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A violation of the polarization selection rules for Raman scattering is
observed in porous silicon. This effect is caused by a weak disorienta-
tion of the quasi-one-dimensional silicon wires, with the crystal struc-
ture of the wires themselves and the macroscopic homogeneity of the
material in optical experiments remaining intact. ©1998 American
Institute of Physics.@S0021-3640~98!00202-3#

PACS numbers: 78.30.Am, 78.55.Mb

1. The initial model proposed in Ref. 1 for porous silicon~PSi! explains a number of
unusual properties of this material, but facts which remain unexplained in the mod
Ref. 1 are accumulating. Specifically, it is not understood why there is no correl
between the spectral position of the luminescence band and the magnitude of the s
the characteristic band in the Raman scattering spectrum to lower energies, a fact
has been noted in a number of papers~see, e.g., Ref. 2!.3 These quantities should both b
determined by the same factor — the smallness of the transverse cross section
‘‘quantum wires.’’

There is an obvious possible source of this conflict — a model explaining
phenomena occurring in individual wires cannot be adequate for explaining the prop
of the macroscopic material. Specifically, it has been shown4 that the aforementioned
characteristic feature of the Raman scattering spectrum from porous silicon may n
observed and may even have the opposite sign if the structure of the macrom
consisting of quantum wires has a certain type of structure.

In the present work we observed a characteristic feature of the polarizatio
Raman-scattered light from porous silicon. This feature was observed for all ava
types of samples~with one possible exception, see below!. This attests to the fact that th
causes of the indicated anomaly are of a fundamental nature.

The relative intensities of the differently polarized Raman components are d
mined by the fundamental selection rules for Raman scattering.5 The existing approach to
1060021-3640/98/67(2)/7/$15.00 © 1998 American Institute of Physics
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the analysis of Raman scattering spectra in quantum-size objects is based on R
where only the shift of the fundamental scattering band is studied. However, it ca
expecteda priori that a material consisting of sharply anisotropic objects will poss
nontrivial polarization properties.

2. Raman scattering was investigated with a Spex-Ramalog 5 spectrophoto
with a dispersion of 3 cm21/mm and computerized recording of the spectra; the exp
ments were conducted at room temperature. Most experiments were performed
excitation by 50-mW 6328 Å light from a He–Ne laser. Argon laser radiation wit
wavelength of 488 nm was used in some control experiments. The scattered ligh
detected in the backscattering geometry separately inXX andXY polarizations~for light
propagating along theZ axis; the notation of Ref. 5 is used!.

In addition, the luminescence was monitored for all PSi samples. Under s
wavelength excitation all the experimental samples exhibited bright luminescence
orange-red region of the spectrum and a characteristic microsecond decay of the
nescence.

The experiments were performed on porous silicon samples produced by diff
technologies. Different types of initial silicon, production technology, and variant
surface treatment were represented in the experimental samples.

3. In experiments with PSi samples grown on@001# silicon it was found that the
intensities of the Raman spectra for two polarizations of the scattered light — paralle
perpendicular to that of the exciting light (XX andXY) — differed by less than an orde
of magnitude for the case when one of the cubic axes of the material lay in the pla
polarization of the scattered light. According to the selection rules, in this case
intensity of the scattered light polarized in the same plane as the exciting light sh
equal zero.5 To obtain more-detailed information we investigated the dependence o
degree of linear polarization of the Raman radiation~at the maximum of the band in th
spectrum! on the anglea between the plane of polarization and the^100& axis in the
sample. The degree of linear polarizationr was determined in the standard way fro
measurements of the intensities of individual components:r5(I xx2I xy)/(I xx1I xy).

The types of angular dependencesr(a) obtained are shown in Fig. 1. The plot i
Fig. 1a demonstrates the above-indicated dependence for the@001# cut of single-
crystalline silicon. We note that four of the eight lobes of the pattern have a pos
degree of polarization, while the four lobes in between them have a negative deg
polarization. This type of relation corresponds to the fundamental selection rules a
described by the well-known relation5

r52cos 4a, ~1!

wherea is the angle between the light vectorE and the^100& axis.

For most of the porous silicon samples the pattern had the form shown in Fi
and 1c. Four lobes are clearly distinguishable in these plots, while the four lob
between are absent or strongly suppressed. It is obvious that such a dependence
polarization properties, together with a change in the orientational dependence, do
reduce to a trivial depolarization of the Raman-scattered light.

The orientational dependencer(a) for a PSi sample obtained from a film of amo
phous silicona-Si differed from those described above. This sample also exhibits b
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orange luminescence, in accordance with the main experimental criterion for the pre
of PSi. However, the dependence of the degree of polarization on the rotation angle
sample in this case is not a regular rosette, and the degree of polarization is
between 0.1 and 0.2~Fig. 1d!. This is a natural result for a material with no crystallin
structure.

Taken together, the observations made on the main set of experimental sa
show that the polarization dependences of the Raman scattering in porous silicon
tain a clear connection with the cubic symmetry of the initial material: The orientatio
the rosettes in Fig. 1b and 1c corresponds to the crystallographic axes of the
material, in agreement with existing results from x-ray crystallographic investiga
~see, for example, Refs. 7 and 8!. However, the mechanism responsible for the chang
the orientational dependence of the Raman scattering cross section from the depe
for crystalline silicon is not obvious.

4. To determine this mechanism, the degree of polarization of light reflected
the PSi films and of light transmitted through a sample of free-standing PSi were
sured for different orientations of the plane of polarization of the incident light. In all
cases measured the depolarization amounted to no more than several percent and
have a regular angular dependence. This eliminates the possibility that the obs
change in polarization is due to depolarization of the light on passage through the sa

In addition, we made measurements of the angular dependence of the intensity
elastic scattering. The three curves in Fig. 2 represent the elastic scattering patte
polished crystalline silicon, porous silicon with a mirror surface, and, for compariso
ground surface of crystalline silicon. It is evident from the curves in the figure that,

FIG. 1. Degree of linear polarization of Raman-scattered light versus the angle between the@100# axis and the
plane of oscillations of the electric field vector of the light: a — For a polished sample of single-crystallin
silicon, b — for a mirror film of porous silicon on a@100# surface of a single-crystalline substrate; c — same
for a film sample separated from the substrate; d — for a porous-silicon film formed from ana-Si film. The
parameters (A,B) of interpolation formulas of the type~2! for the indicated dependences equal: a! 0, 1; b! 0.15,
0.19; c! 0.27, 0.51.
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like the sample of polished crystalline silicon, the porous silicon sample reflects
specularly with no scattering, but at the same time the polarizations are radically diff
in these two cases~see Figs. 1a, 1b, and 1c!. This indicates that the porous silico
remains optically homogeneous and that light is not scattered by separate quantum

In summary, the preliminary experiments established that the explanation o
anomalous polarization cannot be based on the assumption of scattering by inhom
ities or of depolarization of the light. However, the intensity of Raman scattering at fi
polarizations of the exciting and scattered radiation should be sensitive to local devi
of the directions of the crystallographic axes from their average orientation. Hen
follows that if the quantum wires are disoriented, the intensities of the scattered co
nents will differ from the case of an ideal crystal.5

It is obviousa priori that there can be two basic types of disorientation of the w
which could result in local changes of the directions of the crystallographic axes: twi
and inclination~bending!. It is quite obvious~and confirmed by our calculations! that
twisting of the filaments can only lead to an orientational dependencer(a) in the form of
a superposition of a set of figures of the type in Fig. 1a and, as a result, in depolari
~decrease of scale! and rotation of the total orientational dependence, without causing
qualitative changes in it.

For further analysis, the data on the angular dependencesr(a) were approximated
by an expression similar to Eq.~1!, i.e., containing a function of the angle 4a. It was
found that the dependences of the type indicated in Fig. 1b and 1c can be describe
well by functions of the type

r5A1B cos 4a. ~2!

For negative phases of the cosine the contributions fromA and B work against each
other, causing degeneration of four of the eight lobes of the angular pattern.

FIG. 2. Intensity of elastic scattering of light versus the scattering angle for samples of polished s
crystalline silicon (s), a PSi sample with a mirror surface (d) ~top scale of angles!, and the ground surface o
a crystalline silicon sample (D) ~bottom scale of angles!.
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The constantsA and B in Eq. ~2! have a simple physical meaning: In crystallin
silicon a dependence of the type~1! arises only when light is scattered from a@100#
surface~in this caseA50), while in the case of scattering from a@111# surface the
function r(a) is a circle (B50). This is the key to understanding the reasons w
dependences of the type~1! appear: In porous silicon the local directions of the latt
vector and of the electric field vector of the light can be distorted on the scale o
individual filament and can alter the characteristics of the local Raman scattering pr
but at the same time distortions on a nanometer scale will not show up in macros
experiments.

There is an obvious possible cause of the deviations of the indicated vecto
inclination of individual quantum wires with respect to the average direction. On acc
of the microscopic dimensions of the wires, strong scattering, refraction, or distortio
the wave front do not occur. However, the angle between the vectorE of the light and the
direction of the crystallographic axes can fluctuate in individual wires. Besides the
ous reasons, the angle will change because in an inclined wire the direction of the
E should change relative to the initial direction. The same ideas were used in Refs.
10, where experiments on polarization luminescence of PSi are analyzed. The po
tion dependences observed in this case can be explained well on the basis of the h
esis that the local light fieldE in silicon wires is the same as if the wires were in
uniform external field in a medium with a much lower dielectric constant. Then,
component of the vectorE along the axis of a wire will be greater than the compon
normal to the axis~as a result of the anisotropy of the polarization of the wire in
external field!. As a result, the local deviations ofE are substantial even for small angle
of disorientation of the wires.

We performed calculations of the polarization dependences of the Raman sca
cross section for a model in which the porous silicon consists of randomly oriented
in a medium with a lower dielectric constant. It was assumed that the crystallogr
axis ^001& was directed along the axis of each wire. A similar model assumption
used in Refs. 9 and 10. The polarization dependences of the Raman scattering in
for such a system are determined by the quantity

S5h (
j 5x,y,z

^~eiRjes!
2&, ~3!

whereei andes are the electric field vectors of the incident and scattered radiation
separate wire,Rj is the Raman tensor for scattering of light by a phonon with polariza
j , h is a constant, and the angle brackets in Eq.~3! denote averaging over all possib
directions of disorientation of the wires. Let us give the result pf a computation ofS for
wires whose axes make an angleu with the normal to the surface, while the transver
crystallographic axes partially retain the orientation of the initial crystal. It is conven
to write the expressions obtained forS in the formS5S'1Sz , whereSz is the intensity
of scattering by a phonon polarized in a direction along the axis of a wire andS' is the
intensity of scattering by a phonon polarized in a direction perpendicular to the ax
the wire:

S'5ha2R2 sin2u$cos2u@3/2 cos2~c2c8!11/2#11/2%, ~4!
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Sz5hR2@~11cosu21/2 sin2u!2sin2~c1c8!11/2~12cosu21/2 sin2u!2

11/2 sin4u•2 cos2~c2c8!#. ~5!

Here c and c8 are the angles between the vectorsei and es and the projection of the
crystallographic axiŝ100& of the wires onto the plane of the film, anda is a factor equal
to the ratio of the electric field components parallel to and perpendicular to the axis
wire and expressed in terms of the depolarization coefficients.9 Since the degree o
polarization is given by

r5@S~c5c8!2S~c5c81p/2!#/@S~c5c8!1S~c5c81p/2!#, ~6!

a dependence of the form~1! arises for different random distributions of wires over t
angles of inclinationu, with the transverse axes retaining their orientation. As a resu
the large length-to-diameter ratio of a wire and the large difference between the diel
constants of the wire and the medium, the pattern shown in Fig. 1c can be explain
the presence of a relatively small~less than 10%! fraction of wires which are inclined by
substantial (;50°) angles, while the remaining wires retain their initial orientation, or
the presence of a spread of orientationsu;10° of the axes of all the wires relative to th
normal to the surface. Our experiments do not give any grounds for favoring any
model over another, but the latter assumption is in better agreement with the data o
7 and 8, which indicate that the crystal structure of the substrate is retained in
Irrespective of the specific structural model, the experimentally determined ratioA/B can
characterize the average disorientation of the wires in porous silicon.

The observed effect manifests similarly to Raman scattering by a rough su
When light passes through a rough surface, the light, being diffusely scattered b
surface, propagates in a wide range of angles, and components corresponding to d
angles between the crystallographic axes and the direction of propagation shou
present in the Raman-scattered light. For this reason, the total degree of polari
should also have a dependence on the orientation of the sample similar to Eq.~1!. This
assertion was checked experimentally. Indeed, the orientational dependence was
to that shown in Fig. 1b and 1c. We note that the macroscopic character of the no
formity of the surface gives rise to much larger angles between the directions of p
gation of the light in the material, but at the same time the field enhancement res
from the shape of the filaments does not occur in the continuous medium. There
other fundamental difference between the cases that we investigated and this latte
The diffuse elastic scattering of light by a ground surface can be easily detected e
mentally ~Fig. 2!, while in our case, on account of the local nature of the Raman s
tering process, the nanometer-size nonuniformities are manifested only in the polari
of the scattered light.

5. In summary, in the present work a previously unknown property of porous sil
— a special type of orientational dependence of the degree of polarization of the R
scattering — was observed. It was shown that this reflects the presence of a specifi
of disordering in this material, wherein the macroscopic homogeneity of the materia
the microscopic structure of the crystal lattice are preserved but disorder can occur
intermediate~mesoscopic! spatial scale, the macromaterial being made up of individ
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quantum wires. Investigation of the polarization of Raman scattering is a sensitive
for studying this phenomenon, giving independent information about the mesostru
of the macromaterial of porous silicon.
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Effect of hole–hole scattering on the conductivity of the
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The temperature dependences of the zero-magnetic-field resistivityr
and magnetoresistance of the 2D hole gas in GaAs/~AlGa!As hetero-
structures are investigated in the temperature interval 0.4–4.2 K. As the
temperatureT is increased,~i! the resistivityr grows with a decreasing
derivative dr/dT, and ~ii ! the positive magnetoresistance diminishes
from about 40% atT50.4 K to about 1% atT54.2 K. The results are
explained in terms of a temperature-dependent mutual scattering of the
holes, accompanied by momentum transfer between two different spin-
split subbands. ©1998 American Institute of Physics.
@S0021-3640~98!00302-8#

PACS numbers: 73.40.Kp, 73.50.Jt

A positive magnetoresistance of up to 40% in weak magnetic fields has bee
served at low temperatures in the high-mobility 2D hole gas of GaAs/~AlGa!As hetero-
structures in studies going back many years.1–7 At first this magnetoresistance was a
tributed to two-carrier conduction.3 It is known there are two groups of holes wit
different spectra and mobilities in the 2D hole systems of GaAs/~AlGa!As heterostruc-
tures. These two groups are formed from the heavy hole band as a result of the lift
the spin degeneracy by the spin–orbit interaction in the absence of inve
symmetry.8–10 In such systems a positive magnetoresistance should be observed11 both in
the case of the elastic scattering of holes by impurities and in the inelastic scatter
holes by phonons~even in the presence of inter-group scattering12!.

However, in the experiments of Refs. 2, 4, and 7 the magnetoresistance was fo
be strongly temperature dependent even at relatively low temperatures, whe
electron–phonon scattering is unimportant. The magnetoresistance decreases wi
perature, almost vanishing2,7 at T54.2 K. This has raised doubts that the effect is due
two-carrier conduction,4,6 and new ideas have been put forward. In Refs. 2 and 4 it
1130021-3640/98/67(2)/7/$15.00 © 1998 American Institute of Physics
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noted that a qualitatively similar effect can be caused by weak localization in a sy
with strong spin–orbit coupling.13 However, the weak localization effects are too small
account for the large magnetoresistance in highly conductive heterostructures.2 The au-
thors of Ref. 6 hypothesized that the magnetoresistance could originate from qu
corrections due to the hole–hole interaction in disordered systems at values of the i
screening lengthqs that are large compared to the hole wave numbers at the Fermi
kF . It can be shown that the magnetoresistance in this case is also small. The auth
Ref. 7 assumed that the magnetoresistance should be suppressed if the thermal
kBT (kB is Boltzmann’s constant! is much larger than the energy separation between
two bands at the wave vector of the smaller Fermi circleDF . However, our calculations
show that this factor alone cannot suppress the magnetoresistance but only leads t
changes in its value. Moreover, a drastic decrease in the magnetoresistance is ob
whenkBT!DF . This factor alone obviously contradicts the idea of the authors of Re
Thus there is no satisfactory explanation of the strong temperature dependence
magnetoresistance of the high-mobility 2D hole gas in GaAs/~AlGa!As heterostructures

In this paper we propose a new idea which is capable of explaining this phe
enon: the mutual scattering of holes belonging to different groups. The equations d
here are compared with both the results of our detailed study of the temperature d
dence of the zero-magnetic-field resistance and magnetoresistance and with all the
able data; the results of this comparison demonstrates that the proposed effect g
reasonable explanation of the data. It is important to note that the temperature d
dence of the mutual scattering was found to be proportional toT2, which supports the
basic idea.

1. EFFECT OF HOLE–HOLE SCATTERING

The positive magnetoresistance in a system with two groups of carriers is caus
the difference between their drift velocitiesui in an electric field. Intense mutual scatte
ing of carriers should equalize the velocities leading to a vanishing magnetoresis
Equations introducing the mutual scattering into the transport problem have been d
previously15–18 for the case when the inter-group scattering is absent. Here we use
equations to calculate the zero-magnetic-field resistance and magnetoresistance
case of carriers with like charges and different mobilities. Although they should no
expected to describe the magnetoresistance very accurately, we hope that they w
scribe rather well the main features of the phenomenon. The equation of motion
electric fieldE and magnetic fieldH for particles of group 1, taking into account th
collisions with particles of group 2, has the form16,17

m1u1 /t11hn2~u12u2!5eE1~e/c!~u13H!. ~1!

A similar equation can be written for the particles of group 2. Heremi are the effective
masses,t i are the momentum relaxation times for each group, andh is the mutual
friction coefficient

h5
m1m2

m1n11m2n2

1

te2e
. ~2!
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Since the relaxation timete2e of the relative drift velocityu12u2 due to the mutual
scattering of carriers is proportional toT22 ~Ref. 21; see also the Appendix!, h can be
written as

h5aT2. ~3!

