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Abstract—Physical mechanisms for destabilization of MHD perturbations by external quasistatic magnetic
fieldsand rotating helical magnetic fieldsin atokamak plasmaareidentified using anumerical model of tearing
modes in a viscous high-temperature plasma. The critical conditions for the onset of MHD perturbations and
their dynamic model are compared with the experimental results from the JET tokamak. The model is used to
predict how the stray magnetic fieldswill influence plasma stability in atokamak reactor (ITER). © 2000 MAIK

“ Nauka/Interperiodica” .

1. INTRODUCTION

Recent tokamak experiments have revealed that
stray magnetic fields have a significant impact on the
stability of MHD modes in a high-temperature plasma
[1-5]. The stray fields, which inevitably arise because
of the asymmetry of electromagnetic systemsin exper-
imental devices and the nonuniform arrangement of the
protection systems of the tokamak chamber (divertors
and limiters), not only cause the MHD mode rotation to
relax but can also, under certain conditions, destabilize
guasistatic (locked) MHD perturbations, thereby lead-
ing to discharge disruption. Experiments in large toka-
maks with a slowed plasma rotation and high gas-
dynamic pressure reveal ed asignificant reductionin the
critical amplitude of the stray fields, which give rise to
MHD modes. Such discharge regimes, which are typi-
cal of self-sustained fusion reactionsin atokamak reac-
tor [6], place very demanding requirements on both the
models aimed at predicting the behavior of locked
MHD modes and the systems for stabilizing these
modes.

Thorough experimental investigations of locked
MHD modes in the COMPASS-C [4] and DIII-D [3]
tokamaks made it possible to determine the character-
istic features of the devel opment of perturbationsand to
estimate the parametric relations (scalings) for the
thresholds for mode destabilization in various plasma
discharges. However, direct application of these scal-
ings to predict the thresholds for the onset of locked
modes in future experiments is hampered by such fac-
tors as the complicated nonlinear dynamics of plasma
perturbations observed in previous experiments and the
unsteady nature of the stray fields. An analysis shows
that tracing the evolution of the locked modes requires
an accurate and detailed numerical modeling of the
physical processes associated with the effect of external
helical magnetic fields on plasma stability in tokamaks.

Our objective here isto determine the parameters of
the model aimed at comparing theoretical and experi-
mental results and to apply the model to predict the
evolution of locked MHD modes in the future ITER
tokamak reactor. To make the estimates and predictions
more redlistic, the model parameters are determined
from the JET experiments under conditions that are as
close as possible to those of the operating regimes of a
future reactor (a relatively low content of impurities,
high plasmatemperature and density near the boundary
of the plasma column, relatively slow plasma rotation,
etc.). The JET experimentsthat were described in detail
in[5, 7, 8] made it possible to examine the conditions
for mode excitation in Ohmically heated plasmas and
auxiliary heated plasmas (neutral beam injection and
RF hesating) both in limiter and divertor discharges. To
study how the conditions for mode generation depend
on the machine dimensions, we also compare the model
results with the experimental data from DI11-D [3] and
COMPASS-C[4].

In the cited JET experiments, the external magnetic
fields are excited by a set of four saddle coils located
inside the vacuum chamber [5]. In contrast to the previ-
ous experiments [1-4], such coils make it possible to
produce both gquasistatic and rotating helical magnetic
fields, thereby providing the basis for a more accurate
description of the stability of MHD modes.

In Section 2, we describe the phenomenological
model used to analyze MHD perturbations. In Section 3,
we compare the model results with the experimental
datafrom tokamaks and use the model to obtain predic-
tions for ITER. In Section 4, we examine preliminary
JET experiments with neutralization of the stray fields
and with a delay in the time at which magnetic pertur-
bations stop rotating before the density limit disruption.
In Section 5, we discuss some assumptions underlying
the model and numerical results.
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2. DYNAMIC MODEL OF MHD PERTURBATIONS

We study the evolution of MHD perturbation modes
and the effect of the external controlling magnetic
fields on the mode dynamics using the PLASCON phe-
nomenological model for regularization of the tearing
modes [9]. This model is based on single-fluid MHD
theory [10-12] and thus makes it possible to analyze
electromagnetic, inertial, and viscous effects in high-
temperature plasmas. We simulated a plasma column
with a circular cross section at a large aspect ratio,
assuming the plasma pressure to be low. The model
plasma configuration is illustrated schematically in
Fig. 1. In computations, the MHD perturbations and
external magnetic fields were represented as superposi-
tions of the helical harmonics: B,,, = B,exp(jmy,,) and
Bem = Beexp(jmx,), where X,,, and X are the phases of
the MHD modes and external magnetic field harmonics,

Fig. 1. Schematic drawing of the model for controlling
MHD perturbations in a tokamak plasma with the help of
external helical magnetic fields. Magnetic islands (1) are
close to the resonant surfaces r = rg in a rotating viscous
plasma (2). The external magnetic fields are produced by a
set of magnetic coils (3) located inside the tokamak cham-
ber (4). The minor radii of the plasma column, tokamak
chamber, and magnetic coils are Mo T and r, respectively.
The computed profiles of the angular frequencies of rotation
of the magnetic islands and the plasma, o, and oy, are also

shown schematically.
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and ¢ are the poloidal and longitudinal (toroidal) coor-
dinates, w,,, and w, are the rotation frequencies, and m
and n are the poloidal and toroidal wavenumbers. We
also assumed that the magnetic perturbations only
weakly distort the equilibrium plasma configuration.

Following the theoretical analysis performed by
Fitzpatrick [11], we simulated two regimes of the
development of MHD perturbations, depending on the
plasma parameters at the resonant magnetic surface
r =rg and the amplitude B, of the magnetic perturba
tions. The transition from one regime to another is
described by the parameter [11]

A = (&/w)¥. (1)

2/6_-1/6
Hel’e, 6| = TH TV

tive layer; w;, = 4r./B /sBgm is the magnetic-island

width; Tr= Hore/N, Ty = pre/u,, and 1, = Ry «/HoP /5By
are skin, viscous, and Alfvén times, respectively; n is
the specific resistivity; the magnetic shear sis defined
as (s = (r/q)dg/dr); p, is the viscosity coefficient; p is
the plasmamass density; and B, and By are the longitu-
dinal and poloidal components of the equilibrium mag-
netic field, respectively. A magnetic island is assumed
to be suppressed if the amplitude of the magnetic per-
turbations becomes smaller than the threshold ampli-

tude B, = ¢;s3; By /812, where ¢, is a numerical coeffi-

cient adjusted so as to achieve the best agreement with
the experimental data.

In the nonlinear regime (A < 1), the evolution of
MHD perturbations is described by the theory of tear-
ing modes [13-16]. The mode stability can be inferred
by analyzing an MHD equilibrium [17], which is pre-
scribed by both the current density profile and the
boundary conditions governed by the external magnetic
fields and the currents induced in the mechanical ele-
ments of a tokamak. In polar coordinates, the tearing
mode amplitude B, and the angular frequency w,, =
dy,,/dt of the rotation of MHD perturbations satisfy the
equations[11, 12]

T='°r, is the width of a viscoresis-

Cmgl'\/grdBr/dt = AIfrbBr (2)

2
- Cmgz Br(mew)Z/( 1+ wﬁ]Tw) + CmgSBeCOS(Xe - Xm)f

Crrdwy/dt = ¢ (0w, — W)
(3
- CrSBrzmew/(l - (*)ZmT\?v) + Cr4BeSin(Xe - Xm)1

where Ay, isthe stability parameter of atearing mode
in afree-boundary plasma, 1,, isthetime constant of the
tokamak chamber, the numerical coefficients c.,;, and
C: (i) depend on the plasma parameters [9], and w, isthe
PLASMA PHYSICS REPORTS  Vol. 26

No. 8 2000



EFFECT OF HELICAL MAGNETIC FIELDS ON PLASMA STABILITY IN TOKAMAKS

plasma rotation frequency around a magnetic island
(see below).

In the linear regime (A > 1), a tearing mode was
assumed to be stabilized [11], in which case the inter-
action of vortex currentsin aviscoresistive layer near a
resonant surface with external magnetic fields gives
rise to a constant (nonoscillating) moment of forces,
which actsto reduce the plasmavel ocity with respect to
the magnetic field [11]:

2
Tbra = CrSBe(we_wI)Trec/(l"'(we_wl)z.[rzec)- (4)

Here, 1,.. is the characteristic reconnection time (T, =

215325 /1A D, @ is the plasma rotation fre-
guency in a viscoresistive layer, and the numerical
coefficient ¢, 5 depends on the plasma parameters [9].

The angular rotation frequency wy satisfies the equation
Cer(’oI/dt = Cr4(o‘)p_0‘)l) +Tbra! (5)

where ¢, is the “phenomenological” moment of the
plasmainertiain aviscoresistive layer.

The plasma rotation frequency w, around a mag-
netic island was determined from the balance between
the moment of viscous forces near the resonant surface
and the phenomenological moment of inertia, which
was adjusted to achieve the best agreement between the
computed and experimental rotation velocities. In sim-
ulations, the moment of viscous forcesin a plasmavol-
ume V, was modeled by the phenomenological friction
at the surfaces between neighboring layers inside the
plasma, Tyeg = Crs(Wps — W), Where a and 3 are the
labelsof the plasmalayers (= a + 1), thefriction coef-

ficient c.¢ hasthe form (¢4 = 412 Rg rou,/d,), andd, is
the width of a viscous layer (see [9, 18]). The angular
plasma motion in the a-layer is described by the equa-
tion

Cr7qdwp,/dt

(6)
- zchQ(wa_wpa) * Croa (Wpao = Wpa)

B

where the numerical coefficients c,,, and ¢y, depend
on the plasma parameters and the parameter wy,, is
obtained from the experimental data. The equation of
plasma motion in a layer around the resonant surface
r = rg accounts for the additional friction between plas-
mas on the outside and inside of a magnetic island,

Cr7adwpa/dt = Cr4(wm_ wpa)

0
+ ZCrSQ(wa_pr) + Cr9u(wpa0_wpu)-

B
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3. CONDITIONS FOR DESTABILIZATION
OF THE MHD PERTURBATIONS

The destabilization of internal MHD perturbations
was studied in the JET experiments under different
conditions (R, =2.9-3.0mand r, = 0.8-0.9 m) with the
help of externa static magnetic fields and external
rotating magnetic fields with a time-varying amplitude
and/or time-varying rotation frequency [5, 7, 9]. Those
experiments in JET, as well as previous experimental
investigations [3, 4], revealed that the plasma parame-
tersand factors such asthe spatial structure of the exter-
nal fields and the schemes for auxiliary plasma heating
affect the thresholds for mode destabilization in afairly
complicated fashion. Consequently, numerical simula-
tions of such experiments require that the dynamics of
the external magnetic fields B(t) be prescribed and the
plasma parameters be predetermined for particular
experimental conditions. In all versions of the simula-
tions described here, we took the same values of the
free parameters, which were chosen so asto achievethe
best agreement between the computed evolution of the
plasma perturbations and the experimental results. The
PLASCON numerical model makes it possible to
simultaneoudly trace the evolution of several coupled
helical perturbation harmonics [18]. In this paper, we
consider the dynamics of the perturbation mode with
(m, n) = (2, 1), which dominated in the JET experi-
ments[5, 9].

As in the previous JET experiments with static
external fields[3, 4], thethreshold for destabilization of
the MHD modes decreased with the electron density,
the parameters of the plasma discharge being fixed
(Fig. 2). Thisis consistent with the results obtained in
our numerical model, which predicts that the lower the
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Fig. 2. Comparison between the computed amplitude of the
external quasistatic magnetic fields destabilizing the locked
MHD modes (solid curve) and the results of JET experi-
ments|[5, 7] (squares) in regimes with different plasmaden-
sities.
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Fig. 3. Comparison between the computed thresholds for
destabilization of the locked MHD modes in plasmas with
different effective ion charge numbers (solid curve) and the
results of JET experiments[2, 5, 7] with external quasistatic
magnetic fields (sguares): (1) divertor experiments [5, 7],
(2) limiter experiments [2], and the model profile (solid
curve).
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Fig. 4. Comparison between the computed thresholds for
destabilization of the locked MHD modes (solid curve) and
the results of JET experiments [5, 7] with external quasi-
static magnetic fieldsin regimeswith different angular rota-
tion frequencies of the plasma. The plasma rotation fre-
quency was measured experimentally by recording the
charge exchange recombination (CXR) emission of spectral
lines from the °C carbon ions: (/) Ohmic heating, Brippl =
2%; (2) Ohmic heating, 8,1 = 0.1%; (3) neutral injection
heating, Pyg = 2.1 MW and 8,5 = 2%; (4) neutral injec-
tion heating plus RF heating, Png = 0.8 MW, Pre = 8 MW,

and &1 = 0.1%; and (5) model profile.

plasma density, the smaller the viscous friction coeffi-
cient. A decrease in the viscous moments, which hinder
the slowing of the plasma rotation, lowers the thresh-
olds for destabilization of the MHD modes.

The JET experimentswith asingle-null divertor [5, 7]
demonstrated that the thresholds for mode destabiliza-
tion are higher than those in previous experiments with
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limiter plasmas [2]. According to our simulations, this
discrepancy can be attributed primarily to a signifi-
cantly lower content of impurities in divertor plasmas
(in a divertor configuration, the effective ion charge
number Z is smaller than that in a limiter configura
tion by a factor of 1.5 to 2). The smaller the effective
ion charge number, the longer both the skin times and
the reconnection time 1,... As aresult, with the plasma
rotation frequency taken from experiments, the effect
of the braking moment T, in (4) becomes less signifi-
cant, thereby raising the threshold external fields. Fig-
ure 3 compares the experimental and computed thresh-
olds for mode destabilization.

An analysis of the JET experiments with auxiliary
heating (the RF heating power and the injected neutral
beam power being P = 8 MW and P,, = 0.8-2.0 MW,
respectively) and with different ripple amplitudes
(Osippte = 0.1-2.0%) showed that the thresholds for
destabilization of the MHD modes increase sharply
with increasing the angular frequency of the plasma
rotation with respect to the steady-state magnetic field
(Fig. 4). According to our simulations, thisis attributed
to the fact that the braking moment T, in (4) decreases
as the plasma rotation frequency wy increases (w, = 0).
To check the conclusion of the resonant dependence of
the thresholds for mode destabilization on the fre-
guency of the plasma rotation relative to the external
magnetic field, we performed numerical calculations
for a series of JET experiments with the generation of
rotating MHD modes [5, 7]. These experiments were
carried out with Ohmically heated plasmas and with
external magnetic fields rotating at different rates, the
plasma parameters being fixed. The relevant experi-
mental and computed thresholds for mode destabiliza-
tion are compared in Fig. 5. The numerical results are
seen to agree with experiments when the prescribed
rotation frequency of the main plasmais equal to w,, =
720 Hz. The experimentally observed resonant fre-
guency dependence of the thresholds for mode destabi-
lization agrees qualitatively with the analytic scaling
Be/By = (Th(we — w))*” derived in [10, 11]. However,
because of the unsteady character of the external mag-
netic fields (whose amplitudes and frequencies vary in
time), the MHD modesin JET are more difficult to cal-
culate analytically.

To refine the dependence of the thresholds for desta-
bilization of the locked MHD modes on the plasma
dimensions, we applied the PLASCON model in order
to numerically analyze the stability of MHD modes in
the DIII-D (R, = 1.67 m and r,, = 0.6 m) and COM-
PASS-C (R, = 0.56 m and r, = 0.2 m) tokamaks [3, 4].
Simulations carried out with the plasma parameters
taken from the experiments of [3, 4] showed that, in
larger tokamaks, the thresholds for destabilization of
the MHD modes are lower. Thisis attributed primarily
to the fact that, in large tokamaks, the plasma rotates at
adower rate (Fig. 6).
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Fig. 5. Comparison between the computed thresholds for
destabilization of the locked MHD modes (solid curve) and
the results of JET experiments [5, 7] (closed squares) in
regimes with different angular rotation frequencies of the
external magnetic fields at fixed plasma discharge parame-
tersfor (1) aconstant helical perturbation and (2) arotating
helical perturbation.

Our numerical model, which was calibrated by
examining the cited JET experiments, allows usto esti-
mate the possible thresholds for destabilization of the
MHD modes in the future ITER tokamak reactor [6].
Our numerical analysis shows that, with the plasma
parameters adopted for ITER, the reconnection time
T,.c iIsaslong ast,.. = 3.7 sand, for the standard plasma
rotation frequency w, = 170 Hz [11], the threshold for
mode destabilization is above the level By/By(r =r,) =
2 x 10, Simulations with the reconnection time T,,.
typical of the JET experiments (1., =0.1s) yielded sig-
nificantly lower thresholds for mode destabilization in
ITER, Be/By(r =rp) =2 x 107 (seeaso [3]). Theresults
of our analysis and the predictions for ITER are illus-
trated in Fig. 7, which aso presents the diagram
obtainedin[3].

4. NEUTRALIZATION OF THE STRAY FIELDS
AND THE DELAY OF PLASMA DISRUPTION
BY EXTERNAL MAGNETIC FIELDS

The predicted lowering of the thresholds for desta-
bilization of the MHD modes in tokamak-reactor plas-
mas imposes strict requirements on the development
and testing of both systems for neutralizing the stray
magnetic fields and the methods for suppressing the
instability. Preliminary JET experiments [5, 7, 19]
showed that the external (saddl€) coils can be used to
determinethe stray fieldsin atokamak plasmaand even
to partially suppress them. Those experiments demon-
strated that, under the same discharge conditions, the
thresholds for destabilization of the MHD modes can
differ by 25%, depending on the phase of the control-
ling currentsin the saddle coils. Our calculations show
that the difference in the thresholds for locked modesis
governed by the orientation of the external magnetic
fields relative to the stray fields [20], which are typical
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Fig. 6. Comparison between the thresholds for destabiliza-
tion of the locked MHD modes computed for the (1) COM-
PASS-C, (2) DIlI-D, and (3) JET tokamaksin regimes with
different angular rotation frequencies of the plasma and the
experimental results from JET [5, 7] (triangles), COM-
PASS-C[4] (circles), and DIII-D [3] (squares), respectively.

of experimentsin the JET tokamak. With the given dis-
charge conditions, i.e.,, B, = (0.75-1) x 10* T at the
magnetic surface with q = 2, the neutralization of the
internal stray fields increases the critical amplitude of
the external fields required for destabilization of the
MHD modes.

An analysis of the density limit disruptions in the
JET tokamak [21], as well as previous investigations
[22, 23], revealed that the mode with (m, n) = (2, 1)
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Fig. 7. Diagram of the stability thresholds for locked MHD
modes [3] in tokamaks of different sizes [2-5, 7] and the
computed thresholds for mode destabilization in the ITER
tokamak reactor for the plasma rotation frequency wy, =
170 Hz. Shown are the experimental results from COM-
PASS-C [4] (asterisk), DIII-D [3] (circles), and JET [5, 7]
(closed diamonds) and [2] (open diamonds). The square and
triangle reflect the results of simulations with two different
T, Values: the one calculated from the plasma parameters
in the ITER device [6], T,.. = 3.7 s (square), and the one
used to simulate JET experiments, T, = 0.1 s (triangle).
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Fig. 8. Amplitude of the magnetic mode with (m, n) = (2, 1)
before the density limit disruption inthe JET tokamak [5, 7]
with (closed symbols) and without (open symbols) external
rotating magnetic fields (8t is the time interval after the
destabilization of the rotating magnetic perturbations). The
circles and sguares correspond to the mode amplitude at the
time at which the mode stops rotating and just before the
major disruption. Straight lines (/) and (2) arethe computed
amplitudes at the time at which the mode stops rotating in
the cases without and with external magnetic fields, respec-
tively.

plays amajor role in the destruction of the plasma col-
umn. Just before the disruption, the magnetic perturba-
tionswere observed to rotate at aslower rate; moreover,
in some cases, the perturbations stopped rotating or, in
other words, the mode with (m, n) = (2, 1) became com-
pletely locked. A numerical analysis carried out in [18]
showed that preventing the mode locking may ensure a
delayed onset of the disruption and safe shutdown of
the discharge. The JET experiments with rotating mag-
netic fields [5, 7, 19] demonstrated that, in the predis-
ruption stage, the time at which MHD modes stop rotat-
ing may be delayed and, in some cases, it is possible to
lower the rate at which the perturbations grow. For the
same power of the external magnetic fields used in the
JET experiments, the MHD modes were observed to
stop rotating when the amplitude of the magnetic per-
turbations doubled (Fig. 8). According to the results of
our simulations, a decrease in the rate at which the per-
turbations decelerate is attributed to the accelerating
moment of the forces exerted by an external magnetic
field on amagnetic island.

5. DISCUSSION

An analysis of the JET experiments with quasistatic
and rotating magnetic fields and a comparison of our
numerical results with the experimenta data from the
COMPASS-C [4] and DIII-D [3] tokamaks allowed us
to determine the parameters of the phenomenological
model of MHD perturbations in the plasma of large
tokamaks. Our model, which isbased on the analysis of
electromagnetic, viscous, and inertial effects near a
given resonant magnetic surface, makes it possible to
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describe the experimentally observed thresholds for
destabilization of the MHD perturbations and the evo-
lution of the rotating modes and to predict the thresh-
oldsfor MHD modesin the ITER tokamak reactor.

Our investigations show that the phenomenological
parameters of the model affect the computation results
in afairly complicated manner. However, most of the
model parameters are calculated from quantities that
are either measured directly in experiments (T, N,
Wpaos A Zegrs T, Ty) OF are reconstructed from experi-

mental data (A}, S, N, By, Ty, and W,). The free param-
eters of the model, ¢, and d,, are adjusted as necessary
to achieve the best agreement between the computed
evolution of the MHD modes and the experimentally
observed perturbation dynamics. A detailed analysis of
the experiments, which were carried out for a broad
range of plasma parameters and machine dimensions,
allowed usto determine the free model parameterswith
arelatively high degree of confidence.

The estimates of the thresholdsfor destabilization of
the MHD modes in the future ITER tokamak reactor
depend on the viscosity coefficient p,. In analyzing the
experiments performed in the JET, DIII-D, and COM-
PASS-C tokamaks with L-mode discharges, we calcu-
lated p, using the ITER89-P scaling [24]. A future
tokamak reactor is supposed to operate in an improved
confinement regime (the H-mode) [6]. Although the
experiments have not yet revedled any differences
between the thresholds for destabilization of the MHD
modes in the L- and H-regimes [25], the use of the
ITER89-P scaling may introduce additional inaccura-
cies into the predicted thresholds for MHD modes in
ITER.

In simulations, magnetic islands were treated as
small perturbations of an equilibrium plasma configu-
ration, asif they were surrounded by an incompressible
“phenomenological plasmafluid” (see[11]). The anal-
ysis carried out by Fitzpatrick [11] showed that the sin-
gle-fluid approximation can be applied to a multicom-
ponent plasma (consisting of ions, electrons, and impu-
rities) in order to calculate the relative change in the
plasma velocity during the development of magnetic
islands. In the standard operating regimes of atokamak,
the velocities of different plasma components are cou-
pled through the condition that the given net plasma
current be conserved. In the first approximation, the
change in the velacity of one of the plasma components
inevitably altersthe velocities of the remaining compo-
nents. In simulations, the toroidal rotation velocity of
the phenomenological plasma fluid surrounding the
magnetic island was assumed to be proportional to the
angular velocity of the plasma ions. We adopted this
approximation because theion velocity may be compa-
rable with the velocity of the °C ions, which was mea-
sured in the JET experiments. In order to model the
rotation of the main plasma in more detail, it is neces-
sary to take into account additional, more complicated
PLASMA PHYSICS REPORTS  Vol. 26
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effects (see, e.g., [26]); this problem, however, goes
beyond the scope of our paper.

Measurements from magnetic probes and saddle
loopsinthe JET tokamak revealed that the perturbation
mode with (m, n) = (2, 1) plays a governing role in
experiments with external helical magnetic fields (in
which we are interested here). This circumstance
enabled us only to trace the evolution of the mode with
(m, n) = (2, 1). On the other hand, the DIII-D experi-
ments [27] showed that the contribution of the nearest
satellite modes, specifically, those with (m, n) = (3, 1)
and (1, 1), to the threshold for destabilization of the
MHD perturbations can be as large as 10-15%. To ana-
lyze in detail the effect of the nearest satellites on the
plasma stability in JET requires further experimental
investigation.

In the absence of external magnetic fields, the stabil-
ity of MHD perturbations is governed by the stability

parameter of the tearing mode, A, which is calcu-

lated from the equilibrium current density profile. In
our model, the possible change in the current density
profile during the growth of the MHD modes is incor-
porated through the tearing-mode saturation effect
[16]. This approach, which is justified for the initia
stage of the evolution of perturbations, should be
refined in order to describe large-amplitude MHD
modes, in which case the perturbations can be analyzed
in detail only through acompl ete solution of the bound-
ary-value problem of the tearing-mode stability
[26, 28].

The simulations of experiments with a delayed
onset of the density limit disruptions alowed us to out-
line possible ways of using the external rotating mag-
netic fieldsin order to make tokamak plasmas more sta-
ble. Note that the JET experiments described here are
of apreliminary nature, so that adetailed analysis of the
conditions under which MHD perturbations are stabi-
lized requires further experimental investigations. Our
simulations also showed that, for prescribed stray mag-
netic fields, plasma stability can be ensured by main-
taining the rotation rate of the plasma column. This
effect was demonstrated in experiments with auxiliary
heating, with both NBI-heated [2, 5] and ECR-heated
[29] plasmas.

6. CONCLUSIONS

Analyzing the JET experiments [5, 7], we have
determined the thresholds for destabilization of quasis-
tatic (locked) and rotating MHD perturbations in a
plasma under fusion reactor conditions. Numerical
simulations carried out for the ITER tokamak reactor
predict that, depending on the plasma parameters, the
thresholds for MHD modes may be very different,
B, /By(r =) = (0.2-2) x 10~*. The conclusion that, in
some operating regimes of the ITER device, the thresh-
olds for destabilization of the MHD modes may be low
necessitates steps to develop and construct systems for
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neutralizing the stray magnetic fields and systems for
controlling MHD perturbations.
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Abstract—The linear equation for ideal magnetohydrodynamic ballooning modes in three-dimensional con-
figurationsisderived in the coordinate system that is optimal for the representation of the equilibrium state. The
magnetic field linesin this coordinate system, however, are not straight. The form of the Mercier criterion that
is currently in use is recovered from the asymptotic analysis of the ballooning eguation. To determine the
parallel-current density, amagnetic differential equation expressed in the optimal coordinates must be inverted.
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1. INTRODUCTION

The formulation of the linear MHD stability prob-
lem has been usually carried out in coordinate systems
in which the magnetic field lines are straight. This has
been motivated by the realization that the B - V operator
acquires avery simple structure in such a class of coor-
dinates. In three-dimensional (3D) configurations, a
specific straight-field-line (SFL) coordinate system
identified by Boozer [1] has been preferred because the
poloidal and toroidal magnetic field componentsin the
covariant representation correspond to the toroidal and
negative poloidal current flux functions, respectively,
enclosed within each magnetic flux surface. This per-
mits a more transparent determination of the parallel
current density and a clearer identification of the mech-
anisms for driving and suppressing the instability [2].

For the computation of the MHD equilibrium state,
however, the SFL coordinates are inadequate and cum-
bersome. The optimal coordinate system for the equi-
librium problem represents the magnetic field B as[3]

B=VvxVJ+VOPxVu+VDxVA, )

where (s) and ®(s) are the poloidal and toroidal flux
functions, respectively. The magnetic flux surfaces are
constrained to be nested. In this coordinate system, s
labels the radial variable, u labels the poloidal angle,
and v isthe geometric toroidal angle. The function A is
an angular renormalization parameter, which, in the
iterative procedure employed to minimize the energy of
the system, is adjusted to minimize the spectrum of
poloidal modes required to describe the equilibrium
[3]. It isthis spectral condensation property that makes
the coordinate system optimal. It has been imple-
mented in the 3D VMEC equilibrium code [4].

To correctly converge ballooning eigenstructures to
sufficient accuracy, it has been our experience that, for
robust configurations of the helias type [2] similar to

the proposed Wendelstein VI1-X (WVI1-X) device [5],
the 61 mode-pairs needed to represent the equilibrium
in the VMEC coordinates must be increased to a still
manageable 186 mode-pairs to reconstruct the equilib-
rium state in the Boozer magnetic coordinates at vol-
ume-averaged [3 values of up to 8% [6]. However, for
more fragile configurations of the torsatron type that
undergo large Shafranov shifts at moderate values of 3,
the 61 mode-pairs needed to represent the equilibrium
in the VMEC coordinates explode to 681 mode-pairs
for the reconstruction in Boozer coordinates at 3 = 2%
for the ballooning calculations [7]. For Mercier-type
modes that have more extended structures along the
field lines and for global modes, the mode-pair require-
mentsin the Boozer coordinate space are less stringent,
although still nonnegligible when compared with the
spectra required for the ballooning computations. In
low-aspect-ratio heliac configurations, the determina
tion of the equilibrium state imposes an already very
broad spectrum of modes. In the three-field-period H1
heliac [8], the equilibrium is obtained with 314 mode-
pairs, which must be expanded to 597 mode-pairs for
the ballooning cal culations in Boozer coordinates for 3
up to 1.5% [9]. In the four-field-period TJIl heliac
[10], spectra requirements of 138 mode-pairs have been
reported for the equilibrium state [10, 11], which, being
expanded in Boozer space to 750 mode-pairs, yields
reliable ballooning estimates only up to 3 ~ 2% [11].

The spectral broadening of the equilibrium recon-
struction in the Boozer magnetic coordinate system as
afunction of 3 can unduly overtax or even overwhelm
the computational resources of present-day computers
for the modeling of a torsatron, a low-aspect-ratio
heliac, and other stellarator devices. This motivates us
to consider the formulation of the MHD stability prob-
lem in an optimized coordinate system such as that
developed for the VMEC equilibrium code.

1063-780X/00/2608-0641$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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2. BALLOONING STABILITY

The equation for ideal MHD ballooning modes in
3D configurations [12, 13] in a coordinate-free repre-
sentation in a form applicable for marginal stability
analysis can be expressed as

8 W){'k;' ® DVX)}

B xky[V kg Oe
+(1- r)[? XBZ p&.%Bsz %’(:0' Q)

where k is the wave vector, k¥ = (b - V)b is the mag-
netic field line curvature, b = B/B is the unit vector
along the magnetic field lines, I" is the eigenvalue, and
X is the ballooning eigenfunction. In the ballooning
representation, the eigenfunction is expressed as

X = xexp(iSe), 3)

where X isaslowly varying amplitude and the phase fac-
tor satisfies the condition B - VS= 0. Assuming e < 1,
the rapid cross-magnetic field variation is contained
within the exponential factor. The magnetic field given
by equation (1) can be rewritten as

B =VaxVy, “4)

where a is a function that labels the magnetic field
lines, which, in the VMEC coordinate system, is
expressed as

a =v-—q(s)[u+A(su, V)], 5)

where q(s) = ®'()/J'(s) is the inverse rotational trans-
form and the prime indicates the derivative with respect
to sof avariablethat is constant on a magnetic flux sur-
face. The lines of constant a in the (u, v) space are not
straight because A is a function of u and v. The condi-
tion B - VS=0implies S= s, a) [13]. We now con-
sider the perturbation x to have the functional depen-
dencex = X(s, u, o). Asaresult, we obtain

_ Y(s) 0A70x
W ey 5

where ./g is the Jacobian of the transformation from
Cartesian coordinates to the flux coordinates used. The
wave vector k= VS(050a) = Va + 6,Vq acquiresthe
form

udX

BDVx—Bau

, (6)

kg = Vv—q(s)Vu
7
—[q'(s)(u—ek)+‘%}Vs, ™

where 8, is the radial wavenumber [13]. In these coor-
dinates, the wave fronts S= const twist in amuch more
complicated manner along afield linethan in SFL coor-
dinates because of the term d(gh)ds in Eqg. (7). By

COOPER

defining the vector of the magnetic field line bending as
h = Y(s)B x k/B?, we have in the contravariant repre-
sentation

h®=h Vs = 1, (8)
h"=h Vu
—%?——"’ELB[ ()-89 + XL, )
h"=h Vv
B; L“jg; o) (u-09+ L) o)

These equations contain all of the components of the
magnetic field B in the covariant and contravariant rep-
resentations. Using these equations and the relations of
differential geometry, it is easy to obtain an expression
for [kg|>. When evaluating the term with the magnetic
field line curvature that drives ballooning instabilities,
it is useful to apply the radial component of the MHD
equilibrium force balance relation Vp = j x B given by

JgB VB, = ./gp'(s) + /gB"== + ./gB’

Furthermore, aconsideration of the equations of charge
conservation V - j = 0, force balance, and j - Vs =0
shows that

0B EBD _ 0 (Bun_ 0 (BvO
«/EJBEV p(S)[aVEBZD au%zm}
(S)%

aB 0B [
By v
Then, the ballooning mode equation in the VMEC
coordinates optimal for describing the equilibrium state
can be written as

(12)

5(q?\)'

0
JULCr* C () (=89 -

O(aN) | DX
+ G a(s)(u—8) + =k | 5l

Q
A

s, o

0 vl a1l
+(1-N)gy+ da(9)(u-69 + SE | =0, 13
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where the coefficients are

2
Co = %Sgs—g—iﬁl—q(@g—c (14)
Cﬁ%é?ﬁgjéB -Zgd1-q93h ], a3
W9 =Ga |1y A
N «@32[ (o)’ }[l Wy} 09

d, =

p(s) [fg p(s) 0.9
2 2 0
wE1-a95]" & F

. %a(gs ), %a({a@f )+ Jo(B w)%g} (17)

w1 q(s)@} e

ds = (18)

It is a one-page exercise in differential geometry to
demonstrate that [VSP = (Gu Gy — Gav (/G )2

3. ASYMPTOTIC ANALYSIS
The asymptotic analysis (u — 6, — o) of the bal-
looning mode equation yields the equation (1 —T)’D, +
(1-1)D, - [q(9)]%4 = 0 for the conditions of marginal
stability, which implies

1/2
D, {D:+[q(s)]’Ds}
2D, 2D,

for the stability of modes with an extended structure
along the field lines. The coefficients are

D,
= mq%[l—q(s)(%}[d +d "(;)‘) +q9H=2 EBDD

< A F2E 5
0 B0 B
D, = [h E<h 0 g2 DZ> <hqm?
The standard form of the Mercier criterion [14] is
obtained with D, + D, < [q'(s)]%/4, although expression

(19) is sometimes preferable because it allows a more
ready comparison with the eigenvalue of the ballooning

equation. We define h, = /gBY[Y'(9)Cyl and [AO=

r=1+— <0

(19)

(20)

1)
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(L/ATR) O”dv O’TduA, where L is the number of equi-

librium field periods. It can be shown by performing an
integration by parts and some algebraic manipulations

that
o\ G\ _ DO [0
<[1—q(s)w}[ +d, 55 }>_[w'( )]z[p(s)<?>
-vi(9 + Lvig + q(s>w<s)< >} @)

where V'(s) = D/é Ois the differential volume. After
expanding j - B/B? by invoking Ampere’slaw and radial
force balance, we obtain

<[1 CRALCR S 3

N p(s)q(s)< _v>_

MGG 3)

From the flux-surface average of the radial force bal-
ance relation, we derive p'(s)V'(s) = P'(9l'(s) —
Y'(s)J'(s), where I(s) and J(s) are the poloidal and tor-
oidal current flux functions, respectively. This alows
usto reduce D, to

D, = [h[FP (S)[p(S)D/EJ/B o-Vv'(9]C

s ok s
PP ~ W3 (92
L EZ)J-(S;?Z(S) (S)}—<th(S)B‘Ez‘S>1 4)

which reproduces the contributions from the magnetic
well (first term) and net current (remaining terms) to
the Mercier criterion, while D, corresponds to the geo-
desic curvature contribution to the Mercier criterion in
aformthat is currently in widespread use [14-16]. Itis
instructive to note that, taking A =0, B, = J(s), and B, =
—I(s), we recover the form of the ballooning equation
and the Mercier criterion as derived in Boozer coordi-
nates[3].

