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Abstract—We consider a spherically symmetric global monopole in general relativity in (D = d + 2)-dimen-
sional space–time. For γ < d – 1, where γ is a parameter characterizing the gravitational field strength, the mono-
pole is shown to be asymptotically flat up to a solid angle defect. In the range d – 1 < γ < 2d(d + 1)/(d + 2), the
monopole space–time contains a cosmological horizon. Outside the horizon, the metric corresponds to a cos-
mological model of the Kantowski–Sachs type, where spatial sections have the topology R × Sd. In the impor-
tant case where the horizon is far from the monopole core, the temporal evolution of the Kantowski–Sachs met-
ric is described analytically. The Kantowski–Sachs space–time contains a subspace with a (d + 1)-dimensional
Friedmann–Robertson–Walker metric, whose possible cosmological application is discussed. Some estimates
in the d = 3 case show that this class of nonsingular cosmologies can be viable. In particular, the symmetry-
breaking potential at late times can give rise to both dark matter and dark energy. Other results, generalizing
those known in 4-dimensional space–time, are derived, in particular, the existence of a large class of singular
solutions with multiple zeros of the Higgs field magnitude. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In our recent paper with Podolyak [1], we consid-
ered the general properties of global monopole solu-
tions in general relativity and developed some earlier
results (see [2, 3] and references therein). It was con-
firmed, in particular, that the properties of these objects
are governed by a single parameter γ, the squared
energy of spontaneous symmetry breaking in Planck
units. For 0 < γ < 1, solutions with the entirely positive
(or entirely negative) Higgs field are globally regular
and asymptotically flat up to a solid angle deficit. In the
range 1 < γ < 3, the space–time of the solutions remains
globally regular but contains a cosmological horizon at
a finite distance from the center. Outside the horizon,
the geometry corresponds to homogeneous anisotropic
cosmological models of the Kantowski–Sachs type,
whose spatial sections have the topology R × S2. The
nonzero symmetry-breaking potential can be inter-
preted as a time-dependent cosmological constant, a
kind of hidden vacuum matter. The potential tends to
zero at late times, and the “hidden vacuum matter” dis-

¶This article was submitted by the authors in English.
1063-7761/03/9701- $24.00 © 0001
appears. This solution with a nonsingular static core
and a cosmological metric outside the horizon drasti-
cally differs from the standard Big Bang models and
conforms to the ideas advocated by Gliner and Dymni-
kova [4] that the standard Big Bang singularity could be
replaced by a regular vacuum bounce.

The lack of isotropization at late times did not allow
us to directly apply the toy model of a global monopole
to the early phase of our Universe. But this circum-
stance does not seem to be a fatal shortcoming of the
model because the anisotropy of the very early Uni-
verse could be damped by particle creation later, and
the further stages with low energy densities might con-
form to the standard isotropic Friedmann cosmology.
Another idea is to add a comparatively small positive
quantity Λ to the symmetry-breaking potential (to
“slightly raise the Mexican hat”). It can change nothing
but the late-time asymptotic regime, which then
becomes de Sitter, corresponding to the added cosmo-
logical constant Λ. These ideas deserve further study.

In this paper, we study the gravitational properties
of global monopoles in multidimensional general rela-
tivity. This analysis can be of interest in view of numer-
2003 MAIK “Nauka/Interperiodica”
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ous attempts to construct a unified theory using the
ideas of supersymmetry in higher dimensions. Objects
like multidimensional monopoles, strings, and other
topological defects might form due to phase transitions
in the early Universe at possible stages when the
present three spatial dimensions were not yet separated
from others and a greater number of dimensions were
equally important.

More specifically, we consider a self-gravitating
hedgehog-type configuration of a multiplet of scalar
fields with the Mexican-hat potential

in D-dimensional space–time with a structure of Rt ×
Rρ × Sd (d = D – 2), where Rρ is the range of the radial
coordinate ρ and Rt is the time axis. The properties of
such objects generalize the results obtained in [1] and
earlier papers (e.g., [2, 3]) in a natural way. Thus, for
small values of the parameter γ = κ2η2 characterizing
the gravitational field strength, the solutions are asymp-
totically flat up to a solid angle deficit. Within a certain
range d – 1 < γ < (d), the solutions are nonsingular but
contain a Killing horizon and a cosmological metric of
the Kantowski–Sachs type outside it. In the important
case where the horizon is far from the monopole core,
the temporal evolution of the Kantowski–Sachs metric
is described analytically. The upper bound (d),
beyond which there are no static solutions with a regu-
lar center, is also found analytically.

The above description applies to solutions with an
entirely positive (or entirely negative) scalar field mag-
nitude φ. As in [1], here we also find a class of solutions
with any number n of zeros of φ(r), existing for γ <
γn(d), where the upper bounds γn are found analytically.
All solutions with n > 0 describe space–times with a
regular center, a horizon, and a singularity beyond this
horizon.

We also discuss a possible cosmological application
of multidimensional global monopoles, which can be of
particular interest for a 5-dimensional space–time with
3-dimensional spheres Sd. In this case, the Kantowski–
Sachs type model has the spatial topology R × S3 out-
side the horizon. It is anisotropic in 4-dimensions, but
the 3-dimensional spheres S3 are isotropic. The anisot-
ropy is thus related only to the fourth coordinate t,
which is spatial outside the horizon and is a cyclic vari-
able from the dynamical viewpoint. If we identify S3

with the observed space, ignoring the extra coordinate,
we obtain a closed cosmological model, with the Fried-
mann–Robertson–Walker line element in ordinary
(3 + 1)-dimensional space–time.

A natural question arises: why is the fourth spatial
dimension unobservable today? The answer cannot be
found within our macroscopic theory without specify-
ing the physical nature of the vacuum. The conven-

V λ /4( ) φ2 η2–( )2
=

γ

γ
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tional Kaluza–Klein compactification of the extra
dimension on a small circle is not satisfactory in our
case because it leads to a singularity at the horizon (as
demonstrated in Section 3). We therefore leave this
question open and note that the global monopole model
has the possibility of describing only the earliest phase
of cosmological evolution. Its later stages should
involve creation of matter and a sequence of phase tran-
sitions, possibly resulting in localization of particles
across the t direction. We then obtain a model with a
large but unobservable extra dimension, similar in spirit
to the widely discussed brane world models (see
reviews [5–7] and references therein).

The solutions of interest appear when the symme-
try-breaking scale η is sufficiently large, and one can
suspect that quantum gravity effects are already impor-
tant on this energy scale. We show in Section 2.3 that
this is not the case if the monopole core radius is much
greater than the Planck length: the curvature and energy
scales in the whole space are then much smaller than
their Planckian values.

The existence of nonsingular models of the early
Universe on the basis of classical gravity supports the
opinion that our Universe had never undergone a stage
described by full quantum gravity. In addition to those
discussed here, such models are rather numerous now
([1, 4, 8–10], see also references therein). All of them
are evidently free of the long-standing problems of the
standard Big Bang cosmology related to the existence
of multiple causally disconnected regions [11, 12].

This paper is organized as follows. In Section 2, we
analyze the properties of a global monopole in D = d + 2
dimensions (one time coordinate and d + 1 spatial
coordinates). It is a generalization of our previous
results [1]. In Section 3, the particular case where d = 3
is studied in more detail along with its possible cosmo-
logical application. Unless otherwise indicated, we use
the natural units " = c = 1.

2. MULTIDIMENSIONAL GLOBAL MONOPOLE

2.1. General Characteristics

The most general form of a static, spherically sym-
metric metric in D = d + 2 dimensions is

(1)

where dΩ2 = d  is a linear element on a d-dimen-
sional unit sphere parameterized by the angles ϕ1,
…, ϕd ,

and F0, F1, and FΩ are functions of the radial coordinate
ρ not yet specified. The nonzero components of the

ds2 e
2F0dt2 e

2F1dρ2– e
2FΩdΩ2,–=

Ωd
2

dΩd
2 dϕd

2 ϕd dϕd 1–
2 ϕd 1–sin

2
+(sin

2
+=

× dϕd 2–
2 … ϕ3 dϕ2

2 ϕ2dϕ1
2sin

2
+( )…sin

2
+ +( ) ),
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Ricci tensor are (the prime denotes d/dρ)

(2)

A global monopole with a nonzero topological
charge can be constructed with a multiplet of real scalar
fields φa (a = 1, 2, …, d + 1) comprising a hedgehog con-
figuration in d + 1 spatial dimensions,1

where na(ϕ1, …, ϕd) is a unit vector (nana = 1) in the
(d + 1)-dimensional Euclidean target space, with the
components

…

…

The Lagrangian of a multidimensional global
monopole in general relativity is given by

where R is the scalar curvature, κ = κD is the D-dimen-
sional gravitational constant, and V(φ) is a symmetry-

breaking potential depending on φ = ± ; it is nat-
ural to choose V as the Mexican-hat potential,

(3)

We have introduced the normalized field magnitude
f = φ(ρ)/η playing the role of the order parameter. The
model has a global SO(d + 1) symmetry, which can be
spontaneously broken to SO(d); η2/d is the energy of
symmetry breaking.

1 A 7D universe with a global monopole with a hedgehog confi-
guration of scalar fields only in three extra dimensions was
recently considered in [13]. Our approach is different. We con-
sider a hedgehog configuration in all D – 1 space dimensions of
D-dimensional space–time.

R0
0 e

2F1–
F0'' F0' F0' dFΩ' F1'–+( )+[ ] ,=

Rρ
ρ = e

2F1–
dFΩ'' F0'' dFΩ'

2 F0'
2 F1' F0' dFΩ'+( )–+ + +[ ] ,

R2
2 … Rd 1+

d 1+ d 1–( )e
2FΩ–

–= = =

+ e
2F1–

FΩ'' FΩ' F0' dFΩ' F1'–+( )+[ ] .

φa φ ρ( )na ϕ1 … ϕd, ,( ),=

nd 1+ ϕd,cos=

nd ϕd ϕd 1– ,cossin=

nd 1– ϕd ϕd 1– ϕd 2– ,cossinsin=

nd k– ϕd ϕd 1– … ϕd k– ϕd k– 1– ,cossinsinsin=

n2 ϕd… ϕ2 ϕ1,cossinsin=

n1 ϕd… ϕ2 ϕ1sin .sinsin=

L
1
2
---∂µφa∂µφa V φ( )–

R

2κ2
--------,+=

φaφa

V
λ
4
--- φ2 η2–( )2 λη 4

4
--------- f 2 1–( )2

.= =
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The Einstein equations can be written as

(4)

where  is the energy-momentum tensor. The non-

zero components of  are

We now use the quasiglobal coordinate ρ specified
by the condition

which is a convenient gauge for spherically symmetric
systems with Killing horizons. Introducing the func-
tions

we reduce the metric to the form

(5)

and obtain the equations

(6)

(7)

(8)

(9)

for the unknown functions φ(ρ), A(ρ), and r(ρ). Only
three of these four equations are independent: scalar field
equation (6) follows from Einstein equations (7)–(9)
because of the Bianchi identities.

Equations (6)–(8) have the same structure as
Eqs. (13)–(15) in [1]. General properties of Eqs. (6)–(8)
with an arbitrary value of d are the same as for d = 2,
and the classification of their solutions is also the same.
In particular, if V(φ) > 0, the system with a regular cen-
ter can have either no horizon or one simple horizon; in
the latter case, its global structure is the same as that of
the de Sitter space–time. Below, we focus our attention
on solutions belonging to class (a1) according to [1],
i.e., those with r(ρ) monotonically growing from zero

Rµ
ν 8πGT̃µ

ν
– 8πG Tµ

ν 1
d
---Tδµ

ν– 
  ,–= =
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T̃0
0 2
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f ' 2 2
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–e
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d
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A ρ( ) e
2F0 e

2F1–
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ds2 A ρ( )dt2 dρ2
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------------– r2 ρ( )dΩ2–=

Ardφ'( )' drd 2– φ– rd∂V
∂φ
-------,=

r''
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d
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d
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---- 

  '– 2 d 1– κ2φ2–( )=
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to infinity as ρ  ∞ and A(ρ) changing from A = 1 at
the regular center to A∞ < 0 as ρ  ∞, and with a cos-
mological horizon (where A = 0) at some ρ = ρh .

Equation (9) is a second-order linear inhomoge-
neous differential equation for A. The corresponding
homogeneous equation has the evident special solution

This allows expressing A(ρ) in terms of r(ρ) and φ(ρ) in
an integral form,

(10)

We consider solutions with a large-r asymptotic
behavior such that r(ρ)  ∞ and r'(ρ)  const > 0

as ρ  ∞. Equation (7) gives r' as , its con-

vergence as ρ  ∞ implies a sufficiently rapid decay
of φ' at large ρ, and therefore φ  φ∞ = const as ρ 
∞. The potential V then tends to a constant equal to
V(φ∞). Furthermore, Eq. (8) shows that at large r, A(ρ)
can grow at most as r2 and, finally, substitution of the
asymptotic form of φ(ρ), A(ρ), and r(ρ) in Eq. (6) leads
to dV/dφ  0 as ρ  ∞. In application to field equa-
tions, the condition that there exists a large-r asymp-
totic regime implies that the scalar field then tends
either to an extremum of the potential V(φ) or to an
inflection point with zero derivative. For the Mexican-
hat potential, it can be either the maximum at φ = 0 (the
trivial unstable solution for φ and the de Sitter metric
with the cosmological constant (1/4)κ2λη4) or a mini-
mum of V where f = 1 and V = 0. For a “slightly raised
Mexican hat” (potential (3) plus a small constant V+),
we have a de Sitter asymptotic behavior with f = 1 and
V = V+.

A regular center requires that A = Ac + O(r2) and
Ar'2  1 as ρ  ρc such that r(ρc) = 0. Without loss
of generality, we set ρc = 0 and Ac = 1.

For potential (3), regularity at ρ = 0 and the asymp-
totic condition at ρ  ∞ lead to C1 = C2 = 0 and
Eq. (10) then implies that

(11)

Equation (8) provides another representation for

A ρ( ) const r2 ρ( ).⋅=

A C1r2 C2r2 ρ1d

rd 2+ ρ1( )
---------------------

ρ

∞

∫– 2r2 ρ1d

rd 2+ ρ1( )
---------------------

ρ

∞

∫+=

× ρ2rd 2– ρ2( ) d 1 κ2φ2 ρ2( )––[ ] .d

0

ρ1

∫

rφ'2[ ] ρd∫

A ρ( ) 2r2 ρ( )
ρ1d

rd 2+ ρ1( )
---------------------

ρ

∞

∫ ρ2rd 2– ρ2( )d

0

ρ1

∫=

× d 1 κ2φ2 ρ2( )––[ ] .
JOURNAL OF EXPERIMENTAL 
A(ρ) satisfying the regular center conditions,

(12)

From (11), we find the limiting value of A at ρ  ∞,

(13)

where α = dr/dρ at ρ  ∞,

Equation (13) shows that γ = d – 1 is a critical value
of γ: the large-r asymptotic behavior can be static only
if γ ≤ d – 1; for γ < d – 1, it is flat up to a solid angle
deficit, in full similarity to the conventional case d = 2
[1, 2]. If γ > d – 1, then A(∞) < 0 and there is a horizon
at some ρ = ρh where A = 0. From (12),

and we therefore have 

(14)

The γ dependence of ρh , with γ = κ2η2, can be found
from the relation

(15)

2.2. Large-r Asymptotic Behavior

From (6), we can find the asymptotic behavior of the
field f(r) and the potential V(r) as r  ∞. For large ρ,
we have A  A(∞) (see (13)), and the field equation (6)
reduces to 

A regular solution of this equation must tend to
unity as r  ∞, and for ψ = 1 – f, we have the linear
equation

(16)

The general solution of the corresponding homoge-

A ρ( ) 1
4κ2

d
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ρ1d

rd ρ1( )
---------------

0

∞

∫ ρ2rd ρ2( )V ρ2( ).d

0
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,= =

α 1
κ2

d
----- r ρ( )φ'2 ρ( ) ρ.d

0

∞

∫–=

4κ2

d
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ρ1d
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---------------

0

ρh

∫ ρ2rd ρ2( )V ρ2( )d

0

ρ1

∫ 1=

A ρ( ) 4κ2

d
--------

ρ1d

rd ρ1( )
---------------

ρh

ρ

∫ ρ2rd ρ2( )V ρ2( ).d

0

ρ1

∫–=

4κ2

d
--------

ρ1d

rd ρ1( )
---------------

ρh

∞

∫ ρ2rd ρ2( )V ρ2( )d

0

ρ1

∫ d 1– γ–

α2 d 1–( )
-----------------------.–=

1

rd
---- d

dr
----- rddf

dr
----- 

  d 1–
γ d– 1+
--------------------- λη 2 1 f 2–( ) d

r2
----– f– 0,=

r ∞.

ψ, rr
d
r
---ψ, r

2λη 2 d 1–( )
γ d– 1+

----------------------------- ψ d

2λη 2r2
-----------------–+ + 0,=

r ∞.
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neous equation

can be expressed in terms of Bessel functions,

A special solution of inhomogeneous equation (16)
at r  ∞ is

The general solution of Eq. (16) gives the asymptotic
behavior for the Higgs field magnitude f as r  ∞,

(17)

Because of the boundary conditions imposed, the
integration constants C and ϕ are functions of d and γ
that can be found numerically. The function C(γ) for
d = 3 is presented in Fig. 1. From (17), we find the
asymptotic behavior of V,

(18)

2.3. Bounds of the Classical Regime 
and the Monopole Core

Of certain interest are solutions with the cosmolog-
ical large-r behavior, i.e., those with γ > d – 1. The latter
condition means that the scalar field, approaching η at
large r, actually takes near- or trans-Planckian values.
Indeed, in D dimensions, the Planck length lD and mass
mD are expressed in terms of the gravitational constant
κ = κD as

Therefore,

and in the case of interest where γ ~ d, we have

(19)

We can, however, remain at sub-Planckian curvature
values, thus avoiding the necessity of invoking quan-

ψ0 rr,
d
r
---ψ0 r,

2λη 2 d 1–( )
γ d– 1+

-----------------------------ψ0+ + 0=

ψ0 r( ) r d 1–( )/2– C1J d 1–( )/2–
r
r0
---- 

  C2Y d 1–( )/2–
r
r0
---- 

 + ,=

r0
2 γ d– 1+

2λη 2 d 1–( )
-----------------------------.=

ψ d

2λη 2r2
----------------- O

1

r4
---- 

  .+=

f r( ) = 1 d

2λη 2r2
-----------------–

C

λη 2r2( )d /4
------------------------ r

r0
---- πd

4
------ ϕ+ + 

 sin ,–

r ∞.

V r( ) = 
λη 4

4
--------- d

λη 2r2
--------------

2C

λη 2r2( )d /4
------------------------ r

r0
---- πd

4
------ ϕ+ + 

 sin+
2

,

r ∞.

lD κ2/d, mD κ 2/d– , d D 2.–= = =

η2 γ
κ 2
----- γmD

d ,= =

η mD( )d /2 d .∼
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
tum gravity, if we require sub-Planckian values of the
potential V in the entire space, i.e.,

For η given by (19), this implies that

(20)

We can thus preserve the classical regime even with
large η by choosing sufficiently small values of λ. In
terms of lengths, this condition is equivalent to the
requirement that the monopole core radius

is much greater than the Planck length,

(21)

One may note that this condition is external with
respect to the theory because general relativity does not
contain an internal restriction on the gravitational field
strength. Moreover, in ordinary units, our dimension-
less gravitational field strength parameter, expressed
as γ = κ2c–4η2, does not contain ". We obtain restric-
tion (20) or (21) only when we compare the character-
istic length rcore existing in our theory with the Planck
length lD = ("κ2/c3)1/d.

κ 2
V

1
4
---κ2λη 4

 ! mD
2 .=

λ  ! 
4

d2
-----mD

2 d– .

rcore
1

λη
-----------=

1

λη
----------- @ lD.

2.0 2.7 3.4 4.1 4.8
γ

0

0.5

1.0

1.5

2.0

2.5
C

Fig. 1. Function C(γ) found numerically for d = 3.
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We now discuss the solutions for γ slightly exceed-
ing the critical value d – 1. In the case where γ – (d –
1) ! 1, the horizon radius rh is much greater than rcore
and the constant C turns out to be negligibly small (this
is confirmed numerically, see Fig. 1). At large ρ2, the
integrand in the inner integrals in (12), (14), and (15) is
then given by

The main contribution to the above inner integrals
comes from the monopole core if d < 3 and from the
upper limit if d > 3. For d = 3, it is a logarithmic inte-
gral. As a result, we have different behaviors of ρh(γ) at
γ – (d – 1) ! 1 for d = 2 and d ≥ 3.2

For d = 2 (4-dimensional general relativity),

and it follows from (15), in agreement with [1], that the
horizon radius rh , is inversely proportional to γ – 1,

For d > 3, we find that at γ – (d – 1) ! 1, the horizon
radius rh is inversely proportional to the square root of
γ – (d – 1) ! 1,

(22)

It is thus confirmed that for γ – (d – 1) ! 1, the hori-
zon is located far from the monopole core,

The function A(r) at r > rh can then be found analyt-
ically. In this case, r(ρ) is a linear function at r > rh  and
dr = αdρ. From (14) at r > rh , we find

(23)

The condition of the applicability of (23) is lD ! rh . In
view of rcore ! rh, it is less restrictive than condition (21).

2 This is the only important qualitative difference between the gen-
eral case d ≥ 3 and the particular case d = 2 considered in [1].

dρ2rd ρ2( )V ρ2( ) d2

4αλ
---------- dr

r4 d–
----------.≈

ρ2rd ρ2( )V ρ2( )d

0

ρ1

∫ ρ2r2 ρ2( )V ρ2( )d

0

∞

∫≈ const=

rh
const
γ 1–
------------, γ 1 ! 1, d– 2.= =

rh
γd d 1–( )

2 d 3–( ) γ d– 1+( )
---------------------------------------------- 1

λη 2
---------,=

rh
2
 @ 

1

λη 2
---------, d 3.>

rh
2 @ 

1

λη 2
---------.

A r( ) γ 1 d–+

α2 d 1–( )
----------------------- 1

rh
d 1–

rd 1–
----------–

 
 
 

–=

+
γd

2α2 d 3–( )λη 2r2
----------------------------------------- 1

rh

r
---- 

 
d 3–

– .
JOURNAL OF EXPERIMENTAL A
2.4. Solutions with f(φ) Changing Its Sign

As in [1], numerical integration of the field equa-
tions shows that in addition to solutions with totally
positive (or totally negative) f(u), there also exist solu-
tions with a regular center such that f(u) changes its
sign n ≥ 1 times. All these solutions exist for γ < γn(d),
where γn(d) are some critical values of the parameter γ.
For n > 0, all of them have a horizon, and the absolute
value of f at the horizon | fh, n(ρh)| is a decreasing func-
tion of γ, vanishing as γ  γn – 0. Moreover, as γ 
γn(d), the function f(u) vanishes in the whole range ρ ≤
ρh and is small inside the horizon for γ close to γn(d).
This allows us to find the critical values γn(d) analyti-
cally: Eq. (6) reduces to a linear equation for f in a given
(de Sitter) background and, combined with the bound-
ary conditions f(0) = 0 and f(ρh) < ∞, leads to a linear
eigenvalue problem. Its solution (see [1] for details) in
the d-dimensional case gives the upper limits γn(d) and
the corresponding minimal horizon radii rh = rhn for
solutions with the Higgs field magnitude f changing its
sign n times,

(24)

(25)

For d = 2, Eqs. (24) and (25) reduce to Eq. (52) in [1].
Under condition (21), these solutions remain in the
classical gravity regime.

3. 5-DIMENSIONAL MODELS
AND NONSINGULAR COSMOLOGY 

3.1. The Extra Dimension

At present, there is no evidence for the existence of
more than three spatial dimensions up to achievable
energies of about several hundred GeV. However, this
energy is quite small on the Planck scale (on the order
of 1019 GeV). Our solutions of possible cosmological
interest correspond to γ > d – 1, i.e., the Planck energy
scale. Even under condition (21), there remains an
enormous range of scales in the early Universe in which
the number of equally important spatial dimensions can
be greater than 3.

If we try to consider our d = 3 solutions in the cos-
mological context, the extra coordinate is t in (1) and
(5). The coordinate t is time inside the horizon and
becomes a fourth spatial coordinate outside it, where
A(ρ) < 0. Metric (5) takes the form

Introducing the proper time τ of a comoving

rhn 2n 1+( ) 2n d 2+ +( )/λη 2,=

γn
2d d 1+( )

2n 1+( ) 2n d 2+ +( )
--------------------------------------------------.=

ds2 dρ2

A ρ( )
--------------- A ρ( ) dt2– r2 ρ( )dΩ3

2.–=
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observer outside the horizon,

(26)

we obtain a 5-dimensional Kantowski–Sachs cosmol-
ogy with a closed Friedmann–Robertson–Walker met-
ric in the (3 + 1)-dimensional space–time section of
constant t,

(27)

The 4-dimensional spherical radius r(ρ) now plays
the role of the scale factor, a(τ) = r(ρ(τ)).

It is tempting to explain the unobservability of the
extra dimension parameterized by the t coordinate by
compactifying t with a certain “period” T in the spirit of
Kaluza–Klein models. Such a compactification would
lead to a singularity at r = rh , however, as is clear from
Fig. 2. If t ∈  R, the static region (the left quadrant in the
diagram) is connected with the future cosmological
region (the upper quadrant) by the horizon, crossed by
photons and massive particles without problems, but if
the t axis is made compact by identifying, e.g., the
points t1 and t2 on the t axis, the static and cosmological
regions in the diagram take the form of the dashed sec-
tors, actually tubes of a variable thickness, connected at
one point only, the ends (tips) of the tubes. The curva-
ture invariants do not change due to this identification
and remain finite, and the emerging singularity in the ρt
plane resembles the conical singularity.

Compactification is not the only possibility of
explaining why the t coordinate is invisible. It can also
be assumed that at some instant of the proper cosmo-
logical time τ of 5-dimensional model (27), a phase
transition occurs at a certain energy scale 1/T, leading
to localization of matter on the 3-spheres in the spirit of
brane world models. Anyway, within our macroscopic
theory without specifying the structure of the physical
vacuum, it is impossible to explain why the extra
dimension is not seen now. It is nevertheless interesting
to describe some cosmological characteristics of the
d = 3 global monopole.

3.2. Some Cosmological Estimates 

For d = 3, the inner integrals in (14) and (15) have a
logarithmic character, and instead of (22) and (23), we
obtain

(28)

τ ρd

A ρ( )
-------------------,

ρh

ρ

∫=

ds4
2 dτ2 a2 τ( )dΩ3

2– A ρ τ( )( ) dt2.–=

γ 2–
3

λη 2rh
2

-------------- B λη 2rh
2( )ln+[ ] ,=

rh
2
 @ 

1

λη 2
---------, d 3=
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and

(29)

The dependence a(τ) can be found from Eq. (26).
In (28), B is a constant close to unity; our numerical
estimate gives B ≈ 0.75. The dimensionless radius of

the horizon ηrh is presented in Fig. 3 as a function
of γ for d = 3 (solid line). The dashed line is asymptotic
dependence (28) valid for γ – 2 ! 1 The function A(τ) ≡
A(a(τ)) is shown in Fig. 4 for d = 3 and γ = 3, 3.5, and 4.
The numerical and analytic results are shown by solid
and dashed lines, respectively. It is remarkable that only
for γ = 4 is approximate analytic dependence (29)—
which is, strictly speaking, valid for γ – 2 ! 1—slightly
different from the more precise dependence found
numerically.

Far outside the horizon, A(a) tends to a constant
value,

and metric (27) describes a uniformly expanding world
with a linear dependence a(τ) at late times,

(30)

A a( ) –
γ 2–

2α2
----------- 1

rh
2

a2
-----–

 
 
  3γ

2α2λη 2
-------------------

a/rh( )ln

a2
--------------------,+=

a rh, d> 3.=

λ

A a( ) –
γ 2–

2α2
-----------, a @ rh,

a τ( ) α A ∞( ) τ γ 2–
2

-----------τ , τ ∞ .= =

r > rh

t = t2 t = t1
r = ∞

r = 0

r = rh
r = ∞

r = 0

t = t1

t = t2

r < rh

r = rh

Fig. 2. Carter–Penrose diagram of a global monopole with
a cosmological horizon. The diagonals of the square repre-
sent the horizons. After identification of t1 and t2, only the
dashed regions survive.
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The Hubble parameter H = /a, where the dot
denotes d/dτ, is found analytically from expression (29)

for A(a) (d = 3, a > ρh @ 1/ η):

(31)

The temporal evolution of the Hubble parameter
H(τ) is shown in Fig. 5 for γ = 3, 3.5, and 4. The expan-

ȧ

λ

H a( ) 1
a
--- γ 2–

2
----------- 1

rh
2

a2
-----–

 
 
  3γ

2
------

a/rh( )ln

λη 2a2
--------------------– .=

10

8

6

4

2 2.7 3.4 4.1 4.8
γ

horizon

Fig. 3. The dimensionless horizon radius ηrh vs. γ for
d = 3 (solid line). The dashed line is asymptotic dependence
(28) valid for γ – 2 ! 1.

λ

–0.5

0

–1.0

–1.5

–2.0

–2.5

–3.0

–3.5
0 5 10 15 20 25 30 35

τ

A

Fig. 4. Function A(τ) ≡ A(a(τ)) for d = 3 and γ = 3, 3.5, and
4 (from top down). Solid lines show numerical results and
dashed lines show analytic dependence (29).
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sion starts from the horizon at τ = 0 and rather quickly
approaches the late-time behavior H(τ) = τ–1. We actu-
ally have the asymptotic regime almost immediately
after the beginning.

If we try to extrapolate this late-time regime to the
present epoch, we can use the estimate given in [11]
(Box 27.4),  ≈ 0.66; Eqs. (30) and (28) then lead to

(32)

These estimates conform to the monopole parameter
values leading to a nonsingular cosmology.

Symmetry-breaking potential (18), averaged over

the oscillations, V(τ) ≡ , is a decreasing func-
tion of τ,

(33)

In cosmology, scalar field potentials are often inter-
preted as a time-dependent effective cosmological con-
stant. The reason is that V enters the energy-momentum
tensor as a Λ term. In our case, as can be seen from (33),
this term behaves as a mixture of two components, one
decaying with the cosmological expansion as radiation
(∝τ –4 ∝  a–4) and the other as matter without pressure
(∝τ –3 ∝  a–3) in 4 dimensions. The 4-dimensional
energy density corresponding to V is proportional to

V . However, at late times, the extra-dimension

scale factor  tends to a constant and therefore the
5- and 4-dimensional behaviors of the energy density
actually coincide at large τ. We can say that the poten-
tial V(φ) in the global monopole model gives rise to

ȧ

γ 2 2ȧ2+ 2.87, λη rh 3.65.≈= =

V a τ( )( )

V τ( ) 9

γ 2–( )2λτ 4
---------------------------

λη 4C2

2 γ/2 1–( )λη 2τ2[ ] 3/2
--------------------------------------------------,+=

τ ∞ .

A

A

0.20

0.15

0.10

0.05

0 5 10 15 20 25 30
τ

H

Fig. 5. Hubble parameter H(τ) for γ = 3, 3.5, and 4 (from
bottom up). At late times, H(τ) = 1/τ (dashed curve).
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both dark radiation and dark matter. We recall that in
accordance with modern views, both must necessarily
be present in the Universe from the observational stand-
point [12].

These estimates can only show that the 5-dimen-
sional global monopole model is, in principle, able to
give plausible cosmological parameters. Quantitative
estimates certainly require a more complete model
including further phase transitions, one of which should
explain the unobservability of the fifth dimension.

The authors are grateful to A.F. Andreev, A.A. Star-
obinsky, V.A. Marchenko, and M.Yu. Kagan for useful
discussions.
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Abstract—We consider the symmetry between creation of pairs of massless bosons or fermions by an acceler-
ated mirror in (1 + 1)-dimensional space and emission of single photons or scalar quanta by an electric or scalar
charge in (3 + 1)-dimensional space. The relation of Bogoliubov coefficients describing the processes generated
by a mirror to Fourier components of the current or charge density implies that the spin of any disturbances
bilinear in the scalar or spinor field coincides with the spin of quanta emitted by the electric or scalar charge.
The mass and invariant momentum transfer of these disturbances are essential for the relation of Bogoliubov
coefficients to invariant singular solutions and the Green functions of wave equations for both (1 + 1)- and
(3 + 1)-dimensional spaces, and especially for the integral relations between these solutions. One of these rela-
tions leads to the coincidence of the self-action changes and vacuum–vacuum amplitudes for an accelerated
mirror in two-dimensional space–time and a charge in four-dimensional space–time. Both invariants of the
Lorentz group, spin and mass, play an essential role in the established symmetry. The symmetry embraces not
only the processes of real quanta radiation, but also the processes of the mirror and charge interactions with
fields carrying spacelike momenta. These fields accompany their sources and determine the Bogoliubov matrix

coefficients . It is shown that the Lorentz-invariant traces ±trαB, F describe the vector and scalar interac-
tions of the accelerated mirror with a uniformly moving detector. This interpretation rests essentially on the
relation between propagators of the waves with spacelike momenta in two- and four-dimensional spaces. The
traces ±trαB, F coincide with the products of the mass shift ∆m1, 0 of the accelerated electric or scalar charge
and the proper time of the shift formation. The symmetry fixes the value of the bare fine structure constant
α0 = 1/4π. © 2003 MAIK “Nauka/Interperiodica”.

αω'ω
B F,
1. INTRODUCTION

The Hawking particle production mechanism during
black hole formation is analogous to the emission from
an ideal mirror accelerated in vacuum [1]. In turn, there
is a close analogy between the radiation of pairs of scalar
(spinor) quanta from an accelerated mirror in (1 + 1)-
dimensional space and the radiation of photons (scalar
quanta) by an accelerated electric (scalar) charge in (3 +
1)-dimensional space [2, 3]. All these processes are
therefore interrelated. The in and out sets of the wave
equation solutions typically used for a massless scalar
field in problems with moving mirrors are given by

(1a)

(1b)

φinω' e iω'v– e iω' f u( )– ,–∝

φinω'* eiω'v eiω' f u( ),–∝

φoutω e iωg v( )– e iωu– ,–∝

φoutω* eiωg v( ) eiωu,–∝
¶This article was submitted by the author in English.
1063-7761/03/9701- $24.00 © 20010
with the zero boundary condition

on the mirror’s trajectory. Here, the variables u = t – x
and v  = t + x are used and the mirror (or charge) trajec-
tory in the u, v  plane is given by any of the two mutu-
ally inverse functions

We refer to [3] for the in and out sets of solutions of
the massless Dirac equation. Dirac solutions differ
from (1) by the presence of bispinor coefficients at the
u- and v-plane waves. The current densities corre-
sponding to these solutions have only tangential com-
ponents at the boundary. The boundary condition for
both scalar and spinor fields is therefore purely geomet-
rical, and it does not contain any dimensional para-
meters.

The Bogoliubov coefficients αω'ω and βω'ω arise as
the coefficients of the expansion of the solutions of the

φ traj 0=

v mir f u( ), umir g v( ).= =
003 MAIK “Nauka/Interperiodica”
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out set in the solutions of the in set; the coefficients
 and  arise similarly in the inverse expan-

sion. The upper and lower signs correspond to the sca-
lar (Bose) and spinor (Fermi) fields. The mean number
of quanta with the frequency ω and the wave vector
ω > 0 radiated by the accelerated mirror to the right
semispace is then given by the integral

(2)

At the same time, the spectra of photons and scalar
quanta emitted by electric and scalar charges moving
along the trajectory xα(τ) in (3 + 1)-dimensional space
are determined by the Fourier transforms of the electric
current density 4-vector jα(k) and the scalar charge den-
sity ρ(k),

(3)

(4)

(5)

(6)

where s and kα are the spin and 4-momentum of the
quanta,

and it is assumed in (4) and (6) that the trajectory xα(τ)
has only x0 and x1 nontrivial components.

The symmetry between creation of Bose or Fermi
pairs by the accelerated mirror in (1 + 1)-dimensional
space and emission of single photons or scalar quanta
by the electric or scalar charge in (3 + 1)-dimensional
space consists, first of all, in the coincidence of the
spectra. If we set

we have

(7)

αω'ω* βω'ω+−

dnω
dω
2π
------- ω'd

2π
-------- βω'ω

2.

0

∞

∫=

s 1, jα k( ) e τ ẋα τ( ) ikα xα τ( )–( ),expd∫= =

dnk
1( ) jα k+ k–,( ) 2dk+ k–d

4π( )2
----------------,=

s 0, ρ k( ) e τ ikα xα τ( )–( ),expd∫= =

dnk
0( ) ρ k+ k–,( ) 2dk+ k–d

4π( )2
----------------,=

k2 k1
2 k ⊥

2 k0
2–+ 0, k ⊥

2 k0
2 k1

2– k+k–,= = = =

k± k0 k1,±=

2ω k+, 2ω' k–,= =

βω'ω
B 2 1

e2
---- jα k+ k–,( ) 2,=

βω'ω
F 2 1

e2
---- ρ k+ k–,( ) 2.=
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A more refined assertion in the Bose case is

(8)

(9)

The 2-vectors jα(k) and aβ(k) = εαβkα/  are
spacelike for timelike kα; in a system where k+ = k– or
ω = ω', they have only spatial components that are pre-

cisely equal to  and 1, respectively.

In the Fermi case, we have

(10)

In Section 2, we underline the symmetry between
analytical expressions for the Bogoliubov coefficients
α and β* and, at the same time, the physical distinction
between them: βB, F* is the amplitude of the source of
waves that are bilinear in massless Bose or Fermi fields
and carry timelike momenta, whereas αB, F is the ampli-
tude of the source of similar waves that carry spacelike
momenta (see (14) and (15)). In Sections 3 and 4, we
show that the waves with timelike momenta emitted
and absorbed by the source are involved in forming the
imaginary part of the source self-action. This physical
picture is naturally embodied in integral relation (20)
between propagators ∆2(z, m) of virtual pairs with
masses m, µ ≤ m < ∞ in two-dimensional space–time
and the propagator ∆4(z, µ) of the particle in four-
dimensional space–time. Analytic properties of the
expressions obtained also allow us to define the real
part of self-action. This leads to the coincidence of the
self-actions and hence, of the vacuum–vacuum ampli-
tudes of the mirror and the charge if we set e2 = 1. In
Section 5, the fields of perturbations carrying spacelike
momenta are considered. These fields are defined by
the matrices αB, F. Their Lorentz-invariant traces
±trαB, F are considered in Section 6. They describe,
respectively, the vector and scalar interactions of the
accelerated mirror with a uniformly moving detector in
the neighborhood of the point of contact of their trajec-
tories. In Sections 7 and 8, the traces ±trαB, F are found
for three specific trajectories permitting analytic solu-
tions. The general expressions for the traces are given,
and their ultraviolet and infrared singularities are also
considered there. In these sections, we compare the
found traces ±trαB, F with the mass shifts ∆m1, 0 of the
electric and scalar charges moving along the same tra-
jectory as the mirror, but in (3 + 1)-dimensional space.

βω'ω
B* k+

k–
-----

j– k( )
e

-----------–
k–

k+
-----

j+ k( )
e

-----------
εαβkα jβ k( )

e k+k–

-------------------------,= = =

j– k( ) e u
i
2
--- k+u k– f u( )+( ) ,expd∫=

j+ k( ) e v
i
2
--- k–v k+g v( )+( ) .expd∫=

k+k–

eβω'ω
B*

βω'ω
F* 1

e
---ρ k( ).=
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12 RITUS
The mass shifts ∆m1, 0 of the charges moving along the
exponential trajectory are found in Section 9. In the
Conclusions, we discuss the relation of the traces
±trαB, F to the general definition of the self-action
accounting for interference effects and draw attention
to the fact that the symmetry fixes the value of the bare

charge squared,  = 1, which corresponds to the bare
fine structure constant α0 = 1/4π. The smallness and
geometrical origin of this value may be interesting in
quantum electrodynamics. In the Appendix, the even
singular solutions of inhomogeneous wave equations
with mass and momentum transfer parameters are con-
sidered. Integral relations (20) and (100) between these
solutions for (1 + 1)- and (3 + 1)-dimensional spaces
are very important for the symmetry considered.

2. PHYSICAL INTERPRETATION OF 

The absolute pair production amplitude and the sin-
gle-particle scattering amplitude are related by [4]

(11)

The coefficient  was interpreted as the ampli-
tude of a source of a pair of massless particles poten-
tially emitted to the right and to the left with the respec-
tive frequencies ω and ω'. While the particle with the
frequency ω actually escapes to the right, the particle
with the frequency ω' propagates for some period of
time and is then reflected by the mirror and is actually
emitted to the right with an altered frequency ω'' (see
Fig. 1).

e0
2

βω'ω*

outω''ω in〈 〉 outω'' ω'in〈 〉β ω'ω* .
ω'

∑–=

βω'ω*

x

t

u
v

ω'

ω''

ω

Fig. 1.
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In the time interval between pair creation and reflec-
tion of the left particle, we have the virtual pair with the
energy k0, momentum k1, and mass m,

(12)

In addition to the polar timelike 2-vector kα, the
axial spacelike 2-vector qα is very important,

(13)

In terms of kα and qα, the symmetry between the α
and β coefficients becomes clearly expressed,

(14)

(15)

We note that Eqs. (3) and (5) define the current den-
sity jα(k) and the charge density ρ(k) as functionals of
the trajectory xα(τ) and functions of any 2- or 4-vector
kα. It can be shown that in (1 + 1)-dimensional space,
jα(k) and jα(q) are spacelike and timelike polar vectors,
respectively, if kα and qα are timelike and spacelike
vectors.

The boundary condition on the mirror leads to the
appearance of vector or scalar disturbance waves bilin-
ear in massless fields in the vacuum of the massless sca-
lar or spinor field. There are two types of these waves:

(1) waves with an amplitude of αω'ω ( ) that
carry a spacelike momentum directed to the left (right);

(2) waves with an amplitude of  (βω'ω) that
carry a timelike momentum with a positive (negative)
frequency.

The waves with spacelike momenta appear even if
the mirror is at rest or moves uniformly (the Casimir
effect), while the waves with timelike momenta appear
only for the accelerated mirror.

The pair of Bose (Fermi) particles has spin 1 (0)
because its source is a current density vector (charge
density scalar) (see [5] or problem 12.15 in [6]).

k0 ω ω', k1+ ω ω',–= =

m k2– 2 ωω'.= =

qα εαβkβ, q0 k1– ω– ω',+= = =

q1 k0– ω– ω' 0.<–= =

s 1, eβω'ω
β* qα jα k( )

k+k–

------------------,–= =

eαω'ω
B kα jα q( )

k+k–

-----------------,–=

s 0, eβω'ω
F* ρ k( ), eαω'ω

F ρ q( ).= = =

αω'ω*

βω'ω*
AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003



THE SYMMETRY, INFERABLE FROM BOGOLIUBOV TRANSFORMATION 13
3. THE APPEARANCE OF MASS 
IN THE MASSLESS THEORY

AND OF INVARIANT SINGULAR SOLUTIONS
OF THE WAVE EQUATION WITH MASS

It follows from (8) that the bilinear in massless

Bose-field disturbances defined by the amplitudes 
forms a positive-frequency current density vector.
Its minus-component at the point U, V can be repre-
sented as

(16)

if the hyperbolic variables ρ and θ are used instead of ω
and ω',

(17)

and zα = xα – xα(τ) (see Fig. 2). As can be seen
from (12), ρ = m is the mass of the pair and θ is the
rapidity. The integral over rapidity in (16) is the well-
known invariant positive-frequency singular function
of the wave equation for two-dimensional space–time,

(18)

(19)

This function describes the wave field of pairs with
mass m and any possible positive-frequency momenta.
It follows that the pairs are created, propagated, and
absorbed near the mirror within a spacelike interval of
the order of m–1.

Using the very important integral relation between
the singular functions of wave equations for d- and
(d + 2)-dimensional space–times,

(20)

βω'ω
B*

ω ω'dd

2π( )2
---------------1

e
--- j– k( ) –iωU iω'V–( )exp

0

∞

∫∫ 1

8π2
--------=

× u ρρ θ iρ z0 θcosh z1 θsinh–( )–( ),expd

∞–

∞

∫d

0

∞

∫d∫

ω ω'dd
1
2
---ρdρ θ, ωd

1
2
---ρeθ, ω'

1
2
---ρe θ– ,= = =

ρ 2 ωω', θ ω
ω'
-----,ln= =

θ im z0 θ z1 θsinh–cosh( )–( )expd

∞–

∞

∫
=  4πi∆2

+ z m,( )–

=  2θ z2–( )K0 iε z0( )m z2–( ) 2θ z2( )K0 m z2( ),+

∂t
2 ∂x

2– m2+( )∆2
+ z m,( ) 0.=

∆d 2+
f z µ,( ) 1

4π
------ m2∆d

fd z m,( ),

µ2

∞

∫=
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we can represent the right-hand side of (16) as

(21)

The small mass µ is retained to eliminate the infrared
divergence in what follows.

Similarly, the positive-frequency plus-component of
the current density at the point U, V can be represented as

(22)

The differentials du and dv  in (21) and (22) can be
replaced by dτ  and dτ .

The bilinear in massless Fermi-field disturbances

defined by the amplitudes  forms a positive-fre-
quency charge density scalar. At the point U, V, it can be
represented by

(23)

i
4π
------ u m2∆2

+ z m,( )d

µ2 0→

∞

∫d∫–

=  i u∆4
+ z µ,( ).d

∞–

∞

∫–

ω ω'dd

2π( )2
---------------1

e
--- j+ k( ) –iωU iω'V–( )exp

0

∞

∫∫

=  i v ∆4
+ z µ,( ).d

∞–

∞

∫–

ẋ– τ( ) ẋ+ τ( )

βω'ω
F*

ω ω'dd

2π( )2
---------------1

e
---ρ k( ) –iωU iω'V–( )exp

0

∞

∫∫

=  i τ∆4
+ z µ,( ).d

∞–

∞

∫–

x

t

u
v

u

U

zα

U, V ↔ xα

u, f(u) ↔ xα(τ)

f(u)

V

Fig. 2. 
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If we set the point U, V on the trajectory, so that

and integrate (21) over V and (22) over U, then their
half-sum differs from trβ+β only by the factor i,

(24)

The real part of the function ∆+, which is odd in z, and
its imaginary part, which is even in z, are related to the
causal (Feynman) function ∆f that is even in z,

(25)

and trβB+βB can therefore be written as

(26)

βF+βF can be obtained from the right-hand side of (26)
by the substitution

4. VACUUM–VACUUM 
AMPLITUDE  = eiW

According to DeWitt [7], Wald [8], and others
(including the present author [4]),

(27)

in the respective cases where the particle is identical or
nonidentical to the antiparticle. We confine ourselves to
the last case and assume that trβ+β ! 1. Then

(28)

We can omit the Im symbols from both sides of this
equation and define the actions for Bose and Fermi mir-
rors in (1 + 1)-dimensional space as

(29)

We compare this with the well-known actions for elec-

U x– τ'( ), V x+ τ'( ), zα xα τ'( ) xα τ( ),–= = =

trβB+βB ω ω'dd

2π( )2
--------------- βω'ω

B 2

0

∞

∫∫≡

=  
i
2
--- u Vdd vd Ud+( )∆4

+ z µ,( )∫∫
=  i τ τ ' ẋα τ( ) ẋα τ'( )∆4

+ z µ,( ).dd∫∫–

∆+ z µ,( )
1
2
---∆ z µ,( )

i
2
---∆1 z µ,( ),+=

Re∆+ ε z0( )Re∆ f , Im∆+ Im∆ f ,= =

tr β+β( )
B

Im τ τ ' ẋα τ( ) ẋα τ'( )∆4
f z µ,( ).dd∫∫=

ẋα τ( ) ẋα τ'( ) 1.

out in〈 〉

2ImWB F, 1
2
---tr 1 β+β±( )ln±=

or tr 1 β+β±( )ln±

2ImWB F, Im τ τ '
ẋα τ( ) ẋα τ'( )

1 
 
 

∆4
f z µ,( ).dd∫∫=

WB F, 1
2
--- τ τ '

ẋα τ( ) ẋα τ'( )

1 
 
 

∆4
f z µ,( ).dd∫∫=
JOURNAL OF EXPERIMENTAL 
tric and scalar charges in (3 + 1)-dimensional space,

(30)

The symmetry would be complete if e2 = 1, i.e., if
the fine structure constant were α = 1/4π. This “ideal”
value of the fine structure constant for the charges
would correspond to the ideal, geometric boundary
condition on the mirror.

For the mirror trajectory with a nonzero relative
velocity β21 of its ends (nonzero relative rapidity θ =
arctanhβ21), the changes of the actions due to accelera-
tion are given by

(31)

For a uniformly accelerated mirror with the proper
acceleration a, its velocity is 

where τ is the proper time. Then,

and as τ2 – τ1  ∞,

(32)

By definition,

(33)

is the self-energy shift of an accelerating Bose mirror.
It differs from the mass shift of a uniformly accelerated
electron only by the absence of the factor e2 = 4πα. The
self-energy shift of a uniformly accelerated Fermi mir-
ror is

There are two arguments in favor of defining the

action by means of the causal function .

1. The action must represent not only the radiation
of real quanta but also the self-energy and polarization
effects. While the radiation effects are described by
solutions of the homogeneous wave equation, the self-
energy and polarization effects require solutions of the
inhomogeneous wave equation, which contain infor-
mation about the proper field of a source. Such solu-
tions of the homogeneous and inhomogeneous wave
equations are the functions

W1 0, 1
2
---e2 τ τ '

ẋα τ( ) ẋα τ'( )

1 
 
 

∆4
f z µ,( ).dd∫∫=

Re∆WB 1
8π
------ θ

θtanh
-------------- 1– 

  ,=

Re∆WF 1
8π
------ 1 θ

θsinh
--------------– 

  .=

β τ( ) tanhaτ ,=

θ a τ2 τ1–( )=

Re∆WB a
8π
------ τ2 τ1–( ).=

Re∆mB ∂Re∆WB

∂τ2
----------------------– a

8π
------–= =

Re∆mF 0.=

∆4
f z µ,( )

1/2( )∆1 Im∆ f=
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THE SYMMETRY, INFERABLE FROM BOGOLIUBOV TRANSFORMATION 15
and

2. While the appearance of

in the imaginary part of the action is a consequence of
mathematical transformations of the integral

(transformations similar to the Plancherel theorem), the
function  ≡ Re∆f in the real part of the action is
unique if it appears as the real part of the analytic con-
tinuation of (i/2)∆1(z, µ) to negative z2 that is even in z
(as ∆1 itself).

To conclude Sections 3 and 4, we note that both the
function ∆2(z, m) describing the propagation of a virtual

pair with mass m = ρ = 2  in two-dimensional
space–time and the mass spectrum of these pairs arise
owing to the transition from the variables ω and ω' to
the hyperbolic variables ρ and θ, which reflect the
Lorentzian symmetry of the problem. Further integra-
tion over the mass leads to the function ∆4(z, µ) that
coincides with the propagator of a particle moving in
four-dimensional space–time with the mass µ equal to
the least mass of virtual pairs. Thus, relation (20) appears
in the framework of the present method and is imma-
nent to the symmetry, relating the processes in two- and
four-dimensional space–times.

In [9], relation (20) was obtained by the author inde-
pendently of the processes considered and was required
in proving that the integration variable involved in it

coincides with the pair mass m = 2 .

5. FORMATION OF TACHYON DISTURBANCES 
WITH THE INVARIANT MOMENTUM 

TRANSFER

The bilinear in massless Bose field perturbations

that are defined by the amplitudes  and carry
spacelike momenta to the left can be represented at the
point U, V by the two current density components

(34)

if we again use the change of variables in (17)

∆ Re∆ f .=

1/2( )∆1 Im∆ f≡

ω ω'dd

2π( )2
--------------- βω'ω

2

0

∞

∫∫

∆

ωω'

ωω'

αω'ω
B

ω ω'dd

2π( )2
---------------

0

∞

∫ 1
e
--- j± q( ) iωU iω'V–( )exp∫

=  
1

8π2
-------- τ ẋ± τ( ) ρρ θ iρ z0 θ z1 θcosh–sinh( )[ ]expd

∞–

∞

∫d

0

∞

∫d∫
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and the notation

The integral over θ is now given by

(35)

The integrand in the left-hand side of (35) is a wave
with a spacelike 2-momentum qα,

The function  is a superposition of plane
waves with spacelike momenta directed to the left and

with a fixed invariant momentum transfer ρ = 2 .
It satisfies the wave equation with a negative mass
squared,

(36)

Using the integral relation similar to (20) (see the
Appendix), we can represent the right-hand side of (34)
as

(37)

The small momentum transfer ν is retained to eliminate
the infrared divergence in what follows.

Similarly, the bilinear in the Fermi field distur-

bances that are defined by the amplitudes  and
carry left-directed spacelike momenta form the charge
density scalar. It can be represented at the point U, V
by the integral

(38)

These representations can be useful in problems
close to static ones involving another characteristic
length in addition to or instead of acceleration.

zα xα xα τ( ).–=

θ iρ z0 θsinh z1 θcosh–( )[ ]expd

∞–

∞

∫ 4πi∆2
L z ρ,( )=

=  2θ z2–( )K0 ρ z2–( ) 2θ z2( )K0 iε z1( )ρ z2( ).+

q1 –ω ω'– ρ θ,cosh–= =

q0 –ω ω'+ ρ θ,sinh–= =

ρ q2.=

∆2
L z ρ,( )

ωω'

∂t
2 ∂x

2– ρ2–( )∆2
L z ρ,( ) 0.=

i
4π
------ τ ẋ± τ( ) ρ2∆2

L z ρ,( )d

ν2 0→

∞

∫d∫

=  i τ ẋ± τ( )∆4
L z ν,( ).d∫–

αω'ω
F

ω ω'dd

2π( )2
---------------

0

∞

∫∫ 1
e
---ρ q( ) iωU iω'V–( )exp

=  –i τ∆4
L z ν,( ).d∫
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16 RITUS
6. INTERPRETATION OF THE TRACES ±trαB, F

OF BOGOLIUBOV COEFFICIENTS

The invariant description of the mirror trajectory in
the u, v  plane requires that the function

contains two positive parameters κ and κ' transforming
as

and actually connects the invariant variables κu and κ'v
between themselves,

(39)

Its expansion near the origin u = v  = 0 on the trajectory
is given by 

(40)

where b, c, ... are some numbers. Because the mirror
velocity β(v) and the proper acceleration a(v) are
defined by

(41)

the first two coefficients of expansion (40) define the
mirror velocity β0 and acceleration a0 at the zero point,

(42)

The absolute value of the acceleration at the zero
point is denoted by

We define a Lorentz-invariant trace of α by the for-
mula

(43)

where the Lorentz-invariant argument of the δ-function
is the difference of the frequencies

(44)

of the reflected and incident waves in the proper sys-
tem of the mirror at the moment u = v  = 0. In accor-

dance with (42), the multipliers  and 
entering (44) are the Doppler factors relating the fre-
quencies in the laboratory and proper systems. In the
proper system of the mirror,

umir g v( )=

x+ v , x– u= =

umir g v( )
1
κ
---G κ 'v( ).= =

g v( )
1
κ
--- κ 'v bκ '2v 2 1

3
---cκ '3v 3 …+ + + 

  ,=

β v( )
1 g' v( )–
1 g' v( )+
---------------------, a v( )

g'' v( )

2g'3/2 v( )
--------------------,–= =

β0
1 κ '/κ–
1 κ '/κ+
-------------------, a0 b κκ '.–= =

w0 b κκ '.=

trα ω ω'dd

2π( )2
---------------

0

∞

∫ αω'ω2πδ κ '
κ
----ω κ

κ '
----ω'– 

  ,∫=

Ω κ '
κ
----ω, Ω' κ

κ '
----ω'= =

κ '/κ κ /κ '

Ω Ω' ωω'.= =
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In accordance with (43), trα is a Lorentz-invariant
dimensionless quantity or, perhaps, has the dimension-
ality of the action because " = 1. We now consider its
physical meaning. For this, we turn to the equality of
expressions (34) and (37),

(45)

where

We set the point U, V on the tangent line to the mirror
trajectory at zero point, so that

(46)

where τ' is the proper time of the point on the tangent
line, and integrate both sides of (45) over

for the upper or lower sign in (45), respectively. Taking
into account Eq. (14) and current conservation, we then
obtain trα in the left-hand side for both the upper and
lower signs in (45). In the right-hand side, we obtain the
integral

(47)

where according to the result for the left-hand side, we
can replace

(48)

with only the first term that is symmetric with respect
to the permutation

We thus obtain

(49)

Integrating both parts of Eq. (38) along tangent
line (46) similarly and taking Eqs. (15) and (43) into

ω ω'dd

2π( )2
---------------1

e
--- j± q( ) iωU iω'V–( )exp

0

∞

∫∫
=  i τ ẋ± τ( )∆4

L z ν,( ),d∫–

zα xα xα τ( ), x–– U , x+ V .= = =

U X– τ'( ) κ '
κ
----τ',= =

V X+ τ'( ) κ
κ '
----τ',= =

Ud Ẋ– τ' or Vdd Ẋ+ τ'd= =

–i τ τ ' ẋ± τ( ) Ẋ+− τ'( )∆4
L z ν,( ),dd∫∫

zα Xα τ'( ) xα τ( ),–=

ẋ± τ( ) Ẋ+− τ'( )

=  – ẋα τ( ) Ẋ
α τ'( ) εαβ ẋα τ( ) Ẋ

β τ'( )+−

ẋα τ( ) Ẋα τ'( ).

trαB i τ τ ' ẋα τ( ) Ẋα τ'( )∆4
L z ν,( ),dd∫∫=

zα Xα τ'( ) xα τ( ).–=
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account, we obtain

(50)

For trajectories in the Minkowsky plane on the left
of their tangent line at zero point, the coordinate z1 ≥ 0.

In this case,  can be replaced by the function

(51)

which differs from the causal function  by
complex conjugation and the replacement µ  iν (or
by the replacement z2  –z2, µ  ν). Further details
about this function are given in the Appendix.

For the above trajectories, we therefore have that

(52)

The expression obtained allows us to interpret
±trαB, F as a functional describing the interaction of two
vector or scalar sources by the exchange of vector or
scalar quanta with spacelike momenta. One of the
sources moves along the mirror trajectory while the
other simultaneously moves along the tangent line to
the trajectory at zero point. The second source can be
considered as a probe or detector of the excitation cre-
ated by the accelerated mirror in the vacuum.

7. TRACES OF THE BOGOLIUBOV 
COEFFICIENTS FOR HYPERBOLIC 

AND EXPONENTIAL TRAJECTORIES

We consider trαB, F for the hyperbolic mirror tra-
jectory

(53)

Using Eqs. (14) and (4) in [3], it is not difficult to rep-

resent  via the Macdonald functions K1, 0 ,

(54)

trαF i τ τ '∆4
L z ν,( ),dd∫∫–=

zα Xα τ'( ) xα τ( ).–=

∆4
L z ν,( )

∆4
LR z ν,( )

1
4π
------δ z2( )

ν

8π z2
---------------θ z2( )–=

J1 ν z2( ) iN1 ν z2( )–[ ]×

+ i
ν

4π2 z2–
---------------------θ z2–( )K1 ν z2–( ),

∆4
f z µ,( )

trαB F,± i τ τ '
ẋα τ( ) Ẋ

α τ'( )

1 
 
 

∆4
LR z ν,( ),dd∫∫=

zα Xα τ'( ) xα τ( ).–=

umir g v( )
κ 'v

κ 1 κ 'v–( )
--------------------------.= =

αω'ω
B F,

αω'ω
B F, 2

κκ '
------------ i

ω
κ
---- ω'

κ '
-----+ 

  K1 0, 2i
ωω'
κκ '
--------- 

  .exp=
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In accordance with (43), we then have

(55)

The variable z in this integral has a simple physical
meaning: it is equal to the ratio of the invariant momen-
tum transfer to the invariant proper acceleration at the
zero point (but for hyperbolic motion, the acceleration
is the same on the entire trajectory),

(56)

The ultraviolet divergence of integral (55) is
removed by subtracting the leading term of the z  ∞
expansion from the integrand. The infrared divergence
(in the Bose case) is removed by introducing a nonzero
lower limit ε = ν/w0 ! 1 defined by the minimal
momentum transfer ν. As a result, we obtain the
integral

(57)

The integration contour can now be rotated to the neg-
ative imaginary semiaxis such that in the Bose case, it
bypasses the singularity at zero along the arc of a circle
with a small radius ε. Further calculation leads to the
simple expressions

(58)

(59)

For the exponential motion of the mirror with

(60)

the same Eqs. (14) and (4) in [3] lead to the Bogoliubov
coefficients

(61)

(62)

trαB F, 1
π
--- ω

κ
---- 

  2i
ω
κ
---- 

  K1 0, 2i
ω
κ
---- 

 expd

0

∞

∫=

=  
1

2π
------ z iz( )K1 0, iz( ).expd

0

∞

∫

z
ρ
w0
------, ρ 2 ωω', w0 κκ '.= = =

trαB F, 1
2π
------ z eizKs iz( ) π

2iz
-------– ,d

sε

∞

∫=

s 1 0, ε ! 1.,=

trαB 1
2π
------ π

2
---– i

2w0

γν
--------- 1–ln 

 – ,=

ν  ! w0, γ 1 781…,,=

trαF 1
2π
------i.=

umir 1
κ
--- 1 κ 'v–( ),ln–=

v mir 1
κ '
----

1
κ '
---- κu–( ),exp–=

αω'ω
B 1

κ
--- ω

ω'
-----Γ iω

κ
------ 

  i
ω'
κ '
----- iω

κ
------ iω'

κ '
-------ln– 

  ,exp=

αω'ω
F 1

iκω'
---------------Γ 1

2
--- iω

κ
------+ 

  iω'
κ '
-------

iω
κ
------ iω'

κ '
-------ln– 

  .exp=
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18 RITUS
The traces trαB, F whose divergences were removed
by the above prescription, are given by

(63)

(64)

In these integrals, the variable x is equal to one-fourth
of z, which has the meaning of the momentum transfer
in units of w0 (as in (56)),

(65)

Similarly, ε = ν/4w0 ! 1. We note that in the course of
exponential motion (60), the proper acceleration
increases from zero to infinity; as a function of the
proper time τ, it is given by

(66)

It is now not difficult to see that the subtracted terms
in integrals (63) and (64) exactly coincide with similar
terms in integrals (57) if we express them through the
physical variable z. In other words, up to the removal of
the ultraviolet divergence from the integrals defining trα,
the asymptotic behavior of the integrands in the variable
z = ρ/w0  ∞ is described by the universal formula

(67)

We show in the next section that this assertion is cor-
rect for any timelike trajectory in expansion (40) for
which b > 0.

The integration contour in integrals (63) and (64)
can be rotated to the negative imaginary axis bypassing
the infrared singularity at zero (in the Bose case) along
the arc with a radius ε. We then obtain

(68)

(69)

trαB 1
2π
------ x Γ ix( ) ix ix ixln–( ) 2π

ix
------–exp ,d

ε

∞

∫=

trαF 1
2π
------=

× x Γ 1
2
--- ix+ 

  ix ix ixln–( )exp

ix
---------------------------------------- 2π

ix
------– .d

0

∞

∫

x
1
4
---z, z

ρ
w0
------,= =

ρ 2 ωω', w0
1
2
--- κκ '.= =

a τ( )
w0

1 w0τ–
------------------.–=

1
2π
------ π

2iz
-------.

trαB 1
2π
------ –

π
2
--- i

4w0

ν
--------- t tB' t( )lnd

0

∞

∫–ln
 
 
 

– ,=

ν  ! w0,

trαF 1
2π
------i

td

t
----- Γ 1

2
--- t+ 

  t t tln–( )exp 2π– 
 

0

∞

∫–=

=  
1

2π
------i 0.8843…×
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In the integral in (68), the function B'(t) is the derivative
of the function

The numerical value of this integral is 2.2194... . If we
transform the imaginary part of (68) to the form of the
imaginary part of (58), we obtain

Therefore, the values of trαB, F for the exponential
and hyperbolic motions are rather close to each other.

8. ULTRAVIOLET 
AND INFRARED SINGULARITIES OF trαB, F

It is not difficult to obtain the general expression for
trαB, F in the form of a double integral that is a func-
tional of the mirror trajectory and is tangent to it at the
point u = v  = 0. Indeed, after substitution of the Bogo-
liubov coefficients

(70)

in (43) and a trivial integration over the frequency ω',
we obtain

(71)

where 1 and  in the braces refer to the Bose and
Fermi cases, respectively. The Lorentz invariance of
these expressions is evident, but the integral over (ω/κ)
diverges at the upper limit because the integrand

behaves as  at ω/κ  ∞. Indeed, the condition
|x| ! 1 is essential in the integral over x as ω/κ  ∞.
The functions G(x) – x and G'(x) can then be replaced
by the first terms of their expansions near zero, that is,
by bx2 and 1 (see (40)). Consequently, at ω/κ  ∞,
the integral over x is given by

(72)

in both the Bose and Fermi cases.
It is easy to show that the next term of the asymptot-

ical expansion of the integral over x behaves as (κ/ω)3/2.

B t( ) Γ 1 t+( ) t t tln–( ) 2πt.–exp=

4w0

ν
--------- 2.2194…–ln

2w0

γν
--------- 0.9491…–ln=

αω'ω
B ω'

ω
----- v iω'v iωg v( )–( ),expd

∞–

∞

∫=

αω'ω
F v g' v( ) iω'v iωg v( )–( )expd

∞–

∞

∫=

trαB F, 1
2π
------ ω

κ
---- 

 d

0

∞

∫=

× x 1 G' x( ),{ } i
ω
κ
---- G x( ) x–( )– ,expd

∞–

∞

∫

G' x( )

κ /ω

x i
ω
κ
----bx2– 

 expd

∞–

∞

∫ πκ
ibω
---------=
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Then, after subtraction from the integral over x of the
first term of its asymptotic expansion in the parameter
ω/κ  ∞, we make the integral over ω/κ convergent
at the upper limit. If we pass from the variable ω/κ to
the variable z,

(73)

the subtracted term in trαB, F acquires the universal
form

(74)

We recall that z = ρ/w0 has the meaning of the invariant
momentum transfer in units of proper acceleration.

Although the expressions

(75)

do not contain ultraviolet divergences, they can contain
infrared divergences if the spectral function (the func-
tion of s in the square brackets in (75)) has the singular
behavior ∝ 1/s as s  0. It is clear that the behavior of
the spectral function near s = ω/κ = 0 and in the main
forming region of the integral over s is determined by
the behavior of the trajectory G(x) far from the point of
contact, where expansion (40) cannot be applied, i.e., at
the distances |x| * 1.

We now demonstrate the application of Eq. (75) in
the example of another trajectory,

(76)

for which the spectral function can be expressed in
terms of the well-known transcendental functions. This
trajectory, as the hyperbolic one in (53), has two
asymptotes but it approaches them following an expo-
nential, not a powerlike law. Therefore, on both ends of
the trajectory, the proper acceleration

(77)

tends to –∞  and attains the minimal value in its modu-

lus a0 = –  at the zero point.

The integral over x in (75), in which the upper limit
for trajectory (76) is equal to ln2, is reduced to the tab-

ω
κ
---- ωω'

κκ '
--------- bρ

2w0
---------

1
2
---bz,= = =

1
2π
------ zd

0

∞

∫ π
2iz
-------.

trαB F, 1
2π
------ s x 1 G' x( ),{ }d

∞–

∞

∫d

0

∞

∫=

× is G x( ) x–( )–( )exp π
ibs
------------– , s

ω
κ
----,=

umir 1
κ
--- 2 eκ 'v–( ), G x( )ln– 2 ex–( ),ln–= =

a v( ) κκ '

eκ 'v 2 eκ 'v–( )
-------------------------------–=

κκ '
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
ular integral 2.2.5.1 in [10] after changing the variable
x to t = 1 – ex. As a result, we obtain

(78)

(79)

Because the spectral function has an infrared singu-
larity in the Bose case, the corresponding divergence of
the integral over s for trαB is removed by introducing a
small but finite lower limit ε = ν/w0. Its physical mean-
ing is the minimum momentum transfer in units of the
acceleration at the zero point.

After rotating the s-integration contour to the nega-
tive imaginary semiaxis with the singularity at zero
being bypassed (in the Bose case) along the arc of a cir-
cle with a radius of ε, we obtain

(80)

(81)

where positive constants B and F are defined by the
integrals

(82)

(83)

The imaginary part of (80) can be transformed to the
form of the imaginary part of (57),

The expressions for ±trαB, F obtained for the three
different trajectories of the mirror are close to each
other qualitatively and quantitatively (see (58), (59),
(68), (69), and (80), (81)). All of them have a negative
imaginary part with an infrared logarithmic singularity
in the Bose case. This singularity is accompanied by the

trαB 1
2π
------ s

πΓ is( )

Γ 1
2
--- is+ 

 
----------------------- π

is
----– ,d

ε

∞

∫=

trαF 1
2π
------ s

πΓ 1
2
--- is+ 

 

Γ 1 is+( )
------------------------------- π

is
----– .d

0

∞

∫=

trαB 1
2π
------ –

π
2
--- i

w0

ν
------ln B– 

 – ,=

trαF 1
2π
------i F,=

B t tB' t( )lnd

0

∞

∫ 1.887789…,= =

B t( ) πΓ 1 t+( )

Γ 1
2
--- t+ 

 
-------------------------- πt,–=

F t

πΓ 1
2
--- t+ 

 

Γ 1 t+( )
---------------------------- π

t
---–d

0

∞

∫– 1.869957…= =

w0

ν
------ 1.887789…–ln

2w0

γν
---------ln 2.003721…–=
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appearance of the real negative part of trαB, namely,
RetrαB = –1/4, whereas RetrαF = 0. Similar expres-
sions for ±trαB, F are typical of the trajectories with the
G(x) function increasing stronger (decreasing weaker)
than x, as x tends to the upper (lower) limit.

Because the functionals ±trαB, F have the meaning
of the action in accordance with (52), we compare them
with the changes ∆W1, 0 of self-actions of the electric
and scalar charges in hyperbolic motion [11, 12],

(84)

(85)

In this motion, the proper acceleration of the charge is
constant and the square of the interval between two
points on the trajectory is a function of only the length
of the arc connecting them,

(86)

Therefore, the change of the charge self-interaction is
proportional to the time interval τ2 – τ1 that the charge
is in hyperbolic motion multiplied by the mass shift
∆m1, 0 of the charge. The mass shift occurs because of a
change of the interaction of the charge with its own
field, which is essentially modified at the distances of

the order of  from the charge due to acceleration. In
other words, the shift is formed on the arc length

with the center τc at any point of the trajectory inside
the acceleration interval (τ1, τ2). The independence of
the shift from τc means that it is a constant of motion.
This is not so for trajectories with a variable accelera-
tion (see Section 9).

Unlike ∆W1, 0 , which describes the change of inter-
action of the charge with itself due to acceleration, the
functionals ±trαB, F describe the interaction of the
accelerated mirror with the probe executing the uni-
form motion along the tangent to the trajectory of the
mirror at the point where the mirror has the acceleration
w0. This interaction is transmitted by vector or scalar
perturbations created by the mirror in the Bose- or
Fermi-field vacuum; these perturbations carry a space-
like momentum on the order of w0. According to (51),

at distances on the order of  from the mirror, the
field of these perturbations decreases exponentially in
timelike directions and oscillates with a damped ampli-
tude in spacelike directions. It can be said that such a
field moves together with the mirror and is its “proper
field.” Hence, the probe interacts with the mirror for a

∆W1 0, τ2 τ1–( )∆m1 0, ,–=

∆m1

e2w0

4π2
----------- –

π
2
--- i

2w0

γµ
---------ln 1

2
---– 

 – ,=

∆m0 i
e2w0

8π2
-----------.–=

xα τ( ) xα τ'( )–( )2 f τ τ '–( ).=

w0
1–

τ τ '– w0
1–∼

w0
1–
JOURNAL OF EXPERIMENTAL A
time on the order of , while the charge interacts
with itself the entire time and feels the change of the
interaction over the entire time of acceleration. It is
therefore not surprising that the expressions for ±trαB, F

coincide in essence with ∆W1, 0 if we set

in the latter and change the sign. In other words,
±trαB, F are the mass shifts of the proper field of the
mirror multiplied by the characteristic proper time of
their formation.

9. MASS SHIFTS OF ELECTRIC
AND SCALAR CHARGES 

IN EXPONENTIAL MOTION

To calculate the self-actions of electric and scalar
charges in exponential motion, we use Eq. (30). It is
convenient to use the charge trajectory (60) in the form
of a function of the proper time,

(87)

Then

(88)

We now introduce new variables ξ = (τ + τ')/2 and z
instead of τ and τ'. At fixed ξ in the interval –∞ < ξ <

, the variable z changes in the interval –1 < z < 1.

Using the causal function  expressed via the Mac-
donald function, we obtain

(89)

w0
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In the last expression, the variable u =  is used
instead of z and λ is a function of ξ,

Our problem is now to find the integral over u in the
region of the variable ξ where λ(ξ) ! 1, supposing, of
course, that the infrared parameter µ/w0 ! 1. This inte-
gral coincides, in essence, with the mass shift of the
electric charge,

(90)

To calculate ∆m1 with λ(ξ) ! 1, we divide the inte-
gration interval into two intervals, 0 ≤ u ≤ u1 and u1 ≤
u < ∞, by a point u1 such that u1 @ 1, but λu1 ! 1. Using
the expansion of the Macdonald function at a small
argument, we then obtain

(91)

The mass shift ∆m0 of the scalar charge differs
from (90) by the replacement   –1 in the
first term in the braces and by the change of sign of the
second term. Under the same condition λ(ξ) ! 1, we
then obtain

(92)

It follows from (91), (92), and (66) that the mass
shift depends on the absolute value

of the proper acceleration of the mirror at the instant ξ,
which may be considered as the center of the forming
region of the shift. As the acceleration substantially
changes at such an interval, the mass shifts in (91) and
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(92) do not coincide with the mass shifts of uniformly
accelerated charges in (84) and (85) if we replace w(ξ)
with w0. Nevertheless, rather close coincidence arises
under the replacements w(ξ)  0.5w0 and w(ξ) 
2.6w0 for ∆m1 and ∆m0, respectively.

10. CONCLUSIONS

The basis for the symmetry between processes
induced by a mirror in two-dimensional space–time
and by a charge in four-dimensional space–time is
relation (14), (15) between the Bogoliubov coefficients

 and the current density jα(k) or charge density ρ(k)
depending on the timelike momentum kα. The squares
of these quantities represent the spectra of real pairs and
particles radiated by the accelerated mirror and the
charge.

In the present paper, the symmetry is extended to the
self-actions of the mirror and the charge and to the cor-
responding vacuum–vacuum amplitudes (cf. (29) and
(30)). In essence, it is embodied in the discovered rela-
tion (20) between propagators of a massive pair in two-
dimensional space and of a single particle in four-
dimensional space.

Equation (29) for WB, F was obtained under the con-
dition that the mean number trβ+β of pairs created is
small and the interference of two or more pairs is neg-
ligible. In the general case, WB, F is given by Eq. (27),
which can also be written as

, (93)

because

(see [4, 7]). As follows from (27) or (93), the imaginary
part of the action differs from zero and is then positive
only if β ≠ 0, i.e., if the radiation of real particles indeed
occurs.

For WB, F, formula (93) allows us to choose the
expression

(94)

which was called natural by DeWitt [7]. However, this
expression is by no means unique. The expressions

have the same imaginary part. Nevertheless, Eq. (94) is
interesting as the definition of both the real and imagi-
nary parts of the self-actions WB, F via the Bogoliubov

coefficients  only, which reduce to the current den-
sity jα(q) or to the charge density ρ(q) that depends on
the spacelike momentum qα in accordance with
Eqs. (14) and (15). This implies that the field of the cor-
responding perturbations propagates in the vacuum
together with the mirror, comoves it, and at the same

βω'ω
B F,

2ImWB F, tr α+α( )B F,
ln±=

α+α β+β+− 1=

WB F, itr αB F, ,ln±=

WB F, itr αeiγ( )B F,
, WB F,ln± itr αB F+,ln±= =

αω'ω
B F,
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time contains information about the radiation of real
quanta.

Unfortunately, the author failed to find a simple inte-
gral representation for the matrix lnα. Nevertheless, if
we again assume that the mean number of emitted par-
ticles is small, we can consider α or iα close to 1.
Expanding lniα near iα = 1 and confining ourselves to
the first term, we then obtain

(95)

These qualitative arguments allow us to state that the
functionals ±trαB, F are similar to the corresponding
self-actions with the opposite sign and must therefore
have negative imaginary parts. This is confirmed by all
examples considered in Sections 7 and 8. Nevertheless,
the exact physical meaning of the quantities ±trαB, F is
clearly defined by Eq. (52).

Here, we also want to focus attention on one predic-
tion following from the symmetry between processes
induced by the mirror in two-dimensional, and by the
charge in four-dimensional, space–time. The symmetry

predicts the value  = 1 for the charge squared (in
Heaviside units), which corresponds to the fine struc-
ture constant α0 = 1/4π. Because the radiation correc-
tions are not taken into account in both spaces and the
processes in (1 + 1)-dimensional space are due to the
purely geometrical boundary condition, it is natural to
think that the above-mentioned values of the charge
squared and of the fine structure constant are the
unrenormalized bare values of these constants. They
are therefore marked with the index 0.

It is quite interesting that the bare fine structure con-
stant has a purely geometrical origin and that its value
is small,

The smallness of α0 has an essential meaning for quan-
tum electrodynamics, where it a priori justifies the
applicability of perturbation theory and where the radi-
ative corrections in accordance with the well-known
formula [13]

(96)

diminish the renormalized value of α in comparison
with the unrenormalized one. Here, N is the number of
charged particles with masses in the interval (m, Λ) and
Λ is the upper limit of the particle energy up to which
quantum electrodynamics is correct.

WB F, itr iαB F,ln±= itr iαB F, 1–( )±≈

=  trαB F,+− …+

e0
2

α0 1/4π ! 1.=

α
α0

1 α0/3π( )N Λ2/m2( )ln+
-----------------------------------------------------------=
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APPENDIX

It is convenient to define the singular function

 and the causal function  in a
d-dimensional space–time by the Fourier represen-
tation

(97)

These functions are the even singular solutions of the
inhomogeneous wave equations

(98)

with opposite signs in front of the parameters ν2 and µ2,
where ν and µ are the momentum transfer and the mass.
Their proper time representations (in particular, for
d = 4)

(99)

as well as the explicit expressions in terms of the Mac-
donald function differ by complex conjugation and by
the replacement µ  iν or by the replacement z2 
–z2, µ  ν.

The integral relation

(100)

is very important for the symmetry discussed in this
paper. It differs from the similar relation (20) for the
causal functions not only by the sign. Being written for
z2 < 0, it is understood for z2 > 0 in the sense of analytic
continuation to the lower half-plane of complex z2. On
the other hand, relation (20), being written for z2 > 0, is
understood for z2 < 0 as the analytic continuation to the
upper half-plane of complex z2. For the ∆+-functions,
such a continuation must be carried out in the upper
half-plane if z0 > 0 and in the lower one if z0 < 0.
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Abstract—The accuracy of various statistical methods for describing B2- or D03-type (CuZn or Fe3Al) order-
ing phase transitions characteristic of BCC alloys is examined. The temperature–concentration phase diagrams
were calculated for several models of alloys discussed in the literature with the use of three methods, namely,
the mean-field and pair cluster approximations and the tetrahedron cluster field method developed in this work.
The calculation results were compared with each other and with Monte Carlo calculations. The accuracy of var-
ious methods was found to sharply depend on the type of interactions in the system, primarily, on the presence
of strong competing interactions and short-range correlations that hinder ordering. In the absence of such cor-
relations, in particular, in Fe–Al type alloys with extended interactions, the use of the pair cluster approximation
allows the results obtained in the mean-field approximation to be substantially refined without any noticeable
complication of calculations. At the same time, for systems with short-range and competing interactions, the
use of this approximation could drastically distort the form of phase diagrams, whereas the tetrahedron cluster
field method allows the phase diagrams of these systems to be calculated fairly accurately for temperatures and
concentrations of interest to physics. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Although the Monte Carlo method and other direct
simulation methods for studying phase transitions in
metallic alloys have been thoroughly elaborated [1, 2],
the development of simple and fairly accurate analytic
methods in this area remains a topical issue, in parti-
cular, in relation to two problems that attract much
interest:

(1) The solution of “inverse” problems, that is, the
determination of effective interatomic interaction
parameters in alloys from experimental data on phase
diagrams or diffuse scattering. In such problems, ana-
lytic methods are still more convenient and used more
frequently than direct simulations, see, e.g., [3–11].