By solving the system of equations forui and substituting these velocities into th
expression for the current densityj5n1eu11n2eu2 , we find the conductivitiessxx and
sxy :

sxx5
@nw~He/c!21~hnw1w1w2!~hn21n1w21n2w1!#e2

~He/c!41@n2h212h~n1w21n2w1!1w1
21w2

2#~He/c!21~hnw1w1w2!2
, ~4!

sxy5
n~He/c!21~h2n312hn~n1w21n2w1!1~n1w2

21n2w1
2!!

~He/c!41@n2h212h~n1w21n2w1!1w1
21w2

2#~He/c!21~hnw1w1w2!2

e3

c
H.

~5!

Herewi5mi /t i5e/m i , n5n11n2, andw5(w1n11w2n2)/n. The longitudinal and Hall
resistivities arerxx5sxx /(sxx

2 1sxy
2 ) and rxy5sxy /(sxx

2 1sxy
2 ). At low temperatures,

whente2e@t i (nh!w), the conductivity is the sum of the conductivities of each gro
In this case our equation for the magnetoresistance coincides with the equation gi
Ref. 11. The magnetoresistance is positive and saturates in high magnetic fieldsm iH/c
@1. At high temperatures, whente2e!t i , the longitudinal resistivityrxx and Hall
resistivity rxy are equal torxx51/nem, rxy5H/nec. Herem5e/w is the average mo-
bility. In this case, the magnetoresistance is absent and the zero-magnetic-field res
r does not change with temperature if them i are temperature independent. In the inte
mediate rangete2e;t i the temperature dependence of the resistance exists only in
magnetic fieldsm iH/c<1. The resistivityrxx increases with temperature and saturate
high temperatures. The differencer(T→`)2r(T50) is equal to the differencerxx(H
→`,T50)2r(T50).

2. EXPERIMENT

The two samples used in the experiment were prepared by molecular-beam ep
Sample 1 consisted of a GaAs~100! substrate overgrown with the following layer
undoped GaAs~0.2 mm!, a GaAs~20Å!/Al 0.26Ga0.74As~20Å! periodic structure~20 peri-
ods!, undoped GaAs~1 mm!, undoped Al0.26Ga0.74As ~250 Å!, Al0.26Ga0.74As doped with
Be to ;2.731018 cm23 ~300 Å!, and undoped GaAs~50 Å!. Sample 2 differed from
sample 1 by the content of Al in AlxGa12xAs layers (x50.3), by the thickness of the
doped AlGaAs layer, which was equal to 200 Å, and by the presence of a cap layer
consisted of 150 Åof undoped Al0.3Ga0.7As and 100 Å of undoped GaAs.

The densitiesn1 andn2 for the two different groups of holes were determined fro
the Shubnikov–de Haas oscillations at a low temperature and are listed in Table I
procedure is similar to the one used in Refs. 1 and 3. In fieldsH,1 T the period of the
oscillations is determined by the densityn1 of the holes with the lower mass and densi
Above 2 T the period is determined by the total hole densityn. For samples 1 and 2 th
total densities are 3.2331011 and 3.4331011 cm22, and the average mobilitiesm at T
54.2 K are 7.43104 and 9.33104 cm2/V•s, respectively.
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The temperature dependence of the resistivity atH50 is shown in Fig. 1. Both
samples show qualitatively similar behavior. The resistivity increases with temper
by about 40%, with a derivativedr/dT that is largest at low temperatures. Up toT'3 K
the derivativedr/dT decreases and then starts to increase slightly. The magneto
tance at different temperatures is shown in Figs. 2 and 3. The main effect, comm
both samples, is a positive temperature-dependent magnetoresistance with a tend
saturation at high magnetic fields. The magnetoresistance strongly decreases as t
perature increases from 0.4 to 4.2 K.

3. DISCUSSION

The hole–hole scattering explains both the strong decrease of magnetoresista
high temperatures and the temperature dependence of the zero-magnetic-field res
with decreasingdr/dT observed atT,3 K. The quantum corrections due to wea
localization13 and the hole–hole interaction14 in our samples should be smaller than 1%
The large value ofD/kB'10 K ~Refs. 8 and 10! contradicts the explanation given in Re
7.

We fitted the experimental data by Eqs.~3!–~5! by varying three unknown param
eters, namely, the temperature-independent mobilitiesm1,05e/w1, m2,05e/w2 and a,
trying to reach the best accuracy at low temperatures. The results of the fitting are s
in Figs. 1, 2, and 3. The chosen values of parameters are listed in Table I. The
features of the experimental data are described well by the fitting curves.

TABLE I.

n1, n2, m1,0, m2,0, a, b,
Sample cm22 cm22 cm2/V•s cm2/V•s g•cm2/s•K2 1/K

1 1.1431011 2.0931011 223104 5.43104 3.7310229 0
2 1.2731011 2.1631011 24.73104 7.53104 2.85310229 —
2 1.2731011 2.1631011 24.63104 7.73104 2.54310229 0.02

FIG. 1. Resistivity at zero magnetic field versus temperature. The solid lines are experimental curves, the
and dot-dashed lines show theoretical fits with temperature-independent and temperature-dependent
bilities, respectively.
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There are several effects which were not taken into account by our simple m
These are inter-group scattering~for the case of elastic scattering this effect was cons
ered in Ref. 12! and anisotropy of the hole Fermi surface. While the former effect ca
suppressed in the case of elastic scattering by remote impurities~separated from the
two-dimensional system by a spacer!, it definitely exists in the case of the hole–ho
scattering. These effects may be responsible for some discrepancies between the
mental and the theoretical magnetoresistance curves. The temperature dependenc
zero-magnetic-field resistivity should be much less sensitive to these factors. The
ences between the fitting and the experimental curves observed in Fig. 1 at high tem
tures can be explained by the temperature dependence of the mobilitiesm i due to
electron–phonon scattering and to the finite value ofkBT/EF (EF is the Fermi energy,
EF /kB'20 K!. The biggest correction caused by the latter effect is linear inkBT/EF

because of the temperature dependence of the screening:22

FIG. 2. Magnetoresistance (rxx2r)/r of sample 1 at different temperatures in a magnetic field perpendic
to the plane of the sample. The solid lines are experimental curves, the dotted lines represent the re
fitting.

FIG. 3. Magnetoresistance (rxx2r)/r of sample 2 at different temperatures. The solid lines are experime
curves, the dotted lines represent the results of fitting.
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m i
215m i ,0

21~11b iT!. ~6!

This effect is important only for scattering with momentum transfer close to 2\kF,i (kF,i

are the hole wave numbers at the Fermi level! and, therefore, is strongly dependent on t
presence of the corresponding harmonics in a particular scattering potential. It c
very different for different samples even with similar structures. The fitting of the
with temperature-dependent mobilities given by Eq.~6!, where we takeb5b15b2,
yields considerably better results for sample 2~see Fig. 1!. The results for sample 1 wer
not changed~for this sampleb was found to be close to zero!. New fitting parameters for
sample 2 are also listed in Table I. The calculated magnetoresistance curves chang
slightly after taking into account the corrections tom i and we therefore do not present th
new curves. The coefficientsb have reasonable values smaller thankB /EF'0.05 K21. It
is worth noting that atT54.2 K the differences between the experimental curves and
new fitting curves in Fig. 1, which we ascribe to the electron–phonon scattering
approximately equal for the two samples.

In order to verify whetherh is proportional toT2 we tried to fit the temperature
dependence of the resistivity takingh5aTp with p51.5 and 2.5 in the temperatur
range 0.4–3 K. In both cases the agreement with the experiment was noticeably wo
comparison with the casep52.

There are neither experimental nor theoretical data onh, a or te2e in a two-
component 2D electron~hole! gas. In Ref. 21, where the dependencete2e}T2 was
derived, the factor mutliplyingT2 was not calculated. In order to understand whether
values ofa obtained from the fitting are reasonable or not, we have calculatedte2e and
h for a simple model, following the approach of Ref. 18. This model neglects
anisotropy of the real energy spectrum and assumes the absence of hole transition
one subband to the other. Although these conditions are not fulfilled in our system
believe that the calculated value has the correct order of magnitude. Under the con
qs5e2(m11m2)/k0\2@kiF (qs /max(kiF)'10 in GaAs/~AlGa!As heterostructures with
n5331011 cm22) we have

h5
8

3\3S m1m2

m11m2
D 2 1

n1n2
ln

An11An2

An12An2

~kBT!2. ~7!

For the case of the effective massesm150.2me andm250.8me calculated in Refs. 8 and
10 we have obtaineda'7310229 g•cm2/s•K2 for our samples, which is in reasonab
agreement with the experimental values.

We have checked that the published results on the temperature-dependent m
toresistance forp channels in GaAs/AlGaAs heterostructures are consistent with
explanation. Unfortunately, a detailed comparison is not possible because, to the b
our knowledge, the only experimental data for which the temperature range was
enough to demonstrate strong variation of the magnetoresistance is given by Fig
Ref. 7. But in this paper only the total hole densityn52.0831011 cm22 is presented.
Nevertheless, we can approximately determine a coefficienta'1310228 g•cm2/s•K2

for these data because it is not very sensitive to then1 /n2 ratio. The data presented i
Fig. 5 of the same paper7 for a low-mobility sample in the temperature range 0.3–1.3
show only a weak temperature dependence of the magnetoresistance, which impli
te2e is much less than the elastic scattering time and gives no chance of determina.
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Estimation ofa is possible for the data presented in Fig. 2 of Ref. 4 (n53.831011 cm22,
n151.0131011 cm22), although the variation of the magnetoresistance there is not l
there. This estimation givesa'1310229 g•cm2/s•K2. The variation ofa with hole
density is consistent with the expected dependence~see Eq.~A8!! at least qualitatively.

In conclusion, we have shown that the temperature dependence of both the
magnetic-field resistance and the magnetoresistance of the 2D hole gas in
~AlGa!As heterostructures is governed by the hole–hole scattering at low tempera
Similar effects can exist in other high-mobility semiconductor systems which con
several groups of carriers with different mobilities.

We acknowledge a helpful discussion with V. T. Dolgopolov and D. V. Shovk
This work has been supported by Russian State Program ‘‘Nanostructures’’~Grant 1-
085/4! and by Deutsche Forschungsgemeinshaft.
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Optical phonons in quantum-wire structures

A. Milekhin, Yu. Pusep, Yu. Yanovski , V. Preobrazhenski ,
and B. Semyagin
Institute of Semiconductor Physics, 630090 Novosibirsk, Russia

~Submitted 10 June 1997; resubmitted 2 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 2, 107–110~25 January 1998!

The optical vibrational modes in GaAs/AlAs structures grown on a
~311!A-oriented GaAs surface are investigated. It is found that the line
corresponding to the fundamentalTO vibrational mode localized in a
GaAs quantum wire is split into two lines with different directions of
the polarization vector. The dispersion of theTO phonons of GaAs in
the ~311! direction is determined from the IR spectra of periodic struc-
tures. © 1998 American Institute of Physics.
@S0021-3640~98!00402-2#

PACS numbers: 63.22.1m, 78.30.Fs

Progress in molecular-beam epitaxy~MBE! technology has made it possible to gro
perfect GaAs/AlAs superlattices~SLs! on high-index GaAs surfaces. Unlike the grow
of SLs on~100!-oriented GaAs/AlAs, this leads to optical anisotropy in the plane of
SL layers.2–6 The anisotropy of the optical and electronic properties of high-index
can be explained by periodic surface faceting, which has been found to be maximu
the ~311!A-oriented SLs.2,3 Surface faceting makes it possible to obtain quantum-w
structures directly during growth by MBE. The question of the presence of faceting
the height of a facet is now being debated in the literature. The first RHEED inves
tions of SLs grown on a~311!A surface of GaAs established the period of the faceting
the ~011̄! direction to bed532 Å and the facet height to be 10.2 Å~6 monolayers!.2,3

However, analysis of Raman scattering spectra gave a facet height of 2 monolaye7

At present it is of great interest to study the electronic properties of~311! SLs. At
the same time there exist only several works on the investigation of the vibrat
properties of such structures.7–10

In the present letter we report the results of an investigation of the vibrati
spectrum of~311!A-oriented GaAs/AlAs heterostructures by the method of IR Fou
spectroscopy.

We investigated~GaAs!n/~AlAs!m structures (n58, 10, 12, 28 andm512, 16, 24
are the numbers of monolayers in corresponding layers! grown on a~311!A-oriented
GaAs surface. The thicknesses of the GaAs and AlAs layers were monitored by ob
ing the oscillations of the intensity of the specular reflection in the RHEED pattern u
SLs grown on~100! GaAs substrates in the same process. The values ofn andm were
calculated for~GaAs!n/~AlAs!m SLs with ideal heterointerfaces, neglecting the faceti
There were 10–200 repetitions of the layers for different structures.
1200021-3640/98/67(2)/5/$15.00 © 1998 American Institute of Physics
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The IR reflection spectra were measured at 80 K with a Bruker IFS-113V IR Fo
spectrometer equipped with an Oxford Instruments cryostat. The resolution was eq
0.5 cm21 over the entire spectral range. The IR reflection spectra were recorded
normal incidence of light on the sample. The required component of the polariz
vector was selected with a polarizer.

The lower symmetry of the~311! SL compared with the~001!-oriented SLs makes
it more difficult to identify the vibrational modes. In a~311! SL the vibrational modes
propagating in the~311! direction have either a purely transverse character~A9 modes!,
if they are polarized in the~011̄! direction, or a mixed longitudinal/transverse charac
~A8 modes!.8 Moreover, the surface faceting in a~311!A SL can result in splitting of the
localized vibrational modes. For example, the splitting of localizedLO modes in GaAs
layers could be due to localization of phonons in the narrow and wide parts of the fa
layers.7

According to the selection rules, on account of their nonzero dipole moment al
modes~A8 and A9! can be active in the IR spectra of~311!-oriented GaAs/AlAs SLs. The
wave number of the A9 localized modes of long-period of SLs~where surface faceting
can be neglected! can be determined as

qm5mp/$~n1d!d%, ~1!

wheren is the number of monolayers,d5aA11 is the thickness of one monolayer in th
~311! direction,a is the lattice constant in the~100! direction, andm is the number of the
localized mode. The parameterd describes the penetration of localized modes into nei
boring layers.

The identification of mixed localized modes with small wave numbers in~311!-
oriented GaAs/AlAs SLs simplifies because the corresponding localized modes
mainly either LO or TO polarization.10 Moreover, though the degeneracy of theTO
modes polarized in the~2̄33! and~011̄! directions is lifted, the magnitude of the splittin
of these modes remains negligibly small all the way down to wave numbersq'0.3 ~Ref.
8!.

The IR reflection spectra of GaAs/AlAs SLs recorded under conditions of no
incidence of the light make it possible to observeTO phonons localized in GaAs an
AlAs layers. In addition, only odd localized modes, whose total dipole moment di
from zero, are manifested in the spectra. The IR spectra of the derivative of the r
tance in the region of theTO phonon frequencies in GaAs for long-period GaS/AlAs S
grown on a~311!A GaAs surface are displayed in Fig. 1. To determine the frequencie
the localized modes, the IR reflection spectra calculated for a multilayer structure b
method described in Ref. 11 was fit to the experimental spectra. The arrows in the
mark the spectral position of the frequencies of the higher-order odd localizedTOi

modes, determined from the best agreement between theory and experiment. ThTOb

line refers to a bulkTO phonon of the GaAs substrate. The values obtained for
frequencies of the localized modes from the IR reflection spectra for SLs with a diffe
thickness of the layers and the corresponding wave numbers determined from the r
~1! were used to construct the dispersion curve for GaAsTO phonons in the~311!
direction. The parameterd was set equal to 1. The experimental values of the frequen
of theTO modes as a function of the wave vector are represented by triangles in the
in Fig. 1. The circles represent the Raman scattering data taken from Ref. 5. For
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parison, the solid line is the dispersion curve of GaAsTO phonons in the~100! direction.
As one can see from the figure, the data obtained by different methods are consiste
one another.

We note that the long-period~311!A GaAs/AlAs SLs studied in the present wor
and earlier in Ref. 12 did not exhibit anisotropy of the optical phonons in the plane o
SL layers as the sample was rotated relative to the growth axis with the polarizati
the light held fixed.

We present the observation of anisotropy of the vibrational spectrum of short-p
~GaAs!n/~AlAs!m (n59, 10 andm512) structures, where surface faceting can lead to
formation of quantum wires. Figure 2 shows the IR spectra of the derivative of
reflectance of the structures, recorded with different directions of the polarization v
of the light. As one can see from the figure, the fundamental modeTO1 splits into two
modes with different directions of the polarization vector. In the case when the pola
tion vector of the light is directed along the quantum wires~~2̄33! direction!, a low-
frequencyTOi mode propagating in the~311! direction dominates the IR spectra~curves
1,3!; here the polarization vector of the mode is directed in the direction of the
vector. If the polarization vector of the light is perpendicular to the quantum wires~~011̄!
direction!, a high-frequencyTO' mode is clearly observed in the spectra. The polari
tion vector of this mode is perpendicular to the quantum wires, and for this reason
mode can interact effectively with IR radiation polarized in the~011̄! direction. The
maximum splitting is obtained for~GaAs!8/~AlAs!16 structures and equals;1.3 cm21.

FIG. 1. IR reflection spectra of~311!A-oriented superlattices:~GaAS!24 /~AlAs!12 ~curve 1! and
(GaAS)12/~AlAs!12 ~curve2!. The dotted line shows the computed spectra. Inset: Dispersion curve of GaATO
phonons in a~311!A superlattice. For comparison, the solid line shows the dispersion of GaAsTO phonons in
GaAs in the~100! direction. The triangles represent the IR spectroscopy data5 and the circles represent th
Raman scattering data.
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As the thickness of the GaAs layers in the SLs increases, the splitting of theTO modes
decreases~curves3 and4 in Fig. 2!.

The observed splitting of theTO1 localized modes can be explained by the array
GaAs and AlAs quantum wires formed in the process of MBE growth. The calcula
of the vibrational spectrum for rectangular GaAs wires separated by AlAs barrier13,14

showed splitting of theTO1 vibrational modes. In addition, investigations of the condu
tivity anisotropy15 showed that an array of quantum wires could have formed in Ga
AlAs structures grown on~311!A-oriented GaAs surfaces. It was found that the ma
mum splitting of theTO localized modes is observed in~GaAs!8/~AlAs!16 structures,
where the largest conductivity anisotropy was observed. For smaller thicknesses
layers, the intensity of the localized modes decreases sharply. This can be explain
the appearance of wire-like clusters16 and, in consequence, an increase in the dampin
localized modes in them.