4. PARALLEL-CURRENT DENSITY

One of the principa issues in 3D MHD stability
concerns the evaluation of the parallel current density,
since this can be an important source of instabilitiesin
nonsymmetric configurations [3, 14]. Ballooning cal-
culations in devices with a low global magnetic shear
like the WV1I-X heliac [6] and the H1 heliac [9] or in
devices with a high global magnetic shear like the tor-
satron [7] have demonstrated that these types of insta-
bilitiestend to be insensitive to singularities of the par-
alel-current density on rational surfaces because their
structures are too localized along the magnetic field
lines to detect the resonance condition. On the other



644

hand, the Mercier criterion [3] and localized low mode
structures [17] depend critically on the correct evalua-
tion of j - B/B?. In particular, Gardner and Blackwell
demonstrated that, in alow shear heliac, the geometric
(direct) determination of the parallel-current density in
either VMEC coordinates or Boozer magnetic coordi-
nates failed to reproduce the correct behavior near the
dominant low-order rational surfaces, and this seri-
ously impacted the predictions of the Mercier criterion
[18]. What still remainsto be established iswhether the
component of the parallel current density that varies on
the flux surface and is evaluated in the VMEC coordi-
nates according to the magnetic differential equation
(12) can capture the resonance condition in the vicinity
of rational surfaces with reasonable accuracy. In SFL
coordinates, the Fourier decomposition of this mag-
netic differential equation yields an algebraic equation
for the Fourier components of (j - B/B?), in which the
resonance condition appears explicitly. In non-SFL
VMEC coordinates, the Fourier decomposition of
equation (12) yields a matrix equation that has to be
inverted on each flux surface to evaluate the surface-
varying components of (j - B/B?). Consequently, the
resonance condition does not appear explicitly in the
resulting expression. If the approach proposed for eval-
uating the paralld current density inthe VMEC coordi-
nates proves to be successful in correctly reproducing
the predictions of the Mercier criterion near rational
surfaces, we can consider extending the method to the
problem of globa MHD stability. The application of
equation (12) isinsufficient, however, to determine the
component of (j - B/B?) that is constant on each flux
surface. This component has to be calculated from the
direct evaluation of (j - B/B?). This can be obtained by
invoking Ampere’slaw and radial force balancetoyield

qBo_ _1 [‘LBS_%_F"(S)BV}
DBZD @B” '

ov  0s B2
Thisform is used to derive egquation (23).

(25)

5. SUMMARY AND DISCUSSION

In summary, we have derived an expression for the
3D ideal ballooning equation in the coordinate system
that is optimal for the representation of the MHD equi-
librium state. We have recovered the Mercier criterion
from the asymptotic analysis of thisequation. The main
advantages of this approach for thelocal 3D MHD sta-
bility problem are the following:

(i) It obviates a mapping procedure to a different
coordinate system and the inherent errorsintroduced in
the reconstruction of the equilibrium.

(i) The spectrum of modes remains under control,
which has favorable implications for computational
efficiency.

The main disadvantages are the following:

COOPER

(i) The coefficientsto evaluate stability may be more
complicated to calculate. In particular, the parallel-cur-
rent density is a matrix eguation rather than the alge-
braic expression in SFL coordinates.

(i) The resonance condition at the rational surfaces
does not appear explicitly in the inversion of the mag-
netic differential equation for (j - B/B?), which could
potentially suppress an important driving mechanism
for instabilities in 3D systems. It could provide a
numerical detuning of the resonance that may not be
altogether insidious because instabilities driven by cur-
rent sheets may constitute a manifestation of the gener-
ation of magnetic isand structures rather than the true
violation of a stability criterion.

(iii) On afixed field line, the determination of the
toroidal angle v becomes a transcendental equation
through the inversion of equation (5). Alternatively, a
field-line-tracing technique can be applied to obtain v
by transforming equation (5) into a differential equa-
tion that can be written as

1+3_A

u SV

‘;—‘6 = (s ———33"— (26)
sa 1—CI(S)(W y

The subscripts denote the quantities that remain fixed
during the calculation of a derivative. In any SFL coor-
dinate system, the relation between the poloidal and
toroidal angles on afield lineisasimple linear expres-
sion.

However, even if these disadvantages manifest
themselves serioudly, they are more likely to affect the
Mercier predictions than the ballooning predictions. In
the Boozer coordinate system, the ballooning instabili-
ties, on the one hand, do not appear to depend sensi-
tively on the singular nature of (j - B/B?) but, on the
other hand, impose the strictest demands with respect
to the width of the spectral requirements needed for
accurate convergence. We therefore anticipate that it
would be much more efficient to compute the balloon-
ing stability in the optimal coordinates developed to
represent the equilibrium state even in the case when
these coordinates fail to deliver satisfactory Mercier
predictions. The Mercier criterion can be accurately
evaluated in Boozer coordinates with amuch more con-
densed spectrum of modes than the ballooning instabil-
ities, which require higher resolution dueto their local-
ization along the magnetic field lines. The 3D balloon-
ing solvers currently in existence could be adapted
quite straightforwardly to the optimized VMEC coordi-
nates, because the coefficients expressed with equa-
tions (14)—(18) may be more difficult to evaluate only
in appearance as a result of the gains realized through
spectral condensation.
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Abstract—It is shown that a short laser pulse propagating in a plasma with electron density fluctuations can
emit electromagnetic waves with frequencies much lower than the laser carrier frequency. Emissions with fre-
guencies close to the plasma frequency and the doubled plasma frequency in a nonisothermal plasma, as well
as emission generated in a turbulent plasma, are examined. The effects in question are related to the transfor-
mation of thelaser pul se wakefield into el ectromagnetic radiation by electron density fluctuations. The phenom-
enon under study opens new possibilities for diagnostics of both plasmafields excited by laser pulses and elec-
tron density fluctuations in a plasma. © 2000 MAIK “ Nauka/Interperiodica” .

INTRODUCTION

A short laser pulse propagating in an underdense
plasma excites an el ectron density wave (a wake wave)
whose electric field is localized near the pulse trajec-
tory [1, 2]. Recently, this wakefield has been studied
experimentally with the help of a probing laser pulse
propagating behind the main pulse at a certain distance
from it [3-5]. However, the first publication on record-
ing the wakefield excited by a laser pulse in a plasma
was based on the investigation of electromagnetic radi-
ation emitted from the plasma[6]; in the emission spec-
trum, a spike of intensity was observed in the vicinity
of the plasma frequency. The authors of [6] explained
this phenomenon by the transformation of the wake-
field into electromagnetic radiation by regular plasma
inhomogeneities. A somewhat different mechanism for
the transformation of the wakefield into electromag-
netic radiation in a periodically inhomogeneous (strati-
fied) plasmawas recently proposed in [7].

Here, we consider el ectromagnetic radiation gener-
ated during the propagation of a short laser pulsein a
plasmathat ison average uniform but in which thereare
electron density fluctuations. Taking into account the
fact that the frequency of the emitted radiation is much
lower than the laser frequency, wewill refer to thisradi-
ation as “low-frequency emission.”

Based on the genera relationships presented in the
first and second sections, we study the spectrum of
emission from anonisothermal plasma near the plasma
frequency (Section 3). It is shown that the radiation is
emitted mainly perpendicularly to the propagation
direction of the laser pulse. The emission spectrum
depends strongly on the electron temperature and the

transverse size of the pulse. The conditions under
which the spectrum consists of either two closely
spaced lines or asingleline are determined. The energy
lost by the pulse due to emission is estimated. In Sec-
tion 4, the emission near the doubled plasma frequency
is studied. With aturbulent plasmain mind, in Section 5
we consider the emission near the plasma frequency
that appears in a plasma with given stationary electron
density fluctuations. In the Conclusion, we discuss the
physical processes governing the low-frequency emis-
sion of a laser pulse and possible applications of this
emission to plasma and |aser-pul se diagnostics.

1. BASIC EQUATIONS

We consider a short laser pulse propagating with the
group velocity V, aong the z-axis in a plasma with the
electron density

Ne(r!t) = NOE+6Ne(rlt)! (1'1)
where N, is the space averaged homogeneous density

and ON(r, t) are the density fluctuations, which are
assumed to be small (|ON| << Nyy)-

The pulse propagation is accompanied by the exci-
tation of electron density perturbations and low-fre-
guency (as compared to the laser frequency) electro-
magnetic fields. From the Maxwell equations and
hydrodynamic equations for electrons in which the
action of the laser field is accounted for through the
ponderomotive force (see, eg., [7, 8]), we obtain the
following linearized equation for the low-frequency

1063-780X/00/2608-0646$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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electromagnetic field E(r, t):

2
9—2E +(c®=3V5,)OdivE - c°AE
2 SNJr L 2 . ONr, 1)
+wpe%l+ Noe % - wpe%[+ Noe %jDeD

where w,. = A/4Tre2N08/ m, is the plasma frequency; e

and m, are the electron charge and mass, respectively;
T.istheeectron temperature; V.= ./T/m, istheelec-

tron therma velocity; and ® = €|E° |2/4mew§ is the
averaged high-frequency potential of the laser field
with the frequency wy, and complex amplitude E°.

Since electron density fluctuations are assumed to
be small, we will solve Eq. (1.2) using the perturbation
theory and representing the electric field in the form
E=E;+E, +.... The potential nature of the pondero-
motiveforce allows usto obtain from (1.2) the equation
for azero-order electric field:

a2

ot®
This equation describes the excitation of potential
plasmawaves by alaser pulsein auniform plasma. The
first-order field E, arises dueto electron density fluctu-

ations. From (1.2), we obtain the following equation for
thisfield:

SEo + WheEo—3VRAE, = mﬁemgle’% (1.3)

2

:—tzEl +c’curleurl E; + 0 E; — 3V5 OdivE,
(1.4)
o 5N,
= Woe——0
" Noo 7
where
Oo(r,t) = D%%—Eo(r,t). (1.5)

It is seen from (1.4) that the generation of a low-fre-
guency electromagnetic field is related to both the
direct interaction of alaser pulse with density fluctua-
tions [thefirst term on the right-hand side of (1.5)] and
the interaction between fluctuations and the plasma
oscillations excited by the pul se [the second term on the
right-hand side of (1.5)].

We solve Eq. (1.4) by passing over to the Fourier
transform:

1w, k),
. (1.6)
Ei(w k) = J’dtexp(ioot)J'dr exp(—ikr)E,(r,t).

2T

E,r 1) = fd‘*’
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As a result, from (1.4), we obtain the expression for
E, (w, k):

dw dk'dNg(w), k'
E,(w, k) = —mpef o I(\lo )

y d(w—w, k —k")k [{(k —k') [k)
K2 E wzsl(w’ K) (1.7)

Lk O(k=K) Ek]]E1

we'(w) —c’k® O

ooﬁe/(oo2 - 3k2V$e) and €' (w) =

gw=1- wf,e /o are the longitudinal and transverse
plasma permittivities in the range of phase velocities
higher than the thermal electron velocity.

From the equation curlE = —0B/cdt and formula

(1.7), we obtain the Fourier transform for the magnetic
field:

wheregl(w, k) =1 —

dw'dk’
Bi(w, k) = 5 7 kK]
‘*)u) &( ) ck I(z m* (1.8)
6Ne(w k)q)( _wl’ k_ku)

Noe

We will assume that the distribution of the energy den-
sity of the laser field is axially symmetric and the high-
frequency potential isafunction of theradia coordinate

p= X+ y2 and longitudinal coordinate & = z — V.

From (1.3) and (1.5), we obtain the expression for the
function ¢(w, k):

dw.k) = 20,
E

W—kyVg)— (1.9)

where

(k) = IdEdPeXP(isz +ikpp)P(E, p).

Taking into account that the phase velocity of the
excited plasma wave is close to the laser-pulse group
velocity Vg (whichinturniscloseto the speed of light),

we write the expression for €'(w, k) inthe form

(1.10)

2 2\ 42

0 KVAD
e k) = 1- 220 + 35T+ i1me'(w, k). (1.11)
w O

Here, we have introduced the imaginary part of the lon-
gitudinal plasma permittivity,

Ims'(oo, k)
R O 0 o 0o (1.12)
T2 + é 3,,3 2,2 O
o® K'V5e 02kVi[OO
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which accounts for both the damping of plasma waves
due to the electron—ion collisions with the frequency

vy = AI2ZE Mo

el 3 m;L/ZTSIZ
(where Z is the ion charge number and A is the Cou-
lomb logarithm) and the Landau damping by resonant
electrons.

For a Gaussian laser pulse, when

2

2
B(E, p) = Doexp- &~ 2.0

(1.13)
O L2 RZD

function (1.10) takes the form
2re’w, 0 keL® KIR'p
2 =V 4 4 0

Mg

o(k) =

(1.14)

where L and R are the characteristic longitudinal and
transverse sizes of the pulse, respectively, and @, isthe
maximum value of the high-frequency potential,
related to the pulse energy W by the expression

2
211 W
2_3/22, "
m.w, T "R°L

P, = (1.15)

Expressions (1.7) and (1.8) can be used to study the
spectral characteristics of the low-frequency electro-
magnetic radiation emitted from the plasma under the
action of ashort laser pulse.

2. SPECTRAL CHARACTERISTICS
OF LOW-FREQUENCY EMISSION
OF A LASER PULSE

We will characterize low-frequency emission of a
laser pulse by the time-integrated energy flux density at
acertain point [7]:

+00

P(r) = J’dtd—i—_[[E(r, t) CB(r, 1)]. 2.1

The vector P determines the emitted electromagnetic
energy that passesthrough the unit area element located
in the vicinity of the point r and oriented perpendicu-
larly to the energy flow. This quantity can be also rep-
resented in the form of the integral over the frequency

4]

P(r) = I dop(w, r), (2.2)
0

where p(w, r) characterizes the spectral density of the
electromagnetic energy that passes through the unit
area element during the total time of the pulse propaga-

GORBUNOV, FROLOV

tion. Thisguantity can be expressed through the Fourier
transforms of the electric and magnetic fields:

p(w,r) = —={[Ey(w 1) B (@ )] +cc}. 23)
81t

We will assume that fluctuations are described by a
homogeneous time-independent random function, whose
Fourier transform dNy(w, k) satisfiesthe relationship

[BN(o, k)N (w', k)0

= (2m)"8(0— w)3(k — k') (BN b
where the angular brackets denote the averaging over

fluctuations and (o N§ )w.k 1S the Fourier transform of
the correlation function of the electron density fluctua-
tions.

Substituting (1.7) and (1.8) into (2.3) and averaging
the resulting expression over fluctuations with the help
of (2.4), we obtain

(2.4)

4

Woe O _dw'dk" dk, dk;
w,r) = Z n(w", k") [——-
Pl 1) 8’ w (2Tt)4 ( )I (211)4
x expli(kn—ki1)p]
(2.5)

Dk —Kk")D* (k' —K")
elw—w" k—k"e (0—w" k' —Kk")

X

X

K"([k k[k (k"]) — k'[k k"] O
K[ w’e(w) — K] [0 () — ¢k e a

wheren(, k) = (SN2 ), i/ Noe , k = ko + ek, k' = ki +

w—w'
ek Ky = v,
directed along the z-axis.

The emission of electromagnetic wavesisrelated to
the vanishing of denominatorsin (2.5):

+ k7, and €&, is the unit vector

2

2
w w 2
gs(oo) = k3 +k;, ?s(w) = ki +kif.  (2.6)

Obvioudly, equalities(2.6) can hold only under the con-
dition
W 2
?s(w) > K, 2.7)
which determinesthe k; range that contributesto elec-
tromagnetic emission:

w—-w' W "

- +=./e(w) | <k

R <k

(2.8)

W—wW

<— —=Je(w) |.
)
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For a Gaussian pulse (1.12), at large distances from
the z-axis (p > R, c/w,), the integral in (2.5) can be
approximately evaluated by the saddle-point method.
Asaresult, we obtain

2
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2 Ul
whereq? = (;—)zs(co)— k|2| >0,%0=%o+ ezco\—/

» Ao =
9

ae, — kh,T= \% isthe laser pulse duration, and e, €

istheradial unitgvector.
Further analysis of the emission spectral density

_ p QW ¢ dw'dk" p(w, r) requires specifying the Fourier transform of the
plwr) = 8-,-[p _4% _[ > correlation function n(w', k") of the electron density
o w'ew (2m)’ fluctuations.
n "1 k" mn
«NONKD e 2 +e 80 29) 3 NONISOTHERMAL PLASMA. EMISSION
l€'(w-w", x)| q NEAR THE PLASMA FREQUENCY

022 y2RE Inanonisothermal plasma, wheretheiontemperature T,
x eXpD 0 (W-w) T _Xo % isnot equa totheeectrontemperature T, the Fourier trans-

2 2 form of the corrdlation function n(w, k) hasthe form [10]
(e k) = 522 To| 1+ 8¢l(0, k)| ImSeL (e, k) +T2|5se(co k)| “Ime}(w, ) A

216’ N5 €' (0, K)|
. . 7%"'N
where Bele(oo, k) and 58: (w, k) arethe partial contribu-  Here, v;; = gﬁTj.g/zoe/\ isthe ion-on collision fre-
m

tions from electrons and ions, respectively, to thelongi-
tudinal plasma permittivity.

Here, we will analyze electromagnetic emission
with frequencies close to the plasma frequency. There-
fore, we consider |low-frequency fluctuations satisfying
the inequalities kVy; < w < kV, (the domain of exist-

ence of the ion sound), where V; = /T,/m; istheion
thermal velocity and m is the ion mass. We represent
formula (3.1) in theform

F(w, k w, K
n(w k) = @k Yk NEE)
NOe G*) k“V
Fo 0 Y@k
U 2w
where yg = OkazrDeIme(oo K), Ipe = Vre/Wy is the

electron Debyeradius, Vs = ./ZT J/m; istheion-acous-
tic velocity,

Im%e +—6z»:'D
F(w,K) = (3.3)
Im(6ee+ Gei)
W
ImdeL(w, k) = ﬁ— (3.4)
2KV (KT pe)”
2
w .
Imdei(, k) = —2
A
3.5
By, KVy [ 0 o 00
X s V530 P70
W 2K°vs O 2kVAOO
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guency and Wy = A/4nZe2NOe/mi istheion plasmafre-
quency.

The interaction of the laser pulse with ion-acoustic
fluctuations (3.2) givesriseto anisotropic emission (the
emission intensity in the radial direction is higher than
that in the axia direction by a factor of (R/rpo)’.
According to (2.9), the emission spectral density is
described by the expression

2 2
e wpe

3R pw, i
xre € OW F qeg
RwoR 20 oy

p(w,r) =g,
(3.6)

wherer, = €/m.? isthe classical radius of an electron.
The dimensionless function Igx) characterizes the
spectral distribution of the emission intensity:

1 (X) = x°/x* = 1exp{ (b—a) X} J’ dtt’exp(—t°)F(t)
x/b

3.7

l
0
O
O(tg2 77, 2
E 1‘55;4 s
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1
2 2
_t_i| +[‘é

[% (J(t|jZ

Here, a=0.5w;, 12 and b= 0.5k> R? are the parameters
related to the longitudinal and transverse dimensions of

V¢R 2
the laser pulse; o = /2 Vs and B2 = iz are the
6 VTerDe GrDe
parameters determining the ratios of the transverse
pulse size to the characteristic plasma scales; k;, = %pe
and F() = F(@ = J2V4/R k = J2t/R =
1+ (Ti/Te)(t)
1+ (D , Where

- 08 ViRTi T % g ZTd
) = A/Zm o5 Vst ZT, 0T, 0 ®P027,08

Theexpressionfor I'g, which isgoverned by dissipation
of both plasma and ion-acoustic waves, has the form

33 D 22|:|
+fanemeRD

peX 4t3r§,e U 4t2r§,eD

Ms(x,t) = ”

8 V|| i
5w ZT

Zme DZTeDSIZ DZTED
x[ m; +DTi 0 & D_ZTiDi|.

S De
VR

(3.8)

In order to simplify expressions (3.7) and (3 8) we

i In Bzml Di|
Dm [l TI

are satisfied, the electron mean free path Ay = Vio/Vg 1S

less than R,/m/Zm,(ZT/T)3? x exp(ZT./2T, and

(C/wne) /M ZM (ZT/T) 2 % exp(ZT/2T), and the

2
inequality In Ij*)pe% R2 , 1
el 4rDe 2(kprDe)
filled. Under these conditions, F(t) = T,/T, and the first
term on the right-hand side of (3.8) plays a dominant
role. As aresult, expression (3.7) in the vicinity of the
plasma frequency is simplified:

Is(w) =

g BgeXp(b—a)I—;[L(Z) +3Q).

assumethat theinequalitiesln[

5 is aso ful-

L (w) +1_(w)
3.9)

GORBUNOV, FROLOV

Here, { = 2%(x— 1) and the functions J,({) are

3 2
“eXp(“) -, (3.10)

(u +20uU— Z) +Vg

J(Z)—fj'du

Vi . . .
wherevs= ?—= . The plusand minus signsrefer to anti-

pe
Stokes and Stokes emission lines, respectively. For suffi-

ciently small vg, when the condition vs < /b|./b + 20
is fulfilled, the functions J,(¢) and J (¢) have maxima

in the regions Z > /b (/b + 2a), respectively, where
they are described by the following approximate
expressions:

(7o)t o) exp[—(t 7 a)’]

2vdt

J.(Q) =

) 3.11)
X ¥+ arctan[—t ~(/bxa) }E;
02 0

where t = J(+ a’. Near their maxima, functions
(3.11) can be represented in an even simpler form.
Equating the derivative of the functions J,({) to zero,
we obtain equations from which we can determine the
values of t, at which these functions are maximum:

m{t* = (Vb a)’]’[3t? % 3at + a?

2 2 2,.2 2 (.12)
—2t(tFa)(t"=a’)] +2vet (" =a”) =0

In the vicinities of the pointst,, the functions J,(¢) can

be expanded in series. Then, taking into account (3.9),

the functions |, (w) can be represented in the form

(w—wi)z}

— (3.13)

Ii(w) = Itmax|:l -

where |, are the maximum values of the functions
l.(w), w, are the frequencies at which the emission
intensity is maximum, and Aw, are the widths of the
corresponding spectral lines:

2

Ibe

Aw, = 3oope? (3.14)

o)

where 7, = 2p2 5= — 18,
Z_ B %pe D

Based on these rather general considerations, we

first examine the emission of awide laser pulse whose

transverse dimensions are much greater than c¢/w,. and
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for which the inequality b= 0.5kf, R > 1 issatisfied. In
this case, it follows from (3.12) that

W, = wpeguz Bt Ko Vs (3.15)
These frequencies correspond to anti-Stokes (merging)
and Stokes (decay) processes involving Langmuir and
ion-acoustic waves with the wavenumber k;,. The max-
imum intensities and the corresponding line widths
entering formula (3.13) are described by the expres-
sions

= 0L DRZDu(k R)®
Emax 8T VeI @rD
%l 2CVsEVZ (3.16)
2 _2
expD Wpel
lc_Vs U2 0
"3,
o DU SDM
Aw. = 30,2 Esm) %l (3.17)

For electron temperatures that are not too high,
when the inequality
2o,
holds, there is only the anti-Stokes line with the fre-
guency w,, width Aw,, and intensity I, . in the emis-
sion spectrum of the laser pulse. In this case, the Stokes
lineis absent because w_ < G

At higher electron temperatures, when the inequal-
ity opposite (3.18),

V2, < (3.18)

2
3
is satisfied, both the anti-Stokes and Stokes lines with
frequencies (3.15) can be present in the emission spec-
trum. However, these lines can be resolved only when
the difference between their frequencies, w, — w_ =
2k,Vs, is greater than their widths. This requirement
leads to the inequality

152%Vs € oo Ve 1"
32~ V20RO o0 -
Te Te

Vi, > eV, (3.19)

(3.20)
pe

Figure 1 shows the logarithm of the dimensionless
spectral intensity of emission versus the dimensionless
frequency calculated by formula (3.7) for helium
plasma (Z = 2) with density Ny = 3.1 x 10'¢ cm™, elec-
tron temperature T, = 100 eV, electron-to-ion tempera-
ture ratio T,/T; = 5, and electron-ion collision fre-
quency V4 = 1.8 x 10* ... The parameters b and a
were assumed to be 8 and 0.5, respectively. Two spec-
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InZ(x)
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Fig. 1. Logarithm of the dimensionless spectral intensity of
radiation emitted in the vicinity of the plasma frequency by
awide laser pulse (b = 8) in arelatively hot nonisothermal
plasma (o = 0.14). The remaining parameters are listed in
the text.

tral maximums correspond to the Stokes and anti-
Stokes lines.

When the inequality opposite (3.20) holds, the
Stokes and anti-Stokes lines merge into one line, which
is also described by expression (3.13) with amaximum
intensity, frequency, and width equal to
— w_)z

I+max|—max((’o+

ISmax = |+max+|—max_ ) (3-21)
limacB6 + | oA,
L O, AW + 1 0 AW

I e (3.22)

| imad A0+ | Ay

| gra A AW

(Aw)? = —n= -, (3.23)

Lo A0+ | NG

respectively.

In asufficiently hot plasma (Vi,3 > cVy), the inten-
sity and width of the Stokesline are closeto those of the
anti-Stokesline: |, = |_max =11 and Aw, = Aw_= Aw,.
It follows from (3.21)—(3.23) that the emission inten-
sity is maximum at the frequency .,z = Wy, X

%l +5 kzréeg and is proportional to 21,, the line width

being equal to Aw,.
We turn now to the case of anarrow laser beam (b =
0.5 kﬁ R’ < 1) propagating in a relatively hot plasma

(o < 1). According to (3.12), in this case, the frequen-
cies of the Stokes and anti-Stokes lines are equal to

0, = oopemu Jé (3.24)
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InZg(x)
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X

Fig. 2. Same asin Fig. 1 but for a narrow laser pulse (b =
0.125).

The intensities and widths are the same for both lines
and are equal to

| = 3_T[L(1)_peﬁ
e 8 TeVei rDe O 2
2

- 53,2,

0 wieTz 30
o0
(3.25)

respectively. Although the frequencies of both the
Stokes and anti-Stokes lines are higher than the plasma
frequency, the distance between the lines is less than
their widths. As a result, these lines merge into one
whose intensity is the sum of the intensities of the
Stokes and anti-Stokes lines.

Figure 2 shows the logarithm of the dimensionless
spectral intensity of emission versus the dimensionless
frequency calculated by formula (3.7) for the plasma
with the same parametersasin Fig. 1 but for b=1/8 and
a=0.5. It is seen that the spectrum has only one maxi-
mum.

The emission spectrum of anarrow laser pulse (b << 1)
in arelatively cold plasma (o > 1) has only the anti-
Stokes line with the frequency

V
W, = Wpe+ @ﬁs (3.26)
The intensity and width of the line are
[ =0 86T wpeDVTe R DU pD_OOf,eTZD
max To Ve Vorp O b2 (327)
Ao, = U3
+ = R’

respectively.
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e

Accordingto (3.9), at higher frequencies go;_oop

pe

>

2
K e g—;eg , we' L the spectral intensity is described
by the expression
Ig(x) = X—————————(21+ bx )exp( —ax ) (3.28)
(x*-1)

If the length L of the pulseis greater than its transverse
size R, then function (3.28) decreases monotonically as
the frequency decreases to w = 2w, Where the trans-
formation of the wakefield into electromagnetic waves
by thermal plasma waves becomes possible (see the
next section). For awide pulse (R> L), far away from
the plasma frequency, there may be insignificant varia-
tions in the spectral intensity associated with the shape
of the laser pulse.

It is aso of interest to consider the energy emitted
by the laser pulse over the unit length along the pulse
trajectory:

d (3.29)

ZHpIdcoe p(w,r).

Wpe

According to formula (3.6), expression (3.29) can be

rewritten in the form

dw, _ _2¢* wpere c oW P,
dz ~ 3mRPw, 0 RWRn 2D

J’dwls(oo) (3.30)

pe

Note that the main contribution to the integral over fre-
guency in (3.30) comes from a narrow region near the
plasma frequency. Under the conditions listed before
formula (3.9), this fact allows us to rewrite expression
(3.30) in the form

x exp(b — a)J’dttgexp(—tz)(A/t2 +2at + Jt2—2at).
Jo
For anarrow laser pulse (k,R < 1) propagating in arel-
atively hot pIasma(V?e > CcVg), themain contribution to
the integral comes from the Stokes and anti-Stokes

PLASMA PHYSICS REPORTS Vol. 26 No. 8 2000
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lines. In this case, the energy of low-frequency radia-
tion emitted by the pulse per unit length is

dwy - '\/ETezw_?JererDe c
dz 4R wy R WoR

) 5 (3.31)
QW nall wpeex [0 Weel O
Q’n CZDT Vei 020

As an example, we consider alaser pulse propagat-
ing in a helium plasma. The laser frequency is w, =
1.88 x 10" 57!, the pulse durationist = 100 fs, the focal
spot diameter is 2R = 30 um, and the pulse energy is
W =1J. For these parameters, the main contribution to
dissipation comes from the first term on the right-hand
side in (3.8) (M's = (Vg/wye) = 1.8 x 107), the Debye
radius is much less than the pulse radius (rpe/R = 2.8 x
1072), and the electron mean free path is 0.23 cm. The
dimensionless parameters introduced above are vg=

\
—B———e'— =3.8 x 102, b=0.125, and a = 0.14, so that

GTEewpe

theinequalities 1 > ﬁ) > 20 hold. Inthis case, thereis
asingle spectral line with the parameters determined by
(3.25) in the vicinity of the plasma frequency; the total
energy emitted by the pulse per unit length is dW/dz =
10~ erg/cm.

Note that expression (3.31) can be obtained accurate
to afactor on the order of unity by summing the prod-
ucts of the maximum intensities of the Stokes and anti-
Stokes lines with the corresponding line widths.

For a wide laser pulse (k,R > 1), the calculation of
the energy loss by formula (3.30) yields

2 2 2.2 32 2 2 (3.32)
x i Wpegploer) R o 11 Qpel' [
TV RO B2 U o 20
1/4
. . . Ij'D(:.' eID
Thisloss is higher by afactor of D——D than the
OR? Wpe[]

loss calculated taking into account only the Stokes and
anti-Stokes lines by the approximate formulas (3.13)
and (3.14). This difference is associated with the fact
that the parabolic approximation (3.13) isonly valid in
the vicinities of the maximums, whereas the function
I{w) at b >1 has awide pedestal. In other words, not
only the resonant density perturbations (for which the
decay conditions are satisfied and which giveriseto the
Stokes and anti-Stokes lines) but also nonresonant per-
turbation contribute to the total emission power.
Although the spectral intensity of the pedestal emission
isrelatively low, it isemitted in arather wide frequency
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range, thus determining the total energy loss of awide
laser pulse.

4. EMISSION NEAR THE DOUBLED PLASMA
FREQUENCY

Now, we consider fluctuations with higher frequen-
cies: w> kVq,, kV4; (the domain of existence of Lang-
muir waves). In this case, spectral density (3.1) of the
correlation function takes the form
Krbe Vi@, K)
Noe [ooz - coﬁ(k)f

20

n(w, k) = , 4D

+Vi(w, k)

where o (k) = Wi (1 + 3Krp.) and y(w K =
0.50Ime'(w, k) [with the imaginary part of the longitu-
dinal permittivity determined by (1.12)].