(2) Studies of the kinetics of phase transitions and
the evolution of microstructures in alloys, in which the
use of direct simulations often encounters difficulties,
for example, related to the necessity of taking into
account long-range elastic interactions, lattice defects,
etc. [12–16].

The simplest analytic approximation for describing
both equilibrium and nonequilibrium alloys is the
mean-field approximation, see, e.g., [3–5]. However,
the accuracy of this approximation is usually fairly low,
and it gives qualitatively incorrect results in describing
ordering in FCC lattices, in particular, the most typical
L12 and L10 transitions. For this reason, quantitative
studies are usually performed using various versions of
cluster methods, in particular, the well-known cluster
variation method [17, 18], whose accuracy is usually
1063-7761/03/9701- $24.00 © 20101
fairly high, see, e.g., [1, 10]. However, the use of stan-
dard cluster variation method variants to describe non-
uniform and nonstationary states, leads to very cumber-
some equations, which are difficult to use in actual cal-
culations [19]. This is why a simplified version of the
cluster variation method, namely, the tetrahedron clus-
ter-field method, was suggested to describe nonuniform
FCC alloys [19]. It was shown that, when applied to
usual, realistic alloy models, the tetrahedron cluster-
field method combines simplicity and fairly high accu-
racy of calculations. This method was used to study a
number of problems of microstructure evolution in
FCC alloys that experience ordering [14–16].

In this work, the results obtained in [19] to BCC
alloys and the B2 and D03 ordering types characteristic
of these alloys are generalize. For these systems, the
accuracy of various statistical methods has been studied
in much less detail than for FCC alloys [1]. In particu-
lar, in the majority of works on Fe–Al and Fe–Si alloys,
which are widely discussed in the literature, only the sim-
plest mean-field approximation was used [3–5, 12, 13].
At the same time, Monte Carlo studies [1, 2] showed
that the mean-field approximation might substantially
distort the phase diagrams of systems of this type, espe-
cially in the presence of strong competing interactions
resulting in the “frustrated,” hindered character of the
ordering transitions under consideration. A fairly high
accuracy was only attained with the use of the tetrahe-
dron [1, 18] or more complex variants of the cluster
variation method. However, as has been mentioned
above, the application of the cluster variation method to
003 MAIK “Nauka/Interperiodica”
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nonuniform and nonequilibrium systems is hardly pos-
sible. A realistic consideration of, for example, the
structure of antiphase and interphase boundaries or the
kinetics of ordering therefore requires developing fairly
simple and accurate methods applicable to BCC alloys,
similar to the tetrahedron cluster field method for FCC
alloys.

The development and estimation of the accuracy of
such methods for BCC alloys is the main goal of this
work. In particular, we study the accuracy of the sim-
plest cluster method (the pair cluster approximation)
and show that its use considerably refines the results of
mean-field calculations for many alloys without signif-
icant complications. At the same time, a comparison of
the results obtained by various methods with each other
and with Monte Carlo calculations gives a complete
idea of the accuracy of all methods under consideration.

The main equations of the cluster methods [19, 14]
and their generalization to nonuniform and nonequilib-
rium alloys are given in Section 2. In Section 3, the tet-
rahedron cluster-field approximation suggested in [19]
is generalized to the BCC lattice. The mean-field, pair
cluster, and tetrahedron cluster-field approximation
equations for the thermodynamic potentials of the B2
and D03 phases are given in Section 4; these equations
are then used to calculate phase diagrams. In Section 5,
we give and discuss the results of such calculations for
models of Fe–Al-type alloys and compare them with
the available Monte Carlo calculation results [2]. A sim-
ilar analysis for alloy models with short-range and com-
peting interactions (see above) is given in Section 6. The
main results are summarized in Conclusions.

2. GENERAL FORMULAS 
OF CLUSTER METHODS FOR EQUILIBRIUM
AND QUASI-EQUILIBRIUM DISTRIBUTIONS

The general ideas and equations of cluster methods in
the formulation that we use are given in [14, 19]. Below,
we cite the necessary results of these works and gener-
alize them to nonuniform and nonequilibrium alloys.
For definiteness, consider an AcB1 – c binary substitu-
tion alloy with a c ≤ 0.5 mean concentration. Various
distributions of atoms over lattice sites i are described
by their mean occupancies ci = 〈ni〉 , where ni is 1 if the
site is occupied by atom A and zero if it is occupied by
atom B, and the averaging is performed over the P{ni}
distribution function, which can correspond to either an
equilibrium or a nonequilibrium alloy state. The gen-
eral problem is to calculate the generalized free energy
F{ci} defined in [20, 21] for an arbitrary, not necessar-
ily equilibrium, distribution of occupancies {ci}.

As has been mentioned in [14], the most general
expression for the distribution function can be written
in the form

(1)P ni{ } β Ω Q–( )[ ] ,exp=
JOURNAL OF EXPERIMENTAL
where β = 1/T is the inverse temperature and the “quasi-
Hamiltonian” Q is given by

(2)

Here, the coefficient λi at the operator ni will be called
“the site chemical potential i” and the ai…j coefficients
of the products of operators ni…nj will be called “quasi-
interactions.” The sum of the terms with ai…j in (2) is an
analog of the interaction Hamiltonian Hint for the alloy,

(3)

where v i…j are the effective interaction constants. The
generalized thermodynamic potential Ω in (1) is deter-
mined from the normalization condition

(4)

where operator Tr denotes the summation over all sets
of {ni} values. For equilibrium distributions, (1) is the
Gibbs distribution in which quasi-interactions ai…j

in (2) are equal to interactions v i…j in (3) and the site
chemical potentials λi are constant over the system; that
is, λi = const = µ. If we describe nonequilibrium states
arising during phase transitions, we can usually assume
that quasi-equilibrium relations are satisfied [20, 21];
that is,

ai…j = v i…j; although, generally, λi ≠ const. (5)

There are at least two arguments in favor of the validity
of these relations under usual conditions of phase trans-
formations. First, the equality ai…j = v i…j is strictly
valid both before and after the transition, for example,
both before quenching an initially equilibrium disor-
dered alloy from a high temperature Th to a lower tem-
perature Tl corresponding to other equilibrium phases
and after equilibrium at the new Tl temperature is
attained. For this reason, there is no thermodynamic
driving force that would tend to change the ai…j param-
eter in (1) from its equilibrium value v i…j . At the same
time, the high-temperature chemical potential value
µ(Th) differs from the low-temperature value µ(Tl), and
the µ value must change. Because of the diffusion char-
acter of phase transitions, these changes in µ occur via
the formation of local inhomogeneities, for example,
antiphase or interphase boundaries, which results in
local violations of the conditions λi = const and leads to
the last inequality in (5). In addition, quasi-interactions
ai…j in distribution (1) mainly describe the short-range

Q λ ini

i

∑ aijnin j

i j>
∑+–=

+ aijknin jnk

i j k> >
∑ …+

H int v ijnin j

i j>
∑ v ijknin jnk …,+

i j k> >
∑+=

Ω T Tr βQ–( ),expln–=
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order. After a change of the external conditions, such as
temperature, this short-range order is established rela-
tively fast, for a time on the order of the time of one
interatomic exchange τ. At the same time, the complete
evolution of a microstructure as a rule takes much
longer times t @ τ [12–16]. For this reason, possible
fluctuative deviations from (5) at small t & τ are of no
significance to this evolution.

For both equilibrium and quasi-equilibrium distri-
butions, the free energy F{ci} is expressed through Ω
and λi in a simple way [14, Eq. (8)],

(6)

and the site chemical potential λi is related to F by the
equation [14, Eq. (9)] λi = ∂F/∂ci .

Cluster methods deal with clusters, that is, some
aggregates of lattice sites, which we for brevity denote
by Greek letters, for example, {i, j, …, k} = α. The Pα
distribution of the probabilities of various configura-
tions in cluster α is described by its effective quasi-
Hamiltonian Qα and the corresponding potential Ωα . In
the exact formulation, they are obtained by averaging
complete distribution (1) over variables {ni} of all sites
outside the cluster,

(7)

(8)

Let us denote the operator that describes the occu-
pancy of some subcluster γ = {i, j, …, l} of cluster α by
nγ = ninj…nl . The Qα quasi-Hamiltonian of the cluster
can then be written in a compact form as the sum over
all possible occupancies nγ in this cluster,

(9)

Here, the v γ value for “one-site” occupancy γ = i is

(−λi), and the  values describe the renormalization
of the v γ values, that is, the (–λi) values and intracluster
interactions v i…j , caused by cluster interaction with its
environment. It follows from (8) and (9) that the mean
occupancy 〈nγ〉  for an arbitrary cluster α containing

subcluster γ is related to field  in this cluster as

(10)
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To calculate thermodynamic potentials, for example, Ω
in (4) or F in (6), we must, first, express the total quasi-
Hamiltonian Q via cluster quasi-Hamiltonians Qα in the
form of an expansion that sufficiently rapidly converges
as the size of clusters increases and, second, choose the
type of clusters and the approximation for finding

fields .

The first problem is solved by the cumulant expan-
sion method described in [19], which leads to the main
equation for all cluster methods [19, Eq. (12)], namely,

(11)

The choice of one or another approximation corre-
sponds to retention in the right-hand side of Eq. (11) of
only those clusters whose size |α| (the number of sites)
does not exceed some maximum |α|max value. The sum-
mation in (11) is therefore only performed over
retained clusters of a maximum size and all their sub-
clusters.

The geometric coefficients να and renormalizing

fields  in (9)–(11) for an arbitrary subcluster γ of
basis clusters should satisfy the constraint equations
[19, Eqs. (13), (14)]

(12)

where the summations are over all clusters α containing
subcluster γ. This, in particular, ensures equality of the
coefficients of all nγ operators, that is, of ni , ninj , etc., in
the left- and right-hand sides of (11).

It follows from definition (4) that the mean quasi-
Hamiltonian Q value over distribution (1) satisfies the
usual thermodynamic equation

(13)

The integration of this equation in β with 〈Q〉  found in
approximation (11) taking into account (7) yields

(14)

where Ωα is given by (8). This result takes into account
Eq. (17) from [19], according to which the total deriva-
tive of the right-hand side of (14) with respect to each

of the independent  variables is zero, that is,

dΩ/d  = 0.

The geometric να coefficients in (11) and (12) have
a number of general properties discussed, for example,
in [10, 19]. Among these properties, note the “theorem

ψγ
α

Q ναQα .
α
∑=

ψγ
α

να

α γ⊇
∑ 1, ναψγ

α

α γ⊇
∑ 0,= =

Q〈 〉 β∂
∂

Tr βQ–( )expln– β∂
∂ βΩ( ).= =

Ω ναΩα ,
α
∑=

ψγ
α

ψγ
α

SICS      Vol. 97      No. 1      2003



104 VAKS, PANKRATOV
about internal clusters,” that is, such subclusters that
enter into only one basis cluster αm . For internal sub-
clusters γ, the νγ coefficients in (11)–(14) and the corre-

sponding  fields in the basis clusters are zero. The
internal clusters therefore make no contribution to the
observed values and can be excluded from consider-
ation. This theorem is used below in the method of clus-
ter fields.

The cluster variation method contains no approxi-
mations other than those made to derive (11)–(14). Sta-
tistical properties are therefore calculated by solving

system (10), (12). The dependence of fields  and Ωα
values in (8) on mean occupancies 〈nγ〉  is determined
analytically. This dependence is given by Eq. (20)
in [19]. The 〈nγ〉  values themselves are then given by the
equation [19, Eq. (21)]

(15)

where  is some function of all 〈nζ〉  given by
Eq. (20) from [19].

Substituting 〈nγ〉  found by (15) into Eq. (20) from

[19] for  and into Eq. (8) for Ωα solves the problem
of finding potential Ω = Ω(λi) in (14). However, the
mean site occupancies ci and, accordingly, free energy
F{ci} can more conveniently be used as independent
variables in physical problems than the chemical poten-
tials of sites λi and potential Ω(λi); F{ci} is related to Ω
by (6). Equation (15) for one-particle occupancy γ = i
then determines the λi{cj} function, and (8) and (14)
determine the Ω{ci} function.

The cluster field method is a simplified version of
the cluster variation method, in which one-site environ-

ment fields  are only included in cluster quasi-

Hamiltonians (9), whereas interaction  renormaliza-
tions with |γ| ≥ 2 are neglected. Generally, Eq. (10) for
many-particle averages 〈nγ〉  with |γ| ≥ 2 in clusters of
different sizes |α| is then violated (in the complete clus-
ter variation method, this equality is satisfied by intro-

ducing the corresponding renormalizing fields ).
For this reason, the degree of self-consistency and,
accordingly, the accuracy of the cluster field method
should generally be lower than those of similar cluster
variation method variants. The renormalizations of intr-
acluster interactions or their thermodynamic contribu-
tions are, however, absent for some choices of basis
clusters due to the theorem about internal subclusters

mentioned above; that is, fields  with |γ| ≥ 2 or coef-
ficients να in (11) and (14) vanish for clusters contain-
ing these fields. The cluster field method then becomes
equivalent to the cluster variation method, and its self-

ψγ
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consistency and accuracy need not be inferior to those of
the latter. The tetrahedron cluster-field approximation for
the FCC lattice, developed in [14, 19], corresponds
exactly to this case, and its high accuracy of describing
realistic alloy models can be considered natural.

System (15) in the cluster field method is drastically

simplified. As variables, site “activities”  entering in

Eq. (8) for Ωα rather than  can conveniently be used,

(16)

The partition function Zα of a cluster in (8) has the form

of a polynomial of  of degree |α|,

(17)

where the last factor is the product of all activities 
corresponding to the given occupancy γ = {i, j, …, k},

that is, … . Equation (10) takes the form

(18)

According to (17), the right-hand side of equality (18)

is the ratio of two polynomials in . For each cluster

α, system (18) for the {cj} functions is usually easily
solved numerically using the conjugate-gradient
method. After solving this system, (17), (8), and (14)
are used to find the Ω{ci} potential, and Eqs. (16) and
(12) for one-site occupancy γ = i determine the site
chemical potential λi{cj},

(19)

3. THE TETRAHEDRON CLUSTER-FIELD 
METHOD FOR THE BCC LATTICE

The tetrahedron cluster-field method for the BCC
lattice can more conveniently be discussed if we first
give the equations for the thermodynamic potential
Ω{ci} and the site chemical potential λi{cj} in the more
simple mean-field and pair cluster approximations. For
simplicity, consider the pair interaction case when
Hamiltonian (3) contains only the first sum. Interaction
v ij between atoms in sites i and j will be written as
δij, nv n , where δij, n is nonzero and equals 1 only if sites
i and j are nth neighbors in the lattice, and v n is the
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interaction value. The mean-field equations for Ω{ci}
and λi{cj} then take the form (see, e.g., [21])

(20)

where  = 1 – ci . In the pair cluster approximation, all
pairs of sites i and j for which v ij interactions are non-
zero are considered. The Ω{ci} and λi{cj} values are
then given by [19, Eqs. (32)–(37)]

(21)

Here,

and the  function describes interaction v ij = v n in
terms of the Mayer function fn = exp(–βv n) – 1,

(22)

If interaction is weak, βv n ! 1, the  function trans-
forms into (–βv n), and Eq. (21) of the pair cluster
approximation transforms into Eq. (20) of the mean-
field approximation.

As follows from the discussion given below, simple
mean-field (Eq. (20)) and, especially, pair cluster
approximation (Eq. (21)) are usually sufficient for
describing systems with extended interactions such as
the Fe–Al-type alloys considered in Section 5. Strong
correlations between nearest and next-nearest neighbors,
however, arise in the systems with short-range and com-
peting interactions discussed in Section 6. To correctly
describe such systems, these correlations should be
taken into account, at least, within tetrahedra of the type
of the set of sites (a, b, c, d) shown in Fig. 1. For exam-
ple, the study of the model with v 2/v 1 = 0.5 and
v n > 2 = 0 (suggested in [4] to describe Fe–Si alloys)
with the use of the mean-field approximation, the tetra-
hedron cluster variation method, and the Monte Carlo
method [1] showed that the accuracy of the mean-field
approximation for models of this type is fairly low (see
Fig. 9), while the tetrahedron cluster variation method
gives rather accurate results, just as for analogous mod-
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els in the FCC lattice [10]. At the same time, a similar
high accuracy for the FCC lattice is also attained with
the use of the much simpler tetrahedron cluster-field
method described in [19]. Therefore, it seems desirable
to develop a similar simplified version of the tetrahe-
dron cluster variation method for the BCC lattice.

When the usual tetrahedron cluster variation method
is used, we must consider all possible tetrahedra of
neighboring sites of the (a, b, c, d) type (Fig. 1), includ-
ing, for example, the (a, b, d, l), (a, b, f, l) clusters, etc.,
as basis clusters. Each three-site subcluster (a, b, d)
then enters into two basis tetrahedra, and pair subclus-
ters of the (a, b) or (a, c) type, into six or four basis tet-
rahedra, respectively. Therefore, all these subclusters
are not internal, and so we must take into account all

renormalization fields  for all subclusters γ in
Eqs. (9) and (10) of the general cluster variation
method. This makes the solution of these equations for
nonuniform distributions {ci} a very complex task [19].

In the cluster field method, all subclusters except
one-site ones should be internal in order that interaction
renormalizations in them might be neglected. For this
reason, basis clusters should have common vertices but
not common edges; for the FCC lattice, this is illus-
trated by Fig. 1 in [19]. Therefore, that only four basis
tetrahedra should pass through each BCC lattice site in
the tetrahedron cluster-field method. These tetrahedra
include all eight nearest-neighbor bonds which corre-
spond to interaction v 1 (for shortness, v 1 bonds) and
four of six bonds corresponding to next-nearest neigh-
bor interactions v 2 (v 2 bonds). Interactions v 2 that do
not enter into basis tetrahedra can be taken into account
using either mean-field or pair cluster approximation,

ψγ
α

l

a

p

i h

bd

f

gj

e

c

m

nk

Fig. 1. BCC lattice sites discussed in the text in relation to
the choice of tetrahedral clusters and “residual” next-near-
est neighbor interactions v2 in the tetrahedron cluster-field
method.
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as in applying the tetrahedron cluster-field method to
the FCC lattice [19].

Note, however, that when the v 2/v 1 ratio between
the competing interactions under consideration is not
small, and the more distant interactions v n > 2 favoring
ordering are small or absent, such a simplified treat-
ment of the “residual” (not included into basis clusters)
contribution of interactions v 2 can cause difficulties at
low temperatures, especially if the pair cluster approx-
imation is used. This manifests itself by the formal aris-
ing of “anti-Curie” points in calculations and the disap-
pearance of the B2 and D03 orderings at low tempera-
tures, which is similar to the appearance of anti-Curie
points in describing Heisenberg antiferromagnets in the
pair cluster approximation [22]. These difficulties arise
because the ground state of the pair cluster under con-
sideration then differs from the ground state of the
whole system. For this reason, in constructing the tetra-
hedron cluster-field method for the BCC lattice, we will
describe this residual contribution of v 2 interactions in
the simple mean-field rather than pair cluster approxi-
mation. The difficulties with the anti-Curie point for
realistic interaction models will then arise only at very
low temperatures, when the phase transformations are
already “frozen” by kinetic factors. As concerns physi-
cally interesting temperatures, it is shown below that
the accuracy of the tetrahedron cluster-field approxima-
tion at these temperatures usually remains fairly high.

The contributions of interactions of more distant
neighbors v n > 2 can be taken into account in both pair
cluster and mean-field approximations. For the usual
interaction models the results virtually coincide, and
for definiteness, we will describe these contributions in
the pair cluster approximation. Also note that the
choice of basis tetrahedra mentioned above and “resid-
ual” interactions v 2 described in the mean-field approx-
imation is generally not unique. For example, if we
choose the (a, b, c, d), (a, e, f, m), (a, i, j, k), and (a, g,
h, n) or (a, d, e, k), (a, b, f, n), (a, h, i, d), and (a, g, j, m)
tetrahedra as four basis tetrahedra that pass through site
a in Fig. 1, the (a, l) and (a, p) v 2 bonds and also all
other v 2 bonds parallel to the z axis will be described in
the mean-field approximation. Four other similar
choices of basis tetrahedra are possible, in which all v 2

bonds parallel to the x or y axis are described in the
mean-field approximation, and there is a total of six
variants for choosing tetrahedron basis clusters. If the
distribution of site occupancies {ci} has cubic symme-
try (as, for example, in a homogeneous phase with B2
or D03 ordering or in a disordered phase), the results
obtained in thermodynamic potential Ω{ci} and site
chemical potential λi{ci} calculations by (14) and (19)
do not depend on the variant that is used. However, such
calculations for an arbitrary nonuniform distribution
{ci} may depend on the selected set of basis tetrahedra.
Generally, calculation results should therefore be aver-
JOURNAL OF EXPERIMENTAL 
aged over all six possible variants of choosing basis
clusters.

All things considered, we can rewrite (14) and (19)
for the Ω and λi values in the tetrahedron cluster field
method for the BCC lattice in a form similar to
Eqs. (13)–(21) from [14] obtained for the FCC lattice,

(23)

(24)

Here,  and  in the last sums are the same as

in (21), and the denotation ts or  in the second term
in (23) or (24) refers to the basis tetrahedron corre-
sponding to one of six variants s of choosing basis clus-
ters described above. At a given choice s, the summa-
tion in (23) is over all tetrahedra ts in the lattice corre-
sponding to this choice, and the summation in (24) is

over the four  tetrahedra that contain site i. The results
obtained by (23) and (24) are then averaged over six
possible cluster choice variants s. The Zα value in (23)
with α = {i, j, k, l} is the partition function of the tetra-

hedral cluster [Eq. (17)], and  in (24) is the activity
[Eq. (16)] of site i in this cluster. If, when writing α =
{i, j, k, l}, we suppose that the neighboring pairs of
indices (i, j), (j, k), (k, l), and (l, i) correspond to the
nearest lattice sites, and “nonneighboring” pairs (i, k)
and (j, l), to next-nearest sites, the partition function Zα
takes the form similar to Eq. (21) from [21] for the FCC
lattice,

(25)

Here, ζ1 = exp(–βv 1); ζ2 = exp(–βv 2); index p is i, j, k,

or l; and the dependence of  on site occupancies cp'

in the cluster is found from system (18). As with FCC
lattices (see [19] and [14]), this system of four algebraic
equations for each tetrahedron α is easily solved
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numerically by the conjugate-gradient method. If inter-
action is weak, βv n ! 1, Eqs. (23) and (24) of the tetra-
hedron cluster-field method and also Eq. (21) of the
pair cluster approximation transform into Eq. (20) of
the mean-field approximation.

4. THERMODYNAMIC POTENTIALS
IN THE B2 AND D03 PHASES

In this section, we apply general equations (20)–(24)
to calculate the thermodynamic potentials of the B2 and
D03 phases; the results are used below to construct
phase diagrams. The structure of these phases and the
mean-field approximation equations for their thermo-
dynamic potentials are described, for example, in [1–5,
13]. The necessary relations are as follows. For the B2
homogeneous phase, the mean occupancy ci of site i
with lattice vector Ri can be written through the mean
concentration c and order parameter η as

(26)

where g1 = [111]2π/a is the B2 superstructure vector
and a is the BCC lattice constant. Equation (26)
describes the presence of two sublattices, a and b, in the
B2 phase. These sublattices are shifted with respect to
each other by vector [111]a/2 (see Fig. 1) and have the
following site occupancies:

(27)

The D03 structure corresponds to a further splitting
of the “enriched” sublattice of the B2 phase (if η > 0,
this is sublattice a) into two different sublattices and to
the presence of two order parameters, η and ζ. The
occupancies ci can then be written as [13]

(28)

where g2 = [111]π/a is the D03 superstructure vector
and θ(x) is the step function, equal to unity at x > 0 and
zero at x < 0. Equation (28) describes the presence of
three sublattices, a, b, and c, with the occupancies

(29)

For example, if site a in Fig. 1 corresponds to the first
sublattice in (29), then the b, d, e, … sites correspond to
the second sublattice, and the c, k, l, … sites, to the third
one. If D03 ordering is complete, we have η = ζ = c,
ca = 4c, and cb = cc = 0 in (29); that is, the first sublattice
is only occupied. In the mean-field approximation,
the  expression for the free energy per atom f = F/N
(where N is the total number of atoms, that is, lattice

ci c η g1 Ri⋅( ),cos+=

ca c η , cb+ c η .–= =

ci c η g1 Ri⋅( )cos+=

+ 2ζ θ η( ) g2 Ri⋅( )cos θ η–( ) g2 Ri⋅( )sin+[ ] ,

ca = c η 2ζ , cb+ +  = c η , cc–  = c η 2ζ .–+
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sites) in the B2 phase according to Eqs. (6), (20), and
(26) can be written as

(30)

where  = 1 – cp and V0 or  is the Fourier compo-
nent of the interaction v ij = v(Ri – Rj),

(31)

for the wave vector k = 0 or k = g1. The equilibrium
order parameter η = η(c, T) for the given concentration
c and temperature T can then be found either from the
condition of the equality of the chemical potentials of
the sublattices λa = λb calculated by (19) or from the
equivalent condition of minimum (with respect to η)
free energy (30) at given c and T. Similarly, for the D03
phase, the free energy in the mean-field approximation
is given by the equation

(32)

Here, occupancies ca , cb , and cc are related to the η and
ζ order parameters by (29) and  is the Fourier com-
ponent of interaction (31) for k = g2. The equilibrium
η(c, T) and ζ(c, T) values are found either from the
equality of the chemical potentials of the sublattices
λa = λb = λc or from the equivalent conditions of mini-
mum free energy (32) with respect to η and ζ.

In the pair cluster approximation (PCA), the general
equations for free energy f and chemical potential λp in
sublattice p for an arbitrary homogeneous phase follow
from (6) and (21),

(33)

Here, ω = Ω/N is the thermodynamic potential per
atom, νp is the fraction of sites of type p in the given
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coordination sphere of site p, and  and  are

given as  and  in (21) at ci = cp and cj = cq . For
the B2 phase, the p index in (33) in the notation of (27)

is a or b; νa = νb = 1/2; and the nonzero  values, for
example, for the first four neighbors n, are given by

(34)

Similarly, for the D03 phase, the νp and  parameters
in (33) in the notation of (29) are

(35)

In the tetrahedron cluster-field approximation
(TCA), the contributions of interactions v 1 and v 2

between the nearest and next-nearest neighbors in (21)
are described by the second and third terms of (23) and
(24). For the B2 and D03 homogeneous phases, this
leads to the replacement of the terms with n = 1 and
n = 2 in Eqs. (33) for ω and λp by the terms

(36)

(37)

where the notation is the same as in (23) and (24). If, in
addition, site i in tetrahedral cluster α in (36) and (37)
corresponds to sublattice a in (27) and (29), the ci , cj ,
ck , and cl occupancies in the B2 phase are related to ca

and cb as ci = ck = ca and cj = cl = cb . For the D03 phase,
similar relations have the form ci = ca , cj = cl = cb , and
ck = cc .

Next, consider spinodals for the B2 and D03 type
ordering (for brevity, the B2 and D03 spinodals), that is,
the T = θ(c) curves in the c, T plane that are boundaries
of alloy stability with respect to these orderings. The
general condition of the stability of the distribution of
occupancies {ci0} with respect to the arising of a con-
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centration wave with the superstructure vector ks , that
is, with respect to small fluctuations δci of the form

(38)

is a positive value of the coefficient of  in the expan-
sion of free energy F{ci} in powers of δci at small ηs

values. The condition of vanishing of this coefficient
gives the equation for the ordering spinodal

(39)

where the Sij = ∂2F/∂ci∂cj derivatives, called below the
“thermodynamic stiffnesses” matrix or simply “stiff-
nesses,” are calculated for the initial state {ci} = {ci0}.
For the B2 spinodal, this state is the disordered BCC
phase A2, in which Sij value only depends on the rela-
tive distance rij = Ri – Rj; ks is the g1 vector from (26);
the cos(ks · Ri) values are 1 or –1; and spinodal equa-
tion (39) reduces to the condition of vanishing of the
Fourier component Sk of the Sij = S(rij) function for
k = g1,

(40)

For the D03 spinodal, the initial state is the B2 phase, ks

is the vector g2 in (28), and the factor cos(ks · Ri)
in (38) and (39) vanishes in all sites of “depleted” sub-
lattice b in (26) and (27). Equation (39) can therefore be
written as

(41)

where the summation is taken only over vectors ra =

 –  of the enriched sublattice a.

Let us write the explicit equations for the spinodals
in the approximations under consideration. For the
mean-field approximation, it follows from Eqs. (6)
and (20) that the stiffness Sij has the form 

(42)

Substituting this Sij value into (40) and (41) yields the
well-known mean-field approximation equations for

δci ci ci0– η s ks Ri⋅( ),cos= =

η s
2

Sij ks Ri⋅( )cos ks R j⋅( )cos
i j,
∑ 0,=

S r( ) g1 r⋅( )cos
r

∑ 0.=

S ra( ) g2 ra⋅( )cos
ra

∑ 0,=

R j
a R0

a

Sij
MFA δij

T
cici'
-------- 

  δij n, v n.+=
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ordering spinodals θ(c), see, e.g., [23],

(43)

where , , and ca are the same as in (30), (32),
and (27). Here and below, explicit equations for the
spinodals for illustration purposes are given for models
with interactions v n up to the fourth neighbors (for
shortness: four-neighbor-interaction models). Equa-
tions (43), in particular, show that increasing the v 2/v 1
ratio suppresses B2 ordering while the negative v 3 val-
ues (characteristic of the Fe–Al alloy models discussed
below) promote both the B2 and D03 ordering.

The general equations for stiffnesses Sij in the clus-
ter field method were considered in [6] (see Eqs. (10)
and (11) in [6]). In the pair cluster approximation,
“reduced” stiffnesses βSij has the form [6, Eq. (23)]

(44)

Here, fn and  are the same as in (22), and  can be
written in terms of these quantities as follows:

(45)

Substituting (44) into general equations (40) and (41)
yields the equations of the pair cluster approximation
for the B2 and D03 spinodals. For example, for models
with interactions up to the fourth neighbors, the B2

spinodal  is determined by the equation

(46)

where an = 4cc' /Rn(Rn + 1)2 and Rn = (1 + 4cc'fn)1/2.
According to (41), the equation for the D03 spinodal

 in the pair cluster approximation for the same
model has the form

(47)

θB2
MFA Vg1

–( )cc'=

=  8v 1 6v 2– 12v 3– 24v 4+( )c 1 c–( ),

θD03

MFA Vg2
–( )caca'=

=  6v 2 12v 3–( ) c η+( ) 1 c– η–( ),

Vg1
Vg2

βSij
PCA δij

1
cici'
-------- an

ik

k n,
∑+

 
 
  δij n, f n

Rn
ij

---------------.–=

Rn
ij an

ij

an
ij 4c jc j' f n

2/Rn
ij Rn

ij 1+( )2
f n

2 ci c j–( )2–[ ] .=

θB2
PCA

1
cc'
------ 8a1 6a2 12a3 24a4+ + +( )+

+ 8
f 1

R1
----- 6

f 2

R2
-----– 12

f 3

R3
-----– 24

f 4

R4
-----+ 0,=

f n
2

θD03

PCA

1
caca'
--------- 8a1

ab 6a2
aa 12a3

aa 24a4
ab+ + +( )+

+ 6
f 2

R2
aa

-------- 12
f 3

R3
aa

--------– 0,=
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where the  and  values with i and j equal to a or b
are given by (45), (22), and (27). If interactions are
weak, βv n ! 1, Eqs. (46) and (47) of the pair cluster
approximation transform into (43) of the mean-field
approximation.

In the tetrahedron cluster-field approximation, the
contributions to the stiffnesses made by the nearest and
next-nearest neighbor interactions v 1 and v 2, that is, the
terms with n = 1 and n = 2 in Eq. (44) of the pair cluster
approximation, should be replaced by the contribution
Sij(v1, v2) = ∂λi(v 1, v 2)/∂cj corresponding to the deriva-
tives of the second and third terms in (24). As both the
B2 and D03 phases that we are considering have cubic
symmetry, the form of (40) and (41) is independent of
the choice of variant s of division into clusters in (24),
and both index s and averaging over s can be omitted.
Using Eq. (11) from [6] to determine the ∂λi(v 1, v 2)/∂cj

derivatives, we can write this contribution in the form

(48)

where the matrix  for cluster α is inverse to the

matrix Aij = ∂ci/∂ln ,

(49)

Substituting (48) into (40) and (41) gives the tetrahe-
dron cluster-field approximation equations for the B2
and D03 spinodals. For example, in the fourth-neigh-

bor-interaction model, Eq. (46) for  transforms
into

(50)

Here, the  matrix elements are calculated according
to (49), where the i, j, k, and l sites of cluster α are num-
bered as 1, 2, 3, and 4 and their occupancies c1 = c2 =
c3 = c4 = c correspond to the disordered phase A2. Sim-
ilarly, Eq. (47) of the tetrahedron cluster-field approxi-

an
ii Rn

ij

βSij
TCA v 1 v 2,( ) δij Sii

iklm 4
cici'
--------–

k , l, m t
i∈

∑ 
 
 

=

+ δij 1, Sij
ijkl δij 2, Sij

ikjl βv 2

3
---------+ 

  ,+

Sij
α

y j
α

Sij
α A 1–( )ij,=

Aij δijcici' 1 δij–( )
yi

α y j
α

Zα
----------- cic j– 

 + .=

θB2
TCA

1
cc'
------ 4 S11

α 1
cc'
------– 2S12

α– S13
α+ 

  12a3 24a4+( )+ +

+ 2v 2 12
f 3

R3
-----– 24

f 4

R4
-----+ 0.=

Sij
α
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mation for the D03 spinodal in the same model trans-
forms into

(51)

where the 1, 2, 3, and 4 sites of cluster α have occupan-
cies c1 = c3 = ca and c2 = c4 = cb with the ca and cb values
from (27) corresponding to the B2 phase.

1
caca'
--------- 4 S11

α 1
caca'
---------– S13

α– 
 +

+ 12a3
aa 24a4

ab+( ) 2v 2– 12
f 3

R3
aa

--------– 0,=

0.5

0 0.1 0.2 0.3 0.4 0.5

1.0

1.5

2.0

c

T '

A2

B2

A2 + D03 B2 + D03

D03

Fig. 2. Phase diagrams c, T ' (T ' = T/v1 is the reduced tem-
perature) of a binary AcB1 – c BCC alloy calculated for
model I in table. Here and below, the dashed line corre-
sponds to the mean-field approximation; the dotted line, to
the pair cluster approximation; and the solid line, to the tet-
rahedron cluster-field method. Solid circles correspond to
Monte Carlo calculations [2]. The results obtained by the
pair cluster and tetrahedron cluster-field approximations for
models I, II, III, IV, and V (see table) and shown in Figs. 2,
3, 4, 5, and 6, respectively, coincide to within the accuracy
of graphic representation.

Reduced interactions  = vn/v1 for Fe–Al models under
consideration

Model I II III IV V

References [2, 7] [2, 8] [2, 9] [5] [12]

0.07 0.081 0.167 0.184 –0.8

–0.23 –0.305 –0.208 –0.844 –0.5

–0.11 – – – –

v n'

v 2'

v 3'

v 4'
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5. CALCULATIONS OF PHASE DIAGRAMS
FOR Fe–Al ALLOY MODELS

Below, we study the accuracy of the mean-field, pair
cluster, and tetrahedron cluster-field approximations
used to calculate phase diagrams with B2- and D03-type
orderings in the BCC lattice. For this purpose, we will
compare the results of such calculations with each other
and with the available Monte Carlo studies [1, 2].

As has been mentioned, the accuracy of analytic
methods sharply depends on the type of interactions in
the system under consideration. In this section, we con-
sider the Fe–Al type alloy models for which interac-
tions that determine ordering are fairly long-range. The
table contains the literature estimates of the  = vn/v1

reduced interaction constants for these alloys. Models I,
II, and III were suggested by Schmid and Binder [2]
based on an analysis of the data on diffuse scattering in
Fe–Al alloys obtained in [7], [8], and [9], respectively.
Model IV was suggested by Hasaka [5] based on fitting
the observed Fe–Al phase diagram to the mean-field
approximation calculations. We will not take into
account magnetic interactions discussed by Schmid and
Binder [2] because their presence is of no importance
for the problems under consideration. Comparisons
with the calculations performed in [2] will only be
made for the region of low magnetic atom concentra-
tions (that is, for x < 0.5 in FexAl1 – x), in which the mag-
netic interaction contributions considered in [2] appear
to be negligibly small. In addition, we consider model V
used in [12], which corresponds to the presence of a
broad two-phase A2–B2 region in the phase diagram,
much broader than in real Al–Fe alloys, because this
model illustrates the special features of phase transi-
tions in systems of this type [12].

The phase diagrams calculated for models I–V are
shown in Figs. 2–6. First, consider the phase diagrams
for “realistic” models I–III obtained from direct exper-
imental estimates of interaction constants [7–9]. The
results shown in Figs. 2, 3, and 4 for these three models
are qualitatively similar. The conclusions that can be
drawn from their comparison are as follows.

(1) Mean-field calculations, even for systems with
fairly long-range interactions, can involve substantial
errors. First of all, they systematically overestimate the
A2  B2 second-order phase transition temperatures;
that is, they shift the θB2(c) B2 spinodal in the (c, T)
phase diagram upward. This overestimation can be
characterized by the relative error δc in the critical tem-
perature Tc (that is, the θB2 spinodal maximum) with

respect to the  value found by the Monte Carlo

method:  = (  – )/ . The errors 
for models I, II, and III amount to 40, 16, and 20%,
respectively.

(2) The use of the pair cluster approximation allows
the description to be considerably refined compared
with the mean-field calculations. The error in the criti-

v n'

Tc
MC

δc
MFA Tc

MFA Tc
MC Tc

MC δc
MFA
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cal temperature mentioned see above, that is, the

 = (  – )/  value, obtained in calcula-
tions by the pair cluster method is 17, 8, and 8% for
models I, II, and III, respectively; that is, this error is
2−2.5 times lower than that of the mean-field calcula-
tions. Therefore, the use of the pair cluster approxima-
tion considerably increases the accuracy of calculations
compared to the mean-field approximation without
noticeably complicating them.

δc
PCA Tc

PCA Tc
MC Tc

MC

0 0.1 0.2 0.3 0.4 0.5

1

5

c

T '

A2 + D03

A2

D03

B2 + D03

B2

2

3

4

Fig. 5. The same as in Fig. 2 for model IV in table without
Monte Carlo calculations.

0 0.1 0.2 0.3 0.4 0.5

2

3

c

T '

1

A2 + D03 B2 + D03

B2

A2

D03

Fig. 3. The same as in Fig. 2 for model II in table.
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(3) The results obtained in the pair cluster and tetra-
hedron cluster-field approximations for models I–III
virtually coincide because of the smallness of v 2 inter-
actions, that is, the v 2/Tc ratios, for these models. The
contribution of v 2 is therefore effectively described by
the pair cluster approximation, and the equations of the
tetrahedron cluster-field approximation effectively
transform into the equations of the pair cluster approx-
imation.

0 0.1 0.2 0.3 0.4 0.5

4

c

T '

A2 + B2

A2 B2

3

2

1

Fig. 6. The same as in Fig. 5 for model V in table.

0 0.1 0.2 0.3 0.4 0.5

2

c

T '

A2 + D03 B2 + D03

A2

D03

B2

1

Fig. 4. The same as in Fig. 2 for model III in table.
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(4) The accuracy of the approximate methods under
consideration usually increases for models I–III as tem-
perature decreases. The phase equilibria that include
the D03 phase are therefore described more accurately
than the A2  B2 transitions, especially when the pair
cluster or tetrahedron cluster-field approximation is
used.

0 0.1 0.2 0.3 0.4 0.5

1.0

c

T '

A2

B2

D03

1.5

0.5

Fig. 7. The same as in Fig. 5 for the model with  =

v2/v1 = 0.3 and vn > 2 = 0. The dash-and-dot lines indicate
the anti-Curie point positions.

v 2'

0 0.1 0.2 0.3 0.4 0.5

1.0

1.5

c

T '

B2

A2

D03

A2 + D03

B2 + D03

0.5

Fig. 8. The same as in Fig. 7 for the model with  = 0.4,

vn > 2 = 0.

v 2'
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For model IV, the “attraction” of the third neighbors
(–v 3), which favors ordering, is much stronger than for
models I–III. For this reason, the accuracy of even the
simple mean-field approximation (much more, of the
pair cluster approximation) appears to be fairly high,

and the difference of the  and  errors is two
to three times smaller than for models I–III. Unlike
from models I–IV, model V is characterized by non-
nearest-neighbor interactions v 2 and v 3 that are not
small and are negative; that is, these interactions favor
B2 ordering. For this reason, the accuracy of both the
mean-field and pair cluster approximations is fairly

high and the difference of the  and  errors is
as low as 4%; that is, it is three to five times smaller than
for models I–III. The results obtained for models I–III
(see above) allow us to expect that the exact transition
temperatures for models IV and V should differ from
the TPCA values calculated in the pair cluster approxi-
mation by no more than how much TPCA differs from
TMFA , that is, (TPCA – Tex) & (TMFA – TPCA).

6. PHASE DIAGRAMS FOR SYSTEMS
WITH SHORT-RANGE 

AND COMPETING INTERACTIONS

In this section, we consider the BCC alloy models in
which “reduced” repulsive interactions between next-
nearest neighbors  = v 2/v 1 are comparatively strong

and the other interactions  that favor ordering are
absent or weak. As has been mentioned, the competi-
tion between the v 1 and v 2 interactions in such systems
hinders the transition and decreases reduced ordering
temperatures T ' = T/v 1. As a result, correlations
between the occupancies of the nearest- and next-near-
est-neighbor sites are of significance in the transition
region.

Note that, as distinguished from the models of Fe–
Al-type alloys considered above, there is no experimen-
tal evidence for the existence of BCC alloys of the type
under consideration. The model with  = 0.5 and

 = 0 was suggested in its time from considerations of
simplicity of calculations in the simplest mean-field
approximation [4]; the phase diagram obtained was
similar to that observed for Fe–Si alloys. Subsequent
calculations by the cluster variation and Monte Carlo
methods [18, 1], however, showed that the exact phase
diagram for this model did not resemble the experimen-
tal one too closely. In addition, the available experi-
mental data on interactions in metallic alloys show that
these alloys as a rule involve fairly strong interactions
between the third and more distant neighbors, which
substantially influence the form of the phase diagrams
[6–11, 14]. For this reason, the scale of correlations in
the models described below may be substantially exag-
gerated compared with real alloys.

δc
MFA δc

PCA

δc
MFA δc

PCA

v 2'

v n'

v 2'

v n'
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For brevity, models of interactions between two
nearest neighbors with v 1 > v 2 ≥ 0, v n > 2 = 0 will be

called “  models.” Our calculations of the phase dia-

grams of  models in the mean-field, pair cluster, and
tetrahedron cluster-field approximations (Figs. 7–9)
allow the following conclusions to be drawn.

(1) At small  & 0.15 values, the phase diagrams

of  models in the pair cluster and tetrahedron clus-
ter-field approximations virtually coincide, as for the
Fe–Al alloy models discussed above. The use of the
pair cluster (or tetrahedron cluster) approximation con-
siderably refines the results of simple mean-field calcu-
lations. For example, for  = 0 (that is, in the presence
of only nearest neighbor interactions), the errors δc =

(Tc – )/  for the mean-field and pair cluster
approximations are 0.26 and 0.09, respectively; that is,
the pair cluster approximation gives a twice smaller
error than the mean-field approximation.

(2) At larger  * 0.25, the accuracy of the pair
cluster approximation begins to decrease sharply and
becomes substantially lower than the accuracy of the
tetrahedron cluster-field approximation. This is seen
from Figs. 3 and 4. The pair cluster approximation
underestimates the region of ordered phase stability on

the side of high temperatures (the calculated  spin-

odals lie below the  spinodals) and on the side of
low temperatures, where the above-mentioned anti-
Curie points Tac corresponding to the (fictitious) disap-
pearance of the ordered phase become quite distinct.

Note that anti-Curie points are present in  models

at all  > 0 in both pair cluster and tetrahedron clus-

ter-field approximations. At small , the Tac values
are, however, very small compared with the Tc critical

temperature. For example, at  = 0.1, the reduced crit-

ical temperature , and the reduced

 = Tac/v 1 values at concentrations c of 0.2 to 0.5

vary from  ≈ 0.2 to  = 0.1 according to the pair

cluster calculations and from  ≈ 0.1 to  = 0.03
according to the tetrahedron cluster-field approxima-
tion. For this reason, the presence of anti-Curie points
for small  values is not significant for the physically
interesting temperature range T/Tc * 0.3.

If  * 0.25, anti-Curie  temperatures, how-
ever, sharply increase and the pair cluster approxima-
tion becomes inapplicable for describing  models.

For example, at  ≥ 0.421, the B2 ordered phase does

v 2'

v 2'

v 2'

v 2'

v 2'

Tc
MC Tc

MC

v 2'

θB2
PCA

θB2
TCA

v 2'

v 2'

v 2'

v 2'

Tc' Tc/v= 1.6≈
Tac'

Tac' Tac'

Tac' Tac'

v 2'

v 2' Tac
PCA

v 2'

v 2'
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not appear at all in the pair cluster approximation. This
is illustrated by the calculations shown in Figs. 7–9.

(3) Anti-Curie points are also present in the tetrahe-
dron cluster calculations for  models. The corre-
sponding Tac values are, however, much lower than in

the pair cluster approximation, and, for all  ≤ 0.5 val-
ues under consideration, the Tac values are small com-
pared with the Tc critical temperature. This is illustrated
by Figs. 7–9. Figure 9 shows that the phase diagram
obtained for  = 0.5 in the tetrahedron cluster-field
approximation is in satisfactory agreement with the
results of Monte Carlo calculations [1] at all T * 0.3Tc

that are not too low, although errors caused by the pres-
ence of anti-Curie points become noticeable at small
T & 0.2Tc . Figure 9 also shows that mean-field calcula-
tions for this model not only quantitatively, but also
qualitatively, distort the form of the phase diagram,
and, as mentioned, the pair cluster approximation is
completely inapplicable to such models.

Next, note that at large , the presence of even
comparatively weak interactions between more distant
neighbors that favor ordering can substantially change
phase diagrams compared with “pure”  models. For
example, Fig. 10 shows that the addition of a very weak
attraction corresponding to  = –0.05 to the  model

with  = 0.5 noticeably broadens the region of
ordered phase stability and decreases the difficulties of

v 2'

v 2'

v 2'

v 2'

v 2'

v 3' v 2'

v 2'

0 0.1 0.2 0.3 0.4 0.5

1.0

1.5

c

T '

0.5

A2 + D03

D03

B2B2 + D03

A2

Fig. 9. The same as in Fig. 7 for model with  = 0.5,

vn > 2 = 0. Solid circles correspond to Monte Carlo calcula-
tions [1].

v 2'
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the method related to the presence of the anti-Curie
point by decreasing the Tac/Tc ratio more than twice. As

has been mentioned above (and as illustrated by the 
values in the table), the presence of interactions
between distant neighbors that favor ordering is typical
of all alloys studied experimentally. Therefore, there is
good reason to believe that, if alloys with large  do
exist in nature, they are also characterized by noticeable
“attraction” of more distant neighbors and the accuracy
of the tetrahedron cluster-field approximation for them
should be substantially higher than for the  model
shown in Fig. 9.

7. CONCLUSIONS

The main results of this work are as follows. The
cluster methods for describing the thermodynamic
properties of alloys developed earlier were generalized
to nonuniform and nonequilibrium atomic distribu-
tions. The tetrahedron cluster-fields method for BCC
lattices was suggested; this method could also be used
to describe alloys with strong short-range and compet-
ing interactions that hinder ordering. The accuracy of
various statistical methods (the mean-field and pair
cluster approximations and the tetrahedron cluster-field
method developed in this work) for describing phase
diagrams of BCC alloys with B2- and D03-type order-
ings was studied. The results of calculations by various
methods were compared with each other and with the
available Monte Carlo results. The accuracy of various

v n'

v 2'

v 2'

0.5

0 0.1 0.2 0.3 0.4 0.5

1.0

1.5

c

T '

A2 + D03

B2 + D03
B2

A2

D03

Fig. 10. The same as in Fig. 7 for model with  = 0.5,

 = –0.05, and vn > 3 = 0.

v 2'

v 3'
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methods was found to sharply depend on the type of
interactions in the system, first of all, on the presence of
competing interactions and correlations mentioned
above, which impede ordering. In the absence of such
correlations, in particular, for the Fe–Al-type alloys
with long-range interactions, the use of the pair cluster
approximation substantially refines the results obtained
by the simple mean-field method without any notice-
able complication of calculations. A comparison with
the available Monte Carlo calculations allowed realistic
estimates to be obtained for exact transition tempera-
tures based on the temperature values calculated in the
mean-field and pair cluster approximations. Employing
both the mean-field and pair cluster approximations to
systems with short-range and competing interactions
may sharply distort the form of phase diagrams. At the
same time, the use of the tetrahedron cluster field
approximation for such systems enables one to fairly
accurately calculate their phase diagrams for physically
interesting temperature and concentration values. It is
likely that taking into account interactions between the
third and more distant neighbors, which are usually
fairly noticeable in real alloys, should increase the
accuracy of tetrahedron cluster calculations compared
with the calculations described in this work.
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Abstract—The phonon thermal electromotive force component α22 (∇ T || C1) prevails in n-Bi1 – xSbx (0.07 ≤
x ≤ 0.16) semiconducting alloys at low temperatures. This component increases by almost an order of magni-
tude in a classically strong transverse magnetic field H with H || C3, which results in an increase in thermoelec-
tric efficiency. The transverse Nernst–Ettingshausen coefficient Q12, 3 (∇ T || C1, H || C3) changes sign from neg-
ative at T > 10 K to positive at T < 10 K. The observed characteristics of the phonon thermal electromotive force
and the phonon transverse Nernst–Ettingshausen coefficient are explained in terms of the theory of electron–
phonon drag for electrons with a strongly anisotropic spectrum. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The interaction of electrons with phonons in semi-
conductors causes not only their mutual scattering but
also the drag effect, which can be observed for a non-
equilibrium distribution of phonons, for instance, when
there is a temperature gradient along a sample. The
low-temperature thermal electromotive force (EMF) of
semiconductors comprises two components, namely,
the diffusion component caused by the redistribution of
charge carriers under the action of a temperature gradi-
ent and the phonon component caused by the redistri-
bution of charge carriers as a result of their collisions
with phonons, which are in a nonequilibrium state in
the presence of a temperature gradient. It follows that
the contribution to the phonon thermal EMF is only
made by the flux part of the phonon distribution func-
tion, which, in addition, is proportional to the tempera-
ture gradient. At low temperatures, the phonon thermal
EMF component exceeds the diffusion component sev-
eral or several dozen times depending on the degree of
electron gas degeneracy.

The mechanism of carrier–phonon drag in solids in
the presence of a temperature gradient was first pre-
dicted by Gurevich [1]. Currently, a large number of
works have been published in which experimental data
and the theory of the phonon drag of thermal EMF and
thermomagnetic coefficients in semiconductors with
isotropic electron energy spectra are described. A
review of these works can be found, for instance, in
monographs [2–5].

According to phonon drag theory, thermal EMF and
thermomagnetic coefficients in semiconductors with
isotropic electron energy spectra do not contain the
1063-7761/03/9701- $24.00 © 20116
small factor kT/ζ present in diffusion coefficients [2].
Secondly, phonon thermal EMF does not depend on
transverse magnetic fields, and the phonon transverse
Nernst–Ettingshausen coefficient is zero. Here, ζ is the
chemical potential of electrons in semiconductors.

However, according to theoretical work [6], thermal
EMF in anisotropic semimetal bismuth does depend on
the transverse magnetic field and the phonon transverse
Nernst–Ettingshausen coefficient is nonzero.

The purpose of this work was to analyze the behav-
ior of the phonon thermal EMF and the phonon trans-
verse Nernst–Ettingshausen coefficient of Bi–Sb semi-
conducting alloys depending on magnetic field and
temperature. Previously [7, 8], we discussed the behav-
ior of the diffusion thermal EMF and the diffusion
transverse Nernst–Ettingshausen coefficient under tem-
perature and magnetic field variations. These data were
used to study the mechanisms of electron relaxation in
alloys and to explain the maximum, which was
observed in the magnetic field dependence of diffusion
thermal EMF.

2. SAMPLES AND PROCEDURE
FOR MEASUREMENTS

The temperature dependences of thermal EMF
α22(0) (∇ T || C1) in the absence of a magnetic field and
thermomagnetic effects Q12, 3(H, T) (∇ T || C1, H || C3)
and changes in the thermal EMF in a magnetic field
∆α22(H) = α22(H) – α22(0) were measured for single
crystals of Bi1 – xSbx (0.07≤ x ≤ 0.16) semiconducting
alloys doped with tellurium as a donor impurity. The
samples were cut on an electroerosion unit from the
003 MAIK “Nauka/Interperiodica”
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middle part of a single crystalline ingot grown by the
method of horizontal zone recrystallization. The sam-
ples were cut as 3 × 3 × 30 mm3 rectangular parallelepi-
peds, whose faces were perpendicular to the crystallo-
graphic axes C1, C2, and C3. The largest sample dimen-
sion was along the C1 bisector axis. The samples were
etched with a 1 : 1 C2H5OH–HNO3 solution. The main
sample parameters are listed in the table.

The sample to be studied with heaters at its ends was
soldered to the bottom of a vacuum chamber 18 mm in
diameter placed into a thermostatic liquid (helium,
hydrogen, or nitrogen). The heater at the end soldered
to the chamber bottom served to control the mean tem-
perature of the sample, and the heater at the opposite
end, to create a temperature gradient ∇ T in the sample.
The temperature was measured for two cross sections
spaced lT ≈ 15 mm at a constant heat flux. The measure-
ments were taken with carbon resistance thermometers
at 1.5 < T < 40 K and copper–constantan thermocouples
at 30 < T < 80 K. The thermal EMF was measured for
sample–copper thermoelectric couples; the absolute
thermal EMF of copper did not exceed 1 µV/K in the
temperature range of measurements. The experimental
thermal EMF data are given below without taking this
circumstance into account. The thermomagnetic effects
were measured for Bi–Sb alloys in magnetic fields of
0 ≤ H < 18 kOe at temperatures of 1.4 ≤ T < 40 K.

3. MEASUREMENT RESULTS

The electron gas in the region of impurity conduc-
tivity (T < 40 K) is degenerate in the semiconducting
alloys under consideration, and the Fermi surface of the
alloys consists of three electronic ellipsoids centered at
the L Brillouin zone points, which are situated in the
mirror reflection planes [8]. One of the minor ellipsoid
axes coincides with the C2 binary axis of the crystal; the
ellipsoids are turned about this axis through a small
angle ϕ, whose values are listed in the table. As a result
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of these turns, the two other ellipsoid axes form angles
ϕ with the C1 and C3 crystallographic axes. The elec-
tronic ellipsoids are equivalent in accordance with crys-
tal symmetry and have strongly anisotropic effective
masses, whose values are also listed in the table.

We measured the temperature dependence of ther-
mal EMF α22 (∇ T || C1) for semiconducting Bi1 – xSbx

(0.07 ≤ x ≤ 0.16) alloys, for which a linear temperature
dependence was observed at T > 18 K. Such a depen-
dence is characteristic of semiconductors with a degen-
erate electron gas, α22(T) ∝  kT/ζ; this was discussed
in [7, 8]. The thermal EMF of Bi–Sb alloys deviates
from linearity below T = 18 K. By way of example,
these thermal EMF deviations for Bi0.93Sb0.07 are shown
in Fig. 1 (curve 1). The experimental thermal EMF val-
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Fig. 1. Temperature dependence of the thermal EMF of the
n-Bi0.93Sb0.07 semiconducting alloy (1) in zero magnetic
field, α22(0) (∇ T || C1) and (2) in a transverse classically
strong magnetic field, α∞ (H || C3). Solid straight lines pass
through the experimental diffusion thermal EMF values at
T > 20 K and are extrapolated to T = 0 K. The same depen-
dences for the phonon component are shown in the inset.
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Main parameters of the studied n-Bi1 – xSbx (0.07 ≤ x ≤ 0.16) semiconducting alloys

No. x ϕ εgL,meV n,
1017 cm–3 ζ, meV m1/m0,

10–3 m2/m0
m3/m0,

10–3 δ

1 0.07 5.7° 7.5 1.37 18.6 0.91 0.32 1.2 24.5

2 0.09 5.55° 11 1.95 19 1.43 0.48 1.74 24

3 0.12 5.3° 16.4 1.57 15.5 2.42 0.72 2.58 22.6

4 0.13 5.14° 19 1.58 14.3 3.1 0.83 3.0 21.6

5 0.15 4.97° 22 1.61 13.7 3.86 0.94 3.45 20.5

6 0.16 4.88° 23.6 1.71 13.5 4.37 1.0 3.7 19.7

Note: x, εgL, n, ζ, mi, and δ = (m1 + m4)2/4m1m4 are the concentration of antimony in the alloy, the forbidden band energy in the semi-
conducting alloy, the concentration of electrons in the sample, the chemical potential of electrons in the sample, the effective masses
of electrons in the ellipsoid at the band bottom in the alloy, and the parameter taking into account the anisotropy of the energy spec-
trum of electrons in the alloy, respectively.
SICS      Vol. 97      No. 1      2003



118 RED’KO et al.
ues at T < 18 K exceed the diffusion thermal EMF,
which is linearly continued in Fig. 1 from the region of
high temperatures T > 18 K to the lower temperatures.
This difference is natural to relate to the phonon ther-
mal EMF component. The temperature dependence of
the phonon thermal EMF component is shown in the
inset in Fig. 1 (curve 1); this dependence was obtained
by subtracting the diffusion thermal EMF from the total
experimental value. The phonon thermal EMF
increases by the power law αph(T) ∝  T–2.8 as tempera-
ture lowers from T = 18 K and reaches a maximum at
T ≈ 4.5 K, whereas the temperature corresponding to
the phonon heat conductivity maximum is somewhat
lower (T ≈ 4 K).

We also measured the thermal EMF α22(H) (∇ T ||
C1) in transverse magnetic fields up to 18 kOe with H ||
C3. These measurements were made by two methods.
First, direct thermal EMF measurements for the Bi–Sb
alloy under study were performed at a given tempera-
ture and a certain magnetic field value, that is, point-by-
point, to obtain α(H) = V/∆T dependences, where V is
the voltage drop between sample contacts for thermal
EMF measurements and ∆T is the temperature differ-
ence between these contacts. The second procedure
was based on recording ∆V, that is, changes in the volt-
age drop between sample contacts for thermal EMF
measurements, in various magnetic fields. Further, the
equation

was used to calculate the change in the thermal EMF of
the Bi–Sb sample under study at a given temperature as
a function of the magnetic field value. A family of
∆α22(H) = α22(H) – α22(0) curves versus magnetic field

∆α H( ) α H( ) α 0( )– ∆V /∆T= =

1
2
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Fig. 2. Transverse magnetic field dependences of thermal
EMF changes ∆α22(H) = α22(H) – α22(0) (∇ T || C1, H || C3)
for the n-Bi0.93Sb0.07 alloy at various temperatures: (1) 4.2,
(2) 4.8, (3) 8.5, (4) 10.6, (5) 12.3, (6) 15.4, (7) 18.6, (8) 21.0,
(9) 23.2, and (10) 25.1 K.
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with H || C3 recorded at various temperatures is shown
in Fig. 2 for the Bi0.93Sb0.07 semiconducting alloy.

In classically strong magnetic fields (Ωτ @ 1), we

have ∆α22(H) = ∆α∞ . Here, Ω = eH/(c ) is the
cyclotron frequency; τ is the total relaxation time of
alloy electrons; Mi = mi(1 + 2ζ/eg); mi and Mi are the
effective masses of electrons in Bi–Sb alloys at the con-
duction band bottom and at the Fermi level, respec-
tively; and εg is the forbidden band energy. The experi-
mental thermal EMF values α∞ = ∆α∞ + α22(0) in a
classically strong magnetic field (Ωτ @ 1) are shown in
Fig. 1 versus temperature (curve 2). Above T = 20 K,
the temperature dependence of thermal EMF α∞ is lin-
ear and corresponds to the diffusion thermal EMF com-
ponent in a classically strong magnetic field for semi-
conductors with a degenerate electron gas [2, 7]. The

experimental thermal EMF changes  in a classi-
cally strong magnetic field coincide with the diffusion

component  at T > 20 K and linearly depend on
temperature. At low temperatures of T < 20 K, the

 value exceeds  obtained by linear extrapo-
lation from the temperature region T > 20 K to lower
temperatures.

The temperature dependence of the phonon thermal

EMF  = ∆  + αph(0) in a classically strong
magnetic field (Ωτ @ 1) is shown in the inset in Fig. 1
(curve 2). Phonon thermal EMF changes were found by

subtracting the  diffusion component from the

experimental  value, ∆  =  – .

The phonon components of thermal EMF changes
(curves 2, 2') as a function of transverse magnetic field

M1M4
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Fig. 3. Transverse magnetic field dependences of changes in
the thermal EMF ∆α22(H) (∇ T || C1, H || C3): (1, 1') exper-
imental dependences and their (2, 2') phonon and (3, 3') dif-
fusion components for the n-Bi0.93Sb0.07 semiconducting
alloy at (1, 2, 3) 4.2 and (1', 2', 3') 8.5 K.
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(H || C3) measured at 4.2 and 8.5 K for the Bi0.93Sb0.07
alloy is shown in Fig. 3. This dependence was obtained
by subtracting the diffusion thermal EMF components
(curves 3, 3') from the experimental ∆α22 (∇ T || C1)
values (curves 1, 1').

The diffusion component of thermal EMF changes
in a transverse magnetic field was calculated by the
equation [8]

(1)

The ∆α(H) value was found using the τ relaxation time
of electrons in Bi–Sb alloys obtained by linearly
extrapolating the temperature dependence of the
inverse electron relaxation time from high temperatures
of T > 20 K to the low-temperature region. The inverse
electron relaxation times for the alloys at T > 20 K were
taken from [8]. The total electron relaxation time τ in
Bi–Sb semiconducting alloys depends on temperature,
and this dependence is caused by the contribution of
electron scattering by acoustic phonons. The inverse
electron relaxation time linearly depends on tempera-
ture (τ –1 ∝  T) at T > Θe = 19 K, because, starting with
this temperature, the number of phonons that interact
with electrons increases linearly. Here, Θe = 2pFs/k is
the electron Debye temperature, where pF and s are the
Fermi momentum of the electron and the velocity of
sound in the alloy. The Debye temperature varies in the
interval Θmin ≈ 1 K ≤ Θe ≤ Θmax ≈ 19 K for the electron
ellipsoid in the alloys under consideration.

Note that the linear extrapolation of the temperature
dependence of the electron relaxation time performed
in this work is inaccurate at T < Θe . At the same time,
electron scattering by impurities rather than phonons
prevails in the alloys to a substantial extent. The error
introduced by this extrapolation should therefore be
small.

The β parameter that we used to calculate the ∆α(H)
dependence by (1) was found from the experimental
data on the diffusion thermal EMF ∆α∞ by the equa-
tion [8]:

(2)

Equation (2) gives β = 1.35 for the Bi0.93Sb0.07 alloy.
The chemical potential of electrons ζ used in the calcu-
lations and the δ parameter for the samples studied in
this work are given in the table.

The field dependences of the diffusion and phonon
thermal EMF components are different in the alloys
(Fig. 3). The phonon thermal EMF component exhibits
a monotonic magnetic field dependence, whereas the
dependence of the diffusion component is nonmono-
tonic. The magnetic field (H || C3) dependence of the

∆α H( ) π2k2T
3eζ

--------------β 1 Ω2τ2 δ 2–( ) δ–

1 Ω2τ2+( ) δ Ω2τ2+( )
----------------------------------------------------+

 
 
 

.–=

∆α∞
π2

k2T
3eζ

--------------β.–=
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diffusion thermal EMF component in Bi–Sb semicon-
ducting alloys has a maximum in intermediate mag-
netic fields (Ωτ ≈ 1) caused by the multivalley charac-
ter and strong anisotropy of the electron energy spec-
trum [7, 8]. Also note that the diffusion thermal EMF
component is differential in character, whereas the
phonon thermal EMF component is an integral charac-
teristic corresponding to averaged features of electron
energy and phonon spectrum anisotropy and electron
and phonon relaxation processes [8]. For this reason,
the phonon thermal EMF component exhibits a mono-
tonic magnetic field dependence in the alloys.

The temperature dependence of the phonon thermal

EMF in a classically strong magnetic field,  =

∆  + αph(0), is shown in Fig. 1 (inset, curve 2); the
dependence follows the T–1.7 law. The exponent is
smaller than for the phonon thermal EMF in a zero
magnetic field and slightly larger than for the tempera-
ture dependence of the phonon heat conductivity of

Bi−Sb semiconducting alloys (κ ∝  T–1.3). The (T)
curve has a maximum at T ≈ 3.5 K, which is shifted
downward from the temperature of maximum photon
thermal EMF in the absence of a magnetic field.

The transverse Nernst–Ettingshausen coefficient

was measured for Bi–Sb semiconducting alloys in the
same temperature range. Here, V, h, H, and ∆T are the
voltage drop between the measuring Nernst–Etting-
shausen probes on the sample, the distance between the
measuring probes, the transverse magnetic field applied
to the sample, and the temperature difference between
points spaced l along the sample, respectively.

The magnetic field dependence of the transverse
Nernst–Ettingshausen coefficient Q12, 3 (∇ T || C1, H || C3)
at various temperatures is shown in Fig. 4 for the
Bi0.93Sb0.07 semiconducting alloy. The Q12, 3 value is
negative at T > 10 K because of predominant electron
scattering by acoustic phonons and by the fluctuation
potential related to fluctuations of the concentration of
Bi and Sb in the alloy (the “alloy” mechanism of elec-
tron scattering) [2, 7, 8]. According to the theory of
semiconductors with isotropic electron energy spectra,
positive Q12, 3 values might be evidence of predominant
electron scattering by ionized impurities [2].

In [8], we analyzed the contributions of all electron
scattering mechanisms in n-Bi–Sb semiconducting
alloys at T > 20 K; the important role played by the
alloy mechanism was noted. The sign of the transverse
Nernst–Ettingshausen coefficient is negative for the
alloy electron scattering mechanism, as for scattering
by acoustic phonons according to experimental Q12, 3
measurements at T > 10 K. In Bi–Sb alloys, a decrease
in the temperature has no effect on the predominance of

α∞
ph

α∞
ph

α∞
ph

Q
Vl

hH∆T
---------------–=
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the alloy electron scattering mechanism and therefore
cannot cause the reversal of the sign of the transverse
Nernst–Ettingshausen diffusion coefficient.

Like the thermal EMF, the transverse Nernst–
Ettingshausen coefficient of the alloys at low tempera-
tures contains two (phonon and diffusion) components.
The temperature dependence of the transverse Nernst–
Ettingshausen coefficient Q12, 3 (∇ T || C1, H || C3) mea-
sured at H = 1 kOe for the Bi0.93Sb0.07 semiconducting
alloy is shown in Fig. 5. Curve 2 is the experimental
Q12, 3(T) dependence. At temperatures above T = 18 K,
the experimental values of Q12, 3(T) fall on a straight
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Fig. 4. Magnetic field dependences of the transverse
Nernst–Ettingshausen coefficient Q12, 3 (∇ T || C1, H || C3)
for the n-Bi0.93Sb0.07 semiconducting alloy at various tem-
peratures: (1) 4.2, (2) 4.8, (3) 6.2, (4) 8.5, (5) 10.6, (6) 18.6,
(7) 21.0, (8) 23.2, and (9) 25.1 K.
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Fig. 5. Temperature dependences of the transverse Nernst–
Ettingshausen coefficient: (2) experimental Q12, 3 (∇ T || C1,
H || C3) dependence and its (1) diffusion and (3) phonon
components in a constant magnetic field H = 1 kOe for the
n-Bi0.93Sb0.07 semiconducting alloy.
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line (straight line 1) that corresponds to the diffusion
component. The diffusion coefficient components at
T > 18 K, like the diffusion thermal EMF components,
are discussed and compared with theoretical results
in [7, 8].

A characteristic feature of the experimental Q12, 3(T)
curve is a change in sign from negative at T > 10 K to
positive at T < 10 K. The difference between the total
experimental value (Fig. 5, curve 2) and the diffusion
component (straight line 1) is shown in Fig. 5 (curve 3);
this difference corresponds to the phonon component.
According to the theory described in [2], the phonon
contribution to Q12, 3(T) is zero in semiconductors with
an isotropic electron energy spectrum, which does not
explain the dependences observed experimentally.

The temperature dependences of the Q12, 3 coeffi-
cient measured for Bi0.93Sb0.07 in various magnetic
fields are shown in Fig. 6. The contribution of the
phonon component compared with the diffusion com-
ponent increases as the magnetic field grows stronger.
This causes a change in the sign of the coefficient at
higher temperatures.

The magnetic field dependences of the phonon con-
tribution to the transverse Nernst–Ettingshausen coeffi-
cient measured for Bi0.93Sb0.07 at 4.2 and 8.5 K are
shown in Fig. 7 (curves 3 and 3', respectively). These
dependences were obtained by subtracting the diffusion
contribution to the transverse Nernst–Ettingshausen
coefficient (curves 1, 1') from the experimental Q12, 3(T)
dependences (curves 2, 2'). The diffusion contribution
to the transverse Nernst–Ettingshausen coefficient was
calculated by the equation [8]

(3)

In these calculations, we used the same electron relax-
ation times τ as in the calculations of the diffusion com-
ponent of α22(H) by (1); these τ values were taken
from [8]. The diffusion component of Q12, 3 for
Bi0.93Sb0.07 was calculated using the β = 1.35 parameter
and the tabulated chemical potential ζ and δ values.

We come to the conclusion that the results of pro-
cessing the thermal EMF data given above for the
Bi0.93Sb0.07 alloy show that the phonon thermal EMF at
low temperatures (Fig. 1, inset) depends fairly strongly
on the transverse magnetic field. The phonon thermal
EMF in a classically strong magnetic field is almost an
order of magnitude larger than the phonon thermal
EMF in the absence of a magnetic field. This is at vari-
ance with the kinetic theory of semiconductors with
isotropic electron energy spectra, according to which
the phonon thermal EMF is independent of magnetic
field, and the Nernst–Ettingshausen effect is absent
under phonon drag conditions [2].

Q12 3,
π2k2T
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--------------β

M1 M4+( )τ
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We undertook a theoretical analysis to elucidate the
reasons for the observed features of the phonon thermal
EMF in magnetic fields and the phonon transverse
Nernst–Ettingshausen coefficient in semiconducting
Bi–Sb alloys.

4. PHONON DRAG THEORY
FOR SEMICONDUCTING ALLOYS

The magnetic field dependence of the tensor of
phonon thermal EMF was found by solving the kinetic
equation for a strongly anisotropic nonparabolic disper-
sion law of L electrons in semiconducting Bi–Sb alloys
within the framework of the Lax model,

(4)

where εp is the energy of the electron with momentum
p (its components along the ellipsoid axes are p1, p2,
and p3) and mi are the effective masses of the electrons
in the ellipsoid.

The distribution function of the electrons was found
by solving the linearized kinetic equation

(5)

where fp and nq are the nonequilibrium additions to the
distribution functions of the electrons and phonons,
which depend on the electronic momentum p and the
phonon wave vector q;

is the equilibrium Fermi distribution function for elec-

trons with the chemical potential ζ;  is the fre-
quency of the phonon with the wave vector q for the sth
branch of vibrations; τe(εp) is the total electron relax-
ation time under scattering by phonons, ionized impu-
rities, and fluctuations of the concentrations of Bi and
Sb in the alloy; and Cq is the electron–phonon coupling
constant.
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The phonon distribution function is found from the
kinetic equation for the sth-branch phonons,

(6)

where N0 = [exp("ωq/kT) – 1]–1 is the equilibrium
Planck function.
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The kinetic equation for phonons was solved with
the inclusion of scattering of phonons by impurities
τph – im and electrons τph – e and phonon–phonon scatter-
ing τph – ph. The Callaway method for solving the kinetic
equation makes it possible to take into account the total
momentum conservation in phonon–phonon collisions;
this is attained by using a term containing the mean
phonon drift velocity V. This term is determined from
the condition of the conservation of the total momen-
tum in normal phonon–phonon collisions,

(7)

The analysis performed above does not take into
account the influence of the nonequilibrium electron
distribution function on the nonequilibrium phonon
distribution function; that is, it ignores mutual drag of
electrons and phonons. This effect can only become
significant when mutual scattering of electrons and
phonons in the electronic and phonon systems is the
major scattering mechanism. Such a situation can
hardly arise in alloys. According to the detailed analysis
of the experimental data performed in [8], this is not the
situation with the electronic system. In this work, we
are interested in the experimental thermal EMF data
obtained at temperatures lower than those in [8], when
scattering of electrons by phonons is negligibly small
compared with alloy and impurity scattering. It follows
that we can ignore mutual drag.

Equation (6) is completely independent of (5); we
therefore solve it first taking into account condition (7).
The obtained solution is substituted into (5), where the
phonon energy is on the order of kT, which is much
lower than the mean electron energy equal to the Fermi
energy. This allows us to expand the right-hand side
of (5) in powers of "ωq/εp. Upon solving the kinetic
Eqs. (5) and (6), we obtain the electron distribution
function fp antisymmetric with respect to momentum
and proportional to ∇ T. We can then calculate the ther-
moelectric tensor, which is the proportionality factor
between thermoelectric current and temperature gradi-
ent. As for the diffusion component, we must sum the
contributions to this tensor of three equivalent ellip-
soids with the tilt angle ϕ between them and the C3 axis.
Multiplying the calculated tensor and the resistance
tensor [2] gives the tensor of thermal EMF in a mag-
netic field with H || C3. In this way, we find the αii diag-
onal and αij = QijH off-diagonal components of the
phonon tensor; that is, we determine the phonon trans-
verse Nernst–Ettingshausen coefficient. The equations
for the diagonal component of the tensor of phonon

d3q
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thermal EMF, α11(H) = α22(H), in a transverse magnetic
field (H || C3) for semiconducting Bi–Sb alloys are

(8)

where

(9)

(10)

(11)

(12)

(13)

(14)

Here, e is the absolute charge of the electron; ρ is the
density of the Bi–Sb alloy; ζ is the chemical potential
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of electrons; Ω = eH/(c ) is the cyclotron fre-
quency of electrons, the same for all three ellipsoids if
H || C3; Mi = mi(1 + 2ζ/eg) are the effective masses of
electrons at the Fermi level; Λik is the deformation
potential tensor; l is the polarization vector of the sth
phonon branch; τR(q) is the resistive phonon relaxation
time corresponding to momentum relaxation in the
phonon system; and τph(q) is the total phonon relax-
ation time. The effective mass m4 is related to the tilt of
the ellipsoids with respect to the C3 and C1 axes as

(15)

Note that the integration in (8) with respect to wave
vectors q is performed in a limited volume of momenta.
This volume is determined by the laws of conservation
of energy and momentum for interacting electrons and
phonons,

(16)

The integrand in (8) contains terms with bi/ai coeffi-
cients. These terms take into account contributions of
phonon–phonon collisions when the phonon kinetic
equation is solved by the Callaway method. For very
pure substances with τR(q) @ τph(q), the term propor-
tional to τR(q) becomes very large, which corresponds
to two-step drag [9]. In semiconducting alloys, resistive
scattering resulting from scattering of phonons by
impurities is not weak, and, parametrically, the second
term has the same order of magnitude as the first one.

The integrals that determine the coefficients ai (11)
and bi (12) have no bearing on electron–phonon inter-
actions. For this reason, restriction (16) on the volume
of momenta for the integration does not apply to them;
that is, the integration in (11) and (12) is performed
over the entire volume of phonon wave vectors.

The δ (9) and η (10) parameters are large in magni-
tude and comparable because m4 @ m1. They equal
m4/4m1, and their difference is 1/2. As a consequence,
the major contribution to the phonon thermal EMF in a
zero magnetic field is made by the first term present
in (8), and the equation for α11(0) can be written in the
form
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(17)

In (8), the coefficients 1 ± η/(δ + Ω2τ2) of three
terms in square brackets in the integrand all equal one
in a classically strong magnetic field. As a result, the
phonon thermal EMF of the alloys in a classically
strong field with H || C3 is

(18)

In an isotropic degenerate semiconductor, limita-
tion (16) for the region of phonon–electron interactions

determines the maximum phonon momentum 
in electron–phonon interaction. This corresponds to the

electronic Debye temperature Θe = s /k, where s
is the velocity of sound. An anisotropic semiconducting
alloy can be treated in terms of only two different elec-
tronic Debye temperatures with the effective masses
m1 ≈ m3 and m2. This gives Θ1e ≈ 1 K and Θ2e ≈ 19 K.
Nevertheless, the use of some average electronic Debye
temperature to estimate integrals (17) and (18) is, we
believe, incorrect. The calculations will therefore be
performed differently. We ignore the small term with
the large effective mass m2 in condition (16). The
restriction is then only imposed on the wave vectors q1
and q3. The integration in q2 is performed over an
unbounded region of phonon wave vector values, but,
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because of the Planck distribution function for
phonons, the integral is determined by the heat wave
vector kT/"s. This value is larger than the maximum

value for q1 = /". For this reason, everywhere in
the integral except the square root in the denominator
we ignore q1 and q3 in comparison with q2. This inte-
gration procedure takes into account that the tempera-
ture is within the interval between Θ1e and Θ2e . For
phonon relaxation times in scattering of phonons by
impurities, phonons, and electrons, the following equa-
tions for the mean heat momenta are used:

(19)

where di are constant coefficients.
Contributions to electron relaxation come from

electron scattering by impurities and electron–phonon
scattering. The electron relaxation times on both impu-
rities and phonons in Bi–Sb alloys were determined
in [8] for temperatures above Θ2e . In semiconducting
alloys, only electron–phonon scattering depends on
temperature, but, as mentioned, this scattering is insig-
nificant at low temperatures compared with electron
scattering by impurities. For this reason, electron–
phonon scattering can be ignored in analyzing the tem-
perature dependence of the phonon thermal EMF. Con-
sider the temperature dependence of α11(0) [Eq. (17)]
using the temperature dependence of phonon relaxation
times given by (19) and the temperature dependence of
the values present in the integrand in (17), namely,
∂N0/∂ωq ∝  T–1 and q ∝  T  for thermal phonons. The tem-
perature dependence of the phonon thermal EMF to the
right of the maximum is determined by phonon–impu-
rity and phonon–phonon scattering; it is given by the
equation

(20)

The thermal EMF to the left of the maximum is deter-
mined by phonon–electron scattering,

(21)

The intersection of these curves forms the temperature
maximum.

The integral of the first term in Eq. (18) for α∞ is two
times smaller than that in Eq. (19) for α11(0), but the
integral of the third term with the same temperature
dependence is added. In addition, there is the integral of
the second term, which differs from the first term by the
replacement of the wave vector q1 with the heat vector
q2. This increases α∞ and changes its temperature
dependence. The temperature dependence of the
phonon thermal EMF α∞(T) in a classically strong mag-
netic field is determined by the predominant second
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term in (18); to the right of the maximum, this depen-
dence is described by the equation

(22)

Equation (18) for the α∞(T) dependence contains two
terms, because two terms in the integrand give different
temperature dependences. The temperature depen-
dence of the phonon thermal EMF α∞ to the left of its
maximum is also different than that for α11(0), namely,

(23)

A comparison of the temperature dependences of
α11(0) [Eqs. (20), (21)] and α∞ [Eqs. (22), (23)] shows
that the temperature maximum of α∞ is shifted to lower
temperatures compared with α11(0).

A comparison of Eqs. (17) for α11(0) and (18) for α∞
provides evidence that the thermal EMF value in clas-
sically strong magnetic fields can be increased. To
quantitatively estimate this increase requires the inte-
grals in (17) and (18) for α11(0) and α∞ to be calculated
numerically. The transition from temperature depen-
dence (20) for α11(0) to dependence (22) for α∞ and the
shift of the temperature maximum to lower tempera-
tures are in qualitative agreement with the experimental
temperature dependence of the phonon thermal EMF
observed in classically strong magnetic fields (Fig. 1,
inset).