In summary, in this work the localized optical vibrational modes of GaAs/A
structures grown on a~311!A-oriented GaAs surface were investigated by IR Four
spectroscopy. It was found that the fundamentalTO mode localized in the GaAs quantum
wires splits. The dispersion of GaAsTO phonons in the~311! direction, as determined
from the IR spectra of long-period of SLs, is in good agreement with the Raman
tering data.

This work was supported by the Russian Fund for Fundamental Research~Project

FIG. 2. IR reflection spectra of~311!A GaAs/AlAs SL measured with normal incidence of linearly polariz
light in the spectral range of GaAsTO phonons:~GaAS!8/~AlAs!16 ~curves1 and 2! and ~GaAS!10/~AlAs!16

~curves3 and4!. The dotted lines show the computed spectra. Inset: Direction of the polarization vector
light relative to the direction of the quantum filaments.
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4R. Nötzel, L. Däweritz, and K. Ploog, Phys. Rev. B46, 4736~1992!.
5C. Jouanin, A. Hallaoui, and D. Bertho, Phys. Rev. B50, 1645~1994!.
6G. Gershoni, I. Brener, G. A. Baraffet al., Phys. Rev. B44, 1930~1991!.
7S. W. da Silva, Yu. A. Pusep, J. Galzeraniet al., Phys. Rev. B53, 1927~1996!.
8Z. V. Popovich, E. Richter, J. Spitzeret al., Phys. Rev. B49, 7577~1994!.
9Yu. A. Pusep, S. W. da Silva, J. Galzeraniet al., Phys. Rev. B51, 5473~1995!.

10P. Castrillo and L. Colombo, Phys. Rev. B49, 10362~1994!.
11A. G. Milekhin, Yu. A. Pusep, V. V. Preobrazhenskiiet al., JETP Lett.59, 493 ~1994!.
12A. Milekhin, Yu. Pusep, D. Lubyshevet al., in Proceedings of the 22nd International Symposium on Co

pound Semiconductors, Cheju Island, Korea, 1995; published inCompound Semiconductors, Institute of
Physics Conference Series, 1996, No. 145, Chapter 3, IOP Publishing Ltd. Philadelphia, Bristol, p. 4

13B.-F. Zhu, Phys. Rev. B44, 1926~1991!.
14F. Rossi, C. Bungaro, L. Rotaet al., Solid-State Electron.37, 761 ~1994!.
15V. Ya. Prints, I. A. Panaev, V. V. Preobrazhenski�, and B. R. Semyagin, JETP Lett.60, 217 ~1994!.
16Zh. I. Alferov, A. Yu. Egorov, A. E. Zhukovet al., Fiz. Tekh. Poluprovodn.26, 1715 ~1992! @Sov. Phys.

Semicond.26, 959 ~1992!#.

Translated by M. E. Alferieff



the
,
ig. 1,
y. The
ndary
art of
hrough
d

r. The
at
XY
e and

(
f a
al

JETP LETTERS VOLUME 67, NUMBER 2 25 JAN. 1998
On the nature of the g –a phase transition in cerium

G. Eliashberg
Institut für Theoretische Physik, RWTH Aachen, D-52056 Aachen, Germany; Landau
Institute of Theoretical Physics, 142432 Chernogolovka, Russia
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In 1964 Davis and Adams established that the large increase of the
thermal expansion and compressibility in the critical region of theg- to
a-Ce phase transition occurs predominantly in thea phase. This pro-
vides strong evidence that a tricritical point is realized in Ce. This also
means that the aforementioned transition is not isomorphic and that
a-Ce should have a distorted fcc structure. A careful examination of
Jayaraman’s data~1965! shows that a second-order transition line con-
tinues beyond the tricritical point to the vicinity of a triple point on the
melting curve. The phase boundary with the tricritical point and the
minimum of the melting curve are reconstructed within the framework
of Landau theory. ©1998 American Institute of Physics.
@S0021-3640~98!00502-7#

PACS numbers: 64.70.Kb, 65.70.1y, 81.05.Bx

1. The P–T phase diagram of Ce shows a multitude of phases. Except for
body-centered tetragonal phase appearing at room temperature above 120 kbar1,2 the
other known phases fall into a relatively low-pressure domain. They are drawn in F
which is to some extent schematic, reflecting a substantial experimental uncertaint
data were taken from Refs. 2 and 3. The line YZ is a second-order transition bou
predicted in our paper. More precise data are available for the high-temperature p
Fig. 1, where the melting curve has a negative slope at ambient pressure and goes t
a minimum at around 33 kbar and 935 K.4 This remarkable feature will be discusse
below. At the periphery of Fig. 1 one can see a body-centered cubic~bcc! d phase, a
double-hexagonal close packed~dhcp! b phase, and two low-symmetry phasesa8
~orthorhombica-uranium structure! anda9 ~body-centered monoclinic!, which at room
temperature coexist in a fragile equilibrium for pressures between 40 and 120 kba
main part of Fig. 1 is occupied by theg anda phases. The widely accepted view is th
both g-Ce anda-Ce have a simple face-centered cubic lattice. Across the line
separating these phases a first-order transition occurs. It was found that the volum
the entropy changes at the transition are large at room temperature and belowDv/v
*15%,Ds*1.5 per atom! and tend to zero beyond 500 K, indicating the existence o
terminal point. In 1958 Ponyatovski� had already proposed that this might be a critic
1250021-3640/98/67(2)/8/$15.00 © 1998 American Institute of Physics
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point like that in the vapor–liquid system.5 This implies a singular behavior of the secon
derivatives of the thermodynamic potential~specific heat, compressibility, thermal expa
sion!, which should tend to infinity at the critical point. Indeed in 1960 Beecroft a
Swenson6 observed a 10-fold increase of the thermal expansion in a critical region
respect to that at ambient conditions. A few years later Davis and Adams7 in their elegant
x-ray diffraction study confirmed this effect, and this was considered as a further ju
cation for the critical point concept. But they also made an additional observation
importance of which was not properly recognized: They were able to establish
singular behavior of the thermal expansion and compressibility occur only in the h
pressure phase, that is, ina-Ce. This was in fact anexperimentum cruciswhich could
long ago have lead to the unambiguous conclusion that instead of an ordinary c
point, the critical point in Ce is ‘‘the critical point of a continuous phase transition’’~the
general concept was developed by Landau in 1935–19378,9 and is now called a ‘‘tricriti-
cal point’’ ~a name proposed by Griffiths10!. According to Landau a first-order phas
transition between two phases having different symmetry continues beyond a tric
point as a second-order phase transition. In the vicinity of the tricritical point the c
pressibility, etc. diverge, but only in that phase which has the lower symmetry. Th
exactly what was observed by Davis and Adams. We have to recognize therefor
a-Ce should have lower symmetry thang-Ce. A phase transition from fcc to a distorte
fcc phase has also been discovered in lanthanum and in praseodymium, the neigh
Ce in the periodic table,11–14and within this systematics a distorted fcc structure ofa-Ce
is quite reasonably expected. The diffraction patterns for the distorted structures
and Pr show weak superlattice reflections together with the set of strong reflec
typical for the fcc structure. Due to the topology of the phase diagram good long-ra
ordered crystals ofa-Ce have not been available, and substantial line broadening m
the weak superlattice reflections. In the past this prevented a direct observation
distorted structure ofa-Ce.

FIG. 1.
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2. In this section we analyze the experimental information regarding the h
temperature part of the phase diagram.4 Clear evidence will be found for a second-ord
g –a transition in the vicinity of a triple point on the melting curve. In Fig. 2 t
measured phase boundaries~solid lines! are shown together with our calculations~ex-
plained below!. An important feature is the minimum of the melting temperature a
function of pressure. It follows from the Clausius–Clapeyron equation it follows
below the minimum (P,33 kbar! the solid is less dense than the liquid, but the situat
reverses atP.33 kbar. Jayaraman4 attributed this effect to a volume–pressure anom
in the solid phase, supposing that at ambient pressure liquid Ce is already in a ‘‘coll
state,’’ exhibiting the regular volume contraction with increasing pressure. The ano
in solid Ce, being very strong in the critical region around point Y, should still
significant in the vicinity of the melting curve. This explanation is no doubt qualitativ
correct, but within the tricritical point scenario we have to take into account that
anomalous properties manifest themselves in the low-symmetry phase. This, the
has to be thea phase, which exists in equilibrium with the liquid around the melt
curve minimum. On the other hand it appears that the neighboring phase belo
border with thed phase is the high-symmetry phase,g-Ce. This becomes apparent fro
an analysis of the corresponding boundary line, which we identify below as ag –d phase
boundary. This line has a pronounced downward curvature~Fig. 2! and can be fitted by
the equation

T5100321.4P20.0305P2, ~1!

whereT is in kelvin andP in kilobar. The same equation can be written after expand
the equilibrium condition for the chemical potentials (md5mg at the boundary! in powers
of P andT2T0 , whereT051003 K, as

2~sd2sg!~T2T0!1~vd2vg!P2
1

2
~kd2kg!P250. ~2!

Here s is the entropy per atom,v is the atomic volume, andk52dv/dP is the com-
pressibility. Other quadratic terms which are due to the thermal expansion and the
capacity differences give negligible contributions. From the measured data we cal
the volume and entropy changes across the transition atP50:

FIG. 2.
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vd2vg520.062 Å3; sd2sg50.044 Å3 kbar/K ~3!

(1 Å3 kbar/K corresponds to the dimensionless value 7.25 for the entropy per a!.
Comparing Eqs.~1! and ~2!, we find the compressibility difference

kd2kg.0.0027 Å3/kbar, ~4!

which is only;2% of kg (kg'0.15 Å3/kbar for a bulk modulusK'230 kbar andvg

'34 Å3/kbar!: There is no evidence for any anomalous increase ofkg . This means that
Ce indeed remains in its ‘‘normal’’ high-symmetryg phase along most of theg –d line.
We come to the conclusion that the possible positions of pointZ are limited to an interval
of a few kilobar around the triple point~see Fig. 2!, lying either on theg –d line or on the
melting curve.

We can now calculate the coordinates (PZ ,TZ) of the pointZ and the compressibil-
ity jump at theg –a transition. Suppose first thatPZ.26 kbar. BeyondZ the liquid is
therefore in equilibrium with thea phase:m liq5ma , ma5mg1Dm. Expandingm liq

2mg in powers ofP2PZ and T2TZ , we get the equation for the melting curve,P
.PZ :

2~sliq2sg!~T2TZ!1~v liq2vg!~P2PZ!2
1

2
~k liq2kg!~P2PZ!22Dm50. ~5!

The main contribution toDm is due to the compressibility jumpDk:

Dm52
1

2
Dk•~P2PZ!2. ~6!

From the linearity of the border between the liquid and thed phase we find thatk liq

5kd , and thereforek liq2kg5kd2kg , Eq. ~4!. Using the measured data we also ge

v liq2vd520.38; sliq2sd50.081 ~7!

~the units are as in Eq.~3!!.

These values remain constant along the melting line. According to Eqs.~3! and~4!
vd2vg520.13 at the triple point, whilesd2sg does not change appreciably. Using t
values of Eq.~6! we get finally the coefficients in Eq.~5!:

v liq2vg520.51; sliq2sg50.125. ~8!

The initial slope of the melting curve on the high-pressure side of the triple poin
therefore equal to 4.1 K/kbar. Defining a straight line having this slope and going thr
the triple point~dashed line in Fig. 2!,

T5105324.1P, ~9!

we impose three conditions necessary for calculatingTZ ,PZ , andDk: TZ andPZ satisfy
Eq. ~9!; the coordinates of the melting curve minimum, viz.,Tm5935 K andPm533
kbar, satisfy Eq.~5!, and dT/dP50 at the minimum of the melting curve, Eq.~5!.
Solving the corresponding equations, we find that

Dk'0.065 Å3/ kbar ~10!

andPZ'25 kbar. This value is indeed very close to~but ;1 kbar below! the triple point.
As a result, the calculated point is not the true pointZ, but a pointZ8 which falls on the
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line specified by Eq.~9! at a temperatureTZ8.951 K about 4 K above theg –d phase
boundary. Estimates show that to an accuracy of;1 K and a few tenth of kilobar we can
simply take the projection ofZ8 on theg –d line to get the correct position of pointZ:

PZ'25 kbar, TZ'947 K. ~11!

The melting curve calculated using Eqs.~5! and~6! ~with TZ8 instead ofTZ!! and shown
as curve1 in Fig. 2. coincides with the measured one along an interval of about 10
beyond the triple point.

The discrepancy at higher pressure is, of course, not surprising for an approx
version ofdm, Eq. ~6!, and is diminished within a more general description~curve2 in
Fig. 2; see next section!.

3. It is most natural to expect that a second-order transition line continues from
Z to the tricritical pointY. BeyondY a well-known first-order phase transition occu
~Fig. 1!, and to get a quantitative description of this peculiar situation we expand~fol-
lowing Landau8,9! the chemical potentialm(P,T,u)5m(P,T,0)1Dm(P,T,u) in powers
of some amplitudeu, related to the lattice distortion:

Dm5Au21Bu41Cu6, C.0. ~12!

To avoid misunderstandings we note that the transition to the distorted structure is
probably, driven by the softening of some phonon mode at a high-symmetry point i
Brillouin zone ~see Sec. 4!. The resulting distortion is some definite superposition
displacements~corresponding to several points with the same symmetry! which provides
the minimum value of the fourth-order term. The expansion~12! is written for the am-
plitude u of this already selected superposition.

For B(P,T).0 a second5order transition occurs along the lineZY, defined by the
equationA(P,T)50; A.0, u50 for a ‘‘normal’’ g phase, andA,0, uÞ0 for a dis-
torteda phase. Let (P8T8) be some point onZY. Using the expansion

A~P,T!5a~P8T8!~T2T8!2b~P8T8!~P2P8!, ~13!

we find the discontinuities of the compressibilityk52dv/dP, the thermal expansion
h5dv/dT, and the heat capacityc ~per atom!:

Dk5
b2

2B
, Dh5

ab

2B
, Dc5T8

ab

2B
~14!

whereDk5ka2kg , etc., and all quantities depend onP8,T8.

The tricritical point Y appears as a crossing point of the linesA(P,T)50 and
B(P,T)50. In the vicinity ofY

B~P,T!'B0~P,T!5g~T2TY!2b~P2PY! ~15!

andDk, Dh, andDc therefore tend to infinity as (T82TY)21.

Below TY the g –a phase boundary continues as a line of first-order transitio
B254AC ~Ref. 9!. Within the scope of Eq.~13!, taken aroundY, and Eq.~16! the phase
boundary is defined by a simple quadratic equation. In terms of the dimensionless
ablest andp,
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t5
T2TY

TZ2TY
, p5

1

P0
S P2PY2

T2TY

kA
D ~16!

this equation is~for t,0):

p1
3

4
~ t2np!250, n5

kAkB

kA2kB

P0

TZ2TY
, ~17!

where

P05
B0

2~Z!

3bC
, kA5

b

a
, kB5

d

g
, ~18!

andB0(Z)5g(12kB /kA)(TZ2TY);a5a(Y),b5b(Y) ~see Eq.~13!!. Although the in-
formation concerning the position of the singular pointY is vague, the measured tem
perature evolution of the pressure-resistance isotherms4 shows that 530–560 K is the
most plausible interval forTY . Taking TY5550 K andkA5(TZ2TY)/(PZ2PY) ~sup-
posingZY is close to a straight line!, we have calculatedPY and the parametersP0 and
n, fitting Eq. ~17! to the measured characteristics of the phase boundary. For the v

PY516.7 kbar, P0528 kbar, n51.12 ~19!

the theoretical curve

p~ t !52
2

3n2S 12
3

2
nt2A123nt D , t,0 ~20!

passes through the pointP57.2 kbar atT5300 K and is nearly linear up to 450 K, with
a slopek(T)5dT/dP that changes slowly from 22 to 27 K/kbar. These characteris
reproduce the measured data well within the experimental uncertainties. Above 4
k(T) increases to the valuekA'48 K/kbar at pointY. A substantial increase ofk(T)
above 450 K has been reported,15 but, all in all, the data in this region are controversi

Provided thatDm in Eq. ~12! is minimal,9 u2 is given in terms ofp,t by the
equation:

bu252P0~Dk!0f ; ~Dk!05b2/2B0~Z!, ~21!

where

f 5 f ~ t,p!52t1np1A~ t2np!21p. ~22!

Inserting Eq.~21! with ~22! into Eq. ~12!, we getDm(p,t):

Dm52
2

3
~Dk!0P0

2@2p2~ t2np! f # f ~23!

and forDv5]Dm/]P andDs52]Dm/]T we find:

Dv522~Dk!0P0~11n f ! f ; Ds522~Dk!0P0S 1

kA
1

n

kB
f D f . ~24!

In particular, at the first-order transition line Eq.~20!, t,0, we have
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f ~ t,p~ t !!5
1

n
~A113nutu21!, ~25!

and, using the measured value of the volume jump atT5300 K, Dv'4.5–4.8 Å3 ~Ref.
3!, we find ~for P0 andn given by Eq.~19!!:

~Dk!0'0.067–0.072 Å3/kbar. ~26!

Using kA548 K/kbar andkB512 K/kbar~for n51.12, Eq.~17!!, we find from Eq.
~24! that Ds52(1.61–1.73) per atom atT5300 K, in agreement with the measure
value.3

We emphasize that (Dk)0 in Eq. ~26! is close toDk in Eq. ~10!. Comparing Eq.~14!
for Dk and Eq.~21! for (Dk)0 we see that the similarity obtained is consistent with
situation in which the characteristic temperature scale in the expansion~15! of B is much
larger thanTZ2TY and in which the coefficientsa(P8T8) andb(P8T8) in Eq. ~13! are
only weakly varying along the lineZY. This does not seem surprising: within the interv
consideredT is several times the Debye temperatureQ'130 K and the aforementione
scale should be of electronic origin.