From (2.9) and (4.1), we can find the spectral energy
density of emission. For sufficiently narrow laser

pulses %) = ék R < 10 it has a relatively simple

Dl
form
2
_ e wpere C I:]W[f
wr) = e L(X), 4.2
where
OJ
LX) = X 1E(x+ 1) exp[—a(x+ 1) ]
3[3 X 0 X (x+ 2)
O 4.3)
4 2,7 2 O
L (x=1) exp[-a(x—1) ]I dtt“exp(—t) %
2 2
o[X(X—Z)—%} +ril
w R?
Here, x= — ,p*= ——, and
Y GrDe

rut) = 22% ® + 367 B” ol 3BT
L= RE pDZ

Relationships (4.2) and (4.3) describe the electromag-
netic emission that appears due to the transformation of
the wakefield by thermal Langmuir fluctuations. Note
that the intensity of emission in the radial direction is
higher than that in the axial direction by afactor of b!.
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Function (4.3) has a maximum near the frequency
2wy, Where it can be represented in the form

342 " dtt’exp(~t)

, 4.4)
J(t-n)*+vi

I (n) = B exp( a)j

where n = B?(x — 2) and v (t)
quency

= 0.5B°I'(1). At the fre-

2

_ O r'oed
x = pre%:[[ + 63%, 4.5)

the emission intensity described by (4.4) attains its
maximum, approximately equal to

3 R0 @l 0
6vi(2)12r2, 02 0

(4.6)

I mex =

At higher frequencies (i.e, at x > 2), function (4.4)
decreases with increasing the frequency, and, under

1

. r .
condition [x—2|> =, = it takes the form

2
1(x) = 2%3;—“;;1
x X ih) exp[-a(x + 1)° 4.7
E(_Z) p[—a( )]
L (x=1°
( Y sexp[—a(x — 1)]D

The energy lost by the pulse due to the emission of
radiation with frequencies close to 2, can be calcu-
lated in the same way as was done above. As a result,
for anarrow laser pulse, we obtain

dw,, _ e wpere c OW 7
dz =~ 23R W} R(*)OR% 2

« IDe rDew ow pel 1]
R V D 2 D

(4.8)

For aplasmaand laser pulse with the above parameters,
it follows from (4.8) that dW/dz = 3.9 x 107 erg/cm.

Note that, in anonisothermal plasma, wheretheion-
acoustic waves are weakly damped, the maximum
emission intensity near the plasma frequency is higher
by afactor of R/rp than the maximum emission inten-
sity near the doubled plasma frequency.

GORBUNOV, FROLOV

5. LOW-FREQUENCY EMISSION OF A LASER
PULSE IN A TURBULENT PLASMA

Usually, short laser pulses propagate in a nonequi-
librium turbulent plasma, in which the level of density
fluctuations is not expressed through the particle tem-
peratures and is substantially higher than that deter-
mined by formula (3.1). With low-frequency plasma
turbulence in mind, we will consider as an example the
generation of low-frequency radiation by a laser pulse
propagating in a plasma with stationary electron den-
sity fluctuations whose correlation function has the
form

5ND). = (BN2 O 20
( e)r - (6Ne)oexp|3__2|];
O ryd

T

G.D

where the quantity r+ and (& Ni ), Characterize the scale
length and intensity of fluctuations. The Fourier trans-
form of function (5.1) is

22

(BNZ)o = (2m)3(w)(BNZ)oT " rFexpH—=H (5.2)

We restrict ourselves to considering small scal e fluctu-

ations that satisfy the condition ry << k;l .According to

(2.9) and (5.2), the spectral density of emission at large
distances from the z-axisis determined by

2 2

e Wele ©
p(wr) = g, —-=
P3. /MR pw, WP RrwoRy
TPWH Wq (5.3)
W (3N
x e 31 (%),

et N

where R? = R + (r5/2) and the function I+(x) has the
form

11(x) = x3A/x2— 1exp[(by —a)X’]

J, dttexp(—t) (5.4)
AR
1 R}
22 2
Here, by = SkiRy. By = é—g— ,and
De
Rx® 0 R2x°0
Mr(xt) = +'@ 3T 3 SXPL- T2 0
WpeX 4 3 ¢ 0 4rpt0

The emission intensity in the axial direction is higher
than that in the radial direction by a factor of (kyrp)*.
The spectral intensity of emission is maximum in the
PLASMA PHYSICS REPORTS  Vol. 26
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vicinity of the plasma frequency (x = 1), where expres-
sion (5.4) takes the form

dttexp( t)
(t —0)*+

lows from (5.5) that the emission intensity vanishes at
W= Wy (X=1). Thisis explained by the fact that elec-
tromagnetic waves with a frequency equal to the
plasma frequency cannot propagate in a plasma. At a
higher frequency, under the condition v; < by, thereis
amaximum in the emission spectrum. The position and
magnitude of this maximum depend on the pulse width.
For a sufficiently wide pulse (k,R > 1), the maximum
spectral intensity, which is attained at

1+(x) = JTBIexpl(br—a)] j (5.5)

Omax = Wpell + Zkf,rﬁ,e% (5.6)
isequa to
n OGR'DY o wtr’n
| = — [0 e (5.7
T max VT(bT)Eﬂ.ZI’%e *Pr 2 u|

For a narrow pulse (k,R < 1), the corresponding fre-
guency and spectral intensity are

4 ra
wmax = wpeEﬂ_+9 Deu

(5.8)
2RO

ORe O T’
= B—D expE—L—g’D

vi(32) ar2, > o0 G

IT,max -

At higher frequencies, when the inequality 9~ Ope >
pe

r . - .
ET’ 2—[132 is satisfied, the function 1+(x) has the form

T

I+(x) = exp(-ax’).

X (1 + brx )
——2————1— (5.10)

(x*=1)

If the pulse length is greater than its width (L > R),
function (5.10) decreases monotonically with increas-
ing its argument. In the opposite case (L < R), function
(5.10) is nonmonotonic and has weakly marked maxi-
mums.

Figure 3 shows the logarithm of the dimensionless
spectral intensity of emission versus the dimensionless
frequency calculated by formula (5.4) for a narrow

pulse (kf)e R? = 1/4) propagating in a plasma with the
electron Debye radius rp, = 2.8 x 1072 R and effective
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 3. Logarithm of the dimensionless spectral intensity of
radiation emitted by a narrow (b = 0.125) and short (L =

k;l ) laser pulsein aplasmawith stationary electron density

fluctuations for (8N2)o/N&,) = 0.01, rr = 3 x 10 cm
rpe=2.8 X 107 R and Vg = 1.8 X 10~ tpe.

collision frequency vg = 1.8 x 10~ w,; the pulse dura-
tionisT = wpe.

In conclusion, we estimate the energy of electro-
magnetic radiation emitted by the pulse per unit length,
dWy/dz. We integrate the spectral intensity over the fre-
guency taking into account that the main contribution
to the integral comes from frequencies close to the
plasma frequency. As aresult, for k,R < 1 we obtain

dWD /\/énze wpererDe C [ W DZ

dz 20R2 @} R WoRrlm o2l
- (5.11)
(6Ne)0 3(*) [] Wpel [
N()e NOe eXpD_ 2 I

For estimates, we assume that the plasma and laser
pulse have the same parameters asin previous sections.
For ry = 3 x 10* cm and ((BN2),/Ng,) = 0.01, from
(5.11) we obtain dW/dz = 5.2 erg/cm. At such a low
rate of energy loss, the total energy emitted by the pulse
during its propagation through the plasma is small
compared to the pulse energy; however, it is quite
enough to be measured.

CONCLUSION

It is shown that a short laser pulse propagating in an
underdense plasma with electron density fluctuations
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can emit electromagnetic waves whose frequency is
much lower than the frequency of laser radiation and is
close to either the plasma frequency or the doubled
plasmafrequency. The mechanism for the generation of
such an emission isrelated to the transformation of the
excited wakefield by density fluctuations. This effect is
usually treated using the planar wave approximation
[10]. However, the wakefield excited by the pulse has a
fairly complicated spatial structure strongly dependent
on the ratio of the transverse pulse size to the wakefield
wavelength 27ic/uy,.. As aresult, both the intensity and
spectrum of the emitted radiation depend on the laser
pulse parameters.

The estimates obtained in this paper refer to nonrel-
ativistic laser intensities, when the electron oscillation
velocity in the laser field is much less than the speed of
light. The estimates show that the intensity of the emit-
ted radiation is rather low. However, the emission
energy is concentrated in narrow spectral intervals,
which assists in measurements of this emission. It can
be expected that the use of relativistically strong laser
pulses (whose analysis, however, isbeyond the range of
applicability of the theory proposed) will alow one to
significantly increase the intensity of low-frequency
emission. In this case, additional lines at higher har-
monics of the plasma frequency can also appear in the
emission spectrum due to the nonlinearity of the
excited wake wave.

The measurements of low-frequency electromag-
netic radiation generated during the propagation of a
short laser pulse in a plasma produced, e.g., in the
interaction of another, longer laser pulse with a thin
foil (see, e.g., [11, 12]) can open new possibilities for
diagnosing both the wakefield and fluctuations by
which the wakefield is transformed into electromag-
netic radiation.

GORBUNOV, FROLOV
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Abstract—A set of equations describing large-angle stimulated Raman scattering (SRS) of ashort, relativisti-
cally strong laser pulse propagating in an underdense plasma is derived and investigated numerically. It is
shown that the SRS spectrum depends strongly on the pulse shape. If a pulse with a sharp leading edge excites
a strongly nonlinear wake wave, the scattering occurs in relativistic electron flows and is accompanied by the
Doppler frequency shift. When the electron flow is directed oppositely to the pulse propagation direction,
the frequency upshift is maximum for the direct-backward SRS and decreases with decreasing scattering angle.

© 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

For many years, the problem of stimulated Raman
scattering (SRS) of high-power laser radiation in an
underdense plasma (wy, < wy Wwhere w, =
(41Ee’n,/m,) /% isthe electron plasmafrequency and wy, is
the laser frequency) has attracted much attention in con-
nection with inertial confinement fusion research [1-6].
Recent interest in this problem has been motivated by
the development of laser methods for charged-particle
acceleration in aplasma[7-10]. Rapid progressin laser
technology has resulted in creating lasers with an inten-
sity of focused radiation higher than 10'8 W/cm? [11-13].
In such a field, the oscillatory velocity of the plasma
electronsis close to the speed of light. Asaresult, SRS
acquires new features; in particular, backward and side
scattering at the harmonics of the laser frequency starts
to play an important role [14-17].

Due to the fairly strong focusing (r, ~ 10—100 pm)
and extremely small duration of relativistically strong
laser pulses (T ~ 107141072 s), the instabilities of such
pulses can be affected by finite pulse dimensions. Thus,
for SRS at large angles, convective effects related to the
withdrawal of perturbations from the region occupied
by apulseplay animportant role[18, 19]. If the duration
of areativisticaly strong pulse (or the duration of its

leading edge) is comparable with or less than k;l

(wherek, = w,,/C), the pulse excites astrongly nonlinear
wake plasma wave [20] and the scattering occurs in an
electron flow moving at the relativistic velocity. In this
case, the backward SRS can be accompanied by a sub-
stantial change (upshift or downshift) of the frequency
of the scattered radiation [21, 22].

Earlier, the effect of finite pulse duration on the SRS
of reativistically strong laser pulses was examined

only for cases of direct-forward [19, 23] or direct-back-
ward [19, 21, 24] scattering. At the sametime, from the
point of view of diagnosing the processes occurring in
theinteraction of superintense laser radiation with plas-
mas, a study of the angular distribution of scattered
radiation is of considerable interest [25].

The aim of this paper isto investigate (both analyti-
cally and numerically) the effect of astrongly nonlinear
wake wave on the angular and frequency spectra from
SRS of short relativistically strong laser pulses in an
underdense plasma at the fundamental and higher har-
monics. A set of equations describing the dynamics of
the electron density perturbations and the amplitude of
the scattered wave is derived and investigated numeri-
caly. It is shown that the excitation of a wake wave
results in a strong frequency upshift of the radiation
scattered into the backward hemisphere.

2. SRS IN A HOMOGENEOUS-AMPLITUDE
PUMP WAVE

The problem of SRS spectra of a relativistically

strong (eE,/mw,c=1), short (T ~ w;é) laser pul se excit-
ing astrongly nonlinear wake wave can be substantially
simplified if we assume that the characteristic temporal
and spatial scales on which perturbations arising in the
course of the SRS instability increase are much less

than the temporal and spatial scales (wgcl, and k;l) on
which the laser field amplitude and the parameters of
the wake wave vary. Such an approximation seems to
be justified for an underdense plasmawith w,, < wy,. In

this case, the temporal and spatial growth rates of the

SRSingtability areontheorder of ' ~ ooéj 3035/03 [14-17]

1063-780X/00/2608-0657$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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andK ~ ooé/ 3 ﬁ’f /c[21, 22], respectively. Therefore, for

the parameter K, characterizing the ratio between the
above scales, we obtain K ~ (wy/uy)'” < 1.

Assuming the plasma to be highly underdense, we
will consider the problem in the limit Kk — 0. This
limit corresponds to the locally homogeneous, quasi-
steady approximation, in which the pump wave ampli-
tude and the averaged (over high-frequency oscilla-
tions) density and hydrodynamic velocity of plasma
electronsin the vicinity of a given point can be consid-
ered constant.

To analyze the linear stage of the instability associ-
ated with SRS of a homogeneous-amplitude pump
wave in the presence of a homogeneous electron flow,
we will use the results obtained in [17]. Let arelativis-
ticaly strong, arbitrarily polarized electromagnetic
wave propagate in a cold underdense plasma along the
z-axis. The vector potential of the wave is described by

im
0_5 = (aoeDexp(lkoz—let)+0c) (1)

where wy, k,, and a, are the frequency, wavenumber,
and dimensionless pump wave amplitude, respectively
(here, wy > w, = (417N, /M), K,y = Wy/C, and N, isthe
plasma electron density averaged over high-frequency

oscillations), and eg = (e, + pey)/+/1+[u|’ is the unit
polarization vector of the pump wave (e - €5 = 1). In

particular, the case Imu = 0 correspondsto linear polar-
ization and 1 = i corresponds to circular polarization.

L et the plasma el ectrons have amean hydrodynamic
velocity V = const. For definiteness, we assume that the
vector V lies in the (x, z) plane. We pass over to the
frame of reference in which the mean hydrodynamic
velocity is equal to zero (V' = O; hereafter, the prime
labels the quantities related to the frame associated
with the electron flow). Let the Z-axis be directed along

the vector kg, the y'-axis coincide with the y-axis, and

the X'-axis be perpendicular to the y'- and Z-axes. The
amplitude of the vector potential of the pump wave and
its polarization do not change when passing to the

(X,¥,Z) coordinates: a;, = a, and e; = (e +
ue'y)/All + |p.|2 . The mean electron density intheframe

of reference related to the electron flow isequal to 0 =

Ned/1— [32 , Where 3 = V/c. Assuming that, in thisframe,
the plasmais also underdense (w, > w,), we have

—Vko _ 1 Bcosa

[__ e

Ko =wpl/C, Wy =

SAKHAROV

where a is the angle between V and the z-axis. Thus,
the vector potential of the pump wavein the new frame
of referenceis equal to

imgcC .
Ay = > (aoeDeXp('ko —iwpt) +cc.). (1)

In theframe of referencerelated to the electron flow,
the plasmais on average at rest (V' = 0). Then, accord-
ing to [17], the complex amplitude a, of the vector
potential of a daughter wave scattered at the Nth har-
monic in the direction close to agiven direction e and

the complex amplitude dNo of the low-frequency (in
Lagrangian coordinates related to an element of the
electron fluid oscillating in the pump wave field) com-
ponent of the relative perturbations of the el ectron den-

sity 8N' = dn,/n, arising in the course of the SRS
instability are related by the expressions (note that the

quantity o N does not change when passing over to the
laboratory frame and, thus, is not further marked with a
prime)

[500' —c(es BBK)]ag
Q%a, 2)
= 4N O[e L x [e] x Ft118No,
2N° coo a,y

Vo
Here, 0w = w; — Nwy, Ok' = k; — Nkye:, w, and kg
are the frequency and the wave vector of the scattered
radiation (|563] < Ny, and [8k'| < Nk§), Q1 = @) /Yo,

vo=(1+a;/2)” e, = (sin0'cosd’, sinB'sind’, cos0),
0' isthe angle between e, and the propagation direction
of the pump wave (the scattering angle), ¢' is the angle
between the x'-axis and the projection of the vector e,
on the (X, y) plane (the azimuthal scattering angle),

(5w)?8No = ——=>2sin’(8'/2)(Fy ().  (3)

Frn(e) = eny i€l + ey e
a, o o, 4
+ 4_VO[SN+2(eD [er) +en_o(e [ey)le,,

En
)
=S (-1)"In-zn(Po) In(py) explin(2m—N) —im3],

b = 2NJ(el L)),
Yo

a§ (6)
= —=2 _Nsin’(8/2)|(e, [&))],
o 2 /oy sin"(6'/2)|(e; Cey)|

n = arg(e;[ey), & = arg(e; [&y). (7

PLASMA PHYSICS REPORTS Vol. 26 No. 8 2000
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We note that equations (2) and (3) correspond to the
strong-coupling regime, when the growth rate of the

instability is greater than Q,, and one can neglect the
charge-separation field arising in the course of the SRS
instability. From (2) and (3), we obtain the dispersion
relation for the instability associated with SRS at the
Nth harmonic [17]:

{[0w' —c(e; EBk')](ESco’)Z—Q'Ns}ESNo =0, (8

where
3 2 Nag
Qn = Q;Jw;)?sinz(e'/z)ue;xF'N]|2. )
Yo

At afixed scattering direction e, the maximum of
the growth rate of the instability associated with SRS at
the Nth harmonic corresponds to the zero detuning
3k' =0 (w, = Nwy) and isequal to My = (4/3/2)Qy .
Fora, < 1,N=1, and V = 0, we obtain from (8) the
well-known nonrelativistic expression for the growth
rate of the SRS instability in the strong-coupling
regime(F, =, > Wy) [6]:

1/3

r, = «/éﬂopo ansm (6/2)|[ e XeD]l 0 -

20 2 (10)

Since Qy — 0 (and, therefore, 'y — 0) as
8' —= 0, the applicability condition of the strong-cou-
pling approximation, Iy > w, , meansthat dispersion

relation (8) isvalid at scattering angles that are not too
small.

The dispersion relation for the SRS instability near
agiven direction e, = (sinBcos®, sinBsind, cosb) in the
laboratory frame can be obtained from (8) by means of
relativistic transformations:

dw—(V [BK)
Jiop

2Ny [ 865 — c(e, [Bk")] = (.

—c?k2) = 200(8)[ 5w~ (e, [BK)],

ow' =

11
— k) (

= (0
where 86 = &, — (), 3k = k; - ky(B)es ky(8) =
w\(8)/c,

(12)

9 isthe angle between the scattering direction e, in the
laboratory frame and V, and

cosB = cosBcosa + sinBcosd sina. (13)
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The angles 6" and ¢' are related to 6 and ¢ by the
expressions

el

arccos(cosé' cosa’ — sind' cospsina’), (14)

arctanD_ _ ~sm63m¢ - Er (15)
CSine cos¢ cosa’ + cosB'sina’

<
n

sinBsing
sinBcos¢ cosa — cosBsina’

Asaresult, we obtain the dispersion relation in the | ab-
oratory frame:

{[0w—c(& [dk)][dw—(V [Bk)] an

~Q318No = 0,
where
f, = (1—[32)1]2(1—Bcosé)(l—Bcosa)
(18)
00N G 812) [ x FL(EIT

Vo

If the electron flow is aligned with the z-axis, i.e,
directed along the wave vector of the pump wave (a = 0)
or oppositely to it (a = ), expression (18) is somewhat
simplified:

Na

3
Yo (18)

3/22
)

_(1 Bz

x sSn?(8/2) [ x Fiy(e)]F-

In this case, 0= 0, ¢' =0, cos® = (cosO — BY/(1 —
B,cos0), and

1- Bz
1—-3,cosO

The growth rate of the instability associated with SRS
at the Nth harmonic is maximum at w, = wy(0). Accord-
ingly, a B, > O the backward and side scattering is
accompanied by a Doppler downshift (with respect to
Nwy,) and at 3, < 0 it is accompanied by a Doppler
upshift. The frequency upshift is maximum for 3, < 0
and direct-backward scattering (0 = T): Wypax =

No(1 + [B,D/AT — B ].

wy(8) = Nwy. (12"

3. SRS OF A FINITE-SIZE PULSE

Let us consider alaser pulse with afinite duration T
propagating in an underdense plasma along the z-axis
with the velocity v, = c. We assume that the pul se shape



660

does not change in the course of propagation and the
parameters of the pulse depend only onrjand § = z—ct.

The instability associated with the backward and
large-angle SRS (B ~ 1) is convective in character,
because both the scattered radiation and the electron
density perturbations arising in the course of the insta-
bility are carried backward with respect to the pulse. If
we assume that the instability is seeded by short-wave-
length (k. ~ k) fluctuations of the electron density
ahead of the pulse [8, 19, 21], then, in atime of about
T, a steady-state solution describing the growth of per-
turbations from the front of the pulse toward itstrailing
edgeis established in the region occupied by the pulse.

Since, in this paper, we restrict ourselves to consid-
ering the linear stage of the instability, the seed elec-
tron-density perturbations contribute to the steady-state
solution additively. Therefore, we will consider a solu-
tion arising from a single seed electron-density wave
with a certain fixed wave vector k.. Assuming that the
characteristic value of the instability growth rate is
much greater than the plasma frequency, we can con-
sider the seed perturbation to be time independent:

ON. = ONgexp(iker). (19)

The leading edge of a laser pulse propagating in an
underdense plasma along the z-axis with the velocity
Vg4 = ¢ undergoes the action of the seed €l ectron-density
wave at the frequency @ = —ck,. The establishment of
a steady-state solution means that, in the variables p =
(X, y, & and t, al the perturbations inside the pulse
depend on time as exp(—i wt).

We represent the field of the daughter wave scat-
tered in the direction e, in the form

as_
- sO(p)eXp( |wt+|ksp)

where ay, is the complex amplitude and kg = ess/C iS
the wave vector of the scattered wave, which satisfies
the relationship kg = ek + k. (see Fig. 1). The latter
means that the frequency of the scattered wave w, and
scattering angle 6 are related by the expressions

ws(1—cosB) = (21

If the parameters of the pulse vary slowly on the
characteristic length on which perturbations increase
(which corresponds to the most interesting case of
strong amplification of initial perturbations), the local
variations of perturbations can be described with the
help of Eg. (17), which we transform into a differential

equation for dNo (p).

We represent dwand 8k in thevicinity of dwy, = w,—
wy(0) and Ok, = k,— Ky(0)eg in the form
0k —»= Ok, —iV.

t t+ik
so(r, t)exp(—iwgt +ikr) 20)

—cky, = ®, ®sSNO = ckyo.

0w — dw, +10/0t,

SAKHAROV

Then, taking into account that 66No(p)/6t =

-Cc0d No (p)/0¢ and assuming that the parameters of the
pulse and the excited wake wave vary slightly on the
characteristic length on which perturbations increase

~ k;|0In3No (p)/0E | < 1), we obtain from (17) the
equation for 6NO(p):

[Dg__(eswu)mg_ (VIVy) . f
[ 1—cosBLLOE c(1—Pcosa) 90

(22)
+iQf,}6l§Io =0,
where B(p), a(p), V(p),
a(p) = D
o (23)
Q(p) = n(2)

c3(1 - Bcosa)2(1 — cosB0)

are slowly varying (on ascale of k;l) coefficients. The
boundary conditions ahead of the pulse are
BNo(E =) = SNgexp(-idef),

where g = q(§ — ) = ks— Nk,
Similarly, from (3) we obtain the equation for the
evolution of ag(p):

(24)

0o (e[Vp)
(98 1- coseElfas
0y (1-B)" )
i
R.€,)5No,
4ch(9)(1 cose)Vo( o€ * Ri€)ONo
where
& = [esxejl/|[esxe]], e = [exegl,
R, = ([eix [elx Fy 1]ey) =—(e; - Fy),
R = ([esx[e;xFyle) =—(e; - Fy),
(26)

& = [esxell/llesxeV]l, e = [eixeg],

= V/V, e, = (sina', 0, cosa'),
cosa’ = -0Sa =B
1-Bcosa

It follows from (25) that, behind the pulse, where
a, — 0, the amplitude of the scattered wave is con-
stant along the straight lines

Kr
+ Ko D)tan— = const. (27)
ko 22
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Note that, strictly speaking, Egs. (22) and (25) are
appllcable a |w, - wy| < w,, i.e, in the resonant
regions, where the detuning q(p) is small (Jgq| < Nk,)
and the spatial growth rate of the instability associated
with SRS at the Nth harmonic attains its maximum. It
is these regions that make the main contribution to the
SRS spectrum. Since the contribution from nonreso-
nant regions is relatively small, we will use equations
(22) and (25) in the entire range of ¢ values when cal-
culating the SRS spectrum.

To find the power Py lost by the pulse due to SRS at
the Nth harmonic, it is necessary to solve Egs. (22) and

(25) for 5No and ay, and then integrate the square of the
amplitude of the electric field of the scattered wave
(Eg =i(mcwg/e)ay,) over theplane = €, = const behind
the laser pulse. Taking into account that ag, [ dN, for
Py we obtain
2C3w2
e s (1— 088) 5N,
8re

where the proportionality factor Gy, for the case of SRS
at the Nth harmonic is equal to

Py = Gy

(28)

(29)

Knowing the radiation power scattered at each har-
monic for individual seed waves, we can express the
spectral density of scattered radiation P, through the
spectral  density of seed electron-density waves

I} N§0 [}, ahead of the pulse:

mzcsw2
P, = ———(1- cose)
8me’
x (BN, + BBNg ) G(K),
where k. = k — ek, k. = 2sin(6/2)k, and G(k) =

v Cn (k). (Note that, in the presence of relativistic

ectron flows in the region occupied by the pulse, the
spectra of SRS at different harmonics can broaden or
even overlap.) When deducing (30), wetook into account
that the ratio of the elementary phase volume of seed
waves to that of scattered radiation is equal to |dk./dk | =
1 — cos® =2cos?6, and that, within the model at hand
[i.e., neglecting the time dependence of the initia elec-
tron-density perturbations; see (19)], the seed perturba-
tions with oppositely directed wave vectors (k. and —k,)
give the same contributions to the SRS spectrum.

Note that, when the growth rate of the SRS instabil-
ity is much greater than the electron plasma frequency
(Qn > wy), not only the oscillation at the frequencies
close to wy, but all of the fluctuations in the frequency
range w, < Qu contribute to the scattering. Therefore, as

(30)
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ek z

Fig. 1. Relation between the wave vector of aseed perturba-
tion of the electron density k and the wave vector of scat-

tered radiation kg.

[BNsoEle, we must use the frequency-integrated spec-

tral distribution of electron-density fluctuations, which,

according to [26], is equal to

1 1+Kir2,
2.2

(2T[) Ny 2+ K.rpe

where rp, is the electron Debye radius. Accordingly,
from (30) we obtain

BN, = (31)

1+k22
P, = — mc‘*’(l— 0)’——='eG (k). (32)
(27[) 2 erDe

The spectra |nten3|ty (per unit solid angle) S, of radia-
tion scattered in a given direction is equal to

_ diy

_Ezkzpk
(33)
1 k
LMWk gyt Kelbeg )
(ZT[) (*)po 2"'kerDe

4. SRS OF A WIDE PULSE
The problem can be significantly simplified in the
case of an ultrashort pulse whose transverse sizer, is
much greater than itslongitudinal sizeL = ¢t (r, > L).
In this case, the electron flow excited by the pulse is
amost parallel to the z-axis (V = V,e,) and the electron
flow velocity V, and the electron density n, averaged

over high-frequency oscillations are described by a set
of quasi-one-dimensional equations [20]:

ol D ad
”0 Q1+e¢/m A? O
a—i) = 4rme(n,—ny),
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Fig. 2. The maximum spatial growth rate Ky (normalized to

k2/3k(],J3) of the instability associated with SRS at the fun-

damental and higher harmonics (N =1, 2, 3, 4, and 10) asa
function of the scattering angle at a, = 2.5 and 3,= O for (a)

circular and (b, ¢) linear polarization of laser radiation at
¢ = (b) 0and (c) Ty2.

where @ is the electric potential averaged over the
laser-field period. Moreover, for scattering angles that
are not too small (8 > L/r,), we can neglect the term
with (e, - V) in (22) and (25). Accordingly, Egs. (22)
and (25) reduce to eguations

000 ... f..~3]xc _ ,
[ﬁm"’lqm +|QNi|6NO - 0, (22)
9
6Ea50
(259

0 (1-B)" 2
4cwy(0)(1—cosh)y,

—(R,e; + R er)éNo,

SAKHAROV

whose solutions depend parametrically on ry. Here,

_ 1-B,cosB _ 23,
= —1—Bz ki— Nk, = go + 1-B, sin (9/2) (35)
3 _ Qn(e)

- 3 2
¢ (1-B,)(1—cosb) 36)

N80 B e e

4Y0
For acircularly polarized laser pulse and direct-back-
ward scattering (e, = —e,), Egs. (22 and (25") pass over

(accurate to terms on the order of k,|dIndNo /g [ < 1)
to the equations obtained in [21] (notethat, in this case,
Quns 1 =0;i.e, the scattering occurs only at thefirst har-
monic).

Figure 2 showsthe angular dependences of the max-
imum spatial growth rate Ky = [0In|dNo |/0&|,-o =

(J/3/2)Qy for B,=0, a, = 2.5, and (Fig. 2a) circular and
(Figs. 2b, 2c¢) linear polarization of the pump wave at
N=1, 2, 3,4, and 10. Figures 2b and 2c correspond to
the scattering in the plane of polarization (¢ =0) andin
the plane perpendicular to the plane of polarization of
the pump wave (¢ = 17/2), respectively.

We emphasize that, in contrast to the temporal
growth rate of the SRS instability, the spatial growth
rate K, of theinstability associated with SRS at thefirst
harmonic isfinite at small scattering angles. This effect
(earlier pointed out in [18]) isrelated to the fact that the
velocity with which scattered radiation is carried away
from the region occupied by the pulse depends on the
scattering angle as (1 — cos)c. At 0 = 11, the scattered
radiation is carried away with a maximum velocity
equal to 2c. As 6 decreases, the time during which the
scattered radiation stays inside the pulse increases,
which resultsin arelative increase in the spatial growth
rate of the SRS instability at small scattering angles.

It follows from (22" that, if 3, varies inside the
pulse, then, at a given rp, the perturbations grow most
rapidly in the vicinity of the resonance point q(¢,) = 0,
where the frequency of scattered radiation w coincides
with the local value of the frequency wy: ws= Nuwy(1 —
BE)/(1 — B, )cosB). Farther from the resonance
point, the spatial growth rate of perturbations falls off.
Apparently, perturbations for which the resonance
point lies near the extreme of q (0g/0¢ =0 at & = &)
undergo the maximum amplification. Note that, at
small scattering angles, the detuning g depends slightly
on 3, [see (35)]; i.e., at small B, the perturbations with
0o = ks — Nk, = 0 remain resonant throughout the entire
pulse even in the presence of afast electron flow inside
the pulse.
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5. NUMERICAL RESULTS

Equations (22" and (25") were used to compute the
spectra from SRS of relativistically strong pulses. The
pul se shape was specified as

a5(8,1) = aha exp(r’lre) f(€), (37)
where
f(&)
1'[1—S‘inDn—ED} for —L; <& <L
2 (pL,0 1 b
(38)

=<1 for -L +L,<&<-L,,

1 L TUE+ L)
§[1+Sn52—l_25} for —L—L,<&<—L+L,

andf(§) =0for & >0and & <-L — L,. Here, L isthe
effective longitudinal size of the pulse (Iag &, 0)dg =

a,iax L) and L, and L, are the lengths of the leading and
trailing edges, respectively.

The calculations were performed for the following
parameters of the pulse and the plasma: Aj = 1 pm,
Anax = 2.5 (Iax = 0.85 X 101 W/cm?), ry = 60 um (P, =
105 W), oy /wp = 10 (ny = 10" cm?), T=10€V (rpe =
0.7 x 10% cm). Below, we present the results of calcu-
lations for two typical longitudinal profiles ().

In the first case, the longitudinal size of the pulseis

L=5 kgl = 8 um (the pulse duration is T = 26 fs). The
pulse has a smooth leading edge (L, = 4.9k;1) and a

sharptrailing edge (L, = 0.1 kgl). Inthiscase, theveloc-
ity of the electron flow inside the pulse isrelatively low
(IB,] = 0.1) (see Fig. 3a) and the scattering occurs
almost as in an immobile plasma.

In the second case, L = 7k;1 = 11 um (the pulse

durationist=37fs), L, =0.5k, andL,=1.5k; . Inthis
case (Fig. 3b), the leading edge of the pulse excites a
strong electron-density wave (|Bly.x = 0.6).

