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A violation of the polarization selection rules for Raman scattering is
observed in porous silicon. This effect is caused by a weak disorienta-
tion of the quasi-one-dimensional silicon wires, with the crystal struc-
ture of the wires themselves and the macroscopic homogeneity of the
material in optical experiments remaining intact. 1®98 American
Institute of Physicg.S0021-364(108)00202-3

PACS numbers: 78.30.Am, 78.55.Mb

1. The initial model proposed in Ref. 1 for porous silic@8) explains a number of
unusual properties of this material, but facts which remain unexplained in the model of
Ref. 1 are accumulating. Specifically, it is not understood why there is no correlation
between the spectral position of the luminescence band and the magnitude of the shift of
the characteristic band in the Raman scattering spectrum to lower energies, a fact which
has been noted in a number of pap@ee, e.g., Ref.)? These quantities should both be
determined by the same factor — the smallness of the transverse cross section of the
“quantum wires.”

There is an obvious possible source of this conflict — a model explaining the
phenomena occurring in individual wires cannot be adequate for explaining the properties
of the macroscopic material. Specifically, it has been sHatvat the aforementioned
characteristic feature of the Raman scattering spectrum from porous silicon may not be
observed and may even have the opposite sign if the structure of the macromaterial
consisting of quantum wires has a certain type of structure.

In the present work we observed a characteristic feature of the polarization of
Raman-scattered light from porous silicon. This feature was observed for all available
types of sampleéwith one possible exception, see bejowhis attests to the fact that the
causes of the indicated anomaly are of a fundamental nature.

The relative intensities of the differently polarized Raman components are deter-
mined by the fundamental selection rules for Raman scattafing existing approach to
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the analysis of Raman scattering spectra in quantum-size objects is based on Ref. 6,
where only the shift of the fundamental scattering band is studied. However, it can be
expecteda priori that a material consisting of sharply anisotropic objects will possess
nontrivial polarization properties.

2. Raman scattering was investigated with a Spex-Ramalog 5 spectrophotometer
with a dispersion of 3 cm'/mm and computerized recording of the spectra; the experi-
ments were conducted at room temperature. Most experiments were performed with
excitation by 50-mwW 6328 A light from a He—Ne laser. Argon laser radiation with a
wavelength of 488 nm was used in some control experiments. The scattered light was
detected in the backscattering geometry separate§Xrmnd XY polarizationg(for light
propagating along th& axis; the notation of Ref. 5 is usgd

In addition, the luminescence was monitored for all PSi samples. Under short-
wavelength excitation all the experimental samples exhibited bright luminescence in the
orange-red region of the spectrum and a characteristic microsecond decay of the lumi-
nescence.

The experiments were performed on porous silicon samples produced by different
technologies. Different types of initial silicon, production technology, and variants of
surface treatment were represented in the experimental samples.

3. In experiments with PSi samples grown [@01] silicon it was found that the
intensities of the Raman spectra for two polarizations of the scattered light — parallel and
perpendicular to that of the exciting lighKK andXY) — differed by less than an order
of magnitude for the case when one of the cubic axes of the material lay in the plane of
polarization of the scattered light. According to the selection rules, in this case the
intensity of the scattered light polarized in the same plane as the exciting light should
equal zerc. To obtain more-detailed information we investigated the dependence of the
degree of linear polarization of the Raman radiafianthe maximum of the band in the
spectrum on the anglex between the plane of polarization and 0 axis in the
sample. The degree of linear polarizatiprwas determined in the standard way from
measurements of the intensities of individual componests{l,—I,,)/(1x+1xy)-

The types of angular dependenggsr) obtained are shown in Fig. 1. The plot in
Fig. 1a demonstrates the above-indicated dependence fofOfhig cut of single-
crystalline silicon. We note that four of the eight lobes of the pattern have a positive
degree of polarization, while the four lobes in between them have a negative degree of
polarization. This type of relation corresponds to the fundamental selection rules and is
described by the well-known relatidn

p=—cos 4, 1)

wherea is the angle between the light vectrand the(100 axis.

For most of the porous silicon samples the pattern had the form shown in Fig. 1b
and lc. Four lobes are clearly distinguishable in these plots, while the four lobes in
between are absent or strongly suppressed. It is obvious that such a dependence of the
polarization properties, together with a change in the orientational dependence, does not
reduce to a trivial depolarization of the Raman-scattered light.

The orientational dependenpéa) for a PSi sample obtained from a film of amor-
phous silicora-Si differed from those described above. This sample also exhibits bright
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FIG. 1. Degree of linear polarization of Raman-scattered light versus the angle betwé&@dhaxis and the
plane of oscillations of the electric field vector of the light— For a polished sample of single-crystalline
silicon, b — for a mirror film of porous silicon on EL0OQ] surface of a single-crystalline substrate— same
for a film sample separated from the substrate— for a porous-silicon film formed from aa-Si film. The
parametersA,B) of interpolation formulas of the typ@) for the indicated dependences equaloal; b 0.15,
0.19; 9 0.27, 0.51.

orange luminescence, in accordance with the main experimental criterion for the presence
of PSi. However, the dependence of the degree of polarization on the rotation angle of the
sample in this case is not a regular rosette, and the degree of polarization is small,
between 0.1 and 0.¢Fig. 1d). This is a natural result for a material with no crystalline
structure.

Taken together, the observations made on the main set of experimental samples
show that the polarization dependences of the Raman scattering in porous silicon main-
tain a clear connection with the cubic symmetry of the initial material: The orientation of
the rosettes in Fig. 1b and 1c corresponds to the crystallographic axes of the initial
material, in agreement with existing results from x-ray crystallographic investigations
(see, for example, Refs. 7 angl 8lowever, the mechanism responsible for the change in
the orientational dependence of the Raman scattering cross section from the dependence
for crystalline silicon is not obvious.

4. To determine this mechanism, the degree of polarization of light reflected from
the PSi films and of light transmitted through a sample of free-standing PSi were mea-
sured for different orientations of the plane of polarization of the incident light. In all the
cases measured the depolarization amounted to no more than several percent and did not
have a regular angular dependence. This eliminates the possibility that the observed
change in polarization is due to depolarization of the light on passage through the sample.

In addition, we made measurements of the angular dependence of the intensity of the
elastic scattering. The three curves in Fig. 2 represent the elastic scattering pattern for
polished crystalline silicon, porous silicon with a mirror surface, and, for comparison, a
ground surface of crystalline silicon. It is evident from the curves in the figure that, just
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FIG. 2. Intensity of elastic scattering of light versus the scattering angle for samples of polished single-
crystalline silicon ), a PSi sample with a mirror surfac@®} (top scale of anglesand the ground surface of
a crystalline silicon sampleX) (bottom scale of angles

like the sample of polished crystalline silicon, the porous silicon sample reflects light
specularly with no scattering, but at the same time the polarizations are radically different
in these two case¢see Figs. 1a, 1b, and )cThis indicates that the porous silicon
remains optically homogeneous and that light is not scattered by separate quantum wires.

In summary, the preliminary experiments established that the explanation of the
anomalous polarization cannot be based on the assumption of scattering by inhomogene-
ities or of depolarization of the light. However, the intensity of Raman scattering at fixed
polarizations of the exciting and scattered radiation should be sensitive to local deviations
of the directions of the crystallographic axes from their average orientation. Hence it
follows that if the quantum wires are disoriented, the intensities of the scattered compo-
nents will differ from the case of an ideal crystal.

It is obviousa priori that there can be two basic types of disorientation of the wires
which could result in local changes of the directions of the crystallographic axes: twisting
and inclination(bending. It is quite obvious(and confirmed by our calculationthat
twisting of the filaments can only lead to an orientational dependefegin the form of
a superposition of a set of figures of the type in Fig. 1a and, as a result, in depolarization
(decrease of scaland rotation of the total orientational dependence, without causing any
gualitative changes in it.

For further analysis, the data on the angular dependeseswere approximated
by an expression similar to Eql), i.e., containing a function of the anglex4 It was
found that the dependences of the type indicated in Fig. 1b and 1c can be described quite
well by functions of the type

p=A+B cos 4. (2)

For negative phases of the cosine the contributions fPorand B work against each
other, causing degeneration of four of the eight lobes of the angular pattern.
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The constant®\ and B in Eqg. (2) have a simple physical meaning: In crystalline
silicon a dependence of the tyg&) arises only when light is scattered from[&00]
surface(in this caseA=0), while in the case of scattering from[411] surface the
function p(«) is a circle 8=0). This is the key to understanding the reasons why
dependences of the tyf&) appear: In porous silicon the local directions of the lattice
vector and of the electric field vector of the light can be distorted on the scale of an
individual filament and can alter the characteristics of the local Raman scattering process,
but at the same time distortions on a nanometer scale will not show up in macroscopic
experiments.

There is an obvious possible cause of the deviations of the indicated vectors —
inclination of individual quantum wires with respect to the average direction. On account
of the microscopic dimensions of the wires, strong scattering, refraction, or distortions of
the wave front do not occur. However, the angle between the vEatbthe light and the
direction of the crystallographic axes can fluctuate in individual wires. Besides the obvi-
ous reasons, the angle will change because in an inclined wire the direction of the vector
E should change relative to the initial direction. The same ideas were used in Refs. 9 and
10, where experiments on polarization luminescence of PSi are analyzed. The polariza-
tion dependences observed in this case can be explained well on the basis of the hypoth-
esis that the local light fieldE in silicon wires is the same as if the wires were in a
uniform external field in a medium with a much lower dielectric constant. Then, the
component of the vectdg along the axis of a wire will be greater than the component
normal to the axigas a result of the anisotropy of the polarization of the wire in the
external field. As a result, the local deviations Bfare substantial even for small angles
of disorientation of the wires.

We performed calculations of the polarization dependences of the Raman scattering
cross section for a model in which the porous silicon consists of randomly oriented wires
in a medium with a lower dielectric constant. It was assumed that the crystallographic
axis (001) was directed along the axis of each wire. A similar model assumption was
used in Refs. 9 and 10. The polarization dependences of the Raman scattering intensity
for such a system are determined by the quantity

S=n 2 ((@Re)?), )

wheree ande; are the electric field vectors of the incident and scattered radiation in a
separate wirelR; is the Raman tensor for scattering of light by a phonon with polarization
j» m is a constant, and the angle brackets in &).denote averaging over all possible
directions of disorientation of the wires. Let us give the result pf a computati@forf

wires whose axes make an anglavith the normal to the surface, while the transverse
crystallographic axes patrtially retain the orientation of the initial crystal. It is convenient
to write the expressions obtained f®1in the formS=S, +S,, whereS, is the intensity

of scattering by a phonon polarized in a direction along the axis of a wireSans the
intensity of scattering by a phonon polarized in a direction perpendicular to the axis of
the wire:

S, = pa’R? sirf#{cog o[ 3/2 cod(y— ')+ 1/12]+ 1/2}, (4)
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S,= 7R?[(1+cos 60— 1/2 sirt0)?sirf(y+ ')+ 1/2(1—cos — 1/2 sirf6)?
+1/2 sirf6-2 co(y—y')]. 5

Here ¢ and ¢’ are the angles between the vectersand e; and the projection of the
crystallographic axi$100 of the wires onto the plane of the film, aads a factor equal

to the ratio of the electric field components parallel to and perpendicular to the axis of the
wire and expressed in terms of the depolarization coefficie@mce the degree of
polarization is given by

p=[S(Y=y¢")=S(y=y¢'+ 72 JI[S(y= ") + (Y= 4’ + 7[2)], (6)

a dependence of the forfd) arises for different random distributions of wires over the
angles of inclinatiors, with the transverse axes retaining their orientation. As a result of
the large length-to-diameter ratio of a wire and the large difference between the dielectric
constants of the wire and the medium, the pattern shown in Fig. 1c can be explained by
the presence of a relatively smékss than 10%fraction of wires which are inclined by
substantial -50°) angles, while the remaining wires retain their initial orientation, or by
the presence of a spread of orientatiahs10° of the axes of all the wires relative to the
normal to the surface. Our experiments do not give any grounds for favoring any one
model over another, but the latter assumption is in better agreement with the data of Refs.
7 and 8, which indicate that the crystal structure of the substrate is retained in PSi.
Irrespective of the specific structural model, the experimentally determined¥aican
characterize the average disorientation of the wires in porous silicon.

The observed effect manifests similarly to Raman scattering by a rough surface.
When light passes through a rough surface, the light, being diffusely scattered by the
surface, propagates in a wide range of angles, and components corresponding to different
angles between the crystallographic axes and the direction of propagation should be
present in the Raman-scattered light. For this reason, the total degree of polarization
should also have a dependence on the orientation of the sample similar tb) Ebhis
assertion was checked experimentally. Indeed, the orientational dependence was similar
to that shown in Fig. 1b and 1c. We note that the macroscopic character of the nonuni-
formity of the surface gives rise to much larger angles between the directions of propa-
gation of the light in the material, but at the same time the field enhancement resulting
from the shape of the filaments does not occur in the continuous medium. There is one
other fundamental difference between the cases that we investigated and this latter case:
The diffuse elastic scattering of light by a ground surface can be easily detected experi-
mentally (Fig. 2), while in our case, on account of the local nature of the Raman scat-
tering process, the nanometer-size nonuniformities are manifested only in the polarization
of the scattered light.

5. In summary, in the present work a previously unknown property of porous silicon
— a special type of orientational dependence of the degree of polarization of the Raman
scattering — was observed. It was shown that this reflects the presence of a specific type
of disordering in this material, wherein the macroscopic homogeneity of the material and
the microscopic structure of the crystal lattice are preserved but disorder can occur on an
intermediate(mesoscopicspatial scale, the macromaterial being made up of individual
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quantum wires. Investigation of the polarization of Raman scattering is a sensitive tool
for studying this phenomenon, giving independent information about the mesostructure
of the macromaterial of porous silicon.
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The temperature dependences of the zero-magnetic-field resigivity
and magnetoresistance of the 2D hole gas in G@&sh)As hetero-
structures are investigated in the temperature interval 0.4—4.2 K. As the
temperaturdl is increased(i) the resistivityp grows with a decreasing
derivative dp/dT, and (ii) the positive magnetoresistance diminishes
from about 40% aff=0.4 K to about 1% al =4.2 K. The results are
explained in terms of a temperature-dependent mutual scattering of the
holes, accompanied by momentum transfer between two different spin-
split subbands. ©1998 American Institute of Physics.
[S0021-364(98)00302-9

PACS numbers: 73.40.Kp, 73.50.Jt

A positive magnetoresistance of up to 40% in weak magnetic fields has been ob-
served at low temperatures in the high-mobility 2D hole gas of G&4GhA)As hetero-
structures in studies going back many yearsAt first this magnetoresistance was at-
tributed to two-carrier conductiohlt is known there are two groups of holes with
different spectra and mobilities in the 2D hole systems of Ga@d&/a)As heterostruc-
tures. These two groups are formed from the heavy hole band as a result of the lifting of
the spin degeneracy by the spin—orbit interaction in the absence of inversion
symmetry®1%In such systems a positive magnetoresistance should be obSdroéin
the case of the elastic scattering of holes by impurities and in the inelastic scattering of
holes by phonongeven in the presence of inter-group scatteting

However, in the experiments of Refs. 2, 4, and 7 the magnetoresistance was found to
be strongly temperature dependent even at relatively low temperatures, when the
electron—phonon scattering is unimportant. The magnetoresistance decreases with tem-
perature, almost vanishiftgat T=4.2 K. This has raised doubts that the effect is due to
two-carrier conductiot® and new ideas have been put forward. In Refs. 2 and 4 it was

0021-3640/98/67(2)/7/$15.00 113 © 1998 American Institute of Physics
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noted that a qualitatively similar effect can be caused by weak localization in a system
with strong spin—orbit coupling® However, the weak localization effects are too small to
account for the large magnetoresistance in highly conductive heterostrucitinesau-

thors of Ref. 6 hypothesized that the magnetoresistance could originate from quantum
corrections due to the hole—hole interaction in disordered systems at values of the inverse
screening lengtlg that are large compared to the hole wave numbers at the Fermi level
ke . It can be shown that the magnetoresistance in this case is also small. The authors of
Ref. 7 assumed that the magnetoresistance should be suppressed if the thermal energy
kgT (kg is Boltzmann’s constajpis much larger than the energy separation between the
two bands at the wave vector of the smaller Fermi cifcje However, our calculations

show that this factor alone cannot suppress the magnetoresistance but only leads to some
changes in its value. Moreover, a drastic decrease in the magnetoresistance is observed
whenkgT<Ag. This factor alone obviously contradicts the idea of the authors of Ref. 7.
Thus there is no satisfactory explanation of the strong temperature dependence of the
magnetoresistance of the high-mobility 2D hole gas in Ge@d&a)As heterostructures.

In this paper we propose a new idea which is capable of explaining this phenom-
enon: the mutual scattering of holes belonging to different groups. The equations derived
here are compared with both the results of our detailed study of the temperature depen-
dence of the zero-magnetic-field resistance and magnetoresistance and with all the avail-
able data; the results of this comparison demonstrates that the proposed effect gives a
reasonable explanation of the data. It is important to note that the temperature depen-
dence of the mutual scattering was found to be proportiond?towhich supports the
basic idea.