The lineA(P,T)50, which is confined to a relatively narrow pressure interval (PZ–
PY'8 kbar!, is therefore close to a straight line~as was supposed above!. Another basic
line, B(P,T)50, which has a much smaller slope, continues to the higher-pressur
gion. On very qualitative grounds one can expect the bulk modulus (;200 kbar! to be an
appropriate pressure scale in the expansion~15! of B, but because the linear term
relatively small (kB'0.25kA at P5PY), the nonlinear dependence onP may become
important at much lower pressure. Indeed, insertingDm from Eq. ~23! into the equation
~5! of the melting curve, we find~for the calculated values of the parameters! a substan-
tial deviation from the measured curve already atP;33 kbar. We therefore take into
account the quadratic term;(P2PY)2 in Eq. ~15!:

B~P,T!'gFT2TY2kB~P2PY!S 12
P2PY

Q D G . ~27!

Making the corresponding changes inDm, we get a reasonably good fit to the meltin
curve forQ540 kbar~curve2 in Fig. 2!. It is seen that for thisQ the lineB(P,T)50,
which has a slopekB512 K/kbar atP5PY ('17 kbar!, approaches a maximum ofT
5670 K atP537 kbar. Within this model only small~5–10%! corrections to the above
determined parametersP0 ,n, andDk are needed to maintain an equally good quant
tive description simultaneously in both domains of the phase diagram for which rel
data are available: around the melting curve minimum and atT,TY , where the first-
order transition occurs.

4. The coefficientb in Eq. ~21! for u2 does not appear explicitly in Eq.~23! for Dm,
and microscopic information must be invoked to determineb. In La and Pr the observed
distortion of the fcc lattice is related to the softening of the zone-boundary trans
mode~the so-called pointL in the Brillouin zone!.11,13 The dispersion anomalies of thi
mode and the frequenciesv(L) measured in Ce~Ref. 16! and in La~Ref. 17 and 18! are
almost identical, and one can expect that the same mechanism drives the lattice dis
in both metals. Supposing this is the case, we can estimateb using the value ofv(L)
measured atP50. Extrapolating Eq.~13! ~for P85PY ,T85TY) to P50, we have in the
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harmonic approximation:A5bPY5Mv2/2 (M is the atomic mass!. An appreciable
softening of the transverseL mode in Ce fromT;900 K to room temperature has bee
observed to occur.19 We take roughlyv52p•1012 sec21 for T5TY . For PY'17 kbar
we getb'30 Å, and

u25l 0
2f ~p,t !, l 0

25
2P0~Dk!0

b
'0.1 Å2, ~28!

which is comparable with the displacements measured in Pr.13

It is worth pointing out, that the aforementioned instability results in a disto
lattice having at least two nonequivalent atomic positions in the unit cell. Therefore
atom is displaced from the centrosymmetric position; this indicates that an ionic
polarization is the source for the lattice instability. Followed by a mixing of electro
orbitals ~having different local parity! this polarization gives rise to the softening of th
phonon modes and to a strong modification of the electronic properties.

We wish to thank A. S. Ioselevich, I. Luk’yanchuk, K. U. Neumann, Ye. G. P
yatovskii, and K. R. A. Ziebeck for fruitful discussions.
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Weak antilocalization in a 2D electron gas with chiral
splitting of the spectrum
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Motivated by the recent observation of the metal–insulator transition in
Si MOSFETs, a study is made of the quantum interference correction to
the conductivity in the presence of the Bychkov–Rashba spin splitting.
For a small splitting, a crossover from the localizing to antilocalizing
regime is obtained. The antilocalization correction vanishes, however,
in the limit of a large separation between the chiral branches. The
relevance of the chiral splitting for the 2D electron gas in Si MOSFETs
is discussed. ©1998 American Institute of Physics.
@S0021-3640~98!00602-1#

PACS numbers: 72.15.Rn, 73.50.Bk, 71.10.Ca

Since the appearance of the scaling theory of localization1 in 1979, it has been a
common belief that there can be no metal–insulator transition~MIT ! in 2D electron
systems, since all the states are localized at arbitrary weak disorder. Recent exper
on high-mobility Si MOSFETs by Kravchenkoet al.,2 however, showed evidence for
zero-magnetic-field MIT which is controlled by the densityns of 2D carriers. For small
densitiesns,nc.1011 cm22 the system is insulating, with an exponentially divergi
resistivity in the limitT→0, whereas forns higher than the critical density a strong dro
in resistivity ~by one order of magnitude! is observed forT,2 K.

The origin of the new metallic phase is not yet understood. Nevertheless,
evident that the electron–electron interaction plays an important role, as the c
densitync is quite low, so that the Coulomb interaction dominates the kinetic ene
Their ratio is r s.10 at the transition point and decreases}ns

21/2 deep in the metallic
phase. Several theoretical approaches to the treatment of the strong Coulomb inter
such asp-wave,3 triplet,4 or anyon5 superconductivity and superconductivity resultin
from a negative dielectric function6 have been suggested during the last year.

Besides a strong Coulomb interaction, Si MOS structures are characterized
spin–orbit splitting of the spectrum.7 It originates from a strong asymmetry of the co
fining potentialV(z) of the quantum well. The corresponding term in the Hamiltonian
a 2D electron gas, the so-called Bychkov–Rashba term, is given by8

Hso5a@s¢̂ 3p̂#. ~1!
1330021-3640/98/67(2)/7/$15.00 © 1998 American Institute of Physics
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Here s¢̂ is the vector of the Pauli matrices,p̂ is the 2D momentum operator,a is a
constant of the spin–orbit symmetry breaking measured in the units of velocity,
@•3•# stands for thez component of the vector product. This term lifts the spin deg
eracy at zero magnetic field and results in the splitting of the spectrum into two c
branches:

e6
~0!~p!5

p2

2m
6ap, ~2!

with the splitting growing linearly withp.

For a Si MOSFET, the minimum of the spectrum~2!, 2e052ma2/2, is estimated
as 1 K,7,9 while the Fermi energy iseF.6 K at the transition. Then the ratio of th
concentrations of left- and right-chiral fermions isn1 /n25(AeF1e0

1Ae0)2/(AeF1e02Ae0)2.5. Thus we conclude that the spin splitting results in a dr
tic change of the internal properties of the system even without allowing for the Cou
interaction. This observation may call into question the remark by Belitz and Kirkpat4

that the spin–orbit scattering is irrelevant due to the presence of a long-ranged Co
interaction. The latter should be strongly modified by the predominance of one ty
chirality.

The relevance of the spin correlations was also demonstrated in mag
measurements.10 Magnetic field applied in the 2D plane was shown to suppress
metallic state, leading to a huge increase in resistivity. Measurements in a perpend
magnetic field show a large positive magnetoresistance at high densitiesns.2nc , also
indicating the spin-related origin of the conducting phase.

We argue that an understanding of the new conducting phase and of the MIT
can hardly be obtained without taking the strong chiral splitting into account. Thus
theory of the metallic state should be the theory of Coulomb-interacting chiral ferm
The necessary first step, then, is to consider noninteracting particles with a chiral sp
of the spectrum.

In this letter we study the first quantum correction to the conductivity for nonin
acting particles in the presence of the Bychkov–Rashba term~1! and obtain it as a
function of the spin–orbit splitting. There are three energy scales in the problem: th
is the Fermi energyeF , the second is the chiral splittingD52apF between the two
branches~2! at the Fermi level, and the third is the inverse elastic mean free timet21

introduced by disorder. We will assumeeF to be the largest energy scale:

eF@
1

t
, eF@D. ~3!

The relationship betweenD andt21 is not specified, so that the variable

x5Dt ~4!

that controls the strength of the chiral splitting may vary from 0 to` provided that the
relations~3! are fulfilled. At the critical density, the ratioD/eF is of the order of 1, but it
decreases asns

21 into the metallic phase. The experimental value of the parametx
depends slightly on the density, varying from 5 to 10 asns varies from 1011 cm22 to
331012 cm22.
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The spin–orbit scattering in arandom potentialis known to drive the system into
the symplectic ensemble, resulting in an antilocalizing correction to the conduc
Dssymp5(e2/ph)ln(lw /l) ~Ref. 11!, where l is the mean free path,l w5(Dtw)1/2 is the
phase-breaking length associated with the phase relaxation timetw , andD is the diffu-
sion coefficient. In the case of the Bychkov–Rashba term, SU~2! symmetry is broken on
the level of theregular Hamiltonian, while the potential scattering may be considered
spin independent. From symmetry considerations one might expect that the symp
correctionDssymp should be recovered in the limit of a large spin splitting. We will s
however, that the correction becomes antilocalizing atx5( l w / l )1/3!1, nearly approaches
Dssymp for x<1, butvanishesfor x@1. Such a peculiar behavior is due to the prese
of the two chiral branches that are well separated in the limitD@t21.

Weak localization effects in the presence of different types of spin–orbit split
including the Bychkov–Rashba splitting, have been studied extensively in Refs
However, the authors were interested mainly in the behavior of the magnetoresis
while the quantum correction at zero magnetic field and forx>1 whenHso cannot be
treated as a small perturbation had not been investigated.

We consider a 2D noninteracting electron gas with the Bychkov–Rashba term
Hamiltonian:

H5
p̂2

2m
1a p̂ysx2a p̂xsy1U~r !, ~5!

where U(r ) is a random spin-independent impurity potential, which for the sake
simplicity is assumed to be Gaussiand-correlated:̂ U(r )U(r 8)&5d(r2r 8)/2pnt. Here
n5m/2p is the density of states for the free Hamiltonianp2/2m.

The classical conductivity can easily be shown to be independent ofx and given by
the Drude formulas05ne2t/m, provided that the random potential isd-correlated. The
first quantum correction to the conductivity13 is given by the expressiona!

Ds52
e2

h

vF
2

2 E d2p

~2p!2
^GR~p!&ra^GR~p!&ls^GA~p!&sb^GA~p!&mrE

1/l w

1/l d2q

~2p!2
Cbm

al ~q!,

~6!

where^GR,A& are disorder-averaged retarded~advanced! Green functions, which for our
problem are nondiagonal in the spin space, and the static cooperonC(q) is determined by
the ladder equation

Cbm
al ~q!5

daldbm

2pnt
1

1

2pntE d2p

~2p!2K GRS p1
q

2D L aa8K GAS 2p1
q

2D L bb8
Cb8m

a8l
~q!.

~7!

The averaged Green function obeys the Dyson equation^G(p)&215G(0)(p)21

2S, whereG(0)(p) is the Green function of the unperturbed Hamiltonian. In the qu
classical limit,eFt@1, only diagrams without intersections of impurity lines are imp
tant, and the self-energy function is

SR,A
ab 5

1

2pntE d2p

~2p!2
^GR,A~p!&ab.
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On solving the Dyson equation we obtain the Green function that can be written
the poles as (n5p/p)

^GR,A~p!&5

2j~p!6
i

2t
1D~nysx2nxsy!/2

S 2j~p!2
D

2
6

i

2t D S 2j~p!1
D

2
6

i

2t D . ~8!

Here we have taken advantage of the fact thatD!eF and replacedap by D/2. The
relaxation times for the two chiral branches appear to be equal to each other and co
with the mean free timet. This is a consequence of the model withd-correlated disorder.
For a more realistic model with a finite correlation length the lifetimes will be differ
for the two chiralities, but the difference will be small in the limitD!eF .

The crucial quantity that determines the spin structure of the cooperon is the in
of the retarded and advanced Green functions,

I bb8
aa8~q!5

1

2pntE d2p

~2p!2K GRS p1
q

2D L aa8K GAS 2p1
q

2D L bb8
. ~9!

Calculating this integral as a function ofx, expanding to second order inq, and substi-
tuting into Eq.~7!, we get

Ĉ~q!5
Â21~q!

2pnt
, ~10!

where the operatorÂ(q)51̂2 Î (q) expressed in terms of the total cooperon spinŜ
5 1

2(ŝ
R1ŝA) reads

Â~q!5
1

2
q2l 21x2S 1

2~11x2!
2

613x21x4

8~11x2!3
q2l 2D ~Ŝ22Ŝz

2!

2
x2~613x21x4!

4~11x2!3
~q3Ŝ!2l 22

x

~11x2!2
~q3Ŝ!l . ~11!

The next step is to invert the matrixÂ and to obtain the cooperon. According to E
~11!, the singlet mode is gapless while the triplet sector acquires a gap proportionax.
To study the lifting of the triplet sector let us first consider the case of smallx!1. Then,
for ql@x, the spin structure ofÂ may be neglected, so thatÂ215(2/q2l 2)1̂. For ql

<x, the triplet sector of the inverse operatorÂ21 becomes complicated, with differen
triplet modes having different gaps because of the low symmetry of Eq.~11!, but this
region does not contribute to the logarithmic integral overq. So we may write

Â21.
2

q2l 2S 12
Ŝ2

2
D 1

2

q2l 21x2

Ŝ2

2
. ~12!

Although this is not an exact formula it captures correctly the logarithmically large te
in the q integration.
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Inserting~12! to Eq. ~10! and performing the integration, we obtain the express
for the cooperon integral:

E
1/l w

1/l d2q

~2p!2
Cbm

al ~q!5
1

8p2nvF
2t3H S ln

l w

l
13 f D daldbm2S ln

l w

l
2 f D(

i 51

3

s i
als i

bmJ ,

~13!

where the contribution of the triplet sector is

f S x,
l w

l D55
ln

l w

l
for x!

l

l w
;

ln
1

x
for

l

l w
!x!1;

O~1! for x@1.

~14!

The last thing to do is to compute the integral of four Green functions in Eq.~6!:

E d2p

~2p!2
^GA~p!&mr^GR~p!&ra^GR~p!&ls^GA~p!&sb

5
4pnt3

11x2 F S 11
x2

2 D dmadlb1
x2

4
~sx

masx
lb1sy

masy
lb!G . ~15!

This integral is diagonal in the spin space for smallx!1 but has a more comple
structure forx@1, when the chiral branches are well separated.

Finally, we combine all together. Substituting~13! and~15! into Eq. ~6!, after some
arithmetic with the Pauli matrices we obtain the final expression

Ds5
2e2

ph

1

11x2F1

2
ln

l w

l
2S 3

2
1x2D f S x,

l w

l D G . ~16!

Let us studyDs as a function ofx for a givenl w@ l . For x! l / l w , the spin splitting
can be neglected and we obtain the orthogonal universality class correctionDsorth which
can be interpreted as a sum of a localizing contribution from the triplet sector an
antilocalizing contribution from the singlet sector. Then forl / l w!x!1 the triplet modes
acquire a gap that reduces their contribution, and the total correction changes sig
becomes antilocalizing at

x* 5S l

l w
D 1/3

. ~17!

For x* !x<1, the antilocalization becomes more pronounced, nearly approac
Dssymp. However, forx>1 it goes rapidly to zero~asx22). Summarizing, we presen
the behavior ofDs in the form
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Ds5
2

p

e2

h 5
2 ln

l w

l
for x!

l

l w
;

1

2
lnS l w

l
x3D for

l

l w
!x!1;

1

2x2
ln

l w

l
for x@1.

~18!

The crossover from the orthogonal to the symplectic corrections obtained forx!1 is
related to the appearance of a gap in the triplet sector of the cooperon. On the othe
the reduction ofDs for x@1 must be attributed to the spin structure of the integral~15!,
which annihilates the singlet cooperon mode in the limit of a large splitting betwee
chiral branches. In other words, the result obtained implies the absence of the first
tum correction to the conductivity in a system of 2D chiral fermions with only one so
chirality. The other example where a certain type of spin–orbit coupling leads to
absence of the first interference correction was considered in Ref. 14. The behav
Ds as a function ofx is sketched in Fig. 1.

The large-x asymptotic behavior can be traced up tox;Aln(lw /l). In order to find
Ds for even largerx, one has to go beyond the diffusion approximation to calculate
function f (x) that competes with the vanishing term ln(lw /l)/x2.

In conclusion, we have considered the quantum interference correction to the
ductivity of noninteracting fermions in the presence of the Bychkov–Rashba spin–
interaction. At small chiral splittings,x,1, the correction changes sign and becom
antilocalizing. It vanishes forx@1, where the scattering between the different chiralit
is strongly suppressed. The present theory may be regarded as a step toward und
ing of the conducting phase in Si MOSFETs, which likely contain Coulomb-interac
chiral fermions. It might also explain the low-temperature logT behavior of the resistivity
obtained for some samples below 300 mK deep in the metallic phase. The correc
antilocalizing,Ds.2C(e2/h)ln(T/T0), with very smallC;1022 ~Ref. 9!; this is con-
sistent with our formula for experimental valuesx@1.

FIG. 1. A sketch ofDs versus the strengthx of the chiral splitting;Dsorth52(2e2/ph)ln(lw /l).
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a!In the presence of the Bychkov–Rashba term, velocity is no longer proportional to momentum:v̂ i5 p̂i /m
1ae i j s j . This should modify Eq.~6!, but the corrections are small in the limitD/eF!1.
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Critical velocity and event horizon in pair-correlated
systems with ‘‘relativistic’’ fermionic quasiparticles

N. B. Kopnin and G. E. Volovik
Helsinki University of Technology, Low Temperature Laboratory, P. O. Box 2200, FIN
02015 HUT, Finland; Landau Institute of Theoretical Physics, Russian Academy
of Sciences, 117334 Moscow, Russia

~Submitted 16 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 2, 124–129~25 January 1998!

The condition for the appearance of an event horizon is considered in
pair-correlated systems~superfluids and superconductors! in which the
fermionic quasiparticles obey ‘‘relativistic’’ equations. In these systems
the Landau critical velocity of superflow corresponds to the speed of
light. In conventional systems, such ass-wave superconductors, the
superflow remains stable even above the Landau threshold. We show,
however, that, in ‘‘relativistic’’ systems, the quantum vacuum becomes
unstable and the superflow collapses after the ‘‘speed of light’’ is
reached, so that the horizon cannot appear. Thus an equilibrium dissi-
pationless superflow state and the horizon are incompatible on account
of quantum effects. This negative result is consistent with the quantum
Hawking radiation from the horizon, which would lead to a dissipation
of the flow. © 1998 American Institute of Physics.
@S0021-3640~98!00702-6#

PACS numbers: 67.20.1k, 74.20.2z, 04.60.2m

1. It is known that some aspects of the problem of black holes can be model
condensed matter physics.1–5 This comes from the fact that acoustic waves propagatin
a moving classical liquid1–3 and fermions propagating in a texture of superfluid3He-A
~Refs. 4, 6, and 7! obey relativistic-type equations in a curved space whose metr
produced by both the flow field and the texture~in 3He-A). In both systems the corre
sponding velocity of light can be exceeded, which affords the possibility of investiga
the event horizon problem.