Figure 4 showsthe angular distributions of the spec-
tral intensity S, of scattered radiation for the pulseswith
the above parameters in the case of circular polariza-
tion. Figure 4a corresponds to the pulse with a smooth
leading and sharp trailing edge, and Fig. 4b corre-
sponds to the pulse with a sharp leading edge exciting
astrongly nonlinear plasmawave. Figures5 and 6 show
similar distributions in the case of linear polarization
for ¢ =0 (Fig. 5) and ¢ = 172 (Fig. 6). The spectraare
cut off at 6 < 0.11tbecause the model used isinapplica
ble at small scattering angles. It is seen that, when the
longitudinal electron velocity inside the pulse is rela
tively low (Figs. 4a, 5a, 63d), the structure of the spec-
trum generally correlates with the angular dependence
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Fig. 3. Thelongitudinal profile f(§) of the laser pulse inten-
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of the spatial growth rate of the SRS instability in an
immobile plasmaat a, = a,,, = 2.5 (see Fig. 2).

In the case of a pulse with a sharp leading edge
exciting a strongly nonlinear wake wave (Figs. 4b, 5b,
6b), the spectra of scattered radiation are substantially
modified. In this case, in the main part of the pulse, the
velocity of the electron flow is negative; as aresult, the
backward and side scattering is accompanied by a
strong frequency upshift. In particular, in the case of
circular polarization, a local maximum of the spectral
intensity of backscattered radiation appearsin therange
k = (3-4)k,, which corresponds to the Doppler shift of
radiation scattered at the first harmonic (k = k(1 —
B)/(1 + B,)) in the presence of an electron flow with
IB)max = 0.6 (Fig. 7a). Note that the absolute maximum
of the spectra intensity of backscattered radiation nev-
ertheless corresponds to frequencies close to wy,.
Numerical results show that the main contribution to
this maximum comes from the peripheral part of the
pulse (r = 1.5r,), where the velocity of the excited elec-
tron flow isrelatively low (|3,| < 0.1).

In the case of linear polarization, the effect of the
frequency upshift of backscattered radiation isless pro-



664

klko

(a)

SAKHAROV

klko
10

(b)

0
0 0.2 04 0.6 0.8 1.0
o/t
I I I I I I I
0 1 2 3
log ;oS

Fig. 4. Distribution of the spectral intensity S, of scattered radiation (in units of W cm/sr) in the (6, k) planeat Ag = 1 pm, a,,, =

2.5, 1= 60 um, wy/yy = 10, and T= 10 eV for (a) apulse with asmooth leading edge (L = 5 k;l ,L; =49 k;l ,and Ly =0.1 k;l)

and (b) a pulse with a sharp leading edge exciting a strongly nonlinear wake wave (L = 7k;1, L;=05 k;l, and L, =1.5 k,;l) for

the case of circular polarization of laser radiation.

nounced. In this case, short-wavelength components
corresponding to SRS at odd harmonics (particularly
the third harmonic) of thelaser frequency are present in
the spectrum of backscattered radiation even in the
absence of the excitation of a wake wave [14, 17]
(Fig. 7b, solid curve). The excitation of a wake wave
results in the frequency upshift of backscattered radia-
tion at the first harmonic (up to k = (3-4)k;). At the
same time, the intensity of radiation scattered at higher
harmonics decreases; as a result, the total intensity of
backscattered radiation in the frequency range w = 2w,
changesinsignificantly (Fig. 7b, dashed curve).

It is seen from the figures that the frequency shift of
scattered radiation decreases with decreasing the angle 6.
The maximum of the intensity of radiation scattered at
thefirst harmonic correspondsto small scattering angles
because, as was mentioned above, at small 6 the detun-

ing of the resonant perturbations with g, = k- k, = 0is
small even in the presence of fast longitudinal motion
of the electron component; i.e., the spatial growth rate
of such perturbations is close to maximum throughout
the entire pulse.

An analysis of angular and frequency spectra of
scattered radiation for the above pulses shows that,
when the amplitude of the excited wake wave is low,
the radiation powers scattered into the forward and
backward hemispheres are approximately the same in
order of magnitude (~107 W). The power of scattered
radiation with k = 1.5k, is about 1% of the total scat-
tered power. The excitation of the wake wave weakly
affectsthe power of radiation scattered into the forward
hemisphere but leads to a substantial decrease (almost
by two orders of magnitude) in the total power of radi-
ation scattered into the backward hemisphere. This
2000
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Fig. 5. Same asin Fig. 4, but for the case of linear polarization of laser radiation at ¢ = 0.

decreaseisrelated mainly to suppression of SRS at fre-
quencies close to the carrier frequency; as aresult, the
fraction of radiation with k= 1.5k, in the total power of
radiation scattered into the backward hemisphere
increases to several tens of percent.

For arelatively low total power of scattered radia
tion (Ps ~ 107 W), which is about ~10%P,,,,, the total
energy of radiation scattered during the time required
for the pulse to cover adistance equal the length of the
focal region (on the order of 1 cm) is aso low and
amounts to ~0.3 mJ (one-thousandth of a percent of the
total energy of the pulse), which, however, is quite
enough for diagnostic purposes. A relatively low scat-
tering efficiency is related to the fact that the calcula-
tions were performed for the pulses with an extremely
small length L satisfying the condition L < r,, under
which the quasi-one-dimensional approximation is
valid. For actual pulses with duration T = 0.1 ps, the
intensity of scattered radiation is expected to be much
higher. In this case, the problem should be solved in
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terms of the complete set of Egs. (22) and (25) because,
for such pulses, thereation L >, usualy holds.

According to the results of numerical calculations,
in the case at hand, the maximum value of the mean-
square relative electron-density perturbation behind the

pulse, SN = [ [BNoL] k2 dkedQ (theintegral over k,is
taken over the region where the spectral density

~ 2
[®&No[] is close to its maximum), is on the order of
1073 i.e, the SRS instability is far from saturation,

which occurs at 3N° ~ 1. This means that, for longer
pulses, the intensity of scattered radiation can be
increased by three orders of magnitude under condi-
tionswhen theinstability isnot yet saturated, i.e., when
Egs. (22) and (25) are applicable. In this case, the total
energy of scattered radiation can amount to 1% of the
total energy of the pulse.

Note that the calculations were carried out for the
frequency ratio wy/wy, = 10. Thisvalue, in fact, lies on
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Fig. 7. Profiles of the spectral intensity S, (in units of W crm/sr) of back-scattered radiation at Ag = 1 um, a,,x = 2.5, ry = 60 pm,
Wy/Wpo =10, and T =10V inthe case of (a) circular and (b) linear polarization of laser radiation for a pulse with asmooth leading

edge (L = Skgl, L, =49 k;l ,and L, = 0.1 k;l ; solid curves) and a pulse with a sharp leading edge exciting a strongly nonlinear
wake wave (L =7 k;l ,L =05 k;l ,and L, = 1.5 k;l ; dashed curves).
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the boundary of the applicability region of the model
used with respect to the parameter K ~ (wp/ay)'” (see
Section 2), which, inthis case, can only roughly be con-
sidered small. Nevertheless, we can expect that the cal-
culated SRS spectra will differ from the actual spectra
mainly in the absol ute values of the spectral density and
total power of scattered radiation. At the sametime, the
model proposed is expected to correctly describe the
general features of the SRS spectraeven at not high val-
ues of the frequency ratio wy/wy,. In particular, the
effect of a strong Doppler shift of back- and side-scat-
tered radiation under conditions when a strongly nonlin-
ear wake wave is excited should be described correctly,
because this shift does not depend on wy/wy, at al.

5. CONCLUSION

In this paper, we have obtained and numericaly
investigated a set of equations describing the large-
angle SRS of a short relativistically strong laser pulse
propagating in an underdense plasma.

The results obtained show that the structure of the
SRS spectrum of an ultrashort, relativistically strong
laser pulse depends strongly on the pulse shape. When
the pulse is smooth and the amplitude of the excited
wake wave isrelatively small, the structure of the SRS
spectrum replicates the structure of the spatial growth
rate of the instability associated with SRS at the funda-
mental and higher harmonics of the laser frequency in
an immobile plasma.

If the pulse front excites a strongly nonlinear wake
wave, the scattering occursin relativistic electron flows
and is accompanied by the Doppler frequency shift. In
the presence of an electron flow directed oppositely to
the pulse propagation direction, the scattering occurs
with afrequency upshift. The frequency upshift is max-
imum for the direct-backward SRS and decreases with
decreasing scattering angle.

Therevealed dependence of the structure of the SRS
spectrum on the amplitude of the excited wake wave
can be applied to diagnosing the interaction of relativ-
istically strong laser pul seswith an underdense plasma.
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Abstract—Dusty plasmas, which are open systems, can form stable one-dimensional self-organized structures.
Absorption of plasma by dust particles results in the plasma flux from the plasma regions where the dust is
absent. It is found that, in a one-dimensional dust layer, this flux is completely determined by the number of
dust particlesper unit areaof thelayer surface. Thisnumber determinesall of the other parameters of the steady-
state dust structure; in particular, it determines the spatial distributions of the dust density, dust charge, electron
and ion densities, and ion drift velocity. In these structures, aforce and electrostatic balance is established that
ensures the necessary conditions for confining the dust and plasma particles in the structure. The equilibrium
structures exist only for subthermal ion flow velocities. This criterion determines the maximum possible num-
ber of dust particles per unit areain the steady-state structure. The structures have a universal thickness, and the
dust density changes sharply at the edge of the structure. The structures with asize either lessthan or larger than
the ion mean free path with respect to ion—neutral collisions, quasi-neutral and charged structures, and soliton-
and anti-soliton-like structures are investigated. Laboratory experiments and observations in extraterrestrial

plasma formation are discussed in relation to dust structures. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

It iswell known that dust particles efficiently absorb
plasma particles and, therefore, a steady-state dusty
plasma can exist either in the presence of plasma
sources (e.g., introduced by volume ionization) or (in
the absence of ionization) when dust-containing
plasma regions are supported by plasma fluxes from
dust-freeregions. Inthelatter case, any dust inhomoge-
neity creates plasma flows directed toward the regions
where the dust density isincreased.

The aim of this paper isto investigate a simple one-
dimensional distribution of the plasma and dust parti-
cles under the condition of anonlinear electrostatic and
hydrodynamic balance. We will assume that the dust-
containing layer is surrounded on both sides by dust-
free regions. The dust itself creates plasma flows
directed toward thislayer. In a steady state, these flows
should compensate the plasma losses due to absorption
of plasma particles by the dust. We will assumethat the
layer is symmetric and the plasma flows entering the
layer from both sides are equal in magnitude. We will
show that, within the hydrodynamic approach and with
the dust pressure neglected, the boundary between the
dust layer and the dust-free region is sharp in the sense
that there exists a surface separating these two regions
and the dust density is exactly zero outside this surface.
This result will be proven valid only under the condi-
tion that the dust pressure is negligibly small, which
appears to be satisfied in most cases of interest when
the dust charges arelarge. The structuresfound are sim-
ilar to solitons that are known in nonlinear plasma

physics. They are exact nonlinear solutions to balance
equations. An important difference from usual solitons
is that dust structures exist only in the presence of
plasma flows (which, in a sense, play the role of “food”
supporting the structure). These flows are not externa
flows but are determined by the structure itself. There-
fore, these structures should be regarded as self-orga-
nized structures. A number of observationsindicate that
structures with properties similar to those found in this
paper (thin clouds with sharp boundaries) are indeed
observed under various conditions in ionosphere,
space, and laboratory experiments.

In this paper, which isthefirst attempt to treat these
structures, we use a ssimple hydrodynamic description
[1-6] based on the smallness of the ratio of the mean
free path for ions and electrons with respect to colli-
sions with dust particles to the size of the structure. A
kinetic treatment is left for further investigation. The
hydrodynamic approach for large dust chargesiis justi-
fied by an estimate showing that the frequency of dust—
ion/electron collisions is much higher than the fre-
guency of binary collisions between plasma particles
(ionsand electrons). Thisis correct even for sufficiently
low dust densities (although P > 1/Z,, see below).

Here, we will consider only steady-state equilib-
rium distributions and assume that, in equilibrium, the
dust velocity is zero. Far away from both sides of the
dust layer, the plasma, which is considered to be homo-
geneous and neutral, has the density n, and drift veloc-
ities tu, directed toward the layer. The absolute value
of Uy is governed by the parameters of the structure; in
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particular, it is determined by the total number of dust
particles per unit area of the layer surface.

2. GENERAL NONLINEAR BALANCE
EQUATIONS FOR THE DUST STRUCTURES

In writing the balance equations, we will use dimen-
sionless parameters. The ion density n, the electron
density n,, and the dust charge density nyZ, (where Z,is
the dust charge in units of the electron charge) will be
normalized to n,:

n ne ndzd
— n.= — P=——. 1
' ° ny’ No W

n

The electric field E and distance x will be normal-
ized asfollows;

xa E(i‘di2

d_iZ' E= aT,’ )

X=

where a isthe dust size (the dust radius; the dust parti-
cles are assumed to be spherical); d; is the ion Debye
radius for the parameters outside the structure,

d? =T./Ame; 3)

and T, and T; are the electron and ion temperatures (in
energy units), respectively. The mathematical reason
for normalization of the distance and the electric field
according to relation (2) is that nonlinear equations in
these unitsdo not have any free parameters except T and
the ion drift velocity u:

T

Ti 4
_IT,U ()

u
'\/éVTi,

where vy; = /T;/m; isthe ion therma velocity. Nor-

malization of the eectric field has a simple physical
meaning: a unit of the normalized electric field corre-
sponds to the value of the field in which the electron
acquires the energy T, over the characteristic distance
determined by the first of expressions (2). The dis-
tances are normalized to a distance on the order of the
ion mean free path with respect to ion—dust collisions.
The electron and ion temperatures are assumed to be
constant throughout both the dust-free and dust-con-
taining regions.

We also introduce the parameter z as a dimension-
less characteristic of the dust charge:

_Z.€
" aT,’

In the balance equation, we take into account the
electrostatic field force, pressure force, ram pressure
force, and ion drag force acting on dust particles. The
latter force, which arises due to momentum exchange
between ions and dust particles and is proportional to

&)
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theion density, results in a decrease in the ion momen-
tum proportional to the dust density. Absorption of
electrons and ions by dust particles during dust charg-
ing is taken into account by the charging coefficient in
the charging equation and continuity equation. The dust
pressure is neglected, but, in order to prove the validity
of this assumption, the equation for the dust force bal-
ance will also be written for the case when the dust
pressure is taken into account.

Using the units defined above, we obtain a simple
expression for the dust force balance, which contains
only one new coefficient—the drag coefficient ay,,
which depends only on two dimensionless parameters
aready introduced in (4). In the case when the dust
pressure is neglected, this equation describes the bal-
ance of the electrostatic field force and the ion drag
force

E—-agznu = 0, (6)

where, for the Maxwell ion distribution with drift, the
coefficient o, can be found in the form

O (t, u, @)
erf(“)[t( 1+4u%+4u’) + 2t(- 1+ 209
8u’ (7
" 4InD1‘D} ezz(_ u )[t(t(l +2u) +2) - 4|nDlD}
T[U

Here, the parameters t and a are expressed through
the parameters introduced above:

®)

Expression (7) takes into account both the ion
absorption by dust particles and the ion Coulomb scat-
tering by dust charges.

We can also write the force balance equation with
allowance for the dust pressure,

LAPo_
daxz0 "~

where the parameter t,, characterizing the dust pres-
sure, is

P(E-agznu), )

o= T4z
¢ ZdTe.

For 14 < 1, we can neglect the left-hand side of
equation (9). In this case, in addition to solution (6), we
also obtain the solution P = 0. This fact will be used
below to construct a solution such that, outside the
structure, the solution is P = 0, but, inside the structure,
relation (6) is satisfied. The condition 14 << 1 is easily
satisfied in most of the laboratory and space conditions
of interest, because Z; is usualy alarge number.

(10)
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The balance of forces for electronsis rather simple,
because the electron inertia and the electron friction on
dust particles are both negligible. The only forces left
are the electrostatic force and the electron pressure
force:

_ 1 dn,
E = n I (11)
This expression describes the adiabatic condition
for electrons, and it can be used to exclude either the
electric field or the electron density from the equation.

In the balance equation for ions, we take into
account the electric field force, the ram pressure force,
the pressure force, the force related to the momentum
transfer to ions due to the interaction with dust parti-
cles, and theforce dueto theion friction on neutral par-
ticles of the gas. This equation can be written in the
form

du’ , 1dng, 1dn.
TOax " nax0" n, dx

+vu(l+a,u) =0,

where we used Eq. (11) for the electric field, wrote the
force due to the ion friction on neutral atoms in the
form (here, we use dimensional units with v being the
dimensional frequency of ion—neutral collisions)

+ Puzay, (12)

F = —vnmiu%H D (13)

'\/évﬂ

and introduced a new nonlinear coefficient a,. The
form in which this nonlinearity is written satisfies both
the existing experimental data and the theoretical mod-
els based on cross sections for ion—neutral collisions.
Existing experimental data and simple physical consid-
erations give the estimate a, = 1 (see below). We will
show that the steady-state structures can exist in the

range of the dimensionless parameter u< 1/./2. There-
fore, the contribution from the nonlinear term in the
friction force (13) is not larger than that from the linear
term. Nevertheless, we leave it because it can change
the numerical coefficient by a factor on the order of
unity.

In fact, the general equations will be valid for any
ion drift velocity, including an ion drift velocity much
higher than the thermal velocity. Aswill be shown, the
structures in which the ion drift velocity substantially
exceedsthe ion thermal velocity cannot satisfy the con-
ditions for the steady-state balance. However, the ion
drift velocities can be rather close to the ion thermal
velocity, in which case we need the exact expression for
the linear friction force.

The coefficient a, can be found from the known
experimental data. The nonlinear dependence of the

frictionforcein form (13) followsfrom elementary the-
oretical considerations. The momentum transferred

TSYTOVICH

from neutral atoms to ions should be on the order of

nlvoll, where uistheion directed velocity and o isthe
ion—neutral transport cross section; the brackets [T
mean the averaging over the particle distribution. For

small drift velocities, this averaging gives ovq;,

whereas, for large driftsvelocities, it givesou (the latter

is correct if the dependence of the cross sectiononuis
not strong, which seems to be the case according to the
existing data on cross sections). Thus, the theoretical

arguments give the nonlinear dependence written in

(13) with the coefficient a,, on the order of unity. In the
computations described below, we use a, = 1, athough

it is not difficult to modify the computations using the
existing experimental datafor a,,.

The next equations for nonlinear structures are the
ion continuity equation, which can be written in dimen-
sionless unitsin the form

W = —O(cth

and the charging equation, which can be written in the
orbit motion limited approach (see[1]) in the form

(14)

Ne "= m,
nﬂ’ me.
The charging or capture coefficient o, enters both
equations. It depends only on the parameters t and u
(same as for the drag coefficient a,):

exp(-z) = za (15)

texp(—uz)
4

Inthelimit u < 1, the drag and charging coefficients
have the following simple and well-known form:

Oy, = %(uu 3u%t) — (16)

1
a nltot+t0 oy = —2-(1+1). (17)
dr 3/\/1—_[8 D ch 2/\/1—_[( )

For numerical calculations, it is useful to find from
(15) the derivative dz/dx and include in the system of
balance equations an additional equation for the dust
chargesusing asaninitial condition the solution to (15)
for theinitial values of parameters nand n,. This proce-
durealowsusto avoid the necessity of solving thetran-
scendental charging equation for each step of the
numerical calculations.

Finally, in dimensionless units, Poisson’s equation
will have the following form:

(18)

where a = a/d; is the normalized dust size. We can sub-
gtitute E from (6) into (18) and use the other equations
to find the corresponding values of the derivatives with
respect to x. This procedure leads to an exact solution
to Poisson’s equation in the dust region in the form of
the expression for P asafunction of the other variables:
PLASMA PHYSICS REPORTS  Vol. 26
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0(agyz
[(n—ne)lz+u2n0(drZ @ud) L0140 }(1 2u9) + A
a R o0z
P = , (19)
Daz znudruchgl 2u ) B
where 3. NUMERICAL RESULTS
erf(U) FOR ONE-DIMENSIONAL DUST STRUCTURES
R = eI (20)  3.1. Quasineutral Conservative Low-Flux Sructures
n The simplest type of dust structures can be found
5 0 under the quasineutrality assumption, when, inside the
A = n_Rt' (Eoédr)EnUZGdr —vu(1+ayu) structure, the following condition islocally satisfied:
n=ng+P. (27)
1 g o ) 0 The condition under which the plasma flux in the
—g - Hu nzog —uv(l+a,u)lg (21)  structure can be considered low is defined by the con-
Oy OU O dition
< 1.
@adr uzznadr 2 g . . u ! . (25)
+nuzeo — —u V(1+GuU)}D Wewill usethelimiting expressionsfor the drag and
U charging coefficients given by (17).
3(za,) aa Finally, we will assume that the structure is conser-
B= " dr [u%a aer —ch vative (the ion—neutral collisions are weak), which cor-
R 0z 0 du o) responds to the condition

2
u ZC‘draach ZIjaadr
il + nuzB} v’ .
Tay, Ou } ch ™= NdreTou

The final set of nonlinear equations that are used in
the next section to numerically calculate the dust struc-
turesis

dn
dx
_ [ZUP +(n—P) uzoy vu(1+o(uu)} (23)
1-2u° 1(1-2u) (1-2u9)
dne _
d_ = —NNzudy,, (24)
d_u__ 1 [Pach+u za 4 (n— P)—
dx —2u
(25)
—uzv(1+uau)},
0 2 P uzayg,(n-P
dz _ 15 oy — 2%l ar 2)
dx  Rp 1-2u° Pt(1-2u)
2
a -P
+ 1 253 ChH:PGC+%i| (26)
On(1—2u%) - 0u T
1+a g
+\LL——;’E—)—n2v(l+auu)D
1-2u O
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v <1, (29)

and consider the limiting case v = 0. In this case, the
equations have an additional integral, which, together
with the conditions far outside the structure, n, = 1 and
n =1, yields the following relation:

n=1+(1+1)(n-1). 30)
From (27), we obtain
P=@@+1)(n-1). 31)

Then, the general set of equations reducesto thefol-
lowing equations:

1 —
3_2 = nuz———"as 53 (32)
2.1
= -na+vead-vda, 69
- (1+9E+Y o OO0
dx (1+z+71)T U20ar (34)

According to Poisson’'s Eq. (18), the quasineutrality
condition means that

a< 1. (35)
This condition requires that the size of the structure

R be much larger than a/ JT . For these scae lengths,
the deviation from quasineutrality can aso be
neglected outside the structure, and, therefore, at the
edge of the structure (taken here asx = 0), where P =0,
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Fig. 1. Profiles of different quantitiesin a quasineutral dust
structure in hydrogen plasmafor t = 0.1.
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Fig. 2. Profiles of different quantitiesin a quasineutral dust
structure in hydrogen plasmafor T = 1.

we should impose the boundary condition n(0) = 1.
Then, automaticaly, a x =0, we haven,= 1 and P(0) = 0.
According to the existence of two equilibrium solu-
tions, namely, P = 0 and relation (8), we use the first
solution for x < 0 and solution (8) for x > 0. The struc-
ture is located at x > O; al of its parameters can be
found by numericaly solving the set of nonlinear
Egs. (32)—(34). Thisnumerical solution should give the
value x = R for which we again have P(R) = 0. This
determines the size of the structure R. The initia value
z(0) can be found by numerically solving the charging
equation for n(0) = 1. Duetotherelationswrittenin this
section, this equation has the form

exp[-2(0)] = ﬁ[zm) +1]. (36)

For example, for hydrogen and T = 0.1, we find
Z(0) = 1.91. The numerical solutions for the distribu-
tions of different variables inside the structure are pre-
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sentedinFig. Lfort=0.1landinFig. 2for 1 =1; inboth
cases, u(0) = 0.2 and a=0.1. Theresults of these calcu-
lations allow us to determine the structure size, defined
as the coordinate at which the density n again becomes
equal to unity. For the above parameter values, these
sizesare R =1.067 (Fig. 1) and R=2.014 (Fig. 2). At
the boundary, the solution should be joined to the solu-
tion P=0at x> R. It is seen from the figures that the
profiles of all the quantities are symmetric with respect
to the center of the structure and that the drift velocity
changesits sign at the center. From the physical stand-
point, this seems to be natural in the absence of ion—
neutral friction. Note that the ion density has a maxi-
mum at the center of the structure. The accumulation of
ions at the center has a smple physical meaning: the
flux bringsionsto the center, but, due to ion absorption
on dust particles, the ion density does not increase to
infinity (which isthe caseif u =0 at the center and the
flux is conserved nu = const = u(0)). On the other hand,
the ion scattering on dust is larger than absorption by a
factor of the Coulomb logarithm, which leads to ion
accumulation at the center. The electron density has a
minimum at the center, which isrelated with absorption
of electronsin the dust charging process. The parameter
shown as ny is equal to P/z and is proportional to the
dust density, which has a maximum at the center of the
structure. The potential drop shown in thesefigureswas
calculated from the value of the electric field deter-
mined by relation (5). The dimensionless potentia @is
given by the expression

= e_(p

= T, (37
As is seen from Figs. 1 and 2, the potential has a
minimum at the center of the structure. For the param-
eters used, the total potential drop is @, =—0.099 for
Fig. 1 and @..., = —0.342 for Fig. 2. Thisindicates that
the potential well increases substantially with increas-

ing the temperature ratio T.

Numerical results allow us to determine the total
number of dust particlesin the structure per unit surface
area (in dimensionless units):

R

N, = J’;dx. (38)
0

For the parameters corresponding to Fig. 1, this
number is Ny = 0.493, and for the parameters of Fig. 2
itisNy=0.36. Thus, for given 1, |, and a, the structure
isin fact determined by a single parameter, either u(0)
or Ny In other words, the plasma flux is completely
determined by the number of dust particles per unit sur-
face area in the structure. The computations also show
that an increase in 1, al other parameters being
unchanged, increases the electron density depletion and
the potential drop between the boundary and the center
of the structure. The latter reaches avalue of —0.342 at
T = 1. Inthis case, the size of the structure increases to
PLASMA PHYSICS REPORTS  Vol. 26
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2.014, while the number of dust particles per unit sur-
face area decreases to 0.36. As the parameter 1
decreases to 0.01, the size of the structure decreases to
0.53, the potential drop decreases to —0.002, and the
number of dust particles per unit surface area decreases
to 0.053. The decrease in the dust radius t to 0.01, all
other parameters being unchanged, decreases the size
of the structure from 1.067 to 0.73, dlightly decreases
the number of dust particles from 0.493 to 0.459, and
increases the potential drop from 0.099 to 0.127. A
decreasein the drift velocity decreases both the number
of dust particles and the potential drop. Note that, in
these calculations, a substantial increase in the drift
velocity isnot allowed by virtue of restriction (28) used
to simplify the general nonlinear equations. To illus-
trate the role of the type of gas, we also present the
results obtained for an argon plasma for the same
parameters as for Figs. 1 and 2 (where the gas was
hydrogen). Calculations show that, in this case, the
potential drop increases to —0.126 and to —0.374, the
number of dust particles in the structure is 0.254 and
0.285; and the size of the structure is 0.783 and 1.889,
respectively. Figure 3 describes the structure in hydro-
gen (Fig. 3a) and argon (Fig. 3b) for T = 0.01, the other
parameters being the sameasin Figs. 1 and 2. Itisseen
that a decrease in the temperature ratio leads to a
decreasein the size of the structure and alarger concen-
tration of dust particles at the center of the structure.

3.2. Limiting Value of a Plasma Flux

Here, we present the results of solving the exact set
of equations with quasineutrality condition (17)
imposed and for v = 0 but without any restrictions on u.
We will assumethat u = O at the center of the structure.
By varying u(0), we can find the maximum value u(0)
at which the balance equations can be satisfied. How-
ever, we will use a somewhat different approach, start-
ing the calculations from the center of the structure,
where the value of u is known. Here, we denote the
coordinate of the center asx = 0. We will calculate only
one-half of the structure for x > 0, which is sufficient
taking into account the symmetry of the structure. We
will also use the asymptotic expression for u(x) at
X — 0 (when u —= 0) to start the calculations dlightly
away from the exact center of the structure (at small but
finite values of x). We have

u——B(n(0)n.(0), z, 1), (39)

where
(n=ng)(z+1)
6z

Starting with some initial value of n(0) as a free
parameter, we vary n (0) and try to find the value of the
electron density at the center until, at the border of the
structure, where P = 0, we have n = n, = 1. According
to the quasineutrality assumption, at the point where

B(n,n,zT1) = (40)
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Fig. 3. Profiles of different quantitiesin dust structures for
1=0.011in (a) hydrogen plasmaand (b) argon plasma.

P =0, we should always have n = n,, but, in the general
case, thisvalueisnot equal to 1. Wethen vary n,  until,
at the point where P = 0, we obtain n = n, = 1. If there
is no such point, the equilibrium structure does not
exist. The numerical calculations show that the steady-
state structure does not exist for all values of n(0). One
can find the physical reason why the solution becomes
impossible. The calculations show that an increase in
n(0) at the center of the structure requires adecreasein
n.(0), which in turn leads to an increase in the value of
u at the surface of the structure, until (for the largest
possible value of n;) the value of u at the surface

reachesavalue closeto 1/./2, when all the coefficients
in the nonlinear equations change their signs and the
balance becomes impossible (the solutions to the bal-
ance equations do not exist). The numerical results
shown in Fig. 4 correspond to the case of parameters
close to the limiting values at which no solutions exist
for afurther increase in the ion density at the center of
the structure. The parameters used in computations
were close to that often found in dusty clouds in space
plasmaand weretakentobea= 10 and 1 = 1, the gas
was hydrogen, the limiting value of n(0) was found to
be close to 2.2, the half-size of the structure was close
to 0.343, and the number of dust particles per unit sur-
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Fig. 4. Hydrogen pI asma structure with parameters close to
critical fora=10" and 1 =
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Fig. 5. Hydrogen plasma structure for the case where the
ion—neutral collisions play an important role: v=10,1=1
anda=107>. Theion density at the center of the structureis
not maximum: n = 1.4.

face area in the structure was Ny = 0.879 (afactor of 2
was taken into account after calculating the number of
dust particlesin one-half of the structure). Calculations
show that the quasineutrality condition iswell satisfied

for a < ./T. In the case when the quasineutrality con-
dition was violated, a procedure smilar to that
described in this section was used with 3 determined by
an expression more general than (40):

B(N, Ny z 1) = Py(n, N, 2, T)Q

TZ

(41)
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where P, isthe value of P at the center of the structure,

Po(n, ng, Z, T)
n-n,
) a’ ! T 17 2
1—?[znangﬁ+ +25 2%+1EB }

The calculations are performed for some initial
value of n, until the curves for n and n, intersect the
curve that relates n and n, in the absence of dust. The

limiting flux is again close to 1/./2. For values of the
dust sizes satisfying the quasineutrality condition, the
method based on the intersection of the density curves
with those curves in the absence of dust, when the €lec-
tron and ion densities are related unambiguoudy by a
certain analytical expression, gives values of n and n,
close to unity. However, this method is more general
and alows one to calculate the distributions of the
parametersin structures that are not quasineutral.

3.3. Influence of lon—Neutral Collisions

In the case when theion—neutral collision frequency
v cannot be neglected, the structure becomes dissipa-
tive. When calculating such structures, we again start
from the center of the structure, but, instead of relations
(41) and (42), we use equations in which al the terms
with v are retained. Calculations were performed for
a= 107 and T = 1 with the condition P = 0O at the sur-
face of the structure; the gas was hydrogen. The condi-
tion that theion and el ectron densities are equal to unity
at the surface x = R fixes the value of n,(0) for each
value of n(0). The structure does not exist if the calcu-
lations show that the drift velocity reaches the value

1/4/2 at any point between 0 and R. The limiting value
of n, appears to be lower than in the absence of ion-
neutral collisions. Inall caseswhen theion—neutral col-
lisions strongly affect the distributions of the parame-
ters in the structure, the ion- and dust-density profiles
are found to be nonmonotonic and both the potential
drop and the number of dust particles (per unit surface
area) confined in the structure increase. The numerical
results show that, for v = 1, ion—neutral collisions do
not qualitatively change the distributions of the param-
eters in the structures, while, for v = 10, the distribu-
tions change noticeably. Figures 5 and 6 show the
results of numerical calculations of such distributions
for different values of the ion density at the center
[n(0) = 1.4 (Fig. 5) and n(0) = 2.0 (Fig. 6)]; in both
cases, d, = 1 and the other parameters are the same as
in Fig. 1. The results presented in Figs. 5 and 6 corre-
spond to rather large fluxes, however, in both cases,

U < Uy = 1/4/2. Recall that we present only one-half of
the structures; thus, the distributions of the ion and dust
densities are depleted at the center of the structure. The
potential drop does not change appreciably, while the
PLASMA PHYSICS REPORTS  Vol. 26
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dust distribution changes with increasing the ion den-
sity at the center of the structure (see Figs. 5, 6). Asthe
ion density at the center increases, the ion drift vel ocity
increases rapidly toward the periphery of the structure
and, for large values of the central density, approaches
a plateau (Fig. 6). The appearance of this plateau is
related to the fact that the electric and friction forces
bal ance each other, which leads to a constant ion mobil -
ity. This effect is observed for large ion drift velocities;
however, for lower central ion densities, the drift veloc-
ity at the boundary of the structure is closer to its criti-
cal value. The number of dust particles in the structure
increases when the ion—neutral collisions play an
important role (up to 4.16 for the parameters of Fig. 6).