1. EFFECT OF HOLE-HOLE SCATTERING

The positive magnetoresistance in a system with two groups of carriers is caused by
the difference between their drift velocitiesin an electric field. Intense mutual scatter-
ing of carriers should equalize the velocities leading to a vanishing magnetoresistance.
Equations introducing the mutual scattering into the transport problem have been derived
previously®*8for the case when the inter-group scattering is absent. Here we use these
equations to calculate the zero-magnetic-field resistance and magnetoresistance for the
case of carriers with like charges and different mobilities. Although they should not be
expected to describe the magnetoresistance very accurately, we hope that they will de-
scribe rather well the main features of the phenomenon. The equation of motion in an
electric fieldE and magnetic fieldH for particles of group 1, taking into account the
collisions with particles of group 2, has the fofti’

myuy /7 + pny(ug—Uuy) =eE+ (efc)(uy X H). (1)
A similar equation can be written for the particles of group 2. Heraare the effective
masses,r; are the momentum relaxation times for each group, gnis the mutual

friction coefficient

m;m, 1
= MmNy +myn, 7o e

2
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Since the relaxation time,_. of the relative drift velocityu; —u, due to the mutual
scattering of carriers is proportional 1o ? (Ref. 21; see also the Appendlix; can be
written as

n=aT?. 3)

By solving the system of equations for and substituting these velocities into the
expression for the current densijty n;eu; +n,eu, , we find the conductivities,, and

Oyy:

[nwW(He/c)2+ (pnw+w w,)( 7N+ nywyo+ now, ) ]e?

(4)

Tyy— ’
X (Helc)*+ [n2n2+ 2 5(nyWa+ nowy ) + W2+ W2 T(Helc) 2+ (pnw-+w,w,)2

n(He/c)?+ (7?n3+ 2 7n(N;wa+ Nowy) + (NW3+ Nw3)) e’

o hdl
Y (Hele)* 4+ [n252+ 2 p(nyWa+ nowy ) + W2+ W3 ](Helc) 2+ (pnw+w,w,)2 ©

)
Herew,=m;/r=e/u;, n=n4+n,, andw=(wn;+w,n,)/n. The longitudinal and Hall
resistivities arepy= o/ (05, + 0%y) and py,= oy /(0% + 0%,). At low temperatures,
when7._> 7 (Np<€w), the conductivity is the sum of the conductivities of each group.
In this case our equation for the magnetoresistance coincides with the equation given in
Ref. 11. The magnetoresistance is positive and saturates in high magnetiqufidlts
>1. At high temperatures, when, <7, the longitudinal resistivityp,, and Hall
resistivity p,, are equal tgo,,=1/neu, py,=H/nec Here u=e/w is the average mo-
bility. In this case, the magnetoresistance is absent and the zero-magnetic-field resistivity
p does not change with temperature if theare temperature independent. In the inter-
mediate range._.~ 7, the temperature dependence of the resistance exists only in weak
magnetic fieldgujH/c=<1. The resistivityp,, increases with temperature and saturates at
high temperatures. The differenp¢T— ) —p(T=0) is equal to the differencpg,,(H
—, T=0)—p(T=0).

2. EXPERIMENT

The two samples used in the experiment were prepared by molecular-beam epitaxy.
Sample 1 consisted of a GaA%00 substrate overgrown with the following layers:
undoped GaAg$0.2 um), a GaA$20A)/Al, ,Ga, 7/AS(20A) periodic structurg20 peri-
ods, undoped GaAs$l um), undoped A} ,Ga, 7As (250 A), Al ,{Ga, 7,As doped with
Be to ~2.7x10'® cm 3 (300 A), and undoped GaA&0 A). Sample 2 differed from
sample 1 by the content of Al in AGa, _,As layers ¢=0.3), by the thickness of the
doped AlGaAs layer, which was equal to 200 A, and by the presence of a cap layer which
consisted of 150 Aof undoped §Ga, -As and 100 A of undoped GaAs.

The densitiesi; andn, for the two different groups of holes were determined from
the Shubnikov—de Haas oscillations at a low temperature and are listed in Table I. This
procedure is similar to the one used in Refs. 1 and 3. In figldsl T the period of the
oscillations is determined by the density of the holes with the lower mass and density.
Above 2 T the period is determined by the total hole densit{For samples 1 and 2 the
total densities are 3.2810' and 3.4% 10'! cm™?, and the average mobilities at T
=4.2 K are 7.4 10" and 9.3 10* cn?/V - s, respectively.
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TABLE I.
Ny, Ny, 1,0 M2,0s a, B,
Sample cm? cm 2 cmé/V-s cnf/V-s g cm?/s-K? 1/K
1 1.14x< 10" 2.09x 10t 22x 104 5.4x 10 3.7x10°%° 0
2 1.27x 10" 2.16x 10" 24.7x 10 7.5x10* 2.85x10°%° —
2 1.27x 101 2.16x 101 24.6x10* 7.7x10* 2.54x 10" %° 0.02

The temperature dependence of the resistivitHat0 is shown in Fig. 1. Both
samples show qualitatively similar behavior. The resistivity increases with temperature
by about 40%, with a derivativep/dT that is largest at low temperatures. Uplter 3 K
the derivativedp/dT decreases and then starts to increase slightly. The magnetoresis-
tance at different temperatures is shown in Figs. 2 and 3. The main effect, common to
both samples, is a positive temperature-dependent magnetoresistance with a tendency to
saturation at high magnetic fields. The magnetoresistance strongly decreases as the tem-
perature increases from 0.4 to 4.2 K.

3. DISCUSSION

The hole—hole scattering explains both the strong decrease of magnetoresistance at
high temperatures and the temperature dependence of the zero-magnetic-field resistivity,
with decreasingdp/dT observed afT<3 K. The quantum corrections due to weak
localizatiort® and the hole—hole interactithin our samples should be smaller than 1%.

The large value oAA/kg~10 K (Refs. 8 and 1pcontradicts the explanation given in Ref.
7.

We fitted the experimental data by E@—(5) by varying three unknown param-
eters, namely, the temperature-independent mobiliieg=e/w;, u,q=e/w, and «,
trying to reach the best accuracy at low temperatures. The results of the fitting are shown
in Figs. 1, 2, and 3. The chosen values of parameters are listed in Table I. The main
features of the experimental data are described well by the fitting curves.

240

T,K

FIG. 1. Resistivity at zero magnetic field versus temperature. The solid lines are experimental curves, the dotted
and dot-dashed lines show theoretical fits with temperature-independent and temperature-dependent hole mo-
bilities, respectively.
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FIG. 2. Magnetoresistance,— p)/p of sample 1 at different temperatures in a magnetic field perpendicular
to the plane of the sample. The solid lines are experimental curves, the dotted lines represent the results of

fitting.

There are several effects which were not taken into account by our simple model.
These are inter-group scatteritfgr the case of elastic scattering this effect was consid-
ered in Ref. 12and anisotropy of the hole Fermi surface. While the former effect can be
suppressed in the case of elastic scattering by remote impufiggmrated from the
two-dimensional system by a spageit definitely exists in the case of the hole—hole
scattering. These effects may be responsible for some discrepancies between the experi-
mental and the theoretical magnetoresistance curves. The temperature dependence of the
zero-magnetic-field resistivity should be much less sensitive to these factors. The differ-
ences between the fitting and the experimental curves observed in Fig. 1 at high tempera-
tures can be explained by the temperature dependence of the mohiljtidsie to
electron—phonon scattering and to the finite valu&gf/Ex (Ef is the Fermi energy,
Er/kg=20 K). The biggest correction caused by the latter effect is linedtgiVE
because of the temperature dependence of the scre@ning:

0.5

(o) - p)Vp

FIG. 3. Magnetoresistance,— p)/p of sample 2 at different temperatures. The solid lines are experimental
curves, the dotted lines represent the results of fitting.
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wi = uig(1+BiT). (6)

This effect is important only for scattering with momentum transfer closeitq-2 (kg ;

are the hole wave numbers at the Fermi Igeeld, therefore, is strongly dependent on the
presence of the corresponding harmonics in a particular scattering potential. It can be
very different for different samples even with similar structures. The fitting of the data
with temperature-dependent mobilities given by E@), where we take8= ;= 3,,

yields considerably better results for samplés@e Fig. 1. The results for sample 1 were

not changedfor this sample3 was found to be close to zerdNew fitting parameters for
sample 2 are also listed in Table I. The calculated magnetoresistance curves changed only
slightly after taking into account the correctionsitpand we therefore do not present the
new curves. The coefficienfs have reasonable values smaller thgiE-~0.05 K™ 1. It

is worth noting that aT = 4.2 K the differences between the experimental curves and the
new fitting curves in Fig. 1, which we ascribe to the electron—phonon scattering, are
approximately equal for the two samples.

In order to verify whethery is proportional toT? we tried to fit the temperature
dependence of the resistivity taking=aTP with p=1.5 and 2.5 in the temperature
range 0.4-3 K. In both cases the agreement with the experiment was noticeably worse in
comparison with the cage=2.

There are neither experimental nor theoretical datamorx or 7._. in a two-
component 2D electroithole) gas. In Ref. 21, where the dependence .xT? was
derived, the factor mutliplying? was not calculated. In order to understand whether the
values ofa obtained from the fitting are reasonable or not, we have calcutatedand
n for a simple model, following the approach of Ref. 18. This model neglects the
anisotropy of the real energy spectrum and assumes the absence of hole transitions from
one subband to the other. Although these conditions are not fulfilled in our system, we
believe that the calculated value has the correct order of magnitude. Under the condition
gs=e%(Mmy+m,)/koh?>kir (qs/maxke)~10 in GaAs{AlGa)As heterostructures with
n=3x10" cm ?) we have

8 [ mim; )2 1 | Vng+ \/n_z(k )2 @
=— n .
7T gpEimermy) nan, - Jn,

For the case of the effective masses= 0.2m, andm,=0.8m, calculated in Refs. 8 and
10 we have obtained~7x 10 2° g-cnm?/s- K? for our samples, which is in reasonable
agreement with the experimental values.

We have checked that the published results on the temperature-dependent magne-
toresistance fop channels in GaAs/AlGaAs heterostructures are consistent with our
explanation. Unfortunately, a detailed comparison is not possible because, to the best of
our knowledge, the only experimental data for which the temperature range was large
enough to demonstrate strong variation of the magnetoresistance is given by Fig. 4 of
Ref. 7. But in this paper only the total hole density:2.08x 10! cm™?2 is presented.
Nevertheless, we can approximately determine a coefficienl X 1028 g- cnf/s- K?
for these data because it is not very sensitive torthén, ratio. The data presented in
Fig. 5 of the same papefor a low-mobility sample in the temperature range 0.3-1.3 K
show only a weak temperature dependence of the magnetoresistance, which implies that
Te_e IS Much less than the elastic scattering time and gives no chance of determining
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Estimation ofa is possible for the data presented in Fig. 2 of Refn43.8x 10' cm™ 2,

n;=1.01x 10! cm™2), although the variation of the magnetoresistance there is not large
there. This estimation givea~1x10"2° g-cn?/s-K?. The variation ofa with hole
density is consistent with the expected dependdésee Eq(A8)) at least qualitatively.

In conclusion, we have shown that the temperature dependence of both the zero-
magnetic-field resistance and the magnetoresistance of the 2D hole gas in GaAs/
(AlGa)As heterostructures is governed by the hole—hole scattering at low temperatures.
Similar effects can exist in other high-mobility semiconductor systems which contain
several groups of carriers with different mobilities.

We acknowledge a helpful discussion with V. T. Dolgopolov and D. V. Shovkun.
This work has been supported by Russian State Program “Nanostruct(@aht 1-
085/4 and by Deutsche Forschungsgemeinshaft.
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Optical phonons in quantum-wire structures
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The optical vibrational modes in GaAs/AlAs structures grown on a
(311DA-oriented GaAs surface are investigated. It is found that the line
corresponding to the fundamentBD vibrational mode localized in a
GaAs quantum wire is split into two lines with different directions of
the polarization vector. The dispersion of th® phonons of GaAs in
the (311) direction is determined from the IR spectra of periodic struc-
tures. © 1998 American Institute of Physics.

[S0021-364(98)00402-3

PACS numbers: 63.22m, 78.30.Fs

Progress in molecular-beam epita®yBE) technology has made it possible to grow
perfect GaAs/AlAs superlatticd$SLs) on high-index GaAs surfaces. Unlike the growth
of SLs on(100-oriented GaAs/AlAs, this leads to optical anisotropy in the plane of the
SL layers?~® The anisotropy of the optical and electronic properties of high-index SLs
can be explained by periodic surface faceting, which has been found to be maximum for
the (311)A-oriented SL$:® Surface faceting makes it possible to obtain quantum-wire
structures directly during growth by MBE. The question of the presence of faceting and
the height of a facet is now being debated in the literature. The first RHEED investiga-
tions of SLs grown on #311)A surface of GaAs established the period of the faceting in
the (011) direction to bed=32 A and the facet height to be 10.2 (8 monolayers?®
However, analysis of Raman scattering spectra gave a facet height of 2 mondlayers.

At present it is of great interest to study the electronic propertig8bf) SLs. At
the same time there exist only several works on the investigation of the vibrational
properties of such structurés®®

In the present letter we report the results of an investigation of the vibrational
spectrum of(311)A-oriented GaAs/AlAs heterostructures by the method of IR Fourier
spectroscopy.

We investigatedGaAs,/(AlAs),, structures §=8, 10, 12, 28 andn=12, 16, 24
are the numbers of monolayers in corresponding laygrewn on a(311)A-oriented
GaAs surface. The thicknesses of the GaAs and AlAs layers were monitored by observ-
ing the oscillations of the intensity of the specular reflection in the RHEED pattern using
SLs grown on(100) GaAs substrates in the same process. The valuesasfd m were
calculated forlGaAs,/(AlAs),, SLs with ideal heterointerfaces, neglecting the faceting.
There were 10—200 repetitions of the layers for different structures.

0021-3640/98/67(2)/5/$15.00 120 © 1998 American Institute of Physics
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The IR reflection spectra were measured at 80 K with a Bruker IFS-113V IR Fourier
spectrometer equipped with an Oxford Instruments cryostat. The resolution was equal to
0.5 cm ! over the entire spectral range. The IR reflection spectra were recorded with
normal incidence of light on the sample. The required component of the polarization
vector was selected with a polarizer.

The lower symmetry of th€311) SL compared with th€001)-oriented SLs makes
it more difficult to identify the vibrational modes. In(@11) SL the vibrational modes
propagating in th€311) direction have either a purely transverse chara@érmodes,
if they are polarized in th€011) direction, or a mixed longitudinal/transverse character
(A’ mode$.2 Moreover, the surface faceting in(a11)A SL can result in splitting of the
localized vibrational modes. For example, the splitting of localiz€Imodes in GaAs
Iayers7could be due to localization of phonons in the narrow and wide parts of the faceted
layers:!

According to the selection rules, on account of their nonzero dipole moment all odd
modes(A’ and A’) can be active in the IR spectra @&11)-oriented GaAs/AlAs SLs. The
wave number of the Alocalized modes of long-period of Sla/here surface faceting
can be neglectgdtan be determined as

dm=mp/{(n+d)d}, (1)

wheren is the number of monolayerd=a/11 is the thickness of one monolayer in the
(311) direction,a is the lattice constant in th@00) direction, andn is the number of the
localized mode. The parametéidescribes the penetration of localized modes into neigh-
boring layers.

The identification of mixed localized modes with small wave number§3iii)-
oriented GaAs/AlAs SLs simplifies because the corresponding localized modes have
mainly eitherLO or TO polarization'® Moreover, though the degeneracy of th®©
modes polarized in thé233) and(011) directions is lifted, the magnitude of the splitting
of these modes remains negligibly small all the way down to wave nungzefs3 (Ref.

8).

The IR reflection spectra of GaAs/AlAs SLs recorded under conditions of normal
incidence of the light make it possible to obsefi#® phonons localized in GaAs and
AlAs layers. In addition, only odd localized modes, whose total dipole moment differs
from zero, are manifested in the spectra. The IR spectra of the derivative of the reflec-
tance in the region of th&0 phonon frequencies in GaAs for long-period GaS/AlAs SLs
grown on a(311)A GaAs surface are displayed in Fig. 1. To determine the frequencies of
the localized modes, the IR reflection spectra calculated for a multilayer structure by the
method described in Ref. 11 was fit to the experimental spectra. The arrows in the figure
mark the spectral position of the frequencies of the higher-order odd localiged
modes, determined from the best agreement between theory and experimeiQThe
line refers to a bulkTO phonon of the GaAs substrate. The values obtained for the
frequencies of the localized modes from the IR reflection spectra for SLs with a different
thickness of the layers and the corresponding wave numbers determined from the relation
(1) were used to construct the dispersion curve for Ga&s phonons in the(311)
direction. The parametef was set equal to 1. The experimental values of the frequencies
of the TO modes as a function of the wave vector are represented by triangles in the inset
in Fig. 1. The circles represent the Raman scattering data taken from Ref. 5. For com-
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FIG. 1. IR reflection spectra of(311)A-oriented superlattices(GaAS,,/(AlAs);, (curve 1) and
(GaAS),J/(AlAs),, (curve2). The dotted line shows the computed spectra. Inset: Dispersion curve of GaAs
phonons in §31DA superlattice. For comparison, the solid line shows the dispersion of G&4shonons in
GaAs in the(100 direction. The triangles represent the IR spectroscopy®datd the circles represent the
Raman scattering data.

parison, the solid line is the dispersion curve of Ga&sphonons in th¢100 direction.
As one can see from the figure, the data obtained by different methods are consistent with
one another.