In a weak magnetic field (Ωτ ! 1), the diffusion
transverse Nernst–Ettingshausen coefficient for a
degenerate semiconductor does not depend on the mag-
netic field and its sign is determined by the predominant
(unique) electron scattering mechanism [2, 7],

(24)

Here, r is the parameter of the electron scattering mech-
anism (r = 0 for scattering by acoustic phonons or point
impurities and r = 2 for scattering by ionized impuri-
ties), γ is the parameter characterizing the degree to
which the band is nonparabolic, and u is the mobility of
electrons. The temperature-induced change in the sign
of the transverse Nernst–Ettingshausen coefficient in
semiconductors with a degenerate electron gas is usu-
ally related to the theory of the diffusion contribution to
this coefficient, according to which electron scattering
by ionized impurities predominates at low tempera-
tures, and scattering by acoustic phonons, at high tem-
peratures [2, 7].

Note that the contributions of all scattering mecha-
nisms to the diffusion transverse Nernst–Ettingshausen
coefficient in n-Bi–Sb semiconducting alloys were ana-
lyzed in [8]. It was shown that the alloy mechanism of
scattering played an important role. The sign of the dif-
fusion transverse Nernst–Ettingshausen coefficient is
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negative for the alloy mechanism of electron scattering
and for scattering by acoustic phonons, as observed in
the alloys at T > 10 K. Temperature decrease has no
effect on the predominance of the alloy scattering
mechanism in Bi–Sb alloys and, therefore, cannot
cause a change in the sign of the diffusion transverse
Nernst–Ettingshausen coefficient. For this reason, the
change in the sign of the transverse Nernst–Etting-
shausen coefficient at T < 10 K can only be related to
electron–phonon drag, which was observed for the
thermal EMF of Bi–Sb alloys and has been discussed
above. At T < 10 K, the phonon thermal EMF compo-
nent prevails over the diffusion component.

Note that the transverse Nernst–Ettingshausen coef-
ficient caused by electron–phonon drag in an isotropic
semiconductor with a degenerate electron gas is zero [2].
The corresponding physical picture is clear without cal-
culations. As the additional force in the kinetic equation
for electrons in the right-hand side of (5) is proportional
to [(p · ∇ T)/m][∂f0/∂εp] by virtue of the problem sym-
metry, the energy dependence of the proportionality
factor can be ignored, because in all terms, the energy
equals the Fermi energy. This force is fully analogous
to the [(p · E)/m][∂f0/∂εp] force in the kinetic equation
for calculating the response of electrons to electric
field E. It follows that the thermoelectric tensor, which
relates thermal current to temperature gradient, is pro-
portional to the conductivity tensor. In a strong mag-
netic field, both tensors are essentially nondiagonal.
However, multiplying the thermoelectric tensor and the
resistance tensor, we obtain a diagonal unit tensor. The
zero off-diagonal components of the thermoelectric
tensor are indicative of the equality to zero of the trans-
verse Nernst–Ettingshausen coefficient.

Calculations of the phonon transverse Nernst–
Ettingshausen coefficient in a semiconductor with an
anisotropic electron energy spectrum at H || C3 gives an
equation which is in many respects similar to that for
the phonon thermal EMF, namely,

(25)
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In a low magnetic field, the equation for the phonon
transverse Nernst–Ettingshausen coefficient takes the
form

(26)

The equations for ai , bi , and τph are given in (11), (12),
and (14). The phonon transverse Nernst–Ettingshausen
coefficient is proportional to the difference of m4 and
m1, which is zero in semiconductors with an isotropic
electron energy spectrum. This result conforms to the
theory of semiconductors with isotropic electron
energy spectra.

The integrals that determine the phonon transverse
Nernst–Ettingshausen coefficient are the same as in
Eq. (8) for the phonon thermal EMF but have different
signs. It can be shown that, if α∞ increases compared
with α11(0), then (25) has a positive value. The phonon
transverse Nernst–Ettingshausen coefficient is then
positive, and its value, on the order of |α11(H)|/H,
ensures its predominance over the negative diffusion
coefficient.

We reach the conclusion that the change in the sign
of the transverse Nernst–Ettingshausen coefficient in
semiconducting Bi–Sb alloys at low temperatures
shown in Figs. 4–6 can be explained by the predomi-
nance of the positive phonon contribution to Q12, 3 over
the negative diffusion contribution.

Also note that, according to (3) and (25), the diffu-
sion and phonon transverse Nernst–Ettingshausen
coefficients similarly depend on the magnetic field. The
absolute value of their ratio therefore does not depend
on the magnetic field and is a function of temperature
alone. For this reason, the temperature at which the
transverse Nernst–Ettingshausen coefficient changes
sign should not depend on the magnetic field either by
virtue of the same equations. This property of the
model is at variance with experiment. Experimentally
(Figs. 4–6), we observe a magnetic field dependence of
the temperature at which the sign of Q12, 3 changes. An
increase in the magnetic field increases the sign reversal
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temperature. It can be suggested that the shortcoming
of the model is the introduction of the electron relax-
ation time. We need a theory that would more accu-
rately take into account the action of the collision oper-
ator on the nonequilibrium electron distribution func-
tion and would be capable of explaining the magnetic
field dependence of the temperature at which Q12, 3
changes sign.

5. CONCLUSIONS

Note that the reason for the strong dependence of
the phonon thermal EMF on transverse magnetic field
in Bi–Sb semiconducting alloys is the anisotropy of the
electron energy spectrum. An increase in the phonon
thermal EMF in a transverse magnetic field causes an
increase in the thermoelectric efficiency Z = α2/κρ of
the semiconducting alloys, where κ is the thermal con-
ductivity and ρ is the resistivity. For instance, in the
Bi0.93Sb0.07 alloy, Z increases by a factor of 1.5 in a mag-
netic field of H = 0.3 kOe (as compared to the case of
H = 0) at T = 4.2 K. Electron energy spectrum anisot-
ropy in semiconducting alloys results in nonzero
phonon transverse Nernst–Ettingshausen coefficients.
The reason for the change in the sign of the transverse
Nernst–Ettingshausen coefficient from negative to pos-
itive at T < 10 K in Bi–Sb semiconducting alloys is the
presence of a substantial phonon transverse Nernst–
Ettingshausen coefficient rather than a change in the
mechanism of electron scattering in passing from high
to low temperatures.
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Terahertz Radiation of Bloch Oscillators 
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Abstract—The action of a strong high-frequency electromagnetic field on a lateral semiconductor superlattice
is considered based on the quasi-classical electron transport theory in the self-consistent wave formulation. The
theory predicts that a lateral superlattice can emit terahertz radiation wave trains, which are associated with
periodic excitation of Bloch oscillations in the superlattice arising because of the development of transient pro-
cesses in it in a variable self-consistent electric field. The conditions necessary for observing Bloch oscillator
radiation were found. The spectral composition of radiation transmitted through the superlattice and the energy
efficiency of frequency multiplication related to Bloch oscillator excitation were calculated. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

According to Bloch and Zener [1, 2], electrons in a
periodic potential oscillate in real space in static elec-
tric fields. The frequency of oscillations is proportional
to a biased electric field, ωB ~ eE0d/", where E0 is the
applied electric field strength, e is the charge of the
electron, and d is the potential period. The nature of
these oscillations, known as Bloch oscillations, is deter-
mined by limited electron energies in the energy band
and is related to Bragg reflections from Brillouin zone
boundaries. The Bloch oscillations manifest them-
selves under the conditions of a quasi-ballistic electron
flight through the Brillouin zone, in other words, when
the inverse mean free time between collisions is short
compared with the Bloch frequency ωB . In bulk crys-
tals, this condition cannot be satisfied because of the
small value of d = 0.1–0.3 nm, which prevents the
observation (and excitation) of Bloch oscillations in
them.

Real prospects for observing Bloch oscillations
(and, simultaneously, hope for constructing a tunable
generator of terahertz frequencies) arose with the
appearance of semiconductor superlattices, that is, arti-
ficially grown heterostructures with chemical composi-
tions periodically changing on a nanometer scale [3].
The presence of an additional periodic potential deter-
mined by sample chemical composition changes splits
the energy spectrum of electrons into a system of
allowed and forbidden minibands with a characteristic
width of ∆ ~ 10–100 meV [4, 5].

The necessity of achieving a high mobility of charge
carriers in the conduction miniband for providing bal-
listic transport in the Brillouin zone imposes very
1063-7761/03/9701- $24.00 © 20127
severe requirements on the perfection of semiconductor
superlattice structures. Lateral superlattices based on
AlGaAs/GaAs appear to be most promising in this
respect. In these superlattices (which are ordered struc-
tures on the surface of a dielectric substrate, such as
systems of coupled quantum dots or wires), an addi-
tional potential is created for the two-dimensional elec-
tron gas localized close to the surface of the semicon-
ducting substrate, and the spectrum of minibands is
formed when electrons move over the surface of their
localization. A noticeable increase in the mobility of
carriers can be achieved in lateral superstructures by
creating superstructures whose geometry allows elec-
tron scattering by optical phonons to be essentially sup-
pressed between minibands and within them by appro-
priately selecting the widths of the first allowed and for-
bidden minibands [6, 7].

The specified and expected advances in technolo-
gies have actually brought lateral superstructures to the
fore as candidates for creating tunable terahertz radia-
tion sources. Several fundamental obstacles, however,
crop up on the way to designing such sources. First,
even under the conditions of rare collisions, macro-
scopic current oscillations at the Bloch frequency relax;
as a result, a stationary current–voltage characteristic is
established [8, 9]. Secondly, this current–voltage char-
acteristic possesses negative differential conductivity in
the region of electric fields corresponding to Bloch fre-
quencies exceeding the frequency of collisions. The
presence of a decreasing current–voltage characteristic
portion results in the low-frequency instability of a uni-
form quasi-neutral spatial charge distribution. This
instability splits the initially uniform electric field in
strongly doped samples into separate domains, whose
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Geometry of the problem: (a) an example of a GaAs/AlGaAs lateral superlattice (a quasi-one-dimensional system of coupled
quantum dots) and (b) scheme of problem statement.
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spatial dimensions may be commensurate with the
superlattice period.

The specified obstacles on the way to achieving
Bloch generation can be overcome using transient pro-
cesses that are accompanied by Bloch oscillation exci-
tations, namely, by switching a lateral superlattice,
which is in a bi- or multistable state, from the screening
regime into the regime of self-induced transparency [10]
under the action of an electromagnetic pumping wave.
According to [11, 12], lateral superlattice multistability
arises during the interaction of a strong electromagnetic
field with the superlattice and actually means the
appearance of a non-single-valued relation between the
strength of the internal self-consistent field in the super-
lattice and the field incident on the structure from the
outside. The physical reason for the multistability of
lateral superlattices is dynamic localization of mini-
band electrons [13, 14] in a self-consistent electromag-
netic field [11].

The central idea of this work is to utilize the phe-
nomenon of directly switching a lateral superlattice by
a pumping wave for the excitation of Bloch oscillations
cyclically repeated during each incident field period. It
can be expected that the frequency of Bloch oscillations
excited in the transient process, which is determined by
the self-consistent field value in the lateral superlattice,
will be substantially higher than the incident wave fre-
quency. In essence, this implies the automodulation
regime of the interaction of radiation with a superlattice
accompanied by a substantial enrichment of the spec-
trum of radiation as a result of coherent excitation of a
system of Bloch oscillators. The purpose of this work
was to elucidate the conditions of the arising of the
automodulation regime and to determine the spectral
characteristics of radiation from a lateral superlattice
and the energy effectiveness of the Bloch oscillator.

2. PROBLEM STATEMENT 
AND MAIN EQUATIONS

Our initial physical model will be a lateral superlat-
tice of thickness h situated on a dielectric substrate with
JOURNAL OF EXPERIMENTAL
permittivity εs (further, we ignore substrate dispersion
and absorption; that is, we assume that εs(ω) = const
and Imεs = 0). Let a linearly polarized plane electro-
magnetic wave be incident on the superlattice in such a
way that the electric field vector is oriented along its
growth direction (the geometry of the problem is sche-
matically shown in Fig. 1). The transport of electrons in
the superlattice will be described by the well-known
balance equations obtained in the one-miniband quasi-
classical approximation [9, 15],

(1)

where V and W are the mean (hydrodynamic) electron
velocity and energy, respectively; E is the self-consis-
tent field intensity in the superlattice; νW is the fre-
quency of inelastic collisions (energy relaxation fre-
quency); νV = νW + νel is the frequency of velocity relax-
ation (νel is the frequency of elastic collisions); m(W) =
µ0/(1 – 2W/∆); m0 = 2"2/∆d2 is the effective mass of the
electron at the bottom of the miniband; WT = ∆(1 – µ0)/2
is the mean thermal energy of the electron in the absence
of an electric field; m0 = I1(∆/2kBT)/I0(∆/2kBT); I0, 1(x)
are the modified Bessel functions; ∆ is the miniband
width; T is the temperature; and kB is the Boltzmann
constant. The first equation in (1) is the equation of
electron gas motion in a miniband with a sinusoidal
dispersion law, and the second equation is the law of
conservation of energy. The energy dependence of the
mass of the electron is described by the dispersion law
in the miniband and is physically determined by
Bragg reflections from Brillouin zone boundaries.
Further, we assume that the concentration of electrons
in the miniband is not very low and the polarizability
of the lateral superlattice is fully determined by the

dV
dt
-------

e
m W( )
--------------E νVV ,–=

dW
dt

-------- eEV νW W WT–( ),–=
 AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003



        

TERAHERTZ RADIATION OF BLOCH OSCILLATORS 129

                                          
conduction current, whose density is proportional to
the hydrodynamic velocity V,

(2)

where ne is the concentration of electrons recalculated
to the whole surface of the structure (see Fig. 1a). It fol-
lows that Eqs. (1) can be considered material equations
for an electromagnetic field whose polarization coin-
cides with the superlattice axis.

The electromagnetic field in the entire space will be
described by the Maxwell equations

(3)

(the medium is taken to be nonmagnetic, H = B). We
also assume that the superlattice thickness is smaller
than the wavelength in the medium. The simplest esti-
mates show that such conditions are more than amply
satisfied in real structures in the millimeter, submilli-
meter, and far IR wavelength ranges. Let the z axis of
Cartesian coordinates coincide with the incident wave
vector direction, and the x axis, with the axis of the
superlattice, as is shown in Fig. 1b. Place the z = 0 point
on the illuminated superlattice surface. The electric
current density, j = ex j, where ex is the unit vector along
x axis, takes on the following values along z axis:

(vacuum),

(lateral superlattice), and

(polarization current in the substrate).

In order to obtain equations that relate the incident,
reflected, and transmitted waves to each other and these
waves to the field within the superlattice, taking into
account its small thickness and ignoring weak diffrac-
tion effects caused by structure discreteness in the y
direction, we will treat the superlattice as an equivalent
current screen of an infinitesimal thickness. The vol-
ume current in the superlattice will be replaced by the
equivalent surface current,

(4)

where js = jh. The E = exE electric field satisfies the one-

j eneV ,=

∇ E× 1
c
---∂B

∂t
-------, ∇ B×–

1
c
---∂E

∂t
------- 4π

c
------j+= =

j 0, z 0<=

j eneV , 0 z h≤ ≤=

j
εs 1–

4π
-------------∂E

∂t
------, z h>=

j 0 z h≤ ≤( ) eneV jsδ z( ),=
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dimensional wave equation that directly follows from (3),

(5)

where current density j is given by (4) and the permit-
tivity is

The boundary conditions for the electric and magnetic
fields on the current screen lead to the following equa-
tions for E:

(6)

according to which the electric field is continuous and
the magnetic field experiences a jump on the surface
current (square brackets denote value jumps). The inci-
dent Ei and reflected Er electric fields and the electric
field transmitted through the superlattice Et will be
described using first-order wave equations related to
the well-known D’Alembert solution of the one-dimen-
sional wave equation in a uniform medium without dis-
persion,

(7a)

(7b)

(7c)

The wave fields contained in Eqs. (7) are subject to
boundary conditions (6) at z = 0. Substituting Ei, r, t
into (6) and expressing spatial through time derivatives,
we obtain

(8)

(9)

Equation (9) can be integrated in time. Taking into
account the zero boundary conditions, we eventually
have

(10)

ε z( )
c2

----------∂2E

∂t2
--------- ∂2E

∂z2
---------–

4π
c2
------∂j

∂t
-----,–=

ε z( )
1, z 0,<
εs, z 0.>




=

E[ ] z 0= 0,
∂E
∂z
------

z 0=

4π
c2
------

∂ js

∂t
-------,= =

1
c
---

∂Ei

∂t
--------

∂Ei

∂z
--------+ 0,=

1
c
---

∂Er

∂t
--------

∂Er

∂z
--------– 0,=

εs

c
--------

∂Et

∂t
--------

∂Et

∂z
--------+ 0.=

Ei Er+ Et,=

–
εs

c
--------

∂Et

∂t
-------- 1

c
---

∂Er

∂t
--------–

1
c
---

∂Ei

∂t
--------+

4π
c2
------

∂ js

∂t
-------.=

– εsEt Er– Ei+
4π
c

------ js.=
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Note that the electric field strength entering into (1)
coincides with the Et strength of the transmitted wave
field. Index “t” will therefore be omitted henceforth.
The incident field Ei is determined by an external
source and is a set function of time. Excluding Er

from (8) and (9), we obtain a temporally local linear
relation between js , Ei , and the self-consistent field E in
the lateral superlattice,

(11)

Equation (11), together with electron transport equa-
tions (1) and (2), forms a closed nonlinear system of
equations with respect to V, W, and E, which completely
describes the interaction of a normal incident wave with
a thin lateral superlattice. Let the field amplitude of the
incident wave vary in time by the harmonic law,

In these conditions, we can conveniently introduce the
dimensionless variables

The corresponding substitutions in (1) and (11) give

(12a)

(12b)

(12c)

E
1

1 εs+
----------------- 2Ei t( ) 4π

c
------ js– .=

Ei t( ) Em ωt.sin=

τ ωt, U
E
Ec

-----, w
V

µ0V0
------------,= = =

Ec
"ω
ed
-------, V0

d∆
2"
-------, ζ

2 W WT–( )
∆µ0

---------------------------.= = =

dw
dτ
------- U 1 ζ–( ) ν1w,–=

dζ
dτ
------ Uw ν2ζ ,–=

Ui τ( ) U θ0w,+=

U0

ω
1
2
---

ν2

ν1
-----

ν1ν2

Fig. 2. Esaki–Tsu current–voltage characteristic as a sta-
tionary solution to (14).
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where

and  = 4πe2ne/m0 is the electron plasma frequency
at the bottom of the miniband. The θ0 dimensionless
parameter is one of the key parameters of the theory
determining the dynamics of self-consistent fields in
lateral superlattices. It is estimated at a value close to
two for T = 300 K, ∆ = 100 meV, ω = 1012 s–1, h =
10−5 cm, ns = neh = 1013 cm–2, m0 = 0.1m (m is the mass
of the free electron), and εs ≈ 12.4 (a GaAs substrate).
It will be shown using (12) that electromagnetic radia-
tion incident on a superlattice with a frequency lower
than the characteristic collision frequency can cause
excitation of Bloch oscillations with terahertz frequen-
cies emitted by the system.

3. BISTABILITY AND TRANSIENT PROCESSES 
IN LATERAL SUPERLATTICES 

IN AN EXTERNAL ELECTROMAGNETIC FIELD

First, consider a lateral superlattice in a given sta-
tionary electric field. Let us substitute U = U0 = const
into (12a) and (12b). These equations take into account
both quasi-ballistic motion of electrons in a miniband
and dissipation caused by scattering [9, 16]. In particu-
lar, at ν1, 2 = 0, the solution to (12a) and (12b) can be
written as

(13)

where U0 is the dimensionless Bloch frequency. Equa-
tion (13) describes spatially localized oscillatory
motion of charge carriers with the ωB = eE0d/" fre-
quency in a constant electric field (Bloch oscillations).
Generally, (12a) and (12b) are reduced to the damped
harmonic oscillator equation for the velocity of elec-
trons [9],

(14)

which describes transient processes in the system. The
stationary solution to (14) is the well-known Esaki–Tsu

ν1

νV

ω
-----, ν2

νW

ω
------,= =

θ0

µ0

1 εs+
-----------------

ωpe
2

ω2
--------ω

c
----h, Ui τ( ) 2

1 εs+
-----------------

Ei τ( )
Ec

------------,= =

ωpe
2

ω τ( ) U0τ( )sin
eE0d

"
------------t 

  ,sin= =

d2w

dτ2
--------- ν1 ν2+( )dw

dτ
------- U0

2 ν1ν2+( )w+ + ν2U0,=
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current–voltage characteristic

(15)

shown in Fig. 2. The process of velocity relaxation to
current–voltage characteristic (15) substantially
depends on bias field U0. It is virtually aperiodic at U0 <

 =  (  corresponds to the current extre-
mum of the current–voltage characteristic) and is
accompanied by oscillations of w at the Bloch fre-

quency at U0 > . The relaxation time is here inde-
pendent of U0 and determined exclusively by collision
frequencies τrel ≈ 2/(ν1 + ν2). It follows that, if we suc-
ceed in changing the superlattice state in a time of ∆τ <
τrel , there will be macroscopic current oscillations at the

Bloch frequency at a constant field U0 @ . This
will result in an emitting electromagnetic wave train of
duration τrel . In reality, taking such ultrafast actions on
a superlattice is an exceedingly difficult task, because
the corresponding times do not exceed several hundred
femtoseconds. We will show that transient processes
accompanied by the emission of electromagnetic waves
at terahertz frequencies can be induced by high-power
electromagnetic radiation interaction with a superlat-
tice because of the bistability arising in the system.

Let the frequency of the electromagnetic wave inci-
dent on the superlattice be not too high, ν ≥ 1 (for sim-
plicity, we ignore elastic collisions, ν1 = ν2 = ν, which
does not infringe the physical meaning). This means for
typical lateral superlattices [12] that the pumping wave
frequency should not exceed several tenths of a tera-
hertz. The velocity of electrons in the quasi-stationary
mode is then described by (15), into which we must
substitute U (the self-consistent field in the superlat-
tice) for U0. The relation between U and the incident
wave field is given by (12c). As a result, we obtain an
approximate equation for the self-consistent field in the
lateral superlattice, namely,

(16)

The dependences of U on the current Ui value are
shown in Fig. 3. At parameter θ0 values larger than θ0c =
8ν, the curves have regions where these dependences
are not single-valued, which means the appearance of
bistability in the system when the electric field strength
of the incident wave falls in the interval

whose boundaries at θ0 @ θ0c are approximately deter-

w0
ν2U0

U0
2 ν1ν2+

-----------------------=

U0
m( ) ν1ν2 U0

m( )

U0
m( )

U0
m( )

Ui τ( ) U τ( )
νθ0U τ( )

U2 τ( ) ν2+
--------------------------.+≈

Uc2 Ui Uc1,< <
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mined by the asymptotic equation

(17)

The Uc1, c2(θ0) dependences are shown in Fig. 4.

It follows that the dynamics of the interaction of
incident radiation with the superlattice at θ0 > θ0c sub-
stantially depends on the incident wave amplitude

 = Em/Ec and the critical field Uc1. If  < Uc1,
the field in the superlattice is fully described by the
lower branch of curve 4 in Fig. 3. The self-consistent

Uc1 θ0/2, Uc2 νθ0.≈ ≈

Ui
m( ) Ui

m( )

U

1
2 3

4

U max

U2
*

U1
*

UiUc1Uc2

Fig. 3. Dependences of the electric field intensity in a lateral
superlattice on the incident wave field intensity at ν = 1 and
various θ0 values: (1) θ0 = 0, (2) θ0 = 3 < θ0c , (3) θ0 = 8 =
θ0c , and (4) θ0 = 20 > θ0c; curve 4 characterizes superlattice

bistability;  ≈ ν and  ≈ .U1
* U2

* νθ0

8

100 20 30

12

16

20

4
1

2

Uc1, Uc2

θ0

Fig. 4. Dependences of Uc1 (solid lines) and Uc2 (dashed
lines) on θ0: (1) ν = 1 and (2) ν = 5.
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field U then does not exceed the  = ν value, which
is, in turn, evidence of the screening state of the super-

lattice (U ! Ui). If  > Uc1, the system switches to
a new state at time instants when Ui(τ) > Uc1. This new
state is described by the upper branch of curve 4
(Fig. 3). The new state, in which U ≈ Ui , can be treated
as self-induced structure transparency. Indeed, the lat-

U1*

Ui
m( )

0.4
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U/Ui

Fig. 5. Phase portraits of system (12) showing the self-con-
sistent field dynamics in a lateral superlattice at θ0 > θ0c:
(a) Ui < Uc2, (b) Uc2 < Ui < Uc1, (c) Ui > Uc1; equilibrium
states: (1) stable node, (2) saddle, and (3) stable focus.
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eral superlattice in a weak field behaves like an ordi-
nary plasma film with a plasma frequency determined
by the concentration of electrons and their effective
mass. The electric current in the superlattice is then
described by the quasi-linear increasing portion of the
current–voltage characteristic (15). The transparency
regime in a strong field arises because of the transition
of the superlattice to a state with weak electric currents
on the decreasing branch of the current–voltage charac-
teristic. At the instants of time when Ui(τ) becomes
equal to Uc1, the interaction process ceases to be quasi-
stationary [in the sense that the instantaneous local rela-
tion between the incident field and the self-consistent
field in the lattice described by (16) disappears]. The
transition from the screening mode to the self-induced
transparency mode shown in Fig. 3 by the arrow
upward is qualitatively described by (14) and is accom-
panied by electric field and electron velocity oscilla-
tions at a frequency close to the Bloch frequency. The
Bloch frequency is here determined by the strength of
the self-consistent field in the superlattice, approxi-
mately equal to θ0/2 in the stationary state. It follows
that this transient process is accompanied by the emis-
sion of a wave train with a frequency proportional to
the concentration of electrons. The duration of such a
wave train (“flash”) is determined by the condition

(18)

where ∆τ is the time elapsed between the transitions of
the system into the self-induced transparency state and
back into the screening mode (the downward arrow in
Fig. 3). Note that such radiation flashes occur if the
negative differential conductivity of the superlattice in
the transparent state, which splits the uniform electric
field into separate strong field domains [17, 18], does
not cause spatial charge instability to arise. This is pos-
sible if the corresponding instability increment Γ is
smaller than the frequency of Bloch oscillations in the
transient process, Γ < ωB .

The complete picture of the self-consistent electric
field dynamics in a lateral superlattice can be obtained
from Fig. 5, where the phase portraits of system (12) at
fixed Ui values are depicted. Fig. 5a corresponds to the
condition Ui < Uc2. The system possesses a single equi-
librium state of the type of a stable node. If the pumping
field varies fairly slowly, that is, τrel < 1, the superlattice
is always in this equilibrium state (state 1 in Fig. 5a).
The system adiabatically follows equilibrium state dis-
placements on the phase plane when Ui(τ) changes. At
the instants of time when Uc2 < Ui(τ) < Uc1, two addi-
tional equilibrium states appear on the phase plane, a
saddle point (state 2 in Fig. 5b) and a stable focus
(state 3 in Fig. 5b). This means the arising of bistability
in the system (two of three equilibrium states are sta-
ble). Nevertheless, this change in the topology of the
phase plane does not qualitatively influence the dynam-

Twt min τ rel ∆τ,{ } ,∼
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ics of the self-consistent field, because the superlattice
is as previously in equilibrium state 1. The situation
dramatically changes when Ui(τ) attains a value of Uc1.
The saddle point and the stable node coalesce and dis-
appear, and the stable focus only remains on the phase
plane (Fig. 5c). The corresponding phase trajectory
coils in toward this equilibrium state and exhibits
damped self-consistent field oscillations in the superlat-
tice. The characteristic damping increment of these
oscillations, which are associated with the transition of
the superlattice into the transparent state, remains close
to ν. At the same time, the oscillation frequency in
dimensionless variables approximately equals Ω ≈ θ0/2,
as is easy to see from (12). It can be shown that the Ω
value obtained exactly corresponds to the Bloch fre-
quency in an electric field whose strength equals the
intensity of the self-consistent lateral superlattice field
in equilibrium state 3 (Fig. 5c). We also see that the fre-
quency of these oscillations (of course, for θ0 > θ0c) is
θ0/2 times higher than the pumping field frequency.
For the θ0 = θ0c threshold value, we have the lowest
possible Bloch frequency in the system, Ωmin ≈ 4ν,
where ν ≥ 1. It follows that a high frequency wave train
related to Bloch oscillations of electrons in the super-
lattice will be emitted at each pumping wave half-
period. The electromagnetic field frequency in such a
flash of Bloch oscillations is determined by the elec-
tron concentration in the superlattice (θ0). The duration
of the wave train is given by (18). The switching of the
superlattice into the screening mode occurs when the
self-consistent field intensity decreases after the focus
(state 3 in Fig. 5b) and the saddle (state 2 in Fig. 5b)
coalesce and is aperiodic in character because of the
node type of the final equilibrium state (state 1 in
Figs. 5a, 5b).

4. BLOCH OSCILLATOR EMISSION
IN AN EXTERNAL ELECTROMAGNETIC FIELD

The transient process that occurs after the coales-
cence of equilibrium states 1 and 2 (Fig. 5) and is accom-
panied by electric field oscillations at the Bloch fre-
quency (Fig. 5c) can be approximated by the equation

(19)

where Umax and  are shown in Fig. 3. The initial
amplitude of oscillations of the self-consistent field in
the superlattice, UB = Umax – , depends on the posi-
tion of the representation point on the phase plane after
equilibrium states 1 and 2 (Fig. 5b) coalesce at τ = 0.
The time dependence of the self-consistent electric
field in the superlattice described by (19) is exact in the
neighborhood of the stable focus. The approximate
equation (19) does not take into account the anhar-

U τ( ) Umax Umax U1*–( )e ντ– θ0

2
-----τ 

  ,cos–=

U1*

U1*
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monic character of the Bloch oscillator, which mani-
fests itself when the representation point is fairly far
from the specified equilibrium state. However, this
anharmonicity cannot lead to a noticeable error in
Bloch oscillator efficiency, because the corresponding
nonlinear broadening of the generated spectral line is
much smaller than the broadening caused by oscillation
damping as a result of electron scattering. The slow
Umax(τ) time dependence in (19) related to the time
dependence of the incident field can also be ignored
because Umax(τ) changes comparatively insignificantly
during a pulse of excited Bloch oscillations. These
assumptions allow us to calculate the energy contained
in the excited high-frequency wave train. The maxi-
mum duration ∆τ of a pulse of Bloch oscillations is
determined by the time between mode switchings,

(20)

where  is the lower positive branch of the func-
tion. Equation (20) only holds if spatial charge instabil-
ity in the equilibrium state of the stable focus type
(caused by the negative superlattice differential con-
ductivity) does not have sufficient time to develop. The
absence of such Gunn instability presupposes that the
inequality Γ < ωB , where Γ is the instability increment,
is satisfied. The instability increment can roughly be
estimated as [19]

(21)

Here, εL is the lattice dielectric constant of the superlat-
tice. The superlattice differential mobility dV/dE
should be negative near the equilibrium state. Substitut-
ing the obtained characteristic field into (21) yields the
condition for the concentration of electrons in the
superlattice that prevents the development of Gunn
instability, namely,

(22)

Condition (22) imposes a fairly strict limitation on the
concentration of electrons and the frequency of colli-
sions. We assume (22) to be fulfilled. Equation (19) can
then be used to calculate the electromagnetic energy
emitted by the superlattice into the environment in the
form of a pulse of damped Bloch oscillations during
each incident pumping wave half-period. Dividing the
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obtained value by the introduced pumping wave energy,
we obtain the energy efficiency of the excited Bloch
oscillator, which, for θ0 @ ν, can be written in the
form

(23)

The K( ) dependences constructed according
to (23) at various fixed θ0 values are shown in Fig. 6a.
Note again that the θ0/2 parameter determines the
dimensionless current frequency of emitted Bloch
oscillation flashes. We see that the efficiency maximum
is almost independent of θ0 and amounts to several per-
cent at ν = 1. Only the line width grows as θ0 increases.

The K( ) dependences for various collision fre-
quencies at a fixed θ0 = 40 value are shown in Fig. 6b.
The efficiency maximum of the Bloch oscillator
decreases as ν increases. The K = const level lines are

shown in Fig. 7 on the ( , θ0) parameter plane. We
see that superlattices with fairly high θ0 values are most
suitable for frequency multiplication purposes. At the
same time, a high θ0 value leads to the necessity of
using very strongly doped superlattices. As a conse-
quence, the Bloch generation threshold increases. We
should, however, mention the following. In the θ0 @ θ0c

limit, the frequency of generated Bloch oscillations
does not depend on the pumping wave frequency.
Indeed,

(24)

We must decrease the incident wave frequency to
increase θ0. This, however, decreases efficiency K
because of an increase in the relative collision fre-
quency ν. The optimal energy efficiency of Bloch oscil-
lations is achieved at ν ≈ 1, when the superlattice exists
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Fig. 8. Oscillograms of the electric fields of waves transmitted through a lateral superlattice at θ0 = 40 [(a)  = 27 ~ Uc1,

(b)  = 30 > Uc1, and (c)  = 35 > Uc1] and θ0 = 90 [(d)  = 58, (e)  = 63, and (f)  = 70]. Shown by the side

of Figs. 7b, 7c, 7e, and 7f are the fine structures of wave train half-periods related to Bloch oscillations in the superlattice.
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in the transparent state during one incident wave half-
period, ∆τ, for a time on the order of the Bloch oscilla-
tion damping time.

We performed numerical calculations by solving (12).
The oscillograms of the electric field strength in a lat-

eral superlattice calculated at various θ0 and  val-

ues are shown in Fig. 7. We see that, at  below the
threshold value (Figs. 7a, 7d), the electric field in the
superlattice has a quasi-harmonic time dependence.
This corresponds to the screening mode and a weak
field in the superlattice. However, if the incident wave
amplitude exceeds the threshold value, Bloch oscilla-
tions are excited in the transient process when the
superlattice switches from the screening to the trans-
parent mode. The spectral composition of these oscilla-

Ui
m( )

Ui
m( )
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tions weakly depends on  (Figs. 7b, 7c, 7e, 7f).
The value by which the field exceeds the threshold
value largely determines the duration of the wave train
of Bloch oscillations, because the ∆τ time interval

increases as  grows until ∆τ becomes comparable
to 1/ν. Virtually, the wave train frequency only depends
on θ0. The spectra of radiation transmitted through the

lattice are shown in Fig. 9 for two  and two θ0 (see
Fig. 7) values to show how the spectral composition of
radiation emitted from the superlattice changes depend-

ing on .

We estimated the effect of radiation of Bloch oscil-
lators excited by an electromagnetic field in a superlat-
tice to obtain the following particular result. At νW =
νV = 6 × 1011 s–1, the pumping wave frequency f =

Ui
m( )

Ui
m( )

Ui
m( )

Ui
m( )
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Fig. 9. Spectra of transmitted radiation corresponding to Figs. (a) 7b, (b) 7c, (c) 7e, and (d) 7f (N is the harmonic number).
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0.1 THz, and the surface electron concentration ns =
ne/h = 1013 cm–2, the critical energy flux density of inci-
dent radiation is Sin ≈ 5 × 105 W/cm2, and the frequency
of the emitted wave train of Bloch oscillations is fB ≈
3 THz.

5. CONCLUSIONS

We theoretically proved the possibility of emission
of terahertz Bloch oscillator radiation excited by an
electromagnetic field in a lateral semiconductor super-
lattice. This radiation is a sequence of wave trains
resulting from flashes of Bloch oscillations emitted by
the superlattice. The Bloch oscillations themselves
arise in cyclically repeating transient processes. At a
pumping frequency lower than or comparable to the
JOURNAL OF EXPERIMENTAL 
effective electron collision frequency, Bloch oscilla-
tions are excited during every half-period of the electro-
magnetic wave incident on the superlattice. To summa-
rize, a lateral superlattice can be considered a source of
terahertz electromagnetic radiation of a new type. The
superlattice parameters necessary for transient pro-
cesses to be excited in it in an external electromagnetic
field are quite achievable for modern technologies. In
addition, some types of sources of electromagnetic
waves in the millimeter and submillimeter wavelength
ranges have characteristics suitable for directly observ-
ing the emission of Bloch oscillators from semiconduc-
tor lateral superlattices. We stress once more that the
spatial charge instability is incapable of suppressing
Bloch oscillations because its development takes a
comparatively long time.
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The Distribution of Equilibrium Magnetization Currents
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in a Finite Magnetic Field
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Abstract—The distribution of equilibrium magnetization currents in two-dimensional bounded systems placed
in an external magnetic field is studied. A half-plane, a quantum disk, and a wide quantum ring are considered.
The passage from classical to quantizing magnetic fields is investigated. The edge currents near the boundary
of the half-plane are shown to experience damped (far from the boundaries) spatial oscillations related to the
Fermi electron wavelength. The region occupied by currents was found to narrow with increasing field. Apart
from these oscillations, the current contains a component that smoothly changes with distance but oscillation-
ally depends on the position of the Fermi level relative to the Landau levels. The suppression of the oscillations
by temperature is studied. The spatial distribution of the current in a circular disk and a ring is shown to signif-
icantly depend on the position of the Fermi level. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The magnetic field that acts on a low-dimensional
system is traditionally assumed to coincide with the
external magnetic field. Nevertheless, the electron mag-
netization in such a quantum system as an atom appre-
ciably changes the magnetic fields that act on atomic
nuclei and, therefore, is important, for example, in
nuclear magnetic resonance (NMR). Previously [1], we
studied the magnetic-field distribution in systems with
dimensional quantization in the linear (in external mag-
netic field) approximation. We showed that the equilib-
rium current density and the current-induced magnetic
field experienced oscillations as functions of the dis-
tance from the boundaries and the Fermi energy.

This problem is related to the problem of the so-
called orbital magnetism—the magnetization of a
quantum system in an external magnetic field. The
orbital magnetism was intensively studied in various sys-
tems with separable and inseparable variables [2–4]. The
magnetic susceptibility of large quantum systems at a
low temperature T smaller than the energy level spacing
∆E was shown to experience large fluctuations, with the
sign of the susceptibility changing when the Fermi level
crosses the energy levels of the system. We emphasize
that the low-temperature limit may be considered as
being opposite to the thermodynamic limit T @ δE.
Therefore, when T  0, the extensive quantities, in
particular, the magnetic susceptibility, are not self-
averaged.
1063-7761/03/9701- $24.00 © 20138
Here, our goal is to investigate the spatial distribu-
tion of an equilibrium current in various two-dimen-
sional systems with boundaries in a strong magnetic
field. We study a semi-infinite medium, a quantum disk,
and a quantum ring. Of particular interest to us is the
mesoscopic limit where the characteristic size of the
system is much larger than the electron wavelength
but, at the same time, the quantum properties are still
essential.

2. AN EDGE CURRENT 
IN A TWO-DIMENSIONAL SYSTEM 

IN A FINITE MAGNETIC FIELD

Let us consider the problem of the equilibrium cur-
rent density in a semi-infinite sample x > 0, –∞ < y < ∞,
placed in a magnetic field Bz = B. This limit describes
the current density when the characteristic size of the
system is larger than that of the region in which the
edge current flows. In particular, this limit is realized
when the characteristic size of the system exceeds the
cyclotron diameter. The solution is applicable to arbi-
trarily shaped bounded regions provided that the local
curvature of the boundary is smaller than the reciprocal
of the cyclotron radius.

We choose the calibration of the vector potential to
be Ay = Bx. The states in a semi-infinite sample in the
presence of a magnetic field can be described by the
longitudinal momentum p and the transverse number n:
ψn, p(x)eipy. In what follows, " = 1. When the boundary
of the system is a rigid wall, the wave functions must
003 MAIK “Nauka/Interperiodica”
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satisfy the zero condition at the x = 0 boundary. These
wave functions can be expressed in terms of the func-
tion of a parabolic cylinder Dν(x):

(1)

Here, a =  is the magnetic length and xp = –pa2.

The boundary condition (– ) = 0 defines the
energy levels En, p = ω(νn(p) + 1/2), where n = 0, 1, …;
ω = eB/mec; and me is the effective electron mass.

The current density is

(2)

where j0 = eω/a = e/(mea3) is the characteristic current
density produced by one electron at the lower Landau
level in a magnetic field, f± = f(En(p) ± gµBB/2), f(E) =
(exp((E – µ)/T) + 1)–1 is the Fermi distribution function
(µ and T are the chemical potential and the temperature,
respectively), and g is the g factor. Expression (2) con-
tains the two contributions that arise when averaging
the orbital and spin parts of the current density operator
(the first and second lines, respectively). Below, we dis-
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Fig. 1. The left panel shows the edge current density relief,
in units of j0, for a finite magnetic field as a function of the
distance to the boundary and the Fermi energy. The gray,
white, and black colors correspond to zero, positive, and
negative current densities, respectively. The right panel
shows a plot of the current density against the distance for
selected Fermi energies (marked by the straight lines in the
left panel).
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regard the spin splitting by assuming that the g factor is
small.

The results of our calculations of the edge current
using formulas (1) and (2) are presented in Figs. 1–3.

Let us discuss the behavior of the current density at
a low temperature. First, the direction of the current is
determined by the vector product of the normal and the
magnetic field. However, this does not imply that the
sign of the surface current density is constant. Indeed,
let only one Landau level be occupied. Consider the
states located far from the boundary. These states are
not perturbed by the wall. The current density given by
one state with a specified p is antisymmetric about the
point xp . As the boundary is approached, the level is

jy
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0
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0 2 4 6 8
x/a

T = 0

T = 0.1ω

T = ωT = 0.2ω

Fig. 2. The edge current density as a function of the temper-
ature. The Fermi level is located near the fifth Landau level.
The solid and dotted curves correspond to EF = 4.4ω and
4.6ω, respectively; in these cases, the total currents at low
temperatures are oppositely directed. At temperatures T @
|EF – 4.5ω|, the curves merge together. At T @ ω, the current
density ceases to depend on the magnetic field.
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Fig. 3. The total edge current as a function of the magnetic
field at T = 0.
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pushed upward. The occupied levels that underlie the
Fermi level have similar wave functions. Momentum
averaging compensates for the current density far from
the point of intersection of the energy level with the
Fermi level, while near this point the uncompensated
contribution of constant (in our case, positive) sign
remains. As the Fermi level approaches the lower Lan-
dau level, the edge state increasingly recedes from the
boundary according to the law ln1/2(µ/ω – 1/2) and
becomes increasingly ideal. As the Fermi level rises,
the wave function begins to be distorted by the bound-
ary, the positive contribution to the average current den-
sity is suppressed, but a negative contribution
appears—the plot of the current density acquires a neg-
ative minimum.

As the next Landau levels are crossed, new contribu-
tions from these levels are added to the current density.
These contributions are initially located far from the
boundary but then approach it and merge together with
the contributions from the lower lying states. The
higher the state, the wider the region occupied by them
and the more oscillations the corresponding contribu-
tion to the current density experiences. When the num-
ber of occupied levels becomes large, the edge contri-
butions from different Landau levels merge into the
Friedel oscillations of the surface current density that
we considered previously [1]. However, in contrast to
the previously considered limit of a weak magnetic
field (a linear response), the number of oscillations
proves to be limited—the surface current is distributed
in a thickness of the order of the cyclotron diameter
2rc = 2vF/ω, where vF is the Fermi velocity. The current
density oscillates inside this region and exponentially
decays outside. The number of oscillations is deter-
mined by the number of occupied Landau levels N =
[µ/ω – 1/2], where […] represents the integer part. In
the region x ! 2rc , an expansion can be made in terms
of the magnetic field, the magnetic-field effect reduces
to a factor, and the surface current density is given by
the expression from [1].

A smooth dependence on the coordinate x is super-
imposed on the spatial oscillations. This smooth contri-
bution determines the total edge current (the coordinate
integral) that experiences alternating Shubnikov oscil-
lations as a function of the magnetic field (Fig. 3). In the
weak-field limit, the smooth contribution transforms
into the contribution studied in [1] that linearly depends
on the distance and the oscillations propagate to an infi-
nite distance from the boundary, being damped as a
power law.

As the temperature rises (see Fig. 2), the current-
density oscillations are suppressed, more strongly at
large distances from the surface. This suppression
results from the thermal misphasing of the electrons
near the Fermi surface at the characteristic length lT =
kF/(2πmeT), where kF is the Fermi momentum [1].
Competition between the two lengths that restrict the
oscillations arise in a finite magnetic field: the cyclo-
JOURNAL OF EXPERIMENTAL
tron diameter and lT (the smaller length works). The
smooth contribution is suppressed by the temperature
and scattering in the same way as the surface oscilla-
tions at a large distance. This is how the results obtained
for weak and strong magnetic fields are joined.

At first glance, the alternating oscillations of the
total edge current seem strange if it is considered that
the total current at a high Fermi energy must be diamag-
netic and be described by the formula

However, in the limit of a large system, the total
edge current J is directly related to the magnetic
moment of the system by M = JS/c, where S is the area
of the system. At the same time, the total moment at
T = 0 can be determined by using the Ω potential of the
system [5]:

(3)

This expression oscillates with µ, experiencing jumps
when the Fermi level crosses the Landau levels.
Another property of this formula is that the moment
becomes zero when the Fermi level lies halfway
between the Landau levels.

On the other hand, the edge currents under nonequi-
librium conditions are related to the quantization of the
microcontact resistance in the regime of adiabatic
transport in the quantum Hall effect. The total current
in a (n, p) state is given by the expression

(4)

Since the states are localized in coordinate x, the edge
current is determined by the states with xp near the
boundary. The partial current jn, p exponentially
decreases with increasing xp . Therefore, summing the
currents over all states, we obtain the final value. These
considerations determine the quantization of the micro-
contact resistance.

The total edge current in the semi-infinite problem
at T = 0 is

(5)

The current through the structure can be expressed in
terms of the difference between the edge currents (5)
that correspond to the chemical potentials of the edges
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µ1 and µ2. The difference µ1 – µ2 in the nonequilibrium
problem is equal to the potential difference V applied to
the microstructure ends. It thus follows that the non-
equilibrium current is J = e2VN/h. Under equilibrium
conditions, the chemical potentials of the edges are
equal, but the edge current from one end must be
defined by the same expression as that in the absence of
equilibrium. However, formula (5) understood in this
way contradicts formula (3) for the moment, as well as
numerical calculations.

To elucidate the nature of the error, let us determine
the contribution from the Landau states with a momen-
tum between p1 and p2 to the current density in the
boundaryless problem, with  @ a:

(6)

where ϕn(ξ) are the dimensionless normalized func-
tions of a harmonic oscillator. The contributions from
the regions near x1 and x2 are independent and separated
in space. Thus, although the total current in each Lan-
dau state becomes zero, momentum integration yields
two edge currents. When we performed the integration
over all momenta in formula (5), the correct limit
should have been calculated by first limiting the
momentum integration below by some point and then
letting it tend to –∞. The contribution from the current
density near x1 that corresponds to p1 to the total current
obtained in this case is localized far from the boundary
and it should be subtracted from the total surface cur-
rent.

We determine this part of the current by integrating
jy(p1, p2; x) over x near xp over a region that is large
compared to the characteristic size of the wave func-
tion:

(7)

Here, ∆ @ a . Subtracting (7) from (5) yields a cor-
rect expression for the edge current J = Mc/S with M
from formula (3). The numerical calculation (see
Fig. 3) agrees with this formula.
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3. DIAMAGNETIC CURRENTS 
IN A QUANTUM DISK 

AND A QUANTUM RING

Let us consider the distribution of a nondecaying
current and magnetic field in systems with a circular
geometry or, more specifically, in a plane ring with
inner and outer radii of r and R, respectively. A circular
disk is the special case of a ring at r = 0. We assume that
the magnetic field is directed along the z axis of the sys-
tem and that the vector potential has an azimuthal cali-
bration, Aφ = Bρ/2 (ρ and φ are the polar coordinates).
The wave function with the moment component m is

Ψ(ρ, φ) = eimξψnm(φ)/ , where ξ = (ρ/a)2/2, and the
radial function satisfies the equation

(8)

the zero conditions at the boundary, and the normaliza-

tion  = 1. The current has only the azi-

muthal component jφ:

(9)

In the weak-field limit, the current density can be
expressed in terms of wave functions in the absence of
a magnetic field:

(10)

where  and  are the unperturbed wave
functions and energy levels, respectively. The summa-
tion is performed over the transverse quantum numbers
n and m.

In the special case of a disk of radius R in the

absence of a magnetic field, the wave functions 
are

(11)

where λn, m is the nth zero of the Bessel function Jm(x)

and the energy levels are  = . The
first and second terms in (10) are negative and positive,
respectively, and correspond to the diamagnetic and
paramagnetic contributions to the magnetic susceptibil-
ity of the system. At a low temperature, the paramag-
netic contribution is nonzero only if the chemical
potential coincides with one of the system’s energy lev-
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Fig. 4. (a) The evolution of the current density in a disk with the parameter kFR (indicated on the curves). The external magnetic

field is assumed to be weak, T = 0.5/(2meR
2). The current density is measured in units of j0(a/R). The Fermi level is near the trans-

verse quantization level with  = 14.7/(2meR
2) for kFR ≈ 3.7 and near  = 310.3/(2meR

2) for kFR ≈ 17.5. As the Fermi level

passes the quantization levels, the diamagnetic and paramagnetic dependences alternate. (b) The distribution of the induced mag-
netic field, in units of B(e2/mec

2)/R.

E1 1,
0

E4 4,
0

els, while the diamagnetic contribution is constant if µ
lies between the energy levels. The delta-shaped pattern
of the paramagnetic contribution stems from the fact
that the azimuthally symmetric system is doubly degen-
erate in the sign of m. This degeneracy is removed by a
sufficiently weak magnetic field, which is responsible
for the large positive (paramagnetic) peaks in the sus-
ceptibility in the low-temperature limit. The diamag-
netic contribution originates from the first-order correc-
tions of the term e2A2/2mec2 = (eBρ/c)2/8me in the
Hamiltonian. Apart from the factor oscillating with ρ,
the current density is proportional to the radius, which
corresponds to a quadratic increase of the susceptibility
with the system’s size.

Figure 4a shows the current-density distribution in
the special case of a weak magnetic field that was deter-
mined by using formulas (10) and (11). Figure 5 shows
the current-density distribution in a quantum ring in a
strong magnetic field that was calculated by using the
solution of Eq. (8) and formula (9) for the current
density.

Note that the current density radially oscillates with
a period of π/kF , while the oscillation phase at the
boundary is fixed. In a plate and a strip, the dependence
of the current density on the transverse coordinate [1]
was antisymmetric. In a ring, the radial dependence
becomes antisymmetric relative the circumference of
radius (R – r)/2 as the ring becomes narrower. For large
EF/ω and kF(R – r), the radial oscillation amplitude is
damped as the distance from the boundaries increases.
This contribution represents the edge current. In addi-
tion to the radial oscillations, the azimuthal current has
a regular, nearly linear dependence. The slope of this
JOURNAL OF EXPERIMENTAL 
dependence and the slope sign are sensitive to the mag-
netic-field strength. In a strong magnetic field, the cur-
rent density also oscillates with the magnetic field.

The presence of an edge current causes the magnetic
field that acts on a two-dimensional system to slightly
change. A nonuniformly distributed current produces a
nonuniformly distributed magnetic field. The addition
to the z component of the magnetic field in the disk
(z = 0) plane is described by the expression

(12)

where K(k) and E(k) are the elliptic integrals. The mag-
netic field at the disk center can be expressed in terms
of elementary functions:

(13)

To a first approximation, the electron density for a suf-
ficiently large disk may be assumed to be uniform. In
this case, the correction to the external magnetic field at
the disk center in the diamagnetic state of the disk is
defined by the formula δB = B(e2/mec2)πnR, where n is
the electron surface density. If we increase the disk size
while keeping the density constant, then the correction
to the magnetic field will increase proportionally with
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Fig. 5. The current-density distribution in quantum rings in a strong magnetic field. The values of EF/ω are indicated on the curves.

(a) The evolution of the current density (in units of e /me = j0(kFa)3) with the magnetic field B for fixed EF . The Fermi wave vector

was chosen to be kF = 6.4/r and the radii are related as R : r = 1.7. (b) The evolution of the current density (in units of j0) with EF
for fixed B. The ratios of the parameters were chosen to be r : a = 1.4 and R : a = 7.1.

kF
2

to the disk radius. For a GaAs disk with an electron sur-
face density of 1012 cm–2 and a radius R ~ 10–5 cm, the
ratio δB/B ~ 1.2 × 10–4.

Figure 4b shows the quantity δB(ρ) calculated using
formula (12) in the limit of a weak external magnetic
field. It should be noted that δB increases with the sys-
tem’s size at T = 0. This increase is limited because we
disregarded the electron scattering: the system’s energy
level spacing must be larger than the damping of the
electronic states. As the system’s size increases, the
energy level spacing becomes comparable to the tem-
perature or the damping, and the correction to the exter-
nal magnetic field ceases to depend on the size. For a
disk of radius 10–5 cm, the mean energy level spacing is
∆E = 1/(meR2) ~ 1 K and the condition T < ∆E is easily
satisfied.

The spatial nonuniformity of the magnetic field can
affect any responses that sharply depend on the mag-
netic field, in particular, the Shubnikov or geometrical
oscillations of the magnetoresistance (the magnetic
focusing for small samples). One might expect the field
nonuniformity to smear the sharp features in these
quantities. Other cases can be based on the sensitivity
of the nuclear spins to the local magnetic field. Impuri-
ties with nuclear spins located on certain atomic planes
can act as a gauge of the local magnetic fields. We can
suggest using both a time-constant magnetic field for
shifting the position of the NMR line and a variable
magnetic field for the excitation of transitions. A time-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
varying and nonuniform magnetic field can be pro-
duced by varying the wave functions using, for exam-
ple, a field electrode. A periodic variation of the elec-
tron gas temperature through a variable pulling voltage
(a rise in temperature suppresses the Friedel oscilla-
tions by changing δB) can be suggested as another way
of producing a variable magnetic field.
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Abstract—The effect of suppression of static magnetization (magnetization collapse) of an anisotropic hard
superconductor by an alternating magnetic field is studied experimentally and theoretically. The measurements
are performed in constant and alternating magnetic fields H and h(t) which are parallel to the sample surface
and are mutually orthogonal. Superconducting samples of the Y-123 system are cut from a grain-oriented piece
in such a way that the c axis lies in the plane of the plate. It has been established that the amplitude of the alter-
nating field for which the complete suppression of the magnetization occurs significantly depends on the field
orientation relative to the crystallographic axes of the sample. The dynamics of the magnetization collapse is
studied, and it is established that, in some cases, the magnetic moment varies nonmonotonically with the growth
in amplitude h0 of the alternating field. A peculiar effect of transition (induced by field h(t)) of the supercon-
ductor from the paramagnetic into the diamagnetic state is discovered. The results of observations are explained
in the framework of the model of critical state generalized to the anisotropic case. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

For many years, the physics of turbulent matter of
hard superconductors has attracted the attention of
researchers. Recently, a group of new interesting
effects in a turbulent liquid was discovered. Among
these effects, it is necessary to distinguish the phenom-
enon of macroturbulence observable in a system con-
taining vortices of opposite directions [1–3]. The phys-
ical nature of macroturbulence is connected with the
magnetic flux anisotropy in superconductors of the 1–
2–3 system [4] due to the effect caused by twin bound-
aries [5, 6]. Another peculiar instability effect, namely,
the collapse of the static magnetization of type II
superconductors for a small variation of the direction
of an external magnetic field, has been observed in
studies [7–13]. The essence of this effect is the follow-
ing. Let a plane superconducting sample cooled in zero
magnetic field be placed into an external magnetic field
H > Hc1 (here, Hc1 is the lower critical magnetic field)
which is parallel to the superconductor surface. Pinning
leads to the emergence of a nonuniform distribution of
the magnetic induction and, accordingly, a static mag-
netization, in the sample. Although such a distribution
of magnetic induction is metastable, for sufficiently low
temperatures, it can be quite stable and can hold for
many years. If an alternating magnetic field h(t) =
h0cos(ωt) is applied to the magnetized sample in a
direction parallel to the sample surface and perpendic-
1063-7761/03/9701- $24.00 © 20144
ular to a constant field H, then magnetization M of the
sample decreases. Direct measurements [14] show that,
everywhere in the sample where the alternating mag-
netic field penetrates, the flow of nondissipative cur-
rents becomes impossible. As a result, in the surface
region of the sample, the currents that previously
screened field H and contributed to the magnetization
of the superconductor disappear. If the amplitude is suf-
ficiently large, h0 ~ Hp = 2πJc(H)/cd, (the alternating
field practically pierces the entire sample), magnetiza-
tion M is suppressed; i.e., the collapse of the sample
magnetization occurs. Here, Jc is the critical current
density, d is the sample thickness, and c is the velocity
of light. For sufficiently large values of H, when the
critical current density noticeably decreases, the col-
lapse occurs for relatively small values h0, for which
the deviation of the resultant magnetic field from the
initial direction of H (from the z axis) is small. Physi-
cally, this means that the nonuniform distribution (sta-
ble for h0 = 0) of magnetic induction Bz over the sample
thickness can be easily violated due to a small deviation
of the magnetic field from the z axis. It is shown in [13]
that the magnetic moment decreases to less than half
even after a simple small deviation of the constant mag-
netic field from the z axis; i.e., the effect can occur in
the absence of the alternating field.

The nature of the magnetization collapse can be eas-
ily understood in the framework of the simplest isotro-
003 MAIK “Nauka/Interperiodica”
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pic model of critical state proposed by Bean [15]. In
this model, the distribution of magnetic induction is
described by the equation

(1)

where E is the electric field strength. According to this
equation, a current directed along field E flows in all
regions of the superconductor where the electric field is
present, the current density being equal to the critical
density. It is important to emphasize that, if an electric
field arises in a region of the superconductor, then the
memory about the currents flowing here before is
erased and current Jc is induced with the new direction
along vector E. Therefore, at all places where alterna-
tive field h(t) penetrates, critical currents screening h(t)
arise and the nondissipative magnetization currents
flowing before disappear.

It is clear that the model of critical state is a rather
rough approximation that does not take into account the
complex phenomena connected with the intersection
and reconnection of the vortex lines in the turbulent
system of the superconductor. Therefore, to explain the
collapse process in greater detail, more adequate mod-
els are needed [11, 13, 16, 17]. However, the main rea-
son for the collapse lies in the mutual influence of dif-
ferent components of the critical current density, which
exists at a point of the superconductor as it is explicitly
reflected in Eq. (1). Indeed, the excitation of current Jc

in the direction of the z axis is necessarily accompanied
by the suppression of the other current components at
this point of the sample. Thus, the critical state model
is a convenient and quite satisfactory tool for the quali-
tative description of the collapse.

Although a large number of papers are devoted to
the study of magnetization collapse, up to now, only the
isotropic situation has been considered, where the value
of the critical current density is independent of its direc-
tion. At the same time, it is well known that HTSC sys-
tems are characterized by a clearly manifested anisot-
ropy of practically all physical properties. The anisot-
ropy of current-carrying capacity of superconductors
results in a qualitative change in the character of the
electromagnetic field penetration in the sample. It is
shown in [18–20] that an alternating magnetic field in
anisotropic superconductors is represented by two
components which are screened by currents with quite
different values of density. Therefore, these compo-
nents die down at different depths. Due to this peculiar
character of the field penetration, a number of well-
known electrodynamic effects manifest themselves in
peculiar forms. In particular, the dependence of the rel-
ative electromagnetic losses on amplitude h0 in aniso-
tropic superconductors is characterized by the presence
of two dimensional maximums, each of which is con-
nected with the penetration of one of the two field com-
ponents to the center of the sample [18, 20]. In the static

curlB
4π
c

------Jc
E
E
----,=
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case, the anisotropy of the current-carrying capacity
results in the arising of additional extremums on the
magnetization curves, i.e., a peculiar new type of the
peak effect [19]. For these reasons, it seems important
to investigate the phenomenon of the magnetization
collapse in anisotropic hard superconductors. The
present paper is devoted to solving this very problem.

2. MEASURING TECHNIQUE AND RESULTS

2.1. Samples and Measurements 

Our main task in this work is to study the influence
of the anisotropy in the critical current density of a
superconductor on the collapse of its static magnetiza-
tion. Therefore, the experimental investigations were
performed on samples with clearly manifested aniso-
tropic properties. The main measurements were made
on a plate of Y1 yttrium superconductor with the c axis
in the plane of this plate. A sample 3.4 × 2.2 × 0.46 mm3

in size was cut from a piece of fused grain-oriented
ceramic of the Y-123 system, which was synthesized
with the help of a seed placed at the top at a high tem-
perature. To choose a perfect monodomain part of the
piece, we examined it with the help of an optical micro-
scope in polarized light and also used chart-making of
the frozen magnetic flux with the help of a Hall probe.
The sample was cut out from the chosen monodomain
by a diamond milling cutter in such a way that the c axis
was in the sample plane. Before the measurements, the
sample was mechanically polished. The superconduct-
ing transition temperature Tc of the sample was 89 K,
and the transition width was 0.5 K. Preliminary mea-
surements of dynamic magnetic susceptibility allowed
us to determine the critical current densities of the sam-
ple along the principal anisotropy directions and their
dependence on the magnitude and direction of field H
using the technique described in [18, 20]. Representa-

tive values of the critical current density  along the

c axis and  in the ab plane in field H = 5 kOe per-
pendicular to the current were equal to 7 × 103 and 6 ×
104 A/cm2, respectively.

Projection M of the magnetization vector of the
superconductor onto the direction of the external con-
stant magnetic field H was measured by a vibrating-coil
magnetometer with a vibrating sample. The sample was
mounted in such a way that the constant magnetic field
created by the electromagnet was parallel to the sample
surface. The direction of the field could be varied in the
sample plane (the yz plane) by turning the electro-
magnet.

In the experiment, we studied the behavior of the
magnetic moment of the superconductor in an external
alternating magnetic field h(t) = h0cos(ωt) parallel to
the sample surface and perpendicular to a constant
magnetic field H (see Fig. 1). The measurements were
performed at a frequency of ω = 2πf = 2π × 343 s–1. The

Jc
c( )

Jc
ab( )
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possibility of a continuous rotation of field h(t) was
achieved with the help of two field-exciting coils with
mutually orthogonal axes. All measurements were per-
formed at a temperature of T = 77 K in the cooling
regime of the sample in zero magnetic field.

In the experiment, it was possible in principle to
measure the dependence of static magnetization on the
alternating magnetic field amplitude in the continuous
regime. However, in this case, the amplitude of the
noise of the signal being measured increased. There-
fore, point by point measurements of M(h0) were made.
In this case, after the action of the alternating magnetic
field of a specified amplitude on the magnetization of
the sample during several seconds, the field was
switched off and the magnetization was measured. To
escape the magnetic flux trapping connected to the
alternating magnetic field, the switching off was per-
formed by a slow monotonic decrease in amplitude h0.

2.2. Measurement Results 

The results of measurements of magnetization loops
for the Y1 sample under orientations of external mag-
netic field H in the plane of the plate along the c axis
(angle θ between H and the c axis is equal to zero) and
perpendicularly to this axis (θ = π/2) are presented in
Fig. 2. The curves mainly differ in the loop width. This
difference is connected to the anisotropic current-carry-
ing capacity of the superconductor. Indeed, the sample
magnetization for H ||c is determined by the screening

currents of high density  flowing in the ab plane,Jc
ab( )

c

ab

90°

x

y

z

h = h0 cos(ωt)

θ

Fig. 1. Measurement geometry.

H
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whereas, in conditions H ⊥  c, the screening is mainly

ensured by weak currents  flowing along the c axis.

The influence of an alternating magnetic field h(t) =
h0cos(ωt) orthogonal to H on the magnetization is
illustrated by the curves in Fig. 2b. The switching on of
the alternating magnetic field results in a significant
decrease in the magnetization and the formation of
reversible segments on the curves for both geometries.
Note that the complete suppression of magnetization M
of the sample located in an external field parallel to the
c axis (Fig. 2a) is observed for significantly smaller
amplitudes of the alternating field than in conditions
H ⊥  c (Fig. 2b). It is interesting to note that a moment
which is significantly greater in magnitude is sup-

Jc
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Fig. 2. Magnetization loops of an anisotropic superconduc-
tor for different amplitudes of the alternating magnetic field
and directions of vector H along the principal directions of
the anisotropy: θ = 0 (a) and θ = 90° (b). Temperature
T = 77 K.
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pressed at much smaller amplitudes. This fact, quite
paradoxical at first glance, can be rather naturally
explained within the framework of the collapse theory
[9, 13]. Indeed, the alternating magnetic field in condi-
tions h(t) ⊥  c screened by weak currents with density

 penetrates the sample more deeply and efficiently
suppresses static magnetization.

A similar pattern of suppressing the magnetic
moment of the superconductor is also observed for
other orientations of mutually orthogonal alternating
and constant magnetic fields. In Fig. 3, a set of curves
M(H) obtained for θ = 45° is presented. As should be
expected, the efficiency of the influence of the alternat-
ing field on the magnetization for intermediate angles
0 < θ < π/2 is less than that for θ = 0, but greater than
for θ = π/2.

To study in more detail the role of the anisotropy in
the development of the magnetization collapse, we
measured the dependence of the magnetic moment M
on the amplitude of the alternating magnetic field for
the same values of external constant magnetic field H,
but for different field orientations relative to the princi-
pal anisotropy axes. The results of these measurements
are presented in Fig. 4. Different curves in this figure
correspond to different values of angle θ. One can see
that the magnetic moment is monotonically suppressed

with the increase in h0. At a certain amplitude ,
total collapse of magnetization is achieved. It should be
noted that the fact itself of the magnetization vanishing
is very difficult to determine; hence, the error in the

determination of the value  is rather large. Never-

theless, the measurement results imply that 
slightly increases for small θ and that it has a relatively
steep growth for θ > 70°. The dependence of the sup-

pression amplitude  on angle θ is depicted by the
squares in Fig. 5. The presented data are normalized to
the value Hp ≈ 480 Oe of the penetration field that cor-
responds to the value H of the external field H directed
along the c axis and penetrating to the center of the
sample. With the angle θ increasing from zero to 90°,

the value  increases by approximately a factor of

7–8. This significant variation of field  correlates
well with the value of anisotropy parameter δ =

/  ~ 0.13. The behavior of function (θ)
slightly varies with the growth of field H, in complete
agreement with the dependence of the anisotropy
parameter on the magnetic field.

Studying the collapse process in more detail, we
established that the suppression of moment M(h0) is
determined not only by the magnitude and direction of
vector H, but also by the magnetic prehistory of the
sample. The curves in Fig. 4 were obtained after a
monotonic increase in an external magnetic field H

Jc
c( )

h0
col( )
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h0
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h0
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h0
col( )

Jc
c( ) Jc

ab( ) h0
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from zero to the value at which the M(h0) measure-
ments were performed. This corresponds to starting
point 1 in the inset in Fig. 6. With the growth of ampli-
tude h0, the dynamics of the magnetic moment suppres-
sion becomes qualitatively different if the external field
varied preliminarily in a nonmonotonic way. Starting
points 2–4 in Fig. 6 correspond to growth in the
magnetic field up to its maximal value (up to the sweep
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Fig. 3. Magnetization loops of an anisotropic superconduc-
tor for different amplitudes of the alternating magnetic field
and the direction of vector H at an angle of 45° to the c axis.
Temperature T = 77 K.
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Fig. 4. Suppression of the sample magnetization for differ-
ent orientations of field H relative to the c axis. The mag-
netic prehistory of the sample consisted in a monotonic
increase of the field H from zero to 5 kOe. Temperature
T = 77 K.
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field Hm , point 1) followed by its decrease. In Fig. 6,
a series of measurements of the dependence M(h0) for
starting points 1–5 is depicted. The curves in this figure
show the nontrivial character of the magnetization sup-
pression. The monotonic suppression of the diamag-
netic moment corresponding to staring point 1 changes

h0
(col)/Hp

1.0

0.8

0.6

0.4

0.2

0
–90° –60° –30° 0° 30° 60° 90°

θ

Fig. 5. Dependence of the dimensionless amplitude

/Hp of magnetization suppression on the angle θ
between the c axis and field H. The squares on the graph are
the measurement results; the solid curve is the calculation
results for the value of the anisotropy parameter δ = 0.13.

h0
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Fig. 6. Measured dependence of the sample magnetization
on the amplitude of the alternating magnetic field for differ-
ent magnetic prehistories of the sample. The numbers on the
curves correspond to the enumeration of starting points 1–5
shown in the inset, where a fragment of the curve of sample
magnetization for θ = 45° and h0 = 0 is presented.
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to the nonmonotonic behavior of M(h0) (starting point 2).
The magnetic moment remains diamagnetic on the

entire interval 0 < h0 <  of the amplitude variation.
For starting points 3 and 4 corresponding to the initial
paramagnetic state of the sample, the moment first
decreases upon an increase in h0, changes its sign,
becomes diamagnetic, attains a minimal value, and
only then begins to tend monotonically to zero. Finally,
for a sufficiently large decrease in H (starting point 5),
the paramagnetic moment decreases monotonically
with increasing h0.

To interpret the results of measuring the dynamics
of the magnetic moment collapse in an anisotropic
superconductor, an adequate theoretical analysis is
needed where not only the nature of the collapse phe-
nomenon, but also its peculiarities connected to the
anisotropy of the current-carrying capacity of the hard
superconductor, should be taken into account. This will
be done in the next section.

3. THEORETICAL STUDY 
OF THE MAGNETIZATION COLLAPSE 

IN ANISOTROPIC SUPERCONDUCTORS

3.1. Theoretical Model 

The theory of suppression of the static magnetiza-
tion by an orthogonal alternating magnetic field elabo-
rated in [9] relates to the isotropic situation, where the
current-carrying capacity of a sample is described by a
single phenomenological parameter, namely, critical
current density Jc . The subsequent development of col-
lapse theory [11–13, 16] also relates to isotropic super-
conductors. Unfortunately, at present, there exists no
conventional model describing the penetration of the
magnetic flux into an anisotropic superconductor. A
phenomenological description of this process based on a
nonlinear tensor relation between the current density and
the electrical field was given in [18–20]. Recently [21],
a new approach to solving electrodynamic problems on
the critical state of hard superconductors based on the
principle of the minimum of a certain energy functional
was proposed. The authors of [21] presume that their
approach has a fundamental character and can be
applied to solving any problems of a critical state, in
particular, to the description of anisotropic supercon-
ductors. This conclusion is justified by the fact that the
minimum principle used in [21] is completely equiva-
lent to the Prigogine principle of the minimum entropy
production rate. However, it should be noted that the
applicability of the Prigogine principle to a nonlinear
strongly nonequilibrium system (a hard superconductor
in the critical state represents such a system) should be
specially proved in every case, because it is not valid in
the general case. Therefore, the method developed
in [21], which is convenient for numerical calculations,
cannot be considered as fundamentally justified. Due to
this circumstance, we will remain within the frame-

h0
col( )
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work of the critical state model [18–20] generalized to
the anisotropic case. The application of this model, in
contrast with model [21], allows us to obtain an ana-
lytic solution to the problem and to trace the physical
nature of the investigated phenomenon. In addition, it
occurs that model [18–20] in a number of cases agrees
well (both qualitatively and quantitatively) with exper-
iment [20].

Consider an infinite plane-parallel superconducting
plate of thickness d located in external constant mag-
netic field H and alternating magnetic field h(t) =
h0cos(ωt), which are mutually perpendicular and paral-
lel to the plate surface. We assume that all fields and
currents depend on only one spatial coordinate x
directed along the normal to the plate. The origin x = 0
is located at the center of the sample. We will study the
simplest case of anisotropy, when it is characterized by
two principal directions y and z in the plane of the plate.
These directions coincide either with the crystallo-
graphic axes of the sample or with the representative
directions of the defect structure. In this case, the equa-
tions of the generalized model of the critical state for
magnetic induction B can be written in the form

(2)

where φ(x) is the angle between electric field E and the
y axis. The electric field is connected to the magnetic
induction by the Faraday law:

(3)

The boundary conditions to the Maxwell equations
have the form

(4)

where θ is the angle between vector H and the z axis.

Below, the solution to the Maxwell equations with
boundary conditions will be used for determining the
constant component of the projection of the magnetic

∂Bz

∂x
--------

4π
c

------Jcy By Bz,( ) φ x( )( ),cos–=

∂By

∂x
---------

4π
c

------Jcz By Bz,( ) φ x( )( )sin ,–=

∂Ey

∂x
---------

1
c
---

∂Bz

∂t
--------,

∂Ez

∂x
--------–

1
c
---

∂By

∂t
---------.= =

Bz d/2–( ) Bz d/2( )=

=  H θcos h0 θ ωt( ),cossin–

By d/2–( ) By d/2( )=

=  H θsin h0 θcos ωt( ),cos+
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
moment of the sample on the direction of external con-
stant magnetic field H,

(5)

By virtue of the symmetry of the problem, it is suf-
ficient to solve the system of equations on the space
interval 0 ≤ x ≤ d/2 and take into account in formula (5)
the fact that function B(x) is even. For the sake of sim-
plifying of the calculations, we neglect the dependence
of the components Jci(B(x)) of the critical current den-
sity on the x coordinate caused by the nonuniformity of
the magnetic induction distribution and assume that
Jci(B(x)) = Jci(H). This is justified for small amplitudes
h0 ! H if the induction in the sample slightly differs
from the magnitude of the external constant magnetic
field. In addition, we replace the x-coordinate-depen-
dent angle φ between the electric field and the y axis by
angle π/2 + θ between the external alternating magnetic
field and the z axis (as in the anisotropic situation). It
was shown in [20] that this simplification has no quali-
tative influence on the results obtained.

3.2. Calculation of the Magnetization Collapse
and Discussion 

The effect of suppression of the sample magnetiza-
tion by an alternating magnetic field occurs due to the
field penetration into the superconductor volume and
the field interaction with static screening currents.
Therefore, first of all, it is necessary to determine the
depth of the penetration of field h(t). It is convenient to
perform the calculations in the following dimensionless
variables:

(6)

Here and below, we measure the values of all magnetic
fields in units of penetration field Hp . Field Hp is the
value of field H directed along the z axis, which,
according to the critical state equation (2), penetrates to
the middle of the sample. It should be borne in mind
that quantity Hp has different values at different points
of the magnetization loop, because, at each point, Jcy

takes a certain value corresponding to the current mag-
nitude of the external constant magnetic field H. For
definiteness, we assume that the critical current density

M
1

4π
------ ω

2πd
---------- td

0

2π/ω

∫=

× By x( ) θsin Bz x( ) θ xdcos H–+( )
d/2–

d/2

∫ .

ξ 2x/d , * H/H p, g0 h0/H p,= = =

bi Bi/H p, H p 2πJcyd/c, δ Jcz/Jcy 1.<= = =
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along the z axis is less than the current density along the
y axis; i.e., the anisotropy parameter δ is less than unity.

One can easily show that, at all places where the
alternating field h(t) penetrates, the magnetic induction
can be represented as a sum of two terms. One of these
terms is a constant homogeneous quantity coinciding

with vector ****. The second term  varies in time and is
determined by the following equations:

(7)

These equations hold in the superconductor region,

where both induction components  and  are

present. In the region where component  vanishes

and there is the only induction component , the dis-
tribution of this component is described by the equation

(8)

The boundary conditions to Eqs. (7) and (8) are the
equalities

(9)

At the instants when the alternating field most
deeply penetrates into the sample (for cos(ωt) = 1), the
system of equations (7) and (8) with boundary condi-
tions (9) gives the following distribution of inductions

(ξ) and (ξ):

(10)

(11)

Here, ξy and ξz are space coordinates determining the
penetration boundaries for the y and z components of
the magnetic induction:

(12)

One can see from the latter formulas that, as can be
expected, the y component of the magnetic induction,
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which is screened by a small component of the critical
current density, penetrates more deeply into the sample
as compared with the z component. Therefore, it is at
the instant when the y component of the alternating
magnetic field attains the middle of the sample that the
distribution of the constant component of the induction
becomes spatially uniform all over the superconductor;
i.e., static magnetization collapse occurs. We determine

amplitude  = /Hp by equating ξy to zero:

(13)

Function (θ) has a universal character; it is defined
via the unique parameter δ of the theory. However, it
should be taken into account that, in principle, the
anisotropy parameter may depend on the orientation of
the external constant magnetic field, δ = δ(θ). Accord-
ing to formula (13), the amplitude of the alternating
field at which the total magnetization collapse occurs
monotonically increases by a factor of δ–1 with an
increase in angle θ from zero to π/2. This conclusion
agrees well with the measurement results (see Fig. 5).
In this figure, the theoretical curve is calculated disre-
garding a possible dependence δ(θ).

Let us now consider the dynamics of suppression of
the static magnetic moment of the sample by an orthog-
onal alternating magnetic field. As has been noted, the
suppression effect essentially depends on the magnetic
prehistory of the sample, i.e., on the position of the
starting point on the magnetization loop. We begin with
the simplest case of the magnetic prehistory, when the
external magnetic field monotonically increased up to a
certain maximal value Hm @ Hp (in dimensionless
units, up to *m = Hm/Hp @ 1). As has been shown, the
switching on of the alternating field results in establish-
ing a uniform distribution of static magnetic induction
in the entire region ξy < ξ < 1, where field h(t) pene-
trates. In the bulk of the sample, the critical induction
profile created by the screening currents Jcy and Jcz (in
dimensionless units, 1 and δ) is preserved. Thus, the
magnetic induction distribution is described by the fol-
lowing formulas:

(14)

(15)

g0
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Dimensionless magnetization m = M/Hp corre-
sponding to this distribution is defined by the expres-
sion

(16)

The results of the magnetization calculation by this for-
mula are presented in Fig. 7 (curve 1). One can see that
the diamagnetic moment m is monotonically sup-
pressed with increase in amplitude g0 and vanishes at

m
θcos

2 δ θsin
2

+
8π

------------------------------------ 1
g0

g0
col( ) θ( )

-------------------– 
  2

.–=

5

4

3

2

1

M/Hp

0.02

0.01

0

–0.01

–0.02

0 0.05 0.10 0.15
h0/Hp

Fig. 7. Calculated dynamics of the suppression of the mag-
netic moment m. Curves 1–5 correspond to the values of the
dimensionless constant magnetic field * = *m = 5, 4.85,
4.7, 4.35, and 3.5. Anisotropy parameter δ = 0.1.
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g0 = . This behavior of the magnetization agrees
with the measurement results (see curve 1 in Fig. 6).

For a more complex magnetic prehistory of the sam-
ple, the picture of the magnetization collapse becomes
nontrivial. Unfortunately, due to an infinite number of
ways for establishing the initial distribution of the mag-
netic induction, it is impossible to exhaustively analyze
all kinds of dependence m(g0). Therefore, we demon-
strate here a method for calculating m(g0) for one of the
simplest magnetic prehistories tracing different stages
in the development of the collapse effect. For this pur-
pose, we consider the case where a monotonic increase
in field * changes to a decrease. Even in this simple sit-
uation, the character of the initial distribution of the
magnetic induction and, hence, the development of col-
lapse are qualitatively different in different variation
domains of field *. Therefore, as an example, we con-
sider one of such intervals,

(17)

when the initial distribution profile of the magnetic
induction has the form schematically depicted in
Fig. 8a. For the sake of simplicity, we take θ = π/4 and
δ < 1/2. Under conditions (17) and in the absence of the
alternating magnetic field, the sample is in the para-
magnetic state. As the amplitude of the alternating
magnetic field increases in the interval

, (18)

the profile of the magnetic induction distribution is
deformed as is shown in Fig. 8b. Near the sample sur-
face, a region arises in which the induction is uniform.
This deformation of the profile results in a decrease in
the magnetic moment, which becomes negative at a cer-
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Fig. 8. Schematic representation of the profiles of the magnetic induction distribution in a sample at different stages of the devel-
opment of the magnetization collapse.
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tain value of the alternating field amplitude; i.e., the
sample passes to the diamagnetic state. In the entire
interval (18), the magnetic moment monotonically
decreases with the growth of g0 according to the para-
bolic law

(19)

In the interval

, (20)

due to the extension of the region where the induction
is uniform, the typical paramagnetic “tooth” on the dis-
tribution profile bz(ξ) disappears (see Fig. 8c). In this
interval of amplitudes, as g0 grows, the magnetization
is monotonically suppressed down to its total vanish-
ing. Here, the magnetic moment is described by for-
mula (16), in which the sign of δ must change. The
results of the magnetization calculation are presented in
Fig. 7 (curve 4). The typical break of the curve at the
border of intervals (18) and (20) is worth noting.

