
uniaxial single crystals, organic molecular structures,
and so on [36]. In the case of single crystals, we must
generally specify a symmetry class [36, 37]. In such
cases, it is difficult to carry out appropriate quantum-
mechanical calculations to take into account the above-
mentioned types of material response. Uniaxial crystals
include crystals of the tetragonal, trigonal, and hexa-
gonal systems with the same structure of linear suscep-
tibility tensor reduced to the principal axes: χxx = χyy ≠
χzz [38]. In the optical transparency spectral range, the
main contribution to the polarization response of the
medium is determined by linear effects; in this case,
nonlinearity plays the role of a perturbing factor. Since
the structure of the linear susceptibility tensor is insen-
sitive to a change in the symmetry class of uniaxial
crystals and nonlinearity is weak under conditions (1),
we can disregard the dependence of nonlinear suscepti-
bility on the symmetry class. In this connection, the
quantum-mechanical model proposed by us combines
the optical properties of all media with natural uniaxial
anisotropy in their spectral transparency region. On the
basis of this material model and Maxwell equations, we
can arrive at nonlinear wave equations describing the
ESP dynamics in the spectral transparency range of
uniaxial media and carry out their analysis; this forms
the subject of the present paper.

2. ELECTRON AND ION RESPONSES

Let an electromagnetic pulse propagate in a uniaxial
medium along the z axis at an angle ϕ to the optical axis
(Fig. 1). The ordinary component Eo of the electric field
of the ESP is perpendicular to the plane of the figure
and is parallel to the x axis, while the extraordinary
component Ee lies in this plane and is normal to the z
axis (parallel to the y axis).

The evolution of the state of the medium is
described by the equations for the elements of the den-
sity matrix :

(2)

where " is Planck’s constant, Vµν is the matrix element
of the Hamiltonian of the electric-dipole interaction
between the pulse and the field, and ωµν is the fre-
quency of the quantum transition µ  ν. The sub-
scripts in Eq. (2) run through the values µ, ν = 1, 2, 3,
…, K, where K is the total number of electron quantum
levels formed by the strong intrinsic field and partici-
pating in the interaction with the ESP field (the value of
K ≥ 3 is regarded as arbitrary). Equations for diagonal
elements can be obtained from Eq. (2) for µ = ν.

ρ̂

∂ρµν

∂t
----------- iωµνρµν–

i
"
---Vµν ρµµ ρνν–( )+=

–
i
"
--- Vµjρ jν ρµjV jν–( ),

j µ ν,≠
∑
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In a strong internal electric field of the medium,
electron levels are not degenerate in the modulus of the
total angular momentum component M [39]. As a
result, π (∆M = 0) and σ (∆M = ±1) transitions, which
are allowed in accordance with the electric-dipole
selection rules, are formed in the electron subsystem.

In view of the uniaxial anisotropy,  differs

from zero (  is the intrinsic Hamiltonian of electrons

in the internal electric field of the medium and  is the
angular momentum operator). At the same time,

 = 0, where  is the operator of the angular
momentum component along the ζ axis, which has
eigenvalues equal to M. For this reason, the wave func-
tion of an optical electron in an axisymmetric field can
be written in the form

(3)

where r, ϕ, and ζ are the components of the cylindrical
system of coordinates (the ζ axis of axial symmetry
coincides with the optical axis) and µ is the set of quan-
tum numbers corresponding to the cylindrical symme-
try.

In addition, we choose the Cartesian system of coor-
dinates x, η, ζ turned through angle ϕ relative to the x,
y, z system in the (yz) plane (see Fig. 1). Using the
above expression for ψµM , we obtain the Cartesian
components of vector dµν of the dipole moment of the
µ  ν transition in the coordinate system x, η, ζ:

where ∆Mµν ≡ Mµ – Mν = 0, ±1. The maximal values for
dipole moments for σ (ϕ = 0) and π (ϕ = π/2) transitions
can be written in the form

where e is the elementary charge.

Carrying out the above-mentioned transformation

of rotation through angle ϕ around the x axis, d' = d,

Ĥ0 M̂
2,[ ]

Ĥ0

M̂

Ĥ0 M̂ζ,[ ] M̂ζ

ψµM Rµ ζ r,( ) iMϕ( ),exp=

     

dµν
x dµν

2
------- ∆Mµν , dµν

η i
dµν

2
-------∆Mµν,= =

dµν
ζ Dµν 1 ∆Mµν–( ),=

dµν 2πe r2 r Rµ z r,( )Rν z r,( ) z,d

∞–

∞

∫d

0

∞

∫–=

Dµν 2πe r r zRµ z r,( )Rν z r,( ) z,d

∞–

∞

∫d

0

∞

∫–=

L̂
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where d' = ( , , )

 

T

 

 and 

 

d

 

 = ( , , )

 

T

 

,
we obtain

(4)

Accordingly, for the matrix elements of the interaction

Hamiltonian , we have

(5)

In the axisymmetric field, quantum levels do not
possess any definite parity. This circumstance deter-
mines the selection rules for electric-dipole transitions
in the strong field of the medium. In contrast to an iso-
tropic medium, a much larger number of transitions are
allowed in such a medium due to mixing of states with
various parities with certain quantum levels. This is the
reason for the emergence of quadratic and all other even
nonlinearities. The internal field of the medium is
strong and is able to form initially the electron quantum
levels. For this reason, we assume that conditions (1)
are satisfied for all (including forbidden) electron-opti-
cal transitions, except those between vibrational sub-
levels of the ground state (see below). The electric field

 

E

 

 of the pulse depends on coordinates 

 

r

 

 and time 

 

t.

 

 This
dependence presumes the fulfillment of conditions (1).
In this case, system (2) can be solved by the method of
successive approximations in small parameters (in the
sense of relations (1)), which are proportional to the
time derivatives in relation (2), as well as the summands
of the sum appearing on the right-hand side of this
equation. In this case, in the zero-order approximation,
we obtain from Eq. (2)

Substituting this expression into the terms omitted ear-
lier, we obtain 

 

ρ

 

µν

 

 in the first approximation, and so on.

dµν
x dµν

y dµν
z dµν

x dµν
η dµν

ζ

dµν
x dµν

2
------- ∆Mµν ,=

dµν
y i

dµν

2
-------∆Mµν ϕ Dµν 1 ∆Mµν–( ) ϕ ,sin–cos=

dµν
z i

dµν

2
-------∆Mµν ϕ Dµν 1 ∆Mµν–( ) ϕ .cos+sin=

V̂

Vµν dµν E r t,( )⋅–=

=  Dµν 1 ∆Mµν–( ) ϕsin i
dµν

2
-------∆Mµν ϕcos– Ee

–
dµν

2
------- ∆Mµν Eo

–  D µν 1 ∆ M µν – ( ) ϕ i
d

 
µν 
2

------- ∆ M µν ϕ sin+cos E z .

ρµν
Vµν ρµν ρνν–( )

"ωµν
-----------------------------------.=
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As a result, in the second approximation, we have

(6)

where αµν ≡ (Wν – Wµ)/"ωµν, Wµ being the initial occu-
pancy of the µth level. In expression (6), we included
the nonlinearity of not higher than third order and took
into account the fact that, under conditions (1), the
nonlinearity and dispersion (the last two terms in rela-
tion (6)) behave as additive quantities [12].

Substituting relation (6) into the right-hand side of
Eq. (2), taking into account the Hermitian nature of

operator , and integrating, we obtain the following
expressions for the diagonal elements of :

(7)

We obtain the values of the polarization components
corresponding to the electric field components Eo , Ee ,
and Ez of the pulse with the help of relations

where N is the concentration of valence electrons, and
using relations (4)–(7). After cumbersome but simple
transformations, we obtain

(8)

(9)

(10)

ρµν
ρνν ρµµ–

"ωµν
---------------------Vµν–=

+
1

"ωµν
------------ ανλ αλµ–( )VµλVλν∫

λ µ ν,≠
∑

+
Vλν

"ωµλ
------------ αηµVµλVηλ αλη VµηVηλ–( )

η µ ν,≠
∑

+
Vµλ

"ωνλ
------------ αηλ Vλη Vην ανηVλη Vην–( )

η λ ν,≠
∑

– i
ανµ

ωµν
--------

∂Vµν

∂t
-----------

ανµ

ωµν
2

--------
∂2Vµν

∂t2
--------------,+

V̂
ρ̂

ρµµ Wµ
Wµ Wλ–

"
2ωλµ

2
--------------------- Vµλ

2.
λ µ≠
∑–=

Po e z, , N dµν
x y z, ,( )ρµν* c.c.,+

µ ν,
∑=

Po χ⊥ Eo 2χeo
2( )EeEo χo

3( )Eo
3+ +=

+ χeo
3( )Ee

2Eo κ⊥
∂2Eo

∂t2
-----------,–

Pe χeEe χzEz χe
2( )Ee

2 χeo
2( )Eo

2+ + +=

+ χe
3( )Ee

3 χeo
3( )Eo

2Ee κ e

∂2Ee

∂t2
-----------,–+

Pz χzEx χezEe,+=
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where χe , χz , and χez can be expressed in terms of the
principal diagonal components χ⊥  and χ|| of the linear
instantaneous susceptibility tensor,

(11)

(12)

and nonzero components of the nonlinear susceptibility
tensor of rank two are given by 

(13)

(14)

Cumbersome expressions for the third-order nonlin-

ear susceptibilities , , and  are given in the
Appendix.

It was noted above that, owing to condition (1), the
frequencies of the Fourier components of the spectrum
are far from the resonance frequencies of the medium.
Consequently, for χ(2) and χ(3), the zero-dispersion
approximation is realized, for which the Kleiman rule
[36] holds. According to this rule, the components of
nonlinear susceptibility tensors are invariant to any
transposition of their indices.

While deriving Eqs. (8) and (9), we took into
account the above-mentioned degeneracy of electron
states in the modulus of M. The real parts of the terms
in Eq. (6), containing the first derivatives with respect
to time, correspond to σ transitions (see also Eq. (5)).
In the course of summation in the expressions for polar-
ization components, terms with ∆M = ±1 and with iden-
tical values of ωµν mutually cancel out on account of
degeneracy. The imaginary parts of the terms in ques-
tion, containing  in π and σ transitions (see
Eqs. (5) and (6)), also cancel out during the summation
with complex conjugate quantities in the expressions
for components of P.

It should be noted in connection with the latter
remarks that the application of a constant external mag-
netic field removes the degeneracy in modulus of M.

χe χ⊥ ϕcos
2 χ|| ϕsin

2
,+=

χz χ⊥ ϕsin
2 χ|| ϕcos

2
,+=

χez χ⊥ χ||–( ) ϕ ϕ ,cossin=

χ⊥ N
dµν

2 ∆Mµν

"ωµν
------------------------- Wν Wµ–( ),

µ ν≠
∑=

χ|| 2N Dµν
2 1 ∆Mµν–

"ωµν
------------------------- Wν Wµ–( ),

µ ν≠
∑=

χeo
2( ) χxxy

2( ) χxyx
2( ) χyxx

2( )= = =

=  
4N
"
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Dµν

ωµν
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µ ν≠
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∑sin

χe
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"

------- ϕsin
3

= =

×
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In this case, doublets are formed from each degenerate
level, for which ∆M = ±1 and the frequencies ωµν of the
corresponding transitions are not identical any longer.
As a result, the right-hand sides of expansions of type (8)
and (9) acquire the first time derivatives of E [29],
which leads to Faraday’s rotation of the polarization
plane of the pulse. However, in our case, there is no
external magnetic field, and the internal crystal electric
field removes degeneracy only in the modulus of M.

The origin of the second time derivatives in Eqs. (8)
and (9) can be explained most easily by using the
dependence of linear electron susceptibilities on fre-
quency ω:

For ω/ωe, o ! 1 (see relations (1)), we have the expan-
sion

Using the substitution ω  i∂/∂t, we arrive at the sec-
ond time derivatives in relations (8) and (9). Dispersion
was disregarded in expression (10) since Pz ! Pe, Po ,
while dispersion in approximation (1) is an effect with
a higher order of smallness than the linear instanta-
neous response.

The dispersion parameters κ⊥  and κe in Eqs. (8) and
(9), which take into account the weak (in the sense of
conditions (1)) inertia of the electron response, can be
written in terms of χ⊥  and χe , respectively, in the form

and express the extent of dependence of linear suscep-
tibilities on frequency ω. In explicit form, we have

(15)

Usually, |χ⊥  − χ||| ! χ⊥ , χ|| [40]. In this case, it can be
seen from relations (11) that χez ! χ⊥ , χe . This circum-
stance is responsible for the relative smallness of the
longitudinal electric field component of the ESP: Ez !
Eo, Ee (see Section 4). For this reason, only the linear
local response to component Ez is taken into account in
expansions (8)–(10).

χe ⊥, ω( ) χe ⊥,
ωe o,

2

ωe o,
2 ω2–

----------------------.=

χe ⊥, ω( ) χe ⊥, 1 ω2

ωe o,
2

---------+
 
 
 

.≈

κ⊥
1
2
---

∂2χ⊥

∂ω2
-----------

 
 
 

ω 0=

, κ e
1
2
---

∂2χe

∂ω2
----------

 
 
 

ω 0=

= =

κ e κ⊥ ϕcos
2 κ|| ϕsin

2
,+=

κ⊥ N
dµν

2 ∆Mµν

ωµν
2

-------------------------αµν,
µ ν≠
∑=

κ|| 2N Dµν
2 1 ∆Mµν–

ωµν
2

-------------------------αµν.
µ ν≠
∑=
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Expansions (8) and (9) can be reversed and written
in the form of a system of differential equations for Po

and Pe with the right-hand sides depending on the elec-
tric field of the pulse. In the zero-order approximation,
it follows from relations (8) and (9) that Eo = Po/χ⊥  and
Ee = Pe/χe . Substituting these relations into the next
terms of expansions (8) and (9), we obtain

(16)

(17)

Here,

This system generalizes the Lorentz classical aniso-
tropic model [41] to the case when the nonlinearity of
the electron response is taken into account. It should be
noted that this system has been derived here on the
basis of quantum-mechanical concepts concerning the
medium by using the low-frequency resonance approx-
imation (1). In this case, eigenfrequencies ωo and ωe are
determined by the entire set of electron quantum levels
(see relations (11), (12), (15) and expressions for ωo

and ωe). In addition, it should be noted that frequency
ωe generally depends (although weakly) on angle ϕ.
Obviously, in the nonresonant case, when ω ! ωo, ωe

(conditions (1) are satisfied), it is practically impossible
to single out a quantum transition which interacts with
the field most strongly. This also explains the collective
nature of frequencies ωo and ωe . Usually, ωo, ωe ~
1016 s–1 [24]. Consequently, frequencies ω of the visible
range can easily satisfy the condition ω ! ωo, ωe (see
also conditions (1)).

The system of equations (16), (17), as well as expan-
sions (8)–(10), is invariant to substitutions Po  –Po

and Eo  –Eo, but is not invariant to transformations
Pe  –Pe and Ee  –Ee . The validity of this state-
ment can easily be explained by the axial symmetry of
the medium: reflections in planes normal to the optical
axis are symmetry transformations, while reflections in
planes parallel to this axis are not (see Fig. 1). The only
exception are reflections perpendicular to the optical

∂2Po

∂t2
----------- ωo

2Po 2βoe
2( )PePo βo

3( )Po
3––+

– βoe
3( )Pe

2Po ωo
2χ⊥ Eo,=

∂2Pe

∂t2
----------- ωe

2Pe βe
2( )Pe

2– βeo
2( )Po

2–+

– βe
3( )Pe

3 βeo
3( )Po

2Pe– ωe
2χeEe.=

ωo
2 χ⊥

κ ⊥
------, ωe

2 χe

κ e

-----, βoe
2( ) χeo

2( )

χek ⊥
-----------,= = =

βeo
2( ) χeo

2( )χe

χ⊥
2 κ e

--------------, βe
2( ) χe

2( )

χeκ e

----------, βo
3( ) χo

3( )

χ⊥
2 κ⊥

------------,= = =

βe
3( ) χe

3( )

χe
2κ e

-----------, βoe
3( ) χeo

3( )

χe
2κ⊥

-----------, βeo
3( ) χeo

3( )

χ⊥
2 κ e

-----------.= = =
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axis and corresponding to ϕ = 0. This circumstance

explains the absence of nonlinearities of type , 

and Pe in Eq. (16) and nonlinearities of type PoPe

and Po in Eq. (17).

Let us consider two particular cases.
1. Let us assume that ϕ = 0. It follows from rela-

tions (11)–(15), formulas of the Appendix, and expres-
sions for ωo, ωe , and nonlinear constants that χe = χ⊥ ,

ωo = ωe ,  =  =  = 0, and  =  =  =

 = β(3). In this case, Eqs. (16) and (17) can be writ-
ten in the form of the Duffing equation for complex
polarization P ≡ Po + iPe:

where E = Eo + Ee .
Here, the division of polarization into ordinary and

extraordinary components Po and Pe is completely arbi-
trary since both components behave as ordinary com-
ponents. Using the operation of rotation around the
optical axis, we can equate to zero one of the compo-
nents. In this case, we obtain for polarization the con-
ventional Duffing model, which is often used as the
constitutive equation for isotropic dielectrics [15].

2. Let us now suppose that ϕ = π/2. In this case, the
quadratic nonlinearity plays a dominating role. Disre-
garding the cubic nonlinearity, we obtain from

Po
2 Pe

2

Po
2

Pe
2

βe
2( ) βoe

2( ) βeo
2( ) βo

3( ) βe
3( ) βoe

3( )

βeo
3( )

∂2P

∂t2
--------- ωo

2P β 3( ) P 2P–+ ωo
2χ⊥ E,=

1'

1

1''

j

ωv ⊥

ωv ||

Fig. 2. Diagrams of transitions taking into account the SRS
processes; 1' and 1'' are the SRS sublevels in the vicinity of
the ground electron state in an optically uniaxial medium;
ωv ⊥  and ωv || are the frequencies of normal optical modes of
ion vibrations across and along the optical axis, respec-
tively; j are upper-lying electron levels.
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Eqs. (16), (17) a system of constitutive equations of the
type of the generalized Henon–Heiles model,

(18)

(19)

where ω|| = χ||/κ||.
It should be noted that the Henon–Heiles system

permits both random and regular dynamics depending
on the relation between the coefficients [42].

Ionic (vibrational) degrees of freedom, correspond-
ing to the optical branch of vibrations of atomic nuclei
at crystal lattice sites, may considerably affect the type
of dispersion [24]. The characteristic frequencies of
these vibrations are wi ~ 1013 s–1. In this case, for the
time scale τp ~ 10–14–10–15 s of the ESP for ordinary and

extraordinary ionic polarizations  and , we have
ωiτp ! 1.

In this approximation, we can neglect ionic anhar-
monism as well as elastic retrieving forces in the oscil-
lator equations of motion [24]. This gives

(20)

where ωp is the ionic plasma frequency [43].

3. DESCRIPTION OF SRS PROCESSES
WITH THE HELP 

OF THE GENERALIZED BLOEMBERGEN–SHEN 
MODEL

Let us now consider the stimulated Raman scatter-
ing (SRS) processes corresponding to electron-vibra-
tional nonlinearity. In view of the axial symmetry, SRS-
active centers have at least two normal vibrational
modes with frequencies ωv || and ωv ⊥  along and across
the optical axis, respectively. We will first derive a
closed system of equations for the matrix elements of

, corresponding to the vibrational sublevels of the
ground electron state (Fig. 2), eliminating the remain-
ing elements in the framework of the adiabatic approx-
imation (1). The subscripts of the corresponding matrix
elements will be labeled by Latin letters. In this case, in
accordance with Eq. (2) (j, k = 1, 1', 1''), we write

(21)

Here, we have taken into account the fact that electron
transitions between the sublevels in question are forbid-
den. Assuming in Eq. (21) that j = k, we obtain equa-
tions for diagonal elements of .

∂2Po

∂t2
----------- ωo

2Po 2βoe
2( )PePo–+ ωo

2χ⊥ Eo,=

∂2Pe

∂t2
----------- ω||

2Pe βe
2Pe

2( ) βeo
2( )Po

2––+ ω||
2χ||Ee,=

Po
i( ) Pe

i( )

∂2Po e,
i( )

∂t2
--------------

ωp
2 Eo e,

4π
----------------,=

ρ̂

∂ρ jk

∂t
---------- iωjkρ jk

i
"
--- V jλρλκ ρ jλVλk–( ).

λ 1''>
∑––=

ρ̂
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ON NONLINEAR PROPAGATION OF EXTREMELY SHORT PULSES 1025
We can derive expressions for ρλj (λ > 1'', j = 1, 1',
1'') from Eq. (2) for ∂ρλj/∂t = 0 (see relations (1)):

(22)

The terms appearing in parentheses in this equation
have been taken into account in the above analysis.
These terms contribute to the electron polarization and,
hence, can be omitted here. Substituting Eq. (22) into
Eq. (21) and taking into account the above remark, we
obtain

(23)

where elements of matrix  have the form

and matrix  contains only those elements of  which
correspond to the three lower quantum levels 1, 1', and
1'' (see Fig. 2):

Here, we have disregarded the difference in frequencies
ωλj of electron-optical transitions (λ > 1'', j = 1, 1', 1'')
for different values of j, setting ωλj ≈ ωλ1. It can be seen
from the figure that ω1''1 = ωv ⊥  and ω1'1 = ωv ||.

In our case, sublevels 1' and 1'' have exclusively
vibrational origin; for this reason, they have identical
angular momentum components Mj (j = 1, 1', 1'') along
with the first level. For the sake of simplicity, we
assume that Mj = 0. Following the approach developed
by Bloembergen and Shen [44], we assume that Dλj ≈
Dλ1 and dλj ≈ dλ1 in view of the small spacing between
the vibrational sublevels. Taking into account the above
arguments, using relation (5), and neglecting compo-

nent Ez , we obtain for matrix 

(24)

where  is a unit operator and  is matrix all of whose
elements are equal to unity.

We can assume that the system of equations (23)
derived by us together with relation (24) generalizes the
quantum-mechanical Bloembergen–Shen model [45]

ρλ j
1

"ωλ j

----------- Vλkρkj

k 1=

1''

∑–=

–
1

"ωλ j

----------- Vλµρµj ρλµVµj–( ).
µ 1''>
∑

∂R jk

∂t
---------- –iωjkR jk i Ĝ R̂,[ ] jk,+=

Ĝ

G jl "
2–

V jλVλ l

λ 1''>
∑

ωλ1
-------------------------,=

R̂ ρ̂

R̂
ρ1''1'' ρ1''1' ρ1''1

ρ1'1'' ρ1'1' ρ1'1

ρ11'' ρ11' ρ11 
 
 
 
 

.=

Ĝ

Ĝ
1

4"N
----------- χeEe

2 χ⊥ Eo
2+( ) Σ̂ Î–( ),=

Î Σ̂
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to the description of SRS processes in an optically
uniaxial medium. It should be noted in this connection
that system (23) is completely equivalent to the equa-
tions for the density matrix for a three-level atom in
which all three transitions excited by the square of the
field are allowed. It is well known that the Bloember-
gen–Shen model [44, 45] has the corresponding anal-
ogy with a two-level atom.

Since ωv ⊥ , ωv || ~ 1013 s–1, we have ωv ⊥ (||)τp ! 1. Con-
sequently, we can disregard the first term on the right-
hand side of Eq. (23) in the zeroth approximation and
write this equation in the following symbolic form:

Matrix  commutes with itself at various instants.
In this case, the solution to this operator equation can be
written in the form

(25)

Here,

(26)

Obviously operators  and  commute with each
other; consequently, we have

Since  = (K + 1) ,  = (K + 1)2 , …,  = (K +

1)k – 1 , …, the series corresponding to the exponential
in the last expression can be easily summed. As a result,
neglecting an insignificant C-number factor exp(–iθ/3),
we obtain

(27)

Matrix  is diagonal. The corresponding occu-
pancies of the electron state and of the SRS sublevels
are W1, W1' , and W1'' . Using expressions (25)–(27), we
obtain the following expression for j ≠ k:

(28)

The expression for the electron contribution P(ev) to

∂R̂
∂t
------- i Ĝ R̂,[ ] .=
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R̂ t( ) Û R̂ ∞–( )Û
+
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θ 3
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∞–
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Û
iθ
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  iΣ̂θ
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Û Î
Σ̂
3
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2
---sin

2
i θsin– 
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Rkj
1
9
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polarization has the form

where Nv is the concentration of molecules contributing
to SRS.

Substituting Eq. (22) into this relation and subtract-
ing the second sum taking into account the electron
polarization considered above, we obtain

(29)

It can easily be seen from relation (5) that the factors
in front of the second sum in Eq. (29) are real valued for
both the ordinary and the extraordinary components.
Using relation (28), we obtain

In the first approximation in parameter ωv ⊥ (||)τp , we
obtain from Eq. (21)

This relation together with Eq. (29) gives

Integrating this expression with respect to t, substitut-
ing the result into Eq. (29), and using relation (5), we
obtain

(30)

where

Let us estimate the value of the quantity θ appearing
in the argument of the sine in expression (30). Consid-

P ev( ) Nv dλ j
* ρλ j c.c.+

j 1=

1''

∑
λ 1''>
∑=

≈ Nv dλ1*
λ 1''>
∑ ρλ j c.c.,+
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1''

∑

P ev( ) Nv

dλ1* Vλ1
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----------------
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k j>
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k j>
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∂
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k j>
∑ i ωkj Rkj* Rkj–( ).

k j>
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t∂
∂

Rkj c.c.+
k j>
∑ 2

3
--- ωkj W j Wk–( ) θ.sin

k j>
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Pe o,
ev( ) Nv

3N
-------ωv χe o, Ee o, θsin t',d
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ωv ωv || W1 W1'–( ) ωv ⊥ W1 W1''–( )+=

+ ωv ⊥ ωv ||–( ) W1' W1''–( ).
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ering that E2 ≈ (4π/c)I, where I is the ESP intensity, we
obtain

Taking polarizability χ/N ~ 10–26 cm3, I ~ 1013 W/cm2,
and τp ~ 10–14 s, we have θ ~ 10–2–10–3 ! 1. In these
cases, we can set sinθ ≈ θ in Eq. (30). Then, the expres-
sion for P for ϕ = 0 assumes the form derived in [24] for
an isotropic dielectric disregarding the variation of
occupancies in SRS sublevels. This estimate shows that
the dynamics of populations of SRS sublevels can
indeed be neglected for intensities of 1013 W/cm2 and
for ESP durations of 10 fs. However, for I ~ 1015 W/cm2

and τp ~ 100 fs, we must take into account the change
in occupancies since θ ~ 1 in this case.

Let us estimate the relative contribution to the polar-
ization from the electron cubic nonlinearity and the
SRS nonlinearity. The above estimate, relations (8), (9),
(12), (30), and the expressions for χ(3) (see the Appen-
dix) imply that

(here, Nv ≈ N and d is the characteristic value of the
dipole moments of the electron-optical transitions).
Then, the sought ratio is

where P (3) is the third-order nonlinear electron polar-
ization. Setting ωv ~ 1013 s–1, ω0 ~ 1016 s–1, and τp ~
10−15 s, we obtain P (ev)/P (3) ~ 0.1; i.e., the contribution
of SRS can be disregarded as compared to the cubic
electron nonlinearity for an ESP duration of several
femtoseconds. This estimate is in accordance with the
data given in [24].

A similar estimate shows that

For d ~ 10–19 CGSE units, (ωvτp)2 ~ 0.1, ωv ~ 1013 s–1,
and I ~ 1013 W/cm2, we obtain P (ev)/P (2) ~ 0.1. Consid-
ering that the quadratic nonlinearity plays the major
role in the electron response for propagation across the
optical axis, we arrive at the conclusion that this nonlin-
earity in such geometry also dominates over the SRS

θ 3πχ
N
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Iτ p

"c
-------.∼

χ Nd2

"ω0
----------, χ 3( ) Nd4

"ω0( )3
----------------, P ev( ) Nd4ωv τ p

2 E3

"
3ω0

2
----------------------------∼∼∼

P ev( )

P 3( )-----------
ωv

ω0
------ ω0τ p( )2,∼
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wv τ p( )2

"ωv
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c
--.∼
AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003



ON NONLINEAR PROPAGATION OF EXTREMELY SHORT PULSES 1027
mechanism for pulse durations on the order of a few
tens of femtoseconds.

Let us now estimate the relative dispersion contribu-
tion of the ionic P (i) and electronic P degrees of free-
dom. From relations (8), (9), (15), and (20), we have

where ωc = 4πd2N/" is the cooperation frequency.

Setting ωp ~ ωc ~ 1012–1013 s–1, ω0 ~ 1016 s–1, and
τp ~ 10–15 s, we obtain the following estimate: P(i)/P ~
1–10. It can be seen that this ratio strongly depends on
parameter ω0τp .

4. NONLINEAR WAVE EQUATIONS

In order to analyze the self-consistent dynamics of
pulses and the medium, the relations derived above for
material responses should be supplemented with the
Maxwell equations

(31)

where the total polarization PΣ = P + P(i) + P(ev).

Henceforth, we will assume that diffraction effects
are weak, considering that the pulse field components
depend mainly on z and t. It was mentioned above that
the longitudinal field component is much smaller than
the transverse component. For this reason, we can dis-
regard the derivatives with respect to transverse compo-
nents in the equation for Ez , taking them into account
for components E0 and Ee only. Integrating twice the

z component of Eq. (31) and considering that  =

 = 0, we obtain Ez = –4πPz . This expression
together with Eq. (10) gives

In order to write equations for Eo and Ee , we first
represent components Po and Pe of the electronic part of
polarization in the form

where  are the parts of the electron polarization
containing quadratic and cubic nonlinearities.

P i( )

P
--------

ωp
2
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------------ ω0τ p( )4,∼

∆E ∇ ∇ E⋅( ) 1

c2
----∂2E

∂t2
---------––

4π
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-----------,=

Pz
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Pz
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4πχezEe

1 4πχz+
---------------------.–=
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∂2Eo e,

∂t2
-------------- Po e,

nl( ),+–=

Po e,
nl( )
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In this case, we obtain the following equation in the
x and y components from Eq. (31):

where no, e =  are the refractive indices of
the ordinary and extraordinary waves and ∆⊥  is the
transverse Laplacian.

The right-hand sides of these equations describe
nonlinearity, dispersion, and diffraction (which are
effects with a higher order of smallness as compared to
the instantaneous linear response appearing on the
left-hand sides) through renormalization of the rates
of field components with the help of refractive indices
no and ne .

This circumstance allows us to use the slowly vary-
ing profile approximation in the comoving frame of ref-
erence [46]. In accordance with this method, we can
assume that the right-hand sides are equal to zero in the
zeroth approximation in nonlinearity and dispersion
and assume that the two components propagate in only
one direction (along the z axis). Then, Eo, e = Eo, e(τo, e),
where τo, e = t – no, ez/c . In the first approximation, the
effect of the right-hand sides will be taken into account
by introducing the “slow” coordinate z' = εz in addition
to τo, e in the arguments of Eo and Ee [46]: Eo, e =
Eo, e(τo, e; z'), where ε ! 1 is a small dimensionless
parameter taking into account the effect of the right-
hand sides of the latter equations. Passing from vari-
ables t and z to variables τo, e and z' in the equations for
Eo and Ee , we can write

where we have neglected the term of the order of ε2 in
the last relation. This allows us to integrate the wave
equations for Eo and Ee with respect to τo and τe , respec-
tively, in view of the fact that the field of the pulse and
all its derivatives tend to zero at infinity:

Returning to the initial variables t and z and using
formulas (8), (9), (20), and (29), we arrive at the follow-
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ing system of nonlinear wave equations for the ordinary
and extraordinary components of the pulse:

(32)

(33)

Here,

and the dynamic parameter θ is defined by formula (26).
The system of nonlinear wave equations (32), (33)

describes the propagation of an ESP in a uniaxial
medium at an arbitrary angle to the optical axis. These
equations take into account the electron and electron-
vibrational nonlinearities as well as the electron and ion
dispersions. The terms on the right-hand sides describe
the pulse diffraction.

It should be noted that the SVP approximation is not
connected in any way with the approximation of slowly
varying envelopes [47], which is traditional for quasi-
monochromatic pulse optics, where the reduction in
derivatives is attained due to the fact that the field enve-
lope covers a large number of electromagnetic oscilla-
tions. System (32), (33) is written not for envelopes
(which cannot be introduced for ESP), but directly for
the electric field components Eo and Ee .

If the signal propagates along the optical axis (ϕ =
0), coefficients a2, b2e, and χez vanish; in this case, ne =
no , χe = χo , δo = δe, a3 = 3b3o = 3b3e , and Λo = Λe , and

∂Eo

∂z
---------

no

c
-----

∂Eo

∂t
--------- a2

∂ EeEo( )
∂t

-------------------- a3

∂ Ee
2Eo( )

∂t
--------------------+ + +

+ b3oEo
2∂Eo

∂t
--------- Λo t∂

∂
Eo θsin t'd

∞–

t

∫ 
 
 

+

– δo

∂3Eo

∂t3
----------- σ Eo t'd

∞–

t

∫+
c

2no

--------∆⊥ Eo t',d

∞–

t

∫=

∂Ee

∂z
---------

ne

c
----

∂Ee

∂t
--------- a2Eo

∂Eo

∂t
--------- b2eEe

∂Ee

∂t
---------+ + +

+ a3

∂ Eo
2Ee( )

∂t
-------------------- b3eEe

2∂Ee

∂t
--------- Λe t∂

∂
Ee θsin t'd

∞–

t

∫ 
 
 

+ +

– δe

∂3Ee

∂t3
----------- σ Ee t'd

∞–

t

∫+
c

2no

--------∆⊥ Ee t'.d

∞–

t

∫=

a2

4πχeo
2( )

noc
---------------, b2e

4πχe
2( )

noc
---------------, a3

2πχeo
3( )

noc
---------------,= = =

b3e

6πχe
3( )

noc
---------------, b3o

6πχo
3( )

noc
---------------, Λo

2πNv ωv χo

3Nnoc
---------------------------,= = =

Λe

2πNv ωv χe

3Nnoc
---------------------------, δo

2πκ⊥

noc
-------------,= =

δe

2πκe

noc
------------, σ

ωp
2

2noc
-----------,= =
JOURNAL OF EXPERIMENTAL 
system (32), (33) is transformed into the following
equation in E = Eo + iEe:

here, τ = t – noz/c.

Disregarding the dynamics of population of SRS
sublevels, we obtain

In this case, the last equation exactly coincides with the
one derived in [24] for the ESP propagation in isotropic
dielectrics.

Let us now suppose that ϕ = π/2. It was mentioned
in the previous section that we can neglect the elec-
tronic cubic and electron-vibrational nonlinearities for
pulses of intensity I ~ 1013 W/cm2 and of duration τp ~
1–100 fs. In addition, χez = 0 (see formula (11)). In this
case, Eqs. (32), (33) assume the form

(34)

(35)

It should be noted that, if a pulse polarized in the
plane of the principle cross section (i.e., in the plane
formed by the optical axis and the direction of pulse
propagation) enters the medium, it can be seen from
Eqs. (34) and (35) that Eo = 0. In an anisotropic
medium, only the extraordinary component of the ESP
can propagate. If, in addition, we disregard ionic dis-
persion, the one-dimensional dynamics of this compo-
nent will be described by the Korteweg–de Vries equa-
tion, which has soliton video-pulse solutions among
other solutions. However, the input signals required for
obtaining such solutions must also be in the form of
video pulses, which can subsequently split into several
solitons. A more interesting case when ESP (or video
pulses) can be generated by the envelope pulses will be
considered in the next section.
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5. GENERATION OF EXTRAORDINARY 
COMPONENT VIDEO PULSE

IN THE ZAKHAROV–BENNEY RESONANCE 
MODE WITH ORDINARY WAVE

Let us write the ordinary component of a pulse in the
form of the envelope pulse with a carrier frequency ω
and wave number k:

(36)

where ξ is the slowly varying complex envelope:
|∂ξ/∂τ| ! ω|ξ|, |∂ξ/∂z| ! k|ξ|. In this case, Ee has no
carrier frequency.

Substituting Eq. (36) into Eqs. (34) and (35),
neglecting rapidly oscillating terms, and using the
asymptotic expansion [24, 47]

we obtain, after simple transformations, a system of
equations for ξ and Ee interacting in the Zakharov–Ben-
ney resonance mode:

(37)

(38)

Here, g = 3δoω – σ/ω3, τ = t – z/v g , the group velocity
v g of the ordinary component is defined as

and the dispersion equation has the form

In Eq. (38), the Zakharov–Benney resonance condi-
tion [48] is taken into account, according to which the
group velocity of the short-wave (ordinary) component
is equal to the phase velocity of the long-wave (extraor-
dinary) component: v g = c/ne .

If we disregard diffraction (∆⊥  = 0) and ionic disper-
sion (σ = 0), we arrive at the system analyzed in [49].
If, in addition, b2e = δe = 0, system (37), (38) is trans-
formed into the Yadjima–Oikawa equations [50],
which is a unidirectional version of the Zakharov equa-
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tions [51]. The Yadjima–Oikawa system is integrable by
the method of the inverse scattering problem [50]. The
corresponding single-soliton two-parametric solution in
the laboratory system of coordinates has the form

(39)

Here,

the velocity of the pulse satisfies the relation

(40)

parameter Ω determines the nonlinear frequency shift
of the short-wave component to the red region since
Ω > 0 (see expression for ξm and Eq. (36)), while the
other free parameter τp , which has the meaning of soli-
ton duration, determines the spectral width: ∆ω ~ 1/τp .

The ordinary component of the pulse is an envelope
soliton, while the extraordinary component is a video
soliton. It follows from Eqs. (37) and 38) that, if Ee = 0
at the input, a pulse of the envelope of the ordinary
wave in the medium can generate an ESP of the extraor-
dinary wave. In this case, each photon of the ordinary
component increases the wavelength by transferring its
energy to the extraordinary wave, which explains the
nonlinear shift of the spectral peak of the pulse: ω 
ω – Ω . In view of the positive value of electron disper-
sion, the group velocity of the ordinary component
(and, accordingly, of the extraordinary component)
acquires a positive shift:

which coincides with formula (40)
It should be noted that the mechanism of ESP gen-

eration associated with the Zakharov–Benney reso-
nance is very close to the corresponding Cherenkov
mechanism analyzed for the first time in [52]. The only
difference is that the generation mode in the latter case
is noncollinear: angle γ between the directions of prop-
agation of ESP and the pulse generating it in a quadrat-
ically nonlinear medium, whose spectrum contains
two close extreme frequencies ω1 and ω2 correspond-
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1030 SAZONOV, SOBOLEVSKIŒ
ing to wave numbers k1 and k2 , is determined by the
formula [52, 47]

The velocity of the nonlinear polarization wave at fre-
quency ω2 – ω1 must be larger than the phase velocity
of the wave in this medium at the same frequency:

Proceeding to the limit ω2  ω1 in this inequality and
assuming that γ = 0 in the preceding equality, we arrive
at the condition dω/dk = v ph(0), where v ph(0) is the
phase velocity in the low-frequency dispersion-free
limit. This case corresponds to the Zakharov–Benney
resonance condition. This synchronism condition is
usually difficult to satisfy in the collinear propagation
mode [47]. In our case, the Zakharov–Benney reso-
nance condition can be written in the form

(41)

Since the electron dispersion is positive in the transpar-
ency region (δo > 0), the Zakharov–Benney resonance
condition can be satisfied for ne > no; i.e., the medium
must possess positive birefringence. This conclusion
remains unchanged if we take into account ionic disper-
sion (it can easily be seen from the expression for v g

that the substitution 3δoω2  3δoω2 + σ/ω2 has been
carried out on the right-hand side of the last relation).
Taking into account the closeness of the values of ne

and no , we can write

In addition, we have

In this case, condition (41) can be written in the form

For crystalline quartz, ne = 1.55 and no = 1.54 [40].
Then, (χe – χo)/3χ0 ≈ 0.01. Consequently, ω/ω0 ≈ 0.1.
Setting ω0 ~ 1016 s–1, we obtain ω ~ 1015 s–1. For the
input pulse, we have ωτp @ 1; hence, its duration τp ~
10–100 fs. In accordance with Eq. (39), the generated
ESP (or video soliton) will have a duration of approxi-
mately the same order of magnitude. Selecting appro-
priately the carrier frequency of the input signal, we can
satisfy the Zakharov–Benney resonance condition and,
hence, realize the effective generation of ESP.

γcos
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Nonlinearity and dispersion of the extraordinary
component in Eq. (38) are effects of the same order of
smallness. Consequently, the condition under which these
effects can be neglected and for which solutions (39)

were written can be represented in the form  !

. Substituting the above expressions for  and

 into this condition, we obtain ωτpΩτp @ b2e/a2.

Considering that b2e and a2 are quantities of the
same order of magnitude and taking into account the
quasimonochromaticity condition ωτp @ 1 of the ordi-
nary component, we conclude that the condition in
question can easily be satisfied in a wide range of free
parameters Ω and τp .

The generation of the extraordinary component with
the help of the ordinary component in the second har-
monic generation mode was considered in [30]. The sit-
uation of long-wave–short-wave resonance considered
here corresponds to energy pumping from the high-fre-
quency ordinary wave to the zeroth harmonic; as a
result, ESPs of the extraordinary wave are generated. It
can easily be proved that, using a representation of
form (36) for Ee and taking into account the substitu-
tions ω  2ω and ξ  ξe, Eqs. (34) and (35) in the
SVAP approximation lead to the well-known system
[47] describing the nonstationary process of second
harmonic generation. It can easily be found, using the
dispersion relations that takes into account the electron
dispersion alone, that the phase synchronism condition
2ko(ω) = ke(2ω) for the second harmonic generation in
our case has the form

which has the sign opposite to that in condition (41).
This means that the collinear mode of the second har-
monic generation can be realized in media with nega-
tive birefringence. This must enable us to distinguish
between the two effects under the experimental condi-
tions.

The stability of solutions (39) is an equally impor-
tant factor. Let us analyze the stability using the Ritz–
Whitham method of averaged Lagrangian [53]. Since
solution (39) corresponds to b2e = δe = σ = 0, we will
consider the stability under the same conditions. It
should be noted that this problem can also be solved for
b2e, δe, σ ≠ 0, but the expressions will be cumbersome.
In view of the above remarks, system (37), (38) can be
obtained from the Lagrangian density

(42)
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ON NONLINEAR PROPAGATION OF EXTREMELY SHORT PULSES 1031
Here, the electric field of the extraordinary wave is Ee =
∂U/∂τ.

In accordance with Eq. (39), we choose the trial
solution in the form

(43)

where A, B, and R are slowly varying functions of z and
r⊥ ; Φ is a rapidly varying function of the same vari-
ables; and Ω and v  are constant parameters connected
through relation (40).

Substituting relations (43) into Eq. (42), taking into
account the derivatives of “fast” variables only [53],
and integrating with respect to t, we obtain the “aver-
age” Lagrangian

whose variation over dynamic parameters A, B, R, and
Φ leads to the following system of equations in planar
fluid dynamics of an ideal liquid (continuity equations
and Cauchy integral):

(44)

Here, the z coordinate plays the role of time, v⊥  = ∇ ⊥ Φ,
and “pressure” P is connected with “density” ρ = A2/R
through the equation

(45)

Parameters A and B are given by

In the one-dimensional case, R = 1/τp , the solutions
obtained here are transformed into solution (39) on
account of the fact that Ee = ∂U/∂τ. Obviously, the sta-
bility of the solutions in question is equivalent to the
stability of the ideal liquid flow of type (44), (45). In
this case, soliton (39) is stable for dP/dρ > 0, which fol-
lows from Eq. (45). Thus, the above analysis leads to
the conclusion that soliton solutions (39) exhibit trans-
verse stability. Consequently, a video pulse of the
extraordinary wave can be generated with the help of
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the ordinary component through the Zakharov–Benney
mechanism under the experimental conditions.

Let us estimate the intensity of the input pulse for
which a video soliton can be formed in the medium.
Equation (38) for b2e = δe = σ = ∆⊥  = 0 leads to

Substituting this estimate into Eq. (37), we arrive at the
nonlinear Schrödinger equation (NSE)

where q = ωa2/2gΩ (naturally, we can speak about an
equation only conditionally since the expression for
coefficient q contains parameter Ω of the soliton solu-
tion of system (37), (38)). It is well known [48] that the
formation of a soliton of the NSE requires the fulfill-
ment of the threshold condition

Since

(see [3]), where d is the characteristic value of the
dipole moment of quantum transitions participating in
the interaction with the pulse, we have

Setting Ω ~ 1/τp ~ 1014 s–1, ω ~ 1015 s–1, ω0 ~ 1016 s–1,
and d ~ 10–20 CGSE units, we obtain the following esti-

mate for the threshold intensity: Ith ~ c /4π ~ 1013–
1014 W/cm2. Then, the intensity of the video soliton
being generated is

Such an estimation procedure cannot be regarded as
rigorous, but nevertheless provides reasonable values
of threshold intensities attainable in modern lasers.

6. SOLITON-LIKE SOLUTIONS 
OF THE TYPE OF VIDEO PULSES

In this section, we consider two solutions of sys-
tem (34), (35) in the form of bound states of the ordi-
nary and extraordinary components of an ESP, propa-
gating across the optical axis. As before, we will disre-
gard ionic dispersion.
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1032 SAZONOV, SOBOLEVSKIŒ
Direct substitution readily shows that, for b2e/a2 =
6δe/δo, system (34), (35) has one-dimensional solutions

(46)

where

and velocity v  is connected with pulse duration τp

through the relation

(47)

The spectral widths of the ordinary and extraordi-
nary components (46) can be estimated as ∆ωo ~ 1/τp

and ∆ωe ~ 2/τp ~ 2∆ωo . Thus, the spectrum of the
extraordinary component is twice as wide as that of the
ordinary component. Consequently, solutions (46) can
be regarded as an analog of the second harmonic gener-
ation for quasimonochromatic pulses.

It follows from the expressions for Eom and Eem that
solution (46) can be realized, for example, in a medium
with positive birefringence (ne > no); in the transpar-
ency region of this medium, we can disregard the dif-
ference in the dispersion of the ordinary and extraordi-
nary refractive indices (i.e., we assume that δe ≈ δo). In
the case of strict equality δe = δo , the condition for the
existence of the exact solution (46) has the form b2e =

Eo Eomsech
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Fig. 3. Amplitudes of the ordinary (1) and extraordinary (2)
components of a soliton-like ESP of type (46) as functions
of the square of reciprocal duration. Dashed segments of the
curves correspond to the instability region.
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6a2, which corresponds to one of the cases of integra-
bility of the Henon–Heiles model [42].

Analysis shows that, in the case under investigation
the duration of an ESP (and, hence, the velocity of its
propagation) is bounded from below. This question is
closely related to the stability of solution (46) and will
therefore be considered in greater detail. As in the pre-
vious section, we will use the method of averaged
Lagrangian. The density of the Lagrangian correspond-
ing to system (34), (35) in the absence of ionic disper-
sion has the form

(48)

Here, the ESP field components can be expressed in
terms of “potentials” Uo and Ue as Eo = ∂Uo/∂t and
Ee = ∂Ue/∂t.

In accordance with Eqs. (46), we choose trial solu-
tions in the form

where Ao , Ae , and R are slowly varying functions of
variables z and r⊥ , while 
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In this case, the stability criterion dP/dρ > 0 taking
into account the fact that R = 1/τp can be written in the
form

It follows hence that, in accordance with Eq. (47), the
value of velocity v  lies in the interval

Here, we have used the fact that (ne – no)/7no ! 1.

On segment τp > τc , the amplitudes of both compo-
nents increase with decreasing τp (Fig. 3). Conse-
quently, the intense central part of the ESP in the cross
section leads the peripheral parts, and the pulse is stable
on the whole.

Using the estimates obtained in the previous section,

we can write the expression for τc in the form

which at least does not contradict condition (1).

As in the case of solutions (46), we can verify by
direct substitution that, for ne = no and 3b2e/a2 = 1 +
2δe/δo, system (34), (35) has the solutions

(49)

where

and the velocity and duration are connected through
relation (47) as before.

The profile of the ordinary component in (49) has a
bipolar form; consequently, its spectrum is centered at
frequency ωc ~ 1/τp . In view of the unipolarity of Ee ,
the spectrum of the extraordinary component of the
ESP is centered at zero frequency.

τ p τc

7δoc
ne no–
---------------.≡>

c
no

----- v
c
no

----- 1
ne no–

7no

---------------+ 
  .< <

ne no–
2π χe χo–( )

no

----------------------------, δo

2πχo

nocωo
2

--------------,∼≈

τc ω0
1– 7χo

χe χo–
----------------,=

Eo Eom
t z/v–

τ p

---------------- 
  sech

t z/v–
τ p

---------------- 
  ,tanh±=

Ee Eemsech2 t z/v–
τ p

---------------- 
  ,–=

Eom
2

a2τ p

---------- 3δo δ0 4δe–( ), Eem

6δo

a2τ p
2

----------,= =
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For testing relations (49) for stability, we choose the
corresponding test solutions in the form

The application of averaged variational principle
using these expressions and Lagrangian (48) also leads
in this case to a system of equations of type (44) taking
into account the substitution 3cδo/no  no/c in the

Cauchy integral. As in the previous case,  =

δoR2, and the relation between R and “density” ρ is
given by the relation

Consequently, dP/dρ = 2ρ2/3 > 0 and an ESP of type (49)
is stable to self-focusing. This conclusion is also con-
firmed by qualitative considerations formulated above
for solution (46) taking into account the fact that the
amplitudes of both components and the velocity
increase with decreasing duration. It can be seen from
the expression for Eom that solution (49) can be realized
for δo > 4δe. At the same time, ne = no. Thus, solution (49)
corresponds to the situation when birefringence
emerges exclusively due to dispersion and is absent in
the dispersion-free (low-frequency) region. From
expressions (18) and (19) for the ordinary (χ⊥ (ω)) and
extraordinary (χ||(ω)) electron susceptibilities, we
obtain the following dispersion relations:

Uo

Ao

R
------sech R t Φ–( )[ ] ,+−=

Ue

Ae

R
----- R t Φ–( )[ ] .tanh–=

P/ρd∫

ρ
12δo

2 3a2 2b2e–( )R3

a2
3

-----------------------------------------------.=

χ⊥ ω( )
ωo

2χ⊥

ωo
2 ω2–

------------------, χ|| ω( )
ω||

2χ||

ω||
2 ω2–

------------------.= =

no(ω),
ne(ω)

0 ωo ω||

1

2

ω

Fig. 4. Dispersion dependences of the ordinary (1) and
extraordinary (2) refractive indices in the low-frequency
transparency regions, corresponding to solution (49).
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At the same time, we have

Since ne = no , χ⊥  = χ⊥ (0) = χ|| = χ||(0). From these rela-
tions and from the condition δo > 4δe , we obtain ω|| >
2ωo . It can be seen from relation (12) that the suscepti-
bilities of the ordinary and extraordinary waves are
formed by σ and π transitions, respectively. Conse-
quently, the characteristic frequency of π transitions
must be more than twice the frequency of σ transitions
for the realization of solution (49).

Thus, solution (49) can be realized in media with
dispersion origin of birefringence (Fig. 4). In this case,
no(ω) > ne(ω); i.e., the medium must possess negative
birefringence in the dispersion frequency range.

7. CONCLUSIONS

The analysis carried out by us here reveals differ-
ences in the ESP dynamics in isotropic and optically
uniaxial media. In the latter media, the quadratic non-
linearity of the electron response, which is absent in an
isotropic dielectric, plays a significant role. The system
of constitutive equations (16), (17) as an analog of the
Lorentz classical model, which receives its quantum-
mechanical substantiation here, can be used in subse-
quent investigations for describing the electron
response in the low-frequency transparency range. In
the Voigt geometry (when ESP propagates at right
angles to the optical axis), these equations are trans-
formed into the Henon–Heiles system (18), (19). It is
remarkable that the Henon–Heiles system (its homoge-
neous version) permits both regular and chaotic motion
depending on the relation between the coefficients [42].
Consequently, it cannot be ruled out that chaotic modes
of ESP propagation can be observed in some anisotro-
pic media.

The Henon–Heiles system is an analog of the
Duffing equation describing a nonresonant nonlinear
response of an isotropic medium in the low-frequency
region. It was shown in [21] that the Duffing equation
fails to provide an adequate response of an isotropic
dielectric to an intense external action in the high-
frequency region. In the same publication, a nonlinear
model is proposed in the form of two parametrically
coupled oscillators; it was found that this model holds
in the low- and high-frequency regions. Proceeding
from this remark, we can say that an analogous
modification of the Henon–Heiles model is forth-
coming.

The generalization of the Bloembergen–Shen quan-
tum-mechanical system proposed by us here for
describing SRS processes in media with uniaxial
anisotropy enabled us to derive expressions (30) for the

δo e,
4

cno

--------
∂2χ⊥ ||,

∂ω2
--------------

 
 
 

ω 0=

π
cno

--------
χ⊥ ||,

ωo ||,
2

---------.= =
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electron-vibrational response taking into account the
dynamics of population of the SRS sublevels.

The obtained system of wave equations (32), (33) is
written directly for the ordinary and extraordinary com-
ponents of the electric field of the pulse, and not for
their envelopes as in earlier publications. This circum-
stance makes it possible to use this system for analyz-
ing the propagation of quasimonochromatic pulses as
well as optical pulses of duration of only a few periods
(including video pulses). The mechanism of generation
of a video pulse of the extraordinary wave in the
Zakharov–Benney resonance mode with a quasimono-
chromatic ordinary component (see Section 5), which
can be realized in media with positive birefringence,
may serve as an illustration of the previous statement.
The role of SRS processes in the generation of video
pulses due to continuous energy pumping from high-
frequency Fourier components to the Stokes compo-
nents of the spectrum is well known [45]. In this con-
nection, the investigation of the combined effect of the
electron quadratic nonlinearity and SRS on the process
of ESP generation with the help of pulses initially pos-
sessing a clearly manifested carrier frequency is of con-
siderable interest.

The soliton-like solutions (46) and (49) in the form
of coupled states of the ordinary and extraordinary
ESP components presented here are, in addition to
relations (39), only a minor illustration of possible
solutions contained in Eqs. (32), (33). In all probability,
other solutions will mainly be obtained with the help of
numerical experiments, which does not preclude fur-
ther analytic investigations.
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APPENDIX

The expressions for third-order nonlinear suscepti-
bilities in terms of the microscopic parameters of the
medium have the form

χeo
3( ) χxyyx

3( ) χyxxy
3( ) 2N

"
2

------- 2 ∆µν ϕ( )
µ ν≠
∑





= = =

× dµj
2 αµj

ωjµωµν
-----------------

αµν

ωjνωµν
-----------------

αµν

ωµjωjν
----------------+ + 

 
j µ ν,≠
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2
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where

The expression for  =  can be obtained from

the formula for  for ϕ = 0.
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Abstract—Spatial variation of dust particle charges are estimated numerically for typical laboratory experi-
ment conditions in a radio-frequency (rf) capacitive discharge. The surface potentials of macroparticles levitat-
ing in the upper part of the near-electrode layer of the rf discharge are measured. A model is proposed for the
formation of irregular dust oscillations due to stochastic motion of dust in the bulk of a spatially inhomogeneous
plasma (in the presence of a dust charge gradient). This mechanism is used for analyzing the results of mea-
surements of the amplitude of vertical vibrations of dust particles in the near-electrode layer of the rf discharge.
It is found that the dust charge gradient may be responsible for the development of such vibrations. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The charge of a dust particle is an important param-
eter for investigating various transport processes in
dusty plasmas, such as phase transitions, diffusion pro-
cesses, propagation of waves, and formation of self-
excited dust vibrations. Considerable attention in the
study of plasmas is paid to the methods and results of
measurements of dust particle charges. A large number
of methods for determining macroparticle charges are
based on the measurement of the dynamic response of
dust particles to various external perturbations [1–9].
The charges of macroparticles can also be determined
without perturbing the system in question by external
agencies, but from an analysis of their diffusion or from
the equilibrium conditions for a stationary particle in
the gravitational field of the Earth and in the electric
field of the trap [9–11].

Since the charge of dust particles is a function of the
parameters of the surrounding plasma (concentrations
ne(i) and velocities v e(i) of electrons and ions), the varia-
tion of these parameters may lead to a change in the
macroparticle charge and to evolution of various insta-
bilities in plasma-dust systems [12, 13]. Available
experimental observations demonstrate that, under cer-
tain conditions (upon a variation of pressure or an
increase in the number of particles), dust particles in the
strata of a dc glow discharge or in the near-electrode
layer of a capacitive rf discharge may acquire energies
on the order of 1–100 eV and perform regular or sto-
chastic vertical vibrations (in the direction of the grav-
itational field) [13–17].

The reason for the evolution of such vibrations may
be related to the inhomogeneity of the surrounding
1063-7761/03/9606- $24.00 © 21037
plasma. The formation of various self-induced dust
vibrations in the field the gravitational force orthogonal
to the macroparticle charge gradient was considered
in [12]. However, this mechanism can hardly be
responsible for the evolution of the observed vibrations
of dust particles in capacitive rf discharges in view of
considerable uniformity of the parameters of the capac-
itive rf discharge plasma in the radial direction (ortho-
gonal to the gravitational force). Stochastic fluctuations
of dust charges due to discreteness of plasma currents
charging a macroparticle may lead to “anomalous heat-
ing” of dust particles in gas-discharge plasmas [18], but
cannot be responsible for high kinetic energies (>0.1 eV)
acquired by light particles of radius 1–2 µm (density
ρ ≈ 1.5–2 g/cm3) under gas pressures P > 0.02 Torr.

One of the possible mechanisms of evolution of
irregular vibrations of dust particles is associated with
stochastic changes in their charge, which are deter-
mined by the random position of a particle in a spatially
inhomogeneous plasma (in the presence of a dust
charge gradient in the direction of gravity) due to ther-
mal or other fluctuations, e.g., due to the above-men-
tioned discreteness of the charging current. This mech-
anism was considered for the first time in [14]. How-
ever, in the proposed model, it was proposed that
particles move in the free diffusion mode, which is
unsuitable for describing spatially bounded trajectories
of macroparticles, which are observed both in the dust
layer formed in the rf discharge and under the condi-
tions of a bulk dust cloud in a dc glow discharge [13, 16,
17, 19]. It should also be noted that the very possibility
of formation of irregular dust vibrations in the frame-
work of this model was determined by the initial energy
003 MAIK “Nauka/Interperiodica”
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of the system, which is not always observed in real
experiments, including the one described below.

Here, we propose a model of formation of irregular
dust vibrations due to stochastic motion of dust in a
spatially inhomogeneous plasma, which takes into
account the limitations imposed by an electric field on
the displacements of macroparticles in a preferred
direction. This mechanism is used for analyzing verti-
cal vibrations of macroparticles in the near-electrode
layer of a capacitive rf discharge. The material is
arranged in the following order. In Section 2, the esti-
mates of spatial variation of the charge of a dust particle
in the near electrode layer of the discharge are obtained.
In Section 3, basic relations are derived for estimating
the kinetic energy acquired by a dust particle in an inho-
mogeneous plasma. The last two sections are devoted to
experiments on dust particle charging and on the
dynamics of formation of stochastic dust vibrations in
the rf discharge plasma.

2. SPATIAL VARIATIONS 
OF THE MACROPARTICLE CHARGE

IN GAS-DISCHARGE PLASMAS
In gas-discharge plasmas, where emission processes

are insignificant as a rule, the charge of a dust particle
is negative. The estimate of the macroparticle surface
potential obtained in the orbital-motion-limited (OML)
approximation gives the following expression for its
value:

here, 〈Zp〉  is the equilibrium (time-averaged) charge of
a dust particle, Te is the electron temperature in elec-
tronvolts, and z ≈ 2–4 for most experiments on dusty
plasmas under the discharge conditions in inert gases
[20, 21].

Using the formulas of the OML approximation, we
can estimate the small variation ∆nZp of the equilibrium
charge 〈Zp〉 of a macroparticle due to violation of electro-
neutrality of the surrounding plasma, δn = ni – ne [19]:

(1)

Here, E is the electric field strength and n0 is the con-
centration of the neutral plasma, where ne = ni = n0.
Obviously, as long as condition δn ! n0 holds, the
requirement of the smallness of charge variation,

,

is satisfied automatically.
A similar relation

for estimating the charge variation in a plasma layer can
be obtained under the assumption |eϕ/Te| ! 1 (where

ϕe

e Z p〈 〉
ap

--------------
zTe

e
--------;–≡–=

∆nZ p

Z p〈 〉
------------ divE

4πen0 1 z+( )
-------------------------------.–≈

∆nZ p ! Z p〈 〉

∆iZ p Z p Z p〈 〉–=  ! Z p〈 〉
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ϕ is the electric potential) provided that the directional
velocity of ions ui is much higher than their thermal

velocity :

(2)

Here, 〈Zp〉  is the equilibrium charge in a plasma layer

with δn ≈ 0 and concentration n0 and s = mi /2Te .
Relation (2) can be used for estimating the charge vari-
ation in the vicinity of the upper boundary of the elec-
trode layer, where levitation of macroparticles is nor-
mally observed. In this case, s = 0.5, considering that

ions enter the layer at the Bohm velocity vB = 

and n0 = nB ≈ /2.7, where  is the concentration of
the unperturbed plasma. It should be noted that such an
approach is suitable only for very low pressures, when
the mean free path li for ions colliding with gas neutrals
is much longer than the electron Debye radius λDe . For
average pressures (0.05–1 Torr), which are working
pressures in most experiments on dusty plasmas, li ~
λDe . In this case, the velocity of ions ui(0) at the layer
boundary is smaller than the Bohm velocity vB by

approximately a factor of  [22].

It should be noted that we assumed, while deriving
relation (2), that ionization processes in the plasma
layer can be neglected (niui = const). The analytic the-
ory of the near-electrode layer in an rf discharge devel-
oped for this case is described in [22]. In this case, it is
assumed that the layer is in contact not with the unper-
turbed plasma, but with a preliminary layer in which
the electroneutrality of the plasma is quite high:
δn/n0 ! 1. An analysis of the proposed system of equa-
tions for low pressures (λDe ! li) gives for the averaged
electric field E(y) of the near-electrode layer in the
vicinity of its upper boundary a distribution close to a
linear function:

(3)

For average pressures (λDe ~ li), the solution of the
equations of the analytic theory [22] leads to the fol-
lowing linear approximation for the gradient E(y) of
this field:

(4)

Let us analyze the conditions realized in some
experiments in a dusty plasma of a capacitive rf dis-
charge [16, 17]. These experiments show that levitation
of macroparticles is observed in the vicinity of the upper
boundary of the near-electrode layer whose thickness
dmax lies approximately between 0.5 and 1.5 cm under
experimental conditions (P = 0.015–0.2 Torr).

v i
T

∆iZ p

Z p〈 〉
-----------

2zδn/n0 eϕ z s–( )/Te–
z 1 s z+ +( )

--------------------------------------------------------.–≈

ui
2

Te/mi

n0* n0*

πλDe/2li

E y( ) C1y.=

E y( ) C2y2.=
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We can estimate the macroparticle charge gradients

arising as a result of a change in the charging conditions
for light particles of radius ap = 1–2 µm and density ρ =
1.5–2 g/cm3, assuming that the electric fields E confin-
ing particles in the gravitational field of the Earth are
equal to 1–4 V/cm, the plasma density at the layer
boundary is ne = 108–109 cm–3, the electron temperature
is Te = 2 eV, and the gas used in experiments is argon
(z ≈ 3–4 [20, 21]). Then, in the case of linear field (3)
for C1 = 12 V/cm2, the particle in question will be sus-
pended at distance y = y0 ≈ 0.1–0.33 cm from the upper
boundary of the layer, where the condition of balance
between the gravitational force and the electric field is
observed:

(5)

The relative change in the macroparticle charge gradi-
ent βy/〈Zp〉  in this region, which is obtained from joint
solution of Eqs. (2) and (3) for the conditions of the
problem, varies from –0.1 to –0.3 cm–1. Thus, in the
model described here, the charge of a dust particle
decreases as it approaches the electrode, the rate of this
approach being the higher, the lower this particle is
located. The same qualitative pattern is observed for
nonlinear field (4) also. In this case, the charge gradi-
ents βy/〈Zp〉  of macroparticles levitating at distance y0 ≈
0.25–0.5 cm from the upper boundary of the layer
(C2 = 12 V/cm3) changes with increasing y0 from –0.15
to −0.39 cm–1.

Concluding the section, we note that, in spite of con-
siderable charge gradients βy/〈Zp〉  = –(0.1–0.4) cm–1,
the relative change in its value 〈Zp〉  did not exceed 7%
(|∆iZp/〈Zp〉| < 0.07) in all analyzed cases. The perturba-
tion of plasma electroneutrality was |δn/n0 | < 0.09, and
|eϕ/Te| < 0.35, which is a good approximation for linear-
izing equations of the analytical theory of the layer [22]
as well as equations of the OLM approximation [20, 21]
and, accordingly, for estimating the charge variation in
the layer from relations (2)–(4).

3. EFFECT OF CHARGE FLUCTUATIONS
OF MACROPARTICLES

ON THEIR KINETIC TEMPERATURE
IN A SPATIALLY INHOMOGENEOUS PLASMA

Let us consider the 2D problem in the cylindrical ry
geometry, simulating a layer of macroparticles levitat-
ing above an electrode of the rf oscillator (see Fig. 1
below) in the presence of a dust charge gradient βy =
dZp/dy in the direction of gravity (y axis), taking into

βy

dZ p

dy
---------

d ∆iZ p( )
dy

-------------------≡=

mpg Z p〈 〉 eE y0( )+ 0.=
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account the fluctuations of particle interaction forces
determined by particle charge variations

due to a random variation in their positions in the layer
in question. Deviations (r, y) of an individual particle in
such a layer from its equilibrium (r0, y0) position can be
described by the linearized system of equations

(6a)

(6b)

where νfr is the friction coefficient, which is defined in
the free-molecule approximation as

(where Cv ≈ 820 µm g/s Torr cm3 for argon); primes
denote the time derivatives of coordinates; F = (Fy, Fr)
is a random force leading to stochastic motion of parti-
cles; and αy, r = dEy, r /dy are the gradients of the external
electric field E = (Ey, Er). Here,

is determined by the balance between the vertical elec-
tric force and the gravitational force of the Earth; the
value of Er can be estimated by taking into account the
balance of the radial electric force and the forces of
interaction between particles. For a homogeneous
extended layer of particles, we can assume that radial
fields are linear, i.e.,

where lp is the average particle spacing and Nr is the
number of particles located in the region between the
axis of the cylindrical system and the particle in ques-

Z̃s βyyΣ=

mpy'' mpν fry'– α ye Z p〈 〉 y– eβyEyy Fy,+ +=

mpr'' mpν frr'– α re Z p〈 〉 r– eZ̃sEr Fr,+ +=

ν fr s 1–[ ]
Cv P Torr[ ]

ap µm[ ]  ρ g/cm3[ ]
-----------------------------------------------≈

Ey

mpg
e Z p〈 〉
--------------=

Er α rr α rNrlp,≈≈

Video camera

Particles

Rf
generator

Laser

Fig. 1. Simplified diagram of experimental setup.
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tion, the gradient of this field for a planar dust cloud
being

It should be recalled that the origin of force eEr

in (6b) is determined by the collective action of the
remaining particles of the layer on an individual parti-
cle. In the formulation considered here, the change in

 is determined by the random quantity yΣ defined by

Eq. (6a) with a different value of random force  ≠
Fy , whose parameters can be determined using the pro-
cedure described in [18]. It should be noted that, in
order to solve the problem, it is sufficient to assume that
the action of the random forces considered here is not

correlated (  = 0); the correlation of these forces
with “slow” displacements l = (r, y) of particles is also

absent (〈Fl〉  = 0 and  = 0) [23, 24]. In this case, an
additional kinetic energy ∆sTr , proportional to the
amplitude of charge fluctuations

,

is supplied to the system in the radial direction r

(see [18]), where  is the mean square deviation in
the y direction:

(7)

In this equation,

Tn is the temperature of the surrounding gas; ∆f T is the
stochastic energy acquired by a particle in the plasma
due to other mechanisms, e.g., due to discreteness of
charging currents; and ∆sTy is a part of the kinetic
energy ∆sTr transferred in the y direction through the
particle interaction. The coefficient

of energy transfer due to particle interaction in the dust
cloud differs from zero and is determined by the reac-
tion of the dust system to transverse perturbations of the
system and by the amplitude of particle displacement
[12, 18]. The derivatives corresponding to these pertur-
bations are excluded from system (6a), (6b) since we
will henceforth assume that the kinetic energy acquired

α r

e Z p〈 〉
lp
3

--------------.∝

Z̃s

Z̃s

F̃s y,

F̃sF〈 〉

F̃sl〈 〉

Z̃s
2〈 〉 β y

2
y2〈 〉=

y2〈 〉

y2〈 〉
Tn ∆ f T ∆sTy+ +

mpωy
2

---------------------------------------.=

ωy
2 e Z p〈 〉α y βyEy–

mp

--------------------------------------;=

γ
∆sTy

∆sTr

-----------=
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by a macroparticle is redistributed uniformly over
degrees of freedom:

Simulation shows that, for parameters close to experi-
mental conditions, such an assumption is justified for a
large number of particles (np), low buffer gas pressures
(small νfr), and the formation of additional dust layers
[12, 18]. In this case, the value of the kinetic energy ∆sT
acquired by a dust particle due to random variation of its
charge in an inhomogeneous plasma can be defined as

(8)

where

(9)

Here,

If necessary, relation (8) can take into account the frac-
tion γ of redistributed energy:

(10)

Thus, for γ ≈ 1, the value of kinetic energy ∆sT is deter-
mined by the value of coefficient θ1, which strongly
depends on the parameters of the dust system. If we
take into account the fact that

in the vicinity of the upper boundary of the near-elec-
trode layer (see Section 2) and also assume that

we can obtain a simpler relation for estimating θ1:

which gives θ1 ≈ 0.25 for Nr = 10, lp = 300 µm, 〈Zp〉  =
5 × 103e, |βy |/〈Zp〉  = 0.2 cm–1, νfr ≈ 13 s–1 (argon, P ≈
0.03 Torr), ap = 1 µm, and ρ = 2 g/cm3. It can easily be
seen that coefficient θ1 tends to unity under the same
conditions if Nr  20 or |βy |/〈Zp〉   0.4. In this
case, we find that kinetic energy ∆sT increases indefi-
nitely with an increase in deviation (y, r) of particles
from their equilibrium positions. However, the linear-
ized system of equations (6a), (6b) in this case does not
provide a correct analysis of the dynamics of particles
since the amplitude of their motion can be limited due

∆sTr ∆sTy ∆sT .≈≈

∆sT
T0 ∆ f T+

1 θ1–
----------------------,≈

θ1

βy

Z p〈 〉
----------- 

 
2 e2 Z p〈 〉 2Er

2ωr
2

mp
2 ν fr

2 ωr
2 ωy

2+( )ωy
2

--------------------------------------------.=

ωr
2 e Z p〈 〉α r

mp

--------------------.=

∆sT
T0 ∆ f T+( ) 1 1 γ–( )θ1+( )

1 γθ1–
---------------------------------------------------------------.=

βy

Z p〈 〉
----------- ! 

ay

Ey

-----

Er Nre Z p〈 〉 /lp
2
, ωr

2 ωy
2,≈≈

θ1

βy

Z p〈 〉
----------- 

 
2 Nr

2e2 Z p〈 〉 2

2mpν fr
2 lp

-------------------------,≈
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Table

R, µm r, g cm–3 h, mm
(ϕsE)exp,
V2/cm

E, V/cm 〈Zp〉 〈 〉 δ, %

1 2 10.06 7.38 1.12 4579 4632 1

1.39 1.5 9.65 10.71 1.67 6200 6438 4

2.12 1.5 7.70 24.89 3.93 9332 9820 5

3.07 1.5 4.80 52.21 7.38 15079 14220 6

Z p
c

to various nonlinear effects. In addition, relation (8)
was obtained under the assumption of smallness of
mean square deviations of particles,

where l0 and lp are particle spacings in the perturbed
and unperturbed layers of macroparticles.