3He-A and other pair-correlated systems~including d-wave superconductors, whic
also contain relativistic fermions; see, e.g., Ref. 8! are better models for simulations o
the event horizon than a classical liquid, since these are quantum systems with g
states that are in many respects similar to the quantum vacuum of high-energy ph
That is why they can be used for investigating the quantum effects related with the
horizon, such as Hawking radiation9 and statistical entropy.10

Here we address the stability problem of a quantum vacuum in the presence
event horizon: whether a nondissipative flow of superfluid is possible in the presen
a horizon, or whether the horizon always leads to a vacuum reconstruction into a
1400021-3640/98/67(2)/6/$15.00 © 1998 American Institute of Physics
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with dissipation. This can be considered using an example of a superflow with ve
exceeding the Landau critical velocityvL .

Let the superfluid move atT50 with a superfluid velocityvs , while the container
walls, i.e., the preferred reference frame, move with a normal velocityvn . The physical
properties of the vacuum state depend on the relative~counterflow! velocity w5vs

2vn . In a subcritical regime,w,vL , the order parameter is independent ofw: the
observer moving withvs does not see any difference in the liquid as compared to the
when vs5vn . The system thus retains some kind of Galilean invariance even in
presence of the container wall. For example, the density of the superfluid compon
the expression for the mass currentj5rsvs1rnvn , which represents the vacuum com
ponent of the liquid, does not depend onw and is equal to the total density:rs(T
50, w,vL)5r, while the density of the normal component, which represents the
ter, is always zero:rs(T50, w,vL)5r2rs(T50, w,vL)50.

The observer starts to see a dependence on the velocity relative to the refe
frame if w exceeds the Landau critical velocityvL , at which negative energy level
appear, i.e., states with negative Doppler-shifted energyEp1p•w,0. If the system is
fermionic, the typical situation in a supercritical flow regime abovevL is as follows: The
negative energy levels become finally occupied and, after such vacuum reconstru
the system comes again into a new equilibrium state with a frictionless superflow.
however, all the physical quantities depend onw, as seen by a comoving observer. T
vacuum state becomes anisotropic and the superfluid density now depends onw and
becomes smaller than the total mass density,rs(T50,w.vL),r. The other part of the
liquid, with the so-called normal densityrn5r2rs , comprises the normal compone
~matter! and consists of trapped fermions with negative energy. In equilibrium,
component is at rest with respect to the container reference frame, i.e., it moves w
velocity vn . The previous ‘‘Galilean’’ symmetry is thus broken by the created matte

There is another critical velocity,vc , at which the superfluid vacuum is exhauste
i.e., the superfluid density completely disappears,rs(w5vc)50, and thus the nondissi
pative superflow does not exist any more. Typically,vc.vL and thus the violation of the
Galilean symmetry occurs earlier than the superfluidity collapses. This happens, f
ample, in conventionals-wave superconductors, wherevL andvc are of the same order
with vc.vL , and also in superfluid3He-A, wherevL50 while vc is finite ~see, e.g., Refs
11–13!.

The existence of a region with stable supercritical superflow,vL,w,vc , allows us
to raise the question of the quantum effects of an event horizon. Let us consider a s
in which the quasiparticles are described by effective relativistic equations, such th
Landau velocity corresponds to the ‘‘speed of light’’c. In this case a supercritical ve
locity w.vL corresponds to a superluminal velocity, and thus an event horizon ca
constructed~see below!. If quantum effects are taken into account, there arises the p
lem that on the one hand the frictionless superflow is stable in the regimevL,w,vc ,
and this stability cannot be destroyed by the presence of the horizon, while on the
hand, the Hawking radiation from the horizon means that such a superflow is dissip
in the presence of the horizon.

Thus we have a dilemma:~i! either one should doubt the fundamentality of t
Hawking radiation from the event horizon in the supercritical regime, or~ii ! in the
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relativistic-type systems the ‘‘superluminal’’ regime of superflow is prohibited, i.e.,vL

5vc5c. Here we consider a pair-correlated fermionic system with a superconduc
superfluid state of the polar type, which has ‘‘relativistic’’ Bogoliubov fermionic qua
particles. We find that in this system the second alternative occurs: a nondissi
superflow collapses atw5vL5c, which means that the horizon never appears in
stationary nondissipative superflow: it can only exist in a dissipative flow state.

2. The energy spectrum of the pair-correlated system and its vacuum stat
determined by the self-consistent equations for the gap functionDp which determines the
quasiparticle spectrum and thus the ‘‘speed of light’’c:

Dp5(
p8

Vp,p8

Dp8

Ep8

~12np82n2p8!. ~1!

Here Vp,p8 is the pairing potential,Ep is the energy of the quasiparticles in the pa
correlated state andnp is their thermal distribution

Ep5ADp
21ep

2, np5
1

11exp@~Ep1p•w!/T#
, ~2!

andep5(p22pF
2)/2m is the fermion energy in the absence of the pair correlation. If

superflow velocityvs deviates from the container reference frame velocityvn , the distri-
bution function is Doppler shifted; further we assume thatvn50 and thusw5vs .

Let us consider how the vacuum state (T50) is disturbed by the counterfloww in
the supercritical regime. We are interested in the case when the spectrum of qua
ticles is ‘‘relativistic,’’ so that the horizon problem can arise. For this reason we cons
the two-dimensional case, spin-triplet pairing with orbital momentumL51, for which
the pairing potentialVp,p852(V1 /pF

2)p•p8, and the gap function corresponding to th
polar phase is11

Dp5cpx , ~3!

where the factorc plays the role of the speed of light along thex axis.

Let the velocity of the superflow be along the same axisx, i.e., vs5wx̂, so that the
superflow does not break the symmetry of the polar state and Eq.~3! remains the solution
even in the presence of the superflow. The Doppler shifted energy of the fermions i
pair-correlated state is

E~px ,e!5Ep1p•vs5Ae21c2px
21wpx ~4!

or

~E2wpx!
25e21c2px

2 ~5!

This corresponds to a relativistic 1D particle of masse moving in the Lorentzian metric

g00521, g015w, g115c22w2. ~6!

If the counterflow velocityw can exceedc, one can construct an inhomogeneous flo
state with a coordinate dependence ofw(x) andc(x) such thatw(x) crossesc(x). In this
case the metric elementg11(x)5c22w2 crosses zero at the pointsx5xh at which
w(xh)5c(xh), and thus the event horizon appears at these points.
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From Eq.~1! one finds that there are no quasiparticles forw,c andT50: np50,
i.e., the vacuum remains intact. The system is effectively Galilean invariant and the
of light is independent ofw.

The problem is whether the flow velocityw can exceed the Landau velocityvL ,
which is now the ‘‘speed of light’’c. If the answer is yes, the horizon can be construct
Let us consider the gap equation~1! in the case whenw.c. We assume that the speed
light is small compared to the Fermi velocity,c!vF5pF /m, which is typical for a
weakly interacting Fermi liquid. In this case, the momentum is concentrated nea
Fermi momentum,p5(pF sinf, pF cosf), and one can write

(
p

5E d2p

~2p!2 5
m

2pE deE df

2p
. ~7!

In principle, one can expect that atw.c the speed of light becomes dependent onw
for w.c. Thus let us introduce the bare speed of lightc05c(w50) and the current
~variable! value of the speed of lightc(w) if w.c(w). As we have seen,c(w,c)5c0,
and this solution persists untilw reaches the Landau velocityc0. Thus the first branch of
c(w) is

c1~w!5c0 , w<c0 . ~8!

3. If w.c, the Galilean invariance becomes broken due to fermions filling
negative levels of the energy in Eq.~4!. The number of particles on the negative ener
levels is the fermionic step function of the energy

np5Q~2E~px ,e!!. ~9!

From Eq. ~1! one obtains the following equation for the factorc(w) in the gap
function ~3!:

E
0

`

deE
0

2p df

2p S sin2f

Ae21c2sin2f
2

sin2f

Ae21c0
2sin2f

D
52E

0

p df

2p
sin2fE

0

sin fAw22c2 de

Ae21c2sin2f
. ~10!

Note that the details of pair interaction are concealed in the bare speed of lighc0,
determined by this interaction. From Eq.~10! one has

ln
c0

c
5sinh21SAw2

c2 21D ~11!

which gives the solution for the ‘‘speed of light’’c in the superluminal regimew
.c(w):

c2~w!5c0A2w

c0
21,

1

2
c0,w,c0 . ~12!

It follows that no solution exists above the Landau velocity, i.e., atw.c0, which means
that the Landau velocity coincides with the velocity of the superflow collapse and
with the bare speed of light:vL5vc5c0.
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Below the Landau velocity, one has two branches,c1(w)5c0 andc2(w) ~see Fig.
1!. Both can be obtained as extrema of the superfluid vacuum energy in the prese
the mass current

VS~s,w!2VN52 jw1
1

2
rw22

1

4
rc22

1

2
rc2 ln

c0

c

1
1

2
rc2H lnFw

c
1Aw2

c2 21G2
w

c
Aw2

c2 21J Q~w2c!. ~13!

HereVN is the free energy of the normal state, i.e., atc50; the mass density in this 2D
model isr5mpF

2/2p\2; the first term2 jw means that the free energy is to be extre
ized at the given mass currentj5rvs1(kknk . The current in a given state~see Fig. 1!
can be obtained from the extremum of the vacuum energy with respect tow: ]VS /]w
50. This gives the general expression for the mass current density

j ~w,c!5r~w2Q~w2c!Aw22c2!. ~14!

The second branch, corresponding to the superluminal flowc2(w),w, represents
the saddle point solution of the vacuum energy and thus is unstable against the form
of the regular branch, corresponding to the subluminal flow,c1(w)5c0,w. This second
branch with similar behavior has been also found for3He-B under superflow.14

In conclusion, we found that, in a superfluid analog of the relativistic system
stable superflow with velocity exceeding the corresponding ‘‘speed of light,’’w.c, does
not exist, and thus the dissipationless state with a horizon does not appear. The c
of the superfluid quantum vacuum in the superluminal regime is compatible with
Hawking radiation, which leads to the dissipation in the presence of a horizon and
cannot exist in the stable superflow. A horizon can appear only if the flow sta
dissipative. This can happen if the external body or the order parameter texture mo
the superfluid with a supercritical velocity, as was discussed in Ref. 4 for the case
moving topological soliton in3He-A. The Hawking radiation gives rise to addition
dissipation during the motion of the object.

FIG. 1. Two states of the superflow. In the subluminal flow state the speed of lightc1(w)5c0 does not depend
on flow velocityw with respect to the container wall. The superluminal state withc2(w),w is locally unstable.
The mass current in these two states is presented on the right.
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Scanning tunneling spectroscopy of charge effects on
semiconductor surfaces and atomic clusters

N. S. Maslova, S. I. Oreshkin, V. I. Panov, and S. V. Savinov
Chair of Quantum Radio Physics, Moscow State University, 119899 Moscow, Russia

A. Depuydt and C. Van Haesendonck
Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, B
3001 Leuven, Belgium

~Submitted 15 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 2, 130–135~25 January 1998!

We have used scanning tunneling microscopy and scanning tunneling
spectroscopy at liquid helium temperature to study the electronic struc-
ture of in situ cleaved,~110! oriented surfaces of InAs single crystals.
Both unperturbed, atomically flat areas and areas with an atomic-size
defect cluster have been investigated. We show that the anomalous
behavior of the local tunneling conductivity, which indicates a pro-
nounced enhancement of the semiconductor band gap for the flat areas,
is consistent with band bending induced by charges localized at the
apex of the tip. Atomic-size defect clusters contain additional charges
which modify the band bending; this explains the different behavior of
the tunneling conductivity near the defect cluster. The experimentally
observed oscillations of the tunneling conductivity near the band gap
edges can be directly related to resonant tunneling through quantized
surface states which appear because of the band bending. ©1998
American Institute of Physics.@S0021-3640~98!00802-0#

PACS numbers: 71.20.Nr, 71.24.1q, 61.16.Ch

Measurements with scanning tunneling microscopy~STM! and scanning tunneling
spectroscopy~STS! are usually interpreted in terms of standard models for elec
tunneling.1 However, the STM and STS data often also reveal anomalous features w
cannot be explained in this way. These STM and STS anomalies tend to become
pronounced as the temperature is lowered.

With decrease of the tunneling contact area and the temperature, nonequili
processes start to play a significant role. If the relaxation rate for the electron states
infinitely large, a nonequilibrium occupation of the electron states will appear in
presence of a nonzero tunneling voltage, even for macroscopic systems.2–4 For
nanometer-scale tunneling contacts the nonequilibrium effects can drastically chan
expected tunneling conductivity, especially in the presence of localized states. In
article we show that the importance of the nonequilibrium effects is supported by
STS measurements on InAs semiconductor surfaces.

The relaxation rate for the electron states in the vicinity of the tunneling con
1460021-3640/98/67(2)/7/$15.00 © 1998 American Institute of Physics
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usually incorporates all possible sources of inelastic scattering. At low tempera
where inelastic scattering processes are strongly suppressed, the finite relaxation r
induce a nonequilibrium steady-state distribution in energy space in the contact are
important decrease of the relaxation rate at liquid helium temperatures implies th
standard expression for the tunneling current has to be modified to

I}2peE d«
~nt

0~«!2ns
0~«!!V2r trsG tGs

V2r tG t1V2rsGs1G tGs
, ~1!

whereG t andGs are the relaxation rates in the tip and in the sample, respectively, anr t

andrs are the corresponding tip and sample density of states,V is the tunneling transfer
matrix element, andnt

0(«) andns
0(«) are the equilibrium electron distribution function

for the tip and sample, respectively.

When the relaxation rate for the nonequilibrium electrons in the tip or in the sam
is smaller than the tunneling rate, the current will be determined by the electron r
ation processes, which become very slow at liquid helium temperatures.5 This explains
why typical values for the tunneling current in low-temperature STM measurements
to be much smaller than at room temperature for the same tip-to-sample separatio
our measurements on InAs surfaces, which are discussed in more detail below, t
tunneling currents at room temperature are in the 1 nA range. At liquid helium tem
tures a typical tunneling current is 10 pA.

Experimental and theoretical studies of electron transport properties in the m
scopic regime have revealed that low-temperature properties of very small stru
depend not only on material properties such as the atomic composition, the lattice
ture, or the electron effective mass. Transport and tunneling phenomena in meso
systems also depend strongly on the relevant dimensionality and on the specific geo
and configuration of the system. As was indicated in Ref. 6, transport phenomena
are related to electron tunneling in nanostructures have to be treated in terms of
transmission probability. The latter probability has to include the tunneling proces
well as all other relaxation and scattering processes in the system, in a manner sim
the Landauer approach for quantum transport phenomena.7

In order to test the relevance of the aforementioned nonstandard tunneling phe
ena, we have performed detailed STM and STS measurements at liquid helium tem
ture on InAs~110! surface for atomically flat areas as well as for areas which contai
atomic-size defect cluster. The experimental results allow us to demonstrate the infl
of charging effects which occur in the vicinity of the STM tunnel junction. The STM a
STS data have been obtained with a home-built low-temperature microscope within
situ cleavage mechanism to obtain a clean sample surface at low temperature8 The
samples aren-type InAs semiconductor single crystals which have been heavily do
with Sn (n.531017 cm23) and are cleaved along the~110! plane after cooling down to
liquid helium temperature.

It is well known that the STM topography of III–V compound semiconductor s
faces, including the InAs~110! surface, depends on the polarity of the applied b
voltage.9 For negative sample voltages the STM image is determined by the As su
tice, while for positive sample voltages the In sublattice becomes visible. Relaxati
the surface atomic structure results in a tilt of the As atoms in the vertical direc
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which can be described in terms of a buckling angle and gives rise to a lateral
between the In and As sublattices.10 Our most striking observations for the STS measu
ments can be summarized as follows.~i! A strongly enhanced semiconductor band g
~about 1.8 eV) is observed for atomically flat surface regions.~ii ! The Fermi level is
shifted from the conduction band edge inside the band gap despite the high doping
~iii ! In the vicinity of an atomic-size defect cluster the band gap is considerably red
but the Fermi level remains pinned in the band gap. A strongly enhanced band ga
been reported previously for low temperature STS measurements on the InAs~110!
surface.11 Even at room temperature the value and position of the measured band ga
be different from the values for the bulk material.12

In order to explain the unusual behavior of the tunneling conductivity, we rely
the above theoretical approach and take into account the finite relaxation rate f
electrons in the tunneling contact, which induces a nonequilibrium steady-state ele
distribution in the presence of an applied bias voltage. We will argue that for nanom
scale junctions the nonequilibrium electron distribution results in charging effects
can drastically change the experimentally observedI (V) characteristics.

The inset in Fig. 1 shows a typicalI (V) characteristic for an atomically flat area o
the InAs~110! surface. The presence of a wide band gap.1.8 eV can be clearly ob-
served. This measured band gap value strongly differs from the bulk value which is
eV at 4.2 K. Moreover, the Fermi levelEf is located inside the measured band ga
Another result shown in Fig. 1 is the presence of oscillations of the tunneling con
tivity which appear on thedI/dV(V) curves near the band gap edges. The period of
oscillations is 0.14 eV for both polarities of the applied voltage.

Our topographic STM images also reveal atomic-size defect clusters~see Fig. 2!.
The lateral size of the cluster image is about 1 nm and its height is less than 0.5 nm
measured band gap value above the cluster is 0.4 eV, which is significantly smalle
the observed band gap value for the flat surface regions. We note that the gap struc
dI/dV(V) is much less pronounced when compared to the atomically flat areas~see Fig.
1!. On the other hand,Ef is still located inside the band gap and again we obse

FIG. 1. Differential conductance curve measured above the atomically flat area of the InAs~110! surface; the
current–voltage characteristic is shown in the inset.



cil-
at
lous
ing

As
t the
t the
lied

nce
the
the
lied
f the
in
is

area

149JETP Lett., Vol. 67, No. 2, 25 Jan. 1998 Maslova et al.
oscillations of the tunneling conductivity near the gap edges. The period of these os
lations is about 0.09 eV, which is different from the oscillations observed on the fl
surface. As is discussed in more detail below, we can in both cases link the anoma
behavior of the tunneling conductivity directly to the band bending induced by charg
effects.