The analysis shows that, in the interval of the mag-
netic fields *m – 1 < * < *m, moment m in the ampli-
tude function g0 varies nonmonotonically (see curves 2–4
in Fig. 7). For * < *m – 1, the paramagnetic moment
monotonically decreases with the growth of the alter-
nating field amplitude (curve 5 in Fig. 7). The compar-
ison of the curves in Figs. 6 and 7 shows a good quali-
tative agreement of the theory and experiment. The
absence of breaks on the experimental M(h0) curves can
be connected with the finite size of the sample and its
possible inhomogeneity.

4. CONCLUSIONS

Our investigation shows that the alternating mag-
netic field exerts a significant influence on the static
magnetic properties of anisotropic hard superconduc-
tors. Switching on a sufficiently strong field h(t)
orthogonal to the static magnetizing field results in the
complete suppression of the magnetic moment of the
sample. The reason for the magnetization collapse is
that, at all places where the alternating field penetrates,
leveling of the distribution profile of the static magnetic
induction is observed. In other words, in the same spa-
tial region of the sample, the constant and alternating
screening currents cannot coexist. In the conditions
when the alternating field penetrates into the entire vol-
ume of the sample, complete suppression of the static
magnetization takes place. The nature of the collapse,
which consists in a local effect of the mutual influence
of different components of the critical current density

8πm = 4 *m *–( ) 1
g0

2g0
col( )--------------– 

  2δ 1
g0

2g0
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– *m *–( )2
2–

g0

g0
col( )---------- 

  2

.+

g0
col( ) *m *–( ) g0 g0

col( )< <
JOURNAL OF EXPERIMENTAL 
vector, is manifested in the anisotropic situation in a
rather peculiar way. Different components of the mag-
netic field penetrate at different depths, since they are
screened by critical current density components of
quite different magnitudes. This is the reason why the
magnetization collapse is primarily caused by the alter-
nating field component deeply penetrating into the
sample. As a result, the anisotropy induces a quite
unexpected effect: to suppress a large magnetic
moment arising under the conditions of screening by a
strong current, a small amplitude of the alternating sig-
nal is sufficient. This means that the instability of the
critical profile of the vortex density distribution is most
clearly manifested precisely in the anisotropic case, In
the paper, the dynamics of the magnetization collapse
with the increase in the amplitude of the alternating
field h0 is also studied. It was found that, in some cases,
the dependence of the moment on h0 is nonmonotonic.
In addition, during the collapse, a quite peculiar transi-
tion of the sample from the paramagnetic state into the
diamagnetic state sometimes occurs. This transition is
stimulated by an external orthogonal alternating mag-
netic field. All discovered peculiarities of the effect of
magnetization collapse can be interpreted within the
framework of a simple model of critical state general-
ized to the anisotropic case.
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Abstract—The Ginzburg–Landau theory is used to numerically analyze the stability of surface superconduc-
tivity. The singularities in the behavior of the solution on approaching the stability limit are described within
the Landau theory of second-order phase transitions applied to a metastable state. It is found that the wetting
must be observed upon transition from type I to type II superconductors: the thickness of surface superconduc-
tivity goes to infinity when the magnetic field tends to critical. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Saint-James and de Gennes [1] demonstrated the
instability of the normal phase of a superconductor rel-
ative to the emergence of a layer of superconducting
state in the vicinity of the sample boundary in fields
below Hc3 = 2.3965κHc . As was found by Feder [2], the
critical value of the Ginzburg–Landau parameter κF ≈
0.41 exists, which separates superconductors by their
behavior in fields below Hc3 . For materials with κ < κF ,
no equilibrium solution of equations exists for the sur-
face layer; i.e., the field Hc3 is a field of supercooling
of the normal state. In the case of materials with κ >
κF , the surface superconductivity with a finite thick-
ness on the order of the Ginzburg–Landau coherence
length must be observed in a field below Hc3 . The crit-
ical point found by Feder (we will refer to it as the
Feder point) is in the region of metastability of the nor-
mal state H < Hc.

The supercooling of surface superconductivity was
experimentally found as a result of measurements of
the hysteresis of magnetization curves in tantalum and
lead by McEvoy, Jones, and Park [3]. Khlyustikov and
Berezin [4] have recently observed the effect of super-
cooling of surface superconductivity in lead when mea-
suring the surface impedance.

Therefore, some region of metastability exists in the
(κ, H) phase diagram of surface superconductivity.
Park [5] determined the boundary Hs(κ) of this region
for the values of the Ginzburg–Landau parameter from
the Feder point to κ = 0.575 where the limit approached
the H = Hc line. In this paper, we will clarify the further
behavior of this boundary (see Fig. 1).

In order to determine the range of existence of sur-
face superconductivity, we will perform a complete
investigation of the stability (to small perturbations) of
surface superconductivity. We will find that, for type I
1063-7761/03/9701- $24.00 © 0154
superconductors, the boundary is defined by the loss of
stability of the surface solution relative to uniform (in
the boundary plane) perturbations. It turns out that, at
κ > 0.575, the field of supercooling continues to be
pressed against the critical field Hc and becomes equal

to Hc only at the point κ = 1/ . For type II supercon-
ductors, the Hc2(κ) serves as the stability boundary.

We will demonstrate that the singularities in the
behavior of the solution on approaching the line of the
loss of stability in type I superconductors may be
understood from very general considerations within the
Landau theory of second-order phase transitions
applied to metastable states. In the neighborhood of the

point (1/ , Hc), the thickness of the superconducting
layer diverges; i.e., a wetting transition occurs. In this
case, we suggest a macroscopic approach enabling one
to explain the very unusual nonanalytical behavior of
the surface solution.

2. THE STABILITY REGION
OF SURFACE SUPERCONDUCTIVITY

In the units of Hc = δ = 1, which are natural for the
Ginzburg–Landau theory (see, for example, Paras. 45
and 46 in [6]), the free energy of a superconductor is

(1)

In the problem being treated, the external field H is
directed along the sample boundary (z axis). For an
equilibrium solution localized in the vicinity of the sur-

2
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Fig. 1. (a) Phase diagram of surface superconductivity and (b) a part of the Hs curve indicated by dashed contour. The dark circle
indicates the Feder point κF = 0.4054. The light circles indicate Park’s results [5]. The dashed lines indicate the asymptotes in the

vicinity of the Feder point: Hs = 0.9623 + 0.211(κ – 0.4035)1/2 (see Section 2), and in the vicinity of the point (1/ , Hc): Hs =

1 − 0.304εe–0.793/ε (see Section 4).

2

face, we select the gauge for the vector potential A such
that the order parameter ψ should be a real function of
distance x from the boundary,

We will investigate the stability (to small perturbations)
of the equilibrium solution {ψ(x), A(x)} in the general
case of nonuniform perturbations. For this purpose, it is
necessary to check the positiveness of the variation of
free energy in the case of arbitrary small fluctuations of
the order parameter δψ(r) and of the vector potential
δA(r). It is natural to expect that the most dangerous
fluctuations will be those in which the magnetic field
variation δB(r) will remain parallel to the external field
H (i.e., the magnetic field lines will not bend). We use
the gauge invariance to select δA(x, y) = (0, δA(x, y), 0).
We expand the perturbation {δψ(x, y), δA(x, y)} into a
Fourier series in exp(iqy) to represent the second vari-
ation of free energy as

Ay r( ) A x( ), Ax r( ) Az r( ) 0.= = =

δ2F
1

4π
------ x

1

κ2
----- ∂xδψq

1 δψq
2 A

2
------- q

κ
---– 

  2
+





d

0

∞

∫
q

∑=
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(2)

The quantity δA(x, y) is a real function; therefore,
δA–q(x) = δ (x). No such correlation exists for the
components of δψq , and expression (2) contains cross

terms δψq and δ . We introduce the Fourier compo-
nents of the real, δψ', and imaginary, δψ'', parts of δψ,

and proceed to perform the summation over positive
values of q to reduce the second variation (2) to the sum

of independent contributions δ2Fq{δ , δ , δAq}. In
order to investigate the stability, it is sufficient to find

+ ψ A
q

2κ
----------– 

  (δAqδψq* δAq*ψq) δψq
2 ψ2 1–( )+ +

--+ ψ2 δψq δψ q–*+
2 ∂x Aq

2 ψ2 Aq
2+ +




.

Aq*

ψ q–*

δψq'
1
2
--- δψq δψ q–*+( ), δψq''

1
2
--- δψq δψ q–*+( ),= =

ψq' ψq''
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the minimum of quadratic functional δ2Fq with a fixed
value of

(3)

This formulation of the problem turns out to be conve-
nient from the standpoint of numerical computation,
where the asymptotic behavior of eigenfunctions at
x  ∞ is of importance. Because of their awkward-
ness, we will not give here the appropriate Euler equa-
tions with natural (i.e., obtained as a result of variation)
boundary conditions. They were numerically solved
using the method of “shooting” from the point x  ∞
to the point x = 0. Three parameters were preassigned
on the right-hand boundary, namely, the Lagrange mul-
tiplier λq corresponding to the constancy of integral (3)

and the amplitudes of the asymptotics δ  and δAq .
By virtue of the linearity of the problem, the amplitude
of δψq may be arbitrary. On the left-hand boundary
with x = 0, three conditions were to be met, namely,
∂xδψq = ∂xδ  = ∂xδAq = 0. The latter of these condi-
tions follows from the trivial solution δB = 0 in the
treated case of Maxwell equations (∂xBz = ∂yBz = 0) out-
side the superconductor (x < 0).

δψq'
2

x.d

0

∞

∫

ψ q–*
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H = Hs = 0.98692
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x

Fig. 2. The evolution of the Ginzburg–Landau ψ-function
for surface superconductivity upon variation of the field
from Hc3 to Hs at κ = 0.46.
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The problem involves an infinite set of discrete lev-
els λ (in the case of ψ(x) = 0, these are simply electron
levels in a uniform magnetic field) for each value of the
wave vector q. In order to analyze the stability, it is suf-
ficient to find the ground level for which the eigenfunc-
tions have no zeros. Figure 2 demonstrates the typical
evolution of the order parameter of surface supercon-
ductivity upon variation of the field. Figure 3 gives the
results of numerical counting for the spectrum of λq for
different values of κ and H.

In type I superconductors in some field of super-
cooling Hs such that Hc2 < Hs < Hc , the surface state
loses stability at q = 0 and the unstable mode turns out
to be localized in the region of surface superconductiv-
ity. This instability leads to the propagation of super-
conductivity from the surface into the bulk of the
sample.

In type II superconductors at q  ∞, the function
δψq(x) is localized at distances far away from the sur-
face in the neighborhood of the point x = x0, where

A(x0) = q/κ. Here, the function ψ(x0) is small, and
the field B(x0) is almost equal to the external field.
Therefore, the stability of the surface state deteriorates
because of nucleation in the normal-phase volume; i.e.,
the stability limit of surface superconductivity for
type II superconductors coincides with the stability
limit of the normal state in the volume H = Hc2.

2
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Fig. 3. Examples of spectra of eigenvalues λ(q).
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Fig. 4. The evolution of the “gap” in the excitation spectrum and of the integral order parameter ψs upon variation of the field from

Hc3 to Hs at κ = 0.5. The dotted line indicates the asymptotics in the vicinity of Hc3 = 1.19: λ0 = 3.19 × 10–4(Hc3 – H), ψs =

1.56(Hc3 − H)1/2 (see Section 2); and in the vicinity of Hs = 0.866: λ0 = 3.35 × 10–4(H – Hs)
1/2, ψs = 1.276 – 1.28(H – Hs)

1/2

(see Section 3).
Figures 4–6 give the results of computation of the
evolution of the quantity λ0 (q = 0) and of the integral
order parameter,

, (4)

during motion over the field from Hc3 to Hs at κ = 0.5

and κ = 1/ , as well as during motion with respect to
κ with the critical field Hc .

3. THE FEDER POINT
IN THE LANDAU THEORY

The emergence of surface superconductivity in the
vicinity of the field Hc3 is an example of second-order
phase transition in a two-dimensional system. The spe-
cific features in the behavior of the stability limit of
metastable state in the vicinity of the Feder point may
be clarified in the Landau theory of second-order phase
transitions. The fact that the curve of the loss of stabil-
ity of surface superconductivity turns out to be tangent

ψs ψ xd

0

∞

∫=

2
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to the straight line Hc3(κ) at the Feder point is a property
that is common to critical points of this type.

The Landau expansion for free energy of a metal
surface has the standard form

(5)

Note that the vector potential in the case of such (two-
dimensional) description is of no significance if the
field is parallel to the surface. For comparison with the
results of numerical solution of Ginzburg–Landau
equations, we will take the integral characteristic given
by Eq. (4) as the order parameter of two-dimensional
theory ψs . The range of validity of the two-dimensional
approach away from the Feder point, when the effect of
the sixth-order contribution in expansion (5) may be
ignored, is seen in Figs. 4–6. Asymptotic curves are
given in the vicinity of the field Hc3; these curves follow
from expression (5) on the assumption (made in the
Landau theory) that the coefficient A linearly goes to
zero. It is clear that, in the vicinity of the field Hc3, the
second derivative of free energy (5) with respect to the

A κ H,( ) ψs
2 B κ H,( ) ψs

4 C κ H,( ) ψs
6 … .+ + +
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Fig. 5. The evolution of the “gap” in the excitation spectrum and of the integral order parameter ψs upon variation of the field from

Hc3 to Hs at κ = 1/ . The dotted line indicates the asymptotics in the vicinity of Hc3 = 1.70: λ0 = 0.576(Hc3 – H), ψs =

2.03(Hc3 − H)1/2 (see Section 2); and in the vicinity of Hc = 1: λ0 = 1.27(H – 1), ψs = –2.33ln[0.52(H – 1)] (see Section 4).

2

two-dimensional order parameter ψs , which defines the
stability of the solution, is linearly related to λ0.

At the Feder point, the coefficient B obviously goes
to zero (again by the linear law). In order to describe the
behavior in the vicinity of this point, the sixth-order
term must be taken into account. Here, however, in con-
trast to the critical point treated by Landau [7] (see also
Para. 150 in [8]), the coefficient C must be taken to be
negative, which corresponds to the metastability of sur-
face superconductivity being investigated. With regard
for the sixth-order term, we derive, in addition to the
trivial ψs = 0, two possible extrema of functional (5):

(6)

One solution ψs1 exists at A > 0 and B > 0. This solution
corresponds to a local maximum ensuring the metasta-
bility of normal state. With B > 0 and a change of sign
for A, a new solution ψs2 arises, which corresponds to a

ψs1
2 –B B2 3AC––

3C
----------------------------------------,=

ψs2
2 –B B2 3AC–+

3C
-----------------------------------------.=
JOURNAL OF EXPERIMENTAL 
local minimum, i.e., to surface superconductivity. With
further variation of A, when the quantity B2 – 3AC
changes sign, both solutions coincide and the nontrivial
extrema disappear. The equation

(7)

apparently corresponds to the critical curve of Hs(κ).
One can readily see that it is the quadratic dependence
given by Eq. (7) between the small coefficients A and B
that leads to the characteristic root approximation of
curve Hs(κ) to line Hc3(κ) at the Feder point (see Fig. 1).
One solution ψs2—a local maximum—exists in the
region of A > 0 and B > 0. On the A = 0 line, this solu-
tion goes to zero and only one trivial extremum—a
maximum—remains, ψs = 0.

4. SPECIAL FEATURES IN THE LOSS 
OF STABILITY IN METASTABLE STATE

A loss of stability of the surface solution relative to
uniform perturbation (q = 0) occurs on the Hs(κ) line.
This means that two solutions merge on this line,

B2 3AC=
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Fig. 6. The evolution of the “gap” in the excitation spectrum and of the integral order parameter ψs upon variation of κ from 0.417

to 1/  in a field equal to the critical field. The dotted line indicates the asymptote in the vicinity of κ = 0.417: λ0 = 0.83(κ – 0.417),

ψs = 22.8(κ – 0.417)1/2 (see Section 2); and in the vicinity of κ = 1/ : λ0 = 0.356εe–0.701/ε), ψs = 0.721ε–1 + 2.34 (see Section 4).

2

2

namely, the local minimum (the surface solution being
investigated) and maximum (the barrier providing for
the metastability of the solution). It was such a merger
of two solutions that was found by Park [5].

Let ψs0 be the limiting solution on the line of the loss
of stability. The Landau expansion with respect to the
small parameter η = ψs – ψs0 in the vicinity of this line
has the form

. (8)

Because we treat the states with disturbed gage invari-
ance (ψs0 ≠ 0), no symmetry exclusions exist in this
case and odd-power terms are present in the expansion.
The coefficient A goes to zero on the line being dis-
cussed simply by definition of the parameter η (equilib-
rium equations must have the solution of η = 0). The
vanishing of the coefficient B corresponds to the merger
of solutions. On approaching the critical line, we have
two extrema of functional (8),

(9)

A κ H,( )η B κ H,( )η2
C κ H,( )η3 …+ + +

η1 = 
–B B2 3AC–+

3C
-----------------------------------------, η2 = 

–B B2 3AC––
3C

----------------------------------------.
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The stability of solutions will be defined by the posi-
tiveness of the second derivative,

(10)

In the surface superconductivity problem under discus-
sion, where the parameter ψs increases in the vicinity of
the critical line, we must have η < 0 for a metastable
solution. One can readily see that, for this purpose, it is
necessary for the inequalities A < 0, B > 0, and C < 0 to
be valid above the line of the loss of stability.

Given the linear vanishing of the coefficients A and
B (which is standard for the Landau theory), on
approaching the critical line (ε ! 1), we obtain the fol-
lowing special features in the order parameter and in
the “energy gap” (10):

(11)

The resultant asymptotics in the vicinity of Hs are
shown in Fig. 4.

F '' 2B 6Cη 0.>+=

η ∝ ε , F '' ∝ ε .–
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5. WETTING TRANSITION

According to our numerical results, the integral
order parameter (4) significantly increases on

approaching the point κ = 1/ . In this case, the Ginz-
burg–Landau ψ-function tends to unity almost every-
where within the layer; therefore, the parameter given
by Eq. (4) defines the surface layer thickness in the
limit being treated to an accuracy within the order of
the width of the ns-boundary. The anomalous growth of
this thickness makes possible a macroscopic descrip-
tion along the lines of the wetting theory (see Para. 160
in [8]). The specific features of superconductivity bring
about the peculiarity of the thickness dependence of the
free energy of the wetting layer.

In a homogeneous superconducting state, small per-
turbations of the order parameter and vector potential at
distances far away from the plane source of perturba-
tions decrease as e–x/ξ and e–x/δ, respectively, where ξ =

δ/ κ is the coherence length. Two sources of pertur-
bations exist in the superconducting layer at the sur-
face, namely, the sample surface and the boundary
between the superconducting and normal phases. By
complete analogy with, for example, the derivation of
the law of interaction of electric charges in terms of the
field of electric potential or elastic interaction of defects
in crystals, one can state that the expression for the
energy of interaction between the boundaries of the
superconducting layer with its macroscopic thickness
L @ ξ, δ in the general case reduces to the sum

(12)

where A and B are some functions of parameter κ (the
dependence on the magnetic field may be ignored,
because the superconducting layer thickness may be
significant only in the immediate neighborhood of
H = Hc). Corresponding to the numerically established
behavior of surface superconductivity in the neighbor-

hood of the point κ = 1/  is the case of A < 0 (attrac-
tion), B > 0 (repulsion), with B > |A |. The free energy of
superconducting layer, reckoned from the normal state,
includes the energy of the superconductor boundary,
the energy of the interface between superconducting
and normal phases, the interaction energy given by
Eq. (12), and the bulk contribution

(13)

The equilibrium thickness of the superconducting layer
is defined by the condition of the minimum of the sum

2

2

Fint Ae L/ξ– Be L/δ– ,+=

2

1
8π
------ H2 Hc

2–( )L.
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of contributions (12) and (13),

(14)

The solution will be stable in the case of the positive
second derivative of energy with respect to L,

(15)

On the Hs(κ) curve, the stability of the solution is lost.
From the condition F" = 0, we find

(16)

and substitute this value of L into Eq. (14) to derive

(17)

In view of the proximity to the critical point at which
ε = (ξ – δ)/δ ! 1, results (16) and (17) may be repre-
sented in the form of L ∝ ε –1 and

(18)

where a = ln(B/ |A |) is a number on the order of unity.
As we see in Fig. 1, the asymptotic form given by
Eq. (18) is valid even at a considerable distance from
the critical point being treated.

Following are the extreme expressions on approach-

ing the critical point (1/ , Hc) along two preferred

trajectories. For a superconductor with κ = 1/ , the
superconducting layer thickness logarithmically goes
to infinity: L ∝  ln{1/(H – Hc)}, with F '' ∝  H – Hc . In the
case of motion along a straight line (H = Hc), the thick-
ness increases by the law L ∝ ε –1 (as in the case of
motion along a curve, H = Hs), and the “gap” in the
excitation spectrum decreases by the law of F '' ∝  εe–a/ε.
The asymptotic laws obtained are given in Figs. 5 and 6.
We used the above-identified relation between the inte-
gral parameter (4) and the superconducting layer thick-
ness L, as well as the obvious linear dependence
between the second derivative of energy F '' (15) and the
quantity λ0 in the vicinity of the critical lines.
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Abstract—The formation of high-field thermodiffusion autosolitons was studied experimentally in a photoge-
nerated electron–hole plasma heated up by an electric field in p-Ge samples oriented along the 〈111〉  axis at
T = 77 K. Measurements of the current–voltage characteristics, electric field distributions along the samples,
and IR emission in the wavelength range λ = 1.65–10 µm showed that the arising of an autosoliton was accom-
panied by the appearance of N-shaped current–voltage characteristic regions. Autosolitons were formed at elec-
tron–hole plasma concentrations n ≥ 1 × 1014 cm–3 and field strengths E ≥ 500 V/cm. They manifested them-
selves as static, moving, and pulsating strata with field strengths Eas = 1000–20000 V/cm and carrier tempera-
tures Te ≥ 1000 K. We also observed a turbulent electron–hole plasma state when autosolitons chaotically
appeared and disappeared in the samples. The multivalley band structure of germanium influenced the dynam-
ics of autosoliton formation; intervalley transfer of electrons in the strong field of autosolitons caused a three-
step autosoliton field growth. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The arising of current instabilities accompanied by
the formation of spatially nonuniform dissipative struc-
tures in the form of current filaments or electric field
domains in a monopolar system of charge carriers
requires the presence of negative differential S- or
N-type conductivity in a semiconductor crystal (e.g.,
see [1, 2]). Similar dissipative structures in a bipolar
semiconductor plasma can also arise at a positive dif-
ferential conductivity of samples and in much lower
electric fields (e.g., see reviews in [3]). Among the dis-
sipative structures in an electron–hole plasma of a
semiconductor are autosolitons; a theory of autosoli-
tons is described in [3]. Several authors relate the obser-
vation of luminous spots in GaAs films [4], current fil-
aments in reverse biased p–n junctions in α-SiC [5] and
silicon p+–n+–p–n– structures [6], and current instabili-
ties caused by heating InSb structures [7] to the forma-
tion of autosolitons. The possibility of observing auto-
solitons in a photogenerated electron–hole plasma in
germanium and silicon crystals was predicted in [8].

Earlier, we studied high-field thermodiffusive auto-
solitons in electron–hole plasmas in n-Ge [9–13] and
p-Si [14, 15]. These autosolitons manifested them-
selves as narrow, strong, electric field strata (Eas =
1000–5000 V/cm) transverse with respect to the current
direction. The mechanism of formation of such auto-
solitons was related to the appearance of a positive
feedback for temperature growth of carriers heated up
by an electric field to the Debye temperature. The mul-
tivalley energy band structure in samples with the elec-
tric field direction along the axis corresponding to a
1063-7761/03/9701- $24.00 © 20162
large effective mass of electrons (field E is parallel to
the 〈111〉  axis in n-Ge and the 〈100〉  axis in p-Si) influ-
enced the behavior of the autosolitons, which moved in
the direction of minority carriers (holes) in n-Ge and
formed a series of static autosolitons in p-Si.

The purpose of this work was to determine the con-
ditions for the arising of high-field autosolitons in p-Ge
crystals, verify the mechanism of formation of high-
field autosolitons suggested earlier for n-Ge, and study
the influence of the multivalley energy band structure
and the type of junctions on the behavior of autosoli-
tons. Next, we will consider the phenomena of spatial
ordering in a photogenerated electron–hole plasma.
They arise with increased voltage applied to p-Ge sam-
ples with junctions of two types, p+–p and n–p.

2. EXPERIMENTAL

The samples were cut from a p-Ge crystal (ρ ≈
40 Ω cm) as rectangular 0.05 × 0.1 × 0.8 cm3 plates.
The longer plate axes were aligned with the 〈111〉  crys-
tallographic axis. The broad faces of the samples were
polished and etched in an SR-4 polishing etcher. Indium
p+–p contacts were burned into the opposite smaller ends
of the samples of the first type, and n–p In + 3% As con-
tacts, into the opposite ends of the samples of the sec-
ond type at T ≈ 450 K. Measurements were taken at
T0 = 77 K.

In the first unit described in [11, 12], an electron–
hole plasma of a high density (n ≈ p = 5 × 1013–1 ×
1017 cm–3) was generated uniformly along the broad
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Current–voltage characteristics of samples with two (a) p+–p and (b) n–p junctions obtained using rectangular voltage pulses
of width τU ≈ 20 µs (1) without illumination and (2) under illumination (CVC-1) at the instant corresponding to the stationary cur-
rent J value.

0 0
sample face by a bell-shaped light pulse of intensity Ip

from an IFP-800 pulsed lamp. The pulse width was τp =
0.5 ms. We used single rectangular or saw-tooth voltage
U pulses of width τU = 5–300 µs and amplitude up to
300 V. The voltage pulses were applied to sample con-
tacts simultaneously with light pulses. Under these con-
ditions, the temperature rise, the mean over the sample
during a current pulse, did not exceed 20 K. The tem-
perature rise was estimated from the heat balance equa-
tion without taking into account heat transfer to the
holder. Measurements were performed in three
regimes: (1) the current–voltage characteristic (CVC-1)
of a sample was measured at a light pulse maximum for
rectangular voltage pulses, and the time evolution of
high-field autosolitons was studied at constant illumi-
nation intensity and voltage values; (2) the dynamic
current–voltage characteristic (CVC-2) was measured
during growth of the leading voltage pulse edge at a
light pulse maximum, and the dynamics of high-field
autosoliton formation and evolution was studied; and
(3) the dynamics of high-field autosoliton development
was studied depending on the concentration of the elec-
tron–hole plasma while the intensity of light increased
during a rectangular voltage pulse.

The E(x) distribution of electric field strength along
the sample was measured using a microcircuit of
26 potential probes made of phosphor bronze. The
distance between neighboring probes was within
0.15−0.4 mm. The voltage measured by each of the two
neighboring probes was recorded using two differential
inputs of oscilloscopes with memory. The oscillograms
of local fields in all interprobe intervals Ei − j(t) =
∆Ui − j(t)/li − j , where li − j is the distance between probes,
were used to construct the E(x) electric field distribu-
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tions along the samples at the selected instants of time
during a voltage pulse and to determine high-field auto-
soliton parameters such as the time of formation, the
velocity of motion, and the shape and size. The dynam-
ics of carrier and crystal lattice temperature variations
during the formation and decay of high-field autosoli-
tons was studied with the second unit described in [13],
which measured IR emission from the samples with a
Ge/Au photodetector at T = 77 K. The measurements
were taken in the wavelength range λ = 1.65–10 µm
(IIR) and, using a glass filter, at λ = 1.65–2.5 µm (Ig).
Simultaneously, the field distribution along the sample
was controlled by an 18-probe head.

3. SAMPLE CURRENT–VOLTAGE 
CHARACTERISTICS

The current–voltage characteristics of unilluminated
p-Ge samples with p+–p junctions are approximately
linear and have a slightly decreasing slope at high volt-
ages (Fig. 1a, curve 1) because of a slightly non-Ohmic
contact behavior. The CVC-1 curves of the same sam-
ples under illumination, obtained for steady currents,
contain three to five distinct regions (Fig. 1a, curve 2).
In region I (U < 50 V), current J grows weakly as volt-
age increases. Regions II and IV are characterized by a
steep increase in the current at U1 ≈ 50 V and U2 ≈
170 V. In regions III and V, the current reaches satura-
tion or has an N-shaped dependence. The dynamic
CVC-2 of illuminated samples with p+–p junctions
shows a weak current increase during the onset of volt-
age pulse growth (see below, Fig. 2a, region I). The cur-
rent then sharply increases (region II). After this, we
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observe either current saturation or an N-shaped depen-
dence of the current (region III) often followed by a
monotonic current increase in time, even under voltage
saturation.

The initial region of the current–voltage characteris-
tic of unilluminated p-Ge samples with n–p junctions is
a quadratic dependence caused by the injection of
charge carriers from the forward biased negative n–p
junction (Fig. 1b, curve 1). At large voltages, the slope
of the current–voltage characteristic decreases because
of blocking of the reverse biased positive n–p junction.
The CVC-1 curves of illuminated samples with n–p
junctions obtained for the lowest steady current value
contain region I of a weakly growing current (Fig. 1b,
curve 2) followed by regions II, IV, and VI of a steeply
increasing current and regions III, V, and VII of current
saturation or an N-shaped dependence. The dynamic
CVC-2 curves of illuminated samples with n–p junc-
tions also contain region I of a weak current during a U
pulse leading edge growth (see below, Fig. 3a). Next,
we observe region II of a sharp increase in the current
and N-shaped region III.
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4. CONTACT EXCLUSION 
OF AN ELECTRON–HOLE PLASMA 

IN SAMPLES WITH p+–p JUNCTIONS

We explain a weak increase in the current in
regions I of CVC-1 (Fig. 1a) and CVC-2 (Fig. 2a) in an
electron–hole plasma photogenerated in samples with
p+–p junctions by contact exclusion. The electron–hole
plasma is then carried by the field from the negative to
positive junction in the drift direction of minority carri-
ers (electrons). This causes the formation of an exclu-
sion region with a decreased electron–hole plasma con-
centration and a high electric field strength at the nega-
tive junction. For a growing voltage pulse, this is shown
in Fig. 2d (curve t1, the E(x, t1) field distribution
obtained from the oscillograms of local fields Ei − j(t) =
∆Ui − j/li − j , i = 0–8, j = 1–9 at time t1). In the remaining
sample regions, a high plasma concentration and a
weak field are established [Fig. 2c, curves E2−3(t1) and
E3−4(t1)], and the E(x) field distribution profile in the
exclusion region of the transition from a strong to a
weak field acquires the character of a steep wall
Fig. 2. (a–c) One-step local field growth in the formation of two static high-field autosolitons with small amplitudes; Eas1 =

E4−5(t2) = ∆U4−5(t2)/l4−5 and Eas2 = E6−7(t2) near the exclusion region at the negative junction in a sample with p+–p junctions dur-
ing voltage pulse U growth at a constant illumination intensity, at a light pulse maximum of Ip; J is the current. The oscillogram of
field E6−7 is similar to that of E4−5 and is therefore not shown. (d) E(x, t1) and E(x, t2) are the field strength distributions close to
the negative junction before and after the formation of autosolitons obtained from local field Ei−j oscillograms at times t1 and t2,
respectively; l0–1 = 0.017 cm (the distance between the negative junction and the first probe), l1–2 = 0.032 cm, l2–3 = 0.025 cm, l3−4 =
0.045 cm, l4–5 = 0.05 cm, l5–6 = 0.05 cm, and l6–7 = 0.05 cm; and l = 0.8 cm is the sample length. In Figs. 2–4, minus sign in the
circle indicates negative polarity of the voltage applied to this end of a sample.
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(Fig. 2d, curve t1) at a sufficiently high voltage, in
agreement with the results obtained in [16].

5. CURRENT–VOLTAGE CHARACTERISTIC 
REGIONS OF A STEEP INCREASE

IN THE CURRENT

A sharp increase in the current in regions II of
CVC-1 (Fig. 1a) and CVC-2 (Fig. 2a) in samples with
p+–p junctions is accompanied by a decrease in the field
strength in the exclusion region (Fig. 2b, 2c, curves
E0−1–E2−3, and Fig. 2d, curve t2) and an increase in the
field in the adjacent sample regions. Such an increase
in the current is accompanied by a small decrease in
the voltage on the sample because of a strong decrease
in sample resistance, which becomes comparable to
the output resistance of the generator of voltage
pulses. This causes the formation of S-shaped region II
in dynamic CVC-2 (Fig. 2a). These data are evidence
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that an electron–hole plasma flow comes to the near-
junction high-field region from the neighboring sam-
ple region enriched in carriers. We relate this to the
reversal of the bipolar drift direction of the electron–
hole plasma heated up by the electric field in the exclu-
sion region. The reason for the bipolar drift reversal is
the different dependences of electron and hole mobili-
ties on their temperatures in a heating electric field
[17–20]. We observed a similar phenomenon for n-Ge
samples at much lower local fields in the exclusion
region [15].

Initial regions I of CVC-1 (Fig. 1b) and dynamic
CVC-2 (Fig. 3a) characterized by a weak increase in
the current in samples with n–p junctions is caused by
blocking of the reverse biased positive n–p junction.
This is evidenced by an initial increase in the field
strength to a high value at this junction, which accom-
panies voltage pulse growth (Fig. 3c). We explain the
appearance in these samples of region II with a sharp
Fig. 3. (a–c) Three-step field strength growth in the formation of a moving high-field autosoliton with a large amplitude (Eas1 =
E1−2) close to the injecting negative junction and the formation of a low-amplitude static soliton (Eas2 = E15−16) with an intermediate
pulsating stage close to the positive blocking junction in a sample with n–p junctions during voltage pulse U growth at a constant
illumination intensity Ip , at a light pulse maximum; J is the current. (d) E(x, t1), E(x, t2), and E(x, t3) are the field strength distribu-
tions near the negative junction before and after the formation of a moving autosoliton determined from local field Ei−j oscillograms
at times t1, t2, and t3, respectively; l0−1 = 0.03 cm, l1−2 = 0.03 cm, l2−3 = 0.035 cm, l3−4 = 0.035 cm, l15−16 = 0.025 cm, and l16−c =
0.015 cm (the distance between the last probe and the positive junction); and l = 0.8 cm is the sample length.
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increase in the current in the stationary (Fig. 1b) and
dynamic (Fig. 3a) current–voltage characteristics by
the blocking n–p junction being poured over with the
photogenerated electron–hole plasma as a result of its
bipolar drift. The E16−c field at the positive junction
then sharply decreases. A small decrease in the volt-
age at the instant of a sharp current rise creates an
S-shaped region of the dynamic current–voltage char-
acteristics (CVC-2) (Fig. 3a).

6. THE ARISING
OF HIGH-FIELD AUTOSOLITONS

The appearance of branches III and V in stationary
current–voltage characteristics (CVC-1) (Fig. 1) and of
branch III in dynamic current–voltage characteristics
(CVC-2) (Figs. 2, 3) with either current saturation or
N-shaped current dependences is accompanied by the
arising and development of high-field domains in sam-
ples (Figs. 2, 3d). We treat these domains as high-field
thermodiffusion autosolitons in conformity with the
theory described in [3] and the results obtained in [9].
These autosolitons are formed at electron–hole plasma
concentrations of n ≥ 1 × 1014 cm–3 and mean field
strengths in the sample of E ≥ 100 V/cm. They manifest
themselves as solitary strata with a high field strength
(Eas = 1000–20000 V/cm), carrier temperatures
exceeding 1000 K, and a decreased concentration of
carriers. Depending on the light intensity and applied
voltage, static, moving, and pulsating high-field auto-
solitons arise in the sample. In addition, we observed a
turbulent electron–hole plasma state, when autosolitons
chaotically formed and disappeared in various sample
regions.

6.1. The Static High-Field Autosoliton

An increase in the voltage over time at a constant
illumination intensity stretches the exclusion region in
samples with p+–p junctions. When the threshold volt-
age is attained, the field strength in the extended part of
the exclusion region decreases (Fig. 2b, curves E0−1–
E2−3) and the current increases because of the bipolar
drift reversal. After this, the current slightly decreases
and either one high-field autosoliton with a large ampli-
tude or simultaneously two static autosolitons with
smaller amplitudes are formed at some distance (l =
1−2 mm) from the negative junction (Fig. 2, Eas1 = E4−5 ≈
Eas2 = E6−7 ≈ 1000 V/cm), in the region characterized by
the local carrier concentration n ≈ p ≥ 1 × 1014 cm–3 and
field strength Ei−j ≥ 500 V/cm necessary for the forma-
tion of autosolitons. An increase in the field of a small-
amplitude autosoliton has a one-step dynamics. The
high field at the junction is largely determined by exclu-
sion regions depleted of carriers, and the high field of
the autosoliton is largely determined by the high tem-
perature of carriers. The formation of autosolitons in
samples with p+–p junctions insignificantly (by 5–15%)
JOURNAL OF EXPERIMENTAL
decreases the current, because the current value is
already substantially limited by the high resistance of
the exclusion region.

The formation of a large-amplitude static soliton
(Eas = E1−2 ≈ 5200 V/cm) in the exclusion region in
samples with p+–p junctions at high light intensities and
applied voltage values (U ≥ 170 V, regime 3) is accom-
panied by a strong Joule heating of the autosoliton
region. This causes substantial thermal generation of
the electron–hole plasma (comparable to its photoge-
neration) and a decrease in the autosoliton field, which
in turn results either in a monotonic increase in the cur-
rent and autosoliton transfer to neighboring sample
regions or in autosoliton destruction and a jump
increase in the current. A large-amplitude static soliton
(Eas ≈ 3200 V/cm) formed under a weak illumination
intensity and at a low voltage (U ≈ 100 V) and a low
steady current (J ≤ 600 mA) can exist for a long time
(up to 200 µs) until it decays because of Joule lattice
heating.

Note that the reversal of the bipolar drift direction of
the electron–hole plasma in these samples occurs at
voltage values smaller than those necessary for high-
field autosoliton formation, and both these effects are
independent. The exclusion region often plays the role
of the main seed for preliminarily heating carriers and
the formation of such autosolitons. At the same time,
the electron–hole plasma drift reversal lowers the field
in the exclusion region, increases the field in the other
sample regions, and enhances the role played by intrin-
sic sample inhomogeneities far from junctions in the
formation of autosolitons.

To eliminate the initial influence of the exclusion
region on the formation of high-field autosolitons, we
performed measurements for samples with two n–p
junctions subjected to the action of rectangular voltage
pulses at a constant illumination intensity. Field
strength E0−1 at the negative injecting junction was then
low; that is, the exclusion region was absent (Fig. 3d,
curve t1). At the same time, the high field intensity E16−c

during the increase in voltage pulse at the positive
blocking junction then decreases because of the block-
ing junction being poured over by the photogenerated
electron–hole plasma simultaneously with an increase
in the current, which increases the field strength in the
other sample regions (E1−2, E2−3, and E15−16). As a
result, at a voltage exceeding the threshold of autosoli-
ton formation (U ≥ 120 V), one large-amplitude static
autosoliton is formed near the negative junction, Eas1 =
E1−2 ≈ 3300 V/cm. The second autosoliton with a
smaller amplitude is formed near the positive junction,
Eas2 = E15−16 ≈ 1600 V/cm (Fig. 3). Because of the
absence of the exclusion region in these experiments,
autosoliton formation causes a substantial (by a factor
of 1.5–2) decrease in the current. At the same time, the
currents in these samples were much stronger than in
the samples with p+–p junctions (cf. Figs. 1a and 1b or
2 and 3). While the leading U pulse edge increases, the
 AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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Fig. 4. Turbulent electron–hole plasma state with chaotic formation and disappearance of autosolitons in various regions of a sample
with p+–p junctions during illumination intensity Ip growth at a constant high voltage of U = 300 V: (a) current, (b)–(d) local field
oscillograms, and (e) field strength distributions near the negative junction at various U pulse instants; l0−1 = 0.03 cm, l1−2 =
0.03 cm, l2−3 = 0.03 cm, l3−4 = 0.03 cm, and l15−16 = 0.03 cm; l = 0.8 cm is the sample length.
dynamics of field growth in the first autosoliton close to
the negative n–p junction, has a three-step character,
and this autosoliton then moves toward the positive
junction. Field growth in the second autosoliton close
to the positive junction has a one-step character, and its
static state transforms into the pulsating state and back.
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At a large amplitude of rectangular voltage pulses
and a growing light intensity (regime 3), a temporary
field decrease was observed in some samples in the
region of the large-amplitude autosoliton, Eas1 = E1−2 ≥
5000 V/cm, at a maximum light intensity. This was
accompanied by a strong current increase followed by
SICS      Vol. 97      No. 1      2003
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field growth to its initial value. We explain the field
decrease by an interband breakdown in the autosoliton
region, because the autosoliton width decreases as the
light intensity (the electron–hole plasma concentration)
increases as a result of a decrease in the velocity of
electron–hole plasma bipolar drift [11, 12] to a value
smaller than the distance between neighboring probes,
and the actual autosoliton field value substantially
increases to the breakdown field value.

Note that the accuracy of determining the maximum
field strength value in a static autosoliton largely
depends on the ratio between the autosoliton width Las

and the li−j distance between neighboring probes in the
autosoliton region. If Las ≈ li−j , this accuracy can
amount to 60–80% of the real maximum autosoliton
field value. If Las ! li−j , the real autosoliton field is
determined either indirectly, as with the interband
breakdown in the soliton, or more accurately for the
example of a moving autosoliton, as is shown in the
next paragraph.

6.2. A Moving High-Field Soliton

Moving autosolitons were largely observed in sam-
ples with n–p junctions at a large amplitude of a rectan-
gular voltage pulse (U ≥ 140 V, regime 1). The large-
amplitude autosoliton (Eas = E1−2 ≈ 3700 V/cm, Fig. 3)
that formed close to the injecting negative junction
moved toward the positive junction [in the minority car-
rier (electron) drift direction] at a velocity of v as ≈ 9 ×
103 cm/s. The velocity of an autosoliton was deter-
mined from the time of its passage (t2−3 ≈ 4 µs) through
the interprobe gap, l2−3 = 0.035 cm. The time at which
an autosoliton enters the interprobe gap l2−3 can be
determined from field oscillograms, E2−3(t2) (∆t2−3 ≈
0.5 × 10–6 s), which allows us to estimate the autosoli-
ton width at its base, Las ≈ 4.5 × 10–3 cm. The mean
autosoliton field strength can then be estimated as Eas =
∆U2−3/Las = 90 V/4.5 × 10–3 cm ≈ 2 × 104 V/cm. It may
well be still higher at the maximum, taking into account
an approximately Gaussian autosoliton field strength
distribution. The rapid entrance of a narrow autosoliton
into a wider interprobe gap (Las ! li−j), its motion in this
gap, and the rapid exit from the gap form a voltage drop
pulse ∆Uas(t) of a shape close to rectangular.

6.3. Pulsating High-Field Autosolitons
and Turbulent State of Electron–Hole Plasma

At low (near-threshold) light intensity and applied
voltage values, an autosoliton with a steadily pulsating
amplitude could form in a sample. For instance, switch-
ing on a low-amplitude (U ≈ 120 V) voltage pulse
simultaneously with the onset of light pulse growth
(regime 3) caused the formation of a steadily pulsating
autosoliton with a field of Eas1 = E1−2 ≈ 2200 V/cm in
the exclusion region in a sample with p+–p junctions.
JOURNAL OF EXPERIMENTAL
The amplitude of autosoliton field oscillations was
∆Eas ≈ 0.1Eas , and the frequency of oscillations was f ≈
100 kHz at a current of J ≈ 0.8 A. Simultaneously, the
second, static autosoliton with a field of Eas2 = E7−8 ≈
1200 V/cm appeared in the low-field sample region.
The autosolitons of the two types coexisted for a fairly
long time, tas ≈ 250 µs. After the decay of the pulsating
soliton (because of Joule heating), the current sharply
increased.

A different type of pulsating autosoliton characterized
by a large and constant amplitude (E1−2 ≈ 4800 V/cm)
was observed in some samples at high applied voltage
values of U ≥ 180 V. This autosoliton experienced oscil-
latory displacements to neighboring interprobe gaps,
where it caused E0–1 and E2–3 field oscillations with
amplitudes of up to 20% of Emax. We explain such oscil-
latory autosoliton shifts by a higher rate of sample sur-
face recombination determined by the special features
of its etching. The conditions of formation of pulsating
autosolitons of both types coincide with theoretically
predicted conditions [3].

At high voltages of U = 200–300 V and intense illu-
mination, the electron–hole plasma exhibits turbulent
behavior in samples with p+–p junctions. This is
accompanied by the chaotic appearance and disappear-
ance of autosolitons in different sample regions. The
amplitude of field strength oscillations then amounts to
∆Ei−j = (0.7–0.9)Ei−j , the frequency of oscillations is f ≈
200 kHz, and the autosoliton field is as high as E1−2 ≈
E4−5 ≈ 1500 V/cm (Fig. 4). At the same time, only small
current oscillations whose amplitude is about 15% of
Jmax go to the external circuit. Note that the turbulent
autosoliton state was not reached in similar experi-
ments with n-Ge [9–13].

7. IR EMISSION DURING FORMATION
AND DECAY OF AUTOSOLITONS

A weak IR radiation signal IIR from the exclusion
region appeared and disappeared in the course of exclu-
sion during a rectangular voltage pulse whose ampli-
tude was below the threshold of autosoliton formation.
The signal approximately reproduced the shape of the
light pulse, as in [13]. The spectrum of IR radiation was
observed in the wavelength range λ = 6–10 µm and cor-
responded to carrier temperatures of Te = 150–300 K.

The dynamics of IR emission from the samples with
p+–p junctions during the formation and decay of high-
field autosolitons was studied by switching on a rectan-
gular voltage pulse (U ≥ 80 V) simultaneously with the
onset of an increase in light pulse (Fig. 5). Under these
conditions, the current and field E0−1 first sharply
decrease, whereas the E1−2 field increases, because of
the development of electron–hole plasma exclusion at
the negative junction. Next, field E0−1 again sharply
decreases, and the current sharply increases because of
an increase in the concentration of the electron–hole
 AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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Fig. 5. (a, b) Dynamics of IR emission (λ = 1.65–10 µm) from the near-junction region of a sample with p+–p contacts in the course
of the formation and decay of an autosoliton under the conditions of growing illumination intensity Ip during a long voltage pulse
of small amplitude; (d) multistep decay of IR radiation from the autosoliton region after termination of a short voltage pulse of large
amplitude; (c) oscillograms of local fields.
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plasma as a result of photogeneration and bipolar drift
reversal. Simultaneously, field E1−2 sharply increases to
produce a high-field static autosoliton. At this instant,
the  IR radiation signal from hot carriers in the
autosoliton region rapidly increases.

As illumination and current increase further, the
second  signal rapidly grows to its maximum
(Fig. 5). We explain this by thermal radiation from the
high-field autosoliton region caused by its strong Joule
heating, which reaches hundreds of Kelvin. As the light
intensity further increases, the first sharp decrease in
the  signal after its peak value is observed while

field E1−2 increases. This decrease in the  signal can
be related to a decrease in the temperature of carriers as
a result of a decrease in power supplied to the autosoli-
ton region. The decrease in power is explained by a
decrease in the mobility of electrons caused by their
transition from hot valleys to the cold valley in the
strong autosoliton field. According to our calculations,
at T = 80 K, the concentration of the electron–hole
plasma n = 1 × 1015 cm–3; field E = 2000 V/cm directed
along the 〈111〉  axis; and the mobility of electrons
decreases by 25% compared with the case when the
field is directed along the 〈100〉  axis.

II R1

II R1

II R1

II R1
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After the initial  signal peak, we often observe
substantial signal oscillations during the existence of a
stationary high-field autosoliton when the Eas field is
constant and the light intensity and current increase.
This is evidence of the complex character of the devel-
opment of carrier and lattice heating in the autosoliton
region and the transfer of this heat into the surrounding
sample volume. The temperature of carriers in such an
autosoliton was estimated from the experimental 
and Ig signals and the spectrum of photodetector sensi-
tivity. The temperature of electrons that made the major
contribution to hot carrier radiation signals was found
to exceed 1000 K.

A short-term decrease in the autosoliton field and an
increase in the current caused by interband breakdown
in the autosoliton region were accompanied by a sharp
increase in short-wave IR radiation Ig .

Abnormally strong total IR radiation signals from
the sample, IIR = 70–120 mV, and IR radiation through
the glass filter, Ig = 15–60 mV (the usual signal and
noise levels being IIR = 10–15 mV and 1 mV, respec-
tively), were observed when a narrow (tU = 10–20 µs)
rectangular voltage pulse of U ≥ 140 V was applied to the
sample through which a strong current (J ~ 20–40 A)
flowed at the instant of maximum light pulse intensity.

II R1

II R1
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The high IIR and Ig signal values were caused, first, by
the passage of recombination electron–hole plasma
radiation from the autosoliton region through a Ge filter
to the photodetector. This occurred because of a strong
autosoliton region heating (to T @ 300 K) and a narrow-
ing of the forbidden band in the crystal in this region to
a value smaller than the forbidden bandwidth of the Ge
filter, which was at T = 300 K and served to cut off flash
lamp light reflected from the sample. Secondly, apart
from hot carriers, the heated lattice in the high-field
autosoliton made a large contribution to the strong IR
radiation signal.

Autosoliton region heating has a strong influence on
the IR radiation signal from the sample after the
destruction of the autosoliton. For instance, after volt-
age pulse decay, we first observe a rapid decrease in the
IIR signal by 20–30% caused by autosoliton destruction.
The  signal then slowly decreases in two to three
steps 4–10 µs in duration (Fig. 5d). We explain these
steps by photogenerated carrier radiation from the “hot
spot” formed in the autosoliton region heated by hun-
dreds of Kelvin. The width of these steps in the tail of
the IR signal increases to 50 µs as the voltage pulse
width grows to tU ≈ 100 µs. At still wider voltage pulses
(tU ≈ 200 µs), the IIR signal decreases monotonically
after its decay.

Sample surface boiling close to the negative junc-
tion was observed in some samples at a maximum
applied power (Fig. 6). This occurred as a result of
rapid Joule heating of the crystal in the high-field auto-
soliton region, which occupied a thin (d < 10 µm) sub-
surface layer with bipolar conductivity in the exclusion
region. As a BaF2 plate was pressed to the sample from

II R2

Fig. 6. Traces of sample material boiling up in the region of
a high-field autosoliton in the exclusion region near the neg-
ative junction after applying a short U ≈ 300 V pulse to a
sample with two p+–p contacts at a light pulse maximum.
JOURNAL OF EXPERIMENTAL 
above, the boiling caused the deposition of the sample
material on its surface. This result shows that a hot spot
is formed in the autosoliton region. The temperature in
this spot can reach T > 1300 K. In addition, this result
substantiates estimates of the depth of electron–hole
plasma penetration into the sample in a longitudinal
electric field. This depth is determined by the depth of
light absorption and the depth of minority carrier (elec-
tron) diffusion during their drift along the sample. It
varies from several µm in the exclusion region to doz-
ens of µm at the rear junction.

8. RESULTS AND DISCUSSION

Earlier, the phenomenon of the reversal of the bipo-
lar electron–hole plasma drift direction was observed
for an electron–hole plasma packet light-generated in
germanium [7]. This phenomenon was also studied for
the contact injection of an electron–hole plasma [18–20].
We were the first to observe this phenomenon under
contact exclusion conditions in n-Ge samples [13]. It
substantially influenced current–voltage characteristics
and field strength distributions.

To analyze the state of a nonequilibrium electron–
hole plasma, we used a computer program to solve the
energy balance equation

(1)

where ε is the energy of particles, and calculated elec-
tron and hole characteristics depending on the electric
field strength and its direction with respect to the crys-
tallographic axes of the sample at crystal temperatures
from liquid nitrogen temperature and higher. For this
purpose, the symmetrical distribution function part was
described by the Maxwell function with the electronic
temperature determined from (1). Equation (1) includes
charge carrier scattering by acoustic (dε/dt)ac and opti-
cal (dε/dt)opt phonons of different branches [21] and
electron–electron (dε/dt)ee [22] and electron–hole
(dε/dt)eh [22, 23] interactions. The asymmetric distribu-
tion function part was determined from the Boltzmann
equation in the τ approximation taking into account scat-
tering of carriers by acoustic and optical phonons [21]
and impurities according to the Brooks–Herring equa-
tion [21, 24]. The field term has the form

where µe, h represents the mobilities of carriers. The
concentration of electrons in different valleys in an
electric field directed asymmetrically with respect to
the valleys was determined from the balance equation
for the number of particles, taking into account interac-
tions with intervalley phonons [21, 24].
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According to the calculated dependence of the ratio
between the mobilities of electrons and holes on the
electric field,

(Fig. 7) at the crystal temperature T = 80 K and the field
directed along the 〈111〉  axis, the mobility of holes
becomes higher than that of electrons in limited elec-
tron–hole plasma concentration and electric field
ranges. Under these conditions, the reversal of the elec-
tron–hole plasma bipolar drift direction can occur. The
electron–hole plasma density then moves in the drift
direction of more mobile hole carriers rather than in the
drift direction of minority (electron) carriers. Accord-
ing to the estimates obtained by (1), the necessary elec-
tron–hole plasma concentrations are attained close to
the illuminated surface in the l1−2 sample region (E1−2 ≈
1000 V/cm) at time t1 (Fig. 2), preceding a sharp
increase in the current. Local sample heating during a
pulse and during voltage increase shifts not only the
specified parameter ranges but also the place where the
reversal of the electron–hole plasma drift direction
begins.

The electron and hole parameters obtained also
enter into the continuity equations for particle flows
and energy fluxes in the theory described in [3]. In our
experiments, they are characteristic of N-shaped and
current-saturation regions of the current–voltage char-
acteristics. These parameters satisfy the requirements
that determine the conditions of formation of high-field
transverse thermodiffusion autosolitons [3], namely:

(1) the strong inequality τ%/τ ! 1 or l%/L ! 1 is sat-
isfied (τ% ≈ 1 × 10–11 s and l% ≈ 1 × 10–5 cm are the parti-
cle energy relaxation time and length, τ ≈ (1–5) × 10–6 s
is the lifetime of the electron–hole plasma, and L ≈ 1 ×
10−2 cm is the bipolar carrier diffusion length);

(2) the nonlinear condition α + s > –1 is met in fields
E ≥ 800 B/cm (Fig. 8, τp ∝  (Te)α, α = dlnτp/dlnTe , τ% ∝
(Te)s, s = dlnτ%/dlnTe , and τp is the particle momentum
relaxation time), which enables the mechanism of pos-
itive feedback for carrier temperature Te growth to
operate;

(3) the inequalities

ensure the regime of energy control for current carriers
and the formation of an autosoliton in the form of a
high-field domain (at n ≤ 2 × 1016 cm–3).

The τ% value was calculated by the equation

(2)

using (1). Here, f is the Maxwell distribution function

b E( ) µe E( )/µρ E( )=

τ p ≈1 10 13–  s×( ) ! τee ≈1 10 12–  s×( )

 ! τ% ≈1 10 11–  s×( )

k3 f
εd
td

-----d∫
3nk Te T–( )

2τ%
-----------------------------=
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and k is the Boltzmann constant. The simultaneous ful-
fillment of the inequalities τ%/τ ! 1 and l%/L ! 1 for the
electron–hole plasma allows this plasma to be classified
with KΩ systems [3], in which autosolitons of all types
observed in this work can form depending on the con-
centration and heating level of the electron–hole
plasma.

1 2 3 4
0.5

1.0

1.5

0
E, kV/cm

5

b

1

2
3

45

Fig. 7. Electric field strength dependences of the ratio
between electron and hole mobilities b = µe/µh at various
carrier concentrations obtained from the energy balance
equation: n = 4 × 1015 (1), 2 × 1015 (2), 1 × 1015 (3), 5 ×
1014 (4), and 2 × 1014 cm–3 (5); b = µe/µh , where µe and µh
are the electron and hole mobilities, respectively.
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0
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α + s

α, s

α
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E, kV/cm

Fig. 8. Electric field strength dependences of the tempera-
ture exponents for relaxation times with respect to momen-
tum, α(E) = dlnτp/dlnTe , and energy, s(E) = dlnτ%/dlnTe ,
and their sums α(E) + s(E) obtained from energy balance
equation (1) and from (2). The α + s > –1 criterion of the
formation of high-field autosolitons is satisfied in fields E >
750 V/cm at a T = 80 K temperature of the crystal, an n =
2 × 1015 cm–3 concentration of the electron–hole plasma,
and the field direction along the 〈111〉  axis.
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The first stage of high-field autosoliton formation in
a sample under the action of an increasing leading volt-
age pulse edge is characterized by the first jump of the
local field upward to a high value (Eas ≥ 1000 V/cm)
and a small decrease in the current (Figs. 2, 3). We
relate this stage of autosoliton formation [9–12] to a
change in the form of the dependence of the electron
energy relaxation time τ% on the electron temperature
(electric field) from decreasing to increasing near the
Debye temperature (ΘD = 430 K for germanium) [25].
According to our calculations, this temperature is
reached in field E ≈ 1300 V/cm. In reality, the α + s > −1
criterion is met even earlier, when electron temperature
Te only approaches ΘD and the inequality s > –1/2 at
α ≈ –1/2 is satisfied. This triggers positive feedback for
electron temperature growth under the conditions of
strong (although short-term) heating of electrons by an
electric field [3]. Energy transfer from the electrons,
which are powered by the electric field, to the lattice
then slows down, the temperature of electrons grows,
and their mobility decreases. This causes an increase in
the local field and, at a small change in the current
value, a still greater heating of electrons and the forma-
tion of high-field autosolitons. A stationary autosoliton
can exist because the thermodiffusion flow of hot carri-
ers directed from the center of the autosoliton outward
is balanced at its boundary by the diffusion counterflow
of cold carriers.

The second field intensity jump in the formation of
a large-amplitude autosoliton is caused by electron
transfer between equivalent valleys. The electrons are
transferred from the valleys with a low effective mass
to the valley with a high effective mass. This decreases
the mobility of the electrons and increases the field
strength in the autosoliton region. The third jump of
autosoliton field growth can be related to throwing elec-
trons to a higher X valley in a strong autosoliton field
(Eas > 5000 V/cm). In [26], the appearance of current
instabilities was related to such an intervalley electron
transfer in a strong electric field in n-Ge samples at T ≈
80 K. Enhanced field regions situated near the exclu-
sion area at the negative p+–p junction, close to the
blocking positive n–p junction, and on intrinsic sample
inhomogeneities can play the role of nuclei for auto-
soliton formation.

The static state of autosolitons in the p-Ge samples
under study can be explained as follows. First, at a low
concentration of impurities (Na ≈ 1 × 1013 cm–3) and a
high concentration of photogenerated carriers (n =
1014–1016 cm–3), the electron–hole plasma becomes
almost intrinsic, and the bipolar drift velocity in it tends
to zero. Secondly, the stationary state is favored by
stronger heating of the electrons, which are more
mobile than the holes, and the transfer of the electrons
from “light” valleys to the “heavier” one in field E
directed along the 〈111〉  axis; this decreases the mobil-
ity of the electrons and makes the plasma more sym-
metric. A similar situation arose in our experiments
JOURNAL OF EXPERIMENTAL 
with n-Ge samples when the field was oriented along
the 〈110〉  axis [10] and p-Si samples oriented along the
〈100〉  axis [14, 15], in which the formation of static
solitons was observed.

According to field strength measurements in a high-
field autosoliton and our calculations based on energy
balance equation (1) for T = 77 K, the temperature of
the electrons in the region of such an autosoliton
amounts to Te = 1000–3000 K and higher, in agreement
with the results of measuring IR radiation from the
sample. Because of thermal diffusion, the concentra-
tion of the carriers in these autosolitons is lower than in
the neighboring sample regions. In addition, the energy
of the carriers in the region of such an autosoliton can
reach very high values and cause interband breakdowns
because of the smallness of the τ%/τ ratio [3]. According
to our calculations, the mean electron energy becomes
%e ≥ 1 eV at n ≈ 1 × 1015 cm–3 and Eas ≈ 2 × 104 V/cm.

9. CONCLUSIONS

To summarize, an electron–hole plasma photoge-
nerated uniformly along p-Ge samples and heated by an
electric field at T = 77 K becomes unstable and stratifies
along the current direction into transverse high-field
thermodiffusion autosolitons. They are formed in a
sample irrespective of the type of junctions (antiblock-
ing, injecting, or blocking) both near junctions and far
from them.

The reversal of the bipolar drift direction of an elec-
tron–hole plasma in samples with p+–p junctions, the
injection of an electron–hole plasma, and the pouring
over of a blocking junction by photogenerated carriers
in samples with n–p junctions create the first regions of
a sharp increase in the current in current–voltage char-
acteristics and influence the site of autosoliton forma-
tion. Repeated current–voltage characteristic regions of
a sharp current increase and saturation are related to the
rearrangement of autosolitons and require further
inquiries.

The multivalley structure of the energy bands of ger-
manium manifests itself in the dynamics of autosoliton
formation in the form of three-step autosoliton field
growth.

Autosolitons of various types are formed in p-Ge
samples depending on the intensity of photogeneration
and the applied voltage, namely, static, moving, and
pulsating solitons and the turbulent state of the elec-
tron–hole plasma.

Note for comparison that we only observed auto-
solitons of one type in n-Ge samples oriented along the
〈111〉  axis [11]. These were autosolitons that moved in
the hole drift direction under bipolar drift conditions;
the holes were minority carriers, and they were more
mobile because of the transfer of electrons to the valley
with a heavy effective mass. In these samples, we did
not observe the third field jump during autosoliton for-
mation and the accompanying interband breakdown. At
AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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the same time, we only observed static solitons in p-Si
samples oriented along the 〈100〉  axis, also under the
conditions of electron transfer to the valley with a large
effective mass [14].
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Abstract—The surface energy of an electron gas in a crystal is considered. The results obtained for a quadratic
spectrum are generalized to an arbitrary energy spectrum in certain crystal models. The surface energy of an
electron gas with a quadratic spectrum is found for a sample with a rough boundary when the height of irregu-
larities is small compared with the electron wavelength. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The quantization of electron states affects the ther-
modynamic and kinetic properties of a bounded crystal
even in systems that are large compared with the char-
acteristic electron wavelengths λ. Thermodynamic
quantities are expanded in powers of the ratio of λ to the
system size d. The main correction to an extensive
quantity can be represented as a surface contribution
proportional to the surface area of a sample (see, for
example, review [1]). When the size of a large system
decreases, this quantization effect precedes the mani-
festation of properties associated with the fluctuations
of electron levels. Indeed, when the correlation of lev-
els is neglected, the fluctuations of the number of levels
are inversely proportional to the square root of this
number, i.e., to the square root of the volume (the inclu-
sion of the correlation gives rise to additional logarith-
mic factors depending on the statistics of levels). In fac-
etted monocrystals, there exist edge and vertex contri-
butions in addition to the surface contribution [2].

The dependence of the chemical potential of an
electron gas on the surface-to-volume ratio gives rise to
a contact potential between grains of the same material
but of different sizes and shapes, which leads to a spon-
taneous recharging of the grains [1, 3]. As a result, a
granulated metal may undergo transition to the state of
the Hubbard gapless dielectric [3].

Since the surface contributions are formed at a dis-
tance of about the electron wavelength from the sur-
face, they are sensitive to the surface perfectness, the
crystalline structure, and the surface potential. These
factors are especially important in the case of metal par-
ticles in which the wavelength is comparable to the lat-
tice constant. In the present paper, we consider surface
corrections to thermodynamic quantities in a crystal
with regard to the crystalline structure.
1063-7761/03/9701- $24.00 © 20174
2. CONTINUUM MODEL

Consider an Ω potential of electrons with the energy
spectrum e(k) in a plate 0 < z < d. Suppose that the elec-
tron wave function can be described within the model
of envelopes χ(r) that are subject to the identical homo-
geneous boundary conditions

(1)

The quantity ζ has a dimension of length and can be
regarded as a characteristic length of reflection. In a
continuum model with the energy barrier U(z) = U0θ(z)

on the boundary, parameter ζ = 1/  (here, m
is the effective mass of an electron) represents the pen-
etration depth of electrons into the barrier. In the gen-
eral case, ζ also depends on the component of the
momentum of an electron along the boundary. Bound-
ary condition (1) is satisfied by the wave functions χ =
sin(kzz + ϕ), where  = –kzζ. The transverse wave
vector takes quantized values of kz = (πn – 2ϕ)/d, where
n is an integer. Potential Ω at low temperature is
expressed as

Here and below, S is the lateral surface and V = Sd is the
sample volume. To determine the surface contribution
to the Ω potential, we replace the summation by an inte-
gral using the summation formula

.
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Taking into account that the function to be summed
vanishes at the upper limit, we obtain a decomposition
of the Ω potential into the volume, ΩV , and surface, ΩS ,
contributions:

(2)

According to (2), potential ΩS contains two contri-
butions. The first one, ΩS1, is determined by electrons
with kz = 0. This means that the electron spectrum,
which determines this contribution, becomes two-
dimensional. At the same time, ΩS1 is independent of
the boundary condition imposed on the wave function.
The contribution ΩS2 is determined by all electrons
below the Fermi surface and depends on the phase of
reflection from the boundary.

In the particular case of a boundary between semi-
conductor and vacuum, the Fermi energy is much less
than the work function U0. In this case, ζ = const,
kzζ ! 1, and ϕ = –kzζ, and we have the following
expression for ΩS2:

(3)

The comparison of ΩS1 and ΩS2 shows that the latter is
kζ times smaller than the former. The contribution of
ΩS2 is proportional to the volume Ω potential and
implies that the sample thickness is effectively
increased by ζ at each face. The signs of ΩS1 and ΩS2
are opposite. Thus, the reflection length determines the
increase of the effective thickness.

For a given number of electrons in the sample, the
presence of the boundary results in the variation of the
chemical potential

Here, n(µ) is the density of a three-dimensional elec-
tron gas; for the quadratic spectrum, ∂n(µ)/∂µ =
π−2(2m3µ)1/2.

In a real crystal, the value of ζ is determined by the
crystalline structure, the orientation, the perfectness of
the boundary, the presence or absence of an insulating
layer on the boundary, etc. To analyze possible depen-
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dence of ζ on electron momentum, we introduce a
boundary condition for the wave function in certain
models.

3. SURFACE TENSION 
OF AN ELECTRON GAS IN A DIELECTRIC

Consider a strong-coupling model with the Hamil-
tonian

Here, εnν is the energy level of state ν of an atom n and
tnν, n'ν' is the transition amplitude between the levels of
atoms that constitute a lattice. Suppose that the crystal
is bounded and all the states in the valence band are
filled. Using the well-known relation

,

we find that

i.e., the sum of energies of levels coincides with the
sum of energies of levels that are not perturbed by the
overlapping of states.

Suppose that atomic energy levels are independent
of the distance to the surface. Consider the Ω potential
of an electron gas in a dielectric at zero temperature dis-
regarding the interaction of electrons and the overlap-
ping of different nondegenerate levels belonging to dif-
ferent atoms:

Hence, atomic energy levels that are not perturbed by
overlapping determine the total energy of the electron
gas in a dielectric, as well as any thermodynamic func-
tion of the gas of noninteracting electrons. The electron
energy of a crystal is merely the sum of energies of
individual atoms; i.e., the surface contribution to the
electron energy is zero. At the same time, in a metal, the
surface makes a contribution to the crystal energy.
Thus, as a band is being filled, the positive contribution
of the surface to the energy that arises at low filling
should be compensated for by the negative contribution
of the hole states in the almost filled band.

4. THE CASE OF A SIMPLE CUBIC LATTICE

Consider an interface between two simple cubic lat-
tices with the boundary plane (001) on the basis of the
strong-coupling model. Suppose that there are transi-
tions only between nearest neighbors, described by the
transition amplitudes t1 and t2 on the left and right of the
interface j = 0, respectively (Fig. 1), and the energy lev-

H εnνδnν n'ν', tnν n'ν', H.c.+ +=

En
k

n

∑ Sp Hk=

En∑ εnν;∑=

Ω µ En–( )θ µ En–( ).∑=
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els of these atoms are ε1 and ε2. The transition ampli-
tudes between interface atoms are equal to t. Medium 2
is assumed to be impenetrable for electrons (the energy
of electrons localized in the region z < 0 proves to be
lower than the bottom of the band in the region z > 0).
The electron spectra in unbounded crystals 1 and 2 are
given by the equations

Let us introduce the Fourier images of the amplitudes
of electron wave functions cmnj in the plane:

The strong-coupling equations for boundary atoms
allow us to relate the quantities cj on the left and right
of the boundary:

Assuming that cn = Asin(–nkzl + ϕ) for n ≤ 0 and cn =
exp(–(n – 1)κl) for n > 0, we obtain the following equa-
tion for ϕ:

(4)

A particular case of a truncated lattice of a semi-infinite
crystal is equivalent to the vanishing of t. In this case,
the phase satisfies the condition ϕ = –kzl. This means
that ϕ = 0 on an atom next to the boundary atom. For
small kz , the phase tends to zero irrespective of t
because

ε ε̃i– 2ti kzlcos– 0, i 1 2,,= =

ε̃i εi 2ti kxlcos kylcos+( ).+=

c j e
ikxlm ikyln+

cmnj.
m n,
∑=

ε ε̃1–( )c0 t1c 1– tc1–– 0,=

ε ε̃2–( )c1 tc0 t2c2–– 0.=

ϕcot – kzlcot
t2

t1t2
-------- e κ l–

kzlsin
--------------.+=

ϕ ∝ –kzlt1t2 t1t2 t2e κ l––( ) 1–
.
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Fig. 1. Model of a cubic lattice.
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Thus, the vanishing of a wave function on the boundary
is justified if the typical wave vectors of electrons are
small, in particular, in the case of a semiconductor. A
passage to the limit of a continuum from (4) occurs
only for t2 = t1t2 and κ  0. The first condition guar-
antees that the reflection of electrons is small because
of the inhomogeneity of t (see [4]), while the second
condition guarantees that the below-barrier wavelength
is large compared with the lattice constant. In the gen-
eral case, when the continuum approximation is inap-
plicable, the quantity ζ in (1) and (3) is replaced by a
more complicated expression (1 – t2e–κl/t1t2)|k = 0 /l.

Let us dwell on the case of a truncated lattice. Trun-
cating the system at the atoms n = 1 and n = N is equiv-
alent to imposing the boundary conditions c0 = cN + 1 =
0. The solution cn = sinkznl satisfies the condition at the
zero atom and, for kzl = πK/l(N + 1), the condition at the
(N + 1)th atom. Thus, in a strong-coupling model, one
may assume that the condition ϕ = 0 holds on the
boundary situated at a distance of the lattice constant
from the boundary atoms. Measuring the crystal size by
the number of unit cells, we should increase this num-
ber by one, i.e., we should replace V/S = d in (2) by
d + l. This means that ζ = l and the term

(5)

is added to the value of Ω given by (2).

The potential Ω is determined by the density of

states: ΩS = –S θ(µ – E)ν(E)dE. Let us calcu-

late the density of two-dimensional states in this model,
that corresponds to contribution (5):

Here, K(k) is a complete elliptic integral of the first
kind. The density of states has a singularity at E = e0,
which corresponds to nesting.

Bevel cut. Next, consider a simple cubic lattice
truncated at the boundaries (011) and (111). In these
cases, the boundary also represents a symmetry plane,
which facilitates the solution of the problem. Truncat-
ing a lattice is equivalent to finding a solution to the
equations for amplitudes in an unbounded crystal, such
that the amplitudes vanish on an imaginary atomic
plane next to the last row. Such a solution is given by

Sl
d3k

2π( )3
------------- µ e k( )–( )θ µ e k( )–( )∫–

µ E–( )∫

ν 2
d2k

2π( )2
-------------δ E 2t kxlcos kylcos+( )–( )∫=

=  
1

π2l2t
-----------K 1

E e0–
4t
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– 
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where axis 3 is directed along the normal to the bound-
ary and l3 is the interplanar spacing along this axis.

For the boundary (011), we have ϕ = k3ζ = k3l/ ,

and, for the boundary (111), we have ϕ = k3ζ = k3l/ .
Since the interplanar spacing decreases with the slope
of a surface, it is as if the crystal thickness decreases
compared with the case of the boundary (001).

Two atoms in a unit cell. Consider a one-dimen-
sional lattice with a unit cell consisting of two atoms
with the energies of states e1 and e2. The transition
amplitudes between the atoms of a unit cell are t1, and
those between the nearest atoms of adjacent cells are t2.
A system of strong-coupling equations is expressed as

The energy spectrum of the unbounded chain is given
by

The boundary conditions depend on the type of the
atom at which the lattice is truncated. If the lattice is
truncated at an atom of type 1, then c2, 0 = 0; if the trun-
cation occurs at an atom of type 2, we have c1, 1 = 0.
In the first case, the boundary conditions yield the
equation

(6)

while, in the second case, we have to change t1  t2
in Eq. (6).

The phase ϕ depends on kz and the ratio t1/t2. How-
ever, when kz  0, we have ϕ  0.

5. THE EFFECT
OF THE BOUNDARY ROUGHNESS 

ON THE SURFACE TENSION 
OF AN ELECTRON GAS

Above, we obtained the reflection length on a
smooth crystal surface. A surface inclined to the sym-
metry plane inevitably has a steplike character. Irregu-
larities whose height does not exceed the Fermi wave-
length form an effective smooth wall for electrons. The
position of this wall, which determines the reflection
length, can be specified to within the height of irregu-
larities. In this section, we determine the reflection
length from a steplike rough surface with the height of
steps smaller than the wavelength. We will apply a con-
tinuum model corresponding to the case of a wave-

2

3

e1 E–( )c1 n, t2c2 n 1–, t1c2 n,+ + 0,=

e2 E–( )c2 n, t1c1 n, t2c1 n 1+,+ + 0.=

e1 E–( ) e2 E–( ) t1
2 t2

2 2t1t2 kzlcos+ +( )– 0.=

e2iϕ t1 t2e
ikxl

+

t1 t2e
ikxl–

+
-------------------------,=
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length large compared to the size of an atom, which is
important for semiconductors and semimetals.

Formally, the problem is stated as follows: the wave
function vanishes on the surface y = u(x, z

 

) = 0. The
function 

 

u

 

(

 

x

 

, 

 

z

 

) is bounded, does not decrease at infin-
ity, and equals zero on the average. The characteristic
scales of irregularities—the height 

 

h

 

 and the length 

 

L

 

—
are less than the wavelength. At a distance of 

 

λ

 

 

 

@

 

 

 

y

 

 

 

@

 

h

 

 from the surface, we can neglect energy in the
Schrödinger equation, thus reducing it to the Laplace
equation; a solution to the latter equation behaves as

 
ψ

 

 = –

 

F
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 – 

 
ζ

 

) as 

 

y

 

  

 
∞

 

. We have to relate 

 
ζ

 

 to 

 

u
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x
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z

 

).
The above asymptotics implies that one can impose the
effective boundary condition  ψ  = 0 | 

y
 

 = 
 

ζ
  on the solution

of the Schrödinger equation.

 

Physical analysis. 

 

Suppose that the irregularities
are smooth, 

 

h

 

/

 

L

 

 

 

!

 

 1. In this case, different regions
along the surface weakly influence each other, and the
effective boundary condition must be imposed near the
averaged line of the surface shape 

 

ζ

 

 = 

 

〈

 

u
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x

 

, 

 

z

 

)

 

〉

 

 = 0.
Now, consider the case of 

 

h

 

/

 

L

 

 

 

@

 

 1. In this limit, the
wave function does not penetrate into narrow wells;
therefore, in the first approximation, we have to impose
the zero boundary condition on the peaks of the surface,
and 

 

ζ

 

 = max(

 

u

 

(

 

x

 

, 

 

z

 

)) – 

 

γ

 

L

 

. The correction term 

 

γ

 

L

 

 with
an arbitrary coefficient 

 

γ

 

 is attributed to the penetration
of the wave function into the gaps to a distance on the
order of the gap width. Finally, suppose that the surface
consists of right-angle steps of the same height (see the
inset in Fig. 2). If 

 

L

 

 ~ 

 

h

 

, then 

 

ζ

 

 ~ 

 

h. If L @ h, then the
steps represent a rarefied “gas” on the surface and ζ is
proportional to its concentration 1/L, i.e., ζ ~ h2/L.
According to the analysis carried out, the effective

0.1

1
0

100.1

0.2

ζ

h1/h2

h1 h2
πα

Fig. 2. Reflection length ζ as a function of the ratio of sides
of right-angle steps. The inset depicts the shape of the sur-
face.
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boundary ζ can be represented as ζ = hf(h/L), where
f  0 if h/L  0 and f  1 if h/L  ∞.

Exactly solvable model. In the two-dimensional
case, the Laplace equation with the boundary condition
ψ = 0|y = u(x) is solved by the conformal mapping tech-
nique. This fact stimulates the consideration of one-
dimensional irregularities of the surface y = u(x).
Among such irregularities are terraces that are fre-
quently occur during the crystal growth. In addition,
such a statement may be adequate to two-dimensional
quantum dots.

Consider a complex plane of variables η = η1 + iη2,
bounded from below by a sawtooth boundary of the
form

for

for

The upper half-plane in the variables ξ = ξ1 + iξ2 can be
mapped into the domain η2 > u(η1) by the Schwarz–
Christoffel mapping [5]. Since the boundary represents
an open infinite polygon, the required mapping is
obtained by passing to the limit. For an infinite periodic
polygon with the vertex angles πα and π(2 – α), α < 1,
the Schwarz–Christoffel mapping can be sought in the
form

Here, n and n – a are the images of the vertices, πα and
π(2 – α) are the vertex angles, and a cut is made along
the half-line (–∞, 0). The constants A and a < π should
be determined from the condition that the vertices of
the polygon with the angles πα and π(2 – α) should
coincide with the points nL and l + ih + nL, respectively.
The formal divergence of the numerator and denomina-
tor can be eliminated by dividing the numerator and
denominator by infinite constants Πn and renormalizing
the constant A. As a result, the products are transformed
into a sine transform:

(7)

The sides of the step have lengths of h1 and h2 that

u η1( ) h
l
---η1= 0 η1 l,< <

u η1( ) h
L l–
----------- L η1–( )= l η1 L,< <

u η1 L+( ) u η1( ).=

η ξ( ) A
Πn η1 πn– a–( )1 α–
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----------------------------------------------- η1.d

0
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η ξ( ) A
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ξsin
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1 α–

ξ .d

0

ξ

∫=
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satisfy the relations

which uniquely determine the quantities |A | and a. The
integrand in (7) has a period π. The phase of A = |A |eiβ

is determined by the condition that the averaged bound-
ary line is parallel to axis η1; from this condition, we
find β = (π – a)(1 – α).

The function Im(ξ(η)) is harmonic in the upper half-
plane and satisfies the zero condition on the sawtooth
boundary. Therefore, Im(ξ(η)) = ψ(η) defines the wave
function as a function of coordinates η. For large η, we
have

in the upper half-plane. According to (7),

For ζ, we obtain

In a particular case of a right-angle sawtooth profile,

α = 1/2, we have h = h1h2/ ,  = π|A |.
The phase β is determined by the condition β =

. For ζ, we obtain the expression

(h/2 is subtracted to reduce the averaged boundary line
to zero).

Figure 2 displays ζ/h1 as a function of h1/h2. The
maximal value of ζ is attained in the limit of an equilat-
eral shape of the teeth, when a = π/2. This value is given
by

It should be noted that ζ is relatively small compared
with the height of the surface irregularities.
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In conclusion, we list the factors considered in this
paper that determine the surface contributions to ther-
modynamics and are reduced to the effective variation
in the sample size: (1) the quantization of states, which
results in an effective decrease in the sample size by the
characteristic electron wavelength; (2) the penetration
of the wave function beyond the sample boundary (an
increase by the depth of penetration into the adjoining
medium); (3) the taking into consideration of the crys-
talline structure (an increase by a value determined by
the lattice constant); and (4) surface irregularities (an
increase, relative to the average surface, by a quantity
related to the height and width of irregularities).
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Abstract—The method of multiple scales is used to derive the fourth-order nonlinear Schrödinger equation
(NSEIV) that describes the amplitude modulations of the fundamental harmonic of Stokes waves on the surface
of a medium- and large-depth (compared to the wavelength) fluid layer. The new terms of this equation describe
the third-order linear dispersion effect and the nonlinearity dispersion effects. As the nonlinearity and the dis-
persion decrease, the equation uniformly transforms into the nonlinear Schrödinger equation for Stokes waves
on the surface of a finite-depth fluid that was first derived by Hasimoto and Ono. The coefficients of the derived
equation are given in an explicit form as functions of kh (h is the fluid depth, and k is the wave number). As kh
tends to infinity, these coefficients transform into the coefficients of the NSEIV that was first derived by Dysthe
for an infinite depth. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nonlinear Schrödinger equation (NSE)
describes the time evolution of the envelope of a packet
of rapidly oscillating low-amplitude waves in a weakly
dispersive, nondissipative medium. In recent years, the
development of the physics of wave processes modeled
by the NSE has shifted toward studying increasingly
nonlinear and high-dispersion effects, which corre-
sponds to the inclusion of the next terms in this equa-
tion. Most of the studies in this direction pertain to ana-
lyzing the possibilities of a further compression and
compaction of optical solitons as information bits in
optical fibers (see, e.g., [1, 2]). As regards other media,
only isolated studies have appeared so far in which
equations that include higher order effects were
derived: in plasma [3], on the surface of a fluid of infi-
nite [4–7] and finite [8, 9] depth, in magnetics [10], and
for systems described by the nonlinear Klein–Gordon
equation [11].

