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Abstract—Plasma fluctuations in the Tuman-3M tokamak are studied experimentally by analyzing backscat-
tered radiation for different angles of incidence of the probing beam from the normal to the cut-off surface. The
poloidal rotation velocity of the plasma fluctuations is determined from the Doppler shift of the reflected radi-
ation spectrum measured on the edge of the tokamak during the transition to the H-mode. It is shown that,
before the transition to the H-mode, the rotation velocity can be estimated quantitatively from the spectral shift
or from the rate at which the phase of the reflected signal grows. The experimental data obtained during the
transition to the H-mode provide evidence for the onset of a sheared poloidal flow. The shear makes it difficult
to correctly estimate the poloidal rotation velocity in the improved confinement regime. The main mechanisms
responsible for the broadening of the backscattered radiation spectra are considered. The turbulent diffusion
coefficients determined under the assumption that the spectral broadening is diffusive in character are found to
be close to those determined from the charged-particle balance. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many experimental and theoretical studies of the
transport barriers that arise in tokamaks during the tran-
sition to improved confinement indicate that sheared
poloidal plasma flows play a key role in the suppression
of anomalous transport in tokamak plasmas (see, e.g.,
[1]). In this connection, various techniques have been
developed for measuring the rotation plasma velocity
and radial electric field. In this paper, we analyze the
possibility of determining the poloidal rotation velocity
of plasma fluctuations in a tokamak by microwave
backscattering during the oblique incidence of a prob-
ing beam. Our investigations are motivated by the cir-
cumstance that some phase measurements from reflec-
tometry on tokamaks and stellarators at a high level of
plasma fluctuations have revealed an anomalously
rapid growth of the phase of the backscattered signal—
the so-called phenomenon of phase “runaway” (PR),
which cannot be attributed to the displacement of the
cut-off surface [2, 3]. The PR effect can be explained by
the Doppler frequency shift ∆ω = Vθkθ (where kθ is the
poloidal component of the wave vector of the incident
wave) of the reflected signal due to the poloidal rotation
of plasma fluctuations, provided that the probing beam
is incident obliquely on the cut-off surface, when, e.g.,
reflectometry measurements are carried out with an
inclined antenna or with two antennas. When the inci-
dence angle and, accordingly, kθ are specified, the
poloidal rotation velocity Vθ may be determined from
the shift of the backscattered radiation spectrum. In the
1063-780X/00/2610- $20.00 © 20813
published literature on the reflectometry measurements
in which the spectra of the reflected signals were
observed to shift, the angle of incidence of the probing
beam with respect to the magnetic surface was speci-
fied at fixed positions of both the emitting and receiving
antennas [2, 4, 5]. In those experiments, the displace-
ment of the cut-off surface due to the change in the
electron density caused only slight time variations of
the angle of incidence of the probing beam to the cut-
off surface. Here, we examine a broad range of inci-
dence angles, which can be changed by turning the
antenna of a reflectometer. This experimental scheme
allows us to compare the data obtained at different inci-
dence angles for similar discharges in tokamak experi-
ments. The spectra of the backscattered radiation were
studied in the Tuman-3M tokamak during transitions to
the Ohmic H-mode that were triggered in different
ways.

2. TECHNIQUE FOR MEASURING 
BACKSCATTERED RADIATION

The diagnostic technique for measuring backscat-
tered radiation in the Tuman-3M tokamak (a = 0.22 m,
R = 0.53 m, Bt ≤ 1.2 T) is based on a single-antenna
reflectometry system, which makes it possible to probe
plasmas by either O- or X-mode microwave radiation
over the frequency band F = 17–25 GHz. For this fre-
quency band, the cut-off surface is located at the
plasma edge, where the transport barrier appears during
000 MAIK “Nauka/Interperiodica”
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the transition to the Ohmic H-mode. The probing radi-
ation was launched from the side of the low magnetic
field by means of a conical antenna with a diameter of
4 cm and a length of 8 cm. A specially designed scheme
allowed us to change the angle ϕ between the axis of
the probing microwave beam and the normal to the cut-
off surface. For this purpose, between the shots, both
the antenna and microwave scheme were rotated as a
whole in the plane of the minor cross section of the
torus. The measurements were performed at the follow-
ing fixed incidence angles: ϕ = 0°, ±5°, ±10°, and ±20°
(the angle ϕ refers to the cut-off surface that coincides
with the last closed flux surface). The zero incidence
angle corresponded to the antenna positioned in the
equatorial plane of the torus. The technique used to
record the backscattered radiation by a quadrature
homodyne detector operating in the microwave band is
described in detail in [6]. This technique allowed us to
estimate the spectrum shapes in the blue and red spec-
tral regions from the Fourier transformed complex sig-

nal (t) = Ucos(t) + iUsin(t), where the reference signals
from the two channels of the homodyne system, Ucos(t)
and Usin(t), are shifted by π/2. Depending on the sam-
pling rate of the analog-to-digital converter (ADC)
used to record the signals, the frequency band under
analysis varied from ±0.5 to ±2 MHz. Additionally, in
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Fig. 1. Time evolutions of (a) the phase Φ(t) and (b) the nor-
malized phase Φ(t)/kθ in discharges with a transition to the
Ohmic H-mode (a discharge started at  t = 5 ms, and the
transition to the H-mode occurred at t = 34 ms) for different
incidence angles of the X-mode incident beam (F =
22 GHz): ϕ = (1) +30°, (2) +20°, (3) +10°, and (4) –20°.
Positive incidence angles refer to the antenna pattern
directed toward the lower part of the torus.
the course of a discharge, we calculated the phase Φ(t)

of the complex signal (t) from the reflectometer.

3. FREQUENCY SHIFTS OF THE SPECTRA 
OF BACKSCATTERED RADIATION

The experiments on microwave backscattering in
the Tuman-3M tokamak were carried out after boroni-
zation of the chamber at fairly high discharge currents
Ip > 160 kA. The transition to the H-mode was triggered
either by a pulsed gas puffing [7] or by a microwave
pulse at the ion-cyclotron resonance (ICR) frequency.
The formation of the edge transport barrier was deter-
mined from the growth of the averaged electron density
and the drop in the intensity of the Dα line.

As expected, inclining the antenna resulted in a shift
in the backscattered radiation spectra; for all incidence
angles, the shift was smaller than the spectral width.
The fact that the spectra were displaced as a whole
likely provides evidence that, in the entire region where
microwaves are backscattered, the plasma fluctuations
rotate in the same direction. Note that, in the range of
nearly zero frequencies, no pronounced peak was
observed in the spectra; i.e., there was no signal at the
probing frequency. As a function of time, the average
frequency shift was calculated in the form

(1)

where S(ω) is the averaged estimate of the power spec-
trum of the backscattered signal and the time t corre-
sponds to the beginning of the time interval over which
the spectrum was estimated. The resulting shift was
integrated over time to obtain the phase ΦS(t) =

(t)dt, which was then compared with the phase

Φ(t) determined from the complex reflectometry sig-
nal. For both of the obtained phases, the PR effect was
observed to manifest itself in the same manner. Figure
1 shows that the larger the incidence angle ϕ, the larger
the frequency shift and, accordingly, the higher the rate
at which the phase grows. For the probing beams that
were symmetric about the equatorial plane of the torus
(i.e., for the incidence angles ±ϕ]), the frequency shifts
that were obtained before the transition to the H-mode
in the Ohmic stage of a discharge are equal in absolute
value but differ in sign. If the frequency shift is gov-
erned by the Doppler shift, then the normalized (to kθ)
frequency shift and the rate at which the phase grows
should determine the projection of the rotation velocity
onto the direction perpendicular to the magnetic field.
Without neutral beam injection, when the toroidal
plasma rotation velocity in the Tuman-3M tokamak is
lower than the poloidal rotation velocity, the main con-
tribution to the Doppler shift comes from the poloidal
plasma rotation: ∆ω = Vθkθ. Figure 1 shows time evolu-
tions of the normalized phase Φ(t)/kθ, where kθ is
approximately equal to 2ksinϕ (with k the wavenumber
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in vacuum) when the cut-off surface nearly coincides
with the last closed flux surface. We can see that, during
Ohmic discharges (up to the time t = 34 ms), the slope
angle of the time evolutions remains approximately the
same for different incidence angles ϕ and yields the
estimate 8 × 104 cm/s for the poloidal rotation velocity
of plasma fluctuations. This estimate is close to the neo-
classical predictions for Vθ in the Ohmic stage of a dis-
charge.

After the transition to the H-mode, both the spectral
shift and, accordingly, the rate at which the phase grows
become strongly dependent on the frequency F of the
probing radiation. As an example, Fig. 2 shows time
evolutions of the normalized phase Φ(t)/kθ for two fre-
quencies F of the O-mode incident radiation. Also
shown are the radii rc(t) of the cut-off surfaces calcu-
lated from the plasma density profile corresponding to
the Ohmic stage of the discharge. In actuality, the dis-
tance between the cut-off surfaces is smaller than that
in Fig. 2 because of steeper edge density profiles in the
H-mode. In any case, it can be expected that, when the
probing frequency is shifted by 1.5 GHz, this distance
will be much smaller than the half-width of the first
maximum of the Airy function, which characterizes the
spatial resolution of the reflectometry measurements.
Figure 2 clearly demonstrates that, throughout the
Ohmic stage of the discharge and at t > 40 ms, the rate
at which the phase grows is essentially the same for dif-
ferent frequencies of the incident radiation and that the
sign of the phase Φ(t) corresponds to the rotation in the
direction of the diamagnetic ion drift, i.e., the positive
direction of the radial electric field. However, over the
time interval 28 < t < 40 ms, the phase grows at very
different rates, which likely provides evidence for the
onset of a significant sheared poloidal flow. That the
phase behaves very differently at different frequencies
F was already observed in the case of probing radiation
incident at large angles [2]. Note that the appearance of
the rotation velocity field that is radially inhomoge-
neous on scales shorter than the spatial resolution avail-
able with our reflectometry techniques may lead to an
uncertainty in the determination of the poloidal veloc-
ity shear. This uncertainty stems from the fact that the
frequency shift ∆ω [see (1)] averaged over the volume
of the scattering region depends on the shape of the
radial profiles of both the fluctuation amplitudes and
poloidal velocities.

Experiments with obliquely incident probing beams
showed that there is yet another difficulty in estimating
the poloidal rotation velocity Vθ from the spectral shift.
The reason for this is that the symmetry in the phase for
symmetric probing beams with the incidence angles ±ϕ
in the Ohmic stage of the discharge was observed to
disappear during the transition to the H-mode. Figure 3
presents time evolutions of the phase for the symmetric
incidence angles ϕ = ±10°. These evolutions were
obtained from two tokamak discharges with identical
parameters measured by all the tokamak monitoring
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
diagnostics. We can clearly see that, at the times after
t ≥ 30 ms and after t ≥ 41 ms, the rates at which the
phase grows are very different. In experiments in which
such symmetry was absent, the growth of the phase was
found to be anomalous even in the case of normally
incident probing beams (ϕ = 0°). The effect of phase
asymmetry, which was discovered due to the possibility
of carrying out measurements with symmetric probing
beams with the incidence angles ±ϕ, may be inter-
preted as follows. It is well known that, at a low fluctu-
ation level such that the fluctuations can be described in
the Born approximation, the incident wave and the
wave reflected from the cut-off surface are equally
backscattered. In this case, the Doppler shift should be
symmetric for symmetric incidence angles, regardless
of the profile of the scattering fluctuations. Under our
experimental conditions, the level of radiation back-
scattered from the cut-off surface at the probing fre-
quency was low; consequently, we can anticipate that
the detected signal was mainly governed by the back-
scattered incident wave rather than the reflected wave.
If there are anisotropic fluctuations skewed with
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Fig. 2. Illustration of the difference in the rates at which the
phase grows for different positions of the cut-off surface in
the case of an O-mode incident beam: (a) the change in the
normalized phase Φ(t)/kθ for two probing frequencies
(1) 17.5 and (2) 19 GHz (the tangents to the curves indicate
that the sign of the phase increment corresponds to the sign
of the radial electric field Er) and (b) the calculated radii
rc(t) of the cut-off surfaces (the vertical arrow marks the
instant at which the discharge passes over to the H-mode).
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Fig. 3. Asymmetry in the rates at which the phase grows for
symmetrically incident probing beams according to the
experimental observations of two discharges with identical
measured parameters in the case of an X-mode incident
beam at the frequency F = 22.08 GHz: (a) time evolutions
of the phase for ϕ = (1) +10° and (2) –10° and a schematic
picture of the scattering fluctuations (4) before and (5) after
the transition to the H-mode and (b) the electron density for
incidence angles 1 and 2 and (3) the radiation intensity at the
Dα line.

Fig. 4. Comparison between the spectra of the backscattered
radiation that were recorded (1) before and (2) after the tran-
sition to improved confinement for ϕ = 5° in the case of an
O-mode incident beam at the frequency F = 18 GHz.
The dashed curve 3 is the Lorentzian approximation of
spectrum 2.
respect to the magnetic surface in the minor cross sec-
tion of the torus (as is shown in Fig. 3), then we might
expect that the spectra will be asymmetric at symmetric
incidence angles. This is attributed to the fact that the
kθ-spectra of the skewed fluctuations are asymmetric.
The occurrence of such fluctuations during the forma-
tion of the sheared poloidal plasma flow is predicted by
the theory of the transition to the H-mode (see, e.g.,
[1]). Hence, when the turbulence level is high, the PR
effect, which was discovered in the course of phase
measurements from reflectometry in Tuman-3M, can
be explained by the onset of the poloidal sheared flow.

4. WIDTH AND SHAPE
OF THE BACKSCATTERED RADIATION 

SPECTRA

The experiments with oblique probing beams
revealed the phenomenon of the strong suppression of
high-frequency spectral components of the backscat-
tered radiation during the transition to the Ohmic H-
mode. This phenomenon was previously observed in
the Tuman-3 tokamak [6]. The characteristic fall time
of the high-frequency components depended on the
way in which the transition to the H-mode was initiated
and was found to be the shortest for transitions driven
by a microwave pulse at the ICR frequency. The
observed suppression of high-frequency spectral com-
ponents is equivalent to a significant narrowing of the
spectra. In order to illustrate the considerable differ-
ence in the spectral widths, Fig. 4 displays two aver-
aged spectra of the signal power U(t) that were mea-
sured before and after the transition to the H-mode. Fig-
ure 5 shows time evolutions of the spectral width δω(t)
for different incidence angles ϕ. For each of the inci-
dence angles, the probing frequency F was adjusted so
that the radiation incident at different angles was
reflected from the cut-off surfaces that were close to
each other. Before the transition to the H-mode, the
spectral width was observed to depend weakly on the
incidence angle. However, just after the transition, the
spectrum of the normally incident microwave beam
was found to narrow substantially. For microwave
beams incident at large angles such that ϕ > 10°, the
spectra started to narrow significantly later.

The distinguishing feature of the obtained spectra is
their shape, which is closely related to the mechanism
for spectral broadening. In various regimes of the dis-
charges, the spectra were observed to be nearly Lorent-
zian in shape and to differ strongly from Gaussian spec-
tra (Fig. 4). We can mention several factors that govern
the shape and width of the spectrum of the backscat-
tered signal. The experimentally obtained spectral
widths cannot be explained in terms of the conventional
Doppler broadening δω ≈ δkθVθ, which is associated
with the antenna directional pattern. The reason for this
is that, for δkθ < kθ, the spectral shift remained smaller
than the spectral width. (The measured profile of the
antenna directional pattern as a function of the wave-
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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number kθ is presented in Fig. 6b.) The spectral width
δω ≈ kθ∆Vθ also cannot be explained in terms of the
shear of the poloidal plasma flow, i.e., in terms of a
finite interval of the poloidal velocities ∆Vθ in the spa-
tial region where the incident beam is backscattered.
Our estimates show that, in order to explain the
recorded spectra, the shear velocities should be about
5 × 106 s–1, which is obviously far above their theoreti-
cal predictions. Moreover, according to the accepted
views, the shear of the poloidal plasma flow should
increase during the transition to the H-mode, in which
case the spectrum should broaden accordingly. How-
ever, in our experiments, the spectrum behaved in
the opposite manner (Figs. 4, 5). For discharges with
strong edge turbulence, we must take into account the
possible effect of multiple scattering on the spectral
broadening. However, that the spectra for different inci-
dence angles ϕ evolve in different ways can hardly be
explained only in terms of the broadening due to multi-
ple scattering. In fact, if the suppression of high-fre-
quency spectral components during the transition to the
H-mode in the case of nearly normal incidence is asso-
ciated with a reduction in the fluctuation level and,
accordingly, with the progressively smaller role of mul-
tiple scattering, then it remains unclear why this is not
so in the case of oblique incidence (Fig. 5). Note also
that the familiar model of a phase screen, which was
developed by Nazikian and Mazzucato [8] in order to
explain the spectral broadening under the conditions of
strong fluctuations, predicts that the spectra should be
Gaussian in shape, unlike the experimentally recorded
Lorentzian spectra (Fig. 4).

Gresillon et al. [9] predicted Lorentzian shapes of
the spectra in the case of laser scattering, when the
spectra broaden diffusively, i.e., when the characteristic
spatial scale of the scattering fluctuations is longer than
the correlation length of turbulent motions. In this case,
we can write

(2)

where D⊥  is the turbulent diffusion coefficient and V is
the mean plasma velocity. According to (2), the width
of the frequency spectrum is directly related to the
transverse turbulent diffusion coefficient D⊥ . If we
assume that the diffusion mechanism for spectral
broadening dominates in our experiments, then we find
that the spectral narrowing observed experimentally
during the transition to the H-mode agrees qualitatively
with the familiar theoretical results and experimental
data on the suppression of anomalous edge transport in
the H-mode, in which case, however, the transverse dif-
fusion coefficient D⊥  is difficult to estimate because of
the uncertainty in the wavenumber k of the scattering
fluctuations. We can, however, turn to the fact that, in
the Ohmic phase of the discharge, the spectral width
was weakly sensitive to the incidence angle. Formula

S ω( )
2 k

2
D⊥( )

ω k– V⋅( )2
k

2
D⊥( )

2
+

------------------------------------------------------,=
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(2) implies that such a weak dependence on kθ = 2sinϕ
can be observed only in the case of scattering by fluctu-
ations with a certain absolute value |k | of the wavenum-
ber. To verify this conclusion, we carried out two-
dimensional modeling of the backscattered power spec-
trum as a function of kθ (i.e., of the kθ-spectrum) in the
Born approximation in rectangular geometry (the
method of calculation is described, e.g., in [10]). In
simulations, we assumed that fluctuations with a fixed
|k | develop in a layer with a Gaussian density profile
and that the kθ-spectrum of the antenna is also Gaussian
in shape. In Fig. 6, we compare this spectrum with the
antenna spectrum measured in the near wave zone. In
modeling, the absolute value |k |, the layer thickness,
and the coordinate of the layer with respect to the cut-
off surface served as free parameters. In Fig. 6, the
spectrum S(kθ) computed at k = 4 cm–1 is compared
with the experimental spectrum obtained from four
tokamak discharges with nearly the same parameters.
Even a comparison with the results of such a simplified
model shows that the appearance of fluctuations in a
narrow interval of k values can in principle agree with
the experimentally obtained kθ-spectra. With the value
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k = 4 cm–1 chosen above and the experimental data on
the spectral width, formula (2) yields the following val-
ues of the transverse turbulent diffusion coefficient:
8 m2/s for the Ohmic stage of discharge and 2 m2/s for
the H-mode. These values are close to the D⊥  values
characteristic of the edge plasma in Tuman-3M [11].