In Fig. 3a we illustrate how the anomalously large experimental value for the In
band gap can be explained for the atomically flat surface regions. We assume tha
band bending is induced by charges which are occupying localized states present a
apex of the tip. This charge depends on the polarity and the magnitude of the app
voltage. That is why the commonly used model for tip-induced band bending13 has to be
modified.

The external charge appearing on the apex of the tip is proportional to the differe
between the nonequilibrium distribution function for the electrons in the presence of
tunneling current and the distribution function at zero applied voltage. So, the sign of
extra charge at the apex of the tip follows the changes in polarity and value of app
voltage bias. As discussed above, the nonequilibrium distribution appears because o
finite relaxation rate for the electrons, implying that the electron distribution function
the tunneling contact area can be different from the Fermi–Dirac distribution which

FIG. 2. a: STM image of an atomic-scale defect cluster appearing on the InAs surface. The scanned
measures 44344 Å. The tunnel current is fixed at 20 pA, while the sample is biased at2500 mV. b: Differ-
ential conductance curve measured above the defect cluster shown in Fig. 2a. The curve marked1 corresponds
to the measured curve, while the curve marked2 corresponds to a fitted 9th order polynomial. The latter curve
permits an estimate of the width of the semiconductor band gap.
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present in the macroscopic leads. Therefore, in the presence of a tunneling curre
nonequilibrium electron distribution in the contact area results in a negative charge
apex of the tip for positive sample voltages and in a positive charge for negative sa
voltages. The shape of band edges follows the dependence of additional charge
applied bias voltage as obtained in Ref. 14. Each localized state at the apex of t
cannot have a charge of more than 2e, and so saturation of the charge as a function of
applied bias voltage occurs.

The oscillations of the tunneling conductivity cannot be explained in terms of C
lomb blockade or Coulomb staircase effects. If the oscillations are caused by Cou
charging effects, the period of these oscillations can be directly related to the sizea of the
relevant particle which is being charged. The oscillation period should beDE;e2/a. For
a;0.5–1.0 nm we obtainDE;1 –0.5 eV, which does not agree with the experimen
data.

The observed oscillations likewise cannot be explained by interference effects.
tip-to-sample separationb;0.5 nm the period of the electron density oscillationsDE
should be much larger than the period obtained from our experimental results. In
DE;(2p\pF)/(mb), wherem is the effective mass of the electron andpF;\/a0 is the
electron wave vector at the Fermi level (a0 is the InAs lattice constant!. This implies that
DE;\2/mba0;1 eV, in clear disagreement with our experimental resultDE;0.09 eV.
A period of 0.09 eV would imply an unrealistic tip-to-sample separation of more th
nm.

The band bending valuesW andW8 indicated in Fig. 3 can be estimated to beW
;W8;e2/b, where, as before,b is the tip-to-sample separation. Forb;0.5–1.0 nm we
obtainW;W8;1 –0.5 eV. These values are in line with the usual band bending valu14

The essential feature of our model~see Fig. 3! is the fact that on account of the voltag
dependence of the localized charge, the exact values ofW and W8 now depend on the
polarity as well as on the amplitude of the applied voltage in our case. The exper
tally observed band gap will beEg;W1W81Egb , whereEgb;0.43 eV is the bulk
value of the InAs band gap. Therefore, the band bending induced by a charged tip
can account for the experimentally observed increase of the band gap.

FIG. 3. Schematic view of the tip-induced band bending which occurs near the InAs surface.Ec and Ev

correspond to the conduction and valence bands edges at zero bias respectively, whileEc8 andEv8 correspond to
the measured position of the band edges. The straight line in the first quadrant corresponds to the positio
Fermi level of the tip relative to the Fermi level of the sample.W andW8 give the band bending. a: Above a
atomically flat InAs surface; b: above an atomic-size cluster.
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In the presence of an atomic defect cluster, the band bending will be modified i
vicinity of the defect cluster.15 This occurs because of the additional charging of
localized states which are associated with the defect cluster. For negative sample v
a negative charge is expected to appear near the cluster, while for positive sampl
ages the defect cluster should acquire a positive charge. As in to the case of a char
apex, the external charge appearing on the cluster is proportional to the differenc
tween the electron distribution function in the presence of a tunneling current an
distribution function at zero applied voltage. The charge on the defect cluster cau
band bending which partially compensates the band bending induced by the charg
The gap edges position now weakly depends on applied bias voltage as is shown
3b. Consequently, the experimentally observed band gap above the defect cluster
reduced in comparison to the band gap which is observed for atomically flat su
areas. However,Ef remains in the band gap. This can be explained by the fact tha
band bending is asymmetric: the bending of the conduction band differs from the va
band bending. The decrease of the band gap above a defect cluster has als
observed16 for a GaAs~110! surface, but the effect was less pronounced than for
InAs~110! surfaces.

In general additional localized states can appear in the band gap due to tip–s
interaction.17 In this case the common model for tunneling processes has to be mo
considerably,18 and the tunneling current can be completely dominated by these a
tional localized states for bias voltages less than the band gap value, provided the
relaxation time for the nonequilibrium electrons is taken into account.

In conclusion, our scanning tunneling spectroscopy measurements of the InAs~110!
surface confirm the importance of the band bending induced by localized charges p
near the tunneling contact. We have presented theoretical arguments which rely
finite relaxation time for the electrons at the apex of the tip and on the on the surfa
the sample and also on the presence of a nonequilibrium electron distribution at
voltages. This model consistently explains our main experimental observations, incl
an enhancement of the semiconductor band gap and the appearance of oscillation
tunneling conductivity near the band gap edges. The presence of an additional cha
atomic-size defect clusters accounts for the different behavior when compared to a
cally flat areas.

The work in Moscow has been supported by the Russian Ministry of Rese
~Surface Atomic Structures, Grant 95-1.22; Nanostructures, Grant 1-032! and the Russian
Fund for Fundamental Research~RFBR, Grants 96-0219640a and 96-15-96420!. The
work at the KULeuven has been supported by the Fund for Scientific Research–Fla
~FWO! as well as by the Flemish Concerted Action~GOA! and the Belgian Inter-
University Attraction Poles~IUAP! research programs. The collaboration between M
cow and Leuven has been funded by the European Commission~INTAS Project 94-
3562!.

1J. Tersoff and D. R. Haman, Phys. Rev. B31, 805 ~1985!.
2E. L. Wolf, Principles of Electron Tunneling Spectroscopy, Oxford Universitary Press, 1985.
3P. N. Trofimenkoff, H. J. Kreuzer, W. J. Wattamaniuk, and J. G. Adler, Phys. Rev. Lett.29, 597 ~1972!.
4J. G. Aoller, H. J. Kreuzer, and J. Straus, Phys. Rev.13, 2812~1975!.
5Quantum Transport in Nano-Structured Semiconductors, Kluwer Academic Publishers, 1996.
6O. Agam, N. S. Wingreen, and B. L. Altshuler, Phys. Rev. Lett.78, 1956~1997!.



-
raede,

tiga-

152 JETP Lett., Vol. 67, No. 2, 25 Jan. 1998 Maslova et al.
7R. Landauer, inLocalization, Interaction, and Transport Phenomena, Proceedings of the International Con
ference, August 23–28, 1984, Braunschweig, FDR, edited by B. Kramer, G. Bergmann, and Y. Bruynse
Springer Series in Solid-State Science, Vol. 61, Springer Verlag, Berlin~1985!, p. 38.

8S. I. Oreshkin, V. I. Panov, S. V. Savinovet al., Prib. Tekh. Eksp. , No. 4, 145~1997!.
9R. M. Feenstra, J. A. Stroscio, J. Tersoff, and A. P. Fein, Phys. Rev. Lett.58, 1192~1987!.

10N. S. Maslova, S. I. Oreshkin, V. I. Panovet al., ‘‘Charge effects on InAs~110! surfaces by low temperature
scanning tunneling spectroscopy,’’STM-97, July 20–25, Hamburg, 1997.
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Oscillations of the magnetoresistance in an inclined
magnetic field for MIS structures on „100… silicon with a
high electron density
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At electron densitiesNS.631012 cm22 a second series of oscillations,
which are tentatively attributed to population of the second energy
subband, is observed in addition to the main series of Shubnikov–de
Haas oscillations. A change in phase of the oscillations of the second
series is observed at some angle of inclinationae of the field. The
measured value ofae is used to calculate the ratio of the cyclotron
mass to the effectiveg factor. The maximum possible cyclotron mass is
also determined asmH,0.32me . On this basis it is concluded that the
second series of oscillations is due to electrons which have an in-plane
effective massm* '0.2me and which belong to the same valleys of the
Fermi surface as in the case of the main oscillations. ©1998 Ameri-
can Institute of Physics.@S0021-3640~98!00902-5#

PACS numbers: 73.40.Qv, 73.50.Jt

Two-dimensional electron transport on the~100! surface of silicon has been inten
sively investigated for many years. Nonetheless, its physical picture is still not s
ciently well understood. Specifically, the case of high electron densities, where the t
predicts that more than one energy subband is populated, has not been adequate
ied.

The electronic Fermi surface in the bulk of silicon consists of six equal ellips
with major axes lying in pairs on the crystallographic axes~100!, ~010!, and~001!, i.e.,
the electrons are evenly distributed between six equivalent valleys. The valleys i
inversion layer at the surface are, generally speaking, no longer equivalent becau
effective electron massesmz in the direction of the normalz to the surface are different
For the ~100! surface, electrons of the two valleys with the maximum massmz

50.91me and in-plane effective massm* ;0.2me have the lowest potential energy. Th
1530021-3640/98/67(2)/6/$15.00 © 1998 American Institute of Physics
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energyE0 of the ground state of the electrons of these valleys is the energy of the bo
of the first two-dimensional subband. The electronic states in this subband are fo
degenerate — twofold degenerate with respect to spin and twofold degenerate w
spect to the valleys.

The bottom of the next~in energy! subbands should be the energyE0 of the ground
state for four ellipsoids withmz50.19me and the energyE1 of the next level above the
ground state for the two valleys withmz50.91me . The theory predicts close values fo
these energies. Therefore it is very important to obtain experimental data on the na
the second subband. However, only several experimental attempts to do so hav
published thus far.

In Ref. 1 it was observed that the linear curve of the number of occupied La
levels of the first subband versus the gate voltageVg has a kink at some valueVg

5VB . The authors explained the kink by the change induced in the electronic dens
states in the layer by the onset of population of the second subband. The value ofVB was
varied by applying to the sample a uniaxial compression along the~110! axis. On this
basis it was concluded that it is the subband 08 that starts to be populated whenVg

.VB . In Ref. 2 the threshold for population of the second subband was investigat
a function of the density of acceptor impurities in silicon. As a result, a conclusio
favor of subband 1 was drawn. In Ref. 3 the electron mobility in the second subban
its temperature dependence were analyzed and the second subband was identifie8.
The values of the mobility were determined indirectly from measurements of the Hal
longitudinal resistances. The validity of such a determination was questioned in R

In Ref. 5 we reported what we thought was the first observation of the serie
Shubnikov–de Hass~SdH! oscillations associated with the electrons in the second s
band ~this series is referred to below as series II!. After our work was published, we
learned that similar oscillations had been observed earlier in Ref. 6. On the basis o
measurements of the periods of the oscillations in both series and the total ele
densityNS in the layer~calculated from the electrical capacitance of the sample andVg),
the authors of that paper6 determined the degree of degeneracy in the second subba
be 8,b! which pointed to the subband 08. In Ref. 5 it was observed that the amplitudes
the series-II oscillations are much more strongly temperature-dependent than the
tudes of the series-I oscillations. For this reason, the series-II oscillations were
attributed to the subband 08, where the cyclotron mass is larger. Now, however,
alternative possible reason for the intensification of the temperature dependence
amplitudes is known. It could be caused by an increase in the fraction of the cu
transported by the electrons of the second subband as the temperature decreases4 so that
the conclusion that the cyclotron masses are different for the series-I and series-II
lations may be incorrect.

The electron densityNII in the second subband, determined in Ref. 5 from the pe
of the oscillations with the use of the proposed degeneracy factor of 8 was found
much higher than the difference ofNS and the electron density in the first subbandNI ,
determined from the period of the oscillations in the main series~series I!. Approximate
equality betweenNII and NS2NI can be obtained only by assuming that the serie
degeneracy factor equals 1, i.e., there is no spin and valley degeneracy. This m
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fundamentally important to obtain direct experimental information about the value o
degeneracy factor.

The objective of the experiment described in the present letter was to make a
determination of the presence of spin splitting in the spectrum of the electrons re
sible for the series-II oscillations and to determine the cyclotron mass of these elec
We employed the fact that the ratio between the cyclotron and spin splittings o
energy levels of the two-dimensional electron layer depends on the angle of inclinata
of the field relative to the direction perpendicular to the plane of the layer, since the
splitting is determined by the total magnetic fieldH and the cyclotron splitting is deter
mined only by its normal componentHz . This makes it possible to change the ra
between the values of these splittings in the course of the experiment, making th
harmonic of the SdH oscillations vanish by inclining the field. This should happen a
angle of inclinationae for which the spin splitting equals half the cyclotron splitting. T
phases of the oscillations fora,ae and a.ae will differ by 180°. This method was
used in Ref. 7 to determine the effectiveg factor of the electrons in the ground subba
of the two-dimensional electron layer on the~100! Si surface.

The experimental sample was a silicon MIS structure fabricated by the stan
technology on the surface of silicon with acceptor density 1015 cm23. The sample pos-
sessed a rectangular Hall geometry with a 2.530.25 mm channel. The subgate oxid
layer was 200 nm thick; the ratioNS /Vg51.1531011 cm22V21. The peak mobility at
0.4 K was equal to 26000 cm2V21s21 at Vg53.5 V. The sample was taken from a ne
substrate~wafer! which had not provided any of the samples investigated in Refs. 4
5. Preliminary measurements showed that the effects described in Refs. 5 and
completely reproduced in this sample also.

During the measurements the sample was placed in liquid3He at temperatureT
50.4 K. A magnetic induction of up toB523 T was produced with a Bitter magne
Such a strong maximum magnetic field made it possible to perform measurements
wide range of angles of inclination while maintaining a maximum valueBz55 T suffi-
cient for observing series-II oscillations at angles up toa.70°.

Examples of the original experimental traces of the longitudinal resistance o
sample are presented in Fig. 1. The SdH oscillations of both series are clearly visi

FIG. 1. Longitudinal resistance of a channel versus the magnetic induction forVg5100 V ~top curve! and
Vg570 V ~bottom curve!.
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them. The series-II oscillations start in weaker magnetic fields and have a longer p
than the series-I oscillations.

The effect of the inclination of a magnetic field on the series-II oscillations
illustrated in Fig. 2. For greater clarity, the experimental data were prefiltered w
high-frequency digital filter in order to eliminate the monotonic component of the de
denceRxx(B). It is evident from the figure that the positions of the oscillations rem
unchanged relative toBz , while their phase changes sign after some angleae in the range
47.5°,ae,60.7°. Interpolation of thea dependence of the amplitude of the first ha
monic of the oscillations givesae558°62° at Vg5100 V andae552°64° at Vg

570 V. A similar change in phase of the oscillations is also observed for series I. In
caseae554°62° in the entire range 70 V,Vg,100 V ~this is somewhat lower than th
value obtained in Ref. 7!.

The observed change in phase is in complete agreement with that expected
two-dimensional electronic system with two different spin states. On the basis of th
that the moment of the change in phase of the first harmonic of the oscillations c
sponds toDH2Ds5Ds ~hereDH and Ds are the cyclotron and spin energy splitting
respectively!, it is possible to determine the ratio between the cyclotron massmH and the
effective g factor g* . Rewriting this equation in the form (\e/mHc)H cosae

52g*mBH, where\ is Planck’s constant,mB5e\/2mec is the Bohr magneton,c is the
speed of light, andme is the mass of a free electron, we obtaing* 5(me /mH)cosae.
Substituting the value ofae , we obtain for series-II oscillationsg* 5(me /mH)(0.54
60.02) forVg5100 V andg* 5(me /mH)(0.6060.04) forVg570 V. For series-I oscil-
lationsg* 5(me /mH)(0.5960.02) in the range ofVg from 70 V to 100 V.

The ratios obtained betweeng* andmH make it possible to estimate the upper lim
of the possible values ofmH for series-II oscillations. It is known that theg factor of bulk
conduction electrons in silicon equals 2. The electron–electron interaction in the
dimensional electron layer on the surface can increase the effectiveg factor,8 but there

FIG. 2. Series-II oscillations in an inclined magnetic field. The inclination anglesa of the field with respect to
the z axis for the different curves~top to bottom! are: 0°, 32°, 47.5°, 60.7°, and 69.5°.
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are no grounds for assuming that it decreases. Taking for estimatesg* .2, we obtain
mH /me,0.28 for Vg5100 V andmH /me,0.32 for Vg570 V. Since this is much less
than the expected valuemH /me50.46 for the subband 08, the oscillations must be at
tributed to electrons belonging to the same valleys as the series-I oscillations and h
an in-plane effective massm* '0.2me .

It follows on this basis that at least a twofold spin degeneracy is present in
series-II oscillations. One can expect also a twofold valley degeneracy for these o
tions, as for the series-I oscillations. Figure 3 shows the corresponding electron de
calculated from the positions of the series-I and series-II SdH oscillations as well a
total in-layer electron density as a function ofVg . One can see that the differenceNS

2NI is appreciably less thanNII even when the possible valley degeneracy of
series-II oscillations is neglected.

At present we cannot explain this discrepancy. It is possible that for the act
achievable densityNS we are dealing with population of the ‘‘tails’’ of the secon
subband~it was predicted in Ref. 9 that these tails are long!, and the discrepancy would
vanish if higher densities could be achieved. Possible reasons could be electron–e
interaction and intervalley scattering of the electrons. According to Ref. 10, suc
interaction for the~110! orientation can lead to the appearance of a domain structure
population of only one valley in each domain and, in consequence, to a decrease
observed degeneracy factor. In principle, similar effects can also be conjectured to
in other cases where several subbands are filled, including also for the~100! orientation,
but at present we do not know of any calculations for this case.