3.4. Boundary Values for Structures with Substantial
Violation of the Quasineutrality Condition

When the quasineutrality condition is violated, the
values of the electron and ion densities at the boundary
of the structure are not equal to each other and are not
equal to unity. It is possible to relate the values of the
ion and electron densities at the boundary of the struc-
tures, as well as the other values at this boundary, to
their values far from the structure, wheren=n,= 1 and
u = Uu,. Outside the structure, where the dust is absent,
there exist severa integrals of motion that can be con-
sidered as equationsrelating the surface parameters and
the parameters far from the structure. Remember that,
for quasineutral structures, the values of the parameters
at the surface of the structure coincide with those far
from the structure. The problem to be solved in this sec-
tion is to determine the deviations of the parametersin
the case when the quasineutrality condition is violated
from those in quasineutral structures. The parameter
that determines the degree to which the quasineutrality
condition isviolated (for brevity, this parameter will be
referred to as the “quasineutrality parameter”) has
aready been given above [see (35)]. However, it is
desirable to find numerically how large this degree
should be in order to produce a certain change in the
structure; i.e., it is desirable to know how small the
deviations are in the structure for small values of the
quasineutrality parameter and what kind of structures
can be created for large deviations from quasineutrality.
For large deviations from quasineutrality, the values of
n, ne, and u at the surface of the structure and far from
the structure turn out to be quite different and large
jumpsin the dust density and the val ue of the parameter
P at the surface can appear, which leads to a rather
sharp boundary of the structure. The presence of such
jumps is a direct consequence of the balance equation
and Poisson’s equation, and naturally no surface
charges or electrostatic discontinuity are present. The
requirement of their absence gives the condition for the
dust density jump at the structure surface. For
quasineutral structures, these jumps are small, but the
derivative of the dust density at the surface can undergo
a large jump; therefore, the surface of the structure is
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Fig. 6. Sameasin Fig. 5, but for theion central density close
to itsmaximum value n = 2.0.

also sharp in the sense that the value of P on one side of
the surface is exactly zero, while, on the other side of
the structure, it is small but not zero.

We denote the plasma parameters far from the struc-
ture by the subscript «. Taking into account the above-
said, we can writen,, = ne ., = 1 and u,, = U,. We denote
the values of parameters at the surface of the structure
by n(0), ny(0), and u(0); i.e., the point x = 0 is placed at
the surface of the structure (recall that, in Sections 3.2
and 3.3, the point x = 0 was placed at the center of the
structure, whereas, in Section 3.1, it was placed at the
surface of the structure). The values of u(e) and u(0)
are different; the parameter that determines the struc-
ture is u(e) (i.e., the flux far from the structure). An
important problem is the distance from the structure
surface at which the drift velocity and densities reach
the values n,, = n, ,, = 1 and u,, = U,, i.e., whether they
are reached asymptotically at infinity or they are
reached at a finite distance from the structure surface.
For all of the cases under consideration, the numerica
result is the same: the above parameters are reached at
finite distances. The procedure of calculations was the
following. For a given value of u, (the main parameter
that determines the structure), the boundary conditions
found from the conservation laws alow us to find all
the important parameters at the surface of the structure.
These parameters are then used as boundary values to
numerically integrate Poisson’s equation in the back-
ward direction together with theion balance equationin
the absence of dust and to find the distance from the
surface where the starting values n, = n,, = 1 and
U, = U, are reached. In each case, this distance was
finite and decreased with decreasing the quasineutrality
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parameter. In the limit of quasineutral structures, this
distance tends to zero and the parameter values on the
structure surface coincide with those far from the sur-
face, as was assumed above.

To explicitly find the boundary conditions, we will
use theintegrals of motion of the general set of nonlin-
ear equations written above for the case where the dust
is absent and the ion—neutral collisions are negligible
(v=0):

nu=const = U, Ny =1, (43)

E’a’ 2
—n,—Tn(1l+2u”) = const
21 (44)

= —1-1(1+2u).

Equation (44) can be interpreted as the pressure bal-
ance equation similar to that for magnetic confinement
of a plasma. However, in the case at hand, the dust is
confined by electrostatic fields that are not external but
are produced by the structures themselves. Therefore,
we are dealing with self-confinement of a structure that
itself produces both the flux toward the structure and
the electrostatic field near its boundary. The electro-
static field inside the structure also exists and has adis-
sipative nature, because, inside the structure, it is sup-
ported and created by the dust drag. Outside the struc-
ture, this dissipative drag is absent, because there is no
dust; however, due to the continuity of the electric field
at the surface of the structure, the field should also be
created close to the structure surface in the region
wherethe dust is absent. Thisfield is obviously created
by dust charges. Equation (44) indicates that, in the
region where the dust is absent, the electrostatic field
pressure [the first term in (44)] should be balanced by
the electron pressure [the second term in (44)] and the
sum of the thermal and the ram pressures of ions [the
last term in (44)].

By using expression (43), we can rewrite relation
(44) intheform

E2 = ZT[ _1+1(n—1)+ 21U Dl 1%] (45)
a

Relations (44) and (45) are an integral of Poisson’s
equation found by using the electron force balance
equation, the ion force balance equation, and the ion
continuity equation. The ion balance equation in the
region where the dust is absent has a solution that
allows usto relate the electron and the ion densities:

= lexp[ TUSE;L —1D}

(46)

After substituting thisrelation into (45), wefind that
the right-hand side of (45) contains only n and u,. Due
to the continuity of the electric field at the surface of the
structure, the left-hand side of this expression is
expressed through z and u = uy/n. The equation for dust
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charging relates the charge of dust particles z with the
ion and electron densities and is valid at the structure
surface. As a result, we obtain two relations for the
boundary values z(0) and n(0) as functions of the main
parameter u, and the parameters a and T:

Il
U320 ag o _ 1 .
21 5&1(0)Texp[wth —15}
47)
0
_ 2]l .0
+T[n 1+2u°[h(0) 1D}%
0
1+t
exp[-2(0)] = — 2O [j(DO’l”] @8)

Ju_rexp[—T uth - 1%}
where, for ag ,, the approximate expression (17) with
z=7(0) should be used.

By numerically solving the set of Egs. (47) and (48),
we can find the values n(0) and z(0); n,0) from (46);
and, finally, using (19), the value of P(0) on the dust
side of the boundary. Since on the other side of the
boundary the dust is absent, the value of P(0) describes
the jump in P at the boundary. As the charge z(0) of the
dust particles at the boundary isfound, it is straightfor-
ward to find the dust density jump at the boundary. This
scheme was used in all of the numerical calculations,
whose results are presented bel ow.

Figure 7 presents the results of numerical solution
of the boundary problem for hydrogen plasma for the
parameter T varying in the range 0.02 < T < 1 and the

initial value of the Mach number M, = /2T u, varying
in the range 0.005 < M, < 0.05. The size of dust parti-
clesisa=0.1. The quasineutrality condition isviolated
for small values of 1. The results are presented in the
form of surface plotsin which the values of 1 are plot-
ted along the x-axis and the values of the parameter M,
are plotted along the y-axis (horizontal axis). On the
vertical axis, the minimum and the maximum val ues of
the parameter plotted along the z-axis are shown. The
results obtained show that, when quasineutrality isvio-
lated, theion density at the boundary is much higher than
unity and that the jumps in the dust density and the
parameter P can be rather big (for the range of parame-
ters corresponding to the figure, the maximum jump in
the parameter P is equa to 2.138 for hydrogen and is
equal to 9.777 for argon). Also, when quasineutrality is
violated, the ion drift velocity at the boundary u(0) is
substantially lessthan itsvalue far from the boundary, u,.

It should be noted that the boundary condition can
be satisfied in both cases P(0) < n(0) and P(0) > n(0).
Thedistributions of all the variablesinside the structure
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 7. Boundary values for hydrogen plasma structures.

for these two cases are qualitatively different. In the
first case, the structureis of the soliton type with achar-
acteristic maximum of the ion density at the center;
however, as compared to quasineutral structures, the
structure at hand might have an appreciable jump not
only in the derivative of the dust density but also in the
dust density itself accompanied by a subsequent
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increase in the dust density toward the center of the
structure. We will refer to these structures as soliton-
type structures. In the opposite case, when P(0) > n(0),
it is found that, after the dust density jump at the sur-
face, the dust density decreases toward the center of the
structure. These structures will be referred as antisoli-
ton structures.
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3.5. Almost Quasineutral Sructures

Theresults presented above alow usto calculate the
structures in which the violation of quasineutraity is
small and to compare exact numerical calculations in
which no assumption of quasineutrality is made with
calculations in which the quasineutrality assumption is
used as the starting point. As an example, we will con-
sider astructurefor a=0.01 and T = 0.1, for which the
quasineutrality parameter is sufficiently small: &/t =
0.001. The value of the ion drift velocity far from the
structure is chosen to be u, = 0.215. Then, the solution
of the boundary problem givesu(0) = 0.2 (which differs
dlightly from u,), n(0) = 1.072 (which differs dlightly
from unity), and ng0) = 0.994 (which aso differs
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Fig. 8. Comparison of the solutions obtained under the

quasineutrality assumption with exact solutions for the case
when quasineutrality is dightly violated.
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Fig. 9. Phase diagram showing the domains of existence of
soliton-type solutions and antisoliton-type solutions for
charged structures; P[a] and n[a] denote the values of P and
n for argon plasma, and P[h] and n[h] denote the values for
hydrogen plasma.
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dlightly from unity). The calculated jump in P appears
to be small: P =0.02.

Figure 8 presents the distributions of theion density
and the parameter P for this structure obtained both
without (the curves marked by n and P) and with (the
curves marked by n,, and P,,) the quasineutrality
assumption. One can see the difference in these solu-
tions and the degree of their coincidence. The differ-
ences are most pronounced hear the boundary, whichis
not surprising because, close to the boundary, the value
of Pissmall and could be comparable with that related
to the violation of quasineutrality (in the case at hand,
the value of P(0) is equal to 0.02). On the whole, exact
solutions are well reproduced by gquasineutral solu-
tions, which shows the possibility of using quasineutral
solutions for small values of the quasineutrality param-
eter.

3.6. Phase Diagrams

The boundary between the regions P(0) < n(0) and
P(0) > n(0) can be aobtained by calculating the curve
that corresponds to P(0) = n(0) on the phase plane
(T, M,). Figure 9 presents such a diagram with two
curves, one of which correspondsto ahydrogen plasma
and the other corresponds to an argon plasma.

3.7. Charged Soliton Sructures

The soliton-type structures are formed at P(0) <
n(0). This condition is aso fulfilled for gquasineutral
structures; however, in this case, P(0) < n(0) = 1. As
P(0) increases, the structure changes qualitatively when
the value of P(0) becomes comparable with n(0). For
guasineutral structures, asmall jump in the parameter P
at the boundary is accompanied by a large increase in
this parameter inside the structure. For charged struc-
tures, alarge jump in the parameter P at the boundary
is accompanied by an insignificant increase in this
parameter inside the structure. Another difference of
charged structures from quasineutral ones is that the
charge density in charged structures is large, while in
quasineutral structures, it is close to zero. The charge
density in the structure is negative; i.e., the space
charge created by electrons and dust dominates the
charge produced by ions. In other aspects, charged
structures are similar to quasineutral structures: the
electron density is minimum at the center of the struc-
ture, the ion drift velocity at the center is zero, and the
ion and dust densities are maximum at the center. For
charged structures, the drop in the electrostatic poten-
tial between the center of the structure and its boundary
issmall, which indicates that the dust is confined in the
structure not by this potentia drop but by the drop in
the potential in the regions adjacent on the outside to
the dust region. The regions where the dust is absent
(the dust voids) are essential parts of the structureitself
and, as was aready noted, they have afinite size. The
dust voids are almost absent for quasineutral structures,
PLASMA PHYSICS REPORTS  Vol. 26
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or, more exactly, they are very thin and the potential
drop in them is small. Although charged structures dif-
fer qualitatively from quasineutral structuresin the way
the dust is confined, in both types of structures, both the
flux and electrostatic field outside the dust-containing
domain are created by dust particles themselves and,
hence, these structures should be regarded as self-orga-
nized structures. As the parameter a’/t increases,
quasineutral  structures transform smoothly into
charged structures.

All the results described above were obtained in a
series of computations. As an example, in Fig. 10, we
present the results obtained for the parameters T = 0.06
a= 0.1, u, = 0.26, M, = 0.09 for hydrogen plasma.
Quasineutrality is violated because the corresponding
parameter a%/t = 1/6 is insufficiently small. The solu-
tion of the boundary problem givesn(0) = 1.658 > P(0) =
0.84 for hydrogen plasma and n(0) = 2.234 > P(0) =
1.748 for argon plasma; both cases correspond to the
region on the phase diagram in which the structures are
of the soliton type. The other parameters of the struc-
turesfound in numerical calculations are the following:
for hydrogen plasma, u(0) = 0.157, z(0) = 1.424,
ny(0) =0.973, R=0.609, N;=0.653, ® =-0.029, and
Qq = —0.109; for argon plasma, u(0) = 0.116, z(0) =
2434, n(0) = 0.956, R = 0.349, Ny = 0.308, @ =
—-0.048, and Q4 = —0.183. The figure also shows the
profile of the charge density determined by the relation
p =n-n,—P. Thetotal dimensionless charge per unit
surface area of the structure is defined by the relation

Qq = Ide-

Finally, the above parameter ® is defined asthetotal
potential drop between the point x = 0 and the center of
the structure R/2; i.e., the parameter ¢ does not take into
account the potential drop in the dust voids surrounding
the dust-containing region of the structure.

(49)

3.8. Charged Antisoliton Structures

The charged anti-soliton structures are formed at
P(0) > n(0). In such structures, the ion and dust densi-
ties at the center are depleted and the charge density
inside the structure is highly inhomogeneous; however
(similar to soliton-type structures), the ion drift veloc-
ity tends to zero at the center of the structure and the
charge of the dust particles has aminimum at the center
of the structure. In the antisoliton structures, the poten-
tial drop inside the structure is relatively small and the
dust is confined by the fields of the dust voids adjacent
to the dust-containing region. This is illustrated by
numerical results for argon plasma (Fig. 11). As com-
pared to Fig. 10, only the value of the parameter T has
been changed (t = 0.02), which substantially increases
the value of the quasineutrality parameter a/t. In this
case, for hydrogen plasma, we have n(0) = 3.491 <
P(0) = 3.718, and, for argon plasma, we have n(0) =
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Fig. 11. Anti-soliton-type charged structures in argon
plasma.

6.674 < P(0) = 28.093. The value M, = 0.09 isthe same
as for Fig. 10; however, due to the lower value of the
temperatureratio T = 0.02, we have u, = 0.45 and a%/t =
1/2. Other parameters of the structures obtained in
numerical computations are the following: for hydro-
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gen plasma, z(0) = 0.718, u(0) = 0.129, ny0) = 0.967,
R=0.261, Ny= 1.187, ® = -0.0019, and Q, = —0.303
and, for argon plasma, z(0) = 1.379, u(0) = 0.067, n(0) =
0.967, R = 0.056, Ny = 0.437, ® = -0.006, and Q4 =
—-0.536.

4. DISCUSSION OF THE RESULTS

Three problems are still waiting to be investigated
in more detail (at present, it is only possible to give
some qualitative answers and fragmentary numerical
results). These problems are the following.

4.1. Role of Dust Pressure

The equations that take into account the dust pres-
sure have been written above. From a physics stand-
point, we can expect that, if the dust pressure is taken
into account, it smoothes the jumps in the dust density
and its derivatives, however, the smoothing will occur
at rather short distances (on the order of dx = Tyz/ZyT,
in dimensionless units), while the structure size Rison
the order of unity. Note that, in most present laboratory
experiments, dx < 3 x 107, In space plasma, ox is
aways small for Z; > 1. The latter is always valid,
except for the not very interesting case where the dust
is almost uncharged. Numerical calculations were per-
formed with the dust pressure taken into account for
one set of the structure parameters; the results obtained
confirm the expectations of smoothing the jumps. A
more general investigation of thisissueisof interest for
severa problems of space dusty plasma, such as the
problem of the thickness of dust planetary rings.

4.2. Sability of Structures

The stability of structures can be analyzed in the
frame of the hydrodynamic approach used in this paper
to investigate steady-state structures. The problem of
the structure stability against perturbationsin which the
velocity is aligned with the direction along which the
parameters of the structure are changed can be consid-
ered by methods already used to investigate the void
stability [2]. In [2], it was shown that ionization pro-
cesses play an important role in the formation of voids.
Here, in contrast to [2], we do not take into account the
ionization processes, in which case the appearance of
specific voids on both sides of the dust regionisrelated
to the structure self-organization. The method used in
[2] was applied to the problem of the stability of struc-
tures considered in this paper; calculations were per-
formed for a certain set of parameters determining the
structure. The stability of the structure against such
one-dimensional perturbations was demonstrated.
However, in the general case, the numerical investiga-
tion of the structure stability needs a large amount of
computational resources and should be the subject of a
separate study, in which attention should be focused on
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the stability of charged structures. There are also calcu-
lations [3] showing that quasineutral structures are
unstable against two-dimensional perturbations, which
leads to dust convection in the nonlinear stage. Numer-
ical calculations of quasineutral structures show that, in
the nonlinear stage, convection is superimposed on the
main steady-state distribution, which results in small
perturbations of the above distributionsin the direction
of the initial ion drift. The perturbations perpendicular
to the ion drift naturally cannot be considered weak
because they are absent in the equilibrium structure. It
is important that, in presence of convection, the distri-
butions along the ion drift are, in the first approxima-
tion, the same asin the one-dimensional case. The gen-
eration of convection also has a threshold related to
ion—neutral collisions.

4.3. Kinetic Effects

It was natural to start the investigation of structures
using a hydrodynamic approach as was made in this
paper. However, the necessity of applying a Kinetic
approach is obvious. It is interesting to note that the
necessity of the appearance of sharp boundaries within
a kinetic approach was demonstrated in [7]; this result
agrees with the results obtained in the present paper.
However, to obtain completely self-consistent distribu-
tions of the structure parameters, using a kinetic
approach is much more complicated than the problem
considered here.

Finally, we will shortly compare our results with
other theoretical investigations of structures, as well as
with experiments and observations. The distributions of
the dust density and dust charge were previously calcu-
lated numericaly in [8] using certain assumptions for
either the plasma and field distributions or some other
components of the system. Our investigation shows
that, if the problem isformulated self-consistently, then
there is no such freedom and al the distributionsinside
the structure are completely determined by a single
parameter (if the size of dust particles and the tempera-
tureratio arefixed asis often the case). This property of
self-organized structures, which is very important in
applications, substantially narrows the possibilities of
comparing them with observations. One should havein
mind that this narrowing was found only for the steady-
state distributions considered above. During the struc-
ture formation, a variety of initial nonlinear evolutions
are possible; however, finally, the self-organi zation pro-
cess leads to a certain single solution. In this context, it
is important to keep in mind an estimate for the time
during which the structure is formed. For large-mass
dust particles (my>my ¢, where my o = 3mu)(n,Za/ny)),
thistimeis determined by the dust inertiaand is on the
order of the inverse dust-plasma frequency. For small-
mass dust particles (my < my o), thistimeis determined
by dust friction on neutral atoms. Estimates using these
formulas show that the characteristic time during which
steady-state dust structures are formed is quite short as
PLASMA PHYSICS REPORTS  Vol. 26
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compared to the observation time both for |aboratory
experiments and space plasma. When comparing with
laboratory experiments, one should keep in mind that,
in this paper, gravity was not taken into account. There
are laboratory experiments with small dust particlesin
which the Earth’'s gravity is unimportant [2] and in
which ionization voids were observed. Further investi-
gations can go both in the direction of variation of ion-
ization ratesin experimentssimilar to [2] with effortsin
the experimental detection of structures investigated
here and in the direction of theoretical computation of
structures in the presence of a constant gravity field.
Theinvestigations carried out in the latter direction can
answer the question of what the maximum thickness of
a dust cloud should be after melting or evaporation of
the plasma—dust crystal [9, 10] and indirectly can
answer the question of how many layers of adust crys-
tal can be created. Note that, for the plasma parameters
in a plasma—dust crystal, we have a = 0.1-0.15, T =
0.02, and the quasineutrality parameter is a?/t = 0.2-1,
therefore, al of the above results on charged structures
can be applied to relevant dust—plasma crystal experi-
ments if gravity isincluded to further generalize these
results. For experiments with small dust particles such
as [2], the condition of quasineutrality is satisfied but
not with alarge reserve, because the present investiga-
tion demonstrates that quasineutrality really occurs
only when the parameter a’/t islessthan 10-3.

In regard to space observations, it should be men-
tioned that thin dust layers were observed in rocked
probing of the upper atmosphere and in scattering of
radio signals by the lower ionosphere [11, 12]. A
detailed comparison with the results of the present
investigation requires a special investigation; however,
an estimate of the layer thickness based on the results
of the this investigation shows that the observed thick-
nessis on the order of that predicted for self-organized
structures.

The results obtained show that, for given values of
the parameters a, T, and u,, the structure should have a
definite total (integrated across the layer) number of
dust particles and a definite total charge per cm?. These
values were given above as dimensionless numbers Ny
and Q. These numbers can be compared with experi-
mental results and observations. For this purpose, we
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give here the expressions (in dimensional units) for the
number of dust particles per unit area Ng ., and the
total charge per unit area Qg .,

3 1 _ Zset T,
Nd, exp — Nd4Ta21 Qd, exp — Qd4T[2a2 - Qd4T[ae.

(50)
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Abstract—In the presence of ionization processes, a homogeneous equilibrium dust distribution often appears
as a balance between plasma generation by ionization and plasma absorption by dust particles. It is shown that
such equilibrium, often present in laboratory plasmas, is generally unstable against the formation of dust
clumps separated by dust-free regions (dust voids). The driving force that separates an initially homogeneous
dusty plasmainto dust clumps and dust voids is the drag force produced by ions flowing out from the regions
with reduced dust density. The lower the dust density, the lower the electron absorption by dust particles and
the larger the ionization rate proportiona to the electron density. An increase in the ion drag force leads to a
further decrease in the dust density and, thus, drivesthe instability. In the nonlinear stage, theinstability creates
structures—dust clouds separated by dust voids. The dependence of theinstability growth rate on the wavenum-
ber (or, in other words, on the size of the dust-free and dust-containing regions) isinvestigated. It is shown that,
for sufficiently small wavenumbers, a homogeneous distribution is always unstable. An analogy with a gravi-
tational-like instability related to shadowing of the plasma flux by dust particles is pointed out. This effect,
which is due to collective shadowing of the plasma flux, dominates the shadowing by individual dust particles
discussed previously. Similar to the usual gravitational instability, perturbations with the largest scales are
always unstable. Contrary to the usual gravitational instability, the largest growth rate corresponds not to the
largest possible scale but to the size close to the mean free path of plasma particles colliding with dust particles.
A specia investigation is undertaken to determine the influence of theion—neutral collisions on the growth rate

of the instability. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The term “dusty plasma” is often used for the state
where the plasma components (electron, ions, and neu-
tral atoms) are present together with solid grains. The
latter, being highly charged, play an important role in
the charge balance. The dusty plasma is not a usual
multicomponent plasma, because the charges of dust
particles are not fixed and depend on local plasma con-
ditionsand plasma currentsthat are responsiblefor dust
charging. Since, in the charging process, the dust
absorbs plasma particles, dusty plasmas are aways
open systems and need a source of ionization to sustain
theion and electron densities. The openness of the sys-
tems can support self-organization and structurization.
A steady-state dusty plasma can occur when the
absorption of plasma particles by dust is balanced by
the creation of new plasma particles due to ionization.
Such an equilibrium corresponds to a homogeneous
state with constant densities of dust and plasma compo-
nents. When speaking about dusty plasmas, one usually
has this state in mind. However, up to the present time,
thisstate hasvery rarely been found in experiments (see
[1-3]). In this paper, we will show that the homoge-
neous dusty plasmaformed due to the balance between
ionization of neutrals and absorption of plasma parti-
cles by dust grains is always unstable against the cre-

ation of structures. In the nonlinear stage of the insta-
bility, these structures form dust clumps separated by
dust voids. A general statement proven below is that
dusty plasmas should exist, asarule, in highly inhomo-
geneous structured states. It isthese statesfor which the
theory of dusty plasmas should be developed. The
results of previous theoretical investigations, devoted
mainly to homogeneous dusty plasmas, can be applied
only to perturbations with a scale length shorter than
the characteristic size of the dusty plasma structures.
The latter can be estimated from the size for which the
growth rate is maximum. Our aim here is to find this
characteristic size and to show that, in many cases, itis
of the order of the plasma-particle mean free path with
respect to absorption by dust particles. This size can be
rather small for many dusty plasma experiments: it is
larger than the ion Debye radius d, by a factor of only
d/a> 1 (where aisthe size of the dust particles).

Here, we examine the case in which the ionization
rate is proportiona to the electron density. Electron-
impact ionization is one example where this condition
ismet. For instance, it is the most important ionization
process in many laboratory experiments with RF-dis-
charge dusty plasmas. Impact ionization is proportional
to the electron density only when the degree of ioniza-
tion islow and the neutral atom density is much higher
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than the electron or ion density. Most of the laboratory
experiments with dusty plasmas satisfy this require-
ment. However, more advanced models should incor-
porate, for example, the balance of the number of neu-
tral atoms in the ionization process. Under astrophysi-
cal conditions, different ionization mechanisms such as
ionization by plasma flows or external radiation can be
involved. The source of ionization can create fast elec-
trons, which then take part in the ionization process. In
this case, the ionization rate is also proportional to the
electron density. The initial homogeneous dust-plasma
state in which the ionization of neutral atoms is bal-
anced by the plasma recombination by dust particles
can be formed under astrophysical conditions, particu-
larly, in dust-molecular clouds and protoplanetary
clouds, in which ionization can be produced by cosmic
and subcosmic rays or radioactivity. In all these exam-
ples, the gas-phase (volume) recombination is rather
weak. Here, we concentrate our attention on the sim-
plest casein which the gas-phase recombination is neg-
ligible; the plasma balance is established due to recom-
bination of the plasma on the dust; and the ionization
rate is proportional to the electron density, the propor-
tionality factor being the function of the ionization
source powe.

It will be shown below that, under these conditions,
the homogeneous plasma state is unstable against the
creation of dust clumps separated by dust voids.

The mechanism for this instability is rather simple.
Below, we describe it qualitatively. Let us assume that,
in some spatial region, a fluctuation decreases the dust
density. This should increase the electron density,
because the absorption of electrons by dust particlesis
decreased. Both electrons and ions are produced by an
ionization source. The ions created should form an ion
flow directed toward the region with a higher dust den-
sity because the plasma particles are absorbed there
more strongly. Due to the excess of negatively charged
dust particles in the regions surrounding the dust rar-
efaction, an electric field is produced that accelerates
the ions and decelerates the electrons. Since the
momentum is transferred to dust particles mainly by
ions, theion flow creates adrag force acting on the dust
particles. The enhanced drag force created by the dust
rarefaction acts on the dust to increase this rarefaction.
This is the reason why the instability develops. The
nonlinear stage of thisinstability depends on what kind
of new equilibrium can be established. A new equilib-
rium is possible if dust-free regions are formed, i.e.,
when the decreasein the dust density proceeds up to the
stage in which no dust is left in the rarefaction region
[2, 4, 5]. The process ends with approaching the state
with many dust clumps (or dust structures) separated by
dust voids.

It was shown in [4, 5] that, at the boundary between
a dust-containing region and a dust void, a discontinu-
ity of the dust density occurs, whereas the other plasma
parameters (such as the electron and ion densities)
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remain continuous. The jump in the dust density at the
boundary can be explicitly calculated (see[4, 5]). This
result is obtained for small-size dust particles, when the
dust inertia can be neglected.

Although the nonlinear stage of the instability is not
the subject of the paper, it isworthwhileto qualitatively
describe why the boundary between dust voids and dust
clouds should be sharp, because, in [4, 5], such an
explanation islacking. The physics of this phenomenon
is related to the presence of an ion flux from the void
side toward the boundary and with the collective shad-
owing effect. An important point is that the ion flux is
produced by collective effects, i.e., by many dust parti-
cles simultaneously. We can imagine the dust close to
the boundary surface as being divided into several lay-
ers. Theion flux is partially absorbed by the first dust
layer; the next dust layers are exposed to a lower flux,
so that the drag force acting on these layersis smaller.
Asaresult, thefirst dust layer moves more rapidly than
the second one and, in equilibrium, the dust is squeezed
at the surface to form a sharp boundary.

In the steady-state case, the force balance for the
dust near the boundary incorporates an electrostatic
force and the ion-drag force. In the force balance for
ions, the ion ram pressure force, ion friction on dust,
and electrostatic force play an important role. Together
with the adiabaticity condition for electrons, the force
balance equations are sufficient to calcul ate the jump of
the dust density at the boundary [4, 5]. Collective shad-
owing of the particle fluxes also plays an important role
in the linear stage of the instability, which is studied in
this paper.

2. IONIZATION EQUILIBRIUM
IN DUSTY PLASMAS

We consider a homogeneous state of dust and
plasmain the presence of homogeneousionization. The
electrons and ions created in the ionization process are
absorbed by dust particles at an equal rate. In this state,
the dust charging process will keep some of the elec-
trons on the dust when equilibrium is established;
therefore, the electron and ion densities will not be
equal—some of the negative charge will be on the sur-
face of the dust particles. Electrons can also be created
by photoelectric ionization processes on the surface of
the dust particles. The following consideration will not
depend on the mechanism of the equilibrium formation
if the gas-phase ionization rate and the photoelectric
emission rate on the dust surface do not change when
the equilibrium is disturbed.

We will normalize the ion density n on its value in
the equilibrium state. We denote all the values in the
equilibrium state by the subscript 0. Thus, in equilib-
rium, we have n, = 1. The quasineutrality condition for
the equilibrium state has the form

1= ngo+ Py, M
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Fig. 1. (a) Dimensionless dust charge 7, in the initial equi-
librium state in argon plasma as a function of theionization
coefficient a; and the temperatureratio 1. (b) Charge z, asa
function of a; for T = 0.01 (solid line), 0.04 (dotted line),
0.07 (dashed line), and 0.1 (dashed-and-dotted line).

where n, is the electron density in units of the equilib-
riumion density, n, , isthe electron density in the equi-
librium state, P = Zyny/n, isthe minus dust charge den-
sity normalized on the ion charge density, —Z, is the
dust charge in units of electron charge, ny is the dust
density, and P, = Z oy o/, isthe equilibrium value of P.
We can express both n, , and P, through the ionization
rate a; and the capture rate by dust particlesa, using as

aunit of time d’./2T,/T.avy,, where d, is the equilib-
riumion Debyeradius; d” = T,/41n,€%; T, and T, are the
ion and el ectron temperatures, respectively; and aisthe
size of dust particles, which are assumed to be spheri-

cal. In these units, the ion continuity equation has the
form

on , dun
ot or

wheretheion drift velocity u isgivenin units of theion

thermal velocity /2 vy;, vy, = /T;/m;, and the distance

r isgiven in units of diz/a.

= —a.nP +a;n,, 2)
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In equilibrium, the balance of volume ionization
and recombination on dust can be written in the form

(M,o=1)
GCPO = aine,01 (3)

where, in the units used, the recombination rate is
known to be (see[1])

1 N
a. = —AL+- 4)
and
—_ Zdez _ T
Z== aT,’ T= T 5)

The equilibrium condition for electrons is satisfied
if the equilibrium condition (3) for ions is satisfied,
because the electron and ions are created with equal
rates in the ionization process and are recombined with
equal rates on dust particles (in equilibrium, the dust
charge does not change).

Relations (1) and (3) give

a; o,
a.+a;’

0o =

(6)

The equilibrium dust charge can be determined, for
example, from the orbit motion limited (OML)
approach [4]. By using (5) and (6), we find

exp(-2o) = F+ﬁ[zo(1+ai2ﬁr>+r],

2 )
_ Zd, Oe Ti m;

- _1 :_|
~ o aT,’ T_Te’H m,’

where F describes the process of photoelectron emis-
sion by dust particles. As soon as the ionization rate q;
and the parameter T are fixed, Eq. (7) gives the dust
charge for each type of gas (specified by the parameter
W). Then, relations (6) give the dust-to-ion density ratio
and the electron-to-ion density ratio. For a fixed dust
density, we obtain the electron and ion densities in the
equilibrium state. Figure 1a gives the numerical results
for the dust charge as a function of the ionization rate
in the range 1/3 < a; < 3 and the temperature ratio in the
range 0.01 < T < 1 for argon with singly ionized ions
assuming F = 0. For hydrogen, the curves are similar in
shape, but the charge values are lower (it is seen from
Fig. 1athat the maximum value of z,is2.058 instead of
3.458 for argon and the minimum value of z, is 0.278
instead of 0.924 for argon). The charge values decrease
with increasing the ionization rate and decreasing the
temperature ratio (see also Fig. 1b).
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3. INSTABILITY OF THE EQUILIBRIUM STATE

For deviations from the equilibrium state, we use an
additional sign & for the corresponding quantity. We
calculate the growth rate under several simplifying
assumptions. These assumptions are (i) the quasineu-
trality of perturbation; (ii) the negligible role of elec-
tron inertia (by virtue of the small electron mass) and
electron friction due to absorption and scattering by
dust; (iii) the important role of collisions of ions with
neutral atoms (if the plasma is weakly ionized) and
momentum exchange with dust (dust drag); (iv) the
important role of dust-ion drag and friction of dust on
neutral gas; (v) ioninertiaistaken into account; (vi) the
dust inertia can be either small or large for small dust
sizesor large dust sizes, respectively (note that the dust
inertiaisimportant only for dust sizeslarger than acrit-
ical sizerelated to dust friction on neutrals; a compari-
son of dust inertiaand the neutral gasfriction force act-
ing on dust particles gives the critical value of this dust
size); and (vii) the dust pressure term is negligible.

Both the cases where the dust inertia is negligible
and where the dust inertia plays an important role will
be considered. The quasineutrality assumption corre-
sponds to large scales and low frequency (or a small
growth rate) of perturbations. After finding the growth
rate, we can find the range of validity of these assump-
tions. Thisrangeisfairly wide, so that, in fact, we will
consider arather general case.