We note that the long-perioB11)A GaAs/AlAs SLs studied in the present work
and earlier in Ref. 12 did not exhibit anisotropy of the optical phonons in the plane of the
SL layers as the sample was rotated relative to the growth axis with the polarization of
the light held fixed.

We present the observation of anisotropy of the vibrational spectrum of short-period
(GaAs,/(AlAs),, (n=9, 10 andm= 12) structures, where surface faceting can lead to the
formation of quantum wires. Figure 2 shows the IR spectra of the derivative of the
reflectance of the structures, recorded with different directions of the polarization vector
of the light. As one can see from the figure, the fundamental nd@@esplits into two
modes with different directions of the polarization vector. In the case when the polariza-
tion vector of the light is directed along the quantum wifé233) direction, a low-
frequencyTQ; mode propagating in th€811) direction dominates the IR specfieurves
1,3); here the polarization vector of the mode is directed in the direction of the light
vector. If the polarization vector of the light is perpendicular to the quantum Wi@44)
direction, a high-frequencyfO, mode is clearly observed in the spectra. The polariza-
tion vector of this mode is perpendicular to the quantum wires, and for this reason this
mode can interact effectively with IR radiation polarized in #®d1) direction. The
maximum splitting is obtained fofGaA9g/(AlAs) ¢ structures and equals1.3 cmi L.
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FIG. 2. IR reflection spectra dB11)A GaAs/AlAs SL measured with normal incidence of linearly polarized
light in the spectral range of GaABO phonons:(GaASg/(AlAs)¢ (curvesl and 2) and (GaAS,y/(AlAS)¢
(curves3 and4). The dotted lines show the computed spectra. Inset: Direction of the polarization vector of the
light relative to the direction of the quantum filaments.

As the thickness of the GaAs layers in the SLs increases, the splitting dfQhmodes
decreasegcurves3 and4 in Fig. 2).

The observed splitting of th€O, localized modes can be explained by the array of
GaAs and AlAs quantum wires formed in the process of MBE growth. The calculations
of the vibrational spectrum for rectangular GaAs wires separated by AlAs batriérs
showed splitting of th& O, vibrational modes. In addition, investigations of the conduc-
tivity anisotropy® showed that an array of quantum wires could have formed in GaAs/
AlAs structures grown ori311)A-oriented GaAs surfaces. It was found that the maxi-
mum splitting of theTO localized modes is observed (BaAsg/(AlAs),g structures,
where the largest conductivity anisotropy was observed. For smaller thicknesses of the
layers, the intensity of the localized modes decreases sharply. This can be explained by
the appearance of wire-like clustétand, in consequence, an increase in the damping of
localized modes in them.

In summary, in this work the localized optical vibrational modes of GaAs/AlAs
structures grown on &311)A-oriented GaAs surface were investigated by IR Fourier
spectroscopy. It was found that the fundameifitalmode localized in the GaAs quantum
wires splits. The dispersion of GaA¥O phonons in thg311) direction, as determined
from the IR spectra of long-period of SLs, is in good agreement with the Raman scat-
tering data.
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In 1964 Davis and Adams established that the large increase of the
thermal expansion and compressibility in the critical region ofjth&o

«a-Ce phase transition occurs predominantly in th@hase. This pro-
vides strong evidence that a tricritical point is realized in Ce. This also
means that the aforementioned transition is not isomorphic and that
«a-Ce should have a distorted fcc structure. A careful examination of
Jayaraman’s datdl 965 shows that a second-order transition line con-
tinues beyond the tricritical point to the vicinity of a triple point on the
melting curve. The phase boundary with the tricritical point and the
minimum of the melting curve are reconstructed within the framework
of Landau theory. ©1998 American Institute of Physics.
[S0021-364(©8)00502-7

PACS numbers: 64.70.Kb, 65.70y, 81.05.Bx

1. The P-T phase diagram of Ce shows a multitude of phases. Except for the
body-centered tetragonal phase appearing at room temperature above 128 tizar,
other known phases fall into a relatively low-pressure domain. They are drawn in Fig. 1,
which is to some extent schematic, reflecting a substantial experimental uncertainty. The
data were taken from Refs. 2 and 3. The line YZ is a second-order transition boundary
predicted in our paper. More precise data are available for the high-temperature part of
Fig. 1, where the melting curve has a negative slope at ambient pressure and goes through
a minimum at around 33 kbar and 935*Krhis remarkable feature will be discussed
below. At the periphery of Fig. 1 one can see a body-centered ¢bb@ § phase, a
double-hexagonal close packédhcp B phase, and two low-symmetry phases
(orthorhombica-uranium structureand ¢” (body-centered monoclinicwhich at room
temperature coexist in a fragile equilibrium for pressures between 40 and 120 kbar. The
main part of Fig. 1 is occupied by theand « phases. The widely accepted view is that
both y-Ce anda-Ce have a simple face-centered cubic lattice. Across the line XY
separating these phases a first-order transition occurs. It was found that the volume and
the entropy changes at the transition are large at room temperature and Raléw (
=15% As=1.5 per atomand tend to zero beyond 500 K, indicating the existence of a
terminal point. In 1958 Ponyatovskiad already proposed that this might be a critical

0021-3640/98/67(2)/8/$15.00 125 © 1998 American Institute of Physics
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point like that in the vapor—liquid systehilhis implies a singular behavior of the second
derivatives of the thermodynamic potentiapecific heat, compressibility, thermal expan-
sion), which should tend to infinity at the critical point. Indeed in 1960 Beecroft and
Swensof observed a 10-fold increase of the thermal expansion in a critical region with
respect to that at ambient conditions. A few years later Davis and Adarttseir elegant

x-ray diffraction study confirmed this effect, and this was considered as a further justifi-
cation for the critical point concept. But they also made an additional observation, the
importance of which was not properly recognized: They were able to establish that
singular behavior of the thermal expansion and compressibility occur only in the high-
pressure phase, that is, inCe. This was in fact aexperimentum crucigvhich could

long ago have lead to the unambiguous conclusion that instead of an ordinary critical
point, the critical point in Ce is “the critical point of a continuous phase transitith&
general concept was developed by Landau in 1935-%1%9&7d is now called a “tricriti-

cal point” (a name proposed by GriffitH§. According to Landau a first-order phase
transition between two phases having different symmetry continues beyond a tricritical
point as a second-order phase transition. In the vicinity of the tricritical point the com-
pressibility, etc. diverge, but only in that phase which has the lower symmetry. This is
exactly what was observed by Davis and Adams. We have to recognize therefore that
a-Ce should have lower symmetry thanCe. A phase transition from fcc to a distorted

fcc phase has also been discovered in lanthanum and in praseodymium, the neighbors of
Ce in the periodic tabl&'~'*and within this systematics a distorted fcc structurevete

is quite reasonably expected. The diffraction patterns for the distorted structures in La
and Pr show weak superlattice reflections together with the set of strong reflections
typical for the fcc structure. Due to the topology of the phase diagram good long-range-
ordered crystals ofi-Ce have not been available, and substantial line broadening masks
the weak superlattice reflections. In the past this prevented a direct observation of the
distorted structure of-Ce.
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2. In this section we analyze the experimental information regarding the high-
temperature part of the phase diagra®lear evidence will be found for a second-order
y—a transition in the vicinity of a triple point on the melting curve. In Fig. 2 the
measured phase boundarigslid lineg are shown together with our calculatiofex-
plained below. An important feature is the minimum of the melting temperature as a
function of pressure. It follows from the Clausius—Clapeyron equation it follows that
below the minimum P <33 kbay the solid is less dense than the liquid, but the situation
reverses aP>33 kbar. JayaramArattributed this effect to a volume—pressure anomaly
in the solid phase, supposing that at ambient pressure liquid Ce is already in a “collapsed
state,” exhibiting the regular volume contraction with increasing pressure. The anomaly
in solid Ce, being very strong in the critical region around point Y, should still be
significant in the vicinity of the melting curve. This explanation is no doubt qualitatively
correct, but within the tricritical point scenario we have to take into account that the
anomalous properties manifest themselves in the low-symmetry phase. This, therefore,
has to be thex phase, which exists in equilibrium with the liquid around the melting
curve minimum. On the other hand it appears that the neighboring phase below the
border with thes phase is the high-symmetry phaseCe. This becomes apparent from
an analysis of the corresponding boundary line, which we identify belowyasSgphase
boundary. This line has a pronounced downward curveftig 2) and can be fitted by
the equation

T=1003-1.4P—0.030%°2, )

whereT is in kelvin andP in kilobar. The same equation can be written after expanding
the equilibrium condition for the chemical potentials = u , at the boundaryin powers
of PandT—T,, whereT,=1003 K, as

1
—(Sg—Sy)(T—TO)+(U5—U7)P—E(Kg—Ky)PZZO. 2)

Heres is the entropy per atomy is the atomic volume, angd= —dv/dP is the com-
pressibility. Other quadratic terms which are due to the thermal expansion and the heat
capacity differences give negligible contributions. From the measured data we calculate
the volume and entropy changes across the transitiéh=ad:
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vs—v,=—0.062 &; s;—s,=0.044 & kbar/K ©)

(1 A3 kbar/K corresponds to the dimensionless value 7.25 for the entropy pej.atom
Comparing Eqs(1) and(2), we find the compressibility difference

K5~ 1,~0.0027 Bkbar, (4)

which is only ~2% of ., (k,~0.15 A%/kbar for a bulk modulus~230 kbar and,,
~34 A%/ kban: There is no evidence for any anomalous increase,ofThis means that
Ce indeed remains in its “normal” high-symmetny phase along most of the—§ line.
We come to the conclusion that the possible positions of pbarte limited to an interval
of a few kilobar around the triple poitisee Fig. 2, lying either on they—§ line or on the
melting curve.

We can now calculate the coordinatd®,(T,) of the pointZ and the compressibil-
ity jump at the y—a transition. Suppose first th&,>26 kbar. BeyondZ the liquid is
therefore in equilibrium with then phase:wjq=pu,, #o=p,+Aun. Expanding wig
— M, in powers ofP—P; and T—T,, we get the equation for the melting curve,
>Pz:

1
—(Sig= SN T=T2) +(vjg—v,)(P—Pz)— E(an— k,)(P=P2)?~Au=0. (5
The main contribution td x is due to the compressibility jumfi «:
1
A,LLZ—EAK'(P—PZ)z. (6)

From the linearity of the border between the liquid and thghase we find thak;
=K, and thereforec;q— x,= ks~ k,,, EQ. (4). Using the measured data we also get

Viig— v 5= —0.38; sjq—S;=0.081 @
(the units are as in Ed3)).

These values remain constant along the melting line. According to(Bgand (4)
vs—v,=—0.13 at the triple point, whils;—s, does not change appreciably. Using the
values of Eq.(6) we get finally the coefficients in Ed5):

=—051; s;4—5s,=0.125. 8

The initial slope of the melting curve on the high-pressure side of the triple point is
therefore equal to 4.1 K/kbar. Defining a straight line having this slope and going through
the triple point(dashed line in Fig. @

T=1053-4.1P, 9)

we impose three conditions necessary for calculafipng®,, andA «: T, and P, satisfy
Eq. (9); the coordinates of the melting curve minimum, viz,,=935 K andP,,=33
kbar, satisfy Eq.(5), anddT/dP=0 at the minimum of the melting curve, E¢5).
Solving the corresponding equations, we find that

Ak~0.065 &/ kbar (10

andP,~25 kbar. This value is indeed very close(bmt ~ 1 kbar below the triple point.
As a result, the calculated point is not the true p@nbut a pointZz’ which falls on the

v”q—vy
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line specified by Eq(9) at a temperaturd@,=951 K abot 4 K above they—§ phase
boundary. Estimates show that to an accuracy @fK and a few tenth of kilobar we can
simply take the projection a2’ on the y—4 line to get the correct position of poiat

P,~25 kbar, T,~947 K. (12)

The melting curve calculated using E¢S) and(6) (with T instead ofT!) and shown
as curvel in Fig. 2. coincides with the measured one along an interval of about 10 kbar
beyond the triple point.

The discrepancy at higher pressure is, of course, not surprising for an approximate
version of Su, Eg. (6), and is diminished within a more general descriptioarve 2 in
Fig. 2; see next sectign

3.Itis most natural to expect that a second-order transition line continues from point
Z to the tricritical pointY. BeyondY a well-known first-order phase transition occurs
(Fig. 1), and to get a quantitative description of this peculiar situation we exffahd
lowing Landad*®) the chemical potentigk(P,T,u)=u(P,T,0)+Aw(P,T,u) in powers
of some amplitude, related to the lattice distortion:

Au=Au?+Bu*+Cub, C>0. (12

To avoid misunderstandings we note that the transition to the distorted structure is, most
probably, driven by the softening of some phonon mode at a high-symmetry point in the
Brillouin zone (see Sec. ¥ The resulting distortion is some definite superposition of
displacementscorresponding to several points with the same symmethjch provides

the minimum value of the fourth-order term. The expangib® is written for the am-
plitude u of this already selected superposition.

For B(P,T)>0 a seconegorder transition occurs along the lizey, defined by the
equationA(P,T)=0; A>0,u=0 for a “normal” y phase, andA<0, u#0 for a dis-
torted « phase. Let P'T') be some point 0ZY. Using the expansion

AP, T)=a(P'T'(T-T")—-BP'T")P-P"), (13

we find the discontinuities of the compressibilig=—dv/dP, the thermal expansion
n=dv/dT, and the heat capacity (per atom:
B ap ap

Ac=T' - (14)

Ak=2g A= 55, 2B

whereAx=«,—«,, etc., and all quantities depend &,T'.

The tricritical pointY appears as a crossing point of the lindéP,T)=0 and
B(P,T)=0. In the vicinity of Y

B(P,T)~Bo(P,T)=y(T-Ty)-B(P—Py) (15

andAx, A», andAc therefore tend to infinity asT{ — Ty) %

Below Ty the y—a phase boundary continues as a line of first-order transitions:
B2=4AC (Ref. 9. Within the scope of Eq13), taken around’, and Eq.(16) the phase
boundary is defined by a simple quadratic equation. In terms of the dimensionless vari-
ablest andp,
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T-Ty 1 b_p T-Ty 16
P ML L 1
this equation igfor t<0):
—(t— 2_ =
p+ 4(t Vp) 0, v kA_kB TZ_TY' (17)
where
B3(2) B 8
PO_ SBC ’ kA_ZI kB_;’ (18)

andBy(Z)=y(1—kg/kp)(Tz—Ty);a=a(Y),B8=B(Y) (see Eq(13)). Although the in-
formation concerning the position of the singular pothis vague, the measured tem-
perature evolution of the pressure-resistance isotfesmsws that 530-560 K is the
most plausible interval foffy. Taking Ty=550 K andk,=(T,—Ty)/(Pz—Py) (sup-
posingZY is close to a straight linewe have calculate®, and the parametei®, and

v, fitting Eq. (17) to the measured characteristics of the phase boundary. For the values

Py=16.7 kbar, Po=28 kbar, v=1.12 (19)

the theoretical curve

2 3
p(t):_; 1—§Vt—\/1—31/t , 1<0 (20
14

passes through the poiRt="7.2 kbar afT =300 K and is nearly linear up to 450 K, with

a slopek(T)=dT/dP that changes slowly from 22 to 27 K/kbar. These characteristics
reproduce the measured data well within the experimental uncertainties. Above 450 K
k(T) increases to the valule,~48 K/kbar at pointY. A substantial increase d&{(T)

above 450 K has been reportedyut, all in all, the data in this region are controversial.

2

Provided thatAu in Eq. (12) is minimal? u? is given in terms ofp,t by the

equation:

BU?=2Py(Ak)of; (Ak)o=B%2By(2), (21)
where

f=f(t,p)=—t+vp+(t—vp)’+p. (22

Inserting Eq.(21) with (22) into Eq. (12), we getA u(p,t):
2
Ap=—3(Ak)oPg[2p—(t=vp)f]f (23
and forAv=JAu/dP andAs= —dA u/dT we find:

Av=—2(Ak)oPo(1+vF)f; As=—2(Ax)oPo

L Vil 24
K kg " 29

In particular, at the first-order transition line EQO), t<0, we have



JETP Lett., Vol. 67, No. 2, 25 Jan. 1998 G. Eliashberg and H. Capellmann 131

1
f(t,p(t))=;(\/1+3v|t -1), (25)

and, using the measured value of the volume jump-aB00 K, Av~4.5-4.8 & (Ref.
3), we find (for P, and v given by Eq.(19)):

(Ak)o~0.067-0.072 A/kbar. (26)

Using ky=48 K/kbar andkg= 12 K/kbar(for »=1.12, Eq.(17)), we find from Eq.
(24) that As=—(1.61-1.73) per atom a=300 K, in agreement with the measured
value?