The measurements were performed at the High Magnetic Field Laborato
Grenoble, France. This work was supported by Grant 96-02-16838 from the Ru
Fund for Fundamental Research and Grant 202/96/0036 from the Grant Agency
Czech Republic.

FIG. 3. Electron density determined from the periods of the SdH oscillations for different series of oscilla
L — NI , h — NII for degeneracy factor 2,D — NI for degeneracy factor 4,3 — NS2NI . The straight line
is the total electron densityNS .
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that same paper6 gives a much lower value for the degeneracy factor.
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A simple approach to the evaluation of the Hall
conductivity in impure metals within the Green function
formalism

V. M. Edelsteina)

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovk
Moscow Region, Russia

~Submitted 22 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 2, 141–145~25 January 1998!

A simple method of dealing with the Hall effect in metals with short-
ranged impurities in a weak magnetic field is proposed. The method is
based on a Schwinger representation for the electron Green function in
the magnetic field. The efficacy of the method is demonstrated on a
calculation of the antisymmetric components of the conductivity tensor
at finite wave vector. ©1998 American Institute of Physics.
@S0021-3640~98!01002-0#

PACS numbers: 72.10.Bg, 72.15.Gd

Despite the discovery of the quantum Hall effect, the theoretical analysis of the
effect in metals inweakmagnetic fields has been attracting a lot of attention1–6 because
of its practical as well as scientific interest. The quantum-mechanical treatments
topic published to date have been based on a method proposed in Ref. 2. In this m
an electron system subjected to a uniform external magnetic field is considered to
limiting case of the system placed in a fictitious nonuniform magnetic field with
vector potentialA(r )5A(q)eiq•r. One finally lets the wave vectorq→0 to recover the
case of uniform magnetic field. The nonuniform field results in inhomogeneity of
system which induces the carrier diffusion. In the Feynman-diagram language thi
plies the appearance of diffusion poles. The necessity of eliminating the poles to ob
divergent-free expression for the Hall conductivitys i j

(H) makes the method somewh
cumbersome~in spite of some improvements published later5!. Furthermore, the method
has only been formulated for evaluation of the Hall conductivity at zero wave vect

The purpose of the present paper is to propose another quantum approach w
convenient in the particular case ofp-independent impurity scattering. The distinctiv
feature of our approach is that the external magnetic field is considered to be un
from the very beginning. Therefore, no carrier diffusion takes place and we only hav
Feynman diagrams that do not contain the diffusion poles. In addition, the method c
extended to finite wave vectors without any difficulties, yielding an expression fors i j

(H)

3(v,q). ~Here we consider only macroscopic systems.!

Let a(x,t) and A(x) be the vector potentials of the driving electric fieldE
52 ]a/c]t and external static magnetic fieldH5¹3A, respectively. The linear re
sponse toa is known to be determined by the current–current correlation function
1590021-3640/98/67(2)/5/$15.00 © 1998 American Institute of Physics



netic

is

reen

au
ue to

ym-
d
hysics,

n as

op-
al

urity
d can
, the
form.
ion is

160 JETP Lett., Vol. 67, No. 2, 25 Jan. 1998 V. M. Edelstein
Qi j ~x,y; ivn!5E
0

1/T

dt^T̂Ĵi~x,t!Ĵ j~x,0!&, ~1!

whereT in the upper limit of the integral is the temperature andT̂ in the angle brackets
is the time-ordering operator. In what follows we assume that the so-called ‘‘diamag
part’’ of the response, (ne2/m)d(x2y), is canceled by the appropriate part ofQi j ~ana-
lytically continued to the real frequency axis! in the usual manner. The electron charge
taken to be2e. Then the current operatorĴ is the sum of the kinetic part,

ĵ kin52
ie

2m
@c1~r !¹c~r !2¹c1~r !c~r !#,

and the diamagnetic part,

Ĵdia52
e2

mc
A~r !c1~r !c~r !.

For the sake of brevity, we drop the spinor indices on the field operators and G
functions. The fieldH is assumed to be small so thatvct,1 ~herevc5eH/mc is the
cyclotron frequency andt is the mean free time! and, hence, one can neglect the Land
quantization and use the representation for the electron Green function originally d
Schwinger7

Ge~r ,r 8;H!5expS ie

c Er

r8
dr 9•A~r 9! DGe~r2r 8;0!, ~2!

whereGe(r2r 8;0) is the Green function in zero magnetic field. In this paper the s
metric gauge,A5 1

2H3r , is chosen, and we put\51 throughout. It should be notice
that such a representation has been successfully employed in many branches of p
e.g., in superconductivity8 and plasma physics,9 but never~to our knowledge! in the
theory of the Hall effect in weak magnetic fields. The current operator can be writte

Ĵ~x!5 lim
x8→x

Ĵ~x,x8!, Ĵ~x,x8!5c1~x!J~x,x8!c~x8!, ~3!

J~x,x8!52eF¹x2¹x8
2im

1
e

2mc
A~x1x8!G . ~4!

The thermal average in~1! gives rise to a set of diagrams10 which have the form of a
two-vertex electron loop with various impurity-line insertions and with the current
erator~in the Schro¨dinger representation! at both these vertices. The impurity potenti
U(r ) will be assumed short-ranged so that^U(r )U(r 8)&;d(r2r 8). If, as usual, one
includes the impurity self-energy in the electron Green function, the remaining imp
lines necessarily connect the upper and lower electron lines forming a given loop an
be considered as impurity vertex corrections. Without an external magnetic field
evaluation of such diagrams is greatly simplified by making use of the Fourier trans
In the presence of the magnetic field the translational invariance of the Green funct
broken on account of the Schwinger factors

F~x,y!5expS ie

c Ex

y
dr•A~r ! D 5expS ie

2c
H•~x3y! D , ~5!
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making the immediate application of the Fourier method impossible. However, the
eral theorem11 stating that any electron loop taken as a whole has to be invariant u
translations means that the translational invariance must be recovered by explicit
ation of the loop. Let us show how this happens in the case of ‘‘empty’’ loop~without
impurity insertions!. The analytical expression for the loop contains

lim
x8→x
y8→y

Ji~x,x8!Jj~y,y8!F~x,y8!F~y,x8!G~x2y8! i e1 ivG~y2x8! i e , ~6!

which, in view of the relations

¹x

2i
F~x,y!5F~x,y!F¹x

2i
2

e

2c
A~y!G , ¹y

2i
F~x,y!5F~x,y!F¹y

2i
1

e

2c
A~x!G ~7!

can be recast as

lim
x8→x
y8→y

F~x,y8!F~y,x8!F¹x2¹x8
2im

1
e

2mc
A~x1x82y2y8!G

i

3F¹y2¹y8
2im

2
e

2mc
A~x1x82y2y8!G

j

G~x2y8! i e1 ivG~y2x8! i e . ~8!

In Eq. ~8! the derivatives do not act on the phase factors; therefore, one can sety85y and
x85x in the factors. As a result, the product of the factors reduces to unity. Now
should substitute into~8! the Fourier representation for the free-electron Green funct
and perform the coordinate differentiations. After that one can immediately sety85y and
x85x in remaining functions. Then the total expression for the loop takes the expl
translationally invariant form

2e2 (
e,p,q1

F p

m
1

e

mc
A~x2y!G

i

eiq1•~x2y!Gi e1 iv

3S p1
q1

2 DGi eS p2
q1

2 D F p

m
2

e

mc
A~x2y!G

j

. ~9!

The part of the responseQi j
R(v,q)5*d3(x2y)e2 iq1•(x2y)Qi j (x2y;v1 i0) linear in H

can be written@with the help of the identity*d3reiq•rr52 i (2p)3¹qd(q)# as

s i j
~H !~v,q!5

e2

p S ie

4mcD F ~H3¹p
R2A! iGv

RS p1
q

2DG0
AS p2

q

2D pj

m

2
pi

m
Gv

RS p1
q

2DG0
AS p2

q

2D ~H3¹p
R2A! j G , ~10!

where the superscriptR(A) stands for the retarded~advanced! part of the function and the
operator¹p

R2A in the first term acts only on the pair of the Green functions accordin

the rule¹p
R2AGRGA5(¹pG

R)GA2GR(¹pG
A), but not on the velocity vertexp/m. The

operator¹p
R2A in the second term acts to the left in the same way. Proceeding in the

manner, one can see that the contribution of all impurity-ladder diagrams has the
depicted in Fig. 1. The evaluation ofs i j

(H) is now reduced to the level of, say, the Drud
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conductivity. It should be stressed that thed-functional form of the impurity-field corr-
elator is essential in deriving this result. Straightforward calculations yield

s i j
~H !~v,q!5s3

3vct

2~12 iV!2
ei jn H hnS b2g

t2 D iV

12b2 iV

1q̂n~ q̂•h!F S g2b

t2 D iV

12b2 iV
22

12b

t2 G J , ~11!

where s35n3e2t/m, n35pF
3/3p2, V5vt, t5qvFt/(12 iV), h5H/H, b5t21

3arctant, andg5(11t2)21. The known symmetric~Drude! components of the conduc
tivity tensor,s i j

(D) , in the same notation have the form12

s i j
~D !~v,q!5s l

~3!q̂i q̂i1s tr
~3!~d i j 2q̂i q̂i !, ~12!

s l
~3!5

3s3

12 iVS 12b

t2 D 2 iV

12b2 iV
, s tr

~3!5
3s3

2~12 iV!S b2
12b

t2 D .

Applied to a 2D electron system, our method yields

s i j
~H !~v,q!5ei jnhns2

H , s2
H5s2

vct

~12 iV!2S iV

11t2D 1

A11t2~12 iV!21
, ~13!

s i j
~D !~v,q!5s l

~2!q̂i q̂i1s tr
~2!~d i j 2q̂i q̂i !, ~14!

s tr
~2!5

2s2

12 iVS A11t221

t2 D , s l
~2!5

2s2

12 iVS iV

t2 D A11t221

12~12 iV!A11t2

(s25n2e2t/m, n25pF
2/2p) which agrees with the result recently obtained6 by means of

the 2D classical Boltzmann equation with a modified collision integral.

In conclusion, we have proposed a method for microscopic calculation of the
conductivity in weak magnetic fields. In essence, the method is based solely o
Schwinger formula, i.e., on the gauge transformation rules in quantum mechanics
diagrammatic expression obtained fors i j

H appears to be topologically similar to that fo
the Drude conductivity. Our approach complements the previous one2 in that it gives
s(v,q) at finite q but only for thep-independent scattering, while the method of Ref

FIG. 1. The Feynman diagrams for the Hall conductivity. The gradient operator¹p
R2A in the second term acts

to the left on the pair of the Green functionsGRGA. G is the usual impurity-renormalized velocity vertex.
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givess(v,0) but for arbitrary impurity scattering. In addition, it is hoped that the met
reported here will provide a better handle in studying the effects of weak localization
~short-ranged! interparticle interaction on the Hall conductivity.

This work was supported, in part, by Grant 96-02-19568 from the Russian Fun
Fundamental Research.

a!e-mail: edelsh@issp.ac.ru
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Characteristic features of microcontact spectra of
contacts between a metal and a quasi-1D conductor with
a charge density wave

A. A. Sinchenko
Moscow State Engineering Physics Institute, 115409 Moscow, Russia

Yu. I. Latyshev, S. G. Zybtsev, and I. G. Gorlovaa)

Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 10390
Moscow, Russia

~Submitted 23 December 1997!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 2, 146–151~25 January 1998!

The current–voltage characteristics~IVCs! of Cu–K0.3MoO3 point con-
tacts are investigated. The character of the nonlinearity and the ob-
served asymmetric features of the IVCs indicate that a substantial shift
of the chemical potential occurs near the boundary with the normal
metal. Deformation of the charge density wave by an applied electric
field leads to strong bending of the energy bands and to the formation
of a potential well, whereupon the Fermi level falls within the region of
allowed single-electron states. ©1998 American Institute of Physics.
@S0021-3640~98!01102-5#

PACS numbers: 71.45.Lr, 73.40.Ns

In quasi-1D conductors, a charge density wave~CDW! or a spin-density wave
~SDW! arises as the temperature decreases below the Peierls transition pointTP . Many
properties of materials with a CDW and SDW have been studied in detail; a review
be found in Ref. 1. In the Peierls state single-electron excitations coexist with a de
able mobile CDW. In subthreshold electric fields a CDW cannot move as a whole, a
Peierls semiconductors~PSs! the single-electron excitations determine the conductiv
However, a deformation of the CDW~for example, by an electric field! changes the
electron and hole densities, as a result of which local disturbances of the CDW can
a substantial contribution to the conductivity in subthreshold fields. In this sense a P
be viewed as a conventional semiconductor but with a variable degree of doping
depends on external perturbations. It has been shown theoretically in recent works2–5 that
nonuniform perturbations of the phase, which can be caused by nonuniformity o
sample, by the presence of the contacts, or by variations induced in the phase of the
by pinning centers, play an important role in the transport properties of PSs, and s
ing by single-electron excitations is effective right down to the lowest temperat
Defects of ann-type crystal~phase or amplitude solitons, dislocations! can produce
strong bending of the energy bands, so that the Fermi level can even be brought in
region of allowed single-electron states.

A point contact of a normal metal~M! with a PS is a very convenient object fo
1640021-3640/98/67(2)/7/$15.00 © 1998 American Institute of Physics
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investigating the effect of local perturbations on the properties of materials with a C
because of the fact that the electric field is localized near the contact in a small r
with a characteristic size of the order of the contact diameterd in the case of an isotropic
metal,6 and withd* 5dAn, wheren is an anisotropy factor, in the case of a PS.

In the present work the characteristics of Cu–K0.3MoO3 point contacts oriented
along chains were investigated in the temperature range 77–300 K. The sampe
K0.3MoO3 single crystals with a length of 0.5–1.0 mm and a cross section of;2 –5
3103 mm2. The Peierls transition temperature was equal toTP5183 K. The single
crystals were provided by the Center for Low Temperature Research~CRTBT–CNRS,
Grenoble!. Ten K0.3MoO3 single crystals were investigated. At least 10 point conta
were made for each single crystal, and their characteristics were measured. The
mental apparatus described in detail in Ref. 7 was used for making point contacts d
at low temperature and for measuring the current–voltage characteristics and the
derivativesdV/dI. Thin copper wires~40 and 71mm in diameter! with electrochemically
sharpened tips were used as the normal counterelectrodes. The radius of curvature
did not exceed 1mm.

Typical values of the resistance of the contacts with the tip of the normal elec
touching the surface of the experimental crystals were equal to 100–200 kV at T577 K.
These contacts were extremely unstable and were characterized by nonreproducibi
the clamping force increased, the resistance decreased to 15–80 kV and the stability of
the contacts improved. In this range of resistances the characteristics of the conta
not show hysteresis and were completely reversible. Figure 1 shows the curves
differential resistanceRd5dV/dI, measured atT577 K, versus the voltageV for point
contacts of this type with three different samples. The point-contact spectra are
complicated. However, most of the contacts investigated exhibit a number of char
istic features. First, the curves have a pronounced asymmetry and the maximum ofRd(V)
is shifted from zero to positive voltages. Second, a section with a linear variatio
Rd(V) is present near zero bias. Third, a sharp decrease of the differential resis

FIG. 1. Rd(V) of three different Cu–K0.3MoO3 contacts atT577 K.
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often looking like a discontinuity~curves1 and2 in Fig. 1!, accompanied by an increas
in noise was observed for most contacts when the voltage reached the valueV5V0

corresponding to the maximum ofRd . In several cases the resistance dropped sharp
voltages somewhat aboveV0 ~curve 3 in Fig. 1!. For some contacts it was possible
observe the evolution of the point-contact characteristics as a function of temper
Figure 2 shows the curvesRd(V) for contact No. 3~Fig. 1! at different temperatures. A
one can see, the slope of the linear section ofRd(V) decreases monotonically wit
increasing temperature and vanishes completely at temperaturesT.100 K. In this tem-
perature range the maximum of the differential resistance corresponds to zero bia
age, and the dependenceRd(V) is approximately symmetric.

For the two contacts whose curvesRd(V) are shown in Figs. 3 and 4 a sharp, deep
minimum of width;15–20 mV was observed in the differential resistance atT577 K
with a positive bias voltage ranging from 150 to 200 mV. This feature was reprod
well and did not look like a discontinuity. An attempt to trace the evolution of
minimum while changing the resistance of the contact by continuously increasin
pressure of the needle resulted in rapid broadening and complete vanishing of the f
For these contacts the behavior of the differential resistance near the maximum ofRd(V)
is interesting~see the insets in Figs. 3 and 4!. A sharp decrease in the resistance occ
after Rd(V) reaches its maximum value at a voltage aboveV0. The linearity inRd(V)
also remained after the maximum value of the differential resistance was reached, a
sign of the slope changed.

To explain the results we shall proceed from the fact that the entire sample is
pinning state, i.e., coherent sliding of the CDW in the entire volume of the samp
impossible in the experimental voltage range. Indeed, the resistance of a point con
formed in a small region near the contact and equals;104–105 V, which is much higher
than the resistance of the thinnest samples in the pinning state (;1 kV). An estimate of
the diameters of the contacts using the Sharvin formula8 givesd55 –15 nm, whence we

FIG. 2. Rd(V) of contact No. 3~Fig. 1! with T, Rd(0), andA equal to: 77 K, 32.6 kV, and 10 kV ~1!; 83.5
K, 19.3 kV, and 6 kV ~2!; 91 K, 11.4 kV, and 3 kV ~3!; 96.8 K, 8.3 kV, and 2.5 kV ~4!; 108.4 K, 3.7 kV,
and 1 kV ~5!.
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estimate the region of variation of the electric field asd* ;502100 nm. In the absence
of sliding, this field will lead to a deformation of the CDW and to a change in
quasiparticle density and therefore also to a shift of the chemical potentialm. As is well
known, the quasiparticle conductivity of a PS satisfiess}uDqu ~see, for example, Ref. 9!,
whereDq is the change in the wave number of the CDW corresponding to a shiftm
from the center of the band gap. It is logical to associate the section of linear variati
Rd(V) to elastic deformation of the CDW. Then the maximum of the differential re
tance for curve3 in Fig. 1 and also for the curves in Figs. 3 and 4 corresponds toDq
50. As the temperature increases, the screening of the electric field by the s
electron excitations becomes more effective,4 which could be the reason why the slope
the linear section decreases with increasingT. The chemical potential on the M–P

FIG. 3. Rd(V) of contact No. 3 atT577 K.