Bulanin et al. [12] pointed out that, in the case of
oblique probing of discharge plasmas with a highly
sheared poloidal flow, the shape of the spectrum that
broadens due to stochastic fluctuations should differ sig-
nificantly from the shape described by expression (1).
Estimates showed that the spectral width should
increase in proportion to (dVθ/dr)2/3. Presumably, it is
the onset of a highly sheared poloidal plasma flow that
is capable of explaining the marked difference
observed in the spectral widths during the transition to
the H-mode in discharge plasmas probed by microwave
beams at small and large incidence angles (Fig. 5).

5. CONCLUSION

Our experiments have demonstrated that, at a high
fluctuation level, the inclination of the antenna of a
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2ksinϕ. Curve 1 is for the calculated spectrum, and curve 2
is for the experimental kθ-spectrum. The vertical error bars
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account the slight difference between the tokamak dis-
charges in which the measurements were carried out.
(b) The kθ-spectrum of the antenna: (3) the recorded angular
antenna spectrum as a function of kθ and (4) the antenna
spectrum used in the model.
reflectometer leads to shifts in the spectra of the back-
scattered radiation and to growth in the phase of the sig-
nal from a reflectometer (the latter effect is known as
the phase runaway). We have shown that experimental
data on discharges without a transition to the H-mode
can serve to estimate the poloidal rotation velocity of
fluctuations if the spectral shifts are treated as Doppler
shifts. Experimental data also provide clear evidence
for the onset of a sheared poloidal plasma flow during
the transition to the H-mode. The onset of a sheared
flow is also evidenced, first, by a pronounced difference
in the shifts of the spectra of the backscattered signal at
different frequencies of the probing radiation and, sec-
ond, by the asymmetry in the rates at which the phase
grows in the case of symmetrically incident probing
microwave beams. However, under the conditions of
our experiments, it is the onset of a sheared poloidal
flow that makes the poloidal velocities in the improved
confinement modes more difficult to estimate correctly.
The fact that the experimentally recorded spectra of the
backscattered radiation were Lorentzian in shape and
became narrower during the transition to the H-mode
allows us to assume that the spectral broadening can be
explained in terms of the diffusion mechanism. The tur-
bulent transport conditions estimated on the basis of
this assumption were found to be close to those deter-
mined previously from the balance equations. If this
assumption is confirmed for other spatial regions of
tokamak discharges, then we may hope that the method
of backscattered microwave radiation can be applied to
estimate turbulent transport rates directly from the
backscattered radiation spectra.
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Abstract—A study is made of the passage of electromagnetic waves through the critical surface at small angles
between the plasma density gradient and the magnetic field. Expressions are derived for the transmission and
reflection coefficients of electromagnetic oscillations that are periodic in the direction transverse to the density
gradient. The penetration of wave beams is also analyzed. In the case of a wide beam, the incident and trans-
mitted ray trajectories are shown to be mirror-image about the resonance surface. Behind the resonance surface,
a narrow incident wave beam generates a beam propagating along the magnetic field. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

It is well known that electromagnetic waves cannot
penetrate into an unmagnetized plasma with a density
above the critical value defined by the condition ωpe = ω,
where ωpe is the electron Langmuir frequency and ω is
the wave frequency. Applying a magnetic field permits
radiation to pass through this barrier. However, strictly
speaking, electromagnetic waves cannot penetrate
completely through the critical surface, because it
reflects part of the radiation. On the other hand, in the
vicinity of the critical surface, the waves are partially
transformed so that the wave polarization and other
wave parameters change.

The problem of the penetration of electromagnetic
waves through the critical surface arises from investiga-
tions of the propagation of radio waves in the Earth’s
ionosphere. Theoretical models usually deal with a pla-
nar plasma slab and assume that electromagnetic waves
propagate along the density gradient, i.e., that θ = χ,
where θ is the angle between the wave vector and the
magnetic field and χ is the angle between the density
gradient and the magnetic field. Different approximate
methods developed for analyzing the wave equation
made it possible to cover the entire parameter range for
the propagation problem (see, e.g., [1]). Expressions
derived for the transmission and reflection coefficients
imply that, at θ = χ, the wave penetrates through the
critical surface almost completely only if the angle χ is
sufficiently small. On the other hand, it was noted that,
regardless of the value of χ, the wave penetration would
be complete if the wave vector at the critical surface
were parallel to the magnetic field (θ = 0). Complete
penetration can be achieved by launching the wave
from a vacuum at a certain angle to the magnetic field.

Interest in the penetration problem increased con-
siderably after the publication of paper [2] by Preinhal-
ter and Kopecky, who pointed out that the waves that
crossed the critical surface and continued to propagate
in a plasma could transform into so-called Bernstein
1063-780X/00/2610- $20.00 © 20820
modes (the transformation phenomenon itself was
described in reviews [3, 4]). The fact that Bernstein
modes interact strongly with electrons opens the possi-
bility of heating dense plasmas in closed magnetic con-
finement systems in which the magnetic field lines
make small angles with the chamber wall and, accord-
ingly, the plasma density gradient is nearly perpendic-
ular to the magnetic field (χ ≈ π/2). This problem was
studied theoretically in [5–7], and experiments on
plasma heating via Bernstein modes were carried out in
the W7-AS stellarator [8].

In this paper, we consider the penetration of electro-
magnetic waves through the critical surface, assuming
that the angle χ between the density gradient and the
magnetic field is small. In such configurations, which
are characteristic of open magnetic devices, the effi-
ciency of the ECR heating of low-density (ωpe < ω)
plasmas by microwaves launched through the magnetic
mirror into an open confinement system at a small
angle to the magnetic field was found to be fairly high
[9]. To analyze whether this version of the ECR heating
of a dense (ωpe > ω) plasma might be implemented in
practice requires detailed investigations of the propaga-
tion of electromagnetic waves through the critical sur-
face at small angles χ. This limiting case is also the
most interesting from a theoretical standpoint, because,
for χ ! 1, the plasma resonance surface is close to the
critical surface, in which case the wave incident on the
critical surface is perturbed so strongly that we can
reveal all of the possible channels of energy losses.

Here, we derive general expressions for the trans-
mission, reflection, and transformation coefficients for
the wave incident on the critical surface, assuming that
θ, χ ! 1. We trace the ray trajectories in the vicinity of
the critical surface, which, generally speaking, is not
transparent to electromagnetic radiation. For the limit-
ing cases of wide and narrow wave beams, we deter-
mine the conjugation rules for the beams on both sides
of the opaque region.
000 MAIK “Nauka/Interperiodica”
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2. PLASMA OSCILLATIONS 
NEAR THE CRITICAL SURFACE

For a homogeneous plasma, the Maxwell equations
reduce to the vector algebraic equation

N × [N × E] + D = 0, (1)

where N = kc/ω and Di = εijEj. Here and below, all
quantities with units of length are normalized to c/ω.

It is convenient to represent the transverse (with
respect to the main magnetic field) electric fields of the
wave as a superposition of two circularly polarized
components E±, one of which (left-polarized) rotates in
the same direction as the ions and the other (right-
polarized) in the same direction as the electrons. In Car-
tesian coordinates with the z-axis directed along the

magnetic field, we have E± = (Ex ± iEy)/ , in which
case the wave Eq. (1) becomes

(2)

where N± = (Nx ± iNy)/ . The plasma is assumed to be

cold (ε± = 1 –  and ε|| = 1 – ).

In the case of an inhomogeneous plasma, the wave
equations (2) describe the propagation of a wave far
from the critical surface, i.e., in the region in which the
quasiclassical approximation is applicable.

It follows from further analysis (see also [1]) that
the critical surface is essentially opaque to incident
waves with N⊥  ≥ N||. Since such waves are not of inter-
est to us, we set N|| @ N⊥ , in which case the first two
equations in (2) give

(3)

We substitute (3) into the third equation in (2) and per-
form simple manipulations to obtain

(4)

where

(5)

The dispersion relation D(N) = 0 determines the param-
eters of the natural waves that can propagate in a
plasma.

2
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We analyze the waves in the vicinity of the critical
surface using the plane plasma slab approximation
[1, 2, 5–7], which seems to be suitable for our purposes
because, on spatial scales of about the wavelength of
incident radiation, the critical surface is usually curved
only slightly.

We introduce Cartesian coordinates with the ζ-axis
directed along the density gradient, the ξ-axis lying in
the plane that passes through the point —n0 and contains
the vector B0, and the η-axis orthogonal to this plane
(Fig. 1). To write Eq. (4) in these coordinates, we must

make the replacement N|| = – sinχNξ + cosχNζ,  =

(cosχNξ + sinχNζ )2 + , where χ is the angle
between —n0 and B0.

In order to obtain a rough picture of the processes in
the vicinity of the critical surface, we analyze the
dependence of the refractive index on the plasma den-
sity or, equivalently, on the ζ-coordinate. First, we con-
sider one-dimensional waves (Nξ = Nη = 0, N = Nζ).
Under the additional assumptions —n0 ||B0 (i.e., χ = 0)
and ωe > ω, we arrive at the profiles shown in Fig. 2a,
in which the horizontal lines N2 = ε+ and N2 = ε– refer
to electromagnetic waves with left-hand and right-hand
circular polarizations, respectively, and the vertical line
corresponds to potential electron Langmuir waves
localized at the plasma resonance surface, which coin-

cides with the critical surface (ε|| = 1 – /ω2 = 0).
Waves of different types do not interact with each other
because their electric fields are mutually orthogonal. As
a result, electromagnetic waves freely cross the critical
surface.

For χ ≠ 0, the plasma resonance surface does not
coincide with the critical surface. In a plane-stratified
plasma, electromagnetic waves can reach the plasma
resonance surface (N2 = ∞) only due to the change in Nζ
(because Nξ, Nη = const). In this case, the waves propa-
gate at a nonzero angle χ to the magnetic field; conse-

N ⊥
2

Nη
2

ωpe
2

x
ξ

z

B0

ζ
∇ n0

χ

Fig. 1. Working coordinate system.
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Fig. 2. Refractive index vs. the plasma density for (a) χ = θ = 0, (b) χ = θ ≠ 0, (c) χ ≠ 0 and Nξ = sinχ, and (d) χ ≠ 0

and Nξ > sinχ.

ε–

ε–
quently, the location of the resonance surface is deter-
mined by the condition

(6)

Since, for χ ≠ 0, the wave vector (and, accordingly,
the electric field) of the potential wave is not parallel to
B0, it should interact with electromagnetic waves. In
the interaction region, the polarization of the electro-
magnetic waves changes: their electric field acquires a
significant longitudinal component. On the other hand,
far from the critical surface, the polarization of electro-
magnetic waves of interest to us (i.e., those propagating
at a small angle to the magnetic field) is nearly circular
and the refractive index can be approximated by N2 ≈
ε±. To distinguish between the two types of oscillations,
we call them the left-hand and right-hand polarized
waves. Experiments on ECR plasma heating should
naturally be carried out with right-hand polarized
waves, whose electric vector rotates in the direction of
the electron gyration. Figure 2b also implies that, when
crossing the critical surface, the right-hand polarized
waves transform into left-hand polarized waves.

ε⊥ χsin
2 ε|| χcos

2
+ 0.=
However, since the refractive index changes sharply
in the vicinity of the critical surface, the quasiclassical
approximation (in which the refractive index can only
be introduced) may fail to hold. In this case, the wave
energy can be transmitted through the opaque region
that separates the zones of propagation of the right-
hand polarized waves.

In the case of non-one-dimensional waves (Nξ ≠ 0),
the opaque region may become smaller. In a plane-
stratified plasma, Nξ remains unchanged during the

wave propagation. For Nξ = sinχ, the wave vector
at the critical surface is parallel to the magnetic field.
Such waves freely traverse the critical surface (Fig. 2c).

The case of small values of Nξ – sinχ > 0 is illus-
trated in Fig. 2d. The characteristic feature of the case

Nξ – sinχ < 0 is that the opaque region is located to
the right of the critical surface. The plots in Fig. 2 were
obtained under the assumption ωe > ω. In the opposite
case ωe < ω, the plots in the vicinity of the critical sur-
face remain qualitatively the same.

ε–

ε–

ε–
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000



PASSAGE OF ELECTROMAGNETIC WAVES THROUGH THE CRITICAL SURFACE 823
Note that, for the same value of Nξ, the absolute
value of N depends on the propagation direction of a
wave along the ζ-axis in a plane-stratified plasma. Con-
sequently, the right-hand polarized waves that are inci-
dent from the side of higher density pass almost freely

through the critical surface if Nξ ≈ – sinχ. Analo-

gously, for Nξ = ± sinχ, the critical surface is
opaque to the left-hand polarized waves that are inci-
dent from the side of lower (higher) density.

3. SOLUTION OF THE WAVE EQUATION

Qualitatively, the penetration of waves through the
critical surface should be described by the wave equa-
tion, which can be obtained from the algebraic Eq. (4)
through the substitution Nζ  –i∂/∂ζ.

Since we are interested in the processes occurring in
the vicinity of the critical surface, we set ε± = const and
approximate the dependence ε||(ζ) by the linear func-
tion ε||(ζ) = –ζ/L.

Under these assumptions, the wave equation in the
vicinity of the critical surface can be written as

(7)

Here, we take into account the relationship ε⊥  = (ε+ +

ε–) ≈ ε+ε– ≈ , resulting from ε± ≈ , which

is valid at |ε||| ! 1. We assume that the quantity |ωe – ω|
is of the same order of magnitude as ω, in which case
the cyclotron resonance surface is far enough from the
critical surface.

The wave equation (7) is a singular equation,
because the coefficient in front of the highest (fourth)
derivative vanishes at ζ = ε⊥ Lχ2. The singular point is a
plasma resonance point (see above). To continue the
solution through the resonance point, we use the Lan-
dau contour. This way of continuing the solution usu-
ally assumes wave energy absorption. The problem as
formulated implies that dissipative processes inevitably
come into play because the wave vector increases with-
out bound when approaching the plasma resonance
point.

We supplement the frequency in the expression for
ε|| with the small positive imaginary part, ε|| = 1 –

 ≈ –  + , in order to displace the singu-
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lar point from the real axis into the upper half-plane.
Consequently, when the solution is continued through
the singular point, it should be bypassed along the Lan-
dau contour lying in the lower half-plane of the com-
plex variable ζ.

The wave Eq. (7) is linear in ζ. It is convenient to
solve such equations by the method of integral transfor-
mations, setting

(8)

where C is the integration contour in the plane of the
complex variable p. The integration contour can be
either closed or such that the integrand vanishes at both
ends. Below, we will use contours of the second type.

Substituting Eq. (8) into Eq. (7), we find that the
function F(p) should satisfy the equation

(9)

which has the solution

where p± = i , A±, 1 = ((χ  + Nξ)2 + ),

and A±, 2 = ((χ  – Nξ)2 + ).

4. TRANSMISSION AND REFLECTION 
COEFFICIENTS FOR WAVES CROSSING 

THE CRITICAL SURFACE

We begin by considering the waves that are incident
on the critical surface from the side of higher density
(ζ > 0). Below, we will show that, in this case, the
waves are not reflected from the critical surface (see
also [1]). Consequently, the right-hand and left-hand
polarized waves are described by the integrals over
contours C1 and C2 in Fig. 3, respectively. The asymp-
totic expression for the amplitude of the right-hand
polarized wave at ζ @ 1 is

(10)
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where Φ(1) = exp (–A+, 1 + A+, 2 + A–, 2) |p+ –

p− |2p–  |p+ + p– . Here and below, we dis-
place the origin of the ζ-coordinate by the distance
Lχ2ε⊥  from the critical surface to the resonance surface.

We continue the solution to the negative real semi-
axis with the help of the Landau contour (see above), in
which case the analytic continuation should be carried
out through the lower half-plane of the complex vari-
able ζ. For the integral in Eq. (8) to converge, the inte-
gration contour C1 should be turned as indicated in

π
2
---





|
iA+ 1, |

iA+ 2,–
|

iA– 2,–

Imp

C4

C3

C2

C1

p–

p+

–p+

–p–

Rep

Imp

C1

–p–

–p+

Rep

Fig. 3. Integration contours for the integral in (8) that corre-
spond to linearly independent solutions to Eq. (7) at ζ > 0.

Fig. 4. How the contour C1 should be turned in order to con-
tinue the solution through the critical surface according to
Landau’s rule.
Fig. 4. This keeps the structure of expression (10)
unchanged; however, the absolute value of the ampli-
tude of the right-hand polarized wave decreases by a

factor of  because  changes.
Hence, the transmission coefficient for the right-

hand polarized wave incident on the critical surface
from the side of higher density is equal to

(11)

Here, the first and second subscripts correspond to
the energy gain and loss, respectively, and the arrows
directed upward and downward indicate the propaga-
tion direction of waves (toward higher and lower densi-
ties).

Since, in the case at hand, there are no reflected
waves, a right-hand polarized wave loses energy when
crossing the critical surface. This effect can be
explained by the energy outflow toward the plasma res-
onance region.

Note that, although the refractive index changes
sharply in the vicinity of the critical surface, the waves
that are incident from the side of higher density are not
reflected from the critical surface. This is also true for
the left-hand polarized waves. To analyze them, we
take the integral in Eq. (8) along contour C2 in Fig. 3.
For ζ > 0, we obtain

(12)

where Φ(2) = exp (A–, 1 + A+, 2 + A–, 2) |p+ –

p− |2p+ |p+ + p– .
For negative real values of ζ, the integration contour

should be turned in the lower half-plane (as is the case
with right-hand polarized waves) so that it should
always pass around the branch point ζ = p– (Fig. 5). As
a result, the asymptotic expression will contain an addi-
tional term describing the right-hand polarized wave:

(13)

Comparing (13) with (12), we find the transmission
coefficient for the left-hand polarized wave propagating
from the side of higher density:

(14)

To obtain the transmission coefficient for the left-
hand polarized wave that transforms into a right-hand
polarized wave when traversing the critical surface, we
need to consider the expression for the energy flux. Far
from the critical surface (in the region where the wave

e
πA– 1, ζarg

T––
↓

e
2πA– 1,–

.=

E||
2( ) ζ( ) 2πi

Γ iA+ 1,( )
--------------------ζ

iA+ 1,– 1–
e

p+ζ–
Φ 2( )

,=

π
2
---





|
i– A– 1, |

iA+ 2,–
|

iA– 2,–

E||
2( ) ζ( ) 2πi

Γ iA+ 1,( )
--------------------ζ

iA+ 1,– 1–
e

p+ζ–
Φ 2( )≈

+
2πi

Γ iA– 1,( )
--------------------ζ

iA– 1,– 1–
e

p–ζ–
Φ 1( )

1 e
2πA+ 1,–( ).