We emphasize that\(x) in Eq.(26) is close taA « in Eq. (10). Comparing Eq(14)
for Ax and Eq.(21) for (Ak), we see that the similarity obtained is consistent with a
situation in which the characteristic temperature scale in the expatispof B is much
larger thanT,— Ty and in which the coefficienta(P'T’) and 8(P'T’') in Eq. (13) are
only weakly varying along the lingY. This does not seem surprising: within the interval
consideredr is several times the Debye temperat@@re-130 K and the aforementioned
scale should be of electronic origin.

The lineA(P,T)=0, which is confined to a relatively narrow pressure inter®gl-
Py~ 8 kbay, is therefore close to a straight lii@s was supposed abgvénother basic
line, B(P,T)=0, which has a much smaller slope, continues to the higher-pressure re-
gion. On very qualitative grounds one can expect the bulk moduhZ00 kbaj to be an
appropriate pressure scale in the expangibh) of B, but because the linear term is
relatively small kg~0.25%, at P=Py), the nonlinear dependence éhmay become
important at much lower pressure. Indeed, inserfing from Eqg. (23) into the equation
(5) of the melting curve, we fingfor the calculated values of the parametersubstan-
tial deviation from the measured curve alreadyPat 33 kbar. We therefore take into
account the quadratic term (P—Py)? in Eq. (15):

Q

Making the corresponding changesAnu, we get a reasonably good fit to the melting
curve forQ=40 kbar(curve 2 in Fig. 2). It is seen that for thi€) the lineB(P,T)=0,
which has a slop&g=12 K/kbar atP=Py (=17 kbay, approaches a maximum of
=670 K atP= 37 kbar. Within this model only smalb—10% corrections to the above-
determined parameteR,,v, andA k are needed to maintain an equally good quantita-
tive description simultaneously in both domains of the phase diagram for which reliable
data are available: around the melting curve minimum and@i<afy, where the first-
order transition occurs.

Y

B(P,T)=vy T—TY—kB(P—PY)(l— (27

4. The coefficient in Eq. (21) for u? does not appear explicitly in E3) for A u,
and microscopic information must be invoked to determ@nén La and Pr the observed
distortion of the fcc lattice is related to the softening of the zone-boundary transverse
mode(the so-called point in the Brillouin zon&.**** The dispersion anomalies of this
mode and the frequenciegL) measured in CéRef. 16 and in La(Ref. 17 and 18are
almost identical, and one can expect that the same mechanism drives the lattice distortion
in both metals. Supposing this is the case, we can estigatsing the value ofv(L)
measured aP = 0. Extrapolating Eq(13) (for P'=Py,T'=Ty) to P=0, we have in the
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harmonic approximationA=BPy=Mw?/2 (M is the atomic mags An appreciable

softening of the transverde mode in Ce fromrl ~900 K to room temperature has been

observed to occuf’ We take roughlyw=21-10'? sec * for T=Ty. For Py~17 kbar

we getB3~30 A, and

2P0(AK)O - 0
B

which is comparable with the displacements measured i Pr.

u?=/2f(p,t), /2= 1A, (28)

It is worth pointing out, that the aforementioned instability results in a distorted
lattice having at least two nonequivalent atomic positions in the unit cell. Therefore each
atom is displaced from the centrosymmetric position; this indicates that an ionic core
polarization is the source for the lattice instability. Followed by a mixing of electronic
orbitals (having different local paritythis polarization gives rise to the softening of the
phonon modes and to a strong modification of the electronic properties.

We wish to thank A. S. loselevich, I. Luk’yanchuk, K. U. Neumann, Ye. G. Pon-
yatovskii, and K. R. A. Ziebeck for fruitful discussions.
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Motivated by the recent observation of the metal—insulator transition in
Si MOSFETS, a study is made of the quantum interference correction to
the conductivity in the presence of the Bychkov—Rashba spin splitting.
For a small splitting, a crossover from the localizing to antilocalizing
regime is obtained. The antilocalization correction vanishes, however,
in the limit of a large separation between the chiral branches. The
relevance of the chiral splitting for the 2D electron gas in Si MOSFETs
is discussed. ©1998 American Institute of Physics.
[S0021-364(98)00602-1

PACS numbers: 72.15.Rn, 73.50.Bk, 71.10.Ca

Since the appearance of the scaling theory of localiztiorl979, it has been a
common belief that there can be no metal—insulator transitMiT) in 2D electron
systems, since all the states are localized at arbitrary weak disorder. Recent experiments
on high-mobility Si MOSFETSs by Kravchenket al,? however, showed evidence for a
zero-magnetic-field MIT which is controlled by the densityof 2D carriers. For small
densitiesng<n.=10" cm 2 the system is insulating, with an exponentially diverging
resistivity in the limitT— 0, whereas fong higher than the critical density a strong drop
in resistivity (by one order of magnitudés observed folT <2 K.

The origin of the new metallic phase is not yet understood. Nevertheless, it is
evident that the electron—electron interaction plays an important role, as the critical
densityn, is quite low, so that the Coulomb interaction dominates the kinetic energy.
Their ratio isr¢=10 at the transition point and decreaselss;l’2 deep in the metallic
phase. Several theoretical approaches to the treatment of the strong Coulomb interaction,
such asp-wave? triplet, or anyon superconductivity and superconductivity resulting
from a negative dielectric functirhave been suggested during the last year.

Besides a strong Coulomb interaction, Si MOS structures are characterized by a
spin—orbit splitting of the spectruflt originates from a strong asymmetry of the con-
fining potentialV(z) of the quantum well. The corresponding term in the Hamiltonian of
a 2D electron gas, the so-called Bychkov—Rashba term, is given by

Heo= [ @ P]. (1)

0021-3640/98/67(2)/7/$15.00 133 © 1998 American Institute of Physics
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Here ¢ is the vector of the Pauli matriceé, is the 2D momentum operatog; is a
constant of the spin—orbit symmetry breaking measured in the units of velocity, and
[- X -] stands for the component of the vector product. This term lifts the spin degen-
eracy at zero magnetic field and results in the splitting of the spectrum into two chiral
branches:

p2
e?(p)=5-*ap, @
with the splitting growing linearly withp.

For a Si MOSFET, the minimum of the spectrd®), — e,= — ma?/2, is estimated
as 1 K/®° while the Fermi energy igr=6 K at the transition. Then the ratio of the
concentrations of left- and right-chiral fermions isn,/n_=(\er+¢€q
+Veo) 2 (Ver+ €9— Veg)?=5. Thus we conclude that the spin splitting results in a dras-
tic change of the internal properties of the system even without allowing for the Coulomb
interaction. This observation may call into question the remark by Belitz and Kirkptrick
that the spin—orbit scattering is irrelevant due to the presence of a long-ranged Coulomb
interaction. The latter should be strongly modified by the predominance of one type of
chirality.

The relevance of the spin correlations was also demonstrated in magnetic
measurement®. Magnetic field applied in the 2D plane was shown to suppress the
metallic state, leading to a huge increase in resistivity. Measurements in a perpendicular
magnetic field show a large positive magnetoresistance at high demsitiezn., also
indicating the spin-related origin of the conducting phase.

We argue that an understanding of the new conducting phase and of the MIT itself
can hardly be obtained without taking the strong chiral splitting into account. Thus the
theory of the metallic state should be the theory of Coulomb-interacting chiral fermions.
The necessary first step, then, is to consider noninteracting particles with a chiral splitting
of the spectrum.

In this letter we study the first quantum correction to the conductivity for noninter-
acting particles in the presence of the Bychkov—Rashba t@&nand obtain it as a
function of the spin—orbit splitting. There are three energy scales in the problem: the first
is the Fermi energyg, the second is the chiral splitting=2apg between the two
brancheq?2) at the Fermi level, and the third is the inverse elastic mean free time
introduced by disorder. We will assuneg to be the largest energy scale:

1
€F>;’ EF>A. (3)

The relationship betwees and 7! is not specified, so that the variable
X=Ar (4)

that controls the strength of the chiral splitting may vary from @ct@rovided that the
relations(3) are fulfilled. At the critical density, the ratif/ e¢ is of the order of 1, but it
decreases asg !into the metallic phase. The experimental value of the parameter
depends slightly on the density, varying from 5 to 10nasvaries from 16* cm 2 to

3x 102 cm 2.
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The spin—orbit scattering in @ndom potentiais known to drive the system into
the symplectic ensemble, resulting in an antilocalizing correction to the conductivity
Ao gyms= (€% mh)In(l,/1) (Ref. 11, wherel is the mean free path,=(D7,)?is the
phase-breaking length associated with the phase relaxationrtimandD is the diffu-
sion coefficient. In the case of the Bychkov—Rashba term2B&ymmetry is broken on
the level of theregular Hamiltonian while the potential scattering may be considered as
spin independent. From symmetry considerations one might expect that the symplectic
correctionA osym, should be recovered in the limit of a large spin splitting. We will see,
however, that the correction becomes antilocalizing=atl /1 )¥3<1, nearly approaches
Aogympfor x<1, butvanishedor x>1. Such a peculiar behavior is due to the presence
of the two chiral branches that are well separated in the lixgitr 2.

Weak localization effects in the presence of different types of spin—orbit splitting,
including the Bychkov—Rashba splitting, have been studied extensively in Refs. 12.
However, the authors were interested mainly in the behavior of the magnetoresistance,
while the quantum correction at zero magnetic field andxtarl whenHg, cannot be
treated as a small perturbation had not been investigated.

We consider a 2D noninteracting electron gas with the Bychkov—Rashba term in the

Hamiltonian:
~s ) )

H=ﬁ+apyox— apyoy,+U(r), (5)
where U(r) is a random spin-independent impurity potential, which for the sake of
simplicity is assumed to be Gaussiarcorrelated{U(r)U(r’))=38(r—r’)/2mv7. Here
v=m/27 is the density of states for the free Hamiltonjafi2m.

The classical conductivity can easily be shown to be independentinl given by

the Drude formular,=ne?s/m, provided that the random potential dscorrelated. The
first quantum correction to the conductivifyis given by the expressidn

2

(GR(P)*“(GR(P) (GA(P) " GA(p))** f ! o)
l/I@(Zﬂ')z BulH/
®)

Where<GR'A) are disorder-averaged retardedlvanceyl Green functions, which for our
problem are nondiagonal in the spin space, and the static coog¢ris determined by
the ladder equation

5&)\6ﬁ,u 1 de / q aa’
ak _ R _ A
CB“(q)_ 2mTvT +27TVTJ (277-)2\6 (p+ 2)> <G

AUZ—e—Zﬁ de
h 2 (27,-)2

q BB’ W
_p+§> Ch A (a).

()
The averaged Green function obeys the Dyson equai®(p)) *=G©(p)~*
—3,, whereG©(p) is the Green function of the unperturbed Hamiltonian. In the quasi-

classical limit,ez 7> 1, only diagrams without intersections of impurity lines are impor-
tant, and the self-energy function is

1 d?
355 —J D (GRAp) .

AT 2wt (2m)?
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On solving the Dyson equation we obtain the Green function that can be written near
the poles asi{=p/p)
i
—&(p) iz_ +A(nyoy—nyoy)/2

i A i) ®
—f(p)—EiZ_)(—f(p)Jr giz)

(GRA(p))=

Here we have taken advantage of the fact thater and replacedxp by A/2. The
relaxation times for the two chiral branches appear to be equal to each other and coincide
with the mean free time. This is a consequence of the model witorrelated disorder.

For a more realistic model with a finite correlation length the lifetimes will be different
for the two chiralities, but the difference will be small in the liMkit< e .

The crucial quantity that determines the spin structure of the cooperon is the integral
of the retarded and advanced Green functions,
BB’
> . (9

e 1 d2p . aa’ A
|Bﬁ’(q)_2771/7'f (277)2<G p > <G

Calculating this integral as a function &f expanding to second order @) and substi-
tuting into Eq.(7), we get

A~Y(q)

27vT

q
3

a
2

C(a)= : (10)

where the operatoA(q)=1-1(q) expressed in terms of the total cooperon sfin
= Y(oR+ ™) reads

. 1 1 6+ 3x2+ x4 ae m
A(a)= =a?l2+x? — 22| (232
(@=34 2(1+x%)  8(1+x?)® a) 2)
X2(6+3XZ+X4)( x §)?2 (xSl (12)
4(1+x?)3 a (1+x?)2 a '

The next step is to invert the matri and to obtain the cooperon. According to Eq.
(11), the singlet mode is gapless while the triplet sector acquires a gap proportional to
To study the lifting of the triplet sector let us first consider the case of sxeall. Then,
for gl>x, the spin structure oA may be neglected, so that = (2/g?%1?)1. For ql
<x, the triplet sector of the inverse operatdr* becomes complicated, with different
triplet modes having different gaps because of the low symmetry of Hg, but this
region does not contribute to the logarithmic integral oge60 we may write

q2|2

Although this is not an exact formula it captures correctly the logarithmically large terms
in the q integration.

(12)

L, 2 & 2 &
2 q2I2~I—X2?'
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Inserting(12) to Eq. (10) and performing the integration, we obtain the expression
for the cooperon integral:

3
5N 5Pt~ (In——f)Z o ﬁﬂ]

[ = e vt
— n_
n,(2m)? B’“ a zvv,2:7'3 I

(13
where the contribution of the triplet sector is
I, I

In— for x< —;

I Iy
f( I‘P) 1 | (14

X, | =
I In; for|—<x<1;

¢

O(1) forx>1.

The last thing to do is to compute the integral of four Green functions in(@&q.

d2
f(z)JGNmV“GWmV%GWmV“GWmWB
X2
(1+ E

This integral is diagonal in the spin space for smail but has a more complex
structure forx>1, when the chiral branches are well separated.

3 2

dvr X
= SHe B+ Z(O'QC'G'QB-F 0'9‘“0'?,5) . (15

1+ x2

Finally, we combine all together. Substitutif3) and(15) into Eq. (6), after some
arithmetic with the Pauli matrices we obtain the final expression

Zf(xl—“’
"

Let us studyA o as a function ok for a givenl ,>1. Forx<l/I,,, the spin splitting
can be neglected and we obtain the orthogonal universality class corraetigf which
can be interpreted as a sum of a localizing contribution from the triplet sector and an
antilocalizing contribution from the singlet sector. Then ffd,<x<1 the triplet modes
acquire a gap that reduces their contribution, and the total correction changes sign and
becomes antilocalizing at

2¢? 1
h 1452

11

+
2 X

> } . (16)

I 1/3
Xe = (l—) . (17)

For x,<x=<1, the antilocalization becomes more pronounced, nearly approaching
Ao gymp. However, forx=1 it goes rapidly to zergasx2). Summarizing, we present
the behavior ofA o in the form
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FIG. 1. A sketch ofA o versus the strengtk of the chiral splitting;A oon= — (2e2/7-rh)ln(l(pll).

(1, !
—In—= for x< —;
I I,
292 1 | |
AGZ_F Eln<|—"’x3 for|—<x<1; (18
T [
1 |
—2In|—“’ for x>1.
2X

\
The crossover from the orthogonal to the symplectic corrections obtainex<ar is

related to the appearance of a gap in the triplet sector of the cooperon. On the other hand,
the reduction ofA o for x>1 must be attributed to the spin structure of the inte¢t8§),

which annihilates the singlet cooperon mode in the limit of a large splitting between the
chiral branches. In other words, the result obtained implies the absence of the first quan-
tum correction to the conductivity in a system of 2D chiral fermions with only one sort of
chirality. The other example where a certain type of spin—orbit coupling leads to the
absence of the first interference correction was considered in Ref. 14. The behavior of
Ao as a function ok is sketched in Fig. 1.

The largex asymptotic behavior can be traced upxte vIn(l,/1). In order to find
Ao for even largeix, one has to go beyond the diffusion approximation to calculate the
function f(x) that competes with the vanishing terml!ﬂ()/xz.

In conclusion, we have considered the quantum interference correction to the con-
ductivity of noninteracting fermions in the presence of the Bychkov—Rashba spin—orbit
interaction. At small chiral splittingsx<<1, the correction changes signh and becomes
antilocalizing. It vanishes fox>1, where the scattering between the different chiralities
is strongly suppressed. The present theory may be regarded as a step toward understand-
ing of the conducting phase in Si MOSFETSs, which likely contain Coulomb-interacting
chiral fermions. It might also explain the low-temperature Tdgehavior of the resistivity
obtained for some samples below 300 mK deep in the metallic phase. The correction is
antilocalizing, Ao=— C(€%/h)In(T/T), with very smallC~10"2 (Ref. 9; this is con-
sistent with our formula for experimental values-1.
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The condition for the appearance of an event horizon is considered in
pair-correlated systemsuperfluids and superconductpis which the
fermionic quasiparticles obey “relativistic” equations. In these systems
the Landau critical velocity of superflow corresponds to the speed of
light. In conventional systems, such asvave superconductors, the
superflow remains stable even above the Landau threshold. We show,
however, that, in “relativistic” systems, the quantum vacuum becomes
unstable and the superflow collapses after the “speed of light” is
reached, so that the horizon cannot appear. Thus an equilibrium dissi-
pationless superflow state and the horizon are incompatible on account
of quantum effects. This negative result is consistent with the quantum
Hawking radiation from the horizon, which would lead to a dissipation
of the flow. © 1998 American Institute of Physics.
[S0021-364(98)00702-9

PACS numbers: 67.28k, 74.20—-z, 04.60—m

1. It is known that some aspects of the problem of black holes can be modeled in
condensed matter physits This comes from the fact that acoustic waves propagating in
a moving classical liquitr® and fermions propagating in a texture of superflthite-A
(Refs. 4, 6, and )7obey relativistic-type equations in a curved space whose metric is
produced by both the flow field and the textuie *He-A). In both systems the corre-
sponding velocity of light can be exceeded, which affords the possibility of investigating
the event horizon problem.