FIG. 4. Rd(V) of contact No. 4 atT577 K.
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interface forV50 is shifted downwards relative to the center of the gap and therefore
semiconductor isp-type at the interface with the normal metal K0.3MoO3 andn-type in
the bulk, where the material is a blue bronze.10,11 That is, ap–n junction forms in a
subsurface layer of the K0.3MoO3 as a result of the contact with the metal. Figure
shows a schematic band diagram illustrating this phenomenon. The bands bend up
since the work function in K0.3MoO3 is F'3.5 eV,12 while in copperF54.4 eV. As was
shown in Ref. 5, in the nonuniform case, such as we are dealing with here, two ch
teristic screening lengths for the electric field exist along the chains: a short length,r , of
the order of the correlation length (;6 nm), and a macroscopic length, which is det
mined by the long decay lengths of the perturbations of the potential. The greatest c
in the potential occurs over the distancer ~see Fig. 5!.

A linear dependenceRd(V) will exist up to the moment when the deformation of th
CDW reaches a critical value, with which we associate the observed sharp decrease
resistance. It should be noted that the contacts1 and2 in Fig. 1 are distinguished by the
nonuniformity of the critical deformation over the cross section of the contact. One
see that after the first break in the resistance a linear section is observed once agai
a situation is possible if the magnitude of the critical deformation is different for diffe
groups of chains included in a contact, which in the general case is a multiple micro

There are two known mechanisms for removing the accumulated deformation
first one corresponds to the onset of phase slip during a dynamic process of sliding
CDW ~see, for example, Ref. 13 and references cited therein!, which up to now has been
regarded as a collective process occurring in the entire sample. Since the spreading
transverse direction is negligibly small and the electric field in the bulk of the samp
known to be subthreshold, this mechanism requires assuming in our case the pos
of local sliding of a CDW over a quite short distance along the group of chains in
contact. The second mechanism presumes the formation of a defect of the elec
crystal — a phase soliton. However, as shown in Ref. 4, solitons have a low mobility
their drift does not make a large contribution to the conductivity. At present, we ca
suggest an exhaustive explanation of this phenomenon.

We can imagine the following band picture of the process. When a positive vo
is applied to the contact, the electrical potential along the chains varies with incre
distancex from the boundary as6

FIG. 5. Schematic diagram of the metal–Peierls-semiconductor interface: a! V50; b! V.0.
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w}
x

Ax21d* 2
.

As a result of the elastic deformation, the chemical potential at the M–PS interface
to the center of the band gap, and in a number of cases it crosses the center lin
process occurs over the characteristic lengthd* for variation of the field, which is greate
than r . In the bulk of the crystal the electric field is negligibly small, there is no de
mation of the CDW, and the chemical potential shifts upwards together with the b
The bending of the conduction band forms a potential well, whose dimension, o
basis of the quasi-one-dimensionality of the material under study, can be close to
Near its bottom the well can be quite narrow. As a result, by the moment that the cr
deformation is reached, the band picture shown schematically in Fig. 5b obtains. A
can see from the figure, the region corresponding to the maximum shift of the che
potential from the center of the band gap is removed from the M–PS interface an
near the bottom of the potential well. The values ofeV corresponding to the critica
deformation for the contacts whose characteristics are shown in Figs. 3 and 4 eq
meV and 21 meV, respectively. An estimate, according to Ref. 9, of the shift of
chemical potential atT577 K for K0.3MoO3 givesDm;15220 meV. The energy gap
for K0.3MoO3 equals 2D5100 meV.14–16 Therefore the chemical potential certain
crosses the well for the contact shown in Fig. 3 and can cross the well for the co
shown in Fig. 4, provided that near the contact the energy gap is less than the equil
value. In view of the known pressure dependence ofD, such a situation certainly happen
for both contacts.17 That is, applying pressure to the needle produces a local decrea
the energy gap, the needle pressure for the contact in Fig. 4 being higher~the resistance
almost two times smaller! and henceD smaller than for the contact in Fig. 3. As th
voltage increases further, no further deformation of the CDW occurs, but nonstatio
processes can arise. However, it can be assumed that on average the band pi
preserved and is shifted upwards as a whole until the value ofeV equals the difference o
the work functions of the counterelectrodes and the potential well starts to flatten ou
the voltage increases, the depth of the potential well will change, which will inevit
affect the positions of the size-quantization energy levels arising in the well. We ass
the observation of a sharp unipolar minimum in the curves in Fig. 3 and 4 with
moment when the position of the low-lying size-quantization energy level coincides
the position of the chemical potential with increasing voltage across the contact~with a
change in the depth of the potential well!. An indication of the fact that we are dealin
with an energy level is that the width of the minimum corresponds to the temper
broadeningkT. The voltages corresponding to the minima are different, which could
due to the different width of the potential well~the resistances of the contacts in Figs
and 4 differ by almost a factor of 2!. The vanishing of the feature as the contact resista
changes can also be easily explained, since as the diameter of the contact chang
width of the potential well and therefore the positions of the levels in it change.

In summary, in this work it has been shown experimentally that a substantial sh
the chemical potential occurs near the boundary with the normal metal, while the d
mation of the CDW by an applied electric field leads to strong bending of the en
bands and to the formation of a potential well, bringing the Fermi level into the regio
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allowed single-electron states. The observed features of the IVCs of differential co
could be due to to size-quantization.
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A new scheme is presented for the physical processes leading to the
nuclear fusion reactiond(3He,4He)p catalyzed by a negatively charged
muonm2. It is shown that the observable rate and yield of the nuclear
reaction depend on a chain of ion–molecular reactions involving the
participation of thedm3He molecule. New calculations of the nuclear
fusion rates in thedm3He molecule are presented. ©1998 American
Institute of Physics.@S0021-3640~98!00102-9#

PACS numbers: 36.10.Gv, 25.55.2e

1. The nuclear fusion reaction

d13He→4He1p ~1!

is of interest for many reasons: it is involved in the primordial nucleosynthesis o
light elements in the early universe,1 it has been discussed as a prospective sourc
thermonuclear energy,2 it is a mirror reaction of the important processd(t,4He)n ~Ref.
3!, etc. In all these cases it is especially important to know the cross sections of re
~1! at low collision energiesE&10 keV, i.e., in the region where direct measurements
beam experiments are complicated. For these reasons, any alternative way to meas
value is interesting.

The phenomenon of muon catalysis affords the possibility of studying this rea
~as well as many other fusion reactions4! at practically zero collision energy from th
mesic molecular state (dm3He)11. ~We will henceforth use the simplified notatio
(dm3He)11[dm3He.! In recent years the ratesl f

J of nuclear reactions

~dm3He!J

l f
J

→ m4He1p

↘ m14He1p

~2!
990021-3640/98/67(2)/7/$15.00 © 1998 American Institute of Physics
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from the states (dm3He)J with total angular momentumJ have been calculated man
times;5–9 however, results of these calculations differ by several orders of magnitude
most recent experimental upper limit for this rate is10

l f,1.33106 s21. ~3!

In this paper new results ofl f
J calculations11,12 and a new scheme for the kinetics

ion–molecular reactions preceding fusion in thedm3He mesic molecule13 are used.

2. The scheme of the processes of formation and decay of the (dm3He)J mesic
molecule is presented in Fig. 1: mesic molecules (dm3He)J are formed in collisions of
slow dm-atoms with3He atoms;14 the states (dm3He)J are quasistationary on account
decay to (m3He)1s1d by g-emission~4!, Auger transitions~5!, and predissociation~6!,
with rateslg

J , lA
J andlp

J , respectively:

~dm3He!J→~m3He!1s1d1g, ~4!

~dm3He!J→~m3He!1s1d1e, ~5!

~dm3He!J→~m3He!1s1d. ~6!

Besides that, in collisions of@(dmHe)e#1 with D2 and He in the chain of ion–molecula
reactions,13 transitions (J51)→(J50) with a ratel10 can occur:

~dm3He!J51→~dm3He!J50 . ~7!

The yieldNf of nuclear fusion per stoppedm2 is determined by the fusion ratesl f
J from

the statesJ and by the populationswJ of these states, which depend on the rates
processes~4!–~7! and on the kinetics of the ion–molecular reactions in which thedm3He
molecule participates.

FIG. 1. Scheme of formation and decay of thedm3He molecule. The muonic moleculedm3He is formed in
dm13He collisions in the bound state (dm3He)J51 which decays to the systemm3He1d at the rateslg

1 , lp
1 ,

andlA
1 ; the transition (dm3He)J51→(dm3He)J50 with the ratel10 competes with these decays; the bindin

energies of the states (dm3He)J equal«J ; the collision energies in the statesdm13He andm3He1d equalE1

andE0, respectively; the fusion rates from the statesJ50 andJ51 arel f
0 andl f

1 .
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3. The ratesl f
J are determined by the relation4

l f
J5(

L
ALGL

J . ~8!

Here theAL are reaction constants for the nuclear states with orbital angular mome
L, determined by extrapolation of the cross sections of reaction~1! to zero collision
energy, and the quantitiesG0

J andG1
J are calculated with the formulas:

G0
J5E dr uCJ~r ,R50!u2, ~9!

G1
J5E dr u¹RCJ~r ,R!uR50

2 , ~10!

whereCJ(r ,R) is the wave function of the (dm3He)J mesic molecule (R is the inter-
nuclear distance andr is the muon coordinate with respect to the center of mass of
nuclei!. SinceA0@A1, in the following we are interested only in the values ofG0

J .

To calculate the values ofG0
J two independent methods have been used and

high-accuracy numerical algorithms have been developed,11,15which give results that are
in reasonable agreement. The muon catalysis reaction~2!, as compared to the mirro
reactiondmt→m4He1n, m14He1n ~Ref. 16!, has some peculiarities due to the pre
ence of an open channel in the system (dm3He)J . Specifically, unlike the (dmt)J mesic
molecule, where the bound states are predominantly localized in the potentialW1ss(R)
formed by muon motion in the state with quantum numbers (Nlm)5(100) of the system
(tm)1s1d, the states of the (dm3He)J molecule are localized in the potentialW2ps(R)
with quantum numbers (Nlm)5(210) of the system (dm)1s1

3He.

Unlike the case ofdmt, however, due to the strong coupling between the chan
1ss and 2ps, the wave functionCJ(r ,R) contains11,15 all the componentscL(R… rep-
resenting the relative motion of nuclei with differentL in the dm3He molecule.

In the limit R→0 it has the form17

Cm
J ~r ,R!'R→0(

j
f j~r ;R!c j

L~R!5(
Nl

fNlm~r ;R!cNlm
L ~R!, ~11!

wheref j (r ;R) are orthonormalized adiabatic basis functions, and the functionsc j
L(R)

represent the relative motion of nuclei with angular momentumL5uJ2 l u, . . . ,uJ1 l u in
the potentialWj (R) formed by the muon motion in the quantum statej 5(Nlm) at a
fixed distanceR between nuclei.18 Thus for statesJ50 both combinations (l 50, L
50) and (l 51, L51) are essential

CJ50~r ;R!'R→0(
N

fN00~r ;R!cN00
L50~R!1(

N
fN10~r ;R!cN10

L51~R!. ~12!

For J51 the analogous expansion has the form:17

Cm
J51~r ,R!'R→0(

N
d0mfN00~r ;R!cN00

L51~R!1(
N

fN1m~r ;R!cN1m
L50~R!. ~13!

It follows from definitions~9!, ~12!, and~13! that



rdi-

,
e

e

f.

102 JETP Lett., Vol. 67, No. 2, 25 Jan. 1998 Bogdanova et al.
G0
05(

N
ucN00

L50~0!u2, ~14!

G0
15(

N,m
ucN1m

L50~0!u2. ~15!

The functionscNlm
L (R) have recently been calculated in Ref. 11 by the complex coo

nate rotation method, by expanding a variational functionCJ(r ;R) over the adiabatic
basis.

The calculatedG0
J factors have the values

G0
050.63310212am

2353.831019 cm23, ~16!

G0
150.86310215am

2355.131016 cm23 ~17!

(am52.56310211 cm is a mesic atomic length unit!. In the other approach12,15 which
employs an expansion of the functionCJ(r ,R) over the adiabatic hyperspherical basis19

the finite width of the quasistationarydm3He state was explicitly taken into account. Th
result obtained,

G0
050.75310212am

2354.431019 cm23, ~18!

is in reasonable agreement with~16!.

The reaction constant for unpolarized nuclei equalsA050.34310214 cm3
•s21

~Ref. 3!.

The low energy cross section of reaction~1! is dominated by theJP53/21 near-
threshold resonance. For this reason the nuclear fusion ratesl f

J have the values20

l f
053/2•A0G0

051.93105 s21, ~19!

l f
150.653103 s21. ~20!

With G0
0 from ~18! the rate is

l f
052.33105 s21. ~21!

4. Mesic moleculesdm3He are formed in the reaction

~dm!1s1
3He→~dm3He!J

11e, ~22!

predominantly in the state with total angular momentumJ51 by an E1 dipole
transition.21 Since l f

1!l f
0 the fusion reaction in thedm3He mesic molecule can b

observed only in the stateJ50. It can occur if the ratel10 of reaction~7! is comparable
to the decay rateslg

1 ,lp
1 , andlA

1 of the stateJ51. The internal Auger transition

~dm3He!J51→~dm3He!J50
1 1e ~23!

is forbidden, since the difference between energies of statesJ51 and J50, viz.,
e12e0522.8 eV, is less than the ionization energy of a helium atom~24.6 eV!. Hence
transition~7! can occur only in collisions of (dm3He)J with atoms of the medium. The
whole set of ion–molecular reactions leading to transition~7! has been considered in Re
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13. These reactions (i 51 –9! and their ratesl i are listed below, where the notatio
MJ5(dm3He)J is introduced (w is the mixture density,CHe is the helium concentration
and X5D2,He).

~1! ~M1e!11 D21 X→~M1e D2!11 X, l1'331013w s21;

~2! ~M1e!11He1 X→~M1eHe!11 X, l2'331013wCHe s21;

~3! ~M1e D2!11He→~M1eHe!11 D2, l3'331013wCHe s21;

~4! ~M1eHe!11He→~M1ee!1He2
1 , l4'1013wCHe s21;

~5! ~M1e D2!1→~M0e!11 D2
11e, l5'531011 s21;

~6! ~M1eHe!11 D2→~M0eHe!11 D2
11e, l6&109w s21;

~7! ~M1ee!1 D2→~M0ee!1 D2
11e, l7'43109w s21;

~8! ~M1e!11He→~M1ee!1He1, l8'331012wCHe s21;

~9! ~M1e!11 D2→~M0e!11 D2
11e, l9'107w s21. ~24!

Accordingly, the total ratesldec
J 5lg

J1lp
J1lA

J of decay of the quasistationary stat
(dm3He)J in channels~4!–~6! have the values~see Table I!:

ldec
0 .0.931012 s21, ~25!

ldec
1 .131012 s21. ~26!

It follows from a comparison of the ratesl i that atw;0.1 andCHe<0.1 the dominant
channel in the chain of ion–molecular reactions leading to a change of the an
momentum of the mesic molecule, (J51)→(J50), involves the formation of the com
plex @(dm3He)J51e D2#1 and its subsequent decay with conversion of an electron of
D2 molecule, namely:

@~dm3He!J51e#1
l1

→@~dm3He!J51e D2#1
l5

→@~dm3He!J50e#11 D2
11e. ~27!

TABLE I. Rates of the main processes in the (dm3He) muonic molecule.

Reaction l J l, s21 Ref.

dm13He→(dm3He)Jv lm
J 1 1.43108 21

0 ;23106 13
(dm3He)J→m4He1p l f

J 1 0.653103 11
0 1.93105

(dm3He)J→m3He1d1g lg
J 1 1.631011 24

0 1.831011

(dm3He)J→m3He1d lp
J 1 0.831012 25

0 0.731012

(dm3He)J→m3He1d1e lA
J 1 0.4131011 26

0 0.4731011

(dm3He)J51→(dm3He)J50 l10 1→0 0.531012 13
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In comparison with this process the ratel7&109w s21 of the reaction (J51)→(J
50) by the external Auger transition~reaction~7! of ~24!! is negligibly small, in contrast
to the statement of Ref. 22.

At w.0.1 andCHe&0.1 one hasl1.3ldec andl5;l3 , i.e., a noticeable fraction
(;0.2) of the mesic molecules (dm3He)J51 reach the stateJ50, where the fusion~2!
can be observed.

5. The detailed analysis of the kinetics of processes in D213He mixtures is yet to be
done, but even simple estimates can give rather reliable information about the exp
yield Nf of fusion reactions~2! per muon stop. According to these estimates

Nf.
l1

l11l21l81ldec
1

l5

l51l31ldec
1

l f
0

l f
01ldec

0
nf

'nf

l f
0

ldec
0 ~110.03w21!21~2.8160wCHe!

21, ~28!

where the coefficientnf5nf(Cd) is the statistical weight of the states of the me
molecule (dm3He)J with total nuclear spinS53/2, calculated by taking into account th
kinetics of its formation in collisions (dm)F1He and the spin-flip processes (dm)F1d
→(dm)F81d ~Refs. 20 and 23!. At w50.075,CHe50.05, andnf.0.5 one has

Nf.0.12•l f
0/ldec

0 '331028/m2. ~29!

6. The understanding and quantitative description of nuclear fusion catalysis i
dm3He mesic molecule has required the development of new theoretical methods a
consideration of new physical processes. Experiment R-94-05.1 planned at PSI wi
mit a check of the correctness and self-consistency of these methods and the adeq
the processes considered. In particular, observation of thew dependence~28! of the yield
Nf would be confirmation of the ion–molecular mechanism of the transi
(dm3He)J51→(dm3He)J50 via formation of clusters@(dm3He)e D2#1. A comparison of
the fusion ratel f

0 extracted from measurements ofNf with its theoretical values will tes
the validity of the sophisticated calculations of the three-body Coulomb problem
formed recently.

The methods and details of the theoretical calculations of the ratesl f
J andl i will be

published elsewhere.11–13,15,20A preliminary version of this paper was published in R
27.
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