T++
↓

e
2πA+ 1,–

.=
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000



PASSAGE OF ELECTROMAGNETIC WAVES THROUGH THE CRITICAL SURFACE 825
polarization is nearly circular), the energy flux density
has the form

where E+ can be taken from expression (3), in which, in

accordance with (12), we must set N|| ≈  + A+, 1/ζ.

Since A+, 1 = , the energy flux density becomes

(15)

This quantity is independent of the ζ-coordinate by vir-
tue of the relationship |E||| ∝  1/ |ζ| (see above).

Taking into account the relationship [10]

we arrive at the transmission coefficient for the left-
hand polarized wave that transforms into a right-hand
polarized wave when passing through the critical sur-
face:

(16)

The sum of the transmission coefficients (14) and
(16) is smaller than unity, because, when the left-hand
and right-hand polarized waves propagating from the
side of higher density cross the critical surface, they are
both partially converted into short-wavelength quasi-
potential waves that carry energy toward the plasma
resonance region.

In the region ζ > 0, the solution  describing the
left-hand polarized wave that is incident from the side
of lower density can be obtained by taking the integral

in Eq. (8) along contour C3 in Fig. 3:  ∝  . The
solution describing the right-hand polarized wave prop-
agating in the same direction is more complicated. In
order for the solution in the region ζ < 0 not to contain

the exponential function ∝ , which corresponds to
the left-hand polarized wave propagating in the same
direction, the solution in the region ζ > 0 should be
taken in the form

where  can be obtained by evaluating the integral

in Eq. (8) along contour C4 in Fig. 3:  ∝  . A

similar analysis of the expressions for  and  in
the opposite half-plane of the complex variable ζ yields
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the following expressions for the transmission and
reflection coefficients:

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

The expressions obtained generalize Ginzburg’s
results [1] to the case of waves propagating obliquely to
the plasma density gradient and also to arbitrary values
of the dimensionless parameter L, which characterizes
the density gradient.

To conclude this section, we determine the condi-
tions under which the above analysis is valid. In calcu-
lating the asymptotics of the integral in Eq. (8), we took
into account the variations of only one term in the
expression for F(p), while the remaining terms were
assumed constant. This calculation method is valid if

|ζ| @ max(1, L , LN⊥ χ). (Note that the quantities

L  and 2πAα, i , where i = 1, 2 and α = ±, are compa-
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implies that, in the region under consideration, both
types of electromagnetic oscillations are circularly
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Fig. 5. Integration contour C2 at ζ < 0.
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polarized waves that propagate independently of one
another.

On the other hand, the basic equation (4) is valid
under the condition LN⊥  @ |ζ|. In the opposite case, the
coefficients of the differential equation cannot be
approximated by the linear functions of ζ. These two
conditions are compatible if θ, χ ! 1.

For small angles χ, the critical surface is close to the
resonance surface at which the wave equation has a sin-
gular point. As was noted in the Introduction, the inci-
dent wave near the resonance surface is perturbed so
strongly that all possible channels of the wave energy
losses may come into play.

Plasma configurations with large values χ ≈ 1 are
characteristic of tokamaks and stellarators. The propa-
gation of electromagnetic waves through the critical
surface in such configurations was studied in [3–5]. It
was shown that, the larger the angle χ, the farther the
plasma resonance surface is from the critical surface.
For χ ≈ 1, the resonance surface lies at a distance of
about L from the critical surface. As a result, the cou-
pling between different types of waves decreases and
the properties of each wave are determined by its dis-
persion relation. For this reason, the two independent
dispersion relations (into which the general dispersion
relation splits) should incorporate the variations of both
ε|| and ε±, so that using the method of integral transfor-
mations, which underlies our analysis, is inconvenient,
because the coefficients of the wave equations are non-
linear functions of ζ.

5. RAY TRAJECTORIES NEAR THE CRITICAL 
SURFACE

In the vicinity of the critical surface, the quantity Nζ
experiences abrupt variations (Fig. 2). The function
Nζ(ζ, Nξ) satisfies the dispersion relation D(N, ζ) = 0,

which yields the expression  = – . In the

case under discussion, the quantity |∂Nζ /∂ζ | increases
because of the decrease in the quantity |∂D/∂Nζ |, which
also enters the expression for the group velocity, V =

− . This expression implies that, in the vicinity

of the critical surface, the velocities at which the wave
packets move along the density gradient become lower.
Since, in this region, the ξ-component remains essen-
tially unchanged, the ray trajectories should be
stretched preferentially along the critical surface.

More detailed information about the ray trajectories
is contained in solutions to the wave equations. From
expressions (10), (12), and (13) and similar expressions

that can be obtained for  and , we can see that,

∂Nζ

∂ζ
--------- ∂D/∂ζ

∂D/∂Nζ
-------------------

—ND
∂D/∂ω
-----------------

E||
3( )

E||
4( )
at |ζ| @ 1, the asymptotic solution to the wave equation
splits into two solutions:

(25)

where aα = s1  and bα = s2Aα, i  with s1, 2 = ±1. The
factor in front of the exponential function is C(ζ) ∝  1/ζ.

Each of these two solutions describes a quasiclassi-
cal wave with the wavenumber

(26)

Of course, this expression for Nζ can also be derived
from the dispersion relation (5) treated in the vicinity of
the critical surface. Accordingly, Eq. (26) can be
regarded as an approximate dispersion relation written
in the form

(27)

We trace the ray trajectories near the critical surface
with the help of Eq. (26). The ray trajectories are
described by the equations

(28)

In the steady state (when we are interested only in
the shape of ray trajectories), it is convenient to intro-

duce the time-dependent parameter τ,  =

, in terms of which Eqs. (28) have

the form

(29)

Using expression (27) for D, we obtain from Eqs. (29)

(30)

Equations (30) have the integral that describes the
shape of the ray trajectories:

The family of ray trajectories is symmetric about the
resonance surface illustrated by the line ζ = 0 in Fig. 6.
The second equation in Eqs. (30) implies that, for the

E|| ζ( ) C ζ( ) i aαζ bα Nξ( )) ζln+(( ),exp≈

εα

Nζ ζ Nξ,( ) aα bα Nξ( )/ζ .+≈

D N ζ,( ) aα
bα Nξ( )

ζ
----------------- Nζ .–+≈

dr
dt
------

∂D
∂N
-------/

∂D
∂ω
-------,=

dN
∂t
-------

∂D
∂r
-------/

∂D
∂ω
-------.–=

dτ
dt
-----

∂D r t( ) N t( ),( )
∂ω

------------------------------------ 
 

–1

dr
dτ
------

∂D
∂N
-------,=

dN
dτ
-------

∂D
∂r
-------.–=

ζ̇ 1,–=

ξ̇ bα Nξ,' /ζ ,=

Ṅξ 0.=

ζ ζ0

ξ0 ξ–

bα Nξ,'
-------------

 
 
 

.exp=
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same value of Nξ, the derivative  has different signs
for ray trajectories on different sides of the critical sur-
face. Consequently, we can expect that fairly large dis-
placements (in the ξ-direction) of the ray trajectories of
the incident and transmitted waves will cancel each
other to a great extent.

6. WAVE BEAMS IN THE VICINITY
OF THE CRITICAL SURFACE

A steady wave beam arises from the propagation of
perturbations along the ray trajectories. Hence, having
established the coupling between the incident and
transmitted wave beams, we can, in particular, derive
the rules for conjugating the ray trajectories on both
sides of this surface.

Above, we have examined the perturbations that are
periodic in ξ. Taking into account expressions (25) and
(26), we represent such a perturbation in the form

(31)

The wave beam composed of perturbations (31) can be
described as

(32)

In the simplest case of a Gaussian beam,

,

we have

(33)

where (∆L0)2 = (∆L)2 – . The second term

in the expression for (∆L0)2 accounts for the diffractive
spreading of the beam.

According to (33), the wave beam is narrowest in
the direction perpendicular to the group velocity: l =

, where Vgζ is the projection of the group

velocity Vg onto the ζ-axis. Since Vgζ  0 when
approaching the critical surface, the wave beam con-
tracts in the ζ-direction and expands in the –ξ-direc-
tion.

ξ̇

E|| r Nξ,( )

≈ C ζ( ) iNξ ξ ξ0–( ) i ζ'Nζ ζ' Nξ,( )d

ζ0

ζ

∫+
 
 
 

.exp

E|| r( ) NξE|| r Nξ,( )F Nξ( ).d∫=

F Nξ( ) Nξ Nξ0–( )2∆L
2

–( )exp=

E|| r( ) π
∆L0
--------- iNξ0 ξ ξ0–( ) i ζ'Nζ ζ' Nξ0,( )d

ζ0

ζ

∫+




exp≈

–
1

4 ∆L0( )2
-------------------- ξ ξ0– ζ'

∂Nζ ζ' Nξ0,( )
∂Nξ0

------------------------------d

ζ0

ζ

∫+
 
 
  2





,

i
2
--- ζ'

∂2
Nζ

∂Nξ0
2

------------dζ0

ζ∫

Vgζ

Vg
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∆L0

2

∆L
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Expression (15) for the ζ-component of the energy
flux density allows us to represent the total energy flux
in the beam as

where J = |E||(r)|2. We can readily take the integral

J to obtain

(34)

Applying the Landau circumvention rule to solve
the wave equation, we can find a solution describing the
waves whose polarization does not change as they
traverse the critical surface. We choose the Landau con-
tour that lies below the singular point in the complex
plane to obtain the following conjugation rule for the
function lnζ in expression (25), e.g., when passing over
from positive to negative values of the variable ζ:

Accordingly, the waves that have crossed the critical
surface are described by the solution

(35)

Pα
ζ 2

εα
1/2

N ⊥
2

---------------J ,=

ξd∫

Pα
2

1/2π3/2

εα
1/2

N ⊥
2 ∆L

-----------------------.=

ζ ζlnln iπ.+

E|| r Nξ,( ) C ζ( ) πbα Nξ( )– 2iaζ0 ∫–




exp≈

+ iNξ ξ ξ0–( ) i ζ'Nζ ζ' Nξ,( )d

ζ0–

ζ

∫+




.

ξ

ζ

Fig. 6. General picture of ray trajectories in the vicinity of
the critical surface.
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The spatial structure of the transmitted beam is very
sensitive to the beam width. For wide beams such that
∆L @ L1/2, we obtain

where (∆L1)2 = (∆L)2 – .

The ray trajectories are the trajectories of infinitely
narrow wave beams. The propagation of a finite-width
beam can naturally be described in terms of its central
trajectory. In the case at hand, the central trajectory of
the transmitted beam,

and the central trajectory of the incident beam are mir-
ror-image about the resonance surface. Recall that the
ζ-coordinate is measured from the resonance surface
rather than from the critical surface. Therefore, we can
conclude that the transmitted ray trajectories and inci-
dent ray trajectories are in a sense mirror images about
the resonance surface.

If ∆L ! L1/2, then, even for b(Nξ0) ≥ 1, the Fourier
spectrum of the beam extends to the values Nξ, α ≈
χ , which correspond to wave propagation along
the magnetic field. In this case, the critical surface acts
to filter out the waves with Nξ ≈ Nξ, α. As a result, the
transmitted waves also give rise to a Gaussian beam
propagating in the magnetic field direction:

E|| r( ) π
∆L1
--------- πbα Nξ0( )– 2iaξ0 ∫–





exp≈

+ iNξ0 ξ ξ0–( ) i ζ'Nζ ζ' Nξ0,( )d
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ζ
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–
1
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
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2
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ξ ξ0– ζ'
∂Nζ

∂Nξ0
------------d
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∫+ 0,=

εα

E|| r( ) π
∆L2
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Nξ α, Nξ0–( )2
– 2iaξ0–(exp≈

+ iNξ α, ξ ξ0–( ) i ζ'Nζ ζ' Nξ α,,( )d

ζ0–

ζ
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1

4 ∆L2( )2
-------------------- ξ ξ0– ζ'

∂Nζ ζ' Nξ α,,( )
∂Nξ α,

--------------------------------d

ζ0–

ζ

∫+
 
 
  2





,

where (∆L2)2 = L  – . It is natural

to conclude that the beam spreads out in space as the
Fourier spectrum narrows.

We can easily find the total energy flux in the trans-
mitted beam for an arbitrary ratio between ∆L and L1/2:

(36)

where Fα = .

A comparison between (34) and (36) yields the fol-
lowing expression for the transmission coefficient of
the wave beam whose polarization does not change as
it crosses the critical surface:

The reflected waves and the transmitted waves
whose polarization changes as they traverse the critical
surface can be analyzed in a similar way. Omitting a
detailed analysis, we only note that the “ray” trajecto-
ries of these waves (i.e., the central trajectories of the
waves with ∆L @ L1/2) are shifted along the ξ-axis from
the ray trajectory of the incident waves. In fact, differ-
ent types of electromagnetic waves are described by
formulas with different factors Ψ(i)(Nξ) = Γ–1(iAα, β)Φ(i)

(see Section 3), which are responsible for the shift of

the wave beam by ∆ξ(i) =  along the ξ-axis

and should be retained in expressions analogous to (34)
and (31). If the type of incident wave (i) differs from the
type of transmitted wave (j), then the corresponding ray
trajectories will be shifted by ∆ξ(i) – ∆ξ( j).

Note also that, in a real situation, the surfaces of
equal density (and, accordingly, the critical surface) are
curved. However, this circumstance can be neglected in
evaluating the transmission coefficient for a wave beam
if the radius of curvature is sufficiently large: R @
L1/2∆L.

7. NUMERICAL EXAMPLE
Our analysis shows that, in the region LN⊥  @ |ζ | @

max(1, L ), the ray trajectories of the incident waves
with ∆L @ L1/2 and of the transmitted waves whose
polarization does not change as they cross the critical
surface are mirror images about the plasma resonance
surface. The ξ-components of the refractive indices of
the transmitted and incident waves coincide, while their
ζ-components differ by 2b/ζ (see Section 5).

The ray trajectories are known to be uniquely deter-
mined by the value of the refractive index at the initial
point. As the initial point, we can choose an arbitrary

π
4
--- εα

i
2
--- ζ'

∂2
Nζ

∂Nξ α,
2

--------------dζ0–

ζ∫

Pα
2

1/2π3/2
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1/2

εα
1/2

N ⊥
2 ∆L
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∆L( )2

∆L( )2 πLεα
1/2

/4+
-----------------------------------------

Tαα 0, Fα
1/2

2πbα Nξ0( )Fα–( ).exp=

Nξ0∂
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arg
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2
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point where the ray trajectory of the incident waves is
specularly reflected from the critical surface, in which
case the initial value of the refractive index is deter-
mined by the rule outlined above. If the analysis per-
formed in the previous section is consistent, then the
ray trajectories of the transmitted waves that emerge
from different initial points at the critical surface
should approach each other.

In order to confirm this conclusion, we numerically
traced the ray trajectories of the incident and transmit-
ted waves with right-hand polarization in a plane

plasma slab such that  = 1 –  + . The

results to be presented were computed for Lx = 2 × 103

and Lz = 102 (χ = 0.05). The magnetic field was
assumed to be uniform and aligned with the z-axis. We
also set ωe = 2ω. The rays were assumed to come from
the point (x = 0, z = –30) at the angles θ = ±0.0375 to
the z-axis. The crossing of the critical surface was mod-
eled for three values of ζ = –2, –3, and –5. Accordingly,
for each of the incident rays, we traced three transmit-
ted rays. In accordance with the above analysis, they
should approach each other. In fact, the three rays that
arise from the ray trajectory emerging at the angle θ =
0.0375 essentially coincide (see Fig. 7). On the other
hand, the transmitted rays that arise from the ray trajec-
tory emerging at the angle θ = –0.0375 slightly diverge.
The discrepancy between these two cases stems from
the asymmetry of the system around the horizontal axis
(Lx ≠ ∞). This asymmetry leads to slightly different
coefficients of the transmission of waves through the

critical surface for the upper (  ≈ 0.65) and lower

(  ≈ 0.55) rays. The divergence of the rays in Fig. 7
seems to be quite natural because, in the above analytic
treatment, we take into account only the first term in the
asymptotic solution to the wave equation. Recall that

the above analysis is valid under the condition  @
|ζ| @ 1. At larger values of L, the interval of the permis-
sible values of |ζ| broadens, so that we are more justi-
fied in applying our model approach. In this case, we
can expect that the divergence of rays will somewhat
reduce. This expectation is supported by the results cal-
culated for Lz = 103. The value Lx = 6.7 × 105 was chosen
from the condition for the transmission coefficient to
coincide approximately with that obtained in the first
numerical example. The ray trajectories were assumed
to come from the point (x = 0, z = –300) at angles θ =
±0.0125 to the magnetic field. The incident and trans-
mitted trajectories were conjugated at ζ = –5, –10, and
–15. Our calculations show that, as expected, the larger
the parameter L, the smaller the relative spread in the
ray trajectories. Thus, in the first example (L ≈ 102), the
rays that come from the point with z = 30 and corre-
spond to the lower incident ray trajectory diverge at
most by ∆x ≈ 0.3, whereas, in the second example (L ≈

ωpe

ω
-------- 

 
2 x

Lx

----- z
Lz

-----

T– –,
↑

T– –,
↑

L
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103), the divergence of the transmitted rays emerging
from the point with z = 300 does not exceed ∆x ≈ 1.5.
Our calculations also confirm that, as expected, the
larger the angle θ, the larger the divergence of the ray
trajectories. As a result, the coefficient A–, i increases
and, accordingly, the transmission coefficient becomes
smaller.