An estimate of the maximum value ∆sTmax of kinetic
energy (disregarding nonlinear effects and possible
variation of system parameters within the trajectory of
particles) can be obtained by additionally taking into

account deviations  (7) in Eq. (6b) through varia-

tion of field Er ∝  . In this case, for θ1  1, we obtain

(11)

while the maximum amplitude  =  of par-
ticle displacement in the y direction is given by

(12)

For the example considered above (ap = 1 µm, ρ =
2 g/cm3, lp = 300 µm, and θ1  1), for αy ≈ 6–
12 V/cm2 (see Section 2), the value of ∆sTmax ≈ 25–

50 eV and  ≈ 480 µm. It should be noted that the
growth of amplitude and kinetic energy is limited both
in real experiments and in simulation of systems with a
macroparticle charge gradient [15, 16].

It should be noted in conclusion that the mechanism
considered here can explain parametric buildup of
vibrations of particles with charge gradients, which is
observed in a numerical experiment [12] upon a
decrease in the frictional force (νfr) below a certain crit-
ical value. The reason behind such a buildup remains
unclear in the framework of [12] since the effects asso-
ciated with collective thermal fluctuations of particles
in a dust cloud were eliminated from the theoretical
analysis. In the case of “anomalous heating” of macro-
particles due to discreteness of charging currents, exter-
nal electric forces also serve as the main source of addi-
tional energy of a dust particle [18]. On the other hand,
the proposed mechanism is ensured by collective
effects, which are possible only when the number of

y2〈 〉  ! l0
2 lp

2 y2〈 〉 ,+≈

y2〈 〉
l0
2

∆sTmax 4
3
---lp

2ωy
2mp,=

Ay
max

2 y2〈 〉

Ay
max 1.6lp.≈

Ay
max
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particles in a dust cloud is large enough and, accord-
ingly, can develop upon an increase in the concentra-
tion of the dust component.

4. DETERMINING PARTICLE CHARGE
IN THE NEAR-ELECTRODE LAYER 

OF RF DISCHARGE

The experiment was carried out in a capacitive rf
discharge in argon under pressure P = 0.1 Torr for a dis-
charge power W = 60 W. The schematic diagram of the
experimental setup is shown is Fig. 1. Melamine form-
aldehyde particles with different sizes ap were sus-
pended above the lower electrode at different distances
h from its surface (see table). The surface potential ϕs

of macroparticles could be derived from balance equa-
tion (5) for the gravitational force mpg and the electric
force e〈Zp〉E(y); proceeding from this equation, the
relation between the value of ϕs and electric field E(y)
can be defined by the relation

(13)

which can be used for determining the dependence of
function ϕs(y)E(y) on height h from the results of mea-
surements (see table and Figs. 2a and 2b).

The spatial potential ϕ in the near-electrode plasma
layer was measured by a compensated Langmuir probe
at various heights relative to the electrode. The mea-
sured potential difference ∆ϕ between points h =
1.1 cm and h = 0.6 cm amounted to 1.5 V. Then, the
experimental data were approximated under the
assumption of small variation of charge 〈Zp〉  (ϕs ≈ const,
see Section 2) by linear (3) and quadratic (4) functions
for E, where y = dmax – h. The near-electrode layer
thickness dmax and coefficients C1 and C2 in these
approximations were obtained through the best fitting
of experimental data and were C1 ≈ 12 V/cm2 and dmax ≈
1.1 cm for the linear field (3), and C2 ≈ 16.2 V/cm3 and
dmax ≈ 1.26 cm for the quadratic dependence (4). The
results of approximation are shown in Figs. 2a and 2b.
The mean-square errors of the linear and quadratic
approximations are approximately equal to 4% and
10%, respectively. The higher value of error in the latter
case is explained by the strong mismatching between

ϕ s y( )E y( )
mpg
ap

----------,=
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Fig. 2. Dependence of (a) ϕsE and (b) the ratio of various approximations (ϕsE)ap to experimental values (ϕsE)exp on the height h
over the electrode cut for a linear field E (3) (1), formula (15a) (2), formula (15b) (3), and quadratic approximation of E (4) (4). The
dots show the results of measurements.
the nonlinear approximation (4) and the results of mea-
surements that is observed as we approach the electrode
(upon a decrease in h).

The electric fields and charges 〈Zp〉  of macroparti-
cles reconstructed in the linear electric field approxima-
tion are given in the table. It can easily be seen that the
error

in the measured charge 〈Zp〉  relative to the value given
by the relation

(14)

where C = 4632 µm–1, is completely determined by the
error in the linear approximation of E. Since the field E
was determined by gravity both in the linear (3) and in
quadratic (4) approximation, a close coefficient C =
4598 µm–1 for relation (14) was determined with an
error δ from 7% (for h = 0.77 cm) to 30% (h = 0.48 cm)
in this case also (see Figs. 2a and 2b). Thus, we could
not detect in our experiments any appreciable changes
in the charge of macroparticles due to a change in their
charging conditions in the layer, which is in complete
accordance with the theoretical predictions described in
Section 2.

Considering that ϕs = –zTe/e in the OLM approxima-
tion (z ≈ 3–4 for argon [19, 20]), we can estimate the
electron temperature from the reconstructed value of
C = 4600 µm–1: Te ≈ 1.7–2.2 eV. This value matches the
values of Te ≈ 1.9 ± 0.3 eV obtained from independent
probe measurements of electron temperature in the
near-electrode layer of the experimental setup in the
absence of dust.

δ
Z p〈 〉 Z p

c〈 〉–

Z p
c〈 〉

-------------------------------=

Z p
c〈 〉

ϕ sap

e
----------- Cap,≡–=
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In spite of a low probability of determining the mac-
roparticle charge gradient βy = dZp/dy correctly, we
approximated the experimental data by the following
functions:

(15a)

(15b)

Thus, we have taken into account possible gradients of
macroparticle charges in the linear (3) and in qua-
dratic (4) approximations of the field for the measured
function (ϕsE) (13). As a result, we obtained close val-
ues of fields E(y), charges Zp , and the layer thickness
dmax in both cases. The charge gradient for the linear
field (15a) turned out to be positive (βy/〈Zp〉 ≈ 0.2 cm–1),
which readily follows from the behavior of the linear
approximation (curve 1 in Fig. 2a) of the results of
measurements, but contradicts the theoretical predic-
tions (see Section 2). For (15b), the reconstructed
charge gradient was βy/〈Zp〉 ≈ –0.37 cm–1, which may be
true in fact since the relative changes in the charge,
∆iZp/〈Zp〉 , did not exceed 20% in this case even for the
closest point to the electrode with h = 0.48 cm.

5. ANALYSIS OF THE RESULTS 
OF EXPERIMENTAL OBSERVATIONS 

OF VERTICAL VIBRATIONS OF PARTICLES
IN THE NEAR-ELECTRODE LAYER 

OF AN RF DISCHARGE

The results of experiments described in the previous
section indicate that variations of the charging condi-
tions in the upper part of the near-electrode layer of an
rf discharge do not affect significantly the charge of
light macroparticles levitating in this region. However,
even an insignificant change in the dust charge (see

ϕ sE C1 y βyy2+( ),=

ϕ sE C2 y2 βyy3+( ).=
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Fig. 3. Dependence of (a) amplitude Ay of vertical vibrations and (b) the ratio Ay(Pi)/Ay(P0) on pressure P of the rf discharge in argon

for particles of radius ap = 1 (1) and 2.1 µm (2). Dashed lines correspond to the values of  (a) and /Ay(P0) (b), while

solid lines in (b) correspond to approximation (16).
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max
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max
Section 3) may cause gradients βy sufficient for the evo-
lution of stochastic dust vibrations.

Experiments were conducted for particles with dif-
ferent sizes (ap = 1 and 2.1 µm) in the near-electrode
layer of a capacitive rf discharge in argon under pres-
sures from 0.1 to 0.015 Torr. Under certain conditions
(upon a decrease in pressure or upon an increase in the
number of particles), dust particles acquired energies
on the order of 1–10 eV and performed irregular verti-
cal vibrations (in the direction of the gravitational
field). Here, we consider only one of the possible mech-
anisms of evolution of such vibrations due to stochastic
variation of their charges in a spatially inhomogeneous
plasma on the basis of the numerical estimates
described in Section 3. Since the value of kinetic energy
∆sT acquired by a dust particle due to macroparticle
charge gradients strongly depends on the accuracy of
determining the parameters of particles and the sur-
rounding plasma, we will analyze the relative changes
in the amplitude Ay of vibrations of dust particles upon
a decrease in pressure P in the discharge. We will
assume that such a decrease in P changes the friction
coefficient νfr for macroparticles, but does not lead to a
noticeable perturbation of the surrounding plasma
parameters. In this case, we obtain from relations (7)
and (8)

(16)

where Ay(Pi) is the amplitude of vibrations of particles
for various pressures Pi (i = 1, 2, ... , N).

Dependences Ay(P) measured for particles of two
sizes are shown in Fig. 3a. The dashed line in the
same figure shows the boundaries at which the ampli-
tude of particle vibrations attains a value close to

 ≈ 1.6lp (12), where lp corresponds to the radial
particle spacing in an unperturbed dust layer. The aver-

Ay Pi( )
Ay P0( )
---------------

1 θ1 P0( )–
1 θ1 Pi( )–
------------------------,=

Ay
max
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age kinetic energy of lighter particles of radius ap =
1 µm, which was obtained from an analysis of their
velocity spectrum for the minimal pressure, exceeded
3 eV, while the energy of particles with ap = 2.1 µm
attained ~10 eV.

Considering that  =  (see rela-
tion (10)), the value of θ1(P0) can be obtained from
relation (16) with the help of best matching of calcu-
lated and experimental data in the range where Ay(Pi) <
l0. This procedure gives θ1 ≈ 0.5 for P0 = 0.05 Torr for
particles of radius ap = 1 µm and θ1 ≈ 0.28 (P0 =
0.1 Torr) for particles with ap = 2.1 µm. The results of
calculation of Ay(Pi)/Ay(P0) (solid line) are shown in
Fig. 3b. The dashed line shows the ratio of the maximal

amplitude  (12) of particle displacement to its ini-
tial value Ay(P0) measured in experiments.

Thus, the evolution of the amplitudes of vibrations
being analyzed upon a change in the discharge pressure
is in qualitative agreement with the proposed mecha-
nism of formation of such vibrations. The quantitative
difference between the proposed approximations and
the results of measurements can be due to the fact that
the possible change in the plasma parameters upon a
decrease in pressure or within the trajectory of dust par-
ticles was disregarded in the calculation of amplitude

 and function θ1(Pi).

6. CONCLUSIONS

The effect of nonuniform conditions on dust particle
charging in the upper part of the near-electrode layer of
an rf discharge is analyzed numerically. Simple ana-
lytic expressions are given for determining the macro-
particle charge gradients. The surface potentials of
macroparticles of different sizes are measured in the
near-electrode plasma of the rf discharge. The measure-

Pi
2θ1 Pi( ) P0

2θ1 P0( )

Ay
max

Ay
max
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ments show that the inhomogeneity of the surrounding
plasma does not noticeably affect the charges of light
dust particles levitating in the upper part of the near-
electrode layer of the discharge in question (|βy |/〈Zp〉 <
0.4 cm–1). The results of measurements are in good
agreement with the analytic estimates of the macropar-
ticle charge gradients obtained in the OLM approxi-
mation.

A possible mechanism of evolution of random
vibrations of macroparticles due to their stochastic
motion in the bulk of a spatially inhomogeneous
plasma is proposed (in the presence of slight variation
of dust charges). Analytic expressions are derived for
estimating the amount of kinetic energy acquired by
macroparticles due to the given mechanism. These esti-
mates show that the kinetic energy of light dust parti-
cles may attain values on the order of 1–10 eV, which is
close to the experimentally observed energies. The pro-
posed mechanism forms the basis of analysis of the val-
ues of amplitude of macroparticle vibrations with dif-
ferent sizes measured in the near-electrode layer of the
rf discharge under various pressures. It is shown that
the given mechanism may be responsible for the evolu-
tion of stochastic vertical vibrations.

ACKNOWLEDGMENTS

This work was partly financed by the Russian Foun-
dation for Basic Research (project nos. 01-02-16658
and 00-02-17520), INTAS (grant no. 01-0391), and
Australian Council of Scientific Research. The research
work of A.A. Samarian was supported by the Univer-
sity of Sydney research scholarship U2000.

REFERENCES
1. T. Trottenberg, A. Melzer, and A. Piel, Plasma Sources

Sci. Technol. 4, 450 (1995).
2. J. B. Pieper and J. Goree, Phys. Rev. Lett. 77, 3137

(1996).
3. A. A. Homann, A. Melzer, S. Petrs, and A. Piel, Phys.

Rev. E 56, 7138 (1997).
4. A. A. Homann, A. Melzer, and A. Piel, Phys. Rev. E 59,

R3835 (1999).
5. U. Konopka, G. E. Morfill, and L. Ratke, Phys. Rev. Lett.

84, 891 (2000).
6. A. A. Samaryan, A. V. Chernyshev, O. F. Petrov, et al.,

Zh. Éksp. Teor. Fiz. 119, 524 (2001) [JETP 92, 454
(2001)].
JOURNAL OF EXPERIMENTAL 
7. V. Fortov, A. Nefedov, V. Molotkov, et al., Phys. Rev.
Lett. 87, 205002 (2001).

8. C. Zafiu, A. Melzer, and A. Piel, Phys. Rev. E 63, 066403
(2001).

9. E. B. Tomme, D. A. Low, B. M. Anaratone, and
J. E. Allen, Phys. Rev. Lett. 85, 2518 (2000).

10. E. Thomas, B. Annaratone, G. Morfill, and H. Rother-
mel, Phys. Rev. E 66, 016405 (2002).

11. A. P. Nefedov, O. S. Vaulina, O. F. Petrov, et al., Zh.
Éksp. Teor. Fiz. 122, 778 (2002) [JETP 95, 673 (2002)].

12. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, and V. E. For-
tov, Zh. Éksp. Teor. Fiz. 118, 1319 (2000) [JETP 91,
1147 (2000)].

13. S. Nunomura, T. Misawa, N. Ohno, and S. Takamura,
Phys. Rev. Lett. 83, 1970 (1999).

14. V. E. Fortov, A. G. Khrapak, S. A. Khrapak, et al., Phys.
Plasmas 7, 1374 (2000).

15. V. V. Zhakhovskiœ, V. I. Molotkov, A. P. Nefedov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 66, 392 (1997) [JETP Lett.
66, 419 (1997)].

16. A. Samarian, B. James, O. Vaulina, et al., in Proceedings
of 25th International Conference on Phenomena in Ion-
ized Gases, Nagoya Univ., Nagoya, Japan (2001), Vol. 1,
p. 17.

17. A. Samarian, B. James, S. Vladimirov, and N. Cramer,
Phys. Rev. E 64, 025402 (2001).

18. O. S. Vaulina, S. A. Khrapak, A. P. Nefedov, and
O. F. Petrov, Phys. Rev. E 60, 5959 (1999).

19. O. S. Vaulina, A. P. Nefedov, O. F. Petrov, et al., Zh.
Éksp. Teor. Fiz. 120, 1369 (2001) [JETP 93, 1184
(2001)].

20. S. A. Khrapak, A. P. Nefedov, O. F. Petrov, et al., Phys.
Rev. E 59, 6017 (1999).

21. J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994).
22. Yu. P. Raœzer, M. N. Shneœder, and N. A. Yatsenko, High-

Frequency Capacitive Discharge: Physics; Experiment
Technology; Applications (MFTI–Nauka “Fizmatlit,”
Moscow, 1995).

23. A. A. Ovchinnikov, S. F. Timashev, and A. A. Belyœ,
Kinetics of Diffusely-Controlled Chemical Processes
(Khimiya, Moscow, 1986).

24. Photon Correlation and Light Beating Spectroscopy, Ed.
by H. Z. Cummins and E. R. Pike (Plenum, New York,
1974; Mir, Moscow, 1978).

25. A. A. Samarian and B. W. James, Phys. Lett. A 287, 125
(2001).

Translated by N. Wadhwa
AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003



  

Journal of Experimental and Theoretical Physics, Vol. 96, No. 6, 2003, pp. 1045–1054.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 123, No. 6, 2003, pp. 1188–1199.
Original Russian Text Copyright © 2003 by Anshukova, Golovashkin, Ivanova, Rusakov.

                                                                                                                                          

SOLIDS
Structure
The Effect of Superstructural Ordering on the Properties
of High-Temperature Oxide Superconductor Systems

N. V. Anshukovaa, A. I. Golovashkina,*, L. I. Ivanovab, and A. P. Rusakovb

aLebedev Institute of Physics, Russian Academy of Sciences, Moscow, 119991 Russia
bMoscow Institute of Steel and Alloys, Moscow, 117936 Russia

*e-mail: golov@sci.lebedev.ru
Received November 12, 2002

Abstract—The effect of superstructural ordering in the oxygen sublattice (in addition to the influence of the
antiferromagnetic interaction of copper ions) on the electron and phonon characteristics of oxide high-temper-
ature superconductor (HTSC) systems has been studied. Taking into account this ordering effect, it is possible
to explain a wide range of experimental data, including doping-induced changes in shape of the Fermi surface,
features of the phonon spectra, the existence of stripes, the presence of a pseudogap and its coexistence with
the superconducting gap, and some peculiarities in the phase diagrams of HTSCs. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

In recent years, there was considerable progress in
the development of methods for the synthesis of high-
quality single crystals of various high-temperature
superconductor (HTSC) systems—compounds charac-
terized by high Tc values in a certain range of composi-
tions. By changing the level of doping, it is possible to
vary the state of such compounds from insulating to
metallic. The availability of high-quality samples
allowed the electron, phonon, and other characteristics
of oxide superconductors, as a function of the level of
doping, to be thoroughly studied. Such investigations
have been performed for HTSC compounds belonging
to various systems, including La2 – xSrxCuO4 – δ,
YBa2Cu3O6 + x , Bi2Sr2Ca1 – xYxCu2O8 – δ, etc. Some new
features in the electron and phonon properties were
found for HTSCs at low doping levels and in the vicin-
ity of the dielectric–metal transition. For example, the
data of angle-resolved photoelectron spectroscopy
(ARPES) showed [1, 2] that compounds of the
La2 − xSrxCuO4 – δ system with x ≥ 0.05 are character-
ized, in the vicinity of the dielectric–metal transition,
by a Fermi surface with wide flat regions in the plane of
(kx, ky) wavevectors, these regions being parallel to the
[100] and equivalent directions. The cross section of
this Fermi surface initially possesses a finite area close
to that characteristic of the optimum doping level,
rather than changing in proportion to the parameter x.
As the x value increases up to x ≈ 0.15, the shape of the
Fermi surface remains virtually unchanged, since only
intensity of the ARPES lines increases. Only upon dop-
ing to a level exceeding the optimum (x ≥ 0.17) does the
Fermi surface exhibit significant changes, and, on
reaching x ≈ 0.25, it becomes parallel to directions of
the [110] type.
1063-7761/03/9606- $24.00 © 21045
In a low-doped La2 – xSrxCuO4 – δ compound (x ≈ 0.07)
occurring in the metallic state, ARPES measurements
revealed coexisting dielectric and metallic phases on a
microscopic level [1, 2]. In these experiments, a sample
exhibited two branches in the plot of energy E versus
wavevector k, one of these branches being characteris-
tic of a purely dielectric phase and the other, of an opti-
mum doped metallic phase. Only one of these branches
E(k)—namely, that with a higher binding energy—is
retained in the dielectric state at x < 0.05, while only the
second branch remains in the metallic state at a high
level of doping (x ≥ 015).

Analogous coexistence of two phases (dielectric and
metallic) on the microscopic level was revealed by neu-
tron diffraction in the study of the dispersion of high-
frequency longitudinal optical (LO) phonons in
La2 − xSrxCuO4 – δ [3, 4], YBa2Cu3O6 + x [5, 6], and other
HTSC systems. At an intermediate level of doping, two
LO phonon frequencies ωLO were observed, one of
these being characteristic of a metallic phase (observed
in strongly doped compounds) and the other, of a purely
dielectric low-doped phase. When the level of doping
was varied, both ωLO values remained virtually
unchanged and only the intensities of the correspond-
ing neutron diffraction lines exhibited redistribution.
As the x value increased, the volume of the metallic
phase exhibited growth at the expense of decreasing
content of the dielectric phase.

The whole body of these and other experimental
observations (including data on the static and dynamic
magnetic superstructure modulation [7], negative ther-
mal expansion at low temperatures [8], etc.) poses a
question about coexistence and mutual ordering of the
metallic and dielectric phases on the microscopic level
in HTSCs. All these experimental data can hardly be
003 MAIK “Nauka/Interperiodica”
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explained within the framework of the existing theoret-
ical models assuming uniform electron density distri-
bution in the course of doping.

As will be demonstrated below, the new data have a
natural explanation if we take into account the presence
of a superstructural charge order in the oxygen sublat-
tice, in addition to the well-known antiferromagnetic
order in the sublattice of copper ions in cuprate HTSCs.
We will consider some features of the superstructural
order in the oxygen sublattice, which influence the
electron and phonon spectra of these HTSC systems.
Allowance for this superstructural charge order in the
oxygen sublattice explains the nature of coexisting
dielectric and metallic phases on the microscopic level
observed in doped samples of high-Tc cuprate super-
conductors.

2. DIELECTRIC STATE OF HTSC SYSTEMS

Let us consider the dielectric state of HTSC systems
using an example of the La2 – xSrxCuO4 – δ system,
beginning with a compound with x = 0 and δ = 0. The-
oretical calculations show that this undoped compound
in the initial state must occur in the metallic state [9].
According to these calculations, the lower and upper
Hubbard bands (composed mostly of the 3d states of
copper) are separated by a wide band composed pre-
dominantly of the 2p states of oxygen. It is the presence
of the latter band that imparts metallic properties to the
compound; such a metal is referred to as the praphase.
Previously [10], we have demonstrated that oxygen
ions in the CuO2 planes of the praphase can exist in two
charged states, O–2 and O–1.5, which correspond to the
Cu–O–2 ionic bonds and the Cu–O–1.5 ionic-covalent
bonds, respectively. Ordering of the latter covalent
bonds, with allowance of the antiferromagnetic order-
ing of copper ions, leads to doubling of the lattice
period of the metallic praphase of the CuO2 plane in the
[100] and equivalent directions. This situation is equiv-
alent to the appearance of a charge density wave
(CDW) in the sublattice of oxygen ions. For this reason,
a narrow oxygen band (instead of the aforementioned
wide band) and a dielectric gap with a width of Eg ~
2 eV appear at the top of the lower Hubbard band. As a
result, a dielectric state rather than a metallic state is
observed in real undoped HTSC systems of the type
under consideration.

In the neighboring CuO2 plane, the Cu–O–1.5 cova-
lent bonds are ordered in the perpendicular direction,
whereby a dielectric gap appears in the c-axis direction
as well. As a result, a new unit cell is formed that con-
tains four O–1.5 ions in addition to the O–2 ions. An exact
chemical formula describing the dielectric compound
La2CuO4 with allowance for the period doubling in all
three directions can be written as

(1)8 La2CuO4( ) La16
+3Cu8

+1.75O4
–1.5O28

–2.=
JOURNAL OF EXPERIMENTAL 
This formula unit precisely corresponds to the unit cell
of the dielectric compound La2CuO4.

The above mechanism of period doubling is essen-
tially a manifestation of the Jahn–Teller effect typical
of oxygen-containing copper compounds. This effect
removes degeneracy between the 2px and 2py states of
oxygen ions in the CuO2 planes, which is accompanied
both by elastic straining and by charge redistribution
between ions in the lattice. As a result, the system
achieves an energy gain, typically of about 1 eV per
unit cell [11]. In the case under consideration, this is
manifested by the appearance of a bandgap Eg ~ 2 eV.
According to the neutron diffraction data [12, 13], a
characteristic displacement of oxygen ions in the CuO2
plane for a period modulation comparable with the
lattice period is on the order of 0.004 Å. Such changes
can hardly be detected at the existing level of accuracy
in phonon dispersion measurements or X-ray diffrac-
tion analysis.

Four oxygen ions in the charged state O–1.5 (per unit
cell with a period doubled in three directions) is the
minimum number of ions for which the degeneracy is
removed for all oxygen octahedra. The lattice period
doubling leads to the appearance of a new reciprocal
lattice vector G2 = G/2 = (π/a)[100], where G =
(2π/a)[100] is the vector of a reciprocal lattice without
period doubling and a is the Cu–Cu distance in the
CuO2 plane. Recently, Sachdev [14] has independently
demonstrated that the period doubling follows from a
general theoretical analysis of HTSC systems.

Since O–1.5 ions are less strongly bound to the lattice
than the O–2 ions, the electron states of the former ions
are situated most closely to the chemical potential µ of
the dielectric. Therefore, these states are at the top of a
complex valence band including a narrow oxygen band
and the lower Hubbard band. The aforementioned
ordering of these weakly bound O–1.5 ions leads, as
noted above, to the appearance of a narrow about
(0.3 eV), almost purely oxygen valence band formed
by 2p states of O–1.5 ions, lying above the wide (~3 eV)
mixed copper–oxygen Hubbard band formed by
Cu(3d)–O–2(2p) states. This energy band diagram is
schematically depicted in Fig. 1a, indicating typical
experimental energy values [15]. A small width of the
upper valence band formed by the 2p states of O–1.5 ions
is determined by a relatively small overlap of these
states, since the unit cell contains only four such ions
(against 28 of O–2 ions).

The upper valence oxygen band formed by 2p states
of O–1.5 ions contains 4 × 1.5 = 6 electrons per cell.
These electrons fill the Brillouin zones for a square
quasi-two-dimensional lattice including two CuO2
planes. In the case of a dielectric, the structure of three
first Brillouin zones filled with electrons is schemati-
cally depicted in Fig. 2a. The third Brillouin zone con-
AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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Fig. 1. Energy band diagram of cuprate HTSCs in the (a) dielectric and (b) metallic state at an optimum level of doping. The arrow
in (a) indicates a narrow band formed by the 2p states of O–1.5 ions; blackened region in (b) is filled by holes upon doping (E is the
energy; µ is the chemical potential; EF is the Fermi energy; N(E) is the density of electron states; ∆* is the Peierls energy gap).
tains two electrons, which corresponds to x = xc = 1/8 =
0.25 electron per copper ion in formula unit (1).

3. DOPING AND ELECTRON STRUCTURE

In La2 – xSrxCuO4 slightly doped with strontium,
charge carriers (holes) might be expected at the top of
the narrow oxygen valence band. In the case of degen-
eracy, the Fermi surface would pass near the boundaries
of the third Brillouin zone. The distance between the
boundaries of the third Brillouin zone and the Fermi
surface must be proportional to the dopant concentra-
tion (i.e., to the x value). However, as mentioned above,
ARPES reveals the Fermi surface far from the bound-
aries of the third Brillouin zone (Fig. 2b). For example,
the Fermi surface passes approximately in the middle
between points (0, 1) and (1/2, 1), that is, close to the
point (1/4, 1). This boundary remains almost unshifted
when the level of doping increases up to the optimum
level of x = 0.15 [1]. In the case on weak doping (0.05 <
x < 0.13), the system exhibits, as was also noted above,
coexistence of the metallic and dielectric phases [2].

These and other new experimental data can be
explained within the framework of the model consid-
ered below. The results presented in Fig. 2 are obtained
by direct calculations of the electron structure. The val-
ues of the dispersion E(k) obtained by these calcula-
tions for the upper valence bands can be approximated,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
within the framework of the tight binding method, by
the formula [16–18]

(2)

where k = (kx, ky) is the dimensionless wavevector of
the quasi-two-dimensional reciprocal lattice; t, t ', and t ''
are the overlap integrals with the nearest neighbor,
next-to-nearest, and third-shell ions; and t⊥  is the over-
lap integral for the interaction between adjacent CuO2
planes. The maxima calculated for the valence bands
coincide with the boundaries of the Brillouin zones for
the dielectric state (Fig. 2a) corresponding to t =
386 meV, t '/t = −0.272, t ''/t = 0.223, and t⊥  = 150 meV.

Figure 2b presents the shape of the Fermi surface
calculated [16] for doped La2 – xSrxCuO4 with x =
3xc/4 = 0.1875, which corresponds to t = 0.5 eV, t '/t =
−0.3, t ''/t = 0.2, and t⊥  = 0.15 eV in formula (2). Using
the overlap integrals, it is possible to estimate the dis-
persion E(k) for the line between points (0, 1) and
(1/2, 1). The corresponding dispersion curves are con-
structed in Fig. 3 for both pure dielectric and a doped
compound. In Fig. 3a, point (1/2, 1) corresponds to the
boundary of the third Brillouin zone. The width of the
band filled with electrons is about 0.3 eV. In the case of
slight doping, holes might appear at the top of this
valence band as depicted in Fig. 3b. In the case of
degeneracy, the Fermi surface would pass near the

E k( ) 2t kx kycos+cos( )– 4t' kx kycoscos–=

– 2t'' 2kxcos 3kycos+( ) t⊥ kxcos kycos–( )2/4,–
SICS      Vol. 96      No. 6      2003
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boundaries of the third Brillouin zone. However, in the
case of a narrow band and weak screening, as in the sys-
tem under consideration, it is energetically favorable to
fill this band in separate regions of the crystal to half of
the reciprocal lattice vector (Fig. 3c) at the expense of
holes liberated from some intermediate regions. For
such regions half-filled with holes, the lattice period
can exhibit another doubling in the [100] direction.
These regions are characterized by the reciprocal lattice
vector G4 = G/4 (Fig. 3d) representing the nesting vec-
tor (here, G is the reciprocal lattice vector for the initial
undoubled direct lattice).

As is well known, nesting gives rise to the Peierls
instability with the formation of a dielectric gap ∆*
(Fig. 3d). As a result, instead of the uniform band filling
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Fig. 2. The Brillouin zones and the Fermi surface shapes in
cuprate HTSCs at various levels of doping. Positions of the
symmetry points are indicated in π/a units (a is the mini-
mum Cu–Cu distance). Crosses indicate the experimental
ARPES data [1, 2]: (a) the first three Brillouin zones (indi-
cated by numbers) for a flat CuO2 lattice with doubled
period (for the dielectric phase); dashed line shows the first
Brillouin zone for the flat CuO2 lattice without period dou-
bling; (b) the Fermi surface (solid curve) for La2 – xSrxCuO4
with 0.05 ≤ x ≤ 0.15; dashed line shows the boundary of the
third Brillouin zone; cross-hatched region corresponds to
filled electron states; G4 = G2/2 = G/4 are reciprocal lattice
vectors, where G = (2π/a)[100]; (c) the Fermi surface (solid
curve) in the case of strong doping (x > 0.25); dashed line
shows the boundary of the second and third Brillouin zones
(for x = 0.25, the Fermi surface coincides with the bound-
aries of the second Brillouin zone); cross-hatched region
corresponds to filled electron states (for x = 0.3).
JOURNAL OF EXPERIMENTAL A
over the whole sample as depicted in Fig. 3b, the crystal
exhibits separation into dielectric regions free of holes
(with the dispersion such as in Fig. 3a) and half-filled
regions with the Peierls gap and fourfold lattice period
(with the dispersion such as in Fig. 3d). The densities of
states corresponding to the dielectric regions and the
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Fig. 3. Schematic dispersion curves E(k) for cuprate
HTSCs in the direction between points (0, 1) and (1/2, 1):
(a) dielectric state; (b) the case of weak doping in the model
of uniform hole distribution (shaded region corresponds to
the states occupied by holes); (c) the case of a Brillouin
zone half-filled with holes with respect to the momentum,
i.e., up to the point (1/4, 1); (d) the formation of the Peierls
gap ∆* and the new reciprocal lattice vector as a result of
nesting by the vector G4 = G/4.
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regions with Peierls gaps ∆* are presented in Figs. 1a
and 1b, respectively. This scheme provides for a certain
energy gain: the dielectric regions are characterized by
a decrease in the Coulomb energy of repulsion between
holes, while the regions with Peierls gaps exhibit a
decrease in the kinetic energy as a result of the for-
mation of gap ∆*. It should be emphasized that this
phase separation takes place in the crystal with ordered
Cu–O–1.5 covalent bonds.

In the above scheme, the system separates into the
metallic stripes with half-filled zone and the intermedi-
ate dielectric regions. Degeneracy of the charge carriers
(holes) appears upon the formation of the first metallic
stripes. For example, in La2 – xSrxCuO4 the degeneracy
is experimentally observed for x ≈ 0.02–0.05, depend-
ing on the crystal quality [20].

Figure 4a shows schematic dispersion curves E(k)
for the upper valence band along some symmetric
directions in the Brillouin zone of cuprate HTSCs. The
curves, obtained from an analysis of relation (2), refer
to a dielectric state (Fig. 4a) and a metallic state at opti-
mum doping (x = x0 = 0.1875).

Since doping in La2 – xSrxCuO4 is realized in the
form of homogeneously distributed strontium ions, the
inhomogeneous distribution of holes must lead
(according to the above scheme) to an additional Cou-
lomb interaction between the metallic regions, result-
ing in a certain ordering of these regions (Fig. 5).
Owing to the charge density fluctuations, this order can
possess a dynamic character. Indeed, a dynamic order
of this kind was observed in La2 – xSrxCuO4 [19]. On
the other hand, in the presence of defects (appearing
upon doping with atoms possessing strongly different
atomic dimensions, such as La and Nd), a static order
in the metallic regions can appear as well. Such a
static ordering was also experimentally observed in
(La,Nd)2 – xSrxCuO4 [12, 20] and La2CuO4 + δ [21].

Experimental data [22] showed that ordering leads
to the formation of a stripe structure. The stripes are
spatially separated and oriented either along vector
[100] or along [010] [22]. In the case under consider-
ation, with the unit cell containing two CuO2 planes, it
would be natural to assume that direction [100] is char-
acteristic of one of these planes and direction [010], of
the adjacent plane. This ordering of stripes in two mutu-
ally perpendicular directions in the adjacent CuO2
planes in a particular case of (La,Nd)2 – xSrxCuO4 was
experimentally revealed [12] by analysis of the experi-
mental neutron diffraction data.

Figure 5 schematically illustrates the distribution of
charge density in one of the symmetric directions in the
CuO2 plane. An analogous pattern is observed in the
perpendicular direction in the adjacent CuO2 plane. As
can be seen in Fig. 2b, the conditions of nesting with the
vector G4 = G/4 are satisfied on a considerable part of
the Fermi surface, so that this pattern holds for almost
all these states (except regions of the vicinity of points
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of the (1/4, 1/4) type. Note also that the Peierls gap is
not formed along the stripes.

According to the scheme under consideration, the
metallic conductivity of doped samples is related to the
fact that the Peierls gap is not formed in the vicinity of
points of the (1/4, 1/4) type. According to this, the
Peierls gap ∆* in Fig. 1b is depicted as partly filled and
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Fig. 4. Schematic dispersion curves E(k) for the upper
valence band of cuprate HTSCs along some symmetric
directions in the Brillouin zone: (a) dielectric state;
(b) metallic state at the optimum doping (x = x0); cross-
hatched regions correspond to the states filled by holes.

Fig. 5. Schematic diagrams of charge distribution in one of
the symmetric directions in the CuO2 plane (a) in the case
of intermediate doping (0 < x < x0) and (b) in the absence of
dielectric spacers between metallic stripes (x ≈ x0 = 0.1875)
(p is the hole density; p0 = 0.1875 is the hole density per
copper ion in a metal stripe; L is the period of charge mod-
ulation).
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the Fermi level (EF) is indicated rather than the chemi-
cal potential.

The charge ordering depicted in Fig. 5 must be
accompanied by elastic straining with the same spatial
period. According to the neutron diffraction data for
(La,Nd)2 – xSrxCuO4 [12, 13], the deformation (e.g., the
shift of oxygen ions in the CuO2 plane) amounts to
approximately 0.004 Å for x = 0.12. The period L of
charge ordering in Fig. 5 is related to the doping level
x as

(3)

where x can vary within the interval 0 ≤ x ≤ x0 = 0.1875.
Theoretical calculations (reviewed in [12]) indicate that
charged metallic stripes in the strained CuO2 planes
with antiferromagnetically ordered spins of copper ions
play the role of the boundaries of domains with differ-
ent phases of antiferromagnetic order. From this, it fol-
lows that the charge modulation period L corresponds
to the superstructural antiferromagnetic modulation
with a period of 2L. In the reciprocal space, the charge
ordering corresponds to the vector 2ε with the modulus
2ε = 2π/L, and the antiferromagnetic ordering corre-
sponds to the vector ε with the modulus ε = 2π/2L = π/L.

The relationship between the charge and magnetic
ordering in the reciprocal space according to the pro-
posed scheme is illustrated in Fig. 6, which shows the

L 3a/4x,=

(0, 1, 0)

(0, 0, 0) (1, 0, 0)

(1, 1, 0)

1
2
--- 0 0, , 

 

G

G42ε

G2

ε

Fig. 6. Schematic diagrams showing the pattern of Bragg
reflections and their splitting for the reciprocal lattice of
oxide HTSCs in the region of coexistence of the dielectric
and metal phases according to the proposed model of super-
structural ordering: large black circles indicate reflections
from the lattice without superstructural modulation; open
circles indicate reflections due to the lattice period dou-
bling; dots indicate reflections due to fourfold lattice peri-
ods; squares indicate reflections due to the distribution of
metallic stripes with the period L (2ε = 2π/L); crosses indi-
cate reflections due to the antiferromagnetic ordering of
copper ions. Positions of the symmetry points are indicated
in 2π/a units; G4 = G2/2 = G/4 = (2π/a)/4; 0 ≤ 2ε ≤ G4. The
intensity of superstructural reflections is lower by many
orders of magnitude than that of the main Bragg reflections.
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main Bragg diffraction reflections and their splitting
upon superstructural modulation. The superstructural
reflections differ in intensity by many orders of magni-
tude from the main reflections (observed for the lattice
without superstructural modulation). All the super-
structural reflections were separately observed in
experiment [12, 14, 20]. In particular, reflections corre-
sponding to the period doubling were reported in [14].
Reflections related to the antiferromagnetic ordering of
copper ions, as well as the 2ε reflections due to a peri-
odic distribution of metallic regions with the spatial
period L, we reported in [12, 20] and in some other
papers. The intensity of, for example, 2ε reflections was
smaller by six orders of magnitude (about one million
times) as compared to that of the main Bragg reflections
[12]. The intensity of superstructural reflections related
to the period doubling can be even smaller. Apparently,
this smallness accounts for the absence of experimental
data simultaneously revealing all types of reflections
depicted in Fig. 6.

The value of 2ε varies, depending on the level of
doping, from 2ε = 0 for x = 0 (i.e., for L  ∞) to 2ε =
G/4 for L = 4a (G is the absolute value of vector G). The
latter case (depicted in Fig. 5b) corresponds to the
absence of dielectric spacers between metallic stripes,
whereby the entire crystal consists of regions with four-
fold lattice period. In this case, holes fill three-quarters
of states in the third Brillouin zone (see the cross-
hatched region in Fig. 7a). Complete filling of the third
Brillouin zone is attained at a hole density correspond-
ing to x = 0.25 per copper ion, while filling of the three-
quarters of states in this zone corresponds to a doping
level of x = x0 = 0.25 × 3/4 = 0.1875.

Figure 7b shows dependence of the superstructural
charge modulation 2ε on the doping level x. Here, the
dashed curve shows our estimate constructed as

(4)

(5)

Symbols in Fig. 7b represent the experimental data for
La2 – xSrxCuO4 and (La,Nd)2 – xSrxCuO4 [12]. As can be
seen, the experimental points fit the calculated curve
well. At x > 0.1875, the value of 2ε ceases to change
and remains equal to 2ε = G4 = G/4 = 0.25. The corre-
sponding magnetic modulation is ε = 0.125. The value
of x0 = 0.1875 corresponds to a certain critical point on
the T(x) phase diagram.

For x ≥ 0.1875, holes appear at the top of the valence
band (below the Peierls gap ∆*) near the point (1/4, 1)
as depicted in Fig. 3d. A further increase in the level of
doping (x > 0.1875) leads to a decrease in the Peierls
gap width ∆* (related to an increase in the hole screen-
ing) and is accompanied by a decrease in intensity of
the neutron diffraction lines corresponding to super-
structural charge and spin ordering. In addition, it is
possible to calculate a change in the Fermi surface for

2ε x( ) 4x/3( ) 2π/a( ), 0 x x0,≤ ≤=

2ε x( ) 1/4( ) 2π/a( ), x0 x 0.25.≤ ≤=
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x > 0.1875 by formula (2) taking into account the
dependence of t ' and t '' on x,

(6)

(7)

where  = –0.15 eV and  = 0.1 eV are the parameters
for the state with x = 0.1875 (Figs. 2b and 3c) in which
the metallic stripes are not separated by dielectric
spacers.

A maximum value of x, corresponding to the third
Brillouin zone completely filled with holes, is 0.25 per
copper ion. For x ≥ 0.25, the Fermi surface acquires the
shape represented by the solid curve in Fig. 2c, where
crosses represent the experimental data [1] for x = 0.3.
As can be seen, the calculated shape of the Fermi sur-
face qualitatively agrees with experiment. At x = 0.25,
the Fermi surface coincides with the boundaries of the
second Brillouin zone. In this case, according to the
proposed model, the Fermi surface acquires an electron
character. This fact has been established in numerous
experiments.

Thus, the proposed scheme for x < 01875 features
coexistence of two phases, dielectric and metallic, on a
local level. This situation is reflected by the ARPES
data [2]. At a higher level of doping, there exists a single
(metallic) phase, as experimentally confirmed in [1].

4. EFFECT OF DOPING 
ON THE PHONON SPECTRUM

As noted above, doped HTSC systems exhibit an
anomaly in the high-frequency LO phonon dispersion
curve ωLO(Q) in the metallic phase. The presence of such
anomaly also follows from the proposed scheme of elec-
tron ordering in HTSCs. As is known [23], the longitudi-
nal optical phonons obey an approximate relation

(8)

where ωTO is the frequency of transverse optical
phonons (for simplicity, the dispersion of these
phonons is ignored), ωp is the plasma frequency of ions
given by the formula

(9)

e* is the effective charge of oxygen ions, N/Ω is the
number of oxygen ions per unit cell, ε(Q) is the macro-
scopic permittivity of the electron subsystem, and M is
the mass of an oxygen ion. For the dielectric phase (x =
0 for La2 – xSrxCuO4) in the long-wave approximation
(Q  0), we have ε(Q)  ε∞, where ε∞ is the optical
dielectric constant. As the Q value increases from 0 to
Q = G/2, the permittivity ε(Q) remains positive.

t' t0' 0.25 x–( )/0.25,=

t'' t0'' 0.25 x–( )/0.25,=

t0' t0''

ωLO
2 Q( ) ωTO

2 ωp
2 /ε Q( ),+≈

ωp
2 4πN e∗( )

2
/ΩM,=
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Figure 8a shows a schematic diagram illustrating the
dispersion of ωLO and ωTO in the dielectric state (with
neglect of the dispersion of ε(Q)). Upon doping, the
system exhibits separation into the dielectric and metal-
lic phases on the microscopic level. For the dielectric
phase, the dependence of ωLO on Q remains qualita-
tively the same as in Fig. 8a for x = 0. In contrast, the
metallic phase exhibits significant changes. The
phonons with G/4 ≤ Q ≤ G/2 connect flat congruent
regions of the Fermi surface as depicted in Fig. 9.

As is known [24]–27], in the presence of congruent
regions of the Fermi surface and nesting for the

0 0.05 0.10 0.15 0.20 0.25 0.30

0.30

0.25

0.20

0.15

0.10

0.05

x

2ε (b)

0, 0

1, 10, 1

1 0,

1 1,

1, 0

G4

(a)

Fig. 7. Superstructural modulation 2ε and filling of the third
Brillouin zone with holes: (a) three-quarters of the zone are
filled with holes for x = x0 = 0.1875; (b) the dependence of
2ε on x calculated by Eqs. (4) and (5) (dashed line) and plot-
ted from the experimental data for La1.6 – xNd0.4SrxCuO4
and La2 – xSrxCuO4 (dots and squares, respectively) [12].

ωLO

ωTO

ωLO

ωTO

ωLO

ωTO

Q
G/2

(a)

0

(b) (c)

Q Q
0 0G/4 G/4 G/2G/2

Fig. 8. The effect of doping on the dispersion of the phonon
frequency ωLO for HTSCs (a) in the dielectric state (the dis-
persion of ωTO is ignored), (b) in the case of intermediate
doping (0.05 < x < 0.l875; the thickness of lines approxi-
mately reflects the dielectric to metallic phase ratio in the
crystal), and (c) for x ≥ 0.1875.
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wavevectors Q, whereby E(k) = E(k + Q), the static
electron susceptibility

(10)

exhibits divergence when Q is equal to the nesting vec-
tor (f is the distribution function). In the case under con-
sideration, this must take place for Q = G4 = G/4. Under
these conditions, the macroscopic permittivity ε(Q) of
the electron subsystem becomes negative. This follows
from the relation [24, 26, 27]

(11)

where e is the electron charge, ∆ε is the nonspecific
contribution to the permittivity, and L(Q) is a correction
for the local crystal field (0 < L(Q) < 1). In Eq. (11),
χ(Q) denotes the modulus of the static electron suscep-
tibility. In the case under consideration,

(12)

for G4 ≤ Q ≤ G2.

χ Q( )
1
Ω
---- f k( ) f k Q+( )–

E k Q+( ) E k( )–
---------------------------------------

k

∑=

ε Q( ) 1 4πe2/Q2( )χ Q( )

1 4πe2/Q2( )L Q( )χ Q( )–
----------------------------------------------------------- ∆ε,+ +=

ωLO
2 Q( ) ωTO

2 ωp
2 / ε G4( )–≈

0, 0

0, 1

0, 2

1 1, 1, 1

1 1, 1 1,

G

G4

Fig. 9. Schematic diagram showing reciprocal lattice vector
G4 = G/4 connecting flat congruent regions of the Fermi
surface (solid arrow) and G4 + Q vector connecting states
on the Fermi surface that are symmetric relative to the point
(0, 1) (dashed arrow).
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Thus, the frequency ωLO at Q = G4 = G/4 must

decrease in a jumplike manner by the value 2 /|e(G4)|
as schematically depicted in Fig. 8b. Taking into
account that a crystal with 0.05 < x < 0.1875 contains
two phases, the real spectrum will display two lines
with different frequencies ωLO. The intensity of these
phonon lines will be proportional to the volume of the
corresponding phase in the crystal. As the content of the
metallic phase increases with the level of doping, the
intensity of the neutron diffraction lines corresponding
to the ωLO value of this phase grows, while the intensity
of lines corresponding to the dielectric phase in the
interval Q4 ≤ Q ≤ G2 drops. This is reflected by differ-
ent line thicknesses in Fig. 8b.

For x ≥ 0.1875, whereby there is no dielectric spac-
ers between metallic stripes, the dispersion of ωLO
acquires the shape schematically depicted in Fig. 8c.
When x  0.25, the shape of the Fermi surface
changes, as can be seen from the comparison of Figs. 2b
and 2c. This must be accompanied by qualitative changes
in the dispersion of ωLO, but these effects are beyond the
scope of this paper. The model described above is quali-
tative corroborated by experiment [3–6, 15].

As was noted above, the appearance of double and
fourfold lattice periods is accompanied by very small
shifts of ions (on the order of 0.004 Å). Direct observa-
tion of such shifts through the measurement of phonon
dispersion is difficult, but the effect can be detected
through broadening of the neutron diffraction lines [3, 4].
It was established [4] that the line half-width signifi-
cantly increases and exhibits a maximum for the
wavevectors corresponding to a doubled lattice period.
It was also demonstrated [3] that the appearance of the
fourfold lattice period also leads to considerable broad-
ening of the lines.

With decreasing temperature, the low-frequency
transverse acoustic phonon branches ωTA exhibit soft-
ening at the boundaries of the Brillouin zone. It can be
shown that, without allowance for the interaction
between ions and the charge density wave, the HTSC
structure would be unstable [10]. The structure stabi-
lizes (i.e., ωTA becomes positive at the boundaries of the
Brillouin zone) only in the presence of this interaction.
On heating from T = 0, the amplitude of the charge den-
sity wave and, hence, the intensity of this interaction
decrease, which must lead to contraction of the crystal
(in the temperature range where the charge density
wave contribution is decisive). Thus, HTSC systems
(especially their dielectric phases) must exhibit nega-
tive thermal expansion at low temperatures. This anom-
alous thermal expansion was actually observed in
experiment [34–37].

5. SUPERCONDUCTIVITY IN HTSC SYSTEMS

Let us study the possibility of superconducting pair-
ing within the framework of the model proposed above.

ωp
2
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In Fig. 9, the vector G2 = G/2 = (π/a)[100] is a transla-
tion vector and the point (0, 1) can be considered as the
center of symmetry. The pairing of carriers occurring
on the Fermi surface and connected by vectors G4 + Q
passing through the point (0, 1) yields zero total
momentum and can be superconducting (such a vector
is shown by the dashed arrow in Fig. 9). These vectors
can be the wavevectors of phonons. Thus, at a suffi-
ciently low temperature, the states on the Fermi surface
that satisfy the condition of nesting and are symmetric
with respect to point (0, 1) are involved in interactions
of two types. One interaction leads to the formation of
the dielectric Peierls gap ∆*, while the other leads to the
appearance of a superconducting gap ∆s .

The spectrum of single-particle excitations E(k) in
such cases can be described by the formula [24, 28]

(13)

where k is the electron wavevector for the states near EF
and m is the electron mass. This leads to the appearance
of a common temperature-dependent gap

(14)

At low temperatures (T < Tc), the total gap width ∆
exceeds ∆s and the material is superconducting. At T >
Tc , ∆s(T) = 0 and ∆(T) = ∆*. As can be seen from for-
mula (14), the value of ∆ (and Tc) with an allowance for
the Peierls pairing can be significantly greater than in
the absence of such pairing, even for a usual phonon
mechanism of superconductivity. The dependence of
the ∆* value on the position of the state on the Fermi
surface is illustrated by Fig. 2b, showing that no Peierls
gap appears (i.e., ∆* = 0) in the vicinity of points
(±1/4, ±1/4) where the conditions of nesting are vio-
lated.

Thus, ∆* depends on the direction in the (kx, ky)
plane as described by the solid curve in Fig. 10. This
figure shows an approximate position of the point
where ∆* = 0 (exact calculation of the dispersion curve
is difficult, since the regions of all three Brillouin zones
occur in the vicinity of this point). The dashed curve in
Fig. 10 shows variation of the gap ∆(T) depending on
the direction at T < Tc  according to formula (14). As can
be seen, ∆* and ∆ vary in a similar manner. Analogous
curves are obtained even for s pairing (imitating the
behavior for d pairing). Such dependences for HTSCs
are observed experimentally, for example, by ARPES,
for the superconducting gap ∆ [29, 30] and pseudogap
∆* [31].

The existence of a pseudogap ∆* at T > Tc and of a
superconducting gap ∆(T) described by formula (14) at
T < Tc was confirmed by the tunneling study of the tem-
perature dependence of the gap (see, e.g., [32, 33]).
Qualitative agreement of the experimental data with the
behavior predicted by the proposed model allows us to

E k( ) k2/2m ∆∗+( )2 ∆s
2+[ ]

1/2
,=

∆ T( ) ∆∗( )2 ∆s
2+ .=
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conclude that the experimentally observed pseudogap
is essentially the Peierls gap ∆*.

6. CONCLUSION

New experimental data obtained using high-quality
single crystals can be explained within the framework
of the model of superstructural ordering in the oxygen
sublattice, with allowance for the antiferromagnetic
ordering of copper ions. In particular, the metallic
stripes with a width of 4a and dielectric spacers pre-
dicted by the model agree well with the stripe models
discussed in the literature.

According to formula (3), the distance between the
metallic stripes in the La2 – xSrxCuO4 system with x ≈
0.06 is about 30 Å. This value is close to the coherence
(correlation) length ξ(T) in the ab plane of CuO2. In
these compositions, the stripes exhibit Josephson’s
coupling and the entire crystal occurs in a coherent
state. This behavior is qualitatively consistent with the
experimental phase diagram Tc(x) of La2 – xSrxCuO4.
The same conclusion follows from an analysis of the
effect of doping on Tc in some other HTSC systems. At
x ≥ 0.25, the third Brillouin zone is fully depleted of
electrons and the Fermi surface acquires the shape
depicted in Fig. 2c. The conditions of nesting for vector
G4 = G/4 are violated and the Peierls gap disappears,
which leads to breakage of the superconducting state.
The proposed model provides for a natural explanation
of the shape of the Fermi surface for La2 – xSrxCuO4 and
other HTSC systems.

The dielectric Peierls gap ∆* formed according to
the proposed model is identified with the experimen-

∆, ∆*

∆

∆*

1
1
4
---, 

 1
4
--- 1

4
---, 

 1
4
--- 1, 

 
0

Fig. 10. Dependence of the superconducting gap ∆ (dashed
curve) and the Peierls gap ∆* (solid curve) on the direction
in the (kx, ky) plane of an HTSC crystal.
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tally observed pseudogap. The dependences of the
superconducting gap (∆) and the dielectric gap (∆*) on
the direction in the (kx, ky) plane predicted by the model
agree well with experiment even in the case of s pairing.

The proposed model qualitatively explains the
nature of the anomalous phonon dispersion, the onset
and breakage of superconductivity in doped HTSC sys-
tems, and the origin of superstructural reflections in the
neutron diffraction patterns. High critical temperatures
observed for cuprate HTSCs are related to their quasi-
two-dimensional character and the coexistence of
dielectric and metallic pairing in such systems.
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Abstract—The crystal structure and magnetic and electric transport properties of polycrystalline
La0.50D0.50MnO3 – γ manganites (D = Ca, Sr) were studied experimentally depending on the concentration of
oxygen vacancies. The La0.50Sr0.50MnO3 – γ system of anion-deficient compositions was found to be stable and
possess a perovskite structure only up to the γ = 0.25 concentration of oxygen vacancies, whereas, for the
La0.50Ca0.50MnO3 – γ system, we were able to obtain samples with the concentrations of oxygen vacancies up
to γ = 0.50. The stoichiometric La0.50D0.50MnO3 (D = Ca, Sr) compositions had O-orthorhombic (Ca) and tet-
ragonal (Sr) unit cells. The unit cell of the anion-deficient La0.50Sr0.50MnO3 – γ manganites also became
O-orthorhombic when the concentration of oxygen vacancies increased (γ > 0.16). Oxygen deficiency in
La0.50Sr0.50MnO3 – γ first caused the transition from the antiferromagnetic to the ferromagnetic state (γ ~ 0.06) and
then to the spin glass state (γ ~ 0.16). Supposedly, the oxygen vacancies in the reduced La0.50Sr0.50MnO3 – γ sam-
ples with γ ≥ 0.16 were disordered. The special feature of the La0.50Ca0.50MnO3 – γ manganites was a nonuni-
form distribution of oxygen vacancies in the La0.50Ca0.50MnO2.75 phase. In the La0.50Ca0.50MnO2.50 phase, the
type of oxygen vacancy ordering corresponded to that in Sr2Fe2O5, which led to antiferromagnetic ordering.
The specific electric resistance of the La0.50D0.50MnO3 – γ anion-deficient samples increased with increasing
oxygen deficiency. The magnetoresistance of all samples gradually increased as a result of the transition to the
magnetically ordered state. Supposedly, the La0.50Ca0.50MnO3 – γ manganites in the range of oxygen vacancy
concentrations 0.09 ≤ γ ≤ 0.50 had a mixed state and contained microdomains with different types of magnetic
ordering. The experimentally observed properties can be interpreted based on the model of phase layering and
the model of superexchange magnetic ordering. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The discovery of such collective electron phenom-
ena as giant magnetoresistance and metal–dielectric
or charge order–disorder phase transitions induced by
an external magnetic field aroused interest in
Ln1 − xDxMnO3-type compounds, where Ln is a triva-
lent rare-earth metal (La3+ or Y3+) and D is a divalent
metal such as Ca2+, Sr2+, Ba2+, Cd2+, and Pb2+ or Bi3+

[1–3]. The magnetic and electric properties of these
hole-substituted manganites have been the object of
many experimental and theoretical studies [4–7]. The
reason for this interest is the abundance and diversity of
properties of metals and dielectrics combined in com-
pounds of one type, which include systems with crystal
structure, spin, orbital, and charge ordering and, lastly,
systems that experience phase layering. These proper-
ties are a consequence of close interactions between the
lattice, charge, and spin degrees of freedom, which
result in complex phase diagrams of compounds of this
class [8–10].
1063-7761/03/9606- $24.00 © 21055
Currently, the systems studied most thoroughly are

 (D = Ca2+, Sr2+). The base
compound for the type of compositions under consider-
ation is LaMnO3. It exhibits antiferromagnetic dielec-
tric properties [5], and its magnetic structure is of the A
type and represents a collection of antiferromagneti-
cally arranged (001) ferromagnetic planes. The small
ferromagnetic component, which is a consequence of
the noncollinearity of the magnetic moments of manga-
nese ions, arises because of antisymmetric Dzyaloshin-
ski–Moriya exchange [11]; LaMnO3 is therefore a
weak ferromagnet.

The replacement of La3+ by Ca2+ (Sr2+) ions
increases the mean manganese valence, which pre-
serves compound electroneutrality, and formally results

in the formation of Mn4+ ions with the  electronic
configuration (total spin S = 3/2) [12]. It is assumed
that, in these systems, the eg electrons of Mn3+ are delo-

La1 x–
3+ Dx

2+Mn1 x–
3+ Mnx

4+O3
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calized and play the role of charge carriers. Such sub-
stituted manganite systems exhibit metal–dielectric
concentration phase transitions at 0.12 < x < 0.50 [12].
The properties of ferromagnets and metals appear in the
La1 – xCaxMnO3 and La1 – xSrxMnO3 systems almost
simultaneously. It is, however, not completely clear
whether or not the arising of properties of one type
favors the appearance of properties of another [13].

Two special concentrations x of substituent ions are
of interest for the La1 – xCaxMnO3 system. Most of the
recent works on these materials were concentrated on
the compositions with x = 0.30, which exhibit giant
magnetoresistance (on the order of 108% [14]) related
to the first-order phase transition from the paramag-
netic dielectric to the ferromagnetic metallic state at
TC = 270 K [15]. Another critical level of doping is x =
0.50. In contrast to x = 0.30, the magnetoresistance of
this composition is related to the first-order antiferro-
magnet–ferromagnet transition and the dielectric–metal
transition induced by an external magnetic field [16, 17].

The La0.50Ca0.50MnO3 compound is a paramagnetic
semiconductor above TC ≈ 260 K and a charge-ordered
antiferromagnet (of the CE type) below TN ≈ 180 K
(during heating). The CE magnetic structure type is a
chessboard ordering of C- and E-type magnetic unit
cells. The C magnetic structure type is in turn a collec-
tion of antiferromagnetically coupled (110) ferromag-
netic planes, and the E structure type is a collection of

antiferromagnetically coupled (1 0) ferromagnetic
planes. Between TC and TN , La0.50Ca0.50MnO3 consists
of ferromagnetic and paramagnetic phases [18, 19]. In
zero field, La0.50Ca0.50MnO3 is a dielectric in the whole
temperature range. Note that long-range charge and
antiferromagnetic orders in La0.50Ca0.50MnO3 are estab-
lished simultaneously (TN = ). Short-range charge
ordering, however, begins to arise at about 210 K, that
is, at a temperature much higher than that of the ferro-
magnet–antiferromagnet phase transition [20]. The eg

electrons in the charge-ordered state are localized in the
crystal lattice, which results in a time-independent peri-
odic distribution of the Mn3+ and Mn4+ ions.

The properties of La0.50Sr0.50MnO3 resemble those
of La0.50Ca0.50MnO3 in many respects. Ferromagnetic
ordering occurs in the La0.50Sr0.50MnO3 manganite at
TC = 320 K [12, 21]. Long-range antiferromagnetic
order arises at TN = 180 K, and the ferromagnetic and
antiferromagnetic phases coexist even to helium tem-
peratures [22]. No ordering of manganese ions of dif-
ferent valences (no charge ordering) occurs in the
La0.50Sr0.50MnO3 manganite; accordingly, an A-type
antiferromagnetic structure is formed.

In is generally believed that double exchange
between Mn3+–Mn4+ pairs determines the magnetic and
electric properties of manganites with perovskite struc-
tures [23, 24]. This model is based on real electron
exchange between two partially filled d shells of Mn3+

1

TC0
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and Mn4+. However, the ferromagnetic properties of
manganites cannot be explained solely by double
exchange. According to Goodenough [25], the ferro-
magnetic properties are determined not only by double
exchange but also by the special nature of superex-
change interactions in the Mn3+–O–Mn3+ and Mn3+–O–
Mn4+ Jahn–Teller ionic systems. The orbital configura-
tion of 3d electrons depends on the positions of manga-
nese nuclei if static Jahn–Teller distortions are removed
(the Goodenough quasi-static hypothesis). In the super-
exchange model, the ferromagnetic contribution is deter-
mined by the virtual electron transitions from the Mn3+

half-filled eg orbitals to the unoccupied eg orbitals.

The contributions of double exchange and superex-
change interactions can be controlled by varying the
Mn3+/Mn4+ ratio. It is, therefore, of interest to study the
properties of the La1 – xDxMnO3 – γ compounds depend-
ing on the mean valence of manganese ions. The
Mn3+/Mn4+ ratio can be varied by at least three meth-
ods: (1) by the replacement of lanthanum with divalent
alkaline-earth metal ions, (2) by the replacement of
manganese by magnetic and nonmagnetic ions of vari-
ous valences, and (3) by controlling oxygen nonstoichi-
ometry [26].

The dependence of magnetic and magnetoresistive
properties on oxygen nonstoichiometry in hole-substi-
tuted manganites with perovskite structures has scarcely
been studied. The removal of oxygen anions from the

crystal lattice of 
transforms Mn4+ ions into Mn3+ and decreases the coor-
dination number of manganese (6  5).

Very interesting magnetic and magnetoresistive
properties have recently been reported for the
La1 − xCaxMnO3 – γ [27–29] and La1 – xBaxMnO3 – γ [30, 31]
oxygen-deficient compositions. The results of these
studies were evidence of such unusual properties of
these strongly reduced manganites as a large ferromag-
netic component, a high magnetic ordering tempera-
ture, and a large magnetoresistance in spite of the
absence of Mn3+–Mn4+ pairs.

In this work, we studied the magnetic and electric
properties of the anion-deficient La0.50D0.50MnO3 – γ
manganites (D = Sr, Ca). In spite of equal substitution
levels, the reduced samples exhibited quite different
properties determined by the special features of the
arrangement of oxygen vacancies.

2. EXPERIMENTAL

Polycrystalline stoichiometric La0.50D0.50MnO3
(D = Sr, Ca) samples were prepared by the standard
ceramic technique; namely, La2O3 (99.99%), CaCO3
(99.99%), and MnO2 (99.99%) were mixed in the
required ratio between the cations and thoroughly
ground. Prior to weighing, La2O3 was annealed at
1000°C for 5 h to remove H2O and CO2. The mixtures

La1 x–
3+ Dx

2+Mn1 x 2γ+–
3+ Mnx 2γ–

4+ O3 γ–
2–
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were pressed into pellets 2 cm in diameter and 1.5 cm
high with a hydraulic press in a steel press mold under
an approximately 108 Pa pressure and calcined at
1100°C for 2 h in air. The pellets were then reground,
pressed, and sintered at 1550°C for 2 h in air, which
was followed by slow cooling in a furnace to room tem-
perature. The rate of cooling was 100 K h–1. During the
synthesis, the samples were on the surface of platinum.
The temperature in the furnace with chromide–lantha-
num heaters was measured by a platinum–platinum–
rhodium (10%) thermocouple. The cold thermocouple
junction was in ice. The rate of heating and cooling the
samples was controlled by an RIF-101 device.

The chemical reaction of the synthesis of
La0.50D0.50MnO3 manganites (D = Sr, Ca) can be writ-
ten as

(1)

The content of oxygen in all synthesized samples
was determined thermogravimetrically. It was found
that oxygen concentrations were slightly lower than
stoichiometric and corresponded to the formula
La0.50D0.50MnO2.99 ± 0.01 (D = Ca, Sr). The X-ray powder
patterns were obtained at room temperature on a
DRON-3 diffractometer (CrKα radiation) in the angle
range 30° ≤ 2θ ≤ 100°. The neutron diffraction patterns
of La0.50Ca0.50MnO2.50 were recorded at the Neutron
Scattering Center (BENSC, Hahn–Meitner Institute,
Berlin) on an E9 (FIREPOD) neutron powder diffracto-
meter with a λ = 1.79686 Å wavelength and a ∆θ ~
0.002 scan step.

Oxygen vacancies in the samples synthesized as
described above were formed by annealing the samples
in evacuated quartz ampules at 900°C for 24 h with the
use of tantalum metal as an oxygen absorber. The fol-
lowing anion-deficient compositions were prepared:
La0.50Ca0.50MnO3 – γ (γ = 0.01, 0.04, 0.10, 0.12, 0.17,
0.20, 0.22, 0.25, 0.27, 0.30, 0.31, 0.32, 0.35, 0.37, 0.45,
0.48, and 0.50) and La0.50Sr0.50MnO3 – γ (γ = 0.01, 0.06,
0.09, 0.12, 0.16, 0.17, 0.20, and 0.25). The reduction
followed the reaction

(2)

The final oxygen contents were calculated from
sample mass changes after the reduction. Usually, a
2−3 g sample was loaded into the ampule to decrease
the error of measurements. The relative error of mea-
surements did not exceed 0.3%. The content of oxygen
in the reduced samples was controlled by subjecting

0.25La2O3 0.50Ca Sr( )CO3 0.50Mn2O3+ +

La0.50Ca Sr( )0.50MnOz  +  0.50CO 2 ↑ .

La0.50Ca Sr( )0.50MnO3
2γ
5

------Ta+

La0.50Ca Sr( )0.50MnO3 γ–
γ
5
---Ta2O5.+
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them to oxidation in air at 900°C for 24 h. The corre-
sponding chemical reaction can be written as

(3)

An increase in the weight of the samples after their
oxidation corresponded to the weight loss in the reduc-
tion. This is evidence of a topotactic reduction charac-
ter. Note that an important feature of the anion-deficient
perovskite compounds is the possibility of their oxida-
tion with restoration of the initial composition, struc-
ture, and physical properties.

The magnetization measurements were performed
on an MPMS-7 quantum SQUID magnetometer and an
OI-3001 commercial vibrating-coil magnetometer in
the temperature range 4–380 K. The magnetic transi-
tion temperature was assumed to correspond to the
onset of a sharp increase in the dynamic magnetic sus-
ceptibility or static magnetization measured in a
100-Oe field. Dynamic magnetic susceptibilities were
measured with a mutual induction bridge in the temper-
ature range 77–350 K. The field amplitude was
200 A/m, and the field frequency was 1200 Hz. The
specific resistance of the samples was measured by the
standard four-point technique in the temperature range
77–350 K. Indium contacts were formed by ultrasonic
deposition. Magnetoresistance calculations were per-
formed by the equation

(4)

where MR[%] is the negative isotropic magnetoresis-
tance, ρ(H) is the specific electric resistance in a 9-kOe
magnetic field, and ρ(0) is the specific electric resis-
tance in zero magnetic field. The electric current was
directed along the longer side of the samples. The mag-
netic field was applied parallel to the electric current in
the sample.

3. RESULTS AND DISCUSSION

The anion-deficient samples of the
La0.50Sr0.50MnO3 – 

 

γ

 

 series (La–Sr) were obtained in the
single-phase state up to the 

 

γ

 

 = 0.25 concentration of
oxygen vacancies. The sample with the nominal con-
tent of oxygen vacancies 

 

γ

 

 = 0.30 contained small
amounts of two impurity phases with K

 

2

 

NiF

 

4-

 

 and
NaCl-type structures in addition to the major perovskite
phase. Supposedly, these impurities were the
La

 

2 

 

−

 

 

 

x

 

Sr

 

x

 

MnO

 

4

 

 and MnO oxides. According to the X-
ray data, the La–Sr samples with 0 

 

≤

 

 

 

γ

 

 < 0.16 had tet-
ragonal unit cells (Fig. 1). An increase in the concentra-
tion of oxygen vacancies above 

 

γ

 

 = 0.16 resulted in the
formation of 

 

O-

 

orthorhombic unit cells, although the
degree of symmetry distortion decreased. The unit cell
parameters for the anion-deficient La

 

0.50

 

Sr

 

0.50

 

MnO

 

3 – 

 

γ

 

compositions are listed in the table.

La0.50Ca Sr( )0.50MnO3 γ–
γ
2
---O2+

La0.50Ca Sr( )0.50MnO3.

MR %[ ] ρ H( ) ρ 0( )–[ ] /ρ 0( ){ } 100%,×=
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The anion-deficient samples of the
La0.50Ca0.50MnO3 – γ series (La–Ca) had O-orthorhom-
bic unit cells. Starting with γ = 0.27, X-ray crystal
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Fig. 1. X-ray powder patterns of La0.50Sr0.50MnO3 – γ
anion-deficient samples with (a) γ = 0.01, (b) γ = 0.12, and
(c) γ = 0.17 recorded at room temperature. Shown in the
insets are the (211) X-ray reflections for the corresponding
samples.

100
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structure reflections corresponded to those characteris-
tic of an Sr

 

2

 

Fe

 

2

 

O

 

5

 

-type structure with MnO

 

4

 

 tetrahedra
and MnO

 

6

 

 octahedra as basic structure units [32, 33].
The unit cell parameters of several anion-deficient
La

 

0.50

 

Ca

 

0.50

 

MnO

 

3 – 

 

γ

 

 samples were reported in [28, 29].

According to the dynamic magnetic susceptibility
data, the La

 

0.50Sr0.50MnO2.99 anion-deficient sample has
a magnetic ordering temperature of 320 K, which is
almost equal to the temperature TC of stoichiometric
La0.50Sr0.50MnO3 [22]. The temperature of the magnetic
transition from the antiferromagnetic to the ferromag-
netic state, however, sharply decreases compared with the
stoichiometric sample, for which it equals 180 K [22].
According to magnetization measurements, the transi-
tion in La0.50Sr0.50MnO2.99 in a 100-Oe field during
heating begins at 55 K and ends at 100 K (Fig. 2). A 5 K

M, G cm3/g

4

3

2

1

0 50 100 150 200 250 300 350
T, K

La0.50Sr0.50MnO2.99

M, G cm3/g

80

60

40

20
0 40 80 120

T, K

FC

H = 100 Oe

Fig. 2. Temperature dependence of magnetization for the
La0.50Sr0.50MnO2.99 anion-deficient sample in a 100-Oe
external magnetic field. Shown in the inset is the low-tem-
perature dependence of magnetization of the same sample
in a 15-kOe field. Measurements were performed after cool-
ing the sample in the corresponding magnetic field (FC).
Arrows indicate the direction of measurements.

FC

H = 15 kOe
Symmetry type and parameters a, b, c, and V of unit cells for La0.50Sr0.50MnO3 – γ (0 < γ ≤ 0.25) anion-deficient compositions

Chemical composition Unit cell symmetry a, Å b, Å c, Å V, Å3

La0.50Sr0.50MnO2.99 Tetragonal 5.457 7.760 231.08

La0.50Sr0.50MnO2.94 Tetragonal 5.454 7.792 231.76

La0.50Sr0.50MnO2.91 Tetragonal 5.454 7.793 231.78

La0.50Sr0.50MnO2.88 Tetragonal 5.484 7.753 233.19

La0.50Sr0.50MnO2.84 O-Orthorhombic 5.462 5.484 7.757 232.37

La0.50Sr0.50MnO2.83 O-Orthorhombic 5.462 5.484 7.757 233.88

La0.50Sr0.50MnO2.80 O-Orthorhombic 5.480 5.487 7.759 233.52

La0.50Sr0.50MnO2.75 O-Orthorhombic 5.506 5.511 7.783 236.16
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temperature hysteresis is evidence of a first-order phase
transition.