Thus, when only one order of smallness (the next
after the principal order) for the amplitude of the enve-
lope of the first harmonic A of rapid oscillations was
additionally taken into account, the following general-
ized NSE was derived in [2, 3, 10]:

(1)

i
∂A
∂T
------ ε 1

2
---∂2A

∂X2
--------- A A 2+ 

 ±

+ iε2 α ∂3A

∂X3
--------- β A 2∂A

∂X
------- γA

∂ A 2

∂X
------------+ + 

  0.=
1063-7761/03/9701- $24.00 © 20180
Here, ε is the formal parameter that characterizes the
smallness of the quantities oscillating with amplitude A
and the slowness of the variation in A compared to the
rapid oscillations. In [4–7], Eq. (1) also includes the
term with the product of the amplitudes of the zeroth
and first harmonics, and it was supplemented with an
equation that expresses the zeroth harmonic in terms of
the first harmonic. A system of two equations for the
zeroth and first harmonics was obtained in [8], and a
system of equations for these two harmonics, including
the amplitudes of the preceding orders, was obtained
in [9].

An equation of form (1) was first derived in [12] for
wave beams. Equation (1) is commonly called the
higher order nonlinear Schrödinger equation or the
fourth-order NSE (NSEIV). The name “fourth order”
stems from the fact that the last three terms in Eq. (1)
arise when the terms of order O(ε4) are included. In
fact, terms of the next order in amplitude arise in the
approximation O(ε5). This advance was made, for
example, in [1, 11]. The second and third terms in
Eq. (1) correspond to the classical NSE (the O(ε3))
approximation). They include the main dispersion con-
tribution—the group-velocity dispersion and the princi-
pal nonlinear term—phase self-modulation (the ampli-
tude dependence of the frequency—the Stokes effect).
The next terms of order O(ε4) have been the subject of
research in recent years. The fourth and fifth terms are
responsible for the third-order linear dispersion (Airy
aberrations) and the pulse profile self-steepening,
respectively; the sixth term describes the Raman fre-
quency self-shift effect. Basic publications devoted to
003 MAIK “Nauka/Interperiodica”
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the study of soliton and quasi-soliton solutions to
Eq. (1) are listed, for example, in [1, 2, 13, 14].

The derivation of NSEIV for the amplitude of the
envelope of the fundamental harmonic ultimately con-
sists in eliminating the amplitudes of other harmonics
and obtaining the coefficients α, β, and γ in an analytic
form. The values and signs of these coefficients as well
as their combinations predetermine the properties of
the solutions to this equation [13, 14]. Thus, in the ε3

approximation (α = β = γ = 0), the same or opposite
signs of the coefficients of the second and third terms
(the choice of + or – in Eq. (1)) are a criterion for the
possible existence of solitons under zero boundary con-
ditions. At some values of α, β, and γ, Eq. (1) has
N-soliton solutions and can even be integrated by the
inverse scattering transform method (for basic and cur-
rent references, see [1, 2] and [13, 14], respectively).

The goal of this study is to obtain the coefficients of
NSEIV for the amplitude of the envelope of weakly
nonlinear waves on the surface of a finite-depth fluid
(Stokes waves) in an explicit form.

The classical NSE (the O(ε3) approximation) for
Stokes waves was derived by Zakharov in his pioneer-
ing paper [15] using the Hamiltonian method in the
three-dimensional case for a narrow spectrum and an
infinite depth from the integral equations derived by
him. Subsequently, Yuen and Lake [16] obtained the
NSE by the averaged Lagrangian method also for an
infinite depth. The case of a finite depth was investi-
gated in [17] by the method of multiple scales, in [18]
by the Hamiltonian method, and in [19] by the WKB
method. The NSE was derived by the method of multi-
ple scales in the two-dimensional case by Hasimoto and
Ono [20] and, later, by Stiasnie and Shemer [21] from
Zakharov’s integral equations. Subsequently, the
method of multiple scale was used to generalize this
equation in different ways: to the three-dimensional
case [22], with an allowance made for the surface ten-
sion [23], the bottom irregularities [24], the counter-
propagating waves [25], etc.

The NSEIV in the infinite-depth approximation
(Dysthe’s equation) was derived in [4] by an iterative
method, in [26] from Zakharov’s integral equations,
and in [5] by asymptotically expanding the derivative
∂A/∂t. The sign of one of the terms in Dysthe’s equation
was corrected in [27], and the same type of error in [26]
was corrected in [28]. As a result, Dysthe’s equation,
which was repeatedly derived by different authors and
using different methods, became a classical extension
of the NSE for Stokes waves in an infinite-depth fluid.
The authors of [29–32] showed that the experimental
studies of the time evolution of Stokes wave packets on
the surface of deep water are consistent with the numer-
ical calculations based on Dysthe’s equation. In addi-
tion, this equation was generalized to include the capil-
larity [28, 6], the flow [7], and the thermocline [33]
and was modified for the spatial rather than time evo-
lution [4, 34].
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The derivation of NSEIV for a finite-depth fluid and
further analysis of the calculated coefficients of the
equation and the determination of the dependence of its
solutions on the depth and other parameters have the
same motivation. Based on the averaged-Lagrangian
and harmonic-series methods, Whitham [35] and Ben-
jamin [36], respectively, found that a weakly nonlinear
harmonic wave with a small harmonic amplitude per-
turbation behaved differently if the product of the wave
number and the fluid depth was less or more than 1.363
when the NSE and the properties of its soliton solutions
were not yet known. In the former case, the wave is
modulationally stable; in the latter case, the modula-
tions increase with time. Various evolution scenarios
for the modulations were discussed: passage to chaos,
return to the original state, a uniform harmonic distribu-
tion. After the NSE was derived for a finite depth [20],
the number 1.363 appeared for the third time: at this
value of kh, the coefficient of the NSE changes its sign
to negative, and, according to the properties of this
equation, it has soliton solutions for kh > 1.363; there-
fore, the growing modulations can transform into soli-
tons. The possibility of describing the nonlinear evolu-
tion of the unstable Benjamin–Feir mode and its FPU-
type return with the help of growing-and-decaying soli-
tons [37] and breathers [37, 38] is being explored. On
the other hand, the existence of a singular point (kh =
1.363) for Stokes waves at which the nonlinear term is
equal to zero prompts us to include the next terms of the
NSE and, thus, to study the change of signs and rela-
tions between the coefficients of NSEIV and the corre-
sponding change in the properties of the solution with
kh and to describe the modulational instability and
return in terms of the fourth-order NSE. In [13], a wide
variety of properties of the solutions to NSEIV, in par-
ticular, the evolution of the parameters of the Ben-
jamin–Feir modulational instability, was shown. The fact
that the increments and the domain of parameters of this
instability decrease when the next terms of the NSE are
included was shown for an infinite depth in [4, 5]. Based
on the properties of the solutions to Eq. (1), the authors
of [4] explained the mechanism of the experimentally
found frequency shift.

To solve the formulated problem of deriving the
NSEIV for a finite depth, we used the method of multi-
ple scales. The technique used here when introducing
the next fast times and coordinates is described in [11].
The difficulties of the method of multiple scales in the
problem of allowing for the next terms in the NSE for
Stokes waves were previously pointed out in the sim-
pler case of an infinite depth (see the review article [39],
Section 5.4). For a finite depth, the NSEIV was derived
by the method of multiple scales in [40, 41] and by the
WKB method in [8]. In [40], the coefficients of the
NSEIV were obtained only at the point kh = 1.363
itself, while the expressions derived in [41] for the coef-
ficients do not satisfy the limiting case of an infinite
depth. The system of equations derived in [8] was set up
for the main component of the first harmonic amplitude
SICS      Vol. 97      No. 1      2003
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(arising in the first order in ε), while we derived an
equation for the total amplitude (the sum of the contri-
butions from all approximations to the first harmonic).
Another fundamental difference between our study
and [8] is that we assumed the motion of a wave-
induced flow (zeroth harmonic) with the group velocity
of the first harmonic. Without this ansatz, the original
system of equations was reduced in [8] only to a system
of two equations for the amplitudes of the zeroth har-
monic and the first order of the first harmonic, while
we derived the closed NSEIV (1) for the total ampli-
tude of the first harmonic of the wave profile.

2. FORMULATION OF THE PROBLEM

We will consider the motion of an ideal incompress-
ible homogeneous fluid in the xy plane. We take the x
coordinate along the direction of the motion and the y
coordinate along the vertical direction. We assume that
the fluid is bounded below by a solid bottom at a depth
y = –h and above by a rapidly oscillating free surface
η(x, t). The evolution equation for the amplitude A1 of
the envelope of the first harmonic of these modulations
should be determined.

The fluid velocity potential φ(x, y, t) satisfies the
Laplace equation

(2)

The boundary conditions on the free surface η(x, t) are
the kinematic condition, implying that the fluid parti-
cles on the surface itself move along this surface with-
out leaving it,

(3)

and the dynamical condition, implying that the fluid
pressure in the Cauchy–Bernoulli integral is constant
(equal to the atmospheric pressure) on the entire sur-
face,

(4)

The vertical fluid particle velocity at the bottom is equal
to zero,

(5)

and the velocity potential itself is a bounded quantity.

3. THE METHOD OF MULTIPLE SCALES. 
SUCCESSIVE APPROXIMATIONS

We will use the method of multiple scales, as
described for higher approximations in [11]. The varia-
tions of φ and η with time t will be characterized by a

φxx φyy+ 0, ∞ x ∞,< <–=

h y η x t,( ).≤ ≤–

η t φy– η xφx+ 0, y η x t,( ),= =

gη x t,( ) φt
1
2
--- φx

2 φy
2+( )+ + 0, y η x t,( ).= =

φy 0, y h,–= =
JOURNAL OF EXPERIMENTAL
set of rapid oscillations corresponding to time t0 and
slow oscillations described by the time τ that consists of
a slow time t1, a very slow time t2, and a particularly
slow time t3. In that case,

(6)

The variations in space along the x axis will be charac-
terized by a ordinary x0 coordinate and an extended x1
coordinate:

(7)

We assume the velocity potential and the surface dis-
placement (profile) to be small quantities on the order
of ε and retain the terms up to ε4 inclusive:

(8)

(9)

We substitute Eqs. (6)–(9) into Eq. (2) and into the
boundary conditions (3) and (4), in which we expand
φx , φy , and φt in a Taylor power series of η at y = 0, and
collect the terms with the same powers of ε.

3.1. The O(ε1) Approximation 

Using the O(ε1) approximation, we obtain the
results of the linear theory. From the Laplace equation
and the boundary condition at the bottom, we have

(10)

where

from the dynamical boundary condition, we have

(11)

where

(12)

From the kinematic boundary condition, we obtain a

t∂
∂

t0∂
∂ ε τ∂

∂
,+=

τ∂
∂

t1∂
∂ ε

t2∂
∂ ε2

t3∂
∂

.+ +=

x∂
∂

x0∂
∂ ε

x1∂
∂

.+=

φ εφ1 ε2φ2 ε3φ3 ε4φ4,+ + +=

η εη 1 ε2η2 ε3η3 ε4η4.+ + +=

φ1 φ1
0( ) φ1

1( ) c.c.+( ),+=

φ1
0( ) Ψ1,=

φ1
1( ) iω k y h+( )( )cosh

2k kh( )sinh
------------------------------------------Aeiθ, θ– kx0 ωt0;–= =

η1 η1
0( ) η1

1( ),+=

η1
0( ) 0, η1

1( ) 1
2
---Aeiθ c.c.+= =
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linear dispersion law,

(13)

We will seek equations for the evolution of the follow-
ing two new unknown functions of the slow variables
x1, t1, t2, and t3 with time τ: the amplitude of the first
harmonic A, which, according to (12), is the envelope
of the surface displacement rapidly oscillating with
time t0; and the amplitude of the zeroth harmonic Ψ1 of
the velocity potential (average flow) induced by these
rapid oscillations and constant with time t0.

3.2. The O(ε2) Approximation 

In the O(ε2) approximation, we derive the equation
for the potential component φ2,

or, substituting (10) here, the equation

We write its solution that satisfies the boundary condi-
tion

as the sum of harmonics

(14)

where

(15)

(16)

We determine the coefficients of the homogeneous
solution D from the condition that solution (16) be
bounded as the depth tends to infinity [19]. Taking into

account the asymptotic relation for the potential 
from (16), we find that for this quantity to be bounded,
we must set

ω2 kσg– 0, σ kh( ).tanh≡=

∂2φ2

∂y2
----------

∂2φ2

∂x0
2

----------+ 2
∂2φ1

∂x1∂x0
-----------------,–=

∂2φ2
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∂x0
2

----------+
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kh( )sinh
---------------------------------------- ∂A

∂x1
--------eiθ c.c.+–=
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φ2 φ2
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φ2
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φ2
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kh( )sinh
---------------------=

× D k y h+( )( )cosh y h+( ) k y h+( )( ) ω
2k
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  eiθ.

φ2
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D
ω
2k
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∂x1
--------hD1 h( ),=
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where the arbitrary factor D1(h) should only satisfy
the condition

Thus, the limit of  is bounded,

Using the arbitrariness of D1, we calibrate  in such
a way that the condition

is satisfied on the fluid surface.

In this case,

Thus, we consider here the case of an arbitrary depth,
including an infinite depth. The choice of a boundary
condition (the selection rule for the coefficient D) is
determined, first, by its naturalness and, second, by the
necessity of ensuring the legitimacy of the passage to
the limit of an infinite depth in the derived formulas [4].
This remark also applies to the selection rule for the
coefficients of the homogeneous solution in the next
approximations.

Next, from the dynamical boundary condition at the
O(ε2) step

(17)

we obtain the corresponding surface profile

(18)

which so far has been determined only for the zeroth

h D1 h( ) 1–( )
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lim 0.=

φ2
1( )

φ2
1( )

kh ∞→
lim

ω
2k
------ ∂A

∂x1
--------yeykeiθ.–=

φ2
1( )

φ2
1( )

y 0= 0=

D1 h( ) kh( ).tanh=

∂φ2

∂t0
--------

ω2

kσ
------η2+ η1

∂2φ1

∂y∂t0
-------------–=

–
1
2
---

∂φ1

∂y
-------- 

 
2 ∂φ1

∂t1
--------–

1
2
---

∂φ1

∂x0
-------- 

 
2

,–

∂φ2

∂t0
--------

ω2η2

kσ
------------+

ω2 σ2 1–( )
4σ2

--------------------------AA
∂Ψ1

∂t1
----------–=

+ i
ω

2σk
----------∂A

∂t1
-------eiθ 1

8σ2
--------- 3σ2 1–( )ω2A2e2iθ c.c.,+ +

η2 η2
0( ) η2

1( ) η2
2( ) c.c.+ + ,+=
SICS      Vol. 97      No. 1      2003



184 SEDLETSKY
and first harmonics:

(19)

(20)

Finally, from the kinematic boundary condition of the
O(ε2) approximation

(21)

we have an identity for the zeroth harmonic and an
uncertainty for the first harmonic. This uncertainty can
be eliminated only by setting

(22)

where

(23)

is the group velocity. It follows from (22) and the com-
plex-conjugate equation that

(24)

Thus, the first harmonic and its modulus evolve in the
coordinate system of the slow time t1 and the extended
longitudinal x1 coordinate with the group velocity.

For the second harmonic, the system of equations of
the dynamical and kinematic conditions (17) and (21) is
not overdetermined and allows the coefficients for the

second harmonic  and  to be calculated:

(25)

(26)

In (20), we can now take into account the fact that
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follows from (22), and the derivative ∂Ψ1/∂t1 required
in (19) can be determined in the next approximation.

3.3. The O(ε3) Approximation 

In the O(ε3) approximation, we have the equation
for the potential component φ3

Substituting expressions (10) and (14), we obtain an
equation for determining φ3:

Its solution that satisfies the boundary condition

consists of four harmonics,

(27)

Here,

(28)

(29)

As noted above, we determine the amplitude of the
homogeneous solution G from the condition that the
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potential  be bounded as the depth tends to infinity.
This condition gives

In that case,

We find two of the four harmonics of the surface dis-
placement from the dynamical boundary condition:

(30)

or, more specifically,

(31)

(32)

Let us now take into account the kinematic boundary
condition. The terms that constitute the equation for the
zeroth harmonic do not contain any indefinite coeffi-
cients. Therefore, this equation is the condition that the
derivatives of Ψ1 and A must satisfy:

(33)

Here,

Since the product  satisfies (24), we will use the
ansatz for which the amplitude of the zeroth harmonic
Ψ1 moves with the group velocity:

(34)

After the substitution of this expression into (33) and
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integration, we obtain

(35)

where we denoted

(36)

with

for V0 = Vg . We see that for deep water,

We find the amplitude of the homogeneous solution Ψ3

from the condition that  be bounded. Taking into
account the asymptotic behavior of the derivative

∂Ψ1/∂x1 from (35) and the potential  from (28) for
kh  ∞, we set

for the boundedness of .

It then follows from (28) that for deep water,

(37)

We see from this relation and the expressions  = Ψ1

and  = Ψ2 that the following boundary condition for
the zeroth harmonic, which is used in [4], is satisfied
when kh  ∞:

(for the case where A is the amplitude of the surface
profile, the corresponding expression is given in the last
paper from [4]). 

The terms of the kinematic condition proportional
to eiθ constitute another evolution equation for the
amplitudes A and Ψ1:
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where

(39)

Taking into account (34), we obtain

(40)

where

(41)

Substituting (35) into (40) yields an evolution equation
for the amplitude of the first harmonic with time t2:

(42)

where (provided that V0 = Vg in (41))

(43)
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Fig. 1. The coefficient q3. The curves correspond to differ-
ent values of V0 in Eq. (34): 1—V0 = Vg , 2—V0 = ω/k, 3—
V0 = –Vg , and 4—V0 = –Vg + ω/2k.
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Given (6), the sum of Eq. (22) and Eq. (42) multiplied
by ε leads to the nonlinear Schrödinger equation

(44)

which was first derived for gravity waves on the surface
of a finite-depth fluid layer by Hasimoto and Ono [20].
The goal of this study is to include the next terms (the
O(ε4) approximation to the Hasimoto–Ono equation).

In Fig. 1, the coefficient q3 is plotted against the
parameter kh. The sign of this coefficient changes from
positive to negative at kh = 1.363 with increasing k
(curve 1). The NSE equation is known to have soliton
solutions under zero boundary conditions only if the
product

For the dispersion law (13),

at all k, for example,

at kh = 1.363. Therefore, in the O(ε3) approximation,
envelope solitons are possible only for kh > 1.363, in
particular, for an infinite depth when q3 = –1/2 (the hor-
izontal dotted line in Fig. 1).

Since (34) is the ansatz that was also used in most of
the previous studies, for example, in [20, 23, 40, 41],
but only as an assumption, Fig. 1 also shows the plots
of q3 against kh for different velocities V0 of the ampli-
tude of the zeroth harmonic Ψ1 in (34). Curve 1 corre-
sponds to the standard condition according to which
this velocity is equal to Vg (the group velocity of the
first harmonic A). It is in this case that q3 = 0 at kh =
1.3628. Curves 3, 2, and 4 were constructed, respec-
tively, for V0 = –Vg, V0 = Vf (Vf = ω/k is the phase veloc-

ity), and V0 = –Vg + ω/2k (for this choice,  in (19)
is equal to zero).

The plots show the extent to which the coefficient q3
and the singular point kh at which q3 changes its sign
are sensitive to the choice of an ansatz for the velocity
of the zeroth harmonic. As regards the experiments,
most of them (see [30] and references therein, as well

i
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as [31, 32]), starting from the classical studies [16], refer
to the case of deep water, kh @ 1. In the only experiment
for an intermediate depth carried out to date [42],
Shemer et al. measured the surface profile only at three
points, kh = 0.847, 1.53, and 4.93. They concluded that
the patterns of long-term evolution are qualitatively dif-
ferent for kh = 0.847 and 4.93, while the evolution at
kh = 1.53 is similar to the linear evolution. Of course, it
does not unequivocally follow from this result that the
pattern qualitatively changes precisely at kh = 1.36. The
criterion Vg < Vf for which the substitution ∂/∂t 
Vg∂/∂x can be made is satisfied for gravity waves with
dispersion law (13) for all kh. However, it is only a nec-
essary but not sufficient condition [43].

Below, in this and the next orders, we will use the
standard assumption that the velocity of the zeroth har-
monic is equal to the velocity of the first harmonic.
Note that the next approximation was calculated by the
WKB method in [8]. However, since the authors did not
consider it possible to use ansatz (34), the evolution
equations at each step in ε were left in the form of a sys-
tem of two coupled equations for the amplitudes A
and Ψ1.

The evolution equations (33) and (42) were derived
above in such a way that the solutions of the Laplace
equation for the zeroth and first harmonics reconciled
with the dynamical boundary condition also satisfied
the kinematic boundary condition. The same approach
for the second and third harmonics does not lead to new
evolution equations, but it allows the as yet undeter-
mined coefficients of these harmonics to be calculated:
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Given ansatz (34) and the evolution equation (40),
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expression (32) takes the form

If we also take into account (35), then

(49)

3.4. The O(ε4) Approximation 

In the order O(ε4), we have
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where
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We determine the amplitude of the homogeneous solu-
tion F, as in the previous iterations, from the condition

that the potential  be bounded when the depth tends
to infinity. In this case,
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and for deep water,

We find the first two of the five harmonics of the surface
displacement from the dynamical boundary condition:

(53)

(see the Appendix). Collecting the terms that contain no
harmonics, we obtain the following evolution equation
for the amplitude Ψ2 of the zeroth harmonic in the O(ε4)
approximation from the kinematic boundary condition:

(54)

where

(55)

Assuming that the potential component Ψ2 of the zeroth
harmonic in the O(ε2) approximation, like Ψ1, moves
with the group velocity of the first harmonic,

(56)

and integrating, we find the relation between Ψ2 and A

(57)

Thus, we see that for deep water,

We determine the amplitude of the homogeneous solu-
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stitute, according to (6), the sum of the partial deriva-
tives for the functions A and Ψ1 with the total deriva-
tives

and

then we obtain the fourth-order (in ε) evolution equa-
tion that includes all of the previous iterations

(62)

The interaction of the amplitude of the first harmonic A
with the potential component Ψ1 of the main flow with
the order O(ε) has already been taken into account in
q3, while its interaction with the component Ψ2 with the
order O(ε2) is described by the last term of (62) with (57).

4. AN EQUATION FOR THE TOTAL AMPLITUDE 
OF THE FIRST HARMONIC 
OF THE SURFACE PROFILE

Equation (62) was set up for the first order of the
amplitude A of the first harmonic. We obtain an equa-
tion for the total amplitude A1 by taking into account the
fact that, according to (9), (12), (20), and (49),

(63)
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into (62), then we derive the following equation for the
total amplitude of the first harmonic:
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where

Using (43) and (23), we obtain

In the limiting case of an infinite depth, an equation of
this type was first derived by Dysthe [4]. We see from

Fig. 2 that the coefficients  and  as functions of

kh for kh  ∞ tend to  = 3/2 and  = 1/4,
respectively. These are the values of the coefficients of
Dysthe’s equation if it, like (64), is written for the total
amplitude of the first harmonic of the surface displace-
ment (this was done in the last paper from [4] and
in [28, 33]) rather than the potential, as in the first paper
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Fig. 2. The nonlinear dispersion coefficients , , ,

, Q41, and Q42. The horizontal asymptotes correspond
to an infinite depth [4]. 
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Q̃42
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from [4]. The remaining coefficients for kh  ∞ also
tend to their values for an infinite depth [4]:

The following equation (in the notation adopted here) is
used for the relationship between the total amplitude A1 of
the first harmonic of the surface profile and the amplitude
of the zeroth harmonic φ(0) of the velocity potential in [4]
(precisely for these variables from the last paper in [4]):

(65)

We pass to the limit (65) for kh  ∞ by taking into
account (37) and (58) and the relationship between the
total amplitudes and the amplitudes of all approxima-
tions for the potential

and (63) for the surface displacement.
The factor ∂Ψ2/∂x1 in (64) can be eliminated if we take

into account (57) and (63). Finally, we obtain the fourth-
order (in ε) nonlinear Schrödinger equation the last two
terms of which include the nonlinearity dispersion:

(66)
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Fig. 3. The cubic dispersion coefficient p3 =

−(k3/ω)(∂3ω/∂k3)/6. The horizontal asymptote corresponds
to an infinite depth [4].
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Here,

Hence, using (55), we obtain

(67)

and

(68)

Equation (66) and formulas (67) and (68) for Q41 and
Q42 are the main result of our study. Q41 and Q42 are
plotted against kh in Fig. 2. The coefficient ∂3ω/∂k3 is
alternating, depending on the fluid depth (Fig. 3). This
is important in analyzing the possibility of applying the
known cases of the integration of (1) [13, 14] to
Eq. (66).

The expressions for the velocity potentials ,

, and  are given in the Appendix. The expres-

sions for the surface profile , and , which are
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only the concomitant result of our study, are not given
here to save space.

5. CONCLUSIONS

A peculiarity of the derivation of the NSEIV for
Stokes waves in a fluid layer compared to the same
problem in optical fibers is the necessity of taking into
account the effect of the low-frequency zeroth har-
monic on the motion of the high-frequency first har-
monic. This interaction is described by system of equa-
tions (33) and (40) in the O(ε3) approximation and by
system (54) and (59) in the O(ε4) approximation.
Assuming the motion of the zeroth harmonic with the
group velocity of the first harmonic in both approxima-
tions, these systems reduce to an equation for one
unknown function, the amplitude of the first harmonic
A1 of the free-surface profile. In the O(ε3) and O(ε4)
approximations, this is NSE (44) that was first derived
in [20] and NSEIV (66), respectively. The amplitudes
Ψ1 and Ψ2 of the second unknown function, the veloc-
ity potential (to be more precise, their derivatives,
which have the physical meaning of the velocity in the
first place), are expressed in terms of the total ampli-
tude of the first harmonic A1 using formulas (35) and
(57), in which A1 may be substituted for A in the O(ε3)
and O(ε4) approximations, respectively. Indeed, we see
from relation (63) that Eqs. (44) and (35) required for
this in the O(ε3) approximation do not change their
forms in passing from the first order of the amplitude of
the first harmonic A to its total amplitude A1, as does
Eq. (57) in the O(ε4) approximation.

After the renormalization of the independent vari-
ables and the unknown function, Eq. (66) transforms
into Eq. (1). The ± signs are determined by the sign
opposite to q3 (Fig. 1). Thus, we choose – in Eq. (1) if
kh < 1.3628 and + if kh > 1.3628. In the former and lat-
ter cases, the properties of the soliton and quasi-soliton
solutions to Eq. (1) were described in [14] and [13],
respectively. They are determined by the coefficients
Vg , ∂2ω/∂k2, ∂3ω/∂k3, q3, Q41, and Q42, as defined by
formulas (23), (39), (60), (43), (67), and (68).

ACKNOWLEDGMENTS

The author is grateful to V.P. Lukomsky and col-
leagues from the Theoretical Physics Department
(Institute of Physics) for fruitful and stimulating dis-
cussions.

This study was supported by INTAS (grant
no. 99-1637).

APPENDIX

Below, we give expressions for the Stokes expan-
sion components of the potential and the surface dis-
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Abstract—We consider the critical nonlinear Schrödinger equation in dimension D = 2 and obtain a system
consisting of three equations describing the collapse of solutions. The system admits a five-parameter family of
solutions. Almost everywhere, except for an exponentially narrow region near the collapse point, the tunneling
processes are negligible. The relation between initial data and the condition of occurrence of the collapse is
investigated. The separatrix, which divides the collapse domain and expansion regions having no singularities
in a finite time interval, is found. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The nonlinear Schrödinger equation with the inter-
action corresponding to the attraction

(1)

has been studied in many papers. The first results on the
collapse were obtained in the late 1960s–early 1970s
[1–6]. In the middle of the 1980s, it was shown in [7]
that the problem of the collapse can be reduced to the
problem on the motion of a particle for an inverted par-
abolic potential with a nonlinear perturbation and the
important role of the tunneling process was discovered.
Further progress was achieved in papers [8–16]. The
numerical solution to Eq. (1) clearly shows in a wide
region outside the barrier the presence of a “tail” leak-
ing from under the barrier and decreasing as 1/ξ, where
ξ = |r |/λ and λ is compression parameter [11, 12] (see
figure). The dependence of the compression parameter
λ on time in the double logarithm form,

, (2)

was independently found in papers [7, 9] (see also [10–
15, 17, 18]). During the collapse, particles are injected
into the region outside the barrier. Note that there is no
particle flux at a finite physical distance and all particles
injected to the overbarrier collapse in a finite time. This

i
∂ψ
∂t
------- ∆ψ ψ 2σψ+ + 0=

λ t∗ t–
1

t∗ t–
------------ 

 ln 
 ln

----------------------------------

 
 
 
 
  1/2

∼

1063-7761/03/9701- $24.00 © 20194
is connected with the fact that the physical flux through
any fixed surface is always directed to the collapse
point. Thus, particles are accumulated in the collapsing
region inside the barrier. It is essential for the collapse
process that the energy of the particles inside the barrier
become infinite as t tends to the collapse point t*.

Suppose that the initial state is close to the station-
ary positive solution  to Eq. (1), i.e.,

(3)

In this case, a small parameter

(4)

appears, where  = ∂λ/∂t.

The presence of the small parameter allows one to
find wave function ψ in the entire space including the
outside barrier region after the right turning point.

Equation (1) admits three exact conservation laws,
namely, the particle conservation law, the energy con-
servation law, and the quasiconformal conservation law
[19]. These laws are used below in order to obtain a
closed system of equations for quantities {λ, µ}, where
λ(t) indicates the degree of compression and the param-
eter µ ≡ µ(t) is a free phase parameter. The system of
equations obtained admits a five-parameter family of
solutions. This family of solutions contains a separatrix
which separates the collapse region from the expansion
region.

ψ̃

∆ψ̃ ψ̃ 2ψ̃+ E0 ψ̃.=

λλ̇  ! 1

λ̇
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In the problem under consideration, there is an infi-
nitely large number of hidden parameters. This is con-
nected with the fact that not all particles participate in
the collapse. A way of decomposing the initial value of
function ψ into the collapsing part ψcol and its orthogo-
nal complement ψ⊥  is presented below. Note that the
evolution of the compression parameter of form (2) can
be realized only in an exponentially narrow region in a
neighborhood of the collapse point. The evolution law
in the remaining region is different.

2. THE COLLAPSING PART 
OF THE WAVE FUNCTION

Suppose that wave function ψ at the initial instant of
time can be represented in the form given in the Intro-
duction, i.e.,

(5)

where the function ψ⊥  is small and decreases quite rap-
idly as |r |  0. In this case, function ψ⊥  satisfies the
linear Schrödinger equation and has no influence on the
dynamics of function ψcol . Below we will neglect the
function ψ⊥ . Function ψcol determines two quantities
conserved in the collapse, viz., the number of collaps-
ing particles and the collapse energy, {Ncol, Ecol}.

Assuming that inequality (4) holds, we represent
wave function ψcol in the form

(6)

ψ ψcol ψ⊥ ,+=

ψcol
1
λ
---ψ̃ ψ1+ 

 =

× i E0
td

λ2
----- iλλ̇ x2

4
-------------- iµ+ +∫ ,exp

2 4 6 8 10

0.4

0.8

1.2

1.6

ξ

|u|

τ = 50, 60, …, 100

(a)

0

The evolution of the renormalized profile in critical dimension D 
tances [12].
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where λ ≡ λ(t), µ ≡ µ(t),  = ∂λ/∂t, x = |r |/λ, and

function  is the solution to stationary equation (3),
which exponentially decreases at infinity,

(7)

In the variables (x, t), Eq. (1) takes the form

(8)

Wave function ψcol has power corrections in the

small parameter . These corrections are found
below within the framework of perturbation theory
with the help of Eq. (8). The “tails” of function ψcol ,

which are exponentially small in parameter | |, are
connected to the tunneling processes in the inverted
parabolic potential and will be found separately. The
exact conservation laws (the particle conservation law,
the energy conservation law, and the quasiconformal
conservation law) allow one to obtain a closed system
of equations for the quantities {N, E, λ, µ}, where
{N, E} are the number of particles and the energy con-
centrated in the region before the right turning point.

λ̇
ψ̃

1
x
---

x∂
∂

x
x∂

∂
 
  ψ̃ E0 ψ̃ ψ̃3.–=

1
x
---

x∂
∂

x
x∂

∂
 
  ψ1 ψ̃2 2ψ1 ψ1*+( ) E0 ψ1– iλ2∂ψ1

∂t
---------+ +

+ iλλ̇ ψ1 λ2ψ1
2ψ1* λψ̃ 2ψ1ψ1* ψ1

2+( ) λ3 λ̇̇
4

---------x2ψ1–+ +

– λ2µ̇ψ1 λµ̇ψ̃–
λ2 λ̇̇

4
---------x2ψ̃– 0.=

λλ̇

λλ̇

|u|

20 30 40 50

ξ
10

0

0.002

0.004

0.006

0.008

0.010

τ = 50
60

70
80

90

100

(b)

= 2, σ = 1, that demonstrate a slow time dependence at large dis-
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3. PERTURBATION THEORY 
FOR FUNCTION ψ1

The presence of the small parameter allows us to
employ perturbation theory. The expansion of function
ψcol in expression (6) begins with second-order terms,
because the first-order terms are separated into the

phase factor exp(i x2/4). We represent function ψ1 in
the form

. (9)

From formulas (8) and (9), we find the second-order
correction φ, namely,

(10)

where operator  can be written as

(11)

The third-order correction Z3 satisfies the equation

(12)

where operator  can be written as

(13)

Since operator  has the zero mode , Eq. (12) has a
bounded solution only if the additional condition

(14)

holds [20]. Equation (14) is not exact. Taking into
account the next terms of the expansion, we can obtain
a modified equation. In the considered approximation,
function Z3 is equal to

(15)

where function ν ≡ ν(t) depends only on time t. The
fourth-order correction φ4 can be obtained from Eq. (8)
by taking into account formulas (10) and (15), namely,

(16)

λλ̇

ψ1 φ iZ3 φ4 iZ5 …+ + + +=

φ 1
2 E0
------------λµ̇

x∂
∂

xψ̃( ) λ2 λ̇̇
4

--------- L̂
1–

x2ψ̃( ),+=

L̂

L̂
1
x
---

x∂
∂

x
x∂

∂
 
  3ψ̃2 E0 .–+=

L̂2Z3 λ2∂φ
∂t
------ λλ̇ φ,––=

L̂2

L̂2
1
x
---

x∂
∂

x
x∂

∂
 
  ψ̃2 E0 .–+=

L̂2 ψ̃

3λ̇ λ̇̇ λ λ̇̇̇+ 0=

Z3
ν
λ
---ψ̃ λ x2

8 E0
------------ψ̃

t∂
∂ λ2µ̇( ),–=

φ4
1

2 E0
------------λν̇

x∂
∂

xψ̃( )=

–
λ2

8 E0
------------ 6λλ̇

2
µ̇ 2λ2 λ̇̇ µ̇ 6λ2λ̇ µ̇̇ λ3 µ̇̇̇+ + +( ) L̂

1–
x2ψ̃( )

+
λ3 λ̇̇

4
--------- L̂

1–
x2φ( ) λ2µ̇ L̂

1– φ( ) 3λ L̂
1– ψ̃φ2( ).–+
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4. ENERGY AND NUMBER OF PARTICLES

Recall that the two most important conserved quan-
tities in Eq. (1) are the energy

(17)

and the number of particles

(18)

An important role is played by the quantity

(19)

which satisfies the quasiconformal conservation law
[16, 19]

(20)

Neglecting the correction ψ⊥  in Eq. (5), we obtain
two approximate conservation laws

and

.

Passing to the variable x = |r|/λ, we split the energy
and number of particles into the contributions from the
region before and after the largest turning point,

,

and

,

where E and N are the contributions of the region before
the turning point, and Etail and Ntail are contributions of
the region after the turning point. First we find the num-
ber of particles N and energy E concentrated in the col-
lapsing region before the right turning point (we will
consider the region after the turning point in the
inverted parabolic potential separately). Using Eqs. (6)

E ψ( )
1
2
--- ∇ψ 2 1

2σ 2+
---------------- ψ 2σ 2+– 

  rd∫=

N ψ( ) ψ 2 r.d∫=

L rd ψ 2r2,∫=

1
16
------∂2L

∂t2
-------- E.=

E ψ( ) E ψcol( ) Ecol≡≈

N ψ( ) N ψcol( ) Ncol≡≈

xt.p.
2 E0

–λ3 λ̇̇( )
1/2

----------------------=

Ecol E Etail+=

Ncol N N tail+=
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and (9) and neglecting exponentially small terms, we
obtain

(21)

(22)

Using formulas (A.1), (A.2), and (A.3), we can find
two important features, namely, in the approximation
considered, parameter ν drops out of expressions (21)
and (22) and quantities N and E depend linearly on µ
(the second-order terms are also cancelled). As a result,
expression (21) for parameters {N, E} can be reduced
to the form

(23)

(24)

Using formulas (A.4) and (A.8), we reduce expres-

N 2π x x ψ̃2 2λψ̃ φ φ4+( ) λ2φ2+ +[ ] ,d

0

∞

∫=

E
π
λ2
-----=

× x x –2λ E0 ψ̃ φ φ4+( ) 2λ2λ̇Z3 x∂
∂

xψ̃( )–




d

0

∞

∫

+ λ2 ∂φ
∂x
------ 

 
2 λ2λ̇

2
x2

4
---------------- ψ̃2 2λψ̃φ+( ) 3λ2ψ̃2φ2–+





.

N 2π xx ψ̃2 λ3

8 E0
2

--------------+




d

0

∞

∫=

× 6λλ̇
2
µ̇ 6λ2 λ̇̇ µ̇ 6λ2λ̇ µ̇̇ λ3 µ̇̇̇+ + +( ) xψ̃( )2

–
λ3 λ̇̇

4 E0
------------ xψ̃( )2 λ3 λ̇̇

4
--------- 

 
3

x2

E0
--------

x∂
∂

xψ̃( ) 
  L̂

1–
x2ψ̃( )+

–
3
E0

--------ψ̃
x∂

∂
xψ̃( ) 

  L̂
1–

x2ψ̃( )( )
2

L̂
1–

x2ψ̃( )( )
2

+




,

E
t2

2

∂
∂ λ2 λ4µ̇

E0
---------– 

  π
8
--- xx xψ̃( )2d

0

∞

∫=

+ π xx
λ2 λ̇̇

4
--------- 

 
2

3ψ̃
x∂

∂
xψ̃( ) 

  L̂
1–

x2ψ̃( )( )
2





d

0

∞

∫

– E0 L̂
1–

x2ψ̃( )( )
2

x2ψ̃L̂
1–

x2ψ̃( )–

– x2

x∂
∂

xψ̃( ) 
  L̂

1–
x2ψ̃( )

λ3λ̇
2
λ̇̇

8
--------------x2ψ̃L̂

1–
x2ψ̃( )+





.
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sions (23) and (24) to a more compact form:

(25)

(26)

where quantity Ncr is equal to the number of particles in
the stationary solution (3),

(27)

This quantity is independent of the choice of energy
|E0 |. Applying simple transformations to Eq. (23) and
using Eq. (24), we can reduce Eq. (23) to the form

(28)

Quantities (N, E) in formulas (25) and (26) are the
number of particles and the energy concentrated in the
collapsing region before the right turning point. Due to
the tunneling processes, these quantities are not con-
served. The conserved quantities are {Ncol, Ecol} deter-
mined for wave function ψcol at the initial instant. To
close the system of equations, it is necessary to find the
number of particles and the energy in the region after
the right turning point.

N Ncr– 2π x x
λ3 λ̇̇

4 E0
------------ xψ̃( )2–





d

0

∞

∫=

–
3
E0

-------- λ3 λ̇̇
4

--------- 
 

2

x2ψ̃L̂
1–

x2ψ̃( )

+
λ3

8 E0
2

-------------- 6λλ̇
2

6λ2 λ̇̇ µ̇ 6λ2λ̇ µ̇̇ λ3 µ̇̇̇+ + +( ) xψ̃( )2





,

E
t2

2

∂
∂ λ2 λ4µ̇

E0
---------– 

  π
8
--- xx xψ̃( )2d

0

∞

∫=

+ λ2 λ̇̇( )
2

λ3λ̇
2
λ̇̇+( )π

8
--- xx x2ψ̃( ) L̂

1–
x2ψ̃( ),d

0

∞

∫

Ncr 2π xxψ̃2.d

0

∞

∫=

E0

2λ2
-------- N 2π x xψ̃2d

0

∞

∫–
 
 
 

E+
π
4
--- xd

0

∞

∫=

× x λ̇
2

xψ̃( )2 1
E0

-------- 3λ2λ̇
2
µ̇ λ3 λ̇̇ µ̇– λ3λ̇ µ̇̇+( ) xψ̃( )2–





–
λ2 λ̇̇

2
--------- 

 
2

x2ψ̃L̂
1–

x2ψ̃( ) λ3λ̇
2
λ̇̇

2
--------------x2ψ̃L̂

1–
x2ψ̃( )+





.
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5. WAVE FUNCTION IN THE REGION 
AFTER THE TURNING POINT

To investigate the region after the turning point, we
represent function ψcol in the form

(29)

Substituting expression (29) into formula (1), we
obtain the equation for function  in variables (t, x):

(30)

In the essentially nonlinear region, function  is
close to  and, outside this region, the nonlinear term
is small. Taking this remark into account, we can
rewrite Eq. (30) in the form

(31)

where a(τ) ≡ –λ3 /4. The new time τ is connected to
time t by the relation

(32)

Equation (31) describes the motion of a two-dimen-
sional quantum particle in the field of potential barrier

–  – a(τ)x2.
We know from quantum mechanics [21] that, in a

potential field of this kind, a flow of particles running
away from the barrier arises. The right turning point xt.p.
can be found from the condition that the potential
energy a(τ)x2 is equal to the total energy |E0 | in
Eq. (31). We have

(33)

In a neighborhood of the turning point in the region
x < xt.p., wave function  is equal to

(34)

ψcol
1
λ
---ψ̂ i E0

td

λ2
-----∫ iλλ̇

4
--------x2+ .exp=

ψ̂

1
x
---

x∂
∂

x
x∂

∂
 
  ψ̂ ψ̂ 2ψ̂ E0 ψ̂–+

–
x2

4
-----λ3 λ̇̇ ψ̂ iλ2∂ψ̂

∂t
-------+ 0.=

ψ̂
ψ̃

1
x
---

x∂
∂

x
x∂

∂
 
  ψ̂ ψ̃2ψ̂ E0 ψ̂–+

+ a τ( )x2ψ̂ i
∂ψ̂
∂τ
-------+ 0,=

λ̇̇

τd
1

λ2
-----dt.=

ψ̃2

xt.p.

2 E0

λ3 λ̇̇–( )
1/2

----------------------.=

ψ̂

ψ̂
B E0

1/8 λ3 λ̇̇–( )
1/8

2 xt.p. x–( )1/4
----------------------------------------

π E0

2 λ3 λ̇̇–
-------------------–





exp=

+
2
3
--- E0

1/4 λ3 λ̇̇–( )
1/4

xt.p. x–( )3/2





.
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Constant B in formula (34) is on the order of unity
and can be determined from the numerical solution for
function  in the region xt.p. @ x @ 1

(35)

In the region after the turning point x > xt.p., wave
function  is defined by the expression

(36)

Formulas (31) and (36) allow us to find the flux J of
particles coming out from under the barrier per real
time unit t. We have

(37)

The particles outgoing from under the barrier con-
tinue their motion to the collapse point. The total num-
ber of particles in the collapse region remains the same,
and function N(t) defined by formula (25) satisfies the
equation

(38)

with the boundary condition at the initial instant tin

(39)

Expression (36) for wave function  is valid in the
region x < xmax, where xmax is the maximal distance
between the collapsing particles and the barrier.

Formula (36) allows us to find all physical quantities
related to the existence of overbarrier particles behind

ψ̃

ψ̃x  @ 1
B E0

1/4

x
------------------ E0 x–( ).exp=

ψ̃

ψ̂
E0( )1/4B

x2 xt.p.
2–( )1/4

----------------------------
xt.p.

x
------- 

 
1/2

–
π E0

2 λ3– λ̇̇
-------------------





exp=

+
iπ
4
----- ix

4
---- λ3 λ̇̇–( )

1/2
x2 xt.p.

2–( )1/2
+

–
i E0

λ3 λ̇̇–( )
1/2

----------------------
x x2 xt.p.

2–( )1/2
+

xt.p.
--------------------------------------

 
 
 

ln




.

J
i

λ2
-----2πx ψ̂∂ψ̂∗

∂x
---------- ψ̂∗

x∂
∂ ψ̂–

 
 
 

=

=  
4πB2 E0( )

λ2
--------------------------

π E0

λ3 λ̇̇–
----------------–

 
 
 

.exp

∂N
∂t
------- J–=

N tin( ) Ncol.=

ψ̂
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the right turning point. For the number of particles Ntail
and energy Etail concentrated in this region, we obtain

(40)

Contribution Ltail of the region after the right turning
point to quantity L can be expressed as

(41)

Using the three exact conservation laws and formu-
las (25), (26), and (40), we obtain the closed system of
equations for quantities λ and µ, which contains the
truncation parameter xmax,

(42)

where constants γ0 and γ1 are determined in the Appen-
dix (formula (A.9)). We should eliminate the truncation
parameter xmax. For this purpose, we can use the third

N tail 2πB2 E0( )1/2xt.p.=

×
π E0

λ3 λ̇̇–
----------------–

 
 
 

exp
2xmax

xt.p.
------------- 

  ,ln

Etail
π

8λ2
--------B2xt.p. E0( )1/2 π E0

λ3 λ̇̇–
----------------–

 
 
 

exp=

× λλ̇ λ3 λ̇̇–+( )
2

xmax
2 tt.p.

2

2
------– 

 




+ xt.p.
2 λλ̇( )

2
λ3 λ̇̇+( )

2xmax

xt.p.
------------- 

  λλ̇ λ3 λ̇̇– xt.p.
2–ln





.

Ltail πλ2B2 E0( )1/2xt.p.
π E0

λ3 λ̇̇–
----------------–

 
 
 

exp=

× xmax
2 xt.p.

2

2
-------– 

  xt.p.
2 2xmax

xt.p.
------------- 

 ln+ .

Ncol Ncr–
γ0

4 E0
------------ λ3 λ̇̇–( )

3γ1

E0
-------- λ3 λ̇̇( )

2
–=

+
γ0λ

2

8 E0
2

-------------- 6λ2λ̇
2
µ̇ 6λ3 λ̇̇ µ̇ 6λ3λ̇ µ̇̇ λ4 µ̇̇̇+ + +( ) N tail,+

Ecol

γ0

16
------

t2

2

∂
∂ λ2 λ4µ̇

E0
---------– 

 =

+ γ1 λ2 λ̇̇( )
2

λ3λ̇
2
λ̇̇+[ ] Etail,+

Ecol
1
16
------

t2

2

∂
∂ γ0 λ2 λ4µ̇

E0
---------– 

  8γ1λ
5 λ̇̇ Ltail+ +

 
 
 

,=
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equation in system (42). Integrating this equation, we
obtain

(43)

Quantities B0 and B1 in formula (43) are inte-
gration constants. Multiplying Eq. (43) by the quan-

tity , multiplying the first equation of

system (42) by the quantity

,

and subtracting both equations from the second equa-
tion of system (42), we obtain the first equation free of
truncation parameter xmax:

(44)

The second equation free of parameter xmax can be
obtained by differentiating the first equation of sys-
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tem (41) with respect to time t:

(45)

The system of two equations (44) and (45) for parame-
ters (λ, µ) describes the total collapse (or expansion)
process. The collapse process can be divided into two
stages. The first stage includes almost the entire time
domain except for an exponentially narrow neighbor-
hood of the collapse point. The second stage is an expo-
nentially narrow neighborhood of the collapse point.

6. COLLAPSE PROCESS 
OUTSIDE AN EXPONENTIALLY NARROW 

NEIGHBORHOOD OF THE COLLAPSE POINT

In this region, it is convenient to use system of equa-
tions (42), where the terms {Ntail, Etail, Ltail} associated
with the tunneling should be omitted. Subtracting the
third equation of system (42) from the second equation
of this system, we obtain an equation for quantity λ:

(46)

Equation (46) can be reduced to the form

(47)

We can easily integrate Eq. (47) once and obtain

(48)

The constant in the right-hand side of Eq. (48) can
only be zero. As a result, the equation studied in [20]
arises. The solution to this equation is

(49)

where C, C1, and t0 are integration constants. The value
of the constant C = 0 corresponds to the separatrix
which separates the collapse domain from the extension
domain.

We seek quantity  in the form

(50)
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Substituting this value of  into the first and third
equations of system (42), we obtain

(51)

The solvability condition for Eqs. (51) imposes one
constraint on the parameters {Ecol, Ncol – Ncr, C, C1},
namely,

(52)

From Eqs. (51), we find the value of the parameter α

(53)

7. EXPONENTIALLY NARROW 
NEIGHBORHOOD 

OF THE COLLAPSE POINT

In the exponentially narrow neighborhood of the
collapse point, the processes of tunneling and particle
accumulation after the right turning point (in the
domain x > xt.p.) become significant. In this domain, as
well as in the transition domain, we should use system
of equations (44) and (45). We seek a solution to this
system for the functions λ and µ in the form

(54)

where t* is the time of collapse and f and  are slow
functions of time. Taking into account that the function
f is slowly varying, we obtain

(55)

In the neighborhood of the transition point, the sec-
ond term on the left-hand side of formula (44) is small.
The third term in the left-hand side of formula (44) can
be eliminated with the help of the change of variables

(56)
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As a result, system of equations (44) and (45) can be
reduced with the help of formulas (55) and (56) to the
form

(57)

Multiplying the second equation of system (57) by f 2/2
and subtracting it from the first equation of system (57),
we obtain an equation without exponential terms,
namely,

(58)

The general solution to Eq. (58) is

(59)

where  is a constant.

Substituting expression (59) for the function  into
the first formula of system (57), we obtain an equation
for the function f, namely,

(60)

Solving Eq. (60), we obtain the following equation
for the function f:

(61)

To find the value of constant  in Eqs. (59) and
(61), we must solve system of equations (44) and (45)
in an intermediate domain, where the order of exponen-
tial terms is the same as the order of terms appearing in
Eq. (46).
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8. DECOMPOSITION OF THE INITIAL VALUE 
OF THE WAVE FUNCTION 

INTO THE COLLAPSING PART ψcol
AND ITS ORTHOGONAL COMPLEMENT ψ⊥

Suppose that wave function ψ, which can be repre-
sented in form (5) and (6), is defined at the initial time
instant as

and the norm of the function ψ⊥  is small. First of all,
note that there are three free parameters, namely, the
energy |E0 | and coordinates (x0, y0) of the collapse
point. We construct a basis in which the function ψcol
(6) can be expanded. Formulas (9), (10), (15), and (16)
imply that the basis consists of the functions

(62)

The function ψcol should be expanded in basis (62).
Then, the norm of the function ψ⊥  should be minimized
in all the free parameters, |E0 |, (x0, y0), and the coeffi-
cients of the expansion of the function ψcol in basis (62).
Minimizing in the free parameters, we determine the
location of the collapse center, the quantity |E0 |, and the
initial values for system of equations (44) and (45) (tak-
ing into account Eqs. (43), (49)–(51), and (53)).

9. CONCLUSIONS

In the adiabatic approximation, a system of equa-
tions is obtained which describes the collapse process
in the entire time interval until the singular point is
reached. Almost everywhere, except for an exponen-
tially narrow region near the collapse point, the tunnel-
ing processes in the inverted parabolic potential are
negligible. Tunneling results in the particle accumula-
tion in the region after the right turning point. It is
essential that the energy in this region become infinitely
high as we come near the collapse point.

In the problem under consideration, there are three
exact conservation laws, namely, the particle conserva-
tion law, total energy conservation law, and quasicon-
formal conservation law. Using the quasiconformal
conservation law, we can eliminate the quantities
related to the particle accumulation in the region behind
the right turning point. These quantities diverge as we
come near the collapse point. As a result, a system of
two equations for quantities {λ, } arises. When solv-
ing this system in a neighborhood of the collapse point,
a free parameter  arises. The value of the parameter

 is determined by the conditions of matching the
solutions in the transition region where all terms in sys-
tem of equations (44) and (45) are of the same order. An

ψ ψcol ψ⊥+=

ψ̃,
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∂
xψ̃( ), L̂

1–
x2ψ̃( ), x2ψ̃,

L̂
1–

x2φ( ), L̂
1– φ( ), L̂

1– ψ̃φ2( ).

µ̇

α̃
α̃
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important specific feature of the problem under consid-
eration is the dropping of the quantity  from all equa-
tions in second-order perturbation theory and the
occurrence of this quantity only in the fourth order.

A sufficient condition for the collapse is a negative
value of energy E [19]. If the number of particles N <
Ncr , the solution to Eq. (1) remains finite for any finite
time [16]. There exist collapsing solutions for N = Ncr
and for any value of energy E > 0 [5]. In the adiabatic
approximation, we have established an implicit relation
between the initial data and the conditions for the col-
lapse arising for a finite time value.
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APPENDIX

First of all, we write the relations which are used in
deducing the equations for the quantities {N, E, λ, µ}.
Multiplying both sides of Eq. (7) by the function
∂(x2n + 1ψ)/∂x and integrating with respect to x∂x over
the interval (0, ∞), we obtain an infinite number of rela-
tions for integrals of function :

(A.1)

where n = 0, 1, 2, .... Some of these equations were
obtained and used in paper [20]. One can directly verify
that the following equations for the function  are
valid:

(A.2)

Here, the operator  is specified by expression (11).
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Using Eqs. (A.1) and (A.2), we obtain the following
three relations:

(A.3)

Let us find quantity I defined by the expression

(A.4)

Integrating by parts, we reduce the expression for I
to the form

(A.5)

On the other hand, the quantity I is given by

(A.6)

The third term in expression (A.6) is a total deriva-
tive and its integral is equal to zero. As a result, the
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quantity I is defined by the expression

(A.7)

Formulas (A.5) and (A.7) imply that

(A.8)

Let us define two constants γ0 and γ1 as

(A.9)

In the quantities γ0 and γ1, we can separate the depen-
dence on |E0 | and write these quantities in the form

(A.10)

where γ00 and γ11 are independent of the choice of |E0 |.
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Abstract—A theory is developed of image formation with an X-ray lens that consists of a large number of ele-
ments. Each element has a biconcave parabolic profile and weakly refracts an X-ray beam. Since such a lens
can have a relatively large length comparable to the focal length, the thin-lens approximation is inapplicable.
An exact expression for the propagator of a continuously refractive lens is derived that describes the transfer of
radiation through a refractive parabolic medium. We calculate the image propagator that describes the focusing
of a parallel beam and the image transfer (the focusing of a microobject), as well as the Fourier transform of
the transmission function for a microobject with a lens, is calculated. The effective aperture of an X-ray lens is
completely determined by the absorption of radiation and does not depend on its geometrical cross-sectional
sizes. If we write the complex refractive index as n = 1 – δ + iβ, then the beam diameter at the focus is approx-
imately a factor of 0.8β/δ smaller than the diameter of the effective aperture, with the index depending only
slightly on the wavelength. A continuously refractive lens has no aberrations in the sense that all of the rays that
passed through the lens aperture are focused at a single point. The lens can focus radiation inside it and has the
properties of a waveguide; i.e., it can reconstruct the beam structure for some lengths to within the absorption-
caused distortions. Nonuniform X-ray absorption in the lens leads to the interesting visualization effect of trans-
parent microobjects when their image is focused. In this case, the phase shift gradient produced by the microob-
ject is imaged. We discuss the properties of the Fourier transform pertaining to the absorption of radiation in
the lens. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The focusing of electromagnetic radiation by refrac-
tive lenses is of great importance both in everyday prac-
tice and in scientific research. In particular, the human
eye has a lens in its structure that focuses visible light
at various distances. A microscope and a telescope
extend the vision of the world to mini- and macrosizes,
respectively. Because of its high penetrability, hard
X-ray radiation with photon energies E from 10 to
50 keV allows the internal structure of microobjects to
be studied by nondestructive methods. Clearly, the
development of effective refractive lenses for hard
X-rays could significantly enhance the possibilities of
scientific research into the structure of matter in many
fields of science. However, this could not be done for
100 years since the discovery of X-ray radiation mainly
for two reasons. First, the refractive index of X-rays is
very close to unity. Second, all materials absorb X-ray
radiation. For example, for aluminum and E = 25 keV,
the complex refractive index is n = 1 – δ + iβ, where δ =
8.643 × 10–7 and β = 1.747 × 10–9.

The problem of weak refraction was first solved in
1996 [1] by using compound lenses made up of a long
row of elementary lenses. Each elementary lens has a
biconcave shape and a radius of curvature R on the
order of 1 mm that is large enough for it to be easily
produced. Accordingly, the focal length of such a lens,
1063-7761/03/9701- $24.00 © 20204
F1 = R/2δ, is very large and can reach hundreds of
meters. In this case, the focal length of a compound lens
with N elements is F = F1/N. Therefore, the focal length
can be decreased to a value acceptable for experiments
by increasing the number of elements. Fortunately,
Ren < 1 for X-rays; as a result, the focusing lens is
biconcave. In this case, the thickness of the material in
the central part of the lens is small compared to the
absorption length. Nevertheless, absorption does exist
and causes both an overall reduction in the beam inten-
sity and a restriction of the aperture of X-ray compound
refractive lenses. The nonuniform absorption of radia-
tion in an X-ray lens is a new property compared to
lenses for visible light, which leads to interesting prop-
erties of the image, as we show below.

The relatively small aperture of an X-ray lens (frac-
tions of a millimeter) is not a drawback because the
X-ray beams generated by synchrotron radiation
sources have small cross-sectional sizes and weak
divergence. Thus, on third-generation (ESRF, APS,
SPring-8) synchrotron radiation sources, the vertical
size of the emitting region does not exceed 30 µm,
while the distance from the source to the sample is
more than 50 m. At present, many papers in which var-
ious methods of producing compound refractive lenses
for X-rays have been published. The simplest method
involves drilling a row of circular holes to obtain a lin-
003 MAIK “Nauka/Interperiodica”
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Fig. 1. (a) A compound refractive X-ray lens and (b) the parameters of an individual lens element.
ear focus [1] or two mutually perpendicular rows of
holes to obtain a point focus [2–4]. An advantage to
such lenses is their extremely low expense; drawbacks
are the high surface roughness, the spherical aberra-
tions, and the anomalously large length for a large
radius of curvature of the holes. An alternative method
consists in forcing air bubbles into a glue [5]. An “alli-
gator” lens in which the parabolic phase shift profile is
roughly specified by two rows of perpendicular teeth
located at a small angle to the X-ray beam was sug-
gested and tested [6, 7]. Planar lenses in which an accu-
rate parabolic profile with a radius of curvature on the
order of 1 µm is produced in a thin layer on a silicon
surface were produced by using the complex deep
lithography technique [8].

However, compound lenses with circular apertures
and parabolic profiles are of greatest interest in terms of
their imaging properties. The cross section of such a
lens and the parameters of one element are shown in
Fig. 1. The elements of a compound parabolic lens are
produced by embossing a parabolic profile in alumi-
num plates [9–12] or in plates of various plastics (see,
e.g., [13, 14]). The number of elements in a compound
lens can be varied to obtain the required focal length.
Presently, lenses with up to several hundred elements
are used. A lens with 1000 elements or more can be eas-
ily produced. In this case, the length of the compound
lens of L = Np increases with N, while its focal length
F decreases. Clearly, as long as L ! F, the focal length
can be estimated using the thin-lens formula, F ≈
R/2Nδ. Otherwise, the problem of radiation transfer
through a long compound lens with allowance made for
the change in the path of rays in the lens itself should be
solved. This can be easily done by geometrical optics
techniques [15].

The complete solution of the problem must be in the
form of an integral equation similar to the Kirchhoff
integral. If the change in the transverse structure of the
wave field in the thickness p of one element of a com-
pound lens is small, then we may average the density of
the lens material over the length p and treat the lens as
a homogeneous parabolic medium along the beam
direction. A compound lens that satisfies this require-
ment is called a parabolic continuously refractive
F EXPERIMENTAL AND THEORETICAL PHY
(PCR) X-ray lens. The kernel of the integral equation
for such a lens is a continuous function of its length and
has an analytic form, as was first shown in [16].

Here, we present an exact theory of image formation
with a continuously refractive X-ray lens. Apart from
deriving the propagator of the lens itself and studying
its properties, we calculate the image propagator and
analyze the imaging properties of a PCR lens. We show
that a continuously refractive lens has no aberrations in
the sense that all of the rays emerging from a single
point and passing through different parts of the lens
aperture converge to a single point in the image. Its
effective aperture is completely determined by the
absorption of radiation in the lens and decreases with
increasing wavelength. At the same time, the beam
diameter at the focus is approximately a factor of
0.8β/δ smaller than the diameter of the effective aper-
ture, and the numerical coefficient depends on wave-
length only slightly. Nonuniform absorption leads to
the visualization of transparent microobjects when they
are imaged, with the phase shift gradient produced by
the microobject being imaged. We also discuss absorp-
tion-related properties of the Fourier transform of the
transmission function for the object.

2. THE EXACT PROPAGATOR
OF A PARABOLIC CONTINUOUSLY 

REFRACTIVE X-RAY LENS

Let us assume that the synchrotron radiation is pre-
monochromated and has a high degree of spatial coher-
ence. These conditions are satisfied on third-generation
synchrotron radiation sources [17]. We choose the opti-
cal axis along the z axis (see Fig. 1) and represent the
general solution of the Maxwell equation as

where k = ω/c is the wave number in a vacuum. The
function At(x, y, z) describes the transfer of the trans-
verse dependence of the wave field along the z axis.
Since the wavelength λ = 2π/k is many orders of mag-
nitude smaller than the scale length of the X-ray inter-
action with the material λ/δ, we can use the paraxial
approximation with a high accuracy; i.e., we can disre-

E x y z, ,( ) ikz( )At x y z, ,( ),exp=
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gard the second derivative of At with respect to z com-
pared to its first derivative. As a result, substituting this
solution into the Maxwell equation yields the parabolic
equation for the function At(x, y, z)

(1)

where η = 1 – n = δ – iβ = δ(1 – iγ). In the radiation
transfer problem, the wave field on the entrance lens
surface is assumed to be given, i.e., At(x, y, 0) if the z
coordinate is measured from the entrance lens surface.
Inside an actual compound lens, the function s(x, y, z)
is equal to 1 in the regions filled with the lens material
and 0 in the voids (see Fig. 1).

Passing to the limit of a PCR lens implies that the
thickness p of one element tends to zero, while the
number of elements N increases in such a way that the
total length of the lens and its aperture do not change.
The radius of curvature of the surfaces also increases.
In this case, instead of the actual function s(x, y, z), we
may use its average value, which does not depend on
the longitudinal coordinate,

(2)

This dependence holds only within the geometrical lens
aperture of diameter

(see Fig. 1). We are interested in sufficiently long lenses
where the effective working area (effective aperture) of
the lens is determined by the absorption of X-rays in the
lens material and has a size smaller than the geometri-
cal aperture. In this case, we may ignore the edge
effects and formally assume that dependence (2) holds
in the entire region of the transverse xy plane con-
cerned.

After the substitution of  for s, the general solution
of Eq. (1) can be written as the integral equation

(3)

The propagator of a PCR lens, i.e., the kernel of Eq. (3),
is the solution of Eq. (1) with the initial function

where δ(x) is the Dirac delta function. Given the form
of the initial function, it is easy to understand that the
solution can be sought by the separation of variables,

(4)

dAt

dz
-------- –ikηs x y z, ,( )At

i
2k
------

d2At

dx2
----------

d2At

dy2
----------+

 
 
 

,+=

s x y,( ) s0
x2

pR
-------

y2

pR
-------, s0+ +

d
p
---.= =

a 2 R p d–( )[ ] 1/2=

s

At x y z, ,( ) = x' y'PL
t( ) x y x' y' z, , , ,( )At x' y' 0, ,( ).dd∫

PL
t( ) x y x' y' 0, , , ,( ) δ x x'–( )δ y y'–( ),=

PL
t( ) x y x' y' z, , , ,( )

=  ikηs0z–( )PL x x' z, ,( )PL y y' z, ,( ).exp
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The partial propagator PL(x, x ', z) satisfies the equation

(5)

This equation is formally identical to the Schrödinger
equation for a particle in a parabolic potential if the z
coordinate is substituted with time. In quantum
mechanics, one is usually interested in stationary states
and writes the solution as a series each term of which
contains the product of the functions of each individual
coordinate.

In [16], we obtained a solution in the form of a sim-
ple analytic expression by using the Fourier transform
and recurrent equations for the coefficients of various
powers of x in the argument of the exponent. Below, we
derive the same solution in a more straightforward way.
Taking into account the reciprocity principle, the solu-
tion should be sought in the form of a symmetric func-
tion of the x and x' coordinates. In addition, at small lon-
gitudinal distances, the solution must be close to the
propagator in the empty space, i.e., to the Kirchhoff
propagator,

(6)

which is significant when the lens is illuminated by a
point source. On the other hand, it must contain the
phase factor characteristic of a thin lens when it is illu-
minated by a plane wave. Taking into account these
considerations, we will seek the solution in the form

(7)

with the two unknown functions r(z) and a(z).

The initial condition is satisfied if r(z) ≈ z and a(z) ≈
z2 for z  0. Substituting this form of the solution into
the equation and equating the coefficients of the same
powers of x and x', we obtain the system of two ordinary
differential equations

(8)

whose solution can be easily found:

(9)

dPL

dz
--------- –ik

x2

2zc
2

-------PL
i

2k
------

d2PL

dx2
-----------,+=

PL x x' 0, ,( ) δ x x'–( ), zc
pR
2η
------- 

 
1/2
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PL x x' z, ,( ) T x
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λz
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 exp=
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Fig. 2. The experimental scheme for imaging an object with an X-ray PCR lens.
As a result, the propagator of a PCR lens can be written
as

(10)

where we denoted

This expression differs from the formula derived in [16]
only by the notation. This notation better takes into
account the symmetry properties of the propagator. If
the PCR-lens length L ! Rezc , then

(11)

where

is the complex focal length of a thin PCR lens. Since we
used the relation F @ L to derive this expression, we
may roughly substitute x for x' in the exponential factor.
In addition, if the second derivative of the incident wave
phase with respect to the transverse coordinates is
much smaller than 2π/λL, then the propagator of the
empty space can be roughly substituted with the delta
function to give

This expression is commonly used in the thin-lens
approximation. Formula (11) gives a more universal
approximation for the thin-lens propagator.

Clearly, a PCR lens for which the parameter γ = β/δ
is at a minimum has the best properties. For this reason,
the actual lenses are made of elements with a small
atomic number Z (lithium, beryllium, carbon, alumi-
num). In virtually all interesting cases, γ < 0.005. If we

PL x x' z, ,( )

=  
1

iλzcsz( )1/2
------------------------ iπ

x2 x'2+( )cz 2xx'–
λzcsz

------------------------------------------- ,exp

sz
z
zc

----, czsin
z
zc

----.cos= =

PL x x' L, ,( )

–iπ x2 x'2 xx'+ +( )
3λFc

----------------------------------- P x x'– L,( ),exp
L → 0

Fc
F

1 iγ–
-------------

zc
2

L
---- R

2Nη
-----------= = =

PL x x' L, ,( ) T x Fc,( )δ x x'–( ).≈
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ignore the absorption, which can be done at least for the
rays near the optical axis, then the waveguide properties
of a PCR lens follow from the exact expression for the
propagator. For

,

we obtain sz = 1 and cz = 0. Therefore, a PCR lens
makes the Fourier transform of the incident wave. For
L = 2L0, the propagator is δ(x + x '); accordingly, the
PCR reproduces the incident wave at the exit in an
inverse form. For L = 3L0, the lens again makes the
Fourier transform but with the opposite sign. Finally,
for L = 2L0, the lens faithfully reproduces the incident
wave. As the PCR-lens length increases further, these
phases are repeated again and again. Since X-rays are
absorbed in the PCR lens, both the image and the Fou-
rier transform are produced in a bounded region within
the gradually decreasing aperture.

3. THE IMAGE PROPAGATOR 
WITH AN ARBITRARILY LONG PCR LENS

In an actual experiment, the object being studied,
the lens, and the detector are at comparatively large dis-
tances from each other, as can be seen from Fig. 2,
which also shows the notation for the distances and the
coordinate axes. Let us consider the more complex
problem of the wave field transfer from the plane
immediately behind the object to the detector plane.
Clearly, the propagator of this problem is also factor-
ized in the x and y coordinates. Therefore, it will suffice
to calculate only the partial image propagator G(xi , xo,
ro, L, ri). It is determined by the convolution of the
propagator for a PCR lens with the Kirchhoff propaga-
tors that correspond to empty space,

(12)

Below, to save space, we omit the longitudinal dis-
tances in the list of arguments for the image propagator.

L L0
π
2
--- LF( )1/2 π

2
--- pR

2δ
------- 

 
1/2

= = =

G xi xo,( )

=  x x'P xi x– ri,( )PL x x' L, ,( )P x' xo– ro,( ).dd∫
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We use the following algorithm to calculate the inte-
grals. Let us first consider the extreme case of a thin
lens where PL(x, x ', L) is substituted with T(x, Fc)δ(x –
x '). Accordingly, the propagator is determined by the
single integral

(13)

This integral reduces to the Fourier transform of the
Gaussian function and is again equal to the Gaussian
function. It is convenient to write the result as

(14)

where we introduced the parameters

(15)

Expression (14) for the image propagator of a thin
lens is identical in form to expression (7) for the prop-
agator of a PCR lens. It immediately follows from this
expression that in the limit γ = 0 and when the condition
rg = 0 (the thin-lens formula) is satisfied, the propagator

where M = ri/ro is the magnification factor. Thus, this
expression reproduces the well-known property of a
thin lens to focus the image when the lens formula
holds:

It is also easy to see that when the condition ao = 1, i.e.,

ri = F, is satisfied, the term proportional to  in the
argument of the exponent vanishes and the propagator
makes the Fourier transform of the wave field located in
the plane immediately behind the object. However, if
the object is illuminated by a point source, then the
Fourier transform of the transmission function for the
object takes place in the focusing plane of the point
source. This property also follows from propagator (14),
but further calculations are required to prove it (see
below).

Substituting expression (7) for the propagator of a
PCR lens into integral (12) yields

(16)

G0 xi xo,( )

=  xP xi x– ri,( )T x Fc,( )P x xo– ro,( ).d∫
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=  T xi
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  ,

rg ro ri

rori
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-----, ao
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-----.= = =

G0 xi xo,( ) M1/2δ xi xoM+( ),=

ro
1– ri

1–+ F 1– .=

xo
2

G xi, xo( ) xP xi x– ri,( )T x
rL

aL

-----, 
 d∫=

× x'P x x'– rL,( )T x'
rL

aL

-----, 
  P x' xo– ro,( ),d∫
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where rL = zcsL and aL = 1 – cL . Here, the integral over
x' is equivalent to integral (13) but with different expres-
sions for the parameters. Substituting solution (14) for
the integral again yields an integral of type (13) with
new parameters. As a result, making appropriate alge-
braic transformations, we derive an exact expression
for the image propagator of an arbitrarily long PCR lens
in a form similar to the case of a thin lens,

(17)

but now the parameters are

(18)

Interestingly, the formulas for the new parameters
can also be written in a form similar to the case of a
thin lens,

(19)

if we introduce the generalized complex distances

(20)

The result is of great importance because it shows that
the imaging properties of an arbitrarily long PCR lens
are essentially the same as those of a thin lens. In par-
ticular, such a PCR lens has no aberrations in the sense
that all ray paths converge at a single point, in contrast,
for example, to a lens with a spherical profile. If there
were no absorption, then the lens would focus a point
source to a point. The blurring of the image point due
to the absorption of radiation and the finite aperture is
usually attributed to the finite lens resolution. On the
other hand, the simple analytic expressions for the gen-
eralized distances allow the appropriate corrections that
should be made to the experimental scheme to be easily
determined.

For example, in the limit of a small lens length com-
pared to the focal length, L ! F, expanding the sine and
the cosine in a power series yields

(21)

This result, which was obtained previously [18] in an
approximate and complicated way, is a natural extreme
case of the exact theory. It follows from this result that
even when the PCR lens has an appreciable length L
(tens of centimeters) that satisfies the condition L ! F,
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it can be treated as a thin lens located in the middle with
a sole difference. More specifically, the focal length
calculated using the thin-lens formula must be
increased by one-sixth of the actual lens length.

On the other hand, at zero distances, the image prop-
agator is identical to the propagator of a PCR lens. Note
yet another obvious property of the image propagator:
its convolution with the Kirchhoff propagator from a
point source P(xo – xs, rs) is described by the same
expression (17) in which xs should be substituted for x0
and ro + rs should be substituted for ro . The relation

(22)

that follows from definitions (19) is used to prove this
property.

4. ESTIMATING THE APERTURE
AND FOCUS SIZES FOR A PARABOLIC 

CONTINUOUSLY REFRACTIVE X-RAY LENS

Exact knowledge of such parameters as the size of
the effective aperture of an X-ray lens and the size of
the focal spot when a plane wave is focused is of con-
siderable practical importance. In the optics of visible
light, the aperture is determined by the geometrical
sizes of the lens, i.e., by the area through which the rays
passing then converge to a focus. For a thin absorbing
X-ray lens, it will suffice to consider the intensity dis-
tribution of the radiation immediately after the lens
when it is illuminated by a plane wave oriented along
the optical axis. In this case, the effective aperture is
determined by the absorption of radiation in the lens
material. Since the total wave intensity in empty space
is conserved, simple energy relationships exist between
the aperture and focus sizes. For the arbitrarily long
lens considered here, this approach does not work,
because the incident wave can be partially or com-
pletely focused in the lens itself. Therefore, the inten-
sity distribution of the radiation immediately behind the
lens does not give us any idea of the actual lens aper-
ture. The aperture of a long PCR lens can be defined in
terms of the properties of the propagator G(xi , xo). Let
us consider a different, simpler approach based on
energy considerations. By the effective lens aperture
we mean the total intensity of the radiation at the focus
that is equal to the intensity of the plane wave that
passed through the lens without being absorbed. In this
case, we disregard the parasitic absorption in the thin
parts of the elementary lenses of thickness d (see Fig. 1).

Below, we restrict our analysis to the case where the
lens length is

ão ãi ãoãi–+
r̃g

F̃c

-----=

L L0≤ π
2
---Lc, Lc LF( )1/2 pR

2δ
------- 

 
1/2

.= = =
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In this range of lengths, the lens focuses the incident
wave in space at a distance ri > 0. The intensity distri-
bution of the radiation in the space behind the lens
when it is illuminated by a plane wave can be analyzed
to determine the focus sizes. The two transverse coor-
dinates are again factorized, and it will suffice to con-
sider the distribution along the x axis. Clearly, the wave
amplitude can be obtained by calculating the convolu-
tion of propagator (17) with a coordinate-independent
unit function, i.e., by integrating over the xo coordinate.
The integral reduces to the Fourier transform of the
Gaussian function, and it can be calculated exactly. As
a result, using relation (22) we obtain

(23)

Note that the result does not depend on the distance ro .
From a physical point of view, it is clear that this
expression can also be derived directly from the image
propagator (17) by considering a point near the optical
axis at an infinite distance ro and dividing it by the
amplitude of the Kirchhoff propagator at the same dis-
tance, because a point source at an infinite distance
gives a plane wave in front of the lens aperture.

As follows from (23), a plane wave in front of the
lens transforms into a Gaussian wave behind the lens at
all distances from the lens. For an arbitrarily long PCR
X-ray lens, all parameters are complex. Since the
absorption parameter γ ! 1, we use the linear (in γ)
approximation for qualitative estimation. With the
adopted constraint on the lens length, we obtain the
relations

(24)

where we introduced the real functions

The intensity reaches a maximum at the distance ri

behind the lens that satisfies the condition
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i.e., ri = FLCL. In this case,

(25)

Using the derived expression, we obtain

(26)

for the total intensity of the focus (effective aperture)
and

(27)

for the full width at half maximum (halfwidth) of the
intensity peak at the focus.

For a thin lens, uL ! 1, it follows from these rela-
tions that

(28)

In the other extreme case, uL = π/2, we obtain

(29)

Thus, defining the effective aperture in terms of the
total intensity of the focus does not lead to any contra-
dictions. For a self-focusing lens, the generalized focal
length is by a factor of 1.57 smaller than the length of
the lens itself. Clearly, this is the minimum focal length
that can be obtained for a lens with a specified radius of
curvature R, thickness of the elementary lens p, and
decrement of the refractive index δ. It follows from the
derived relations that the linear size of the focus is
approximately by a factor of 0.8γ smaller than the linear
size of the effective aperture for all lens lengths, with
the numerical coefficient depending only slightly on the
lens length. Consequently, as the lens length increases,
the sizes of the focus and the effective aperture decrease
proportionally to each other and the degree of beam
compression depends only on the absorption factor γ.

To conclude this section, we give several numerical
values for the parameters of Lengeler aluminum lenses
[9–12] at a photon energy of 25 keV. These lenses have
the following parameters: p = 1 mm, R = 0.2 mm, δ =
8.643 × 10–7, γ = 2.02 × 10–3, and Lc = 34 cm. For the
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lens of 100 elements that was actually used in experi-
ments, L = 10 cm, uL = 0.294, FL = 117.4 cm, and αL =
0.986. In this case, the effective aperture is Aγ = 120 µm
and the lens resolution is sγ = 0.23 µm. These parame-
ters smoothly decrease with the increasing number of
elements. Thus, for a lens of 300 elements, it can be
easily calculated that L = 30 cm, uL = 0.882, FL = 44 cm,
and αL = 0.889. In this case, the effective aperture is
Aγ = 78 µm and the lens resolution is sγ = 0.13 µm.
Although the aperture of a long lens decreases, it has a
better resolution and can be useful in imaging small
objects or their fragments.

5. THE IMAGE OF A POINT SOURCE

Let us consider the imaging properties of an X-ray
PCR lens that follow from propagator (17). In the linear
(in small parameter γ) approximation, the image of a
point source displaced by xo from the optical axis is
focused at the distances that satisfy the condition

(30)

where roL = ro + BL , riL = ri + BL , BL = FL(1 – CL), and
FL is defined in (25). Using the generalized real dis-
tances, this condition can be written as the thin-lens
formula

When condition (30) is satisfied, the parameter 

becomes purely imaginary, and for the parameters 

and , it will suffice to use only the real part, i.e., to
set γ = 0. In this approximation, the propagator takes the
form

(31)

where

(32)

Thus, the propagator is a Gaussian function with the
maximum centered at xi = –xoM. In the general case of
a long X-ray PCR lens, the magnification factor can dif-
fer markedly from the ordinary magnification factor of
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a thin lens proportional to the ratio ri/ro . Accordingly,
the image intensity peak is described by the function

(33)

for which sγ = 1.665σ. The expression for Im  under
the image focusing conditions is simplest in terms of
the ordinary distances:

In terms of the generalized distances, the peak width
parameter is

(34)

where Aγ is the lens aperture defined in (26).

Let us again consider the extreme cases. For a thin

lens where L ! F, the focusing condition is  +  =
F–1, the magnification factor is M = ri/ro , and sγ =
0.47λri/Aγ. For a self-focusing lens with a length L =
(π/2)Lc , the focusing condition, the magnification, fac-
tor, and the halfwidth are given by the expressions

(35)

In the limit ro  ∞, we again obtain (28). On the other
hand, in the limit ri  ∞, both the magnification fac-
tor and the image halfwidth indefinitely increase in the
two cases, but the ratio of the size of the image of a
point to the size of the entire pattern is virtually con-
stant.