8. CONCLUSION

We have analyzed the propagation of electromag-
netic waves through the critical surface in the case of
small angles between the magnetic field and the plasma
density gradient. We have considered unbounded
waves that are periodic in the direction perpendicular to
the density gradient and wave beams. We have found
that the ray trajectory of a wide transmitted beam and
the ray trajectory of an incident beam are mirror images
about the resonance surface. A narrow wave beam that
passes through the resonance surface generates a beam
propagating along the magnetic field.
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Abstract—A study is made of the excitation of wake waves by a one-dimensional bunch of charged particles
in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the
main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by the
Maxwell equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of
linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in
a certain range of the parameter values of the bunch, pump wave, and plasma, the amplitude of the excited trans-
verse waves grows as the energy of the bunch particles increases until the relativistic factor of the bunch reaches
a certain threshold value above which the transverse wave amplitude becomes essentially independent of the
bunch particle energy and grows as the intensity and frequency of the pump wave increase. The amplitude and
wavelength of the longitudinal field, which is shown to depend weakly on the energy of the bunch particles,
grows with increasing the pump wave intensity. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Plasma-based methods of charged particle accelera-
tion, which have been actively developed over the past
decade, occupy an important place among novel accel-
eration schemes (see, e.g., [1, 2] and the literature cited
therein). The excitation of wake waves by charged-par-
ticle bunches is one of the ways of generating strong
(up to E ~ 1 GeV/m) electromagnetic fields in plasmas.
The induced wake fields can serve not only to acceler-
ate charged particles but also to focus electron
(positron) bunches [3] with the aim of generating high-
density beams and ensuring high luminosity in the next
generation of linear colliders.

Many papers have been devoted to the linear theory
of one-dimensional wake waves [3–11]. The nonlinear
theory of these waves was developed in [12–18]. An
important consequence of the nonlinear theory is that
the maximum strength of the induced wake field is
equal to Emax = (muωp/e)[2(γ – 1)]1/2 and is achieved in
the range nb/n0 < 1/(2 + 1/γ), where ωp is the electron
plasma frequency; nb and n0 are the bunch and plasma
densities, respectively; γ = (1 – β2)–1/2 is the relativistic
factor of a bunch; β = u/c; and u is the bunch velocity.

In the nonrelativistic limit (γ ≈ 1, β ! 1) [17], the
maximum electric field is equal to Emax ≈ 2muωp/e. In
the linear approximation, when nb/n0 ! 1, we have
Emax ≈ (2muωp/e)(nb/n0) for arbitrary γ.

In this paper, we study how the field of a circularly
polarized electromagnetic wave of arbitrary intensity
(including the case when the electron oscillatory veloc-
1063-780X/00/2610- $20.00 © 0831
ity in the pump field is close to the speed of light)
affects the excitation of electromagnetic wake waves by
a one-dimensional relativistic electron bunch in a cold
plasma. The pump field amplitude is described by the
dimensionless parameter A = eE0/mcω0, where E0 and
ω0 are the wave amplitude and frequency, respectively.
One can obtain an exact solution to the Maxwell equa-
tions and the nonlinear hydrodynamic equations
describing the interaction between a circularly polar-
ized electromagnetic wave and a plasma [18, 19] and
derive an exact dispersion relation for waves propagat-
ing in the same direction as the pump wave [19, 20].
The parametric instability of a plasma in the electro-
magnetic field of a circularly polarized wave was thor-
oughly investigated in earlier papers (see [19, 21, 22]
and the literature cited therein). Max and Perkins [21]
studied the low-frequency aperiodic instability of a
plasma in the dipole approximation. When analyzing
the plasma instability in the field of a strong electro-
magnetic wave, Kalmikov and Kotsarenko [19] showed
that the relativistic character of the electron motion
plays an important role in the parametric excitation of
nonpotential plasma oscillations by a transverse elec-
tromagnetic wave at an arbitrary value of the pump
field amplitude.

In this paper, we clarify the role played by a strong
electromagnetic field with circular polarization in the
excitation of one-dimensional linear wake fields in a
plasma. We describe the pump-wave–plasma interac-
tion in the absence of a bunch by the Maxwell equa-
tions and nonlinear hydrodynamic equations in the cold
2000 MAIK “Nauka/Interperiodica”
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plasma approximation. In this case, the plasma can be
in a spatially homogeneous state [18, 19]. Then, assum-
ing that a one-dimensional bunch propagating in the
plasma distorts this state only slightly, we apply the
perturbation theory to derive equations for the induced
fields and for the electron plasma density and velocity.

2. BASIC EQUATIONS

Assuming that the oscillatory velocity of the plasma
electrons in an external field is much higher than the
electron thermal velocity and the pump frequency ω0 is
far above the electron–ion collision frequency, we start
with the following basic set of equations, which
includes the Maxwell equations and the relativistic
hydrodynamic equations of motion for a cold electron
plasma:

(1)

(2)

(3)

(4)

(5)

where ξ = z – ut, n0 is the unperturbed electron plasma
density, and nb(ξ) is the density of a one-dimensional
bunch propagating with the velocity u (such that u =
uez, |ez| = 1) in a plasma. Since we are interested in rel-
ativistic bunches, we neglect oscillations of the bunch
electrons in an electromagnetic pump wave.

In the field of a circularly polarized electromagnetic
wave propagating along the z-axis, the plasma can be in
a spatially homogeneous equilibrium state, in which
the electromagnetic field and the electron velocity are
given by the relationships [18, 19]

(6)

(7)

(8)

where ζ = ω0t – k0z, k0 = (ω0/c) , ε(ω) = 1 –

/ω2,  = , βe = ve/c, A = eE0/mcω0,

(9)
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2
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A
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-------------------,=
 = 4πn0e2/m is the plasma frequency, and c is the
speed of light in a vacuum.

We consider small perturbations that are driven in
the plasma by an electron beam with density nb such
that nb ! n0. We represent all of the quantities in the
form f = f0 + f ', where f0 stands for the unperturbed
quantities in (6)–(9). Linearizing Eqs. (1)–(5) yields the
following equations for the perturbed quantities f ':

(10)

(11)

(12)

(13)

(14)

These are partial differential equations with coeffi-
cients periodic in ζ.

We switch from the x- and y-components of the
fields and electron plasma velocities to the new vari-
ables:

(15)

In other words, we pass over to a rotating frame of ref-
erence associated with the pump wave. Transformation
(15) converts Eqs. (10)–(14) to the following inhomo-
geneous ordinary differential equations with constant
coefficients:
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(17)

(18)

(19)

(20)

(21)

where β = u/c and γ –2 = 1 – β2. In deriving these equa-
tions, we assumed that all of the quantities depend
solely on the variable ξ = z – ut. Equations (16)–(21)
imply that, due to the presence of a pump wave in the
plasma, the induced fields and the electron plasma
velocities are parametrically coupled to each other. The
right-hand side of Eq. (20) for the perturbed charge
density contains not only the longitudinal component
of the induced electric field but also the Lorentz force.
The second term on the right-hand side of this equation
stems from the interaction of plasma electrons moving
at the unperturbed velocities with the perturbed mag-
netic field, and the third term accounts for the interac-
tion of plasma electrons moving at the perturbed veloc-
ities with the unperturbed magnetic field of the pump
wave. Equations (16)–(21) also imply that the coeffi-
cient βe of the second term in square brackets in
Eq. (20) approaches 1/2 and the coefficient of the third
term increases as the pump wave becomes more
intense. Below, we are going to examine solutions to
Eqs. (16)–(21).

3. GREEN’S FUNCTION

To solve Eqs. (16)–(21), we need to derive equations
for each of the quantities n', , 9±, @±, and %±. We
solve Eqs. (16)–(21) by expanding the perturbed quan-
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tities in Fourier integrals over the variable ξ. After some
manipulations, we obtain

(22)

Here, Green’s functions  and  for the quanti-

ties  and %+ have the form

(23)

(24)

where ω = ku. According to Eqs. (11), the induced mag-
netic field is related to the transverse electric field as

(25)

where we introduce the notation

(26)

(27)

(28)

The transverse components of the induced electric and
magnetic fields can be found from expressions (15) by
taking either a real or an imaginary part of the complex
quantities %+ and @+. As a result, we obtain

(29)

Ez' ξ( )

%
+ ξ( ) 

 
 
 

ξ'nb ξ'( )
Gz

e( ) ξ' ξ–( )

G⊥
e( ) ξ' ξ–( ) 

 
 
 

.d

∞–

+∞

∫=

Gz
e( ) G⊥

e( )

Ez'

Gz
e( ) s( ) 2ie

kd
k
-----

D1 k ω,( )
D k ω,( )
-------------------- iks( ),exp

∞–

+∞

∫–=

G⊥
e( ) s( )

2eβeωL
2

c
------------------ k ku ω0+( )d

∞–

+∞

∫–=

×
R 1– k ω,( )
D k ω,( )

--------------------- iks( ),exp

@± ξ( )
c
u
--- i%± ξ( ) ∫




±=

+
ω0

u
------ k0– 

  ξ' i
ω0

u
------ ξ' ξ–( ) %± ξ'( )expd

∞–

ξ

∫ 



,

R 1± k ω,( ) k k0±( )2 ω ω0±( )2

c2
-----------------------ε ω ω0±( ),–=

D1 k ω,( ) ω2R1 k ω,( )R 1– k ω,( )=

+
βe

2ωL
2

2
------------ k2 ω2

c2
------– 

  R1 k ω,( ) R 1– k ω,( )+[ ] ,

D k ω,( ) ω2ε ω( )R1 k ω,( )R 1– k ω,( )=

+
βe

2ωL
2

2
------------ k2 ω2

c2
------ε ω( )– 

  R1 k ω,( ) R 1– k ω,( )+[ ] .

Ex' z t,( )

Bx' z t,( ) 
 
 
 

Er ξ( )

Br ξ( ) 
 
 

ζcos
Ei ξ( )

Bi ξ( ) 
 
 

ζ ,sin–=



834 NERSISYAN, ELBAKIAN
(30)

where

(31)

Hence, expressions (29) and (30) for the transverse
components of the induced fields describe modula-
tional perturbations in the plasma. As an example, we
represent the component  in the form

(32)

where E⊥ 0(ξ) =  is the amplitude of the

perturbations and ψ0(ξ) = Ei(ξ)/Er(ξ)] is their
phase shift. The expressions for the other perturbed
quantities are analogous to (32). In the rest frame of the
bunch, expression (32) describes a transverse harmonic
wave. In an arbitrary frame of reference, expression
(32) describes a modulated transverse wave whose pro-
file is determined by the function E⊥ 0(ξ). Note that, in
the absence of a pump wave (βe = 0), the transverse
components of the perturbed quantities vanish and
Eq. (19) and its solution [the first expression in (22)
taken with expressions (27) and (28)] pass over to the
familiar formulas for one-dimensional linear fields.

Now, we proceed to a calculation of Green’s func-
tions defined in (23) and (24). The poles of the integrals
in (23) and (24) are the roots of the dispersion relation
D(k, ω) = 0. In the general case (i.e., when the Cheren-
kov resonance condition ω = ku is not imposed), this
dispersion relation was investigated in detail by Kalm-
ikov and Kotsarenko [19]. In the absence of a pump
wave (βe = 0), Eq. (28) passes over to the dispersion
relations for ordinary plasma waves, ω = ωp, and for

transverse (electromagnetic) waves, ω2 =  + k2c2.
The presence of a pump wave (βe ≠ 0) gives rise to cou-
pled waves in a plasma. If the pump wave is sufficiently
weak (βe ! 1), then the growth rate of the coupled
waves increases linearly with βe. Consequently, the
coupled waves are parametrically unstable down to
βe = 0. However, when the plasma density is not too
high (ωp < 1013 s–1; i.e., n0 < 1017 cm–3) and the pump fre-
quency ω0 is in the optical range (ω0 ~ 1015 s–1), the time
interval over which a relativistic bunch interacts with a

Ey' z t,( )

By' z t,( ) 
 
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2 ξ( )+

[arctan

ωp
2

plasma is much shorter than the time scale on which the
parametric instability develops [19], so that we can
neglect the effect of the parametric instability on the
excitation of wake waves.

Under the Cherenkov resonance condition ω = ku,
Eq. (28) gives the dispersion relation

(33)

We introduce the dimensionless wave vector λ, which
is related to k by k = (ωL/u)λ, in order to represent the
solutions to Eq. (33) in the form

(34)

where

(35)

∆ = ω0/ωp, and a2 = . The character of the solu-
tions to Eq. (33) (and, accordingly, the electron plasma
velocity and the nature of the induced fields) is largely
governed by the sign of the expression under the square
root in formula (34). We denote the regions where this
expression is positive and negative by I and III, respec-
tively. The boundary between these regions is denoted
by II. To determine this boundary, we equate the
expression at hand to zero and obtain

(36)

(37)

where

(38)

(39)

Formulas (36)–(39) were obtained under the assump-
tion γ > γ1 ≈ 1.45, where γ1 is the real positive root of
the equation 2γ2(γ2 – 2) = γ – 1, satisfying the condition
γ > 1. For a small-amplitude pump wave (a – 1 ! 1), the
functions with the plus sign in (36) and (37) coincide.
This is also true for the functions with the minus sign in
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(36) and (37). We denote these functions by ∆±, for
which from (36) and (37) we obtain

(40)

Figures 1 and 2 show regions I and III for γ = 1.5 and
100, respectively. The boundaries II between these
regions in the figures are represented by the curves
which close upon themselves at infinity (a  ∞). For
present-day laser intensities (IL < 1020 W/cm2) and for
pump frequencies of about ω0 ≈ 3 × 1015 s–1, the values
of the parameter a are in the range a < 3. Consequently,
Figs. 1 and 2 and formulas (36)–(40) imply that, for the
parameter values ω0 ≈ 1015 s–1 and n0 < 1017 cm–3 (ωp <
1013 s–1), the solutions to Eq. (33) lie in region I over a
broad range of γ-values (up to γ < (ω0/ωp)a and even
higher). In order for the solutions to Eq. (33) to lie in
region III or at boundary II, the condition γ ~ a∆ =
(ω0/ωp)a > 100 should be satisfied; i.e., the bunch
should be ultrarelativistic. In what follows, we restrict
ourselves to treating region I and study induced fields
for the relevant parameter values. For boundary II and
region III, solutions (34) imply that the amplitude of
the induced electric fields either increases (at boundary
II) or falls off exponentially with distance from the
bunch (in region III). Solutions at boundary II should
be treated in the nonlinear approximation, and solu-
tions in region III are totally uninteresting for the gen-
eration of high accelerating or focusing electric fields
in plasmas.

Now, we evaluate Green’s function for the parame-
ters from region I. In this case, the roots of Eq. (33) are
real and lie in the upper half-plane of the complex vari-

∆± γ 1 1

4 γ2 1–( )
----------------------+

1
2
---.±=

∆
3.0

2.5

2.0

1.5

1.0

0.5

0
1.0 1.2 1.4 1.6 1.8

a

Fig. 1. The curve ∆ = ∆(a), on which the expression under
the square root in (34) equals zero, for γ = 1.5. Boundary II
corresponds to the curve ∆ = ∆(a), and regions I and III lie
outside and inside the curve, respectively.
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able k. We integrate expressions (23) and (24) over k
to obtain

(41)

(42)

where kp = ωp/u, F0 = , and θ(s) is the Heavi-
side step function. From (41) and (42), we can see that
a bunch propagating in a plasma excites two types of
waves: with frequencies ωLλ+ and ωLλ–. In the absence

of a pump wave (a = 1),  vanishes, while  is
given by the expression

(43)

which coincides with the corresponding formulas pre-
sented in [23, 24].
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Fig. 2. Curve ∆ = ∆(a) for γ = 100.



836 NERSISYAN, ELBAKIAN
4. WAKE FIELDS EXCITED 
BY A RECTANGULAR BUNCH

Here, we calculate and examine the fields driven by
an electron bunch with a prescribed shape. We assume
that the bunch electron density nb is uniform (nb ! n0)
and denote the bunch length by d, so that

(44)

We substitute (41), (42), and (44) into (22) to obtain
expressions for the induced fields ahead of (ξ > d),
inside (0 ≤ ξ ≤ d), and behind (ξ < 0) a bunch propagat-
ing in a plasma.

Ahead of the bunch (ξ > d), we have

(45)

(46)

Inside the bunch (0 ≤ ξ ≤ d), we have

(47)

(48)

Behind the bunch (ξ < 0), we have
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Here, we introduce the notation  = mcωp/e. Expres-
sion (45) implies that there is no longitudinal field
ahead of the bunch (ξ > d). The transverse fields ahead
of the bunch are unmodulated (i.e., independent of ξ)
and are circularly polarized, and the field amplitude is
proportional to the function F and the bunch length d.
Note that the function F is proportional to the differ-
ence between the group velocity vg = k0c2/ω0 of the
induced transverse fields and the bunch velocity. If the
group velocity of a transverse wave coincides with the
bunch velocity (F = 0), then there are no transverse
fields ahead of the bunch. In addition, it is easy to see
that the magnetic field ahead of the bunch is propor-
tional to F0 and is absent in the long-wavelength (qua-
sistatic) limit (k0 = 0, or F0 = 0).

The transverse fields ahead of the bunch are induced
because the phase velocity vϕ = ω0/k0 > c of the pump
wave is higher than the bunch velocity, regardless of the
values of the parameters of the plasma and the pump
wave. Consequently, some perturbations driven by the
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Ẽ0
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000



EFFECT OF A STRONG MONOCHROMATIC ELECTROMAGNETIC WAVE 837
pump wave and bunch in the plasma have a phase
velocity above the bunch velocity and thereby can over-
take the bunch.

According to (29)–(31), (48), and (50), the trans-
verse fields inside and behind the bunch are modulated
and circularly polarized. However, although the polar-
ization vector of the transverse wave spans an entire
circle, the circle’s radius depends on the distance ξ
from the bunch. In fact, from expressions (29)–(31), we
have

(51)

(52)

In the general case, the amplitudes of the electric and
magnetic fields, Emax(ξ) and Bmax(ξ), are functions of ξ.
Modulated transverse plasma waves are generated
because of the excitation of the above two types of
waves with frequencies ωLλ± and wave vectors
(ωL/u)λ±. The interaction between a pump wave and the
two induced waves gives rise to oscillations with the
combination frequencies ω0 – ωLλ± and ω0 + ωLλ± and
combination wave vectors k0 – (ωL/u)λ± and k0 +
(ωL/u)λ±; the modulated wave results from the interfer-
ence between these oscillations. If ω0 > ωLλ± (or, in
dimensionless form, a∆ > λ±) and k0 > (ωL/u)λ± (or, in

dimensionless form, β  > λ±), the carrier
wave is described by the transverse components Er(ξ)
or Ei(ξ). Otherwise, the carrier wave is described by the
functions cosζ and sinζ in expressions (29) and (30).