An increase in the field to 15 kOe weakly influences
the temperature interval of the phase transition in the
La0.50Sr0.50MnO2.99 anion-deficient sample during heat-
ing. During cooling, a large magnetization hysteresis is
observed, which is evidence that the magnetic field
effectively stabilizes the ferromagnetic phase in
La0.50Sr0.50MnO2.99. The magnetic moment in the ferro-
magnetic phase of this La0.50Sr0.50MnO2.99 sample is
close to the expected value for the parallel orientation
of all manganese ion spins, the magnetic moments of
Mn3+ and Mn4+ being equal to 4µB and 3µB , respec-
tively (Fig. 2).

The field dependences of magnetization at various
temperatures for the anion-deficient La0.50Sr0.50MnO3 – γ
samples are shown in Fig. 3. An increase in the concen-
tration of oxygen vacancies initially causes an increase

La0.50Sr0.50MnO3 – γ

ZFC

T = 40 K

γ = 0.01

ZFC

γ = 0.06

0.12

0.01

0.25

T = 5 K

(a)

(b)

M, G cm3/g

80

60

40

20

0

30

20

10

0 4 8 12 16
H, kOe

Fig. 3. Field dependences of magnetization for the
La0.50Sr0.50MnO3 – γ anion-deficient samples with γ = 0.01,
0.06, 0.12, and 0.25 at (a) 5 and (b) 40 K. The samples were
zero-field-cooled (ZFC). The arrows denote the directions
of field variations. The measurements shown in the upper
figure were performed in the field decreasing mode.
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in the spontaneous magnetic moment, which then grad-
ually decreases. A maximum spontaneous magnetic
moment is observed for the La0.50Sr0.50MnO2.94 anion-
deficient sample; it equals 2.97µB/formula unit. This
value is below that calculated for completely ferromag-
netic ordering of manganese ion spins (3.62µB/formula
unit). Below 100 K, the La0.50Sr0.50MnO3 – γ anion-defi-
cient compositions exhibit metamagnetic behavior in
fields higher than 6 kOe. The highest attainable field on
the unit that we used, 16 kOe, however, proved to be too
low for effecting the complete transition to the ferro-
magnetic state. A field magnetization hysteresis was
observed for the La0.50Sr0.50MnO2.99 sample at 40 K
(Fig. 3).

An increase in the concentration of oxygen vacan-
cies to γ = 0.06 lowers the Curie temperature to TC =
300 K, and the low-temperature phase transition from
the antiferromagnetic to the ferromagnetic state disap-
pears. In La0.50Sr0.50MnO2.94, the Curie temperature

La0.50Sr0.50MnO3 – γ

FC

γ = 0.25

FC

γ = 0.16

0.12

0.09

H = 100 Oe

(a)

(b)

M, G cm3/g

6

3

0

0.03

0.02

0.01

0 100 200 300

T, K

H = 100 Oe

Fig. 4. Temperature dependences of FC magnetization in a
100-Oe field for the La0.50Sr0.50MnO3 – γ anion-deficient
samples with γ = 0.09, 0.12, and 0.16 (a) and 0.25 (b).
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decreases to 212 K (Fig. 4). No magnetization satura-
tion is observed in fields up to 16 kOe, as is character-
istic of magnets with weakened cooperative magnetic
interactions. The Curie temperatures for the
La0.50Sr0.50MnO2.88 and La0.50Sr0.50MnO2.84 samples are
248 and 209 K, respectively (Fig. 4). For the samples
with 0.17 ≤ γ ≤ 0.25, the temperature of the transition to
the paramagnetic state is difficult to determine because
of substantial transition smearing. The temperature
dependences of zero-field-cooled (ZFC) and field-
cooled (FC) magnetizations differ insignificantly for
the compositions with 0 ≤ γ ≤ 0.16. Such a magnetiza-
tion behavior is evidence that these compounds retain
long-range ferromagnetic order in the temperature
interval under consideration.

FC
La0.50Sr0.50MnO2.83

ZFC

Tf

H = 100 Oe

M, G cm3/g
1.5

1.0

0.5

0 30 60 90 120 150 180

T, K

Fig. 5. Temperature dependences of ZFC and FC magneti-
zations in a 100-Oe field for the La0.50Sr0.50MnO2.83 anion-
deficient sample.

La0.50Sr0.50MnO3 – γ

T, K

300

200

100

0 0.05 0.10 0.15 0.20 0.25

γ

F

P

A

SG

Fig. 6. Magnetic phase diagram of the system of
La0.50Sr0.50MnO3 – γ anion-deficient compositions; A
stands for antiferromagnet; F, for ferromagnet; P, for para-
magnet; and SG, for spin glass.
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The smeared phase transition and the characteristic
temperature behavior of the ZFC magnetization show
that the magnetic state of the 0.17 ≤ γ ≤ 0.25 anion-defi-
cient compositions is drastically different. The
La0.50Sr0.50MnO2.83 composition exhibits different ZFC
and FC magnetization behaviors. The temperature
dependences of magnetization obtained by heating this
composition in a 100-Oe field after field cooling (FC)
and zero field cooling (ZFC) are shown in Fig. 5. Both
curves have maxima at about Tf = 50 K. The ZFC and
FC magnetizations are approximately equal above this
temperature but substantially different below it. The
ZFC magnetization first increases to its maximum
value at 50 K as temperature grows and then smoothly
decreases to zero, whereas the FC magnetization is
almost constant at low temperatures. A sharp increase
in the ZFC magnetization in the temperature interval
40–45 K is evidence of a strong decrease in magnetic
anisotropy, which is characteristic of cooperative phe-
nomena. Above Tf , no anomalous magnetization behav-
ior is observed. The low spontaneous magnetic moment
value corresponding to the La0.50Sr0.50MnO2.83 anion-
deficient composition is likely caused by a nonuniform
magnetic state, which is a collection of antiferromagnet-
ically and ferromagnetically ordered clusters. The com-
petition between antiferromagnetic and ferromagnetic
cluster interactions can lead to the spin glass state [34].
Also note that a temperature of 50 K is typical of cluster
spin glass states in manganites [35]. Spontaneous magne-
tization measurements for La0.50Sr0.50MnO2.83 encounter
certain difficulties because of the Langevin shape of the
field dependence of its magnetization, which is charac-
teristic of spin glasses or superparamagnets.

A further decrease in the content of oxygen to γ =
0.25 sharply decreases the magnetic susceptibility of
the La–Sr samples, but the field and temperature depen-
dences of magnetization remain qualitatively
unchanged (Figs. 3, 4). The temperature corresponding
to the ZFC and FC curve maxima for the
La0.50Sr0.50MnO2.75 sample (Tf = 40 K) is slightly lower
than that for the La–Sr sample with γ = 0.17.

Magnetic property measurements allowed us to con-
struct the magnetic phase diagram shown in Fig. 6. The
loss of oxygen causes a sharp decrease in the tempera-
ture and then the disappearance of the transition to the
antiferromagnetic state for the La–Sr samples with
0.01 < γ < 0.06, whereas the Curie temperature and
spontaneous magnetization decrease comparatively
insignificantly. The transition from the long-range to
short-range ferromagnetic order occurs close to the
threshold value of the concentration of oxygen vacan-
cies, at γ ~ 0.16. Simultaneously, the critical tempera-
ture decreases severalfold in a very narrow interval of
vacancy concentrations. We observe a well-defined
trend of magnetic susceptibility and spontaneous mag-
netization lowering as the concentration of oxygen
vacancies increases.
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A fundamentally different trend is observed for the
La–Ca series. According to [28, 29], the behavior of
La0.50Ca0.50MnO3 – γ at γ ≤ 0.15 is in many respects sim-
ilar to that of the La–Sr samples. In both systems, the
low-temperature antiferromagnetic state is suppressed
because of the development of the ferromagnetic com-
ponent, which is subsequently replaced by the spin
glass component. However, at concentrations of vacan-
cies above γ = 0.15, the behaviors of the two systems
become qualitatively different. In the La–Sr series, an
increase in the concentration of oxygen vacancies
causes a sharp decrease in magnetic susceptibility,
whereas, in the La–Ca series, the ferromagnetic com-
ponent sharply increases and reaches a maximum at a
γ ~ 0.30 concentration of vacancies [29]. A further
increase in the number of oxygen vacancies (γ > 0.30)
in the La–Ca samples fairly smoothly decreases the fer-
romagnetic component and the temperature of the tran-
sition to the paramagnetic state. The decrease in the fer-
romagnetic component coincides with the development
of a perovskite-like structure of the Sr2Fe2O5 type based
on the initial perovskite cell.

In order to understand what happens with the mag-
netic structure at high oxygen vacancy concentrations,
we performed a neutron diffraction study of
La0.50Sr0.50MnO2.50 at various temperatures. The neu-
tron diffraction patterns show that additional reflections
begin to appear below 100 K (Fig. 7). As the transition
from the magnetically ordered to the paramagnetic
state occurs at 120 K (this follows from the results of
magnetic measurements), the conclusion can be made
that the additional reflections have a magnetic nature.
Note that the intensity of different magnetic reflections
increases differently as temperature lowers, which can
be caused by a rearrangement of the magnetic structure
or the presence of a weak magnetic sublattice. The
spontaneous magnetization value is very small, and the
magnetic contribution to nuclear reflections is insignif-
icant. This leads us to conclude that the magnetic struc-
ture is antiferromagnetic.

The electric resistance of the La0.50Ca0.50MnO3 – γ
anion-deficient samples with 0.09 ≤ γ ≤ 0.50 is charac-
teristic of semiconductors and continuously increases
as temperature lowers (Fig. 8). At low temperatures, the
specific resistance of the La–Ca samples satisfies the
equation ln(ρ) ∝  T–1 (see inset in Fig. 8). The behavior
of the magnetoresistance of the samples with 0.09 ≤ γ ≤
0.50 correlates with the absence of any electric resis-
tance anomalies close to the temperature of the transi-
tion to the magnetically ordered state. Below this tem-
perature, magnetoresistance begins to increase continu-
ously toward liquid nitrogen temperatures without a
peak on its temperature dependence. Note that the elec-
tric transport properties of the La−Sr samples with
0.06 ≤ γ ≤ 0.25 are similar to those of the La–Ca sam-
ples shown in Fig. 8.

We modernized the magnetic phase diagram of the
La0.50Ca0.50MnO3 – γ system, which was initially sug-
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gested in [28], taking into account the new experimen-
tal data. The evolution of the magnetic state of the
La−Ca system is depicted in the phase diagram (Fig. 9).
Long-range ferromagnetic order in the stoichiometric
La0.50Ca0.50MnO3 sample is established at T = 250 K,
and long-range antiferromagnetic order, at T = 180 K
[18, 19]. Deviations from stoichiometry weakly influ-
ence the ferromagnetic critical point, whereas the anti-
ferromagnetic state becomes sharply suppressed by the
ferromagnetic state. In the concentration range 0.02 <
γ < 0.09, the samples behave as ferromagnets with
inclusions of clusters with substantially weakened
exchange interactions. Below 40 K, the ZFC magneti-
zation of the anion-deficient compositions increases as
temperature grows. This is evidence of changes in
anisotropy likely caused by sample inhomogeneity. At
γ > 0.09, we observe a sharp decrease in spontaneous
magnetization, whereas the anomalous behavior of
magnetization below 40 K becomes more pronounced.
Nevertheless, the divergence of the ZFC and FC mag-
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Fig. 7. Neutron diffraction powder patterns of the
La0.50Ca0.50MnO2.50 anion-deficient sample at (a) 300,
(b) 100, and (c) 10 K.
SICS      Vol. 96      No. 6      2003



1062 TROYANCHUK et al.
netizations begins at fairly high temperatures and lin-
early decreases as the concentration of vacancies
increases. Close to the γ = 0.30 concentration of oxygen
vacancies, spontaneous magnetization sharply
increases (Fig. 9) and reaches a maximum of about
40% of the value calculated for purely ferromagnetic
ordering of the manganese ion spins. According to
Gonzáles-Calbet et al. [36–38], the La0.50Ca0.50MnO2.75

sample is a pure phase with a unique temperature
dependence of the distribution of oxygen vacancies.
Judging from high-resolution electron microscopy
data, oxygen vacancies predominantly concentrate in
the domain walls of microdomains, which have a small
thickness compared with the other two dimensions.
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Fig. 8. Temperature dependences of (a) specific electric
resistance and (b) magnetoresistance measured in a 9-kOe
external magnetic field for the La0.50Ca0.50MnO3 – γ anion-
deficient samples with γ = 0.25, 0.35, and 0.50. Shown in
the inset are the dependences of the logarithm of the specific
electric resistances of the same samples on reciprocal tem-
perature.
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The behavior of magnetic properties shows that
vacancy distributions of the same type as in the
La0.50Ca0.50MnO2.75 phase are observed in a fairly wide
range of oxygen vacancy concentrations, namely,
0.09 ≤ γ ≤ 0.50. It is most likely that spin-glass-type
systems with a fairly uniform distribution of oxygen
vacancies and phases of the La0.50Ca0.50MnO2.75 type
coexist in the 0.09 < γ < 0.30 concentration interval. In
the 0.30 ≤ γ ≤ 0.50 interval, the La0.50Ca0.50MnO2.50
antiferromagnetic phase gradually replaces the
La0.50Ca0.50MnO2.75 phase. As the Curie (Néel) temper-
ature depends on the concentration of vacancies almost
linearly, it can be suggested that either the composition
of the La0.50Ca0.50MnO2.75 phase is not strictly constant,
or microdomains of this phase are exceedingly small,
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Fig. 9. (a) Dependence of spontaneous magnetic moment
on the concentration of oxygen vacancies and (b) magnetic
phase diagram of the La0.50Ca0.50MnO3 – γ system of
anion-deficient compositions; A1 stands for charge-ordered
antiferromagnet; A2, for charge-disordered antiferromag-
net; F + P, for inhomogeneous ferromagnet; P, for paramag-
net; and SG, for spin glass.
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and the Curie point is determined by the interaction of
magnetic domains of different types. La0.50Ca0.50MnO2.75-
type phases are not formed in the La–Sr samples,
because the perovskite phase becomes thermodynami-
cally unstable in these systems.

The Mn3+–O–Mn3+ superexchange interactions are
anisotropic in orbitally ordered phases (positive in the
(001) plane and negative in the [001] direction) and iso-
tropic in orbitally disordered phases (positive in all
directions). The La0.50Ca(Sr)0.50MnO3 stoichiometric
compositions are orbitally ordered in the ground state.
For this reason, Mn3+–O–Mn3+ superexchange is nega-
tive and does not contribute to magnetization. The
appearance of oxygen vacancies removes orbital order-
ing and increases double exchange (Mn3+–O–Mn4+)
and superexchange (Mn3+–O–Mn3+) contributions to
the resultant magnetization. The mean valence and the
coordination number of manganese ions and, accord-
ingly, the ferromagnetic double exchange contribution
decrease as the concentration of oxygen vacancies
increases. A decrease in the coordination number of
manganese changes the sign of Mn3+–O–Mn3+ superex-
change from positive to negative. It follows that the
antiferromagnetic component of exchange interactions
increases as the concentration of oxygen vacancies
grows. In the La–Sr compositions with 0.06 ≤ γ ≤ 0.16,
this results in a gradual Curie temperature and sponta-
neous magnetic moment lowering without radical
changes in the magnetic state. The γ = 0.17 concentra-
tion of oxygen vacancies is likely to be critical; at this
concentration, the volumes of two phases (ferromag-
netic and antiferromagnetic) become comparable. The
system is divided into clusters with different types of
magnetic ordering. The competition between ferromag-
netically and antiferromagnetically ordered cluster
interactions results in the arising of a spin-glass-type
state with an approximately 50 K temperature of freez-
ing the magnetic moments of clusters.

4. CONCLUSIONS

We performed an experimental study of the crystal
structure, magnetic, and electric transport properties of
the La0.50D0.50MnO3 – γ (D = Ca, Sr) anion-deficient
manganites with perovskite structures. The
La0.50Sr0.50MnO3 – γ anion-deficient compositions were
found to be stable and form perovskite structures only
up to the γ = 0.25 concentration of oxygen vacancies,
whereas we were able to obtain samples with oxygen
vacancy concentrations up to γ = 0.50 for
La0.50Ca0.50MnO3 – γ. The critical concentrations of oxy-
gen vacancies at which unit cell symmetry type
changed were observed. An increase in the concentra-
tion of oxygen vacancies first suppressed the orbitally
ordered antiferromagnetic state and established long-
range ferromagnetic order and then caused long-range
ferromagnetic order destruction. The competition
between ferromagnetically and antiferromagnetically
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ordered clusters resulted in the formation of the spin
glass state. The specific electric resistance of
La0.50D0.50MnO3 – γ anion-deficient samples grew and
the metal–semiconductor transition disappeared as
oxygen deficiency increased. The magnetoresistance of
all anion-deficient samples gradually increased
depending on temperature in the transition to the mag-
netically ordered state. Supposedly, oxygen vacancies
were disordered in the La0.50Sr0.50MnO3 – γ reduced
compositions with γ ≥ 0.16. The special feature of the
La0.50Ca0.50MnO3 – γ manganites was a nonuniform dis-
tribution of oxygen vacancies in the La0.50Ca0.50MnO2.75
phase. This increased the ferromagnetic component. In
the La0.50Ca0.50MnO2.50 phase, oxygen vacancies were
ordered as in Sr2Fe2O5, which resulted in antiferromag-
netic ordering. The observed experimental properties
can be interpreted based on the model of phase layering
and the superexchange magnetic ordering model.
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Abstract—A system of Abrikosov vortices in a quasi-two-dimensional HTSC plate is considered for various
periodic lattices of pinning centers. The magnetization and equilibrium configurations of the vortex density for
various values of external magnetic field and temperature are calculated using the Monte Carlo method. It is
found that the interaction of the vortex system with the periodic lattice of pinning centers leads to the formation
of various ordered vortex states through which the vortex system passes upon an increase or a decrease in the
magnetic field. It is shown that ordered vortex states, as well as magnetic field screening processes, are respon-
sible for the emergence of clearly manifested peaks on the magnetization curves. Extended pinning centers and
the effect of multiple trapping of vortices on the behavior of magnetization are considered. Melting and crys-
tallization of the vortex system under the periodic pinning conditions are investigated. It is found that the vortex
system can crystallize upon heating in the case of periodic pinning. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

A large number of recent publications are devoted to
experimental investigations on the interaction of an
Abrikosov vortex lattice with a periodic artificially cre-
ated structure of pinning centers in the form of micro-
holes as well as submicrometer particles of a magnetic
or nonmagnetic material (see, for example, [1–3] and
the literature cited therein). Experiments reveal singu-
larities on the magnetization curves as well as on the
curves describing the magnetic field dependence of the
critical current and resistivity, which are interpreted as
regimes of matching between the vortex lattice and the
lattice of pinning centers. Direct observation of the
regimes of matching the vortex system to the periodic
lattice of pinning centers was carried out using
Lorentz force microscopy [4] and scanning Hall magne-
tometry [5].

The complexity of such experiments and the inter-
pretation of the observed effect necessitate the use of
numerical simulation, including that based on the
Monte Carlo method. The Monte Carlo technique was
used earlier for obtaining new results for phase transi-
tions and the dynamics of a two-dimensional Abrikosov
vortex lattice in a model system imitating layered high-
temperature superconductors (HTSC). For example, it
was shown in [6–11] that a phase transition (melting of
a triangular lattice resulting in the formation of vortex
liquid) is observed in the absence of defects. In the
presence of defects, a phase of “rotating lattice” is
formed between the phases of the vortex crystal and the
vortex liquid. The vortex system in this phase has the
form of lattice islands rotating around pinning centers.
The results of numerical calculation of magnetization
1063-7761/03/9606- $24.00 © 21065
and magnetic flux distribution in a quasi-two-dimen-
sional HTSC plate with a random distribution of pin-
ning centers were reported in our earlier publications
[12–14], where a new method based on the Monte
Carlo algorithm was developed for a large canonical
ensemble with a number of singularities reflecting the
behavior of vortex systems in layered HTSC materials.
This method enabled us to obtain the equilibrium distri-
bution of vortex density upon a change in the external
magnetic field H and to calculate the M(H) depen-
dences for an arbitrary arrangement of pinning centers
at various temperatures.

Here, we report on new results of simulation of the
Abrikosov vortex system using the Monte Carlo
method in the case of periodic pinning. The magnetiza-
tion curves and the patterns of vortex density distribu-
tion are calculated for various defect lattices in a wide
range of temperatures and fields. It is shown that, in the
case of periodic pinning, the curves describing the mag-
netic field dependence of magnetization display a num-
ber of peaks associated with the interaction between the
vortex lattice and the lattice of pinning centers. Differ-
ent reasons for the emergence of these singularities on
the magnetization curve are indicated for the first time.

In addition, we discovered an ordering of the vortex
system with periodic pinning upon heating, viz., the
inverse crystallization effect. Such a peculiar behavior
of correlated systems is extremely uncommon in
nature. Inverse crystallization was observed in some
magnetic materials [15] as well as in polymer systems
[16]. In a recent publication [17], inverse crystallization
was discovered in a system of vortices with random
pinning. Inverse crystallization in a system of Abriko-
sov vortices with periodic pinning is predicted by us for
003 MAIK “Nauka/Interperiodica”
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the first time and has a fundamentally different physical
origin as compared to random pinning.

2. MODEL 
AND COMPUTATIONAL PROCEDURE

Let us consider a three-dimensional bulk sample of
a layered (in the xy plane) HTSC. The sample has a
finite size l in the x direction and is infinitely large in the
y and z directions. It is placed in a magnetic field paral-
lel to the z axis, which rules out demagnetization
effects. Assuming that the interaction between layers in
HTSC is weak, we will carry out calculations for a
quasi-two-dimensional (in the xy plane) plate of thick-
ness d, which simulates a superconducting layer. In
other words, we “cut” a layer of thickness d, which will
be treated below, along the z axis.

We consider a 2D system of Abrikosov vortices in
the form of model classical particles with a long-range
potential in the plate placed in an external magnetic
field H. The thermodynamic Gibbs potential of the vor-
tex system in such a plate has the form

where N is the number of vortices in the system;

is the self-energy of a vortex [18]; Φ0 = hc/2e; λ is the
magnetic field penetration depth in the superconductor;
λ0 = λ(T = 0); d is the superconducting layer thickness;
NdΦ0H/4π is the energy of interaction of a vortex with
the external field H; U(rij) = U0K0(rij/λ) is the energy of

paired interaction of vortices; U0 = ; K0 is
the Bessel function of the imaginary argument; rij is the
distance between vortices;

is the energy of interaction between the ith vortex and
Meissner currents passing in the y direction over the
plate surface; Up(ri) is the energy of interaction
between the ith vortex and pinning centers; Usurf is the
energy of interaction of the vortex system with the
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superconductor surface [14]; and 

 

ξ

 

0

 

 is the vortex core
size for 

 

T 

 

= 0.
We introduce pinning centers to study the behavior

of a system with defects. In this case, the energy of
interaction with a pinning center was chosen in the
model form,

where 

 

α

 

 is the parameter characterizing the depth of the
potential well of a defect and 

 

ξ

 

 is the coherence length.
Such a choice of the sizes and depth of pinning corre-
sponds to the case when only one vortex can be pinned
at the center.

The magnetic field induction in the given geometry
was calculated using the following formula taking into
account the contribution of Meissner currents:

We have also taken into account the fact that the flux
carried by each vortex depends on the distance from the
plate edge [14].

In our computations, we used the approach devel-
oped earlier and based on the Monte Carlo algorithm
for a grand canonical ensemble [13, 14]. The method
enables us to obtain the equilibrium vortex density dis-
tribution for given extrinsic parameters (magnetic field

 

H

 

, temperature 

 

T

 

, and the distribution and type of pin-
ning centers). Using this distribution, we can calculate
magnetization 

 

M

 

 and induction 

 

B

 

. Thus, the method
makes it possible to determine both integrated charac-
teristics of a superconductor and visual patterns of
magnetic flux distribution. Such an approach differs
fundamentally in some respects from familiar computa-
tional methods; namely, it ensures the most correct
inclusion of the effect of the plate boundary, operation
in a wide range of temperatures 0 < 

 

T

 

 < 

 

T

 

c

 

, and inclu-
sion of any distribution of any type of defects.

For simulating, we use parameters of a layered
superconductor Bi
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Sr
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 = 0.27 nm, 
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180 nm, 

 

ξ

 

0

 

 = 2 nm, and 
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 = 84 K [19]. The temperature
dependence of the magnetic field penetration depth is
given in the form [11]

Computations were made for plates having a size of 5 
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 x

 

 size in the region in question
was chosen so that our analysis could be confined to
only the first terms in the expression for the interaction
of vortices with the surface and, on the other hand, con-
siderable errors due to the application of periodic
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boundary conditions in the computation of vortex inter-
action could be avoided. The y size varied depending on
the pinning lattice period so that the periodic boundary
conditions were not violated. The maximal range of
variation of the external field H is limited only by the
computer power and, accordingly, computer time. In
the computations described here, the range of the exter-
nal field variation was –0.1 T ≤ H ≤ 0.1 T.

3. RESULTS AND DISCUSSION

The presence of the lattice of pinning centers leads
to the emergence of commensurability effects between
the number of vortices and the number of defects
responsible for the formation of ordered configurations
of the system of vortices, which often differ consider-
ably from the conventional triangular lattice. In turn,
the ordered structure of the vortex system leads to sin-
gularities in the magnetization and in the magnetic field
dependences of the critical current and resistivity.

Reichhardt et al. [20] used the molecular dynamics
method to analyze the behavior of a vortex system in
the presence of square and triangular lattices of point
defects and discovered a variety of ordered configura-
tions. They discovered that the vortex system is ordered
only for definite matching fields, when the number of
vortices is multiple to the number of defects. However,
the calculations in [20] were made under periodic
boundary conditions in the canonical ensemble, i.e., for
a given fixed number of vortices. In addition, the
authors of [20] considered the behavior of the vortex
system only at T = 0.

The formation of ordered configurations in the case
of matching between the number of vortices and the
number of defects can also be demonstrated in the
framework of a canonical ensemble for periodic bound-
ary conditions. However, while studying the effect of
the defect structure geometry on the magnetic flux pen-
etration and distribution, we must allow for the vortex
production/destruction, i.e., consider a grand canonical
ensemble and take into account surface effects.

We carried out computations for the following lat-
tices of point pinning centers: square, triangular, and
kagome lattices.1 We also considered square lattices of
extended pinning centers, at which more than one vor-
tex could be pinned. We will analyze in detail all the
above-mentioned configurations of pinning centers.

3.1. Triangular Lattice of Point Defects 

Figure 1 shows the magnetization curves obtained
for various concentrations of defects forming a triangu-
lar lattice. We considered the concentrations nd = 11.18,
5.7, and 3.63 µm–2 corresponding to the triangular lat-
tice periods a = 0.32, 0.45, and 0.56 µm. The depen-
dence exhibits a number of singularities. It is expedient

1 This term indicates a superlattice with an increased period super-
imposed on the initial lattice and is often used for spin systems.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to consider the difference between the value of magne-
tization in the case of ordered arrangement of defects
and its value in the case of random pinning for the same
concentration of defects as a quantitative characteristic
of singularities emerging on the magnetization curve.
The results of calculations show that, in the case of ran-
dom pinning with concentration nd = 11.18 µm–2, the
initial segment of the magnetization curve coincides
with the magnetization of a defect-free superconductor.
The effect of random pinning on the behavior of mag-
netization is manifested for concentrations nd >
16.7 µm–2 [14]. For this reason, the emergence of sin-
gularities on the magnetization curves for concentra-
tions nd ≤ 11.18 µm–2 should be attributed just to the
ordered arrangement of pinning centers.

Table 1 shows the number and characteristics of sin-
gularities emerging on the magnetization curves for the
investigated defect concentrations nd = 11.8, 5.7, and
5.63 µm–2, corresponding to the defect spacing a =
0.32, 0.45, and 0.56 µm. Line H gives the positions of
peaks corresponding to the point of maximal ascent of
magnetization (it will be shown below that ordered con-
figurations are formed at the peak base), while line ∆M
gives the heights of the peaks measured from the mag-
netization M0 of a defect-free superconductor, and δ =
∆M/M0. Letters S and M in the line Reason indicate,
respectively, that a singularity appears due to screening
or due to matching of the vortex system with the lattice
of pinning centers (formation of an ordered configura-

Fig. 1. Magnetization curves for a triangular lattice of point
pinning centers for different concentrations of defects nd,

µm–2: 11.18 (1), 5.7 (2), and 3.63 (3). Temperature T = 1 K.
Points a–g correspond to vortex density distributions in
Fig. 2.
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(‡) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2. Vortex density distribution for nd = 11.18 µm–2, H = 0.049 (a), 0.07 (b), 0.074 (c), 0.09 (d), 0.096 T (e); for nd = 5.7 µm–2,

H = 0.068 (f), 0.1 T (g); and for nd = 11.18 µm–2, H = 0 (h). The size of the system is 5 × 2.25 µm2. Temperature T = 1 K.
tion). We will call the singularities associated with
screening first-type singularities, while the singularities
associated with matching the vortex system to the defect
structure will be called second-type singularities.
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The reasons for the emergence of singularities can
be explained by comparing the vortex density distri-
bution with corresponding points on the magnetiza-
tion curves.
Table 1.  Characteristics of singularities on the magnetization curves for a triangular lattice of point defects (see text)

a, µm 0.32 0.45 0.56

nd , µm–2 11.18 5.7 3.63

Number of peaks 3 3 2

Peak 1

H, T 0.051 0.05 0.048

∆M, 10–3 T 13.67 4.34 1.01

δ, % 62.7 19.9 4.5

Nv /Nd – 2 3

Reason S M M

Peak 2

H, T 0.071 0.06 0.054

∆M, 10–3 T 5.05 2.06 0.77

δ, % 25.9 10.6 1.9

Nv /Nd 2 3 4

Reason M M M

Peak 3

H, T 0.094 0.072 –

∆M, 10–3 T 3.26 1.73 –

δ, % 17.1 8.9 –

Nv /Nd 3 4 –

Reason M M –
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For H = 0.049 T, nd = 11.18 µm–2 (Fig. 2a), lines
from pinned vortices formed in the surface regions pre-
vent further penetration of the magnetic flux. Free vor-
tices, which cannot enter the plate as yet, also form
lines. A delay in the magnetic flux penetration leads to
a considerable increase in magnetization. It can be seen
from the vortex density distribution that this singularity
on the magnetization curve is due not to the formation
of an ordered configuration of the vortex system, but to
the screening of the surface regions by pinned vortices.

It should be noted that a certain number of vortices
managed to penetrate to the bulk of the sample even
prior to the formation of lines of pinned vortices. This
indicates the low efficiency of point pinning centers as
far as the probability of vortex pinning is concerned.

For H = 0.07 T, nd = 11.18 µm–2 (Fig. 2b), a lattice
corresponding to Nv /Nd = 2 is formed, where Nv and Nd

are the numbers of vortices and defects, respectively. A
local ordering is observed: the number of vortices at the
center is insufficient, while an excess concentration
emerges in the surface regions. However, the formation
of the given configuration leads to a singularity on the
magnetization curve. The point lies at the base of the
peak.

For H = 0.074 T, nd = 11.18 µm–2 (Fig. 2c), an insig-
nificant change in the external field leads to the destruc-
tion of the vortex lattice. The lines of entrance of “new”
vortices can be clearly seen. The destruction of the
ordered structure is accompanied by a decrease in mag-
netization.

For H = 0.09 T, nd = 11.18 µm–2 (Fig. 2d), the vortex
system forms a nearly perfect triangular lattice. The
given matching is characterized by the ratio Nv /Nd = 3.
The point lies at the base of a peak on the magnetization
curve.

For H = 0.096 T, nd = 11.18 µm–2 (Fig. 2e), destruc-
tion of the ordered configuration is observed, which
leads to a decrease in magnetization. The limited power
of computer equipment does not permit the tracing of
higher order matching in the case of a large number of
pinning centers. However, by reducing the number of
defects, we can obtain other configurations of the vortex
system in the same range of fields. For example, for nd =
5.7 µm–2, the effect associated with the screening of the
surface by pinned vortices is also observed. However,
in contrast to the previous case, a delay in the magnetic
flux propagation does not lead to the emergence of a
peak, but is accompanied just by a change in the slope
of the curve. The magnetization curve displays three
singularities associated with the formation of ordered
configurations. As expected (Figs. 2f and 2g), a
decrease in the defect concentration leads to a displace-
ment of singularities towards lower fields and to a
decrease in the magnitude of the singularities. For H =
0.048 and 0.057 T (these cases are not shown in the fig-
ure), the second and third matching are realized,
respectively (the fields correspond to the beginning of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
the peaks and are not shown in the figures). Field H =
0.068 T is characterized by the formation of a lattice
with Nv /Nd = 4 (Fig. 2f). In the strongest field H = 0.1 T
(Fig. 2g), even the seventh matching is realized
(Nv /Nd = 7). In this case, several regions with different
orientations of the vortex lattice are observed. All the
ordered configurations of the vortex structure described
above are in accordance with the results obtained
in [20], in which the behavior of the vortex system was
also investigated for stronger fields and the existence of
a triangular lattice was detected for Nv /Nd = 9, 12, 13,
16, 19, 21, 25, and 28.

In the case of a still lower defect concentration nd =
3.63 µm–2, the effects associated with screening are not
observed. Insignificant singularities corresponding to
the third and fourth matching are observed. An analysis
of the vortex density distribution shows that ordered
configurations are extremely sensitive to a change in
the external magnetic field. Lattices are destroyed even
for small variations of the external field, which does not
result in noticeable singularities on the magnetization
curves.

It should be noted that a decrease in the number of
defects leads to coordinated disappearance of singular-
ities associated with screening as well as singularities
associated with the formation of vortex lattices. This is
not surprising since both types of defects appear due to
the interaction of free vortices with vortices pinned at
pinning centers. Figure 3 shows a complete magnetiza-
tion loop in the case of a high concentration of defects,

0.05

–0.05

–0.1 0.1
H, T

–4πM, T

Fig. 3. Magnetization loop for a triangular lattice of pinning
centers with defect concentration nd = 11.18 µm–2. Temper-
ature T = 1 K.
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nd = 11.18 µm–2. In the reverse direction, no singulari-
ties are observed on the magnetization curve. This is
apparently due to the fact that singularities appear on
the magnetization curve due to repulsion between vor-
tices. As the applied magnetic field increases, the

Fig. 4. Magnetization curves for a square lattice of point
pinning centers for different concentrations of defects
nd , µm–2: 9.68 (1), 7.11 (2), and 4.94 (3). Temperature T =
1 K. Points a–g correspond to vortex density distributions in
Fig. 5.
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“rigid” vortex lattice prevents the magnetic flux pene-
tration. When the field is removed, the vortex system
tends to expand upon a decrease in the surface barrier;
as a result, some of the vortices are expelled from the
plate. The vortex density distribution after the removal
of the magnetic field (H = 0) is shown in Fig. 2h for
defect concentration nd = 11.18 µm–2. Vortex trapping is
observed both due to pinning at the pinning centers and
due to collective interaction with pinned vortices.

When the overheating field of the Meissner state is
attained, vortices of the opposite sign (antivortices)
start entering the plate. However, antivortices are
pinned at the surface pinning centers and prevent sub-
sequent penetration of the magnetic flux, leading to the
emergence of a singularity on the magnetization curve.
It can be seen from Fig. 3 that this singularity is
observed in the same fields as for the singularity
appearing during initial magnetization and associated
with screening.

3.2. Square Lattice of Point Defects 

Figure 4 shows the magnetization curves for various
concentrations of pinning centers forming a square
lattice.

For a high concentration of defects (nd = 9.68 µm–2),
strong effects associated with the screening of the sur-
face by pinned vortices are observed (Fig. 5a for H =
0.043 T and Fig. 5b for H = 0.054 T). The vortex den-
sity distribution shown in Fig. 5c (H = 0.068 T) corre-
sponds to the penetration of vortices into the sample.
The square lattice of defects forms peculiar channels
(‡) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 5. Vortex density distribution for nd = 9.68 µm–2, H = 0.043 (a), 0.054 (b), 0.068 T (c); for nd = 4.94 µm–2, H = 0.046 (d),

0.062 (e), 0.066 (f), 0.072 T (g); and for nd = 9.68 µm–2, H = 0 (h) (magnetic field trapping). The size of the system is 5 × 2.25 µm2.
Temperature T = 1 K.
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Table 2.  Characteristics of singularities on the magnetization curves for a square lattice of point defects (see text)

a, µm 0.32 0.375 0.45

nd , µm–2 9.68 7.11 4.94

Number of peaks 2 3 3

Peak 1

H, T 0.048 0.044 0.043

∆M, 10–3 T 12.7 10.29 7.37

δ, % 55.3 41.7 29.3

Nv /Nd – – –

Reason S S S

Peak 2

H, T 0.057 0.054 0.047

∆M, 10–3 T 13.02 9.93 5.39

δ, % 62.4 47.1 23.1

Nv /Nd – – 2

Reason S S M

Peak 3

H, T – 0.079 0.064

∆M, 10–3 T – 0.31 1.59

δ, % – 0.95 4.68

Nv /Nd – 4 4

Reason – M M
along which the magnetic flux propagates. Naturally,
the active entrance of vortices into the sample is accom-
panied by a decrease in magnetization.

Even the defect concentration nd = 4.94 µm–2 is suf-
ficient for the emergence of new singularities associ-
ated both with screening and with matching. In a field
H = 0.043 T, a singularity associated with screening is
observed. In a field of 0.047 T (Fig. 5d), a square cen-
tered lattices is formed but only in the surface regions;
this is reflected in the emergence of a peak on the mag-
netization curve (see Fig. 4).

The vortex density distributions shown in Figs. 5e
and 5g show that the vortex system forms ordered con-
figurations in stronger fields also. However, the forma-
tion of lattices is not accompanied by the emergence of
noticeable singularities on the magnetization curve.
The point with H = 0.062 T can be put in correspon-
dence with the beginning of a magnetization peak,
while the point with H = 0.072 T corresponding to the
emergence of a configuration with Nv /Nd = 5 (Fig. 5g)
is not singled out on the magnetization curve.

The competition between the tendency of the vortex
system to form a triangular lattice and the symmetry of
the square lattice of defects leads to the emergence of
various ordered configurations. For example, the vortex
system exhibits a structural transition from the triangu-
lar lattice of pinning centers to the square lattice via a
disordered state; this is illustrated by the sequence of
Figs. 5e–5g.
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As in the case of a triangular lattice of pinning cen-
ters, an ordered system of trapped vortices (Fig. 5h) is
left in a superconductor with a square lattice of pinning
centers after the removal of the applied field.

On the whole, noticeable singularities associated
with the screening of the surface (often even more sig-
nificant than in the case of a triangular lattice with the
same period) are observed in the case of a square lat-
tice. However, the formation of vortex lattices either
does not affect the magnetization at all or is accompa-
nied by extremely weak effects, which are observed
predominantly when the vortex system forms triangular
lattices.

Basic characteristics of singularities on the magne-
tization curve are given in Table 2.

3.3. Kagome Lattice of Point Defects 

A kagome lattice can be obtained from a triangular
lattice by eliminating alternate defects in alternate rows
(Fig. 6a). For the same period, the density of the kag-
ome lattice is 3/4 of the density of the triangular lattice.
By virtue of symmetry, we can expect the formation of
triangular lattices in the vortex system, which is con-
firmed by simulation (Figs. 6b and 6d). However, the
ratios Nv /Nd are different in the configuration formed:
Nv /Nd = 4 (Fig. 6b) and Nv /Nd = 16/3 (Fig. 6d) as
against Nv /Nd = 3 and Nv /Nd = 4 for the triangular
SICS      Vol. 96      No. 6      2003



1072 ZYUBIN et al.
(‡) (b) (c)

(d) (e) (f)

Fig. 6. Configuration of pinning centers (a) and vortex density distribution for nd = 4.27 µm–2, H = 0.057 (b), 0.06 (c), 0.068 T (d),

and for nd = 10.95 µm–2, H = 0.077 (e), 0.091 T (f). Temperature T = 1 K.
defect lattice. In intermediate fields, no configurations
with a long-range order are formed.

Since the kagome lattice was obtained from the tri-
angular lattice, it would be interesting to compare the
singularities on the magnetization curve in the cases of
kagome and triangular lattices. It was noted above that,
for the same lattice period, the vortex system forms
identical ordered configurations in the same fields (see
Figs. 6b and 6d), which is reflected in the behavior of
magnetization. Figure 7 shows the magnetization
curves for triangular (curve 1) and kagome (curve 3)
lattices of pinning centers with a period a = 0.45 µm.
However, the height of the peaks on the magnetization
curve for the kagome lattice is smaller since the density
of the kagome lattice is 3/4 of the density of the trian-
gular lattice with the same period.

In the case of identical density, the period of the kag-
ome lattice is smaller than the period of the triangular
lattice (curve 2 in Fig. 7 depicts the magnetization
curve with a density close to that of the triangular lat-
tice and with period a = 0.375 µm); for this reason, a
noticeable peak associated with the screening effect is
observed. Since ordered configurations are formed for
the kagome lattice for larger values of Nv /Nd , the sin-
gularities associated with the matching of the vortex
system to the lattice of pinning centers are observed in
stronger fields. For example, a peak observed for H =
0.091 T due to the emergence of a configuration with
Nv /Nd = 16/3 has a height approximately equal to that
of the peak for the triangular lattice in the field H =
0.072 T.

The configurations realized in the structure consid-
ered here were called by Laguna et al. [21] an intersti-
tial phase (Fig. 6f). Interstitial configurations are char-
acterized by filling of the second coordination sphere
(we are speaking of the second coordination sphere for
JOURNAL OF EXPERIMENTAL
the triangular lattice); as a result, cells in which vortex
rotation takes place are formed.

Figures 6e and 6f show the configurations of the
vortex system, illustrating a transition to the interstitial
phase. For H = 0.077 T, interstitial positions are still
vacant, and the cells between defects contain three lat-
tices each and no rotation is observed. As the applied
magnetic field increases, the second coordination

Fig. 7. Magnetization curves for different concentrations of
point defects: triangular lattice, nd = 5.7 µm–2 (1); kagome

lattice, nd = 6.15 µm–2 (2); and kagome lattice, nd =

4.27 µm–2 (3). Temperature T = 1 K. Marked points corre-
spond to the vortex density distributions shown in Fig. 6.
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sphere is filled, which is accompanied by active rota-
tion of vortices in the “cells.” This transition is not
accompanied by the formation of a singularity on the
magnetization curve.

3.4. Square Lattice of Extended Defects 

We have considered so far the lattices of point pin-
ning centers at which only one vortex can be pinned.
However, artificially created defects are not point
defects as a rule. Recent experiments proved that sev-
eral vortices could be trapped at an “extended” pinning
center [22].

Reichhardt et al. [23] analyzed the effect of multiple
trapping of vortices on the current–voltage characteris-
tics in the case of a square defect lattice by the molecu-
lar dynamics method. It was shown that the matching
effects between the number of vortices and the number
of defects must also be observed in the case of multiple
trapping, the critical depinning force being larger in the
case of multiple trapping of vortices at a pinning center.

Here, we consider the effect of multiple trapping of
vortices on the behavior of magnetization. Following
Reichhardt et al. [23], we choose the potential of inter-
action of a vortex with an extended pinning center in
the following model form:

where α is a coefficient with the dimensions of energy
characterizing the depth of the pinning center; rpin is the
radius of the pinning center; and rv and rp are the radius
vectors of the vortex and the pinning center, respec-
tively.

Calculations were made for a square lattice of pin-
ning centers with a period a = 0.6 µm, which corre-
sponds to density nd = 4 µm–2. We analyzed pinning
centers of radius rpin = 0.15 µm and depth α = 0.1 eV as
well as of radius rpin = 0.2 µm and depth α = 0.2 eV. A
stronger pinning will be considered below. Figure 8
shows the magnetization curves for extended pinning
centers arranged chaotically and forming a square lat-
tice. In the case of a random distribution of defects, the
magnetization curve displays no effects, while, in the
case of the square lattice of pinning centers, the curve
has a number of singularities. Let us consider the vortex
density distributions in greater detail and compare these
distributions with the behavior of magnetization.

For H = 0.043 T (Fig. 9a), extended defects effec-
tively trap vortices. In the rows of surface defects, two
vortices are pinned simultaneously at each defect. The
rotation of pinned vortex pairs takes place.

For H = 0.048 T (Fig. 9b), the propagation of the
magnetic flux to the bulk of the semiconductor is termi-

U p

α
U0 T( )
U0 0( )
--------------

rv rp– 2

rpin
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nated since two vortices are pinned at each defect near
the surface. The magnetization curve displays a clearly
manifested peak.

For H = 0.054 T (Fig. 9c), three vortices are pinned
at each pinning center in the surface rows of defects,
preventing the penetration of new vortices. This leads
to an increase in the magnetization.

For H = 0.064 T (Fig. 9d), an interstitial center
between defects exhibits a tendency to the formation of
a triangular lattice; two vortices are pinned at each
defect. In the surface region, three vortices are trapped
at a defect.

For H = 0.076 T (Fig. 9e), an ordered configuration
is observed. Three vortices are pinned at each defect.
The trapped vortices rotate. Free vortices form a lattice
arranged between defects and having fourfold symme-
try. The formation of this configuration leads to an
increase in the magnetization.

For H = 0.079 T (Fig. 9f), the previous configuration
is destroyed. Vortices flow along the channels formed in
the square lattice of defects. Point f in Fig. 8 corre-
sponding to this case lies in the region of decreasing
magnetization.

For H = 0.09 T (Fig. 9g), four vortices are trapped at
each defect. Free vortices form a square lattice with
interstitial vortices.

For H = 0.1 T (Fig. 9h), five vortices are trapped at
a defect in the surface region and four vortices are
pinned at each defect at the center. Free vortices form a

–4πM, T
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0.01

0 0.05 0.10
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1 2

Fig. 8. Magnetization curves for extended pinning centers
with concentration nd = 4 µm–2, distributed chaotically
(curve 1) and forming a square lattice (curve 2). Tempera-
ture T = 1 K. Marked points correspond to the vortex density
distributions shown in Fig. 9.
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(‡) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 9. Vortex density distribution for a square lattice of extended defects with concentration nd = 4 µm–2, H = 0.043 (a), 0.048 (b),

0.054 (c), 0.064 (d), 0.076 (e), 0.079 (f), 0.09 (g), and 0.1 T (h). The size of the system is 5 × 3 µm2. Temperature T = 1 K.
fourfold symmetry lattice with interstitial vortices. Vor-
tices flow along the channels, in which free vortices
rotate in the regions between defects.

Thus, the analysis of the vortex density distribution
leads to the conclusion that singularities on the magne-
tization curve in the case of extended pinning centers
appear as a result of structural transitions as well as the
screening of the plate surface by pinned vortices. On
the whole, it can be stated that multiple trapping of vor-
tices leads to a considerable enhancement of both types
of singularities (associated both with matching and
with screening) on the magnetization curve. It should
be recalled that, according to our calculations, a square
lattice of point defects with density nd = 4.94 µm–2 (see
Fig. 4) does not lead to any appreciable effects in the
behavior of magnetization. However, in view of the
large size of extended defects, their density cannot be
increased further. At the same time, the results of com-
putations proved that an increase in the density of point
defects leads to considerable effects associated with the
surface screening.

In the case of multiple trapping of vortices at
defects, the process of magnetization reversal of the
superconductor can be demonstrated more visually on
the magnetic induction distribution. This structure is
distinguished by the fact that several vortices can be
pinned at a defect, and the front of the magnetic flux
JOURNAL OF EXPERIMENTAL 
annihilation [14] cannot propagate any further to the
bulk of the superconductor until all vortices at a defect
are suppressed (Fig. 10). This leads to a partial arrest of
the annihilation front at the rows of pinned vortices.

3.5. Behavior of the Vortex System
upon a Change in Temperature in the Case

of a Triangular Lattice of Point Defects 

Ordered configurations of the vortex system are
obviously observed at quite low temperatures. For this
reason, we analyzed in the previous sections the effect
of ordered configurations of the vortex system on the
behavior of magnetization using curves calculated for
T = 1 K. In this section, we consider the effect of tem-
perature of a triangular lattice of point defects on the
behavior of the vortex system in the case of periodic
pinning.

Figure 11 shows the magnetization curves obtained at
different temperatures for concentration nd = 5.7 µm–2. It
was established in Section 3.1 that, for such a concen-
tration, all three singularities appear as a result of
matching of the vortex lattice to the lattice of defects.

As the temperature increases, the Meissner state
overheating field decreases for all magnetization
curves, and the curves become lower. The peaks associ-
ated with the formation of ordered configurations are
AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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(‡) (b) (c)

(d) (e) (f)

Fig. 10. Magnetic field distribution (dark regions correspond to the field) for a square lattice of extended defects with concentration
nd = 4 µm–2, H = –0.025 (a), –0.03 (b), –0.035 (c), –0.04 (d), –0.045 (e), and –0.046 T (f). The size of the system is 5 × 3 µm2.
Temperature T = 1 K.
displaced towards lower fields, and the peak heights
decrease upon heating. A further increase in tempera-
ture suppresses the singularities associated with match-
ing. Analysis of the vortex density distributions indi-
cates that the peaks vanish due to melting of the vortex
lattice.

Fig. 11. Magnetization curves for a triangular lattice of
point pinning centers with concentration nd = 5.7 µm–2 for
different temperatures T, K: 1 (1), 5 (2), and 10 (3). The
arrow corresponds to the magnetic field in which inverse
crystallization of the vortex system is observed.
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It was noted in Section 3.1 that ordered configura-
tions are observed at the base of the peaks on the mag-
netization curve, and the segments on which the mag-
netization decreases correspond to the disordered state
of the vortex system. Since the positions of the peaks
change with temperature, a situation is possible where

S6, rel. units
0.7

T, K

1
2

3
0.6
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Fig. 12. Temperature dependence of structural factor S6 for

a triangular lattice of defects, nd = 5.7 µm–2 (1); random dis-

tribution of defects, nd = 5.7 µm–2 (2); and pure supercon-
ductor (3).
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(‡) (b)

(c) (d)

Fig. 13. Vortex density distribution for different temperatures in field H = 0.062 T for a triangular lattice of defects, nd = 5.7 µm–2:

T = 1 (a), 5.2 (b), 10 (c), and 25 K (d). The size of the system is 5 × 2.25 µm2.
the region of decrease at a low temperature corresponds
to the base of the peak at a higher temperature (e.g., the
region of decrease behind the peak marked by the arrow
at T = 1 K and the base of the peak at T = 5 K in Fig. 11).
Thus, as the temperature increases, it is possible to pass
from a disordered configuration to the ordered one.

In order to verify this assumption, we calculated the
configurations of the vortex system for a fixed field H =
0.062 T at various temperatures. We analyzed the fol-
lowing situations: a triangular lattice of point defects
(nd = 5.7 µm–2), a random distribution of point defects
(nd = 5.7 µm–2), and a pure sample.

In order to characterize the extent of ordering of the
system, we calculated the standard structural factor S6
reflecting the tendency of the system to be aligned into
a triangular lattice:

where Zi is the number of nearest neighbors of the ith
vortex and θij is the angle between the nearest neigh-
bors.

Figure 12 shows the temperature dependences of
factor S6. In the case of a periodic arrangement of pin-
ning centers in the range T = 1–5.8 K, an increase in the
value of S6 is observed; i.e., the system of vortices
becomes ordered upon heating. At T = 1 K (Fig. 13a),
the vortex system is disordered despite the low temper-
ature because the number of vortices is not a multiple
of the number of defects. As the temperature increases,
new vortices enter the sample, and a stable ordered con-
figuration is formed (Fig. 13b); upon a further increase
in temperature, it melts (Figs. 13c and 13d). Thus, in
the case of a periodic arrangement of defects, the “crys-
tallization” of the vortex system is possible upon heat-
ing. It should be noted that a gradual decrease in the
structural parameters is observed upon an increase in

S6
1
Zi

----
i 1=

N

∑ e
6iθij,

j 1=

Z j

∑=
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temperature both in the case of a random distribution of
defects and for a pure defect-free sample.

It should be observed that inverse crystallization of
the system of vortices was experimentally observed in
the case of chaotic pinning by Avraham et al. [17]. For
a random distribution of defects, the vortex system
ordering is due to the fact that the effect of pinning
becomes weaker upon heating and the interaction of
vortices leads to the formation of a triangular vortex lat-
tice. It was noted above that pinning centers were
assumed to be rather deep to exclude temperature-
induced depinning. For this reason, inverse crystalliza-
tion in the case considered here is of fundamentally dif-
ferent physical origin. The ordering of the system upon
heating occurs due to matching between the number of
vortices and the number of defects [24].

4. CONCLUSIONS

We have considered the effect of periodic pinning
on the behavior of magnetization and on the magnetic
flux penetration, distribution, and trapping. It is shown
that, for a periodic pinning, there exist two types of
effects leading to the emergence of singularities on
magnetization curves, namely, the screening of the
superconductor surface by the vortices pinned in the
surface region and the formation of ordered configura-
tions by the vortex system. Effects of the first type are
observed in weak fields, while effects of the second
type occur in fields in which the number of vortices is
multiple to the number of defects.

It is found that ordered configurations are not
located at the point of a local magnetization peak, but
lie at the base of the segment of increasing magnetiza-
tion. On segments where magnetization decreases, the
destruction of vortex lattices takes place. The position
of singularities on the magnetization curve is deter-
mined by the density of defects. As the density of
defects decreases, the singularities are displaced
towards weaker fields and their absolute magnitude
AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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decreases. A decrease in the density of defects leads to
a correlated disappearance of singularities associated
both with screening and with the formation of ordered
configurations.

We have analyzed the behavior of magnetization
upon a change in temperature in the case of a triangular
lattice of point defects. It is found that an increase in
temperature suppresses the singularities, which are dis-
placed to the region of weak fields. After the attainment
of the melting point for the vortex lattice, the singular-
ities associated with the formation of ordered configu-
rations disappear.

It is shown that inverse crystallization of the vortex
system, which is caused by the entrance of new vortices
and the formation of a stable configuration, is possible
in the case of periodic pinning. Inverse crystallization
of the vortex system can be observed visually on super-
conductors with a periodic arrangement of artificial
pinning centers with the help of magnetooptical meth-
ods or using high-resolution scanning magnetometry.

Various lattices of pinning centers are considered. It
is found that the most striking effects associated with
the matching of the vortex system to the defect lattice
are observed for a triangular lattice of defects.

The effect of multiple trapping of vortices on the
behavior of magnetization is analyzed. In the case of
extended pinning centers at which more than one vortex
can be pinned, the magnetization curve displays con-
siderable effects associated both with screening and
with matching.
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Abstract—A strong dependence of the thermopower of germanium crystals on the isotopic composition is
experimentally found. The theory of phonon drag of electrons in semiconductors with nondegenerate statistics
of current carriers is developed, which takes into account the special features of the relaxation of phonon
momentum in the normal processes of phonon–phonon scattering. The effect of the drift motion of phonons on
the drag thermopower in germanium crystals of different isotopic compositions is analyzed for two options of
relaxation of phonon momentum in the normal processes of phonon scattering. The phonon relaxation times
determined from the data on the thermal conductivity of germanium are used in calculating the thermopower.
The importance of the inelasticity of electron–phonon scattering in the drag thermopower in semiconductors is
analyzed. A qualitative explanation of the isotope effect in the drag thermopower is provided. It is demonstrated
that this effect is associated with the drift motion of phonons, which turns out to be very sensitive to isotopic
disorder in germanium crystals. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Recently, high-quality single crystals of germanium
of different chemical compositions have been success-
fully grown, including a uniquely pure (both chemi-
cally and isotopically) crystal with 99.99% 70Ge isoto-
pic enrichment [1], hereinafter referred to as 70Ge
(99.99%). Experimental investigations of the thermal
conductivity [2, 3] of these crystals have revealed that,
for monoisotopic samples of 70Ge (99.99%), the maxi-
mal values of thermal conductivity are an order of mag-
nitude higher than those for crystals with natural isoto-
pic composition. It is evident that this effect is associ-
ated with the increase in the free path of thermal
phonons because of the decrease in the scattering by
“impurity” isotopes; the normal processes of phonon–
phonon scattering play an important part in the case of
isotopically pure crystals at temperatures in the vicinity
of the maximum of thermal conductivity [3–5]. A vari-
ation in the isotopic composition must also affect the
thermoelectric phenomenon of the phonon drag ther-
mopower αph(T), which explicitly depends on phonon
1063-7761/03/9606- $24.00 © 21078
lifetime. Therefore, a decrease in the degree of isotopic
disorder must further result in an increase in the abso-
lute values of the phonon drag thermopower. However,
the Herring theory [6] predicts a very weak dependence
of αph(T) on the impurity concentration in the case of a
fairly pure semiconductor (see also [7–9]). Within a
standard one-parameter approximation, the phonon
relaxation rate in the normal processes (N processes) of
phonon–phonon scattering was included in the total
phonon relaxation rate, which was the only parameter
defining the nonequilibrium phonon distribution func-
tion. This approach is justified in the case of “impure”
semiconductors, when the phonon relaxation rate in the
N processes, νphN(q), is much lower than the phonon
relaxation rate in the resistive processes of scattering,
νphR(q), caused by the phonon–phonon scattering in the
umklapp processes, and from the defects and bound-
aries of the sample. In the opposite extreme case of
fairly pure semiconductors, one must take into account
the phonon system drift caused by the N processes of
phonon–phonon scattering [10, 11].
003 MAIK “Nauka/Interperiodica”
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In nondegenerate conductors, the electrons interact
only with long-wavelength phonons whose wave vector
is much less than the wave vector of thermal phonons
making the main contribution to thermal conductivity.
Because the probability of isotopic scattering of a
phonon is proportional to the fourth power of its wave
vector q, the thermopower calculated within a one-
parameter approximation turns out to be insensitive to
the degree of isotopic disorder. Kozlov and Nagaev [12]
called attention to the anomalies of thermopower aris-
ing in such a situation as long as 30 years ago. They
have demonstrated that, in the case of very perfect crys-
tals, the thermal phonon drag of long-wavelength
phonons may cause anomalously high values of ther-
mopower. In contrast to the Herring thermopower, this
thermopower (two-stage drag thermopower) is inversely
proportional to the impurity concentration [13] and is
closely associated with the mechanism of relaxation of
long-wavelength phonons from thermal phonons in the
normal processes of phonon–phonon scattering.

The first attempt at detecting the effect of isotopic
phonon scattering on the thermopower was made by
Oskotskii et al. [14], who investigated the thermal con-
ductivity and thermopower of Te crystals with two dif-
ferent isotopic compositions, of which one was sub-
jected to 92% 128Te isotopic enrichment. The isotopic
enrichment resulted in a threefold increase in the max-
imal values of thermal conductivity; however, Oskot-
skii et al. [14] observed no effect of isotopic disorder on
the phonon drag thermopower at low temperatures.
This negative result is possibly due either to the differ-
ent concentrations of charged impurities in the investi-
gated samples or to the relatively weak contribution of
the N processes to the overall phonon relaxation rate.

In recent measurements of the thermopower in ger-
manium crystals of different isotopic compositions, we
found an almost twofold increase in the thermopower at
low temperatures in a monoisotopic sample of 70Ge
(99.99%) compared to Ge of natural isotopic composi-
tion [15]. This result is indicative of the important part
played by the N processes in the relaxation of the
phonon system for isotopically enriched germanium
crystals. The importance of these processes in the lat-
tice thermal conductivity without the separation of the
contributions made by longitudinal and transverse
phonons is studied quite well [16–18]. In the N pro-
cesses of scattering, the phonon momentum is con-
served. These processes make no direct contribution to
the thermal resistance; they provide for the relaxation
of the phonon subsystem to the drift locally equilibrium
distribution. Therefore, the N processes redistribute the
energy and momentum between different phonon
modes to form the nonequilibrium phonon distribution
function and prevent a strong deviation of each phonon
mode from the equilibrium distribution. This is accom-
panied by a variation of the relative contribution by var-
ious resistive processes of scattering (scattering from
defects and boundaries of the sample and in the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
phonon–phonon umklapp processes) to thermal resis-
tance. The drift motion of phonons must be taken into
account under conditions in which the phonon relax-
ation rate in the N processes, νphN(q), is higher than or
comparable to the rate of relaxation in resistive pro-
cesses of scattering, νphR(q). It is evident that, in isoto-
pically pure Ge samples at low temperatures, when the
phonon–phonon umklapp processes are largely frozen,
the rate of relaxation of longitudinal phonons in the N
processes significantly exceeds the resistive rate of
relaxation νphR(q) which is mainly due to isotopic dis-
order. In this paper, we will demonstrate that the inclu-
sion of the phonon drift caused by the N processes
enables one to qualitatively explain the significant
effect of isotopic disorder on the drag thermopower in
Ge crystals.

In describing the drag thermopower, in contrast to
the previous investigations, we will separate the contri-
butions by longitudinal and transverse phonons and
take into account the redistribution of the phonon
momentum in the N processes of scattering both within
each vibrational branch (Simons mechanism [19]) and
between different vibrational branches of phonons
(Herring mechanism [20]). In this approximation, the
nonequilibrium of the phonon system is described by
six parameters, namely, by the rates of phonon relax-
ation in the resistive and normal processes of scattering
and by the average drift velocities for each branch of
the phonon spectrum. This description of phonon non-
equilibrium enables one to reveal new features of relax-
ation of the momentum of quasi-particles and their
effect on the thermopower and thermal conductivity of
semiconductors. We will demonstrate below that the
drift velocity of phonons (as well as the thermal con-
ductivity) is largely defined by thermal phonons for
which the scattering from defects plays a significant
part. Therefore, when the drift of the phonon system is
taken into account, the thermopower becomes sensitive
to the degree of isotopic disorder. We further give the
results of measurements and quantitative analysis of the
isotope effect in the drag thermopower.

2. EXPERIMENTAL RESULTS

In this paper, we analyze the experimental data on
the thermopower α(T) of single crystals of germanium
with three different isotopic compositions, namely, the
natural composition and compositions subjected to
70Ge isotopic enrichment of 96.3% and up to 99.99%.
Ge crystals of the n and p types with the concentration
of charged impurities of |Nd – Na| < 2 × 1013 cm–3 were
used. Note that Geballe and Hull [21] found that, in the
case of highly pure samples of Ge of the n and p types,
the phonon drag thermopower very weakly depends on
the concentration of electrically active impurities at a
doping level below 1015 cm–3 and decreases in magni-
tude at higher concentrations. Our samples were shaped
as parallelepipeds of square cross section. The samples
SICS      Vol. 96      No. 6      2003
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had a total length of approximately 40 mm, with the
square side in cross section of approximately 2.5 mm.
The thermopower was measured using the method of
steady longitudinal heat flux in vacuum in the tempera-
ture range from 8 to 300 K. The heat flux was directed
along the longer axis of the sample; the temperature dif-
ference along the sample did not exceed 1% of its aver-
age temperature. The parameters of five investigated
samples are given in the table.

The experimental data on the temperature depen-
dence of the thermopower are given in Fig. 1. One can
see in the figure that, at temperatures above 70 K, the
thermopower is almost independent of temperature.
The diffusion component of thermopower αe(T) pre-
dominates in this temperature range; this component is
defined by the degree of doping and by the band param-
eters of the semiconductor and is independent of the
phonon lifetime. At low temperatures, where the
phonon drag thermopower αph(T) predominates, α(T)
increases with decreasing isotopic disorder; in so

20
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–10

–20

–30
10 100 T, K

α, mV/ä
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5

Fig. 1. The magnitude of differential thermopower as a
function of temperature for samples of germanium crystals
with different isotopic compositions: (1) sample no. G2,
(2) G7, (3) G70, (4) Gn21, (5) S1.
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doing, the thermopower at the maximum for isotopi-
cally pure 70Ge (99.99%) is approximately twice as
high as that for germanium with the natural isotopic
composition (natGe). Compared to the thermal conduc-
tivity, the thermopower of germanium turned out to be
approximately five times less sensitive to the variation
of the degree of isotopic disorder. Note that, in the case
of samples with the same isotopic composition, the
thermopower is independent of the degree of doping
within the experimental error. This is in good agree-
ment with the well-known fact of the weak sensitivity
of the magnitude of the drag thermopower to the dopant
concentration in fairly pure germanium crystals [6, 21].
These special features of thermopower call for detailed
theoretical treatment.

Given below are the results of quantitative analysis
of the isotope effect in the thermopower of germanium.
Attention is focused on the investigation of the effect of
the drift motion of the phonon system, due to the nor-
mal processes of phonon scattering, and of the inelas-
ticity of electron–phonon scattering on the drag ther-
mopower. The effect of the normal processes of phonon
scattering on the mutual drag of electrons and phonons
in metals and in degenerate semiconductors is treated
in [10, 11]. In our paper, this theory is generalized to
the case of semiconductors with nondegenerate statis-
tics of current carriers. We have treated the redistribu-
tion of the momentum of longitudinal and transverse
phonons in the N processes of scattering both within
each vibrational branch and between different vibra-
tional branches. Previously, this approach made it pos-
sible to successfully explain the effect of the isotopic
composition on the thermal conductivity of germanium
and silicon crystals [22, 23]. Here, this method is used
to investigate the effect of isotopic disorder on the drag
thermopower. In calculating the emf, we used the times
of phonon relaxation determined from the data on the
thermal conductivity for the same samples of germa-
nium [3, 22]. It is demonstrated that, in fairly pure
semiconductors, both the thermopower and the lattice
thermal conductivity [22] (with the separation of the
contributions by longitudinal and transverse phonons)
Parameters of investigated samples of Ge crystals

Sample no. Isotopic composition, 
% 70Ge g, 10–5 Axis |Nd – Na|, 1012 cm–3

G2 99.99 0.008 [100] 2.7

G7 99.99 0.008 [111] 20

G70 96.6 7.75 [100] 2

Gn21 natural 58.9 [100] 0.5

S1 natural 58.9 [111] 4

Note: g =  is the factor characterizing the isotopic disorder of the crystal [3].f i
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largely depend on the mechanism of relaxation of the
phonon momentum in the N processes of scattering.

3. THE EFFECT OF THE N PROCESSES
OF PHONON–PHONON SCATTERING

ON THE RELAXATION OF MOMENTUM
OF ELECTRONS AND PHONONS 

IN A NONEQUILIBRIUM ELECTRON–PHONON 
SYSTEM

For simplicity, we will treat a semiconductor with
the isotropic law of dispersion of current carriers. We
will calculate a charge flow caused by the effect of
electric field E = {Ex, 0, 0} and the temperature gradient
∇ T = (∇ xT, 0, 0). The set of kinetic equations for the
nonequilibrium electron f(k, r) and phonon Nλ(q, r)
distribution functions in view of the N processes of
scattering has the form [11]

(1)

Here,  = sλq/q is the group velocity of acoustic

phonons with polarization λ;  is the Planck func-

tion;  is the phonon relaxation rate in the N pro-
cesses of scattering; and the rate

includes all of the nonelectron resistive rates of phonon
relaxation, due to the phonon scattering from phonons

in the umklapp processes, , from defects and

isotopic disorder, , and from the boundaries of

the sample, . The collision integrals of electrons
with impurities, Iei , and with phonons, Ie ph , and of
phonons with electrons, Iph e , were determined in [7–9,
24–27]. In Eq. (1), it is taken into account that the
N processes of scattering bring the phonon subsystem
to the locally equilibrium Planck distribution with the
drift velocity uλ which may be different for phonons of
different polarizations [16–18],

(2)

We will represent the electron and phonon distribu-
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tion functions in the form [3–5]

(3)

where 
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) is the equilibrium electron distribution
function, and 
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λ
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) are nonequilibrium addi-
tions to the distribution functions, which are linear as
regards the external effects. We will linearize the colli-
sion integrals with respect to these additions. We will
represent the collision integrals 
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as well as 

 

I

 

e

 

 ph

 

(

 

δ

 

f

 

k, ) in the approximation of elastic
scattering, in terms of relaxation rates [27]. In calculat-
ing the collision integral Iph e(f0, gλ(q)), we will not
restrict ourselves to the linear approximation with
respect to the inelasticity parameter [7–9, 24–28] and
will take into account the inelasticity of collisions
between nonequilibrium phonons and equilibrium elec-
trons.

We will substitute expressions (2) and (3) into (1) to
derive, similar to [11], the expression for the phonon
distribution function gλ(q),

(4)

Here,

is the total rate of relaxation of phonons with the wave

vector q and polarization λ, and  is the rate of
relaxation of momentum of phonons from electrons
[24–27]. The first term in expression (4) is defined by
the diffusion motion of phonons, and the second term
takes into account the drift phonon motion and is asso-
ciated with the normal processes of phonon–phonon
scattering. The phonon drift velocity uλ is found from
the balance equation for phonon momentum, which fol-
lows from the law of conservation of momentum in the
normal processes of phonon–phonon scattering,

(5)
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A scheme illustrating the redistribution and relaxation
of the momentum received by a phonon system from
the temperature gradient is given in Fig. 2. The phonon
scattering in the resistive processes of scattering (R)
(from isotopic disorder, electrons, and sample bound-
aries, and the phonon–phonon scattering in the
umklapp processes) brings about the relaxation of the
momentum of the phonon system. The N processes
redistribute the momentum between different phonon
modes (L-ph and t-ph) and bring about the phonon drift
with an average velocity uλ . As in [10, 11, 16–18], we
assume that the drift velocity is independent of the
wave vector of phonons. Two mechanisms of normal
three-phonon processes of scattering are usually exam-
ined, namely, the Herring [20] and Simons [19] mech-
anisms. In the Herring mechanism of N processes,
phonons of different polarizations are involved: the rate
of relaxation of transverse phonons in the Herring
mechanism is defined by the scattering processes (t +
L  L) in which one transverse and two longitudinal
phonons are involved; in this case, the main contribu-
tion to the rate of relaxation of longitudinal phonons is
made either by the processes of decay of a longitudinal
phonon into two transverse phonons belonging to dif-
ferent branches or by the fusion of two transverse
phonons to form a longitudinal phonon (L  t1 + t2).
This relaxation mechanism provides for redistribution
of the drift momentum between longitudinal and trans-
verse phonons (see Fig. 2) and tends to establish a
locally equilibrium distribution with a drift velocity
that is the same for phonons of both polarizations, uL =

     

                         

∆T

L-ph

uH

t-ph

R

R

uL = ut = uH
 νphR

(L)

 νphR
(t)

 νphN
(t)

 νphN
(L)

∆T

L-ph

uL

t-ph

R

R

uL ≠ ut 

 νphR
(L)

 νphR
(t)

 νphN
(t)

 νphN
(L)

ut

Fig. 2. A scheme illustrating the relaxation of momentum in
a phonon system for two mechanisms of phonon scattering
in the normal processes: (a) for the Herring mechanism,
(b) for the Simons mechanism.

(a)

(b)
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ut = uH . The Simons mechanism of relaxation [19]
involves phonons of one polarization. In the case of this
mechanism of scattering, the law of conservation of
momentum in the N processes is valid for each branch
of the phonon spectrum, and the drift velocity of longi-
tudinal phonons differs from that of transverse
phonons. Therefore, we will treat below two options for
the relaxation of the phonon momentum in the N pro-
cesses.