Note the following interesting feature of long
lenses. As was shown above, a self-imaging lens has a
length L = πLc = 3.14Lc . On the other hand, a self-
focusing lens is by a factor of 2 shorter, while the length
of the experimental scheme for imaging without mag-
nification is (2 + π/2)Lc = 3.57Lc , which is only slightly
longer. For this reason, there is little point in using
extremely long lenses.
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6. THE FOCUSED IMAGE OF AN OBJECT

In an actual X-ray experiment, a relatively thin
object illuminated by the wave emitted by a point
source located at a distance rs from the object and hav-
ing transverse coordinates xs and ys is imaged with the
lens. In general, the source has finite sizes, but different
points of the source are incoherent. Therefore, the
intensity should be integrated over the source’s coordi-
nates at the final stage of the calculation. In this section,
we restrict our analysis to the case where the distance
from the source to the object is large and the angular
sizes of the source in the object’s plane do not exceed
the object’s characteristic scattering angles. In other
words, the coherent image conditions are satisfied. The
wave field in the object’s image plane referred to the
amplitude of the wave incident on the object can be cal-
culated by using the integral

(36)

where

(37)

the function

is the partial image propagator for the object, and the
function

describes the transfer of radiation through the object,
i.e., the object’s function.

As we have shown above, under the image focusing
conditions for the object’s points (30), the modulus of

(xi , yi , xo, yo), which is considered as a function of
the xo and yo coordinates at a given point (xi , yi) on the
image plane, has a sharp maximum at the point with
(xoi , yoi) coordinates, where xoi = –xi/M and yoi = –yi/M.
Here, as in the preceding section, M = riL/roL . Let us
assume that the complex phase of the object’s function
is a smooth function within the region of the propagator
maximum. In the effective domain of integration, the
object’s function can then be approximated by the
expression

(38)

A t( ) xi yi,( )

=  iλrs x0 y0Gs
t( ) xi yi xo yo, , ,( )T xo yo,( ),dd∫

Gs
t( ) xi yi xo yo, , ,( )

=  ikηs0L–( )Gs x xo,( )Gs yi yo,( ),exp

Gs xi xo,( ) G xi xo,( )P xo xs– rs,( )=

T xo yo,( ) iψ xo yo,( )[ ]exp=

Gs
t( )

T xo yo,( )

=  iψi i
2π
λ

------ ξ ix xo xoi–( ) ξ iy yo yoi–( )+[ ]+exp
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with the complex parameters

which depend on the coordinates of the image point.

In this case, the wave field of the image is again fac-
torized,

(39)

and, for example,

(40)

The function A(x)(xi , yi) depends on yi parametrically
via ξix . Approximation (31) cannot be directly used to
calculate the integral, because the expansion in terms of
powers of γ has already been made in it and, therefore,
it is not accurate enough. The expansion in terms of
powers of γ can be made only in the final expressions.
On the other hand, an exact result can be easily
obtained from the following considerations.

The integral differs only by the phase factor from
the convolution of the image propagator with the Kirch-
hoff propagator if we substitute  = xs – rsξix for the
true coordinate of the source xs in the latter. As was
noted above, the convolution of the image propagator
with the Kirchhoff propagator is again equal to the
image propagator in which we should substitute ro + rs

for the distance ro and  for the coordinate xo . In the
expression derived, we should use the image focusing
condition

and we can set γ = 0 in the preexponential term. As
regards the exponent, it will suffice to include the terms
of the zero and first powers of γ. Although the algorithm
is simple, the calculations are cumbersome because
they contain many combinations of many parameters.
To obtain an unequivocal result, it is convenient to
choose the coordinate of the imaged point on the
object, xoi , and the angle of ray exit from the object at
this point, θo, calculated via the phase gradient as inde-

ψi ψ xoi yoi,( ), ξ ix
λ

2π
------

dψ xoi yoi,( )
dx

----------------------------,= =

ξ iy
λ

2π
------

dψ xoi yoi,( )
dy

----------------------------,=

A t( ) xi yi,( ) –ikηs0L iψi+( )exp=

× A x( ) xi yi,( )A y( ) xi yi,( ),

A x( ) xi yi,( ) = iλrs( )1/2 xoG xi xo,( )P xo xs– rs,( )d∫
× i

2π
λ

------ξ ix xo xoi–( ) .exp

x̃s

x̃s

riL
1– roL

1–+ FL
1–=
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pendent transverse coordinates. A useful parameter is
also the coordinate of ray entrance into the lens, x0 .
These quantities are defined as

(41)

It is convenient to choose ro and Lc as independent lon-
gitudinal distances. The remaining parameters are
expressed in terms of them as

(42)

Without giving the intermediate calculations, we
immediately write out the result in the linear (in γ)
approximation

(43)

When making the expansion in terms of γ, we assumed

the conditions λrs @ 2π , where σo = σ/M is the width
of the maximum of propagator (31) relative to the inte-
gration variable xo , to be satisfied. In other words, we
assumed that the phase of the incident spherical wave
also smoothly varied in the domain of integration. We
can easily consider the general case, but it is of no prac-
tical interest. As follows from the derived expression,
the phase gradient of the object’s function directly
affects the image intensity. To qualitatively analyze this
effect, let us consider the extreme case of an incident
plane wave (rs  ∞) and assume that the object is
transparent. If the sample is homogeneous, then θo = 0
at all points and the intensity of the radiation in the
image plane is described by the Gaussian function

(44)

If, however, a phase gradient exists at some points of
the sample, then θo = ξix at these points and the intensity
will deviate from law (44); depending on different con-

xoi

xi

M
-----, θo–

xoi x̃s–
rs

---------------- ξ ix

xoi xs–
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----------------,+= = =

x0 xoi roθo.+=

ri Mu, M
Lc

v
-----, u roCL LcSL,+= = =

v roSL LcCL, FL–
Lc

SL

-----.= =

A x( ) xi yi,( ) 1

iM1/2
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2
---µx xi yi,( )– ,exp=

Φx xi( ) π
λ
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2

roL

------
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2

riL

------+ + ,=

µx xi yi,( ) γ 2π
λFL

---------=
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2 α L CL–( ) Lcθo( )2 SLx0Lcθo+ +[ ] .
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λFL
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α L
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-------xi
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ditions, the intensity can be lower and higher than the
background intensity. Thus, a unique opportunity to
visualize transparent objects and to obtain the phase
contrast through the nonuniform absorption of radia-
tion in the lens emerges. Unlike the ordinary phase con-
trast observed on synchrotron radiation sources (see,
e.g., [19–21]), this contrast has no parasitic oscillations
associated with the interference of various rays and
directly allows the local phase gradient produced by the
object to be determined. Abrupt changes in intensity
related to a sharp phase gradient have recently been
observed experimentally in the image of a sample with
a profiled surface [22].

The physical nature of the visualization of the phase
gradient in a sample with an X-ray PCR lens is easiest
to understand in terms of geometrical optics. The ray
from a source with a coordinate xs comes to the sample
at a point with a coordinate xoi . Since the lens formula
holds, all of the rays that emerge from this point at dif-
ferent angles reach a point with a coordinate xi in the
image plane after their passage through the lens. Actu-
ally, however, only one path is realized and the ray
leaves the sample, making an angle θo with the optical
(z) axis. Accordingly, the ray in front of the lens has the
coordinate x0 and angle θo . The ray path x = xt(z) in the
lens satisfies the condition under which at each point of
the path its tangent makes an angle θ = (λ/2π)(dϕ/dx)
with the z axis, where ϕ(x, z) is the phase of the wave
field in the lens. This phase is equal to the phase of the
image propagator (17) if we set γ = 0, ri = 0, and xi =
xt(z) in the latter and substitute z for L. On the other
hand, θ = dxt/dz. The equation for the path is particu-
larly simple if we write it via the derivative of θ. As a
result,

(45)

where x0 and θo are the initial point and initial derivative
on the path. The initial coordinate and initial angle of
the ray as it enters the lens correspond to the parameters
defined by (41). Calculating the absorption coefficient
integrated over the ray path in the lens,

(46)

we obtain a result that matches formula (43). Thus, the
contrast is actually related to the change in the ray path
and the nonuniform absorption in a PCR lens.

Naturally, the overall image of an object contains
both the absorptive and phase contrast and depends on
the two components of the total phase gradient along
the two coordinate axes. Unfortunately, in solving the
inverse problem, the change in intensity alone is not
enough to restore the absorption coefficient and the two

dθ
dz
------

d2xt

dz2
---------

xt z( )
Lc

2
-----------, xt z( )– x0Cz θoLcSz,+= = =

µ L( ) γ 2π
λ Lc

2
--------- z x0

z
Lc

-----cos θoLc
z
Lc

-----sin+ 
  2

,d

0

L

∫=
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components of the phase gradient. Additional informa-
tion can be obtained by moving the object relative to the
lens, because different portions of the lens absorb dif-
ferently.

7. THE FOURIER TRANSFORM
OF AN OBJECT WITH A PARABOLIC 

CONTINUOUSLY REFRACTIVE X-RAY LENS

A thin parabolic lens is known from classical optics
to perform the Fourier transform of the function of an
object illuminated by a spherical wave from a point
source in the focusing plane of the point source. Let us
consider this phenomenon for an X-ray PCR lens. We
write the Fourier transform of the object’s function as

(47)

In this case, the amplitude of the wave field in the image
plane is

(48)

where

(49)

is the partial image propagator for the separate compo-
nent of the Fourier transform of the object’s function.
We are interested in the conditions when this propaga-
tor is closest to the delta function.

As was noted in the preceding section, the integral
can be expressed in terms of the image propagator in
which  = xs – xq, xq = qλrs/2π is substituted for xs and

 = ro + rs is substituted for ro . As a result,

(50)

where

(51)

T xo yo,( ) q pdd

2π( )2
-------------T̃ q p,( ) iqxo ipyo+( ).exp∫=
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× q pdd

2π( )2
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G f q xs xi, ,( )

=  xoG xi xo,( )P xo xs– rs,( ) iqxo( )expd∫

x̃s
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G f q xs xi, ,( ) 1
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1
2
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 exp=

× i
π

λ r̂g
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2 2xi x̃s– gsx̃s
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r̃sri

zc
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  sL,+=

gi cL
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zc
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zc
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Thus, the condition for the Fourier transform is identi-
cal to the focusing condition for a point source illumi-
nating the object, i.e., Re  = 0. However, approximate
expression (31) cannot be used directly, because the
propagator is in the integrand and, hence, the omitted
phase factor can play a significant role.

To derive an approximate expression, we represent
the complex coefficients as a series in powers of iγ:

(52)

The focusing condition for a point source then has the
approximate form R0 = 0. In this case, the following
relations hold:

where

and the propagator is defined as

(53)

where

(54)

Thus, each point xi in the source’s image plane can
have an appreciable intensity. It maps a region in the q
space of the sample’s function centered at point q = qi ,
where

(55)

In addition, because of the absorption in the lens, the
Fourier transform of the sample’s function is modified
by the phase factor; i.e., the convolution of the Fourier
transform of the sample’s function with some function
that depends on the parameters of the lens and the
experimental scheme is actually imaged. Nevertheless,
if the sample’s function is periodic and, hence, has a
discrete series of Fourier harmonics whose separation
exceeds the width of the propagator maximum, then the

r̂g

r̂g R0 iγR1 iγ( )2R2, gi+ + Qi0 iγQi1,+= =

gs Qs0 iγQs1.+=

riL
1– rsL

1–+ FL
1– , Qi0

1
Ms
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rsL r̃s BL+ roL rs, Ms+
riL
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i γλR1( )1/2
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µ q( )
π xi Msx̃s+( )2

γλR1Ms

--------------------------------,=

ϕ q( ) q xs
1
2
---xq– 
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Qi1xi
2 Qs1 x̃s

2+
λ R1

---------------------------------.+ +=

qi
2π
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image is a system of spots that correspond to individual
harmonics of the Fourier transform of the source’s
function and the size of each spot closely corresponds
to the projected size of the source. The separation
between the spots depends on the distances used in the
experiment and is equal to

A homogeneous sample is a special case for which only
the zero Fourier harmonic exists.

An alternative approach to this problem consists in
analyzing expression (36). The Fourier transform is
obtained if the propagator G(xi , xo)P(xo – xs, rs) does not

contain the term proportional to  in the phase. This
condition can be written as ReC = 0, where

It is easy to verify that in the zeroth (in γ) approxima-
tion, this condition is equivalent to the focusing condi-
tion for a point source written above. In this case, how-

ever, a damped exponential of the type exp(–Im(C) )

remains under the integral. In addition, since  is a
complex quantity, the wave vector of the Fourier trans-
form has a small imaginary part, which depends on the
separation between the object and the lens. The mani-
festation of these features depends on specific condi-
tions and analysis of them is a problem in itself.
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Abstract—The process e+e–  ϕ  η'γ, η'  ηπ0π0, η  γγ is investigated by an SND detector in
experiment on a VEPP-2M equipment with colliding electron–positron beams. The analysis of experimental

data yields a value of B(φ  η'γ) = (  ± 1.5) × 10–5 for the decay probability. Taking into account a

previous measurement of this quantity by an SND detector in the decay channel η'  π+π–η, one finally

obtains B(φ  η'γ) = (  ± 0.8) × 10–5. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The decay φ  η'γ is rare and can hardly be dis-
tinguished against the background; therefore, for a long
time, the characteristics of this process could not be
measured experimentally. The first measurement of the
probability B of the decay φ  η'γ was carried out
experimentally by a CMD-2 detector [1] in 1997:

B(φ  η'γ) = (  ± 2) × 10–5.

In recent years, results for this decay have been
obtained simultaneously in several experiments on col-
liding e+e– beams. This fact has aroused increasing
interest of theoreticians in a η' meson [2–6] because the
structure of η and η' mesons directly determines the
intensity of radiative decays of vector mesons. In theo-
retical studies, the main focus has been on the η–η'
mixing and a gluonium admixture in η'.

At present, the world average value of the probabil-
ity of the decay φ  η'γ [7],

B(φ  η'γ) = ( ) × 10–5,

is based on the results of three experiments represented
in Table 1.

12 5–
+7

6.7 1.4–
+1.5
1063-7761/03/9701- $24.00 © 20024
The most accurate (to date) value, measured by a
KLOE detector [11] in the channel η'  π+π–η,
η  γγ, was obtained after the publication of the sur-
vey [7] and is given by

B(φ  η'γ) = (6.10 ± 0.61 ± 0.43) × 10–5.

The present paper is devoted to the measurement of
the probability of the decay φ  η'γ in the purely neu-
tral channel η'  π0π0η, η  γγ.

2. EXPERIMENT

The experiment was carried out in 1996 [12] and
1998 [13] using a VEPP-2M electron–positron
collider [14] by an SND detector [15]. The photon

Table 1

B(φ  η'γ) × 105 Decay channel Experiment

 ± 1.0
η'  ηπ+π–,
η  γγ SND, 1999 [8]

 ± 1.1
η'  ηπ+π–,
η  γγ CMD-2, 2000 [9]

 ± 0.6
η'  ηπ+π–,
η  ηπ+π–π0 CMD-2, 2000 [10]

6.7 2.9–
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+2.2
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energy resolution in the calorimeter of the detector was
equal to

and the angular resolution versus the photon energy is
given by

We carried out seven scans of the energy domain for
a φ meson in 1996 and two scans in 1998 in the energy
range of 980 meV < 2E < 1060 MeV. The integrated
luminosity was equal to 13 pb–1, and the total number
of φ mesons created was 2.1 × 107. The luminosity was
measured by elastic scattering of electrons and
positrons at large angles and by two-quantum annihila-
tion. The difference between the results obtained by the
two methods was no greater than 1%. In this paper, we
used the luminosity measured by two-quantum annihi-
lation because this process is the closest to the process
being investigated by trigger properties.

3. SELECTION OF EVENTS

The events of the process considered,

φ  η'γ, η'  ηπ0π0, η  γγ,

have seven photons in the final state. To eliminate pos-
sible loss in efficiency due to the superposition of
excess photons (arising from the beam background, the
photon splitting in the calorimeter, the photon radiation
by initial particles at a large angle, and the superposi-
tion of particles from other events), we selected events
with seven or more photons.

The main background process

e+e–  φ  ηγ, η  3π0

also has exactly seven photons in the final state, and its
intensity is 200 times stronger than that of the process
considered, which presents the main difficulty in this
analysis.

When processing the data, we used the following
parameters of events: nγ, the total number of detected
photons; nch , the total number of charged particles; χ2E ,
the sum of squares of deviations of experimental angles
and photon energies from theoretical ones, normalized
by the angular and energy resolution of the calorimeter,
which is minimized over all theoretical parameters of
particles under the condition that the latter satisfy the
energy–momentum conservation law; REmax, the energy
of the hardest photon in the event, normalized by the
beam energy; Ep7, the energy of the softest of the seven

σE/E 4.2%/ E GeV( )4 ,=

σϕ 0.82°( )2/E GeV( ) 0.63°( )2+ .=
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photons (in MeV); and χγ, the “quality” of photons, a
parameter characterizing the “correctness” of the
transverse energy distribution of photons in the calo-
rimeter [16].

We selected events with nch = 0, nγ ≥ 7, and χ2E < 40.
For these events, we carried out kinematic fitting by
using the measured values of angles and photon ener-
gies: by numerically minimizing the logarithmic likeli-
hood function, we chose the particle parameters that
were the closest to the measured values and satisfied the
energy–momentum conservation laws and the con-
straints imposed by the assumption that there exist
intermediate metastable particles. The fitting was car-
ried out independently under four different conjectures:

1. The event belongs to the process

φ  Xγ, X  ηπ0π0, η  γγ, π0  γγ.

A system of seven photons is described by a set of 21
parameters (for example, energy and two angles for
each particle). The energy–momentum conservation
laws define four relations between these parameters. In
addition, the masses of three intermediate unstable par-
ticles (η, π0, π0) enter another three equations that
relate the original parameters. Each kinematic
constraint removes one degree of freedom; therefore,
21 – 4 – 3 = 14 free parameters remain in this model to
minimize the logarithmic likelihood function (one of
these parameters is the mass of the system (ηππ)). As a
result of the reconstruction procedure, we calculate cor-
rected particle parameters; the obtained minimal value

of the logarithmic likelihood function  is used for
the selection of events. In a further selection of events,
we also used the parameters mηππ and θcm obtained as
byproducts of the kinematic fitting. The latter parame-
ter is the polar angle of photons with respect to the
direction of the η meson in the decay η  γγ in the
rest frame of the η meson.

In spite of the measures undertaken to reject, by a
preliminary screening, the largest possible part of the
final photon pairs not associated with the π0 and η
meson decays, the reconstruction of an event takes con-
siderable computing time in all models. Therefore, tak-
ing into account that the reconstruction model
described above is the basic model, we left events with

 < 20 for further analysis (and for reconstruction
in other models).

2. The event belongs to the process

ηγ  3π0γ  7γ.

The total number of free parameters is 21 – 4 – 4 = 13
(four intermediate unstable particles with known
masses). As a result of reconstruction, we obtain the min-

imal value of the logarithmic likelihood function .

χηππγ
2

χηππγ
2

χηγ
2
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Table 2.  Variation of the number of simulated and experimental events for the main processes under the successive imposition
of conditions (1)

Initial number
of events

nη ≥ 7
nch = 0

 < 20
χ2E < 40

θcm > 40°
REmax < 0.7

χγ < 0
χ2E < 12

Ep7 > 30 MeV
|m3π – 540 | > 40

∆χ1 < –10
∆χ2 < –10

 < 10

φ  ηγ 1223844 98350 59644 5557 58 44

φ  KSKL 2294939 1861 246 14 0 0

φ  K+K– 1371963 35 0 0 0 0

φ  π+π–π0 2185331 1 0 0 0 0

e+e–  ωπ0 142795 1 0 0 0 0

φ  η'γ 415000 9398 8568 3411 2167 2030

Experiment 19.3 × 106φ
12 pb–1

165940 14016 1171 29 23

χηππγ
2

χηππγ
2

3. The event belongs to the process

φ  KSKL, KS  π0π0.

We consider all possible combinations of five photons
and choose a variant that is best described by a given
model. Four photons in the calorimeter must arise from
the decay of a KS meson; it is required that a KL meson
should produce a calorimeter hit with weaker angular
and energy binding (the angular and energy distribu-
tions of such pseudophotons are obtained on the events
KSKL that were specially selected from the experimen-
tal data). The total number of free parameters in this
model is 5 × 3 – 4 – 3 = 8. As a result of reconstruction,
we obtain the minimal value of the logarithmic likeli-

hood function .

4. In this model, we assume that, in the reaction

e+e–  Y + γ,

either the primary photon has not been detected at all or
the measured characteristics of this photon are far from
true values. The reconstruction in this model answers
the questions of what is the probability that the event
involves a particle that decays into three neutral pions
and what is the mass of this particle. The kinematics
corresponds to the decay

Y  3π0  6γ.

The momentum of the particle Y is not fixed. For a sys-
tem of seven photons (one photon is assumed to be
undetected, but its characteristics are calculated), the
total number of free parameters is 7 × 3 – 4 – 3 = 14. As
a result of kinematic fitting, we obtain a parameter m3π,

χKSKL

2
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the mass of the system (π0π0π0). This reconstruction
model is designed for the events ηγ in which the whole
event is poorly reconstructed for some reasons.

In all kinematic reconstruction procedures of spe-
cific processes, when the number of photons is greater
than the number specified in a given model, we chose a
combination of photons that minimized the relevant
logarithmic likelihood function; other photons were
neglected.

To simplify the numerical minimization in a multi-
dimensional space and to facilitate the reconstruction,
we analytically determined the minimum in three angu-
lar variables corresponding to the rotation of the event
as a whole [17]; this reduced the number of variable
parameters of the logarithmic likelihood function by
three.

Let us present the full list of selection conditions:

ηγ ≥ 7, nch = 0,

χ2E < 12, θcm > 40°,

(1)

∆χ1 =  –  < –10,

∆χ2 =  –  < –10.

These selection conditions, although they substan-
tially suppress the background processes, preserve a
sufficiently high efficiency e of the investigated pro-
cess: eη'γ → 7γ = 7% (the geometrical component in this
efficiency can be estimated as a fraction of a solid

REmax 0.7, Ep7 30 MeV, χγ 0,<><

m3π 540– 40 MeV, χηππγ
2 10,<>

χηππγ
2 χηγ

2

χηππγ
2 χKSKL

2
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Fig. 1. Distribution of the simulated (histogram) and experimental (dots with error bars) events ηγ, selected by conditions (2), in
the following parameters: (a) χ2E, (b) θcm , (c) REmax , (d) Ep7, (e) χγ, and (f) m3π. The distributions are normalized by the integrated
luminosity.
angle, covered by the detector, raised to a power of 7,
0.97 ≈ 50%).

The variation in the number of selected simulated
and experimental events for various processes under a
successive imposition of selection conditions is shown
in Table 2.
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
The ratio of the initial number of simulated events to
the number of such events in experiment is different for
different processes. For φ  η'γ, the number of sim-
ulated events is five times greater than the number of
experimental events because this is the main back-
ground process. For the main decay modes of a φ
meson, in spite of the fact that the initial number of
SICS      Vol. 97      No. 1      2003
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events is very large, the number of events KSKL, K+K–,
and π+π–π0 in experiment is 3, 7, and 1.4 times greater
than the respective number in simulation. The number
of events ωπ0 in simulation is 20 times greater than that
in experiment.

The table shows that any simulated event for the
processes φ  K+K–, φ  π+π–π0, and e+e–  ωπ0

does not even satisfy the preliminary selection condi-
tions

;

this fact indicates that the contribution of these processes
to the final result is negligible. Twenty-three experimen-
tal events satisfy the full set of conditions (1).

4. NORMALIZATION BY THE PROCESS ηγ 
AND CHECKING THE CORRECTNESS 

OF SIMULATION THE MAIN PARAMETERS
OF EVENTS

Since there are a large number of background events
ηγ and the signatures of these events are close to the
process under investigation, this background presents a
serious difficulty; on the other hand, these factors pro-
vide a good opportunity for checking the agreement
between simulation and experiment.

For the latter purpose, we select experimental events
that satisfy the conditions under which the contribution
of the events ηγ must be dominant:

(2)

The total number of experimental events satisfying
these conditions is 12457; according to the estimates
from simulation, this number includes 0.2% of events
η'γ and 1.8% of events KSKL. Such an admixture is very
small and is not displayed in the figures presented
below.

Figures 1 and 2 represent the distributions of exper-
imental and simulated events ηγ for the main parame-
ters from set (1) (the experimental data are normalized
by the integrated luminosity). These distributions dis-
play differences between simulation and experiment.
The most pronounced differences are displayed by the

distribution in ∆χ2 =  –  (Fig. 2d). The dis-
tributions for the events ηγ and η'γ (Fig. 3) are fairly
close, so that this selection parameter can be used in the
normalization procedure.

The fact that many characteristics of the events ηγ
and η'γ are close to each other allows us to carry out the
normalization procedure and introduce a total correc-
tion for several sources of systematic errors. Among
these effects, we can consider the following: inaccura-
cies in trigger simulation and in the measurement of
integrated luminosity, loss of events due to the superpo-

χηππγ
2 20, χ2E 40< <

nγ 7, χηππγ
2 20, χ2E 40.< <=

χηππγ
2 χKSKL

2
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sition of the background charged tracks, a possible
inaccurate consideration of the photon conversion
before the track system, and inaccurate simulation of
the parameters of the event χγ, χ2E, ∆χ2. Naturally, such
parameters as θcm , REmax , Ep7, and m3π, with respect to
which the distributions of the events η'γ and ηγ are
completely different, must be eliminated from the nor-
malization procedure. For the same reason, we should

have also eliminated the parameter ; however, as
was mentioned above, this parameter was used for the
preliminary screening of events in order not to hamper
data processing by spending computer time for the
kinematic fitting of a fortiori background events. How-
ever, the selection bound for this parameter in the nor-
malization procedure is set so high that it introduces
negligible systematic error. One also cannot ignore the
parameter ∆χ1 because we use it for distinguishing the
event ηγ from η'γ.

For the normalization, we leave only those condi-
tions in set (1) with respect to which the distributions of
the events ηγ and η'γ are close to each other,

(3)

as well as, as was pointed out above, the condition

to optimize the processing time.
Conditions (3) held for 7234 experimental events.

Figure 4 shows the distribution of the selected experi-
mental events and simulated events ηγ with respect to

the parameter ∆χ1 =  –  normalized by the
integrated luminosity. The arrow in the figure points to
the bound ∆χ1 = –10 for the selection of the events η'γ;
below this bound, there are 73% of these events, while
the events ηγ are predominantly (98.7%) above this
bound. Using the number Nηγ of experimental events
that are above the selection bound ∆χ1 > –10 or ∆χ1 >
–5 and the number Nφ = 19.36 × 106 of produced φ
mesons corresponding to the integrated luminosity, we
can obtain the relative probability of the decay

(4)

For these two values of the selection bound with
respect to ∆χ1, the detection efficiency of the event ηγ

χηππγ
2

χ2E 12, χγ 0, ∆χ2 10,–< < <

χηππγ
2 20<

χηππγ
2 χηγ

2

B φ ηγ( )
Nηγ

Nφ eηγ
---------------=

=  

7064

19.36 106 2.69 10 2–×××
------------------------------------------------------------- 1.36 0.02%,±=

∆χ1 10,–>
6838

19.36 106 2.62 10 2–×××
------------------------------------------------------------- 1.35 0.02%,±=

∆χ1 5.–>
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2 χηππγ
2 χKSKL

2

varies by 3%, whereas the probability B(φ  ηγ) var-
ies by only 0.7%. This 0.7% difference can be regarded
as a systematic calibration error associated with the
inaccurate simulation of the parameter ∆χ1. A correc-
tion to the results obtained by the SND detector from
seven-photon events and selection conditions (3) can be
found by comparing our result with the tabulated result
from [7]:

B(φ  ηγ) = (1.299 ± 0.026)%.

Hence, the correction factor is

(5)q
1.299 0.026±
1.36 0.02±

--------------------------------- 0.955 1 0.025±( ).×= =
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In addition to the above error of 2.5%, one should
include 0.7% (accuracy of simulation the parameter
∆χ1) and 0.9% (the accuracy of the tabulated value of
B(η  3π0)) to the systematic error of normalization.
As a result, we obtain

(the sign “⊕ ” denotes a quadratic summation of errors).

5. DISTRIBUTION
OF THE EVENTS η'γ IN THE MASS mηππ 

AND THE DETECTION EFFICIENCY
Until now, we have not used one of the basic recon-

struction parameters of the events η'γ, the mass of the

2.5% 0.7% 0.9%⊕ ⊕ 2.7%=
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system (ηππ). The distribution of the simulated events
η'γ in this parameter is shown in Fig. 5. This figure also
represents an approximating function depending on the
following parameters: the position of the peak, the full
width at half maximum (FWHM) of the peak, the
asymmetry parameter, and the area below the curve. In

0
–200

N

∆χ2

600

–100 0

400

200

Fig. 3. Distribution of the simulated events η'γ (histogram)
and ηγ (dots with error bars), selected by conditions (2), in

the parameter ∆χ2 =  – . The distribution is

normalized by the histogram area.

χηππγ
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Fig. 4. Distribution of the experimental events ηγ (dots with
error bars) and the simulated events ηγ (histogram),

selected by conditions (3), in the parameter ∆χ1 =  –

. The distribution is normalized by the integrated lumi-

nosity.

χηππγ
2

χηγ
2
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addition, about one-third of the events do not fall within
the peak domain but form a smooth base approximated
by a cubic spline. The emergence of such a base is asso-
ciated both with the long tails in the energy-deposit dis-
tributions of photons in the calorimeter and with incor-
rect reconstruction of the decay chain

η'  ηπ0π0, η  γγ, π0  γγ.

When approximating the experimental distribution in
the mass mηππ, we used the distribution shape for the
simulated event η'γ, and the only free parameter was the
number of events η'γ, which is equal to the area below
the distribution curve. Unfortunately, the distribution of
the background events is far from a uniform, or even a
linear, distribution, although it does not have such a
narrow peak at mηππ = 960 MeV.

The detection efficiency of the process φ  η'γ
obtained by simulation is equal to

where the error is only a statistical one. In general, the
correction obtained due to normalizing by the process
ηγ must be ascribed to the detection efficiency (nearly
all effects, except for the measurement error of the inte-
grated luminosity, are associated with the incorrect
determination of the detection efficiency by simula-

e 5.4 10 3– 1 0.020±( ),××=

0 850

N

mηππ, åeV

900 950 1000

400

200

Fig. 5. Distribution of the simulated events η'γ, selected by
conditions (1), in the parameter mηππ.
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tion). Taking into account this correction, we obtain the
following value of the detection efficiency:

(6)

This value includes the known probabilities in the
decay chains η'  ηππ and η  γγ. If we eliminate
these probabilities, we obtain the following detection
probability for the seven-photon state η'γ  7γ:

6. THE SHAPE OF THE DISTRIBUTION 
OF BACKGROUND EVENTS IN mηππ

From the side of small masses, the distribution of
background events in mηππ is bounded by a threshold
determined by the sum of masses mη + 2mπ ≈ 830 MeV.
From the other side, the distribution is bounded both by
the total energy of positron and electron and by the
selection conditions Ep7 > 30 and REmax < 0.7. The shape
of the background distribution was chosen on the basis
of the distribution of the simulated events ηγ, which
constituted the main background (Fig. 6). To increase
the statistical significance, the condition ∆χ1 < 0 in the
set (1) was loosened. The shape of the background dis-
tribution was approximated by cubic splines and was
fixed; the verification of the statistical compatibility of
this shape of the background distribution for different
variants of experimental and simulated samples showed
a satisfactory agreement with respect to the criterion χ2

(in the worst cases with high statistics, the result was
χ2/nD & 35/25). Since one cannot completely rely on
the simulated results for such large suppression coeffi-
cients of the background and there may be a certain
background contribution from other processes (most
probably, from KSKL), the shape of the background was
varied when obtaining the final result; this fact has
determined the main component of the systematic error.

7. MEASUREMENT OF THE RELATIVE 
PROBABILITY OF THE DECAY φ  η'γ

Among 23 experimental events selected by condi-
tions (1) (Fig. 7), there is a large percentage of back-
ground events, although the suppression coefficient of
the basic background processes is very large. If, when
obtaining a result, we were to subtract the remaining
background exclusively on the basis of the simulated
results, then we would have an additional systematic

e 5.4 10 3– 1 0.020±( )/0.955××=

=  5.7 10 3– 1 0.020±( ).××

e
0.57%

0.209 0.393×
--------------------------------- 6.9%.= =
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error that is difficult to evaluate. Fixing the shape of the
background distribution in mηππ and of the distribution
of the events η'γ on the basis of simulated data and leav-
ing only the numbers of the events of the effect (Nη'γ)
and of the background (NBG) free, we obtain the follow-
ing values for the number of events:

(7)Nη'γ 7.4 4.6–
+5.5, NBG 15.6 5.4–

+6.2.= =

0
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900 950 1000
mηππ, MeV
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10

Fig. 6. Distribution, in the parameter mηππ, of the simulated
events ηγ selected by conditions (1) with the condition
∆χ1 < 0 loosened to increase the statistical significance.
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Fig. 7. Fitting of the experimental distribution of events in
the parameter mηππ by a theoretical curve with the shape of
the background distribution (hatched area) obtained by sim-
ulated data.
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Hence, for the relative probability of the decay, we have

(8)

Here, we have given only the statistical error.

8. SYSTEMATIC ERROR

A list of the main systematic errors is given in
Table 3. The simulation error of the parameters given in
the table was determined by the following scheme: for
a given parameter, the correction to the selection bound
for the simulated events ηγ was estimated by “pure”
experimental events ηγ and simulated events ηγ; this
correction yields the same detection efficiency as the
selection bound in the experimental distribution. The
application of the corrected selection bound to the sim-
ulated events η'γ yields a corrected detection efficiency
of the events η'γ. The variation of this efficiency was
taken as an estimate for the systematic error due to the
inaccurate simulation of the distribution in a given
parameter.

B φ η'γ( )
Nη'γ

Nφ eη'γ
---------------=

=  
7.4 4.6–

+5.5

19.36 106 5.7 10 3–×××
---------------------------------------------------------- 6.7 4.2–

+5.0( ) 10 5– .×=

Table 3

Source of error Systematic 
error, %

Error of normalizing by process ηγ (statistics
of simulation ηγ, error in tabulated values of 
B(φ  ηγ) and B(η  3π0), the simulation 
accuracy of the parameter ∆χ1)

2.7

Simulation accuracy of  and 3.1

Simulation accuracy of the parameter θcm 3.1

Simulation accuracy of the parameter REmax 0.2

Simulation accuracy of the parameter m3π 0.8

Simulation accuracy of the energy Ep7
of the softest photon

3.7

Error in the tabulated value of B(η'  ηπ0π0) 5.7

Error in the tabulated value of B(η  γγ) 0.6

Statistical error in the detection efficiency 
obtained by simulating η'γ

2.0

Uncertainty in the peak width of the distribu-
tion in the mass of the system ηπ0π0

10

Uncertainty in the shape of distribution
of background events in the mass mηππ

17

Total 22

χηππγ
2 χηγ

2
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The error due to the inaccurate simulation of the
peak width in the invariant mass mηππ was evaluated by
a shift in the result when fitting an approximating curve
with the FWHM increased by 15% to the experimental
distribution. The error due to the simulation of the peak
width was evaluated by an analogous distribution of the
events ηγ in the parameter m3π (Fig. 3). The discrep-
ancy between simulation and experiment was 12%.

The main contribution to the systematic error comes
from the uncertainty in the shape of the background dis-
tribution. To check the stability of the result, we per-
formed fitting with different variants of the shape of the
background distribution in mηππ. As an error estimate,
we chose a shift of the result due to the fitting with a lin-
ear background.

9. DISCUSSION

Let us present the final result of measuring the prob-
ability of the decay φ  η'γ in the channel η' 
ηπ0π0, η  γγ:

(9)

The accuracy of this quantity is not high as compared
with the data obtained by detectors CMD-2 and KLOE
in other decay channels of an η' meson. However, the
experiment described represents an independent mea-
surement of the decay probability in the purely neutral
channel η'  ηπ0π0  7γ and is also important for
investigating systematic errors in multiphoton final
states. In addition, averaging the probability (9) with
the data obtained earlier [8] by an SND detector, we
obtain the following result for the total probability
determined with the use of the SND detector:

(10)

which has an accuracy comparable with that of the data
obtained by a CMD-2 detector.

The contributions from a common source in the sys-
tematic error are preserved unchanged (2% for the inte-
grated luminosity and 0.6% for B(η  γγ)); other
contributions are averaged quadratically.
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Abstract—The results of calculations of the elastic scattering cross section of positrons on noble gas and alkali
atoms are presented. The calculations are performed within the one-electron Hartree–Fock approximation with
multielectron correlations in the so-called random phase approximation with exchange taken into account. Vir-
tual positronium formation is taken into account and proved to be very important. Arguments are presented that
the positron polarization potential is repulsive for alkali atoms. The results obtained are in a reasonable agree-
ment with experiment and with some previously reported calculations. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The studies of positron–atom and positron-molecule
scattering, in spite of their development over already
several decades, is still quite an active area of research
(see [1–3] and references therein). The interest in
positron slowing and annihilation in gases and other
media motivates the investigation of these processes.
The photons emitted in the course of annihilation carry
extremely valuable information on the electron struc-
ture of various objects, from isolated atoms in gases to
solid bodies. However, the process of positron colli-
sions on atoms and molecules is also of interest by itself
and in comparison to electron collisions on the same
objects. The projectile-target interaction mechanisms
are most transparent in the collision process at low
energies, and we therefore concentrate on this energy
region in what follows.

For both the electron and positron scattering, the
cross section is determined by the electrostatic and
polarization potentials by which the target acts on the
projectile. For incoming electrons, however, the
exchange with the target electrons is important. It does
not exist for positrons at all. At a first glance, the
positron scattering process therefore appears to be sim-
pler than that for electrons. Moreover, the positron–
atom static potential, being repulsive in general, forces
the positron to move into the areas of the target where
the potential is the smallest, thus diminishing its overall
action. This is opposite to the case of electron–atom
(molecule) collision. The contrast looks even stronger
if we take into account that as it seems, the polarization
potential is attractive for both electrons and positrons.
The total potential for electrons must therefore be
stronger than for positrons. It thus seems at first glance

¶This article was submitted by the authors in English.
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that any simple approach that is good for electrons
should work at least no worse for positrons. For instance,
the second-order approximation to the polarization
potential is good for electron–atom scattering [4] and
can be expected to be at least equally good in describ-
ing positron-atom scattering, but this view has proved
to be incorrect.

Indeed, the positron that is “pushed” out of the tar-
get can interact strongly with a temporarily, or virtually,
excited electron that is outside the target. They form a
kind of a bound state that can be called the “virtual
positronium.” We show that this is a very important
mechanism that dramatically affects the scattering
cross section.

Our aim in this paper is to calculate the slow
positron–atom elastic scattering cross sections and to
demonstrate the efficiency of a very simple method first
proposed in [5] and then developed in [6, 7] that allows
taking the virtual positronium formation into account in
this process. The latter effect has proved to be
extremely important. The suggested method allows us
to considerably improve the agreement with experi-
ment and to give a simple qualitative explanation for
the large difference between cross sections for noble
gases and their neighbors, alkali atoms. Since the intro-
duction of this approach in [5], a number of other cal-
culations have been performed (e.g., [6–10]) based on
the idea of the virtual positronium formation but using
much more complicated methods (see [8–10]).

2. DETAILS OF CALCULATIONS

The elastic scattering cross section σ(E) of a
positron with the energy E is determined by the partial
003 MAIK “Nauka/Interperiodica”
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scattering phases δl(E), where l is the positron angular

momentum, as in [11]1

(1)

In the calculations, we limit ourselves to the first
four phase shifts l = 0, 1, 2, 3, which is sufficient for rel-
atively low positron energies up to 30–40 eV.

The first step of our approach is the Hartree–Fock
(HF) calculations, which means the HF approximation
for the target atom and the frozen core approximation
for the incoming positron, naturally without exchange
of the positron and the core electrons. To calculate the

HF positron phase shifts (E), we therefore solve the
equation

(2)

for the positron wave function (r); here, Z is the

nuclear charge and ρ(r) is the atomic electron density.

The asymptotic form of the radial part (r) of (r)

σ E( ) 2π
E

------ 2l 1+( ) δl E( ).sin
2

l 0=

∞

∑=

δl
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–
∆
2
--- Z

r
--- rρ r'( )d

r r'–
------------------∫–+ ϕ

e
+ r( ) Eϕ

e
+ r( )=

ϕ
e

+

PEl
e

+

ϕ
e

+
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for large r determines the phase shift,

(3)

Here, p = . The density is obtained by solving the
HF equations for the target atom.

A prominent difference between the HF and experi-
mental results at low positron energies in positron-atom
elastic scattering exists for almost all atoms considered,
for example, He. The next step must therefore be made
by taking the polarization interaction into account. This
interaction appears in the second order in the positron–
electron interaction, in the same way as for the elec-
tron–atom scattering (see [4, 12] for details). Assuming
that the polarization interaction Σ is weak, we can
express the correction ∆δl(E) to the HF partial positron
scattering phase due to the action of Σ as

(4)

where Σl(E) is the lth component of Σ and El denotes

the radial part of the positron wave function (r).

In the second order in the Coulomb interaction V =
1/ |r – r'| between the incoming positron and atomic
electrons, the reduced matrix element in the right-hand
side of (4) is given by

PEl
e

+

r( ) 1

πr
---------- pr

πl
2
-----– δl

HF E( )+sin , r ∞.=

2E

∆δl E( ) π El Σl E( ) El〈 〉 ,–=

PEl
e

+

(5)El Σl E( ) El〈 〉 1
2L 1+
----------------

L 0≥
∑ El εili V L E1l1 ε2l2, ,〈 〉 E1l1 ε2l2 V L El εili, ,〈 〉

2l 1+( ) E E1– ε2– εi iδ+ +( )
-------------------------------------------------------------------------------------------------------------- E1 ε2,dd

0

∞

∫
i F; ε2 l2 F>,≤

∑=
where E1l1 denotes the intermediate positron state,
which is determined by solving Eq. (3), and ε2l2 and Eili

stand for the energies and angular momenta of atomic
electrons in the virtually excited and ground states,
respectively (with their wave functions found in the HF
approximation [12]). The reduced Coulomb matrix ele-
ments VL are defined in [12]. The conditions i ≤ F and
εl > F indicate occupied and vacant electron states,
respectively. Equation (5) corresponds to the lowest order
correlation correction in the frame of the random phase
approximation with exchange (RPAE). It differs from the
expression for the second-order polarization interaction
for electron-atom scattering described in [4, 12] because
it does not include the exchange between the incoming
particle and target electrons. The scattering cross sec-
tion with the polarization interaction taken into account

is determined by Eq. (1), where (E) is replaced by
the phases

δl
HF

1 Atomic units are used in this paper, with m and e being the elec-
tron mass and charge.
(5a)

for E < I with I being the target atom ionization poten-
tial. For higher positron energies, the scattering phases
given by (4) and (5a) are complex and the imaginary
part Im∆δl(E) ≡ ∆ (E) determines the inelastic scat-
tering cross section of the positron by an atom.

The elastic scattering cross section for E > I is given
by [4, 12]

(6)

where δl(E) is the real part of the positron l-wave scat-
tering phase shift.

Similarly to Eq. (5), the method described in [4, 12]
in some aspects apply well beyond simple second-order
perturbation theory in the interelectron interaction.
Important higher order corrections are taken into
account by calculating the HF wave function of the
electron ε2l2 in the atomic field with the vacancy i. With
this improvement, even the lowest order in the polari-

δl E( ) δl
HF E( ) ∆δl E( )+=

δl'

σ E( ) π
E
--- 2l 1+( )[ 2∆δl' E( )( )cosh

l

∑=

– 2δl E( )( )cos ] 2∆δl' E( )–[ ]exp ,
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zation interaction gives good results for the elastic scat-
tering of electrons on noble gases. This interaction
depends on the projectile energy, is nonlocal, and does
not contain free adjustable parameters. Far from the
atom, it can be approximated as the polarization
potential

(7)

where α(ε) is the atom dipole polarizability, ε is the
mean excitation energy of the incoming electron in the
intermediate state, and r is the distance between the
projectile and the center of the target. In phenomeno-
logical calculations or estimations for low incoming
positron energy E, it is usually assumed that ε = 0. For
0 ≤ ε < I1, where I1 is the energy of the first atom exci-
tation level, the dipole polarizability is positive and the
polarization potential is therefore attractive. It should
be kept in mind, however, that α(ε) as a function of ε
can become negative, at least for alkali and alkali earth
atoms, at ε > I, where I is the atomic ionization poten-
tial. As a result, the polarization potential in (7) can
become repulsive. It is important to note that α(ε) is
complex at ε > I, its imaginary part being proportional
to the atom photoionization cross section. The pola-
rization potential can therefore also be complex in
principle.

The next step beyond the HF approximation in our
analysis of positron–atom scattering consists in taking
the polarization interaction into account in the first
order, in the same manner as is done for the electron–

Vpol
α ε( )
2r4

-----------,–=
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atom scattering in [4]. The results obtained improve the
correspondence with experimental data, but they are
still far from being satisfactory. As an illustration, we
can use the respective results for any atom, for instance,
He (see below).

3. METHOD OF CALCULATIONS

The lack of decisive success after the second-order
polarization correction (5) has been taken into account
means that something qualitatively important is miss-
ing. We believe that as suggested in [5], this is the
positronium formation in the intermediate state, that is,
the possibility of a temporary binding of the incoming
positron and the excited electron (one located far from
the atomic core). We assume that, being almost unaf-
fected by the core action, this electron and positron can
form a bound state that is almost identical to the free
positronium Ps. This alters the energy of the interme-
diate state, shifting it by the positronium binding
energy IPs, and modifies the wave function of the inter-
mediate state, which is no longer the product of HF
wave functions of the positron, the excited electron, and
the vacancy created after the virtual excitation of the
atomic electron. Instead, the motion of the positron rel-
ative to the electron is strongly modified by the binding.

To take the energy shift into account, we must sub-
tract IPs from the sum of the positron and electron ener-
gies E1 + ε2 in the denominator of the second-order
polarization interaction (5). The modified matrix ele-
ment is then given by
(8)El Σ̃l E( ) El〈 〉 1
2L 1+
----------------

L 0≥
∑ El εili V L E1l1 ε2l2, ,〈 〉 E1l1 ε2l2 V L El εili, ,〈 〉

2l 1+( ) E E1– ε2– IPs εi iδ+ + +( )
-------------------------------------------------------------------------------------------------------------- E1 ε2.dd

0

∞

∫
i F; ε2 l2 F>,≤

∑=
The additional phase shifts ∆δl(E) are determined by

Eq. (4) with (E) instead of Σl(E).
We note that far from the target atom, Eq. (8) leads

to a rather simple expression for the polarization
potential,

(9)

According to the discussion at the end of the previ-
ous section, it is essential to have in mind that if IPs > I,
then α(IPs) is a complex quantity, usually with a consid-
erable imaginary part and α(IPs) can be not only posi-
tive but also negative.

It would be much simpler to use (9) (or (7)) instead
of (8) (or (5)), but the asymptotic expressions are valid

Σ̃l

Vpol

α ε IPs+( )
2r4

------------------------.–=
at such large distances from the atom that their contri-
bution to the total phase shift is small. This is why we
used Eq. (8) in our calculations. The advantage of our
approach is obvious: to describe the positron–atom
scattering, we can use almost the same system of com-
puting codes that was used in studying the electron–
atom scattering [12].

To properly include the positron–electron interac-
tion mentioned above, instead of simply adding IPs to
the denominator in (8), we must take the modification
of the corresponding wave functions into account. This
means that the product of the one-positron Hartree and
one-electron Hartree–Fock functions E1l1, ε2l2 and
energies E1 and ε2 must be replaced by wave functions
and total energies of the interacting or bound positron
and electron that move in the atomic field. To find these
functions and total energies, the three-body problem
 AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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must be solved taking into account the interaction
between the incoming positron and atomic electron and
the vacancy created after the electron virtual excitation.
This is very difficult, and simplifications are inevitable.
An attractive option is to describe the relative motion of
the positron and the electron by a positronium wave
function, while considering their center of mass as
moving freely, unaffected by the selfconsistent atomic
field and the vacancy field. This approximate approach
has been developed in [8–10], but the modification of
the energy denominator was entirely neglected there.
Here, we present the results of a much simpler
approach, where only the energy shift due to virtual
positronium formation is taken into account and the
modification of the positron and electron wave func-
tions is completely neglected [5–7].

4. RESULTS OF CALCULATIONS

Here, we give the results of our calculations for a
number of atoms. We start with He.

The results for elastic scattering of positrons by He
obtained using Eq. (8) are demonstrated in Fig. 1. It can
be seen that the energy shift due to the positronium for-
mation leads to a prominent decrease in the low-energy
cross section. The difference is qualitative at E ≤ 1 eV.
As E grows, the influence of the positronium formation
becomes smaller, but the deviation from the HF approx-
imation results is huge in the entire region considered,
up to E = 18 eV. To obtain the cross sections, contribu-
tions of the positron s, p, and d partial waves were taken
into account. We note that the virtual positronium for-
mation leads to prominent variations in all the partial
wave contributions. This is illustrated in Fig. 2, where
the results with (Fig. 2a) and without (Fig. 2b) the
positronium energy shift are presented.

The cross section of the low energy (e+ + He)-elastic
scattering is much smaller than that of (e– + He). This
can be explained qualitatively as follows: while the
selfconsistent field Vsc acting on the incoming positron
is repulsive, the polarization potential Vpol , which
behaves as –αHe(IPs)/2r4 far from the atom, is attractive
because α(IPs) and α(0) for He are positive and of the
same order of magnitude as Vsc . The contributions of
Vsc and Vpol therefore compensate each other, suppress-
ing the elastic scattering cross section. For the electron
scattering, both Vsc and Vpol are attractive, and instead
of compensating, the respective quite big contributions
enhance each other.

It is of special interest to compare the (e+ + He) and
(e+ + Li) scattering because αLi(IPs) is negative, com-
plex, and much larger than αHe(IPs) in absolute value. In
accordance with (9), the negative sign of αLi(IPs)
implies that in this case, the polarization potential is
repulsive instead of always being attractive [13] (also
see the discussion above). This observation is important
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Fig. 1. Cross sections of the elastic positron scattering on
He. The dotted line is the HF approximation; the dashed line
is the RPAE without positronium formation taken into
account; the solid line is the RPAE with the positronium for-
mation taken into account. Experimental data: triangles, [15];
open circles, [16]; open squares, [17]; solid circles, [18]; a0 is
the Bohr radius.
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Fig. 2. Partial wave contributions to the cross sections of the
elastic positron scattering on He: a, with the inclusion of
positronium formation; b, without positronium formation.
IPs = 0.5Ry (a), 0 (b). The dotted-and-dashed line is the
s-wave cross section, the dotted line is the p-wave cross sec-
tion, the dashed line is the d-wave cross section, and the
solid line is the sum of the s, p and d partial cross sections.
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for different scattering processes in general. Indeed, if
the projectile and the target constituent can form a com-
posite particle in the intermediate state, the polarization
interaction can easily change its sign, becoming attrac-
tive. This was found to occur, for example, in nuclear
physics, namely in π-meson–nuclear scattering, where
the (π-meson + nucleon) system forms the so-called
∆33-resonance, leading to a change of the sign in the
polarization interaction [14]. The imaginary part,
depending on its magnitude, can effectively be of either
repulsive or attractive nature from the point of view of
the elastic scattering. We should therefore expect that
because Vsc and Vpol have the same sign, they contribute
constructively and hence lead to an extremely large
cross section of the size of, or even bigger than, the
(e− + Li) cross section. The results for (e+ + Li) cross
sections are presented in Fig. 3. It follows that the
energy shift accounting for the positronium formation
in the virtual state affects the low-energy cross section
considerably. In Fig. 3a, we show the results obtained
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Fig. 3. Cross sections of the elastic positron scattering on
Li. The dotted line (a, b) is the HF approximation, the solid
line (a, b) is the RPAE with positronium formation taken
into account, and the dashed line is a, the result of [2],
b, the RPAE without positronium formation.
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in the HF and random phase approximation with
exchange with the positronium formation taken into
account and the results derived in [2] using a substan-
tially more complicated method. Although the differ-
ence between RPAE and [2] is prominent, the deviation
of both of them from the HF approximation is qualita-
tive. Figure 3b clearly demonstrates the magnitude of
the effect is of taking positronium formation into
account in the virtual state for E ≤ 4 eV.

Figures 4a, 4b, 4c, and 4d present our results for
noble gas atoms Ne, Ar, Kr, and Xe, respectively. In the
case of Ne for E ≤ 2 eV, the role of positronium forma-
tion is significant, while the deviation from the HF
approximation is quite dramatic. We can see that the
first experimental point at about 1 eV demonstrates the
essential role of taking the positronium formation into
account in the virtual state. The same effect for even
higher E is seen for Ar in Fig. 4b. In Fig. 4c (Kr) and
Fig. 4d (Xe), the RPAE results (with the positronium
formation) are qualitatively different from the HF
results. The last experimental points, dark triangles for
Kr and dark circles for Xe, are in reasonable agreement
with the RPAE results. More accurate data are desir-
able, however.

The picture of positron scattering on He and Li
described above is also qualitatively valid for the Ne–
Na pair. Indeed, the (e+ + Ne) cross section is small,
considerably smaller than the geometrical one, while
the (e+ + Na) elastic scattering cross section (Fig. 5a) is
very large. Even larger is the cross section for (e+ + Ne),
as can be seen in Fig, 5b. In Fig. 5, we compare our
results with the close-coupling calculations from [22].
Because the calculation approaches are substantially
different, the difference is not a big surprise, but exper-
imental data are needed. For noble gases heavier than
Ne, namely, Ar, Kr, and Xe, the polarization interaction
is much larger and the cross sections increase as the
atomic number grows. As in the Li–He case, the cross
sections for the alkali neighbors are again much larger.
The results for Kr and Xe are in qualitative agreement
with those obtained in [1] using a much more compli-
cated method.

It is interesting to compare the results for a group of
three neighbors, a noble gas, alkali, and alkali-earth
atom. As a good example, the groups of atoms He, Li,
Be (Fig. 6a) and Ar, K, Ca (Fig. 6b) are considered
(Figs. 1–6). We checked the role of the positronium for-
mation for Be and found it very important, as previ-
ously. For Be, the cross sections proved to be similar in
size and shape to those of Li, which is a consequence of
the fact that their polarizabilities α(IPs) are relatively
close. The situation is different for Ca, where the cross
section is much smaller at very low E, but then
decreases much slower than in K. For Ar, K, and Ca, all
three curves are qualitatively similar, but the (e+ + K)
AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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Fig. 4. Calculated cross sections of the elastic positron scattering on noble gases. The dotted line is the HF approximation, the
dashed line is the RPAE without taking the positronium formation into account, the solid line is the RPAE with the positronium
formation taken into account. a—Ne, experimental points from [19]; b—Ar, experimental points from [19]; c—Kr, experimental
points: solid circles, [19]; open squares, [20]; solid triangles, [21]; d, Xe; experimental points: solid circles, [19]; open squares, [17].
elastic scattering cross section is by an order of magni-
tude larger than that of (e+ + Ar).

It is of some interest to study the imaginary parts of
the elastic scattering phases. They describe the respec-
tive partial wave contributions to the cross section of
the inelastic process,

(10)

The inelastic positron scattering cross section σin(E) is
expressed via the imaginary part of the phase shift
∆ (E) as

(11)

As in calculations of σ(E), we limit ourselves to tak-
ing the first three partial waves into account (those with
l = 0, 1, 2). In Fig. 7, we show the results of our calcu-
lation of the Ps-formation cross section in positron–Na

e+ A Ps A+.+ +

δl'

σin E( ) π
E
--- 2l 1+( ) 1 4∆δl' E( )–( )exp–[ ] .

l 0=

2
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atom scattering together with the experimental data
of [23]. At low energies, there is a strong deviation from
the experiment, as in many other calculations [24], but at
energies above 3 eV, there is satisfactory agreement.
We note that it is assumed in this calculation that any
electron obtained by ionization together with the
inelastically scattered positron forms a positronium Ps.
Obviously, this is an exaggeration: some of the elec-
trons leave the atom without forming a real positron-
ium. This is particularly significant for a small energy
E in the cases where the Ps-formation threshold is at
E = 0 (as in an (e+ + Na) collision).

We note that using Eq. (8), we can also describe the
Wigner–Baz’ peculiarities in the elastic scattering cross
section near the threshold of inelastic channel (10) [11].

5. SUMMARY 
AND DISCUSSION OF RESULTS

We have demonstrated that the relatively simple
method with both many-electron correlations and vir-
SICS      Vol. 97      No. 1      2003
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Fig. 5. Calculated cross sections of the elastic positron scat-
tering on Na (a) and K (b). The dotted line is the HF approx-
imation, the solid line is the RPAE with positronium forma-
tion taken into account, and the dashed line with heavy dots
is the result of close-coupling calculations [22].
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tual positronium formation taken into account allows us
to obtain relatively good results for the elastic scatter-
ing of positrons on different atoms in the Periodic
Table, in particular, noble gas and alkali atoms. It also
gives an estimate of the Ps-formation cross section. The
approach developed in this paper can be applied with-
out any essential difficulty to the study of positron scat-
tering on more complicated targets, such as molecules,
clusters, and fullerenes.

It is interesting to know whether the bound states in
the (e+ + A) system can be described within the simple
approach developed here. Indeed, given the repulsive
nature of Vsc and the possibly also repulsive nature of
Vpol , it is far from trivial that binding can occur at all.
We can therefore expect bound states of positrons with
those atoms A for which αA(IPs) is large (considerably
larger than in noble gases) and positive, αA(IPs) > 0;
i.e., Vpol is sufficiently strong and attractive. An inter-
esting and intriguing possibility is that the (e+ + A)
bound state results from the action of the imaginary part
Im(Vpol). On the other hand, the binding can originate
from the interaction of Ps and A via Van der Waals
forces. These are particularly large if A+ has an elec-
tronic structure similar to an atom in the first period of
the Periodic Table; i.e., A is in the second period. To
detect the possibility of forming a bound state, one
must study the magnitude of the scattering phase shift
at zero energy: if it reaches π, a bound state is created
in the channel under consideration. It must be checked,
however, whether this state is stable against the decay
through the (Ps + A+) channel, which requires knowl-
edge of the bound state energy. Finding it is much more
complicated than calculating the phase shifts at zero
e+-energy.
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Fig. 6. Calculated cross section of the elastic positron scattering on Be (a) and Ca (b). The dotted line is the HF approximation, the
solid line is the RPAE with positronium formation taken into account, and the dashed line is the RPAE without positronium for-
mation.
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Abstract—We analyze the properties and the character of the evolution of an electron subsystem of a large cluster
(with a number of atoms n ~ 104–106) interacting with a short laser pulse of high intensity (1017–1019 W/cm2). As
a result of ionization in a strong laser field, cluster atoms are converted into multicharged ions, part of the elec-
trons being formed leaves the cluster, and the other electrons move in a self-consistent field of the charged clus-
ter and the laser wave. It is shown that electron–electron collisions are inessential both during the cluster irra-
diation by the laser pulse and in the course of cluster expansion; the electron distribution in the cluster therefore
does not transform into the Maxwell distribution even during cluster expansion. During cluster expansion, the
Coulomb field of a cluster charge acts on cluster ions more strongly than the pressure resulting from electron–
ion collisions. In addition, bound electrons remain inside the cluster in the course of its expansion, and cluster
expansion therefore does not lead to additional cluster ionization. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

We consider the character of equilibrium in the
plasma formed by irradiation of a cluster beam by a
strong laser pulse with an intensity greater than
1017 W/cm2, which has been studied experimentally
[1–3]. This plasma is used both as a source of neutrons
produced with a beam of deuterium clusters [4–6] and
for generation of X-rays [7–10]. Under typical experi-
mental conditions, the hierarchy of times of the cluster
plasma evolution under consideration is as follows. The
typical time of laser pulse duration (τ1= 30–100 fs) is
small compared to the cluster lifetime with respect to
Coulomb explosion (τexp ~ 100–1000 fs), which is in
turn smaller than the typical time of expansion of the
uniform plasma being formed, which can reach 1 ns.
This hierarchy of times determines the behavior of this
plasma.

Along with this time hierarchy, the character of laser
energy absorption is important for the yield parameters
of the plasma. Excitation of clusters by the laser pulse
under consideration proceeds through the electron
component of this plasma, but this interaction has a
specific character due to the parameters of the laser
radiation. First, these processes occur in strong fields,
because the radiation intensity exceeds the atomic field
strength, which is 3 × 1016 W/cm2, and we consider
higher fields that are available under contemporary
experimental conditions [11]. Second, the interaction
time is very small, and although it exceeds the typical
atomic value, light propagates over a distance of 10 µm
within 30 fs. Therefore, in contrast to the classical char-

¶This article was submitted by the author in English.
1063-7761/03/9701- $24.00 © 20042
acter of interaction between radiation fields and atomic
systems [12–14], other interaction mechanisms are
realized in this case [15–19]. Hence, short-time pro-
cesses occur because of the small duration of the laser–
cluster interaction, and overbarrier ionization is the
main process of absorption of a strong electromagnetic
wave. As a result, the laser radiation energy is con-
sumed by the ionization of cluster atoms and is trans-
mitted to the electron component of clusters. Below, we
consider the character of the development of an elec-
tron subsystem of clusters under the action of a strong
laser pulse.

In the first stage of the ionization process, free elec-
trons in clusters result from overbarrier ionization of
cluster atoms [15]. Electrons of zero kinetic energy are
formed in this process, and atoms are transformed into
multicharged ions that are found in the ground state.
The electrons being formed move in the laser and clus-
ter fields and receive energy from these fields. When
electrons go outside the cluster, a positive cluster
charge arises and interaction between the cluster and
laser fields leads to subsequent electron liberation. In
addition, collisions of electrons can cause redistribution
of the electron energy, and we analyze the role of such
processes.

Because the cluster acquires a positive charge under
the action of a laser pulse, it expands as a result of the
interaction of the cluster field and its ions. In the course
of expansion, the electron subsystem can influence the
expansion process. In addition, collisions of electrons
with multicharged ions that result from ionization of
cluster atoms lead to the formation of excited multi-
charged ions; radiation processes involving multi-
003 MAIK “Nauka/Interperiodica”
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charged ions are responsible for the X-ray radiation of
this cluster plasma.

Taken together, processes involving the electron
subsystem of clusters determine both the cluster ioniza-
tion rate and the character of energy redistribution of
electrons that affects the processes responsible for
X-ray emission of the cluster plasma. The goal of this
paper is to analyze the character of electron equilibrium
in the cluster plasma and the processes involving elec-
trons.

2. IONIZATION OF CLUSTER ATOMS
AND CLUSTERS BY A LASER PULSE

2.1. Formation of Multicharged Ions inside Clusters 

Under typical conditions of the process under con-
sideration, the photon energy is smaller than the ioniza-
tion potentials of cluster atoms and ions, and ionization
of cluster atoms results from overbarrier transitions of
initially bound electrons in the laser wave field.
Because of the high electric strength of the electromag-
netic wave, this field decreases the barrier from the
Coulomb field of the nucleus and an initially bound
electron can freely leave this Coulomb field.

In taking into account ionization of individual atoms
in a cluster by a laser pulse, we assume its effect on
cluster atoms to be identical to that of a constant elec-
tric field. This assumption is valid at small values of the
Keldysh parameter [15]:

where F is the electric field strength, JZ is the ionization
potential of a multicharged ion with a charge of Z – 1,
and ω is the laser frequency (we use atomic units in this
paper). Therefore, this character of ionization of clus-
ter atomic particles is valid for high electric field
strengths F of the laser electromagnetic wave. Hence,
we use the Bethe formula [20] for the strength F of the
electromagnetic wave at which the barrier disappears
for an electron with the ionization potential JZ ,

(1)

where Z is the charge of a atomic ion being formed.
This formula implies that the overbarrier transition
leads to liberation of electrons whose binding energy is
less than JZ .

This criterion can be represented in another form
using an analysis of the dynamics of the electron tran-
sition from the Coulomb field of the atomic core.
Indeed, near the top of the barrier created by the Cou-

γ
ω 2JZ

F
-----------------,=

F
JZ

2

4Z
------,=
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lomb field of the atomic core and the constant electric
field, we have the Newton equation

(2)

for a classical electron, where r0 ~  is the distance
of the top of the barrier from the center of the ion. From
this, we find the typical time

for the overbarrier electron transition. The requirement
that this time is small compared to the period of the
electromagnetic wave gives

(3)

Because of (1), this criterion is identical to the small-
ness of the Keldysh parameter. This implies that the
mechanism of overbarrier ionization of cluster atoms
and ions under the action of a strong electromagnetic
wave applies to large intensities of the electromagnetic
wave. In particular, the right-hand side of criterion (3)
gives the approximate value 3 × 10–3 for the laser pulse
with I = 1017 W/cm2 and a frequency of 1.5 eV (Ti:sap-
phire laser).

Charges Z of ions formed by the overbarrier electron
transition are given in Table 1. High values of the
charge allows us to use a simple formula for the elec-
tron binding energy in this case,

(4)

where Zef is the effective charge that includes shielding
of the nucleus charge by atomic electrons, such that
Zef ≥ Z, and δnl is the quantum defect for a given elec-
tron shell (usually, δnl < 1). This formula uses the anal-
ogy of multicharged ions with hydrogen-like ions.

We consider one more aspect of this problem. Using
the analogy between the action of a strong electromag-

d2r

dt2
------- 2F

r
r0
----≈

Z/F

τdep
r0

2F
-------∼

τdep
2 ω2 2r0ω

2

F
-------------- Z1/2ω2

F3/2
--------------- ! 1.∼ ∼

JZ

Zef
2

2 n δnl–( )2
-------------------------,=

Table 1.  The charge of cluster atomic ions resulting from
cluster irradiation by electromagnetic waves of different
intensities at a cluster of 106 atoms. The first value is the ion
charge at the cluster center; the value in parentheses is the
charge at the boundary

1017 W/cm2 1018 W/cm2 1019 W/cm2

Kr 12(18) 18(26) 24(27)

Xe 11(24) 19(28) 26(43)

Mo 12(14) 14(24) 22(32)

W 12(38) 22(47) 41(56)
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netic wave and a constant electric field on an atomic
particle, we ignore the absorption of the electromag-
netic wave as a result of electron release. In reality, this
absorption follows from excitation of the electron sub-
system of an individual cluster. We assume that as the
electric field strength of the laser wave Fcosωt varies
from zero, it leads to the release of new electron groups
in accordance with Bethe formula (1). Hence, as a
result of the overbarrier ionization process, free elec-
trons are formed inside a cluster with zero energy.

We now estimate the excitation time for an individ-
ual cluster of n atoms whose electron subsystem
acquires the excitation energy roughly equal to nJZZ,
where Z is a typical charge of forming multicharged
ions. Because the incident energy flux of the laser pulse
is cF2/8π and the cluster cross section is equal to its
geometric cross section,

(where rW is Wigner–Seitze radius and n is the number
of atoms in the cluster), we find the typical time τ dur-
ing which all the cluster atoms are converted into mul-
ticharged ions of charge Z,

(5)

Substituting the electric field strength F from Eq. (1),
we obtain

(6)

This value is much smaller than the one for cluster sizes
under consideration, and it decreases with the increase
of the laser pulse intensity because JZ ~ Z2. Field ioniza-
tion in clusters can therefore be considered as an instant
process. As a result of this analysis, we find that typical
experimental intensities of laser pulses provide fast
excitation of the electron component of clusters
through ionization of their atoms and ions.

2.2. Ionization of a Cluster as a Whole 

Ionization of a cluster under the action of a strong
electromagnetic wave is similar to overbarrier ioniza-
tion of atoms. An electron passes over the barrier and is
released. How this differs from the case of an atom is
that the electron motion in the cluster field is described
by classical laws and the cluster size is restricted. The
latter allows a released electron to leave the cluster
field. The time of electron displacement by a distance
on the order of the cluster radius R is given by

(7)

πR2 πrW
2 n2/3=

τ n1/3 8JZZ

crW
2 F2

---------------.=

τω n1/3128
c

---------ωZ
JZ

-------
Z/rW

JZ

----------- 
 

2

.=

tesc
R3

Q
-----∼
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(the typical electron velocity is approximately ,
where Q is the cluster charge). The criterion t ! 1/ω
then becomes

(8)

The cluster charge is determined by the Bethe formula
for the overbarrier transition of an electron located in
the Coulomb field of a charge Q and in a constant elec-
tric field of a strength F. Taking the interaction energy
of the electron with the electric field of the cluster to be
Q/R at the cluster boundary, we obtain from (1) that the
charge Q of this cluster is given by

(9)

When criterion (8) is valid, this gives

(10)

for the cluster size.
We now consider one more aspect of this problem.

The electron remains in the region of the cluster Cou-
lomb field under the action of the electromagnetic
wave, but can return at another stage of variation of the
electromagnetic wave strength if the electron trajectory
is determined strongly by the fields of the cluster and of
the electromagnetic wave. Of course, the large statisti-
cal weight of continuum spectrum states for this elec-
tron makes electron release favorable. It is important
that the Coulomb field of the cluster is not constant in
time precisely because it is also created by the motion
of bound electrons of the cluster. Fluctuations resulting
from the motion of internal cluster electrons lead to ran-
domization of the motion of the electron being trans-
ferred and make its departure from the Coulomb cluster
field irreversible. This determines the applicability of
simple formulas for ionization of the cluster as a whole.

Thus, as a result of the ionization processes both
inside the cluster atoms and for the cluster as a whole,
a specific plasma is formed such that multicharged
atomic ions of the cluster keep a part of the electrons
moving inside the cluster. These electrons are locked
inside the cluster, whereas a part of the electrons is
released and creates a cluster charge. Later, this system
decays as a result of cluster expansion caused by Cou-
lomb forces acting on ions. However, the processes of
formation of this plasma determine its properties and
the character of the subsequent cluster expansion.

We consider one more consequence of cluster
charging. Because the charge of cluster ions is not com-
pensated by the electron charge, an additional field
arises in the cluster. For simplicity, we use the model
where the cluster charge is distributed over the cluster
uniformly. Then the electric field of the cluster charge
with a strength of

(11)

Q/R

R3ω2
 ! Q.

Q 4FR2.=

R ! 
4F

ω2
-------

Fcl
Qr

R3
------- 4F

r
R
---= =
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acts on an ion located at distance r from the cluster cen-
ter. This changes the charges of multicharged ions
being formed inside the cluster. This problem was
examined in [21, 22] in detail. Replacing the electric
field strength F of the laser wave in Bethe formula (1)
with F + Fcl , we obtain for the ion charge Z(r) at dis-
tance r from the cluster center 

(12)

Thus, this charge is larger near the cluster boundary
than at its center. The data in Table 1 pertain to the
charge of multicharged ions near the cluster center. We
also include in this table the charge near the cluster
boundary.

We note that in the above consideration, we
assumed that the laser field penetrates the cluster. This
is a valid assumption because the skin depth for the
laser signal is approximately 100 nm in this case and
exceeds the cluster size in the range under consider-
ation (a cluster consisting of 106Xe atoms has a radius
of 25 nm [23]).

3. ELECTRON DISTRIBUTION 
IN THE CLUSTER PLASMA

3.1. Relaxation of Electrons in a Cluster 

The cluster plasma resulting from a laser pulse
expands. There are two forces acting on the cluster that
cause it to expand during and after the laser pulse. The
first is the pressure due to electrons. Cluster electrons
collide with ions and push them outside. The second
force is determined by the Coulomb force and depends
on the charge distribution in the cluster, which is the
distribution of ions and electrons.

The energy distribution of electrons established in
the cluster during irradiation is far from equilibrium.
The relaxation rate of the electron subsystem is deter-
mined by electron–electron collisions. The relaxation
time can therefore be defined as the time during which
a test electron gains the energy Q/R in collisions with
other electrons,

(13)

where e is the electron energy change and νee is the
electron–electron collision rate. The electron–electron
collision rate is given by [24]

(14)

where lnΛ is the Coulomb logarithm. Substituting
Eqs. (14) in Eq. (13), we obtain the relaxation time:

(15)

F 1 4
r
R
---+ 

  JZ
2

4Z
------.=

τee
Q/R
eνee

----------,∼

νee Ne 2eσt σt
4π
e

2
------ Λ ,ln= =

τee
Q/R e

4 2πNe Λln
------------------------------.∼
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Substituting Eq. (9) in (15), we finally obtain

(16)

We now compare the relaxation electron time τee

with the expansion time. The typical expansion time is
given by

(17)

where M is the mass of ion. The ratio of these times is
given by

(18)

The ratios τee/τexp for krypton, xenon, molybdenum,
and tungsten clusters under typical laser parameters are
given in Table 2. Condition (18) is satisfied for all
parameters considered, as follows from the data in
Table 2.

3.2. Electron Subsystem during Cluster Expansion 

We now consider the behavior of electrons in the
course of cluster expansion. We use the above fact that
the expansion time is large compared to the typical time
of establishment of equilibrium in the electron sub-
system. This implies that in contrast to [25], the distri-
bution function of electrons is not the Maxwell one, and
collisions between electrons during cluster expansion
can be ignored. We therefore start with the electron dis-
tribution by energy that results from laser ionization of
atoms and analyze the evolution of electrons located
inside the cluster. For simplicity, we use the model
where the positive charge is distributed uniformly
inside the cluster, and the self-consistent potential of
electrons and multicharged cluster ions is therefore
given by

(19)

where r is the distance from the cluster center, and we
consider the interior cluster part r ≤ R. This assumption

τee

Q/R( )3/2rW
3

3 2Z Λln
--------------------------∼

8F3/2rW
9/2n1/2

3 2Z Λln
----------------------------.=

τexp
MR3

ZQ
-----------

1
2
--- MR

ZF
---------,= =

τee

τexp
--------

16

3 2 Λln
--------------------

F2rW
4

MZ
-------------n1/3

 @ 1.=

U r( ) Q
2R
------- 3 r2

R2
-----– 

  ,–=

Table 2.  The ratio of the relaxation time τee for the cluster of
106 atoms to the expansion time τexp for different electromag-
netic wave intensities

1017 W/cm2 1018 W/cm2 1019 W/cm2

Kr 53 359 3100

Xe 55 365 3160

Mo 6.1 57 456

W 4.5 33 241
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leads to the electron number density inside the cluster:

(20)

(for the charge Z(r) of an individual atomic ion of the
cluster, see Table 1). Because ions are distributed in the
cluster uniformly before and at the first stage of its
expansion, the charge of an individual ion depends on
the distance from the cluster center as

(21)

which corresponds to Eq. (12).

We now consider the character of evolution of the
cluster during its expansion. Because the self-consis-
tent cluster potential does not change considerably dur-
ing the oscillation period of a locked electron, its adia-
batic invariant [26, 24]

(22)

is conserved. The integration happens between two
turning points of the locked electron with a certain
energy ε. This quantity plays the role of an integral of
motion for the electron. The distribution function of
locked electrons is then a function of the adiabatic
invariant,

(23)

To obtain information on the cluster evolution, we
assume the cluster charge Q to be constant during the
cluster expansion and assume the cluster potential for
an individual electron to be given by Eq. (19) when the
cluster radius R depends on time. The adiabatic invari-
ant for an individual electron is then equal to

(24)

where l is the electron orbital momentum, which ranges
from 0 to Ω2R.

Ne r( ) Z r( )Ni
3Q

4πR3
------------–=

Z r( ) Z0 1
2Q

FR2
---------- r

R
---+ 

  1/3

,=

I t e,( ) 1
2π
------ 2m e U r( )–( )[ ] 1/2 rd∫=

f f I ε t,( )( ).=

I
1

4Ω2
---------- ε lΩ–[ ] , Ω2 Q

R3
-----,= =

Table 3.  Typical expansion times (fs) at some parameters of
the interaction between a laser wave and clusters for different
electromagnetic wave intensities and different n

n 1017 W/cm2 1018 W/cm2 1019 W/cm2

Xe 104 92 40 19

105 134 58 28

106 196 84 40

W 104 79 33 13

105 116 50 20

106 170 73 30
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We show that the electron orbital momentum is con-
served during the cluster expansion. Indeed, the elec-
tron momentum varies in electron collisions with ions
and electrons, and because these collisions lead to
small scattering angles, the typical momentum varia-
tion during cluster expansion is estimated as

(25)

where τei is the typical time of electron–ion collisions.
Here we take into account that electron–ion collisions
are more effective than electron–electron collisions
because of the large average charge Z of cluster ions,
and the cluster expansion rate is determined by interac-
tion of the cluster charge with each ion. This leads to
the following estimates for these parameters:

(26)

We give typical values of expansion times in Table 3,
from which it follows that under typical conditions of
cluster evolution,

(27)

Thus, the above analysis shows that under typical con-
ditions of cluster evolution, the orbital momentum l of
an individual electron is conserved in the course of
cluster expansion, and the electron orbital momentum l
can therefore be considered as an integral of motion.

We now consider the character of motion of an indi-
vidual electron in the course of cluster expansion, using
conservation of the adiabatic invariant and the angular
electron momentum. The motion of locked electrons
consists in rotation around the cluster center and oscil-
lations in the radial direction between two turning
points. Under cluster expansion, the turning points of
the electron also move. Using the expression for the
energy of an individual electron

(28)

and the relation between Ω and the adiabatic invariant I
in Eq. (24), we obtain that the distances r1, 2 of the turn-
ing points from the center are given by

(29)
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where R(t) is the current cluster size. Recalling the rela-
tion between Ω and cluster size in Eq. (24), we obtain
that

(30)

Because R(t) increases in time, Eq. (30) implies that the
electron trajectory remains inside the cluster in the
course of cluster expansion and the relative distance of
turning points from the cluster center r1, 2/R(t)
decreases. Because the second term in Eq. (30)
decreases faster than the first one, the motion of a
locked electron tends to transform into rotation.

The motion of an electron in the cluster field con-
sists of oscillation in the cluster potential U(r) and rota-
tion around the cluster center characterized by the elec-
tron angular momentum l. Equation (30) gives the
behavior of turning points of a test electron as the clus-
ter expands. We see that turning points of a test electron
move from the cluster center slower than the radius
increases. This implies that electrons remain inside the
cluster during cluster expansion, and cluster expansion
does not therefore lead to an additional cluster ioni-
zation.

We now consider this problem from another stand-
point, introducing the energy E of a test electron such
that the energy on the cluster boundary is zero. Assum-
ing that the electron transition outside the cluster
boundary means the electron release, we rewrite
Eq. (24) for the adiabatic invariant as

(31)

where W = 3Ω2R2/2 is the cluster well depth. We intro-
duce the reduced electron energy

(32)

If  becomes positive, the electron is released. How-

ever, because R2Ω =  increases as a result of clus-

ter expansion, the initially negative value  remains
negative; i.e., cluster ionization does not occur as a
result of cluster expansion in the absence of collisions
involving electrons.

Now let us consider the character of cluster expan-
sion that proceeds under the action of the Coulomb field
of the cluster charge and under the action of electron
collisions. The force acting on a test ion from the clus-
ter charge is given by

(33)

r1 2,
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The force acting on the test ion in collisions with elec-
trons is

(34)

where p is the typical electron momentum. Substituting

the minimal electron velocity v  =  in this for-
mula, we obtain an estimate for the force acting on the
cluster boundary due to collisions with electrons,

(35)

Comparing the above forces, we have

(36)

The cluster expansion rate is therefore determined by
the Coulomb force that acts on ions from the cluster
charge. Hence, the equation for the evolution of the
cluster boundary has the form

(37)

and its approximate solution is

(38)

A typical time T of the cluster expansion is

(39)

Typical cluster expansion times are given in Table 3.
We see that the cluster expansion time becomes compa-
rable to the pulse duration under the laser intensities of
the order 1019 W/cm2. It may affect cluster evolution
during irradiation and after it.