3He-A and other pair-correlated systeftiscluding d-wave superconductors, which
also contain relativistic fermions; see, e.g., Refag better models for simulations of
the event horizon than a classical liquid, since these are quantum systems with ground
states that are in many respects similar to the quantum vacuum of high-energy physics.
That is why they can be used for investigating the quantum effects related with the event
horizon, such as Hawking radiatiband statistical entrop?f.

Here we address the stability problem of a quantum vacuum in the presence of an
event horizon: whether a nondissipative flow of superfluid is possible in the presence of
a horizon, or whether the horizon always leads to a vacuum reconstruction into a state

0021-3640/98/67(2)/6/$15.00 140 © 1998 American Institute of Physics
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with dissipation. This can be considered using an example of a superflow with velocity
exceeding the Landau critical velocity .

Let the superfluid move af=0 with a superfluid velocitys, while the container
walls, i.e., the preferred reference frame, move with a normal velogityThe physical
properties of the vacuum state depend on the relatbarinterflow velocity w=vq
—V,. In a subcritical regimew<uv,_, the order parameter is independentvef the
observer moving witlvg does not see any difference in the liquid as compared to the case
when vs=v,. The system thus retains some kind of Galilean invariance even in the
presence of the container wall. For example, the density of the superfluid component in
the expression for the mass currgrtp.vs+ p,Vv,, which represents the vacuum com-
ponent of the liquid, does not depend @anand is equal to the total density(T
=0, w<uwv )=p, while the density of the normal component, which represents the mat-
ter, is always zeropy(T=0, w<v|)=p—ps(T=0, w<v,)=0.

The observer starts to see a dependence on the velocity relative to the reference
frame if w exceeds the Landau critical velocity , at which negative energy levels
appear, i.e., states with negative Doppler-shifted en&gyp-w<0. If the system is
fermionic, the typical situation in a supercritical flow regime aboyas as follows: The
negative energy levels become finally occupied and, after such vacuum reconstruction,
the system comes again into a new equilibrium state with a frictionless superflow. Now,
however, all the physical quantities dependwnas seen by a comoving observer. The
vacuum state becomes anisotropic and the superfluid density now dependsaiod
becomes smaller than the total mass dengiffT =0w>v )<p. The other part of the
liquid, with the so-called normal densify,=p—ps, comprises the normal component
(matte) and consists of trapped fermions with negative energy. In equilibrium, this
component is at rest with respect to the container reference frame, i.e., it moves with the
velocity v,,. The previous “Galilean” symmetry is thus broken by the created matter.

There is another critical velocity,., at which the superfluid vacuum is exhausted,
i.e., the superfluid density completely disappeatgw=uv.)=0, and thus the nondissi-
pative superflow does not exist any more. Typicadly:>>v, and thus the violation of the
Galilean symmetry occurs earlier than the superfluidity collapses. This happens, for ex-
ample, in conventionad-wave superconductors, whese anduv. are of the same order,
with v.>v , and also in superfluftHe-A, wherev, =0 while v, is finite (see, e.g., Refs.
11-13.

The existence of a region with stable supercritical superflgwsw<wv_, allows us
to raise the question of the quantum effects of an event horizon. Let us consider a system
in which the quasiparticles are described by effective relativistic equations, such that the
Landau velocity corresponds to the “speed of light!’ In this case a supercritical ve-
locity w>uv, corresponds to a superluminal velocity, and thus an event horizon can be
constructedsee below. If quantum effects are taken into account, there arises the prob-
lem that on the one hand the frictionless superflow is stable in the regirtev<uv.,
and this stability cannot be destroyed by the presence of the horizon, while on the other
hand, the Hawking radiation from the horizon means that such a superflow is dissipative
in the presence of the horizon.

Thus we have a dilemmadi) either one should doubt the fundamentality of the
Hawking radiation from the event horizon in the supercritical regime(iigrin the
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relativistic-type systems the “superluminal” regime of superflow is prohibited, a.g.,
=v.=C. Here we consider a pair-correlated fermionic system with a superconducting/
superfluid state of the polar type, which has “relativistic” Bogoliubov fermionic quasi-
particles. We find that in this system the second alternative occurs: a nondissipative
superflow collapses at=v, =c, which means that the horizon never appears in the
stationary nondissipative superflow: it can only exist in a dissipative flow state.

2. The energy spectrum of the pair-correlated system and its vacuum state are
determined by the self-consistent equations for the gap fundtjonhich determines the
quasiparticle spectrum and thus the “speed of light”

Ay
ApZE Vp’p/_p(l_np/_n,p/). (1)
p’ Epr
HereV, , is the pairi_ng p(_)tentiaIEp is_ th_e energy of the quasiparticles in the pair-
correlated state ana, is their thermal distribution

1
— 2 2 —
o= VAot & M e (B, p-w)/T] @

and 6p:(p2_ p,2:)/2m is the fermion energy in the absence of the pair correlation. If the
superflow velocityvg deviates from the container reference frame velogijty the distri-
bution function is Doppler shifted; further we assume that 0 and thusv=v;.

Let us consider how the vacuum staiie<0) is disturbed by the counterflow in
the supercritical regime. We are interested in the case when the spectrum of quasipar-
ticles is “relativistic,” so that the horizon problem can arise. For this reason we consider
the two-dimensional case, spin-triplet pairing with orbital momentuml, for which
the pairing potentia}\/p'p,=2(V1/pE)p~ p’, and the gap function corresponding to the
polar phase i

Ap: C px ’ (3)
where the factor plays the role of the speed of light along theaxis.

Let the velocity of the superflow be along the same axie., ve=wX, so that the
superflow does not break the symmetry of the polar state an@BEgmains the solution
even in the presence of the superflow. The Doppler shifted energy of the fermions in this
pair-correlated state is

E(py.€)=Ep+p-Vs= e+ c?pi+wpy (4)
or

(E-wpo)?=€*+c?p; 5
This corresponds to a relativistic 1D particle of massoving in the Lorentzian metric:

g00: —1, g°l=w, gli= c2—w2. (6)

If the counterflow velocityw can exceed, one can construct an inhomogeneous flow
state with a coordinate dependencewgk) andc(x) such thatv(x) crossex(x). In this
case the metric elemerg!(x)=c?—w? crosses zero at the points=x;, at which
w(X;,)=c(xy), and thus the event horizon appears at these points.
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From Eq.(1) one finds that there are no quasiparticleserc andT=0: n,=0,
i.e., the vacuum remains intact. The system is effectively Galilean invariant and the speed
of light is independent ofv.

The problem is whether the flow velocity can exceed the Landau velocity ,
which is now the “speed of light't. If the answer is yes, the horizon can be constructed.
Let us consider the gap equati@d in the case whew>c. We assume that the speed of
light is small compared to the Fermi velocitg<<vg=pg/m, which is typical for a
weakly interacting Fermi liquid. In this case, the momentum is concentrated near the
Fermi momentump= (pg Sin ¢, pe COS¢), and one can write

S -J ez ool 52 @

In principle, one can expect that\at>c the speed of light becomes dependentwon
for w>c. Thus let us introduce the bare speed of light=c(w=0) and the current
(variable value of the speed of light(w) if w>c(w). As we have seerg(w<c)=cy,
and this solution persists until reaches the Landau velocity. Thus the first branch of
c(w) is

C1(W)=Cp, W=Cp. (8

3. If w>c, the Galilean invariance becomes broken due to fermions filling the
negative levels of the energy in E@l). The number of particles on the negative energy
levels is the fermionic step function of the energy

=0(—E(px,e)). ©

From Eq.(1) one obtains the following equation for the factofw) in the gap
function (3):

f jzw d¢( site site
27\ [+ clsitg e+ cisitd

_ 4 d_d’ . sin pVw2—c2 de
_ZJo 27'rsmz¢fo Ve +c%sirtg 10

Note that the details of pair interaction are concealed in the bare speed ofclight
determined by this interaction. From EJ.0) one has

Co .o W
In ?=smh i 1 (11

which gives the solution for the “speed of light¢ in the superluminal regimeav
>c(w):

2w 1
Cz(W):CO ——1, = Co<W<Cyp. (12)

Co 2
It follows that no solution exists above the Landau velocity, i.ewatcy, which means
that the Landau velocity coincides with the velocity of the superflow collapse and thus

with the bare speed of lighti, =v.=cy.
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FIG. 1. Two states of the superflow. In the subluminal flow state the speed otligh) =c, does not depend
on flow velocityw with respect to the container wall. The superluminal state w4flw) <w is locally unstable.
The mass current in these two states is presented on the right.

Below the Landau velocity, one has two branchmgw)=cy andc,(w) (see Fig.
1). Both can be obtained as extrema of the superfluid vacuum energy in the presence of
the mass current

Q P 1,1 .1 2| Co

s(s,w)— N——]W+§pW—ZpC—§pC n?
+12|W+ W21WW21® 13
Mt Ve eV jow-o. (3

Here() is the free energy of the normal state, i.e.c&at0; the mass density in this 2D
model isp= mpﬁ/erhz; the first term— jw means that the free energy is to be extrem-
ized at the given mass currgnt pvs+ 2 kn, . The current in a given statsee Fig. 1
can be obtained from the extremum of the vacuum energy with respe&ct #6)g/ow
=0. This gives the general expression for the mass current density

j(w,c)=p(w—0(w—c)yw?—c?). (14)

The second branch, corresponding to the superluminal éigiw)<w, represents
the saddle point solution of the vacuum energy and thus is unstable against the formation
of the regular branch, corresponding to the subluminal floMww) =co<w. This second
branch with similar behavior has been also found3de-B under superflow?

In conclusion, we found that, in a superfluid analog of the relativistic system, a
stable superflow with velocity exceeding the corresponding “speed of light;'t, does
not exist, and thus the dissipationless state with a horizon does not appear. The collapse
of the superfluid quantum vacuum in the superluminal regime is compatible with the
Hawking radiation, which leads to the dissipation in the presence of a horizon and thus
cannot exist in the stable superflow. A horizon can appear only if the flow state is
dissipative. This can happen if the external body or the order parameter texture moves in
the superfluid with a supercritical velocity, as was discussed in Ref. 4 for the case of a
moving topological soliton ir’He-A. The Hawking radiation gives rise to additional
dissipation during the motion of the object.
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We have used scanning tunneling microscopy and scanning tunneling
spectroscopy at liquid helium temperature to study the electronic struc-
ture ofin situ cleaved,(110 oriented surfaces of InAs single crystals.
Both unperturbed, atomically flat areas and areas with an atomic-size
defect cluster have been investigated. We show that the anomalous
behavior of the local tunneling conductivity, which indicates a pro-
nounced enhancement of the semiconductor band gap for the flat areas,
is consistent with band bending induced by charges localized at the
apex of the tip. Atomic-size defect clusters contain additional charges
which modify the band bending; this explains the different behavior of
the tunneling conductivity near the defect cluster. The experimentally
observed oscillations of the tunneling conductivity near the band gap
edges can be directly related to resonant tunneling through quantized
surface states which appear because of the band bendind.99®
American Institute of Physic§S0021-364(18)00802-0

PACS numbers: 71.20.Nr, 71.24q, 61.16.Ch

Measurements with scanning tunneling microsc@py¥M) and scanning tunneling
spectroscopySTS are usually interpreted in terms of standard models for electron
tunneling! However, the STM and STS data often also reveal anomalous features which
cannot be explained in this way. These STM and STS anomalies tend to become more
pronounced as the temperature is lowered.

With decrease of the tunneling contact area and the temperature, nonequilibrium
processes start to play a significant role. If the relaxation rate for the electron states is not
infinitely large, a nonequilibrium occupation of the electron states will appear in the
presence of a nonzero tunneling voltage, even for macroscopic syStérfar
nanometer-scale tunneling contacts the nonequilibrium effects can drastically change the
expected tunneling conductivity, especially in the presence of localized states. In this
article we show that the importance of the nonequilibrium effects is supported by our
STS measurements on InAs semiconductor surfaces.

The relaxation rate for the electron states in the vicinity of the tunneling contact

0021-3640/98/67(2)/7/$15.00 146 © 1998 American Institute of Physics
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usually incorporates all possible sources of inelastic scattering. At low temperatures,

where inelastic scattering processes are strongly suppressed, the finite relaxation rate will
induce a nonequilibrium steady-state distribution in energy space in the contact area. The
important decrease of the relaxation rate at liquid helium temperatures implies that the

standard expression for the tunneling current has to be modified to

(n2(e)—n(e))V2pipsl s
V2 I +V2p I+ T\ g

|0<2'n'eJ' de (1)

wherel’; andT' are the relaxation rates in the tip and in the sample, respectivelyp,and
andp, are the corresponding tip and sample density of statés,the tunneling transfer
matrix element, antm?(s) and ng(s) are the equilibrium electron distribution functions
for the tip and sample, respectively.

When the relaxation rate for the nonequilibrium electrons in the tip or in the sample
is smaller than the tunneling rate, the current will be determined by the electron relax-
ation processes, which become very slow at liquid helium temperat(feis. explains
why typical values for the tunneling current in low-temperature STM measurements tend
to be much smaller than at room temperature for the same tip-to-sample separation. For
our measurements on InAs surfaces, which are discussed in more detail below, typical
tunneling currents at room temperature are in the 1 nA range. At liquid helium tempera-
tures a typical tunneling current is 10 pA.

Experimental and theoretical studies of electron transport properties in the meso-
scopic regime have revealed that low-temperature properties of very small structures
depend not only on material properties such as the atomic composition, the lattice struc-
ture, or the electron effective mass. Transport and tunneling phenomena in mesoscopic
systems also depend strongly on the relevant dimensionality and on the specific geometry
and configuration of the system. As was indicated in Ref. 6, transport phenomena which
are related to electron tunneling in nanostructures have to be treated in terms of a total
transmission probability. The latter probability has to include the tunneling process as
well as all other relaxation and scattering processes in the system, in a manner similar to
the Landauer approach for quantum transport phenorhena.

In order to test the relevance of the aforementioned nonstandard tunneling phenom-
ena, we have performed detailed STM and STS measurements at liquid helium tempera-
ture on InA%110 surface for atomically flat areas as well as for areas which contain an
atomic-size defect cluster. The experimental results allow us to demonstrate the influence
of charging effects which occur in the vicinity of the STM tunnel junction. The STM and
STS data have been obtained with a home-built low-temperature microscope viith an
situ cleavage mechanism to obtain a clean sample surface at low températoee.
samples ara-type InAs semiconductor single crystals which have been heavily doped
with Sn (n=5% 10" cm %) and are cleaved along tti&10) plane after cooling down to
liquid helium temperature.

It is well known that the STM topography of 1lI-V compound semiconductor sur-
faces, including the InA410 surface, depends on the polarity of the applied bias
voltage® For negative sample voltages the STM image is determined by the As sublat-
tice, while for positive sample voltages the In sublattice becomes visible. Relaxation of
the surface atomic structure results in a tilt of the As atoms in the vertical direction,
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FIG. 1. Differential conductance curve measured above the atomically flat area of th@ 10Asurface; the
current—voltage characteristic is shown in the inset.

which can be described in terms of a buckling angle and gives rise to a lateral shift
between the In and As sublatticsOur most striking observations for the STS measure-
ments can be summarized as followis. A strongly enhanced semiconductor band gap
(about 1.8 eV) is observed for atomically flat surface regidii.The Fermi level is
shifted from the conduction band edge inside the band gap despite the high doping level.
(iii ) In the vicinity of an atomic-size defect cluster the band gap is considerably reduced,
but the Fermi level remains pinned in the band gap. A strongly enhanced band gap has
been reported previously for low temperature STS measurements on th€&l16As
surfacet! Even at room temperature the value and position of the measured band gap can
be different from the values for the bulk material.

In order to explain the unusual behavior of the tunneling conductivity, we rely on
the above theoretical approach and take into account the finite relaxation rate for the
electrons in the tunneling contact, which induces a nonequilibrium steady-state electron
distribution in the presence of an applied bias voltage. We will argue that for nanometer-
scale junctions the nonequilibrium electron distribution results in charging effects and
can drastically change the experimentally obsem@d characteristics.