We analyze the above formulas for the following,
practically important parameter range: n0 < 1017 cm–3

(ωp < 2 × 1013 s–1), IL ≈ 1018–1020 W/cm2 (IL = c /4π
is the pump wave intensity), ω0 ≈ 1015 s–1, and γ ≈ 10–
103. For pump wave intensities ranging from 1018 to
1020 W/cm2, the parameter a is in the interval a ≈ 1.02–2.
The parameter ∆ lies in the range ∆ > 50.

In region I, formulas (40) imply that either γ < ∆ or
γ > ∆. Formulas (45)–(50) are comparatively easy to
analyze in the ranges a∆ @ γ @ 1 and 1 ! a∆ ! γ. In
the first range, formulas (34) and (35) give

(53)

(54)

Ahead of the bunch, the transverse electric and mag-
netic fields are equal in order of magnitude to |%+| ≈
|@+ | ≈ (nb/n0)(kpd)γ2/2 at a > 1. Inside and behind
the bunch, the amplitude of waves with the frequency
ωLλ+ is much smaller than the amplitude of waves with
the frequency ωLλ–. According to expressions (47) and
(49), the amplitude of longitudinal waves with the fre-
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quency ωLλ– is equal in order of magnitude to

(nb/n0)a, which is γ2(kpd)/2a times smaller than the
transverse wave amplitude ahead of the bunch. In the
ranges 0 ≤ ξ ≤ d and ξ < 0, the dominant contributions
to expressions (48) and (50) come from the first and
third terms, in which case the third terms are approxi-

mately equal to (nb/n0)γ2a (which exceeds the ampli-
tude of the longitudinal waves by a factor of γ2). There-
fore, we have Ei(ξ) @ Er(ξ) ≈ 0 and Br(ξ) @ Bi(ξ) ≈ 0,
so that we can write  . –Ei(ξ)sinζ,  . Ei(ξ)cosζ,

 . Br(ξ)cosζ, and  . Bi(ξ)sinζ. The oscillating
terms in formulas (47)–(50) describe waves whose
wavelengths increase as the pump wave becomes more
intense. In the case of a short bunch such that πd < aλp

(where λp = 2π/kp is the wavelength of the longitudinal
waves excited in the absence of a pump wave), the third
oscillating terms in expressions (48) and (50) are larger
than the first terms. In the case of a long bunch such that
πd > aλp, the first term in expression (50) is larger than
the third term. This is also true for a boundary region on
the inside of a long bunch (π|d/2 – ξ| > aλp/2). In the
central region of a long bunch (π|d/2 – ξ | < aλp/2), the
main contribution to formula (58) comes from the third
term.

Behind the bunch, the amplitude of the longitudinal
and transverse waves is proportional to 2sin(πd/aλp) and
becomes maximum at d = (n − 1/2)aλp (n = 1, 2, …).
Under the condition d = (aλp)n, no waves are excited
behind the bunch.

Figures 3–6, which illustrate the numerical results
obtained for induced fields from formulas (29)–(31)
and (45)–(50), reveal all of the characteristic features
described above. Consequently, a one-dimensional
bunch propagating in a plasma in the presence of a
pump wave with circular polarization excites a wave
whose wavelength increases with increasing the pump
wave intensity. The amplitude of a longitudinal wave is
weakly sensitive to the energy of the bunch electrons
(to the relativistic factor γ) and increases with the pump
wave intensity. The amplitude of the transverse wave is
larger than the amplitude of the longitudinal wave by a
factor of γ2. Thus, we can conclude that, in the range
γ @ 1, the excited wave is nearly transverse.

Now, we consider another limiting case, γ @ a∆ @ 1.
Instead of formulas (53) and (54), we obtain

(55)

(56)

Ahead of the bunch, the amplitudes of the transverse
fields are equal in order of magnitude to |%+ | ≈ |@+ | ≈

(nb/n0)(kpd)a2∆2/2 at a > 1. Inside and behind the

Ẽ0

Ẽ0
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bunch, the amplitude of waves with the frequency ωLλ+
is again much smaller than the amplitude of waves with
the frequency ωLλ–. According to (47) and (49), the
amplitude of longitudinal waves with the frequency
ωLλ– remains constant and is approximately equal to

(nb/n0)a, in which case the longitudinal field is
(kpd)a∆2/2 times weaker than the transverse field ahead
of the bunch. Inside and behind the bunch, the main
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Fig. 3. Induced longitudinal electric field vs. ξ in region I for

n0 = 1017 cm–3 (  = 1.7 × 10–3 cm), nb = 1014 cm–3, ω0 =

3.77 × 1015 s–1, γ = 50, and kpd = 20. The dotted curve was
calculated in the absence of a pump wave (E0 = 0), the

dashed curve was obtained for E0 = 1.3 × 1011 V/cm, and the

solid curve refers to E0 = 2.5 × 1011 V/cm.

kp
1–

Fig. 5. Electric field Er(ξ) vs. ξ. The parameters and nota-
tion are the same as in Fig. 4.
contributions to the expressions describing transverse
waves again come from the first and third terms. The

third terms are equal to (nb/n0)a(a∆)2, which
exceeds the longitudinal wave amplitude by a factor of
(a∆)2. Note that, in the limit of very large γ (γ @ a∆),
the transverse fields are γ-independent but depend on
the pump wave intensity. The remaining features are
the same as those described above in the limit γ ! a∆.

Ẽ0
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 vs. ξ in region I for a bunch of length

10 . The dotted curve corresponds to E0 = 6.7 × 1010 V/cm,

the dashed curve corresponds to E0 = 8.8 × 1010 V/cm, and

the solid curve corresponds to E0 = 1.09 × 1011 V/cm. The
remaining parameters are the same as in Fig. 3.
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Fig. 6. Electric field Ei(ξ) vs. ξ. The parameters and notation
are the same as in Fig. 4.
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5. CONCLUSION

We have solved the problem of the excitation of lin-
ear wake waves by a one-dimensional electron bunch
propagating in a plasma in the presence of a strong
electromagnetic wave with circular polarization. We
have derived equations describing induced electromag-
netic fields. We have shown that there are three ranges
of the parameter values of the bunch, pump wave, and
plasma in which the equations derived have different
solutions. Our analysis shows that, for certain parame-
ters in the most interesting range (region I), the ampli-
tude of the excited transverse waves grows as the
energy of the bunch electrons increases until the relativ-
istic factor of the bunch reaches a certain threshold
value γ ~ a∆, above which the transverse wave ampli-
tude becomes essentially independent of γ and grows as
the intensity and frequency of the pump wave increase.
The longitudinal field, which is shown to be weakly
sensitive to γ, grows with increasing the pump wave
intensity.

To conclude, note that, although much attention has
been devoted to one-dimensional wake fields (see, e.g.,
[1–18] and the papers cited therein), a more realistic
three-dimensional case is of greater importance from
the standpoint of practical applications. We expect that
the above characteristic features of the wake fields
driven by a one-dimensional bunch will persist in three-
dimensional bunches, in which case, however, new fea-
tures may arise, stemming from the dependence on the
radial coordinate.
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Abstract—The problem of plasma screening of thermonuclear reactions has attracted considerable scientific
interest ever since Salpeter’s seminal paper, but it is still faced with controversial statements and without any
definite conclusion. It is of relevant importance to thermonuclear reactions in dense astrophysical plasmas, for
which charge screening can substantially affect the reaction rates. Whereas Salpeter and a number of subse-
quent investigations have dealt with static screening, Carraro, Schafer, and Koonin have drawn attention to the
fact that plasma screening of thermonuclear reactions is an essentially dynamic effect. In addressing the issue
of collective plasma effects on the thermonuclear reaction rates, the first critical overview of most of the work
carried out so far is presented and the validity of the test particle approach is assessed. In contrast to previous
investigations, we base our description on the kinetic equation for nonequilibrium plasmas, which accounts for
the effects on the rates of thermonuclear reactions of both plasma fluctuations and screening and allows one to
analyze explicitly the effects of the fluctuations on the reaction rates. Such a kinetic formulation is more general
than both Salpeter’s approach and the recently developed statistical approaches and makes it possible to obtain
a more comprehensive understanding of the problem. A noticeable result of the fluctuation approach is that the
static screening, which affects both the interaction and the self-energy of the reacting nuclei, does not affect the
reaction rates, in contrast with the results obtained so far. Instead, a reduction of the thermonuclear reaction
rates is obtained as a result of the effect of plasma fluctuations related to the free self-energy of the reacting
nuclei. A simple physical explanation of the slowing down of the reaction rates is given, and the relation to the
dynamically screened test particle approach is discussed. Corrections to the reaction rates in the solar interior
are calculated numerically. It is shown that the corrections to reactions involving 8B and 7Be may exceed 100%.
The results obtained are discussed in connection with the solar neutrino problem. The range of applicability of
the approach is also discussed. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

There exist three main approaches used in the prob-
lem of thermonuclear reactions in dense plasmas: the
approach of static screening first used by Salpeter [1],
the approach of dynamic screening first used by Car-
raro et al. [2], and the general plasma fluctuation
approach used in [3].

Below, we will consider a plasma consisting of elec-
trons and different species of ions. We label different
ions by subscripts i and j and electrons by the subscript
e, whereas the subscript α is used to label all of the
plasma species (electrons plus ions). The nuclear reac-
tions between nuclei i and j will be considered, and the
corresponding reaction rate will be denoted by Rij .

The effect of static screening of nuclear reactions in
a dense plasma was first considered by Salpeter [1] and
since then extensively discussed in the literature [4–7]
(a recent review of this issue was given by Ichimaru
[8]). Dynamic screening was first considered by Car-
raro et al. [2] and subsequently discussed by Gruzinov
[9] and Brown and Sawyer [10] with results differing
from the earlier findings. Recent papers [11–14] have
questioned the issue of screening altogether. A statisti-
1063-780X/00/2610- $20.00 © 20840
cal description of nuclear reactions in a plasma was
done by Brown and Sawyer [10] and Weneser [15].
More recently, the issue of the plasma screening of
nuclear reactions was considered in [16–17]. Here, we
will analyze critically some of the above papers with
the aim of clarifying a few of the controversial points
that have accompanied the issue of thermonuclear reac-
tions in dense plasmas.

1.1. Salpeter’s Enhancement Factor

Let us recall the main arguments by Salpeter. Ther-
monuclear reactions in a dense plasma usually occur at
distances between nuclei much less than the screening
distance. For the case of Debye screening, the potential
energy of two nuclei i and j with charges Zi and Zj (in
units of the absolute value of the electron charge e) is

(1)
Uij
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with

(2)

d being the Debye screening radius accounting for all
plasma particles, whereas dα refers to the Debye
screening radius for particles of species α. In expres-
sion (2), T is the plasma temperature (in units of
energy); nα is the number density of species α; and the

electron number density ne is such that ne = ,
according to the charge neutrality. With reference to

expression (1),  is the Coulomb energy of bare

nuclei and  = ZiZje2/d describes Salpeter’s lowering
of the Coulomb barrier due to static screening. Note

that  in expression (1) is constant and does not
depend on the distance of the two nuclei. The nuclear
reaction probability of bare nuclei wij(E) depends on
the relative kinetic energy E and after averaging over

the thermal distribution f(E)dE ∝ exp(–E/T)dE
yields the rate of nuclear reaction Rij . The constancy of

 allows us to write E – Uij = E +  – . There-
fore, by replacing wij(E) with wij(E + US), we obtain that
the rate Rij , which takes into account the static screen-
ing effect, is equal to

(3)

where the replacement of variable E +   E is
made. The integration over E leading to the reaction
rate (3) contains in its integrand a product between the
steeply decreasing Maxwellian factor exp(–E/T) and

the steeply rising factor exp(–Gij/ ), the latter being
connected with the probability wij(E) with Gij =

πZiZje2 /", µij denoting the reduced nuclear
mass [8]. The product attains its maximum at

(4)

to be referred to as the Gamow energy, which yields the
typical energies at which nuclear reactions occur. For
most thermonuclear reactions, the Gamow energy (4) is
larger by a factor from 5 to 20 than the thermal energy

T of the reacting nuclei; more explicitly, /T =

14.145( µij/T6)1/3 with T6 = T/106 K. For the most

interesting case  ! , we may assume  ≈

 in the factor determining the phase volume when
integrating over the thermal distribution. Thus, we
obtain that the rate of nuclear reactions occurring in a
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vacuum should be multiplied by a constant factor to
account for static screening:

(5)

where  is the reaction rate in the absence of screen-
ing and

(6)

is referred to as Salpeter’s enhancement factor. The
enhancement can be substantial for ZiZje2/d ≈ T; how-
ever, even for ZiZje2/d ! T, it can amount to several per-
cent, which can be relevant to such a problem as neu-
trino production in nuclear reactions. Salpeter’s factor
(6) increases with the charge Z of the reacting nuclei,
which should be of relevance to the production of high
energy neutrinos with reference to the solar neutrino
problem.

1.2. Static versus Dynamic Screening

Salpeter’s results, which rest on the assumption that
the screening of the nuclear charge is due to static
Debye screening, were later disputed on the basis that
the screening of nuclei in nuclear reactions cannot be
static, since the reacting nuclei move with velocities
larger than the ion thermal velocity. On the other hand,
investigations of plasma screening based on a statistical
approach confirmed Salpeter’s results. Let us analyze
these two opposing findings.

We will consider here only nonrelativistic particles
for which the particle field in a medium is determined
mainly by the longitudinal dielectric permittivity εk, ω,
where k is the wave vector and ω is the frequency.

For reference later on, for a thermal collisionless
plasma, the longitudinal dielectric permittivity is [18]

(7)

where dα is the Debye radius of the particles of species
α [see (2)] and

(8)

is the plasma dispersion function. The collisionless
dielectric permittivity (7) will be used here for fluctua-
tions with frequencies much higher than the binary
plasma particle collision frequency. Of interest are the
asymptotic expressions
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which is valid to the lowest order in ω /k ! 1,
and

(10)

which is valid to lowest order in (ω /k)2 @ 1
(the cold plasma limit).

From the test particle approach, it is well known that
a charge moving in a plasma is dynamically screened;
i.e., its Fourier transformed potential is inversely pro-
portional to 1/εk,k · v, the relevant dielectric function
being evaluated at a frequency equal to k · v, which is
the Doppler shifted frequency of the field of a moving
particle [18]. As a consequence, a particle moving with
a velocity larger than the thermal velocity of the corre-
sponding particle species in the system tends to
“undress” as its velocity increases. The screening will
become negligible for particles moving with velocities
much higher than the corresponding thermal velocity.
With reference to the reacting nuclei, whose typical
energy is the Gamow energy (4), the characteristic
velocities are higher than the ion thermal velocity but
lower than the electron thermal velocity, so that the
screening by plasma ions should be negligible, whereas
the screening by electrons should be almost static. In
this case, Salpeter’s enhancement factor, which
accounts for the contribution to the screening from both
electrons and ions, should be reduced. Calculations
along these lines were first performed by Carraro et al.
[2], who, however, did not consider the self-energy of
the reacting nuclei.

Let us discuss this point in more detail. In terms of
the space-time Fourier transform, the polarization
potential of a test nuclei of charge Zi moving with
velocity v has the standard form [18]

(11)

such that the corresponding space-time potential

(12)

is

(13)

which, in the static limit (v = 0), leads to the potential
used by Salpeter.

Indeed, for |k · v | ! ω, which corresponds to the
static limit, which, in particular, applies to a particle at
rest, one can approximate δ(ω – k · v) ≈ δ(ω) in expres-
sion (11), so that, to the lowest order in |k · v|/ω ! 1,
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expression (13) reduces to the spherically symmetric
potential

(14)

the last equality being obtained by using the expression
for the static (ω = 0) dielectric permittivity, εk, 0 = 1 +
(kd)–2 [cf. (9)]. Salpeter’s result is based just on the
static potential (14) [cf. Section 1.1].

To account for the finite nuclei velocity, one has to
refer to the polarization potential (13) instead of (14).
In relation to the nuclear reaction between the nuclei i
and j, it is necessary to know the corresponding polar-
ization potential energy

(15)

where

(16)

is the charge density of the nuclei i and j, whose instan-
taneous positions at time t are ri(t) and rj(t), respec-
tively. The notation (i  j) indicates that one has to
take the same as the preceding term with the index i
replaced with j. Using expression (11) for two test ions
yields

(17)

in the case of motion along straight trajectories, e.g.,
ri(t) = ri(0) + vit. After substituting expression (17) into
(15), we obtain that the result consists of two contribu-
tions: the first one is independent of the relative dis-
tance of the two nuclei and is referred to as the self-

energy  and the other depends on the relative dis-
tance between the two nuclei and is equal to the inter-

action energy . Explicitly, we have
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where  [given by expression (20) and propor-
tional to ZiZj] is the polarization interaction energy of
two dynamically screened nuclei and the self-energy

 [given by (19)] accounts for the corresponding
self-energies of two nuclei also dynamically screened,

the latter being proportional to  and . In the static

limit,  reduces to Salpeter’s energy  [cf. (1)].
After proceeding in the same way as Salpeter [1], we
obtain that the effect on the nuclear reactions of the
dynamic screening is described by the enhancement
factor [2]

(21)

where the brackets 〈…〉  denote an average with respect
to both the kinetic energy of the center of mass and the
energy of the relative motion of the nuclei. A numerical
evaluation of the dynamic screening factor sij occurring
in expression (21) was carried out for hydrogen chain
reactions in the solar interior, with the result that the
enhancement of the thermonuclear reactions rates can
be appreciably smaller (sij ≤ 0.82) than that obtained in
the limit of static screening [2].

One should note that expression (19) for the self-
energy is valid either for nondispersive media or for
nuclei at rest. For moving nuclei, there will appear an
additional term proportional to the derivative of the
dielectric permittivity with respect to frequency, the
frequency being determined by the same dynamic
screening relation ω = k · v. Such a result will be shown
below when discussing the self-energy problem in the
present context. Here, it is sufficient to note that only
the self-energy (19) [rather than the interaction energy
(20)] is modified by dispersion. The fact that expression
(19) does not properly account for the dispersion of the
medium can be seen from the relation

(22)

which is the same as relation (15), which has been the
starting equation for the calculation of the energy.
However, relation (22) does not take into account the
dispersion of the dielectric function (dependence on ω
and k). In fact, it is well known that, in dispersive
media, the expression for the energy contains
(∂(ωε)/∂ω) instead of ε [19].

The issue of the self-energy of the reacting nuclei
has been of particular concern in the evaluation of ther-
monuclear reaction rates. In [11], on using relation
(15), where, however, the charge density ρ(r, t) is
replaced by the polarization charge density (in terms of
the Fourier transform, this amounts to ρk, ω 
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[(1/εk, ω) – 1]ρk, ω), one obtains an expression that is
referred to as “self-energy,” although it is dependent on
the relative distance of the nuclei, in contrast with rela-
tion (19), where such a dependence is absent. Then, the
two reacting nuclei acquire additional energy ZiZje2/2d,
with the result being that Salpeter’s enhancement factor
(6) becomes exp(3ZiZje2/2Td) [11]. Such a result was
rejected in [12] on the basis that the additional energy
ZiZje2/2d is not related to the interaction energy of the
two nuclei and, for both the case of thermodynamic
equilibrium (as considered in [12]) and nuclei at rest,
should be stored in a heat bath.