4. CONCLUSIONS 

Thus, the analysis of the behavior of an individual
cluster in the field of a strong electromagnetic wave
shows that electrons locked in the cluster cannot leave
it after the laser pulse. Neither electron–electron colli-
sions nor the cluster expansion leads to a considerable
additional release of electrons. The pressure created by
electron–ion collisions gives a small contribution to the
cluster expansion rate. In addition, this analysis demon-
strates that under large intensities of the laser pulse,
expansion during the irradiation can affect the character
of interaction between the laser pulse and the cluster.
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Abstract—Ions of organic molecules and polymers as well as multiply ionized hydrocarbons were synthesized
and detected with a time-of-flight mass analyzer in laboratory experiments simulating with a laser the plasma
processes that accompany a hypervelocity micrometeorite impact on the target surface. A hypervelocity impact
of micrometeorites moving at velocities of 80 km s–1 on a inorganic target was simulated with a Q-switched
laser. The laser provided a power density of 109–1011 W cm–2 in a spot with an impact diameter of 30–150 µm
for a pulse duration of 7–10 ns and a laser plasma electron density of 105–106 K. The ions of organic compounds
are shown to be synthesized mostly during the free expansion of a hot laser plasma at the stage of its cooling
and recombination if, initially, the plasma was completely atomized and ionized. Molecular ions have high
yields only for a carbon target. The results obtained indicate that organic or other polyatomic compounds can
be abiogenically synthesized in intense hypervelocity meteorite impacts on the Earth’s surface at the early stage
of its formation during meteorite showers and in hypervelocity collisions of dust particles in interstellar molec-
ular clouds. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

When the impact velocity reaches a critical value Vcr

of 15–20 km s–1 [1], a plasma cloud or a plasma torch
is generated in the collision area of the bodies [2]. This
requires that the impinging body–target interaction
time scale, tint , be shorter than the time scale of heat
outflow from the impact area, th . An energy that
exceeds the binding energy of the atoms in matter and
their ionization energy is rapidly absorbed under these
conditions. As a result, the impinging body and part of
the target turn into a hot plasma. Depending on the
physical parameters of the interacting bodies at impact
velocities of Vsh > Vcr , the generated plasma reaches a
temperature of 30–50 eV and is usually completely
atomized and ionized at the initial stage. At the stage of
adiabatic expansion, the plasma cools down and recom-
bines, and the degree of ionization decreases by a factor
of approximately 100. The ion composition of such a
plasma corresponds to the elemental composition of the
interacting bodies. However, polyatomic ions can also be
synthesized in such a plasma during its expansion [3].
Here, our goal is to study this phenomenon or, more
specifically, the synthesis of molecular ions during the
expansion of a impact plasma.

A hypervelocity impact is the most characteristic
phenomenon for the processes in space. Thus, for
example, the surfaces of atmosphereless cosmic bodies
1063-7761/03/9701- $24.00 © 20049
in the Solar system are continuously subjected to
hypervelocity micrometeorite impacts of particles with
masses from 10–15 to 10–12 g. Micrometeorites less than
1 µm in diameter are accelerated by light pressure to
velocities of V ~ 50 km s–1. Such an impact plays an
important role in the formation of the regolith surface
layer on atmosphereless objects [4].

Traces from catastrophic hypervelocity impacts of
large bodies that took place mostly during the forma-
tion of planets have been well preserved in the form of
craters on atmosphereless planets and planetary satel-
lites in the Solar System. During this period, the so-
called meteorite shower period 4.5–3.5 Gyr ago, the
Earth’s surface was also subjected to intense impacts.
The presumed impact energy flux was large, compara-
ble to the volcanic heat, about 1022 eV m–2 per year [5]
at collision velocities from 11 to 70 km s–1. Interest-
ingly, life on Earth originated precisely during this
period [6, 7].

In interstellar space, the acceleration of dust particles
to ultrahigh velocities is also observed in many processes.
These processes are mostly associated with the explo-
sions that arise during the formation of novae, but slower
processes also contribute to the acceleration of dust par-
ticles. Thus, for example, dust particles in gas–dust
clouds can be accelerated under light pressure or behind
a impact front to relative velocities of 102–103 km s–1 and
003 MAIK “Nauka/Interperiodica”



 

50

        

MANAGADZE

                                                                         
1010

108

106

104

102

1

10–2

10–4

10–6

10–8

104 105 106 107 108 109

Velocity, cm s–1

secondary ion emission
fast atom bombardment

gas–dust
phase

interstellar
Halley’s comet

impact
plasma

generation
dust particle accelerators

no
ionization

Earth

molecular synthesis area

gas–vapor
phase

T ~ 3000–4000°C

2 
– 

4.
6 

× 
10

6  c
m

 s
–1

Moon

 a
st

er
oi

ds
m

et
eo

ri
te

s
du

st
m

ic
ro

Diameter, cm

m
et

eo
ri

te
s

Fig. 1. The overall picture of impact plasma generation in various processes in nature and in a laboratory as a function of the body
size and velocity (the diagram is based in part on the data from [28]).

atoms
be involved in hypervelocity collisions [8]. Thus, a
hypervelocity impact is a common phenomenon in
nature virtually at all evolutionary stages of the Uni-
verse, from the formation of novae and planetary sys-
tems to their death [8–11].

2. FORMULATION OF THE PROBLEM

The physical processes of impact interactions under
laboratory conditions are studied using special micro-
particle accelerators, which are capable of accelerating
particles with masses from 10–11 to 10–17 g to velocities
of 30–100 km s–1 [12–16]. In laboratory experiments of
this class, apart from other results, it was also shown
that the microparticle mass composition could be deter-
mined from the spectrum of the impact-produced
plasma ions [17]. Special-purpose mass spectrometers
were developed to study the microparticle mass and
isotopic compositions in in situ experiments in space;
the impact plasma generated during a hypervelocity
impact of a micrometeorite or a dust particle on the target
served as the source of ions in these instruments [18].
Thus, for example, the microparticle composition in the
gas–dust cloud of Halley’s comet was first determined
using the PUMA and PIA dust-impact instruments on
JOURNAL OF EXPERIMENTAL 
the Vega and Giotto space missions [19–21]. The
microparticle collision velocities in these studies
reached 80 km s–1, which provided conditions of Vsh >
Vcr and tint < th . The overall picture of the collision pro-
cesses considered above is shown as a plot of the body’s
size against its velocity in Fig. 1.

The laboratory and space experiments aimed at
studying impact interactions or determining the micro-
particle mass composition should be placed into the
group of direct impact experiments in which the hyper-
velocity microparticle impact was investigated in real
time. Such experiments can also be placed into the class
of unique or exotic experiments both in cost and in the
possibility of realizing initial conditions. However,
there are also other, simpler and more accessible meth-
ods of studying impact processes in the arsenal of mod-
ern science. These include simulations.

Numerical simulations play an important role in the
studies of hypervelocity impacts. This is suggested by
the results obtained in a series of works on the simula-
tions of spacecraft shield destruction [22] or ionization
processes for the dust-impact instruments used in an in
situ experiment in the studies of Halley’s comet [23].
However, the most promising experimental direction is
AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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associated with laboratory simulations of a hyperveloc-
ity impact using a laser [24]. It is based on the capabil-
ities of a Q-switched laser to generate a light pulse of
duration tl ~ 1–10 ns and to provide a power density of
up to 1013 W cm–2 in a spot 102–103 µm in diameter. The
processes that arise in kinematic and laser impacts can
significantly differ in simulations of this class [24].
However, the processes after the plasma generation, in
particular, at the stage of adiabatic expansion, cooling,
and recombination, must be similar [3].

Our choice of parameters for the laser simulations of
impact processes was based on the reliable results
obtained during the in situ dust-impact experiments on
the Vega mission [18–20]. According to these results, at
a impact velocity of about 80 km s–1 for microparticles
with diameters from 0.01 to 1 µm and masses from
10−18 to 10–12 g, the ionization multiplicity of the
plasma ions was α ~ 1 and their energy was Ei ~
50−70 eV.

The plasma nature of these ions was confirmed in
direct numerical simulations [25–27] of the mass-spec-
trometric cometary dust measurements made with the
PUMA-1 and PUMA-2 instruments. It was also shown
in these papers that under the above input conditions of
the in situ experiment, a plasma was generated for par-
ticles with diameters down to 0.01 µm.

To properly determine the impact-simulating laser
parameters, let us consider plasma generation during
impact. It is well known that, depending on the velocity,
the volume of the impact crater is larger than the micro-
particle volume by approximately a factor of approxi-
mately 100–500 [28, 29] and that plasma is generated
in a volume that exceeds the microparticle volume by a
factor of 5–10. It thus follows that the energy contribu-
tion to the plasma generation during the impact does
not exceed 1% of the particle energy and that it is spent
mainly on the crater formation and the target deforma-
tion. This is the reason why the ionization multiplicity
and the ion energy are relatively low for the impact
plasma, although the power density calculated from the
particle diameter is about 1013 W cm–2 [30].

The dependence of the ionization multiplicity and
the ion energy on the power density for a laser plasma
has been adequately studied [31–33]. Thus, as the
power density increases from 109 to 1011 W cm–2, the
ionization multiplicity for Al increases from 1 to 5 and
the particle energy increases from approximately
100 eV to 2 keV. Consequently, the energy contribution
to the plasma generation can be accurately determined
from these parameters.

Thus, a similarity of the physical processes during
the plasma expansion should be ensured when choosing
the laser parameters.

The criteria for choosing the laser parameters can be
briefly formulated as follows. The laser must ensure,
first, the plasma generation, second, identical parame-
ters of the laser and impact plasmas or, more specifi-
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
cally, the ionization multiplicity and the ion energy,
and, third, equal numbers of produced ions or equal
plasma-generation volumes for these processes.

The first condition constrains ti , in particular, ti < tl <
th , where ti is the plasma generation time. For a laser
with tl in the range from 0.1 to 10 ns, this condition is
satisfied with a comfortable margin.

For the parameters of the impact and laser plasmas
to be identical, the identical energy contributions must
be ensured. Thus, at a laser power density of W ~
109 W cm–2, the plasma ions will be singly ionized and
their mean energy will be about 50–70 eV, in close
agreement with the impact plasma parameters, at a
impact velocity of 80 km s–1.

The number of laser-produced ions at a given power
density will depend on the diameter and depth of the
laser crater. We can also determine the plasma-genera-
tion volume from these quantities and calculate the
diameter of the simulated microparticle from these
data. Conversely, we can choose the diameter of the
laser crater from the particle diameter. Thus, for exam-
ple, a microparticle impact on a target 10 µm in diame-
ter produces a plasma from an equivalent volume
approximately equal to 104 µm3. The plasma-genera-
tion volume is the same as that for a laser crater 50 µm
in diameter and 3 µm in depth (in a carbon target).

Thus, by varying the power density and the laser
crater diameter, we can reproduce the basic parameters
for a given microparticle diameter and velocity.

The choice of impact-simulating laser parameters
is nothing but the determination of similarity parame-
ters [34] with elements of limited simulation princi-
ples [35] without changing the spatial scale. This
approach should be used to extend the results obtained
for microparticles to large celestial bodies.

The identity of the ion-generation processes in the
laser and impact plasmas is evidenced by the fact that
such a plasma is used as the source of ions for time-of-
flight mass spectrometers, laser [36] and dust-impact [18]
ones. In the former instrument, the mass composition of
the target is determined when ions are generated in the
laser plasma; in the latter instrument, the mass compo-
sitions of both the impinging particle and the target are
determined through the production of ions in the impact
plasma. In these instruments, which are very similar in
principle of operation and, often, in design, the hot
plasma produced during an ultrafast energy concentra-
tion serves as the source of ions.

A laser plasma was commonly used as the source of
ions for dust-impact instruments during their testing
and laboratory calibrations. In particular, when a
mockup of the PUMA flight instrument was tested
using a laser source of ions, the effect that caused a
decrease in the mass resolution of the instrument at a
high plasma density, which corresponded to the falling
of a large dust particle on the target, was detected and
investigated [21]. The laser simulation results formed
SICS      Vol. 97      No. 1      2003
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the basis for upgrading the flight instrument; a narrow-
energy-window mode was introduced, which ensured
that unique mass spectra of large dust particles were
obtained.

The synthesis of molecules or molecular ions during
the expansion and cooling of a impact plasma [37, 38]
is of great interest in analyzing the synthesis of organic
materials at the early evolutionary stage of the Earth,
the falling of meteorites, and hypervelocity collisions
of dust particles in molecular, interstellar, and gas–dust
clouds because of their similarity.

3. DESCRIPTION OF THE EXPERIMENT

We used the LASMA time-of-flight laser mass
reflectron shown in Fig. 2 [36, 39–42] as the basic
instrument for our laser simulations of an impact. It
consists of a laser and an analyzer to determine the
masses of the laser-generated ions. We used a Q-swit-
ched infrared Nd:YAG-glass laser at λ ~ 1.06 µm,
which provided a power density on the order of 109–
1011 W cm–2 in a spot 30–100 µm in diameter with a
pulse duration of 5–7 ns. These laser impact parameters
corresponded to the impact of a microparticle 5–10 µm
in diameter at Vsh ≈ 80 km s–1. The plasma ions flew
apart in a vacuum without additional particle accelera-
tion in the so-called free-expansion regime. The ions
reflected in the reflector field and fell on the detector.
JOURNAL OF EXPERIMENTAL
The instrument was axially symmetric: the laser beam,
the reflector, the detector, and the target were aligned
on the same axis, and the laser radiation was orthogo-
nally brought to the target plane through reflector grids
and a central hole in the detector [43, 44]. Since this
configuration provided completely symmetric plasma
expansion, a high reproducibility of the spectra was
achieved. The analytical part of the instrument pro-
vided a sensitivity of about 1 ppm for one laser pulse
with a mass resolution of 600 at the halfwidth of the
mass peak.

We took into account the special role of carbon in
the synthesis of organic molecules [6, 7] and its ability
to combine into polyatomic structures. Therefore, we
used carbon-rich materials as the target, which also
increased the yield probability of the synthesized
organic molecules.

Specially purified carbon designed for the elec-
trodes of spectroanalytical instruments, in which the
impurities did not exceed 0.1 ppm, was used as the tar-
get in the first series of experiments. The high purity of
the sample was confirmed by measurements for all of
the elements except hydrogen, which was detected in
the mass spectra. The auxiliary experiments aimed at
localizing the source of these ions showed that hydro-
gen was both in the bulk of the sample and in its surface
monomolecular layer. The hydrogen impurity played a
positive role.
 AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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Singly ionized molecules of methane, acetylene,
ethylene, propylene, allene, as well as carbon polymer
CNHM-type structures containing from 1 to 40 carbon
atoms and from 1 to 4 hydrogen atoms were detected
and identified in the mass spectra obtained on a carbon
target and shown in Fig. 3. These spectra were highly
reproducible. Subsequently, such hydrocarbon struc-
tures and polyatomic molecules were also obtained
with other carbon-containing materials: industrial car-
bon, sinking oil fraction, and bitumen.

To elucidate the role of Si in the synthesis, we car-
ried out experiments on a high-purity Si target under
similar input experimental conditions. Our mass spec-
tra showed that Si was also capable of producing a
polymer structure, but the maximum number of Si
atoms in the chain did not exceed 11.

Of particular interest were the mass spectra obtained
for a sinking oil fraction at a power density in the range
5 × 109–1010 W cm–2 [45]1

 (see Fig. 4). Apart from the
mass peaks that correspond to carbon ions with an ion-
ization multiplicity from 1 to 4, they exhibited the
peaks of ions that were identified as multiply ionized
hydrocarbons: doubly ionized CH2, CH3, CH4; triply
ionized CH, CH3, CH4, CH5, C2H, C2H3; and quadru-
ply ionized CH4, C2H, C2H5, C3H8. It may be assumed
that by the time of their detection, ions of this type had
been observed in a laser plasma for the first time. The
generation of such ions is associated with the processes
of charge exchange and stripping, which can proceed in
a laser plasma. According to theoretical calculations
and experimental results, the lifetime is long enough for
these ions to be detected with a time-of-flight mass ana-
lyzer [46].

To synthesize more complex organic molecules con-
taining the basic gas-forming elements H, C, N, and O,
we carried out a series of experiments in which pure
inorganic materials containing these elements were
mixed with a carbon powder. The NH4NO3, Ni(NO3)2,
Ti2O3, and NaNO3 materials were used. The main goal
of these experiments was to synthesize and detect the
organic molecules that could be used in the natural syn-
thesis of amino acids or biopolymers. The results of
these measurements are presented in Table 1.

The task proved to be arduous, because the mass
peaks of the elements and their isotopes were superim-
posed on the peaks of the organic materials being stud-
ied; thus, for example, the CN+ and HCN+ mass peaks

were superimposed on the  (m = 26) and Al+

(m = 27) peaks. The absence of nitrogen-containing
salts and oxides of special purity as well as materials
containing the stable C13 and N15 isotopes required to
shift the mass peaks of the organic materials made it
much more difficult to obtain “pure” peaks. To detect
molecular peaks, we examined those areas of the mass

1 The spectra were taken back in 1990 and included in the 1992
report.

C2H2
+
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scale where there were no peaks from the elements or
where atypical strong violations of the isotopic ratios
were observed. Several such spectra are shown in
Fig. 5. In this series of experiments, together with the
peaks of the atomic ions of H, C, N, O, Na, Ti, Ni and
the above CN -type carbon structures, we obtained
the mass peaks corresponding to the NH3, OH+ or NH+,

H2O+ or N , H3O+, CO+,  molecular ions using the
amino acids that were synthesized in the laboratory for
the first time [47, 48]. The combination of these mate-
rials with hydrocarbons could primarily provide the
synthesis of organic materials whose mass peaks were
also observed experimentally: CH2NH+ (m = 29),
H2CO+ (m = 30), C2H2O+ (m = 42), HNCO+ (m = 43),

NHCHO+ (m = 44), and CH2  (m = 46). We cannot
rule out the possibility that some of these mass peaks

also include the N2O+, N , CO+ materials of the same
mass whose contributions could not be determined here.

To confirm the plasma nature of the polyatomic
ions, we carried out an experiment in which a laser
acted on a mixture of carbon and silicon powders as
well as carbon and tungsten powders. In such a mixture,
the synthesis of polyatomic molecules containing Si
and C or W and C at the powder mixing stage can be
ruled out. We detected the mass peaks of polyatomic

ions shown in Fig. 6 that correspond to  up to m =

11 and Sim , SimCn , where m was varied from 1 to
7 and n and p were varied from 1 to 3. Ions WC, WC2,
WC3, and W2C were also obtained in this series of
experiments. The presence of such ions can be
explained only by their synthesis in a plasma torch dur-
ing the plasma expansion and cooling and suggests that
organic materials could also be synthesized in pro-
cesses of this kind.

HM
+
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+ N2

+

O2
+

O2
+

Sim
+

Cn
+ Hp

+

103
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Fig. 3. The mass spectrum of polyatomic ions for a carbon
target.
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The relative yield of the synthesized polyatomic
ions was determined from our mass spectra. For light
elements (from H to Ca), it ranged from 0.1 to 1% of
the number of atomic ions.

The yield efficiency of the polyatomic ions for an
energy expenditure of about 1 eV was determined from
the condition that the energy required for the dissocia-
tion and ionization of one atom is 25–30 eV. Therefore,
for the formation of one molecular ion, η = 10–3(30)–1 =
3 × 10–5 molecules will be synthesized for a relative
yield of about 0.1% and an energy expenditure of 1 eV.

The relative yield of (0.1–1)% must also be retained
for the neutral component. The ionization coefficient
decreases from 1% to 0.1% in a recombining plasma
after its cooling and, consequently, the contribution of
neutral atoms becomes substantial. The studies carried
out in [49] show that the neutral component of the laser
plasma has the same nature as the ion component.
Therefore, one might expect with a high probability
that the molecules synthesized during the plasma
expansion in the same ratio are also present in the neu-
tral component of the recombining plasma. This
implies that the total number of synthesized molecular
ions and neutral molecules will be comparable to the
number of atomic ions.
JOURNAL OF EXPERIMENTAL 
Thus, our laser simulations of a hypervelocity
impact showed that organic compounds could be syn-
thesized from inorganic materials. The laser power den-
sity for most of the experiments was 109 W cm–2 for a
laser spot diameter of 30–50 µm. According to the
similarity criteria, the parameters of the generated
plasma were identical to those of the impact plasma at
a microparticle velocity of 80 km s–1 and a diameter of
5–10 µm.

4. DISCUSSION

Let us consider the most important results and com-
pare them with the data obtained by other authors.

First, consider the results obtained during the in situ
experiment aimed at studying Halley’s comet, in which
organic molecules were detected with the PUMA
instrument [50]. The authors of this paper explain the
appearance of molecular ions by the impact absorption
of the organic materials frozen on the dust particle sur-
face at the time of their impact on the target. In light of
the foregoing, judging by the input experimental condi-
tions, these results can be explained by the synthesis of
organic molecules during the hypervelocity impact of a
dust particle that contains elements forming organic
materials, including those frozen on the particle sur-
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face. In this case, the impact synthesis is also suggested
by the similarity of the organic materials obtained in [5]
and in our study. Therefore, it would be of interest to
reconsider, possibly simultaneously, these data because
of their great importance, by taking into account the
simulation results.

In [51, 52], the laser-produced fullerenes and metal-
lofullerenes were controlled with a mass spectrometer.
An important feature of these studies is that the laser
acted on a carbon target in two regimes: in the
Q-switched regime with tint ≈ 8 ns and in the free-gen-
eration regime with tint ≈ 230 µs at a wavelength of
1.06 µm. In this case, the laser power density for the
three presented typical mass spectra was 105 (tint ≈
230 µs), 5 × 109, and 1.5 × 1010 W cm–2 (tint ≈ 8 ns).

According to the results obtained and their interpreta-
tion, fullerenes were produced both in the gaseous phase
at a low power density of 105 W cm–2 and in the plasma
phase at a high power density of 1.5 × 1010 W cm–2. How-
ever, we clearly see from our spectra that the generation
of fullerenes is different in nature. In the former case, a
low-temperature gas-vapor phase takes place; in the lat-
ter case, a powerful plasma torch is undoubtedly gener-
ated and fullerenes together with more complex molec-
ular ions are intensely synthesized during the plasma
expansion and cooling.

The spectrum taken at a power density of 5 ×
109 W cm–2 closely matches the spectra presented here
both in the structure of the hydrocarbon compounds
and in the number of carbon atoms in the polyatomic
chains.

The above comparison of the experimental results
leads us to conclude that at low power densities and for
tint > th , carbon clusters and polyatomic ions evaporate
from the surface and then combine into more complex
structures, being in the gas-vapor phase. A qualitative
jump occurs when the power density is increased to
about 109 W cm–2 and for tint < th , because in this case,
after the complete atomization and ionization of the
material, its atoms and ions are associated into poly-
atomic structures during the plasma expansion and
cooling.

The most interesting result of [51] is that its authors
clearly showed the complication of the molecules with
increasing power density. Thus, for example, when the
power density was increased from 5 × 109 to 15 ×
109 W cm–2, the number of carbon atoms in the polymer
structures increased from 31 to 300. A similar effect
may also be expected when increasing the spatial size
of the impact area.

There are several factors that directly or indirectly
confirm the synthesis of molecules in a plasma torch. In
particular, the free-expansion experimental configura-
tion rules out the fall of ions on the detector from the
peripheral zone of the laser impact, where the power
density may be too low for complete atomization but
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high enough for the desorption of a small number of
clusters or molecular ions. Therefore, we can assume
that in the free-expansion regime or in the regime when
there is no external, artificially applied accelerating
electric field, only completely atomized plasma ions

Table 1.  The mass peaks of the experimentally detected
polyatomic ions and their interpretation

M
as

s Atomic
ions

Molecule based on
Name

C N O

12 C –

13 C CH

14 N CH2

15 – CH3 NH

16 O CH4 NH2 methane

17 – – NH3 OH ammonia

18 – – NH4 H2O

19 F – H3O

24 Mg C2

25 Mg C2H

26 Mg C2H2 CN? acetylene

27 Al C2H3 HCN?

28 Si – N2

29 Si – CH2NH carbamide

30 Si CH2O NO formaldehyde

34 S – – H2O2

36 C3

37 Cl C3H

38 – C3H2

39 K C3H4

40 Ca C3H4 C2H2N? allene

41 K – C2H3N

42 – C2H2O ketene

43 – NHCO

44 Ca C2H4O HNCHO acetaldehyde

46 Ti C2H6O NO2 CH2O2 ethanol/formic 
acid

48 Ti C4

49 Ti C4H

50 V C4H2

51 V C4H3

60 C5 detected

72 C6 also

84 C7 CnHm

96 C8 n up to 10

108 C9 m up to 14

120 C10
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from the central hot zone of the plasma formation are
involved in the ionization and subsequent acceleration.

An important argument for the plasma synthesis is
that the experimentally observed multiply ionized

0

12
0

 Mass, amu

Amplitude

0

0

0
C + NaNO3

C + NaNO3

C + Ti2O3

C + Ni(NO3)2

C + NH4NO3

24 36 48

Fig. 5. The mass spectra for targets containing a mixture of
a carbon powder with the various salts and oxides indicated
in the spectra.
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0
 Mass/charge, amu

Amplitude, arb. units.
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Si2C+
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4K+

SiC+

SiC+
SiC+

2

Si+
3 Si3C+

Si+
2

Si3C+
2

Si+

Fig. 6. The mass spectrum for polyatomic ions of a mechan-
ical mixture of C and Si powders.
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hydrocarbons cannot be produced in thermal processes
during successive ionization. They can be produced
only when a multiply ionized carbon atom combines,
for example, with neutral hydrogen. This is because the

hydrocarbon binding energy Eh ! , where  is
the carbon double ionization energy, being ~35 eV.

However, the experiments with two-component
powders most clearly show the plasma nature of the
produced molecular ions. In this case, the plasma torch
is the most likely area of the combination of the
components to form more complex two-component
molecules.

Thus, it follows from our results and the results of
other authors that laser simulations of hypervelocity
impacts allow the impact-plasma processes, including
the plasma expansion, to be reproduced, and molecular
ions can be synthesized in such a hot, nonequilibrium
medium.

5. POSSIBLE APPLICATIONS
OF THE RESULTS

Below, we use the results of our simulations to con-
sider the two most important processes associated with
the synthesis of organic molecules on Earth at the early
stage of its formation and in interstellar gas–dust
clouds.

Let us first consider the possible abiogenic synthesis
of organic compounds on Earth in impacts during mete-
orite showers. The following two important prebiolog-
ical processes are of interest in this connection: the for-
mation of biologically important organic compounds
from inorganic compounds and elements, for example,
amino acids or their precursors; and the formation of
short organic polymer chains.

Several physical mechanisms that are moderately
simple in initial conditions were devised [6] and real-
ized in laboratory experiments [5, 47, 48] for the former
process. For the latter process concerning the formation
of polymer chains, only the complex polymerization
mechanism of organic compounds on a clay surface is
considered [6, 53].

The formation of simple organic compounds in an
atmosphere containing methane (CH4), hydrogen (H2),
ammonia (NH3), and water vapor under solar ultravio-
let radiation or under the flux of cosmic rays, including
high-energy charged particles, hydrogen and helium
atoms, and electrons, were considered among the most
probable processes and media in which these compounds
could be synthesized on the Earth’s surface [5, 53]. The
so-called strongly reduced atmosphere [54] was usually
considered to produce amino acids on Earth. In this
medium, amino acids could also be synthesized
through electric discharges, the Earth’s radioactivity,
and heating of the medium by volcanic activity [55] or
impact-wave processes [5, 56–58].

EC
2+ EC

2+
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Several early laboratory experiments that simulated
the above processes confirm the formation of organic
materials [47, 48].

Matsu and Abe [56] investigated the possible effects
of a hypervelocity meteorite impact but only for the
impact degassing of a planetesimal and the generation
of a hot atmosphere. According to the authors of this
hypothesis, such a impact-induced atmosphere could
contain the CO and CO2 compounds needed for the
synthesis of amino acids.

In the experiments described in [59, 60], a gaseous
mixture of CO, N2, and H2O was subjected to an arc
discharge in a magnetic field. As a result of this dis-
charge, amino acids together with uracil and cytosine
were detected in the hydrolysate of the product.

Experiments that simulated the effects of the impact
waves generated when meteorites entered the Earth’s pri-
mordial rarefied atmosphere have been carried out [58].
In these experiments, several amino acids were synthe-
sized from a gaseous mixture of CH4, CH6, HN3, and
H2O under the effect of impact waves in laboratory con-
ditions.

The authors of [61, 62] were the first to show that
organic materials could be produced when meteorites
and rocks were intensely heated and evaporated at tem-
peratures of 3000–4000°C. In the opinion of the
authors, this heating of a material to produce a dense
gas-vapor cloud could take place during the fall of a
meteorite moving at a velocity of 10–15 km/s and could
result both in the decomposition of the material into
simple compounds and in the synthesis of new com-
pounds when it cooled down. According to [62], under
these collision conditions, up to about 30% of the mate-
rial of the colliding bodies passes into a gaseous phase.
The process considered above may be arbitrarily classi-
fied as the synthesis of organic molecules at subcritical
impact velocities; it is of interest in its own right.

To determine the possible role of meteorite
impacts, let us examine Table 2 [5], which includes
data on the energy sources for the chemical evolution
at the early stage of the Earth’s formation. The last row
of the table is entitled “Meteorite impacts,” and the pre-
sumed flux is estimated to be ~1022 eV m–2 year–1. If we
use the results obtained in this study for the yield
energy, about 3 × 10−5 molecules eV–1, then AB ≈ 3 ×
1017 molecules m–2 year–1. This value is comparable to
an analogous value for an X-ray impact and the impact
of cosmic rays, which were recognized to be highly
efficient energy sources for the formation of organic
compounds.

The velocity of the molecular ions synthesized dur-
ing the laser simulation of a hypervelocity impact is
lower than the particle escape velocity from the Earth.
Therefore, the molecules synthesized in the plasma of a
meteorite impact after its expansion must return to the
Earth’s surface, settling down and accumulating. In this
case, the synthesis proceeds irrespective of the initial
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parameters of the gaseous medium and irrespective of
the presence of an atmosphere and its type.

Thus, the simulations of a hypervelocity impact pre-
sented here indicate that organic molecules, in particu-
lar, the precursors of amino acids and short polymers
could be synthesized on Earth before the appearance of
a dense atmosphere under meteorite impacts if the col-
lision velocity exceeds Vcr . All elements for the synthe-
sis of organic molecules are assumed to be in the com-
position of the interacting bodies. This assumption is
valid, because 90% of the meteorites colliding with the
Earth are rocky and because there is a high percentage
of carbonaceous chondrites among them with all of the
necessary materials for the synthesis of organic materi-
als available in their composition.

Let us consider an alternative possibility of the
impact synthesis of molecules, including organic mole-
cules in the interstellar medium.

The interstellar gas is mainly composed of hydrogen
(~70%) and helium (28%) atoms and ions. Atoms and
ions of other elements and molecules account for less
than 1% and are mainly contained in dust particles.

In recent years, about a hundred molecules or
molecular ions, including organic ones, have been
discovered and identified in molecular gas–dust clouds
by radioastronomical methods. Organic compounds,
among which HCN, CH2NH, and CH3NH are known as

Table 2.  Basic energy sources for the chemical evolution of
matter at the early formation stage of the Earth's surface

Energy source
Presumed 

flux, A,
eV m–2 year–1

Glycine 
yield energy, 

Ba, mole-
cules eV–1

AB,
molecules
m–2 year–1

Solar radiation

total 6.8 × 1028 ~0 –

λ < 200 mm 2.2 × 1025 ~0 –

λ < 150 mm 9.1 × 1020 ~0 –

λ < 110 mm 4.2 × 1022

<8 × 1
<3 × 1017

electric discharge 1.8 × 1022 7 × 10–9 1 × 1010

~1.0 × 1024 ~7 × 1015

Volcanic heat 3.4 × 1022 ~0 –

Radioactivityc 2.0 × 1023 ~0 –

Cosmic rays 2.9 × 1021 2 × 10–1 6 × 1017

Meteorite impacts 1.0 × 1022 3 × 1 3 × 1

Note: a The yield energy for a mixture of CO and N2 (1 : 1) as the

source material.
b For an X-ray energy of 1.5 keV.
c for the Earth’s crust thickness of 0–1.0 km.
d Our results.

0–5b

0–5d

017d
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the source material for the formation of amino acids,
dominate in clouds of this type [7].

Two processes are currently believed to be responsi-
ble for the formation of molecules: chemical associa-
tion reactions in a gaseous medium and particle surface
reactions in clouds [9].

Dust in interstellar clouds is made up of either small
crystals or, possibly, amorphous structures composed
of silicate, graphite, and metal oxides about 10–2 µm in
size—small or large particles up to 1 µm in size pro-
duced by the freezing of small H2O, CO, and HN parti-
cles on the surface. Dust particles emerge mostly in the
slowly outflowing atmospheres of red giants. However,
there are also other hypotheses about the formation,
growth, acceleration, and destruction of dust particles.
Thus, for example, dust particles can be accelerated to
velocities of about 103 km s–1 when they pass through
the impact front produced during cloud–cloud colli-
sions or under the radiation pressure of stars [8].

Collisions of dust particles are a major mechanism
of their destruction [10], and about 10% of the dust par-
ticles can be destroyed [55] during a hypervelocity
impact. However, molecules and polyatomic ions will
be synthesized in these processes.

This indirectly follows from the in situ experiment
aimed at studying Halley’s comet, in which plasma
ejections and plasma ion spectra were recorded during
the impacts of microparticles 0.01 µm in diameter. The
numerical simulations [25–27] of a laboratory dust-
impact experiment [11–13] and the laser simulations [3]
considered above show that the target material whose
mass is a factor of 5–10 [30] larger than the mass of the
impinging particle is drawn into the plasma generation
and that the synthesized polyatomic ions account for no
less than (1–0.1)% of the total number of atomic ions.
This ratio is also valid for neutral atoms whose number
is larger by a factor of approximately 100 than the num-
ber of ions. It thus follows that the absolute yield of the
molecules and molecular ions in hypervelocity colli-
sions of dust particles can be significant and play an
important role in this process, although its probability
is low.

Using laser simulations, we can show that when a
dust particle 0.01 µm in diameter collides with a submi-
cron particle, the number of molecules and molecular
ions with a mean mass of about 20 amu is approxi-
mately equal to 103. Estimates indicate that in this time,
i.e., in the particle collision time, on the order of 5 ×
106 hydrogen molecules can be produced on the parti-
cle surface via the sticking of hydrogen ions. However,
the number of organic molecules formed via the stick-
ing of atoms to dust particles will be three to four orders
of magnitude smaller, because the abundance of such
elements as C, N, O, S, and P is three to four orders of
magnitude lower than that of hydrogen, and these ele-
ments are concentrated mainly in dust particles.
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Thus, the formation of organic molecules in colli-
sions of dust particles about 0.01 µm in diameter will
be comparable to or higher in efficiency than the uni-
versally accepted formation of molecules via the stick-
ing of atoms to dust particles. As the particle diameter
increases, the yield of the molecules also increases.
Consequently, the synthesis of organic molecules in
impact processes in the interstellar medium can play an
important role and be more efficient than the processes
suggested previously [9].

Returning to the laboratory simulations, it should be
noted that we compared the chemical composition of
the polyatomic ions produced in our simulations with
that of the molecules and polyatomic ions detected in
interstellar gas–dust clouds. We considered only mole-
cules containing C, N, O, H, and Si. About 45% of the
molecular ions considered above that were produced in
the laboratory experiments were also observed in the
form of ions and molecules in molecular clouds [63].

The experimental results presented above and their
analysis lead us to make the following assumptions.
First, the material from which the planets were formed
could initially be enriched in the organic molecules
synthesized through hypervelocity collisions. It may
well be that the Solar system was also formed from
matter enriched in organic material.

Second, organic materials could also be intensely
synthesized in hypervelocity impacts on Earth at the
early stage of its evolution and be accumulated on the
surface, being shielded from the decomposition under
radiation by the layer of rock ejected from an impact
crater. Consequently, the synthesis of organic materials
could begin much earlier, even before the appearance of
a dense atmosphere and liquid water.

With the appearance of an atmosphere and water,
the abundance of the organic materials in the surface
layer could play a crucial role in the origin of life on
Earth and its evolution.

Currently, an important and independent experi-
mental confirmation of the concept of molecular syn-
thesis in the plasma generated during a hypervelocity
impact in the direct dust particle acceleration experi-
ments presented here has been found. After the above
results of our laser simulations of impact processes and
their interpretation were reported at the European Geo-
physical Society 27th General Assembly [64], we
simultaneously analyzed and compared our results with
the results of laboratory calibrations of the onboard
dust-impact mass spectrometer. This instrument is
designed to study the chemical composition of
micrometeorites [65] and was developed at the Max-
Planck Institute for future space missions. The mass
spectra of the dust-impact experiments revealed hitherto
noninterpreted mass peaks of the rhodium carbide dimer
obtained during the impact of a carbon-containing
microparticle moving at a velocity of about 16 km s–1 on
a target of pure rhodium. These spectra also exhibited
the mass peaks of rhodium, carbon, and carbon clusters
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up to C16. The relative yield of the dimer was no less
than 10%. The only plausible explanation for the pres-
ence of a mass peak of such a compound in the spectra
related to the synthesis of the dimer in plasma during a
hypervelocity impact was offered.

Analysis of published papers suggests that no exper-
imental or theoretical studies of the synthesis of organic
materials in the plasma of a hypervelocity impact had
been carried out previously. Such studies have been
performed only in terms of laser simulations of this pro-
cess in [3, 64, 66] and here. Nor have we found any
numerical simulations devoted to this problem. There-
fore, the results presented should facilitate the study of
the molecular synthesis, both in laser plasma and in the
plasma generated in impact processes, as a possible and
efficient natural source for the synthesis of molecules,
including organic materials and polymers, at the early
stage of the Earth’s formation and in interstellar clouds
during hypervelocity impacts.
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Abstract—The problem on magnetohydrodynamic (MHD) flow of a solitary vortex across a magnetic field in
a volume confined by rigid walls is solved numerically for large Reynolds numbers (including magnetic Rey-
nolds numbers) and small Alfven-Mach numbers MA . In this case, the MHD problem is reduced to that of two-
dimensional hydrodynamic turbulence. It is shown that sound is not generated by a turbulent medium for small
values of MA; consequently, this kinetic energy dissipation channel is closed in this case. Calculations show that,
in contrast to 3D turbulence, kinetic energy dissipation for 2D turbulence occurs, as expected, over time periods
on the order of L2/ν (L is the characteristic size of the system and ν is the kinematic viscosity). In our calcula-
tions with numerical viscosity ν ~ v∆x (∆x is the unit cell size), this corresponds to time values on the order of
~(L/∆x)(L/v ). In the kinetic energy spectra for a turbulent flow in a bounded region in the inertial interval (lying
between the energy-carrying and viscosity regions), the values of E(k) decrease with increasing wave numbers
k at a higher rate than in proportion to k–3. The volume distribution of vorticity becomes narrower with time (the
characteristic values of curlv decrease) and is blurred; for large time periods, the distribution approximately
retains its shape as well as asymmetry with respect to positive and negative values, which is associated with the
asymmetry of the initial conditions. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Two-dimensional magnetohydrodynamic (MHD)
flows of plasma across a magnetic field play a signifi-
cant role in many dynamic plasma systems with a mag-
netized plasma. By way of an example, we can consider
a magnetic compression (MAGO) system [1–3] provid-
ing an approach to controlled nuclear fusion, which
consists of two stages.

1. First, a magnetized hot plasma suitable for subse-
quent compression (with an azimuth magnetic field of
about 0.1 MG, a concentration on the order of 1018 cm–3,
a temperature of about 300 eV, and a low impurity con-
centration since impurities may increase radiative loss)
is created in compartment 2 of a special toroidal
MAGO chamber consisting of two compartments con-
nected through a narrow annular nozzle (Fig. 1).

2. Then the plasma is compressed with the help of
high-power magnetic drivers (such as magnetic explo-
sion generators) quasiadiabatically (at rates on the
order of 1 cm/µs) to parameters corresponding to the
Lawson criterion.

At both stages, the plasma flow occurs in the rz
plane perpendicular to the azimuth magnetic field.

Plasma is heated at the first stage when it is expelled
by a magnetic piston from compartment 1 to compart-
1063-7761/03/9701- $24.00 © 20061
ment 2. The initially cold plasma in the nozzle region is
accelerated to supersonic velocities (exceeding the
Alfven velocity) and is heated during deceleration in
collisionless shock waves formed at the nozzle exit [4]
and as a result of anomalous viscous heating in near-
electrode layers [5]. In this way, the magnetic energy of
the plasma is transformed into kinetic and then thermal
energy. After the passage of the plasma to the second
compartment and leveling out of the total pressure in
the two compartment, a comparatively calm plasma
with β ≈ 1 (β is the ratio of the thermal pressure to the

B

1 23

4 v
r

z

Fig. 1. Schematic diagram of a MAGO plasma chamber: B
is the magnetic field, 1 and 2 are compartments, 3 is the
annular nozzle, and 4 is the magnetic piston.
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magnetic pressure) and with essentially subsonic veloc-
ities is formed in compartment 2.

It is this plasma that is intended for compression in
a quasispherical or cylindrical manner by moving the
walls to the second compartment of the chamber (e.g.,
by displacing the cylindrical outer wall of the chamber
shown in Fig. 1 in the inward direction along the
radius). In spite of comparatively low velocities of the
plasma and the small value of its kinetic energy as com-
pared to the magnetic energy, these velocities are still
higher than the compression velocities; such a motion
of the plasma is interesting in several aspects. First, the
plasma flow may affect the convective cooling of the
plasma, carrying heat from hot plasma regions to cold
walls. Second, the flowing plasma can be contaminated
by impurities washed away from the walls. This erosion
of the wall material may become especially strong
when the plasma is compressed for initiating thermonu-
clear fusion [1–3] since the substance of the walls in
this case is obviously in the plasma state and is easily
miscible with the hydrogen plasma. Consequently, it is
important to know the evolution of the hydrodynamic
flow after the plasma heating stage and the lifetime of
this flow.

Classical transport coefficients of a hot magnetized
plasma [6] such as viscosity and magnetic diffusion
coefficients are small due to magnetization. For this
reason plasma flows are characterized by large Rey-
nolds numbers and magnetic Reynolds numbers and
become turbulent, as is almost always the case with
large Reynolds numbers. Since the plasma flow across
the magnetic field occurs at moderate Alfven-Mach
numbers MA , MHD instabilities also develop across the
magnetic field [7] and the arising turbulence is two-
dimensional by nature [8]. In direct 2D MHD computa-
tions (see, for example, [2, 9]) made in a specific spe-
cial geometry with specific boundary and initial condi-
tions taking into account the rich variety of physical
effects, it is difficult to obtain answers to fundamental
questions concerning the relaxation of a 2D flow. This
is due to the fact that (i) we have to single out phenom-
ena of interest against the background of all other fac-
tors and (ii) the inclusion of all factors inevitably lowers
the computational potential used to study the 2D flow
as well as phenomena directly related to the flow. Con-
sequently, it is expedient to consider separately a 2D
turbulent MHD flow without taking into account insig-
nificant phenomena in this flow. Since the MHD prob-
lem is reduced in this case to the problem of 2D hydro-
dynamic turbulence, its main features can be analyzed
both in the MHD formulation and in the 2D hydrody-
namic formulation.

Following [10], we carry out the numerical simula-
tion of flows in a bounded region for large Reynolds
numbers to determine the parameters of these flows and
the kinetic energy dissipation rates. In our computa-
JOURNAL OF EXPERIMENTAL 
tions, possible dissipation mechanisms are viscosity1

associated with the difference scheme and generation
of sound with its subsequent nonlinear damping in
shock waves.

If the generation of sound were possible, it could be
an important channel of kinetic energy dissipation for a
2D turbulent flow since other mechanisms are slow in
this case in view of the smallness of transport coeffi-
cients (viscosity and magnetic diffusion) and since the
energy loss rate due to generation of sound (see [11]
and Section 2) should be determined only by Mach
numbers M (which are smaller than unity for real flows
after the heating stage in the MAGO chamber, but not
too small, M ≈ 0.4). In order to explore the possibility
of generation of acoustic waves by turbulence in a
bounded volume for small Mach numbers M (we
denote by M the total Mach number, which virtually
coincides with MA in our computations), it is sufficient
to analyze this possibility in a simplified formulation
(for a 1D problem) in which a turbulent flow plays the
role of the driving force producing compressions and
expansions in the volume. The results of this investiga-
tion are described in Section 2.

The relaxation of a 2D flow is investigated for the
evolution of a solitary circular vortex in a square box.
Since the initial conditions have to be “forgotten” to a
certain extent in the course of flow evolution, these con-
ditions are not very significant for determining param-
eters appearing at late stages of turbulence (e.g., the
exponent of the energy spectrum in the inertial inter-
val). It would be interesting, however, to establish the
characteristic times of a transition to turbulence (the
order of magnitude of these time intervals have to be
independent of the initial conditions and the shape of
the region in question) and their ratio to the times of
kinetic energy decay due to viscosity.

2. GENERATION OF SOUND BY TURBULENCE
IN A BOUNDED REGION

A possible channel for kinetic energy dissipation in
turbulent flow is the generation of acoustic waves (or
magnetoacoustic waves in the MHD case) and their
subsequent shock-wave damping. The theory of sound
generation by turbulence occupying a finite volume in
an unbounded medium was developed by Lighthill [7].
This theory is applicable when the size of the medium
is large with characteristic acoustic wavelengths
excited in a turbulent flow. If turbulence occupies a vol-
ume with a characteristic size L and characteristic
velocities are v, the characteristic wavelengths are on
the order of cL/v  (c is the velocity of sound, c @ v) are

1 For a magnetized plasma with (ωτ)i @ 1, energy dissipation due
to viscosity is stronger than ohmic dissipation by a factor mi/me
(for small MA , the relative contribution of ohmic dissipation is
even smaller). However, the specific mechanism of dissipation
(when it is small and is manifested more strongly on a short
scale) is immaterial for general properties of a turbulent flow.
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much larger than the sizes of the volume occupied by
turbulence. In this case, the Lighthill theory is inappli-
cable, and the question arises whether or not acoustic
waves are generated and what the intensity of these
waves is. In other words, will turbulent motion be dis-
sipated along this channel and what will the rate of this
dissipation be?

Since the scale of pressure pulsations in a turbulent
flow is on the order of ρv 2, we can answer these ques-
tions by considering a 1D flow excited by such pulsa-
tions of pressure in the region with a size on the order
of L with a characteristic pulsation time on the order of
L/v. Since v  ! c, such pulsations lead to plasma dis-
placements on the order of (v /c)2L with characteristic
velocities on the order of (v /c)2v. For this reason, we
analyze the flow bounded by a rigid wall on one side
and with a piston performing preset oscillations with an
amplitude on the order of (v /c)2L and a characteristic
times of about L/v  on the other side. We sought the
answers to the following questions: will shock waves
be excited in the region for small values of v  and will
the piston perform work on the average? To make the
motion of the piston smooth at the initial instant, the
equation of motion was chosen in the form of the sum
of two sine functions,

(1)

where T = 2L/v. For obtaining reliable computation
results, we took a large number of meshes over a large
time period on the order of 200T.

Figure 2 shows the velocity profiles obtained in
computations with Mach numbers M ≡ v /c = 0.5 and
M = 0.33 at instant t = 1000L/c. These profiles are typ-
ical of both computations and show that shock waves
are formed in the region for M = 0.5 and are not formed
for M = 0.33. Computations show that shock waves are
formed in the region for M ≥ 0.5 and the piston per-
forms work on the average, while no shock waves are
formed for M ≤ 0.33 and the piston does zero work on
the average. Thus, we can conclude that in the case of
2D turbulence, when a small fraction of energy is con-
tained in a small-scale region (in the 2D turbulence
spectrum, E(k) values for large wave numbers k
decrease faster than k–3; see below), this dissipation
channel does not exist for small Mach numbers.

For 3D turbulence in a bounded region, this dissipa-
tion channel still exists due to a noticeable fraction of
energy in the short-wave spectral region, although it is
strongly suppressed for small values of M. Indeed, the
characteristic frequencies of pulsations in turbulence
are on the order of kv. Consequently in the case of 3D
turbulence, when E(k) ~ k–5/3 for large values of k and,
accordingly, the velocities v k ~ v (kL)–1/3, the frequen-
cies increase with k and the applicability condition
kv k ~ c/L for the Lighthill theory holds for large values
of k. Since the amount of energy emitted in the form of

x L
v
c
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2

0.55 2πt
1.1T
-----------sin 0.45 2πt

0.9T
-----------sin– 

  ,=
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sound per unit mass of a turbulent medium per unit time
is given by

the same estimate will be valid in the range of application
of the theory upon the substitution v   v k, L  1/k;
this gives the following estimate for a bounded volume:

Thus, the intensity of sound generation by a 3D turbu-
lent medium is additionally suppressed in a bounded
medium by a factor of (v /c)2.5 as compared to that in an
unbounded medium.

3. 2D COMPUTATION OF RELAXATION 
OF A VORTEX FLOW

3.1. Formulation of the Problem 

In order to find the characteristics of 2D flows in a
bounded region, we considered the evolution of a circular
vortex in a square region. We assumed that an azimuth
velocity depending on the radius according to the law2 

(2)

2 It should be noted that, in accordance with MHD analysis, 2D
flows emerging in the MAGO system at the stage following
dynamic heating are quite complex and turbulent from the very
outset; for this reason, the evolution of such flows does not con-
tain the stage of instability development, which is typical of a
flow with initial conditions (2). However, the general properties
of a developed 2D turbulent flow, which are independent of the
initial conditions, must be applicable to 2D MAGO flows also.

εs
v 8

c5L
--------,∼
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Fig. 2. Velocity profiles u in the gas created by the piston
oscillating according to law (1) for Mach numbers M ≡
v /c = 0.5 (1) and 0.33 (2) at instant t = 1000L/c.
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is set at the initial instant in the region –3 < x < 3,
−3 < y < 3 with constant density and velocity of sound.
The velocity of sound c was assumed to be equal to 2.5
since the initial Mach number in these computations
can be set at M = 0.4. Such a velocity distribution is
unstable [7] for 1 < r < 2 and its 2D evolution will lead
to turbulence. The boundaries of the region were
assumed to be rigid and perfectly slipping.

In a purely hydrodynamic formulation, the problem
is invariant to rotations through an angle of π/2 and
computations could be made only for a quarter of the
region. However, the computations were made in the
MHD formulation in the rz geometry with azimuth
magnetic field; a 2D flow was simulated by moving the
region to a large but finite radius (the ratio of the radius
to the region size was equal to 10). This led to perturba-
tions breaking the symmetry of the problem so that the
computations were made in the entire region.

Computations were based on a 2D MHD code in the
ideal formulation, i.e., with a magnetic field frozen into
the substance. The equations of ideal magnetohydrody-
namics [12] were integrated using a rectangular Euler
(i.e., fixed spatial) grid and an explicit conservative dif-
ference scheme of the second order of accuracy with
respect to space and time. The spatial approximation of
convective terms had the first order of accuracy. The
main dissipative process in calculations was the viscos-
ity associated with the difference scheme and being on
the order of ν ~ v∆x (∆x is the spatial mesh spacing of
the grid). However, the origin of this viscosity is insig-
nificant for determining the turbulent flow parameters
on large and intermediate scales (on energy-carrying
and inertial intervals of wave vectors) for small viscos-
ity values. It is important that viscosity is significant on
small scales and ensures a certain level of kinetic
energy dissipation.

In our computations, the velocity of sound at the ini-
tial instant was assumed to be a purely Alfven velocity.
Subsequently, the internal energy and the total velocity

2 4 6 8

1

2

3

4

5

0
10

t × 10–3

Et2 × 10–5

Fig. 3. Time dependence of quantity Et2 for computations
made on a 100 × 100 grid (energy is measured in units of its
initial value).
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of sound increased to a certain extent due to kinetic
energy dissipation. However, this increase was insignif-
icant since we considered practically incompressible
liquids (for M = 0.4, the kinetic energy in the region
was about 2% of the magnetic energy).

Comparing computations with different numbers of
meshes, we can determine the characteristic Reynolds
number of the flow under investigation. For the compu-
tation in question with a number of meshes equal to
400 × 400, the Reynolds number defined as

(v  is the mean square velocity in the region; for the
region in question, we assume that L = 3 and dlnE/dt is
the decrement of kinetic energy damping) amounts
approximately to 300.

3.2. Results of Computation 

Since the energy damping in our case was deter-
mined by computational viscosity on the order of ν ~
v∆x, the kinetic energy E for large time periods, for
which the characteristic sizes of the flow are deter-
mined by the region size L, have to decrease in accor-
dance with the equation

(3)

Since E ∝  v 2, it follows from Eq. (3) that the velocity
decreases as v  ∝  L2/∆xt and the energy, accordingly,
decreases as E ∝  1/t2 for large time intervals. In order
to verify this, calculations were made on a relatively
coarse 100 × 100 grid up to large values of time. The
time dependence of the quantity Et2 used in this compu-
tation is shown in Fig. 3 (energy is measured in units of
its initial value, and time is measured in units of the
ratio of the unit size to the unit velocity). It can be seen
that the energy corresponding to large values of time
indeed decreases as 1/t2.

Figure 4 shows the |v | isolines of the flow calculated
on a 400 × 400 grid at time instants t = 0 (initial instant)
and t = 30, 200, and 500. It can be seen from Fig. 4 that
the pattern of the flow acquires a complex form typical
of turbulence upon the development of instability.

Figure 5 shows the time dependence of the kinetic
energy

the enstrophy

,
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2v
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Fig. 4. Isolines of velocity modulus at instants t = 0 (a), 30 (b), 200 (c), and 500 (d).
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and the angular momentum

of the region (radius r and azimuth velocity vϕ are mea-
sured from the center of the region). It can be seen that
the energy decreases over quite long periods of time
determined by the computational viscosity; the energy
decay time in the system is on the order of L2/ν and is
proportional to the Reynolds number. This result was
obtained for the flows computed on all grids considered
by us (100 × 100, 200 × 200, and 400 × 400) and is quite
obvious. Small short-period oscillations of kinetic
energy are associated with the propagation of acoustic
(magnetoacoustic) waves excited for these Mach num-
bers and do not lead to kinetic energy dissipation (see
Section 2).

While using the obtained result on slow damping of
2D turbulence, which is determined, in contrast to 3D
turbulence, by the Reynolds numbers, it is important to
describe correctly the physical mechanisms leading to
dissipation in plasma flows in a magnetic field (for the
MAGO system). Such mechanisms include the longitu-
dinal physical viscosity [6], which may be mainly
determined (in the case of a magnetized plasma) by the

M v ϕr x ydd∫=
F EXPERIMENTAL AND THEORETICAL PHY
establishing of equilibrium between the longitudinal
and transverse degrees of freedom of ions, and strongly
magnetized shear viscosity [6]. In many cases, physical
viscosity was disregarded in computations made for an
MAGO system (see, for example, [2, 9]); nevertheless,
these computations led to rapid attenuation of the flow.
This apparently indicates considerable numerical com-
putational errors in the description of the plasma at the
stage following dynamic heating.

100 200 300 400 500

0.5

1.0

0

1.5
E, H, M

t

1

2

3

Fig. 5. Time dependences of H (1), E (2), and M (3). All the
quantities are measured in units of their initial values.
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It can be seen from Fig. 5 that the enstrophy
decreases slightly faster than energy, which points to a
certain increase in the characteristic scales of the flow.
The presence of the enstrophy flux in addition to a
decrease in the energy could lead to the dependence
E(k) ∝  k–3 [8] for the kinetic energy spectrum in the
range of large wave numbers in a certain time interval.
However, this rearrangement of characteristic scales of
the flow occurs for considerably decreasing kinetic
energy in view of insufficiently large Reynolds num-
bers. For this reason, the above dependence actually is
not observed for the energy spectrum (see below). The
drop in the initial enstrophy and the dependence E(k) ∝
k–3 for the energy spectrum could probably be obtained
in a certain time interval on the curves describing the
time dependence of enstrophy on simulating a flow
with large values of Re, e.g., using a finer grid.

Since the system geometry is not invariant to rota-
tions through an arbitrary angle, the angular momen-
tum in the system is not conserved (see Fig. 5). The
angular momentum remains virtually unchanged for
small time intervals, indicating an increase in the vortex
size since the kinetic energy decreases on the corre-
sponding time interval. With increasing time, the angu-
lar momentum experiences more significant changes
associated with interaction with the walls. The turbuli-
zation of the flow and the formation of other large vorti-
ces even led to sign reversal for the angular momentum
in calculations with different initial conditions [10]. In
the case considered here, angular momentum performs
irregular oscillations with a large period, preserving
approximately its characteristic value in spite of the fact
that the kinetic energy decreases by more than half dur-
ing the computation time.

The kinetic energy spectra of the flow in question
calculated on a 400 × 400 grid at different instants are
shown in Fig. 6. Since we study the flow in a bounded

10 100
10–8

10–6

10–4

10–2

1

1

1
4

23

E

k

Fig. 6. Spectra of 2D turbulence kinetic energy in a bounded
region at instants t = 0 (1), 50 (2), 300 (3), and 500 (4).
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square box, the expansion of the velocity field into the
spectrum was carried out using the formulas

Here, N is the number of meshes in a certain direction
in the grid, x and y are measured from the boundaries of
the region, and summation in the last formula is carried
out over the values of m and n falling in the given inter-
val of dk values. The total energy in Fig. 6 is measured
in its initial value. Energy values E(k) are given only for
k < 50 since the effect of the finite number of meshes in
the grid starts manifesting itself and the error in the
evaluation of Fourier integrals increases (this can be
judged from the behavior of the spectrum calculated for
k ≈ 50, especially for t = 500, when small oscillations
appear on the curves).

At the initial instant, for large values of k, the energy
decreases in proportion to k–4 and exhibits oscillations
associated with singularities of function vϕ(r) defined
by formula (2). As turbulence develops, the curve
describing the energy spectrum on the segment corre-
sponding to the inertial interval (approximately from
k ≈ 3 to k ≈ 15) preserves a practically constant slope
corresponding to the dependence E(k) ∝  k–n, where n =
4.2 ± 0.4 for different instants. Thus, the slope of the
curve describing the spectrum is slightly larger than
that required for a direct enstrophy flux towards smaller
scales (which requires the k–3 dependence [8]). Figure 6
also shows that the energy condensation predicted for
bounded regions [8] is observed for small values of k:
the energy spectrum is narrowed with time and energy
values decrease quite sharply for large values of k; the
main fraction of energy is concentrated in harmonics
with minimum possible wave numbers in a bounded
system.

We have analyzed the flow in the region with ideal
slippery walls. However, the behavior of the energy
spectrum in the case of 2D turbulence for large values
of wave vectors k should also be preserved for a flow in
the region with zero velocity at the boundaries (adhe-
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Fig. 7. Evolution of volume distribution of vorticity for consecutive time intervals t = 0 (a), 50 (b), 200 (c), and 500 (d).
sion condition) in view of the absence of energy trans-
fer to the region of large k. Attenuation of the hydrody-
namic flow in the 2D case occurs over time periods on
the order of L2/ν. The drag forces emerging in a flow
through a tube or during streamlining of bodies have to
be of the same order of magnitude as for a laminar flow
and have to differ from the drag forces in the latter flow
with arbitrarily large Reynolds numbers only in a con-
stant factor.

It should also be noted that heat transfer processes
and mixing of substances with 2D turbulence differ
from those in the case of 3D turbulence. In the 2D case,
when E(k) decreases in the inertial region faster than
according to the k–3 law, the relative velocity v  of two
particles separated by a small distance λ from each
other is determined by large scales of the flow and is
proportional to this distance:

where v 0 and L are the characteristic velocity and spa-
tial scale of the flow. Consequently, the time variation
of this distance follows the law λ1exp(v 0t/L) (λ1 is the
initial spacing). Thus, the time required for the particles
to move apart to a large distance λ2 is a logarithmic
function of the initial spacing,

v v 0
λ
L
---,∝

t
L
v 0
------

λ2

λ1
-----,ln∝
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in contrast to 3D turbulence, for which even two infi-
nitely close particles in the inertial region move apart
over a finite time interval to a finite distance [11]. Thus,
heat transfer and mixing in the 2D case are slightly
retarded as compared with time t ~ L/v 0 of these pro-
cesses typical of the 3D case (if we take the main scale
L of the flow for λ2 and the viscous scale for λ1, which

is equal to λ1 ~  in the 2D case, the retardation

factor is ). Accordingly, temperature pulsation
in the 2D case (as well as pulsations in the concentra-
tions of substances being mixed) also differ from the
pulsations in the 3D case; repeating the derivation of
distribution of these pulsations [11], we find that the
pulsations in the inertial region have to be distributed in
the 2D case in proportion to ; i.e., they have to be
almost independent of the spacing between particles,
while these pulsations in the 3D case are proportional
to λ1/3.

As applied to flows of a magnetized plasma, this
should result in less uniform distributions of impurities
and temperature in the plasma as compared to the 3D
case, which must be taken into account in the descrip-
tion of plasma radiation by impurities and plasma cool-
ing. For example, the model of homogeneous mixing
used for describing 3D flows may be inapplicable in the
2D case.

For a 2D flow of an ideal fluid, the vorticity

Lν/v 0

Reln

λln

curlv( )z

∂v x

∂y
---------–

∂v y

∂x
---------+=
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have to be conserved in each Lagrangian part of the liq-
uid by virtue of the Thomson theorem [11]. However,
the vorticity of each particle in a 2D turbulent flow
changes since in this case enstrophy cascades towards
large wave numbers take place, and the enstrophy in the
entire region decreases even when the kinetic energy is
conserved. It is interesting to analyze this phenomenon
together with the evolution of the volume distribution
of vorticity.

For conducted computations, we obtained the vol-
ume distribution of vorticity W(curl), where curl ≡
(curlv)z; i.e., W is the fraction of the total volume dV/V,
in which the value of the curl lies in a preset interval
dcurl so that

Figure 7 illustrates the evolution of this distribution for
time instants t = 0, 50, 200, and 500.

It can be seen from Fig. 7 that the distribution
becomes narrower with time. First, at t < 50, the distri-
bution exhibits a certain diffusion both for positive and
negative values. The valleys between the initial peaks,
which correspond to the region of increasing velocity in
Fig. 4a for a positive value of the curl, to the region of
decreasing velocity for its negative value, and to the
region of stationary region for zero curl, are blurred.
Then the peaks for negative and positive values of vor-
ticity disappear, and only a single peak remains in the
vicinity of zero. For large values of time, the vorticity
distribution preserves its shape with a peak for small
negative values, a wing rapidly decreasing towards neg-
ative values, and a wing decreasing slowly towards pos-
itive values. However, the ratio of the widths of these
wings changes with time as t varies from 200 to 500.
This is probably associated with the fact that time inter-
vals t = 200–500 are not large enough for attaining a
steady state of 2D turbulence. A comparison of curves 1
and 2 in Fig. 5 shows that the ratio of quantities H and
E still varies in this temporal range. It should be noted
that the asymmetry in the vorticity distribution, which
stems from the initial conditions, is preserved. Thus,
the initial conditions of the problem are not “forgot-
ten” completely, which is also confirmed by the angu-
lar momentum dynamics (see Fig. 5). This quantity
preserves its sign despite considerable oscillations
(under other initial conditions, the angular momentum
preserved its sign on the average over a large time
period [10]).

4. CONCLUSIONS

Let us formulate the general conclusions concerning
2D turbulence in a bounded region.

1. In the case of 2D turbulence in a bounded region
for small Mach numbers M, turbulence does not gener-

W
dV

Vdcurl
----------------.=
JOURNAL OF EXPERIMENTAL
ate sound; consequently, this dissipation channel is
closed completely for small M.

2. The results of 2D computations should be applied
with care to 3D turbulent flows in view of considerable
difference in the properties of 2D and 3D turbulent
flows. In 3D flows, kinetic energy attenuation, heat
transfer, and mixing of substances may occur at much
higher rates than in the 2D case. For example, the
kinetic energy attenuation for a flow in a bounded
region in the 3D case have to occur over time periods
on the order of αL/v, where α is a small factor charac-
terizing the intensity of turbulent pulsations, while
analogous time periods in 2D calculations are on the
order of L2/ν.

3. The turbulence energy spectrum for large periods
of time becomes narrower, indicating energy condensa-
tion for small k. For large values of k, the energy slopes
more rapidly with increasing k than by the k–3 law.

4. The volume distribution of vorticity for large time
periods approximately preserves its shape and exhibits
asymmetry relative to positive and negative values due
to asymmetry in the initial conditions. In this sense, the
initial conditions of the problem are not “forgotten”
completely.

In addition, the following conclusions can be drawn,
which are essential for description of 2D turbulent
flows of a magnetized plasma across the magnetic field
in regions bounded by material walls (e.g., for an
MAGO system).

(1) Since the time of 2D turbulence energy dissipa-
tion is not associated with energy transfer on a small
scale, it is necessary for calculating plasma flows in a
magnetic field to correctly describe the physical mech-
anisms leading to dissipation (longitudinal physical
viscosity [6], which can mainly be determined in the
case of a magnetized plasma by establishing equilib-
rium between the longitudinal and transverse degrees
of freedom of ions, and strongly magnetized shear vis-
cosity [6]).

(2) The distributions of impurities and temperature
of the plasma may be less uniform as compared to the
3D case, which may be important for describing the
radiation of plasma by impurities and its cooling.
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Abstract—We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field
and at H ≈ 4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the
vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature
superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T)
in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known
superconducting transition at Tc ≈ 40 K, MgB2 exhibits an anomalous behavior of both heat capacity and
thermal conductivity in the region of T ≈ 10–12 K. The anomalies of C(T) and κ(T) take place in the same tem-
perature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature
anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the
density of the Bose condensate corresponding to these carriers at Tc2 ≈ 10–12 K. © 2003 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The unexpected high-temperature superconductiv-
ity recently reported by Nagamatsu et al. [1] for the
well-known compound magnesium boride (MgB2) has
stimulated extensive investigation into the properties of
this substance. Presently, a considerable number of
papers devoted to MgB2 can be found in the literature [2].
The interest in this compound is related to a high criti-
cal temperature (Tc ≈ 40 K) in combination with rela-
tively simple structure, high conductivity, and large
critical fields and currents (including those in strong
magnetic fields). The critical current densities observed
in MgB2 already exceed 107 A/cm2 at a critical fields of
up to 40 T [2]. Magnesium boride, in contrast to cuprate
high-temperature superconductors (HTSCs), exhibits
less anisotropic properties. Possessing large coherence
length (correlation length), this material is very attrac-
tive for HTSC electronics.

In the present-day stage of research in the field, it is
important to establish whether the critical temperature
of superconductors of this class can be increased fur-
ther. In order to elucidate this question, it is necessary
to understand whether MgB2 belongs to the traditional
superconductors described by the Bardeen–Cooper–
Schrieffer (BCS) theory or this compound is close to
oxide HTSCs. However, the results of investigations
1063-7761/03/9701- $24.00 © 20070
reported so far provide no unambiguous answer con-
cerning the nature of superconductivity in MgB2.

Indeed, the critical temperature of MgB2 is close to
a limiting value predicted by the BCS theory, or even
exceeds this estimate, which can be considered as
indicative of an unusual mechanism of superconductiv-
ity in this compound. On the other hand, a high carrier
density (N ≈ 1.5 × 1023 cm–3 [3]) can be treated as evi-
dence in favor of the usual superconductivity, since the
characteristic carrier density in oxide HTSCs is N ≈
(3−5) × 1021 cm–3. However, the energy band structure
calculations performed for MgB2 showed that the
observed carrier density is due to the presence of two
groups of carriers [4] related to different regions of the
Fermi surface (formed by different electron states of
boron). If the quasi-two-dimensional pxy states of boron
with a carrier density Nxy ≤ 1022 cm–3 play the same role
as do the quasi- two-dimensional states of oxygen in the
CuO2 planes of cuprate HTSCs, then it is probable that
the superconductivity observed in MgB2 at T ≈ 40 K is
caused by only one of these groups. Both the results of
theoretical calculations [5, 6] and the experimental data
for heat capacity [7–13] and thermal conductivity [12–15]
point to the possibility that two superconducting gaps
may exist in MgB2. One of these gaps corresponds to
Tc ≈ 40 K and the other (also arising at T ≈ 40 K) corre-
003 MAIK “Nauka/Interperiodica”
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sponds to Tc2 ≈ 10–12 K, where it exhibits a sharp
growth. However, the final judgment requires addi-
tional experiments.

As is known, oxide HTSCs exhibit several charac-
teristic anomalies in their thermal properties. In partic-
ular, the thermal expansion of high-quality samples of
such HTSCs shows an anomaly in the form of negative
thermal expansion coefficient α(T) at low tempera-
tures [16]. In addition, the temperature variation of α in
this region is significantly affected by the applied mag-
netic field [17]. No such anomalies are observed in
usual superconductors. However, our recent prelimi-
nary results [18] showed that analogous low-tempera-
ture anomalies take place in MgB2 as well. Thus, it is
still difficult to unambiguously classify MgB2 as a
usual superconductor.

In this study, the behavior of the thermal expansion
coefficient α(T), the heat capacity C(T), and the thermal
conductivity κ(T) of MgB2 was studied in the vicinity
of Tc and at lower temperatures. In addition, we studied
the effect of an external magnetic field (H ≈ 4 T) on the
behavior of α(T). It was established that all three ther-
mal characteristics—heat capacity, thermal conductiv-
ity, and thermal expansion—exhibit an anomalous low-
temperature behavior (in the region of T ≈ 10–13 K).
The anomalies of C(T) and κ(T) take place in the same
temperature interval where the thermal expansion coef-
ficient of MgB2 becomes negative.

2. EXPERIMENTAL METHODS

The thermal expansion of samples was studied by
dilatometry. The relative sample length variation, ∆L/L
(L is the sample length), was determined with the aid of
a strain gauge possessing a sensitivity of about 10–7 [19].
The magnetic field was generated by a superconducting
solenoid and applied to the samples in the direction of
straining. The dilatometer was calibrated by measuring
temperature dependences of the thermal expansion of
rare earth oxides.

The temperature variation of heat capacity and ther-
mal conductivity was studied by modulation calorime-
try [20, 21] at a continuous temperature sweep rate of
about 1 K/min and a temperature modulation frequency
of 20 Hz, or (for checking) under quasiisothermal con-
ditions at various modulation frequencies in the interval
from 0.05 to 160 Hz. The amplitude of the thermal flux
modulation was 0.1, 0.45, and 0.7 mW at temperatures
within 5–10, 10–20, and 20–50 K, respectively. The
amplitude of the corresponding sample temperature
oscillations ranged within 0.002 to 0.07 K. The modu-
lated thermal flux P(T) = P0cosωt supplied to one side
of a disk sample induced decaying temperature waves
T(t) = Re[T0exp(iωt ± kz]. The heat capacity and ther-
mal conductivity of the sample were determined from
the results of measurements of the amplitudes (T01, T02)
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
and phases (ϕ1, ϕ2) of the sample temperature oscilla-
tions T01sin(ωt + ϕ1) and T02sin(ωt + ϕ2) on both sides
of the disk. The temperature dependences of the heat
capacity and thermal conductivity of the sample were
monitored with a temperature resolution of 0.01 K. The
method of two-channel modulation calorimetry is
described in more detail in [20, 21].

3. SAMPLES

The samples were prepared by hot pressing from the
initial MgB2 powder synthesized via a reaction of
metallic magnesium with boron. The process was con-
ducted under standard conditions (950–1000°C, 4 h,
atmospheric pressure) and yielded a homogeneous tar-
get material. The disk samples were hot pressed at
50 kbar and 950–1000°C. Variation of the pressure dur-
ing sintering led to 3% changes in the sample density.
According to X-ray diffraction data, the density of sam-
ples synthesized at a maximum pressure amounted to
97–98% of the ideal value.

The X-ray diffraction patterns of synthesized MgB2
samples obtained on a DRON-4 diffractometer coin-
cided with the reference patterns [2]. In addition, the
quality of samples was checked by measurements of
the electrical and magnetic properties, which also cor-
responded to standard values [2]. The Meissner effect
exceeded 44%. The measurements of thermal expan-
sion, heat capacity, and thermal conductivity were per-
formed on disk samples with a diameter of 2.8–3.2 mm
a height of 1–5 mm.

4. EXPERIMENTAL RESULTS

Figure 1a presents the plot of ∆L/L versus tempera-
ture for Mg2B in the absence of an applied magnetic field
(H = 0). For comparison, Fig. 1b shows analogous exper-
imental data for YBa2Cu3O7 – x [22], Bi2Sr2CaCu2O8
[23], La2 – xSrxCuO4 (x = 0.1) [24], and Ba1 – xKxBiO3
(x = 0.13) [24]. A decrease in the lattice parameters
with increasing temperature (in the low-temperature
range) was also reported for YBa2Cu4O8 [25]. In MgB2,
the ∆L/L value is negative in the temperature interval
7 K ≤ T ≤ 16.5 K. Thus, the thermal expansion coef-
ficient α = (1/L)dL/dT of MgB2 is negative for T =
7−11 K. As can be seen from Fig. 1b, the oxide HTSCs
also exhibit regions of negative thermal expansion
α(T). Therefore, MgB2 shows the same anomalous
low-temperature behavior (α < 0) as the oxide HTSCs
studied in [22–24] (Fig. 1b).

Figure 2a shows the influence of a magnetic field
(H = 36 kOe) on the temperature dependence of ∆L/L
in MgB2. For comparison, Fig. 2b illustrates the effects
of magnetic field on the thermal expansion of
Ba0.6K0.4BiO3 and La1.9Sr0.1CuO4 [24]. As can be seen,
application of the magnetic field (H ≈ 40 kOe) produces
SICS      Vol. 97      No. 1      2003
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Fig. 1. Temperature dependence of the linear thermal expansion coefficient ∆L/L in MgB2 (a) in comparison with analogous data
for other HTSC systems (b): (1) YBa2Cu3O7 – x (b is the lattice parameter along the b axis [22]); (2) Bi2Sr2CaCu2O8 (c is the lattice
parameter along the c axis; c0 and c300 are the c values at T = 0 and 300 K, respectively [23]); (3) La2 – xSrxCuO4 (x = 0.1; ab is the
plane [17]); (4) Ba1 – xKxBiO3 (x = 0.13; α is the thermal expansion coefficient [17]).
an anomalous action upon α(T) in these oxide HTSCs
at low temperatures.

Figure 3 shows the plots of ∆L/L versus H for MgB2
measured at various temperatures. As can be seen, the
curve observed at T = 12.1 K (i.e., in the region of T ≤
16.5 K, where ∆L/L is negative) is qualitatively differ-
ent from the curves measured at T > 16.5 (only three
plots for T = 18.8, 28.2, and 37.5 K are presented, for
example). The behavior of ∆L/L observed at T > 16.5 K
can be explained by the magnetostriction effect; on the
contrary, the sign of ∆L/L at T = 12.1 K is opposite and
JOURNAL OF EXPERIMENTAL
magnetostriction cannot account for the observed vari-
ation of ∆L/L. In Ba0.66K0.34BiO3, magnetostriction was
reported [26] to decrease ∆L/L with increasing H (up to
5 T) at low temperatures. We have also observed such
dependences for MgB2 at T > 16.5 K. Therefore, in
addition to magnetostriction, a stronger opposite effect
similar to that in oxide HTSCs is operative in MgB2 at
T < 16.5 K.

At still higher temperatures, the curves of α(T) and
α(H) in MgB2 resemble the temperature dependences
observed in usual metals. Similar behavior was
 AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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observed in samples of the Ba1 – xKxBiO3 system with
metallic conductivity (x > 0.4) [17].

Figure 4 presents the temperature dependence of the
heat capacity plotted as C/T versus T in the temperature
interval from 5 to 45 K for one of the MgB2 samples
studied (sample 1). The curve exhibits two clearly man-
ifested features, at T ≈ 38–40 K and T ≈ 10 K, as more
sharply revealed by differential plots in the insets. The
feature at T ≈ 38–40 K is attributed to a transition to the
superconducting state. Figure 5 shows the analogous
C/T  versus T plot in the 5–50 K interval for another
MgB2 sample (sample 2). As can be seen, both the
aforementioned features (see the insets in Fig. 5) are
observed for this sample as well. The two samples
exhibit a generally similar behavior, somewhat differ-
ing only in magnitude of the heat capacity jumps. This
is explained by slightly (to within 3%) different densi-
ties of these samples.

The thermal conductivity κ(T) of MgB2 samples
studied was significantly dependent on the conditions
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of preparation (temperature and pressure of the synthe-
sis). At low temperatures, the value of κ in MgB2 is
small and close, for example, to that in Nb3Sn. Figure 6
shows the temperature dependence of the thermal con-
ductivity of MgB2 (sample 1) measured in the temper-
ature interval from 5 to 45 K. As can be seen, the curve
of κ(T) exhibits both anomalies indicated above for
C(T), although the anomaly in the region of T ≈
38−40 K is less pronounced (the dashed straight line in
Fig. 6 is drawn only for contrast). The higher the ther-
mal conductivity level, the less pronounced this anom-
aly. The low-temperature anomaly at T ≈ 10–12 K is
more clearly manifested. In Fig. 7, this feature is
depicted for both samples 1 and 2 on a greater scale
against the low-temperature interpolation curves shown
by dashed curves. In all cases, for both Tc and T ≈
10−12 K, the decay of κ(T) with decreasing tempera-
ture slows down in the vicinity of the phase transition.

Thus, there is an evident coincidence of the three
anomalies observed in our experiments for the thermal
SICS      Vol. 97      No. 1      2003
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properties of MgB2 at T ≈ 10–12 K, including the heat
capacity C(T), the thermal conductivity κ(T), and the
thermal expansion coefficient α(T) [18].

5. DISCUSSION

1. The heat capacity jump ∆C is usually estimated in
the presence of a strong magnetic field breaking the
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Fig. 3. Plots of the linear thermal expansion ∆L/L versus H
for MgB2 measured at various temperatures. Bars indicate
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superconducting state. Under these conditions, the
entropy, free energy, and the superconducting transition
parameters (e.g., within the framework of the BCS the-
ory [7]) can be evaluated as well. However, for estimat-
ing only ∆C, we can use a difference between the
experimental C(T) values and the low-temperature heat
capacity interpolation, provided that the maximum of
∆C at T < Tc still occurs close to Tc and the interpolation
formula for T > Tc is fitted to experiment in the vicinity
of Tc . In our case, there was a good agreement between
the interpolation using the extended Debye model
C/T = γ + β2T 2 + β4T 4 and the experimental data for
MgB2 in the temperature interval 40 K < T < 50 K.

However, the difference between the above interpo-
lation and that based on a simpler expression C/T = γ +
β2T 2 in the region of the heat capacity jump was as
small as 1–1.5%, and at higher temperatures this differ-
ence was negligibly small. Figure 8 demonstrates how
the interpolation curve C/T = 4.394 + 1.065 × 10–2T 2

with the coefficients determined by least squares fits to
the experimental data for MgB2 sample 1 at 40 K ≤ T ≤
45 K. The applicability of such simple interpolation
formulas to description of the experimental data is
related to the fact that the temperature in the interpola-
tion region (T ≈ 40 K) is much smaller than the Debye
temperature for MgB2 (Θ ≈ 900–1000 K [7– 11]). This
simple interpolation is reliable only within a rather nar-
row temperature interval of ∆T ≈ 15–20 K [7–11].

Insets 1 in Figs. 4 and 5 show the heat capacity
jumps ∆C/T determined by subtracting interpolated
values from the experimental data in the regions of Tc
for MgB2 samples 1 and 2, respectively. As can be seen,
the transition to a superconducting state in both sam-
ples begins at T ≈ 40 K. Therefore, the critical temper-
ature determined at the onset of the heat capacity jump
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Fig. 5. The temperature dependence of the heat capacity of
MgB2 (sample 2). The insets are as in Fig. 4.
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is Tc ≈ 40 K. The peaks of the heat capacity jumps occur
rather close to a boundary of the interpolation region
(T ≈ 40 K), which justifies applicability of the aforemen-

0.5

100 20 30 40

1.0

1.5

2.0

2.5

T, K

κ, W/(K m)

Fig. 6. The temperature dependence of the thermal conduc-
tivity of MgB2 (sample 1) measured in the temperature
interval from 5 to 45 K. Dashed line is drawn for contrasting
the feature observed at the superconducting transition tem-
perature Tc.
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tioned simple interpolation (Debye formula) for estima-
tion of the ∆C jump in the vicinity of Tc. For the MgB2

samples studied, we obtained ∆C ≈ 145–152 mJ/(K mol).
Although these estimates are somewhat greater than the
other published values [7–12], the general agreement is
quite satisfactory.