The inset in Fig. 1 shows a typicl{V) characteristic for an atomically flat area on
the InAg110) surface. The presence of a wide band gah.8 eV can be clearly ob-
served. This measured band gap value strongly differs from the bulk value which is 0.43
eV at 4.2 K. Moreover, the Fermi levél; is located inside the measured band gap.
Another result shown in Fig. 1 is the presence of oscillations of the tunneling conduc-
tivity which appear on thell/dV(V) curves near the band gap edges. The period of the
oscillations is 0.14 eV for both polarities of the applied voltage.

Our topographic STM images also reveal atomic-size defect clugeesFig. 2
The lateral size of the cluster image is about 1 nm and its height is less than 0.5 nm. The
measured band gap value above the cluster is 0.4 eV, which is significantly smaller than
the observed band gap value for the flat surface regions. We note that the gap structure in
d1/dV(V) is much less pronounced when compared to the atomically flat esead-ig.
1). On the other handE; is still located inside the band gap and again we observe
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FIG. 2. a: STM image of an atomic-scale defect cluster appearing on the InAs surface. The scanned area
measures 4444 A. The tunnel current is fixed at 20 pA, while the sample is biased 320 mV. b: Differ-

ential conductance curve measured above the defect cluster shown in Fig. 2a. The curvelncarkesponds

to the measured curve, while the curve marRazbrresponds to a fitted 9th order polynomial. The latter curve
permits an estimate of the width of the semiconductor band gap.

oscillations of the tunneling conductivity near the gap edges. The period of these oscil-
lations is about 0.09 eV, which is different from the oscillations observed on the flat
surface. As is discussed in more detail below, we can in both cases link the anomalous
behavior of the tunneling conductivity directly to the band bending induced by charging
effects.

In Fig. 3a we illustrate how the anomalously large experimental value for the InAs
band gap can be explained for the atomically flat surface regions. We assume that the
band bending is induced by charges which are occupying localized states present at the
apex of the tip. This charge depends on the polarity and the magnitude of the applied
voltage. That is why the commonly used model for tip-induced band betidiag to be
modified.

The external charge appearing on the apex of the tip is proportional to the difference
between the nonequilibrium distribution function for the electrons in the presence of the
tunneling current and the distribution function at zero applied voltage. So, the sign of the
extra charge at the apex of the tip follows the changes in polarity and value of applied
voltage bias. As discussed above, the nonequilibrium distribution appears because of the
finite relaxation rate for the electrons, implying that the electron distribution function in
the tunneling contact area can be different from the Fermi—Dirac distribution which is
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FIG. 3. Schematic view of the tip-induced band bending which occurs near the InAs suffaemd E,
correspond to the conduction and valence bands edges at zero bias respectivell; ahilk=, correspond to

the measured position of the band edges. The straight line in the first quadrant corresponds to the position of the
Fermi level of the tip relative to the Fermi level of the sampéandW' give the band bending. a: Above an
atomically flat InAs surface; b: above an atomic-size cluster.

present in the macroscopic leads. Therefore, in the presence of a tunneling current, the
nonequilibrium electron distribution in the contact area results in a negative charge at the
apex of the tip for positive sample voltages and in a positive charge for negative sample
voltages. The shape of band edges follows the dependence of additional charge versus
applied bias voltage as obtained in Ref. 14. Each localized state at the apex of the tip
cannot have a charge of more thag and so saturation of the charge as a function of the
applied bias voltage occurs.

The oscillations of the tunneling conductivity cannot be explained in terms of Cou-
lomb blockade or Coulomb staircase effects. If the oscillations are caused by Coulomb
charging effects, the period of these oscillations can be directly related to tree cizbe
relevant particle which is being charged. The oscillation period shoulkitbe e?/a. For
a~0.5-1.0 nm we obtaid E~1-0.5 eV, which does not agree with the experimental
data.

The observed oscillations likewise cannot be explained by interference effects. For a
tip-to-sample separatioh~0.5 nm the period of the electron density oscillatichg
should be much larger than the period obtained from our experimental results. Indeed,
AE~(27hpg)/(mb), wherem is the effective mass of the electron gme~7%/a, is the
electron wave vector at the Fermi levely(is the InAs lattice constantThis implies that
AE~#%?/mba~1 eV, in clear disagreement with our experimental reAlt-0.09 eV.

A period of 0.09 eV would imply an unrealistic tip-to-sample separation of more than 5
nm.

The band bending valud®/ andW’ indicated in Fig. 3 can be estimated to W&
~W'~e?/b, where, as beford is the tip-to-sample separation. Apr-0.5-1.0 nm we
obtainW~W’~1-0.5 eV. These values are in line with the usual band bending v¥iues.
The essential feature of our modske Fig. 3 is the fact that on account of the voltage
dependence of the localized charge, the exact valué¥ ahd W’ now depend on the
polarity as well as on the amplitude of the applied voltage in our case. The experimen-
tally observed band gap will bEy~W+W'+Eg;,, whereEy,~0.43 eV is the bulk
value of the InAs band gap. Therefore, the band bending induced by a charged tip apex
can account for the experimentally observed increase of the band gap.
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In the presence of an atomic defect cluster, the band bending will be modified in the
vicinity of the defect clustet® This occurs because of the additional charging of the
localized states which are associated with the defect cluster. For negative sample voltages
a negative charge is expected to appear near the cluster, while for positive sample volt-
ages the defect cluster should acquire a positive charge. As in to the case of a charged tip
apex, the external charge appearing on the cluster is proportional to the difference be-
tween the electron distribution function in the presence of a tunneling current and the
distribution function at zero applied voltage. The charge on the defect cluster causes a
band bending which partially compensates the band bending induced by the charged tip.
The gap edges position now weakly depends on applied bias voltage as is shown in Fig.
3b. Consequently, the experimentally observed band gap above the defect cluster will be
reduced in comparison to the band gap which is observed for atomically flat surface
areas. Howevertz; remains in the band gap. This can be explained by the fact that the
band bending is asymmetric: the bending of the conduction band differs from the valence
band bending. The decrease of the band gap above a defect cluster has also been
observed for a GaA$110) surface, but the effect was less pronounced than for our
InAs(110) surfaces.

In general additional localized states can appear in the band gap due to tip—sample
interaction’ In this case the common model for tunneling processes has to be modified
considerably® and the tunneling current can be completely dominated by these addi-
tional localized states for bias voltages less than the band gap value, provided the finite
relaxation time for the nonequilibrium electrons is taken into account.

In conclusion, our scanning tunneling spectroscopy measurements of th@ 110As
surface confirm the importance of the band bending induced by localized charges present
near the tunneling contact. We have presented theoretical arguments which rely on the
finite relaxation time for the electrons at the apex of the tip and on the on the surface of
the sample and also on the presence of a nonequilibrium electron distribution at finite
voltages. This model consistently explains our main experimental observations, including
an enhancement of the semiconductor band gap and the appearance of oscillations in the
tunneling conductivity near the band gap edges. The presence of an additional charge on
atomic-size defect clusters accounts for the different behavior when compared to atomi-
cally flat areas.
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At electron densitiedls>6x 10" cm™2 a second series of oscillations,
which are tentatively attributed to population of the second energy
subband, is observed in addition to the main series of Shubnikov—de
Haas oscillations. A change in phase of the oscillations of the second
series is observed at some angle of inclinatian of the field. The
measured value of, is used to calculate the ratio of the cyclotron
mass to the effectivg factor. The maximum possible cyclotron mass is
also determined as;<<0.32m,. On this basis it is concluded that the
second series of oscillations is due to electrons which have an in-plane
effective massn* ~0.2m, and which belong to the same valleys of the
Fermi surface as in the case of the main oscillations.1998 Ameri-

can Institute of Physic§S0021-364(108)00902-5

PACS numbers: 73.40.Qv, 73.50.Jt

Two-dimensional electron transport on t(#00 surface of silicon has been inten-
sively investigated for many years. Nonetheless, its physical picture is still not suffi-
ciently well understood. Specifically, the case of high electron densities, where the theory
predicts that more than one energy subband is populated, has not been adequately stud-
ied.

The electronic Fermi surface in the bulk of silicon consists of six equal ellipsoids
with major axes lying in pairs on the crystallographic ax&80), (010, and(002), i.e.,
the electrons are evenly distributed between six equivalent valleys. The valleys in the
inversion layer at the surface are, generally speaking, no longer equivalent because the
effective electron masses, in the direction of the normat to the surface are different.

For the (100 surface, electrons of the two valleys with the maximum mass
=0.91Im, and in-plane effective mass* ~0.2m, have the lowest potential energy. The

0021-3640/98/67(2)/6/$15.00 153 © 1998 American Institute of Physics
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energyE, of the ground state of the electrons of these valleys is the energy of the bottom
of the first two-dimensional subband. The electronic states in this subband are fourfold
degenerate — twofold degenerate with respect to spin and twofold degenerate with re-
spect to the valleys.

The bottom of the nextin energy subbands should be the eneigy of the ground
state for four ellipsoids withm,=0.19m, and the energy, of the next level above the
ground state for the two valleys witlh,=0.9Im,. The theory predicts close values for
these energies. Therefore it is very important to obtain experimental data on the nature of
the second subband. However, only several experimental attempts to do so have been
published thus far.

In Ref. 1 it was observed that the linear curve of the number of occupied Landau
levels of the first subband versus the gate voltagehas a kink at some valu¥
=Vg. The authors explained the kink by the change induced in the electronic density of
states in the layer by the onset of population of the second subband. The valgevas
varied by applying to the sample a uniaxial compression alongkhé) axis. On this
basis it was concluded that it is the subbaridtBat starts to be populated whah,
>Vg. In Ref. 2 the threshold for population of the second subband was investigated as
a function of the density of acceptor impurities in silicon. As a result, a conclusion in
favor of subband 1 was drawn. In Ref. 3 the electron mobility in the second subband and
its temperature dependence were analyzed and the second subband was identified as 0
The values of the mobility were determined indirectly from measurements of the Hall and
longitudinal resistances. The validity of such a determination was questioned in Ref. 4.

In Ref. 5 we reported what we thought was the first observation of the series of
Shubnikov—de Has&SdH) oscillations associated with the electrons in the second sub-
band (this series is referred to below as series After our work was published, we
learned that similar oscillations had been observed earlier in Ref. 6. On the basis of their
measurements of the periods of the oscillations in both series and the total electron
densityNg in the layer(calculated from the electrical capacitance of the samplevghd
the authors of that pagedetermined the degree of degeneracy in the second subband to
be 8 which pointed to the subband 0OIn Ref. 5 it was observed that the amplitudes of
the series-Il oscillations are much more strongly temperature-dependent than the ampli-
tudes of the series-l oscillations. For this reason, the series-1l oscillations were also
attributed to the subband’Qwhere the cyclotron mass is larger. Now, however, an
alternative possible reason for the intensification of the temperature dependence of the
amplitudes is known. It could be caused by an increase in the fraction of the current
transported by the electrons of the second subband as the temperature déseakas,
the conclusion that the cyclotron masses are different for the series-1 and series-Il oscil-
lations may be incorrect.

The electron densiti,, in the second subband, determined in Ref. 5 from the period
of the oscillations with the use of the proposed degeneracy factor of 8 was found to be
much higher than the difference bfs and the electron density in the first subbad
determined from the period of the oscillations in the main sgseses J. Approximate
equality betweerN;, and Ng— N, can be obtained only by assuming that the series-II
degeneracy factor equals 1, i.e., there is no spin and valley degeneracy. This makes it
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FIG. 1. Longitudinal resistance of a channel versus the magnetic inductiovi;fed 00 V (top curve and
Vg=70V (bottom curvg.

fundamentally important to obtain direct experimental information about the value of the
degeneracy factor.

The objective of the experiment described in the present letter was to make a direct
determination of the presence of spin splitting in the spectrum of the electrons respon-
sible for the series-Il oscillations and to determine the cyclotron mass of these electrons.
We employed the fact that the ratio between the cyclotron and spin splittings of the
energy levels of the two-dimensional electron layer depends on the angle of inclination
of the field relative to the direction perpendicular to the plane of the layer, since the spin
splitting is determined by the total magnetic fididand the cyclotron splitting is deter-
mined only by its normal componet,. This makes it possible to change the ratio
between the values of these splittings in the course of the experiment, making the first
harmonic of the SdH oscillations vanish by inclining the field. This should happen at an
angle of inclinatione, for which the spin splitting equals half the cyclotron splitting. The
phases of the oscillations far<a, and a> «a, will differ by 180°. This method was
used in Ref. 7 to determine the effectigdactor of the electrons in the ground subband
of the two-dimensional electron layer on ttEO0 Si surface.

The experimental sample was a silicon MIS structure fabricated by the standard
technology on the surface of silicon with acceptor densit}? tn~3. The sample pos-
sessed a rectangular Hall geometry with a>x20625 mm channel. The subgate oxide
layer was 200 nm thick; the ratiNg/Vy=1.15< 10" cm 2V 1. The peak mobility at
0.4 K was equal to 26000 & ~*s ' atV,=3.5 V. The sample was taken from a new
substratgwafer which had not provided any of the samples investigated in Refs. 4 and
5. Preliminary measurements showed that the effects described in Refs. 5 and 4 are
completely reproduced in this sample also.

During the measurements the sample was placed in ligidiel at temperaturd
=0.4 K. A magnetic induction of up t8=23 T was produced with a Bitter magnet.
Such a strong maximum magnetic field made it possible to perform measurements over a
wide range of angles of inclination while maintaining a maximum vadye 5 T suffi-
cient for observing series-Il oscillations at angles uprte 70°.

Examples of the original experimental traces of the longitudinal resistance of the
sample are presented in Fig. 1. The SdH oscillations of both series are clearly visible in
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FIG. 2. Series-ll oscillations in an inclined magnetic field. The inclination angle§the field with respect to
the z axis for the different curvefop to bottom are: 0°, 32°, 47.5°, 60.7°, and 69.5°.

them. The series-Il oscillations start in weaker magnetic fields and have a longer period
than the series-1 oscillations.

The effect of the inclination of a magnetic field on the series-Il oscillations is
illustrated in Fig. 2. For greater clarity, the experimental data were prefiltered with a
high-frequency digital filter in order to eliminate the monotonic component of the depen-
denceR,,(B). It is evident from the figure that the positions of the oscillations remain
unchanged relative tB,, while their phase changes sign after some angle the range
47.5°< @,<60.7°. Interpolation of thex dependence of the amplitude of the first har-
monic of the oscillations gives,=58°+2° at V4=100 V and @,=52°*4° at V4
=70 V. A similar change in phase of the oscillations is also observed for series I. In this
casea.=54°*2° in the entire range 70 ¥ V,<<100 V (this is somewhat lower than the
value obtained in Ref.)7

The observed change in phase is in complete agreement with that expected for a
two-dimensional electronic system with two different spin states. On the basis of the fact
that the moment of the change in phase of the first harmonic of the oscillations corre-
sponds toA,— A=A, (hereA, and A, are the cyclotron and spin energy splittings,
respectively, it is possible to determine the ratio between the cyclotron mgsand the
effective g factor g*. Rewriting this equation in the form7g/myc)H cosa,
=2g* ugH, where# is Planck’s constaniug=ef/2m.c is the Bohr magnetor is the
speed of light, andn, is the mass of a free electron, we obtgihi=(m./my)cosa,.
Substituting the value ofr,, we obtain for series-ll oscillationg* =(m./my)(0.54
*0.02) forVy=100 V andg* = (me/my)(0.60+ 0.04) forVy=70 V. For series-I oscil-
lations g* = (me/my)(0.59+0.02) in the range o¥/, from 70 V to 100 V.

The ratios obtained betweerf andmy make it possible to estimate the upper limit
of the possible values aohy for series-1l oscillations. It is known that tliefactor of bulk
conduction electrons in silicon equals 2. The electron—electron interaction in the two-
dimensional electron layer on the surface can increase the effecfizetor® but there
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FIG. 3. Electron density determined from the periods of the SdH oscillations for different series of oscillations:
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are no grounds for assuming that it decreases. Taking for estigate®, we obtain
my; /me<<0.28 forVy= 100 V andmy,/m¢<0.32 forVy=70 V. Since this is much less
than the expected valua, /m,=0.46 for the subband’Q the oscillations must be at-

tributed to electrons belonging to the same valleys as the series-I oscillations and having
an in-plane effective maga* ~0.2m,.

It follows on this basis that at least a twofold spin degeneracy is present in the
series-1l oscillations. One can expect also a twofold valley degeneracy for these oscilla-
tions, as for the series-1 oscillations. Figure 3 shows the corresponding electron densities
calculated from the positions of the series-1 and series-ll SdH oscillations as well as the
total in-layer electron density as a function \8f. One can see that the differenki
—N, is appreciably less thal, even when the possible valley degeneracy of the
series-1l oscillations is neglected.

At present we cannot explain this discrepancy. It is possible that for the actually
achievable densitfNg we are dealing with population of the “tails” of the second
subband(it was predicted in Ref. 9 that these tails are lgrand the discrepancy would
vanish if higher densities could be achieved. Possible reasons could be electron—electron
interaction and intervalley scattering of the electrons. According to Ref. 10, such an
interaction for thg110) orientation can lead to the appearance of a domain structure with
population of only one valley in each domain and, in consequence, to a decrease of the
observed degeneracy factor. In principle, similar effects can also be conjectured to occur
in other cases where several subbands are filled, including also fet@RBeorientation,
but at present we do not know of any calculations for this case.