From the foregoing consideration, one should refer
to expressions (15)–(20), which account for the total
electrostatic energy, as shown in [19], the polarization
energy in particular being taken into account through
the dielectric permittivity.

The issue of the particle self-energy in dense ther-
mal plasmas was extensively discussed in [15] on the
basis of a statistical approach. A question that needs to
be considered is whether the self-energy can affect the
nuclear reaction rates. Note that, in general, the self-
energy is velocity dependent. Although it is not part of
the interaction energy, it should be added to the total
energy. The total velocity dependent energy will consist
of both the kinetic energy and self-energy. It is possible
to divide the total velocity dependent energy of two
interacting nuclei into the energy of the center of mass
and the energy of relative motion only if the self-energy
can be neglected.

We will prove later that the part of the self-energy
related to static screening cancels completely from the
rate of nuclear reactions.

1.3. Arguments against Dynamic Screening

The issue of dynamic screening of thermonuclear
reactions has been a subject of debate. Gruzinov [9]
has pointed out that the test particle approach seems to
be in contradiction with the fact that in the Gibbs dis-
tribution kinetic and electrostatic energy factorize

according to ∝ exp(– /2T)exp(– Zje2/rT).
Because of this factorization, Gruzinov claims that the
interaction energy cannot depend on the particle veloc-
ity and there should be no dynamic screening. This
statement, as well as the explicit calculations of [9],
requires however to be examined in detail. First of all,
one can give an example for which the foregoing fac-
torization takes place and the particles are nevertheless
dynamically screened. This is the case of binary parti-
cle collisions in a plasma, for which it is well known
that the particles collide being dynamically screened
[18, 20]. The dynamic screening exists for both test par-
ticles and any particle collision, but, in the case of sta-
tistical equilibrium, one cannot recognize it due to a
balance of direct and inverse processes.

miv i
2

i∑ Zii j,∑
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According to [9], screening is purely static; it is
assumed that the interacting nuclei are in an electro-
static fluctuating potential δφ(r) produced by all other
particles, such a potential being independent of particle
velocities. One can thus take, as in [9], the distribution
function of nuclei in the form fi, j ∝  exp(–Zi, jeφ(r)/T).
According to [9], the reaction rate Rij should be propor-
tional to the averaged product 〈 fi fj〉 , while in the
absence of screening, it is proportional to 〈 fi〉〈 fj〉 . There-
fore,

(23)

so that, in the limit Zieφ/T ! 1, the parameter determin-
ing the enhancement of the rate of thermonuclear reac-
tions takes the form

(24)

Note that expression (23) is such that there is a can-

cellation of the terms ∝  and ∝ ; i.e., there is no
contribution to rate (24) from the self-energy of the
reacting nuclei. The plasma fluctuation theory is then
used for the expression of the square of the fluctuating
potential [9]

(25)

which, along with expression (24), yields Salpeter’s
weak screening result:

(26)

The main objection to Gruzinov’s procedure is the
use of relation (25), since such a result of plasma fluc-
tuation theory is specific to temporal fluctuations and
dynamic screening, whereas here the fluctuating poten-
tial δφ(r) depends on space coordinate r only. More
explicitly, in plasma fluctuation theory, one is dealing
with quantities dependent on frequencies and wave
vectors, namely,

(27)
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Result (25) of [9] requires that

(28)

the second of expressions (28) being, however, not
available for time-independent fluctuations. Note that it
is only the integration with respect to the frequency of
the frequency dependent fluctuations that leads to
expression (25) containing the static dielectric permit-
tivity εk, 0. In such an integration, all of the frequencies
contribute, including high frequencies for which no
adiabatic approximation can be used; i.e., the fluctuat-
ing potential cannot be considered as only depending
on r. The reason why it is the static dielectric permittiv-
ity that enters expression (25) has to do with the ana-
lytic properties of the dielectric permittivity itself,
which has no poles in the upper part of the complex ω
plane, so that the ω-integration in the second of expres-
sions (28) can be performed by taking into account only
the pole ω = 0. The time (and, thus, frequency) depen-
dence of the fluctuations is crucial. Another reason for
the existence of a frequency dependence in the particle
fluctuations is that Salpeter’s result has to do with the
finite plasma temperature, so that the particles move
according to their thermal distributions, with the conse-
quence that the fluctuations are necessarily frequency
dependent. Furthermore, in the context of the plasma
fluctuation theory, the change of the particle distribu-
tion function is found to be

(29)

for which the contribution from all frequencies is
included. Instead, in [9], it is simply δf ∝ δφ (r). One
should also note that, whereas Salpeter’s result [1]
stems from the effect on the reaction probability of the
static screening of the reacting nuclei, Gruzinov’s result
[9] is obtained from considering (incorrectly) the
change of the nuclear distributions. One might expect
that the change of both the nuclei distributions and the
reaction probability and possibly cross-effects thereof
have to be accounted for.

1.4. Statistical versus Kinetic Approach

The use of a statistical approach seems to be most
appropriate to describe the influence on the reaction
rates of a plasma in thermal equilibrium. In this respect,
an extensive analysis was carried out by Brown and
Sawyer [10] on the basis of general quantum statistical
mechanics to find out whether the screening of thermo-
nuclear reactions is dynamic or static. Quantum statis-
tical mechanics was adopted presumably because the
process of tunneling through the Coulomb barrier rele-
vant to nuclear reactions is a quantum effect. The result
of [10] is that the reaction rate is independent of nuclei

δφ r( )( )2〈 〉 kd

2π( )3
------------- δφ( )2〈 〉 k,∫=

δφ( )2〈 〉 k
ωd

2π
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velocities and, thus, screening should be static. Similar
results were obtained by Ichimaru [8] and Weneser
[15]. Here again, one wonders how these results can be
reconciled with the test particle results, according to
which the static screening for fast ions does not appear
to be physical.

One can then wonder whether dynamic screening
can be obtained by a statistical approach. In a recent
paper [17], it is claimed that the potential felt by a test
particle differs from that felt by a particle in statistical
equilibrium. In principle, this should be correct because
a test particle has a definite velocity and, as such, it
should be subjected to a field that is different from that
seen by an average thermal particle. On the other hand,
a test particle can itself be one of the thermal particles.
According to [17], the average potential felt by all par-
ticles is independent of the particle kinetic energy only
in complete statistical equilibrium, which can indeed
be expected on the basis of the detailed balance in sta-
tistical equilibrium, according to which any direct pro-
cess is balanced by the corresponding inverse process
and the probabilities of the direct and inverse processes
are the same. In plasma physics, this is well known for
the Coulomb collision integral, which vanishes for
thermal particle distributions, whereas it accounts for
dynamic screening of the colliding particles for any
deviation from thermal equilibrium and the test parti-
cles are always dynamically screened when they inter-
act with other particles by Coulomb forces. The two
reacting nuclei play the same role as colliding test par-
ticles.

One should also note that the statistical approach
has certain subtle aspects that one should worry about.
First of all, one is dealing with the rates of nuclear reac-
tions and, in this sense, the system considered is not in
total equilibrium. In particular, with reference to
nuclear reactions in which neutrinos are produced in
either a single reaction or in a reaction which is a part
of a cycle of nuclear processes, the system is optically
thin, so that the neutrinos freely leave the system, with
the result that no full thermal equilibrium exists. In fact,
the inverse process for which the neutrinos are
absorbed is not taken into account. Thus, what is of rel-
evance is the rate of the reactions, which requires, in
general, that the kinetics of the process be considered
under conditions for which the direct and inverse pro-
cesses are not balanced. Instead, in making use of a sta-
tistical approach, one might account as well for some of
the inverse processes, even if one can argue that the
matrix element is considered for the direct process
rather than the inverse one. A proper description of the
neutrinos' processes requires that only the direct (non-
absorbing) processes are considered, which is pre-
cluded within the frame of a statistical approach.

A second question concerns the “identification” of
the reacting nuclei. In the statistical approach [10, 15],
the reacting nuclei are singled out from the background
plasma particles. Indeed, one should consider the react-
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ing nuclei themselves as plasma particles, often
referred to as plasma particle excitations [20, 21]. The
reacting nuclei in a plasma are different from free
nuclei and should be considered as plasma nuclei, just
as the electrons in a solid are different from free elec-
trons due to the electron–lattice interaction, thereby
being electron excitations. In a statistical approach, one
should account for these excitations in the form of an
operator acting on the nuclei and the thermal distribu-
tions should refer to the excitations, since one can
envisage an equilibrium state only for them. Once the
reacting nuclei are considered plasma particles, the sta-
tistical approach yields the results obtained below in
the frame of a general kinetic approach based on the
plasma fluctuation description.

To further clarify the issue of dynamically screened
charges, let us recall, based on the kinetic description of
nonequilibrium systems, a few well-known results from
both plasma physics [18, 20] and the physics of particle
radiation and scattering of waves in plasmas [21].

A problem that has been considered for quite a long
time concerns the Coulomb interactions of plasma par-
ticles and the corresponding kinetic description in
terms of the Landau–Balescu collision integral. Such
an integral is obtained for arbitrary nonequilibrium par-
ticle distributions averaged over plasma fluctuations
and describes the interactions of dynamically screened
plasma particles [18, 20]. The Landau–Balescu colli-
sion integral, which can also be obtained by a test par-
ticle approach, is one of the simplest examples of the
relevance of dynamically screened plasma particles.
There exists a rigid requirement that the test-particle
approach leads to results coinciding with those
obtained in the kinetic description and this requirement
is fulfilled for the Landau–Balescu collision integral. In
statistical equilibrium, the Landau–Balescu collision
integral is equal to zero, which means that the Max-
wellian distribution is formed only for dynamically
screened plasma particles.

The transition radiation occurring at a plasma–vac-
uum boundary [21] is yet another process related to the
screening of a charge self-field, which is inherent in a
bare particle (in vacuum) becoming a dressed plasma
particle. Similar to the process of transition radiation, a
nucleus produced through a nuclear reaction in a
plasma radiates as it acquires its polarization cloud on
becoming a plasma particle. The radiation is due to
rearrangement of the particle self-field. For nonrelativ-
istic particles, the waves emitted in the process of par-
ticle self-field formation are mainly plasma waves.

A further process for which the notion of dressed
plasma particles is important is the transition scattering
of waves by plasma ions [21], the scattered wave being
due to the oscillation of the ion screening cloud. In this
process, the plasma ion scatters as a whole in such a
way that the ion polarization cloud does not receive
energy or momentum as a result of the conservation of
energy and momentum in scattering.
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In view of the limitations inherent in a statistical
approach to the treatment of the nuclear reactions in a
plasma, as mentioned above, it appears highly desirable
to adopt a kinetic description, which permits one to
deal with nonequilibrium particle distributions. Such a
kinetic approach can rely on concepts and procedures
already developed in the kinetic theory of plasmas,
such as the notion of dressed plasma particles.

1.5. Fixed Polarization Charge Approach versus 
Fluctuation Approach

Salpeter’s approach, as well as a number of subse-
quent approaches, is based on the assumption that the
screening of the reacting nuclei is due to charges that
are fixed around the nuclei, thus forming a polarization
cloud that can be described by using Poisson’s equa-
tion. One can find a detailed description taking into
account the correlations between the polarization
charges in the review by Ichimaru [8]. Recently, Gruz-
inov and Bahcall [16] evaluated nonlinear corrections
to static screening by solving the quantum density
matrix equation for the electron density in the vicinity
of the reacting nuclei, the quantum approach being
adopted for the electrons to account for the quantum
uncertainty principle. The numerical solution of the
nonlinear Poisson–Boltzmann equation is then used as
a screened potential to calculate the enhancement of
reaction rates; the result obtained agrees (within small
uncertainties) with Salpeter’s weak screening formula.
Such a treatment again rests on the assumption that the
screening process is static. The calculation of the elec-
tron density in the vicinity of the reacting nuclei was
performed using a quantum-diffusion equation applica-
ble in the case of Boltzmann statistics [22], as well as
Fermi–Dirac and Maxwell–Boltzmann statistics [23].
With particular reference to the process of nuclear elec-
tron capture, it is again concluded that Salpeter’s
enhancement factor provides the leading corrections.

In contrast with the assumption of a fixed polariza-
tion cloud, the dressed plasma particles acquire their
polarization clouds through plasma fluctuations, which
thus play an important role in the description of dressed
plasma particles in equilibrium as well as nonequilib-
rium plasmas. The effects of plasma fluctuations on
nuclear reactions were investigated in [3].

With reference to the nuclear reaction rates in a fluc-
tuating plasma, it is important to take into account that
the reactions occur on time scales much shorter than
those typical for the formation of nuclei screening
clouds by fluctuations. Thus, the screening clouds
undergo fluctuations in contrast with Salpeter’s
assumption of a fixed screening charge, the characteris-
tic times of these fluctuations being related to the time
taken by the background plasma particles to cross a
Debye distance. As a result of the fluctuating nature of
the plasma screening, the screening of the almost
instantaneous nuclear reactions can be positive
(enhancement of the reaction rate) or negative (slowing
the reaction rate), so that the averaged (with respect to
fluctuations) effect is likely to differ from the static or
dynamic Debye screening.

The fluctuations relevant to the problem under con-
sideration are due to plasma particle collisions, the cor-
responding frequency being quite high for a dense
plasma (e.g., it is on the order of 1016 s–1 for the solar
interior). With respect to the typical collision fre-
quency, the nuclear reaction rates are smaller by many
orders of magnitude. With reference to the nuclear
reactions, along with the time of crossing the Coulomb
barrier, which is very short as compared to the charac-
teristic time scale of the fluctuations, there is the time
scale related to the rates of nuclear reactions measuring
how often the nuclei crosses the barrier, which is rather
long as compared to the time scale of the fluctuations.
As consequence of such a time ordering [3], the plasma
effects on the nuclear reaction rates can be calculated
by using the present fluctuation theory of nonequilib-
rium plasmas, the relevant fluctuations being the same
as the ones due to the binary plasma collisions of
dynamically screened plasma particles [3]. One can
thus attribute the changes in nuclear reactions by
plasma fluctuations to the effect of binary collisions.

According to [3], the plasma fluctuations in the
absence of nuclear reactions are responsible for both
the screening self-energy and the interaction energy.
When the nuclei are far apart, the fluctuations create the
self-energy cloud of each nuclei; on the other hand,
when the nuclei approach close to each other and
undergo nuclear reactions, the fluctuations responsible
for the screening of the self-energy and the screening of
interactions are not distinguishable and should there-
fore be treated together. This effect substantially
changes the nuclear reaction rates [3].

1.6. Outline of the Content and Description
of the Fluctuation Approach

The aim of this paper is to calculate the nuclear reac-
tion rates in dense plasmas on the basis of the general
fluctuation approach to nonequilibrium plasmas.

In Section 2, we recall the derivation of the binary
collision integral for a plasma, because we will need the
expressions for the plasma fluctuations in the absence
of nuclear reactions to generalize the fluctuation
approach to account for the nuclear reactions and to
evaluate the influence of the fluctuations on the nuclear
reaction rates. In a certain approximation, one can treat
the effects of nuclear reactions on fluctuations, assum-
ing that the reaction rates are not changed by fluctua-
tions, and the corresponding inverse effects (namely,
the influence of fluctuations on nuclear reaction rates),
assuming that the fluctuations are not changed by
nuclear reactions. In this limit, one refers equivalently
to the change of nuclear reactions by fluctuations that
produce the binary collisions or to the influence of col-
lisions on nuclear reactions. In fact, such an approach
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000



RATES OF THERMONUCLEAR REACTIONS IN DENSE PLASMAS 847
includes both the polarization effect and the effect of
fluctuations responsible for the binary collisions, the
two effects being treated together.

In Section 3, we introduce the microscopic proba-
bility of a nuclear reaction between the nuclei i and j,
taking into account the effect of an external fluctuating
potential, but neglecting the interaction of nuclei with
any other particle, and generalize the usual approach by
averaging the relevant kinetic equations with respect to
fluctuations. The expression for the reaction rates of
dressed plasma nuclei is finally obtained by expanding
the probability in powers of the fluctuating potential.
Following [3], we will show that the reaction rates with
the effect of the fluctuations responsible for the binary
collisions accounted for can be obtained for the case
where the rates of nuclear reactions are much less than
the frequency of the fluctuating field.

Section 4 is devoted to the self-energy issue and
comprises the evaluation of the free energy related to
the self-energy and the renormalization procedure
applied to the equations for the nuclear reaction rates.
The physical meaning of renormalization and the cor-
responding relation to the self-energy of the nuclei are
discussed. Here, one is dealing with effects not specific
to nuclear reactions, the general properties of dressed
plasma particles are addressed, and the concept of
dressed particles is emphasized. Renormalization is a
necessary element in the calculation of the nuclear
reaction rates, and the results of this section are used in
subsequent sections.

In Section 5, the quantum description of tunneling is
outlined and the corresponding probability is obtained
in the presence of arbitrary fluctuating fields whose
space and time variations occur over distances and time
intervals significantly larger than the nuclear size and
the crossing time of the potential barrier, respectively.
With the expressions thus obtained, one can both assess
the validity of the expansions in the fluctuating field
and find the averaged kinetic equations that take into
account the collective effects of the plasma particles on
the two reacting nuclei.

In Section 6, we consider the specific case of a ther-
mal plasma with thermal distributions of plasma nuclei
and find that there is complete cancellation of Salpeter-
type terms, connected with the static screening, as well
as the terms related to the static self-energy [3]. Such a
result stems from the interference of the fluctuations
responsible for the screening effects on the interactions
between the nuclei and the fluctuations responsible for
the self-energy of each interacting nuclei. The nonzero
contributions are related to the dynamically screened
free energy of the two nuclei, in accordance with the
test particle approach. The net effect is of the opposite
sign as compared to Salpeter’s result; i.e., the rates of
nuclear reactions in plasmas are slower than the corre-
sponding rates in vacuum, the slowing down being the
greater, the higher are the nuclear charges. A simple
physical explanation of the Z-dependence is given,
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which has to do with the decrease of the free energy
related to the dynamically screened part of self-energy
as the nuclei velocities increase to match the higher
Gamow energy for higher Z [3].

In Section 7, numerical results for the nuclear reac-
tions relevant to the solar interior are discussed in the
connection with the solar neutrino problem.

In Section 8, issues concerning nonlinear fluctua-
tions, the strong influence of fluctuations on the rate of
nuclear reactions, the reaction rate in nonequilibrium
and turbulent plasmas, and emission of plasma and
acoustic waves during the nuclear reactions are
addressed.