We use expressions (4) and the balance equation for
phonon momentum (5) to find the phonon drift velocity
uλ for the Herring (H) and Simons (S) mechanisms of
relaxation, as was done in [11]. After this, we derive,
for the phonon distribution function gλ(
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(6)
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by the expressions
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). One can see in expression (6) that the inclusion

of the normal processes of phonon–phonon scattering
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We will now consider the electron subsystem. The
electron scattering from impurities, νei , results in the
relaxation of electron momentum, and the mechanisms
of electron–phonon relaxation characterized by the
rates νe  ph and νph e bring about the redistribution of
momentum within an electron–phonon system; in so
doing, the electrons interact only with long-wavelength
phonons. We do not treat the renormalization of the
thermopower due to the mutual drag of electrons and
phonons. Note that the quantities such as the ther-
mopower and thermal conductivity are found from the
condition that the total current through the sample is
zero. In this case, the average velocity of ordered elec-
tron motion in any physically small sample volume is
zero. Therefore, the transfer of momentum of ordered
electron motion to the phonon subsystem is low, and the
effect of electron nonequilibrium on the electrons via
the phonon subsystem may be ignored [11]. On the
other hand, a steady phonon flow from the hot end of
the sample to the cold end exists in the presence of a
temperature gradient, and the magnitude of ther-
mopower is largely defined by the transfer of momen-
tum of ordered phonon motion to electrons. Note that,
for longitudinal phonons in Ge crystals at low temper-
atures, when the electron–phonon drag makes a marked
contribution to the thermopower, the relaxation rate
νphN(q) @ νphR(q) [22]. It follows from the foregoing
that the relaxation of phonon momentum in a nonequi-
librium electron–phonon system must be taken into
account more rigorously than was done in the case of
one-parameter approximation [7–9, 24–28].

The purpose of this theoretical analysis is to investi-
gate the effect of the phonon drift caused by the N pro-
cesses on the drag thermopower. In this case, one can
ignore the mutual drag of electrons and phonons and
obtain, as was done in [27], the following solution for
the function c(ε):

(9)

(10)

Here, τ(ε) is the total relaxation time of electrons;

the rates of electron relaxation from neutral, νe0(k), and
charged, νei(k), impurities have the known form (see,
for example, [7], formulas (10.29) and (10.50)); and the
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electron–phonon collision rate is defined by the expres-
sion

(11)

where

E0λ is the deformation potential constant, and ρ is the
density. For semiconductors with nondegenerate statis-
tics of current carriers,

the F± functions may be represented in the form

then, in view of the inelasticity of electron–phonon
scattering, we find

(12)

νe  ph 
λ

 k ( ) ν e  ph 
λ

 k q , ( ) 〈 〉 z 
2

 
k

 λ , 

λ

 ∑  =

νe ph
λ k q,( )

me C0λ
2

2π"
2k3

--------------------q5Nqλ
0 Nqλ

0 1+( )=

× 1
2msλ

"q
------------– 

  F+ εk( ) 1
2msλ

"q
------------+ 

  F– εk( )+
 
 
 

,

F± εk( )
f 0 εk( ) f 0 εk "ωq±( )–

f 0 εk( ) 1 f 0 εk( )–( )
--------------------------------------------------, C0λ

2±
E0λ

2
"

sλρ
-----------,= =

f 0 ε( ) ε ζ–
kBT
-----------– 

  ,exp≈

F+ 1 e z– , F– ez 1;–≈–≈

τe ph ε( )( ) 1– τ0e ph
λ( ) 1–

x–3/2J1λ x( ),
λ
∑=

J1λ x( )
1
2
--- J1λ

+ x( ) J1λ
– x( )+( ),=

J1λ
± x( ) J1λ

± z( ) z,d

0

zmax λ,
±

∫=

J1λ
+ z( )

z3 z δλ–( )
ez 1–

-----------------------,=

J1λ
– z( )

z3 z δλ+( )
ez 1–

-----------------------e z– ,=

τ0e  ph 
λ

 ( ) 
1–

 
m

 
e

 
C

 
0

 
λ

 

2

 
2

 
π

 
"

 3 -------------------- q T λ 
3

 δ λ 
3/2–

 .=
SICS      Vol. 96      No. 6      2003



1084 KULEEV et al.

                  
The upper limits of integration in Eqs. (12) are defined
by the expressions

(13)

where δλ is the inelasticity parameter. In the case of
semiconductors, the effective temperature Tsλ defining
the inelasticity of electron–phonon scattering is, as a
rule, less than 1 K; for example, in the case of Ge, TsL ≈
0.8 K at sL ≈ 5.21 × 105 cm/s, me ≈ 0.22m0. Therefore,
even at T > 10 K, δλ ! 1 and zmax ! 1; therefore, expres-
sions (12) may be expanded in powers of z. In a zero
approximation with respect to the inelasticity parame-
ter δλ , we will derive from Eqs. (12) the known expres-
sion for the electron–phonon relaxation time,

(14)

In the same approximation, the expression for the inverse
time of phonon–electron relaxation has the form

(15)

The concentrations of electrons, ne, and of charged
donors, Nd+, and the reduced Fermi level η = ζ/kBT are
found from the condition of electroneutrality for ger-
manium (see [7], formula (6.9)): Nd ≈ 1012–1013 cm–3,
εd ≈ 0.01 eV, and me ≈ 0.22m0. For these values of the
parameters, the criterion of nondegenerate statistics is
well valid.

In the approximation we adopted, the c(ε) function
allows for the direct effect of the electric field and tem-
perature gradient on the electron subsystem, as well as
for the effect of the phonon drag of electrons.

4. THE DRAG THERMOPOWER
IN SEMICONDUCTORS

WITH NONDEGENERATE STATISTICS
OF CURRENT CARRIERS

We will examine the effect of the normal processes
of phonon–phonon scattering on the thermal electro-
motive force of semiconductors with nondegenerate
statistics of current carriers. We will calculate the con-
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duction current j by dividing it into three parts propor-
tional to nonequilibrium additions to the electron distri-
bution function c(ε),

(16)

From the condition j = 0, we find

(17)

We will not consider below the diffusion component of
thermopower: for germanium crystals at T < 100 K, this
contribution is small. In the case of nondegenerate sta-
tistics, the expression for the phonon drag thermopower
may be represented in the form

(18)
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(20)

The upper integration limits in Eqs. (20) are defined
by expressions (13). First of all, note that the drag ther-
mopower includes, as does the lattice thermal conduc-
tivity [11, 22], the phonon momentum relaxation rate
renormalized by the N processes. Unlike standard
one-parameter approximations for the drag ther-
mopower [7–9, 24–28], expressions (18)–(20) include
the inelasticity of electron–phonon scattering, as well
as the contribution made by the phonon drift motion.
This contribution has different forms for the Herring
and Simons mechanisms of relaxation. Because the
phonon drift velocity is defined by all thermally excited
phonons, the thermopower becomes sensitive to the
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degree of isotopic disorder. It follows from formulas (6),
(19), and (20) that the inclusion of the drift of the
phonon subsystem, which is associated with the normal
processes of phonon scattering, brings about a decrease
in the effective relaxation rate of phonons and, accord-
ingly, an increase in the fraction of momentum trans-
ferred to electrons by phonons. This result is of practi-
cal importance as regards the interpretation of experi-
mental data on the thermopower of germanium crystals
with isotopic disorder.

In the extreme case of νphN(q) ! νphR(q), one can
ignore the contribution of the phonon drift motion and
use the expression for the drag thermopower that was
previously derived with a one-parameter approximation
[7–9, 24–28]. With νphN(q) @ νphR(q), the normal pro-
cesses of phonon–phonon scattering and the drift of the
phonon system associated with this scattering lead to a
significant increase in the absolute values of ther-
mopower. Note that, in interpreting the experimental
data on the drag thermopower in previous studies
involving the use of a one-parameter approximation
(see [7–9, 24–28]), the relaxation rate in the normal
processes νphN(q) was included in the total phonon

relaxation rate  as the resistive mechanism of
phonon scattering, and, at νphN(q) @ νphR(q), it was
treated as the only mechanism of relaxation of momen-
tum of long-wavelength phonons [7, 8]. However, it
follows from expressions (18)–(20) that, in this extreme
case, the relaxation rate νphN(q) is eliminated from the
drag thermopower, and αph is fully defined by the aver-
aged relaxation rate of phonons in the resistive pro-
cesses of scattering,

(21)

A one-parameter approximation yields in this case an
entirely different result,
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Therefore, the inferences previously made with respect to
the temperature and field dependences of the drag ther-
mopower [7–9, 24–28] need to be refined. It is evident
that, in the case of one-parameter approximation (22), the
drag thermopower αph is insensitive to the degree of
isotopic disorder. Note that a different approach to the
calculation of the drag thermopower was suggested
in [12, 13]. This approach is based on dividing the
entire system into two subsystems, namely, the sub-
system of long-wavelength phonons (q < 2k) with
which electrons interact and the subsystem of thermal
phonons (q > qTλ). The authors of [12, 13] suggested a
mechanism of two-stage drag: the phonon drift motion
is defined by the thermal phonons, which, in turn, drag
the long-wavelength phonons. By their physical con-
tent, our method and the approach developed in [12, 13]
coincide, because, in our theory, it is the thermal
phonons that define the phonon drift motion, as well as
the thermal conductivity. However, our method is more
general: we treat correctly the N processes of scattering
of thermal phonons with regard for their drift and diffu-
sion motion, identify the contributions by phonons of
different polarizations, and treat both the intrabranch
and interbranch redistribution of the phonon momen-
tum in the N processes of scattering.

5. THE RESULTS OF CALCULATION 
OF THE DRAG THERMOPOWER

OF GERMANIUM CRYSTALS 
OF DIFFERENT ISOTOPIC COMPOSITIONS

Given below are the results of numerical analysis of
the drag thermopower in germanium crystals of differ-
ent isotopic compositions, which, in view of the
assumptions made, may only pretend to be a qualitative
explanation of the effect. The main results include the
isotropic band approximation and the assumption that
the phonon drift velocity is independent of the wave
vector, i.e., the drift velocities of thermal and long-
wavelength phonons are the same. The calculation of
the drag thermopower with a real band structure of ger-
manium within the suggested method of inclusion of
the normal processes of phonon scattering, with the
long-wavelength and thermal phonons treated sepa-
rately, is of interest per se. In this analysis, we restrict
ourselves to examining the effect of the phonon drift
motion and of the inelasticity of electron–phonon scat-
tering on the drag thermopower in germanium crystals.
The values of the parameters defining the phonon relax-
ation rate were borrowed from the results of analysis of
the data on the thermal conductivity of Ge crystals of
different isotopic compositions, obtained in [3, 22]. The
use of these parameters made it possible to fit the
results of calculations of thermal conductivity for the
Herring mechanism of relaxation [22] to the experi-
mental data of [3] in a wide temperature range in the
entire investigated range of isotopic enrichment. In our
calculation of the drag thermopower, these parameters
are not varied. The fitting parameter of the theory is the
SICS      Vol. 96      No. 6      2003
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deformation potential constant. Given a fixed effective
mass of electrons, this constant is selected on the basis
of the condition of agreement between the calculated
value of absolute thermopower at the point of maxi-
mum and the experimentally obtained values for ger-
manium of natural isotopic composition and is then
used to calculate the thermopower of 70Ge (99.99%).
Because the effective mass of one of four ellipsoids in
the crystallographic direction [111] is me ≈ 1.68m0, its
average magnitude was varied from the value of the
effective mass of the density of states me ≈ 0.22m0 to the
value of me ≈ m0.

We will first examine the part played by the inelas-
ticity during the transfer of momentum from nonequi-
librium phonons to equilibrium electrons. Figures 3a
and 3b give the results of calculations of the drag ther-
mopower for natGe and 70Ge (99.99%) at me ≈ 0.22m0
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Fig. 3. The temperature dependence of the drag ther-
mopower for the following values of parameters: (a) me ≈
0.22m0, E0L = 16 eV; (b) me = m0, E0L = 4 eV. Curves 1
and 1a are for germanium of natural isotopic composition
(Nd = 4 × 1012 cm–3), and curves 2 and 2a are for germa-

nium with 99.99% 70Ge (Nd = 2 × 1013 cm–3). Curves 1
and 2 allow for the inelasticity of electron–phonon scatter-
ing, and curves 1a and 2a are plotted in a linear approxima-
tion with respect to the parameter of inelasticity of electron–
phonon scattering.
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and me ≈ m0. One can see in the figures that the exact
inclusion of the inelasticity of electron–phonon scatter-
ing brings about a marked suppression of the contribu-
tion of phonon drag in the thermopower. The maximal
values of thermopower |αmax| decrease by a factor of
1.6–1.7 for the value of me ≈ 0.22m0. However, the
importance of inelasticity increases with the effective
mass of electrons: at me ≈ m0, the value of |αmax|
decreases by a factor of 3 for natGe and by a factor of 2.2
for 70Ge (99.99%). This result came as a surprise to us.
The thing is that analysis of the time of relaxation of
electrons from phonons [7–9] revealed that, for temper-
atures T @ Tsλ (TsL ≈ 0.8 K for Ge at me ≈ 0.22m0), the
importance of inelasticity is minor and, at temperatures
above 5 K, it may be ignored. Therefore, in the previ-
ously published papers dealing with the drag ther-
mopower in semiconductors [6–9, 24–30], the inelas-
ticity of electron–phonon scattering was taken into
account in a linear approximation with respect to the
inelasticity parameter "ωqλ/kBT.

Note that the inclusion of scattering from charged
and neutral donor impurities at concentrations of the
order of 1012–1013 cm–3 has little effect on the magni-
tude of the thermopower (this scattering introduces a
contribution of less than 3%), while the magnitude of
the electron mobility varies more significantly in the
low-temperature region.

Figure 4 gives the contributions of the phonon drift
and diffusion motions into the drag thermopower for
natGe and 70Ge (99.99%). One can see in the figure that,
in the case of natGe, the predominant contribution to the
thermopower is made by the phonon diffusion motion.
The contribution by the drift motion is small and
amounts to 21% of the diffusion contribution at the
maximum of |α|. In contrast, in the case of 70Ge
(99.99%), the drift contribution to the drag ther-
mopower predominates. It is six times the diffusion
contribution. In view of the foregoing, indeed, the isotope
effect in the thermopower for Ge is associated with the
drift motion of thermal phonons. As was already
observed in analyzing the thermal conductivity of Ge and
Si crystals of different isotopic compositions [22, 23], a
decrease in the degree of isotopic disorder brings about
an abrupt increase in the contribution made by the drift
motion of longitudinal phonons to the thermal conduc-
tivity. The same effect shows up in the drag ther-
mopower.

Figure 5 gives the theoretically and experimentally
obtained temperature dependence of the drag ther-
mopower for natGe and 70Ge (99.99%). One can see in
the figure that the theory provides a qualitative explana-
tion of the isotope effect in the thermopower: the max-
imal values of |αmax| in the case of transition from natGe
to 70Ge (99.99%) increase by a factor of 1.3 for the
value of me ≈ 0.22m0 and by a factor of 2.25 for me ≈ m0,
which actually agrees with the experimentally observed
increase in the direction [111]. This may point to the
 AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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predominant part played by one of four ellipsoids with
the maximal effective mass along the direction [111].
However, the position of maxima for natGe (see Figs. 3,
4, and 5) turns out to be shifted to the low-temperature
region, Tmax ≈ 6 K, while experiment gives Tmax ≈ 17 K.
For 70Ge (99.99%), calculation gives Tmax ≈ 10 K, while
experiment produces Tmax ≈ 15 K. In calculating the
thermopower in the direction [100] (see Fig. 5, curve
3), the deformation potential constant was not varied,
and the velocities of sound were taken to be sL = 4.92 ×
105 cm/s and st = 3.55 × 105 cm/s, in accordance with
[31]. In this case, the isotope effect in the thermopower
with the same constant of deformation potential turned
out to be 35% lower, which may be indicative of some
anisotropy of the drag thermopower.

Note that the contribution by longitudinal phonons
alone was taken into account in the calculation of the
drag thermopower. Analysis revealed that, within the
assumptions made, the isotope effect for transverse
phonons was low and, upon transition from natGe to
highly enriched germanium, this contribution increased
by approximately 10%. This is associated with the pre-
dominant part played by the diffusion motion of trans-
verse phonons (for more detail, see [22]). Therefore, in
this analysis, we ignored the contribution of transverse
phonons, although the position of the maximum of

 is found at approximately 20–22 K. The inclusion
of this contribution could have markedly improved the
agreement between the calculated curves and the exper-
imental data at temperatures above the maximum.
However, the introduction of an additional fitting
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Fig. 4. The temperature dependence of (1, 2) the drag ther-
mopower, as well as of the contributions by (1a, 2a) the dif-
fusion and (1b, 2b) drift of phonons for germanium of dif-
ferent isotopic compositions (me = m0, E0L = 4 eV) allow-
ing for the inelasticity of electron–phonon scattering.
Curves 1, 1a, and 1b are for germanium of natural isotopic
composition (Nd = 4 × 1012 cm–3), and curves 2, 2a, and 2b

are for germanium with 99.99% 70Ge (Nd = 2 × 1013 cm–3).
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parameter into the theory hardly added anything to the
physical content of this paper.

6. CONCLUSIONS

In this paper, we have interpreted the experimentally
found strong dependence of the thermopower of germa-
nium crystals on the isotopic composition. We have
developed a theory of phonon drag of electrons in semi-
conductors with nondegenerate statistics of current car-
riers, which takes into account the effect of the phonon
drift motion associated with the normal processes of
phonon scattering. A qualitative explanation has been
given of the isotope effect in the drag thermopower. It
has been demonstrated that the rigorous inclusion of
inelastic electron scattering brings about a significant
(by factor of more than two) reduction of the absolute
values of the drag thermopower. In our opinion, the iso-
tropic band approximation for conduction electrons, as
well as the assumption of the equality of the drift veloc-
ities of long-wavelength and thermal phonons, failed to
provide for quantitative agreement with the experimen-
tal data on the drag thermopower, in contrast to calcu-
lations of thermal conductivity [22].

The inclusion of both of the above-identified factors
requires significant mathematical effort, namely, a sep-
arate study of the relaxation of thermal and long-wave-
length phonons and analysis of the Simons mechanism
of normal processes of scattering, which leads to the
redistribution of momentum between the thermal and
long-wavelength phonons of different vibrational
branches.
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Fig. 5. The temperature dependence of the drag ther-
mopower (E0L = 4 eV). Curve 1 is for germanium of natural

isotopic composition (me = m0, Nd = 4 × 1012 cm–3), curve 2

is for germanium with 99.99% 70Ge (me = m0, Nd = 2 ×
1013 cm–3) in the direction [111], and curve 3 is for germa-
nium with 99.99% 70Ge (me ≈ 0.9m0, Nd = 2 × 1012 cm–3)
in the direction [100]; the symbols indicate the experimen-
tal data.
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Abstract—We study the bipartial interaction of longitudinal and transverse acoustic pulses with a system of
paramagnetic impurities with an effective spin S = 1/2 in a crystalline layer or on a surface in the presence of
an arbitrarily directed external constant magnetic field. We derive a new system of evolution equations that
describes this interaction and show that, in the absence of losses, for equal phase velocities of these acoustic
components, and under the condition of their unidirectional propagation, the original system reduces to a new
integrable system of equations. The derived integrable system describes the pulse dynamics outside the scope
of the slow-envelope approximation. For one of the reductions of the general model that corresponds to the new
integrable model, we give the corresponding equations of the inverse scattering transform method and find soli-
ton solutions. We investigate the dynamics and formation conditions of the phonon avalanche that arises when
the initial completely or incompletely inverted state of the spin system decays. We discuss the application of
our results to describing the interaction dynamics of spins and acoustic pulses in various systems with an exter-
nal magnetic field. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the nonlinear coherent optical phenom-
ena associated with soliton and other self-similar solu-
tions [1, 2] have been analytically studied in detail in
terms of integrable models [3]. When elastic waves
propagate in paramagnetic crystals, similar soliton-like
pulses can be produced by effects related to anhar-
monic oscillations and dispersion [4] as well as under
conditions of nonlinear coherent interaction between
acoustic waves and paramagnetic impurities in the
medium and in the case of acoustic self-induced trans-
parency (ASIT) [5–8]. The nonlinear coherent phenom-
ena associated with the acoustic paramagnetic reso-
nance and the propagation of acoustic pulses have also
been studied for a long time. In several studies (see,
e.g., [5–10]), the authors constructed models for the
evolution of acoustic pulses in bulk crystals with impu-
rity paramagnetic particles and found the simplest soli-
ton solutions. The coherent effects that arise during the
evolution of Rayleigh-type surface acoustic waves were
investigated in [6, 10] and other works. Such waves can
propagate along the interface. Similar phenomena can
be observed during the evolution of plane waves in bulk
media [11–14].

As a rule, the authors of the above papers used an
analogy between optical and acoustic effects. At the
same time, the evolution of an acoustic pulse in a crys-
tal with paramagnetic impurities has a number of qual-
itative distinctions from the dynamics of light waves in
a medium, which stem, for example, from the fact that
an acoustic wave in a crystal can be longitudinal–trans-
1063-7761/03/9606- $24.00 © 21089
verse, i.e., generally, a three-component one [7, 8]. The
approximation of a quasi-monochromatic wave was
used to find soliton solutions of the equations that
described the surface acoustic waves in the papers
known to us, except [7] and our paper [15]. In general,
the characteristic length of an acoustic pulse is no less
than 10–4 cm, i.e., much larger than the lattice constant.
At the same time, for a picosecond acoustic pulse of
duration τa ~ 10 pc, its length is 10–7–10–6 cm, and pros-
pects for the physics and engineering of such ultrashort
acoustic pulses look appealing. The spatial extent of
such a pulse in a solid is only an order of magnitude
larger than the characteristic size of the lattice cell,
which is of fundamental interest in acoustic spectros-
copy and diagnostics. Therefore, ideally, media with
lengths of only hundreds or tens of characteristic lattice
sizes can be used to produce such pulses. In spectral
language, the passage to picosecond acoustic pulses
implies mastering the hitherto inaccessible frequency
range above 100 GHz. The concentration of acoustic
energy for such short intervals also allows strong
acoustic pressures exceeding 109 bars to be produced.

Recently [4], the generation of picosecond acoustic
solitons has been observed experimentally. The solitons
were formed at a distance much smaller than 1 mm due
to the balance between the dispersion attributable to the
positions of atoms in the crystal lattice and the nonlin-
earity that arose from the anharmonicity of interatomic
forces. An acoustic resonance effect, an analogue of
optical self-induced transparency, was observed in low-
temperature crystalline samples with paramagnetic
003 MAIK “Nauka/Interperiodica”
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impurities. This effect was observed on Fe2+ impurities
in MgO [11] and LiNbO3 [12] crystal matrices when
the longitudinal acoustic pulse propagated at an angle
to the external field.

In general, the group velocities of the longitudinal
(v ||) and transverse (v ⊥ ) components of an acoustic
pulse in a solid are different. As a result, the local inter-
action between the pulses of these components with a
characteristic length la is limited by the time

The interaction of the pulses is most effective at close
group velocities, v || ≈ v ⊥ . This situation takes place in
elastic-isotropic crystals, in which the velocities of the
longitudinal and transverse elastic field components do
not depend on the direction. These conditions are best
satisfied for ion crystals of alkali metal galogenides
with central forces of interatomic interaction, for exam-
ple, in NaBr [16].

The theory of ASIT in a medium of paramagnetic
impurities with spin 1/2 for longitudinal–transverse
acoustic waves was developed by Voronkov and
Sazonov [7, 8], who derived the equations describing
the dynamics of acoustic pulses. These authors used
several constraints on the interaction geometry and
dynamics to solve the general evolution equations. As a
result, they obtained complex (for analysis), exactly
nonintegrable systems of equations and then reduced
the problem either to the standard (sine-Gordon-type)
equations or to the dispersion equations that corre-
sponded to the evolution of low-amplitude pulses. The
latter equations cannot be used to describe the dynam-
ics of intense picosecond acoustic pulses.

At the same time, the rich structure of the evolution
equations that describe the dynamics of acoustic waves
in paramagnetic media makes it possible to reduce
them, for quite realistic approximations, to integrable
models without imposing similar stringent constraints.
These equations not only can correspond to a more gen-
eral physical model but also allow new physical phe-
nomena in a similar or different interaction geometry to
be described analytically. This paper is a continuation
of our paper [15], in which we derived such integrable
equations and used them to describe ASIT. Here, how-
ever, we consider a completely different interaction
geometry of acoustic waves described by a different
(than the system found in [15]) new original physical
system of equations and, accordingly, by qualitatively
new integrable reductions of this system.

In contrast to [15], in which we studied the interac-
tion dynamics of three acoustic pulse components,
here, we consider the “bipartial” dynamics of acoustic
waves; i.e., we take into account the interaction of one
transverse and one longitudinal acoustic wave compo-
nent in the xz plane. The contribution of the y acoustic
field component was disregarded. The simplest types of

tint

la

v || v ⊥–
------------------.∼
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surface waves—bipartial Rayleigh surface waves and
shear surface waves (see, e.g., [17])—can correspond
to this case. Other physical prerequisites for the realiza-
tion of this model in a bulk crystal can be associated
with its strong anisotropy, for example, when the spin–
phonon coupling coefficients that correspond to the y
acoustic wave component are relatively small. Other
conditions can be a similarity of the group velocities for
the longitudinal and transverse waves and their large
deviation from the group velocity of another transverse
component (see below and [17]).

In this interaction geometry, we show that, to pass
from the original evolution equations that describe the
coherent dynamics of acoustic pulses to an integrable
system of equations, it will suffice to use the approxi-
mation of unidirectional wave propagation and the con-
dition of equal phase velocities for the longitudinal and
transverse acoustic waves.

Since our new integrable system of evolution equa-
tions is complex for analysis, we developed the appara-
tus of the inverse scattering transform method (ISTM)
[3] for its special case. The ISTM application to this
model allows the various evolution regimes of picosec-
ond acoustic pulses to be studied outside the scope of
the slow-envelope approximation. Based on the ISTM,
we found a soliton solution of the model that explicitly
described, in particular, the dependence of the soliton
shape on the relative contribution of the longitudinal
and transverse components.

Apart from the soliton solutions associated with
ASIT, other pulse evolution regimes can also be ana-
lyzed in terms of the ISTM. For example, an unstable
state of the system arises in the case of initially com-
plete or incomplete spin inversion, with a weak seed
acoustic wave being sufficient to remove it from this
state (in the case of complete inversion). We discuss the
use of the ISTM to describe the emerging phonon ava-
lanche that was observed experimentally [13, 14] and
for other physical situations related to the dynamics of
spin–phonon systems in a magnetic field.

This paper has the following structure. The basic
system of evolution equations that describes the
dynamics of a longitudinal–transverse wave is derived
in the next section. The most general integrable reduc-
tion of the original system of equations for this system
is found in Section 3. The ISTM apparatus for the
reduction of the general model is developed in the next
section, and a one-soliton solution of this model is
found. In Section 5, we discuss our results and their
applications. In the Appendix, we give the Lax repre-
sentation for the general integrable model and integra-
ble reductions of the general model.

2. THE DERIVATION
OF BASIC EQUATIONS

Below, we derive the equations that describe the
dynamics of a longitudinal–transverse wave in a crystal
AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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with paramagnetic impurities following [7, 15]. The
external constant and uniform magnetic field B is
assumed to be directed along the z axis. The Zeeman

interaction of the magnetic moment  at point a
gives the following contribution to the total Hamilto-
nian:

The  components can be expressed in terms of the
S(a)(ra) spin components, where ra is the radius vector
of spin a, as

Here, µB is the Bohr magneton and gjk are the Lande
tensor components. Thus,

(1)

where N is the total number of spins. The diagonal val-
ues of the Lande tensor can differ.

Since the effective spin is 1/2, it can be decomposed
into Pauli matrices:

(2)

We assume that the x, y, and z coordinates along the
principal Lande tensor axes coincide with the crystal
symmetry axes. The Lande tensor is then diagonal in a
nondeformed unperturbed medium:

where δjk is the delta function. The deformation of the
crystal by an acoustic wave is described by linear cor-
rections to the Lande tensor:

(3)

where % is the elastic strain tensor of the crystal at the
spin location. The derivatives are taken at the point of
zero deformation. The strain tensor components can be
expressed in terms of the components of displacement
vector U = (Ux, Uy, Uz) as

(4)

µ̂ a( )

Ĥa µ̂ a( )B.–=
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µ̂ j
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Hamiltonian (1) takes the form

(5)

The spin–phonon interaction in the linear (in %pq)
approximation is described by the Hamiltonian

(6)

Here, Fjk, pq = (∂gjk/∂%pq) are the spin–phonon coupling
constants [12, 18].

The dynamics of the acoustic field in a crystal with-
out anharmonicity is described by the Hamiltonian

(7)

where n0 is the mean crystal density, pj (j = x, y, z) are
the momentum density components that arise during
dynamic displacements, and λjklm is the elastic modulus
tensor of the crystal [19]. The integral in (7) is taken
over the crystal volume. We assume that the number of
phonons is large and that the classical description of the
acoustic-field dynamics is valid. At the same time, a
two-level spin system requires a quantum-mechanical
description. For S = 1/2 and in the presence of a suffi-
ciently strong magnetic field, the terms quadratic in
spin operators can be disregarded (for more detail,
see [20]). Here, an analogy with the interaction of a
classical electromagnetic field with an optical quantum
two-level medium holds [21].

As in the case of an optical medium, we can pass
from the description of the spin dynamics to the evolu-
tion equations for the density matrix elements  of the
two-level medium:

(8)

(9)

Here,

where the interaction between the spin and the field of
an elastic pulse is described by the classical Hamilto-
nian equations for a continuous medium:

(10)

Here, n is the paramagnetic impurity density. The sum-
mation over the spin-1/2 ions uniformly distributed in
the crystal is substituted with integration over the entire

Ĥs µBg jjB jŜ j
a( )

.
j

∑
α
∑=

Ĥ int µBB jF jk pq, %pqŜk
a( )

.
j k p q, , ,
∑

α
∑=

Ha
1

2n0
-------- p j

2

j

∑ 1
2
--- λ jklm

∂U j

∂xk
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∂Ul
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---------
j k l m, , ,
∑+

 
 
 
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i"
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∂t
------ Ĥ ρ̂,[ ] ,=
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-------
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-------,
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-------.–= =

H Ha Ĥ int〈 〉 ,+=

Ĥ int〈 〉 µ BB jF jk pq, %pq r( ) Ŝk
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∑
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space. The angular brackets denote an averaging over
the quantum states:

We consider the bipartial dynamics of the acoustic
fields; i.e., we assume that only the longitudinal and
transverse field components (%xz and %zz) contribute to
the interaction. Such a situation is possible if the coef-
ficients Fyx, zz and Fyz, yz are much smaller than the coef-
ficients Fxz, zz , Fxz, xz , and Fzz, zz . A different mechanism
that leads to quasi-two-dimensional dynamics can be
associated with the difference between the elasticity
coefficient λyz and the coefficients λxz ≈ λzz . The phase
velocities of the acoustic wave components are propor-

tional to . Since the interaction efficiency in a non-
linear pulse regime is determined by the interaction
length, for waves with almost equal phase velocities
(v 1 ≈ v 2 ≈ v), this interaction is much more effective
than the interaction with a wave whose phase velocity
significantly differs from v. The “escape” of the acous-
tic wave component from the interaction region is also
used to motivate the passage to the “bipartial” descrip-
tion of the dynamics of acoustic waves (see, e.g., [17]),
i.e., with the contribution of the y acoustic wave com-
ponent disregarded. Since, as we show below, the group
velocities of the generated acoustic pulses in the mod-
els under study are close to the phase velocities, the
restriction to the bipartial interaction is justified. Taking
into account these conditions (see also the Introduc-
tion), we may formally set the transverse field compo-
nent equal to zero (%yz ≡ 0).

We assume that the acoustic waves propagate along
the z axis. The direction of the magnetic field B in space
can be arbitrary. Since only the B projection onto the xz
plane contributes to the interaction, we assume, without
loss of generality, that

where Bj are the components of vector B. Under these
conditions, the following arbitrary real effective spin–
phonon coupling coefficients remain:

(11)

Ŝk
a( )

r( )〈 〉 TrŜk
a( )ρ̂.=

λ yz

B Bx
2 Bz

2+ ,=
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1
B
--- B jF jz xz, ,
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f 2
1
B
--- B jF jz zz, ,

j x z,=
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f 3
1
B
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j x z,=
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f 4
1
B
--- B jF jx zz, .

j x z,=

∑=
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Below, when deriving the general integrable system of
equations, we impose no additional constraints on the
coefficients fk , k = 1–4. Given the above conditions, the

expressions for  and  take the form

(12)

(13)

Here, ωB = gµBB/" is the Zeeman splitting frequency of
the Kramers doublet, g = , and n is the ion density
in the medium. The coefficients fk , k = 1–4, describe the
coupling of the longitudinal and transverse acoustic
fields with the spin system; the first two of these coeffi-
cients correspond to the frequency shift that depends on
the acoustic-field amplitude. The physical nature of this
shift can be different. By analogy with the case of an
optical medium with a constant dipole moment
described above (see [22]), the nonzero f1 may result
from the presence of a constant magnetic moment in the
two-level medium. The mechanism described in [10]
gives a similar contribution to the frequency shift.

Under the above symmetry conditions, the Hamilto-
nian Ha takes the form

(14)

Here, the Vogt notation [18] is used for the subscripts:

Since the anharmonic effects are disregarded, there
is no direct interaction between the longitudinal and
transverse fields (it arises indirectly, only through their
interaction with the spin system). This and the condition
of equal phase velocities (see below) allow us to pass to
a new effective transverse (or quasi-transverse [17])
field—a linear combination of the stress tensor compo-
nents, which interacts with the x spin component (see
Hamiltonian (13)):

(15)

With this substitution, the interaction of the acoustic
field 0 with a two-level spin medium (see formula (8))
is described by the Hamiltonian

(16)
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Ĥs n"ωBŜz
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where

The effective magnetic operator moment µB , where

(17)

and a = f1/f3 is the constant magnetic moment, corre-
sponds to the last term in (16).

Using (8)–(10) and (16), we derive the equations of
motion for the components of spin S describing the
transitions in an effective two-level medium arising
during Zeeman splitting:

(18)

where

i.e.,

It is easy to show that

(19)

(here, the spin length was normalized to unity). In
deriving system (18), we assume that the classical
description of the acoustic field (the number of phonons
is large) is valid.

To derive the evolution equations that describe the
dynamics of the classical fields (linear combinations of
the stress tensor components) 0 and %zz , we first
obtain the wave equations for the displacements U and
then differentiate them with respect to z and use the
expressions for these fields in terms of the differentials
of the displacements with respect to z that follow from
definition (4). We also assume that the phase velocities
that correspond to the displacement components Uz and
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a( )ρ̂, γ x y z,, ,= =

Sz
1
2
--- ρ11 ρ22–( ), Sx

1
2
--- ρ12 ρ21+( ),= =

Sy
i
2
--- ρ12 ρ21–( ).=

Sz
2 Sx

2 Sy
2+ + ρ11 ρ22+( )2

1≡=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Ux are equal. As a result, we obtain the system of evo-
lution equations for the acoustic fields with averaging
over the quantum states

(20)

(21)

where

On the right-hand side of (20),

The derived new system of evolution equations (18)–
(21) describes the propagation of acoustic pulses in a
two-level medium. In the Bloch equations (18), the lon-
gitudinal acoustic field component %zz leads only to
nonlinear phase modulation. However, as we show
below, the longitudinal component is related to the
transverse component and its allowance leads to quali-
tatively new acoustic-pulse dynamics.

3. THE DERIVATION 
OF A GENERAL INTEGRABLE MODEL

In this section, we derive the most general integrable
reduction of the basic system of equations (18)–(21),
which arises for a minimum number of physical con-
straints. To be more precise, we find the reduction of the
physical system of nonlinear equations (18)–(21)
derived above in the Lax representation and show that
the ISTM apparatus is applicable.

Above, we have already assumed that the phase
velocities of the effective longitudinal and transverse
acoustic waves are equal:

We seek additional integrability conditions by assum-
ing that the reduction of the original system (18)–(21)
must describe the dynamics of acoustic pulses with a

duration of the order of or shorter than π . Under
this condition, the slow-envelope approximation is
inapplicable. As was noted above, in real media, pico-
second acoustic pulses can correspond to this case. We
also disregard the relaxation effects, which is valid for
the chosen range of pulse durations.

The equations that describe the dynamics of such
pulses are complex for analysis, but system (20) and
(21) can be simplified at a sufficiently low density of
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∂t2
------------- v 2

2∂2%zz

∂z2
-------------–

2n"ωB f
gn0

--------------------
∂2S3

∂z2
----------,=

v 1
λ11

n0
------- v 2

λ44

n0
-------.= = =

Trν̂ρ̂ 2aSz 2Sx.+=

v 1 v 2 v .= =

ωB
1–
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paramagnetic impurities. Such a physical situation
takes place in all of the known cases. This approxima-
tion is similar to the approximation used in [23] to
derive the reduced Maxwell–Bloch equations for a two-
level optical medium and is called the condition of uni-
directional wave propagation. The latter condition cor-
responds to the following approximate formal equality:

where e is a small parameter. Physically, this means that
the acoustic pulses propagate in the medium at a veloc-
ity close to the phase velocity v . The fulfillment condi-
tion for the approximation is that the normalized impu-
rity density is of the same order of smallness as the
derivative of the acoustic-field amplitudes

In this approximation, the derivative with respect to z
on the right-hand sides of Eqs. (20) and (21) can be sub-
stituted with v –1∂t with an accuracy O(e2). Thus, when
the condition of unidirectional acoustic pulse propaga-
tion is satisfied, system (20) and (21) reduces to

(22)

(23)

Here, we chose f ≠ 0. The case f  0 is discussed in
the Appendix. When calculating the derivatives with
respect to t, we take into account the Bloch equations (18)
and reduce Eqs. (22) and (23) to

(24)

(25)

It is now easy to find from Eqs. (24) and (25) that the
amplitudes of the longitudinal and effective transverse
fields are related by

(26)

Here, the arbitrary real function U0(t) ≠ 0 is determined
by the boundary conditions. The dependence of U0 on t
leads only to a renormalization of the variable t and the
functions %zz and 0. It follows from (26) that ∀ t
U0(t) ≠ 0 and the ISTM apparatus developed for an infi-
nite interval can be used. On the other hand, acoustic

∂z v 1– ∂t– O e( ),+≈

∂χ̃ ∂z v 1– ∂t.+=

∂0
∂χ̃

---------
n"ωB f 3

2v 2n0g
-------------------∂Tr ν̂ρ̂( )

∂t
--------------------,=

∂%zz

∂χ̃
-----------

n"ωB f

v 2n0g
-----------------

∂S3

∂t
--------.=

∂0
∂χ̃

---------
n"ωB f f 3

v 2n0g
-----------------------

"ωB

f
---------- %zz+ 

  Sy,–=

∂%zz

∂χ̃
-----------

n"ωB f f 3

v 2n0g
-----------------------0Sy.=

02 %zz
ωB"

f
----------+ 

 
2

+ U0
2 t( ).=
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solitons and other coherent structures can be formed in
crystals less than one millimeter in thickness [4].
Therefore, we can easily create conditions under which
the interval where

is much larger than the formation time scales of solitons
and other nonlinear structures.

Using (26), we obtain a new integrable system of
evolution equations from (18), (24), and (25):

(27)

Here, all functions are real and

The representations of this system as a condition for the
simultaneity of two linear systems with an arbitrary
(spectral) parameter are given in the Appendix. It is also
pointed out in the Appendix that system (27) is complex
enough for the ISTM to be applied. Therefore, here, we
restrict our analysis to its physically interesting reduc-
tion that arises if we set a = 0. This reduction, probably,
also corresponds to the new integrable system of equa-
tions.

4. THE ISTM APPARATUS FOR a = 0

The condition a = 0 implies that the contribution of
the effective transverse acoustic field to the frequency
modulation of the density matrix component ρ12 is dis-
regarded. Such a physical situation arises if the x and z
coordinates along the principal Lande tensor axes coin-
cide with the crystal symmetry axes. In this case, the
Lande tensor is diagonal in a nondeformed unperturbed
medium. The magnetic field B is assumed to be
directed along the z axis, i.e., along the axis of propaga-
tion of the acoustic waves.

We solve the problem on the entire axis for a rapidly
decaying field at infinity:

We assume that the spin system at the initial and final
times is in a stable ground state corresponding to mini-

U0 t( )
ωB"

f
----------≠

∂χE bUSy,–=

∂τSy aE bU+( )Sx ESz,–=

∂τSx aE bU+( )Sy,–=

∂τSz ESy.=

E χ τ,( )
0 χ τ,( )

U0 t( )
-------------------, U2 χ τ,( ) E2 χ τ,( )+ 1,= =

χ χ̃
nωB f 3

2

gn0v
2

---------------, τ
f 3

"
----- U0 t'( ) t', bd

0

t

∫ f
f 3
-----.= = =

E τ( ) 0, τ ∞ .±
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mum energy, i.e.,

A pulse of acoustic field E(τ, 0) with an area large
enough for the formation of solitons is assumed to be
injected into the crystal. To describe the corresponding
soliton dynamics, it is convenient to choose the follow-
ing Lax representation for the system of equations (27)
at a = 0:

(28)

(29)

Here,

where λ is the spectral parameter.
The spectral problem (28) for real fields may be

considered to be related to the problems for complex
fields that arise when solving the integrable Landau–
Lifshitz equations [24] and the equations of Raman
scattering or four-wave mixing [25] in terms of the
ISTM. The ISTM apparatus for these problems has
been developed in sufficient detail. Soliton and periodic
solutions were found for these related models. Previ-
ously [26], we found an expression that defined the
quasi-self-similar asymptotics describing the decay of
an initial unstable state. Given the specifics attributable
to the fact that the field E is real and that the problem is
symmetric, these results can be used for model (28)
after appropriate modification.

The solutions of the spectral problem (28) have the
involution

(30)

where

(31)

In finding soliton solutions, we should determine the
stable ground state of the system against the back-
ground of which the solitons propagate. Consider the
regime in which the asymptotic limits τ  ±∞ corre-
spond to the stable ground states that, in turn, corre-

Sz τ χ,( ) 1, τ ∞ .±–=

∂τΦ
iλU– λ β+( )E

λ β–( )E– iλU 
 
 

Φ L̂0Φ,= =

∂χΦ b

b2 4λ2–
-------------------=

× iλSz– λ β+( ) bSx 2iλSy–( )
β λ–( ) 2iλSy bSx+( ) iλSz 

 
 

Φ

=  Â0Φ.

U2 E2+ 1, β 1
2
--- b2 1– ,= =

Φ M̂Φ λ∗( )∗ M̂
1–
,=

M̂ 0 κ
1– 0 

 
 

= , κ
λ β+
λ β–
------------, b 1,>

1, b 1.≤





=
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spond to a zero field, E(χ, τ) = 0. These states are dif-
ferent for different |b |. It is easy to show that the follow-
ing ground states of the system are stable in the linear
approximation:

(32)

(33)

(34)

For |b | = 1, the ground state (34) is indifferently stable.
For a potential that vanishes at infinity (τ = ±∞), we

introduce the Jost function Ψ± in a standard way (the
solutions of (28) with asymptotics):

(35)

(36)

The symmetry properties (30) and (31) correspond to
the following matrix form of the Jost functions:

These solutions are related by the scattering matrix :

(37)

It follows from the symmetry properties (30) and (31)
that the scattering matrix can be chosen in the form

(38)

The Jost functions have standard analytical properties
(cf., e.g., [27]). The function a(λ) is holomorphic in the
upper half-plane λ, where its zeros correspond to the
soliton solutions.

Let us represent the Jost functions as

(39)

E 0, S3 1, S+± 0,= = =

S– 0, b 1,>=

E 0, S3 1, S+– 1,= = =

S– 0, b 1,<=

ES3 S+U , S–– 0, b 1.= = =

Ψ± iλσ3τ–( ), τ ∞ , b 1,<±exp=

Φ±
1

ξ
β λ–
------------

ξ
β λ+
------------ 1

 
 
 
 
 
 

iλσ3τ–( ),exp=

τ ∞ , b 1.>±

Ψ± ψ1
± ψ2

±∗ κ–

ψ2
± ψ1

±∗ 
 
 
 

.=

T̂

Ψ– Ψ+T̂ .=

T̂ !∗ @κ

@∗– ! 
 
 

.=

Ψ+ τ( ) iλσ3τ–( )exp=

+
λK1 τ s,( ) λ β+( )K2 τ s,( )

λ β–( )K2* τ s,( )– λK1* τ s,( ) 
 
 

τ

∞

∫
× iλσ3s–( )ds.exp
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It follows from system (37) that

(40)

(41)

We substitute the components of these functions
from (39) into (40) and (41) and integrate the resulting
equations (40) and (41) over λ from –∞ to ∞ with the
weights exp(–iλy)[2π(λ – β)]–1 and exp(–iλy)(2πλ)–1,
respectively. As a result, we obtain the Marchenko
equations for the right end of the axis (y ≥ τ):

(42)

(43)

On the right-hand side of Eq. (43), the plus (+) and
minus (–) signs in front of β correspond to b2 > 1 and
b2 < 1, respectively. The kernel Fβ is defined as

(44)

where # is the contour that includes the real axis and
that passes above all poles in the upper half of the com-
plex plane, F0 = Fβ (β = 0).

Given the residues at poles λk in the upper half-
plane, the kernel F0 can be represented as

(45)

The Marchenko equations for the left end of the axis
(for y y ≤ τ) can be found in a similar way. Using the
results obtained below, we can then easily show that the
corresponding solutions are joined at y = τ (for more
detail, see [27]).

ψ1
+∗ ψ1

–∗

!
---------

@
!
-----κψ2

+,–=

ψ2
+∗ –

ψ2
–∗

!
---------

@
!
-----ψ1

+.+=

K2* τ y,( ) Fβ τ y+( ) i K1 τ s,( )i∂yFβ s y+( ) s,d

τ

∞

∫+=

K1* τ y,( ) K2 τ s,( ) β i∂y+±( )F0 s y+( ) s.d

τ

∞

∫–=

Fβ y( )
@ χ( )
! χ( )
------------

#

∫ e iλy–

2π λ β–( )
------------------------dλ ,=

Fβ y( )
@
!
----- e iλy–

2π λ β–( )
------------------------ λd

∞–

∞

∫=

– i
@

∂λ! λ λ k=( )
------------------------------ e

iλk y–

λ k β–
--------------.

k

∑
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Substituting expression (39) for Ψ+ into the spectral
problem (28) and equating the expressions for different
powers of λ yields, in particular,

(46)

Using this relation, we can easily find a relationship
between the potential F3 and the kernels K1, 2 in the
form

(47)

4.1. A One-Soliton Solution
of the Model for |b | < 1

The soliton solutions associated with ASIT describe
the propagation of acoustic pulses without any change
of their shape against the background of a stable ground
state. This state for system (28) at |b | < 1 is (33). The
condition for the field E being real imposes constraints
on the soliton parameters. In particular, the discrete
eigenvalues must either be imaginary or enter into the
form of anticonjugate pairs {λ, –λ*}.

Let us find the one-soliton solution of the problem
associated with the only eigenvalue λ. We represent the
kernel F that corresponds to this value of λ = iη as

(48)

Here,

The dependence of the real quantity

on χ is derived below.

To solve the Marchenko equations, we introduce
new functions:

Substituting these functions into the Marchenko equa-
tions (43) and (44) and integrating them over y yields

(49)

(50)

K2 τ τ,( ) 1 U τ( )+[ ] E τ( ) 1 iK1 τ τ,( )–[ ] .=

E τ( ) = 
2 1 iK1 τ τ,( )–[ ] K2* τ τ,( )

1 iK1* τ τ,( )+[ ] 1   i –  K 1 τ τ, ( ) [ ] K 2 τ τ, ( ) 
2 +

------------------------------------------------------------------------------------------------------.

Fβ y( )
iC1 χ( ) iλy–( )exp

η β0–
-----------------------------------------.=

β iβ0, Imβ0 0.= =

C1
@ χ; λ( )

∂η! χ; η( )
--------------------------

η λ=

=

Qn τ( ) Kn τ s,( )e iλ s– s, nd

τ

∞

∫ 1 2.,= =

K1 z z,( )
i γ1

2 4ηz( )exp–

2η2 1 γ1 χ( ) 2 4ηz( )exp+[ ]
-----------------------------------------------------------------,=

K2 z z,( )
C1 2ηz( )exp

η β0–( ) 1 γ1 χ( ) 2 4ηz( )exp+[ ]
----------------------------------------------------------------------------,=
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where we denoted

Next, it is necessary to find the function C0(χ),
which can be determined from system (29) for

In a more general case, for the time interval [τ0, ∞], this
function can be found by using the formula (see [26]
and the derivation in [27])

(51)

Here,  and  are the matrices composed of the
eigenvectors, the solutions of problem (27) that were
found at the initial time τ0 and for τ = ∞, respectively.
Let

then

Hence, for the chosen initial and boundary conditions
that correspond to soliton dynamics, we obtain

(52)

where γ0 is a constant. Using (47), (49), (50), and (52),
we find a one-soliton solution of model (28) for a = 0 in
the form

(53)

where

We see from solution (53) that the soliton shape and
velocity depend on the coefficient b. The soliton veloc-
ity decreases with increasing b, starting from the phase
velocity v  in the medium. At b ~ 2η, the velocity
reaches a minimum and then again tends to the phase
velocity. In Fig. 1, the soliton amplitude E(τ) is plotted
against τ for different values of b. We see from the fig-
ure that E(τ) has a dip to zero at the center. As b
decreases, a breakup into a soliton and an antisoliton
whose separation tends to infinity when b  0 takes
place.

It also follows from formula (50) that the normal-
ized soliton amplitude does not exceed unity. Therein
lies an important difference between the acoustic-field

γ1 χ( )
C1 χ( )

2η
-------------.=

Sz ∞ χ,±( ) 1, E ∞ χ,±( )–≡ 0.=

∂χT̂ T̂ V̂0 Âs τ0 χ,( )V̂0
1–

V̂∞ Âs ∞ χ,( )V̂∞
1–
T̂ .+–=

V̂0 V̂∞

E τ 0,( ) 0, τ τ 0 ∞,,= =

V̂0 V̂+ iσ3λτ–( ), τexp τ0 ∞.,= = =

γ1 χ( ) γ0
–2bχη

4η2 b2+
-------------------- 

  ,exp=

E τ χ,( )
4γ0η η β 0–( ) 1 γ0

2e2φ+( )eφ

η β0–( )2 1 γ0
2e2φ+[ ] 2

2 γ0 η( )2e2φ+
-------------------------------------------------------------------------------------------,=

φ 2η τ bχ
b2 4η2+
--------------------– 

  .=
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dynamics in our model and the dynamics studied, e.g.,
in [5]. The soliton solution (53) describes the energy
transfer between the longitudinal and transverse field
components caused by the interaction with the spin sys-
tem. In Fig. 2, the level population difference is plotted
against τ.

4.2. The Decay of an Inverted Initial State 
of the Spin System 

A completely inverted spin system is unstable and
tends to a stable ground state after the action of a weak
perturbation. This dynamics in nonlinear two-level
optical media is described by the self-similar asymp-
totic solution. In [26], we showed that the asymptotic
behavior of the fields in the case of Raman scattering
for general initial and boundary conditions is described
by a complex first-order differential equation with the
right-hand side proportional to a known function. This

E

1.0

0.5

0

–0.5

–1.0
0 5 10 15 20 25

τ

Fig. 1. The amplitude of the effective transverse acoustic
pulse component E versus τ. The solid line corresponds to
b = 0.9, and the dashed line corresponds to b = 0.1 and
η = 0.5. The soliton position on the τ axis is arbitrary.

Sz

1.0

0.5

0

–0.5

–1.0
0 5 10 15 20 25

τ

Fig. 2. The amplitude of the level population difference ver-
sus τ for a soliton regime. The solid and dashed lines corre-
spond to b = 0.9 and 0.1, respectively.
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function can be expressed in terms of the solution to the
transcendental Painleve equation of the third type (PIII)
[28]. The solution corresponds to the nonsoliton, radia-
tion dynamics associated with the continuum of the
corresponding spectral problem. Following the results
of [26], we can show that this dynamics is characteristic
of arbitrary Sγ(χ, 0) slowly changing with χ and a suffi-
ciently small seed acoustic field pulse |E(τ, 0)| ! 1. For
such small field amplitudes and its derivatives, it is easy
to determine the scattering coefficient

at χ = 0 by using the spectral problem (28):

(54)

If E(τ, 0) = const, then the scattering coefficient ρ0 does
not depend on λ.

We solve the initial-value (for χ = 0) problem with
the trivial boundary conditions that correspond to an
unstable (at τ = 0) state (complete inversion) and a
small (seed) acoustic deformation of the crystal:

(55)

The seed field E(τ, 0) causes this state to decay and the
system tends to a stable state,

which is reached for χ  ∞.
The scattering coefficient ρ0(χ) depends on λ. Let

us calculate the kernel F (45) by taking into account
the dependence of the scattering data on χ and condi-
tions (55), i.e., with the discrete spectrum disregarded.
For the initial and boundary conditions (55), it will suf-
fice to take into account the contribution of only the
continuous spectrum of the problem. The dependence
ρ(χ) can be determined by using expression (51):

(56)

Let us now find the linear solution of the problem that
corresponds to the initial stage of the decay of an
inverted state and the formation of a phonon avalanche.
Since, as we show below, the range of large |λ| mainly
contributes to the solution, we assume that 4|λ|2 @ b2.
To calculate the kernels, we introduce a new integration
variable on the right-hand side of (45),

,

ρ χ; λ( )
@ χ; λ( )
! χ; λ( )
-------------------=

ρ 0; λ( ) ρ0
@ 0; λ( )
! 0; λ( )
-------------------= =

≈ λ–
2

------ E∗ τ 0,( )e2iλτ τ .d

∞–

∞

∫

E τ 0,( ) const ! 1, Sz 0 χ,( ) 1.= =

E 0, Sz 0 χ,( ) 1,–= =

ρ χ( ) ρ0
2ibχλ

b2 4λ2–
------------------- 

  .exp=

λ iν
2 bχ/τ
-------------------=
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and reduce it to the form

(57)

where I0, 1 are modified Bessel functions and ϑ  =

. We assumed that

It follows from (42), (47), and (57) that the field ampli-
tude increases at the linear stage:

(58)

Another conclusion that follows from the derived
expressions for kernel (57) is that the solution for the
acoustic field is concentrated in the range ϑ  @ 1 for
small ρ0 such that –ln|ρ0 | @ 1. In this range, the inte-
grals in the Marchenko equations (41) and (43) can be
approximately calculated by the saddle-point method.
It follows from the Marchenko equations that the ker-
nels K1, 2 exponentially increase with τ at the initial
stage; i.e., the solution for |E | can reach values of the
order of unity for arbitrarily small seed field amplitudes
E(0, τ).

Complete spin inversion can be achieved by using
sufficiently strong laser radiation [13]. Incomplete ini-
tial inversion of the medium, i.e.,

corresponds to a more general situation. In this case, a
mixed initial-value–boundary-value problem arises on
the semiaxis (τ ∈  [0, ∞)), whose solution is much more
complex than the cases where Sz(0, χ) = ±1. For some
of the nonlinear systems of equations, this problem was
solved in the case where E(τ, 0) = 0 (the Dirichlet prob-
lem [26, 29]; see also the method for solving a more
general problem in [30, 31]).

Below, we use the results of [26] to find the asymp-
totic solution of the Dirichlet problem that is applicable
to describing the dynamics of the phonon and spin ava-
lanches that arise under the following initial and bound-
ary conditions:

(59)

To this end, following [26], we will reduce the spectral
problem (28) to the Zakharov–Shabat problem [3] by a

Fβ χ τ,( )
ρ0

2π
------ ϑ /2( ) ν 1/ν–( )[ ]exp

ν 2β0 τ /bχ–
--------------------------------------------------- νd

∞–

∞

∫=

≈ iρ0 I0 ϑ( ) 2β0
τ

bχ
------ I1 ϑ( ) …+ + ,

4bχτ

4β0 τ /bχ  ! 1.

E χ τ,( ) 2K2 χ τ τ, ,( ) 2Fβ χ 2τ,( ) ρ0eϑ .∼≈ ≈

1 Sz 0 χ,( ) 1,< <–

Sz 0 χ,( ) Sz 0 0,( )≡ Sx
0( ),=

Sx 0 χ,( ) Sx 0 0,( )≡ Sx
0( ),=

Sy 0 χ,( ) 0, E τ 0,( ) 0.≡≡
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simple gauge transformation of the form

(60)

Here,  and  are the unit and Pauli matrices, respec-
tively. We use the following notation:

Transformation (60) reduces the spectral problem (28) to

(61)

(62)

where we assume that b2 < 1. The solution of the prob-
lem reduced to analyzing a simpler spectral problem
and restoring E from the known solution V(τ, χ) using
(62).

The Marchenko equations for the Zakharov–Shabat
problem are well known (for more detail, see [3]). They
are given in the Appendix for reference. For an arbi-

trarily inverted medium at the initial time (  ≠ 0), the
scattering coefficient ρ(χ) and the kernels in the March-
enko equations can be calculated by the asymptotic
method suggested in [26]. To determine the dependence
of the scattering data on χ using formula (51), we
should find the values of the matrix

(63)

at the ends of the interval (τ = 0, ∞). In [26], we showed
that the large  * , i.e., in the case under consid-

eration,  @ b, /2, mainly contributed to the
radiation asymptotic solution. For this asymptotics and

conditions (59), the components of matrix  are

(64)

These boundary conditions give rise to an infinite series
of ρ(χ) poles whose positions depend on χ. To find the

Ψ D̂
1– Φ, L̂0 D̂L̂0D̂

1–
D̂∂τ D̂

1–
,–

D̂ Î v /2( )cos iσ̂1 v /2( ).sin+=

Î σ̂1

E v , Usin v .cos= =

∂zΨ
iλ– V

V∗– iλ 
 
 

Ψ L1Ψ,≡=

V χ τ,( )
i
2
--- 1 b2– vsin ∂τv+( ),=

Sx
0( )

Â0' τ( ) V̂ τ D̂ Â0D̂
1–

D̂∂τ D̂
1–

–( )V̂ τ
1–

=

λ λa

λa 1 b2–

Â0'

A0' 0( )[ ] 11 A0' 0( )[ ] 22–
ibSz

0( )

4λ
-------------,≈=

A0' 0( )[ ] 21 A0' 0( )[ ] 12–
bSx

0( )

4λ
-----------,≈=

A0' ∞( )[ ] 11 A0' ∞( )[ ] 22–
–ib
4λ
--------,≈=

A0' 0( )[ ] 12 A0' ∞( )[ ] 21–( )  =  0.=                               
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solution for nonsmall χ, we should determine the total
contribution of all these poles. For sufficiently large χ,
the kernels Fr in the Marchenko equations (76) and (77)
can be calculated asymptotically in the same way as
was done in [26] for a different problem. Using the
results of [26], after modification associated with the

values of matrix  at zero, it is easy to show that the
kernel Fr for conditions (59) and large χ is

(65)

where

I1 is a Bessel function. This kernel corresponds to the
condition

For π/4 ≥ α0 > 0, we should substitute I1  J1.

For this kernel, in [26], we found a solution to the
Marchenko equations (76) and (77) and an explicit
solution for V
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) composed of a set of oscillations
that were damped with increasing 
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. This solution, to
within the factor 
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, is a self-similar solution that

depends on the variable 
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In the limit 
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  1, the asymptotic solution for the
acoustic-wave amplitude is described by the equation
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) is the self-similar solution of the sine-Gor-
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2χb Sx
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-----------------------------------I1 θ'( ),=
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Fig. 3. The acoustic-pulse amplitude E versus τ for incom-

plete initial inversion of the medium  = sin(π/2.7). The

solid line corresponds to b = 0.9, and the dashed line corre-
sponds to b = 0.1 and η = 0.5.
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don equation

(67)

with the boundary conditions

This self-similar solution can be expressed in terms
of the solution to PIII in a standard way [28].

The results of our numerical calculations of the orig-
inal system for conditions (59) are shown in Fig. 3.
These results and analysis of the asymptotics for the
original system of equations and solutions (66) indicate
that the general solution consists of a packet of damped
nonlinear pulsations with an increasing duration. In real
media, the relaxation and diffraction processes lead to
a significant relative suppression of the oscillation
amplitudes compared to the leading edge. Therefore, in
practice, it is often sufficient to find an expression for
the first nonlinear oscillation. Our solution shows that
the asymptotics (at large χ) is a nonsoliton one and

characterized by the self-similar variable . This
solution for the acoustic-wave amplitude describes the
phonon avalanche and the avalanche transition of the
spin system to a stable state.

5. DISCUSSION OF THE RESULTS 
AND THEIR PHYSICAL APPLICATIONS

We studied the dynamics of acoustic pulses with a

duration close to  in terms of integrable reductions
of the evolution equations. These systems of equations
describe the evolution of longitudinal–transverse waves
that propagate along the magnetic field in a medium of
impurity ions with an effective spin of 1/2. In studying
the coherent dynamics of acoustic pulses, we used only
the condition of equal phase velocities for the longitu-
dinal and transverse waves and the approximation of
unidirectional acoustic-wave propagation. As a result,
we were able to find an integrable model that corre-
sponded to the most general physical situation for the
interaction geometry under consideration. On the other
hand, milder physical conditions than those in the mod-
els constructed and studied by other authors, for exam-
ple, by Voronkov and Sazonov [7], are required to
observe the behavior of the field described here,
because our models can be applied at higher tempera-
tures and lower magnetic-field strengths.

In pure form, the soliton dynamics associated with
ASIT requires producing a sufficiently intense pulse
with a nearly soliton shape at the boundary of the
medium for its observation. On the other hand, as we
showed above, if the spin system is initially partially or
completely inverted and is in an unstable state, then the

θd
d

 
 

2

@
1
θ
---

θd
d

@+ @ θ( ),sin=

@ 0( ) Sx
0( ), d@ θ( )

dθ
----------------

θ 0=

0.= =

bχτ

ωB
1–
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solution that describes the transition to a stable state is
a nonsoliton one. Similar phonon dynamics was
observed in a series of experiments by the authors
of [13, 14]. These authors investigated the stimulated
emission of resonant acoustic phonons produced by the
decay of the initial population inversion in a system of

Kramers doublets  of impurity Cr3+ ions in a
ruby (Al2O3). An external magnetic field of approxi-
mately 3.48 T in strength led to Zeeman doublet split-
ting. The crystal was at a temperature of 1.8 K. The ini-
tial level population inversion, i.e., the spin inversion,
was caused by laser pumping at a wavelength of
693 nm. These authors found that a nonmonotonic time
dependence of the lower level population arose for a
sufficiently large effective length of the inverted
medium. This kind of field dynamics can be described
in terms of model (27) under the initial condition (59).
In [13, 14], this effect, called a phonon avalanche, is
explained by using an analogy between the dynamics of
transverse acoustic waves and the dynamics of photons
during superfluorescence for quasi-monochromatic
waves. Our results indicate that a similar phonon ava-
lanche can be observed for acoustic pulses with a dura-

tion close to  and in the more general case of a lon-
gitudinal–transverse wave and for incomplete inver-
sion.

The new integrable models obtained here can also
be used in other fields of physics, for example, in sys-
tems with spatially localized electrons. Let us consider
a phonon-induced transition with the change in electron
orientation between the Zeeman sublevels in a system
of quantum dots in GaAs. In [32], the rate of this tran-
sition was estimated for various spin–orbit interaction
mechanisms. The spin–lattice relaxation for the elec-
trons localized at quantum dots was shown to be much
smaller than that for free electrons. For a sufficiently
large strength of the applied magnetic field, the contri-
bution of the spin–phonon interaction can be signifi-
cant. It was shown in [32] that, for a phonon wavelength
much larger than the size of one quantum dot (g0µBB !

, where v  is the speed of sound, m is the
electron mass, and "ω0 is the typical separation
between the orbital levels at a quantum point), the spin–
phonon interaction is described by a Hamiltonian simi-
lar to (13). Taking into account the evolution of the lon-
gitudinal–transverse acoustic wave in a system of such
quantum dots and following the above assumptions, we
obtain a system similar to (27). Since the picosecond
duration of an acoustic pulse corresponds to its limiting
length ls ~ 10–7 cm and since an acoustic soliton can be
formed at several lengths ls , an allowance for the coher-
ent phonon dynamics for such evolution scales can be
of importance in controlling the electron behavior in an
ensemble of quantum dots.

Analysis of the soliton solutions (53) indicates that
the time dependence of the spin direction for a longitu-

Ẽ E2( )

ωB
1–

mv 2
"ω0
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dinal–transverse wave depends on the relative contribu-
tion of the longitudinal wave. The relation between E
and Sz for a one-phase soliton solution can be easily
derived from system (27). For solution (53) and the
conditions when τ  –∞, we find that

(68)

The dependence Sz(τ) for different b is shown in Fig. 2.
Below, we give another example of the physical sit-

uation that can be described by using the qualitative
results obtained above. The relaxation of magnetic
spins from an inverted initial state to a final (stable)
state in the presence of a magnetic field at low temper-
atures (1–5 K) can be accompanied by elastic crystal

deformations [33]. A Hamiltonian similar to  (13)
can be used to describe this spin–phonon interaction.
This interaction gives rise to a spin–phonon avalanche
[33], which was observed in experiments aimed at
studying the decays of Mn12 magnetization in the pres-
ence of a magnetic field and at temperatures of 1.9–5 K.
In contrast to the model considered above, which leads
to a two-level medium, the situation studied in [33] cor-
responds to a multilevel (more precisely, 21-sublevel)
medium. In this case, the cascade transitions (or, fol-
lowing the terminology of [33], the phonon-induced
tunneling) between sublevels can be described in the
quasi-classical approximation in terms of the model of
an adiabatically changing spin. Since we consider the
time range of acoustic pulses that corresponds to the
spectral range including all sublevel transitions, the
effective Hamiltonian of the spin–phonon interaction in
this approximation is similar to (10). Some of the qual-
itative results obtained above can be used to explain the
dynamics of spins in such a multilevel medium with
cascade tunneling, for example, the behavior of the sys-
tem during the decay of an inverted state.

At the same time, when the cascade transition in the
adiabatic approximation is replaced with a two-level
medium, the smoothing of the oscillating tail structure
of the phonon avalanche is disregarded. Indeed, the for-
mation time of the leading edge of the avalanche is
determined by the initial fluctuation (noise), to which
the system is insensitive. To be more precise, the delay
of the leading edge is determined by the logarithm of
the seed area (proportional to lnρ0; cf. (57)). On the
other hand, a phase difference of the order of π between
the pulses generated at different transitions is accumu-
lated in a time of the order of the duration of the first
pulse, because the coupling constants between phonons
and different tunneling transitions differ significantly
(by several times). As a result, the shapes of the gener-
ated phonon and spin avalanches must consist of one
intense pulse. The subsequent pulses that must have

Sz Sz ∞ χ,–( ) U

b2 4η2+
--------------------,–=

Sz ∞– χ,( ) 1

b2 4η2+
-------------------- 1.–=

Ĥ int
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been observed in a two-level medium suppress each
other. This picture was observed experimentally [33].

Here, we disregarded the nonlinear effects related to
the anharmonicity of the crystal lattice. They can be
included in the integrable models found above in the
form of additional perturbing terms.
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APPENDIX

The Lax representation for the system of equa-
tions (27) is

(69)

(70)

where U2 + E2 = 1, λ is the spectral parameter,

Here,  and G(λ) are arbitrary piecewise smooth
functions that are not identically equal to zero and that
are related by

(71)

This parametrization contains ambiguities related to
the square roots of the powers of λ in the matrix ele-

∂τΦ
iλU– G

a
b
---ZU E+ 

 

G̃
a
b
---ZU E+ 

  iλU
 
 
 
 
 
 
 

Φ,=

∂χΦ iYλb –Sz aSx+( ) A12

A21 iYλb Sz aSx–( ) 
 
 

Φ,=

A12 G aYZSz 1 4λ2Y+( )Sx i2YbλSy–+[ ] ,=

A21 G̃ aYZSz 1 4λ2Y+( )Sx i2YbλSy+ +[ ] ,=

Y

=  
2–

4λ2 1– a2– b2– 4λ2 1 a2 b2–+ +( )2
4a2b2++

----------------------------------------------------------------------------------------------------------------------,

Z
1

2a2
-------- –4λ2 1– a2– b2+[=

+ 4λ2 1 a2 b2–+ +( )2
4a2b2+ ] .

G̃ λ( )

GG̃
1
8
--- 4λ2 1 a2 b2–+ +[–=

+ 4λ2 1 a2 b2–+ +( )2
4a2b2+ ] .
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ments on the right-hand sides of (69) and (70). Below,
we give a different special form of the Lax representa-
JOURNAL OF EXPERIMENTAL
tion for system (27) with the parametrization of the
coefficients via the Jacobi elliptic functions:
(72)∂τΦ
i
B+cn ξ k,( )dn ξ k,( )

8sn ξ k,( )
-------------------------------------------U–

ab

2B–sn ξ k,( )
-------------------------------U

B–sn ξ k,( )

8
------------------------E+

–
ab

2B–sn ξ k,( )
-------------------------------U

B–sn ξ k,( )

8
------------------------E– i

B+cn ξ k,( )dn ξ k,( )

8sn ξ k,( )
-------------------------------------------U

 
 
 
 
 
 
 

Φ,=
(73)

Here, U2 + E2 = 1; ξ is the spectral parameter; sn(ξ, k),
cn(ξ, k), and dn(ξ, k) are the Jacobi elliptic functions
with the modulus

This system can be solved in terms of the ISTM on a
torus in a way similar to the cases of a biaxial chiral
field [34] and related Landau–Lifshitz equations [35].
However, the following additional difficulty arises
here: the nondiagonal matrix elements on the right-
hand sides of (69) and (70) do not become zero for the
vacuum solution E = 0 against the background of which
the solitons propagate. Therefore, in contrast to the
main chiral field and the Landau–Lifshitz equations,
another ambiguity arises here. This ambiguity makes
the analytical properties of the problem much more
complicated.

For the special case a = 0, the Lax representation (69)
and (70) transforms into (28) and (29), respectively.

∂χΦ b

2B–sn ξ k,( ) 2 1 a2+( ) B–
2sn2 ξ k,( )–[ ]

--------------------------------------------------------------------------------------------=

× iA0 –Sz aSx+( ) A12

A21 iA0 Sz aSx–( ) 
 
 

Φ.

k
B+

B–
------;=

B± 1 a2 b2– 1 a2 b2–+( )2
4a2b2+[ ]

1/2
±+{ }

1/2
,=

A0 B–B+cn ξ k,( )dn ξ k,( ),=

A12 2abSz b 2a2 B–
2
sn2 ξ k,( )–[ ] Sx–=

+ i2B–B+cn ξ k,( )dn ξ k,( )Sy,

A21 –2abSz b 2a2 B–
2
sn2 ξ k,( )–[ ] Sx+=

+ i2B–B+cn ξ k,( )dn ξ k,( )Sy.
 A
Formally passing to the limit in (27),

(74)

where χ' is a new variable, we obtain the well-known
integrable system [28]—the reduction of the original
system of equations (27):

(75)

where

However, we made this passage to the limit in system (27)
after applying the unidirectionality approximation and
then used relation (26) between the longitudinal and
quasi-transverse fields. If we take the original physical
system (18), (20), and (21) with f = b = 0 as the basic
one, then we will obtain (after applying the same
approximations) a different integrable system of equa-
tions that is formally equivalent to the integrable sys-
tem recently found by Agrotis et al. [22] and used by
these authors to describe the dynamics of optical soli-
tons in a two-level medium with a constant dipole
moment. The same (to within the notation) system
emerges as the reduction (27) in the low-amplitude
limit, E ! 1, for which the function U in this system can
be formally substituted with unity.