The second anomaly on the C(T)/T curves was
observed for both MgB2 samples in the region of T ≈
10–15 K. The C(T)/T curve at temperatures above this
anomaly is well approximated by the Debye formula.
As can be seen from the differential heat capacities
plotted in the insets in Figs. 4 and 5, determined by sub-
tracting interpolated values from the experimental data
in the regions of anomalies, both samples exhibit addi-
tional heat capacity jumps ∆C2. The peaks of these fea-
tures are observed at T ≈ 10–12 K. This behavior is
indicative of a phase transition taking place in MgB2 at
T = Tc2 ≈ 10–12 K.

There is a certain theoretical basis [4–6] to believe
that this temperature corresponds to a sharp growth in
the second (smaller) superconducting gap correspond-
ing to the second group of charge carriers mentioned
above. Below the temperature corresponding to the
peak of this anomaly, the experimental heat capacity
exhibits a sharp decrease similar to that observed in
usual superconductors in the course of the supercon-
ducting transition. According to our estimates, ∆C2 ≈
3.2 mJ/(K mol) for sample 1, and ∆C2 ≈ 7.6 mJ/(K mol)
for sample 2. It should be noted that the number of
experimental points obtained in this temperature inter-
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Fig. 7. The low-temperature anomaly in the thermal conductivity of MgB2 at T ≈ 10–12 as observed for samples (a) 1 and (b) 2.
Dashed curves show result of interpolation according to the Debye model.
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val for sample 1 was relatively small, so that the above
∆C2 value can be considered as a lower limit.

In our previous measurements of the heat capacity
of MgB2 [7–12], the second (low-temperature) feature
on the C(T) curve was not as clearly revealed. Never-
theless, Golubov et al. [6] showed that the theory based
on a two-band model (with different superconducting
gaps on π and σ sheets of the Fermi surface) provides
for a better agreement with those experiments than does
the single-band theory. Estimates show that the second
(smaller) gap must correspond to the critical tempera-
ture Tc2. Our new results that clearly reveal the second
feature in C(T) at T ≈ 10–12 fully confirm this hypo-
thesis.

2. In this study, we have observed anomalies in the
heat capacity C(T), the thermal conductivity κ(T), and
the thermal expansion coefficient α(T) of MgB2 in the
region of T ≈ 10–12 K. Since this coincidence can
hardly be accidental, there must be a certain common
reason accounting for the anomalous behavior of three
different quantities in this temperature interval. We
believe that the temperature T ≈ 10–12 K corresponds
to a sharp increase in the small superconducting gap
corresponding to the second group of charge carriers. In
this case, the anomaly in C(T) is obvious. An increase
in the thermal conductivity κ(T) in the vicinity of a
superconducting transition was also frequently obser-
ved in various alloys and compounds [27] and attrib-

22

1600 1800 2000

24

26

T2, K2

C/T, mJ/(ä2 mol)

Fig. 8. The plot of C/T versus T2 demonstrating how the
interpolation curve C/T = 4.394 + 1.065 × 10–2T2 (solid
line) with the coefficients determined by least squares fits to
the experimental data (black squares) for MgB2 (sample 1)
at 40 K < T < 45 K.
JOURNAL OF EXPERIMENTAL
uted to a decrease in the phonon scattering on electrons
or holes upon their pairing.

As can be seen from Fig. 6, a small increase in κ(T)
on the background of generally decreasing thermal
conductivity is also manifested at T ≈ 38–40 K, that is,
in the region of the main critical temperature Tc . Since
the concentration of “frozen” charge carriers responsible
for this transition (N ≤ 1022 cm–3) is significantly smaller
than the total carrier density (N ≈ 1.5 × 1023 cm–3 [3]), we
may expect a significantly more pronounced effect in
the region of the second transition at T ≈ 10–12 K,
where the main body of charge carriers is subject to
pairing.

3. The above approach to interpretation of the exper-
imental data, based on the notion about two supercon-
ducting gaps corresponding to two groups of charge
carriers, allows us to estimate the values of coefficient
γ for each group. The value of γ determined from the
temperature dependence of the heat capacity at T > Tc
is essentially a sum of the values for each group of
charge carriers: γ = γ1 + γ2, where γ1 refers to the first
group (determining the behavior at Tc ≈ 40 K) and γ2
refers to the second group related to the anomaly at
Tc2 ≈ 10–12 K. It was found that γ = 4.39 mJ/(K2 mol)
for sample 1 and 3.99 mJ/(K2 mol) for sample 2.

Assuming that the contribution due to the electron
heat capacity of the first group at temperature below
15 K is negligibly small (as evidenced by a nearly lin-
ear plot of C/T versus T2 in this region above the second
anomaly), we can independently estimate the γ1 and γ2

values. This yields γ1 = 1.48 mJ/(K2 mol) for sample 1 and
1.44 mJ/(K2 mol) for sample 2; and γ2 = 2.91 mJ/(K2 mol)
for sample 1 and 2.55 mJ/(K2 mol) for sample 2. Thus,
according to our experimental data for MgB2 , the aver-
age coefficients are γ1 = 1.4–1.5 mJ/(K2 mol) and γ2 =
2.55–2.9 mJ/(K2 mol). Since γ is proportional to the
electron density of states (DOS) on the Fermi level, the
ratio γ2/γ1 ≈ 2 characterizes the DOS ratio for the two
groups of charge carriers in MgB2.

4. We can also estimate the ratio of the heat capacity
jump at Tc to the γ value. According to the BCS theory,
∆C/γTc = 1.43. Taking this value for ∆C/Tc at the peak
maximum (Figs. 4 and 5), we obtain ∆C/γ1Tc ≈ 2.89 and
2.57 for samples 1 and 2, respectively. These values are
indicative of a strong coupling in the first group of car-
riers (with lower density) in MgB2. This conclusion
agrees with the results of calculations [28] performed
using a model of two groups of carriers, where it was
demonstrated that the electron–phonon interaction in
MgB2 is not weak. For the second (low-temperature)
transition, the ∆C2/γ2Tc2 ratio determined directly from
Figs. 4 and 5 does not exceed 0.3. Such a small value of
this ratio may indicate that the superconducting gap
appears only on some parts of the Fermi surface corre-
sponding to the second group of charge carriers.
 AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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6. CONCLUSIONS
We have experimentally established that MgB2, like

oxide-based high-temperature superconductors, exhib-
its a negative thermal expansion coefficient at low tem-
peratures. The anomaly in the thermal expansion is sig-
nificantly affected by the magnetic field. An anomalous
behavior was also observed for the heat capacity and
the thermal conductivity of MgB2 in the region of T ≈
10–12 K. Thus, the anomalies of the three quantities
take place in the same temperature interval. These low-
temperature anomalies are explained by the presence of
a second group of charge carriers and by an increase in
the density of the Bose condensate corresponding to
these carriers at Tc2 ≈ 10−12 K. This conclusion is con-
sistent with the results of investigations of the other
properties of MgB2.
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Abstract—The hypothesis concerning the existence of singular points on the imaginary time axis for a corre-
lation function of a system with the dipole–dipole interaction of nuclear spins of a crystal is verified. Within the
framework of the self-consistent fluctuating field theory taking into account the principal corrections related to
the correlation of local fields, a result for this coordinate is obtained in terms of the ratios of lattice sums.
Experimental values of this coordinate are calculated from the wings of the nuclear magnetic resonance
absorption spectrum of a BaF2 crystal for the magnetic field directions along the three crystallographic axes.
Good agreement of the theoretical and experimental results justifies this hypothesis. © 2003 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Nuclear magnetic systems of crystals are convenient
objects for studying nonequilibrium statistical physics
of many-particle systems. The point is that, first, the
exact form of the interaction (dipole–dipole) is known;
second, the magnetic system is well isolated from the
lattice; and third, one can control the system state with
the help of a resonant radio-frequency field and observe
it using nuclear magnetic resonance (NMR) methods.
An important characteristic of these systems is the rate
of attaining equilibrium between the subsystems in the
presence of a large mismatch of resonant frequencies
determined by the wings of the spectra of the correla-
tion functions. This fact stimulated the study of such
systems. In a number of experimental studies, it was
found that the frequency dependence of the wings of
the spectra can be described by a simple exponential
function (see, e.g., [1–3] and the analysis of other
experiments in [4]) instead of the expected Gaussian
function [5]. The peculiarity of this shape of the spec-
trum wing is that the corresponding correlation func-
tion must have a singular point on the imaginary time
axis. In turn, this may indicate a new type of collective
effects in such systems. Unfortunately, low accuracy of
the registration of a weak signal on the spectrum wing
makes the interpretation of its shape ambiguous.

Theoretical investigations [6] confirmed the possi-
bility of the existence of singular points on the imagi-
nary time axis for correlation functions of rigid spin lat-
tices at high temperatures, at least for lattices of large
dimension d. The divergence of the form of the spec-
1063-7761/03/9701- $24.00 © 20078
trum wing from the Gauss distribution is caused by the
time fluctuations of the local magnetic field on the spin
due to the flips of the neighboring spins creating this
field. In turn, these flips are caused by the internal inter-
action between the spins (dipole–dipole or exchange
interaction). The coordinate of a singular point can be
easily calculated [6–9] in the approximation of a self-
consistent fluctuating local field for lattices of large
dimension, i.e., in the case when the correlation of local
fields can be neglected. The problem on the variation of
this coordinate with decreasing space dimension
remains so far unsolved.

In our earlier publications [10, 11], we found the
first terms of the expansion in the inverse dimensional-
ity of space for the coordinate of a singular point of the
autocorrelation function (ACF) of the Heisenberg
model with an isotropic interaction of nearest neigh-
bors. The experimental data [1–3] were obtained for
nuclear magnetic systems of crystals with the dipole–
dipole interaction. This interaction is characterized by
the anisotropy and necessitates the inclusion of distant
neighbors. Both these factors are taken into account in
this paper when determining the coordinate of a singu-
lar point.

In the approximation of a self-consistent fluctuating
field described in Section 2, a simple nonlinear equa-
tion for the ACF taking into account the axial symmetry
of the dipole–dipole interaction in the spin space is
written out the coordinate of a singular point of the
solution to this equation is determined, and a formula
for the variation of this coordinate with a small varia-
tion in the coefficients of the power series in the time
003 MAIK “Nauka/Interperiodica”
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for the ACF is derived. In Section 3, we calculate the
first corrections to the singular point coordinate due to
the local field correlation arising when the space
dimension is decreased. In Section 4, theoretical results
are compared with experimental data.

2. EQUATIONS
FOR AUTOCORRELATION FUNCTIONS

We consider a system of nuclear magnetic moments
with spin I = 1/2 that form a perfect lattice of dimen-
sion d. The spin dynamics in a strong constant magnetic
field is determined by the secular part of the dipole–
dipole interaction with the Hamiltonian [5]

(1)

where

θij is angle between the internuclear vector rij and the

constant magnetic field, and  is the α component
(α = x, y, z) of the vector spin operator at the ith site. For
a high temperature, the time-dependent correlation
functions of two spins located at the ith and jth lattice
sites are defined by the expression [5]

(2)

We obtain the cross correlation function for i ≠ j and the
autocorrelation function for i = j. By virtue of the trans-
lation symmetry of the lattice, we omit subscript ii on
the ACF. Taking into account the axial symmetry of the
Hamiltonian with respect to spin components, we use
the notation Γx(t) = Γy(t) = X(t). Autocorrelation func-
tions (2) can be expanded into power series,

(3)

where the nth coefficient of the expansion is determined
via the 2n-fold commutator

(4)

It is known [5] that M2nα is the 2n-order moment of the
spectral density of the corresponding ACF.

Up to now, exact equations for ACFs have not been
obtained because of the complexity of description of a
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many-particle system with strong interactions. Many
approximate versions of the equations have been pro-
posed. In particular, the following system of nonlinear
integral equations for ACF was derived in [12, 13]:

(5)

The kernels of these equations are represented in the
form of a series in irreducible dressed skeleton dia-
grams with an increasing number of vertices. Each term
of the series can be expressed in terms of the multiple
time integral of the product of functions Γx(t) and Γz(t).
All contributions corresponding to the diagrams with
two and four vertices are determined.

System of equations (5) has been investigated in [6]
in the approximation of lattices of an infinite dimension
that corresponds to the approximation of a self-consis-
tent fluctuating local field. In this limit, the equations
for ACF correspond to the averaged precession of the
magnetic moment in a three-dimensional Gaussian ran-
dom local field whose correlation functions are
expressed via the spin ACFs as

(6)

where

For series Gα0(t), majorizing series are found and the
existence of singular points of the ACFs on the imagi-
nary time axis is established. In the neighborhood of the
nearest singular point with coordinate τ0, the principal
part has the form

(7)

The coordinate of the singular point estimated by the
spectral moments on the order from two to ten is

(8)

where M2x = 5S1/4 is the second moment of the spec-
trum of function Γx(t).

If the space has a finite dimension, in the series for
the kernel, one should take into account the additional
terms

that contain coupling loops and multiple interactions of
neighboring spins. These corrections reflecting the cor-
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relation of the local fields vanish in the limit as d 
∞. It is natural to expect that, if the dimension of the
space is sufficiently large, the relative variations of
moments M2nα of the ACFs and the coordinates of the
singular point τc with additional terms taken into
account are small (on the order of ε ~ 1/d); i.e.,

The coordinate τc of the singular point (equal to the
convergence radius of the power series in time) can be
determined as the limit of the ratio between the
moments,

which gives

(9)

Due to the complexity of series Gα 0(t), even the first

corrections  (linear in ε) can hardly be found.
Therefore, to estimate δτc , we take the approximate
version of the equation for Γα(t) that allows one to
determine high-order moments. In the case of dipole–
dipole interaction (1), as a result of the efforts of many
authors [3, 4, 8, 9, 14–18], it has been established that
a good approximation is obtained if the (longitudinal)
interaction between the z components of the spin is
fully taken into account and the xx and yy (transverse)
interactions are taken into account to the minimal
required extent. For the ACF of the x component of the
spin, we take the Anderson–Weiss equation [19]
describing the spin precession in a Gaussian longitudi-
nal field, renormalize this field to ensure the correct
value of the second moment M2x , and determine its cor-
relation function (6) via the ACF of the z component of
the spin [4, 8. 9]:

(10)

Here and below, in the formulas we pass to the imagi-
nary dimensionless time t  it(5S1/4)–1/2, preserving
its previous notation. After this substitution, the argu-
ment of the exponential function in expression (10)
becomes positive and the coefficient M2x of the integral
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becomes equal to unity. For the ACF of the z compo-
nent, we use the equation

(11)

It will be shown below that, for the location of the sin-
gular point on the imaginary time axis, this equation
gives an insignificant difference as compared with the
equation used before [4, 8, 9],

(12)

but simplifies the calculations.

Since the kernel of Eq. (11) is X2(t), we denote the
latter by Y(t) and obtain, using formula (10), the differ-
ential equation

(13)

Substituting Y(t) in the form of the series

(14)

into Eq. (13) and equating the coefficients of the same
powers of time, we obtain the recurrence equation

(15)

The coordinate of the singular point (equal to the
convergence radius of series (14)) can be determined
(taking into account the order of pole (7)) as the limit of
the ratio

(16)

Solving recurrence equation (15) and using for-
mula (16), we find
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2 Y2n 2– 2n 2+( ) 2n 3+( )

Y2n 2n 1–( )2n
-------------------------------------------------------.

n ∞→
lim=

τ0
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M2x
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whereas, using Eq. (12) with the convolution, we obtain

Both these values differ from a more precise value (8)
by 3%. This difference exerts no substantial influence
on the values of corrections δτc; therefore, for the calcu-
lation of these corrections, we will use the simplest
equation.

3. CALCULATION OF THE CORRECTIONS 
TO THE COORDINATE 

OF THE SINGULAR POINT 
OF THE CORRELATION FUNCTION

Let us consider function Γx(t) as the generating
function of the lattice patterns formed by bonds bij .
This can be justified by the structure of expression (4)
for moments, where each commutator with * adds a
bond bij to the constructed pattern. In more detail, the
rules of constructing the patterns are considered
in [6, 10, 11]. The solution to the system of equa-
tions (10) and (11) of the zeroth-order approximation
is the generating function of the root trees constructed
from the double bonds. On these trees, the double
bonds caused by the zz interactions (z fields in Eq. (10))
alternate with the bonds caused by the xx and yy inter-
actions (the variations of z fields described by Eq. (11)).
An arbitrary number of branches which have no inter-
sections can emerge from any node of this tree. This can
hold as d  ∞. When constructing the patterns on
finite-dimensional lattices, there is a probability that the
branches intersect either directly near the node from
which they emerge, which results in a multiple interac-
tion of the neighbors, or near a far node, forming a loop
of bonds. For a tree with such a fragment, the weighting
factor obtained during the construction of the tree by
calculating the initial multiple commutators (4) does
not coincide with the factor obtained in the case of
intersection due to the mechanical overlap of branches
constructed independently by Eqs. (10) and (11) and
located on a real lattice. Therefore, the latter should be
eliminated and replaced by trees with a correct weight.

To theoretically estimate the variation of the coordi-
nate of the singular point of the ACF caused by the
described variations of the moments, we consider the
dimension d of the space as a variable. If d is taken suf-
ficiently large, then the intersection probability is low
and we can consider only the simplest intersections,
namely, the quadruple interaction of neighbors and
loops in the form of a triangle formed by four bonds.
Such contributions are contained even in the fourth
moment of the ACF. The intersections in which more
bonds are involved give a higher order of smallness in
1/d [9, 10]. In the case of the dipole–dipole interaction

τ0
2.68

M2x
1/2

----------.=
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and d = 3, their smallness is confirmed by the ratio of
the values of the lattice sums [2, 20, 21].

3.1. Quadruple Interaction of Neighbors 

As is shown in [3], in the case when the number of
neighbors is not very large, to improve the accuracy of
the main approximate equation, one should replace the
Anderson–Weiss function (10) by the product

(17)

(18)

where Γzj/i(t) is the ACF of z component of the jth spin
disregarding the interaction with the ith spin on which
the field is considered,

(19)

In addition, recurrence of the interaction of the jth
and kth spins is excluded in the kernel of this integral
equation.

We differentiate the square of function Pij(t) (17)
with respect to time:

(20)

Taking into account relations (17)–(20), one can easily
verify that, neglecting the contribution of separate

interaction  in comparison with sum S1, we return to
the equation of zeroth-order approximation (13). To
within the first correction from these contributions, we
find that

Here,

and Y1(t) is the solution to the equation

Pi t( ) Fij t( ),
j

∏=

Fij t( ) 1
bij

2

S1
----- Fij t2( )Γ zj /i t1 t2–( ) t1 t2,dd

0

t1

∫
0

t

∫+=

Γ zj /i t( ) 1
2
5
---

b jk
2

S1
------

k i j,≠
∑+=

×
P j t2( )Pk t2( )
Fij t2( )F jk

2 t2( )
--------------------------------Γ zj /i t1 t2–( ) t1 t2.dd

0

t1

∫
0

t

∫

d
dt
-----Pi

2 t( ) 2Pi
2 t( ) 1

Fij t( )
------------- d

dt
-----Fij t( ).

j i≠
∑=

bij
2

Y t( ) Pi
2 t( ) Y0 t( )

S2

S1
2

-----Y1 t( ).–= =

S2 bij
4

j

∑=
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(21)
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∫= +
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0
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0
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+
4
5
---DY0 t( ) Y0

0

t2

∫ t3( ) t1 t2 t3ddd
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∫
0

t

∫ +
8
5
---AY0 t( ) Y0

0

t2

∫ t3( ) t1 t2 t3 Γ z t5( ) t4 t5dd

0

t1

∫
0

t3

∫ddd

0

t1

∫
0

t

∫

– 2BY0 t( ) Γ z t t1–( ) t1 Γ z t3( ) t2 t3 ,dd

0

t2

∫
0

t1

∫d

0

t

∫

where Γz(t) is determined via Y0(t) with the help of
Eq. (11). The coefficients A, B, C, and D are introduced
into Eq. (21) in order to separate the contributions of
different kinds. For A = 3/2, C = 1, D = 1, and B = 0, we
obtain the contribution corresponding to the exclusion
of the quadruple interaction of neighbors due to the
intersection of the tree branches emerging from the
same node. For A = 0, C = 0, D = 0, and B = 1, we obtain
the contribution of the quadruple interaction with the
correct weight, which, therefore, appears with the
opposite sign. This contribution stems from the second
iteration in Eq. (18).

3.2. Triangle Composed of Four Bonds 

There are two reasons for the formation of the sim-
plest triangle-like loops: first, the contribution of the
cross correlation function Γzjk(t) to the correlator of the
local field on the separated spin in expressions (10) and
(17) and, second, the result of the simultaneous action
of the field of the third spin on the two spins bonded by
the transverse (flip–flop) interaction in the kernels of
integral equations (11) and (19) for Γz(t). In the one-
loop approximation, we obtain

where

Y t( ) Y0 t( )
S3

S1
2

-----Y1 t( ),–=

S3 bij
2 bikb jk,

i,  j ∑
 

=

JOURNAL OF EXPERIMENTAL 
Y0(t) is the zeroth-order approximation (13), and, for
the first-order correction Y1(t), we obtain equations of
the form (21) with the following values of the parame-
ters: A = 1, B = 0, C = 0, and D = 1.

The structure of Eq. (21) becomes clear when inter-
preted in terms of generating functions of root trees
having an embedded fragment with a branch intersec-
tion. The summands on the right-hand side with coef-
ficients A, B, C, and D represent the contribution of the
corresponding fragment with the intersection joined to
the tree root. If, however, the intersection occurs at a far
node of the tree, then the necessary chain of bonds from
the root to the fragment is composed via iterations with
the help of the first two terms on the right-hand side of
the equation. Recall that we operate in the approxima-
tion linear in intersections; i.e., we assume that there is
at most one intersection on the tree. By virtue of this
assumption and the translation invariance of the lattice
sites, the form of the expression for the fragment is
independent of its location in the tree. However, its con-
tribution to Y1(t) obviously depends on the length of the
chain leading to this site.

3.3. Calculation of Corrections 

Substituting series (14) for functions Y0(t) and Y1(t)
into Eq. (21), we obtain the following recurrence equa-

tion for coefficients  of function Y1(t):Y2n
1( )
(22)

Y2n
1( ) 1

n
---Y2n 2–

1( ) 2
5n
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Y2k
0( )Y2 n k– 2–( )

1( ) Y2k
1( )Y2 n k– 2–( )

0( )+
2k 1+( ) 2k 2+( ) 2k 3+( )
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k 0=

n 2–

∑ D Y2n
0( ) 1

n
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  C

2
---- 1 1

n
---– 

  Y2n 2–
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+
C
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Using this equation, we determine coefficients 
for different contributions; then, by formula (9), we find
the corresponding corrections to the coordinate of the
singular point. The correction corresponding to the
exclusion of the forbidden quadruple interaction of
neighbors (A = 3/2, B = 0, C = 1, D = 1) is equal to

(23)

the correction corresponding to the addition of the
allowed quadruple interaction of neighbors (A = 0, B =
1, C = 0, D = 0) is

(24)

and the correction corresponding to the inclusion of
correlation of fields in the form of a triangle composed
of four bonds (A = 1, B = 0, C = 0, D = 1) is

(25)

4. COMPARISON WITH EXPERIMENT

In a neighborhood of the nearest singular point,
principal part (7) determines the wing of the ACF spec-
trum,

(26)

Moreover, since the singularities of all time correlation
functions of the spin system under consideration must
be located at the same point, the argument of the expo-
nential function in formula (26) is the same (including
the NMR absorption spectrum, i.e., the Fourier trans-
form of the correlation function of the total spin of the
system [5]).

The wing of the NMR absorption spectrum was
experimentally investigated in [3] for a single crystal of
BaF2 with a magnetic field directed along the crystallo-
graphic axes [111], [110], and [100]. The frequency
dependence of the spectrum for detuning from the spec-

trum center exceeding 2.2  (for [100], even

2.1 ), where M2 = 9S1/4, is well described by expo-
nential function (26) (this is justified by the fact that the
experimental points shown in Fig. 3 in [3] in the semi-
logarithmic coordinates lie on a straight line). The val-
ues of argument τe of the exponential function in for-
mula (26), at which the best agreement with the exper-

iment is achieved in the detuning interval from 2.2

Y2n
1( )

S2

S1
2

-----
δτc

τ0
------- 1.507

S2

S1
2

-----,=

S2

S1
2

-----
δτc

τ0
------- 0.124–

S2

S1
2

-----,=

S3

S1
2

-----
δτc

τ0
------- 0.55

S3

S1
2

-----.=

g ω( ) Aα ω ω τc–( ).exp≈

M2

M2

M2
NAL OF EXPERIMENTAL AND THEORETICAL PHY
to 3 , are given in the table in the form of the ratio
to the limiting theoretical value of τ0 (8). The mean
square error increases from 0.5% in orientation [111] to
2% in orientation [100] due to a decrease of the signal-
to-noise ratio with increasing NMR line width. How-
ever, the actual accuracy of determining τe is lower,
first, because of the systematic distortions in the wing
introduced by the spectrometer, and second, since the
simple dependence (26) is attained in the limit as ω 
∞, i.e., in the spectral region that is inaccessible
because of the noise. As the center of the spectrum is
approached, the deviation of its shape from depen-
dence (26) becomes noticeable.

Let us return to theoretical results. Collecting cor-
rections (23)–(25), we obtain

(27)

Substituting the values of the lattice sums for a simple
cubic lattice from [2], we find the values of this ratio for
the three main orientations of the magnetic field which
are presented in the table. It is difficult to estimate the
accuracy of these values, because expansion (27) is
asymptotic in 1/d. We estimate the error caused by the
replacement of complete equation (5) with simplified
equations (10) and (11), as well as the error in deter-
mining the convergence radius of the series by its coef-
ficients, in the range of 2–3%.

The results presented in the table show good agree-
ment between the theoretical and experimental values
of the coordinates of singular points of the correlation
functions for all three orientations of the field. It should
be emphasized that the orientation dependence of the
second moment, which is the frequency scale of the
spectrum, does not affect the ratios presented in the
table. Their values depend not on the mean square of
local fields, but on the extent of correlation of these
fields, which is expressed in formula (27) in terms of
the ratio of different lattice sums. On the one hand, the
coincidence of two independent estimates for the coor-
dinate shows that the errors whose values were difficult

M2

τc

τ0
---- 1 1.38

S2

S1
2

----- 0.55
S3

S1
2

-----.+ +=

The ratios of the experimental τe and theoretical τc values of
coordinates of the singular points of the correlation functions to
limiting value τ0 (8) for three directions of the magnetic field

Field direction τe/τ0 τc/τ0

[111] 1.10 1.14

[110] 1.24 1.25

[100] 1.33 1.34
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to estimate are small. On the other hand, the values of
the coordinate ratios obtained may indicate that, with
the decrease in the space dimension from d = ∞ to
d = 3, the singular point moves but does not go to infin-
ity. A final conclusion can be made after increasing the
accuracy of theoretical calculations and experimental
measurements.

Note in conclusion that result (27) can be applied to
experiments performed on other crystals and for other
field orientations after substituting the corresponding
values of the lattice sums.
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Abstract—The dynamics of magnetic nanoclusters (or molecules) with a large spin in a magnetic field whose
strength varies in proportion to time is analyzed. Such a field breaks the symmetry relative to rotations through
2π, as well as clockwise and counterclockwise rotations, and induces a number of new coherent quantum effects
in the spin dynamics, such as the formation of a band energy spectrum with continuous spin states or the emer-
gence of “Bloch” oscillations in spin precession and interband Zener tunneling. Bloch oscillations are
manifested in experiment as equidistant identical jumps on the magnetization curve. The interband Zener tun-
neling gives rise to additional jumps and peaks on the susceptibility of the system. © 2003 MAIK “Nauka/Inter-
periodica”.
1. The interest in problems related to the dynamics
of spin systems has received considerable impetus in
recent years [1–11]. This is mainly due to the recent
discovery of macroscopic quantum tunneling of mag-
netization and molecular bistability and quantum hys-
teresis, as well as a new type of magnetic oscillations
associated with the Berry phase. These mesoscopic
effects were discovered in so-called systems with a
giant spin and in systems of magnetic Mn12 and Fe8
nanoclusters with the ground-state spin equal to 10. The
problems are related to the macroscopic quantum
coherence, quantum measurements in spin systems,
and the mechanisms of destruction of quantum correla-
tions due to the interaction with the environment, espe-
cially upon a transition from quantum objects to mac-
roscopic objects. These problems are of practical inter-
est for magnetic nanoelectronics (spintronics) and
quantum informatics. Such nanoclusters with a giant
spin may be used as bistable elements for future-gener-
ation magnetic storage devices. These nanoclusters are
also of interest to specialists in quantum computers for
possible implementation of cubits [12–14].

This study is aimed at analysis of the dynamics of an
anisotropic quantum system with a large spin, placed in
a magnetic field that increases (decreases) with time.
Such a field generates a torque acting on the spin and
inducing its precession, thus revealing new features in
the dynamics of the spin system. Here, we develop the
ideas formulated by one of the authors for magnetic
clusters [15, 16], metal rings and ring-shaped mole-
cules [17].

2. Let us consider a quantum-mechanical system
(ion, molecule, cluster, etc.) experiencing the action of
1063-7761/03/9701- $24.00 © 0085
a magnetic field that increases (decreases) at a constant
rate. We write the Hamiltonian of the system in the
form

(1)

where g is the Lande factor, µB is the Bohr magneton,
and VCF is the crystal field operator. We assume that the
total angular momentum J @ 1; consequently, we will
describe the dynamics of this system using a semiclas-
sical approximation. We also assume that g = 2. The

crystal field VCF =  + , where  is a field

with easy-plane symmetry, while  creates aniso-

tropy in the easy plane. Here  ! . We also
assume that the Cartesian z axis is perpendicular to the
easy plane and coincides in direction with the magnetic
field vector B.

3. In order to describe the spin dynamics, we will
use the coherent quantum states |θ, ϕ〉 [18], where θ and
ϕ are the polar and azimuth angles of the angular
momentum. We write the Lagrangian of the system in
the form

(2)

where M is the magnetic moment of a particle and γ =
e/mc. Formula (2) can be derived from Hamiltonian (1)
by using the standard technique of coherent quantum
states. The first term in Eq. (2), which is known as the
Wess–Zumino term, reflects the nonorthogonality of
coherent states at different instants; the second term is
the anisotropy energy, while the last term is just the

H gµBJ B t( ) VCF,+⋅=

VCF
1 VCF

2 VCF
1

VCF
2

VCF
2 VCF

1

L
M
γ
----- 1 θcos–( )ϕ̇ Ua θ ϕ,( ) MB t( ) θ,cos+–=
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Zeeman energy. In the simplest case (which, however,
is sufficient for clarifying the basic aspects of the prob-
lem), the (orthorhombic) anisotropy energy can be cho-
sen in the form

(3)

We will also consider other types of anisotropy, viz., the
tetragonal anisotropy

(4)

and the hexagonal anisotropy

(5)

The anisotropy constants Ki are chosen so that they
ensure easy-plane anisotropy.

4. The partition function of a quantum system can be
represented as a functional integral in the Euclidean
space (τ = it),

(6)

Here, β = 1/kBT, θ = θ(τ) and ϕ = ϕ(τ). Since K2 ! K1,
we assume that θ – π/2 ! 1 in moderate magnetic
fields. In this case, expression (6) for the partition func-
tion can easily be integrated with respect to variable θ.
The computational procedure is as follows. The action

attains its minimal value if

(7)

Substituting expression (7) into (6), expanding the
action into a series in the vicinity of the minimum to
within the second-order terms, and evaluating the
Gaussian integral appearing in this case, we obtain

(8)

Here, we have omitted the insignificant preexponential
factor to simplify the notation.

Ua θ ϕ,( ) K1 θsin
2

– K2 θsin
2

2ϕ ,cos–=

0 K2 ! K1.<
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4ϕcos

Ua θ ϕ,( ) K1 θsin
2

– K2 θsin
4

– K3 θsin
6

–=

– K4 θsin
6

6ϕ .cos

Z
1
"
--- L θ ϕ,( ) τd
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The effective Lagrangian appearing in expression (8)
can be written to within the total time derivative in the
form

(9)

Here, we have introduced the notation I = M2/2K1γ2 for
the effective moment of inertia of the particle. Analo-
gous formulas are valid for tetragonal (4) and hexago-
nal (5) anisotropy. Constant K4 plays the role of quan-
tity K2. Anisotropy constants K2 and K3 lead to insignif-
icant redefinition of quantity K1 in Eq. (9). In the
subsequent analysis, we will not explicitly indicate
these distinctions while writing all the formulas for the
simplest case (3) unless this leads to misunderstanding.

It should be emphasized that variable ϕ is defined
here not on the set S1 (0 ≤ ϕ ≤ 2π) as is usually done in
the theory of angular momentum, but on the set R1 of
all real numbers. In the given problem, the latter set is
a trivial fibration of space S1, playing the role of the
basis of space R1. This is due to the fact that the pres-
ence of field Bz(t) = at breaks the system symmetry rel-
ative to the transformation ϕ  ϕ + 2πn, where n is
an integer. Indeed, this symmetry breaking is obvious
since the magnetic field Bz(t) varying with time gener-

ates a steady-state vortex electric field Eϕ = – R/2πc,
where R is the radius of the circle of rotation. Conse-
quently, rotations ϕ  ϕ + 2πn, as well as clockwise
and counterclockwise rotations, are nonequivalent.

Systems with a potential energy of the “washboard”
type,

where U0(x) is a periodic function and c is a certain con-
stant (the potential energy appearing in expression (9)
is precisely of this type), were analyzed earlier. An elec-
tron moving in a crystal in a constant external electric
field [19–21] or a Josephson junction carrying a direct
current possesses [22–24] energy of this form. For this
reason, we can expect that the spin dynamics will
exhibit some properties similar to those of the above-
mentioned systems. The formation of the band energy
spectrum, Bloch oscillations, and the interband Zener
tunnel effects are examples of such characteristic fea-
tures.

5. We can proceed to analysis of quantum effects in
the same way as it was done by Anderson [25]. We will
treat the macroscopic generalized coordinate and
momentum of the system as operators. The generalized
momentum corresponding to coordinate ϕ is given by

Leff
Iϕ̇2

2
-------- Ua ϕ( )– γI Ḃϕ ,+=

Ua ϕ( ) K2 2ϕ .cos–=

Ḃ

U x( ) U0 x( ) cx,+=

Pϕ
∂L
∂ϕ̇
------ I ϕ̇   γ –  B ( ) .= =
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This expression should be supplemented with an arbi-
trary constant α since Lagrangian (9) is defined to
within the total derivative . In quantum mechanics,
constant α is defined in terms of the Berry phase [5, 26].
For our purposes (in particular, for considering Bloch
oscillations in spin precession), it is sufficient to ana-
lyze the case of an integral spin, i.e., to set α = 0 [26].
Then the system Hamiltonian can be written in the form

(10)

where Pϕ = –i"∂/∂ϕ. The gauge transformation ψ 
ψexp(iγIBϕ/") leads to the Schrödinger equation of the
type

(11)

It is useful to consider precession for Ua(ϕ) = U0 =
const. In this case, Eq. (11) can be written in the form

(12)

Point ϕT = (U0 – E)/γI  is a classical turning point. Pre-
cession takes place for ϕ ≥ ϕT , while for ϕ < ϕT it is
impossible from the classical point of view.

Introducing for convenience a new dimensionless
variable

we can write Eq. (12) in the form

Here, . The solution to this equa-
tion has the form

(13)

where Ai(x) is the Airy function. In the region ϕ ≥ ϕT ,
the wave function oscillates at a frequency increasing
with ϕ. In this case, the energy of the spin increases
continuously under the action of the torque. For
|ϕ − ϕT | @ l0, function (13) asymptotically approaches
the function

which readily leads to the following expression for the

αϕ̇

H
1
2I
----- Pϕ γIB+( )2 Ua ϕ( ),+=

i"
∂ψ
∂t
------- Hψ, H

Pϕ
2

2I
------ Ua ϕ( ) γI Ḃϕ .–+= =

d2

dϕ2
---------

2I

"
2

-----γI Ḃϕ 2I

"
2

----- E U0–( )+ + ψ ϕ( ) 0.=

Ḃ

ξ
ϕ ϕ T–

l0
---------------, l0

"
2

2I2γḂ
--------------- 

 
1/3

,= =

d2

dξ2
-------- ξ+ 

  ψ ξ( ) 0.=

ψ ξ( ) ψ ϕT l0ξ+( )=

ψ ξ( ) NAi ξ–( ), N
2I1/2

γḂ( )1/2
"

2
----------------------

 
 
  1/3

,= =

ψ ϕ( ) N
l0

ϕ ϕ T–
--------------- 

 
1/4 2

3
---

ϕ ϕ T–
l0

--------------- 
 

3/2 π
4
---+ ,sin=
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period of precession:

6. In order to analyze the spin dynamics in the gen-
eral case, we first consider the properties of Hamilto-

nian (11) for  = 0. Before passing to an analysis of the
equation with Ua(ϕ) ≠ const, we consider the boundary
conditions to this equation, i.e., the behavior of func-
tion ψ(ϕ) upon a change in ϕ by 2π. The eigenstates of
Hamiltonian (11) are the Bloch functions

(14)

where m is an arbitrary real number (m ∈  R1) and n is
the energy band number. In analogy with the term
“charge states” used for characterizing such states in
the theory of the Josephson effect, we can introduce the
term “continuous spin states.” Parameter m in this case
can be naturally referred to as quasispin (cf. the quasi-
momentum of a band electron). It is also interesting to
compare these excitations with anions [27].

It is well known in quantum mechanics that the pro-
jection of the spin moment onto a preferred direction is
quantized. Quantized spin states are defined in space S1

(0 ≤ ϕ < 2π); the spin moment quantization is naturally
related to the symmetry of the quantum problem to the
rotation of the coordinate system through angle 2π
around the z axis or, in other words, with the boundary
conditions ψ(ϕ + 2π) = ±ψ(ϕ). On the other hand, as
noted above and as follows directly from the form of
Hamiltonian (11), the symmetry relative to the shift
ϕ  ϕ + 2π is broken in the field Bz(t) = at; conse-
quently, the boundary conditions ψ(ϕ + 2π) = ±ψ(ϕ)
are violated together with the standard quantization of
the spin moment. Indeed, the states described by the
wave functions ψ(ϕ) and ψ(ϕ + 2π) are physically dis-
tinguishable since the spin gains energy from the torque
over the precession period. It was noted above that this
requires the use of an expanded (many-sheeted or foli-
ated) space R1 (–∞ < ϕ < ∞) for describing the spin
dynamics.

A similar situation is realized in a Josephson junc-
tion and in a quantum dot under the Coulomb blocking
conditions, where the phase of the wave function plays
the role of angle ϕ and the charge or number of particles
plays the role of the spin component Sz . This question
is considered in detail in [28].

Let Ua(ϕ) = –K2cos2ϕ, where K2 is a constant. Then
Schrödinger equation (11) is reduced to the Mathew
equation; the theory of the latter equation implies [29]
that the energy spectrum of Hamiltonian (10) has a
band structure. This means that eigenvalues En(m) are
functions defined in the corresponding Brillouin zones.
For K2 ≈ 0, the band structure corresponds to the free
electron approximation, En(m) = "2m2/2I, with forbid-
den bands at the boundaries of the Brillouin zones

∆ϕ 2π"

I 2γḂ ϕ ϕ T–( )
--------------------------------------.=

Ḃ

ψn ϕ π+( ) eiπmψn ϕ( ),=
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(mB = ±1, ±2, …), which are narrow to the extent that
the value of K2 differs from zero.

The wave function can be represented in the form
ψ(ϕ) = u(ϕ)exp(–iEt/"). In this case, Schrödinger equa-
tion (11) for Hamiltonian (10) can be written in the
form (Mathew equation)

(15)

where µ2 = 2IE/"2 and b2 = IK2/"2. Here, we have used
a new variable  = ϕ + π/2. The tilde will be omitted
below. The form of the spectrum in the lowest band for
|m | ! 1 can be described by the formula E0(m) =
"2m2/2I; for |m | ≈ 1, we have

(16)

The width of the allowed band with number n (n = 0
corresponds to the principal band) is defined as

(17)

Forbidden bandwidths decrease rapidly (for K2 ! K1)
upon an increase in the band number:

(18)

In particular, it can easily be seen that the width of the
first forbidden band is equal to K2. Equations (16)–(18)
define the energy spectrum of Hamiltonian (10) quite
accurately.

7. Let us now consider the effects emerging in mag-

netic field Bz(t). The last term γI ϕ in Eq. (11) plays
the same role as the energy eEx of a Bloch electron in
an external electric field.

Let us consider the dynamics of momentum pϕ in
the case when the magnetic field varies adiabatically

slowly (|γI | ! K2). It is convenient to use, instead of

, the quantity jm = /4π, which can be referred to as
“magnetic current” since quantity jm generates a time-
independent vortex electric field in the same way as the
electric current generates a magnetic field. In order to
describe the spin dynamics under the action of mag-

netic current jm = /4π, we consider a wave packet con-
sisting of Bloch functions (14). Let us suppose that

 = 〈m〉  and  = 〈ϕ〉  are the mean values of quasispin
and the coordinate of the packet center, and the values
of ∆m and ∆ϕ (∆m∆ϕ ~ 1) specify the corresponding
indeterminacies. Under the action of magnetic cur-
rent jm , the wave packet formed at instant t = 0 is dis-
placed to the boundary of the (e.g., right) Brillouin
zone, is reflected from it, and the group velocity
reverses its sign. Then the packet propagates to the left

u'' µ2 2b2 2ϕ̃cos–( )u+ 0,=

ϕ̃

E0 m( )
"

2

2I
----- 1 m 1–( )2 IK2

2"
2

--------- 
  2

+–
 
 
 

2

.=

∆En
"

2

I
----- n

1
2
---+ 

  .=

δEn n 1+, K2

K2/K1

n 1+
--------------- 

 
n

.=

Ḃ

Ḃ

Ḃ Ḃ

Ḃ

m ϕ
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boundary of the Brillouin zone, is reflected from it, and
so on. In this case, the dispersion ∆m and the packet
width ∆ϕ change periodically. This process is known as
Bloch oscillations. Mathematically, this process is
described by the following equations for mean values

 and :

(19)

In this (adiabatic) process, the system remains in a state
with a preset n and the observed physical quantities
(e.g., magnetic moment) are oscillating functions of
time with frequency,

(20)

If the external field has a harmonic component in addi-
tion to the linear term, i.e.,

resonances at frequencies f = rfBl are possible, where r
is a rational number (Stark resonances).

8. An increase in the magnetic current (|γI | ≥ K2)
gives rise to the Zener tunnel effect [30, 31]. The
essence of the effect is that the system overcomes the
potential barrier separating two neighboring bands of
allowed energy values under the action of magnetic
current jm . Let us determine the probability of this
process.

The energy spectrum of Hamiltonian (11) for each
fixed value of ϕ and for moderate rates of magnetic
field variation is defined, to a fairly high degree of accu-
racy, by the relation

(21)

where En(m) is the energy spectrum of Hamiltonian (11)
for zero magnetic current (see item 6). Since we can
determine the “local” value of quasispin m = m(ϕ) for
each ϕ, we obtain, in accordance with the well-known
Bloch theorem [32], the following expression for eigen-
states instead of relation (14):

(22)

here, un(ϕ + π) = un(ϕ). In the limits of the first forbid-
den band, we have

(23)

where β(ϕ) is a certain real-valued function that must
be determined. Assuming that function un(ϕ) varies
insignificantly as compared to the exponential function

m ϕ

ṁ
γI Ḃ
"

---------, ϕ̇ 1
"
---

dEn m( )
dm

-----------------.= =

f Bl
γI
2"
------

B1

τ
-----.=

B t( )
B1

τ
-----t B2 2πft( ),sin+=

Ḃ

En m ϕ,( ) En m( ) γI Ḃϕ ,–=

ψn ϕ( ) i m ξ( ) ξd

ϕ0

ϕ

∫ 
 
 

un ϕ( );exp=

m ϕ( ) 1 iβ ϕ( ),+=
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under condition (23), we can obviously write the tun-
neling probability in the form

(24)

where β(ϕ1) = β(ϕ2) = 0. Carrying out elementary trans-
formations, we obtain from Eqs. (16), (21), and (23)

using relation (24), we obtain

(25)

The tunneling probability per unit time amounts to

(26)

The formulas derived above can easily be general-
ized to the case of a Zener transition between adjacent
excited bands with numbers n and n + 1 (the quantity K2
in this case has the meaning of the width δEn, n + 1 of the
corresponding forbidden band (18). For small values of
the anisotropy constant K2, the tunneling probabilities
are practically equal to unity even for small values of n,
which indicates the existence of free precession.

9. Let us now consider the behavior of the average
magnetic moment of the spin system in question. Its
component along the z axis is given by (7):

Averaging with the appropriate wave function, we
obtain

(27)

where χ⊥  = M2/2K1.
Let us first consider the limiting case of free preces-

sion, K2 = 0. In the simplest case (3), Eqs. (19) give
 = γ[Bz(t) + c], where c is a constant determined by

the initial conditions. Substituting this expression into
Eq. (27), we obtain 〈Mz〉  = –χ⊥ c = const. Thus, a distin-
guishing feature of free precession is that the acceler-
ated spin precession under the action of an increasing
(decreasing) magnetic field screens the contribution

P 2 β ξ( ) ξd
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ϕ2
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,exp=
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from the paramagnetic susceptibility of an ion (χ⊥ Bz) so
that the average magnetic moment is independent of the
field.

The situation changes significantly in the case of
Bloch oscillations. The 〈Mz〉(Bz) dependence is the sum
of “conventional” linear dependence (χ⊥ Bz) and peri-

odic curve with a period of ∆B = /fBl = 2b, b = "/γI.
Magnetization experiences jumps by ∆Mz = 2gµB for
applied field values Bz = b + k∆B, k ∈  N. Thus, the curve
describing the 〈Mz〉(Bz) dependence resembles a ladder.
For K2 = 0, the shape of the steps is strictly rectangular.
If, however, K2 ≠ 0, the front edges of the steps are
slightly blurred, but their height and position remain
unchanged.

In the general case, the 〈Mz〉(Bz) dependence exhib-
its typical features of both limiting processes. Indeed, it
was shown above (18) that for K2/K1 ! 1, the forbidden
bandwidth is a rapidly decreasing function of the band
number. Consequently, in the first approximation
(which will be referred to as a one-band approxima-
tion), we can neglect Bloch oscillations in the first
excited and next bands. This means that precession
under the action of field Bz(t) can be regarded as free in
all bands except the principal band. On the whole, pre-
cession can be visualized as follows. A wave packet that
formed at the initial instant is slightly blurred as it
reaches the boundary of the Brillouin zone, is partly
reflected from it, and partly tunnels into the next band,
in which it precesses freely.

As a result of tunneling of the wave packet to the
next energy bands, the magnetization jump ∆Mz

becomes a function of the jump number k and is defined
as

where p is the probability of a tunnel transition from the
principal energy band to the first excited band. This
probability is defined by formula (25).

In the two-band approximation, we take into
account Bloch oscillations occurring in the first excited
band. Their influence on the shape of the magnetization
curve is manifested in the formation of additional
jumps at instants when the applied magnetic field
assumes values of Bz = k∆B, k ∈  N. The magnitudes of
the main and additional jumps are mixed up in view of
the possibility of a tunnel transition from the first
excited energy band back to the principal band; as a
result, the general formula for the height of the magne-
tization steps is extremely cumbersome. On a qualita-
tive level, we can state that the heights of the main
jumps decrease with increasing jump number (how-
ever, the rate of this decrease is lower than in the one-
band approximation), while the heights of additional
jumps increase during the few first Bloch periods and

Ḃ

∆Mz 2gµB 1 p–( )k 1– ,=
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Fig. 1. Magnetization curve and magnetic susceptibility peaks as functions of the field for orthorhombic anisotropy, K2/K1 = 0.01,

for (a) B1/τ = 0.5 × 1011 Oe/s (the Zener tunneling probability is negligibly low); (b) B1/τ = 1.5 × 1011 Oe/s (the Zener tunneling in

the system leads to hysteresis, but the spin precesses freely in the excited energy bands), and (c) B1/τ = 2.0 × 1011 Oe/s (peak heights
are reduced by half; Bloch oscillations take place not only in the principal band but also in the first excited energy band).

χ χ

χ

start decreasing only after attainment of a certain max-
imal value.

Figures 1 and 2 show the dependences of magneti-
zation and susceptibility on the external magnetic field
for various types of anisotropy and various rates of
magnetic field variation. The field increases linearly
with time from zero to a certain value during seven and
a half Bloch periods and then decreases at the same rate
back to zero. In calculations, one must be sure that the
condition θ – π/2 ! 1 (see item 4) is not violated. This
is possible only for a large (not less than ten) value of
the spin moment of a nanocluster. The magnetization is
recalculated per cluster and is measured in units of
Bohr magneton. The magnetic field itself is measured
in units of increment ∆B over a Bloch period. The cal-
culations are carried out in the framework of the one-
band model taking into account the Zener tunneling
whose intensity increases with the rate of variation of
the magnetic field. The susceptibility peaks for the
JOURNAL OF EXPERIMENTAL 
reverse direction of the magnetic field are inverted in
the figure for convenience and better visualization.

An important distinguishing feature of free preces-
sion for systems with tetragonal or hexagonal anisot-
ropy is that accelerated spin precession under the action
of an increasing (decreasing) magnetic field screens the
contribution of the paramagnetic susceptibility of an
ion (χ⊥ Bz) incompletely, which is manifested in the
absence of horizontal segments on the magnetization
curve (see item 10 below).

The results obtained in the framework of the two-
band model are shown in Fig. 1c. It is assumed that the
magnetic field increases linearly with time from zero to
a certain value during five Bloch periods and then
decreases back to zero at the same rate.

All of the above-mentioned features in the behavior
of the spin system in question are reflected in the fig-
ures and can easily be observed.
AND THEORETICAL PHYSICS      Vol. 97      No. 1      2003
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10. Finally, we will make a number of important
remarks concerning the above features of systems of
large-spin particles with tetragonal (4) or hexagonal (5)
anisotropy.

In these cases (for which the potential energy is
Uat(ϕ) = –K4cos4ϕt or Uah(ϕ) = –K4cos6ϕh),
Schrödinger equation (11) can be written in a form
coinciding with Eq. (15) if we introduce the notation

and

Indices “t” and “h” are used to distinguish between the
quantities pertaining to tetragonal and hexagonal
anisotropy from those corresponding to the simplest
case and bearing no special index. A comparison of the
parameters introduced above with parameters µ and b
from Eq. (15) for identical values of constants K1
enables us to draw the following conclusions.

1. The energy spectrum of the system with tetrago-
nal and hexagonal anisotropy has the form Ent(m) =
4En(m) and Enh(m) = 9En(m), respectively. Here, En(m)
corresponds to the simplest case (3).

2. The width of the first forbidden band is K4.
3. The frequency of Bloch oscillations is defined by

formula (20) as before.
4. The horizontal segments on the magnetization

curve typical of the simplest case disappear.
Let us consider statement 4 in greater detail. Since

the procedure for evaluation of integral (6) remains
unchanged upon a transition to another type of anisot-
ropy, relation (7) holds; consequently, in the case of tet-
ragonal (hexagonal) anisotropy, expression (27) for the
average magnetic moment component along the z axis
remains in force. Since ϕt = ϕ/2 and ϕh = ϕ/3, we have

(28)

and

(29)

where M(B) is the magnetization of a system whose
anisotropy energy has the simplest form. The above state-
ment obviously follows from formulas (28) and (29).

11. Let us obtain some numerical estimates. For spin
S = 10", K1 ≈ 10 cm–1, and B1/τ ≈ 1010 Oe/s, the fre-
quency of Bloch oscillations is fBl ≈ 107 Hz. As the rate
of magnetic field buildup increases to values of B1/τ ~
(1011–1012) Oe/s, the Zener tunnel effect becomes
appreciable if we set K2/K1 ≈ 10–2.
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The above analysis was carried out for zero temper-
ature. However, thermal fluctuations (at T ≠ 0), as well
as the interaction with dissipative environment, sup-
press the coherent quantum effects in question and
require special treatment. Here, we only indicate the
applicability limits of the approximation T = 0: T ! K1
and ts @ 1/fBl , where ts is the spin relaxation time. For
K1 ≈ 10 cm–1 and B1/τ ≈ 1010 Oe/s, we obtain T ! 2 K
and ts @ 10–7 s. These limits appear as easily attainable
in contemporary low-temperature experiments.

Thus, we have proved that a magnetic field increas-
ing (decreasing) with time induces new coherent quan-
tum effects in the dynamics of an anisotropic spin sys-
tem. These effects include the formation of the band
energy spectrum with continuous spin states, quasi-
Bloch oscillations, and interband Zener tunneling,
which are manifested in the form of magnetization
jumps and susceptibility peaks in the spin system under
investigation.
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Abstract—The anomalous behavior of the isochoric heat capacity of a mixture of methane, pentane and hep-
tane is studied experimentally in the vicinity of the liquid–vapor critical point in the cases when (a) the critical
temperature Tc approaches the tricritical point TTCP and (b) the critical temperature approaches the upper critical
end point TU. It is shown that in all cases, the singular part of the heat capacity of the mixture has the form
Csing = A|τ|–α, where τ = (T – Tc)/Tc and α ≈ 0.11. When Tc  TU , amplitude A of the heat capacity anomaly
is found to be approximately constant. At the same time, the amplitude of the anomaly tends to zero in the
vicinity of the tricritical point: A ∝  |τc|ε, where τc = (Tc – TTCP)/TTCP and ε = 1.6–1.7. The inevitable vanishing
of this mode of the heat capacity anomaly leads to a negative value of the critical index  characterizing the
heat capacity anomaly at the tricritical point, while the tricritical point theory and the isomorphism hypothesis
predict  = 0.5. © 2003 MAIK “Nauka/Interperiodica”.

α̃

α̃

1. INTRODUCTION

The variety of phase behavior of solutions makes it
possible to use them for studying anomalous properties
of substances in the vicinity of various singular points.
It was shown in our recent publication [1] that the three-
phase equilibrium of the methane + heptane mixture
makes it possible to measure heat capacity in the vicin-
ity of the vapor–liquid critical point at a constant value
of chemical potential of the impurity and to verify the
isomorphism hypothesis experimentally. This study is
devoted to experimental investigation of the heat capac-
ity behavior in the vicinity of the liquid–vapor critical
point for ternary carbon-containing mixtures in situa-
tions when this critical point approaches either the tri-
critical point or upper critical end point. It should be
emphasized that we are speaking here and below of
changes in the heat capacity in the vicinity of liquid–
vapor critical points in the presence of a noncritical liq-
uid phase enriched with heavy components.

It is well known [2] that high-molecular hydrocar-
bons of the CnH2n + 2 series are poorly soluble in meth-
ane. This leads to the emergence of three-phase equilib-
rium lines bounded by the upper and lower critical end
points and to discontinuities on the curves describing
how the critical parameters of mixtures of methane
with saturated hydrocarbons (starting with hexane)
depend on the concentration of the heavy component
(Fig. 1). At the upper critical end point (U), one of the
liquid phases and the gaseous phase become identical;
1063-7761/03/9701- $24.00 © 20093
at the lower critical end point (L), the two liquid phases
become identical. Apart from the upper and lower crit-
ical end points attained simultaneously with the disap-
pearance of the noncritical phase, there are curves con-
taining the upper and lower critical points in the sys-
tem, which are attained in the presence of a noncritical
phase. Figure 2 shows a typical phase diagram with the
upper liquid–vapor critical point in the presence of a
liquid noncritical phase.

U

L

ëê1

ëê2

1

3

2

í

ê

Fig. 1. Schematic phase diagram of a binary mixture with a
three-phase equilibrium curve. Solid curves 1 and 2 corre-
spond to coexistence of pure components; CP1 and CP2 are
liquid–vapor critical point for pure components; dashed
curves correspond to critical points of a binary mixture;
accordingly, U and L are the upper and lower critical end
points; solid curve 3 corresponds to the liquid–liquid–vapor
three-phase equilibrium.
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The three-phase equilibrium curve for the methane +
heptane mixture studied by us earlier starts from the
heptane-enriched phase crystallization curve; for this
reason, the lower critical end point is unattainable in
this case. The experimentally observed temperature
interval of coexistence of three phases in this mixture is
equal to 23 K. The temperature interval between the
upper (TU) and lower (TL) critical end points in the meth-
ane + hexane mixture is ∆TUL = TU – TL = 13.45 K [3]. In
the methane + pentane system, there is no three-phase
equilibrium at all; for this reason, the curve of critical
points is continuous. Thus, the temperature interval
∆TUL of three-phase equilibrium for binary mixtures of
methane with normal alkanes is obviously the smaller,
the lower the molecular mass of the heavy component.
An admixture with a molecular mass such that ∆TUL = 0
could exist in principle. At such a point, all three phases
are critical and the point is called the tricritical point. In
binary mixtures for which the molecular mass of impu-
rities varies discretely, a tricritical point could be real-
ized only by chance. However, a continuous variation
of the molecular mass of the heavy component can be
easily achieved for ternary mixtures.

We introduce the total molecular concentration X of
high-molecular impurities and concentration Z of the
heaviest component in the mixture:

X
n2 n3+

n1 n2 n3+ +
----------------------------, Z

n3

n2 n3+
----------------.= =

200 240 280 320 360160
0

4

8

12

16

P, MPa

T, ä

180 190 200

6

4

P, MPa

T, ä

Fig. 2. Phase diagram for a ternary mixture of methane +
0.034 of a molar fraction of (pentane + 0.43 of a molar frac-
tion of heptane). The experimental points connected by the
dashed curve describe the boundary of the two-phase equi-
librium region. The solid curve describes three-phase equi-
librium; the asterisk marks the upper critical point.
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Here, n1, n2, n3 are the numbers of moles of the solution
components in the increasing order of their molecular
mass. The effective molecular mass of the heavy impu-
rity is

where M2 and M3 are the molecular masses of the
lighter and the heavier components. A decrease in Z
reduces the effective molecular mass of the impurity,
and the system may be quite close to the tricritical point
for a reasonable fixed value of X. On the other hand, a
decrease in X for a fixed Z brings the liquid–vapor crit-
ical point to the upper critical end point. This study is
aimed at analysis of the behavior of heat capacity in
these two cases.

The object of investigations was a ternary mixture of
methane + X molar fractions of (pentane + Z molar frac-
tions of heptane). Such a choice of the mixture was dic-
tated by the fact that a decrease of concentration Z from
unity to zero continuously transforms the system from
the methane + heptane binary mixture with a discontin-
uous critical locus to a methane + pentane binary mix-
ture with a continuous critical locus. We studied the
phase behavior and the isochoric heat capacity of the
mixture in the following two cases:

(i) the total concentration X of heavy impurities is
fixed, while the heptane concentration Z is varied: X =
0.0345; Z = 1.0, 0.65, 0.43, 0.05, 0.019, and 0.0 molar
fraction of heptane;

(ii) the heptane concentration Z is fixed, while the
total concentration X of heavy impurities is varied: Z =
0.43; X = 0.0546, 0.0345, 0.0195, and 0.0099 molar
fraction of the solution.

In case (i), the choice of concentration X = 0.0345 of
a molar fraction is dictated by the previously estab-
lished fact [4] that the behavior of the isochoric heat
capacity Cρ, X of a binary mixture of methane + 0.0345
of a molar fraction of pentane is completely similar to
the behavior of heat capacity CP, X at the tricritical point
of a 3He–4He mixture [5]. This led to the conclusion
that the critical point of the liquid–vapor mixture meth-
ane + 0.0345 of a molar fraction of pentane is close to
the tricritical point. In this sense, a decrease in the hep-
tane concentration Z in a ternary mixture of methane +
0.0345 of a molar fraction of (pentane + Z molar frac-
tions of heptane) is a way for studying the dependence
of the heat capacity anomaly on the proximity to the tri-
critical point.

In the case (ii), the choice of the fixed value of the
heptane concentration Z = 0.43 of a molar fraction is
determined by the fact that a three-phase equilibrium
region necessarily exists in such a ternary mixture. A
decrease in concentration X is a way for studying the
dependence of heat capacity anomaly on the proximity
to the upper critical end point.

Meff Z( ) 1 Z–( )M2 ZM3,+=
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2. EXPERIMENT

An analysis of the phase behavior and isochoric heat
capacity of hydrocarbon mixtures was carried out on a
precision adiabatic scanning calorimeter with a cell
volume of 14.9 cm3. The cell is connected to a strain
gauge intended for measuring pressure and to the filling
system through a thin capillary. The mixture with the
required composition was prepared directly in the mea-
suring cell. The filling system and the cell were prelim-
inarily evacuated, after which the cell was filled with a
solution of heavy components (pentane + Z molar frac-
tions of heptane) with a preset Z, which was prepared in
a separate vessel. Then the required amount of methane
was added. The concentration and density of the mix-
ture were determined by weighing. The procedure of
filling was normally carried out at a cell temperature of
170–180 K.

The schematic of the calorimeter is described in [6].
In order to maintain adiabatic conditions, the cell is sur-
rounded by two copper screens whose temperature
strictly “followed” the cell temperature. Heat transfer
through the capillary was prevented by connecting it to
a copper ring via a heat pipeline in the immediate vicin-
ity of the cell; the ring temperature was maintained at
the level of the cell temperature. The temperature of the
upper part of the capillary was kept approximately 1 K
higher to prevent condensation of the mixture in it. The
temperature was measured with a platinum thermome-
ter with a nominal resistance of 100 Ω, which was
placed in a pocket in the cell. The mixture was stirred
with a magnetic agitator driven by a solenoid with a
period of 10 s. The process of measuring the enthalpy
(amount of heat supplied to the cell) described in [7]
was executed and controlled by a computer system. In
addition to the enthalpy, we measured the temperature
and pressure in the cell. The heat capacity was calcu-
lated by numerical differentiation of the enthalpy with
respect to temperature.

Figure 2 shows a typical phase diagram for the ter-
nary hydrocarbon mixture studied by us (X = 0.0345
and Z = 0.43 of a molar fraction). Experimental points
connected by the dashed curve form the boundary of
the two-phase state region. The region of three-phase
equilibrium in the studied mixtures turned out to be
very narrow and appears in the figure as a solid line ter-
minating at the upper critical point (asterisk in Fig. 2).
We did not investigate the neighborhood of the lower
critical point; for this reason, we assume that the tem-
perature interval ∆T3ph in which three-phase equilib-
rium exists coincides with the temperature interval of
three-phase equilibrium on the isochore corresponding
to the upper critical point. It will be proved below that
the values of ∆TUL and ∆T3ph in the vicinity of the tric-
ritical point are approximately proportional to each
other.

Figure 3 shows the temperature dependences of heat
capacity on different isochores for the same mixture as
in Fig. 2. The jumps on the curves in Fig. 3 correspond
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to phase transitions in the mixture. It can be seen from
the figure that, at a high density (curve 1), the mixture
passes directly from the two-phase to the one-phase
state upon heating. As the density decreases, there
appears a temperature region in which three phases
coexist (curves 2–5). The transitions from the two-
phase to the three-phase state correspond to separation
of the phase enriched with the light component into liq-
uid and vapor. Further heating leads first to a transition
of the system from the three-phase to the two-phase
state and then to the one-phase state (on isochores 4 and
5, transitions from the two-phase to the one-phase state
lie beyond the temperature interval presented in the fig-
ure). The critical isochore (curve 5) exhibits an infinite
increase in the heat capacity of the phase enriched with
the light component when the temperature approaches
the value corresponding to the liquid–vapor critical
point. This heat capacity anomaly is due to the fact that
the liquid–vapor critical point in this case is realized in
the presence of the third (noncritical) phase, ensuring
the constancy of chemical potentials of heavy impuri-
ties in critical phases [1]. In accordance with the iso-
morphism hypothesis, the type of the heat capacity
anomaly  at constant values of the chemical
potentials of impurity components at the liquid–vapor
critical point of the mixture coincides with the type of
the heat capacity anomaly Cρ in the vicinity of the liq-
uid–vapor critical point of one-component liquids. In
all the mixtures under study, we observe precisely this
behavior of heat capacity. Experimental investigation

Cρ µ2 µ3, ,
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Fig. 3. Temperature dependences of the heat capacity for a
mixture of methane + 0.034 of a molar fraction of (pentane +
0.43 of a molar fraction of heptane) for various mean densi-
ties of the mixture in the cell: ρ = 0.328 (1), 0.300 (2),
0.284 (3), 0.238 (4), and 0.2074 g/cm3 ≈ ρc (5).
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of the evolution of this critical anomaly in two cases
indicated at the end of Section 1 constitute the main
goal of this study.

An important aspect in the experiment was the
determination of critical density for each of the mix-

200195190 205185
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0.12
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T, ä

(∂P/∂T)ρ, X, MPa ä–1

ρ1 > ρc

ρ2 = ρc

ρ3 < ρc
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Fig. 4. Temperature dependence of the derivative
(∂P/∂T)ρ, X on isochores close to the critical isochore for a
mixture of methane + 0.034 of a molar fraction of (pentane +
0.43 of a molar fraction of heptane): ρ1 = 0.2155, ρ2 =

0.2074 ≈ ρc , and ρ3 = 0.1893 g/cm3.

Fig. 5. Curves describing the temperature dependence of
heat capacity on critical isochores for a mixture of
methane + 0.034 of a molar fraction of (pentane + Z molar
fractions of heptane) for Z = 1.0 (1), 0.65 (2), 0.43 (3), 0.05
(4), and 0.019 of a molar fraction of heptane (5).
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tures in question. In our opinion, the most precise
method of determining the critical density is that based
on measuring the jumps on the derivative (∂P/∂T)ρ, X on
the liquid–vapor transition line for various isochores.
The main point of the method is that this jump vanishes
on the critical isochore and has different signs for ρ >
ρc and ρ < ρc . Consequently, the critical density ρc can
be determined to a high degree of accuracy from the
extrapolation to zero value of the jumps on the deriva-
tive dependence on the density. Figure 4 shows the tem-
perature dependences of derivatives (∂P/∂T)ρ, X for a
mixture of the same composition as in Figs. 2 and 3 on
three different isochores. The vanishing of the deriva-
tive jump on the middle curve implies that the corre-
sponding isochore is critical.

3. EXPERIMENTAL DATA PROCESSING

Figures 5 and 6 show the result of heat capacity
measurements on critical isochores for cases (i) and (ii)
(see the Introduction). It can be seen that the behavior
of heat capacity is different. In case (i), the amplitude
of the heat capacity anomaly decreases with Z (Fig. 5)
and vanishes completely for Z = 0.019 of a molar frac-
tion of heptane. In case (ii), a decrease in the total con-
centration X of heavy components does not affect the
amplitude of the heat capacity anomaly (Fig. 6).

Quantitative analysis was carried out using the fol-
lowing procedure. Considering that enthalpy H is the
quantity measured directly in experiment, we com-
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Fig. 6. Curves describing the temperature dependence of
heat capacity on critical isochores for a mixture of
methane + X molar fractions of (pentane + 0.43 of a molar
fraction of heptane) for X = 0.056 (1), 0.034 (2), 0.0195 (3),
and 0.0098 of a molar fraction of the solution (4).
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pared the actually measure enthalpy with the expres-
sion derived from its definition by the formula

(1)

where the integration limits τ0 = (T0 – Tc)/Tc and τ = (T –
Tc)/Tc correspond to the temperature interval of experi-
mental data processing and the isochoric heat capacity
Cρ, X has the form

(2)

Superscripts + and – in this expression indicate the heat
capacity branches for T > Tc and T < Tc , respectively.
The second term is a nonasymptotic Wegner correction
with a fixed value of the critical index ∆ = 0.5. The last
three terms describe the regular part of the heat capacity
with identical coefficients for T > Tc and T < Tc in the
linear and quadratic terms. The values of the critical
index α determined by the least-squares method proved
to be close to the theoretical value α = 0.11 in all cases
studied. In the subsequent comparison of the critical
heat capacity amplitudes A± in mixtures with different
compositions, the value of α was fixed and set equal to
0.11. Tables 1 and 2 show the values of coefficients in
Eq. (2) for heat capacity, which were obtained from the
experimental data processing using model (1) for both
cases studied here.

In case (i), the temperature interval of the observed
three-phase region decreases with heptane concentra-
tion Z in the solution; for Z = Z* ≈ 0.019 of a molar
fraction (T* = 204.46 K), the three-phase equilibrium
region vanishes. Strictly speaking, point Z* corre-
sponds to the upper critical end point for the methane +
0.0345 (pentane + 0.019 heptane) mixture. It can be

H Cρ X, τ ,d

τ0

τ

∫=

Cρ X, A± τ α– B± τ –α ∆++=

+ C0
± C1τ C2τ

2.+ +
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shown, however, that this critical point is close to the
tricritical point. Figure 7 shows the experimental
dependence of the three-phase equilibrium region
width ∆T3ph on Z. The solid curve in this figure corre-
sponds to the theoretical dependence of values of ∆TUL

on the closeness to the tricritical point [8]:

The closeness of our experimental results to this theo-
retical dependence indicates that the upper critical end

∆TUL Z ZTCP–( )3/2∝ .
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Fig. 7. Dependence of the three-phase equilibrium region
width ∆T3ph on concentration Z of heptane in the mixture
methane + 0.034 of a molar fraction of (pentane + Z molar
fractions of heptane). The solid curve corresponds to the
dependence ∆T3ph = 41(Z – 0.019)3/2.
Table 1.  Values of critical temperature and heat capacity coefficients on critical isochores in Eq. (2) for a ternary mixture of
methane + 0.034 of a molar fraction of (pentane + Z molar fractions of heptane) for various Z

A– A+ Tc B– B+ C1 C2 A–/A+

Z1 = 1

56.3 28.0 192.932 –6.07 0 15.5 0 47.8 –269 2.01

±0.4 ±0.1 ±0.001 ±1.2 ±0.9 ±0.9 ±16 ±0.1

Z2 = 0.65

39.1 19.7 195.026 –8 –25 37.3 14.7 68.7 – 200 1.98

±6.7 ±3.7 ±0.028 ±25 ±15 ±14 ±8 ±3.8 ±120 ±0.5

Z3 = 0.43

29.6 14.3 196.802 –21.5 –31.4 63 31.0 85.2 –224 2.07

±1.1 ±0.8 ±0.007 ±4 ±3.5 ±3 ±2 ±8 ±28 ±0.13

Note: The heat capacity of the mixture for Z = 0.056 was not considered since the critical anomaly region was found to be narrow.

C0
– C0

+
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Table 2.  Values of critical temperature and heat capacity coefficients on critical isochores in Eq. (2) for a ternary mixture of
methane + X molar fraction of (pentane + 0.43 of a molar fraction of heptane) for various X

A– A+ Tc B– B+ C1 C2 A–/A+

X1 = 0.056

26.5 12.2 196.991 –32.5 –27 60.3 33.8 43.5 88 2.17

±0.7 ±0.5 ±0.005 ±2.2 ±2 ±1.5 ±1.2 ±1.5 ±12 ±0.1

X2 = 0.034

29.6 14.3 196.802 –21.5 –31.4 63 31.0 85.2 –224 2.07

±1.1 ±0.8 ±0.007 ±4 ±3.5 ±3 ±2 ±8 ±28 ±0.13

X3 = 0.195

29.3 14.7 196.385 0 –39 56.8 27.5 126.0 –228 1.99

±1.5 ±1.5 ±0.005 ±8 ±3.5 ±3.5 ±22 ±150 ±0.14

X4 = 0.098

23.4 12.4 195.467 24.4 –63 67.5 34.8 130.0 0 1.89

±2.2 ±1.3 ±0.007 ±10 ±5 ±5 ±5 ±0.26

C0
– C0

+

point in this case is indeed close to the tricritical point.
This also means that the values of ∆T3ph and ∆TUL are
approximately proportional. Consequently, the fact that
the heat capacity anomaly amplitudes A± decrease as the
system approaches the tricritical point (see Table 1) can
be regarded as established.

In case (ii), the temperature interval of the observed
three-phase region tends to zero upon a decrease in the
total concentration X of heavy components. The mix-
ture approaches the upper critical end point.

The extrapolation of experimental data to zero tem-
perature interval of the three-phase region gives the

concentration value X =  ≈ 0.0075 of a molar fraction

(Tc =  ≈ 194.87 K); in this case, the critical heat
capacity amplitudes remain practically unchanged (see
Table 2 and Fig. 6). It should be noted that the effective
molecular mass of the mixture pentane + 0.43 of a
molar fraction of heptane is equal approximately to 86,
i.e., close to the molecular mass of hexane. On the other
hand, it is known that the temperature corresponding to
the upper critical end point of the methane + hexane
mixture is 195.9 K [3]. The closeness of the tempera-
ture corresponding to the upper critical end point deter-
mined by us for a ternary mixture and the correspond-
ing temperature in the methane + hexane system indi-
cates that the position of these points is mainly
determined by the effective molecular mass of the
impurity components.

Tables 1 and 2 show that the amplitude ratio of the
heat capacity anomaly below and above the critical
point (which is a universal quantity) is close to 2. The
theoretical values of this quantity obtained by different
authors are slightly different and vary from 1.92

X̃

T̃
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(numerical count based on the three-dimensional Ising
model) [9] to 2.08 (ε expansion) [10].

4. DISCUSSION

In the field variables, the role of the thermodynamic
potential density of the system is played by pressure.
The expression for the pressure differential for a ternary
mixture has the form

(3)

Here, s is the entropy per unit volume of the system; ρ
is the molar density; x2 and x3 are the molar concentra-
tions of pentane and heptane, respectively; and  =

µ2 – µ1,  = µ3 – µ1, where µ1, µ2, and µ3 are the chem-
ical potentials of methane, pentane, and heptane,
respectively. Passing from variables x2 and x3 to X and
Z, we obtain

(4)

where ν2 =  and ν3 = µ3 – µ2. We define the variables
as

(5)

The first of these variables determines the closeness of
the solution to the upper critical point Tc , while the sec-
ond variable determines the closeness of the upper crit-
ical point to the tricritical point TTCP .

In the framework of the scaling hypothesis, the sin-
gular part of the thermodynamic potential density in the

dP sdT ρdµ1 ρx2dµ̃2 ρx3µ̃3.+ + +=

µ̃2

µ̃3

dP sdT ρdµ1 ρXdν2 ρXZdν3,+ + +=

µ̃2

τ ν 2 ν3,( )
T Tc ν2 ν3,( )–

Tc ν2 ν3,( )
--------------------------------,=

τc

Tc ν2 ν3,( ) TTCP–
TTCP

----------------------------------------.=
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vicinity of the tricritical point can be written in the
form [11]

(6)

where f(Y) is a universal function of the dimensionless
argument Y and ϕ is the so-called crossover index. It
should be noted that the singular part of the thermody-
namic potential in relation (6) is written in variables of
temperature and reduced chemical potentials of the
impurity components. In this sense, Psing is the isomor-
phic thermodynamic potential [12]. In accordance with
the tricritical point theory and the isomorphism hypoth-
esis, we could expect that the critical index  is close
to 0.5. It will be shown below that, even qualitatively,
such a value of critical index  contradicts the
observed vanishing of the amplitudes of heat capacity
anomaly as the upper critical point approaches the tric-
ritical point. For this reason, we assume that the critical
index  is as yet unknown and we will try to estimate
its value from our experimental data.

In the vicinity of the upper critical point, τc = const
and τ(ν2, ν3) tends to zero. The dimensionless parame-
ter Y in this case is much larger than unity. It was noted
above that we measured the heat capacity in the vicinity
of the upper critical point in the presence of a noncriti-
cal phase, which ensures the constancy of the chemical
potentials of impurity components in critical phases.
The quantity being measured in such experiments is the
isomorphic heat capacity ; in accordance with
the isomorphism hypothesis, the type of heat capacity
anomaly is the same as for one-component liquids. For
this reason, the singular part of the thermodynamic
potential density (pressure in our case) in the vicinity of
the critical point must have the form

(7)

where α = 0.11. It can easily be seen from Eqs. (6)
and (7) that, in the limit Y  ∞, function f(Y) is given
by

(8)

This leads to the following expression for the singular
part of pressure:

(9)

It follows hence that the heat capacity is given by

(10)

and the critical amplitude has the form

(11)

Psing τ ν 2 ν3,( ) 2 α̃– f Y( )…,=

Y
τc

τ ν 2 ν3,( ) ϕ-------------------------…,=

α̃

α̃

α̃

Cρ ν2 ν3, ,

Psing τ ν 2 ν3,( ) 2 α– ,∝

f Y( )
Y ∞→
lim const Y –α̃ α+( )/ϕ .=

Psing const τc
–α̃ α+( )/ϕ τ ν 2 ν3,( ) 2 α– .=

C τc
–α̃ α+( )/ϕ τ ν 2 ν3,( ) α–∝

A τc
– α̃ α+( )/ϕ .∝
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When the critical point approaches the tricritical point,
i.e., for τc  0, the experimentally observed decrease
in the amplitude of the heat capacity anomaly indicates
that (–  + α)/ϕ > 0.

As the critical point approaches the upper critical
end point, i.e., for τc  (TU – TTCP)/TTCP = const, we
have the following expression for the heat capacity
amplitude:

(12)

Let us estimate the value of the critical index  in
expressions (6)–(12). Knowing the values of heat

capacity amplitudes  for mixtures with a fixed value
of concentration X and various values of Z = Zi (i = 1, 2,
3 in Table 1) and the corresponding values of

,

we can determine the exponent ε = (–  + α)/ϕ in
expressions (8)–(12):

(13)

Table 3 contains the values of the quantities appear-
ing in formula (13) and the critical index ε determined
from this expression. In determining the values of τci ,
we adopted the critical temperature T* = 204.46 K cor-
responding to Z* = 0.019 as the tricritical temperature
TTCP. It is for this value of Z* that the region of three-
phase equilibrium disappears. Setting ϕ = 0.5 in accor-
dance with the classical tricritical point theory, we find

α̃

A
TU TTCP–

TTCP

------------------------ 
  –α̃ α+( )/ϕ

∝ const.=

α̃

Ai
±

τci

Tci TTCP–
TTCP

------------------------=

α̃

εij
± Ai

±
/A j

±( )ln
τci/τcj( )ln

-------------------------.=

Table 3.  Values of the critical index  = α – εϕ in Eq. (6),
calculated from the ratio of the critical heat capacity ampli-
tudes for a mixture of methane + 0.034 of a molar fraction of
(pentane + Z molar fractions of heptane) for various Z (α = 0.11,
ϕ = 0.5)

τc1 = 0.05642 τc2 = 0.04614 τc3 = 0.03745

/  = 1.45 /  = 1.32 /  = 1.90

/  = 1.42 /  = 1.38 /  = 1.96

τc1/τc2 = 1.223 τc2/τc3 = 1.232 τc1/τc3 = 1.506

 = 1.84  = 1.33  = 1.57

 = 1.74  = 1.54  = 1.64

 = –0.81;  = –0.56;  = –0.67;

 = –0.76  = –0.66  = –0.71

α̃

A1
– A2

– A2
– A3

– A1
– A3

–

A1
+ A2

+ A2
+ A3

+ A1
+ A3

+

e12
– e23

– e13
–

e12
+ e23

+ e13
+

α̃12
– α̃23

– α̃13
–

α̃12
+ α̃23

+ α̃13
+
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that  = α – εϕ lies in the interval –0.81 ≤  ≤ −0.56.
Another value of  can be obtained if we assume that
the crossover index ϕ differs from 0.5. The values of
critical indices ε and  given in Table 3 are only esti-
mates of these quantities. It is obvious, however, that
the critical index  is rather close to the heat capacity
index  = –1 completely renormalized in the vicinity
of the tricritical point. This value of can be obtained
by setting ϕ ≈ 0.65. It should be emphasized that the
critical index  cannot in principle be equal to 0.5 in
accordance with our experimental data.

Note that the form of renormalization of the critical
heat capacity anomaly observed in [5] for 3He–4He
mixtures also indicates that the amplitude of the iso-
morphic heat capacity anomaly on the λ line decreases
as the system approaches the tricritical point; accord-
ingly, the heat capacity at a constant chemical potential
of 3He at the tricritical point proper is found to be finite.

If we assume that the isomorphism hypothesis holds
at the tricritical point, the above analysis of the experi-
mental data shows that the fixation of the chemical
potential of impurity components is insufficient for the
behavior of the heat capacity at the tricritical point to be
isomorphic to the behavior of the heat capacity of one-
component systems in the vicinity of their tricritical
points. The choice of the field variables in the vicinity
of the tricritical point, for which isomorphism takes
place, remains dubious.

α̃ α̃
α̃

α̃

α̃
α̃

α̃

α̃
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