2. BINARY PLASMA PARTICLE COLLISIONS

The problem of binary Coulomb collisions in plas-
mas has been addressed on the basis of sophisticated
correlation function methods. In this respect, early
work was done by Bogolyubov [24] and Klimontovich
[25], the topic being one of the most developed fields in
plasma physics. Here, we outline the derivation of the
plasma collision integral given by one of the authors in
[20] with the aim of describing the dynamic screening
in binary collisions, as well as including nuclear colli-
sions. In the context of this section, we make a few gen-
eral physical statements that are rarely emphasized in
connection with the issue of binary plasma collisions.
One such statement is that the correct procedure of get-
ting a proper description of both collective and polar-
ization effects in binary collisions is based on averag-
ing over fluctuations. The generalization of the fluctua-
tion approach developed for binary collisions is used to
evaluate the influence on the rates of nuclear reactions
of plasma fluctuations related to binary collisions.

2.1. Derivation of the Binary Coulomb Collision 
Integral with Dynamic Screening

Following the formalism of the kinetic theory of
plasma fluctuations [18, 20], let us write the distribu-
tion function (e.g., for nuclei of species i) as

(30)

such that

(31)

is the homogeneous distribution function of dressed
particles, i.e., particles surrounded by their screening
cloud. Here, the brackets 〈…〉  denote the average with
respect to fluctuations and δfi is the fluctuating part of
the distribution function, such that 〈δfi〉  = 0. The distri-
bution function fi is such that

(32)

ni being the number density of particles of species i.

f i r p t, ,( ) Φi p t,( ) δ f i r p t, ,( ),+=
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The kinetic equation for fi is

(33)

the only effect of the fluctuating potential δφ being con-
sidered. By averaging Eq. (33) and afterwards subtract-
ing the averaged equation from Eq. (33), we obtain the
following two equations:

(34)

(35)

In Eq. (35), only the terms linear in fluctuations are
kept. Assuming that the time variations of the averaged
part of the distribution function are much slower than
those of the fluctuating part, one obtains the solution of
Eq. (35) in terms of the space-time Fourier transform

(36)

On the right-hand side of Eq. (36), the first term is
due to the free particle motion, the autocorrelation
function of which is [20]

(37)

and the second term is related to the electrostatic parti-
cle interaction, the corresponding fluctuating potential
being obtained by using Poisson’s equation

(38)

In expression (38), both the contributions of elec-
trons and ions are taken into account. The right-hand
side of relation (38) contains the fluctuating distribu-
tions of noninteracting particles, whereas the contribu-
tions from the particle interactions are accounted for
through the dielectric permittivity εk, ω:

(39)

For the case where Φe and Φi are Maxwellian,
expression (39) reduces to formula (7) with (8).

∂ f i

∂t
------- v

∂ f i

∂r
-------⋅ Zie —δφ( )

∂ f i

∂p
-------⋅–+ 0,=

∂Φi

∂t
--------- Zie p∂

∂ —δφ( )δ f i〈 〉 ,⋅=

∂δ f i

∂t
----------- v

∂δ f i

∂r
-----------⋅ Zie —δφ( )

∂Φi

∂p
---------⋅–+ 0.=

δ f i k ω, , p( ) δ f i k ω, ,
0( ) p( )

Zieδφk ω,

ω k v⋅– i0+
-------------------------------- k

∂Φi

∂p
---------⋅ 

  .–=

δ f i k ω, ,
0 p( )δ f j k' ω', ,

0 p'( )〈 〉
=  Φi p( )δi j, δ p p'–( )δ k k'+( )δ ω ω'+( )δ ω k v⋅–( ),

δφk ω,
4πe

k
2εk ω,

-------------- pd

2π( )3
-------------δ f e k ω, ,

0( ) p( ) -∫–




=

+ Zi
pd

2π( )3
-------------δ f i k ω, ,

0( ) p( )∫
i

∑ 



.

εk ω, 1
4πe

2

k
2

----------- pd

2π( )3
------------- 1

ω k v⋅– i0+
-------------------------------- k

∂Φe

∂p
---------⋅ 

  -----∫+=

+ Zi
2 pd

2π( )3
------------- 1

ω k v⋅– i0+
-------------------------------- k

∂Φi

∂p
---------⋅ 

 ∫
i

∑ .
In expressions (36) and (39), the denominator (ω –
k · v + i0) accounts for the causality principle and
should be dealt with according to (the Plemelj formula)

(40)

where P denotes the principal value. In view of rela-
tion (40), the imaginary part of the dielectric permittiv-
ity (39) is

(41)

Imεk, ω 

(42)

where expression (42) refers to a thermal plasma. The
right-hand side of Eq. (34) is related to the collision inte-
gral; introducing expressions (36)–(38) into Eq. (34)
yields the Landau–Balescu form of the collision inte-
gral [18, 20]

(43)

with

(44)

This integral describes the Coulomb collisions of
dynamically screened particles, the screening being
accounted for by the dielectric permittivity εk, k · v. From
this equation, one can obtain the expression for the
change of the momentum of particle i per unit time in
the form of an expression averaged with respect to the
particle distribution and referred to as an average force
acting on particle i. By comparing this force with the
force acting on a test particle moving in a medium with
the dielectric permittivity εk, ω, one finds that these two
forces are equal. This coincidence can be considered as
a check on the theory of the collision integral valid for
any nonequilibrium particle distribution, including the
distribution corresponding to an ensemble of particles
plus the test particle. The same statements should be
true for nuclear reaction collisions in plasmas if they
are described for the general case of nonequilibrium
particle distributions. The dynamic screening described
by expression (44) occurs for all plasma particles and
this screening is due to fluctuations. The particles
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described by expression (44) are the dressed plasma
particles and their distribution is Maxwellian for equi-
librium states, for which integral (44) vanishes. The
undressed particles cannot be in an equilibrium state,
and the corresponding distribution function varies in
time until all plasma particles become dressed particles
and reach the thermal distribution.

2.2. A Few Correlations of Fluctuations Accounting 
for Screening

The use of expressions (37) and (38) yields the auto-
correlation function of the fluctuating potential,

(45)

which accounts for the effect of the dynamically
screened particles through the dielectric permittivity
evaluated at a frequency equal to k · v. For the specific
case of a thermal plasma, for which relation (42) holds,
expression (45) takes the form

(46)

in agreement with the fluctuation–dissipation theorem.
To carry out integration over ω in expression (46), let
us first note the identity

(47)

The first term on the right-hand side of identity (47) has
no poles in the upper part of the complex ω plane. On
account of its proportionality to (1/εk, ω – 1) and the
analytical properties of dielectric permittivity for a
thermal plasma, this term makes no contribution to
integration over ω in expression (46). Thus, we obtain

(48)

We note that result (48) can also be obtained by
applying the Kramers–Kronig relation [18, 19]:

(49)

As already discussed in Section 1.3, result (48)
accounts for the particle dynamic screening, notwith-
standing the presence of the static dielectric permittiv-
ity εk, 0.
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2π( )6
-------------------- 1

k
4 εk k v⋅,

2
------------------------∫=

× Φe p( ) Zi
2Φi p( )

i

∑+
 
 
 

δ ω k v⋅–( ),

δφ( )2〈 〉 T

2π3
-------- ω kdd

ωk
2

-------------Im
1

εk ω,
--------- 

 ∫–=

1
ω
----Im

1
εk ω,
--------- 

  Im
1

ω i0+
--------------- 1

εk ω,
--------- 1– 

 =

+ πδ ω( )Re 1
εk ω,
--------- 1– .

δφ2〈 〉 T

2π2
-------- kd

k
2

------ 1
εk 0,
-------- 1– 

  .∫–=

P ω 1
ω ω'–
---------------Im

1
εk ω,
--------- 

 d

∞–

∞

∫ π Re
1

εk ω',
---------- 

  1– .=
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
As for the autocorrelation function of the fluctuating
part of the distribution function, using the same proce-
dure as before yields

(50)

By means of simple algebra, the expression within the
square brackets divided by ω is converted to

(51)

Again, the first term does not contribute to integra-
tion over ω due to the analytical properties of the
dielectric permittivity [in contrast to identity (47), we
do not need to subtract 1] and expression (50) reduces
to

(52)

Proceeding in the same way, for the correlation
between the fluctuating particle distribution and the
fluctuating potential, one obtains

(53)

For the case where we include only the polarization
fluctuating potential, we should substitute 1/εk, 0 with
(1/εk, 0 – 1) in formulas (52) and (53), whereas expres-
sion (48) remains unchanged.

3. FLUCTUATION-AVERAGED EQUATIONS 
FOR NUCLEAR REACTIONS IN PLASMAS

Let us now establish the equations governing the
nuclear reactions in a nonequilibrium plasma with par-
ticular attention paid to the effects caused by plasma
fluctuations. Of relevance to the nuclear reaction
between the nuclei i and j is the tunneling probability
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wij(p, p'), which is the probability relative to tunneling
through the Coulomb barrier of nuclei i in the reaction
with nuclei j and depends on both the momentum p of
the particle i and the momentum p' of the particle j,
both momenta being referred to the laboratory frame.
The probability wji(p', p), entering the equation for
nuclei j, is the corresponding tunneling probability of
nuclei j. In the general case, wij(p, p') ≠ wji(p', p) in the
presence of fluctuations of the potential barrier, the
fluctuations being induced by the fluctuating potential.
We also note that, although the effects of the fluctua-
tions of the potential barrier due to the presence of an
external fluctuating potential are accounted for in wij

and wji, neither the polarization nor the self-energy of
the nuclei (both due to the presence of the plasma) are
included. These latter effects need to be calculated sep-
arately. The probabilities wij and wji describe the tunnel-
ing in the absence of plasma particles but in the pres-
ence of the fluctuating potential. The total reaction rate
should be obtained as sum of these two probabilities
multiplied by the product of the nuclei distribution
functions and then integrated over the phase volume. In
the absence of fluctuations, the average distributions Φi

and Φj in a thermal plasma are just the thermal distribu-
tions. Denoting the tunneling probabilities in the

absence of fluctuations with (p, p') and (p', p),

the corresponding reaction rate  for bare nuclei is

(54)

where the superscript (M) in the distribution functions
means that they are Maxwellian (thermal). In terms of
the total probability

(55)

the reaction rate (54) can be expressed as

(56)

The effects of fluctuations will be assumed to be
weak, the same as for the weak screening approxima-
tion in Salpeter’s approach, which permits one to
expand the probability in powers of δφ:

(57)

(and, analogously, for wji(p', p)), where, in the general

case,  and  are operators. One should recall
that the probability of a nuclear reaction is, in general,
very small, which means that the tunneling occurs

wij
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2( ) p p',( ) δφ( )2

ŵ
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ŵ
2( )
rarely, but the time of the tunneling is very fast, so that,
during the tunneling, the fluctuation potential, as well
as the positions of the interacting nuclei, does not
change appreciably. This will allow us to find explicitly

the expressions for  and .

The kinetic equation governing the distribution
function of nuclei i,

(58)

is

(59)

The corresponding equation for fj(p') is given by
Eq. (59) with i  j and p  p'. The right-hand side
of Eq. (59) accounts for the nuclear reactions [cf. (33)].

By proceeding in the same way as for the derivation
of the collision integral in Section 2.1 and taking into
account expansion (57), one obtains from Eq. (59) the
following two equations:

(60)

(61)

and similar equations for Φj and δfj. These equations gen-
eralize the corresponding equations for the binary plasma
collisions to include the effects of nuclear reactions.

To proceed further, we note that the most interesting
case is that for which any collisional process is much
faster than the nuclear reaction, so that one can deal
with the fluctuations by a perturbative method, taking
the effect of binary collision fluctuations as a zero-
order effect:

(62)

where the superscripts C and N denote the effects due
to Coulomb collisions and nuclear reactions, respec-
tively. From Eq. (61), one then obtains an equation for
δf C, which, to lowest order in |δfN/δfC| ! 1, is the same
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as Eq. (35); δfC is thus known and plays the role of a
source in the equation for δf N.
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For completeness, we give the expression for δf(N),
although it is really needed for the evaluation of the
change of the rate of binary collisions by nuclear reactions
and not for the rate of nuclear reactions (as shown below):
(63)

δ f i k ω, ,
N( ) p( )

Zie
ω k v⋅– i0+
--------------------------------δφk ω,

N( ) k
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Using this expression along with Poisson’s equa-
tion, one finds the change of the fluctuating potential by
the nuclear reactions; substituting it into expression
(63) yields the effect of the nuclear reactions on the
fluctuations, through both the probability and the fluc-
tuations responsible for Coulomb collisions.

In the linear approximation for fluctuations related to
nuclear reactions, the collision integral on the right-hand
side of the averaged Eq. (60) can be written in the form

(64)

where  is the Coulomb collision integral as given

by expression (43) and  is

(65)

All the terms in (65) except for the first one are
obtained in a straightforward manner. The first term is
proportional to the time derivative of the averaged dis-
tribution function and is new with respect to the binary
collision integral. In the derivation of the collision inte-
gral (44), we neglect the contribution from the time
derivative of the averaged distribution function on the
assumption that the corresponding time variation is
much slower than the characteristic time of the fluctua-
tions. To keep such a term would have been a higher
(second) order correction to the collision integral. In
contrast, in (65), the term proportional to the time
derivative of the average distribution is accounted for,
because here we are interested in the rates of the
nuclear reactions; i.e., the nuclear reaction time depen-
dences are relevant. We will show that this term is of the
same order as the other terms occurring in (65). The
new term is to be referred to as the distribution function
renormalization term (hereafter, the superscript R
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stands for renormalization). The justification for such a
notation is related to the fact that, by moving this term
to the left-hand side of Eq. (64), we can write the left-
hand side in the form

(66)

where  is referred to as the renormalized distribu-
tion function. Below, we will show explicitly how such
a renormalization can be performed.

The terms occurring in (65) that are proportional to
the momentum derivative conserve the number of parti-
cles and are not related to the change of the nuclear reac-
tion rate; they describe the influence of nuclear reactions
on the binary collisions. Such terms do not contribute to
expression (65) upon integrating with respect to the par-
ticle momentum; thus, we do not need to take them into
account in calculating the reaction rates.

We are now able to express the reaction rates through
the renormalized particle distributions assuming that the
renormalization term is small and substituting in it the

renormalized distribution function  [see (66)]:

(67)

Since the renormalization effect is taken to be small,
we need to take into account the difference between Φi

and  and, analogously, the difference between Φj

and  only in the zeroth-order term containing the
product of the two averaged distribution functions
ΦiΦj; in such a way, all of the terms on the right-hand
side of (65) are expressed through the renormalized dis-
tribution function.

A similar procedure is performed for the equation
for Φj. The equations are then integrated with respect to
the momenta and summed up to give the expression for
the rate of nuclear reactions:
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R( )
Φi p( )–( )

t∂
∂ Φi

R( ) p( ),≡

Φi
R( )

Φi
R( )

Φi p( ) Φi
R( ) p( ) Î
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(68)

This expression contains only the fluctuations in the
absence of nuclear reactions. For an explicit evaluation
of (68), we need to find both the renormalization and
the changes in the probability of tunneling due to arbi-
trary fluctuations. As for the renormalization, it will be
shown that the renormalized distribution function
describes the “dressed” particles, i.e., the particle exci-
tations in a plasma. In thermal equilibria, the particle
excitations should have Maxwellian distributions, and,
thus, the part of expression (68) proportional to

 is just the reaction rate for bare nuclei 
given by (56). It is therefore convenient to write (68) as
[cf. (5)]

(69)

where the quantity Λij, which accounts for the change
in the rate of nuclear reactions in plasmas, is more gen-
eral than Salpeter’s correction, because it takes into
account in general form all fluctuating fields produced
by other plasma particles.

4. RENORMALIZATION OF THE PARTICLE 
DISTRIBUTION FUNCTION

The renormalization of the distribution function is a
technique used in most kinetic theories [26]. The rea-
son why this effect is not taken into account in the prob-
lem of binary particle collisions is that it provides cor-
rections to the collision integral to higher orders in the
small parameter inherent in the linear approximation to
fluctuations, namely, (4πd3n/3)–1, which is the recipro-
cal of the number of particles in the Debye sphere.
However, for the problem under consideration here,
these corrections are important, being of the same order
as the other ones.

Generally, any response function of the medium has
an imaginary and a real part. For example, the colli-
sions are related to the dissipative process and therefore
yield an additional imaginary part to the dielectric per-
mittivity. In considering the effects of fluctuations on
the rate of change of the particle distribution function
related to renormalization, we do not need to include
the nuclear reaction effect since the time derivative
itself is determined by the rate of nuclear reactions. We
will make the assumption that the rate of change of the
averaged particle distribution is much slower than the
rate of change of the corresponding fluctuating part of
the particle distribution. This assumption was already
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,=
used in the derivation of the collision integral, but we
will go one order higher and calculate the terms propor-
tional to the first time derivative of the averaged distri-
bution function. The fluctuations responsible for the
renormalization of the distribution function are of a dif-
ferent power in frequency as compared to the fluctua-
tions that determine the collision integral, and, in this
sense, one finds an analogy with the real and imaginary
parts of the plasma response. We also assume that the
averaged distribution function is homogeneous,
because we are interested in the rates of nuclear reac-
tions in homogeneous plasmas.

4.1. Fluctuations against a Time-Dependent 
Background

The slowly varying distribution function Φi can be
expanded about t = 0 so that

(70)

where only the linear corrections are kept (below, the
argument (0) by the time derivative will be omitted).
Taking into account the time dependence of Φi , the
fluctuating part of the distribution function is given by

(71)

The part of formula (71) connected with the particle

free motion, δ , is the same as in expression (36),
and the corresponding autocorrelation is given by rela-
tion (37), where Φi is time-independent. The term in
formula (71) related to the particle interaction can be
expressed through the time derivative of the average
distribution. Since the latter is changing slowly as com-
pared to the fluctuating part, one can take ω' ! ω, so
that

(72)

Taking into account (72), from (71), one obtains

(73)

As for the last term in formula (73), which is propor-
tional to the small derivative ∂Φi/∂t (first-order quan-
tity), one can use expression (38) for the fluctuating
potential, thus neglecting the effect of the nuclear reac-
tions. The value of δφ that is not modified by nuclear
reactions can be used in the term that does not contain
the time derivative of the averaged distribution. In fact,
on substituting expression (73) into Poisson’s equation,
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one obtains that these corrections lead to an additional
term in the time derivative of the dielectric permittivity.
Comparing the contribution from this term with the
other terms, one can see that its relative contribution is
determined by the ratio of (1/ε)(∂ε/∂t) to (1/Φ)(∂Φ)/∂t.
The time dependence is related to nuclear reactions that
occur at the Gamow energies, at which the dielectric
permittivity, by virtue of T/EG ! 1, is close to unity and
its time derivative is proportional to the small parame-
ter T/EG. Thus, expression (73) can be written in the
form

(74)

where

(75)

and δ  and δφ(C) are given by expressions (36) and
(38), respectively. Expression (75) yields the part of δfi

that is related to the renormalization of the distribution
function. Substituting relation (74) into Eq. (43) leads
to the equation for the renormalization:

(76)

where

(77)

In arriving at formula (77), we used expression (41) for
the imaginary part of the dielectric permittivity and the
relation [cf. (46)]

(78)

4.2. Evaluation of the Renormalization

For the evaluation of the renormalization, we carry
out the integral with respect to the frequency in expres-
sions (77) in the same way that was used for the calcu-
lation of the correlations of fluctuating quantities in
Section 2.2.