Below, we give the Marchenko equations for the
Zakharov–Shabat problem (61) [3] on the entire axis
τ ∈  (–∞, ∞) and for the field V(τ, 0) and its derivatives
that rapidly become zero at infinity:

(76)

(77)

a 0, b 0, bχ χ',≠

∂χ'E U θ,sin–=

θ 1 a2+ E τ'( ) τ', Syd

0

τ

∫ θ,sin= =

aSx Sz– 1 a2+ θ.cos=

K1 τ τ ',( ) F τ τ '+( ) F τ' s+( )K2 τ s,( ) sd

0

τ

∫+ + 0,=

K2 τ τ ',( ) K1 τ s,( )F τ' s+( ) sd

0

τ

∫– 0.=
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Here, the kernel

(78)

for conditions (59) is completely determined by the real
spectrum of problem (61). The relation between the
potential V and the kernel K1 has the standard form

(79)
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Abstract—The magnetorefractive effect in ferromagnetic metal–insulator granular nanostructures (CoFeZr)–
SiOn , Co–Al–O, FeSiOn , and (CoFe)–(Mg–F) is investigated in the infrared spectral region in a wavelength
range from 5 to 20 µm. The magnitude of the effect varies from 0.1 to 1.5% for different nanocomposites and
strongly depends on the frequency of light and magnetoresistance. It is shown that the reflection coefficient
changes in a magnetic field not only due to the magnetorefractive effect, but also due to the even magnetooptical
effect. Simple relations describing this effect are given for the case when the reflection from the substrate is
insignificant and in the case of a three-layer (insulator–film–substrate) system. The expression for the frequency
dependence of the magnetorefractive effect in nanocomposites is derived and its features in the case of high-
frequency spin-dependent tunneling are analyzed. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetorefractive effect (MRE) is a frequency
analog of giant magnetoresistance and is manifested in
a change in light reflectance R, transmittance T, and
absorptance A for samples with a considerable magne-
toresistance upon their magnetization [1, 2].

Traditional magnetooptical effects (MOE), even and
odd in magnetization, are associated with the influence
of spin–orbit interaction on intraband (in the IR spectral
region) or interband (in the visible spectral region) opti-
cal transitions. The MRE is not associated with the
spin–orbit interaction and is due to spin-dependent
scattering or tunneling. The conductivity σ(ω) of mag-
netic materials with a giant, tunnel, or colossal magne-
toresistance changes significantly upon magnetization;
for this reason, the permittivity

which determines the refractive indices and is a linear
function of conductivity σ(ω), is a function of the
applied magnetic field also. Here, εr(ω) is the permittiv-
ity taking into account the contributions of displace-
ment currents. The MRE must be manifested most
clearly in the IR spectral region, in which intraband
transitions dominate.

It should be noted that, in the case of reflection in
ferromagnetic metals as well as in alloys and compos-
ites based on such metals in the IR spectral region, tra-
ditional magnetooptical effects odd and even in magne-

ε ω( ) εr ω( ) i
4πσ ω( )

ω
-------------------,–=
1063-7761/03/9606- $24.00 © 21104
tization do not exceed 0.01%. For this reason, the
search for materials with a strong MRE is of consider-
able practical importance. The MRE can also be used
for a contactless analysis of giant magnetoresistance
[3]. Finally, the study of the MRE in metal–insulator
systems is a direct method for investigating high-fre-
quency spin-dependent tunneling.

The MRE was investigated theoretically and con-
firmed experimentally for the first time for Fe/Cr mul-
tilayers [1]. The MRE theory for metallic multilayers
was also developed in [4–6]. In spite of certain incon-
sistencies in the results of these publications (see, for
example, discussion in [6]) concerning the relative
magnitude and frequency dependence of the MRE, this
effect is reliably observed in the near-IR spectral region
and amounts to 0.1–0.5% for reflection [1, 6].

The MRE theory for granular metal–metal alloys
was constructed in [2] and modified recently in [7]. The
experimentally measured values of MRE for Co–Ag
granular systems [3, 7] in strong magnetic fields did not
exceed 1%. The simplest relation for the MRE in metal-
lic systems was derived in [2] for the Hagen–Rubens
spectral range (ωτ ! 1, where τ is the electron relax-
ation time) for the normal incidence of light:

(1)

∆R
R

-------
R H 0=( ) R H( )–

R H 0=( )
-------------------------------------------=

=  –
1
2
--- 1 R–( )ρ H 0=( ) ρ H( )–

ρ H 0=( )
------------------------------------------ 1

2
--- 1 R–( )∆ρ

ρ
-------.–=
003 MAIK “Nauka/Interperiodica”
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Here, R(H = 0) and R(H) are the coefficients of light
reflection from samples in zero magnetic field and in a
magnetic field H, ρ(H = 0) and ρ(H) are the correspond-
ing resistivities, and ∆ρ/ρ is the absolute value of mag-
netoresistance. Expression (1) implies that high values
of the MRE must be observed in systems with a large
magnetoresistance and with a low reflectance, i.e., in
nonmetallic systems. Indeed, a considerable MRE was
recently detected in granular metal–insulator films of
Co–Al–O [8, 9] and CoFe–MgF [10].

In this study, an attempt is made at a detailed inves-
tigation of the MRE in magnetic composites. Section 2
is devoted to analysis of possible contributions to the
measured reflectance from the MRE and from even
magnetooptical effects. It was assumed earlier (see, for
example, [1–10]) that the change in the reflectance in a
magnetic field is precisely the magnetorefractive effect;
however, this is justified only if the MRE exceeds 0.1%.
In the same section, simple relations are given for cal-
culating the MRE in the model of a semi-infinite space
(insulator–magnetic medium) and possible features of
the MRE are analyzed in the case of high-frequency
spin-dependent tunneling. It should be noted in this
connection that expression (1) is obviously inapplica-
ble for describing the MRE in nanocomposites since it
has been derived on the basis of the frequency depen-
dence of a Drude–Lorentz-type metallic conductivity.
The methods for preparing samples are described in
Section 3. Section 4 deals with the experimental meth-
ods and details and, in particular, describes a setup
modified as compared to that in [8]. The results of
experiments for a number of nanocomposites and their
analysis are given in Section 5. Main attention is paid
to analysis of the frequency dependence of the MRE,
the dependence of the signal on the polarization of radi-
ation, the correlation between the MRE and magnetore-
sistance, and the influence of optical parameters on the
MRE. The results are summarized in the Conclusions.

2. THEORY

The permittivity tensor for a medium magnetized
along the z axis has the form

(2)

where it follows from symmetry considerations that
εxx = εyy and εyx = –εxy . The nondiagonal components
are linear, while the diagonal components are quadratic
in magnetization M; i.e.,

(3)

Here, ba characterizes the contribution due to induced
anisotropy of the magnet [11–13], while bMRE describes

ε̂
εxx εxy 0

εyx εyy 0

0 0 εzz 
 
 
 
 

,=

εxx = εd 1 bM2+( ), b = ba bMRE, εxy+  = aM.
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the MRE contribution. The nondiagonal elements of
the permittivity tensor are responsible for the magne-
tooptical Kerr and Faraday effects, which are linear in
magnetization, while the orientational magnetooptical
effect, which is even in magnetization [12, 13], is asso-
ciated both with the contribution εdbaM2 to the diagonal
elements and with nondiagonal elements. Conse-
quently, the results of MRE measurements always con-
tain the contribution from the even magnetooptical
effect along with the true MRE.

2.1. Model of Semi-infinite Space 

Let us first consider a thick sample for which the
reflection from the substrate can be disregarded. For
p-polarized light incident in the xy plane from a transpar-
ent insulator (medium 1 with a real refractive index n1) at
an angle φ0 on the sample (medium 2 with a complex
refractive index η2 = n2 – ik2), the reflectance R can be
written in the form [14]

(4)

(5)

Since (ε2)xx =  = (n2 – ik2)2 by definition, it can easily
be seen, in view of relations (2) and (3), that the term
quadratic in magnetization in relation (4) is determined
by the MRE, induced anisotropy, and nondiagonal
terms. The contributions of induced anisotropy and
nondiagonal terms are on the order of the square of the
magnetooptical factor Q, i.e., are quadratic in the spin–
orbit interaction. The magnetooptical factor Q in the
visible spectral region does not exceed 0.02, and there
are no grounds to expect an increase in this factor in the
IR spectral region.1  Consequently, the even magne-
tooptical effect may lead to a change in R upon magne-
tization by not more than 0.1%. The numerical calcula-
tions made for specific alloys with experimentally
determined optical and magnetooptical parameters [15]
confirmed this estimate. Thus, the influence of the even
magnetooptical effect on the MRE can be neglected in
all cases when the MRE exceeds 0.1%. Then we can set
a = 0 and ba = 0 in relation (3),

(6)

1 The nondiagonal components of the permittivity tensor depend
on the ratio of the anomalous Hall coefficient to the square of
resistance. The anomalous Hall effect in nanocomposites in the
vicinity of the percolation threshold attains giant values which
are four orders of magnitude larger than in metals; however, the
resistivity increases even more strongly in this case.

R r12
p 2

,=

r12
p g1η2

2 g2n1
2–

g1η2
2 g2n1

2+
----------------------------

g1η2
2εxy

g2n1
2 g1η2

2 g2n1
2+( )2

----------------------------------------------,–=

g1 n1
2 n1

2 φ0sin
2

– , g2 η2
2 n1

2 φ0sin
2

– .= =

η2
2

n2 n2
0 1 cM2+( ), k2 k2

0 1 dM2+( ),= =
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where coefficients c and d are determined by spin-
dependent scattering or tunneling.

If medium 1 is vacuum (n1 = 1) and the incidence of
light is close to normal (φ0 = 0), expression (4) is sim-
plified considerably,

(7)

and then

(8)

2.2. The Insulator–Magnetic Film–Substrate 
Three-Layer System 

In the case of a three-layer system consisting of a
magnetic film (medium 2) of thickness h on a substrate
(medium 3) and an insulator (medium 1), the expres-
sion for the reflectance of p-polarized radiation incident
from medium 1 has the form

(9)

(10)

where the presence of factor Fk , which appears due to
transmission of light through the film and reflection
from the substrate and contains the complex refractive
index of the magnetic medium, may lead to a consider-
able enhancement of the MRE. Some examples of the
results of calculations based on formulas (4) and (9)
will be given below together with microscopic expres-
sions for parameters c and d.

2.3. Peculiarities of the Frequency Dependence 
of Magnetorefractive Effect for Nanocomposites 

At low frequencies, tunneling probability is inde-
pendent of frequency. However, at high frequencies,
both a decrease in the tunnel transparency (when the
period of an electromagnetic wave becomes smaller
than the characteristic time of tunneling) and an
increase in the tunneling probability due to absorption
may be observed. In addition, a tunnel junction is
essentially a capacitor; for this reason, the conductance
of the tunnel junction at finite frequencies is determined

R
1 n2–( )2 k2

2+

1 n2+( )2 k2
2+

--------------------------------,=

∆R
R

------- 1 R–( )M2=

× c
1 n2

0( )2
– k2

0( )2
+

1 n– 2
0( )2

k2
0( )2

+
--------------------------------------- 2d

k2
0( )2

1 n– 2
0( )2

k2
0( )2

+
---------------------------------------– .

R r jkl
p 2

, r jkl
p r jk

p Fk
2rkl
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1 Fk
2r jk

p rkl
p+

---------------------------,= =

r jk
p g jηk

2 gkη j
2–

g jηk
2 gkη j

2+
----------------------------, g j η j
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2 φ0sin

2
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by the resistive and capacitive components. We will
prove that the former two factors are insignificant for
the formation of the MRE, while the latter factor con-
siderably modifies the frequency dependence as com-
pared to a dependence for metallic systems.

The simplest estimate for the tunneling time τ is the
ratio of the tunnel gap width, i.e., the spacing s between
granules, to the Fermi velocity vF. For a spacing s =
1−3 nm typical of tunneling, we find that the tunneling
time is on the order of 10–16 s; i.e., in the IR range
ωτ ! 1, when λ = 1–10 µm, and the tunneling proba-
bility is the same as in the static case [16]. Since ωτ ! 1
and the electron tunneling probability at frequency
EF + "ω depends on the factor [eωτ – 1]2 and on the inci-
dent radiation power [16], the tunnel resistivity ρ in the
IR range is independent of frequency for a radiation
power in the flare spot much lower than 1 W/cm2

(which is obviously the case). However, the tunnel gap
can be regarded a resistor and a capacitor with permit-
tivity εins connected in parallel. Then, the expression for
the conductance of such a system and of the granular
film as a hole at finite frequencies can be written in the
form

(11)

which differs significantly from the Drude–Lorentz fre-
quency dependence for metallic systems. It should be
noted that expression (11) was successfully used in [17]
for interpreting the experimental data on magne-
toimpedance of tunnel systems. By definition, we have

(12)

Here, ε' = n2 – k2, ε'' = 2nk, and εr = 1 for the Drude
model. It follows from relations (11) and (12) that only
the imaginary part of the permittivity depends on the
tunnel resistivity of nanocomposites. Assuming that the
magnetoresistance

(13)

is small and using relations (8), (12), and (13), we
obtain

(14)

which is equivalent to the relations

(15)

in which index “2” indicating the magnetic medium
has been omitted. Expression (15) combined with for-

σ ω H,( )
1 iωεinsρ H( )/4π+

ρ H( )
----------------------------------------------,=

εxx εr i
4πσ ω( )

ω
-------------------– ε' iε''.–= =

∆ρ H( )
ρ

----------------- ρ 0( ) ρ H( )–
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------------------------------=
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-------,
c
d
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----- 
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AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003



MAGNETOREFRACTIVE EFFECT IN MAGNETIC NANOCOMPOSITES 1107
mulas (4) or (10) for the reflectance completely defines
the MRE in nanocomposites for p-polarized light in
terms of magnetoresistance and optical parameters. In
the particular case of normal incidence, it follows from
Eqs. (8) and (15) that

(16)

This expression represents the main result of this sec-
tion. It shows that the MRE in nanocomposites with a
tunnel magnetoresistance is a complex function of opti-
cal parameters. In particular, the MRE must be mani-
fested most clearly in the spectral regions where weak
reflection takes place and both negative and positive
MRE are possible; this enables us to interpret the exper-
imental data obtained in [9].

3. SAMPLES

The objects of investigations were nanocomposite
films with a considerable tunnel magnetoresistance.

The films of amorphous ferromagnetic alloy
Co45Fe45Zr10 in the amorphous matrix of silicon diox-
ide α-SiO2 were obtained by ion-beam sputtering of
compound targets. A multicomponent target had the
form of a molded base having a size of 270 × 80 mm2

and made of the corresponding ferromagnetic alloy.
Quartz plates having a width of 9 mm were placed on
the surface of the base at right angles to its longitudinal
axis. Sputtering was carried out in a vacuum of 1 ×
10−5 Torr onto fixed glass-ceramic substrates. A granu-
lar structure with a wide and continuous set of metal-
phase concentrations was formed in a single production
cycle during simultaneous sputtering of the metallic
alloy and the dielectric from the compound target with
a varying spacing between the quartz plates. The values
of the metal phase concentration x varied from 30 to
65 at. %. The middle of this interval (so-called percola-
tion threshold) corresponds to samples with structures
in which the highest values of magnetoresistance are
observed. The film thickness in the region of the perco-
lation threshold amounted to approximately 4 µm.
According to the results of electron microscopic inves-
tigations carried out with the help of a high-resolution
transmission electron microscope, the synthesized
composites consisted of amorphous metallic grains
with a size from 2 to 5 nm, distributed in the amorphous
matrix. Smaller grain sizes correspond to lower con-
centrations of the metallic phase, while larger sizes are
typical of samples with concentration x exceeding
60 at. %. The grains formed as a result of growth are not
insulated absolutely in the dielectric matrix (even in the
case of a high SiO2 concentration), but form small con-

∆R
R

------- 1 R–( )∆ρ
ρ

-------k2 3n2 k2– 1–

n2 k2+( ) 1 n–( )2 k2+[ ]
-------------------------------------------------------- .–=
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glomerates and chains, which in turn form a labyrinth
structure.

The use of CoFeZr–SiOn films for studying the
MRE makes it possible to minimize the influence of the
even magnetooptical effect on the MRE since the
induced anisotropy effect is obviously insignificant for
amorphous metals (see discussion following formula (5)
in Section 1). In addition, the wide range of composi-
tions obtained makes it possible to study the MRE in
the range of metal and insulator phases as well as near
the percolation threshold.

Granular ferromagnetic metal–insulator films of
Cox(Al2O3)1 – x with a high magnetoresistance attaining
8% in a field of 12 kOe at room temperature were pre-
pared by the method of tandem rf magnetron sputtering
from various targets of CoxAl1 – x alloys in argon and
oxygen atmosphere onto uncooled glass substrates.
The film thickness was 2 µm and the size of Co grains
varied from 2 to 5 nm. A detailed description of the
sample preparation procedure, as well as the methods
and results of measurements of chemical, structural,
electrical, and magnetic parameters of the samples, is
given in [18, 19]. Nanogranular samples of the
(FeCo)−(MgF) system, whose magnetoresistance
attained 13.3% at room temperature in a magnetic field
of 10 kOe, were synthesized according to basically the
same technology [20].

Films of the Fe–SiOn system were prepared by the
double ion-beam sputtering of Fe and SiO2 from a com-
pound target onto silicon substrates, which permitted
one to vary the proportion between the ferromagnet and
the insulator. The characteristic grain size was approx-
imately equal to 4 nm and the film thickness was
0.2−0.8 µm. The maximal value of magnetoresistance
in a field of 10 kOe at room temperature attained values
of 1–3% depending on the film composition. The struc-
tural, electrical, and magnetoresistive properties of
films belonging to this system are described in [21].

4. METHODS OF INVESTIGATION
AND EXPERIMENTAL DETAILS

Optical reflection and magnetooptical effects in
magnetic nanocomposites were studied in a wide range
of wavelengths from 1.43 to 20 µm (7000–500 cm–1). In
the frequency range 500–7000 cm–1, we used a FTIR
PU9800 commercial Fourier spectrometer with a spec-
tral resolution of approximately 4 cm–1 and a photomet-
ric transmission accuracy ∆T = 0.1–0.01%. Optical
reflection will be represented below by the frequency
dependence of energy reflectance R(ω), while the mag-
netooptical effects will be characterized by the relative
variation of the intensity of radiation reflected from the
ferromagnet during its magnetization. In the experi-
mental geometry used for observing the magnetoopti-
cal effect for a p wave of linearly polarized light
(E ⊥  M), three intense effects can be detected simulta-
SICS      Vol. 96      No. 6      2003
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neously, viz., the transversal Kerr effect (which is linear
in magnetization M) and two effects which are qua-
dratic in M (the orientation effect and the MRE).

We measured the magnetorefractive effect on a
setup described in [8] with a number of modifications
concerning mainly the design of the magnetooptical
attachment of the Fourier spectrometer.

First, the radiation from the IR spectrometer was
turned through 90° with the help of plane and aspheri-
cal off-axis mirrors, which made it possible to direct
radiation at an angle ϕ ≈ 10° to the normal of the sam-
ple placed in the gap of the magnet. The MRE measure-
ments for an angle of light incidence close to the nor-
mal allowed us to avoid the influence of the transversal
Kerr effect (which is equal to zero for the normal inci-
dence); such a geometry is most convenient for inter-
preting the experimental results. Second, the rotating
permanent magnet was replaced by an electromagnet,
which created (in a gap of 7 × 10 mm2) either a constant
magnetic field Hmax = 1700 Oe or a varying field whose
amplitude value also attained 1700 Oe depending on
whether a dc or an ac current was fed to the magnet
winding. By reducing the varying field to zero, we
could demagnetize the sample almost completely (i.e.,
obtain a state with Mr = 0).

We also developed a new method for measuring the
difference in the intensities I(0) and I(H) of radiation
reflected from the sample in the demagnetized and
magnetized states instead of the ratio of these intensi-
ties, as was done earlier [8]. This allowed us to reduce
the “contribution” from noise, which is especially
important for small values of the effects being mea-
sured. The division of difference ∆I by the intensity of

R
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Fig. 1. Frequency dependence of the reflectance of granular
(Co45Fe45Zr10)x(SiO1.7)100 – x films: x = 57 (1), 47 (2),
40 (3), and 34 (4); ϕ = 10°.
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light measured for H = 0 determines the value of the
MRE, which is given by the formula

(17)

where the light intensities are replaced by the energy
reflectances, which are proportional to them.

Such modifications and improvements enabled us to
measure the optical reflectance and the MRE not only
in the case of oblique incidence of light, but also for
angles close to normal incidence and not in the state of
residual magnetization, as before, but on completely
demagnetized samples. Despite the complication of the
optical path of the setup, the noise level did not exceed
that in [8]. The noise level was lowered to 1 × 10–4 in
the frequency range 500–1000 cm–1 and to 3 × 10–4 for
2000 cm–1 due to the application of storage operations
(over 1000 scans), mutually reversible cycles, and
smoothing. Optical reflection and MRE measurements
were made for angles of incidence ϕ = 10° and 50° in
the frequency range 500–5000 cm–1 with a spectral res-
olution of 2 cm–1 at room temperature.

Magnetoresistance was measured using a two-point
potentiometer at room temperature in a magnetic field
of strength up to 12 kOe oriented parallel to the sample
surface and was determined, as usual, in accordance
with formula (13).

5. EXPERIMENTAL RESULTS
AND DISCUSSION

An analysis of the frequency dependence of optical
reflection in nanocomposites belonging to the
(CoFeZr)x(SiO2)100 – x system proved (Fig. 1) that the
reflectance R(ν)) is 2–3 times lower than for pure met-
als constituting grains for all concentrations in the fre-
quency range 500–7000 cm–1 and is practically inde-
pendent of frequency in the range 2500–7000 cm–1. For
frequencies below 2500 cm–1, the value of R(ν)
decreases insignificantly for samples with concentra-
tions below 47 at. %. In the frequency range 1100–
1400 cm–1, a sharp decrease in R(ν) followed by its
increase associated with absorption in the silicon diox-
ide matrix is observed. The minimal values of R(ν) cor-
respond to samples with concentrations from the range
34–47 at. %, which corresponds to the region of perco-
lation threshold. The oscillatory behavior of R(ν) for
samples in this concentration range in the frequency
interval 1100–1400 cm–1 is associated with the interfer-
ence of light reflected at the film–air and film–substrate
interfaces. The strongest changes in R(ν) correspond to
a narrow interval of 1300 ± 100 cm–1 in which the
reflectance changes by a factor larger than 2. The reflec-
tion spectra for IR radiation in Fig. 1 correspond to an
angle of incidence ϕ = 10°. For ϕ = 50°, individual

ξ ω( ) I 0( ) I H( )–
I 0( )

----------------------------
R 0( ) R H( )–

R 0( )
-------------------------------,= =
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absorption bands are shifted by 20–40 cm–1 towards
higher frequencies.

Figures 2 and 3 show the results of measurements of
magnetoresistance and MRE of the (CoFeZr)x(SiO2)100 – x
system. The data on magnetoresistance and MRE are
given for the same value of field (1700 Oe).

The percolation threshold determined from the
results of resistance measurements for this system of
amorphous granular alloys amounts to x ≈ 43 at. %;
near this threshold, the magnetoresistance attains its
maximal value of 3.5%. For samples with a high con-
centration of the metal phase (x = 57 at. %), the magne-
toresistance is close to zero (∆ρ/ρ ≈ 0.2%), which cor-
related with an insignificant MRE in accordance with
the theory developed in Section 1. It is interesting to
compare the MRE for samples with the same magne-
toresistance, but with concentrations x smaller and
larger than 43 at. %, i.e., on the left and right of the per-
colation threshold. It can be seen from Fig. 3 that the
MRE for samples in the dielectric phase is stronger than
in the metallic phase (x > 47 at. %) for virtually equal
values of magnetoresistance (see Fig. 2). In accordance
with formula (16), this is due to smaller values of the
reflectance for the “dielectric” sample (see Fig. 1).
Finally, the frequency for which the maximal value of
MRE is observed exactly coincides with the frequency
(1200 cm–1) for which the reflectance has the minimal
value.

Since the MRE is weak (less than 0.1% on the aver-
age) in this system of alloys, we had to prove that the
measured dependences are associated precisely with
the MRE. Figure 4 shows the frequency dependences of
MRE for one of the samples for natural light and for a
p wave of linearly polarized light. It can be seen that the
polarization dependence is practically absent in the
spectral region where the signal exceeds 0.05%, which
is direct proof of the fact that the signal being measured
is just the MRE. However, the situation is different in
the frequency ranges 2500–1300 and 1000–800 cm–1,
where the signal is weaker than 0.05% and the influ-
ence of the even orientation effect becomes noticeable.

A correlation between magnetoresistance and MRE
is reliably observed for all nanocomposites. For exam-
ple, the magnetoresistance of Fe–SiOn composites in a
field of 2.2 kOe does not exceed 1.2%; accordingly, the
frequency dependence of the MRE shows that the mag-
nitude of this effect attains a value of 0.2% (Fig. 5).

In the vicinity of the percolation threshold, nano-
composites become relatively transparent (see Fig. 1);
consequently, the interference of light associated with
the reflection from the substrate cannot be disregarded
completely even for relatively thick films. In particular,
interference beats of the reflectance can be clearly seen
in Fig. 1 for films with x = 40, 34 at. %. A quantitative
description of the effect must be based on the theory for
the model of a three-layer system described in Section 1.
Figure 6 shows the spectra describing the frequency
dependence of the MRE for a Co43Al22O35 sample,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
which were obtained for an angle of incidence of 10°
and for which the effect of interference is pronounced
most clearly. The theoretical ξ(ν) dependences corre-
sponding to these spectra are shown in Fig. 7.

Figure 8 shows the experimental data on dispersion
of the MRE (for two values of magnetic field of 1500
and 1700 Oe) and of the reflectance of a nanocomposite
(Co0.4Fe0.6)48(Mg52F) film with a tunnel conductivity
and a high magnetoresistance (7.5% in a field of
1700 Oe) for an angle of incidence ϕ = 10°. It can be
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Fig. 2. Concentration dependence of the magnetoresistance
of granular (Co45Fe45Zr10)x(SiO1.7)100 – x composite.
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Fig. 3. Frequency dependence of the magnetorefractive
effect of granular (Co45Fe45Zr10)x(SiO1.7)100 – x compos-
ites: x = 57 (1), 47 (2), 40 (3), and 34 (4); magnetic field is
1700 Oe; ϕ = 10°.
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seen from the figure that the MRE attains a value of
1.5%, which is a record high for all metallic and non-
metallic systems studied and is two orders of magni-
tude stronger than the traditional magnetooptical
effects. In accordance with relation (16), such a magni-
tude of the MRE is due to a low reflectance and a high
magnetoresistance. It should be emphasized that
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Fig. 6. Frequency dependences of the MRE of a
Co43Al22O35 film for two values of field ∆H = 2200 and
100 Oe: solid and dotted curves correspond to angles of
incidence ϕ = 45° and 10°, respectively.
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Fig. 4. Frequency dependences of the MRE for natural (dot-
ted curve) and p-polarized (solid curve) light for granular
(Co45Fe45Zr10)47(SiO1.7)53 film in a magnetic field of
1700 Oe; ϕ = 10°.
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expression (16) does not rule out higher values (on the
order of 10%). Figure 9 shows the spectra of frequency
dependences of the MRE for the same sample in a
wider frequency range for ϕ = 45° and for three values
of the magnetizing field H = 0, 1500, and 1700 Oe. The
spectrum for H = 0 shows the noise level from which
the response of the investigated signal to the action of
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Fig. 5. Frequency dependences of the reflectance (dotted
curve) of a Fe–SiO2 film on a Si substrate and of the MRE
(solid curve) for a magnetic field H = 2200 Oe.
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Fig. 7. Theoretical dependences of the MRE for a
Co43Al22O35 film: ∆ρ/ρ = 3% (solid curve); ∆ρ/ρ = 1%,
ϕ = 45° (dotted curve); and ∆ρ/ρ = 1%, ϕ = 10° (dashed
curve).
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the magnetic field is separated. The magnitudes of the
MRE for the above values of the field imply that the
ξ(H) dependence is nonlinear.

The following two facts, which cannot be described
in the framework of the theory developed in Section 1,
are worth noting. First, it can be seen from Fig. 8 that
the values of reflectance for λ = 20, 5 µm differ by a
factor of 4, while the magnitude of the MRE is practi-
cally the same for these wavelengths. Second, the pres-
ence of two narrow and sharp MRE peaks in the vicin-
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Fig. 8. Spectra of MRE ξ in fields H = 1700 Oe (solid curve)
with a resolution of 2 cm–1 and H = 1500 Oe (dotted curve)
with a resolution of 4 cm–1 and reflectance RH = 0 for a
(Co0.4Fe0.6)48(Mg52F) film after averaging over 300 scans;
ϕ = 10°.
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Fig. 9. Spectra of MRE ξ in fields H = 1700 Oe (solid curve)
and H = 1500 Oe (dotted curve) and of noise with a resolu-
tion of 4 cm–1 for a (Co0.4Fe0.6)48(Mg52F) film after aver-
aging over 300 scans; ϕ = 45°.
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ity of λ = 10 µm does not correlate with the behavior of
the reflectance either. Finally, we cannot explain a con-
siderable MRE “noise” in fields of 1.5 and 1.7 kOe in a
wavelength range of 15–10 µm. These features are
probably associated with an additional influence of the
magnetic field on elementary excitations in the dielec-
tric MgF matrix. It should also be borne in mind that the
simple theory of high-frequency tunneling developed
above disregards such factors as, for example, the effect
of electron–electron interaction [20].

6. CONCLUSIONS

The experiments described here prove the existence
of a new magnetooptical effect, viz., MRE, associated
with spin-dependent tunneling in magnetic nanocom-
posites in the vicinity of the percolation threshold. The
MRE obviously correlates with the tunnel magnetore-
sistance. Depending on the magnetoresistance and opti-
cal properties of the nanocomposite, the magnitude of
the MRE varies over a wide range from 0.1 to 1.5%,
which is one or two orders of magnitude higher than the
even magnetooptical effect. The developed theory pro-
vides a qualitative and semiquantitative explanation for
a number of experimental data and promises the attain-
ment of even higher magnitudes of the MRE. It would
undoubtedly be interesting to continue the investigation
of the angular, polarization, and temperature depen-
dences of the MRE; the search for mechanisms respon-
sible for the MRE in metal–semiconductor systems;
and the advancement to the far-IR spectral region as
well as to the visible region for which new effects asso-
ciated with the dependence of the tunnel transparency
on the light frequency should be expected.
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Abstract—The experimental data on the spectra of elementary excitations measured by inelastic neutron scat-
tering and on the heat capacity and the coefficient of thermal expansion are used to analyze the correlation
between the spectral characteristics of the electron and phonon subsystems and the special features of the tem-
perature dependence of the thermodynamic properties of a number of unstable valence Sm- and Ce-based com-
pounds. The anomalous behavior of the thermodynamic properties of these compounds is defined by the special
features of their phonon and electron (4f and conduction electrons) spectra. The rearrangement of the 4f-elec-
tron spectrum as a result of temperature variation plays a decisive part in the formation of temperature depen-
dences of the heat capacity and the coefficient of thermal expansion of unstable valence systems. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Unstable valence compounds on the basis of rare-
earth elements are characterized by the presence of a
fairly large anomalous (or additional) contribution to
the temperature dependences of the heat capacity and
the coefficient of thermal expansion as compared to
their isostructural analogs with an open or filled 4f shell
[1, 2]. It is known that, in the case of rare-earth com-
pounds with a stable magnetic moment, the anomalous
contribution to the thermodynamic properties is due to
the presence of 4f multiplets split in a crystal electric
field [3]. This “traditional” interpretation of the anom-
alous contribution to thermodynamics cannot be
employed in the case of unstable valence compounds,
because no effects in a crystal electric field in the ordi-
nary sense are present in these systems as a result of
partial delocalization of 4f electrons.

As a rule, the anomalous contribution in unstable
valence compounds, which is obtained as the difference
between the heat capacities or the coefficients of ther-
mal expansion of an unstable valence compound and its
structural analog, is taken to be electronic by nature and
directly associated only with the valence instability,
i.e., with a nonintegral population of the 4f shell. In one
of the early papers [4], the electron anomaly of the
coefficient of thermal expansion of unstable valence
compounds was interpreted as a result of variation of
the population of the 4f shell of a rare-earth ion with
temperature. As a matter of fact, in all of the subsequent
papers, the population of the 4f shell was one of the
main parameters treated in analyzing the thermody-
1063-7761/03/9606- $24.00 © 21113
namic properties [5–7]. The development of concepts
of the effect of valence was marked by the need for tak-
ing into account various interactions observed in unsta-
ble valence systems (in particular, the electron–phonon
interaction [8]) and leading to a variation of the internal
energy and entropy of unstable valence systems. Note
that the treatment of partial components associated
with different interactions made it possible to interpret
the thermal properties of heavy-fermion compounds in a
wide temperature range, in particular, of CeRu2Si2 [9].
However, in the case of quantitative calculations of the
anomalous thermodynamic and elastic properties of
unstable valence compounds, an integral characteristic
was introduced, as a rule. In particular, Takke et al. [10]
used a phenomenological scaling function for the elec-
tron part of free energy, proportional to the universal
energy scale T0 characteristic of the systems being
treated. The volume dependence of the electron part of
free energy is defined by the volume dependence of T0.
This enables one to introduce the electron Grueneisen
parameter Γel = –d[lnT0]/d[lnV] (where V is the vol-
ume) for the description of the electron and electron–
phonon contributions: in terms of this parameter, the
majority of thermodynamic quantities may be calcu-
lated. The above-described approach produces adequate
agreement between theory and experiment at T < T0;
however, the problem of physical understanding of spe-
cial features of the anomalies of the thermal expansion
coefficient for different compounds (sign, amplitude,
range of existence) cannot be fully solved. For exam-
ple, in spite of the fact that the characteristic tempera-
ture (T0 ~ 150 K) and the values of variation of valence
003 MAIK “Nauka/Interperiodica”
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in the temperature range from 4 to 300 K (|∆vRE| ~ 0.05)
are comparable for SmB6 [11] and CeNi [12], the
anomalous contributions to the coefficient of thermal
expansion of SmB6 [13, 14] and CeNi [15, 16] have
opposite signs, as well as essentially different scales
and ranges of this anomaly.

In analyzing the thermodynamic properties of a
number of specific unstable valence compounds (the
so-called Kondo-insulators) in which, at a low temper-
ature, a gap is formed in the electron density of states in
the vicinity of the Fermi energy, it is the presence of the
gap that is regarded as the main reason for the emer-
gence of a significant additional contribution to the heat
capacity and to the coefficient of thermal expansion.
For example, the marked anomaly revealed in the elec-
tron component of heat capacity and coefficient of ther-
mal expansion of SmB6 was interpreted as the contribu-
tion arising as a result of excitation of electrons via a
semiconductor gap of the order of 5 meV [17]. Ade-
quate agreement was obtained between a model calcu-
lation and experiment; however, in this case, Mandrus
et al. [17] examined a fairly narrow temperature range
(T < 80 K) and restricted themselves to one binary com-
pound. The significant negative component of the coef-
ficient of thermal expansion in the higher temperature
range (T > 100 K) [14]) remained unexplained.

Therefore, in analyzing the thermodynamic proper-
ties, the authors of the publications known to us either
introduced (within the phenomenological approach)
the universal integral parameter or treated a concrete
special feature of the system being examined. However,
they have, first of all, failed to take into account the real
energy spectrum of excitations of 4f electrons and its
rearrangement with temperature, which is known to be
significant. The second important point to be noted is
the need for taking into account the electron–phonon
interaction. Indeed, a number of Sm- and Ce-based
unstable valence compounds exhibit significant
changes in the phonon dispersion curves compared to
structural analogs [18, 19]. A renormalization of
phonon frequencies in unstable valence compounds
may bring about the emergence of an additional contri-
bution to the heat capacity and coefficient of thermal
expansion compared to the data for an isostructural
analog. And, thirdly, in treating Kondo insulators, i.e.,
systems with a valence instability and a gap in the elec-
tron density of states in the vicinity of the Fermi energy,
one must take into account the special features of the
density of states of conduction electrons in the vicinity
of the Fermi energy along with (rather than instead of)
the 4f-electron contribution and the special features of
the lattice vibration spectrum.

It was the objective of our study to estimate, using
the example of Sm1 – xLaxB6 and Ce1 – xLaxNi com-
pounds, the contribution made to the thermodynamics
of unstable valence compounds due to the special fea-
tures of the real spectral characteristics of the electron
JOURNAL OF EXPERIMENTAL
(4f and conduction electrons) and lattice subsystems
and to use the resultant estimates to determine the part
played by separate contributions in the formation of
anomalous heat capacity and coefficient of thermal
expansion in a wide temperature range. Samarium
hexaboride (SmB6) is known as a “classical” unstable
valence compound with a “strong” intermediate
valence. The valence of Sm ions at room temperature is
vSm ~ 2.55 and decreases with cooling to vSm ~ 2.50 [11].
An important feature of SmB6 is the presence of a nar-
row gap in the electron density of states in the vicinity
of the Fermi energy, which was estimated in early
papers at approximately 5–10 meV [2, 13]. Detailed
investigations of the kinetic characteristics of SmB6
were recently performed using high-quality samples
[20–22]. It was experimentally shown in the latter
papers and theoretically substantiated in [23] that the
electron transport in SmB6 is defined by at least two dif-
ferent energy scales, namely, the hybridization gap of
approximately 10–20 meV and the “impurity” band in
the vicinity of the bottom of the conduction band (∆ ~
3 meV). The smaller energy scale is defined by the for-
mation of a bound electron–polaron complex as a result
of fast valence fluctuations on each Sm ion. The carrier
concentration in the “impurity” band is estimated at
approximately 1017 cm–3 [23]. CeNi is an intermetallic
unstable valence compound with a “moderate” inter-
mediate valence (vCe ~ 3.11 at room temperature and
vCe ~ 3.14 at T = 10 K [12]). The spectra of lattice and
4f-electron excitations of SmB6 and CeNi have been
studied in sufficient detail [24]. In addition, the valent
state of a rare-earth ion in both compounds may be pur-
posefully varied when a Sm (or Ce) ion is replaced by
a La ion. A variation of the valent state leads to a marked
transformation of the 4f-electron and phonon spectra.
Therefore, a study of dilute systems (Sm1 – xLaxB6 and
Ce1 – xLaxNi) offers a possibility of checking the gener-
ality of the inferences made for stoichiometric com-
pounds and of more reliably determining the general
regularities of the formation of anomalies in the ther-
modynamic properties.

2. CALCULATION
OF THERMODYNAMIC PROPERTIES

Anomalous contributions to the thermodynamic prop-
erties of unstable valence Sm1 – xLaxB6 and Ce1 – xLaxNi
compounds were treated within a unified approach as a
result of summation of independent (in a first approxi-
mation) components associated with the actual special
features of the phonon and electron (4f electrons and
conduction electrons) spectra.

The following expression was used to calculate the
anomalous contribution to the heat capacity:

(1)∆C T( ) C f T( ) ∆Clat T( ) Cg T( ),+ +=
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where Cf is the heat capacity due to the special features
of the 4f-electron excitation spectrum. The value of Cf

was determined on the basis of the experimentally mea-
sured 4f-electron excitation spectrum for unstable
valence compounds; the structure of this latter spec-
trum provides information about the density of states of
4f electrons. In calculating the heat capacity, the multi-
plicity of degeneracy of the ground state of a rare-earth
ion was taken into account; ∆Clat is the additional lattice
contribution to the heat capacity of unstable valence
compounds, which arises as a result of renormalization
of phonon frequencies in unstable valence compounds
compared to isostructural materials. This latter contri-
bution was obtained as a difference between the lattice
contribution to the heat capacity of an unstable valence
compound and the corresponding contribution to the
heat capacity of an isostructural analog containing no
4f electrons. In the case of SmB6, the density of phonon
states was obtained from the experimentally measured
dispersion curves [18] on the basis of model calcula-
tions which take into account the contribution by the
exciton–phonon interaction. For CeNi, we used the
phonon density of states obtained from experiments in
inelastic neutron scattering [25]; the value of Cg is the
contribution to the heat capacity, which is due to the
gap in the electron density of states in the vicinity of the
Fermi level. This contribution was obtained for
Sm1 − xLaxB6 compounds as the difference between the
total experimentally obtained anomalous contribution
to the heat capacity and the calculated contributions Cf

and ∆Clat .

The corresponding partial contributions to the coef-
ficient of thermal expansion of unstable valence com-
pounds (αi) were determined on the basis of the Grue-
neisen relation by fitting the Grueneisen coefficients
(Γi). In the calculation, the possible temperature depen-
dence of the Grueneisen coefficients was ignored. The
total anomalous contribution to the coefficient of ther-
mal expansion (∆α) was obtained as the sum of sepa-
rate partial contributions,

(2)

where αf is the contribution defined by the 4f-electron
excitation spectrum, ∆αlat is the additional lattice con-
tribution associated with the transformation of phonon
spectra, αg is the contribution by the gap in the density
of electron states in the vicinity of the Fermi energy, V
is the molar volume, and XT is the isothermal compress-
ibility. For the compounds treated by us, the molar vol-
ume and isothermal compressibility depend little on
temperature. In the calculation, their values were taken
to be constant parameters. The values of isothermal
compressibility for SmB6 (0.125 × 10–4 cm3 J–1) and

∆α T( ) α f T( ) ∆α lat T( ) αg T( )+ +=

=  V 1– XT Γ f C f T( ) Γ lat
* ∆Clat T( ) ΓgCg T( )+ +[ ] ,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
CeNi (1.02 × 10–4 cm3 J–1) were borrowed from [26]
and [27], respectively.

3. RESULTS AND DISCUSSION

All of the calculations and analysis were based on
the experimental information obtained by us over a
number of years for spectra of 4f-electron and lattice
excitations [14, 18, 19, 24, 25] and detailed data on the
temperature dependences of the coefficient of thermal
expansion for Sm1 – xLaxB6 and Ce1 – xLaxNi [14, 16]
and of the heat capacity for Sm1 – xLaxB6 [14].

3.1. Sm1 – xLaxB6 Compound

We will examine the possible components (or reasons
for) the anomalous heat capacity of SmB6. Figure 1
gives the temperature dependences of the experimen-
tally observed anomalous contribution to the heat
capacity of SmB6 [14] in the low-temperature region,
which was already analyzed in the literature [2, 17], as
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Fig. 1. The temperature dependence of the experimentally
obtained anomalous contribution to the heat capacity of
SmB6 (d) [14] and the calculated partial contributions. The
dashed line indicates the contribution associated with the
4f-electron states (Cf). The dotted line indicates the addi-
tional lattice contribution (∆Clat). The dot-and-dash line
indicates the contribution describing the electron gap in the
vicinity of the Fermi energy (Cg). The solid line indicates
the total calculated contribution to the anomalous heat
capacity of SmB6. Shown in the inset is the low-energy part
of the magnetic response for SmB6 [24]. The bold arrow
indicates the low-energy excitation at Eex ≈ 14 meV, and the
thin arrow indicates the strongly broadened spin–orbit tran-
sition J0  J1 for Sm2+ (E ≈ 36 meV).
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well as the calculated (total and partial) contributions to
the heat capacity of SmB6.

The phonon dispersion curves of SmB6 significantly
differ from those of its isostructural analog LaB6 [18].
These differences are associated with the presence of
resonant interaction of normal lattice vibrations with
dipole (f–d) and monopole (f–f) excitations of the
4f shell of Sm; i.e., it would appear that the electron–
phonon interaction is superimposed on the phonon
spectrum of LaB6 and distorts this spectrum by virtue of
the nonadiabaticity of the electron subsystem that
arises upon formation of the unstable valence state. As
a result, the density of phonon states of SmB6 shift to
the region of lower frequencies with respect to LaB6
(Fig. 2, inset). This cannot but reflect on the tempera-
ture behavior of the heat capacity. Figure 2 gives the
calculated lattice components of heat capacity Clat for
SmB6 and LaB6. One can see that the value of heat
capacity Clat for SmB6 markedly exceeds that for LaB6
in a wide temperature range. Consequently, because of
the strong electron–phonon interaction and correspond-
ing renormalization of the phonon frequencies, the
unstable valence state of Sm brings about the emer-
gence of an additional contribution to the lattice heat
capacity (∆Clat) at T < 300 K in SmB6 (compared to
LaB6), which represents an appreciable fraction of the
entire anomalous heat capacity of SmB6 (Fig. 1).

Along with singularities in the atomic vibration
spectrum, samarium hexaboride has a specific spec-

SmB6 LaB6

100 200 3000

50
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Clat, J (mol K)–1

6
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0
2.0 2.5 3.0
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D
, r

el
. u

ni
ts SmB6 LaB6

Fig. 2. The temperature dependence of the lattice contribu-
tion to the heat capacity for SmB6 (solid line) and LaB6
(dashed line), calculated from the phonon density of states
(see the text). Shown in the inset is the phonon density of
states of acoustic branches in SmB6 (solid line) and LaB6
(dashed line).
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trum of 4f-electron excitations [24] (Fig. 1, inset). The
main special features of the 4f-electron spectrum of
SmB6 include the great width of spin–orbit excitation
(J0  J1) and the presence of additional narrow low-
energy excitation (marked by arrow in the inset in
Fig. 1) associated with the formation, at low tempera-
ture, of a new ground, quantum-mechanically mixed
state of samarium ion. As the temperature rises, the
intensity of low-energy excitation decreases; however,
a quasi-elastic component arises. Such a spectrum of
4f-electron states and its transformation with tempera-
ture produce additionally a significant contribution Cf

to the anomalous heat capacity of SmB6 (Fig. 1).

After the sum of two components (Clat + Cf) is sub-
tracted from the experimentally determined anomalous
heat capacity of SmB6, the part with a maximum at T ≈
30 K remains in ∆C(T); this latter part is apparently
associated with the effect of excitation of electrons via
the gap in the spectrum of electron states in the vicinity
of the Fermi energy (Cg). As was mentioned in the
Introduction, it has now been reliably found that two
energy scales are characteristic of SmB6, namely, the
hybridization gap and “impurity” band [21]. If a two-
level model is used to evaluate the gap from the temper-
ature dependence Cg(T), a value on the order of 60 K is
obtained. This value is close to the scale of hybridiza-
tion effects (in this case, one must take into account the
possible temperature dependence of the gap size
proper). The absence of a marked effect of the “impu-
rity” band on the thermodynamic properties is appar-
ently due, first, to the low density of states in this band
and, second, to the thermal dissociation of the “impu-
rity” states at T ~ 15 K [23].

Therefore, the formation of an anomalous contribu-
tion to the heat capacity of samarium hexaboride is
associated with three special features of this system,
namely, the strong electron–phonon interaction, the
specific spectrum of 4f-electron states, and the exist-
ence of a gap in the density of electron states in the
vicinity of the Fermi energy. In accordance with the
Grueneisen relation given by Eq. (2), the anomalous
contribution to the coefficient of thermal expansion of
SmB6 must also have three components. Figure 3a
gives the anomalous contribution to the experimentally
obtained coefficient of thermal expansion of SmB6 [14]
and the calculated components of the coefficient of
thermal expansion. One can see that the overall calcu-
lated coefficient of thermal expansion reproduces the
main special features of the temperature dependence of
the experimentally determined anomalous contribution
to the coefficient of thermal expansion. However, the
temperature dependence curve of the calculated coeffi-
cient of thermal expansion is smoother than that of the
experimentally obtained coefficient. This is possibly
associated with the somewhat simplified approach
employed by us. It was assumed in the calculation that
the Grueneisen coefficient was temperature-indepen-
 AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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dent. Apparently, when treating systems with a strong
interaction of the electron and lattice subsystems, one
must take into account some temperature dependence
of the Grueneisen coefficient.

The calculated negative values of partial Grueneisen
coefficients (Table 1) are experimentally validated. The
information about the sign of Γ may be provided, for
example, by experiments performed under pressure,
because Γ ∝  d(lnE)/dP (where E is the characteristic
energy of the subsystem and P is the pressure). Investi-
gations of the electric resistance of samarium
hexaboride as a function of pressure revealed a linear
decrease in the gap size with increasing pressure [28].
Consequently, the Grueneisen coefficient Γg must be
negative.

Neutron experiments performed under pressure
have revealed that, at Eex = 14 meV (the inset in Fig. 1),
the exciton-like magnetic excitation observed under
normal external pressure shifts to the region of lower
energies (Eex = 7 meV at P = 7 GPa) [29]. This indicates
that the value of Γf is negative.

The situation is somewhat more complicated in the
case of the Grueneisen coefficient for the additional lat-
tice contribution. No measurements have been per-
formed up to now of the phonon dispersion curves of
SmB6 under pressure. Therefore, we restrict ourselves
to qualitative considerations with respect to the possi-

bility of emergence of a negative value of . In nor-
mal cubic systems with integral valence, a decrease in
the volume of a unit cell leads to an increase in the
phonon frequencies. In SmB6, which is characterized
by partly delocalized 4f electrons, a softening of the
photon spectrum has been experimentally observed as
compared to LaB6 [18], in spite of the significantly
smaller volume of a unit cell of samarium hexaboride.
Because, when a minor external pressure is applied,
samarium ions become more “intermediately valent” [29]
(the valence of samarium ions under pressure is
vSm  3+ [30]), it is logical to assume that this results
in a still further softening of the phonon frequencies in
SmB6. That is, the negative value of the Grueneisen

coefficient  does not contradict the physical patterns
discussed above for this compound. In order to arrive at

a final conclusion with respect to the sign of , one
needs to perform direct measurements of phonon dis-
persion curves under pressure.

Analysis of the anomalous coefficient of thermal
expansion of SmB6 has revealed (Fig. 3a) that, at a low
temperature (T < 100 K), coefficient ∆α(T) is largely
associated with special features of the 4f-electron spec-
trum and with the gap in the density of electron states
in the vicinity of the Fermi energy. Previously, the
anomalous contribution to the coefficient of thermal
expansion at T < 100 K was interpreted either as a result
of the presence of the gap [17] or as a result of the tem-

Γ lat
*

Γ lat
*

Γ lat
*
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perature variation of the valence of a Sm ion [2]. At T >
100 K, the significant negative contribution is largely
defined by the strong electron–phonon interaction.
Note that the reasons for the emergence of the addi-
tional component of the coefficient of thermal expan-
sion at T > 100 K were not understood heretofore,
because the valence of samarium ions at temperatures
above 110 K remains a constant quantity [11], and the

∆α, 10–6 K–1
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Fig. 3. The temperature dependence of the experimentally
obtained anomalous contribution to the coefficient of ther-
mal expansion for Sm1 – xLaxB6 [14] and the calculated par-
tial contributions: (a) x = 0, (b) x = 0.22, (c) x = 0.5. The dot-
ted line indicates the additional lattice contribution (∆αlat).
The dashed line indicates the contribution associated with
the 4f-electron states (αf). The dot-and-dash line indicates
the contribution describing the electron gap in the vicinity
of the Fermi energy (αg). The solid line indicates the total
calculated contribution to the coefficient of thermal expan-
sion of Sm1 – xLaxB6.
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effect of the electron components is significantly
weakened.

We will treat SmB6-based compounds for which the
valent state of samarium ion varies upon substitution of
Sm by La (Sm1 – xLaxB6). All ternary compounds are
likewise characterized by the presence of the additional
negative contribution to the coefficient of thermal
expansion (Figs. 3b and 3c); however, the main singu-
larity (a minimum of ∆α(T) at T < 100 K) shifts to the
region of higher temperatures. We will discuss the
dependence ∆α(T) for dilute compounds from the
standpoint of the importance of all components respon-
sible for the anomalous coefficient of thermal expan-
sion in SmB6. An investigation of spectra of lattice
excitations of Sm1 – xLaxB6 has revealed that all dilute
compounds exhibit a general softening of acoustical
phonons compared with LaB6; however, compared with
SmB6, the variation of the phonon frequencies in those
dilute compounds is insignificant [14]. Therefore, the
exciton model suggested for the description of spectra
of lattice vibrations for SmB6 is apparently valid for
dilute systems as well. Consequently, the anomalous
coefficient of thermal expansion of dilute samples must
incorporate the component ∆αlat associated with the
electron–phonon interaction. Because the lanthanum
doping failed to bring about significant changes in the
phonon spectrum of samarium hexaboride, the value of
∆αlat in dilute systems remained the same as in SmB6
(Figs. 3b and 3c).

In Sm1 – xLaxB6 compounds, the component αf(T)
due to the presence of 4f electrons significantly differs
from the analogous component for SmB6; this is asso-
ciated with qualitative changes in the 4f-electron exci-
tation spectra. According to the data on the inelastic
magnetic scattering of neutrons, the low-energy excita-
tion in La-substituted samples, which is associated with
the new ground state of samarium ions, is characterized
by different experimentally observed values of param-
eters such as the energy, intensity, and temperature
dependence [29]. The substitution by La brings about
an increase in the energy of “low-energy excitation”
observed in SmB6 to 25–30 meV; in so doing, the tem-
perature dependence of the intensity also varies and
becomes smoother. This leads to a marked shift of the
αf(T) maximum to the region of higher temperatures

Table 1.  The Grueneisen coefficients of partial components
of the anomalous contribution to the coefficient of thermal
expansion for Sm1 – xLaxB6 compounds

Sample Γf Γg

SmB6 –1.5 –0.4 –1.5

Sm0.78La0.22B6 –1.2 –0.9 –1.0

Sm0.5La0.5B6 –1.0 –1.2 –1.0

Γ lat*
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and to its weakening. Finally, the αg(T) component
remains in dilute samples, which is largely due to the
gap in the vicinity of the Fermi energy, by analogy with
SmB6. This fact must be given special attention,
because it is generally taken that, when SmB6 is doped
with lanthanum, the gap in the spectrum of electron
states disappears even at a low concentration of La [2].
The results of our thermodynamic measurements [14]
point to the existence of a gap in all dilute samples up
to x = 0.5. The statement about the absence of a gap in
dilute samples is based on the results of measurements of
electric resistance alone and apparently fails to fully
reflect the microscopic properties, because the additional
states introduced by lanthanum ions “shunt” the gap in
kinetic measurements. However, the form of the density
of states suffers no cardinal changes. Additional states
show up, for example, in the marked increase in the value
of the Sommerfeld coefficient at low temperatures [14].

By and large, the values of ∆αcal(T) for Sm1 – xLaxB6
are in adequate agreement with experiment. Conse-
quently, the anomalous contribution to the coefficient
of thermal expansion for Sm1 – xLaxB6 has three compo-
nents. For dilute systems, the high-temperature anoma-
lous negative contribution to the coefficient of thermal
expansion is largely defined by the electron–phonon
interaction and, at T < 150 K, it is defined by the special
features of the spectrum of states of 4f electrons. One
can clearly see that the shift of position of the minimum
of ∆α(T) at T < 100 K in dilute compounds relative to
SmB6 is largely the result of qualitative variation of the
4f-electron spectrum.

Analysis of the temperature dependence of the coef-
ficient of thermal expansion in a wide temperature
range for Sm1 – xLaxB6 compounds revealed the follow-
ing. For all of the treated compounds, the anomalous
contribution ∆α(T) may be interpreted in view of the
main special features of these compounds, namely, the
presence of a narrow gap in the spectrum of electron
states in the vicinity of the Fermi energy and the unsta-
ble valence state of samarium ion, which affects the
parameters of spectra of magnetic and lattice excita-
tions. It was found that, at low temperatures, the value
of ∆α(T) is largely defined by the contribution associ-
ated with the 4f-electron spectrum and by the presence
of a gap in the spectrum of electron states. The signifi-
cant contribution to the coefficient of thermal expan-
sion and to the heat capacity at T > 80–100 K is associ-
ated with the manifestation of electron–phonon interac-
tion, i.e., with the result of the effect of the unstable
valence state of Sm ions on the lattice dynamics.

3.2. Ce1 – xLaxNi Compound

Since CeNi is a metal, ∆C(T) and ∆α(T) will be
determined only by the effect of the unstable valence
state on the spectrum of magnetic and lattice excita-
tions.
 AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003
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We will treat the temperature dependence of the
anomalous contribution to the heat capacity of CeNi. In
CeNi, as in SmB6, one can expect the emergence of a
contribution associated with the renormalization of
phonon frequencies, because a strong softening of
phonon vibrations in CeNi compared to LaNi was
experimentally observed recently [19]. In contrast to
SmB6, the difference between the spectra of lattice
vibrations of CeNi and LaNi leads to the emergence of
the heat capacity component ∆Clat only at low tempera-
tures (Fig. 4). The reason for the difference between the
additional lattice contributions ∆Clat in CeNi and SmB6
is associated with the much “softer” vibrational spec-
trum of CeNi (Fig. 4, inset). The entire RNi spectrum
fits the 0–5 THz range; the acoustic region in which the
softening is observed corresponds to the 0–2 THz range
[24]. The total SmB6 spectrum extends up to 40 THz.
The inset in Fig. 2 shows only the acoustic region for
SmB6.

The heat capacity component Cf due to the presence
of 4f electrons was calculated using the experimental
data on the 4f-electron spectrum in CeNi in view of the
temperature dependence of the latter spectrum [24].
Figure 4 shows that the calculated heat capacity by and
large enables one to describe the main special features
of the experimentally obtained heat capacity. The main
reason for the formation of an anomalous contribution
to the heat capacity of CeNi was found to be due to the
existence of an unusual spectrum of states of 4f elec-
trons at a low temperature and to its rearrangement with
increasing temperature. However, the experimentally
observed anomalous contribution to the heat capacity
differs in magnitude from that calculated at T < 200 K.
The value of entropy for the 4f-electron contribution
(about 9 J (mol K)–1 ≈ Rln3, where R is the gas con-
stant) obtained upon integration of the calculated
anomalous contribution to the heat capacity is much
lower than the value of entropy determined by integra-
tion of the experimentally obtained value in the same
temperature range (about 13.5 J (mol K)–1 ≈ Rln5). This
fact indicates that, along with the treated contributions,
this system is characterized by additional degrees of
freedom which were disregarded in our calculations but
could have resulted in changes of the internal energy of
the system. In particular, the presence of coherence in
the rare-earth ion sublattice, most likely associated with
magnetic interaction, and its importance in the formation
of low-temperature properties were observed during
investigations of Ce1 – x(Y,La)xNi compounds [12, 16].

We will now turn to the anomalous contribution to
the coefficient of thermal expansion, ∆α(T), for CeNi
(Fig. 5a). The anomalous contribution to the coefficient
of thermal expansion of CeNi, ∆α(T), is adequately
described in a wide temperature range in the case of the
values of the partial Grueneisen coefficient of Γ ~ 2
(Table 2). Unlike SmB6-based compounds, the Grue-

neisen coefficients Γf and  of CeNi have positiveΓ lat
*
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values. The positive value of Γf may be validated by the
results of investigation of the spectrum of magnetic
excitations with applied “chemical” pressure. Indeed,
the substitution of Ce by La (the introduction of lantha-
num ions into the CeNi lattice causes the latter to
expand, which is equivalent to the application of “neg-
ative” external pressure) brings about the shift of the 4f-
electron spectrum to the region of lower energies [25].

In order to validate the positive sign of , additional
experiments are required to investigate phonon curves
under pressure or with chemical substitution.

One can see in Fig. 5a that, for CeNi, the great pos-
itive anomaly in ∆α(T) is largely defined by the spec-
trum of states of 4f electrons. This inference was
strongly supported by the results of calculation of
∆α(T) for Ce1 – xLaxNi compounds in which the valence
of a cerium ion approaches 3+ as Ce is substituted by
La. In studying the spectra of excitations of 4f electrons

Γ lat
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Fig. 4. The temperature dependence of the experimentally
obtained anomalous contribution to the heat capacity of
CeNi (s) [15] and the calculated partial contributions. The
dashed line indicates the contribution associated with the
4f-electron states (Cf). The dotted line indicates the addi-
tional lattice contribution (∆αlat). The solid line indicates
the total calculated contribution to the anomalous heat
capacity of CeNi. Shown in the inset is the generalized func-
tion of phonon states for CeNi (d) and LaNi (h) obtained from
experiments in inelastic neutron scattering [25].

Table 2.  The Grueneisen coefficients of partial components
of the anomalous contribution to the coefficient of thermal
expansion for Ce1 – xLaxNi compounds

Sample Γf

CeNi 2.0 2.0

Ce0.5La0.5Ni 1.5 1.0

Γ lat*
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using the method of inelastic neutron scattering [25], it
was observed that a qualitative transformation of the 4f-
electron spectrum occurs when CeNi is doped with lan-
thanum (insets in Figs. 5a and 5b). The reason for this
transformation is associated with the transition of Ce
ions from a state with intermediate valence to a state
with an almost localized magnetic moment (Kondo
state). One can see that the calculated contribution
∆α(T) for the Ce0.5La0.5Ni compound agrees well with
the experimentally observed anomalous contribution;
this calculated contribution both allows for the shift of
the maximum to the region of lower temperatures and
reflects a gradual decrease in this maximum (Fig. 5b).
The dilution results in the violation of coherence in the
rare-earth ion sublattice; i.e., the possible additional
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Fig. 5. The temperature dependence of the experimentally
obtained anomalous contribution to the coefficient of ther-
mal expansion for Ce1 – xLaxNi [16] and the calculated par-
tial contributions: (a) x = 0, (b) x = 0.5. The dotted line indi-
cates the additional lattice contribution (∆αlat). The dashed
line indicates the contribution associated with the 4f-elec-
tron states (αf). The solid line indicates the total calculated
contribution to the coefficient of thermal expansion. The
insets show the magnetic response for CeNi and
Ce0.5La0.5Ni. The lines in the insets indicate the result of fit-
ting [25].

m
ba

rn
 (

sr
 m

eV
)–

1

JOURNAL OF EXPERIMENTAL
contribution to the coefficient of thermal expansion,
which was discussed when analyzing CeNi, disappears
in dilute compounds. Indeed, the description of the
temperature dependence of the coefficient of thermal
expansion is significantly improved in the case of a
dilute compound. Therefore, the main reason for the
strong variation in ∆α(T) in Ce1 – xLaxNi is due to the
modification of the spectrum of excitations of 4f elec-
trons as a result of transition of a Ce ion from a state
with intermediate valence to a state with an almost
localized magnetic moment. It will be recalled that the
substitution with lanthanum in SmB6 did not cause the
disappearance of either the calculated or the experi-
mentally obtained extremum of the coefficient of ther-
mal expansion. The unstable valence state of a Sm ion
is characteristic of all of the samarium compounds
treated by us [14].

In view of the foregoing, the temperature depen-
dence of the coefficient of thermal expansion of
Ce1 − xLaxNi is largely defined by the spectrum of exci-
tations of 4f electrons. At low temperatures, however,
one cannot but take into account the component associ-
ated with the special features of the spectrum of lattice
excitations.

4. CONCLUSIONS
The anomalous contribution to the temperature

dependence of the thermodynamic quantities of Ce-
and Sm-based unstable valence systems in a wide tem-
perature range may be described in view of the actual
special features of the excitation spectra of the electron
and phonon subsystems. It has been found that the rea-
son for the emergence of a low-temperature (T < 80 K)
anomaly of the heat capacity and of the coefficient of
thermal expansion of SmB6 is due to the specific spec-
trum of 4f-electron states and to the presence of a gap
in the electron density of states in the vicinity of the
Fermi energy. At T > 100 K, a significant negative
anomaly of the coefficient of thermal expansion arises
because of the strong electron–phonon interaction and
associated variation of the phonon frequencies. The
renormalization of the phonon frequencies in CeNi rel-
ative to LaNi leads to the emergence of a marked com-
ponent at a low temperature. The anomalous contribu-
tion to the heat capacity and the great positive anoma-
lous contribution to the coefficient of thermal
expansion of CeNi are largely defined by the unusual
spectrum of 4f electrons. The general and main reason
for the strong modification of the temperature depen-
dence of the coefficient of thermal expansion for Sm-
and Ce-based compounds consists in the transforma-
tion of the spectrum of 4f-electron states.
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Abstract—The emission spectrum of an injection GaAs laser with a four-sided resonator with a square cross
section of size 13 × 13 µm2 is presented. This laser is the world’s smallest laser, having the threshold current
Ith = 0.7 mA and a photon flight time in the resonator that is shorter than the thermal relaxation time T2. It is
shown that the emission spectrum of the laser drastically differs from the spectrum emitted by lasers of usual
size. © 2003 MAIK “Nauka/Interperiodica”.
It has been shown in paper [1] that the spontaneous
emission of injection lasers with a four-sided resonator
of small size (30 × 30 µm2) saturates above the lasing
threshold, and single-frequency lasing lasts up to the
tenfold excess over the lasing threshold.

The study was continued with lasers of even smaller
size. Lasers of a square shape with a four-sided resona-
tor of size 13 × 13 µm2 were fabricated. It is important
that the length of such a resonator is L < 37 µm, and the
photon flight time in the resonator is t < 5 × 10–13 s,
which is shorter than the thermal relaxation time T2 in
semiconductors at 77 K.

The lasing spectrum shown in the figure drastically
differs from typical single-frequency emission spectra
obtained in [1]. Here, a is the spontaneous emission
spectrum observed when the current is slightly below
the threshold; b and c are the lasing spectra at the
threshold Ith = 0.7 mA recorded with wide and narrow
slits of a spectrometer, respectively. Lasing appears at
the threshold simultaneously on all equidistant axial
modes in the long-wavelength part of the gain band and
is observed up to two- to threefold excess over Ith; then,
as a rule, the laser is destroyed. The width of the emis-
sion spectrum exceeds 100 Å, and the mode interval is
∆λ ≈ 21 Å, corresponding to the resonator length L ≈
37 µm. Note that an amplification deficit exists for the
longest wavelength modes, and no lasing should be
observed at these wavelengths under usual conditions.
The width of the emission spectrum of usual lasers is
20–30 Å, while lasers with a four-sided resonator of a
larger size (30 × 30 µm2) exhibit single-mode lasing.
Only in the presence of a dominating short-wavelength
mode developing for the time t < 10–12 s is an anomaly
1063-7761/03/9606- $24.00 © 21122
produced in the active region, resulting in the unusual
development of lasing.

The possibility of the appearance of two modes in
the spectra of semiconductor lasers was discussed
in  [2]; however, this cannot explain the result pre-
sented above. I would be grateful to V.F. Elesin and
Yu.V. Kopaev if they would explain this result theoreti-
cally. 
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Unfortunately, lasers of such a small size are of
one-time use. Stresses produced upon mounting such
a miniature laser with a cross section as small as
10−6 cm2 give rise to pressures up to thousands of
atmospheres. For this reason, we failed to study the
temporal parameters of the lasers, although the gener-
ation of controllable ultrashort light pulses is
expected. It is necessary to perform experiments at
room temperature, but because T2 at 300 K is even
shorter, the resonator size should be smaller than 10 ×
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
10 µm2, which can only be achieved using advanced
nanotechnology.
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Abstract—The spins of Ru5+ ions in Sr2YRuO6 form a face-centered cubic lattice with antiferromagnetic near-
est neighbor interaction J ≈ 25 meV. The antiferromagnetic structure of the first type experimentally observed
below the Néel temperature TN = 26 K corresponds to four frustrated spins of 12 nearest neighbors. In the
Heisenberg model in the spin-wave approximation, the frustrations already cause instability of the antiferro-
magnetic state at T = 0 K. This state is stabilized by weak anisotropy D or exchange interaction I with the next-
nearest neighbors. Low D/J ~ I/J ~ 10–3 values correspond to the experimental TN and sublattice magnetic
moment values. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Like cuprates and manganates, perovskite-like ruth-
enates have been attracting much interest of researchers
in recent years. Initially, this interest was caused by the
discovery of exotic superconductivity in Sr2RuO4 [1].
This is the only oxide superconductor isostructural to
cuprates that does not contain copper. Later, it was
found that other ruthenates have very interesting mag-
netic and electric properties. Increasing x in the
Sr2 − xCaxRuO4 system results in a complex sequence of
structural phase transitions, competition between ferro-
magnetic and antiferromagnetic exchange interactions,
and the Mott–Hubbard metal–dielectric transition in
Ca2RuO4 [2, 3]. Another ruthenate, SrRuO3, is the only
metallic ferromagnet with TC ≈ 165 K and magnetiza-
tion m ≈ 1.6µB per Ru ion among 4d metal oxides [4, 5].
The Sr2YRuO6 double perovskite has an elpasolite
structure, which can be obtained from SrRuO3 by
replacing each second Ru ion with nonmagnetic Y;
below TN = 26 K, the face-centered cubic (FCC) lattice
of Ru5+ spins experiences ordering to produce an anti-
ferromagnetic structure of the first type [6, 7]. In this
structure, (001) ferromagnetic planes exhibit antiparal-
lel ordering along the c axis.

One of the reasons for our interest in the magnetic
properties of Sr2YRuO6 is its low TN temperature and
small value of the sublattice magnetic moment per
ruthenium ion, m = 1.85µB , compared with the
exchange integral J ≈ 25 meV and the nominal m(S =
3/2) = 3µB per Ru ion for the d3 configuration of Ru5+.
The m value was measured by neutron diffraction [6, 7],
and the J value was calculated theoretically [8].
1063-7761/03/9606- $24.00 © 21124
Another reason for our interest in the double perovskite
is the appearance of superconductivity with Tc ≈ 50 K
after doping it with copper [9, 10]. A study of a possible
magnetic mechanism of superconductivity in this sys-
tem requires understanding the magnetic properties of
undoped Sr2YRuO6.

Earlier, an attempt was made to explain the small-
ness of TN by frustration effects in the Ising model, but
the suppression of TN in the Ising model proved to be
too weak [8]. In this paper, we show that the major con-
tribution is made by fluctuations of transverse spin
components in the Heisenberg model. If only the near-
est neighbors are taken into account, the antiferromag-
netic state is unstable in the spin-wave approximation.
Its stabilization requires including exchange with the
next-nearest neighbors I or anisotropy D. Our calcula-
tions show that very small I/J ~ D/J ~ 10–3 values are
sufficient for obtaining the observed TN and magnetic
moment values.

2. THE SPECIAL FEATURES
OF THE STRUCTURE 

AND EXCHANGE INTERACTION IN Sr2YRuO6

As distinct from other ruthenates and cuprates,
neighboring RuO6 octahedra in Sr2YRuO6 do not share
anions (Fig. 1). This justifies applying the cluster
approach to the description of its magnetic structure.
Similarly, the electronic structure of Sr2YRuO6 is well
modeled in first-principles band calculations by a sys-
tem of RuO6 clusters, which form an FCC lattice [8].
From the magnetic point of view, the replacement of
Ru5+ magnetic by Y3+ nonmagnetic ions is diamagnetic
003 MAIK “Nauka/Interperiodica”
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substitution. The FCC lattice of spins in Sr2YRuO6 can
therefore be treated as produced by diamagnetic dilu-
tion of spins in the SrRuO3 perovskite to a 0.5 concen-
tration of nonmagnetic vacancies, which are spatially
ordered (Fig. 1b). The presence of vacancies consider-
ably changes the exchange interaction between neigh-
boring Ru spins. Whereas ferromagnetic exchange
interaction is characteristic of SrRuO3, strong competi-
tion between ferromagnetic and antiferromagnetic inter-
actions is observed in Sr2RuO4 [11], Sr2 – xCaxRuO4

exhibits a trend toward antiferromagnetism as x
increases (see discussion in review [12]), and
Sr2YRuO6 is characterized by strong antiferromagnetic
interaction. It follows that exchange interactions in var-
ious ruthenates vary to a greater extent than in cuprates,
where these interactions are always antiferromagnetic.

The reason for the diversity of exchange interactions
in ruthenates is the special features of their electronic
structure formed by the (t2g – p)–π bonds. The orbital
degeneracy of the t2g states results in the presence of
three intersecting bands at the Fermi level and the
metallic state of undoped SrRuO3 and Sr2RuO4. The
estimation of correlation effects in SrRuO3 and
Sr2RuO4 shows that intermediate correlations U ≤ W,
where U is the Hubbard Coulomb parameter and W =
z|t | is the band half-width, occur in these compounds
[12]. Because of the diamagnetic dilution in Sr2YRuO6,
the nearest neighbor Ru–Ru hopping integral t is
strongly suppressed, and the substance is in the mode of
strong electron correlations with the dielectric ground
state. In the zeroth approximation with respect to hop-
ping t, we have a system of independent RuO6 clusters.