For the perturbations, we write the momentum bal-
ance equation for electrons, ions, and dust; the continu-
ity equations; and the quasineutrality condition.

The quasineutrality condition for the perturbations
(which in general is expected to be valid for perturba-
tions much longer than both electron and ion Debye
radii) is

on = on,+ oP. 8)

The dust force balance equation can be found from
the following considerations. In the case of a partially
ionized plasma, the dust—neutral collisions can play an
important role in the onset of the instability. These col-
lisions result in a dust friction force proportional to the
dust velocity. In the case of a completely ionized
plasma, the density of neutrals is zero and, hence, this
friction force is also zero. In the initial equilibrium
state, the dust and ion drift velocities are zero and the
dust friction on neutrals and the drag by ions are zero as
well. Thus, the friction force and the ion drag force act
only on the perturbations. Since the ion velocity
appearsin the perturbation equations, the coefficient in
front of the ion drag force is determined by the equilib-
rium values of the parametersin the linear approxima:
tion. Dust inertiais important only for large dust parti-
cles and can be treated as an additional effective fric-
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tion force. The dust force baance equation for
perturbation will have the form

E —ag 0Zohou + Zlovd(l—mdioo) = 0. )

Here, E is the strength of the electric field in units of

aTe/edi2 (since, intheinitial equilibrium state, the elec-
tricfield isabsent, OE coincideswith E); ag, o istheion

drag force for the equilibrium values of the dust charge
and density; uistheion drift velocity in units of theion

thermal velocity /2 vy; (since, in the equilibrium state,
the ion drift is absent, du coincides with u); v, is the

dust drift velocity in units of nOan('I'iTn/s’Tf3 )/ng, Where

Vi = A/ To/M, isthe neutral atom thermal velocity, T, is
the neutral temperature, and m, isthe neutral atom mass
(since, inthe equilibrium state, the dust has no drift, dv
coincides with vy); z, is the equilibrium dimensionless
dust charge determined by equation (4); my is the dust
mass in units of mtZ;n,/3n,, wisthe frequency of per-

turbations in units of wy, J2a/d; and

2 d, 1
3ﬁ%na * z * AU

Thefirst term in (9) describes the electric force act-
ing on dust particlesdivided by the dust charge, the sec-
ond term in (9) describes the ion drag force acting on
dust particles (also divided by the dust charge), and the
third term in (9) describes the dust—neutral friction
force acting on dust particles and the dust inertia force
(both divided by the dust charge, the reason why z,
enters thisterm in the denominator). An additional fac-
tor (1 —imyw) describesthe effective change in thefric-
tion force due to dust inertia. The reason why the last
factor can be considered renormalization of thefriction
force is that, for a purely growing mode, when w = il’
(where” > 0 isthe growth rate), this factor convertsto
(2 + myl") and, indeed, corresponds to renormalization
of thefriction force. The value of my (dimensionless) is
estimated as my= (3my/m1)(Ny/Zy4n,) (m, is dimen-
sional on the right-hand side). In existing experiments
with low temperature plasmas, where n,/n, = 107, the
inertia becomes unimportant in comparison to friction
fora< (0.1-1)p.

Let us turn to the electron force balance equation.
The balance of the electric field force and the electron
pressure force lead to the condition for electron adiaba-
ticity:

Ogr (10)

10n,

Ny or’ (1D

wherer isin units of di2 /a (respectively, the wavenum-

ber of perturbation k isin units of a/diz). For harmonic
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perturbations Cexp(ik - r — iwt), where w is written in

units of wy~2a/d, and wy = J4Tmee’/m; is the ion
plasma frequency, we find
_ ik

E = —nevoéne.

(12)

We use (12) to convert equation (9) to

.2
K Vg(1tml) _ Ogr 0ZoK [l + ﬁéne.
A Ne o

Let us now consider the force balance equation for
ions. In this equation, we take into account theion iner-
tia, the pressureforce, the el ectric force, the momentum
transfer from ions to dust particles due to the ion drag
force, and the friction on neutral atoms. The latter we
writeintheform—vtu, wherev isthe effective collision
frequency. As aresult, we obtain

(13)

ik%én—iwén + ONeD)
Ne o1 (14)

+U[ 2901, oPo + T(V—i)] = O.

The coefficient 1 is introduced because the electric
fields are, in fact, normalized to the electron tempera-
ture. The term with w in the last brackets takes into
account theion inertiaand, similar to the previous con-
sideration for the dust inertia, can be regarded as an
effective friction force for purely growing perturba
tions.

The next two equations are the continuity equations
for dust particles and ions.

. P .
|kZ:’ D/d—lv*wégg =0, (15)

ik U—iwdn = —d(a.Pn) +a;dn.. (16)

Due to the normalization of the frequency and the
dust velocity done above, the dust continuity equation
contains an additiona factor v* = 12,/T,/2T; (n,/2n,),
which is the dust—neutral collision frequency. The fre-
quency Vv is related to v by expresson v =
v¥2 /2T /T, (0 Zy/4ma’T), where G isthe cross section
for ion—neutral collisions averaged over the thermal ion
and neutral atom distributions. For ¢ = 10™'* cm? and
micron-size dust particles, the values of v and v* are of
the same order of magnitude.

The right-hand side of Eq. (16) contains the dust-
charge variation of the capture coefficient:

00, _ T

0z 2./

The variation of the dust charge can be found from
the charging equation [similar to Eq. (7) but for an arbi-

(7)
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trary ion-to-electron density ratio]
8z _ _ ZH*T  [(PNe o1
Zo  z(zo+1+1)Ihy ong (1%)

The written set of equations is sufficient to find the
dispersion relation for the growth rate I' defined by
w=il. (19)
This dispersion relation has the form

(T A+ T2 =Tl + (I +ac)(1+my)r k%

+I'k2[l'3—l'lz?°(1+mdr)} (20)
—K’[T4(1+myl) + el +k*(L+my)r, = 0,
where
_ Po(2,+1)°
0= , (21)
2T(Zo(Z0+ T + 1) (1= Pg) + Po(2, + 1))
M, =V +—P°ioad, (22)
Pozo
r, = 2
' n v*[1+ Po(Zo+ 1) ] 23)
*0 NeoZo(Zo+ T+ 1)
1 1+ M(ZO +T+ 1)
My=1+ % L4
TNgo 1+ Po(Zo+ 1)
neOZZO(ZO+T + 1)
— 0:Zy0 g T 0
My = M= [1+ PolL + D 1)5] (25)
M =a zo[a-+a %HLD}F (26)
5 d i c 20(20+T + 1)|:| 1-

In the case where the dust inertia can be neglected,
we can put my = 0in (20). To take into account the dust
inertia, it is sufficient to replace v* with v/(1 + 'my)
in the latter equation.

It is clear from expression (20) that I, gives the
growth rate in the limit k = 0, and from (21) it is clear
that I, is aways positive, which means that the initial
state is always unstable. In the case of low dust density
or, more precisaly, in the casewhen P, << 1, the growth

rateisproportional to PS. InthelimitPy<landt <1,
we have

P220
o= —22 (27)
3+1
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The growth rate I', can aso be expressed through
the ionization rate by using expression (6) for P

_ 2J1(z, + 1) 7,0,
[z 2z + Tl [a 2 Zg + T+ 1]

Figure 2a shows the results of numerical calcula-
tions of the growth rate ', in the ranges of parameters
U3<a<3and 0.0l <1<1, and Fig. 2b shows the
growth rate ', as a function of the ionization rate for
T = 0.01, which istypical of most of the experiments.
Both figures are evaluated for the argon plasma. In both
computations, the dust inertia was neglected. It is seen
that the maximum growth rate increases with t and the
maximum shifts to larger ionization rates with increas-
ing t. Substantial changes occur with a change in the
type of gas, athough the qualitative behavior is the
same. In calculating the growth rate, the above results
for dust charges (given in Fig. 1) were used.

The ion—neutral collision frequency and the drag
force coefficient enter only expression (22) for I',. This
allows us to calculate the minimum value of the ion—
neutral collision frequency v,,;, when the ion-neutral
collisions start to overcome the losses of ion momen-
tum due to the dust drag. This occurs for two termsin
(22) that are comparable in value. Figure 3 gives the
values of v, in the same range of parameters as in
Fig. 2afor argon. It is seen that the role of ion—neutral
collisions increases with increasing T.

(28)

4. RESULTS OF NUMERICAL SOLUTION
OF THE DISPERSION RELATION

The aim of the numerical solution of the dispersion
relation isto find the dependence of the growth rate on
the wavenumber k. This dependence is not trivia,
which can be seen from the analogy with gravitational
instability.

The presence of an instability for k = 0 should be
commented on because it means that the perturbations
with thelargest possible sizein the system are unstable.
It can be seen from the general dispersion relation that,
forI' > 1 and k> 1, the solution hastheform I = £ik;
i.e., the instability is absent (note that, in dimensional
units, this growth rate is ikvy; i.e., it issimilar to the
sound-wave dispersion). This result resembles the
known gravitation instability, for which

r= A/4T[an—k2v52, (29)

where v, isthe speed of sound and G isthe gravitational
constant. According to (29), theinstability existsfor k=0,
while for large k, there is a purely oscillating solution
w=*ikv,

The physical reason for the gravitational instability
to exist for the largest possible sizes of disturbancesin
the system is that the larger the size, the larger is the
amount of matter involved in gravitational attraction.
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Fig. 2. (a) Dependence of ', on a; and T in argon plasma
(b) Dependence of I, on a; for T = 0.02 in argon plasma.
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Fig. 3. Dependence of v,,,;, on the parameters in the ranges
corresponding to Fig. 2afor argon plasma.

An attraction similar to gravitational attraction exists
for two dust particles [6]; it appears as a result of
mutual shadowing of plasma particle fluxes. The phys-
ics of this attraction is explained in detail in review [1].
Here, we are dealing with many dust particles. Apart
from shadowing of a plasma flux by individual dust
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Fig. 4. Dependence of the growth rate of the instability on
the wavenumber k and a; for argon plasmain the parameter
ranges0<k<3and0.l<a;<1fora=0.1,1=0.1,v=1,
v¥=1,and my=0.
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Fig. 5. Sameasin Fig. 4, but for v = (a) 10~ and (b) 10.

particles, there exists the collective shadowing of the
plasma flux by many dust particles (by a collective of
dust particles). This collective shadowing should lead
to an attraction similar to asingle particle attraction but
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stronger than the latter due to coherency of the collec-
tive effects, which enhances the shadowing. This col-
lective shadowing causes the existence of an instability
for k = 0. Although there is an analogy with the gravi-
tational instability, the physics included contains the
interaction of dust particles with plasma particle and
neutral atoms, which is determined by the correspon-
dent mean free paths. In contrast to the gravitational
instability, where the maximum growth rate corre-
sponds to the largest possible size, we should expect
that the instability we are considering here should be
most pronounced for a wavelength on the order of the
plasma particle mean free path, because, in this case,
the maximum number of plasma particles take part in
transferring the momentum to the dust and in collective
shadowing. Thus, although the instability considered
here should exist for k = 0, the maximum growth rate
should occur at k= 1 (recall that, for the normalization
used, k = 1 corresponds to the perturbation wavelength
on the order of the ion mean free path with respect to
collisions with dust particles).

This result is expected from a physical point of
view. The aim of numerical calculations is to investi-
gate the dependence of the growth rate on k and find the
maximum value of the growth rate. We intend to inves-
tigate the role of neutral atoms, which participate
through collision frequenciesv and v*, and also to find
the influence of dust inertia on the instability growth
rate.

Figure 4 gives the dependence of the growth rate on
k and a; for the argon plasma in the parameter ranges
O<k<3and0.l<a;<1fora=0.1,1=0.1,v=1,and
v* = 1 in the case when the dust inertia is negligible,
my = 0. The growth rate has a pronounced maximum
(I max = 1.564) in thisrange of wavenumbers. The com-
putations show that, as T increases, the maximum value
of I' decreases and theinterval of kinwhich I" changes
its sign (instability disappears) also decreases. It is
found that, for T = 1 and other parameters unchanged,
the maximum growth rateis ", = 1.215. The growth
rate increases with decreasing v, and, for v =102 and
10 and other parameters unchanged, the maximum
growth rate is I ,, = 1.898 (Fig. 53 and 0.397
(Fig. 5b), respectively. The increase in v* changes the
growth rate in the opposite way, increasing it with
decreasing v*. Thisisillustrated in Fig. 6, where v* =
0.1 and the other parameters are the same as in Fig. 4.
For astrophysical applications, the calculations were
made for the case of hydrogen plasma and a = 1075,
v=1,v¥=1,and t = 1. Figure 7 gives the results for
0.01 < g; < 0.1. The maximum growth rate in this case
isfoundto berl ,,, = 2.464. Asv* decreasesto 0.1, the
growth rate increasesto I',,,, = 6.516, and the increase
inv to 10 leads to a decrease in the maximum growth
rateto I, = 0.91.

The validity of neglecting the dust inertia can be
found from the estimate of the growth rate I = 1. This

max
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gives (3myme¥/az; T,)(ny/n, < 1). The left-hand side of
the last inequality is proportional to a?, because my [ &.
For a dust mass density on the order of unity and
T, = 0.1 eV, we obtain the estimate a < (0.1-0.3)p.
For dust particles with larger sizes, the dust inertia is
important.

In the case when the dust inertia plays an important
role (my = 1), one has to renormalize the frequency v*
by dividing it by (1 + my["). Since the instability is
anticipated to be a diffusive type and enhanced by a
decrease in the collision frequency, one can expect that
an increase in the dust inertia will increase the growth
rate of the instability. Thisis confirmed by the numeri-
cal solution of the dispersion relation. The calculation
of the growth rate for the same range of q; asin Fig. 4
from 0.1 to 1 shows that changing m, from O to 1 at
a; =0.1 increases the maximum growth rate from
1.564 to 13.025. For the same parameters but my = 5,
the maximum growth rate increases to 17.936 and, for
my = 100, it increases to 18.63. The larger a;, the lower
the growth rate (this tendency isthe same asin the case
when the dust inertia is negligible). For my > 1, the
growth rate also exceeds 1 intheinterval of much larger
ionizationrates 1 < a; < 10. Figures8aand 8b illustrate
this effect for my = 5 and 50, respectively (the other
parameters correspond to those of Fig. 4 except a; and
T). One can see that, after the growth rate reaches its
maximum, it decreases with growing k much more rap-
idly then in the case when the inertiais neglected.

5. DISCUSSION OF THE RESULTS

Let usdiscussthevalidity of the above assumptions.
The quasineutrality condition means that the character-
istic wavenumber of disturbances should be less than
the inverse Debye length. As the characteristic wave-
number, we can take the wavenumber corresponding to
the maximum growth rate. Theion mean free path with
respect to collisions with dust is on the order of

Ao = /Py, (30)
With all variations of the parameters, we obtain that

the maximum growth rate correspondsto k= a/ di2 (nor-

malized k is on the order of unity). The condition for
guasineutrality for dimensionless k reads

d;
< =
K 3 (31)
which, for d; > a, can indeed be satisfied for most of the
numerical examples given above.

According to (31), the mean free path (30) can be
obtained by dividing di2 /a by P, and the characteristic
wavenumber can be obtained by multiplying (26) by
P,. For therange of parametersgivenin Fig. 5, thisfac-
tor variesfrom 0.25 to 0.77. Thus, thisfactor makesthe
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Fig. 7. Growth rate of theinstability in the hydrogen plasma
fora=10%v=1,v¥=1,1=1,and0.01< q; <0.1.

value of k for which the growth rate is maximum closer
to that corresponding to the mean free path.

To estimate the change in the characteristic wave-
number due to an increase in the ion—neutral collision
frequency, one should consider the results presented in
Fig. 5b. It is seen that the value of the characteristic
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3.680

4.469

0.981

Fig. 8. Same asin Fig. 4, but for my = (a) 5 and (b) 50.

wavenumber changes insignificantly, athough the
value of v = 10 is much larger than v,;,. The nonlinear
treatment of [4] also shows that the size of nonlinear
structures is about 1 in dimensionless units.

The assumption of adiabaticity for electrons can be
estimated from the condition of possible neglecting of
the electron inertiaand electron friction force dueto the
interaction of electrons with dust particles via charging
them and scattering on their Coulomb fields. To obtain
this estimate, one needs the above estimate of the char-
acteristic size. As aresult, we arrive at the condition

o n”
T< GTIQD ,
which isusualy satisfied.

(32)

MORFILL, TSYTOVICH

The next condition is for neglecting the dust pres-
sure. By using the estimate of the characteristic size, we
obtain

T.Z
T, < =4,

(33)

This condition is also easy to satisfy because of the
large value of the dust particle charge.

Thus, the instability discussed in this paper applies
to the parameters of a dusty plasma usually met under
laboratory [2, 3] and astrophysical conditions. The lin-
ear stage of the instability does not indicate what the
final nonlinear stage of its development or the charac-
teristic size of nonlinear structures will be. However, it
indicates that a homogeneous dusty plasma is aways
unstable against dust clumping and formation regions
where the dust density is enhanced and the regions
where the dust density is depleted. In some sense, this
process resembles the modulational instability, which
leads to the concentration of plasmaoscillationsin cav-
itons. Note that, unlike the modulational instability, the
dust-clumping instability results in a stronger concen-
tration of dust particles and the formation of dust-free
regions.
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Abstract—Under the nonrelativistic Born approximation, differential cross sections are derived for elastic col-
lisions between two point charged particlesin an external constant uniform electric field and for bremsstrahlung
during these collisions. An analysis of the cross sections obtained showsthat, dueto the interference of thewave
functions of two colliding particles during their reflection from the potential barrier of an external electricfield,
the differential cross sections for elastic collisions and for unpolarized bremsstrahlung (i) are both oscillatory
in character and (ii), instead of being linearly proportional to one another (as in the case without an external
electric field), are related in a more complicated manner. © 2000 MAIK “ Nauka/Interperiodica” .

1. In[1], it was shown that, even in an external uni-
form electric field weaker than the atomic field, the dif-
ferential cross section for bremsstrahlung during a col-
lision between two charged particles may differ signif-
icantly from that in the absence of afield.

Notethat al of the calculationsin [1] were based on
the asymptotes of the wave functions, which describe
either running or standing waves, depending on thelon-
gitudinal energy of the relative particle motion.

When an ionized gas in an external electric field is
sufficiently rarefied, the longitudina (field-aligned)
component of the flux density of the relative motion of
two colliding charged particles should be nonzero.
Such a system is described by the wave functions cor-
responding to running waves at sufficiently large dis-
tances from the center of mass of two colliding parti-
cles.

Also, the pattern of the longitudina motion of a
charged particle in an externa electric field changes
qualitatively because the particle is reflected from the
potential barrier formed by thefield. In other words, the
particle moves paralel or antiparallel to the external
electric field in the region between the reflection point
and the zone in which it interacts effectively with a
scattering particle. In this spatial region, the longitudi-
nal flux density of the relative momentum of two col-
liding particles should clearly be zero, so that the rele-
vant wave function corresponds to a standing wave
along the external field.

This circumstance was pointed out by Krylov [2],
who proposed the asymptotes of the wave functions
describing the scattering of charged particles in an
external electric field.

Here, we use the asymptotes of such wave functions
and the nonrelativistic Born approximation to derive
the differential cross sections for bremsstrahlung dur-
ing a collision between two charged particles in an
external uniform electric field.

2. We consider the relative motion of two particles
with charges e, and e, and massesm, and m, in an exter-
nal electric field of strength €. We direct the z-axis of the
Cartesian coordinates (X, y, 2) along the field, so that
€=(0, 0, €), where the sign of € is determined by the
condition €e,, > 0, where e, = (gm, — e,;m,)/(M, + m,).

We assume that the external uniform electric field is
nonzero inthe half-spacez> -L, where L isthe distance
from the center of inertia of a system of two interacting
particles to the boundary of the field region.

With this choice of thefield, we can construct afam-
ily of bounded functions U, (r) that ensure that the lon-
gitudinal flux density of the relative particle motion is
nonzero and time independent, assuming that the longi-
tudinal energy of the relative motion satisfies the con-
dition E, > gL (see[1] for details):

P, (r) = g’;lexp[i%&%sg/%kgr%} (D

1 2.2
_Z E. |\ _ . 3 e X
WhereS_I +em8|,l_(ﬁ/2mems) ,E, = om

m,m, .
eqcL, m= —— the vector y = (k, X, determines
the direction of the flux density of the relative particle
motion at the boundary of the field region, and A, isa
normalization constant.

1063-780X/00/2608-0691$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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For the range of longitudinal energies of the relative
particle motion such that

el < E,<eelL, ?2)

we choose the asymptotes of the wave functionsin the
region of alowed (in classical theory) motion in the
form[2]

5 O
Sin%sz+0(1D for z<0,

eikDr 53 S
P = A 1 3)
g 0 O
ex E —+0(2 %f0r2>0.
0 O

Here, the parameters a, and a, are closeto /4 and can
be treated as adjustable parameters; presumably, they
can only be determined from the exact solution to the
Schrddinger equation for the problem at hand [2].

In order to solve for the differential cross section do

for bremsstrahlung in the nonrelativistic Born approxi-
mation, we start with the familiar expression [3]

1 w 0’
I

Here, w = (E, — E)/h; E; and E; are the energies of the
initial and final states of the system; eisthe polarization
vector of an emitted photon; do,;, = sin6,,d0,,d¢,, is
the solid angle element in the wave vector space of the
photon; dn is the number of states of the emitting sys-
tem consisting of two colliding particles; the matrix
element of the dipole moment of the system (dj) is
determined by the wave functions (1) and (3),

do = He* fJ| do,,dn. 4)

d, = elezﬂi_%DJ'J'J'wquJV dl’

]
l

where the functions of the initial and final states of the
system, ; and ;, are chosen to be of the form of func-
tions (1) or (3), depending on the range of the longitu-

|Ax0| |X°| is the flux density of

Ozl
the relative particle motlon intheinitial state; and A,
is a normalization constant for the functions (1) in the
initial state.

We restrict ourselves to considering bremsstrahlung
in the field direction over distances from the center of

dinal energy E,; J =

E
inertia of the system shorter than the distance —%

m
which, in turn, is much larger than the atomic distance
2

——). Given thiscon-

|m|

intherangee < (Wherea=

m

KRYLOV, PIVKIN

dition, we can analyze how the external electric field
“implicitly” affects bremsstrahlung from the colliding
particles due to the redistribution of the interference
pattern of their wave functions during the reflection
from the potential barrier. Since the field strength € is
low, we can ignore photons emitted by the particles
during acceleration in an external uniform electricfield.
Expanding the phases of the wave functions in powers
of z and retaining terms up to first order, we represent
the integral in the expression for dy in the range E, <
encL as

o

g

eJ’J'ILIJprJV dxdydz = ZHM

g)JLII—‘

D 1 iYip. 1 .
x0-——e [ieq_+eu_] +=[ih_eq, —
Riq’ 2

+

O
h.eu,] 0
0

where

O
_ Xoz /\lszzD e EOz
o = phos Xod % D == ol
3
. E 20k #
S= e el’ Yiz = a12+3ﬂam£ID’
h, = exp(- |V2)+—( iy1), U = (dpfs dn),
q QZ+|:T[ 0z« qD|:| qz++qD
f, = —arctan—— ————
h 2q5+ [Q|qz+| qz+|:| 2qziqD

Note that, with function (3), this integral cannot be
taken by parts, as is usually done in calculations for
€=0 (see, eg., [3]). Taking into account the rela-
tionship

n= kil kdkd
810 A

where do = sin0d0d¢ is the solid angle element con-
taining the vector k, we obtain from (4) the related
cross section do, for the emission of a photon during a
collision between two charged particles in an externa
uniform electric field.

2

In Coulomb units with the scale length a = f;—
2 2

Ko+

=2

in the range e < €L, this cross section takes

PLASMA PHYSICS REPORTS Vol. 26 No. 8 2000
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theform
J k d
do, = 3||>li0||x (2,2,2,)T*2do,,do, (5)
where
K= K=k
1 .
ITJ* = E[(e*q_)(eq_) +i(eq.)(e*u.)

—i(e*q.)(eu ) + (eu_)(e*u)]

s{e"[ihz (eq)(e*u,) + ih* (e*q.)(eu))

Y+

+hi(eu)(e*u,) —hZ(eq.)(e*q.)]

+e""[h_(eq,)(e*q.) +ih_(eq,)(e*u.)
+ih(e*q.)(eu,) —h.(eu,)(e*u)]}

+ L{Ih X (e* q.)(eq.) +ih*h,(e*q.) (eu.)

+

—ih_h# (eq.)(e*u,) + |h,|*(e* u,)(eu.)},

12m
e

structure constant, k2 =

kel

3 , k = k(sinBcos ¢, sinBsind, cosB), and k, =

ko(sm 8, 0, cosB,).

Note that, in (5), the angle 0 is in the interval

In the range E, > €L, the same procedure yields

Ziym= , e is the electron charge, a is the fine
k5 — 20 (in Coulomb unitsy, , =

do, = LXed k7 5 zm)2|eq { de ondo,  (6)
12 Kozl Xo q:
where 8 O (0, ).
|XOZ|

For E, > €L, the coefficient in (6) is close to

Tkod
unity, so that, in the absence of an external field (e = 0),
expression (6) passes over to the following formulafor
the differential cross section do,, for bremsstrahlung
during a collision between charged particles (see, e.g.,

[3]):

eq,| d
doOe - (Z ZZ m)2X| q4| Q()A)d phdol (7)
0 Oy

g
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2

where X% = X5 - 20, G = X — X Xo = Koo

k
|k2§| /koz 2¢O B x= X(sinBcos @, sinBsin, cos ). L

Summing (5)—7) over the polarization vectors of
the emitted photons, we arrive at the differential cross
sections for the emission of unpolarized photons, do,,
for € # 0 and dg,,, for € = 0.

2

Intherange €* < E, < €L, we obtain

3|Xod K
|kOZ| XO

2dw

do, = cx —(2,Z2,2,,) |Tn| dophdo (8)

2
+

T, = —([q_,n] +[u_, n]%) +
q 2

h*e")[q_, nl[d., n]
+i(hze” +he ) [q. n][u., n]
" _h_e™)[q,, n][u_, n]

+(hte™ —h,e "[u., n][u_, n]}

x { (e—|V1h__
+ i(hi*ei

+ L0 Plqe, n)lGe, n] + 0 PLu. n][u.. ]

+i(h*h,-h_h¥)[q,, n][u,, n]},
k
= _ph m
n kph’ GD%), 501
In therange E, > €L, we obtain

2[q+| n] d(L)

3
o [Xod k “do,,do. )

T[2 |kOZ| Xo

According to the energy conservation law, we have
k2= k§ —2winexpressions(8) and (9), aswell asin (5)
and (6).

In the absence of an external electricfield (¢ = 0), we
obtain

do, = —(2.25Zy)

2[qX! n] dw

o X(2,2,2.) Zdoy,do.

T[2 X.

Note that the mathematical expressions derived here
for the cross sections at € # 0 are far more complicated
than the corresponding expressions abtained in [1].

doy, = (10)

! The vectors %, x. and q, in (7) may be replaced with ko, k, and
q.., in which case, however, the initial kinetic energy of the rela-

tive particle motion for € = 0 would be larger by an amount €L;
for € # 0, this circumstance renders a comparison between (5),
(6), and (7) impossible.
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Fig. 1. Surfaces (8) Fon(8pn, ®ph): (0) Fn(Bpns dpn), (€) Fon(8, §), and (d) Fy (6, ¢) for =315, 8, =0.90,8=1.07, ¢ = 0.36, 8, =
1.57, and ¢, = —1.88 and portions of the surfaces (€) Fo,(6, ¢) and (f) F,(8, ¢) intheinterval 6 U (0.99, 0.9901).

The cross section do,, can be analyzed only numeri-
caly (in the same way as was donein [4]), because the
expression for |T,]? is very lengthy. A numerical analy-
sis showed that the biggest difference between do,, and
do,, is observed when the angular coordinates 6, ¢ of
the points at which the surface

Eo s do,. on
"7 o3(2,2,2,)?dwd6dode ,do

is most peaked lie in the interval satisfying the condi-

tion kf < 2¢eL inthe 6, ¢ plane. This situation is illus-
trated in Fig. 1, which shows the surfaces F,(8, ¢),
FOn(e’ q))v Fn(eph’ q)ph)l and I:On(eph9 ¢ph) Computed ae=
0.01, L =104k, =30, w=315,and 0, =0, =0.78 =

104, and at 6, = 0.90, eph = 1.57, and ¢ph = -1.88 for
Fo,on(8, ¢) andat 6=1.07and ¢ = 0.36 for F,, (6,1, P )
Parenthetically, in this and other figures, the portions of
the surfacein theintervalswhere the angle 8 is such that

the kf values are close to 2¢L are left white, because
expression (8) is meaningful only for kf < 2¢l.

The values of the angles 6,, 6, ¢, 6,;,, and ¢, were
obtained by analyzing thefunctionsF (6, 8,), F,(6,, ¢),
Fa(B,n, 85), and F,(6y, ¢,,;,) numerically and correspond
to the highest peaks in the functions F,(0, ¢) and
Fa(B,h ¢,1) for the chosen values of €, L, k), w, o,
and 0.

From the shapes of the surfaces F,(6,,, ¢,,) and
Fon(0,n, ¢, it is easy to establish that the angular dis-
No. 8

PLASMA PHYSICS REPORTS  Vol. 26 2000
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below the level 0.00015; and portions of the surfaces (€) F,(6, ¢) and (f) F(6, ¢) intheinterval 6 O (1.23, 1.2301).

tribution of the emitted photons during collisions
between the particles can differ markedly from that in
the absence of an external field (e = 0).

The difference in the behavior of do, and do,, is
even more significant for other directions of the wave
vector k,, which governs the relative maotion of collid-
ing particles in the fina state (at fixed 8,, and ¢,).
Actually, the structure of the function F,(8, ¢), which
characterizes the dependence of do, on 6 and ¢, is
oscillatory over the interval of the angles 0 that satisfy

the condition k> < 2¢L, whereas the surface Fy, (8, ¢)
does not exhibit oscillatory behavior. In Fig. 1, thiscan
be seen more clearly from the portions of the surfaces
F.(6, §) and F,(6, ¢) in the interval (0.99, 0.9901) of
the angle 6: over this interval, the function F, varies
periodically by more than 25% (at ¢ = 0.25, which cor-
responds to the maximum values of F,).

PLASMA PHYSICS REPORTS  Vol. 26

No. 8 2000

Figure 2 illustrates how the surfaces F,(6, ¢) and
FaBp» ¢,n) change when the frequency is changed
from 315 to 25.

One can see that, in the range w > 100, the highest
peak in the surface F,(0, ¢) is displaced toward the
point 6 = 172 while simultaneously becoming lower.

Analyzing the cross section for the emission of a
photon with a frequency lower than 100 (at afixed k, =
30), we can see that the highest peak in the surface
F.(6, ¢) isshifted toward smaller values of 6, sothat the
bremsstrahlung is governed primarily by expression
(9), which is valid under the condition k§ > 2¢eL. This
is readily seen from Fig. 2, in which the surfaces
F.(6, ¢) and F,(8, ¢) computed for w = 25 are similar
in shape.
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However, in therange of angles 8 satisfying the con-

dition kf < 2¢L (as well asin the range of high fre-
guencies), the functions F,(6, ¢) and F,,(0, ¢) are dif-
ferent: in Fig. 2, this can be seen from the shapes of the
surfaces F,(6, ¢) and F,(6, ¢), which are plotted on
different vertical scales.

Figure 2 aso shows the portions of the surfaces
F.(8, ¢) and Fy,(6, ¢) in the interval (1.23, 1.2301) of

angles 6 satisfying the condition kf < 2¢L. It is seen

that, asin the previous plots, these surfaces differ mark-
edly in shape: at afixed value of ¢ corresponding to the
maximum values of F,, the function F,, varies periodi-
cally by more than 23% along the B-axis.

In the theory presented here, the phases a, and a,
are unknown parameters. We may only suggest that
they do not differ markedly from 1v4.

This uncertainty can be made somewhat smaller by
examining the function F,(a,, a,).
PLASMA PHYSICS REPORTS  Vol. 26
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Figure 3 shows the surface F,(a,, a,) computed in
the interval (2.36 x 1075 3.75 x 107%) at 6, = 0.90, 6 =
1.07, ¢ = 0.36, 6,, = 1.57, and ¢ ;, = —1.88. Thisfigure
aso displays the functions F,(6, ¢) and F,(6,,, ¢,
computed for the following values of the parametersa,
and a,, which determine certain characteristic points
onthesurface F,(a,, a,): (i) a, = 1.13 and a, = -1.62,
at which the function F,(a,, a,) has an absolute maxi-
mum, and (ii) a, =2.64 and a, = 0, at which the func-
tion F,(a;,, a,) has an absolute minimum.

One can seethat, at different values of a, and a,, the
maxima of the function F,(8,,, ¢,,) are close to one
another, while the surfaces of this function can differ in
shape. For example, the surface F,(6,;,, ¢,,) computed
forthea, and a, valuesat whichthefunction F,(6,,, ¢,,,)
has an absolute maximum differs from the surface
F.(a,, a,) corresponding to the absolute minimum of
this function.

Also shown in Fig. 3 are the surfaces F,(6, ¢),
which correspond to different points of the function
F.(a,, a,). The heights of the peaks on these surfaces
are approximately the same, but, in the range of angles

6 satisfying the condition k> < 2¢L, the positions of the

local maxima and local minima on different surfaces
are different.