The measurements were performed at the High Magnetic Field Laboratory in
Grenoble, France. This work was supported by Grant 96-02-16838 from the Russian

Fund for Fundamental Research and Grant 202/96/0036 from the Grant Agency of the
Czech Republic.
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A simple method of dealing with the Hall effect in metals with short-
ranged impurities in a weak magnetic field is proposed. The method is
based on a Schwinger representation for the electron Green function in
the magnetic field. The efficacy of the method is demonstrated on a
calculation of the antisymmetric components of the conductivity tensor
at finite wave vector. ©1998 American Institute of Physics.
[S0021-364(98)01002-7

PACS numbers: 72.10.Bg, 72.15.Gd

Despite the discovery of the quantum Hall effect, the theoretical analysis of the Hall
effect in metals inveakmagnetic fields has been attracting a lot of atterttibbecause
of its practical as well as scientific interest. The quantum-mechanical treatments of the
topic published to date have been based on a method proposed in Ref. 2. In this method,
an electron system subjected to a uniform external magnetic field is considered to be a
limiting case of the system placed in a fictitious nonuniform magnetic field with the
vector potentialA(r)=A(q)e'd". One finally lets the wave vectar—0 to recover the
case of uniform magnetic field. The nonuniform field results in inhomogeneity of the
system which induces the carrier diffusion. In the Feynman-diagram language this im-
plies the appearance of diffusion poles. The necessity of eliminating the poles to obtain a
divergent-free expression for the Hall conductiv'tt)?jH) makes the method somewhat
cumbersoméin spite of some improvements published 13teFurthermore, the method
has only been formulated for evaluation of the Hall conductivity at zero wave vector.

The purpose of the present paper is to propose another quantum approach which is
convenient in the particular case pfindependent impurity scattering. The distinctive
feature of our approach is that the external magnetic field is considered to be uniform
from the very beginning. Therefore, no carrier diffusion takes place and we only have the
Feynman diagrams that do not contain the diffusion poles. In addition, the method can be
extended to finite wave vectors without any difficulties, yielding an expressioni(far
X(w,q). (Here we consider only macroscopic systems.

Let a(x,t) and A(x) be the vector potentials of the driving electric fiekl
=— galcdt and external static magnetic field=V XA, respectively. The linear re-
sponse ta is known to be determined by the current—current correlation function

0021-3640/98/67(2)/5/$15.00 159 © 1998 American Institute of Physics
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mo .
Qij(ny;iwn):fo dr(TJ;(x,7)J;(x,0)), (o

whereT in the upper limit of the integral is the temperature dnih the angle brackets

is the time-ordering operator. In what follows we assume that the so-called “diamagnetic
part” of the response,n(€?/m) 8(x—Yy), is canceled by the appropriate part@f (ana-
lytically continued to the real frequency axis the usual manner. The electron charge is

taken to be—e. Then the current operatdris the sum of the kinetic part,

- ie
fan=— 5[4 (V) =V (1) §(0)],

and the diamagnetic part,

R e?
Jdia:—m—CA(r)lﬂ+(r)¢(r)-

For the sake of brevity, we drop the spinor indices on the field operators and Green
functions. The fieldH is assumed to be small so that7<1 (herew.,=eH/mc is the
cyclotron frequency and is the mean free timeand, hence, one can neglect the Landau
quantization and use the representation for the electron Green function originally due to
Schwingef

ie (r
GE(r,r’;H)=exp<€f dr”.A(r”))GE(r—r’;O), (2

whereG.(r—r';0) is the Green function in zero magnetic field. In this paper the sym-
metric gaugeA=3HXr, is chosen, and we pdi=1 throughout. It should be noticed

that such a representation has been successfully employed in many branches of physics,
e.g., in superconductivifyand plasma physicsbut never(to our knowledgg in the

theory of the Hall effect in weak magnetic fields. The current operator can be written as

I = lim I(x,x"),  Ixx) =g ()IXX ) ('), ©)
VX_VX' e
J(x,x')=—e >im + Z—mCA(x+x’) . (4)

The thermal average ifl) gives rise to a set of diagraffswhich have the form of a
two-vertex electron loop with various impurity-line insertions and with the current op-
erator(in the Schrdinger representatiorat both these vertices. The impurity potential
U(r) will be assumed short-ranged so tRat(r)U(r’))~4&(r—r’). If, as usual, one
includes the impurity self-energy in the electron Green function, the remaining impurity
lines necessarily connect the upper and lower electron lines forming a given loop and can
be considered as impurity vertex corrections. Without an external magnetic field, the
evaluation of such diagrams is greatly simplified by making use of the Fourier transform.
In the presence of the magnetic field the translational invariance of the Green function is
broken on account of the Schwinger factors

: (5

ie [y ie
@(x,y)=ex;{€fx dr~A(r)) =exp(zH-(x><y)
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making the immediate application of the Fourier method impossible. However, the gen-
eral theorerlt stating that any electron loop taken as a whole has to be invariant under
translations means that the translational invariance must be recovered by explicit evalu-
ation of the loop. Let us show how this happens in the case of “empty” lpdgthout
impurity insertion$. The analytical expression for the loop contains

lim J;(x,x") J;(y,y )P (XY )P (Y, X" )G(X=Y ieti0C(Y—X )i, (6)
X’—»X
y' =y

which, in view of the relations

V—*@(xy)=d>(xy>v—.x—iA<y>} Toxy)=B(xy)| L+ aAN)| (D
2i ' 21 2¢ T2i '
can be recast as
=V e ,
XI|TXCI>(xy)(I>(yx) 2|m +mA(x+x —-y— y)}i
Y
[M—imwx'—y—yw GOy )ies 1B~ X e ®)
2im 2mc terlo te

j
In Eq. (8) the derivatives do not act on the phase factors; therefore, one cah-sgtand
x"=x in the factors As a result, the product of the factors reduces to unity. Now one
should substitute int¢8) the Fourier representation for the free-electron Green functions
and perform the coordinate differentiations. After that one can immediately set and
x"=x in remaining functions. Then the total expression for the loop takes the explicitly
translationally invariant form

_ a2 _— gl -G, .
@2 Py A V)| €% G,
q di\| P
x| pt 5 Gie(p—f)h—m—cm y)} ©
]

The part of the respons@f}(w,q) = fd3(x—y)e ' *NQ; (x—y;w+i0) linear inH
can be writter{with the help of the identity d3re'd 'r= —|(27r)3V 8(q)] as
e?[ ie q q\p;
(H) _ i
(0,0)= ( 4mc> )

(HXV ™G3l pt 5 Gé(p—z e
_P

m

q

GR p+ = (HXVE A1, (10)

GA(p—

where the superscrifr(A) stands for the retardgddvancegipart of the function and the
operatorVFFf’A in the first term acts only on the pair of the Green functions according to
the ruleV 5 *GRG”=(V,GR)G*~GR(V,G"), butnot on the velocity vertesp/m. The
operatorVFFf_A in the second term acts to the left in the same way. Proceeding in the same
manner, one can see that the contribution of all impurity-ladder diagrams has the form
depicted in Fig. 1. The evaluation ofjH) is now reduced to the level of, say, the Drude
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FIG. 1. The Feynman diagrams for the Hall conductivity. The gradient opeVzgto’? in the second term acts
to the left on the pair of the Green functio@®GA. I is the usual impurity-renormalized velocity vertex.

conductivity. It should be stressed that thdunctional form of the impurity-field corr-
elator is essential in deriving this result. Straightforward calculations yield

3w,T B—y iQ
(H) - -
(w q)_ ( Q)Ze”n[h ( t2 )1—IB_IQ

Y= B i 1-p8
t2 1—,8—iQ_2 t2

+0n(g-h)

] : (11)

where  o3=nge?7/m, n3=p,‘°§/37-r2, Q=wr, t=quer/(1-iQ), h=H/H, g=t~1
X arctant, andy= (1+t2) ~L. The known symmetri¢Drude components of the conduc-
tivity tensor, a(D) in the same notation have the fdfm

oD (0,9)=0V0,q+ oD (85— qia), (12)

305 (1-B| -iQ 30 1-8
(3)_ 3 / (3)_ 3 / _
g _1—iQ\ t2 )1—ﬁ—iQ’ Tur _2(1—iQ)\’8 t2 )

Applied to a 2D electron system, our method yields

1
Vi+£2(1-iQ)—1’
o (,0)=0{?0;0i+ ol (8 — i), (14
2_ 20 {W—l) 2 202 /m) Ji+t2-1
M o I e A ) F AT =

(0,=n,€27/m, n,= p§/277) which agrees with the result recently obtaifibg means of
the 2D classical Boltzmann equation with a modified collision integral.

W:T /iQ
2(1-10)2\ 1412

UfjH)(w,q)=eijnhna'?, oh=0, (13

In conclusion, we have proposed a method for microscopic calculation of the Hall
conductivity in weak magnetic fields. In essence, the method is based solely on the
Schwinger formula, i.e., on the gauge transformation rules in quantum mechanics. The
diagrammatic expression obtained isn'i‘ appears to be topologically similar to that for
the Drude conductivity. Our approach complements the previou$ ianghat it gives
o(w,q) at finite q but only for thep-independent scattering, while the method of Ref. 2
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giveso(w,0) but for arbitrary impurity scattering. In addition, it is hoped that the method
reported here will provide a better handle in studying the effects of weak localization and
(short-rangedinterparticle interaction on the Hall conductivity.

This work was supported, in part, by Grant 96-02-19568 from the Russian Fund for
Fundamental Research.
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Characteristic features of microcontact spectra of
contacts between a metal and a quasi-1D conductor with
a charge density wave
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The current—voltage characteristit¥¢Cs) of Cu—K, ;MoO; point con-
tacts are investigated. The character of the nonlinearity and the ob-
served asymmetric features of the IVCs indicate that a substantial shift
of the chemical potential occurs near the boundary with the normal
metal. Deformation of the charge density wave by an applied electric
field leads to strong bending of the energy bands and to the formation
of a potential well, whereupon the Fermi level falls within the region of
allowed single-electron states. ®98 American Institute of Physics.
[S0021-364(98)01102-3

PACS numbers: 71.45.Lr, 73.40.Ns

In quasi-1D conductors, a charge density wa@DW) or a spin-density wave
(SDW) arises as the temperature decreases below the Peierls transitiof poiktany
properties of materials with a CDW and SDW have been studied in detail; a review can
be found in Ref. 1. In the Peierls state single-electron excitations coexist with a deform-
able mobile CDW. In subthreshold electric fields a CDW cannot move as a whole, and in
Peierls semiconductoi®Ss the single-electron excitations determine the conductivity.
However, a deformation of the CDWor example, by an electric fieldchanges the
electron and hole densities, as a result of which local disturbances of the CDW can make
a substantial contribution to the conductivity in subthreshold fields. In this sense a PS can
be viewed as a conventional semiconductor but with a variable degree of doping that
depends on external perturbations. It has been shown theoretically in recent wirs
nonuniform perturbations of the phase, which can be caused by nonuniformity of the
sample, by the presence of the contacts, or by variations induced in the phase of the CDW
by pinning centers, play an important role in the transport properties of PSs, and screen-
ing by single-electron excitations is effective right down to the lowest temperatures.
Defects of ann-type crystal(phase or amplitude solitons, dislocatiprean produce
strong bending of the energy bands, so that the Fermi level can even be brought into the
region of allowed single-electron states.

A point contact of a normal metgM) with a PS is a very convenient object for

0021-3640/98/67(2)/7/$15.00 164 © 1998 American Institute of Physics
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FIG. 1. Ry(V) of three different Cu—K4MoO; contacts afl =77 K.

investigating the effect of local perturbations on the properties of materials with a CDW
because of the fact that the electric field is localized near the contact in a small region
with a characteristic size of the order of the contact diamgtierthe case of an isotropic
metal® and withd* =d+/n, wheren is an anisotropy factor, in the case of a PS.

In the present work the characteristics of Cy—-Mo00O; point contacts oriented
along chains were investigated in the temperature range 77—-300 K. The sampes were
Ko 3M0O; single crystals with a length of 0.5-1.0 mm and a cross sectiorr 5
X 10 um?. The Peierls transition temperature was equallto=183 K. The single
crystals were provided by the Center for Low Temperature Resé@RABT—-CNRS,
Grenoble. Ten K, 3MoO; single crystals were investigated. At least 10 point contacts
were made for each single crystal, and their characteristics were measured. The experi-
mental apparatus described in detail in Ref. 7 was used for making point contacts directly
at low temperature and for measuring the current—voltage characteristics and their first
derivativesdV/d|. Thin copper wire$40 and 71um in diametey with electrochemically
sharpened tips were used as the normal counterelectrodes. The radius of curvature of a tip
did not exceed Jum.

Typical values of the resistance of the contacts with the tip of the normal electrode
touching the surface of the experimental crystals were equal to 100-€2@Q2 k=77 K.
These contacts were extremely unstable and were characterized by nonreproducibility. As
the clamping force increased, the resistance decreased to 1%5-8ddk the stability of
the contacts improved. In this range of resistances the characteristics of the contacts did
not show hysteresis and were completely reversible. Figure 1 shows the curves of the
differential resistanc&®,=dV/dl, measured at =77 K, versus the voltag¥ for point
contacts of this type with three different samples. The point-contact spectra are quite
complicated. However, most of the contacts investigated exhibit a number of character-
istic features. First, the curves have a pronounced asymmetry and the maxirRygvpf
is shifted from zero to positive voltages. Second, a section with a linear variation of
R4(V) is present near zero bias. Third, a sharp decrease of the differential resistance,
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FIG. 2. Ry(V) of contact No. 3(Fig. 1) with T, Ry4(0), andA equal to: 77 K, 32.6 &, and 10 K) (1); 83.5
K, 19.3 K1, and 6 K) (2); 91 K, 11.4 K), and 3 K) (3); 96.8 K, 8.3 K), and 2.5 K) (4); 108.4 K, 3.7 K,
and 1 K) (5).

often looking like a discontinuitycurvesl and2 in Fig. 1), accompanied by an increase

in noise was observed for most contacts when the voltage reached the\Walg
corresponding to the maximum 8. In several cases the resistance dropped sharply at
voltages somewhat abowg, (curve 3 in Fig. 1). For some contacts it was possible to
observe the evolution of the point-contact characteristics as a function of temperature.
Figure 2 shows the curved’,(V) for contact No. JFig. 1) at different temperatures. As

one can see, the slope of the linear sectionRgfV) decreases monotonically with
increasing temperature and vanishes completely at temperdtu@60 K. In this tem-
perature range the maximum of the differential resistance corresponds to zero bias volt-
age, and the dependenRg(V) is approximately symmetric.

For the two contacts whose curvBg(V) are shown in Figs. 3 @ah4 a sharp, deep
minimum of width ~15-20 mV was observed in the differential resistanc&ar7 K
with a positive bias voltage ranging from 150 to 200 mV. This feature was reproduced
well and did not look like a discontinuity. An attempt to trace the evolution of the
minimum while changing the resistance of the contact by continuously increasing the
pressure of the needle resulted in rapid broadening and complete vanishing of the feature.
For these contacts the behavior of the differential resistance near the maxinRyt\Vof
is interesting(see the insets in Figs. 3 angl A sharp decrease in the resistance occurs
after Ry(V) reaches its maximum value at a voltage abblée The linearity inRy(V)
also remained after the maximum value of the differential resistance was reached, and the
sign of the slope changed.

To explain the results we shall proceed from the fact that the entire sample is in a
pinning state, i.e., coherent sliding of the CDW in the entire volume of the sample is
impossible in the experimental voltage range. Indeed, the resistance of a point contact is
formed in a small region near the contact and equal§*—1® Q, which is much higher
than the resistance of the thinnest samples in the pinning statek(2). An estimate of
the diameters of the contacts using the Sharvin forfhgileesd=5-15 nm, whence we
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FIG. 3. Ry(V) of contact No. 3 alf =77 K.

estimate the region of variation of the electric fielddis~50— 100 nm. In the absence

of sliding, this field will lead to a deformation of the CDW and to a change in the
quasiparticle density and therefore also to a shift of the chemical potentias is well
known, the quasiparticle conductivity of a PS satisfieg Aq| (see, for example, Ref)9
whereAq is the change in the wave number of the CDW corresponding to a shft of
from the center of the band gap. It is logical to associate the section of linear variation of
R4(V) to elastic deformation of the CDW. Then the maximum of the differential resis-
tance for curved in Fig. 1 and also for the curves in Figs. 3 and 4 correspondsgo

=0. As the temperature increases, the screening of the electric field by the single-
electron excitations becomes more effecfiwehich could be the reason why the slope of
the linear section decreases with increasingThe chemical potential on the M—PS
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FIG. 4. Ry(V) of contact No. 4 af =77 K.
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FIG. 5. Schematic diagram of the metal—Peierls-semiconductor interfate=@; b) V>0.

interface forvV=0 is shifted downwards relative to the center of the gap and therefore the
semiconductor ip-type at the interface with the normal metaj 100, andn-type in

the bulk, where the material is a blue brorf2é! That is, ap—n junction forms in a
subsurface layer of the §gMoO; as a result of the contact with the metal. Figure 5a
shows a schematic band diagram illustrating this phenomenon. The bands bend upwards,
since the work function in KaMoO; is ® ~ 3.5 eV2 while in copper® =4.4 eV. As was
shown in Ref. 5, in the nonuniform case, such as we are dealing with here, two charac-
teristic screening lengths for the electric field exist along the chains: a short length,

the order of the correlation length-(6 nm), and a macroscopic length, which is deter-
mined by the long decay lengths of the perturbations of the potential. The greatest change
in the potential occurs over the distancésee Fig. 5.