Consider the electronic structure of the RuO6 clus-
ter. The crystal field splits the Ru 4d level into the t2g

and eg sublevels. The p orbitals of oxygen participate in
the pdπ and pdσ bonds with Ru. A detailed calculation
of molecular orbitals and their comparison with first-
principles calculations by the linearized augmented
plane wave method were performed in [8]; in this work,
we only give the results necessary for analyzing
exchange interactions. After the inclusion of intraclus-
ter p–d Ru–O hoppings, we obtain the following cluster
molecular orbitals: 13 nonbonding molecular orbitals
4 × E0(pσ) + 9 × E0(pπ), 5 bonding orbitals 2 × E–(Eg) +
3 × E–(T2g), and 5 antibonding molecular orbitals 2 ×
E+(Eg) + 3 × E+(T2g). Here, E0 are the ionic levels, and
the energies of the bonding and antibonding terms are

(1)

E± Eg( ) 0.5 E0 pσ( ) E0 eg( )+{=

± E0 pσ( ) E0 eg( )–( )2 16tσ
2+[ ] 1/2 } ,

E± T2g( ) 0.5 E0 pπ( ) E0 t2g( )+{=

± E0 pπ( ) E0 t2g( )–( )2 16tπ
2+[ ] 1/2 } .
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The order of the levels is determined by the conditions

and their filling with 39 valence electrons is such that
36 electrons completely fill the E–(T2g), E–(Eg), E0(pσ),
and E0(pπ) molecular orbitals. The remaining three
electrons fill three E+(T2g) orbitals with parallel spins to
form the S = 3/2 high-spin state. T2g symmetry of
molecular orbitals coincides with t2g symmetry of Ru
atomic orbitals.

The true crystal lattice of Sr2YRuO6 is somewhat
more complex than that shown in Fig. 1; RuO6 clusters
are rotated through ϕ ≈ 12°, which results in P21/n
monoclinic symmetry. We will, however, analyze
exchange interactions in terms of the undistorted struc-
ture (Fig. 1). Including distortions gives corrections
which prove to be small according to the estimates
made in [8]. From the point of view of the indirect
exchange mechanism, exchange between the nearest
neighbors J is formed by the Ru–O–O–Ru coupling.
However, in terms of molecular orbitals, the same cou-
pling of neighboring RuO6 clusters is effected by the
xy–xy hopping with the amplitude τσ = 0.75tddσ.

The arising exchange energy per cluster can be esti-

mated as 2J0 ~ /∆, where ∆ is the exchange splitting
of the T2g molecular orbitals. The estimation of the τσ
and ∆ parameters by linearized augmented plane wave
calculations in [8] gives 2J0 ≈ 0.05 eV; this J value also
corresponds to the energy difference between the ferro-
magnetic and antiferromagnetic states per cluster in
spin polarization calculations [8], which equals
0.095 eV with and 0.12 eV without allowance for octa-
hedron turns.

The magnetic properties of a system of localized
spins will be described in terms of the isotropic Heisen-
berg model with the Hamiltonian

(2)

E– T2g( ) E– Eg( ) E0 pσ( ) E0 pπ( ) E+ T2g( ) E+ Eg( ),< < < <≈

τσ
2

H
1
2
--- J R( )S f S f R+ ,⋅

f R,
∑–=

J R( ) J R–( ), J 0( ) 0.= =

(a) (b)

Fig. 1. Ordered diamagnetic replacement of every second
Ru ion by Y ion in (a) SrRuO3 leads to (b) the Sr2YRuO6
lattice: (×) Ru; (s) O; (h) Y.
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The FCC lattice contains z = 12 nearest neighbors
with the exchange J(R1) = –J. We also take into account
exchange with the next-nearest spins J(R2) = I on the
assumption of ferromagnetic exchange. Exchange for
the next-nearest spins arises as the Ru–O–O–Ru–O–O–
Ru coupling; it can be estimated as

In order to describe the antiferromagnetic state, we
introduce sublattices A (sites a) with spins upward

and B (sites b) with spins downward,  = –  ≡
S, where the magnetization of the sublattices depends
on temperature. For the antiferromagnetic state of the
first type, we have ferromagnetically ordered xy planes
with an antiferromagnetic alternation of the planes. Set
lattice parameter a = 1; the length of the R1 ≡ D vectors

connecting the nearest neighbors is then ∆ = 1/ , and
that of the R2 ≡ a vectors, a = 1. Let us divide the D vec-
tors into two groups, those lying in the xy planes d and
interplanar vectors d,

The distribution of the  means in this model is as
follows:

(3)

Because of the ferromagnetic order in the xy plane, all
four antiferromagnetic bonds in this plane are frus-
trated (energetically unfavorable). Eight interplanar
antiferromagnetic bonds, however, give energy gain for
the antiferromagnetic state. For this reason, frustrations
decrease the mean field acting on a spin even in the
molecular field approximation. Without frustrations,
the mean field is  = 2J  = 12J ; taking frustrations

into account makes it  = 4J . Without frustrations in

the mean-field approximation,  = zJS(S + 1)/3,
which is much higher than the experimental TN value. A
decrease in TN by a factor of 3 caused by frustrations in
the mean-field approximation does not solve the prob-
lem. A similar result is obtained for the Ising model,
where frustrations decrease TN [13]. The TN value (700–
900 K [8]) is, however, as previously, high compared
with the experimental one. In the next section, we con-
sider the spin-wave theory of a frustrated antiferromag-
net to take into account transverse spin component fluc-
tuations.

I τσ
4 /∆3 10 2– J0.≤∼

SA
z〈 〉 SB

z〈 〉

2

d
1
2
---± 1

2
---± 0, , 

  xy( ),=

d1 0
1
2
---± 1

2
---±, , 

  yz( ), d2
1
2
---± 0

1
2
---±, , 

  xz( ).= =

S f
z〈 〉

Sa
z〈 〉 S, Sa d+

z〈 〉 S, Sa d+
z〈 〉 S,–= = =

Sa a+
z〈 〉 S, Sβ

z〈 〉 S, Sb d+
z〈 〉– S,–= = =

Sb d+
z〈 〉 S, Sb a+

z〈 〉 S.–= =

h S S

h S

T N
MF
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3. THE SPIN-WAVE THEORY 
OF A FRUSTRATED ANTIFERROMAGNET

ON AN FCC LATTICE

The exact equation of motion (" = 1) for  is lin-
earized in the Tyablikov approximation:

(4)

The h = H/zJ dimensionless Hamiltonian can conve-
niently be used. For the antiferromagnetic state of the
first type, taking into account (3) then allows (4) to be
written as (λ = I/J)

(5)

Performing the Fourier transform over the sublattices

we obtain

(6)

where

The thermodynamic properties will be calculated using
two-time retarded commutator Green’s functions at
finite temperatures

Here, sublattice indices F and G take on two values, A
and B. For simplicity, we will only consider the spin

S f
+

iṠf
+

J R( ) Sf R+
z〈 〉 Sf

+ Sf
z〈 〉 Sf R+

+–( ).
R

∑≈

iṠa
+ S

z
--- Sa d+

+ Sa
+–( )

d

∑ Sa d+
+ Sa

++( )
d
∑+=

+
λS
2z2
------- Sa

+ Sa a+
+–( ),

a

∑

iṠb
+

–
S
z
--- Sb d+

+ Sb
++( )

d

∑ Sb d+
+ Sb

++( )
d
∑+=

–
λS
2z2
------- Sb

+ Sb a+
+–( ).

a

∑

SA
+ q( ) 2/N Sa

+ iq a⋅( ),exp
a
∑=

SB
+ q( ) 2/N Sb

+ iq b⋅( ),exp
b
∑=

iṠA
+

q( ) S αqSA
+ q( ) βqSB

+ q( )+( ),=

iṠB
+

q( ) –S αqSB
+ q( ) βqSA

+ q( )+( ),=

αq 0.33 1 cxcy+( ) 0.5λ 1 γq–( ),+=

βq 0.33 cx cy+( )cz,=

ci qi/2( ), icos x y z,, ,= =

γq 0.33 qxcos qycos qzcos+ +( ).=

SF
+ q( ) SG

– q–( )〈 〉〈 〉 ω GFG q ω,( ).=
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S = 1/2. Of course, spin-wave theory also can be con-
structed for an arbitrary spin S, including S = 3/2 for
Sr2YRuO6. Such a theory will, however, be fairly cum-

bersome, whereas the main results for  and TN will
differ by unimportant multipliers of the S(S + 1) type.
Equations of motion (6) allow us to easily obtain the
corresponding Green’s functions

(7)

(8)

Applying the standard procedure yields the spectral
density

and the transverse spin correlator

(9)

Here, τ = T/zJ is the dimensionless temperature. For
S = 1/2,

(10)

and the equation for the order parameter  therefore
reads

(11)

At τ = 0, the hyperbolic cotangent equals one, and

(12)

In the other limit τ  τN ,   0 (   1/x as

S

GAA

2S ω Sαq+( )
D q ω,( )

-------------------------------, GBB

2S ω Sαq–( )
D q ω,( )

------------------------------,= =

GAB GBA

2S
2βq

D q ω,( )
--------------------,–= =

D q ω,( ) ω2 Ωq
2, Ωq– Sεq,= =

εq αq
2 λ( ) βq

2–( )1/2
.=

nAA q ω,( )
1
π
---ImGAA q ω,( )–=

=  S 1
αq

εq

-----+ 
  δ ω Ωq–( )

CAA q( ) SA
+ q( )SA

– q–( )〈 〉=

=  
ω/τ( )exp

ω/τ( )exp 1–
--------------------------------nAA q ω,( ) ωd

∞–

∞

∫

=  S 1
αq

εq

-----
Ωq

2τ
------coth+ 

  .

2
N
---- CAA q( )

q

∑ 2
N
---- Sα

+Sα
–〈 〉

α
∑ 1

2
--- S,+= =

S

S τ( )
1/2
I τ( )
--------, I τ( )

2
N
----

αq

εq

-----
S τ( )εq

2τ
--------------.coth

q

∑= =

S 0( )
0.5

I1 λ( )
-----------, I1 λ( ) 2N 1– αq λ( )

εq λ( )
-------------.

q

∑= =

S xcoth
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x  0), Eq. (11) yields the Néel temperature

(13)

Consider the integrands in the expressions for I1 and I2
in the neighborhood of the Brillouin zone points Γ =
(0, 0, 0) and X = (0, 0, 2π). In the neighborhood of Γ,
we have

and the integrand in I1 takes the form

(14)

If only exchange J between the nearest neighbors is
taken into account, the λ = 0 spectrum in the vicinity of
Γ becomes one-dimensional with the special direction
z, along which A and B layer spins alternate. At λ = 0,
the integral I1 logarithmically diverges, which means

that (0)  0; that is, the antiferromagnetic state is
already unstable at T = 0. The integral I2 in the vicinity

of Γ behaves as  ∝  1/q, that is, diverges by a

power law. As a result, TN  0. In the vicinity of X,
the I1 and I2 integrals exhibit similar behaviors. It fol-
lows that, if only nearest neighbor exchange J is taken
into account, the effect of frustrations is strong to the
extent that the antiferromagnetic state is completely
suppressed. Precisely this is, in our view, the main rea-
son why TN and  are small in Sr2YRuO6. The antifer-
romagnetic state can be stabilized both by exchange
with the next-nearest spins I and by anisotropy.

4. THE STABILIZATION
OF ANTIFERROMAGNETIC STATES

BY NEXT-NEAREST-NEIGHBOR EXCHANGE

The instability of the antiferromagnetic state in FCC
lattices has long been known and treated within the
frameworks of both the spin-wave approach and the
Bete–Peierls–Weiss cluster approximation [14–16].
The stabilization of the antiferromagnetic state by next-
nearest-neighbor exchange has been considered in
detail in [17, 18]. Ferromagnetic exchange I stabilizes
the antiferromagnetic phase of the first type, which is
observed in Sr2YRuO6, and antiferromagnetic
exchange I stabilizes the phase of the third type. The
Néel temperature as a function of the λ = I/J ratio was
calculated in [17, 18] only numerically, and the TN(λ)
plots with a characteristic nonanalytic dependence for

τN
1
4
--- I2 λ( ), I2 λ( ) 2N 1– αq λ( )

εq
2 λ( )

-------------.
q

∑= =

αq
1
3
--- 2

qx
2 qy

2+
8

---------------- λq2

4
--------+– , q2≈ qx

2 qy
2 qz

2,+ +=

βq
1
3
--- 2

qx
2 qy

2+
8

----------------
qz

2

4
-----–– , εq

2≈
qz

2 λq2+
9

--------------------=

αq λ( )
εq λ( )
-------------

2 qx
2 qy

2+( )/8 λq2/4+–

qz
2 λq2+( )1/2

-------------------------------------------------------.=

S

qz/qz
2d∫

S
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λ  0 were similar to the TN(D) plot (see Fig. 4
below). At the same time, it was claimed in [17, 18] that
anisotropy of exchange interactions per se, without tak-
ing exchange I into account, could not stabilize the anti-

kx ky

kz

Fig. 2. Brillouin zone of a face-centered cubic lattice.
Squares indicate dangerous directions leading to magnetic
moment and Néel temperature divergences.

S
–

0.5

0.4

0.3
0 0.02 0.04 0.06 0.08 0.10

D

Fig. 3. Dependence of sublattice magnetic moment  on
exchange anisotropy D.

S

TN/J

0.4

0.1
0 0.02 0.04 0.06 0.08 0.10

D

0.3

0.2

0.5

0.6

Fig. 4. Dependence of the Néel temperature on exchange
anisotropy D.
JOURNAL OF EXPERIMENTAL 
ferromagnetic state of the first type. This conclusion is
at variance with our results. Indeed, anisotropy creates
a gap in the spectrum of magnons that cuts off the diver-
gences as λ tends to 0. This problem is considered in
more detail in the next section.

5. THE STABILIZATION 
OF THE ANTIFERROMAGNETIC STATE

BY ANISOTROPY

The turns of the octahedra and the monoclinic dis-
tortion of the Sr2YRuO6 lattice can cause anisotropy of

two types, namely, single-ion anisotropy of the D
type or exchange coupling anisotropy. In our simplified
model with S = 1/2, the single-ion anisotropy is absent;
therefore, consider the exchange anisotropy. The
Hamiltonian of the system can then be written as

Equation (4) now transforms into

In the simplest situation, it suffices to take into account
exchange anisotropy for the nearest neighbors ignoring
exchange anisotropy for the next-nearest spins. This
implies that

where D is the dimensionless anisotropy parameter. As
the lattice distortions are small, we can assume that
D ! 1. The spin-wave theory described in Section 3 can
easily be generalized to systems with anisotropy. After
the αq  αq(D) renormalization,

(15)

all the other equations obtained in Section 3 remain
valid. The order parameter at T = 0 is

(16)

For the Néel temperature, we obtain

(17)

Sz
2

H
1
2
--- J R( ) S f

+S f R+
– ξRS f

z S f R+
z+( ), ξR 1.≠

f ,  R ∑
 

–=

iṠf
+

J R( ) ξR Sf R+
z〈 〉 Sf

z Sf
z〈 〉 Sf R+

+–( ).
R

∑≈

ξ∆ 1 D, ξa+ 1,= =

αq λ D,( ) 0.33 1 D cxcy+ +( ) 0.5λ 1 γd–( ),+=

εq D( ) αq
2 λ D,( ) βq

2–( )1/2
,=

S λ D,( )
0.5

I1 λ D,( )
-------------------,=

I1 λ D,( )
2
N
----

αq λ D,( )
εq λ D,( )
---------------------.

q

∑=

τN λ D,( )
0.25

I2 λ D,( )
-------------------,=

I2 λ D,( )
2
N
----

αq λ D,( )

εq
2 λ D,( )

--------------------.
q

∑=
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If λ = 0 and D  0, both integrals I1 and I2 diverge,

which yields  = 0 and τN = 0. It follows that anisotropy
per se, in the absence of next-nearest-neighbor spin
exchange, stabilizes the antiferromagnetic state in an
FCC lattice.

To single out the diverging asymptotic functions, we
analytically calculated the contributions to the integrals
in the neighborhood of the dangerous Brillouin zone
points Γ and X (see Fig. 2). The high-symmetry points
will be denoted as follows:

Along several Brillouin zone directions shown by
squares in Fig. 2, εq = 0 at D = λ = 0. Some points of
this set are dangerous in the sense that the I1 and I2 inte-
grals diverge at D = λ = 0. Further, we will study the
role played by anisotropy D on the assumption λ = 0.

Consider the small volume v  = (π/4)3 in the neigh-
borhood of Γ (recall that the total Brillouin zone vol-
ume is 32π3). All integrals normalized with respect to v

will be denoted by . Expanding all cosines into series
and performing fairly simple calculations, we can ana-
lytically find the contributions that diverge as D  0.
For instance, for I1, we obtain

For the integral , analytic calculations give

Similar asymptotic behaviors (lnD for I1 and  for I2)
can also be obtained for the other dangerous Brillouin
zone points. As a result, we find  and TN(D)/J.

The  and TN(D)/J dependences at λ = 0 are
shown in Figs. 3 and 4. The curves labeled by squares
are described by the approximations

(18)

(19)

6. RESULTS AND DISCUSSION

Our results are based on a study of the Tyablikov
approximation, which is, in essence, a mean-field

S

Γ 0 0 0, ,( ), L π π π, ,( ), K 3π/2 3π/2 0, ,( )= =

Z 0 0 2π, ,( ), W1 π 0 2π, ,( ), W2 0 π 2π, ,( ),=

X  = 2π 0 0, ,( ), W̃1 = 2π π 0, ,( ), W̃2 = 2π 0 π, ,( ),

Y  = 0 2π 0,,( ), W1* = π 2π 0,,( ), W2* = 0 2π π,,( ).

Ĩ

Ĩ1 D( ) 0.5 D 1.9.–ln≈

Ĩ2

Ĩ2 D( ) 12/ D.≈

D

S D( )

S D( )

S D( )
1/2

0.043 Dln 1.256+
-------------------------------------------,≈

T N D( ) J
4 D/ 1 4 D+( ), 0 D 0.05,< <
0.342 2.6D, 0.05 D 0.1.< <+




=
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approximation variant. However, as distinct from the

trivial Weiss mean field with JijSiSj  Jij ,
which does not depend on the space dimension, the
Tyablikov approximation takes into account transverse
spin density fluctuations in the form of collective exci-
tations, that is, spin waves. As a result, the Tyablikov
approximation reveals the absence of long-range order
at finite temperatures in agreement with the exact Mer-
min–Wagner theorem [17, 18]. As long as there is long-
range magnetic order in the system and spin fluctua-
tions at low temperatures can be described in terms of
spin waves, we can hope that the results obtained using
the Tyablikov approximation will be in at least qualita-
tive agreement with experiment.

Note that the stabilization of the antiferromagnetic
state of the first type takes place not at arbitrary signs of
exchange and anisotropy, but only at ferromagnetic
next-nearest-neighbor exchange I and anisotropy D > 0.
Indeed, ferromagnetic exchange I prevents frustrations
and is intrasublattice. Conversely, antiferromagnetic
next-nearest-neighbor exchange would only strengthen
the effect of frustrations. As far as anisotropy is con-
cerned, D > 0 is evidence of Ising-type anisotropy, J|| >
J⊥ . In the limit D  ∞, we can ignore transverse spin
components and obtain the Ising model, for which frus-
trations partially suppress the antiferromagnetic phase,
but TN and  remain finite [13]. At all D > 0 values, a
gap appears in the spectrum of magnons, which is the
factor that stabilizes the antiferromagnetic phase. At
D < 0, the εq(D) spectrum of magnons becomes imagi-
nary at certain wave vectors, which is evidence of anti-
ferromagnetic phase instability. At D = 0, the antiferro-
magnetic state with a long-range order is unstable and
is replaced by a state with a spin-liquid-type short-
range order [19, 20].

A comparison of our results with the experimental
data on Sr2YRuO6 should be performed bearing in
mind that the monoclinic distortion of the lattice and
the spin  = 3/2 can lead not only to exchange but also
to single-ion anisotropy. The Dzyaloshinski–Moriya
anisotropic exchange is also possible. Clearly, all aniso-
tropic interactions are weak compared with J, which
allows us to qualitatively compare our results with
experiment taking into account exchange anisotropy
with D ! J only. It follows from (18) and (19) that, to
obtain TN = 30 K and J = 300 K, we must set D = 8 ×
10–4. This means that the exchange anisotropy J|| – J⊥  =
DJ = 0.24 K is exceedingly small. At such an anisotropy
value,

which amounts to 64% of the nominal spin and very
closely agrees with the neutron data on the magnetic
moment of ruthenium.

Note in conclusion that frustrations in an FCC sys-
tem with nearest neighbor exchange lead to soft mag-

Si
z〈 〉 S j

z

S

S

S 8 10 4–×( ) 0.32,=
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non modes along several Brillouin zone directions. In
particular, in the vicinity of the Γ point, the spectrum
becomes one-dimensional. For this reason, divergences
in spin-wave theory similar to divergences in low-
dimensional systems are not surprising. Very weak per-
turbations in the form of ferromagnetic next-nearest-
neighbor exchange or an Ising-type exchange anisot-
ropy are sufficient for the antiferromagnetic state to be
stabilized.
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Abstract—The effect of a spiral spin structure on superconducting (SC) pairing in a three-band Hubbard model
related to Sr2RuO4 is analyzed in the mean-field approximation. Such a structure with incommensurate vector
Q = 2π(1/3, 1/3) is the simplest one that removes the nesting instability of α and β bands. It is assumed that
there is an intralayer pairing interaction between two types of neighbor sites, those with attraction in a singlet
channel and with attraction in both two-singlet and triplet channels. In both cases, a mixed singlet–triplet SC
order is observed in the γ band: a d-wave singlet order is accompanied by the formation of p-wave triplet pairs
(k, −k − Q)↑↑  and (k, –k + Q)↓↓  with large total momenta  and the spin projections ±1 onto an axis perpen-
dicular to the spin rotation plane of the spiral spin structure. Both the SC and normal states are states with bro-
ken time-reversal symmetry. In contradiction to the experiment, the models give different scales of Tc for the γ
band and for α and β bands. This fact shows that the models with intralayer interactions or with the spin struc-
ture assumed are insufficient. © 2003 MAIK “Nauka/Interperiodica”.

Q+−
1. INTRODUCTION

The problem of interplay between superconducting
(SC) and spin orders still remains topical for systems
with strong electron correlations. Among such systems,
a single-layer quasi-two-dimensional ruthenate attracts
considerable attention as a superconductor (Tc ~ 1.5 K)
with a possible triplet type of pairing [1, 2]. One of
arguments in favor of this type of pairing is the behavior
of the Knight shift [3]. It was also assumed that the
pairing is determined by ferromagnetic (FM) fluctua-
tions that clearly manifest themselves in the parent FM
compound SrRuO3. The spin-triplet SC order parame-
ter (OP) ∆ss'(k) = (iσ2σi)ss'di(k) with dz(k) ∝  kx + iky , sug-
gested in [4, 5], agrees with the fact that the Knight shift
is invariant under the SC transition [3] and with an
increase in the rate of the muon spin relaxation
observed for T < Tc [6]. Such an order parameter corre-
sponds to a nodeless gap function on the quasi-two-
dimensional Fermi surface. These nodeless gaps are
naturally derived from weak-coupling theory [5]. How-
ever, the experimentally observed power-law behavior,
as T  0, of the specific heat, C(T) ∝  T2 [7]; the NMR

relaxation rate,  ∝  T3 [8]; the thermal conductivity,
κ(T) ∝  T2 [9, 10]; the penetration depth [11]; and the
ultrasonic attenuation [12] points to the existence of
node lines in the SC gap.

In view of these results, other possible types of sym-
metry of the SC gap were discussed in [13–17]. In par-
ticular, the f-wave symmetry of the gap with a horizon-
tal node plane was assumed in [13]. This type of sym-
metry is likely to support the observed fourfold

T1
1–
1063-7761/03/9606- $24.00 © 21131
symmetry of anisotropic thermal conductivity in
Sr2RuO4 in a magnetic field with the field vector lying
in the RuO4 plane [9, 10]. However, the observed
anisotropy also agrees with the conventional d-wave
SC order. However, this assumption requires a new
interpretation for the behavior of the Knight shift.

Recently, models with pairing interaction of elec-
trons in adjacent sites (including the interlayer interac-
tion of orbitals with xz and yz symmetries) have been
considered; the constants of these models were chosen
to describe a simultaneous transition to the p-wave SC
state in all three bands [18, 19]. In all SC state tests, it
is usually assumed that the bands have already been
renormalized by correlations due to a strong on-site
repulsion. Such a renormalization is necessary for
matching the band widths obtained from LDA calcula-
tions to those obtained from photoemission data. The
renormalization mechanism is certainly determined by
spin correlations or, in the static limit, by local spin
structures in a system that should substantially affect
the SC order. Therefore, the study of the effect of the
spin order on SC pairing in the ruthenate models
remains a topical problem.

The situation with the SC order and magnetic prop-
erties may be complicated if the normal state of the
RuO4 plane possesses a certain static or dynamic spin
structure. In particular, spiral spin structures have
recently been studied [20] as the simplest structures
that describe an incommensurate peak in the spin sus-
ceptibility χ''(q, ω) for q ~ Q = 2π(1/3, 1/3) that was
observed in inelastic neutron scattering (INS) [21, 22]
and some features of the ARPES spectra [23] for
003 MAIK “Nauka/Interperiodica”



 

1132

        

OVCHINNIKOVA

                                                           
Sr2RuO4. The quasi-one-dimensional sheets of the
Fermi surface for α and β valence bands with a full
population of four electrons per site in the RuO4 plane
are characterized by the nesting with q = Q [24, 25].
The spiral structure with q = Q removes the instability
due to nesting simultaneously in two quasi-one-dimen-
sional bands and reduces the on-site interaction energy.
The spiral structure is not the only structure that
removes this type of instability of the system. Periodic
spin structures with a 3 × 3 unit cell in the RuO4 plane
may also be responsible for the incommensurate peak
at q = Q observed in INS. However, the spiral state is
the simplest state that allows one to study the effect of
the spin structure and umklapp processes on SC pair-
ing. In the mean-field approximation, the energy of the
spiral state is indeed lower than the energies of para-,
ferro-, and antiferromagnetic states [20]. The coexist-
ence of SC pairing and the spiral spin order, as well as
the coexistence of antiferromagnetic (AF) and SC
orders in cuprates, remains an intriguing problem.
These questions are of interest due to the facts that even
a normal state with a spiral spin structure is a state with
broken time-reversal symmetry and that a whole series
of new mixed SC states with a simultaneous formation
of singlet and triplet pairs arises in the system.

The aim of the present paper is to study the possibil-
ity of coexistence of a spiral spin order and supercon-
ductivity in models related to Sr2RuO4. We consider
models with pairing interactions of neighbor sites
within the RuO4 plane. We will study the symmetry and
the interplay of triplet and singlet SC OPs. We will
demonstrate that both types of pairs survive simulta-
neously in the SC state in the presence of a spiral spin
structure. In the models under test, one γ band is distin-
guished as an active band with respect to the SC transi-
tion. In this band, singlet d-wave pairs coexist with trip-
let bands. Earlier [16], the possibility of a mixed SC
order in Sr2RuO4 was presumed because the energies of
states with different SC-order symmetries are close to
each other. The SC order was described by the spin sus-
ceptibility with a peak at the incommensurate momen-
tum. In contrast to [16], a spiral spin structure gives rise
to microscopic mixing of d-wave singlet and p-wave
triplet orders. First, we analyze models with large con-
stants κ of pairing interactions. Then, we calculate the
phase curves Tc(κ) for more realistic values of κ.

First, we have to stress several points.
1. Supposing that the attraction between electrons

has an electronic (correlation) nature, we simulate it by
the interaction

(1)

between two adjacent sites for each of the three bands
ν = α, β, γ. This situation corresponds to taking into
consideration the lowest k harmonics in the momentum
representation of the pairing interaction Vkk' , as was

V Vνnνnnνm JνSνnSνm+
nm〈 〉 ν,
∑=
JOURNAL OF EXPERIMENTAL
done in [4]. Interaction (1) corresponds to the SC pair-
ing constants κs = 2V + J/2 and κt = 2V – 3J/2 in the sin-
glet and triplet channels for every bond 〈nm〉 . The natu-
ral signs V > 0 and J > 0 are expected from the theory
of strongly correlated systems. In single-band models,
these signs correspond to κt > 0 and κs < 0 in the triplet
and singlet channels. They correspond to attraction in
the singlet rather than in the triplet channel. In the
present paper, however, we consider models with either
sign of the triplet constant κt.

2. The electron structure of Sr2RuO4 is determined
by three almost independent bands α, β, and γ con-
structed from the d orbitals of Ru+2 of xz, yz, and xy
symmetries and the corresponding combinations of the
π orbitals of oxygen [24, 25]. A small hybridization of
bands of xz and yz nature occurs only in their intersec-
tion domain for kx = ±ky . According to [4, 5], the orbital
symmetry also significantly suppresses the interband
scattering of Cooper pairs. Therefore, we study the SC
order arising in each separate band and choose the most
active band from the viewpoint of SC instability. We do
not touch upon the interband scattering and the proxim-
ity phenomena discussed in [4].

3. In contrast to [4], we begin with a normal mean-
field state with broken time-reversal symmetry, namely,
the state with a local spiral spin structure characterized
by a diagonal vector Q = 2π(1/3, 1/3). This is a normal
state with nonzero spin currents j↑ = –j↓ of opposite
directions for two spin polarizations that are perpendic-
ular to the spin rotation plane of the spiral structure.
This means that electrons with polarizations ↑  or ↓  pre-
dominantly occupy k states with k · Q < 0 or k · Q > 0,
respectively. According to [20], this leads to a polariza-
tion asymmetry of the Fermi surface and may lead to
the formation of a mixed triplet–singlet SC order in the
system.

2. MEAN-FIELD APPROXIMATION
IN A SPIRAL SPIN CONFIGURATION

A three-band model of the RuO4 plane is described
by the Hamiltonian [25]

(2)

Here, ν = 1, 2, 3 (or α, β, γ) correspond to bands of xz,
yz, and xy natures; eν, k and HU are zero band energies
and on-cite interactions with the parameters defined
in [25]. The interband interaction

H T HU V , T+ + eνkcνkσ
† cνkσ,

k

∑
ν σ,
∑= =

HU Unνn↑ nνn↓ U2
1
4
---nνnnν'n JSνnSν'n–

ν' ν≠
∑+

 
 
 

.
n ν,
∑=

Tαβ 4tαβ kx ky c1kσ
† c2kσ H.c.+( )sinsin

k σ,
∑=
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is small. Thus, in the normal state with an arbitrary spin
structure, there are three almost independent bands
with weak mixing of α and β bands at the crossing point
of their Fermi surfaces. We will neglect this mixing. For
simplicity, we retain the notation α and β for unmixed
bands of xz and yz natures. The interaction between
bands occurs through the common value of the chemi-
cal potential and the mean fields produced by the elec-
trons of all three bands. These fields depend on spins
due to the on-site exchange interaction. The interaction
V〈nm〉 of type (1) of nearest neighbors is included in the
simulation of the possible SC pairing in the system.

In the mean-field approximation, the energy aver-
aged over an arbitrary BCS-type state is calculated as
an explicit function

(3)

that depends on normal (yi) and anomalous (wi, θj) one-
electron means. The normal OPs {yi} include on-site
(l = 0) and bond (l = ex, ey) densities

the mean kinetic energies

Tν = , 

and local (l = 0) or nonlocal ((l = ex, ey) spin densities
dν(l) in each band ν. The local spin densities

(4)

determine the spiral spin structure with the spirality
vector Q = 2π(1/3, 1/3):

(5)

Previous calculations [20] have shown that the energy
of the normal state with a spin structure with such Q is
lower than the energies of similar para-, ferro-, and
antiferromagnetic mean-field solutions. Such a spin
structure removes the instability due to the nesting of α
and β bands. Simultaneously, exchange fields also
induce a similar spin structure in the γ band. The solu-
tions give collinear contributions to the total local spin
of the site from each band.

Three-band models that describe Sr2RuO4 were
derived in [24, 25]. In the case of the spiral spin struc-
ture, the normal state Fermi surfaces were studied
in [20]. It was shown that, for a certain spin polariza-
tion, a spiral SDW order opens up a gap along half of
the unperturbed Fermi boundary of a paramagnetic
solution. Other regions of the Fermi surface remain
metallic (gapless). In addition, a number of new
shadow Fermi boundaries arise that are attributed to
umklapp processes. As a result, the bands are split into
the lower and upper Hubbard subbands; this increases
the densities of states in the subbands and on the Fermi

H H
N

yi( ) H
SC

w j θ j,( )+=

rν l( )
1
2
--- cn ν σ, ,

† cn l+ ν σ, ,

σ
∑ ,=

1/N eνkcνkσ
† cνkσkσ∑

dν 0( ) dν 0( )[ ] ∗ eiQncnν↑
† cnν↓〈 〉= =

Snσ〈 〉 dν ex Qncos ey Qnsin+[ ] .=
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level. Therefore, one can expect that (any) spin struc-
ture increases Tc as compared with the Tc in paramag-
netic solutions.

Since the Fermi surfaces are different for all three
bands, it suffices to take into account only the intraband
anomalous means. Only these means are determined by
the contributions of a large phase volume along the
entire Fermi surface. The formation of electron pairs

 that belong to different bands ν ≠ ν' can be
effective only in a small domain of k near the intersec-
tion of their Fermi surfaces. Therefore, we retain only
anomalous means within each subband and neglect the
interband scattering of pairs. Then, the expression for

the contribution  to the mean energy (3) has the
form

(6)

Here, w(l) and θ(l) are singlet and triplet SC OPs either
at the same site (l = 0) or at neighboring sites (l = ex or
l = ey). These quantities are given by the expressions

(7)

and

(8)

Here, the matrices σµ are equal to σz or  for
µ = 0, ±1, respectively, and σx, y, z are Pauli matrices.
The phases φ(n, l) = µQ(n + l/2) for µ = 0, ±1 in the def-
inition of the triplet OPs (8) guarantee that each term of
the sum in (8) for each bond 〈n, n + l〉  is independent of
the bond number n. This is analogous to the situation
when cyclic spin components 〈Snµe–iµQn〉  for µ = ±1 are
independent of n for a state with a spiral spin structure.
These phases are associated with the existence of spin
currents in the spiral state. Below, we will show that the
triplet Cooper pairs (↑↑ ) or (↓↓ ) with spin µ = 1 or µ =
−1 are moving pairs that carry large total momenta ±Q.
The constants κs, t of SC pairing in (6) are related to the
constants V(l) and J(l) of interaction between neighbor-
ing sites in Eq. (1).

Let us take into account that the α and β bands are
independent of the γ band. This is associated with the
fact that the symmetry of the α and β bands with respect
to the reflection about the ab plane of ruthenate bands
is different from that of the γ band. For instance, a direct
interband mixing of these bands due to hopping within

ckν↑
† c–kν'↓

†( )

H
SC

1
N
----H

SC
U wν 0( ) 2=

+ κν
s l( ) wν l( ) 2 κν

t l( )
1

1 µ+
--------------- θµ ν, l( ) 2

µ 0 1±,=

∑+
 
 
 

.
ν l ex ey,=,
∑

wν l( )
1

2N
------- σ

σ
------ cν n σ, ,

† cν n l+ –σ, ,
†〈 〉

n,  σ ∑
 

=

θνµ l( )

1
2N
------- eiµQ n l/2+( ) σµσy( )ss' cν n s, ,

† cν n l+ s', ,
†〈 〉 .

n,  σ ∑
σx iσy±( )+−
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the RuO4 plane is forbidden. This property of bands
was discussed in [4, 17], where the authors also evalu-
ated a small interband interaction due to interlayer hop-
ping. We will neglect interlayer interactions and will
analyze a possible SC order in each band separately, as
well as its symmetry and compatibility with the spiral
spin order. We will also neglect the interband scattering
of pairs and take into account only the intraband con-
stants κs and κt in (7). To reduce the number of SC OPs,
we apply arguments typical for all strongly correlated
systems. For any interaction V〈nm〉 in (1), a large on-site
repulsion U > 0 suppresses the singlet s-wave OP w(0)
in the γ band according to (6), so that, of the singlet
OPs, we retain only the  wave OP; i.e., we set

wγ(0) = 0 and wγ(ex) = –wγ(ey). This guarantees that the
pair function is orthogonal to the forbidden s-wave pair
function. For quasi-one-dimensional bands α and β
(here, α and β refer to the bands of xz and yx natures
rather than to their combinations), the same on-site
interaction suppresses all singlet OPs, i.e., those of both
s and d symmetries. As a result, we set wα(β)(0) =
wα(ex) = wβ(ey) = 0 because both combinations wα(ex) ±
wα(ey) are nonorthogonal to the on-site pair function
w(0) for quasi-one-dimensional bands with a broken
tetragonal symmetry.

In the BCS approximation, an interaction of type (1)
may induce an SC order only under the condition that

some of the constants  or  in (6) are negative. One
may assume that such an attraction is of correlational or
kinematic origin or is attributed to the hybrid nature of
the site orbitals composed of the d and pπ orbitals of
ruthenium and oxygen. Therefore, we may assume that

the corresponding parameters (l) and (l) or,
equivalently, the parameters Vν(l) and Jν(l) in the
model interaction (1) take nonzero values only for those
bonds 〈nm〉 , m = n + l, and orbitals for which the hop-

ping integral  is different from zero. This assump-

tion has been inspired by the expression Jnm ∝  4 /U
for the exchange interaction in the t–J model. In light of
the aforesaid, of all the constants, we assign nonzero
values only to the following singlet (s) and triplet (t)
pairing constants:

(9)

By the same analogy with the t–J model, one could
expect that these constants have the following signs:
κs = –κt < 0. However, in view of the expected triplet
type of the SC order in Sr2RuO4 [1], we extend the cal-
culations to the two limiting cases of triplet constants of
different signs

(10)

The first case corresponds to the attraction of particles
only in the singlet channel and repulsion in the triplet

d
x

2
y

2–

κν
s κν

t

κν
s κν

t

tnm
ν

tnm
2

κα
s t( ) ex( ) κβ

s t( ) ey( ) κγ
s t( ) ex( ) κγ

s t( ) ey( ) κ s t( ).= = = =

I: κ s κ t 0, II: κ s<– κ t 0.<= =
JOURNAL OF EXPERIMENTAL
                                                                          

channel. The second case corresponds to the attraction
in both channels.

To solve the problem, we apply the standard proce-
dure of mean-field approximation. From the explicit
dependence of the mean energy  on the one-parti-
cle OPs zj = {yi, wi, θi}, we obtain the linearized Hamil-
tonian

(11)

where  are operators corresponding the appropriate
means zi . The BCS-type state is an eigenstate of HLin; it
allows one to calculate, in turn, the values of zi . In this
way, one obtains a self-consistent solution.

For the state with a spiral spin structure, the most
convenient basis set of the Nambu representation is a
basis of the following Fermi operators for each band ν:

. (12)

Here, i = 1, …, 4, and the quasimomentum k runs over
the domain F that constitutes half of the total momen-
tum space and is bounded by the conditions

(13)

For a vector Q with Qx = Qy = 2π/3, Eq. (13) implies
that the components kx and ky range within the limits

The linearized Hamiltonian HLin is determined by inde-
pendent contributions each of which refers to the basis
set (12):

(14)

The Hermitian matrix  of rank four is determined by
the matrix elements (here, the omitted band index ν is
implied)

(15)

where

H zi( )

HLin µN–
∂ H µN–( )

∂zi

-------------------------- ẑi zi–( ) H zi( ) µN ,–+=

ẑi

biνk
† cνk↑

† cν k Q+ ↓, ,
† cν – k Q+( ) ↑, , cν –k ↓, ,, , ,{ } i=

k F: k Q/2+( )Q 0.<∈

–π
Qx

2
------ kx y, π

Qx

2
------, kx– ky Qx 0.<+ +< <–

HLin ĥk
ν
, ĥk

ν

k F∈
∑ hij

ν biνk
† b jνk.= =

hij
ν

h11 eν k1( ) µ, h22– eν k2( ) µ,–= =

h12
1
2
---∂H/∂dν,–=

h14 A k1( ) B0 k1( ),+=

h23 A k2( ) B0 k2( ), h13 24( )+– B 1± k( ),= =

h33 h22, h44– h11, h34– h12,–= = =

k1 k, k2 k Q, k+ k1 k2+( )/2= = =
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and the functions A and Bµ are given by

(16)

For the γ band, the d symmetry of the singlet OP
requires the antisymmetry Aγ(kx, ky) = –Aγ(ky, kx) of
functions with respect to the replacement kx  ky .
The solution also yields identical values for the triplet
OPs θµ for µ = ±1. Thus, we actually have only three
real OPs for the γ band:

(17)

We apply the same symmetry with respect to the
replacement x  y to the solutions in the α and β
bands subject to the simultaneous replacement α 
β (xz  yz). The solution yields identical values θµ
for two projections µ = ±1 in the α and β bands as well.
As a result, we retain the following triplet OPs for the
α and β bands that correspond to a nonzero triplet con-
stant in (9):

(18)

If the initial values of the OP satisfy Eqs. (17) and (18),
subsequent iterations of the self-consistency procedure
preserve the same symmetry of the solution.

There was one more simplification. In fact, an inter-
action of type (1) yields contributions to both parts

 and  of the mean energy (3). We may
assume that the first contribution, which depends on the
normal means—the charge and spin densities—has
already been taken into account in the renormalized
band energies eν(k) whose parameters were chosen ear-
lier [25] for the correct description of the observed
magnetic quantum oscillations. Thus, we retain only
the part of 〈V〉  in  that depends on anomalous means.
The definitions of triplet OPs (8) allow one to deal with
real solutions. They have a certain symmetry with
respect to the reflection in the diagonal plane (z, x = y)
that contains the spirality vector Q under a simulta-
neous permutation of bands xz  yz, as well as a
symmetry with respect to the reflection in the plane (z,
x = –y) (Q  –Q) with the change σ  –σ.

A k( ) κν
s l( )wν l( ) kl,cos

l ex ey,=

∑=

Bµ k( ) κν
t l( )θµν l( ) kl.sin

l ex ey,=

∑=

     

zi wd θ θ0, ,( )i, i 1 2 3,, ,= =

wd
1
2
--- w ex( ) w ey( )–[ ] ,=

θ0
1
2
--- θ0 ex( ) θ0 ey( )–[ ] ,=

θ 1
4
--- θµ eµ( ) θµ ey( )–[ ] .

µ 1±=

∑=

     
     

θµ α, ex( ) θµ β, ey( ), µ– 0 1.,= =

HN yi( ) HSC

H
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The required BCS-type spiral state is determined by

the occupation of one-particle eigenstates  corre-
sponding to the energy levels Eλ(k),

(19)

Here, the omitted index ν is implied. The matrices
Siλ(k) of the eigenvectors and the Fermi populations
f(Eλνk) of levels determine the normal and anomalous
OPs (7) and (8). This completes the self-consistency
procedure.

3. RESULTS

Since a complete solution with SC order is easily
obtained for large pairing constants, we first consider
models with large ks(t) and then calculate the phase
curves Tc(ks) for more realistic models with small ks

and kt. The results are obtained for two types of models
in (10), with attraction in the singlet channel alone
(case I) and in both singlet and triplet channels (case II).
In the first case, the α

 

 and 

 

β

 

 bands do not display any
SC order. The reason is that the singlet 

 

d

 

-wave order,
just as the 

 

s

 

-wave one, is suppressed by an on-site
repulsion in bands with inequivalent hopping integrals

in the 

 

x

 

 and 

 

y 

 

directions:  

 

@

 

  or  

 

@

 

  (see the
parameters of the three-band model [25]). In contrast to
the 

 

α

 

 and 

 

β

 

 bands, a mixed-type SC order arises in the

 

γ

 

 band of a system with a spiral spin configuration. The

 

d

 

-wave singlet order is accompanied by the formation

of triplet pairs even for  > 0. Figure 1 shows the tem-
perature dependence of the singlet and triplet OPs (17)
in the 

 

γ

 

 band for 

 

κ

 

s

 

 = –

 

κ

 

t

 

 = –0.6 eV. The values of the
triplet OPs obtained satisfy the relation 

 

θ

 

+1, 

 

γ

 

 = 

 

θ

 

–1, 

 

γ

 

 

 

@

 

θ

 

0, 

 

γ

 

. Taking into account the definition of triplet OPs
in (17) and (18) and their momentum representation,
one can conclude that coupled triplet pairs of particles
in the 

 

γ

 

 band arise mainly in the form (

 

↑↑

 

) or (

 

↓↓

 

) with
the total quasimomenta –

 

Q

 

 or

 

 Q

 

, respectively. This fact
distinguishes between triplet SC orders in the spiral
state and in an isotropic Fermi liquid, where only Coo-
per-type pairs (

 

k

 

 

 

↑

 

, –

 

k

 

 

 

↑

 

) or (

 

k

 

 

 

↓

 

, –

 

k

 

 

 

↓

 

) with zero total
momentum are possible. Moreover, unlike the isotropic
model, triplet pairs can arise in the state with the spin
structure even for a positive triplet constant 

 

κ

 

t

 

 > 0,
which corresponds to repulsion in the triplet channel,
due to the coupling between singlet and triplet OPs.

The Cooper pairs with nonzero total momenta 

 

Q

 
were first predicted in the Fulde–Ferrel–Larkin–
Ovchinnikov (FFLO) states [26]. The latter have spatial
variations of the OPs and can actually exist only if the
scale of 2

 

π

 

/

 

Q

 

 is much smaller than the coherence length

χλν k
†

χλν k
† bik

† Siλ k( ),=

hij k( )S jλ k( ) Siλ k( )Eλ k( ).=

tx
α ty

α ty
β tx

β

κγ
t
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ξ. In our case of coexisting spiral spin and mixed SC
orders, only the anomalous triplet components

,

are characterized by the spatial phase modulation
according to Eq. (8). At the same time, the leading sin-
glet component wν in (7) is constant and is independent
of the number of bond 〈nm〉 . Therefore, there is no con-
straint on the relation between ξ and 1/Q in these solu-
tions.

The emergence of coupled pairs with large total
momenta of 2kF , equal to the nesting vector, is also sub-
stantiated in the new theory of high-temperature super-
conductivity (HTSC) [27]. In [27], such pairs are
assumed to be singlet and are associated with the stripe
structure. In our model, such moving pairs are triplet
and are synchronized by the static spin structure. Note
that a photoemission technique capable of distinguish-
ing between the spin polarizations of photoelectrons
could also distinguish between the polarization asym-
metries of photospectra. The latter are associated with
the spiral spin structure that breaks the time-reversal
symmetry in both the normal and the SC state. In [20], it
is demonstrated that electrons from different segments of
the Fermi boundary—with kQ < 0 (or kQ > 0)—are
characterized by different spin polarizations k ↑  (or
k ↓ ). When the spin order has a local or dynamic char-

cνnσ
† cνmσ

†〈 〉 i
2
---µQ n m+( )

 
 
 

θν 2σ, ,exp∝

m n ex y( ), µ± 2σ= =

0.03

0.02

0.01

0

10

5

0 0.005 0.010 0.015

T, eV

C
/T

SC
 O

P 1

2

3

Fig. 1. Total specific heat divided by T, C(T)/T, and super-
conducting order parameters in the γ band as functions of
temperature for a model with large interaction constants
κs = –κt = –0.6 eV. Curves 1–3 refer to wd, –θ, and –θ0,
respectively, that are defined by Eqs. (17).
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acter and manifests itself within finite domains or finite
time intervals, the asymmetry phenomena are sup-
pressed.

Thus, in states with the spiral structure due to the
nesting of α and β bands, the attraction solely in the sin-
glet channel gives rise to both singlet and triplet pairs.
Figure 1 also represents the specific heat of the system.
The finite limit of C(T)/T as T  0 is attributed to the
contribution of the α and β bands that remain in the nor-
mal state. This fact does not agree with the observed
behavior of C(T)/T ∝  T as T  0.

Now, let us consider a model of the second type with
attraction in both channels: κs = κt < 0 in (10). For large
|κs | and |κt | and small T, an SC order arises in all three
bands. For equal values of constants (9) on each bond
with a large hopping integral, the SC order in the γ band
is more clearly pronounced than that in the α and β
bands. For κs ≤ 0.65 eV and T ~ 10–3 eV, the SC order
in the α and β bands vanishes. The ensemble of coupled
pairs in the γ band mainly consists of d-wave singlet
Cooper pairs {k ↑ , –k ↓}s and moving triplet pairs
{k ↑ , –(k + Q) ↑} and {k ↓ , –(k – Q) ↓} with the total
momenta –Q or Q, respectively.

In the α and β bands, only a triplet order is possible
for kt < 0. The corresponding transition temperatures

are significantly lower than Tc in the γ band: (kt =

ks) ! . The triplet p-wave SC order in the α and β
bands is mainly attributed to the formation of triplet
pairs {k ↑ , –k ↓}t with zero total momenta. They corre-

spond to the OP  = –  ≠ 0. Figure 2 shows
the temperature dependence of the SC OP in the α, β,
and γ bands for large constants κs = κt = –0.8 eV. Note
that the relation  >  for the triplet compo-
nents for l = ex(y) in the α and β bands differs from the
relation  !  for the OP in the γ band. The
differences in Tc and the symmetry of the SC order in
the α, β, and γ bands are associated with the quasi-one-
dimensional or quasi-two-dimensional character of the
bands and with different densities of states on the Fermi
level.

Thus, for models with intralayer interaction of
neighboring sites, only the γ band is characterized by
large Tc . Models with different scales of Tc in the γ band
and in the α and β bands are characterized by a two-step
behavior of the specific heat (Fig. 2). This fact contra-
dicts the observed dependence C(T)/T which is indica-
tive of the simultaneous SC transition in all three bands.
Nevertheless, the solutions obtained are instructive
because they show the possibility of new mixed types
of SC order that are compatible with the spiral spin
order in a correlated system.

Tc
αβ

Tc
γ

θ0
α ex( ) θ0

β ey( )

θ0 l( ) θ 1± l( )

θ0 l( ) θ 1± l( )
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Pairing potentials in the active γ band with the SC
OPs (17) can be represented as

(20)

Here, k runs over the entire region G of the phase space
(in contrast to representation (14), where k runs over
half of the entire region G), and the omitted band index
ν = γ is implied. The functions A(k) and Bµ(k) are
defined by Eqs. (16) and are given by

(21)

These functions have the following symmetry:
A(kx, ky) = –A(ky, kx) and B(kx, ky) = –B(ky, kx); hence, the
diagonal kx = ky along the vector Q is a node line for the
SC gap in the solution with a mixed d-wave singlet and
p-wave triplet SC order. In the case of an isotropic nor-
mal state without a spiral spin structure (dν = 0, Q = 0),
the pairing potential (21) would correspond to the
superposition of contributions corresponding to differ-
ent representations of a tetragonal point group classi-
fied in [5]. In the notation of [5], this superposition can
schematically be represented as {θ1(A1u – B1u – A2u +

HLin
SC A k( ) B0 k( )+[ ] ck↑

† c–k↓
†{

k G∈
∑=

+ B1 k( ) ck Q/2– ↑,
† c–k Q/2– ↑,

† ck Q/2+ ↓,
† c–k Q/2+ ↓,

†+[ ] H.c.+ } .

A k( ) κ swd kxcos kycos–( ),=

Bµ k( ) κ tθµ kxsin kysin–( ).=

0.06
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0
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Fig. 2. Same as in Fig. 1, but for a model with κs = –κt =
−0.8 eV. Curves 1–3 refer to the same SC OPs for the γ band

as those in Fig. 1; curves 4 and 5 correspond to  =

−  and  = – .

θ0
α

ex( )

θ0
β

ey( ) θ 1±
α

ex( ) θ 1±
β

ey( )
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B2u) + θ0(Eux – Euy)}. In contrast to the paramagnetic
state, in the spiral state, the coupled pairs (↑↑ ), (↓↓ ) are
moving pairs with the total momenta . The spin cur-
rents j↑↑  = –j↓↓  associated with the motion of pairs have
the same sign as the spin currents j↑ = –j↓ in the normal
state with the spiral spin structure. Recall that the spins
are projected here onto an axis perpendicular to the spin
rotation plane in the spiral structure.

The SC band, as a function of k, which corresponds
to the pairing potential (21) for the γ band, is deter-
mined by the real matrix element

(22)

between electron and hole quasiparticles η†, η of the
upper Hubbard band of the normal spiral state.

Figure 3 represents a level map of the gap function
G(k) for the γ band for κs = –kt < 0. This function is anti-
symmetric with respect to the change kx  ky but
does not possess the inversion symmetry. However, a
hypothetical photoemission experiment for the γ band
would give two different gaps |G(k)| and |G(–k)| for
every k for different polarizations (↑  and ↓ ) of photo-
electrons. Note that, for a quasimomentum k that varies
along the known Fermi boundary of the γ band, the
function G(k) is close to the d-wave function propor-
tional to coskx – cosky. This fact corresponds to the four-
fold anisotropy of thermal conductivity in a longitudi-
nal (in the ab plane) magnetic field [9, 10].

Q+−

G k( ) η k– HSC ηk=

                    

k y
/π

1

0

–1 0 1
kx/π

Fig. 3. Contour map of the gap function (23) for the same
model as in Fig. 1 in the entire domain of the momentum
space  < π. Solid (dashed) lines correspond to posi-

tive (negative) values of the gap function G(kx, ky) defined
by Eq. (22).

kx y( )
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Up to now, the results referred to models with unre-
alistically large interaction constants and temperatures
Tc . For more realistic models that correspond to small
Tc and constants (10) of both types, we calculated the
phase curves Tc(κs). The function Tc(κs) for the
SC-transition temperature in the γ band is determined
by the equation obtained by a linear expansion of
Eqs. (7) and (8) in terms of the arising SC OPs wγ and
θλµ . This equation for Tc(κs) has the form

(23)

Here, i and j number the SC OPs {zi} defined by
Eq. (17), and the matrix Ri is given by

(24)

where Eλ = Eλ(k) and f(Eλ) are the normal-state energies
and the Fermi populations of one-electron levels,
respectively. The matrices Mi(k), i = 1, 2, 3, correspond-
ing to the SC OPs (17) are given in the Appendix, while
the constants κj in (23) are given by κj = {κs, κt, κt}j .
The indices λ, λ' = 1, 2 number the normal-state levels

det δij Rijκ j– 0.=

Rij
1
N
---- Mλλ '

i Mλλ '
j f Eλ–( ) f Eλ'( )–

Eλ Eλ'+
------------------------------------,

λ λ ',
∑

k

∑=

1

2

3

κt = κs

κt = –κs

1.0

0.5

0

–0.5
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0 0.2 0.4 0.6 0.8 1.0
κs

T c
SC

 O
P

Fig. 4. Phase curves Tc(κs) and relative normalized values
of the superconducting OPs (25) and (17) in the γ band as
functions of the interaction constants in the singlet channel.
Solid (dashed) curves refer to models with κt = +κs and κt =
−κs, respectively. Curves 1, 2, and 3 correspond to , i = 1,
2, 3, obtained from the solution of homogeneous equa-
tions (25) (T  Tc). Symbols (circles and squares) cor-
respond to the same quantities at T = 0.6Tc obtained from
the full mean-field solution for models represented in
Figs. 1 and 2, respectively.

z̃i
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of the upper and lower Hubbard subbands of the γ band.
At the SC-transition point T = Tc , where Eq. (23) is sat-
isfied, the solution of the corresponding homogeneous
equations

(25)

gives relative normalized values  of the SC OPs. Fig-
ure 4 shows the phase curves Tc(κs) and the relative val-
ues of the OPs  for T  Tc as functions of κs for two
signs of the triplet constant κt in (10). The symbols refer
to the values of  for T ~ 0.6Tc  obtained from full
mean-field calculations for the models with large con-
stants |κs | discussed above. These values agree with
those obtained from Eqs. (25). The models with realis-
tic Tc ~ 10–4 eV display the same symmetry properties
as the models with large κs and Tc . The transition tem-
peratures Tc = 1.5 K observed in Sr2RuO4 correspond to
the constants κs = –0.145 eV or κs = –0.12 eV, respec-
tively, for two types (10) of models. In the first case,
when kt = –ks > 0, the SC transition occurs only in the γ
band. In the second case, when kt = ks < 0, transition
temperatures in the α and β bands are estimated to be
Tc ~ 10−3 K. Actually, this means a normal metallic state
of the α and β bands for models of both types (10).

4. CONCLUSIONS

Thus, models with intralayer pairing interactions of
neighboring sites admit the SC order only in the γ band.
This fact does not agree with the situation in supercon-
ducting Sr2RuO4. Nevertheless, the models considered
are instructive in that they demonstrate the possibility
of new mixed types of SC order when a correlated sys-
tem possesses a spin structure. We have shown that the
SC order in the γ band may coexist with a spiral spin
order due to the nesting of the α and β bands in
Sr2RuO4. The mixed d-wave singlet and p-wave triplet
SC orders emerge from the pairing interactions of adja-
cent sites on the basis of the normal state with a spiral
structure with the nesting vector Q = 2π(1/3, 1/3). For
two types of constants of pairing interactions—with
attraction in both (singlet and triplet) channels or only
in the singlet channel—the main coupled pairs in the

system are the singlet d-wave pairs  and the

moving triplet pairs  and

 with large total quasimomenta

 and the spin projections µ = ±1 onto an axis per-
pendicular to the spin rotation plane of the spiral struc-
ture. The predominant d-wave SC order in the γ band is
consistent with the observed fourfold anisotropy of
thermal conductivity in Sr2RuO4 in a longitudinal (in
the plane of RuO4) magnetic field [9, 10]. The problems

δij Rijκ j–( )z̃ j 0, z̃ j z j
γ/ z1

2 z2
2 z3

2+ += =

z̃ j

z̃ j

z̃ j

k k–,( )↑↓
s

k Q/2– –k Q/2–,( )↑↑
t

k Q/2+ –k Q/2+,( )↓↓
t

Q+−
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of SC order in the α and β bands and of the Knight shift
behavior remain unsolved within the models consid-
ered. The extension of the calculations to other periodic
spin structures requires the consideration of other, in
particular, interlayer interactions. The calculation of the
behavior of the spin susceptibility under the SC transi-
tion should clear up the following question: Can the
triplet pairs accompanying the d-wave SC order guar-
antee the invariance of the Knight shift under the SC
transition?

ACKNOWLEDGMENTS

I am grateful to A.A. Ovchinnikov† and V.Ya. Kriv-
nov for useful remarks and help, as well as to R. Werner
for kindly submitting the preprints of [15] before their
publication.

This work was supported by the Russian Foundation
for Basic Research, project nos. 00-03-32981 and
00-15-97334.

APPENDIX

The matrices Mi in (24) are given by

(26)

Here, s = sinϕ, c = cosϕ, and ϕ = ϕ(k) for band ν are deter-
mined by the equation  = –[∂ /∂dν][e(k1) –
e(k2)]–1. Other functions are given by cd(k) = (coskx –
cosky)/2, sp(k) = (sinkx – sinky)/2; k1 = k, k2 = k + Q, and

 = k + Q/2.
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Structures of Order Parameters in Inhomogeneous Phase States
of Strongly Correlated Systems

L. S. Isaev and A. P. Protogenov*
Nizhni Novgorod State University, Nizhni Novgorod, 603950 Russia

Institute of Applied Physics, Russian Academy of Sciences, Nizhni Novgorod, 603950 Russia
*e-mail: alprot@appl.sci-nnov.ru

Abstract—The structures of order parameters which determine the bounds of the phase states within the frame-
work of the CP1 Ginzburg–Landau model are considered. Using the formulation of this model [1] in terms of
the gauged order parameters (the unit vector field n, density ρ2 and momentum c of particles), we found that
some universal properties of phases and field configurations are determined by the Hopf invariant Q and its gen-
eralizations. At a sufficiently high level of doping, it is found that, outside the superconducting phase, the charge
distributions in the form of loops may be more preferable than those in the form of stripes. It is shown that, in
phase with its mutual linking number L < Q, the transition to an inhomogeneous superconducting state with
nonzero total momentum of pairs takes place. A universal mechanism of breaking of the topological coherence
of the superconducting state due to a decrease of the charge density is discussed. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

Among the challenging problems of cooperative
phenomena in planar systems near Mott transition,
there are such that, at first glance, may not be associated
with the appearance of high-temperature superconduct-
ing states in doped antiferromagnetic insulators. For
example, we are interested in the origins of qualita-
tively similar cooperative behavior in various com-
pounds and very rich content of their phase diagram, as
well as in origin of the emergence of inhomogeneous
states typical of such systems [2–6]. Low-dimensional
structures in the distribution of spin [2, 3] and charge
[4–6] degrees of freedom exist in the state which pre-
cedes a high-temperature superconducting phase.
Keeping this property in mind [7], we should choose a
model for describing the aforementioned phases that
contains them as limiting cases. The mean-field Gin-
zburg–Landau theory with the appropriate choice of the
order parameters may be used for understanding gen-
eral problems of such kind. A key question in this uni-
versal approach is the method with the aid of which the
order parameters encode simultaneously the content
and the distribution of charge and spin degrees of free-
dom of excitations in various phase states.

The recent progress in solving analogous problems
in the non-Abelian field theory [8] and its development
in the physics of condensed matter [1] showed that the
CP1 Ginzburg–Landau model is preferable. The two-
component order parameter of this model is used for
solving the problems of two-gap superconductivity [9].
In the theory of electroweak interaction [10], this
parameter has the sense of the Higgs doublet of the
standard model. In this paper, we will assume that the
1063-7761/03/9606- $24.00 © 21140
order parameter is a spinor realizing a two-dimensional
representation of the braid group which arises due to
classification of the quantum states upon permutations
of particles in (2 + 1)-dimensional systems. Consider-
ing factorization with respect to the center of this non-
Abelian group, we obtain the gauged CP1 Ginzburg–
Landau model. Note that the order parameter of this
model is two-dimensional [1, 11]. Only in this case can
we introduce the unit vector field which describes the
distribution of one-half spin degrees of freedom in the
long-wavelength limit as well as use the Hopf invariant
for classifying n-field configurations and consider cor-
rectly the phases with different distribution of charge
degrees of freedom. For the above reasons, we use the
generalized n-field model which, after the exact map-
ping of the CP1 Ginzburg–Landau model [1], includes
the Faddeev term [12]. Because of the non-Abelian
gauge theory origin of this significant part of the model,
we hope that the obtained answers are universal and
will give a deeper insight into the problems under con-
sideration.

The Hopf invariant describes the degree of linking
or knotting of the filament manifolds where the field of
the unit vector n is defined. The study of the behavior
of the vortex filament tangle is a separate problem and
attracts attention for several reasons. First, at small dis-
tances, the topological order associated with the linking
exists against the background of the disorder caused by
arbitrary motion of separate parts of the system of
entangled vortex filaments. Thus, unlike point particles,
the properties of the tangle are determined by the
behavior of its fragments in the ultraviolet and infrared
limits. Since the coordinates of the vortex core are
003 MAIK “Nauka/Interperiodica”
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canonically conjugated, the indicated circumstances
are manifested by noncommutativity of these variables
depending on the degree of linking. Second, a soft
medium such as the tangle of linked filaments is a hot
problem in the physics condensed matter and beyond,
in particular, in connection with the DNA problem.
When the coupling constants are transformed into the
sought functions, the appearance of a double helix as
the solution of the equations of motion in the soft vari-
ant [13] of the n-field model is its general property.

In the present paper, we consider some properties of
the field configuration in the CP1 Ginzburg–Landau
model defined in the following section. The main goal
of the paper is to find the bounds of free energy in the
superconducting state and in the inhomogeneous phase
with broken antiferromagnetic order, as well as to
describe the properties of the charge density distribu-
tions corresponding to this state. Considering the
nonsuperconducting phase in the soft version of the
model [13], we analyze the contribution to the free
energy from the charge density distributions in the form
of loops and stripes. In the third and fourth sections,
we discuss, along with the results from brief publica-
tions [14–16], the properties of the inhomogeneous
superconducting state with nonzero total momentum of
pairs and compare this with the LOFF states [17, 18]
and with the results from the recently proposed [19]
BCS-like model with two types of particles. We also
pay attention to the dependence of the bounds of phase
states on the generalized (2 + 1)D Hopf invariant in the
case of S2 × S1  S2 and S1 × S1 × S1  S2 mapping
classes and on the external magnetic field. In the Con-
clusions, we discuss some open problems. The Appen-
dix gives the proof of the inequality which determines
the relation between the contributions to the free energy
of n- and c-field configurations.

2. CP1 GINZBURG–LANDAU MODEL

We will use the Ginzburg–Landau model

(1)

with a two-component order parameter,

(2)

which satisfies the condition |χ1 |2 + |χ2 |2 = 1. This cou-
pling of two components χα takes place in the complex
projective space CP1, for which the given model is
defined. The model (1), (2) with different masses was

F d3x
1
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------- "∂k i
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c
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JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
used before [1, 6, 9] in the context of two-gap supercon-
ductivity, as well as in the standard model of the non-
Abelian field theory [8, 10]. In the present paper, we
consider the states in planar systems and suppose that
Ψ has the sense of the order parameter realizing two-
dimensional non-Abelian representations of the braid
group used for classifying quantum states upon permu-
tations of particles in systems with two spatial dimen-
sions. Realizing Abelian projection [20], the vector Ak

compensates the local choice of the phase of the func-
tion Ψ. The last terms in (1) describe the Ginzburg–
Landau potential V(Ψ1, Ψ2) and the self-energy of the
gauge field.

It has been shown recently [1] that there is an exact
mapping of the model (1), (2) into the following version
of the n-field model:

(3)

The free energy in Eq. (3) is defined by a scalar—the
density of particles ρ2, the field of the unit vector na =

σaχ (where  = ( , ), and σa is the Pauli
matrix), and the field of the momentum c = J/ρ2 = 2(j –
4A). The total current J contains the paramagnetic part
j = i[(χ1∇  – c.c.) + (χ2∇  – c.c.)] and the diamag-
netic term –4A. Equation (3) is written with the use of
the following notation: Fik = ∂ick – ∂kci , Hik = n · [∂in ×
∂kn], and dimensionless units of the length L = (ξ1 +

ξ2)/2 (with the coherence length ξa = "/ ), the
momentum "/L (as the unit of momentum c), the parti-
cle density c2/(512πe2L2) (per unit mass for the param-
etrization of Ψα in the form (2)), and the energy γ/L
with γ = (c"/e)2/512π.

In formulation (3), the Ginzburg–Landau functional
depends on gauged order parameters ρ2, c, and n. They
characterize spatial distributions of the charge and spin
degrees of freedom with or without current. The func-
tions χα determine the orientation of the unit vector n
which describes (in the long-wavelength limit) the
properties of the magnetic order. In addition, functions
χα define the value of the paramagnetic part of the cur-
rent. Comparing different forms of representation of
the CP1 Ginzburg–Landau model, we note that vortex
field configurations Ψα in the model (1), (2) are equiv-
alent to textures of the field n in terms of the model (3).
We must also note that the ansatz (2) has the sense of
factorization of the longitudinal ρ and transversal χα
degrees of freedom. In the superconducting state, the
composition of spin j and charge degrees of freedom is
important, since the current contains diamagnetic U(1)
gauge component –4A.

F d3x
1
4
---ρ2 ∂kn( )2 ∂kρ( )2+∫=

+
1
16
------ρ2c2 Fik Hik–( )2 V ρ n3,( )+ + .

χ χ χ1* χ2*

χ1* χ2*

2mbα
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In the soft variant of the extended model of n field (3),
the multipliers of the first term describe the distribu-
tions of spin stiffness and the square of the inverse
length of the density screening. It is seen from this
example that the competition of the order parameters ρ,
n, and c may account for the coexistence of the phase
states with different ordering of charge and spin
degrees of freedom. We enumerate the limiting cases of
the model (3) in inhomogeneous (n ≠ const) situations:

(1) a state with broken antiferromagnetic order: c =
0, ρ = const;

(2) a state with quasi-one-dimensional density dis-
tributions: c = 0, ρ ≠ const;

(3) an inhomogeneous superconducting state: c ≠ 0,
ρ = const;

(4) c ≠ 0, ρ ≠ const.
In the case of n = const and c ≠ 0, ρ ≠ const, func-

tional (1) is equivalent to the one-component Ginz-
burg–Landau model.

3. THE BOUNDS OF THE FREE ENERGY

3.1. A Phase State 
with Broken Antiferromagnetic Order

Let us consider the first case in the above list. In this
limit, the free energy is 

(4)

We supposed that, in the phase under consideration,
the constant value ρ = ρ0 can be found from the mini-
mum of the potential V, and we introduced the notation
gi for the coupling constants. The properties of the
model (4) were studied in detail in [21–27]. The analy-
sis of the dimensionality shows that the first term in
Eq. (4) is proportional to the characteristic size RQ of
the n-field configurations, and the second term is
inversely proportional to this scale. Therefore, the
energy (4) has a minimum which is achieved at RQ =

. This explains why the second term in Fad-
deev–Niemi model (4) allows us to avoid Derrik’s
restriction of the existence of three-dimensional static
configurations with finite size. In the infrared limit, this
term characterizes the mean degree of noncollinearity
〈0|S1 · [S2 × S3]|0〉  in the orientation of three spins
located at the sites of the quadratic plaquette.

It was shown [25–27] that the lower energy bound in
the model (4)

(5)

is determined by the Hopf invariant

(6)

In this equation, the vector ai denotes the gauge poten-
tial which parametrizes the mean degree of the noncol-

F d3x g1 ∂kn( )2 g2 n ∂in ∂kn×[ ]⋅( )2+[ ] .∫=

g2/g1

F 32π2
Q 3/4≥

Q
1

16π2
----------- d3xεiklai∂kal.∫=
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linearity of the orientation of neighboring spins in the
following way: 

The dependence Fmin ∝  |Q |3/4 (5) with the boundary
conditions n  (0, 0, 1) in the space infinity was ver-
ified in [22–24] in simulation of the n-field configura-
tions. Such a boundary condition means that the space
R3 of the n-field definition effectively compacts into a
three-dimensional sphere S3. Thus, the unit vector n
accomplishes the mapping of the S3 sphere into the
space of the two-dimensional sphere S2. Let the vector
n be directed to some general point of a two-dimen-
sional sphere. We are interested in answering the fol-
lowing question: what is the pullback of this point in the
space S3 or, in other words, what set of points from the
domain of definition of the vector n(x, y, z) contributes
to a given point of the target two-dimensional sphere?
Since the space S3 is compact and its dimensionality is
greater by unity than that of the sphere S2, the pullbacks
of points on the sphere S2 are closed and, in the general
case, linked lines on the S3 sphere. 

The Hopf invariant Q (6) describes the degree of
linking or knotting of these lines. It belongs to a set of
integers Z to which the considered homotopy group
π3(S2) = Z is equal. In particular, for two once-linked
circles, Q = 1; for one of the simplest knots (a trefoil),
Q = 6; etc. As a result, the n-field configurations are
divided into classes corresponding to the values of the
Hopf invariant. We should emphasize once again that
linked or knotted configurations may be numbered by
the Hopf index only in the case of the CP1 Ginzburg–
Landau model with its two-component order parame-
ter, because at M > 1 the homotopy group π3(CPM) = 0
is trivial [11].

3.2. Quasi-One-Dimensional Density Distributions

Let us consider the states outside the superconduct-
ing phase from the second line of the list of limiting
cases, to which the CP1 Ginzburg–Landau model leads.
In this soft version of the model, the functional (3) has
the form

(7)

In Eq. (7), the positive constant b corresponds to the
phase with broken antiferromagnetic order.