3. We integrate expression (8) over the angles 6,
and ¢, which determine the direction of the wave vec-
tor of an emitted photon. As a result, in the range
€2? < E, < €L, we obtain the differential cross section
dog, for unpolarized bremsstrahlung during the evolu-
tion of the system from the initial state, described by
the vector k,, to thefinal state, characterized by the vec-
tor k. lying within the solid angle element do:

2dw

3|X°Z| k(z Z,Z.)TH - do.

Koz Xo

dog = (11)

where

_{(e""*h_—h*e")q_q.

T 2 - +u +

-4+

+i(hre” +h,e ")qu, +i(h*e" + h e ™)g,u
+(h*e" —h,e ")u,u_}

1
+={|h|%q}

+

+|h,/2u2 +i(h*h, —h_h*)q,u,} .

Applying the same procedure to the range E, > €L,
we get

dog = 3'X°Z' X (2,22 m>21d‘*’ do. (12
|k02| O
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In the absence of an external electric field, integra-
tion of (10) over o, yields

8
do, = §1_TG3X (2,2,Zy)

2—1—9|-(i)do

o ©

(13)

Let us consider the question of how the cross sec-
tions (11) and (12) are related to the differential cross
section for elastic callisions between point charged par-
ticlesin a constant uniform electric field.

We adopt the potential energy of Coulomb interac-
tion between the particles, V , as the perturbation oper-

ator V = e,e,/r; use the wave functions (1) and (3); and
turn to the nonrelativistic Born approximation. As a
result, in Coulomb units, we obtain the differential
cross section for elastic collisions in the range
eB < E,<¢L:

2272k
do-eI - : |Tel| do ki = kg! (14)
p
where
ITal? = 14 |h)?+ qZ+|h| +|qZ+(h h* — h+hf)}
+ a
L li(he™—hre™
20.q-
(15)
qZ—(h e |y1+h*ey1) 4 2z qZ+
Ao ao
x (e +hre”) + i ™ _h,e ™) + ——
QD 49592

Anaogoudly, in the range E, > €L, we arrive at the
expression

Z sz do

Zri k0q4’

do, = 422 K = K, (16)

which coincides with the Rutherford formula.

Formulas (14) and (15) show that, because of the
interference of the wave functions of colliding particles
during their reflection from the potential barrier of the
external electric field, the differential cross section for
elastic collisions differs markedly from that in the case
€=0.
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Fig. 4. Surfaces (a) Fy(8, ¢) and (b) F(B, ¢) for =315 and 8, = 0.88 and portions of the surfaces (c) Fy(6, ¢) and (d) F(6, ¢) inthe

interval 6 O (0.99, 0.9901).

For real phases a, and a,, the expression for [Ty
may be written in amore illustrative form:

0 o0 0 .0
i §D]_+9£’:D+ [ﬂ_—glztDSin(V1_y2)

|TeI|2: 4l 4 2
g.["0 qp O gp0

0+ 1 [ O, + 0,
—2—=cos(y, — + 2 cos(y, +
q (Y1 Vz)} ZQEQE q (Y1t+Y2)

O O

+ qz—q_ (O S n2V1 + 2%_ _ qz;jbtgﬁ- n(yl + VZ)
]

o
B ey
]

which implies that the differential cross section for
elastic collisions is oscillatory in character, as is the

case with the cross section for bremsstrahlung in an
external electric field.

Comparing (14)—16) with the expression for [T|?
and (12), we can readily see that, under the approxima-
tion adopted here, the differential cross sections for

f1
2 2’

4qu+

bremsstrahlung and elastic collisions are linearly pro-
portional to one another intherange E, > €L.

On the other hand, although, intherangee?® < E, <
€L, the expressions for [Tg|* and [T4* are similar in
structure, the cross sections (11) and (14) are not lin-
early proportional to one another (the proportionality

coefficient being ~qf ), but are related in a more com-
plicated manner.

Although the substitutions

¢+ o uu Q.G
¢ @ & @
QU 9 U G 90
o 4" o 4’ o '
QU: | G U Ow
o o ¢ df

formally reduce the expression for [Tz|* to the expres-

sion for qf [Ty, they are inconsistent with the explicit
expressions for u,.
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Fig. 5. Surfaces (a) F(ay, a,) for w= 315 and 6, = 0.88 and surfaces F(6, ¢) for (b) a; =-1.01 and a, = 2.64 and (c) a; = -2.58

and o, = 0.75.

Asinthe previous section, we analyze the cross sec-
tions (11)—<(13) numerically, representing the functions

71 dog
a®(2,2,2,,)?dwd6d

71
a3(zlzzzm)2dwd9d¢

and

as the surfaces on the (0, ¢) and (a,, a,) planes.

Numerical analysis of the functions F(8, 6,) and
F(8y, §) at € = 0.01, L = 10* k, = 30, w = 315, and
n
4
8, = 0.88 at which the height of the highest peak on the
surface F(6, ¢) is as close as possible to the maximum
height.

This value of the angle 6, was used to compute the
surfaces F(6, ¢) and Fy(6, ¢) presented in Fig. 4 and
their portionsin the interval (0.99, 0.9901) of angles 6,

o, =0,=0.78 = - alowed us to determine the angle

PLASMA PHYSICS REPORTS Vol. 26 No. 8 2000

over which the function F is seen to vary periodically
by more than 24% (at the value of ¢ at which thisfunc-
tion is most peaked).

Finally, we analyze how the cross sections depend on
the parameters a, and a,. This dependence is character-
ized by the surfaces F(a, a,) shown in Fig. 5. The func-
tion F(a,, a,) isseen to be smilar in shapeto F,(a,, a,)
and to vary in the range (2.50 x 105; 3.81 x 107).

Figure 5 illustrates how the function F(B, ¢)
changes depending on the parameters o, and a,. The
surfaces F(O, ¢) are computed for (i) a, = -1.01 and
o, = 2.64, which correspond to the absolute maximum
of the function F(a,, a,), and (ii) a, =-2.58 and a, =
0.75, which correspond to the absol ute minimum of the
function F(a, a,).

We can easily see that the surfaces are similar in
shape and the heights of their peaks are nearly the
same, although the values of a, and a, were chosen to
correspond to the absol ute maximum and absolute min-
imum of the function F(8, ).
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4. Our results show that the differential cross sec-
tions for bremsstrahlung during collisions between two
charged particles in an external electric field can differ
markedly from those in the absence of afield (¢ = 0)
both in magnitude and in the way they depend on the
angles (6, ¢) and (6,;,, ¢,): the cross sections derived
are oscillatory in character and, as aresult of the spatial
anisotropy in the presence of an external field (g # 0),
depend on gy and (..

Also, the externa electric field substantialy
changes the differential cross section for elastic colli-
sions between charged particles. Although the mathe-

matical expressions for dog and qf doy are similar in
structure, the differential cross sections for

bremsstrahlung and elastic collisions are not linearly
proportional to one another, asisthe case with € = 0.

Physically, the change in the differentia cross sec-
tions for bremsstrahlung and elastic collisions between
point charged particles in a uniform electric field is
attributed to a redistribution (in comparison with the
case € = 0) of the mean charge density of the colliding
particles as a result of the interference of their wave
functions during the reflection from the potential bar-
rier of the uniform external electric field.

Presumably, this redistribution will occur not only
over such distancesfrom the center of inertia of the par-
ticles that are much longer than the atomic distance

(ﬁz/erzn m) but also over significantly shorter distances:

the exact wave function, which explicitly incorporates
the interaction between the particles, should be evalu-
ated with allowance for the boundary conditions that
describe particle reflection from the potential barrier of
the external electric field. Clearly, these conditions dif-
fer from the boundary conditions imposed on the wave
function at infinity inthe case € = 0.

Note also that, in formulating the model problem,
we introduced the boundary of the region occupied by
the external uniform electric field. However, the cross
sections derived with allowance for the interference of
the wave functions of colliding particles during their
reflection from the potential barrier of the external elec-
tric field turn out to be amost independent of this
boundary. In fact, the flux of colliding particles with a
nonzero longitudinal energy of their relative motion
can be modeled by assuming that the particles from an
infinitely remote region z= —co penetrate through a suf-
ficiently high potential barrier of a uniform electric
field. In this case, the differential cross sections for
bremsstrahlung and €lastic collisions are only
described by formulas (5), (8), (11), (14), and (15),
which do not contain the parameter L and depend
exclusively on E,,, E,, k,, and K.

KRYLOV, PIVKIN

We should, however, emphasi ze that, since the cross
sections were derived based on the theory of steady-
state scattering, they are meaningful only under the fol-
lowing two conditions. (i) the characteristic scale
length of the problem of collisions between the parti-
cles should be much longer than the distance between
the point at which the particles are reflected from the
potential barrier of an externa field of strength € and
the center of the mass of the system, and (ii) the mean
transit time over this distance should be much shorter
than the characteristic time scale of the problem.

On the other hand, introducing the model parameter
L allowed us to obtain elastic collision cross sections
for which these conditions are satisfied (% < E, < €L)
and the cross sections for which they fail to hold
(E,> eL).

The effects under discussion are expected to mani-
fest themselves, eg., in ionized gases with a suffi-
ciently large fraction of particles with longitudinal
energies in the range E, < e.en'3 (where n is the den-
sity of gas particles) in a quasi-steady and quasi-uni-
form electric field of strength € such that the time scale
on which thisfield variesis much longer than the mean

time ,/m.E,/|e|e required for an electron to pass the
distance E,/|e|e (along the external field of strength €)

between the ion and the point a which it is reflected
from the potential barrier of the external field:

JM.E, /lele < 1.
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Abstract—A mathematical model is developed and a numerical analysis is performed for an electric break-
down in a hydrogen—air mixture with alow concentration of H,. It is shown that, at sufficiently low pressures

p < 102 atm, a small molecular-hydrogen additive (N = 5 x 10°-5 x 10~%) decreases the reduced field of an
electric breakdown in air by afactor of more than 2 because of the appearance of an additional detachment pro-
cess associated with the chain hydrogen-oxidation reaction. Detailed calculations are performed for the mean

number density of negative oxygenions[ O, ] = 103 cm™ and the hydrogen concentrationin air [H,] = 0.5, 0.05,
and 0.005%. It is found that, for [H,] = 0.005%, the breakdown can develop under the action of a geoelectric
field of 1.3V/cmat p = 10~ atm. © 2000 MAIK “ Nauka/Interperiodica’ .

1. INTRODUCTION

In recent years, the intensification of combustion in
gas-phase systems with the use of various types of gas
discharge has attracted considerable interest [1, 2] pri-
marily in connection with the development of technol-
ogies for creating combustion chambers operating at
high gas-flow velocities.

Of particular interest isthe use of self-sustained vol-
ume discharges that have a high propagation velocity
and high spatial homogeneity and provide amost
simultaneous controllable ignition of the mixture
throughout the entire discharge volume [3].

When generating a highly homogeneous discharge,
the phase of the dischargeinitiation is of crucial impor-
tance. In schemes for producing a uniform breakdown,
high-power external preionization sources are tradi-
tionally used [4]. Such schemes usually requirethe cre-
ation of arather complicated system of additiona dis-
charge gaps or the injection of a pulsed electron beam
into the discharge volume.

An alternative method for producing a highly uni-
form breakdown is the use of fast ionization waves
(FIWSs) [5]. The discharge develops in the form of an
FIW when the voltage at the discharge gap grows so rap-
idly that, during the characteristic time of the develop-
ment of an electron avalanche, the € ectric field near the
ionization-wave front becomes higher than the thresh-
old field for the generation of runaway electrons [6].

In this case, the discharge homogeneity is deter-
mined by the ratio between the characteristic time of
gas ionization and the time during which the field

grows from the breakdown threshold to the threshold
for the generation of runaway electrons. Hence, the
investigation of mechanisms governing the combustion
in moderate and strong el ectric fieldsinvolves the study
of the breakdown dynamics and the determination of
the critical fields in chemically nonequilibrium gas-
phase systems.

Another interesting direction of investigation is
related to discharges in the upper atmosphere, where
the low total gas pressure and the absence of limitations
on the characteristic dimensions of the processes
involved can facilitate the discharge ignition.

Pulsed optical bursts above the upper boundary of a
storm cloud have been observed for amost a century.
However, only modern satellite diagnostics have made
it possible to determine the position and size of such
objects and to qualitatively study their internal struc-
ture [7-12]. At present, the understanding of theinitia-
tion phase of such processes is lacking. It is of interest
to study the possibility of the development of a dis-
charge under the action of the geoelectric field E, =
1.3V/cm at high altitudes in the presence of small fluc-
tuations in the H, content.

In[13], the problem was considered of the reduction
of the breakdown field due to the detachment associ-
ated with the change in the chemical composition of a
gas and a mechanism was proposed for the reduction
related to the destruction of negative O~ ions by atmo-
spheric ozone. In [14], it was shown that a small H,
additive to oxygen almost completely eliminates stable
negative oxygen ions. Later, a qualitative explanation

1063-780X/00/2608-0701$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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for the change in the first Townsend coefficient a* in
hydrogen—oxygen mixtures was put forward in [15].

In this paper, we analyze the development of break-
down in a hydrogen—air mixture at high pressures with
the aim of investigating the breakdown dynamics and
determining the critical electric field for different val-
ues of the hydrogen concentration and gas pressure.

2. NUMERICAL MODEL OF THE IONIZATION
PROCESS IN A CHEMICALLY
NONEQUILIBRIUM GAS
IN A NEAR-BREAKDOWN ELECTRIC FIELD

The breakdown reduced electric field E/nin an elec-
tronegative gas usualy depends on the ratio between
the rates of electron-impact ionization and dissociative
electron attachment [16]. Its value for the N,-O, airlike
mixtureisequal to E/n = 41 V/(cmtorr). At such values
of the reduced electric field, amost al the possible
mechanisms contribute to ionization because of the rel-
atively long breakdown time. These mechanisms are
direct electron-impact ionization, step ionization with
the participation of electronically excited states, and
ionization through the collision of heavy particles (the
Penning effect and associativeionization). For the same
reason, it is necessary to take into consideration alarge
number of processes leading to electron loss—among
these are dissociative and three-body recombination
and electron attachment [17].

A process in some sense inverse to attachment is
negative-ion destruction through associative attach-
ment, by electron impact, or during collisions with
excited particles. The process competing with the
above processes |eading to loss of negativeionsision—
ion recombination.

Hence, the kinetic scheme used to describe the
mechanism for an electric breakdown in a chemically
nonequilibrium system must incorporate balance equa-
tions (asfull as possible) for charged and excited parti-
clesand radicals.

Thekinetic scheme devel oped in this paper includes
83 particle species:

H, H,, HO,, H,0,, H,0, OH, O, O,, O;, N, N,, NO,
N,0, N,O,, N,0s, NO,, NO;, HNO, HONO, HONO,,

HO,NO,, NOH,0, NH, NH,, N(D), N(3P), N,(a ‘%),
NL(A’S)), Ny(BMy), Ny(Cy), No(CoMy), Ny(W3A),
Ny@'My), O('D), O('9, OCP), OCY), O,@4y,
0,(b'%y), O(A’Z,), N*, N3, N3, Nz, NO-, NO,
N,O, N,O*, NO,, NO,, NO;, NO;, N,0*, N,O;,
N,0;, N,O;, O, 0%, O,, O,, O, O3, O,, O, H",
H*, H,, Hs, OH*, OH-, H,0*, H,0~, H,0;, H,03,
H,0, ,NOH,0*, HO, , H,0; , H;0*, H;0, ,H,0;, e

KOSAREV, STARIKOVSKII

The scheme aso includes the following processes
with the participation of electrons. the excitation of the

states N,@'%y), Ny@My, NyA’Z,), NyBMy),

NL(C3M,), Ny(W3A,), O4(@'Ay), Oy(b'Zy); dissociation
and ionization of nitrogen, oxygen, and hydrogen; dis-
sociative attachment to oxygen; and ozone dissocia-
tion. Therates of these processes were calculated using
the conventional two-term approximation for the elec-
tron energy distribution function [18-20].

In addition to the electron-impact excitation pro-
cesses, the kinetic model incorporates the processes of
associative and Penning ionization (eight reactions),
recombination of negative ions and electrons (52 reac-
tions), electron attachment to atoms (27 reactions),
electron detachment (44 reactions), interaction
between neutral unexcited components (156 reactions),
interaction between neutral excited and neutral unex-
cited components (148 reactions including radiative
transitions), conversion of positive (126 reactions) and
negative (56 reactions) ions, and recombination of pos-
itive and negation ions (169 reactions).

Since the full scheme of processesis rather cumber-
some, only the part of the schemethat isdirectly related
to the electron balance in the system is presented in this
paper (Table 1).

To construct the right-hand side of the set of kinetic
equations, we used the algorithm of the ChemKin code.
The set of kinetic equations was solved by the Gear
method.

To calculate the electron energy distribution func-
tion and the rates of the processes with the participation
of electrons, we used the cross sections from [21-23]
for hydrogen, from [21, 24, 25, 26-31] for nitrogen,
and from [32—38] for oxygen. The other incorporated
processes (and their rate constants) determining the
evolution of radicals and excited components and the
ion—ion reactions are listed in [39].

3. THE RESULTS OF CALCULATIONS

The calculations showed that, at a sufficiently low
pressure p and low H, concentration, the breakdown
can develop at a reduced electric field lower than
20V/(cm torr). (Note that, in calculations, the initial
concentration of charged particles was determined by

O, ionswith anumber density of 10°-10° cm3.)

It turned out that there are three distinguishable
stages of the breakdown. In thefirst stage (delay stage),
arelatively slow exponential growth of the degrees of
ionization and dissociation is observed during atimety.
Then, after ashort transient stage, the process goesinto
the phase of extremely rapid growth of the degrees of
ionization and dissociation, which is accompanied by
an increase in the gas temperature.

Thecalculationsfor aninitial gastemperatureof T =
300K, calculationtimest,,. <2 x 103 s, and molecular
PLASMA PHYSICS REPORTS  Vol. 26
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Table 1. Processes with the participation of electrons that are incorporated into the model

Electron-impact excitation
€ +H, — e +Hy(v=1)
€ +H, — e +Hy(v=2)
g +H, —= e +Hy(v=23)
€ + H, — e + Hy(rot)

e +Hy — e + Hy(ad®n)
e +Hy —= &+ Hy@Zy)
e +Hy — e + Hy(b?%))
€ +Hy —= e + Hy(cMy)
e +H, —= e +Hy(B'S,)
e +H, — e +H,B%))
e +H, — e+ Hy(ELZ,)
e +H, — e +Hy(CMNy)
e +H, — e +Hy(eZ))
e+H,—e +H+H
e+H,—e+e+H,
e+H, — H +H
e+N, — e +Ny(v=1)
€+N, — e +Ny(v=2)
€ +N, — e +Ny(v=3)
e+ N, —= e + Ny(v=4)
€ +N, — e +Ny(v=D5)
e + N, —= e + Ny(v =06)
€+N, —e +Ny(v=7)
e +N, — e +Ny(v=28)
€+N, — e +Ny(v=9)
e + N, — e + Ny(v =10)
e+ Ny —= e + Ny(A3Z))
e+ Ny, — e+ Ny(BMy)
e+ N, — e+ N,(C3M)
e+ N, — e+ Ny(Wa,)

e + N2 —> € + N2(VV3AU)

e+N, — e +Nyals,)

€ + N, — & + Ny@a'ly)

e +N, — e +Ny@'zy)

e +N, — e +Ny(B35))

e + N, —= e + Ny(B')

e +Ny — e +Ny(E3S,)

€ + N, — e + N,(Rydberg)

e +Ny—= N, —= e +N(*S) + N(*°S)

e+N, —N+N

e+N, —>e+e+N,

€+N, — NS +N*CP) + e+ &

e +Ny(j=0) —> e +Nyj=24,6,8)

e+0,— e +0,(v=1)

e+0,—e+0,(v=2)

e+0,—=e+0,(v=3)

€+0, — e +0,(v=4)

e +0, — & +0ya'Ay)

€ +0, — e +0yb'3,)

e+0, — e +0,B%%)

e +0,— e +0,(A%5,)

e +0,— e +0,(A%,, C3A)

€+0,— e +0,99¢eV)

e + 0, — e + O,(Rydberg)

e +0, — O (°P% + O(*P)

e+0,—e+0+0

e+0,—e+0"+0

€+0,—e+te+ O;

e+0, — e +e +0(CP)+0"(*9
Collisions of heavy particles

Na@lz,) + NyA*S;) — Ny +e

Ny(alz,) + Nyalz,) — Ny +e

N(DO) + N(?P%) — N, +e

N(?P°%) + O — NO* + &

Ny(@lfg) + Ny(A3Z) ) —= N, +e

Ny(@g) + Ny(@y) —= Ny +e

Np@Z;) +Ny@tZ;) —= N+ N; +e

Na@Z,) + NyA*Z,) —=Np+ N, +e
Recombination

0, +& — 0+0('9

0, +& — 0+0('D)

0, +e —0+0

N, +& — N+N

NO*+e —=N+0O

N, +& — N, +N,

N*+e —= N

N,O, +e& —» NO+NO

N;O* +e —= N, + NO

NO; +& —= NO+0,

N,O, +& —> N, + O,

NO, +& — NO+0O

N,O*+e —> N, + 0O

N; +& — N+N,

N, +e& —= N+ N(2DO)

NO*+e —= N(®D% + O

N, +e+e —= Ny+e

O, te+e —> O, +e

NO*+e +e—= NO+e

N*+e+e — N+¢e

Ot+e+e —0+¢

N+ N, +& —= Ny + N,

N,+ O, +& —= N, + O,

N, + NO* + e —> N, + NO

N*+N,+e — N+ N,

N, +O*+e —= N,+0O
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Table 1. (Contd.)
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N, +O,+e —> N, + 0,
0,+0, +& —= 0,+0,
NO*+0O,+e —= NO+ O,
N +O,+e —= N+0O,
O"+0,+e — 0+0,
N; +e& —= N+ Ny(BM)
Ny +e& — N+ Ny(A3S))
O, +& —= 0,+0,
Hy +& —= H+H,
H, +e—H+H
NH"+e — H+N
OH*+e — H+O0
Hy +& —>H+H+H
H +e —H
HiO* + & —= H,+ OH
O, +t&—=0+0,
0, +e — 0+0('D) + O,
OH*+e — H+0O(19
HO, +e& —= H+0,ala,)
H,O"+e — H+ OH
H,O*+e —= H,+ 0
H,O"+e —>H+H+O
HO"+e — H+H,0
H,0, +& —= H+H,0+OH
Hs0, +& —= H+H,0+H,0
H,0; +& —= H0+0+0
Electron attachment
N, +O,+e — Ny, + O,
0+0,+e—=0+0,
O+0,+e —> 0O +0,
O, +03+e —= 0O, + Of
Oz;+e—0+0,

O3+e_—>0_+02

N, +NO, + e — N, + NO,
NO, + O, +& — NO, + 0O,
NO, +e& —= NO+ O~

N, + N,O + & —» N, + N,O~
N,O+e —» Ny + O~

0, +0O,+e& —> 0, + O,
NO+NO+e —= NO+NO~
N,O + NO + & — N,O + NO~
NO,+0O+e& —» NO,+ O~
N, +O+e —»> N, + O~
NO+O,+e — NO+ O,

O0+0+e —0+0
NO+O+e — NO+ O~

H, + NO+e —= H,+ NO™
NH; + NO+ e — NH,; + NO~
H,O0+0O,+e — H,0+ O,
Hy+O,+e —=H,+ O,
H+O,+e& —=H +0,
H+Ny+e — H +N,
OH+0,+& —= OH +0,
OH +N,+e& —= OH +N,

Electron detachment
O0+0 — 0O, +e

O +0ya'hy) — Oz + €
Oy(alAg) + O — O, + Oy + €
OybrZg) + O —> O+ Oy + €&
Ny(A3S) + O, —> N, + O, + e
Ny@lz,)+ O, —= N, + O, + ¢
Ny(BMg) + O — N+ O, + e
O +0yb'5,) — O+ O, + e
Ny(A3S )+ O —> N, +O+e
Ny(B3Mg) + 0" —> N+ O+ e
N+ O, — NO,+e"

N+O — NO+e

O0+0; —0,+O,+€
NO, +O — NO; + €&
Ny(A3S )+ O —> N+NO+e
O +0;—>0,+0,+ €
H,+O — H,O+ e
Hy0+ O —= H,0, + &

H+ O, — HO,+e"

H +0, — HO, + e
H+H —> H,+e

OH +0 —» HO, + &
H+OH —» H,0+e
ol9+0 —> 0O, +e
O(D)+0O —= O, + &
o9+ 0, —=Oz+¢€
O(D)+ O, — O3+ ¢
09+ 03 —= O, + O, + €&
O(D)+ O —> 0, +0,+ €
H-+HO, — H,0+ O +e
H™+H,0, —> H,0+OH + e
H +0;3—OH+ O, + €&

H +O(S —>H+O+e

H +O(D) —H+O+e
OH +HO, —= H,0+ O, + €&
OH +0O(!S) — HO, + &
OH™+O('D) —= HO, + &
H+O —> OH +e
OH+0O — HO, + &
HO,+ 0" —» OH + O, + &
H,0,+ 0 —» H,0+ 0, + &
Hy+ O3 — H,0+0,+¢

H™+ NO — HNO + e~
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hydrogen concentration [H,] = 5% showed the follow-
ing:

(i) For thereduced electric field E/p = 10V (cm torr),
the breakdown is absent over awide range of pressures
p = 0.0005-1 atm and relative concentrations of nega-

tive oxygenionsd =[O0, ]/N = 1071°-10"'2,

(i) For E/p=15V/(cmtorr), the development of the
breakdown during thetimet =t is observed only for
the lowest pressures under study (p = 0.0005 atm) and
the highest concentrations of negative oxygenions.

(iii) For E/p = 20 V/(cm torr), the breakdown devel -
ops at the pressures p = 0.0005 and 0.005 atm and

concentrations of negative oxygen ions d = [O, ]/N =
10713 - 10712,

(iv) For E/p = 30 V/(cm torr), the breakdown is
observed within the pressure range p = 0.0005-0.05 atm
for the concentrations of negative oxygen ions o =
[O, /N =10716-10712,

The important feature of this type of breakdown is
that it develops even if the initial hydrogen concentra-
tioninthe mixtureisvery low. For E/p=20V/(cmtorr),
0= 10", and p = 0.005 atm, the breakdown occurs at
[H,] = 0.3%. For E/p=15V/(cmtorr), =8 x 1013, and
p = 0.0005 atm, the H, concentration needed for the
breakdown can be reduced to 0.4%.

Hence, in the mixture under study, the breakdown
occurs at the reduced electric field at which the electron-
impact ionization rate is much less than the attachment
rate. Apparently, this can occur only if there exist effi-
cient mechanisms for the destruction of negative ions at

rates comparable with the electron-attachment rate.
Such mechanisms are discussed in the next section.

4. DISCUSSION

Before thoroughly analyzing the breakdown mech-
anism, let us examine in more detail the regime with
E/p=20V/(cmtorr), p=0.005 atm, [H,] = 5%, and d =
[O,]/N=2x10"'2.

The caculated duration of the breakdown-delay
stage is equal to 90.6 s. Figure 1 shows the kinetic
curvesfor the chemically active components O, H, OH,
and O;. Among the negative ions, the OH- ions have the
highest concentration, which remains amost
unchanged throughout the delay stage and is equal to

theinitial concentration of O, ions. Among the positive
ions, the O; ions have the highest concentration.

The study of the time dependence of the concentra-
tion of electronically excited states N,(A’S,) and

N,(@ 1z;) plays an important role, because the colli-
sions between these states lead to the ionization of
PLASMA PHYSICS REPORTS  Vol. 26
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1073
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1077
107°°

10—11

10°1

10—15

10—17

10—]9

—21 1 1 1 1
10 0 20 40 60 80

|
100
t,s
Fig. 1. Kinetic curves for the main components in the first
breakdown stage for E/p = 20 V/(cm torr), p = 0.005 atm,
relative hydrogen concentration Ny, = 5x 1072, and rela-

tive O, concentration Ng- =2 % 10712,
2

molecular nitrogen. However, as will be shown below,
thisionization processis not of primary importance for
the type of breakdown under study. Among the elec-
tronically excited components, the O,(a'A,) concentra-
tion is the highest. The gas temperature T remains con-
stant during the delay stage.

In the next stage, the characteristic time scale of the
process decreases significantly (Fig. 2). The degree of
ionization becomes equal to 10-° by the end of the sec-
ond stage and the temperature increases by a factor of
2. The concentration of molecular hydrogen remains
amost unchanged; consequently, the temperature
growth cannot be attributed to combustion. The gas
temperature grows due to collisional dissipation of the
energy acquired by electrons in the electric field. The
main dissipation processisthe vibrational relaxation of
the gas, because vibrational states of N, are effectively
excited by electron impact in the near-breakdown field.
The relaxation of the vibrational energy was cal culated
using the t-approximation.

In a time less than 0.05 s, the characteristic time
scale of chemical processes decreases again (Fig. 3).
The third stage is characterized by a substantial
increase in the temperature (by nearly one order of
magnitude), high degrees of ionization and dissocia-
tion, and rapid growth of the NH concentration.

An analysis of the kinetic scheme shows that the
OH- ions arise through the conversion reaction

H,+ O, —~ OH + OH, (1)

whose rate constant isk, = 0.4 x 1071 cm® s™!. (Therate
constants for reactions (1)—(16) [40-48] are listed in
Table 2.)
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0.02 0.03 0.04 0.05 0.06 0.0
f,s

!
0.01

Fig. 2. Sameasin Fig. 1, but in the second breakdown stage.
The timeis counted from the end of the curvesin Fig. 1.

10_12 1 1 1 1 1
4x107° 2.0x 107
t,s

Fig. 3. Same asin Fig. 1, but in the third breakdown stage.
Thetimeis counted from the end of the curvesin Fig. 2.

The O, negative molecular ions are converted into
OH- stable ions via reaction (1) to form OH radicals.
The most rapid process of OH destruction is the reac-
tion

OH+H,—~H0+H )
extending the chain of hydrogen oxidation.

Atomic hydrogen H, which is a product of reaction
(2), has the highest probability of reacting with O, via
the three-body reaction

H+0,+M —HO,+M A3)
which breaks the chain.

KOSAREV, STARIKOVSKII

Free electrons arise due to detachment from OH- in
the reactions

OH +H — H,0 + €, @)
OH7 + H02 —_— H20 + 02 + €. (5)

The following electron-balance reactions also play
animportant rolein the devel opment of the breakdown:

0,+e+M— 0O, + M, (6)

with kg = 1.4 x 1072 (300/T)exp(—600/T)exp(700(T, —
T)/(T,T)) cme s!, where T, = (2¢,)/(3K) is the electron
temperature, €. isthe mean electron energy, and kisthe
Boltzmann constant;

OH +0 —~ HO, + € (7)
OH7 + HOZ — H2O + 02 + G; (8)

H,+0 —~HO+e; (10)
(1T)

(12)

O,+e—0+0;
0,+6 —= 0, +e +¢€;

N,+e —»> N, +e +e. (13)
OH- ions are also destroyed in the conversion reac-
tion

OH +0; — OH + O5. (14)

Exclusion of any of the detachment reactions (7)—
(11) or ionization reactions (12) or (13) makes the
breakdown impossible. The exclusion of attachment
reaction (6) decreases the delay stage significantly. A
simplified model that incorporates only the electron-
bal ance processes (6)—13) describes well the behavior
of the gas mixture during the delay stage of the break-
down. The duration of this stage is about 100 s. Almost
throughout the entire delay period (t < 80 s), the con-
centrations of the main components (e, O, H, OH,
HO,, 05, O, and O3) and positive ions are less by
nearly one-half in comparison with those cal culated by

the full model. The breakdown disappears at nearly the
same minimum value of E/n asfor the full mode!.

It is seen from Fig. 1 that the OH- concentration is
equal to the initial concentration of negative O, ions.

Consequently, the O, ions are rapidly converted into

OH- ionsto form OH radicals, which initiate the chain
process of hydrogen oxidation.

The basic processes governing the electron balance
are the ionization reactions (12) and (13), three-body
attachment reaction (1), dissociative attachment reac-
tion (11), and detachment reaction (10).
PLASMA PHYSICS REPORTS  Vol. 26
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In area situation, there is one more branch in the
chain of electron reproduction. This branch consists of
the reactions of three-body attachment to molecular
oxygen; conversion of the molecular negative oxygen
ionsto OH~ ions,; and detachment of €lectrons from the
last ions in reactions (7) and (8), conversion reaction
(14), and detachment reaction (9). From reactions (7)—
(9) and (14), it is seen that this chain for the reproduc-
tion of electronsis connected with the chain reaction of
hydrogen oxidation, electron-impact dissociation of
oxygen and hydrogen, and the reactions of ozone repro-
duction.

Let us examine the development of the breakdown
at various pressures and the sameinitial number density

of molecular oxygen ions [O, ] = 10° cm™. Figures 4
and 5 show the breakdown-delay times calculated for
the hydrogen concentrations[H,] = 0.5 and 0.005% and
the reduced electric fields of E/p = 15, 20, 25, and
30V/(cm torr). Figure 6 shows the lower and upper
critical breakdown pressures for the same values of the
reduced electric field and hydrogen concentration. The
breakdown occurs at pressures above the upper and
below the lower critical pressure. The existence of the
upper limit for the breakdown pressure indicates the
important role of three-body processes.

As the hydrogen concentration decreases, reaction
(10) slows down and the other processes of O~ ion
destruction,

O +N, —=N,0+e€, (15)

O + 0, +(N,, 0,) —= O3 + (N, Oy), (16)

[d, S
10°

104
10° \"}4
102
10!
10°
107!