A linear dependencBy(V) will exist up to the moment when the deformation of the
CDW reaches a critical value, with which we associate the observed sharp decrease of the
resistance. It should be noted that the contdasd?2 in Fig. 1 are distinguished by the
nonuniformity of the critical deformation over the cross section of the contact. One can
see that after the first break in the resistance a linear section is observed once again. Such
a situation is possible if the magnitude of the critical deformation is different for different
groups of chains included in a contact, which in the general case is a multiple microshort.

There are two known mechanisms for removing the accumulated deformation. The
first one corresponds to the onset of phase slip during a dynamic process of sliding of the
CDW (see, for example, Ref. 13 and references cited thgreinch up to now has been
regarded as a collective process occurring in the entire sample. Since the spreading in the
transverse direction is negligibly small and the electric field in the bulk of the sample is
known to be subthreshold, this mechanism requires assuming in our case the possibility
of local sliding of a CDW over a quite short distance along the group of chains in the
contact. The second mechanism presumes the formation of a defect of the electronic
crystd — a phase soliton. However, as shown in Ref. 4, solitons have a low mobility and
their drift does not make a large contribution to the conductivity. At present, we cannot
suggest an exhaustive explanation of this phenomenon.

We can imagine the following band picture of the process. When a positive voltage
is applied to the contact, the electrical potential along the chains varies with increasing
distancex from the boundary &s
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As a result of the elastic deformation, the chemical potential at the M—PS interface shifts
to the center of the band gap, and in a number of cases it crosses the center line. This
process occurs over the characteristic lertfjttor variation of the field, which is greater
thanr. In the bulk of the crystal the electric field is negligibly small, there is no defor-
mation of the CDW, and the chemical potential shifts upwards together with the bands.
The bending of the conduction band forms a potential well, whose dimension, on the
basis of the quasi-one-dimensionality of the material under study, can be close to zero.
Near its bottom the well can be quite narrow. As a result, by the moment that the critical
deformation is reached, the band picture shown schematically in Fig. 5b obtains. As one
can see from the figure, the region corresponding to the maximum shift of the chemical
potential from the center of the band gap is removed from the M—PS interface and lies
near the bottom of the potential well. The valuesedf corresponding to the critical
deformation for the contacts whose characteristics are shown in Figs. 3 and 4 equal 39
meV and 21 meV, respectively. An estimate, according to Ref. 9, of the shift of the
chemical potential aT =77 K for Ko sM00; givesA u~15—20 meV. The energy gap

for KoaM0oO; equals 2A=100 meV*~1® Therefore the chemical potential certainly
crosses the well for the contact shown in Fig. 3 and can cross the well for the contact
shown in Fig. 4, provided that near the contact the energy gap is less than the equilibrium
value. In view of the known pressure dependenca o$uch a situation certainly happens

for both contactsd! That is, applying pressure to the needle produces a local decrease of
the energy gap, the needle pressure for the contact in Fig. 4 being lfiigheesistance
almost two times smallgrand henceAd smaller than for the contact in Fig. 3. As the
voltage increases further, no further deformation of the CDW occurs, but nonstationary
processes can arise. However, it can be assumed that on average the band picture is
preserved and is shifted upwards as a whole until the valed/afquals the difference of

the work functions of the counterelectrodes and the potential well starts to flatten out. As
the voltage increases, the depth of the potential well will change, which will inevitably
affect the positions of the size-quantization energy levels arising in the well. We associate
the observation of a sharp unipolar minimum in the curves in Fig. 3 and 4 with the
moment when the position of the low-lying size-quantization energy level coincides with
the position of the chemical potential with increasing voltage across the cdnidtta
change in the depth of the potential welln indication of the fact that we are dealing

with an energy level is that the width of the minimum corresponds to the temperature
broadeningT. The voltages corresponding to the minima are different, which could be
due to the different width of the potential wédthe resistances of the contacts in Figs. 3
and 4 differ by almost a factor of)2The vanishing of the feature as the contact resistance
changes can also be easily explained, since as the diameter of the contact changes, the
width of the potential well and therefore the positions of the levels in it change.

In summary, in this work it has been shown experimentally that a substantial shift of
the chemical potential occurs near the boundary with the normal metal, while the defor-
mation of the CDW by an applied electric field leads to strong bending of the energy
bands and to the formation of a potential well, bringing the Fermi level into the region of
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allowed single-electron states. The observed features of the IVCs of differential contacts
could be due to to size-quantization.
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A new scheme is presented for the physical processes leading to the
nuclear fusion reactiod(*He,*He)p catalyzed by a negatively charged
muon . It is shown that the observable rate and yield of the nuclear
reaction depend on a chain of ion—molecular reactions involving the
participation of thedx®He molecule. New calculations of the nuclear
fusion rates in theluw3He molecule are presented. €998 American
Institute of Physicg.S0021-364(18)00102-9

PACS numbers: 36.10.Gv, 25.5%

1. The nuclear fusion reaction
d+3He—“*He+p @)

is of interest for many reasons: it is involved in the primordial nucleosynthesis of the
light elements in the early univerddt has been discussed as a prospective source of
thermonuclear enerddit is a mirror reaction of the important procegét,*He)n (Ref.

3), etc. In all these cases it is especially important to know the cross sections of reaction
(1) at low collision energieE=<10 keV, i.e., in the region where direct measurements in
beam experiments are complicated. For these reasons, any alternative way to measure this
value is interesting.

The phenomenon of muon catalysis affords the possibility of studying this reaction
(as well as many other fusion reactiénst practically zero collision energy from the
mesic molecular stated®He)**. (We will henceforth use the simplified notation
(duBHe)* *=duHe) In recent years the rates]f of nuclear reactions

A‘J
. f u*He+p
(du°He);— (2
. u+*Hetp

0021-3640/98/67(2)/7/$15.00 99 © 1998 American Institute of Physics
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f,l_ J=1 e+ He

=20

FIG. 1. Scheme of formation and decay of tthe*He molecule. The muonic molecutiu®He is formed in
du+3He collisions in the bound statel ¢*He),_; which decays to the systep®He+d at the rates\},, A},
and\} ; the transition du®He);_;— (du®He);_, with the rate\ ;o competes with these decays; the binding
energies of the statesl ¢*He); equale ; the collision energies in the statdg + *He andu’He+d equalE,
andE,, respectively; the fusion rates from the stalesO andJ=1 arex? and )\fl.

from the states du>He), with total angular momenturd have been calculated many
times>~®however, results of these calculations differ by several orders of magnitude. The
most recent experimental upper limit for this rat&is

A<1.3x10° s71. ®)

In this paper new results of] calculationd*? and a new scheme for the kinetics of
ion—molecular reactions preceding fusion in the®*He mesic molecufé are used.

2. The scheme of the processes of formation and decay of dp€He); mesic
molecule is presented in Fig. 1: mesic moleculdg{He); are formed in collisions of
slow du-atoms with®He atoms* the statesqu>He); are quasistationary on account of
decay to u>He),s+d by y-emission(4), Auger transitiong5), and predissociatiofs),
with rates\),, X3 and\y, respectively:

(duHe) ;— (u3He) s+ d+ 1y, 4
(dulHe);— (u’He) ;s +d+e, (5)
(du®He);— (u’He) 15 +d. (6)

Besides that, in collisions ¢{dwHe)e]* with D, and He in the chain of ion—molecular
reactions® transitions (=1)— (J=0) with a rate\ ;, can occur:

(du®He) ;-1 — (duHe);_o. (7)

The yieldN; of nuclear fusion per stopped™ is determined by the fusion rata§ from

the states] and by the populations/; of these states, which depend on the rates of
processe$4)—(7) and on the kinetics of the ion—molecular reactions in whichdhéHe
molecule participates.
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3. The rates\{ are determined by the relatibn
A= 2 AGY. ®

Here theA  are reaction constants for the nuclear states with orbital angular momentum
L, determined by extrapolation of the cross sections of readtiprio zero collision
energy, and the quantitie@é and Gi are calculated with the formulas:

=f dr|¥(r,R=0)/?, ©

Gi:f dr|VR¥(r,R)[&, o

whereW?(r,R) is the wave function of thedu®He); mesic molecule R is the inter-
nuclear distance andis the muon coordinate with respect to the center of mass of the
nuclej. SinceAy>A;, in the following we are interested only in the vaIuesGﬂ‘.

To calculate the values dBj two independent methods have been used and two
high-accuracy numerical algorithms have been develdp&tyhich give results that are
in reasonable agreement. The muon catalysis rea¢fignas compared to the mirror
reactiondut— u*He+n, u+*He+n (Ref. 16, has some peculiarities due to the pres-
ence of an open channel in the systetpfHe);. Specifically, unlike the qut); mesic
molecule, where the bound states are predominantly localized in the pothtiaIR)
formed by muon motion in the state with quantum numbétef) = (100) of the system
(tu)q1s+d, the states of thedu3He); molecule are localized in the potentil,,(R)
with quantum numbersNIm)=(210) of the systemdu)s+ 3He.

Unlike the case ofiut, however, due to the strong coupling between the channels
1so and 2o, the wave function¥’(r,R) containd™*® all the components/-(R) rep-
resenting the relative motion of nuclei with differentin the du*He molecule.

In the limit R—0 it has the fornk’

V(L RI=r 02 &(RIYTRI= 2 duin(TiR) ¥im(R), (11)
where ¢;(r;R) are orthonormalized adiabatic basis functions, and the funct}ig(ﬁ)
represent the relative motion of nuclei with angular momentus{J—1|, ... |J+1] in
the potentialW;(R) formed by the muon motion in the quantum state(NIm) at a

fixed distanceR between nuclel Thus for states)=0 both combinations &0, L
=0) and (=1,L=1) are essential

VI=0(r;R)~ ME ProdlT; R)whOS(RHE Sna1d 1 R) Yo (R). (12)

For J=1 the analogous expansion has the fdfm:

W= (r,R)~ ME Som®noolT; RWNOO(RHZ rnim(TR) PRIA(R). (13)

It follows from definitions(9), (12), and(13) that
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0_ 2
Go=2 |¥nos(0)[%, (14)

2 | Unam(O) 2. (19

The functions«ph,m(R) have recently been calculated in Ref. 11 by the complex coordi-
nate rotation method, by expanding a variational functiot(r;R) over the adiabatic
basis.

The calculatecGJ factors have the values

GJ=0.63x 10 *%a,*=3.8x10° cm 3, (16)
Gy=0.86x10 ", *=5.1x 10" cm™ 3 (17)

(a,=2.56x10 ! cm is a mesic atomic length upitin the other approach™ which
employs an expansion of the functid’(r,R) over the adiabatic hyperspherical baSis,
the finite width of the quasistationady.®He state was explicitly taken into account. The
result obtained,

G9=0.75<10 "%, °=4.4x10" cm™?, (18)
is in reasonable agreement with6).

The reaction constant for unpolarized nuclei equals=0.34x10 ¥ cm?.s71

(Ref. 3.

The low energy cross section of reactiti) is dominated by the®=3/2" near-
threshold resonance. For this reason the nuclear fusion xateave the valué$

A)=3/2-A,G3=1.9x10° s, (19)

Af=0.65x10° s 1. (20)
With G{ from (18) the rate is

A)=2.3x10° s, (21

4. Mesic moleculesixHe are formed in the reaction

(du)1st3He— (duHe); +e, (22

predominantly in the state with total angular momentdns1 by an E1 dipole
transition?! Since \f<\Y the fusion reaction in thelu®He mesic molecule can be
observed only in the state=0. It can occur if the rata 1, of reaction(7) is comparable
to the decay rates’ ,\;, and\} of the state)=1. The internal Auger transition

(duHe) ;-1 —(duHe)]_o+e (23

is forbidden, since the difference between energies of state$ and J=0, viz.,
€,— €y=22.8 eV, is less than the ionization energy of a helium at@m6 e\j. Hence
transition(7) can occur only in collisions ofdu®He); with atoms of the medium. The
whole set of ion—molecular reactions leading to transitiOrhas been considered in Ref.
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TABLE I. Rates of the main processes in thigu®He) muonic molecule.

Reaction A J N, st Ref.
du+3He— (duHe);, e 1 1.4x 10 21
0 ~2X10° 13
(dulHe);— u*He+p A} 1 0.65< 10° 11
f
0 1.9x10°
(dulHe);— ulHe+d+ y A2 1 1.6x 10 24
J b
0 1.8x 101
(duHe);— usHe+d A2 1 0.8x 102 25
p
0 0.7x10%?
(duBHe);— uiHe+d+e \A 1 0.41x 10" 26
0 0.47x 10"
(dulHe);—1— (duBHe);—g Mo 1-0 0.5x 10%? 13

13. These reactionsi€1-9 and their rates\; are listed below, where the notation
M ;= (du>He); is introduced { is the mixture densityC,,. is the helium concentration
and X=D,,He).

(1) (M;e)"+ D+ X—(M;eDy) "+ X, A ~3%X10%p s %;

(2) (M,e)"+Het+ X—(M;eHe) "+ X, Ap~3X10%pChe s 1

(3) (M,eD,)"+He—(M;eHe) "+ D,, A3=~3X10%pCpe s 1

(4) (M,eHe) "+ He— (M ee)+He; Ag~10%pCpe s %

(5) (MeD,)"—(Mge)"+ D; +e, Ag=~5x 101 s71;

(6) (M,eHe) "+ D,—(MoeHe) " + D, +e, Ae=10%¢ s 1

(7) (M,ee)+ D,—(Mgee)+ D, +e, A=~4X10% s %

(8) (M;e)" +He—(M,ee)+He", Ag=~3X10%pCpe s %;

(9) (M1e)"+ D,—(Mge) ™+ D, +e, Ag=~10"¢ s L. (24)

Accordingly, the total rates o= A+ X+ of decay of the quasistationary states

(du3He); in channels4)—(6) have the valuegsee Table )t
Ae=0.9x102 571, (25
A=1x102s™ 2, (26)

It follows from a comparison of the rates that at¢~0.1 andCy.<0.1 the dominant
channel in the chain of ion—molecular reactions leading to a change of the angular
momentum of the mesic molecule]<€ 1)— (J=0), involves the formation of the com-
plex[(du3He),_ e D,]* and its subsequent decay with conversion of an electron of the
D, molecule, namely:

A A
[(du®He)s—se]" T T(du’He)y-1e Do]" [(du’He)y—oe] "+ Dy +e.  (27)
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In comparison with this process the rate<10°¢ s ! of the reaction §=1)—(J
=0) by the external Auger transitidneaction(7) of (24)) is negligibly small, in contrast
to the statement of Ref. 22.

At ¢=0.1 andC,,.<0.1 one has\;=3\gcandAs~X\3, i.e., a noticeable fraction
(~0.2) of the mesic moleculesif.®He);_, reach the statd=0, where the fusiori2)
can be observed.

5. The detailed analysis of the kinetics of processes.r BHe mixtures is yet to be
done, but even simple estimates can give rather reliable information about the expected
yield N; of fusion reactiong2) per muon stop. According to these estimates

A As A?
1 1 10,0 i

N¢=

N
~n;——(1+0.03p" 1) "1(2.8+600Cye) 1, (28)
dec
where the coefficienh;=n;(C,) is the statistical weight of the states of the mesic
molecule @x3He); with total nuclear spirs=3/2, calculated by taking into account the
kinetics of its formation in collisionsdu )+ He and the spin-flip processedi)s+d
—(du)gr+d (Refs. 20 and 28 At ¢=0.075,C,.=0.05, andn;=0.5 one has

N¢=0.12 AJ/\Se=3%X 1078/ u". (29)

6. The understanding and quantitative description of nuclear fusion catalysis in the
du®He mesic molecule has required the development of new theoretical methods and the
consideration of new physical processes. Experiment R-94-05.1 planned at PSI will per-
mit a check of the correctness and self-consistency of these methods and the adequacy of
the processes considered. In particular, observation ap ttiependencé28) of the yield
N; would be confirmation of the ion—molecular mechanism of the transition
(du3He);—;— (duHe);_, via formation of cluster§(duHe)e D,]*. A comparison of
the fusion rate\? extracted from measurementsdf with its theoretical values will test
the validity of the sophisticated calculations of the three-body Coulomb problem per-
formed recently.

The methods and details of the theoretical calculations of the xgtasd\; will be
published elsewherg 1315297 preliminary version of this paper was published in Ref.
27.
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