The state with the broken antiferromagnetic order
considered above has a lower energy than the “soft”
state we are interested in now. The latter may be meta-
stable [28]. In this section, we will consider only such
states and compare their contribution to the Ginzburg–
Landau energy without studying the problems of their

Hik n ∂in ∂kn×[ ]⋅ ∂iak ∂kai.–≡=

F d3x∫=

× 1
4
---ρ2 ∂kn( )2 ∂kρ( )2 Hik

2 bρ2–
d
2
---ρ4+ + + .
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relaxation, the critical sizes of nuclei of different
phases, etc., which are of separate interest.

Under the condition that the electron spin and
charge are transferred from one of four sites of some
plaquettes to the dopant reservoir, the terms with Hik in
Eq. (1) characterize (in the infrared limit) the mean
degree of noncollinearity 〈0|S1 · [S2 × S3]|0〉  in the ori-
entation of three spins, which remain in the sites of a
quadratic lattice plaquettes. Therewith, the deficit of the

charge density  relates to the density ρ2, describing
the distribution of the exchange integral in (1), by the

relation ρ2 +  = const. From the long-wavelength
point of view, the distribution of the spin density ρ2 in
a limited region with an exponential law of decrease at
the boundary (for example, for a distribution in a circle
with radius r0 with an exponential decrease over a
length R ! r0) will be accompanied by a quasi-one-

dimensional distribution of the charge density  along
the boundary of this region, i.e., along a ring with thick-
ness R and radius r0. From this, it is seen that studying
spatial configurations of the density field ρ2 in planar
systems makes it possible to find the form of one-
dimensional distributions of the electric charge density
with the aid of the above-mentioned holographic pro-
jection.

It has been known for a long time that, in such a
phase state, the distributions of the charge density
(∂kρ)2 have the form of stripes.1 Due to the gradient
term (∂kρ)2 in (7), quasi-one-dimensional field ρ con-
figurations are really preferable. It seems almost obvi-
ous that a density distribution in the form of rings give
the smallest contribution to the energy. Let us find the
contribution to the free energy (7) from quasi-one-
dimensional density distributions ρ2 in the form of
rings and stripes and compare the computation results
with the experimental data. We will choose the follow-
ing trial functions for the field ρ configurations in the
form of a ring and a stripe:

(8)

and

(9)

1 We suppose that the characteristic size of the stripe is substan-
tially greater than the lattice scale. In this case, the use of a phe-
nomenological approach of the mean-field Ginzburg–Landau the-
ory is justified.

ρh
2

ρh
2

ρh
2

ρ ρ0 r r0–( )2/2R2–[ ]exp=

ρ ρ0
x2

2Lx
2

---------–
 
 
 

exp=

×

1, y Ly,≤

y Ly–( )2

2Lx
2

------------------------– , yexp Ly.>






JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Here ρ0 = , r0 is the ring radius, R is its width,
2Ly = 2πr0 is the stripe length, and Lx = R is its width.
Since configurations (8) and (9) do not depend on the
third coordinate, we will assume that the size in this
direction is limited by the length Lz and also that R < r0. 

The calculation of energy (7) with the aid of (8) and
(9) yields the following results for the contribution to
the free energy from the ring Fr (at R ! r0) and the
stripe Fxy:

(10)

(11)

Here,

n0 is a certain characteristic value of the “multiplier”
(∂kn)2 in (7), which is of the order c1R–2, whereas b =
c2R–2δT, where ci ~ 1 and δT = (Tc – T)/Tc . In these equa-

tions, we omitted the term  from Eq. (7) since we
consider that it is approximately the same for both types
of distributions. 

The exact equation for Fr (in units π Lz) contains
the term

where

However, this value is already exponentially small
at R/r0 ~ 1/4 and R ~ λ with 1/λ2 = 2(n0 – b): δFr ~ 10–7.

For the optimum width R = ξ (at R ! r0), the differ-

ence in free energies ∆F = Fxy – Fr in units π Lz has
the form 

From this equation, one can see that, at 4(1 + c1)/3c2 <
1 in the temperature range 

bordering on the critical temperature Tc of the transition

b/d

Fr πρ0
2Lz

r0

R
---- 1 R2

ξ2
-----+ 

  ,=

Fxy πρ0
2Lz

r0

R
---- 1 R2

ξ2
----- R

r0
---- n0

3
4
---b– 

  R3

r0
-----+ + + .=

r0 πr0, 1/ξ2 2 n0 1 1/ 8–( )b–[ ] ,= =

Hik
2

ρ0
2

δFr 2 I3 x0( ) x0I2 x0( )–[ ]=

+
bR2

2
--------- I1 x0 2( ) x0 2I0 x0 2( )–[ ]

+
R2

λ2
----- I1 x0( ) x0I0 x0( )–[ ] ,

x0
R
r0
----,

1

λ2
----- 2 n0 b–( ), Im z( ) xme x

2– x.d

z

∞

∫= = =

ρ0
2

∆F 1 c1
3
4
---c2δT .–+=

1 4 1 c1+( )/3c2–[ ] Tc T Tc,< <
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to the state with the spin pseudogap, rings are prefera-
ble (see figure). In the temperature range 

,

stripes are the main configurations. As is known, one
may approach Tc keeping the temperature constant by
increasing the level of doping. The recent paper [29]
gave evidence of the existence of ring-shaped charge
structures obtained just under such experimental condi-
tions. In a certain sense, the tunneling microscope in
this experiment [29] collects data from a two-dimen-
sional slice of knots [21].

Let us make several remarks concerning the spin
density ρ2 distribution in the disk surrounded by a ring
charge distribution. The above considerations referred
to the case when the spin disorder arose only in the
region directly adjacent to the disk edge, and, as a
result, we had an antiferromagnetic phase inside. If the
antiferromagnetic order is broken everywhere in the
disk, it is necessary to consider the corresponding dis-
tribution of the density ρ2 in the form of a disk in order
to compare its contribution with Fr . When we consider
the contribution of the density distributions ρ2 to the
free energy in the form of a disk, we get a double gain
(in comparison with rings) due to the existence of one
edge and have a loss due to the area. The calculation
shows that at small R/r0 the distributions in the form of
rings appear to be more preferable.

Let us consider the dependence of the critical tem-
perature Tc on the level of doping. To do this, we present
the relation of Fr to Fxy in the following form:

(12)

where

T Tc 1 4 1 c1+( )/3c2–[ ]<

Fr

Fxy

-------
1

1 BR/r0+
------------------------,=

B
1
2
--- 1

1
2
---

n0 3b/4–

n0 1 1/ 8–( )b–
----------------------------------------+

3
4
---

n0 0.68b–
n0 0.65b–
------------------------.= =

3

2
1

Schematic representation of closed (1) and open (2) quasi-
one-dimensional structures of the charge density (see [29])
around antiferromagnetic dielectric nanoclusters (3). 
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One can see that configurations in the form of
stripes are more preferable in the range 0.65 < n0/b <

0.68, where Fxy < Fr . Normalizing the density  to the

particle number N by the condition N = 2πr0ξLzm ,
we obtain a relation between the parameters n0 and b,
which we write in the form 

where x = Nd/( mπLzr0). Thus, for the bounds of the
range considered above, where n0 ~ b ~ δT, we have
T(x) = Tc(1 – Ax2) with a certain constant A. Therefore,
inside the region belonging to the phase state with bro-
ken antiferromagnetic order, there is a narrower region,
located between the parabolas T(x), where the charge
structures have the form of stripes.

3.3. The Inhomogeneous Superconducting State

Let us consider a superconducting state with finite
value of the total current J which exists against the
background of a certain n-field distribution, assuming
that ρ = ρ0 = const. In this case, the free energy is

(13)

The negative sign of the interaction energy Fint of c
and n fields appears because of diamagnetism of the con-
sidered state. As a result, the coupling constant g2 = 1 of

the term  decreases due to renormalization in such
a way that energy of the superconducting state c ≠ 0 is
smaller than the minimum value in inequality (5). To find
the exact lower bound of the free energy in the super-
conducting state c ≠ 0, we will use the auxiliary ine-
quality

(14)

where the invariant

(15)

determines the degree of the mutual linking [30, 31] of
the current lines and the lines of the magnetic field H =
[∇  × a]. Like Q, it is the integral of motion [31, 32] in the
considered barotropic state. The proof of inequality (14)
[14] is given in the Appendix.

Linking indices, which characterize the correlations
of spin and charge degrees of freedom, form the follow-
ing matrix:

(16)

ρ0
2

ρ0
2

x b  n 0 0.65 b – ,=

2

F Fn Fc Fint–+=

=  d3x ∂kn( )2 Hik
2

+( ) 1
4
---c2 Fik

2+ 
  2FikHik–+ .∫

Hik
2

Fn
5/6Fc

1/2 32π2( )4/3
L ,≥

L
1

16π2
----------- d3xεiklci∂kal∫=

Kαβ
1

16π2
----------- d3xεiklα i

α∂kal
β∫ Q L'

L Q' 
 
 

.= =
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In this symmetric matrix (L = L') with  ≡ ai and  ≡
ci , the integral might also be determined by the asymp-
totic linking number [30]. Let us pay attention to a cir-
cumstance which will be important below. Being nor-
malized to the charge density, unlike the unit vector n,
the vector of momentum c = J/ρ2 belongs to the non-
compact manifold. Because of this, the Hopf numbers
defined with the aid of this vector in (16) are not inte-
gers in general: (L, Q') ∉  Z. In the superconducting
state, where Abelian U(1) gauge symmetry is broken
and the charge is not conserved, the numbers L and Q'
play the role of continuous interpolation parameters
which unite the compressed and uncompressed (Kαβ ∈
Z) phases under consideration. From this point of view,
the superconducting states with Kαβ ∈  Z and Kαβ ∉  Z
belong to one and the same class of universality [33].

To find the lower bound of the functional (13), along
with Eq. (14), we will use the Schwarz–Cauchy–Buny-
akovski inequality

(17)

where ||Fik ||2 ≡ . Note that the equality on

the right-hand side of Eq. (17) is achieved in the ultra-
violet limit, when the size of linked vortex configura-
tions is small enough. Substituting the boundary value
Fint into (13), we obtain

(18)

The Hopf configuration with Q = 1, for which the
lower limit occurs in Eq. (5), represents two linked
rings with radius R and 

We will assume that, in our case of c ≠ 0, there are
configurations for which the equality in Eq. (14) is
valid. Let us emphasize an important circumstance
which will be discussed more thoroughly in the next
section. For small values of ρ and, therefore, for large
values of the field c (since all terms in (13) are of the
same order), we encounter the instability of linked con-
figurations with respect to small perturbations. This
leads to the restriction of values Fc from above. Keep-
ing in mind this remark and using in Eq. (18) for Fc the
lower bound 

,

we obtain from Eq. (14) and relation Fn = 32π2|Q |3/4, for
the states with Q ≠ 0, that

(19)

ai
1 ai

2

Fint 2 Fik 2 Hik 2 2Fc
1/2Fn

1/2,≤⋅≤

d3xFik
2∫[ ]

1/2

F Fmin≥ Fn
1/2 Fc

1/2–( )2
.=

Fn( )min 2π2R3 8

R2
----- 8

R4
-----+ 

 
R 1=

32π2.= =

Fc
1/2 32π2( )4/3

Fn
5/6– L=

F 32π2 Q 3/4 1 L/ Q–( )2.≥
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One can see from Eq. (19) that, for all numbers L <
Q, the energy of the ground state is smaller than that in
model (4), for which inequality (5) is valid. The origin
of the energy decrease may be understood by compar-
ing the values of different terms in Eq. (13). Even under
the conditions of a considerable paramagnetic contribu-
tion j to the current, the diamagnetic interaction in the
superconducting state for all classes of states with L <
Q reduces in (13) its own energy Fc of the current and
part of the energy Fn associated with dynamics of the
n field. In the state under consideration, the total
momentum of superconducting pairs c is not equal
zero. In this respect, the inhomogeneous state with cur-
rent is analogous [34] to the state proposed in [17, 18].

4. THE PROPERTIES OF PHASE STATES

The phase state with a broken antiferromagnetic
order at (∂kρ)2 ≠ 0 is a background on which the transi-
tion to the inhomogeneous superconducting phase with
Fik ≠ 0 occurs. It is convenient to discuss the character-
istics of this transition upon a change in the density ρ2,
beginning with the superconducting state. In this phase,
the constant value of the charge density, related to the
breakage of the gauge invariance U(1), plays the role of
the tuning parameter of the system.

Let the parameter ρ0 change in some range. Since all
terms in Eq. (3) are of the same order, the momentum c
and, consequently, the index of the mutual linking L
decrease when ρ0 increases. In this case, for sufficiently
small L, the smallest superconducting gap decreases
with an increase in Q against the background of a large
value of 32π2|Q |3/4 of the spin pseudogap.

When ρ0 decreases, the following effect takes place.

Being proportional to  ∝  , the radius 5 of com-
pactification R3  S3 grows until it exceeds some
critical value 5cr . At 5 > 5cr , the Hopf mapping is not
stable [27] relative to small perturbations of linked vor-
tex field configurations. As a result, the U(2) symmetry
which is associated with identical Hopf mapping
appears to be spontaneously broken. This means that
the topological configurations of field n and c, instead
of being spread out over the whole space S3, localize
around a particular point (the base point of the stereo-
graphic projection R3  S3) and collapse to localized
structures [27]. We can see that there is an optimal
value of ρ0 and, consequently, values of the character-
istic momentum c and the relation |L |/ |Q | for which
there arises the greatest gain upon the transition to the
superconducting state.

Until now, the vector A has characterized the
degrees of freedom, associated with the internal charge
gauge symmetry U(1). If the external electromagnetic
field is applied, the vector A equals the sum of internal
and external gauge potentials. In the external magnetic
field, due to diamagnetism of the superconducting

g1
1/2– ρ0

1–
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state, the momentum c decreases. Similar to the case of
increasing ρ0, this leads to suppression of the supercon-
ducting gap. Playing the role of a smooth tuning param-
eter, the external magnetic field determines the bound-
ary conditions of the problem. As a result, the answer to
the question of completeness of the Meissner screening
depends on the results of the competition of contribu-
tions from a paramagnetic (spin) j and diamagnetic
(charge) –4A parts of the total current J.

Similar to energy distribution in the fractional quan-
tum Hall effect with the filling factor ν = p/q and p, q ∈
Z, the energy gain in Eq. (19) depends on the relation
|L |/ |Q |. The Hopf invariant Q ∈  Z numbers vacuums
[35] and is equivalent to the degree of degeneracy q of
the ground state. The index L plays the role of the filling
degree p of incompressible charged fluid state in the
fractional quantum Hall effect. From this point of view,
the multiplier (1 – |L |/ |Q |) in Eq. (19) is equivalent to
the filling factor 1 – ν for holes. The distinction of our
system from the states in the fractional quantum Hall
effect is that the superconducting state is compressible
and here (as was mentioned above) the effective num-
ber L of the charge degrees of freedom is not an integer
in the general case. The configurations of fields n and
c = a with the integers L = Q, satisfying the relation of
self-duality Fn = Fc , correspond to the minimum value
of free energy (13). In this limit, Kαβ is proportional to

the matrix , which was used in [36] to describe

the topological order in the theory of fractional quan-
tum Hall effect with the filling factor 1 – ν at ν = 1/2.

The boundary conditions which determine the
momentum c and the topological invariants L, Q
depend not only on the values of the tuning parameter
ρ0 of the model and the external magnetic field. Their
physical sense and value also depend on the dimension-
ality of the manifold for which the model is defined. In
the (3 + 0)-dimensional case of the free energy (3), the
Hopf invariant (6) is analogous to the Chern–Simons
action 

This term in the action of (2 + 1)-dimensional systems
describes the dependence of the contribution of non-
linear modes to the free energy on the statistical param-
eter k. The coefficient k in the Chern–Simons action has
the geometrical sense of the braiding number of the
excitation world lines. In particular, when semifermion
excitations (semions) permutate and return to the initial
positions on the plane, the world lines braid twice and
k = 2. Therewith, the statistical correlations of nonlinear
modes have the character of attraction, and for the val-
ues k ~ 2 their greatest contribution to the energy is of
the order of several percent [37]. For the energy scale

1 1

1 1 
 
 

k
4π
------ td2xεµνλαµ∂ναλ .d∫
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(0.1–1) eV, this gives several tens or hundreds of
degrees. Taking into account the relation between the
dimensionality of the systems at their dynamic and sta-
tistical descriptions, we note that the (2 + 1)-dimen-
sional case k = 2 with the open ends of excitation world
lines is equivalent (after identification of the ends) to
the compact statistical (3 + 0)-dimensional example of
the Hopf linking with Q = 1.

The (3 + 0)-dimensional and (2 + 1)-dimensional
situations differ by the topology of the regions of the
field definition n [38–40]. When the system is periodic
in one of the space variables and also when calculating
the partition function in planar systems, one of three
coordinates—Matsubara variable—is a periodic vari-
able. This means that instead of the sphere S3, we deal
with the topology of a three-dimensional torus T2 × 1 =
S2 × S1 or T3 = S1 × S1 × S1 and with the corresponding
mapping classes. The content of Hopf invariant in this
case appears to be richer [38–40]. For a three-dimen-
sional torus T3, the Hopf invariant is defined modulo 2q,
where q is the greatest common divisor of the numbers
{q1, q2, q3} ∈  Z. Here, qi is the degree of mapping
T 2  S2, where T2 is the section of T3 with the fixed
ith coordinate. Four integral numbers {qi , Q}, where Q
is defined by modulo value 2q, give us the complete
homotopic classification of mappings T3  S2 with
π1[Mapq(S2  S2)] = Z2q and a fixed degree q [38–
40]. The geometrical meaning of this modified Hopf
invariant (an integer from the range {0, 2q – 1}) is the
same. It is a linking index of the preimages of two
generic points in T3  S2. The cases T2 × 1 and T3 are
characterized physically by different boundary condi-
tions. The boundary conditions change if an angular
velocity of the rotation of the neutral superfluid phase
in 3He increases [38, 39] or an external magnetic field
in our charged system grows. Restricting the Hopf
invariant change, the transition T2 × 1  T3 promotes
the appearance of the incompressible phase.

5. CONCLUSION

One can see from the above analysis that the gain of
the free energy upon the transition to the superconduct-
ing state with c ≠ 0 arises when there is a coherent phase
associated with the spin degrees of freedom. This phase
is characterized by a pseudogap (5) and a topological

order associated with linking. If the density  is rather
large, the momentum c is small and the transition to the
superconducting state is not preferable. According to
our classification, this second state is characterized by
changing values of the order parameters ρ and n. The
energy loss due to the term (∂kρ)2 may be reduced
because of the development of one-dimensional struc-
tures. Whether these one-dimensional charge structures
will be open, forming stripes, or closed almost one-
dimensional structures in the form of rings depends on
the parameters of the potential V(ρ, n3). In the phase

ρ0
2
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n3 = const with neutral spin currents, the answer will
depend on the value and the sign of the multiplier b(n3)
in the potential 

If b > 0, then far from Tc charge structures with open
ends are preferable [13], and in the case T  Tc we
should prefer rings. The first experiments that verified
the existence of charge structures in the form of rings in
the underdoped phase of planar systems were described
in [29].

On the “temperature–charge density” phase dia-
gram, the superconducting phase occupies only part of
the region belonging to the phase with the broken anti-
ferromagnetic order. The bounds of its existence on the
phase diagram, associated with the characteristic values

of the density , are determined for great ρ0 by the
inequality (14) [14], while for small ρ0 these bounds
depend on the critical size of the knot [27], beginning
from which instability of the Hopf mapping arises.

Comparing the results of this paper based on consid-
eration of the local fields with the conclusions follow-
ing from the BCS-like model [19] with two species of
fermions, we pay attention to the following qualitative
coincidence. One can conclude from Eq. (3) that the
parameter ρ0 determines the value of the coupling con-
stant. Therefore, the appearance of the solutions (differ-
ent from the standard BCS model) for the supercon-
ducting gap in the paper [19] with a finite value of the
coupling constant is analogous to the existence of the
threshold for small values of ρ0 in this paper.

In contrast to the model [19], the states considered
in the present paper are significantly inhomogeneous.
The analysis of the state Fik ≠ 0, ρ ≠ const is still an
open problem. Here, we only mention that the super-
conducting current with the amplitude c0, flowing

around the rings (8), gives the additional term  to
the multiplier in Eq. (10). This explains, in particular,
why the superconducting region on the “temperature–
doping level” phase diagram is shifted to the line
δT(x) = 0 of the transition to the state with the spin
pseudogap. Indeed, in this case,

with 

Therefore, the finite value of the momentum c of super-
conducting pairs decreases δT. In addition, the contri-
bution to the free energy in the inhomogeneous state
due to (∂kρ)2 ≠ 0 decreases the gain in Eq. (19).

V ρ n3,( ) bρ2–
d
2
---ρ4.+=

ρ0
2

c0
2R2

V eff ρ n3,( ) beffρ
2–

d
2
---ρ4,+=

beff b n0 c0
2+( )–

const

R2
------------δT .= =
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The superconductivity in cluster systems may evi-
dently be studied on the basis of approaches beyond the
mean field theory. For example, we may use the exact
Richardson solution and Bethe ansatz equation [41], as
well as the methods of the conformal field theory [42].
The exact solution of the ground state problem under
the condition of a finite value of the total momentum of
pairs in such an approach is one of the important prob-
lems. Since the conformal nature of the dimensionality
3/4 [30] in (5) and (14) influences the character of the
scale which enters into energy dependent response
functions (which is proportional to T3/4 [43]), it should
also be studied carefully.
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APPENDIX

The proof of Eq. (14) uses the following chain of
inequalities:

(20)

Here, ||H||p ≡ . At the first and third steps,

we used the Hölder inequality

with 1/p + 1/q = 1. Under the condition ∇  · c = 0, we
employ at the second step the Ladyzhenskaya inequal-
ity [40, 44]: 

The fourth step in the set of inequalities arises after the
comparison of the terms ||[∇  × c] || and ||H|| with the
terms Fn and Fc in Eq. (13). The last line also shows
separate contributions from n and c parts of the free
energy (13) to the finite result (14). Using a chain of
Hölder and Ladyzhenskaya inequalities, analogously
one may find that

The coefficient in this inequality differs from (14)
due to the coefficient 1/4 (because of the charge 2e of
superconducting pairs) of the first term of the free
energy Fc in (13).

L c 6 H 6/5⋅ 61/6 ∇ c×[ ] 2 H 6/5 ⋅≤<

≤ 61/6 ∇ c×[ ] 2 H 1
2/3 H 2

1/3

≤ 32π2( )
4/3–

Fc
1/2Fn

2/3Fn
1/6 32π2( )

4/3–
Fc

1/2Fn
5/6.=

d3x H p∫( )
1/ p

f g⋅ f p g q⋅≤

c 6 61/6 ∇ c×[ ] 2.≤

Fn
1/2Fc

5/6 16π2( )4/3
L' .≥
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Abstract—A theory of generation in a two-subband “Stark ladder” with a coherent electron subsystem is devel-
oped. In the proposed model, electrons reach the upper level of a quantum well due to resonant tunneling and
pass to the lower level of the well (vertical transitions), emitting a photon "ω, then tunnel resonantly to the upper
level of a neighboring well, performing a radiative transition, and so on until electrons leave the lower level of
the last well. A static electric field applied to the superlattice shifts the levels so that the lower level of the nth
well coincides with the upper level of the (n + 1)th well. Analytic expressions are derived for the wave functions
and polarization currents of an N-well structure. The possibility of bulk oscillation of the N-well structure in the
optimal mode with an efficiency close to unity, weak reflection, and a linear dependence of the power on the
pumping current is demonstrated. The total generation power is proportional to the number of wells. For struc-
tures with an even number of wells, the energy of electrons from the emitter must simply coincide with the res-
onance energy for any laser fields; i.e., the energy tuning which is necessary in a single-well structure is not
required. Universal relations are derived for parameters of the N-well structure, which ensure the simultaneous
fulfillment of resonance conditions in all the wells. The possibility of coherent lasing in a one-subband Stark
ladder with a lower gain is also indicated. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In 1972, Kazarinov and Suris [1] proposed a new
type of a semiconductor laser in which radiative transi-
tions occur between size-quantization levels (sub-
bands). This idea was implemented in 1994 in nano-
structures (so-called cascade lasers) [2, 3], in which the
main elements are two quantum wells (QWs) with
working levels in each well [2] (“diagonal transitions”)
or a single QW with two working levels [3, 4] (“vertical
transitions”).

The main advantage of cascade lasers is the possi-
bility of wavelength tuning from the infrared to the sub-
millimeter range. Cascade lasers are characterized by
unipolarity, identical masses of subbands, etc. Another
fundamental feature is the coherent nature of resonant
tunneling ensuring pumping. This leads to the possibil-
ity of lasing without participation of dissipative pro-
cesses. Indeed, an electron reaches the upper level as a
result of coherent resonant tunneling; passes to the
lower level, emitting a photon; and leaves the well, thus
interrupting the process of interaction with the electro-
magnetic field (in conventional lasers, lasing is inter-
rupted due to dissipative processes such as the emission
of a phonon [5]). Such a single-quantum-well laser
(referred to as a coherent laser) was proposed and ana-
lyzed theoretically in [6]. It was shown that a strong
field can be generated in the absence of population
inversion. The optimal operating conditions were deter-
mined, for which the efficiency is close to unity [6, 7],
1063-7761/03/9606- $24.00 © 21149
the reflection from the structure is equal to zero, and
amplification line broadening due to the field is absent.

A natural question arises: Is effective lasing possible
for a structure consisting of N tunnel-coupled QWs?
This problem is closely related to the problem of Stark
ladder lasing, for which a certain difficulty exists.
According to Bastard et al. [8], Stark ladder lasing is a
surface effect. The reason is that radiative transitions in
the sample are compensated, and the gain is determined
by the population inversion between the levels at the
left and right boundaries.

However, this conclusion is valid if the electron sub-
system is incoherent and the concept of radiative tran-
sition probability per unit time is applicable. The situa-
tion in a coherent system is fundamentally different.
Under certain conditions, an electron supplied to a QW
performs coherently radiative transitions irrespective of
the difference in the occupancies of the levels [6]. Con-
sequently, we can expect that lasing takes place in the
entire volume of the N-well structure.

It should be noted that radiative transitions in the
one-subband model occur between the Stark levels in
neighboring QWs (diagonal transitions). It was shown
in [4, 9] that diagonal transitions lead to a much lower
gain as compared to transitions between two energy
levels in the same QW (vertical transitions). For this
reason, we consider here a superlattice with vertical
radiative transitions (see figure). After the transition of
an electron from the upper to the lower level of the nth
003 MAIK “Nauka/Interperiodica”
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QW, accompanied by the emission of a photon, the
electron performs resonant tunneling to the upper level
of the neighboring QW, and so on. This is the model of
a coherent laser in which an electron passes through N
QWs, emitting photons in each QW. It is well known
that an electron in a cascade laser [2, 3] after each radi-
ative transition gets into the relaxation region, where its
state is prepared for the next radiative transition.

This study is aimed at the development of the theory
of a coherent laser for N QWs with vertical transitions.
It should be noted that some preliminary results were
obtained in [10]. However, the formalism used in [10]
for solving the system of 4N × 4N algebraic equations
is quite cumbersome, which did not permit one to carry
out a comprehensive analysis and to clarify the optimal
lasing conditions.

We succeeded in deriving exact analytic solutions to
this system of equations for 2, 3, 4, and N wells. It is
shown that optimal bulk lasing of a structure with
N wells can be obtained with an efficiency close to
unity, a small reflectance, and a linear dependence of
the power on the pumping current. For structures with
an even number of wells, the energy of supplied elec-
trons must simply coincide with the resonant energy for
any fields. In other words, the energy tuning, which is
inevitable in a structure with a single well [6, 7], is not
required. Universal relations are derived for the param-
eters of an N-well structure, ensuring the fulfillment of
the resonance conditions in all the wells simulta-
neously.

The article has the following structure. In Section 2,
the model is described and the steady-state solution to
the time-dependent Schrödinger equation is given; the
boundary conditions and expressions for currents are
also derived. Section 3 is devoted to a single-well struc-

α 2

α

α

α

α 1

ω

ω

ω

ω

ε ε2R
(1)

ε2R
(2)

ε2R
(3)

ε1R
(3) ε2R

(4)

ε1R
(4) ε – nω

ε1R
(1)

ε1R
(2)

q2

R

1

2

3

4
0–a x

Schematic diagram of a four-well structure (N = 4).
JOURNAL OF EXPERIMENTAL
ture; the results obtained in this section are used in the
subsequent analysis. The wave functions of an N-well
structure, which are valid both for weak and strong
fields, are determined in Section 4. A detailed analysis
of a two-well structure is carried out in Sections 5 and
6, while a three-well structure is treated in Section 7.
Structures with an even number of wells N ≥ 4 are ana-
lyzed in Section 8. An analysis of resonance conditions
is carried out in the Appendix.

2. DESCRIPTION OF THE MODEL: 
BASIC EQUATIONS

Let us consider the following model of a one-dimen-
sional N-well structure (see figure), which is a general-
ization of the models described in [7, 10]. The figure
shows schematically the structure in the form of a set of
δ-functional barriers positioned at points x = an, n = −1,
0, 1, …, N – 1. The parameters of the QWs are chosen
so that the energies ε2R and ε1R of the two lower levels
of an isolated well differ by a value approximately
equal to the electromagnetic field frequency ω (" = 1):
ε2R – ε1R = ω. The application of a constant external
electric field shifts the energy of the nth well relative to
the (n – 1)th well by quantity E0 equal to ω. The energy

 of the lower level of the (n – 1)th well coincides

with the energy  of the upper level of the nth well.
The steady-state electron flux with a density propor-
tional to q2 and with energy ε approximately equal to

 is supplied to the system from the left (x = –∞).

The electromagnetic field, which is regarded as clas-
sical,

is emitted during electron transitions from levels “2” to
levels “1” of the QWs. We assume that the field is polar-
ized at right angles to the plane of a well (i.e., along the
x axis), while the wave vector lies in the plane (along
the z axis). The optical resonator of length L separates
the modes. We confine our analysis to single-mode las-
ing. The equations for the stationary amplitude E and
phase ϕ (frequency ω) can be written in the form [5]

(1)

(2)

(3)

ε1R
n 1–( )

ε2R
n( )

ε2R
1( )

Ex z t,( ) E kz( ) ωt ϕ+( ),cossin=

E
2τ0
--------

2π
κ

------Jc
N( ),–=

ω Ω–( )E
2π
κ

------Js N( ),–=

Jc s,
N( ) 1

Na
------- xJc s, x( ),d

a–

N 1–( )a

∫=
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where Jc and Js are the reduced polarization currents
coinciding in phase with the field (Jc) and shifted by π/2
relative to the field (Js). Currents Jc and Js describe tran-
sition between energy levels. Here, τ0 is the photon life-
time in the resonator, κ is the dielectric constant, Ω is
the natural frequency of the resonator, and c is the
velocity of light (we will henceforth assume that c = 1).

Currents Jc(x) and Js(x) can be determined using the
well-known expression

(4)

where the wave function Ψ(x, t) of the system obeys the
Schrödinger equation

(5)

Here,

(6)

(7)

αj are the barrier intensities, α2, α1, and α being the
barrier heights of the left, extreme right, and internal
wells, respectively; and 2m = " = 1. The last term in
Eq. (5), i.e.,

describes the interaction between electrons and the
electromagnetic field and Ax is the vector potential in
the Coulomb gauge, which differs from zero in the
nanostructure region. Expressing Ax in terms of the field
amplitude, we can write the last term in the form

(8)

It should be noted that we have omitted in this
expression the term quadratic in Ax . This approxima-
tion, which is usually employed in the theory of lasers,
is also valid here if parameter V/p is small; i.e.,

where p is the electron momentum. Equation (5) should
be supplemented with boundary conditions. The form

J x t,( ) ie Ψ∗ ∂Ψ
∂x
-------- c.c.– 

  ,–=

i
∂Ψ
∂t

-------- ∂2Ψ
∂x2
---------- U x( )Ψ V̂ x t,( )Ψ.+ +–=

U x( ) α2δ x a+( ) αδ x an–( )
n 0=

N

∑+=

+ α1δ x a N 1–( )–( ) E0ϕ x( ),–

ϕ x( ) Θ x n 1–( )a–( ),
n

∑=

Θ x( )
1, x 0,>
0, x 0;<




=

V̂ x t,( ) 2eiAx
∂Ψ
∂x
--------,=

V̂Ψ V eiωt e iωt––( )∂Ψ
∂x
--------, V

eE
ω
------.–= =

V
p
---

eE
pω
-------  ! 1,=
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of the boundary conditions will be specified below after
obtaining a solution for Ψ(x, t).

Following [6], we seek the steady-state solution to
Eq. (5) in the form

(9)

Functions  describe the states with quasi-
energies ε + mω in the nth well and satisfy the follow-
ing system of equations:

(10)

It is well known that the main contribution to lasing
comes from two resonance levels with the energy dif-
ference equal to frequency ω. In the present case, for
the nth well, these levels are the upper level with energy

 and the lower level with energy . The corre-
sponding wave functions are ψn2(x) and ψn1(x), so that
wave function (9) can be reduced to two terms in each
well:

(11)

Functions ψn2 and ψn1 satisfy the system of equa-
tions

(12)

(13)

with the following boundary conditions (see [6]):

…………………………………

Ψ x t,( ) it ε mω E0 n 1+( )–+( )–[ ]exp
m

∑
n

∑=

× ψnm N x,( ),

m 0 1 2 …, 1 n N .≤ ≤,±,±,=

ψnm x N,( )

ε mω E0 n 1+( )–+[ ]ψ nm

d2ψm

x2d
------------+

=  V
dψn m 1–,

xd
--------------------

ψn m 1+,d
dx

-------------------– .

ε2R
n( ) ε1R

n( )

Ψ x t,( ) ψn2 x( ) it ε E0 n 1–( )–( )–[ ]exp=

+ ψn1 x( ) it ε ω– E0 n 1–( )–( )–[ ] ,exp

n 2–( )a x n 1–( )a, 1 n N .≤ ≤≤ ≤

ε E0 n 1–( )–[ ]ψ n2
d2ψn2

∂x2
--------------+ V

dψn1

dx
------------,=

ε ω– E0 n 1–( )–[ ]ψ n1
d2ψn1

x2d
--------------+ V

dψn2

dx
------------–=

ψ12 a–( ) 1
α2

i p2
-------– 

  1
i p2
-------

dψ12 a–( )
dx

---------------------+ q,=

ψ12 0( ) 0, ψ11 a–( ) 0, ψ22 a( ) 0,= = =

dψ22 0( )
dx

------------------
dψ11 0( )

dx
------------------– αψ11 0( ),=
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(14)

The boundary conditions describe the electron flux
from x = –∞, their reflection and departure to x = ∞, and
the continuity conditions for the wave functions as well
as the jump in their derivatives at the boundaries of
the QWs.

For N = 1, Eqs. (12) and (13) and boundary condi-
tions (14) are transformed into their counterparts for a
single well [7]. It should be noted that the boundary
conditions prohibit the departure of electrons from the
energy levels of internal wells as well as from the lower
level of the first well and the upper level of the last well.
This situation optimizes lasing and is realized in practice.

Using the form of wave function (11), we can
express current (4) in terms of functions ψnm(x):

(15)

3. SINGLE-WELL STRUCTURE

For N = 1, the general system of equations and
boundary conditions described in Section 2 is trans-
formed into the corresponding system for a single well:

(16)

(17)

Following [6], we will find the exact solution to sys-
tem (16), (17) without using perturbation theory in the

ψN1 N 2–( )a( ) 0, ψN2 N 1–( )a( ) 0,= =

ψN1 N 1–( )a( ) 1
α1

i p1
-------– 

 

–
1

i p1
-------

ψN1 N 1–( )a( )d
xd

--------------------------------------- 0,=

ψN2 N 2–( )a( )d
xd

---------------------------------------   
ψ

 
N

 
1– 1

 
, 

d N
 

2–
 

( )
 

a
 

( )
 

xd
 ----------------------------------------------–

=  

 

αψ

 

N

 

1– 1

 

,

 

N

 

2–

 

( )

 

a

 

( )

 

.

Jc N x,( ) Jnc x( ),
n 1=

N

∑=

Jnc x( ) ie ψn2*
ψn1d

xd
----------- ψn1*

ψn2d
xd

-----------+ 
  c.c.– .–=

εψ2 ψ2''+ Vψ1' , ε ω–( )ψ1 ψ1''+ Vψ2' ,–= =

ψ2 ψ12, ψ1 ψ11, ψ'
dψ
dx
-------,≡≡≡

ψ2 a–( ) 1
α2

i p2
-------– 

  ψ2' a–( )
i p2

----------------+ q, ψ2 0( ) 0,= =

ψ1 a–( ) 0, ψ1 0( ) 1
α1

i p1
-------– 

  ψ1' 0( )
i p1

-------------– 0.= =
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field. The strong-field parameter will be determined
below.

We seek the solution to system (16) in the form

(18)

The eigenvalues 

 

γ

 

 satisfy the equation

and are given by

(19)

The general solution to Eqs. (16) has the form

(20)

Coefficients  and  are connected through the rela-
tions following from Eqs. (16),

(21)

Substituting 

 

ψ

 

l

 

 from Eq. (20) and  from Eq. (21)
into boundary conditions (17), we arrive at the system
of algebraic equations for the coefficients,

(22)

where

The solution to system (22) can be written in the form

(23)

ψ1 A1eγx, ψ2 A2eγx.= =

γ4 2γ2 ε V2 ω–
2

----------------+ 
  ε2 ωε–++ 0=

γ1 2, i ε V2 ω–
2

----------------
V2 ω–

2
---------------- 

 
2

εV2+–+ ,±=

γ3 4, i ε V2 ω–
2

----------------
V2 ω–

2
---------------- 

 
2

εV2++ + .±=

ψl x( ) Al
j γ j x( ), lexp

j 1=

4

∑ 1 2.,= =

A1
j A2

j

A1
j ε j A2

j , ε j

γ jV

ε ω– γ j
2+

------------------------.–= =

A1
j

A2
j γ ja–( ) 1 β j–( )exp

j 1=

N

∑ q, A2
j

j 1=

4

∑ 0,= =

ε j A2
j γ ja–( )exp

j 1=

N

∑ 0,=

ε j A2
j 1 β̃ j–( )

j 1=

4

∑ 0,=

β j

α2 γ j–
i p2

----------------, β̃ j
α1 γ j+

i p1
----------------,= =

p2
2 ε, p1

2 ε ω.–= =

A2
j( ) 2q

∆1 1( )
------------- 1–( )k l 1+ + εkεl∆̃kl.

k l j≠ ≠
∑=
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Here, ∆1(1) is the determinant of system (22),

(24)

where

(25)

The expressions for γj and εj can be simplified by
taking into account the smallness of ratio V/p:

, (26)

(27)

These results are also valid for an N-well structure and
will be used in the subsequent analysis. We assume that
one more inequality, which is universal for any N, is
satisfied:

(28)

This inequality corresponds to a small resonance level
width Γj as compared to the resonance energy εjR . It is
well known that resonant tunneling exhibits most
clearly its remarkable properties precisely when ine-
qualities (28) are satisfied.

It was shown in [6] that determinant (24) and coef-

ficients  (23) can be represented in the form of

expansions in . Omitting terms on the order of  !

1 and α/p ! 1, we arrive at the following expression
for ∆1(1):

(29)

∆1 1( ) 1–( )i j+ ∆̃ij∆kl,
i j k l≠ ≠ ≠
∑=

∆̃ij γ ja( ) 1 β̃ j–( )exp γia( ) 1 β̃i–( ),exp–=

∆ij –γ ja( ) 1 β j–( )exp –γia( ) 1 βi–( ).exp–=

γ1 2, i p2 1 V2

2ω
-------+ 

  , γ3 4, i p1 1 V2

2ω
-------– 

 ±≈±≈

ε1 2,
iω

V p1
---------, ε3 4,

iV p2

ω
-----------, ε1ε2±≈+−≈ 2

Ṽ
2

------,=

ε1ε3

p2

p1
-----, Ṽ

2≈
2V2 p1

2

ω2
--------------- ! 1.=

α j

p j

-----  @ 1.

Am
j

Ṽ
2

Ṽ

Ṽ
2

∆1 1( ) ε1ε2 ∆̃12∆34 Ṽ
28α1α2

p1
2

---------------– 
 –=

=  ε1ε2

α1α2

p1 p2( )2
------------------∆̃1 1( ),

∆̃1 1( ) λ2 ξ iΓ1+( ) ξ iΓ2+( ),–=

λ2 16 p1 p2Ṽ
2

a2
------------------------, Γ j

2 p j
3

aα j
2

---------,= =

ε jR p jR
2 , ξ ε ε2R,–= =

p1R

πα1

1 α1a+
------------------, p2R

2πα2

1 α2a+
------------------.= =
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It can easily be seen from these expressions that the
electromagnetic field starts influencing the resonant
tunneling significantly if

(30)

Since α/p @ 1, condition (30) holds simultaneously with

the inequality  ! 1. A field satisfying condition (30)
will be referred to as a strong field.

Assuming that ratio α/p is small, we derive coef-

ficients  from relations (23):

(31)

Using relations (31), (20), and (15), we obtain current (3)
in the form

(32)

Substituting relations (25) and (29), carrying out some

transformations, and assuming that α2 = 2 α1 and
Γ1 = Γ2 = Γ for the optimal mode [7], we obtain

(33)

The equation for the laser field can be derived from
Eq. (1):

(34)

The basic quantity determining the dependence of
current Jc(1) and of the laser field corresponding to
wavelength λ on ξ is the square of resonance determi-

λ2 Γ1Γ2 or Ṽ
2 p1

2 p2
2

2α1
2α2

2
---------------.>>

Ṽ

Ṽ
2

A2
j( )

A2
3( ) A2

4( )–
2q

∆ 1( )
-----------ε1ε2∆̃12,= =

A2
1( ) A2

2( ) 8q p2iα1

∆ 1( ) p1
2

--------------------.= =

Jc 1( ) 4ieε1M12K 1( ),–=

K 1( ) A2
1( ) 1( )A2

3( ) 1( ) c.c.+[ ]=

=  
4q( )2 p2α1ε1ε22Im∆̃12

p1
2 ∆ 1( ) 2

------------------------------------------------------,

M12
1
a
--- x p1 p2x( ) p1x( )cossin[d

0

a

∫=

– p2 p1x( ) p2x( )cossin ] 8
3a
------.=

2

Jc 1( ) E
Γ2Qη 1( )

∆̃ 1( )
2

---------------------, η 1( )
64e2 p1 p2

3ω2a2
-----------------------,= =

∆̃ 1( )
2

f 1 ξ,( )≡ λ2 Γ2 ξ2–+( )2
4Γ2ξ2.+=

1
Q̃Γ2

∆̃ 1( )
2

---------------, Q̃
4πτ0Qη 1( )

κ
---------------------------.= =
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nant f(1, ξ). The minimum of f(1, ξ) corresponds to the
maximum of the current and of the laser field. The
equation for the extreme values of ξ, i.e.,

has two solutions. The first solution, ξ1 = 0, corresponds
to the minimum of f for λ < Γ and to its maximum for
λ > Γ. The second solution,

(35)

gives a minimum of f(1, ξ) for a strong field for λ > Γ.
Using relations (34), we obtain the laser power P(1)

which is a linear function of pumping current  for
ξ = ξ2,

(36)

and a root function of  for ξ = ξ1 = 0,

The physical meaning of solution ξ2 becomes clear
after calculating the reflectance

(37)

It follows hence that energy ε2 = ε2R + ξ2 coincides with
the resonant energy of the structure in an ac field.

4. GENERAL SOLUTION 
FOR AN N-WELL STRUCTURE

Let us consider a structure with N QWs. The wave
function satisfies the system of equations (12), (13) with
boundary conditions (14). In analogy with the case of a
single well, we seek the solution in the form (see Sec-
tion 3)

(38)

where γj is defined by expression (19) or (26) (for

 ! 1), and coefficients  are connected through
the relation

(39)

Substituting  from Eqs. (38) into boundary condi-

tions (14) and expressing  in terms of , we

d f 1 ξ,( )
dξ

------------------- 0 ξ ξ 2 Γ2 λ2–+( ),= =

ξ2
2 λ2 Γ2, λ Γ ,>–=

Q̃

P 1( ) λ2 Q̃
2

4
------,= =

Q̃

P 1( ) Γ Q̃ Γ–( ).=

R ξ( )
ξ2 Γ2 λ2–+( )2

∆̃ 1( )
2

-----------------------------------, R ξ2( ) 0.= =

ψn1 An1
j γ j x( ),exp

j 1=

4

∑=

ψn2 An2
j γ j x( ),exp

j 1=

4

∑=

Ṽ Anm
j

An1
j ε j An2

j .=

ψnm
j

An1
j An2

j
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arrive at the following system of inhomogeneous alge-

braic equations for :

(40)

………………………………………

The solution to this system of equations for an
N-well structure can be written in compact form. In par-
ticular, for the first well, we have

(41)

(42)

(43)

(44)

Determinants D(N) and Π(N) satisfy the recurrence
relations

(45)

(46)

The remaining “elementary” determinants have the
form

(47)

An2
j

A12
j γ ja–( ) 1 β j–( )exp

j 1=

4

∑ q, A12
j

j 1=

4

∑ 0,= =

ε j A12
j γ ja–( )exp

j 1=

4

∑ 0,=

ε j A12
j A22

j–( )
j 1=

4

∑ 0,=

A22
j γ ja( )exp

j 1=

4

∑ 0,=

A22
j γ j A12

j γ jε j α A12
j ε j––( )

j 1=

4

∑ 0,=

AN2
j ε j γ j N 1–( )a[ ] 1 β̃ j–( )exp

j 1=

4

∑ 0.=

A12
j N( ) 1–( )1 j+=

2q
∆ N( )
------------- d jD N( ) P jΠ N( )–[ ] ,

d j 1–( )k l j+ + εkεlΓ kl,
k l j≠ ≠
∑=

P j 1–( )k l j+ + εkεl∆kl
α ,

k l j≠ ≠
∑=

∆ N( ) ∆ 1( )D N( )– ∆ 1( )Π N( ).+=
˜

D n( ) ∆D n 1–( )– ∆Π n 1–( ),+=
˜

Π n( ) ∆̃ D( ) n 1–( ) ∆̃Π n 1–( ), n 3.≥+–=
˜

∆ 1( )

m1e
γ1a–

m2e
γ2a–

m3e
γ3a–

m4e
γ4a–

1 1 1 1

ε1e
γ1a–

ε2e
γ2a–

ε3e
γ3a–

ε4e
γ4a–

ε1 ε2 ε3 ε4

,=
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(48)

(49)

(50)

(51)

(52)

(53)

(54)

Here, we have introduced the following notation for the
determinants: ∆(1) is the determinant for the first well,

 is that with a different lower line, and ∆(2) =
∆(3) = … ∆(n) = ∆ are determinants for the internal

wells (2 < n ≤ N), where , , and  are the determi-

∆ 1( )

m1e
γ1a–

m2e
γ2a–

m3e
γ3a–

m4e
γ4a–

1 1 1 1

ε1e
γ1a–

ε2e
γ2a–

ε3e
γ3a–

ε4e
γ4a–

ε1n1 ε2n2 ε3n3 ε4n4

,=
˜

∆ 2( )

γ1 γ2 γ3 γ4

e
γ1a

e
γ2a

e
γ3a

e
γ4a

ε1 ε2 ε3 ε4

ε1e
γ1a

ε2e
γ2a

ε3e
γ3a

ε4e
γ4a

,=

∆ 2( )

γ1 γ2 γ3 γ4

e
γ1a

e
γ2a

e
γ3a

e
γ4a

ε1 ε2 ε3 ε4

ε1n1e
γ1a

ε2n2e
γ2a

ε3n3e
γ3a

ε4n4e
γ4a

,=
˜

∆̃ 2( )

1 1 1 1

e
γ1a

e
γ2a

e
γ3a

e
γ4a

ε1 ε2 ε3 ε4

ε1n1e
γ1a

ε2n2e
γ2a

ε3n3e
γ3a

ε4n4e
γ4a

,=
˜

∆̃ 2( )

1 1 1 1

e
γ1a

e
γ2a

e
γ3a

e
γ4a

ε1 ε2 ε3 ε4

ε1e
γ1a

ε2e
γ2a

ε3e
γ3a

ε4e
γ4a

,=

D 2( ) D≡

γ1 γ2 γ3 γ4

e
γ1a

e
γ2a

e
γ3a

e
γ4a

ε1 ε2 ε3 ε4

ε̃1 ε̃2 ε̃3 ε̃4

,=

Π 2( ) Π≡

1 1 1 1

e
γ1a

e
γ2a

e
γ3a

e
γ4a

ε1 ε2 ε3 ε4

ε̃1 ε̃2 ε̃3 ε̃4

.=

∆ 1( )
˜

∆
˜

∆̃ ∆̃
˜
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nants with other lower, upper, and upper and lower
lines, respectively. Determinants D(2) and Π(2) corre-
spond to the last well of the structure. In order to sim-

plify the notation, we wrote the expression for 
for the first well only, assuming that the internal wells
are identical. These coefficients are sufficient for calcu-
lating the reduced current in the first well. There is no
need to find the currents in the remaining wells since
these currents are identical in the model considered
here and for steady-state solution (9). Nevertheless, the
proof for a two-well structure will be carried out
through direct calculations.

The expressions for the determinants and coeffi-
cients can be simplified if we take into account the

smallness of parameters , p/α, and α/p:

(55)

(56)

Here, the following definitions have been introduced:

(57)

A12
j N( )

Ṽ Ṽ
2

D 2( ) D≡ ε1ε2∆̃12δ34,=

Π 2( ) Π ε1ε2 ∆̃34Γ̃12 iṼ
28α2

p1
---------– 

  ,≈≡

∆ 1( ) ε1ε2 ∆34Γ12 iṼ
28α2

p1
---------– 

  ,≈

∆ 1( ) ε1ε2 ∆34∆12
α iṼ

28αα 2

p1
-------------– 

  ,≈
˜

∆ ε1ε2Γ̃12δ34,≈

∆̃ ε1ε2 Γ̃12Γ̃34 Ṽ
28 p2

p1
--------– 

  ,≈

∆ ε1ε2∆̃12
α δ34,≈

˜

∆̃ ε1ε2 ∆̃12
α Γ̃34 Ṽ

28α p2

p1
-------------– 

  ,≈
˜

d1 2,
4 p2

p1
--------, P1 2,+−

4α p2

p1
-------------,+−= =

d3 4, ε1ε2 Γ12 Ṽ
22 p2

p1
--------± 

  ,=

P3 4, ε1ε2 ∆̃12
α

Ṽ
22α p2

p1
-------------± 

  .=

∆ij
α ni γ ja–( )exp n j γia–( ),exp–=

∆̃ij
α

n j γ ja( )exp ni γia( ),exp–=

δij γi γ ja( )exp γ j γia( ),exp–=

Γ ij γ ja–( )exp γia–( )exp– Γ̃ ij*,= =

ε̃ j ε jm̃ j γ ja( ),exp=
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Using relations (55) and (56), we can derive simpli-
fied expressions for the remaining determinants and

coefficients  for an N-well structure.

5. TWO-WELL STRUCTURE

Many basic features of a multiwell structure are
manifested even for N = 2. In view of the relative sim-
plicity of this structure, we will analyze it in detail.
Wave functions (38) for N = 2 assume the form

(58)

Here, ψk2(2) (ψk1(2)) is the wave function of the kth
well (k = 1, 2) of the upper (lower) level of the two-well
structure. In accordance with relations (41)–(44), corre-

sponding coefficients (2) and determinant ∆(2) are
given by

(59)

(60)

Using approximate expressions for D, Π, ∆(1), and
 (see relations (55) and (56)), we obtain

(61)

(62)

(63)

Here, we have introduced the notation

(64)

(65)

m j 1 β j, m̃ j– 1 β̃ j,–= =

n j α γ j.+=

Anm
j

ψk2 2( ) Ak2
j 2( ) γ j x( ),exp

j 1=

4

∑=

ψk1 2( ) Ak2
j 2( )ε j γ j x( ), kexp

j 1=

4

∑ 1 2.,= =

A12
j

A12
j 2( ) 1–( )1 j+=

2q
∆ 2( )
---------- d jD P jΠ–( ),

∆ 2( ) ∆ 1( )D– ∆ 1( )Π .+=
˜

∆ 1( )
˜

A12
1( ) 2( ) A12

2( ) 2( ) ε1ε2
2q

∆ 2( )
----------

8i p2

p1
----------∆̃12Φ2,–= =

A12
3( ) 2( ) A12

4( ) 2( )–=

=  ε1ε2( )2 2q
∆ 2( )
---------- Φ0∆̃12 Ṽ

216 p2α1

p1
2

------------------Φ1+ 
  ,–

∆ 2( ) ε1ε2( )2 ∆̃12∆34Φ0 Ṽ
216 p2

p1
-----------Φ4– 

  .=

Φ0 ∆12
α Γ̃34 δ34Γ12– 4 α p1a( ) p2a( )cossin[= =

+ p1 p1α( )cos p2a( )sin p2 p2a( ) p1a( )sincos+ ] ,

Φ1 α p1a( )sin p1 p1a( ),cos+=

Φ2 α p2a( )sin p2 p2a( ),cos+=

Φ4

α2

p2
-----∆̃12Φ2

α1

p1
-----∆34Φ1.–=
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Taking into account relations (61) and (62), we can
write the wave functions for the first well in the form

(66)

Substituting these expressions into Eq. (15), we
obtain the reduced current in the first well:

(67)

Using relations (61) and (62), we arrive at the fol-
lowing expression:

(68)

It can easily be seen that the first term in this expression
vanishes, and a contribution comes only from the sec-

ond term proportional to the square of the field  and

to the imaginary part of ,

(69)

This fundamental result indicates that the attenua-
tion responsible for radiative transitions between the
energy levels in the first well is induced by the current

of the second (right) well and is proportional to . The
result is also valid for any number of wells N ≥ 2, but

the attenuation will be proportional to . Since
there are no dissipative processes in a coherent system,
the attenuation in the extreme right well, which is
“transported” by the current, is responsible for lasing.
For this reason, a description of coherent systems
requires that the boundary conditions be taken into
account correctly.

Let us analyze current Jc1(2) in the first well of a
two-well structure. The key quantity is the resonance
determinant ∆(2) defined by expression (63). The basic

ψ12 2( ) 2iA12
3( ) 2( ) p2x( ),sin=

ψ11 2( ) 2iε1A12
1( ) 2( ) p1x( ).sin=

J1c 2( )
1
a
--- J1c 2 x,( ) xd

a–

0

∫=

=  4ieε1M12 A12
1( )* 2( )A12

3( ) 2( ) c.c.+[ ] .–

J1c 2( ) 4ieε1M12 ε1ε2( )3 8QΦ2

∆ 2( ) 2 p1

---------------------=

× i ∆̃12 Φ0 Ṽ
216α1 p2Φ1i∆̃12

*

p1
-----------------------------------+

 
 
 

c.c.+ .

Ṽ
2

∆̃12

J1c 2( )
eε1M12 ε1ε2( )216α1QΦ̃ ∆̃12* ∆̃12–( )

p1 ∆ 2( ) 2
-----------------------------------------------------------------------------------,–=

Φ̃
64 p2

p1
-----------Φ1Φ2.=

Ṽ
2

Ṽ
2 N 1–( )
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difference between ∆(2) and ∆(1) (see relations (29))
lies in the emergence of a new resonant determinant
Φ0 (64).

The equality

(70)

leads to the equation for the spectrum of two tunnel-
coupled QWs. Equation (70) has two solutions: an anti-
symmetric solution with an unshifted energy and a
symmetric solution. The energy of the latter solution is
shifted downwards and the levels split (see the Appen-
dix). The upper level in the first well and the lower level
in the second well are also displaced downwards on the
energy scale due to finite heights α2 and α1 of extreme
barriers. Their shift is determined by the equations

(71)

Obviously, the resonance conditions

(72)

are satisfied only if the levels are shifted identically. In
particular, this means that a sharp resonance is possible
only for a symmetric solution to Eq. (70). It will be
proved below (see the Appendix) that resonance condi-
tions (72) and Eqs. (70) and (71) can be satisfied simul-
taneously if the following relations hold for any α:

. (73)

These relations are preserved for multiwell structures
also; in this case, α2 and α1 are the depths of the first
and last wells, respectively.

Assuming that relations (73) and (72) are satisfied
and that the energy ε of supplied electrons is close to
the resonance energy ε2R, we can write the resonance
determinant and Φk in the form

(74)

, (75)

(76)

In relations (75) and (76), the terms on the order of
ξ/δε have been omitted and δε ≈ p2/αa is the energy
shift exceeding considerably the level width Γ. Thus,

Φ0 0=

Re∆̃12 0, Re∆34 0.= =

ε2R
1( ) ε1R

1( )– ω, ε2R
2( ) ε1R

2( )– ω= =

α2
4α
5

-------, α1
α
5
---, α1 α2+ α= = =

∆̃12
aα1

p1
2

--------- ξ iΓ1+( ), ∆34–
aα2

p2
2

--------- ξ iΓ2+( ),–= =

Φ0 5ξ , ξ≈ ε ε2R–=

Φ1 2 p2, Φ2≈
p1

2
-----,–=

Φ4

5α1
2

p1
2

--------- ξ 3
5
---Γ1+ 

  ,=

Γ j

2 p j
3

aα j
2

---------, Γ2

Γ1

2
-----.≈=
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relations (74)–(76) are valid for values of ξ from the
interval 0 < ξ < δε.

In this approximation, current (69) in the first well
assumes the form

(77)

(78)

It follows from relations (77) that the dependence of the
current on the electron energy ξ (and, hence, on the
laser field) is determined only by the square of the mod-

ulus of the reduced determinant :

(79)

The optimal values of the energy ξ of supplied elec-
trons can be determined from the condition for the min-
imum of f(2, ξ) (or for the maximum of λ2(ξ)):

(80)

This equation has three solutions:

(81)

Solutions ξ1 and ξ3 correspond to a minimum of
f (2, ξ), while ξ2 corresponds to a maximum of this
function, so that

(82)

J1c 2( ) Ṽ
3Γ1Γ2Qη 2( )

∆̃ 2 ξ,( )
2

----------------------------,=

η 2( ) 4e 2M12

64 p2
3

25
-----------,=

∆ 2 ξ,( )
5 ε1ε2( )2α1α2

p1
2 p2

2
--------------------------------∆̃ 2 ξ,( ),=

∆̃ 2 ε,( ) ξ ξ 2 λ2–
Γ1

2

2
-----– 

  i
3Γ1

2
--------- ξ2 2

5
---λ2– 

 + .=

∆̃ 2 ξ,( )
2

f 2 ξ,( ) ∆̃ 2 ξ,( )
2

=

=  ξ2 ξ2 λ2–
Γ1

2

2
-----– 

 
2 9Γ1

2

4
--------- ξ2 2

5
---λ2– 

 
2

.+

df 2 ξ,( )
dξ

------------------- 2ξ ξ 2 λ2–
Γ1

2

2
-----– 
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---------– 
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−+ λ4 13λ2Γ1
2

5
-----------------–

13Γ1
4

16
------------+ ,

ξ2
2 λ2

3
-----, ξ3

2 λ2, λ  @ Γ1.≈≈

f 0( )
9
25
------Γ1

2λ4, f λ2( )
81
100
---------Γ1

2λ4,= =

f
λ2
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----- 

  4
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------λ6.≈
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In contrast to a single-well structure, the minimum
of f(2) for ξ1 = 0 exists for any λ. It should be noted that
this minimum is lower than that for ξ3 ≈ λ. In addition,
it is more convenient since it does not require electron
energy tuning. It is solution ξ1 that is of greatest impor-
tance.

The corresponding values of current J1c(2) for ξ1 =
0 and ξ3 ≈ λ are

(83)

A comparison of current J1c(2, 0) (83) in the first
well with current J1c(1, λ) (33) in a single-well structure
shows that these currents are virtually identical:

(84)

It should be noted that solutions ξ1 and ξ3 lead to a
linear dependence of the lasing power on the pumping
current, while ξ2 leads to a root dependence.

Let us now determine the wave functions and the
current for the second well, which will enable us to
prove the equality of currents in the first and second
wells and to calculate the populations of the levels.

Coefficients  and  of wave functions ψ22(2)
and ψ21(2) can be determined from Eqs. (40) for N = 2.
We can write approximate expressions with the above
accuracy:

(85)

where the matrix is given by

(86)

Accordingly, the wave functions assume the form

(87)

Using these functions, we can find the reduced current

J1c 2 ξ1 0=,( )
Qe2 2M12

9Ṽ
---------------------------

9
4
---J1c 2 λ,( ).= =

J1c 2 0,( )
8
9
---J1c 1 λ,( ).=

A21
j( ) A22

j( )

A22
1( ) A22

2( ) i 2q( )D2

∆ 2( )
--------------------

4α1 p2

p1
---------------,≈=

A22
3 4,( ) 2qD2

∆ 2( )
-------------ε1ε2 ∆̃12 γ4 3, a( )exp iṼ

22α1 p2

p1
2

---------------±
 
 
 

,–=

D2

1 1 1 1

ε1e
γ1a

ε2e
γ2a

ε3e
γ3a

ε4e
γ4a

ε1 ε2 ε3 ε4

ε1n1 ε2n2 ε3n3 ε4n4

.=

ψ22 2 x,( ) i
8qD2∆̃12

Ṽ
2∆ 2( )

--------------------- p2 x a–( )[ ] ,sin–=

ψ21 2 x,( ) i
8α1 p22qD2 2

Ṽ p1
2∆ 2( )

------------------------------------ p1x( ).sin–=
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in the second well:

(88)

Substituting the approximate value

(89)

into expression (88), we find that J2c(2) coincides with
current J1c(2) (83) in the first well. Thus, reduced cur-
rent (3) of a two-well structure is equal to the reduced
current in the first well: Jc(2) = J1c(2). Since currents
J1c(2, 0) and Jc(1, λ) coincide in accordance with rela-
tion (84) (to within a factor of 8/9), the field gener-
ated by the two-well structure for ξ = 0 is given by

formula (36) (with   (8/9) ). The total power
P(2) is naturally doubled:

(90)

6. LEVEL POPULATIONS AND REFLECTANCE 
FOR A TWO-WELL STRUCTURE

It would be interesting to compare the level popula-
tions nij ,

(91)

Calculations made for ξ1 = 0 lead to the following
results:

(92)

It can be seen that the mutual population of the levels in
same well changes upon an increase in the field of
wavelength λ. At the same time, the ratio of populations
of the upper level in the first well and the lower level in
the second well is preserved. For λ @ Γ1, we have
n12 @ n11, while n22 ! n21; i.e., the first well exhibits

J2c 2( )
1
a
--- xJ2c 2 x,( )d

0

a

∫ ie
2q( )2

∆ 2( ) 2
---------------–= =

×
4 2 D2

28α1 p2

Ṽ
3
p1

2
--------------------------------------M12 ∆̃12* ∆̃12–( ).

D2
8 2 p2

Ṽ
----------------–≈

Q̃ Q̃

P 2( ) 2
2Q̃
9

-------.=

nij
1
a
--- x ψij

2.d

0

a

∫=

n12
4λ
Γ1
------ 

  2

n11, n22

Γ1

λ
----- 

 
2

n21,= =

n12 4n21, n22 4n11.= =
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population inversion, while the second well does not. It
follows hence that the inverse population condition is
not required for coherent lasing. This conclusion is con-
firmed for ξ3 = λ also. Indeed, in the case of tuning ξ =
λ @ Γ, the level populations in each well are identical:

(93)

It should be noted that a two-well structure for ξ = 0 and
ξ = λ behaves as a single-well structure for ξ = λ in the
sense that the ratio of populations of “extreme levels”
(the upper level of the first well and the lower level of
the second well) is independent of the field.

It was proved earlier for N = 1 [7] (see Section 3)
that the optimal values of energy ξ correspond to a res-
onance of the nanostructure in the field in which the
reflection from the structure becomes minimal. Let us
find the reflectance for a two-well structure. The reflec-
tance is defined as

(94)

Using formula (66) for ψ12(2, x), we obtain the reflec-
tance

(95)

The reflectance in the ξ = 0 and ξ2 = λ2 modes is given,
respectively, by

(96)

It follows hence that the mode with ξ = 0 is much more
effective (90%) than that with ξ = λ (40%).

Let us prove that the law of conservation of the num-
ber of transmitted and reflected electrons holds. For this
purpose, we find the number of electrons performing a
transition between the energy levels in the first well:

It is found that, for ξ = 0, it is equal to 8/9 of the flux
supplied to the structure, which gives unity together

n12 n11, n22 n21, 4n11 n22.= = =

R
ψ12 2 a–,( )

q
------------------------ 1–

2

.=

R
iΓ1Φ3

5∆̃ 2( )
-------------- 1–

2

,=

Φ3 = 
p1

2

α1
----- Φ0∆̃12 Ṽ

264 p2

p1
2

-----------Φ1+ 
 –  = 5ξ ξ iΓ1+( ) 4λ2.–

R 2 0,( )
1
9
---, R 2 λ,( )

49
81
------.= =

1
2π
------ xd

0

a

∫ tJ1c 2 x t, ,( )E t( ).d

0

2π/ω

∫
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with the reflected fraction (1/9). A similar conservation
law holds for ξ = λ also.

7. THREE-WELL STRUCTURE

It will be shown below that the properties of struc-
tures with even and odd numbers of wells differ consid-
erably. By way of the simplest example of an odd N, we
consider a three-well structure. The expressions for
coefficients of the first well in the three-well structure
can be obtained from the general formulas (41)–(44):

(97)

(98)

Using the smallness of parameters , p/α, and

 and approximate expressions for ∆, D, and Π ,
we obtain

(99)

Using these expressions, we derive from Eq. (97)

(100)

(101)

A12
j 3( ) 1–( )1 j+ 2q

∆ 3( )
---------- d jD 3( ) P jΠ 3( )–[ ] ,=
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˜
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˜
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Ṽ
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2∆̃12
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464iαα 1 p2

2

p1
3

------------------------–




,

A12
1( ) 3( ) A12

2( ) 3( )
2q

∆ 3( )
---------- ε1ε2( )24 p2
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(102)

It should be noted that, in the case of a three-well

structure, we must retain the fourth-order term  in

the expression for .

Let us begin our analysis with the resonance deter-

minant f(3) = . It can easily be demonstrated that
f(3) has four extrema ξi (we give ξi for large values of
ξ, λ @ Γ):

(103)

which correspond to maxima for ξ1 and ξ3 and to min-
ima for ξ2 and ξ4.

Thus, solutions ξ1 = 0 and ξ4 = λ in the three-well
structure correspond to a maximum and a minimum of
f(3), respectively. Consequently, the three-well struc-
ture is a combination of one- and two-well structures. It
behaves analogously to a structure with N = 1 for ξ1 =
0 and ξ = λ and to a structure with N = 2 for ξ = λ.

Let us determine the current in the first well of a
three-well structure:

(104)

The last term in this expression corresponds to ξ = 0

since for ξ ~ λ the omitted terms are proportional to .

It can be seen from Eq. (104) that the first term is
equal to zero, as in the case of a structure with N = 2.

The last two terms are proportional to Im  (see
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
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formula (68)). Indeed, for ξ = 0 and Φ0 = 0, the second

term is zero, while for ξ ~ λ it gives .

Solution ξ1 = 0 corresponding to a maximum of f(3)
is not optimal for N = 3. Indeed, substituting ξ1 = 0 into
formula (104) for current, we obtain

, (105)

i.e., the root dependence  ∝  Q1/2 (see Section 3), as
in the case of a single well.

The optimal solution is ξ
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; the situation is similar to that in a sin-
gle-well structure. Since the solution with 
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 was
analyzed in detail for 
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 = 1 [6, 7] (see Section 3), we
will consider below only even structures. This is justi-
fied the more so that the optimal situation in this case is
that with 
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 = 0, which can be realized in experiments
more easily.
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We will start with a four-well structure. In order to
find determinant 
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we will use formula (99). In the approximation adopted
here, we have

(107)

The structure of the determinant has a clear physical
meaning. The first term is the product of the determi-
nants for the outer wells and three determinants of col-
lectivized energy levels of the inner wells. It is impor-

tant that the second term with  also contains deter-
minant 
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For the optimal solution ξ1 = 0, Φ0 = 0, determinant

∆(4) and coefficients  assume the form

(108)

(109)

It should be noted that, in the expression for , we

have omitted the term proportional to , which is
compensated in the current in analogy with structures
with N = 2 or 3. Comparing relations (108) and (109)
with the corresponding formulas (for Φ0 = 0) (61)–(63)
for a two-well structure, we can derive the following
relations:

(110)

(111)

Thus, the coefficients for the first well of a four-well
structure coincide with the coefficients for a two-well
structure. Consequently, the reduced current of a struc-
ture with N = 4 is given by

(112)

Property (111) is preserved for any even N, so that the
reduced current for such a structure has the form

(113)

Generalizing formula (90), we find that the total power
of an N-well structure is

(114)

i.e., is proportional to the number N of wells.
Obviously, the reflectance remains unchanged (R =

1/9) and independent of N since the reflection is deter-
mined by the wave function for the first well.

9. CONCLUSIONS

We have proved the possibility of coherent lasing of
a structure consisting of any number of wells in the
absence of dissipative processes. It is well known (see,
for example, [5]) that the emission of a photon requires
attenuation determined by the interaction with phonons
in bulk systems. In the structure studied by us here,
attenuation is associated with the departure of electrons
from the lower level of the extreme right well. The
steady-state intersubband current “transports” this
attenuation to all wells and causes the emission of pho-

A12
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∆ 4( ) ∆ 2( ) ε1ε2( )Φ̃,=

A12
1( ) 4( ) A12

1( ) 2( ), A12
3( ) 4( ) A12

3( ) 2( ).= =
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Jc N 0,( ) J1c 2 0,( ).=

P N( ) N
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-------,=
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tons in each well. The electrons supplied due to reso-
nant tunneling perform N transitions from the upper to
the lower levels, preserving their phase, this process
being independent of the level occupancy. Conse-
quently, the gain and lasing in such a system are volume
effects in contrast to the incoherent case [8]. The total
lasing power is proportional to the number N of the
wells.

Thus, we can assume that lasing at vertical transi-
tions (see the Introduction) in a superlattice with a
strong constant field (Stark ladder) is possible. Pro-
ceeding from the results obtained in [9], we can expect
Stark ladder lasing with diagonal transitions also.

It has been found that effective lasing requires the
fulfillment of the following conditions: observance of
resonance in each well, the choice of optimal energy of
supplied electrons, the sharpness of the electron energy
distribution ∆ε, and, finally, the fulfillment of the coher-
ence conditions for the electron subsystem.

We have proved that the resonance conditions can
be satisfied by choosing the barrier parameters (see the
Appendix). For structures with an even N, the problem
of choosing energy can be solved quite easily: the
energy must be equal to the resonance energy (ε = ε2R)
for any fields.

As regards the width ∆ε, the optimal situation is
attained for ∆ε ≤ Γ. If ∆ε > Γ, the lasing parameters
(efficiency, reflectance, and current) naturally decrease.
However, the equality ∆ε ≈ Γ can be attained in differ-
ent ways, e.g., by using energy filters based on QWs.

Naturally, the requirement of coherence is the most
stringent: the time τϕ of coherence breakdown must be
longer than the time TN of passage through the struc-
ture. This time can be estimated as TN = NΓ–1 for λ < Γ
or TN = Nλ–1 for λ > Γ. In all cases, the length of the
structure is finite:

(115)

Parameter τphΓ for high-quality QWs can in principle
be much greater than unity. For example, in [11], a
coherent effect of superfluorescence on ten wells (i.e.,
Γτϕ > 10) was observed.