1072
1073

1074
1070 107!
p, atm

1073

1077 1073

Fig. 4. Thedelay timeasafunction of pressurefor theinitial
hydrogen concentration [H,] = 0.5% at E/p = (1) 30, (2) 25,
(3) 20, and (4) 15V/(cm torr).
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Table 2. Rateconstantsof thekey processes, cm®s™, cm®s

ky = 0.4 x 10710

k, = 0.8 x 10 exp(-2100/T)
ks = 0.5 x 1034(300/T)16
k,=107°

ks =107

ke = (T, To)

k; =1.5x107°

kg = 107°

ko= 1070

ko= 0.6 x 107

kya = f(Te)

kip = f(Te)

kg = f(Te)

kyg =107°

kys = 10712

kg = 0.3 x 102/(T) L

become more efficient. Further, the electrons detach
from O3 ionswhen the latter interact with hydrogen in
reaction (9).

The reactions of electron-impact ionization of oxy-
gen (12), nitrogen (13), and hydrogen are chain-
branching reactions during the discharge development.
Thereactions of dissociative attachment (11) and three-
body attachment (6) can be considered chain-breaking
reactions during the breakdown. However, the break-
down restarts due to the detachment of electrons from

ts S
10°

104
103
102
10!

100

-1
10 E 7
10—2 I T O O W W W11

1079 1077 1073 1073
p, atm

TTIT T OO T O T O T 1 rm

Fig. 5. Thedelay timeasafunction of pressurefor theinitial
hydrogen concentration [H,] = 0.005% at E/p = (1) 30,
(2) 25, (3) 20, and (4) 15V/(cm torr).
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Der atm

1077 !

1078

10—9 1 1 1 1 1 1
14 16 18 20 22 24 26

E/p, V/(cm torr)

Fig. 6. The critical breakdown pressure as a function of the
reduced electric field for a molecular hydrogen concentra-
tion of (1) 0.5%, (2) 0.005%, and (3) 0.05%.

+H,
+HO, +0,+ M

\\

Fig. 7 Scheme of the basic processes during the breakdown.

positive ions. The electrons detach from O~ ions in
reactions (10) and (15) either directly or through con-
version into O; via reaction (16) followed by the
detachment reaction (9). The detachment from negative
molecular oxygen ions is a more complicated process.
First, the O, ionsare converted into OH- ionsviareac-

tion (1). Then, the electrons detach from OH- ions by
the H atoms, HO, radicals, or O atoms [reactions (4),

KOSAREV, STARIKOVSKII

(8), and (7), respectively]; the latter is produced prima-
rily by the electron-impact dissociation of oxygen. The
electron detachment from OH- ions also occursthrough

conversion into O ions [reaction (14)] followed by

detachment [reaction (9)]. The scheme of the basic pro-
cesses during development of the breakdown is illus-
trated in Fig. 7.

It follows from the above analysis that the initiation
of the gas breakdown can be attributed to the presence
of H, HO,, and O components, which are produced in
the reactions of hydrogen oxidation and electron-
impact dissociation of O, and H,, as well as due to
ozone production and the presence of molecular hydro-
gen [see (9) and (14)]. In turn, OH production [see (1)
and (14)] initiates the hydrogen oxidation.

5. GAS BREAKDOWN
IN LOW GEOELECTRIC FIELDS

Finally, we consider the question of whether the
breakdown under study can be initiated by the geoelec-
tric field with a strength of E, = 1.3 V/cm. As was
shown above, the breakdown in air with a small addi-
tion of molecular hydrogen can occur even at E/p =
15V/(cm torr). This value of the reduced electric field
is attainable at a pressure of p = 1.2 x 10+ atm corre-
sponding to an altitude of 60 km. The breakdown can
develop at the number density of negative oxygen ions

of [O,] =2 x 10° cm3, which is typical of the upper
atmosphere. For the molecular-hydrogen number den-
sity [H,] = 1.5 x 10'2 cm~3 (0.04%), the breakdown time
iIST,,q = 1600 s.

6. CONCLUSION

It is shown that the electric breakdown in a N,-O,
airlike mixture at low (0.005-5%) concentrations of H,

and O, (the admixture number density is on the order

of 10°~10° cm3) can occur via two mechanisms for
electron reproduction: (i) the detachment from negative
atomic oxygen ions and (ii) the detachment from nega-
tive molecular oxygen ions through conversion reac-
tions. These mechanisms are associated with the reac-
tions of hydrogen oxidation, electron-impact dissocia-
tion of oxygen, and ozone production. This type of
breakdown can occur at the values of the reduced elec-
tricfield at which theionization rateismuch lower than
the electron-attachment rate.

Detailed numerical calculations were performed for

the number density of negative oxygen ions [O,] =
10° cm3, which corresponds to the mean ion concentra-
tion in the atmosphere. It isfound that, at a sufficiently
low pressure p = 10~ atm, the breakdown can occur at
E/p=20V/(cmtorr) and hydrogen concentration [H,] =
0.005%. At a pressure corresponding to an altitude of
PLASMA PHYSICS REPORTS  Vol. 26
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60 km, this value of the reduced field is attained at

amean geoelectric field of E, = 1.3 V/cm. Hence, this
breakdown mechanism may contribute to the initiation
of electric dischargesin the upper atmosphere.
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Abstract—The effect of admixtures and excitation conditions on the population distribution of the vibrational
levels of krypton excimer states isinvestigated. The emission spectra of akrypton discharge plasmain a super-
sonic jet, an extended capillary discharge, and abarrier discharge are considered. It isfound that the population
distribution in abarrier discharge best fits the equilibrium conditions. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The emission spectra of rare-gas plasmas excited by
an dectric discharge have been studied in experiments
with adc discharge in akrypton supersonic jet [1]; bar-
rier dischargein both pure krypton and Kr—Xe mixtures
[2]; and dc discharge in a krypton capillary both at
room temperature and under cooling the capillary wall
with liquid nitrogen [3]. One of the most important
results of the studies is that all the above spectra are
similar in shape, which enables their unified interpreta-
tion and modeling. At the sametime, it is also of inter-
est to compare the results of such an interpretation and
reveal specific features of each type of discharge.

The spectra discussed are well known as molecul ar
continuums of rare-gas dimers originating due to the
bound—free transitions from the lowest electronic states

0, and 1, to the repulsive ground electronic state Og

(see, e.g., [4] and referencestherein). Short-wavelength
and long-wavelength wings of a molecular continuum
(the so-called first and second continuums) are attrib-
uted to the transitions from the high-lying and low-
lying vibrational levels of the upper electronic states,
respectively. A distinguishing feature of the spectrain
guestion is a clearly defined second continuum,
whereas the first continuum is much weaker and less
pronounced [1-3]. For this reason, below, we only con-
sider the second continuum and, consequently, the low-
lying vibrational levels.

Since the spectraare similar in shape [1-3], we will
treat them in a unified manner, following our previous
papers [5, 6]. The procedure enables us to evaluate the
contribution of any vibrational level to the spectral dis-
tribution of the emission energy by fitting the calcu-
lated spectrum to the measured one. In such away, both
the number of involved levels and their relative popul a-
tions can be determined. Based on these data and the
values of the vibrational energy, we can find the vibra-
tional temperature and reveal how the discharge mode

and the presence of admixtures affect the shape of the
distribution of the vibrational level populations.

2. METHOD FOR EVALUATING THE LEVEL
POPULATION

Let us recal the procedure proposed in [5, 6]. The
method is based on the numerical calculation of the
spectral distribution I, (A) of the radiant energy emitted
via the bound—free transition v —» ¢ from the vibra-
tional level v of the bound electronic state to the repul-
sive state. Having a set of 1,(A) functions for different
vibrational quantum numbers v, we can approximate
the measured distribution I(A) by expanding it into a
series

) = e, M

where the weighting factors C,,, which are treated here
as relative populations of the vibrational levels v, are
calculated by the least-squares method (LSM) with the
help of the BARSIC numerica code[7].

The dependence of the spectral distribution of radi-
ant energy on the wavelength is determined (accurate to
a constant factor) by the expression

L) = (1/A6>\va(R)u(R)ws(R)dR{Z, @)

where A is the wavelength of the bound—free transition
v — ¢&; Y(R) isavibrational wave function of the v
level of the upper bound state 1,; U(R) is the dipole

moment of the 1, — 0; transition, which is substi-
tuted here by aconstant; and Y. (R) isavibrational wave
function of the lower repulsive state Og corresponding
to the positive value of the energy € (the amplitude of

P(R) is normalized to 1/(J/T./€) at large R). Taking
into account that only the vibrational levels v < 6 are
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ultimately involved in the calculation, such an approx-
imation seems quite appropriate. In other words, since
the internuclear distance in integral (2) varies only
dlightly, substituting the quantity pu(R) with a constant
should not result in a drastic change of the integral
value.

To find thewave functions, we numerically integrate
the Schrodinger equation for the vibrational states,

d’w/dR° +[E-U(R)JY = 0, A3)

by applying a modified Numerov's method [8]. The
proper internuclear potentials U(R) of the upper 1, and

lower 0;' states of akrypton dimer were taken from [9]
and [10], respectively. We consider these potentials to
be reliable because they satisfy the main criterion for
closely fitting the experimental spectrum; namely, there
is a good agreement between the maxima of the 1,(A)
function and the measured peak of the second contin-
uum.

Assuming that the popul ation distribution is close to
equilibrium, i.e.,

C,/Cy = exp(-E,/KT), 4)

where E, is the energy gap between the v and zero
vibrational levels and the vibrational temperature T can
be estimated from the values of C, and C,. Notethat E,
values are derived from the Schrédinger equation (3).
Obviously, to apply the above approach, we haveto
assume that the measured spectrum can be accurately
approximated by the transitions from only one of the

two (1, or 0, ) states. Thisisrelated to the fact that it is
difficult to evaluate the partial contribution of a certain
state to the measured spectrum I(A). Moreover, the
energy gap between the P, and 3P, atomic levels to

which the potential curves of the 1, and O, states tend
isinsufficiently wide for the functions I, (M) [which are
obtained by solving Egs. (2) and (3) with potentials 1,

and 0_] to be well separated and not overlap. There-

fore, amere combination of the two function setsin for-
mula (1) would not provide a proper approximating
basis for the LSM procedure in the BARSIC code [7].
In other words, it is impossible to separate the partial
contributions from the excimer states based on the
LSM only; some additional data are necessary. Since
such data are unavailable, we assume the above contri-
butions to be comparable. Therefore, the results
obtained here for the 1, state may also be assigned to

the 0, state.

3. RESULTS
3.1. Preliminary Notes

Like any other LSM-based fitting procedure, the
BARSIC codeincludes no inherent physical criteriafor
PLASMA PHYSICS REPORTS  Vol. 26
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one or another parameter to be involved in the fitting
procedure [7]. As applied to our problem, this means
that we need certain auxiliary reasons to cut the sum-
mation on the right-hand side of (1). Keeping in mind
the physical meaning of the C, coefficients, we assume
that they monotonically decrease with increasing v.
Recall that, in our case, the object of fitting is the sec-
ond continuum emitted from the low-lying vibrational
levels. This means that, in the course of the fitting pro-
cedure, the number of fit functions1,(A) in formula (1)
is being increased as long as the C,, coefficients match
the above assumption. The values of C, normalized to
C, for each of the populated levels and the correspond-
ing values of the vibrational energy and temperature
calculated according to (3) and (4), respectively, are
presented in Tables 1-3. Note again that the E, values
are derived from the Schrédinger equation (3) with the
internuclear potentials taken from [9, 10]. The data
from Tables 1 and 2 were used to plot InC, versus E,
(Figs.1, 2). The better this dependence is approximated
by astraight line, the closer the population distribution
is to the equilibrium one. The slope of the straight line
determines the vibrational temperature. For the highest
vibrational levels from Tables 1-3, the C, values fall
out of the monotonic dependence. This was the reason
to cut the series on the right-hand side of Eq. (1), thus
determining the number of vibrational levels populated
in the given type of discharge. In other words, we
assume that the above nonmonotonic behavior has no
physical sense; it merely reflects the features of the
computing procedure [7]. For this reason, the corre-
sponding points are not presented in Figs. 1 and 2.

3.2. Capillary DC Discharge

To examine the population distribution in this type
of discharge, we used the spectra obtained in [1] at a
pressure of 120 torr, adischarge current of 10 mA, and
voltage of 1.4 kV at room temperature and under cool-
ing with liquid nitrogen. The results are presented in
Table 1 and Fig.1.

3.3. Barrier Discharge

To examine the population distribution in a barrier
discharge, we used the spectraobtained in [2] at akryp-
ton pressure of 400 torr. Discharges in both pure kryp-
ton and a Kr—Xe mixture with a Xe content of 0.01 and
0.04% were examined.

Note that, in this case, the main specific feature of
the discharge emission spectra is the presence of an
extremely narrow and intense peak in the vicinity of a
Xe atomic resonant line against the Kr continuum
background. The study of this feature was the main
goal of [2]. For the above Xe concentrations, the kryp-
ton continuum can be easily separated out of the emis-
sion spectrum of the discharge. The procedure
described above was applied to calculating the popula-
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Table 1. Population C, of krypton excimer vibrational v levelsand vibrational temperature T [K] in acapillary dc discharge

at room temperature and under cooling with liquid nitrogen

Room temperature Cooling with liquid nitrogen

v

E,, au C,tAC, T+AT C,tAC, T+AT
0 0 1.000 + 0.048 1.000 £ 0.028
1 0.000639 0.635+ 0.058 445 + 88 0.455 + 0.034 256 + 24
2 0.001269 0.377 £ 0.060 410 £ 66 0.205 + 0.036 253+ 29
3 0.001891 0.262 + 0.060 445 + 76 0.124 + 0.035 286 + 38
4 0.002505 0.212 + 0.059 508 + 92 0.099 + 0.035 342 £ 51
5 0.003111 0.204 + 0.057 619 + 107 0.089 + 0.033 406 + 63
6 0.003708 0.299 + 0.050 0.133+0.029

Table 2. Population C, of krypton excimer vibrational v levels and vibrational temperature T [K] in adc barrier discharge

Pure Kr Kr—0.01% Xe mixture Kr—0.04% Xe mixture

Y E,, au C,tAC, T+£AT C,tAC, Tx£AT C,tAC, Tx£AT
0 0 1.000 + 0.047 1.000 + 0.074 1.000 + 0.109

1 0.000639 0.649 + 0.027 467 £ 45 0.631+£0.044 | 437+66 0.489+0.080 | 282+64
2 0.001269 0.373+£0.043 407 + 48 0.448+0.061 | 499+85 0.302+0.106 | 335+98
3 0.001891 0.194 + 0.051 364 + 58 0.343 + 0.068 558+ 103 | 0.171+0.119 | 338+133
4 0.002505 0.183+ 0.048 467 £ 72 0.228 + 0.074 535+118 | 0.159+0.117 | 430+172
5 0.003111 0.121 + 0.050 466 + 91 0.084 + 0.082 396+156 | 0.109+0.117 | 444+215
6 0.003708 0.066 + 0.061 430+ 146 | 0.070+£0.097 | 441+230 | 0.075+0.142 | 451+ 329
7 0.004297 0.145 + 0.056 0.167 + 0.088 0.126 + 0.133

Table 3. Population C, of krypton excimer vibrational v levels and vibrational temperature T [K] in a supersonic jet dis-

charge
P =536 torr P =536 torr P =350 torr
Tg = room temperature Tgy = room temperature Ty=161K
I =25mA I =50 mA | =15mA

v E,, au C,xAC, T£AT C,xAC, T£AT C,xAC, T+AT
0 0 1.00+0.19 1.00+0.24 1.00+0.17
1 0.000639 0.29+0.23 165+ 111 0.30+0.29 170+ 139 031+021 171+ 98
2 0.001269 0.22+0.21 0.32+0.27 0.21+0.20

tions of the vibrational levels of krypton excimer states.
Theresults are presented in Table 2 and Fig. 2.

Anincrease in the Xe content results in the appear-
ance of continuums emitted by both heteronuclear
KrXe molecules and Xe, molecules. Under these con-
ditions, the procedure of separating out the part of the
measured spectrum related exclusively to krypton
molecular transitions becomes incorrect and, hence,
our method fails. The effect of the Xe content on the
discharge emission spectrum in Kr—Xe mixtures was
studied in detail in[11].

3.4. DC Discharge in a Supersonic Jet

The emission spectra of a dc discharge in a super-
sonic krypton jet were measured in [1]. To calculate
the level populations, we used three spectra under dif-
ferent discharge conditions. The discharge parameters,
as well as the calculated populations and vibrational
temperature, are presented in Table 3. Here, I, P, and T,
are the discharge current, gas pressure, and tempera-
ture upstream of the supersonic jet nozzle, respec-
tively.
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Fig. 1. Logarithm of the population C,, of krypton excimer
vibrational levels vs. the level energy E,, in a capillary dc
discharge (1) at room temperature and (2) under cooling
with liquid nitrogen. Solid lines show the equilibrium pop-
ulation distribution for the first four levels.

4. DISCUSSION

According to the model adopted, seven vibrational
levels of electronically excited krypton dimer states are
assumed to be populated in a capillary discharge. The
same is for a barrier discharge. The situation is quite
different in the case of a supersonic jet discharge,
where only three vibrational levels are populated.

Asfor the results of computing the vibrationa tem-
perature, we note that the temperature T in EqQ. (4) isa
characteristic of aquantum ensemble asawhole. In the
case under consideration, such a quantum ensemble is
the system of krypton excimer vibrational levels.
Therefore, the temperature 7 calculated according
to (4) should bethe samefor al of the populated levels.
In other words, the degree to which T isthe samefor all
of the populated vibrational levels represented in
Tables 1-3 can be regarded as the degree to which the
system is in equilibrium. From this point of view, the
barrier discharge in pure krypton, in which T is the
same for al of the populated vibrational levels within
the calculation accuracy (Table 2), matches the equilib-
rium state best of all. Accordingly, al the points in
Fig. 2 fit astraight line.

It is noteworthy that the AT error stems from the
existence of the AC, error. The latter, in turn, is calcu-
lated according to the well-known LSM formulas (see,
e.0., [12]) and characterizes the accuracy to which the
method is realized within the adopted physical model.
2000
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Fig. 2. Logarithm of the population C,, of krypton excimer
vibrational levels vs. the level energy E, in a barrier dis-
chargein (Z) pure krypton and (2) a Kr-0.04% Xe mixture.
Solid lines show the equilibrium population distribution for
pure krypton and the two-temperature population distribu-
tion over the v =0-3and v = 4-6 levelsin the Kr-0.04% Xe
mixture.

Asfor the question of whether the model isredlistic, the
values of AC, and AT can only be regarded as supple-
mentary evidence.

Under capillary discharge conditions (Table 1), the
first four populated levels correspond to the equilib-
rium state. Itisalso seenin Fig.1, in which thefirst four
pointsfit astraight line well. For subsequent levels, the
T value obviously shows a tendency to increase.
Finally, under conditions of a supersonic jet discharge
(Table 3), the above criterion is not valid at all, taking
into account the amount of populated levels and the
AC, error value. From the viewpoint of the LSM the-
ory, large AC, valuesfor v = 1, 2 (Table 3) prove that
the role of the I, (A) functions (v = 1, 2) in describing
discharge spectrain a supersonic jet is quite negligible.
Perhapsthereisno need at all to use these functionsfor
spectrum fitting and it is better to consider the rota-
tiona structure of the zero vibrational level, using asan
approximating set the 1,(A) functions obtained for dif-
ferent values of the rotational quantum number J (J=0,
1 ...). In doing so, the rotational temperature can be
determined.

It is of interest to compare the population distribu-
tion in a barrier discharge in pure krypton and Kr—Xe
mixtures (Table 2). As was mentioned above, the kryp-
ton continuum is easily separated out of the discharge
spectrum at such aminor Xe content. An admixture of
0.01% Xe (Table 2, second column) hardly affects the
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population distribution of krypton excimer vibrational
levels, the C, and T values being almost identical to
those for pure krypton. However, at ahigher Xe content
of 0.04%, the population of the v = 1-3 levels corre-
sponds to a significantly lower value of T. For higher
levels (v > 3), the T value is the same as for pure kryp-
ton. This is clearly illustrated in Fig. 2, in which the
InC, values for a discharge in krypton with an 0.04%
Xe admixture could be fitted well by two straight lines;
one of them refers to the v = 0-3 levels, whereas the
other one refersto the v = 4-6 levels. The slope of the
latter line coincides with the slope of the line approxi-
mating the dependence of InC, on E,, for adischargein
pure krypton. It seems that there is some threshold
value of Xe concentration above which a depopulation
mechanism for lower krypton excimer vibrational lev-
els becomes involved. A more detailed examination of
the energy transfer processes in a Kr—-Xe plasma
excited by an electric discharge is performed in [11].

5. CONCLUSIONS

(i) The distribution of vibrational level populations
of krypton excimer states excited in the plasmaof abar-
rier discharge in pure krypton is equilibrium.

(ii) The features of the distribution of vibrational
level populations of krypton excimer states excited by
a barrier discharge in a Kr—Xe mixture indicate the
existence of a selective depopulation mechanism for
lower vibrational levels.

LOGINOV
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Abstract—The dynamics of negative ions created in the interaction of a plasmajet with atarget isinvestigated
experimentally. The experiments were carried out with astationary plasmathruster. A multigrid probe was used
to record negative ions. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

An unusual dusting of the inner wall of the ATON
stationary plasma thruster (SPT) [3] was found in the
course of thruster tests in a vacuum chamber in which
ametal surface was used asacollector of the plasmajet
[1, 2]. A sharp drop in the thruster characteristics was
observed during the first 1-15 min of its operation [4,
5]. Narrow strips of a deposited substance produced in
the channel of the thruster indicated the deposition of a
well-focused particle flow. It was supposed that, in the
vacuum chamber, there were negative ions that moved
under the action of the el ectric field towards the thruster
channel, where they were accelerated and focused [6].

The purpose of our study is to record negative ions
at the entrance and exit of the thruster channel.

2. EXPERIMENTAL SETUP

The ATON SPT, whose schematic is presented in
Fig. 1, was installed in a 60 x 60 x 250-cm vacuum
chamber. Thethruster jet was directed along the axis of
the chamber; because of a small divergence of thejet, it
hardly touched the chamber wall [ 7]. Theion beam was
decelerated by a residua gas (the so-called “gas tar-
get”) near the pumps. There were no metal crumbs
(usualy formed during bombardment of a chamber
wall with the SPT ion beam) even after a 200-hour
resource test of the thruster.

In the normal operation mode of the thruster, the
residual air pressure in the vacuum chamber was kept
a the level P ~ (2-3) x 10~ torr and the xenon mass
flow rate was m, = 1-2.5 mg/s; the pumping was pro-
duced by diffusion pumps filled with VM-5 ail. In this
case, the integral thruster characteristics such as the
mean discharge current and thrust were high and stable.

To cause a drop in the thruster characteristics, a
guartz target 15 x 15 cmin size was placed on the axis

of the thruster at a distance of 25 cm from the thruster
exit; the target wastilted 30° with respect to the axis. As
a result, the discharge current increased from 2.07 to
2.21 A and the current fluctuations grew from 10 to
40% (with the anode voltage U and Xe mass flow rate
kept constant). After 40 min of running the thruster, the
operating conditions became stabilized at thislevel.

To record charged particles, we used a probe con-
sisting of two grids and a collector placed behind the
grids; the distance between the grids was 2 mm. The
collector was installed at a distance of 2 mm from the
last grid. The collector diameter was 6 mm, which cor-
responded to the inner diameter of the ceramic working
channel of the probe. An advantage of the probe mea-
surements is the possibility to determine the distribu-
tion function of charged particles by the collector cur-
rent—voltage characteristic and estimate their density
and energy. A disadvantage of the method is that it is
somewhat cumbersome, which makes it impossible to
determine the local parameters of charged particles
with good spatial resolution.

To determine the energy spectrum of the particles
entering the thruster channel, we set the probe at adis-
tance z = 140 mm from the thruster exit and 30 mm
away from its axis. The entrance window of the probe
was oriented along the plasma jet, at an angle of 20°
with respect to the thruster axis, thusintercepting parti-
cles moving toward the thruster exit. The measure-
ments were carried out both with and without a target.

The energy spectra of the particles that passed
through the thruster channel were also investigated. For
this purpose, amultigrid probe was mounted flush with
the rear wall of the buffer; the axis of the probe was par-
alel to the thruster axis. The experiments were carried
out at the working-gas (Xe) mass flow rate m, = 1.5~

2.5 mg/sand U = 200-300 V.

1063-780X/00/2608-0715$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic of the ATON SPT: (1) accelerating channel, (2) anode, (3) buffer region, (4) gasdistributor, and (5) magnetic coils.

3. ENERGY SPECTRA OF CHARGED PARTICLES
AT THE ENTRANCE OF THE THRUSTER
CHANNEL AND IN THE BUFFER VOLUME

Figure 2 presents the energy spectra of negatively
charged particles without atarget at the entrance of the
thruster channd (Fig. 2a) and in the buffer volume
(Fig. 2b) for U=300V and m, =2 mg/s. Itisseenfrom
Fig. 2 that there is a group of negatively charged parti-
cles with an average energy of € ~ 6 eV at the channel
entrance. In accordance with the results of [8], this
group is identified with electrons, which neutralize the
ions flowing out of the thruster.

At the end of the buffer volume, the energy spec-
trum (Fig. 2b) has two peaks corresponding to slow
electrons with energies of € = 6 and fast electrons with
energies of € = 38 eV. Thefast electrons are assumed to
be responsible for the current related to the effect of a
near-wall conductivity [9].

If atarget is set into the thruster jet under the above
operating conditions, then a second group of negatively
charged particles with an average energy of € = 28 eV
isformed at the channel entrance (Fig. 3a). Since these
particles appear only in the presence of a target, we

assign them to negativeions. Variationsin the discharge
voltage slightly affect the average energy of slow elec-
trons, whereas the energy of the negative ions changes
appreciably (Table 1).

With a target, the spectrum of negatively charged
particles in the buffer volume consists of three groups
(Fig. 3b). A group of negatively charged particles
whose energy corresponds to the discharge voltage
appears at the rear wall of the buffer. Again, since this
group appears only in the presence of a target, we
assign them to negative ions. As the discharge voltage
decreases, the energy of fast electrons and negativeions
also decreases, whereas the energy of slow electrons
changes only dlightly (Table 2).

4. DENSITY OF NEGATIVELY CHARGED
PARTICLES

There are two methods for calculating the density of
charged particles using the measured collector current—
voltage characteristics.

The first method is based on the measurements of
the probe collector current. The density of the satura-
tion current to the collector of a multigrid probe is
PLASMA PHYSICS REPORTS  Vol. 26
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knownto bej, = yenv,, whereyisthegrid transparency
and the other notation is standard. The value of v, is
taken from the measured energy spectrum.

The second method is based on the analysis of the
particle distribution function. Having a distribution
function of the particles of a given type, the particle
density is calculated as

N, =If(v)dv.

The charged-particle densities presented in Table 3
were obtained from the ion saturation current measured
with a plane electrostatic probe [10] and the positive-
ion current measured with a multigrid probe [11]; the
table also presents the results of this study.

Theresults of calculations showsthat, in accordance
with theresults of [3, 8], the variationsin the discharge

voltage within 200-300 V (at m, = const) dlightly

affect the densities of both fast and slow electrons. To
calculate the density of negative ions, we should make
some assumptions. The average mass of negative ions
issupposed to bem =28 amu. Thisassumption isbased
on previous results [4, 5, 12] and the experimental fact
that awell-localized film isformed fairly fast on dielec-
tric surfacesif a quartz plate (the main component is Si
with the atomic mass m; = 28 amu) was used as atarget.

The average energy of negative ions can be deter-
mined from their distribution function (Fig. 3).

The density of negative ions is substantially less
than the density of positive ions and electrons. As the
mass flow rate of the working agent decreases from 2.5
to 1.5 mg/s, the density of negative ions n, decreases
from 8 x 10'* to 3 x 10'* m~ at the thruster exit and
from 6 x 10'3 to 3 x 10'3 m in the buffer volume. The
lowering of the discharge voltage from 300 to 200 V
also leadsto adecrease in n;.

To verify the cal culated values of the density of neg-
ativeions, we examined the rate at which the inner sur-
faces of the dielectric channel and the buffer are coated
with a film. The thickness of the deposited filmish =
nypS, where p is the silicon specific mass density, Sis
the coated area, and m= myn,v;& (here, m, isthe Si ion
mass; t isthe deposition time; and n; and v; are the den-
sity and velocity of negative ions, respectively).

The calculated rate of coating for U =300V, m, =
2mg/s, andt = 4 h turned out to be

v = h/t = njmyv;/p=0.05 pm/h.

This value is in good agreement with the rate deter-
mined from the measured thickness of the film on the
insulator surface.

5. ANALY SIS OF EXPERIMENTAL DATA

According to numerous studies (see, e.g., [7]), the
electron distribution function in the SPT channel is
non-Maxwellian. It is formed mainly due to collisions
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Fig. 2. Energy spectra of negatively charged particles with-
out atarget (a) at the thruster exit and (b) in the buffer vol-
umefor U=300V and m, =2 mg/s.
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Fig. 3. Energy spectraof negatively charged particleswith a
target (a) at thethruster exit and (b) in the buffer volume for

U=300V and r, =2mg/s.
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Fig. 4. Distribution of the potential along the thruster chan-
nel for U =300V and m, =2 mg/s: the profiles of (1) the
potential ¢' between the buffer rear wall (z = 0) and the

anode (z = 26-36 mm) and (2) the potential ¢ between the
anode and the thruster exit (z= 60 mm).

with the channel walls and can be represented by three

electron groups, two of which are of interest for us.

The group of slow electrons trapped in the channel
by the volume and near-wall fields is the largest. It

determinesthe basic plasma parameters (density, temper-
ature, fluxes, etc.) [7]. The second group consists of fast
electrons. These electrons are created in the ionization
zone and undergo eastic collisions with the walls. They
areresponsible for near-wall conduction and conduction
acrossthe magnetic field. Moving toward the anode, they
acquire an energy corresponding to the potential drop
between the ionization zone and anode [8].

The measurements carried out without atarget show
that, at the channel entrance, thereisagroup of the par-
ticles identified above as slow electrons. At the same
time, the second group of electrons with the average
energy € = 20-30 eV appears in the buffer volume. It
may be seen from the potential distribution measured
along the channel from the cathode to the anode
(Fig. 4) that the potential drop between the ionization
zone and the buffer correspondsto that value. Thus, the
second group can be assigned to runaway electrons
originating due to near-wall conduction.

We consider now the group of particles formed at
the thruster exit in the presence of a target, assuming
that it consists of negative ions. An analysis of data

Table 1. Energy of negatively charged particlesin the presence of atarget at the thruster entrance for m, =2 mg/s

Discharge voltage U, V

Energy of slow electrons g, eV
Energy of negativeionse, eV

Table 2. Energy of negativeionsin the presence of atarget in the buffer volume for m, =2 mg/s

Discharge voltage U, V

Energy of slow electrons g, eV
Energy of fast electronse, eV
Energy of negativeionse, eV

300 250 200
6 5 5
28 25 22
300 250 200
5 4 4

37 32 27
283 243 196

Table 3. Density of negatively charged particles in the buffer volume and the thruster jet for U = 300 V and m, =2 mg/s

Density in the buffer n, m= Density inthejet n, m=
1 2 3 1 2 3
Thruster without atarget | a | 3 x 10 - - 1.6 x 10 - -
b| 2x10% -~ - 1.2 x 10Y -~ -
c 3x 1016 7 x 1015 - 1.3 x 10Y — —
d| 2x10% 5x 101 - 1.1 x 10Y - -
Thruster with a target a| 3x10% - - 1.5 x 10V - -
b 3x 1016 - - 1.2 x 10Y7 - -
c 3x 1016 8 x 101° 5 x 1013 1.2 x 10Y7 - 5 x 101
d| 2x10% 5x 101 4x 1013 1.0 x 10%7 -~ 7 x 101

Note: (1) slow electrons, (2) fast electrons, and (3) negativeions; (a) n is calculated from the current—voltage characteristic of an electro-
static probe, (b) nis calculated from the spectrum of positiveions, (c) nisderived from theformula j4 = yenv,, and (d) nisderived

fromthe formula j, = eJ’vfo(v)de.
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available in the literature [13, 14] shows that negative
ions with energies of 1-20 eV can appear if asurfaceis
bombarded by ions with energies of ~200 eV. Conse-
guently, when thruster jet ions with energies of
180-200 eV act upon atarget, particleswith energies of
10-30 eV are expected to appear at the channel
entrance because the potential drop between the target
and the point where the probe is set is equal to ~10 V.
Slight variations in this value with changing operation
conditions shift the maximum of the particle distribu-
tion function within the range 22—28 eV.

It is the accelerating electric field that governs the
motion of negative ions in the channel. Apparently, the
ions reaching the buffer must acquire an energy corre-
sponding to the above potential drop. For m, =2 mg/s

and U = 300V, the potential drop between the anode
and the thruster exit is ~270 V and that between the
buffer and the anodeis~10V. The energy of a negative
ion measured at the buffer end should be about € =
280 eV (see Table 2 and Fig. 4). This is exactly the
energy of the particles that have passed through the
channel and that have been recorded in the buffer.

Therefore, identifying the third group of particlesin
the spectrum presented in Fig. 3b with negativeionsis
quite justified.

5. CONCLUSION

(i) The energy spectra of charged particles at the
thruster exit and in the buffer volume are measured by
amultigrid probe both in the absence and presence of a
target that, being exposed to the plasma jet, emits neg-
ativeions.

(i) The negativeions are shown to beinvolved inthe
measured spectra of charged particles if the jet acts
upon atarget.

(iii) The average energy and density of negativeions
are determined under different operating conditions.
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