Condition (115) becomes less stringent if we take
into account the fact that the fields being generated can
be strong; i.e., λ @ Γ. The use of quantum wires and
dots weakens condition (115) still further. The techno-
logical breakthrough in producing ensembles of
extremely high quality quantum dots [12] renders them
quite promising for designing lasers with a coherent
subsystem on their basis.
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APPENDIX

In order to satisfy the resonance condition in a mul-
tiwell structure, it is necessary that the energy differ-
ence between the resonance levels of the wells be the
same and equal to the frequency ω of the electromag-
netic field. If the wells were isolated, these conditions
could be satisfied by choosing identical wells. How-
ever, in order to ensure the passage of current, the
heights α2, α1, and α of the barriers must be finite. This
leads to splitting of degenerate levels and to a level shift
in the outer wells, which is described by Eqs. (70)
and (71). We will first prove that these equations are
satisfied simultaneously when the last equality in (73)
holds. It follows from Eqs. (71) that

(A.1)

Substituting these relations into Eq. (70), we obtain

(A.2)

This leads to the last equality in (73).

We can now find the resonance values of energy for
Eq. (70):

(A.3)

Energies  and  correspond to the antisymmetric
and symmetric solutions, respectively. The energy of the
upper level in the first well is given by (see Section 3)

(A.4)

The resonance condition (72)

(A.5)

p1 p1a( )cos α1 p1α( ),sin–=

p2 p2a( )cos α2 p2α( ).sin–=

Φ0 4 p1a( )sin p2a( ) α α 1– α2–( )sin 0.= =

ε1R
AS π2/a2, ε1R

S π2

a2
----- 1 10

αa
-------– 

  .= =

ε1R
AS ε1R

S

ε2R
1( ) 4π2

a2
-------- 1 2

α2a
---------– 

  .=

ε2R ε1R– ω 3π2

a2
--------= =
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together with formulas (A.2)–(A.4) leads to the rela-
tions

(A.6)

It can easily be proved that the resonance condition (72)
for the second well is also observed if relation (A.6)
holds; α can assume any value. It should be noted that,
if we choose

(A.7)

the resonance conditions are observed to within the
terms quadratic in 1/α.
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Abstract—The evolution and collapse of a gaseous toroidal vortex under the action of self-gravitation are con-
sidered using the Hamiltonian mechanics approach. It is shown that evolution occurs in three main stages sep-
arated by characteristic time scales. First, a compression along the small radius to a quasi-equilibrium state
takes place, followed by a slower compression along the large radius to a more stable compact vortex object.
In the latter stage, the possibility of effective scattering and ejection of particles along the vortex axis
(jet formation) is detected. As a result, mass, energy, and momentum losses take place, and the vortex collapses.
© 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Vortices, which are traditionally described in the
framework of incompressible fluid dynamics [1, 2], are
special objects of application of Hamiltonian methods.
In the epoch of solitons, the interest in vortices as allied
localized formations has grown considerably. The cur-
rent state of this problem is described in reviews and
articles [3–7] and in the references cited therein.

Compressibility and self-gravitation of such objects
may play a significant role in astrophysical applica-
tions [8–10]. In some cases (e.g., in the vicinity of com-
pact objects at the centers of galaxies), the effect of the
external gravitational field on these objects may be sig-
nificant. Both of these possibilities will be taken into
account in this study.

Another extremely important problem in contem-
porary astrophysics is associated with the origin of
cosmic jets arising, according to prevailing concepts,
in accretion disks of various origins and scales (from
galactic [11] to stellar [12]). The interpretation of such
jets is a nontrivial problem. In spite of considerable
advances made in this direction in the framework of
magnetohydrodynamics (MHD) [13], serious difficul-
ties still remain since solutions were obtained in a spe-
cial geometry and strong magnetic fields are required.
It will be shown below that the formation of (unidirec-
tional) jets is a natural consequence of the evolution of
self-gravitating vortices and is an indispensable con-
dition of their collapse. Jets are also generated in zero
magnetic fields.
1063-7761/03/9606- $24.00 © 20985
A possible relation between this problem and the
existence of occluding toroids1 in the vicinity of central
compact objects in the active galactic nuclei is men-
tioned [14].

2. FIRST STAGE: 
EVOLUTION OF A THIN VORTEX

We assume that the shape of a vortex at the initial
stage is a thin toroid (Fig. 1) whose radii satisfy the ine-
quality

r ! R. (1)

(An analog of such a vortex in fluid dynamics is a Max-
wellian vortex [1, 2].) We will henceforth assume that
the vortex evolution at the initial stage occurs without a
change in the toroidal shape. Thus, in addition to a rota-
tional degree of freedom, the system possesses two
translational degrees of freedom corresponding to
changes in r and R (we disregard the translational
motion of the vortex as a whole). It should be noted
that, in view of condition (1), the motion in r and rota-
tion constitute a local compression of a rotating cylin-
der, while the motion in R indicates the collapse of a
thin ring.

We write the system Hamiltonian in the form

(2)

1 We do not touch upon the classical problem of stability of toroids
rotating as a single entity, which dates back to Poincaré and
Dyson. The modern state of affairs in the framework of the gen-
eral theory of relativity and references can be found in [15].

H
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2M
-------- pr

2 pR
2 pϕ
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Here, M is the total mass of the vortex, ps are the
momenta corresponding to coordinates s, ϕ is the cyclic
coordinate of rotation, and U is the gravitational poten-
tial energy of the system. Hamilton equations corre-
sponding to Hamiltonian (2) have the form

(3)

This leads to the equations of motion for the transla-
tional degrees of freedom,

(4a)

(4b)

and to the integral of motion for the rotational degree of
freedom:

(5)

This integral of motion expresses the angular momen-
tum conservation law (the quantity 2πpϕ/M in fluid
dynamics corresponds to vorticity).

Let us now define function U(r, R). We consider first
Eq. (4a) describing the evolution of a rotating cylinder
of radius r. The gravitational force acting on a test par-
ticle on the surface of the cylinder is given by

(6)

where G is the gravitational constant, χ is the mass of
the cylinder per unit length, and m is the mass of the test
particle. Thus, the gravitational force appearing on the
right-hand side of Eq. (4a) has the form

(7)

ṙ
pr

M
-----, Ṙ

pR

M
------, ϕ̇

pϕ

Mr2
----------,= = =

ṗr

pϕ
2

Mr3
----------

∂U
∂r
-------, ṗR–

∂U
∂R
-------, ṗϕ 0.= = =

ṙ̇
pϕ

2

M2r3
------------   1 

M
 -----–  ∂ U 

∂
 
r
 -------,=

Ṙ̇
1
M
-----∂U

∂R
-------,–=

pϕ Mr2ϕ const.= =

Fr G
2χm

r
-----------,–=

1
M
-----∂U

∂r
-------– G

2χ
r

------.–=

    

R

rϕ

Fig. 1. Thin toroidal vortex of the Maxwellian type.
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In the present case of a thin toroid, we have χ = M

 

/2

 

π

 

R

 

,
whence

(8)

In order to determine the dependence of potential
energy 

 

U

 

 on large radius 

 

R

 

, we consider the second
equation of motion, Eq. (4b). It must describe the grav-
itational contraction of a thin ring of radius 

 

R

 

. The force
acting on a test particle located on an infinitely thin ring
is given by

(9)

This formula can be derived by direct integration of the
contributions from the interaction of the particle with
all elements of the ring. In order to avoid divergence for

 

ϑ

 

  0, we must take into account the finite thickness
of the ring. For this purpose, we truncate the diverging
part of expression (9), replacing the integration domain
(0, 

 

π

 

) by (

 

ϑ

 

c

 

, 

 

π

 

), where 

 

ϑ

 

c

 

 = 

 

α

 

r

 

/

 

R

 

 (

 

α

 

 ~ 1 is a numerical
factor). This gives

(10)

where  =  α  /  e  . Setting

in Eq. (10) and

in Eq. (8), we note that formulas (8) and (10) can be
reduced to the same form (the difference will be only in
the coefficient 1/2). Such a difference is insignificant
for our analysis, and we assume the true numerical
coefficient in formula (8).

We can now write the Hamiltonian (2) of a thin tor-
oidal vortex:

(11)

In this case, the equations of motion (4) assume the
form

(12a)

(12b)

U r R,( ) G
M2

πR
------- r

R
--- c1 R( ).+ln=

FR G
Mm

2πR2
------------ ϑ /2( )d

ϑ /2( )sin
---------------------

0

π

∫– ∞.= =

U r R,( ) G
M2

2πR
---------- α̃r

R
------ c2 r( ),+ln=

α̃

c2 0=

c1 R( )
GM2

πR
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H
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2 pR
2 pϕ
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πRr
----------,–=

Ṙ̇ G
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πR2
--------- αr
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In view of condition (1), we have

Then, the force of gravitational attraction along r (12a)
is much stronger than the force of gravitational contrac-
tion along R (12b). This allows us to divide the evolu-
tion of the system over different scales: fast (in r) and
slow (in R). It is natural to assume that fast evolution
(for practically constant R) leads to the establishment of
equilibrium in Eq. (12a). In this case, the force of grav-
itational attraction is compensated by the centrifugal
rotational force:

, (13)

whence

This expression determines the equilibrium small
radius as a function of the large radius, req = r(R), while
the inequality r > req corresponds to the criterion of
gravitational instability with the Jeans scale req. The
latter becomes obvious if we assume that the toroid
mass is M ≈ ρπr2R, where ρ is its density [8–10].

As a rough estimate of the time of vortex contraction
along small radius r to the quasi-equilibrium state, we
can use the expression

(14)

where r0, R0, and Fr are the initial values of the small
and large radii of the vortex and the force appearing on
the right-hand side of Eq. (12a), respectively.

If inequality (1) holds at the initial instant, the toroi-
dal vortex will experience, in accordance with the equa-
tion of motion (12b) and relation (13), a slow contrac-
tion along both radii until they become on the same
order of magnitude:

(15)

At this stage, the initial assumptions (1) are violated,
and the description used above becomes inapplicable. It
is impossible in this case to divide the vortex evolution
over two translational degrees of freedom r and R, and
the vortex should be described as a single compact
object with a complex internal structure.

r
R
--- r

R
---  ! 1.ln

pϕ
2
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M
πRr
----------– 0=
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πpϕ

2 R
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-------------.=
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r0 req R0( )–
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--------------------------∼

=  M2R0
4 pϕr0

3 πMR0/G–
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2 GM3r0

2/πR0–
-------------------------------------------------------- ,

req R∼ Rc

πpϕ
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GM3
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2

R
------  ! r0.= = =
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
Let us determine some of the most important
parameters of the vortex, characterizing it at the sec-
ond stage (15). Using the angular momentum conser-
vation law (5) and (13), we obtain the following expres-
sion for the velocity of particles on the vortex surface:

(16)

It can be seen that the rotational velocity of a vortex,
which is in equilibrium in r, is determined only by its
mass and the large radius and increases upon contrac-
tion along R.2 

When the vortex reaches the end of the first stage,
the velocity attains the value

(17)

and becomes much larger than the initial velocity v 0:

(18)

In analogy with relation (14), we can estimate the
time of the vortex contraction along the large radius as

(19)

where FR is the force appearing on the right-hand side
of Eq. (12b).

Let us also consider the distribution of the kinetic
energy acquired by the vortex over the degrees of free-
dom. We assume that the substance in the vortex is
initially almost free and its potential energy and
kinetic energy (11) are small as compared to GM2/πRc .
Then, at the critical stage (15) of the collapse, the
potential and kinetic energies of the substance can be
estimated as

(20)

(It should be noted that this result is in accordance with
the virial theorem for U ~ R–1; i.e., E = –T < 0.) Since
the total energy is an integral of motion and its initial

2 It should be noted that this is due to the fact that momentum pϕ is
canceled out in relation (16). This is a consequence of the equilib-
rium condition (13), whose form is determined in turn by the
form of potential (11).
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energy is close to zero, relations (11) and (20) imply
that the kinetic energy of translational motion is of the
same order of magnitude. Thus, we can conclude that
the kinetic energy released during the contraction is
distributed uniformly (in order of magnitude) between
the rotational and translational degrees of freedom.
This fact will be important for the subsequent analysis;
in particular, this means that, if the rotational velocity
of a particle of the substance is less than doubled at ran-
dom, it is sufficient for the particle detachment and
escape from the system.

3. SECOND STAGE: 
EVOLUTION OF A COMPACT VORTEX

Let us try to imagine the scenario of contraction of
a gravitating vortex, when it is a compact object topo-
logically equivalent to a toroid. We can expect that,
under the action of gravitational forces, it will approach
a certain spheroidal configuration resembling a Hill
vortex [1, 2] (Fig. 2). If we consider such an object as
an estimate, we can assume that it possesses a rotational
and a translational degree of freedom. The latter is
determined by a change in its radius R. The rotational
radius of particles (which was the independent quantity
r in the previous section) is now approximately equal to
R/2. The Hamiltonian of such a vortex can be written in
the form

(21)

Here, we have assumed that the form of the second term
is the same as in relation (11) with r = R/2 and have
taken the potential energy of a sphere for the potential

H
pR

2

2M
--------

2 pϕ
2

MR2
-----------

GM2

R
------------.–+=

Fig. 2. Cross section of a compact spheroidal vortex of the
Hill vortex type.
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energy of the vortex. Hamiltonian (21) corresponds to
the equation of motion

(22)

This equation has an equilibrium position, when

(23)

where Rc1 plays the role of the Jeans scale as before.
Thus, this object is in equilibrium for a radius on the
same order of magnitude as that at which the first stage
of evolution terminates (cf. relation (15)). This means
that, in the problem on the collapse of a thin toroidal
vortex, there is no need to consider the evolution of a
compact vortex separately. We can assume that equilib-
rium sets in immediately after the ring acquires param-
eters (15)–(18).

On the other hand, we can consider the problem of
contraction of a vortex, which resembles a Hill vortex
from the very outset (Fig. 2), but is initially far from
equilibrium. Then, we ultimately arrive at an equilib-
rium compact vortex with a radius on the same order of
magnitude as the radius in (23). The rotational velocity
of particles in this case is of the order of velocity (16):

(24)

where

Similarly, it can be easily proved that, upon the
establishment of equilibrium (23), at least half the
released potential energy is transformed into the kinetic
energy of rotation (the remaining part being trans-
formed into heat).

4. SCATTERING AND DETACHMENT
OF PARTICLES

Thus, after various possible stages of evolution, a
toroidal vortex is transformed into a compact object
with characteristic parameters (15), (17), and (18)
(or (23) and (24)) (see Fig. 2). The rotation velocity of
the substance in it is much higher than in the initial vor-
tex. It is worth noting that flows of matter passing
through the vortex in the vicinity of its axis are closely
spaced. This means that effective scattering of particles
may take place in this region. Such a scattering will
obviously increase the velocity of a certain fraction of
particles. In accordance with the arguments given at the

Ṙ̇
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Fig. 3. Typical finite trajectories of a particle in the gravitational field of the ring. In the plane (ρ = r/r0, ξ = z/r0), the particle moves

around two attracting centers formed as a result of the dissection of the ring. The initial conditions are ρ = 1 + ρ0, ξ = 0,  = 0, and

 =  (the value of  is chosen to coincide with the “orbital velocity” in Eq. (12a), which is valid in the vicinity of attracting
centers). (a) ρ0 = 0.08, rotation around a single center; (b) ρ0 = 0.17, “dovetail”-type motion around a single center; (c) ρ0 = 0.22,
motion of the double “figure-of-eight” type around two centers; (d) ρ0 = 0.42, motion of the “figure-of-eight” type around two cen-
ters; (e) ρ0 = 0.81, motion of the “dovetail” type around two centers; (f) ρ0 = 2, rotation around two centers.

ρ̇

ξ̇ 2 ξ̇
end of the previous two sections, a less than double
increase in the rotational velocity of particles is enough
for gathering a kinetic energy sufficient for the detach-
ment. Consequently, we can expect that a certain frac-
tion of particles from the flows passing along the axis
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of a compact vortex acquire a sufficient energy as a
result of scattering and are ejected from the vortex.
Thus, a directional jet carrying away the matter from
the center of the vortex can be formed. (Here, we dis-
regard the change in the vortex configuration that
SICS      Vol. 96      No. 6      2003
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may take place as a result of the mass loss due to such
ejection.)

Let us consider one more argument illustrating the
above scenario. In the Appendix, we will consider the
motion of a test particle in the gravitational field of a
ring (thin toroid) with a fixed radius (Fig. 3). For low
energies, the particle rotates in a small-radius orbit
wound around the ring (Fig. 3a). This motion corre-
sponds to a thin vortex (the possible first stage of the
evolution). As the particle energy increases, various
complex trajectories appear; however, the orientations
of these trajectories do not correspond to vortex motion
and we will not consider such trajectories here. Finally,
starting from a certain energy value, the particle passes
to almost closed trajectories of a figure-of-eight shape
(Fig. 3d). The rotational radius of particles becomes on
the order of the ring radius (15), which corresponds
precisely to the final sage of vortex contraction. The
kinetic energy of a particle in such trajectories is close
to the energy required for the detachment of particles.
The motion of particles in “figures-of-eight” will lead
to their effective collisions and scattering in the vicinity
of the vortex axis.3 

We can state that the toroid contraction has qualita-
tively the same consequences for moving particles as an
increase in their energy for a fixed size of the toroid.
Obviously, a tendency ultimately leading to the detach-
ment of a fraction of particles exists, the most favorable
conditions for this effect being created in the vicinity of
the vortex axis. In the long run, this leads to the emer-
gence of an axial (unilateral) jet carrying away the
energy, mass, and angular momentum of the vortex. As
a result, the vortex contraction will continue (resulting
in collapse), the contraction rate dR/dt being deter-
mined by the vortex mass loss rate (particle flux in the
jet; see below). Thus, the vortex collapse and the emer-
gence of a jet are correlated unambiguously.

5. VORTEX COLLAPSE

Let us consider the consequences of the ejection of
particles from a vortex according to the scenario pro-
posed in the previous section. The particle flow carries
away the mass, energy, and angular momentum of the
vortex. The latter quantities can be estimated as

(25)

where all the quantities correspond to an equilibrium
compact vortex (see Section 3) and E = –T (see above).
Relations (25) lead to

(26)

3 The existence of flows of matter of the figure-of-eight type also
follows from the hydrodynamic model of a Maxwell vortex (see,
for example, [2]).

E
Mv 2

2
-----------, pϕ

MRv
2

-------------,∼–∼

R
pϕ

ME–
----------------.∼
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Differentiating this relation with respect to time, we
obtain

(27)

We assume that the particle flux is comparatively
small and this process occurs at a much lower rate than
the rate of establishment of equilibrium of the compact
vortex. In this case, we can estimate the change in the
characteristics of the vortex carried away by the particle
flow as

(28)

where J is the mass flux in the ejected jet of matter. Sub-
stituting relations (28) into (27) and taking into account
relation (26), we obtain

(29)

The solution to this equation has the form

(30)

Here, β ~ 1 is a certain positive constant (emerging due
to the fact that we obtained above only order-of-magni-
tude estimates for the vortex parameters), and the initial
instant of time corresponds to the arrival of the vortex
at the compact equilibrium state and to the beginning of
the effective scattering and detachment of particles.
The time dependence of the vortex mass M(t) is deter-
mined for the specific mechanism of particle scattering.

In the general case, the mass flux of matter, J = – , is
a function of the main vortex parameters: mass, energy,
and angular momentum. If we assume in the simplest
case that the flux of matter is proportional to the vortex
mass and weakly depends on other parameters
(J = kM), Eqs. (28)–(30) will lead to the exponential
laws

(31)

Thus, Eqs. (29)–(31) show that the scattering of par-
ticles and ejection of matter indeed lead to the collapse
of a compact vortex.

The characteristic time scale of the collapse is
defined as

(32)

In accordance with the above assumptions, the collapse
must be slow as compared to the characteristic time of
the vortex contraction to the equilibrium state, which
corresponds to tcol @ t2.

Ṙ
1

ME–
---------------- ṗϕ
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6. GENERALIZATIONS

We can easily generalize the above analysis to the
case when a system contains a massive body at its cen-
ter and when the vortex rotates about its axis. These fac-
tors lead to the emergence of additional terms in
Eq. (12):

(33)

Here,  is the mass of the central object and pϑ =

MR2  = const is the angular momentum associated
with the rotation of the toroid about its axis. The sup-
plementary terms do not affect in any way the evolution
of the system along the small radius. Their effect on the
vortex evolution along R can be divided into the follow-
ing limiting cases.

1. If max(G / , /M2 ) ! GM/π , the
effect of these terms can be disregarded, and the entire
dynamic analysis carried out in Sections 2 and 3, as
well as the corresponding conclusions, remains in
force. However, the presence of the central mass in the
region of the most probable intersection of particle
flows may affect their scattering and detachment.

2. If π /M ! 1 and π /GM3Rc @ 1, the rotation
of the toroid about its axis arrests contraction before it
reaches its critical stage r ~ R ~ Rc . The equilibrium
state corresponds to the large radius defined by the rela-
tion

and to the small radius defined by substituting the large
radius into relation (18). In this case, the probability of
effective scattering and detachment of particles at the
middle of the vortex virtually vanishes and, hence, col-
lapse does not take place.

3. If π /M @ 1 and π /GM3Rc ! 1, the revolu-
tion of a vortex around its axis is insignificant, and the
central mass enhances the contraction. The vortex con-
tracts to a compact object and its subsequent behavior
depends on the scenario of direct interaction of the ver-
tex with the central mass. Naturally, the scattering of
particles and the possible vortex collapse in this case
also depend to a considerable extent on the interaction
of the matter with the central mass.

4. If π /M @ 1 and π /GM3Rc @ 1, the last two
terms on the right-hand side of Eq. (33) compete. If the
first term is greater than the second (the attraction of the
central object prevails), the situation corresponds to
case 3; for the opposite relation, we have case 2.
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APPENDIX

Motion of Particles in the Gravitational Field 
of the Ring

We assume that the gravitational field of a thin tor-
oid is close to the field of an infinitely thin ring of the
same mass. Let the ring radius be r0 and r, ϕ, and z be
the cylindrical coordinates, z = 0 corresponding to the
plane of the ring. The gravitational potential of the ring
is given by

Introducing the dimensionless variables ξ = z/r0 and

ρ = r/r0 and time τ = t , we obtain the equa-
tions of motion of a test particle in this potential:

where the primes indicate differentiation with respect
to τ, and we assume that  = 0 for a particle.

Figure 3 shows typical results of numerical calcula-
tions based on these equations for a finite motion. The
trajectories lie in the (ρ, ξ) plane and are given in
increasing order of the particle energy. It can easily be
seen that, in trajectories of the “dovetail” type (see
Figs. 3b and 3e), a particle moves practically along the
same curve in opposite directions; consequently, such
motion cannot be maintained in the framework of col-
lective motion of particles since the latter motion would
inevitably lead to collisions and strong scattering. In
addition, the trajectories in Fig. 3c and 3f cannot exist
for a collective vortex motion of particles since differ-
ent segments of a trajectory correspond to opposite
directions of vorticity. Thus, only the trajectories in
Figs. 3a and 3d can exist in the framework of collective
vortex motion of particles. The trajectory in Fig. 3a is
the cross section of a thin toroidal vortex of the Max-
wellian vortex type considered in Section 2, while the
“figure-of-eight” in Fig. 3d can appear during motion
of particles in a compact vortex of the type of a Hill vor-
tex emerging at the late stage of contraction (see Sec-
tion 3).

U r z,( )
GM
2π

--------- ϕd

z2 r2 r0
2 2rr0 ϕcos–+ +

-----------------------------------------------------------.

0

2π

∫–=

GM/2πr0
3

ρ''
ρ ϕcos–( )

ξ2 ρ2 1 2ρ ϕcos–+ +( )3/2
------------------------------------------------------------- ϕ ,d

0

2π

∫–=

ζ''
ξ

ξ2 ρ2 1 2ρ ϕcos–+ +( )3/2
------------------------------------------------------------- ϕ ,d

0

2π

∫–=

ϕ̇

SICS      Vol. 96      No. 6      2003



992 BLIOKH, KONTOROVICH
REFERENCES
1. H. Lamb, Hydrodynamics, 6th ed. (Cambridge Univ.

Press, Cambridge, 1932; Gostekhizdat, Moscow, 1947).
2. M. A. Lavrent’ev and B. V. Shabat, Problems of Hydro-

dynamics and Their Mathematical Models (Nauka, Mos-
cow, 1973).

3. P. G. Saffman, Vortex Dynamics (Cambridge Univ.
Press, Cambridge, 1995; Nauchnyœ Mir, Moscow, 2000).

4. V. I. Petviashvili and O. A. Pokhotelov, Single Waves in
the Plasma and Atmosphere (Énergoatomizdat, Moscow,
1989).

5. Yu. A. Stepanyants and A. P. Fabrikant, Wave Propaga-
tion in Shear Flows (Nauka, Moscow, 1996).

6. E. A. Kuznetsov and V. P. Ruban, Zh. Éksp. Teor. Fiz.
118, 893 (2000) [JETP 91, 775 (2000)].

7. V. F. Kop’ev and S. A. Chernyshev, Usp. Fiz. Nauk 170,
713 (2000) [Phys.–Usp. 43, 663 (2000)].
JOURNAL OF EXPERIMENTAL
8. D. Linden-Bell, NATO ASI Ser., Ser. B 156, 155 (1986).

9. B. F. Schutz, NATO ASI Ser., Ser. B 156, 123 (1986).

10. J. L. Tassoul, Theory of Rotating Stars (Princeton Univ.
Press, Princeton, N.J., 1978; Mir, Moscow, 1982).

11. Physics of Extragalactic Radio-Sources, Ed. by R. D. Dag-
kesamanskiœ (Mir, Moscow, 1987).

12. C. J. Lada, Annu. Rev. Astron. Astrophys. 23, 267
(1985).

13. G. V. Ustyugova, R. V. E. Lavelace, M. M. Romanova,
et al., Astrophys. J. 541, L21 (2000).

14. R. Antonucci, Annu. Rev. Astron. Astrophys. 31, 473
(1993).

15. M. Ansorg, A. Kleinwachter, and R. Meinel, gr-qc/0211040.

Translated by N. Wadhwa
 AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003



  

Journal of Experimental and Theoretical Physics, Vol. 96, No. 6, 2003, pp. 993–1005.
Translated from Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 123, No. 6, 2003, pp. 1131–1144.
Original Russian Text Copyright © 2003 by Kozlovskii.

         

ATOMS, SPECTRA, 
RADIATION
Quantum Dynamics and Statistics
of a Bose Condensate Generated by an Atomic Laser

A. V. Kozlovskii
Lebedev Institute of Physics, Russian Academy of Sciences, Moscow, 119991 Russia

e-mail: kozlovsk@sci.lebedev.ru
Received March 20, 2002

Abstract—A self-consistent quantum theory is developed for an atomic laser utilizing cooling of atoms in a
trap by the method of stimulated evaporation. The model describes the pumping and extraction of the atomic
field from a trap upon its interaction with independent atomic reservoirs. The stimulated collisions between
atoms in the trap, which produce a Bose condensate in the lower state of the trap, are considered. The interaction
of atoms with a phonon field causes spontaneous transitions between the discrete states of the trap. Calculations
performed for the three- and four-level models of the trap showed the possibility of generation of a strongly
squeezed sub-Poisson Bose condensate. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The recent successful experiments on the produc-
tion of a Bose condensate in traps showed the possibil-
ity of creation of coherent sources of material waves
(atomic lasers) [1, 2]. As the resonator of an atomic
laser, a parabolic magnetic trap is used, the discrete
energy levels of the trap pumped by an external source
of cooled atoms representing the resonator modes. The
conditions for producing a Bose condensate are real-
ized at least for the lower state of the trap (the conden-
sate mode). The excitation of atoms from their inner
states to the electronic states, in which atoms can be
captured by a trap or extracted from it, is performed by
a radio- or microwave electromagnetic field. The con-
tinuous and pulsed lasing regimes are achieved in
atomic lasers by the same means, but at different values
of the parameters of the electromagnetic field used for
pumping and extraction of the atomic field from the
trap. The lasing dynamics of the atomic laser is deter-
mined by the balance between the introduction of
atoms to the trap and the extraction of the Bose conden-
sate from the trap taking into account the cooling rate
(population of the lower states of the trap), which is
also stimulated by the external electromagnetic field. A
fundamental property of the atomic laser is the coher-
ence of the field produced. The coherence and quan-
tum-statistical properties of the field are studied in the
quantum optics of atomic fields [3–11]. The modern
phenomenological semiclassical theories [12–18] and
quantum-mechanical theories [3–11, 19–29], which
consider models of the atomic laser with different
schemes of pumping, cooling, and extraction of the
field from the trap, predict the presence of the lasing
threshold, saturation, and a high degree of coherence of
the Bose condensate generated by the atomic laser [3, 9,
10, 23]. Note that the semiclassical theory of the atomic
1063-7761/03/9606- $24.00 © 20993
laser based on the mean field approximation [16–18]
does not allow one to study the quantum statistics of the
field because in this case the preliminarily specified
phenomenological statistics of the atomic gas are used.
Only a completely quantum-mechanical theory permits
one to investigate quantum-statistical effects and to
determine the coherent properties of the atomic-laser
field. The quantum-mechanical theories of the atomic
laser being currently developed use a model with a
finite number of atomic-field modes in the trap. Such an
approach allows one to study the effect of collisions
between atoms inside the trap on the dynamics and sta-
tistics of a Bose condensate generated by the atomic
laser. This model of the laser corresponds to the exper-
imental conditions under which processes of stimulated
cooling (evaporation) rapidly deplete the upper energy
levels of the trap. In this paper, the self-consistent the-
ory of Bose condensation is developed for an atomic
gas in a trap, taking into account collisions between
atoms under thermally nonequilibrium conditions. The
theory is based on the solution of the control equation
for the density matrix simultaneously with the system
of generalized Hartree–Fock equations for the wave
functions of the atomic field in the states of the trap.

The numerical calculations of the dynamics and sta-
tistics of an atomic field are performed in the approxi-
mation of the eigenfunctions of the trap for the three-
and four-level models of a laser. The model describes
pumping processes, the extraction of the field from the
ground state of the trap, and spontaneous transitions, as
well as the collision redistribution of atoms among the
states of the trap. The lasing dynamics of an atomic
laser is analyzed for different pump rates and different
frequencies of collisions between atoms, and the rates
of spontaneous transitions of atoms between the trap
levels are calculated. It is shown that the Bose conden-
sate generated by an atomic laser exists in a squeezed
003 MAIK “Nauka/Interperiodica”
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quantum state with sub-Poisson fluctuations of the
number of atoms. For large Bose condensates with the
average number of atoms of the order of 106, the ratio
of the dispersion of the number of atoms to their aver-
age number (the Fano factor for the atomic field) can
achieve 0.5.

The model of an atomic laser is presented in Sec-
tion 2. The effective many-particle Hamiltonian is con-
sidered for the open system of colliding Bose atoms in
a trap, which describes their interaction with the atomic
pump and loss reservoirs, as well as the phonon field
inducing spontaneous transitions between the discrete
energy levels of the trap. Section 3 is devoted to the
analysis of the self-consistent dynamics of atomic
fields. Approximations are considered which are used
for calculations of the wave functions of the atomic
field in the trap simultaneously with the solution to the
equation for the reduced density matrix. In Section 4,
the control equation is obtained, within the framework
of the Born–Markoff approximation, for the density
operator in the model of an atomic laser with a finite
number of levels in the approximation of the eigen-
states of the trap. The approximation is considered at
which collisions of atoms in the trap do not affect the
spatial distribution of the atomic field. The results of
numerical calculations of the dynamics and statistics of
the Bose gas are presented in Section 5. Conclusions
are formulated in Section 6.

2. MODEL 
OF AN EVAPORATION-BASED ATOMIC LASER

We will describe the open system of atoms in a trap,
which interact with reservoirs, by the method of sec-
ondary quantization of atomic fields using the creation
and annihilation operators, which are defined as

(1)

(2)

where Ψs(r) and  are the annihilation and cre-
ation operators for an atom at the point r in the trap,

respectively, and Ψα(r) and  are the annihilation
and creation operators, respectively, for particles in
pump reservoirs (α = p) and in reservoirs performing
the extraction of the atomic field from the trap (α =
out). The c-numerical functions  and ψαλ(r) enter-
ing the right-hand sides of Eqs. (1) and (2) determine
the spatial distributions of the fields.

Ψs r( ) a jφj r( ), a j

j

∑ r3 φj* r( )Ψs r( ),d∫= =

Ψα r( ) bαλ ψαλ r( ),
λ 0=

∞

∑=

bαλ r3 ψαλ* r( )Ψα r( ), αd∫ p out,,= =

Ψs
† r( )

Ψα
† r( )

φj r( )
JOURNAL OF EXPERIMENTAL
The above operators satisfy the boson permutation
relations

(3)

The quantum-mechanical average number of atoms
captured by the trap is

(4)

Along with the atomic reservoirs described above, we
will consider the reservoir of a phonon field, which is a
source of spontaneous transitions between the states of
the trap (see also [27, 28]). In addition, we will consider
an electromagnetic field involved in the processes of
extraction of the field from the trap and trap pumping,
as well as in the process of stimulated cooling of atoms
in the trap [1, 2].

We consider the effective many-particle Hamilto-
nian of the problem, which contains the free-energy
terms and the operators of interaction of the system
with reservoirs, as well as operators describing the
interaction between atoms in the trap, in the form

(5)

The Hamiltonian (4) describing the atomic Bose con-
densate in the Hartree approximation can be written,
using the field operators (1) and (2), as a sum of the fol-
lowing terms:

the energy of atoms in the trap,

(6)

the energy operators of the atomic pump reservoir and
the reservoir of extraction of atoms from the trap (β =
p, out),

(7)

the energy operator of the electromagnetic field applied
to the trap (β = EM),

(8)

Ψα r( ) Ψα'
† r'( ),[ ] δα α ', r r'–( ),=

α α ', s p out,, ,=

Ψα r( ) Ψα' r'( ),[ ] Ψα
† r( ) Ψα'

† r'( ),[ ] 0.= =

r3 Ψs
† r( )Ψs r( )〈 〉d∫ a j

†a j〈 〉
j

∑ N .= =

H Hs HRβ

β
∑ VsRβ

β
∑ V coll.+ + +=

Hs r3d∫=

× –
"

2

2m
-------∇Ψ s

† r( )∇Ψ s r( ) Ψs
† r( )V tr r( )Ψs r( )+ ;

HRβ r3d∫=

× –
"

2

2m
-------∇Ψ β

† r( )∇Ψ β r( ) Ψβ
† r( )Vβ r( )Ψβ r( )+ ;

HR EM, "ωjbEM j,
† bEM j, ;

j

∑=
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and the free energy of the phonon field (β = phon),

(9)

The terms describing the interaction of the system of
atoms in the trap with the reservoirs have the form

(10)

(11)

(12)

(13)

The functions Λ entering (10)–(12) are the coupling
constants of the atomic field of the trap with the fields
of reservoirs.

We will consider the electromagnetic field applied
to the trap classically. In this case, the operator (8) rep-
resents a c-numerical constant.

Neutral atoms forming the Bose condensate are
located in a parabolic trap with the potential

where m is the atom mass. The effective interaction
between atoms in the trap is described by the pseudo-
potential

(where a0 is the collision length for the scattering of
S waves) and by the dipole–dipole two-particle interac-
tion potential , i.e., 

The terms in (11) and (10) containing the operators
Ψp(r) and Ψout(r) are related to the reservoirs from
which the trap levels are pumped by external sources
and the atoms are extracted from the trap. In particular,
the atomic field can be extracted during the interaction
of atoms with a resonance radio-frequency field, which
induces electronic transitions between the Zeeman sub-
levels of the atoms [1, 2]. In this case, Λout(r, t) =
Ω(r, t), where Ω(r, t) = m · B(r, t)/" is the Rabi fre-
quency of an atom in the magnetic field B(r, t), m is the
transition magnetic moment, and Ψout(r) is the creation
operator for a free atom extracted from the trap. The
pump operator (11) is defined similarly with the help of
the annihilation operator Ψp(r) for an atom in the inco-

HR phon, "ωphon λ, bphon λ,
† bphon λ, .

λ 0=

∞

∑=

VsRout " rΨout
† r( )Λout r t,( )Ψs r( )

3
d h.c.,+∫=

VsRp " r3 Ψs
† r( )Λ p r t,( )Ψp r( )d∫ h.c.,+=

VsRphon " r3 Ψs
† r( )d∫

λ 0=

∞

∑=

× bphon λ, Λsp λ, r( )Ψs r( ) h.c.,+

Vcoll
1
2
--- r3 r'3 Ψs

† r( )Ψs
† r'( )d∫d∫=

× U r r'–( )Ψs r( )Ψs r'( ).

V tr r( )
m
2
---- ωα

2 rα
2 ,

α x y z, ,=

∑=

V r r'–( ) uδ r r'–( ), u 4πa0"
2/m,= =

Vdd r r'–( )

U r r'–( ) V r r'–( ) Vdd r r'–( ).+=
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herent pump reservoir, which is, in this particular case,
in thermodynamic equilibrium. We will assume below
that the interaction of atoms with the fields performing
pumping, the extraction of the condensate, and stimu-
lated evaporation are weak (low Rabi frequencies); i.e.,
we will consider the case of a cw atomic laser [1]. At
the same time, we will take into account the time
dependence of the coupling constants.

Using the field operators (1) and (2), we can write
the Hamiltonian (5) in the form

(14)

where the energy of the jth state of the trap is

(15)

and "ωαλ is the energy of the harmonic oscillator λ in
the reservoir α.

The coupling constants characterizing the interac-
tion with reservoirs are defined as

(16)

(17)

(18)

The coupling constants for elastic and inelastic colli-
sions between atoms in the trap are

(19)

The first two terms in (14) are the energy of atoms
in the trap and the intrinsic energy of oscillators in res-

H "ωja j
†a j

j

∑= "ωαλ bαλ
† bαλ

λ 0=

∞

∑
α p out phon, ,=

∑+

+ " Γλ i j, , bphon λ,
† aia j

† h.c.+( )
i j>
∑





λ 0=

∞

∑

+ " κλ i, t( )bP λ, ai
† h.c.+[ ]

i

∑

+ " µλ j, t( )bout λ,
† a j h.c.+( )

j

∑




+
1
2
--- "gi j k l, , , ai

†a j
†akal,

ijkl

∑

"ωj r3 φj* r( )K r( )φj r( ),d∫=

K r( )
"

2

2m
-------∇ 2– V tr r( ),+=

µλ i, t( ) r3 Ψout λ,* r( )Λout r t,( )φi r( ),d∫=

κλ j, t( ) r3 Ψp λ, r( )Λ p r t,( )φj* r( ),d∫=

Γλ i j, , r3 φj* r( )Λsp λ, r( )φi r( ).d∫=

gi j k l, , ,
u
2
--- r3 φi* r( )φj* r( )φk r( )φl r( )d∫=

+
1
2
--- r'3 r3 φi* r( )φj* r'( )Vdd r r'–( )φk r( )φl r'( ).d∫d∫
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ervoirs, respectively. The next three terms in (14), cor-
responding to VsRβ in (4), are the sum of potentials of
interaction of atoms in the trap with reservoirs, which
cause the spontaneous decay from the discrete energy
levels of the trap, the extraction of atoms from the trap,
and pumping. The last term is the interaction potential
Vcoll for elastic and inelastic binary collisions between
atoms captured by the trap.

In this paper, we consider the model of an atomic
laser in which atoms are cooled during evaporation
[1, 2]. Preliminarily cooled atoms enter a trap of reser-
voirs, which are in thermodynamic equilibrium. It is
assumed that atoms in the trap can be in four energy
states and are characterized by a set of creation (annihi-

lation) operators  (ai), where i = 0, 1, 2, 3. It is also
assumed that the high-lying energy states of the trap are
weakly populated due to stimulated evaporation per-
formed with the help of a radio-frequency electromag-
netic field applied to the trap [1, 2]. A Bose condensate
is obtained in the lower energy state |0〉 , from which the
accumulated condensate enters, at the rate κout , a reser-
voir of the continuous spectrum of vacuum states (out-
put laser radiation). Different methods for the extrac-
tion of the Bose condensate from a trap were consid-
ered in papers [17, 25]. Each of the states of the trap is
pumped independently at the rate pi from the corre-
sponding incoherent reservoirs with the average occu-

pation numbers . Dissipation processes related to
the exchange of atoms in the trap with the correspond-
ing reservoirs with the average occupation numbers

 occur at the rates γi. The pumping of an atomic
laser from thermal reservoirs was considered in papers
[10, 19–21].

For binary collisions between atoms in the trap in a
particular case of four levels considered below, the last
term in (14) represents the interaction energy of collid-
ing atoms in the dipole approximation and consists of
the elastic and inelastic contributions

(20)

where

(21)

ai
†

Ni
pump

Ni
decay

V coll V elast V inelast,+=

V elast V jj Vij+=

=  "g jjjja j
†2a j

2

j 0=

3

∑ "gijijai
†a j

†aia j,
i j, 0 i j<,=

∑+

V inelast "g0211a0
†a2

†a1
2

"g1102a1
†2a0a2+=

+ "g0312a1a2a3
†a0

†
"g1203a0a3a1

†a2
†+

+ "g1322a1
†a3

†a2
2

"g2213a2
†2a1a3,+

gijkl gijkl* .=
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3. SPATIAL DISTRIBUTION 
OF ATOMS IN TRAP MODES

We will use the variational principle to derive equa-
tions determining the spatial dependences {φj(r)} of
field operators (1). We will require the stationarity of
the functional

at each instant upon variation of {φj(r)}. By imposing
the orthonormality condition

for a discrete spectrum on the basis of functions {φj(r)},
we will use the Lagrange method of multipliers. In this
case, the variational equation will take the form

(22)

which gives the equations for the level energy eigenval-
ues {ej} and functions {φj(r)}, whose form can be
found from the relation

(23)

following from (22), where

(24)

Let us define now the mean value of the total Hamil-
tonian (4) as

where σtotal is the total density operator of the system
and reservoirs interacting with the system. Upon aver-
aging with a time-dependent density operator, one-par-
ticle eigenfunctions {φj(r, t)} and eigenvalues {ej(t)}
acquire a parametric dependence on time. By using the
assumption of a weak interaction between the system
and reservoirs (the Born approximation), we consider
the total density operator in the form of a sum

(25)

where ρ(t) = SpR(σtotal(t)) is the reduced density opera-
tor of the system representing the trace of the total den-
sity operator over the variables of reservoirs. The quan-
tity f0 in (25) is the product of the density operators of
independent reservoirs in thermodynamic equilibrium.
In the interaction representation, the last term in (25) in
the first approximation over the potential of interaction

E φj r( ) φj* r( ),[ ] r3 H r( )〈 〉d∫=

r3 φi* r( )φj r( )d∫ δij,=

δE ε jδ r3 φj* r( )φj r( )d∫
j

∑– 0,=

δ
δϕ j*
---------- r3 H r( )〈 〉d∫ 0,=

H r( )〈 〉 H φj r( )φj* r( )[ ]〈 〉=

– ε jφj r( )φj* r( ) n j〈 〉 .
j

∑

H φj r t,( ) φj* r t,( ),[ ]〈 〉 Sp σtotal t( )H φj r( ) φj* r( ),[ ]( ),=

σtotal t( ) ρ t( ) f 0 ∆ρ 1( ) t( ),+=
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VsR =  of the system with reservoirs has the
form

(26)

where […, …] is a commutator. By performing func-
tional differentiation in the variational equation (23)
and using (14)–(19), we obtain the system of coupled
eigenvalue differential equations of the type (for any j)

(27)

The coherent part of Eq. (27) appears after the calcula-
tion of the quantum-mechanical mean for the terms
containing the system operators with the help of the
first term in (25). The terms determining the change of
the wave functions of atoms in the trap caused by the
interaction with reservoirs (irreversible processes) are
contained in the second term in Eq. (27). For coherent
terms, we obtain

(28)

where

The irreversible terms in (27), which appear after the
calculation of the mean using the total density opera-
tor (25), prove to be, within the framework of our
model, proportional to the mean values of the reservoir
operators. Since we assume in our calculations that the
reservoirs are incoherent or are in thermodynamic equi-
librium, it is easy to see that

(29)

By virtue of these relations, the irreversible terms

in  (27) proportional to bβ, λ, , ,

 are zero. Therefore, in the Born–Markoff
approximation for the interaction of the system with
reservoirs, we have

(30)

This means that the irreversible processes under con-
sideration lead to the appearance of additional terms in
equations for the wave functions and introduce

VsRββ∑

∆ρ 1( ) t( )
1
i"
----- VsR t'( ) ρ t'( ) f 0,[ ] t',d

0

t

∫=

Lcoh φj r t,( )[ ] Lirr φj r t,( )[ ]+ 0.=

Lcoh φj r t,( )[ ] K j r t,( )φj r t,( ) n j t( )〈 〉 φk r t,( )
i k l, ,
∑+=

× r'φi
* r' t,( )U r r'–( )φl r' t,( ) a j

† t( )ai
† t( )ak t( )al t( )〈 〉 ,

3

d∫

K j r t,( )
"

2

2m
------- ∇ 2– V tr r( ) ε j t( ).–+=

bβ λ,〈 〉 bβ λ,
†〈 〉 0,= =

bβ λ, bβ' λ',〈 〉 bβ λ,
† bβ' λ',

†〈 〉 0,= =

bβ λ, bβ' λ',
†〈 〉 δ λ λ ', δβ β', Nλ

α( )
1+( ),=

bβ λ,
† bβ' λ',〈 〉 δ λ λ ', δβ β', Nλ

α( )
.=

bβ λ,
†〈 〉 bβ λ, bβ' λ',〈 〉

bβ λ,
† bβ' λ',

†〈 〉

Lirr φj r t,( )[ ] 0.=
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changes in the time of average values 〈nj(t)〉 and

 entering into these equations.

The distribution of the Bose condensate density can
be calculated using different approximate equations,
which follow directly from the general equation (28).
By considering a system of atoms in a trap as a canon-
ical ensemble in thermodynamic equilibrium and
assuming that the number of atoms in the trap is fixed
[27–35], we obtain for the density operator, which is
stationary in this case,

(31)

where

and µ is the chemical potential.
The quantum-mechanical mean for the operators O

of the system is defined in this case as

(32)

By using (31) and (32), we obtain from (28) the system
of equations for {εj, φj}

(33)

The value of the chemical potential µ can be deter-
mined for any fixed number of atoms in the trap
because the condition

(34)

is fulfilled in the case of thermal equilibrium.
The calculation of the spatial distribution of the

Bose condensate is greatly simplified if we assume that
the temperature of the canonical ensemble T = 0 and
only the lower state of the trap with the wave function
φ0 is populated, and ε0 = µ. Because the number of par-
ticles in the canonical ensemble is fixed, the creation

(annihilation) operators a0 ( ) should be replaced by

c numbers equal to . Then, we obtain from (28)

(35)

where

a j
† t( )ai

† t( )ak t( )al t( )〈 〉

ρcan

β H0 µN–( )–[ ]exp
Sp βH0–( )exp[ ]

----------------------------------------------,=

H0 ε ja j
†a j

j

∑ ε jN j, β 1
kBT
---------,≡

j

∑≡=

O〈 〉 T Sp ρcanO( )/Sp ρcan( ).=

K j r( )φj r( ) n j〈 〉 T

+ φj r( ) r'φj* r'( )U r r'–( )φj r'( ) n j n j 1–( )〈 〉 T

3

d∫
+ φj r( ) r'φi* r'( )U r r'–( )φi r'( ) ni〈 〉 T n j〈 〉 T

3

d∫
i j≠
∑ 0.=

N N〈 〉 β ε j µ–( )[ ]exp 1–{ } 1–

j

∑= =

a0
†

N0

K0 r( ) N0 r'φ0* r'( )U r r'–( )φ0 r'( )
3

d∫+ φ0 r( ) 0,=

K0 r( )
"

2

2m
-------∇ 2– V tr r( ) µ, ε0–+ µ.= =
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Equation (35) is reduced to the usual Gross–Pitaevskii
equation if we assume that the effective interaction
between atoms of the type

contains only the first term (pseudopotential).
As the crudest approximation for the density distri-

bution, we can consider the equation

for the eigenfunctions and energy eigenvalues of the
trap. It is assumed that collisions of atoms in the trap
have no effect on the spatial distribution of the atomic
field.

The approximation of the trap eigenstates was used
in the quantum-mechanical models of an atomic laser
[3–11], the coupling parameters (16), (17), and (19)
being constant in time due to the assumption that the
atomic-field distributions for all modes of the trap were
independent of time.

4. CONTROL EQUATION 
FOR THE REDUCED DENSITY OPERATOR 

OF THE SYSTEM

By excluding variable reservoirs in a standard way
using the Born–Markoff approximation, we obtained
the “control” equation for the reduced density operator
of the system. The presence of the reservoirs leads to
the appearance of the irreversible processes of dissipa-
tion and extraction of the field from the trap, pumping,
and spontaneous decay in the equation of motion. In the
self-consistent model of the nonequilibrium Bose gas
considered here, the coupling parameters µλ, i(t) and
κλ, i(t) entering the Hamiltonian (14), which are deter-
mined by integrating the wave functions of the field
over spatial variables [expressions (16)–(19)], depend
on time in the general case. Because the self-consistent
scheme assumes the calculation of the wave function
φj(r, t) by solving Eqs. (27) and (28) at each instant of
time, the coupling parameters also depend on time. The
simplest approximation of the trap eigenstates used at
present in the models of an atomic laser [3–11, 19–29]
leads in general to the violation of the self-consistency
in the calculation of the dynamics of the nonequilib-
rium Bose gas. In this paper, we consider the time
dependence of the coupling parameters describing
pumping processes and losses in the trap caused by the
time dependence of the wave functions of the trap
modes.

Because all the operators (20), (21) entering the
Hamiltonian are bilinear in the creation and annihila-
tion operators, the contribution to the coherent (unitary)
component of the evolution of diagonal matrix ele-
ments is zero. All elastic collision processes have a dis-

U r r'–( ) uδ r r'–( ) Vdd r r'–( )+=

T r( )φj r( ) ε jφ r( ),=

T r( )
"

2

2m
------- ∇ 2– V tr r( )+=
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persion nature and affect the time dependence of non-
diagonal matrix elements and, hence, determine the
degree of coherence of the first-order field.

The equation of motion for the reduced density
operator of the system ρ(t) = SpR(σtotal) is a sum of
terms responsible for the irreversible processes of
pumping and extraction of atoms from the trap and of
losses and spontaneous transitions in atoms. In the
interaction representation, we have

(36)

In this representation, the time dependences of the cre-
ation (annihilation) operators related to the system and
reservoirs are determined by the equations

where ωOj is the eigenfrequency of the jth oscillator of
the field. By substituting expression (25) for the total
density operator into (36), we will keep in the obtained
equation the terms up to second order inclusive in the
interaction potential. Then, we will use the expressions
for the interaction potentials of the type (14) in the
equation obtained. Assuming that the coupling con-
stants in (14) are independent of coordinates and using
the Born and Markoff approximations [36], we obtain
the control equation

(37)

for the reduced density operator, where D[O]ρ ≡
2OρO† – O†Oρ – ρO†O for the corresponding opera-
tor O. The terms in the control equation that are propor-
tional to the frequency shift caused by the interaction of
the system with reservoirs are omitted in (37), and they
are assumed to be small below. Equation (37) was
derived using the stationarity of random processes

where O1(t) and O2(t) are the operators of random pro-
cesses related to reservoirs.
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The loss and pump rates entering (37) have the form

(38)

(39)

and the average occupation numbers of the pump and
loss reservoirs are

(40)

(41)

Note that the quantities pi , , and γi ,  can be
both positive and negative, depending on the reservoir
properties and the interaction dynamics.

As mentioned above, we will consider a simplified
model of an atomic laser that takes into account the four
lower states of a trap. We assume that pumping is per-
formed only into the first |1〉  excited state of the trap,
i.e., pj = 0 if j ≠ 1. The Bose condensate is extracted
from the lower |0〉  state to vacuum. In this case, Eq. (37)
can be written in the form

(42)
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where

are the effective pump and loss rates for the 
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 state.
The superscript “eff” will be omitted below.

In the model under study, the stimulated cooling of
atoms in the trap is performed by the evaporation
method, where the atoms are removed from the states
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 and 
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 by a radio-frequency field that changes their
electronic states. Assuming that the rates of extraction
of atoms in the upper states from the trap are high, i.e.,

(43)

for the density operator, we perform the adiabatic
exclusion of modes 
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Using the Hamiltonian (14), we write the stochastic
Heisenberg–Langevin equations for the operators 
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 in the interaction representation (see, for exam-
ple, [35] in the form
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equations, we find

(48)

(49)

By substituting adiabatic values (48) and (49) into the
terms γ2D[a2]ρ/2 and γ3D[a3]ρ/2 in Eq. (42) and aver-
aging over the reservoirs, we obtain the terms

of the control equation, where

(50)

As a result, the “control” equation for irreversible pro-
cesses can be written in the form

(51)

Here, γsp is the rate of spontaneous transitions between
the modes |1〉  and |0〉  of the trap and N01 = N(ωphon, λ) =

, "ωphon, λ = "(ω1 – ω0) = "ω01 is the
average number of phonons in the thermal reservoir of
spontaneous decay at the frequency of the |1〉  |0〉
transition in the trap. The spontaneous decay is ana-
lyzed under the assumption that the density of states of
oscillators in the phonon reservoir weakly depends on
the frequency [27, 28]. The parameters  and 
in (51) are the average numbers of atoms in reservoirs
related to the |0〉  and |1〉  states, respectively. They are
calculated in the general case from expressions (40)
and (41).

The rates Ω1 and Ω2 defined in (50) represent the
effective rates of inelastic collisions involved in the cre-
ation of the Bose condensate in the ground state of the
trap and corresponding, therefore, to stimulated transi-
tion in a usual laser.
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Note also that condition (43), which means that the
loss rates for nonlasing modes of the field are much
higher than the pump rate, the rate of the coherent out-
put of the lasing mode, and the effective rates of inelas-
tic collisions, provides the low population of modes |2〉
and |3〉 .

The diagonal matrix elements of the reduced density
matrix  ≡ 〈n0n1|ρ(t) |n0n1〉  have the form

(52)

The quantum-mechanical means of the operators of the
number of atoms in the lower energy state of the trap
(lasing mode) and of dispersion (fluctuation) of the
number of atoms are calculated using the diagonal ele-
ments of the density matrix:

(53)

(54)

The Fano factors for the Bose condensate in the ground
state and in the first excited state of the trap are defined
as

(55)

We will neglect below the pump rates for all modes
except the |1〉  mode. The transitions of atoms from the
lasing |0〉  mode to the thermostat will also be neglected.
We also assume that the Bose condensate is extracted
from the lower state of the trap to vacuum at the rate
κout @ γ0(  + 1).
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5. QUANTUM DYNAMICS AND STATISTICS 
OF AN ATOMIC LASER

The self-consistent theory of an atomic laser devel-
oped above assumes that Eqs. (27) and (28) for the
wave functions {φj(r, t)} of the field representing a sys-
tem of coupled eigenvalue equations are solved by the
iteration method simultaneously with the solution of
the control equation (51) for the reduced density oper-
ator for an open system. Such a coupled system of
equations can be solved only numerically. Its solution
seems impossible at present because it is too cumber-
some. In this paper, we calculated numerically the den-
sity matrix of the system in the approximation of the
eigenstates of the trap, when the dissipation and pump
rates are independent of time, i.e., in the approximation
used in [3–9, 11, 19–24, 27, 28].

We solved numerically the system of coupled differ-
ential equations (52) for matrix elements  using

the initial conditions  = , i.e., when
atoms were initially absent in the trap.

The generation dynamics of the atomic field for the
three-level model of an atomic laser considered here
depends qualitatively on the relations between the rate
p1 of pumping of the |1〉  state of the atomic trap, the
extraction rate κout for the Bose condensate in the
ground |0〉  state, the rate Ω1 of stimulated transitions
from the |1〉  state to the |0〉  and |2〉  states, and the rate γsp
of spontaneous transitions from the |1〉  state to the |0〉
state due to the interaction with the reservoir. Under the
assumption that the rate γsp is much lower than all other
rates mentioned above, the lasing regimes of an atomic
laser can be divided into two characteristic types. If
p1 > Ω1 and p1, Ω1 ~ κout , then two stages of lasing
dynamics are typical (see Figs. 1a and 1b). At first, the
|1〉  state is populated, and the number of particles of a
slowly accumulated Bose condensate in the |0〉  state is
small, the fluctuations in the number of particles drasti-
cally increasing up to values that are typical for a ran-

dom thermal field:  ≈ (〈n0〉  + 1)〈n0〉 . At the
next stage, the number 〈n1〉  of atoms decreases, whereas
〈n0〉  increases and fluctuations 〈(∆n0)2〉  decrease,
approaching the Poisson value equal to 〈n0〉 ss in the sta-
tionary state. For p1 < Ω1 and p1, Ω1 @ κout , the station-
ary Bose condensate in the |0〉  state can be in a weakly
squeezed sub-Poisson state F0 < 1 (Fig. 1c).

When p1 ! Ω1 and p1, p1, Ω1 @ κout , another regime
of generation of the Bose condensate is realized
(Fig. 2). There is no stage of population of the |1〉  state;
a drastic increase in the fluctuations of the Bose con-
densate in the |0〉  state is also absent. The fluctuations
of the Bose condensate can achieve the sub-Poisson
values of the squeezed state (Fig. 2a). The population n1
of the |1〉  state proves to be low at any time until the
establishment of the stationary state, and the fluctua-
tions 〈(∆n1)2〉  of the number of particles become essen-

ρn0n1
t( )

ρn0n1
0( ) δn0 0, δn1 0,

∆nBC( )2〈 〉
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Fig. 1. (a) Dependences of the average number n0 of atoms
of the Bose condensate, the dispersion (fluctuations)
〈(∆n0)2〉  of the number of atoms, and the Fano factor F0 =

〈(∆n0)2〉/〈n0〉  on the reduced time κoutt for the pump rate
p1 = 100κout, the rate of collision transitions Ω1 = κout, the

average number of particles in the reservoir  = 1, and

γsp ! Ω1. (b) Dynamics of 〈n0〉 , 〈(∆n1)2〉 , and F1 =

〈(∆n1)2〉/〈n1〉  for the first excited state of the trap for the
same parameters as in Fig. 1a. (c) Comparison of the
dynamics of the Fano factors F0 and F1 for the same param-
eters as in Fig. 1a.
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Fig. 2. (a) Dynamics of the Fano factors F0 and F1 for p1 =

106κout, Ω1 = 109κout,  = 1, and γsp ! κout. (b) Dynam-

ics of 〈n1〉 , 〈(∆n0)2〉 , and F1 for the same parameters as in
Fig. 2a: Ω1 @ p1 @ κout @ γsp. (c) Dynamics of n0 and

〈(∆n0)2〉  for the same parameters as in Fig. 2a.
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tially sub-Poisson: F1 < 1. In this regime, p1, Ω1 @ κout ,
and irrespective of the values of transition rates, the
population 〈n1〉 ss is equal to 0.333 for the dispersion of
the number of particles 〈(∆n1)2〉 ss = 0.667〈n1〉 ss (Fig. 2b).

Systematic calculations showed that the condition
for the creation of a Bose condensate in a squeezed sub-
Poisson state is the relation Ω1 @ p1 @ κout @ γ1, irre-

spective of the value of . The degree of squeezing
increases with increasing number of bosons in the con-
densate, 〈n0〉 ss @ 1, when Ω1, p2 @ κout . For the values
of the laser parameters satisfying the inequalities Ω1 @
p1 @ κout @ γ1, at which 〈n0〉 ss ~ 106, the maximum sup-
pression of fluctuations achieves almost half the level
of the shot noise. In this case, the Fano factor can
achieve the value F0, ss ≈ 0.54 (Fig. 2a).

The calculations showed that, for p1 >  @ Ω1,

p1  > κout @ γ1, the stationary average number of
atoms in the Bose condensate can be estimated from the
expression

(56)

In [23], the control equation for the density operator in
the model of an atomic laser, similar to that considered
here, was transformed to the Fokker–Planck equation
for the quasi-probability P function in the phase space
of the amplitude and phase of the atomic field. The sto-
chastic differential equations for the number of parti-
cles and phases of the fields in the trap modes, which
were obtained from the Fokker–Planck equation, were
solved in [23] under stationary conditions for average
values. In the limit 〈n0〉  @ 1, the semiclassical average
number of atoms in the lower state of the trap was
found in [23, 26] in a form similar to (56). However, the
sign of the square root, which was arbitrary within the
framework of calculations performed in these papers,
was chosen to be negative. Our exact quantum-mechan-
ical calculations confirm the validity of expression (56),
where the sign of the root is positive.

At the same time, for p1 ~ , Ω1, the average num-
ber of atoms in the Bose condensate is described by the
expression 〈n0〉 ss = ηp1 /κout , where η ≈ 2. This
expression agrees qualitatively with calculations per-
formed in [3] for a similar laser scheme, according to
which 〈n0〉 ss = 2p1 /3κout for the case Ω1 > p1,  @
κout considered in [3]. The lasing threshold for the laser

we considered is determined by the relation p1  > κout.

It was assumed in calculations discussed above that
the rate of spontaneous transitions between trap modes
is much lower than the rates of other processes. The cal-
culations performed under conditions when the rate of
spontaneous transitions is comparable with the rate of
extraction of the coherent condensate from the trap
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(γsp = 0.5κout for  = 1) are presented in Fig. 3. A
comparison of the parameters characterizing the con-
densate under such conditions with the case of the
absence of spontaneous decay (γsp ! κout) shows that
spontaneous transitions have no effect on the stationary
mean value 〈n0〉 ss but substantially enhance fluctuations
〈(∆n0)2〉 ss of the Bose condensate and change the lasing
dynamics of an atomic laser.

The calculations of the lasing dynamics presented
above were performed within the framework of the
three-level model assuming that Ω2 ! κout . To estimate
the effect of high-lying energy levels of the trap on the
dynamics and statistics of the generated condensate, we
performed calculations for the case Ω1 ~ Ω2, i.e., for the
four-level model of an atomic laser. Figure 4 shows the
time dependences of the Fano factor for the four-level
scheme at Ω1 = Ω2 and for the three-level scheme at
Ω2 = 0. The comparison shows that, even when the
upper levels are substantially populated, the fluctua-
tions of the Bose condensate in the ground state of the
trap increase only slightly (by several percent) at high
rates of collision transitions.

Our calculations showed that a Bose condensate
with minimal sub-Poisson fluctuations of the number of
particles can be produced by the stimulated cooling of
atoms, when the populations of the upper levels of the
trap are always much lower than the population of the
|0〉  ground state of the trap and of the |1〉  state through
which pumping is performed.

The fluctuations of the number of particles in a Bose
condensate were studied in [27–35] in thermal equilib-
rium for a fixed number of particles in a trap within the
framework of a standard description of an ideal gas
with the help of a canonical or a microcanonical ensem-
ble. The numerical and analytic calculations of fluctua-
tions in a canonical ensemble of noninteracting parti-
cles were performed in [31]. It was shown that the
fluctuations of the Bose condensate consisting of
102−106 atoms in the trap approached almost linearly to
zero at T/Tc  0, where Tc is the critical temperature
of the Bose condensation. The results obtained in [30,
32, 34, 35] for a microcanonical ensemble (the isolated
state of atoms in the trap) agree qualitatively with
data [31], fluctuations in a microcanonical ensemble
always being greater than those in a canonical ensem-
ble. It was found in [35] that, for small values of T/Tc ,
the magnitude of fluctuations was independent of the
total number N of particles. Similar results were
obtained in paper [32] for both canonical and microca-
nonical ensembles.

A canonical ensemble of particles with spontaneous
transitions between the trap states was studied in [27–29].
Quantum-mechanical calculations performed in these
papers also showed the achievement of the Fock state of
an ideal Bose condensate at T/Tc  0.

N01
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The authors of [35] have drawn other conclusions.
The Hartree–Fock–Bogolubov–Popov theory used in
this paper, which takes into account collisions between
atoms in a trap at a fixed number of atoms and constant
temperature, shows that the quantum statistics of the
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Fig. 3. Effect of spontaneous transitions on the dynamics of
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atomic field tends to the Poisson statistics, which is typ-
ical for the coherent state of a Bose condensate when
T/Tc  0. The calculations [33] were performed
under conditions of thermodynamic equilibrium (T ≠ 0)
for a large canonical ensemble of atoms taking into
account collisions between atoms in a trap. A compari-
son of the results obtained in this paper with the data for
the canonical and microcanonical ensembles of an ideal
gas suggests that the Fock state with the sub-Poisson
fluctuations of the number of particles can be obtained
in thermal equilibrium only for an ideal gas when the
number of particles is fixed. If the number of particles
depends on other parameters of the system (a large
canonical ensemble), an ideal Bose gas exhibits ther-
mal (random) fluctuations at any temperature. How-
ever, collisions between atoms at low temperatures
(T < Tc) reduce fluctuations to the Poisson level, which
is typical for the coherent state of the field.

It has been shown in this paper that, under nonequi-
librium thermodynamic conditions, a Bose condensate
can be produced in a partially squeezed state. The
model of an atomic laser considered in the paper pro-
vides a twofold reduction of fluctuations of the atomic
field compared the Poisson level.

6. CONCLUSIONS

The model of interaction of a system of Bose parti-
cles in a trap with reservoirs considered in this paper
predicts the possibility of realization of super-Poisson
and sub-Poisson statistics of a Bose condensate pro-
duced in the trap. In the scheme of stimulated evapora-
tion cooling, when only a small number of the lower
energy states of the trap are noticeably populated dur-
ing the establishment of a stationary regime, the sub-
Poisson squeezing of the Bose condensate in the
ground state of the trap is not stronger than twofold.

Our calculations have shown that the effect of the
upper states of the trap on the statistics of the Bose con-
densate is negligible. At the same time, spontaneous
transitions between the states of the trap lead to a con-
siderable increase in the fluctuations in the number of
particles.

Our calculations have shown that an evaporation-
cooled cw atomic laser can produce both the Bose
microcondensate with the average number of particles
〈n0〉  ~ 10 and the Bose macrocondensate with 〈n0〉  ~ 106

in a squeezed sub-Poisson state. However, the fluctua-
tions in the number of particles in the microcondensate
only slightly differ from the Poisson level, whereas, in
the macrocondensate, a large, almost twofold, reduc-
tion of fluctuations is observed (the Fano factor
FBC  0.5). The conditions for the generation of a
squeezed Bose condensate are the low rates of extrac-
tion of the coherent atomic field from the trap and of
spontaneous transitions between the trap modes com-
pared to the rates of incoherent pumping and stimulated
transitions in collisions between atoms in the trap. The
JOURNAL OF EXPERIMENTAL 
results obtained in the paper suggest the existence of
atomic lasers capable of generating relatively small
Bose condensates in the states that are close to the Fock
state. Such lasers can be considered as sources of indi-
vidual groups of ultracold atoms with a prescribed
exact number of atoms, which are required for a num-
ber of experiments of current interest in the optics of
atoms and photons.

ACKNOWLEDGMENTS

I thank A.N. Oraevskiœ for useful discussions.

REFERENCES
1. M.-O. Mewes, M. R. Andrews, D. M. Kurn, et al., Phys.

Rev. Lett. 78, 582 (1997).
2. I. Bloch, T. W. Hansch, and T. Eslinger, Phys. Rev. Lett.

82, 3008 (1999).
3. M. Holland, K. Burnett, C. Gardiner, et al., Phys. Rev. A

54, R1757 (1996).
4. H. M. Wiseman and M. J. Collett, Phys. Lett. A 202, 246

(1995).
5. Ch. J. Borde, Phys. Lett. A 204, 217 (1995).
6. U. Janicke and H. Wilkens, Europhys. Lett. 35, 561

(1996).
7. M. Guzman, M. Moore, and P. Meystre, Phys. Rev. A 53,

977 (1996).
8. H. M. Wiseman, A. Martin, and D. F. Walls, Quantum

Semiclassic. Opt. 8, 737 (1996).
9. H. M. Wiseman, Phys. Rev. A 56, 2068 (1997).

10. M. J. Steel, M. K. Olsen, L. I. Plimak, et al., Phys. Rev.
A 58, 4824 (1998).

11. R. Quadt, H. M. Wiseman, and D. F. Walls, Phys. Lett. A
219, 19 (1996).

12. R. J. C. Spreew, T. Pfau, and M. Wilkens, Europhys. Lett.
32, 469 (1995).

13. G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A
55, 3631 (1997).

14. A. N. Oraevskiœ, Zh. Éksp. Teor. Fiz. 103, 981 (1993)
[JETP 76, 480 (1993)].

15. A. Imamoglu, R. J. Ram, S. Pau, and Y. Yamamoto, Phys.
Rev. A 53, 4250 (1996).

16. A. N. Oraevskiœ, Kvantovaya Élektron. (Moscow) 24,
1127 (1997).

17. M. Naraschewski, A. Schenzle, and H. Wallis, Phys. Rev.
A 56, 603 (1997).

18. B. Kneer, T. Wang, K. Vogel, et al., Phys. Rev. A 58,
4841 (1998).

19. M. J. Steel and D. F. Walls, Phys. Rev. A 56, 3832
(1997).

20. J. I. Cirac and M. Lewenstein, Phys. Rev. A 53, 2466
(1996).

21. C. M. Savage, J. R. Roustekovski, and D. F. Walls, Phys.
Rev. A 57, 3805 (1998).

22. M. J. Moore and P. Meystre, Phys. Rev. A 56, 2989
(1997).

23. O. Zobay and P. Meystre, Phys. Rev. A 57, 4710 (1998).
AND THEORETICAL PHYSICS      Vol. 96      No. 6      2003



QUANTUM DYNAMICS AND STATISTICS OF A BOSE CONDENSATE 1005
24. E. V. Goldstein, O. Zobay, and P. Meystre, Phys. Rev. A
58, 2373 (1998).

25. G. M. Moy, J. J. Hope, and C. M. Savage, Phys. Rev. A
59, 667 (1999).

26. H. P. Breuer, D. Fallen, B. Kappler, and F. Petruccione,
Phys. Rev. A 60, 3188 (1999).

27. M. O. Scully, Phys. Rev. Lett. 82, 3927 (1999).
28. V. V. Kocharovsky, M. O. Scully, S.-Y. Zhu, and

M. S. Zubairy, Phys. Rev. A 61, 023609 (2000).
29. J. J. Hope, G. M. Moy, M. J. Collett, and C. M. Savage,

Phys. Rev. A 61, 023603 (2000).
30. D. Jaksch, C. W. Gardiner, and P. Zoller, Phys. Rev. A 56,

575 (1997).
31. H. D. Politzer, Phys. Rev. A 54, 5048 (1996).
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
32. M. Gajda and K. Rzazewski, Phys. Rev. Lett. 78, 2686
(1997).

33. R. J. Dodd, C. W. Clark, M. Edwards, and K. Burnett,
Opt. Express 1, 284 (1997).

34. N. L. Balazs and T. Bergeman, Phys. Rev. A 58, 2359
(1998).

35. S. Grossman and M. Holthaus, Phys. Rev. Lett. 79, 3557
(1997).

36. M. Lax, Fluctuation and Coherence Phenomena in Clas-
sical and Quantum Physics (Gordon and Breach, New
York, 1968; Mir, Moscow, 1974).

Translated by M. Sapozhnikov
SICS      Vol. 96      No. 6      2003


	1006_1.pdf
	1019_1.pdf
	1037_1.pdf
	1045_1.pdf
	1055_1.pdf
	1065_1.pdf
	1078_1.pdf
	1089_1.pdf
	1104_1.pdf
	1113_1.pdf
	1122_1.pdf
	1124_1.pdf
	1131_1.pdf
	1140_1.pdf
	1149_1.pdf
	985_1.pdf
	993_1.pdf