Let us write expressions (77) in the form

(79)
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where

(80)

By integration by parts in formula (80), we use the
following equalities:

(81)

In the first part of equalities (81), we take into
account that δ(ω)Im(εk, ω) = 0. The first term in the last
part of these equalities does not contribute to the inte-
gration over ω in expression (79) due to both the ana-
lytical properties of the dielectric permittivity and the
absence of poles in the upper part of the complex ω-
plane for the other two factors (the same procedure was
used for the evaluation of the correlations in Section 2.2).
The two remaining terms can be integrated with respect
to the frequency by using an integration by parts for the
term containing the derivative of the δ-function. Thus,
one obtains

(82)

This result contains the dielectric permittivity taken
both at ω = 0 and ω = k · v; more explicitly, in formula
(82), the difference between the expressions related to
the dynamic and static screening occurs. The propor-
tionality of result (82) to the square of the particle
charge indicates that the renormalization is related to
the self-energy of the particles, the k-dependence of
(82) also being similar to that for the self-energy (19).

Ii p k, ,
R( )

=  
4 Zie( )2

2π( )3
k

2
------------------ k v⋅( ) ω 1

ω k v⋅– i0+
-------------------------------- ω∂

∂
Im

1
ωεk ω,
------------- .d∫

Re
1

ω k v⋅– i0+( )2
--------------------------------------- 

  Re
1

ω i0+
--------------- 

  Im
1

εk ω,
--------- 

 

=  Re
1

ω k v⋅– i0+( )2 ω i0+( )
----------------------------------------------------------- 

  Im
1

εk ω,
--------- 

 

=  Im
1

ω k v⋅– i0+( )2 ω i0+( )εk ω,

--------------------------------------------------------------------- 
 

– Re
1

εk ω,
--------- 

  Im
1

ω k v⋅– i0+( )2 ω i0+( )
----------------------------------------------------------- 

 

=  Im
1

ω k v⋅– i0+( )2 ω i0+( )εk ω,

--------------------------------------------------------------------- 
 

+ Re
π

εk ω,
--------- δ ω( )

k v⋅( )2
-----------------

∂δ ω k– v⋅( )
∂ω

-------------------------------- 1
ω
----–

 
 
 

.

Ii p k, ,
R( )

=  
Zie( )2

2π2
k

2
-------------- 1

k v⋅( )εk 0,
------------------------ ω ω∂

∂ 1
ω
----Re

1
εk ω,
--------- 

 
ω k v⋅=

+
 
 
 

=  
Zie( )2

2π2
k

2
-------------- ω ω∂

∂ 1
ω
----Re 1

εk ω,
--------- 1

εk 0,
--------– 

 
ω k v⋅=

.



854 TSYTOVICH, BORNATICI
As we already mentioned, we need to extend the deri-
vation of the self-energy to the case of dispersive
media.

4.3. The Particle Self-Energy and the Free Self-Energy

The energy conservation law requires the self-
energy to be accounted for in nuclear collisions. The
dependence of self-energy on the particle velocity,
together with the fact that the particle velocities change
during particle interactions, causes the self-energy
itself to vary, which in turn affects the particle interac-
tions. Here, we treat the self-energy as a perturbation
that leads to the renormalization of the particle distribu-
tion function.

Let us derive the self-energy for dispersive media by
making use of the general expression for the energy
[19]. The energy E related to the electric field is

(83)

where D is the electrostatic induction, such that Dk, ω =
εk, ωEk, ω. The time integration in expression (83) is
performed, as usual, assuming that the contribution is
zero at t  –∞, which determines the constant in the
corresponding expression of the energy. By expanding
the fields in Fourier components, integrating over
space, and making use of the expression for the field of
the particle i [see (11)]

(84)

one obtains the particle self-energy, labeled by the
superscript s,

(85)

where symmetrization with respect to ω and ω' has
been used. By expanding the integrand around ω' = –ω,
from (85) one obtains

(86)

The first term in formula (86) is the same as that in
expression (19), whereas the second term is due to the
time dispersion of the medium. It is remarkable that the
derivative of the dielectric permittivity enters formula
(86) in the same combination as in expression (82) for
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the renormalization. One should note that, in contrast
to the expression for the energy of waves for a disper-
sive medium, which is proportional to (∂/∂ω)(ωε),
both the renormalization (82) and the particle self-
energy (86) are proportional to (∂/∂ω)(1/ωε), which is
related to the fact that the field strength depends on ω
and, thus, the operator that should be applied to 1/ε is
–ω2(∂/∂ω)(1/ω).

Averaging expression (86) over the particle distribu-
tion Φi(p) yields the average self-energy per particle:

(87)

The results obtained so far are valid for arbitrary
particle distributions (with the only constraint being
that simplifications using the analytical properties of
dielectric permittivity can be made when integrating
over ω). For the specific case of a Maxwellian distribu-
tion, it is natural to normalize the particle momentum

and velocity and the wave number to , ,
and 1/d, respectively, with d being the Debye length.
Taking into account that the dielectric function is given
by (7) and (8), we obtain that the temperature depen-
dence is determined by the Debye length, which will
obviously enter the denominator, and the energy should

contain the factor /d. As a result, one can express
the average particle self-energy (87) in the form

(88)

where the numerical coefficient λ i can be obtained
numerically for a given composition (abundance) of
nuclei in the plasma.

In connection with the particle self-energy, one can

find the corresponding particle free energy, , which

is related to the entropy  through [27]

(89)

where the derivative with respect to temperature is
taken with density n = N/V fixed, the total number of
particles N being conserved by both the fluctuations
and the corresponding collisions. As a consequence,
one can refer the result to a single particle, the number
of particles per unit volume, or the total number of par-
ticles. Below, the free energy per particle is considered.

On average, any work performed on an isolated sys-
tem is zero; i.e.,

(90)

which, along with relation (89), yields

(91)
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By using the same reasoning that led to expres-

sion (88), one obtains that  ∝  1/ , and, thus,
T(∂/∂T)  = – /2, which then gives

(92)

Expression (92) is similar to that obtained for the renor-
malization of the particle distribution function [see
(82)].

4.4. Physical Meaning of Renormalization

By calculating the average particle kinetic energy
with the use of the renormalized distribution function
along with expressions (67), (79), and (82), we obtain

(93)

The quantity within the square brackets in expres-
sion (93) comprises the same term as that entering for-
mula (92), from which the static screening is sub-
tracted. The latter depends only on the total number of
particles per unit volume, which is conserved by both
fluctuations and collisions, so that it just adds a con-
stant to expression (93). Although any energy is deter-
mined up to a constant, this constant in expression (93)
cannot be arbitrary, since the constant is already chosen
for each particle in the system. The average energy (93)
yields the free energy along with a constant determined
in such a way that only the free energy in excess of that
related to the particles at rest is accounted for.

The physical meaning of the constant occurring in
expression (93) is that the energy of the particles at rest
is stored in the heath bath of the system and (93) repre-
sents the energy of the excitations (dressed particles) in
the plasma. The concept of dressed (dynamically
screened) plasma particles is thus relevant to the issue
of the free energy associated with the self-energy of the
particles, the same as for collisions in a plasma.

Even if considerations starting with expression (88)
refer to a thermal system and are based on the concepts
of entropy and free energy, results (92) and (93)
obtained by virtue of the concept of renormalization are
valid for any nonthermal distribution. Thus, the renor-
malization of the particle distribution function allows
one to calculate the energy of the plasma excitations for
any non-equilibrium system with arbitrary deviations
from thermal equilibrium, when one cannot introduce
the concept of entropy and free energy. Thus, one is
able to treat the physics of excitations for any system
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far from equilibrium. This result, which appears to be
new, has been obtained by virtue of the utilization of the
kinetic approach applicable to any nonequilibrium sys-
tem, the same as for derivation of the binary collision
integral, which is valid as well for any nonequilibrium
system.

With reference to a thermal system, the physical
meaning of the renormalization is simple. The total
energy of the system includes the free energy of the
excitations, and, as a consequence, the thermal distribu-
tion of the dressed particles has to account for the
energy of the excitations. One can recover the usual
Maxwellian distribution of particles by means of
proper renormalization. Thus, in thermal equilibrium,
one can identify the renormalized distribution function
for which the self-free energy is excluded, the latter
being taken into account through additional renormal-
ization terms.

On the basis of the foregoing arguments and with
reference to thermal equilibrium, the rate of nuclear
reactions in the presence of plasma fluctuations is thus
given by expression (68), with the renormalized func-

tions  and  replaced by the corresponding

Maxwellian functions  and . The factor Λij

[see (69)] is thus

(94)

where  is the rate of nuclear reactions between bare
nuclei, given by expression (56).

To proceed further with expression (94), we need to
calculate w(1) and w(2), which account for the change in
the probabilities of nuclear reactions in arbitrary fluctu-
ating fields.

Before carrying out such a calculation, it is worth-
while to make a few comments. It seen from expres-
sion (94) that the contributions due to changes of the
distribution functions by fluctuations are as important
as the contributions due to the change of the probabil-
ity, their combined effect also being relevant. From a
general point of view, it does not appear to be possible
to establish the relative weight of the different effects;
hence, one should expect that all terms make contribu-
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R( )

p( )Φi
M( ) p( )

+ w ji
0( ) p' p,( )Φi

M( ) p( ) Î
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tions of the same order. Moreover, the renormalization
of the distribution function is important and takes into
account, by a perturbative method, the self-energy of
the nuclei, which might yield effects of the same order
of magnitude as Salpeter’s corrections stemming from
the polarization of the reacting nuclei. The approach
used should permit one to clarify the controversy
between the static and dynamic screenings.

5. CHANGE OF THE TUNNELING 
PROBABILITIES BY FLUCTUATION 

POTENTIALS

In this section, we will consider the issue of nuclear
reactions of two bare nuclei in an arbitrary external
fluctuating potential δφ(r, t) (taken to be weak), such
that a perturbative procedure is applicable. Our treat-
ment generalizes Salpeter’s approach.

As is known, nuclear reactions are due to tunneling
of the nuclei through the Coulomb potential barrier.
Here, we will use a quasi-classical description, which
can be justified by the fact that both the width of the
Coulomb barrier and the characteristic length of the
fluctuating potential are considered to be significantly
larger than the de Broglie wavelength of the nuclei. In
this case, the wave function ψ(ri , rj , t) of the two nuclei
can be expressed through the action σ

(95)

On account of both the interaction potential energy
U and the external potential δφ(r, t), the equation for
σ ≡ σ(ri , rj , t) is [28]

(96)

When solving Eq. (96), one should take into account
that the width of the Coulomb barrier is larger than the
characteristic scale length of the potential, whereas the
tunneling time (i.e., the time taken by nuclei to cross
the Coulomb barrier) is shorter than the characteristic
time scale of δφ. Let us solve Eq. (96) to the second
order in δφ. To the zero order in δφ (i.e., for the tunnel-
ing in the absence of a fluctuating potential), we have
σ = –Et + σ0, with E being the energy eigenvalue. To
the zero order in ", the exponent in the tunneling prob-
ability can be determined from the equation [28]
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which, on introducing the center of mass position R
and the nuclei relative position r

(98)

can be written as

(99)

(100)

where 

P = mivi + mjvj and 

On the basis of Eq. (99), one obtains the standard
equation for σ0, 0 containing the relative energy Er and
the relative distance r of the two nuclei [28]
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which yields the known probability of tunneling w (see
[28], where this probability is denoted by D),
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where rt, 1 and rt, 2 are the turning points in the potential
U for the given energy Er .

To first order in δφ, we look for a solution of Eq. (96)
in the form σ = σ0 + σ1 with σ1 ! σ0. In view of the fact
that δφ is slowly varying over the distance rt ≡ rt, 2 – rt, 1,
one can take δφ(ri , t) ≈ δφ(rj , t) = δφ(R, t), which cor-
responds to the replacements
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being the velocity of the center of mass. By taking a
Fourier transform with respect to both R and t, namely,

(106)

one can rewrite (104) in the form

(107)

Let us estimate the different terms entering (107). With
reference to the left-hand side of (107), one finds that

(108)

According to (101), vG is the velocity correspond-
ing to the Gamow energy (4); for estimates, we take
∂σ1/∂r ≈ σ1/rt . On the other hand, the first term on the
right-hand side of (107) is of the order vTσ1/Lδφ, with
vT the nuclei thermal velocity and Lδφ the typical spatial
scale length of δφ. Thus, the term with σ1 on the right-
hand side of (107) is smaller than the left-hand side by
a factor on the order of (vT/vG)(rt/Lδφ) ! 1 and can be
neglected. Taking into account (101), the solution to
(107) is

(109)

with σ0, 0 = . Thus, the effect of the

first order in δφ can be obtained by expanding

(110)

in δφ. As a result, the effect of δφ reduces to a shift in
energy Er .

To the second order in δφ, we obtain σ2 ∝
∂2σ0, 0 /2∂ ; i.e., the energy shift described by (110)
remains valid to the second order as well. The same
shift in energy is obtained for the first-order (in ") terms
that determine the factor in front of the exponent in the
quasi-classical description. Thus, the same shift in
energy is obtained for the complete expression for the
tunneling probability. With reference to the expansion
in powers of δφ of the total probability of tunneling [see
(57)], one obtains
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(112)

with

(113)

Result (57), along with Eqs. (111)–(113), general-
izes the approach used by Salpeter for the evaluation of
the effect of the electrostatic potential related to the
static charge screening on the tunneling probability.
Here, we have dealt with an external fluctuating poten-
tial slowly varying in space and time.

6. PLASMA CORRECTIONS TO THE NUCLEAR 
REACTION RATES IN THERMAL PLASMAS

6.1. Cancellation of Salpeter’s Enhancement Factor

Let us now go back to the general expression (94),
which accounts for the change in the reaction rates by
fluctuations in thermal plasmas. We first rearrange the
renormalization terms occurring in expression (94) by
using relation (79), expressing all of these terms
through the product of the thermal distributions of the
reacting nuclei. According to relations (79) and (82),
for a thermal distribution, we obtain

(114)
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where we have distinguished term (115) related to the
static (ω = 0) effect from term (116) describing the
effect of the fluctuations and labeled by F. Taking into
account Eqs. (111)–(114), we can write expression (94)
in the form
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where

(118)

(119)

When calculating the corrections to the probabilities
due to the presence of a fluctuating potential (see Sec-
tion 5), we have already accounted for the Coulomb
interaction of two bare nuclei with the consequence that
only the contribution from the interactions with other
particles should be included in expression (118). More-
over, the vacuum self-energy, which can be dealt with
through mass renormalization, should not be included in
expression (118). On the other hand, the effects stem-
ming from both the bare nuclei interaction and the vac-
uum self-energy are described by terms which are non-
zero for ε = 1. As a consequence, to exclude these latter
effects from expression (118) reduces simply to replac-
ing 1/ε by (1/ε – 1) in correlations (52) and (53) (the
same result, as was mentioned above, can be obtained if
correlations (52) and (53) are calculated with only the
polarization potential accounted for), which are relevant
to both the first term within the first square brackets and
the two terms within the second square brackets on the
right-hand side of expression (118).

On the basis of the foregoing prescription, let us cal-
culate expression (118), whose terms are to be related
only to the static dielectric permittivity or, more pre-
cisely, with (1 – 1/εk, 0). Along with correlations (52)
and (53), each term of expression (118) contains the
product

(120)
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and the corresponding integration with respect to p and
p' can be converted to the integration with respect to P
and pr, where P and pr are the momentum of the center
of mass and the relative momentum, respectively. We
then integrate by parts (with respect to Er) the terms of

expression (118) proportional to (∂ /∂Er) and

(∂2 /∂ ). In carrying out these integrations, only
the dominant contributions related to the first and sec-
ond derivatives of the exponential in expression (120)
are kept; i.e., the results from the integration by parts
are the same as those obtained by the replacements

. (121)

Note that the same approximation was used by Salpeter
[1] and is accurate to the lowest order in the ratio of the
thermal energy to the Gamow energy. On making use of
relation (48) for the last term on the right-hand side of
expression (118) and taking into account expression (56)

for , expression (118) reduces to [we write out the
terms in the same order as they appear in expression (118)]

(122)

We thus obtain a remarkable result that the net effect
on the nuclear reaction rates of the four different con-
tributions connected with the static dielectric permittiv-
ity is zero. This result, which is one of the most impor-
tant of this paper, is new and differs radically from the
findings obtained so far in regard to the issue under
investigation. In particular, result (122) rejects the most
popular Salpeter result (5) and (6). In this respect, one
should note that Salpeter’s term ZiZje2/Td is just the ZiZj

term stemming from the last term within the curly
brackets of expression (122) (recall that such a term is
due uniquely to the fluctuating potential [see (118)].

6.2. Discussion of the Physics of Result (122)

Let us first note that, in the framework of the fluctu-
ation approach adopted in the foregoing, one is dealing
with correlation functions that are quantities of the sec-
ond order in the fluctuations. From expression (122), it
is seen that, along with terms proportional to ZiZj,
which will be referred to as interaction terms, there
occur terms proportional to the square of the charge of
the single nuclei, which will be referred to as static self-
energy terms. Expression (122) contains all the interac-
tion terms, which, as it appears, can be expressed
through the static dielectric permittivity and the static
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self-energy terms. According to expression (122), the
net effect of the interaction terms on the nuclear reac-
tion rates, on the one hand, and the static self-energy
terms, on the other hand, is zero.

More precisely, the first term in the curly brackets of
expression (122), which is equal to Salpeter’s term
ZiZje2/Td, stems from the first term on the right-hand
side of expression (118) and is uniquely related to the
fluctuations of the distribution function of the bare
reacting nuclei. This term is the term dealt with by
Gruzinov [9] through a procedure that has been dis-
puted above (see Section 1.3). The difference from [9]
is that, in the present consideration, the fluctuating
potentials are time-dependent in accordance with the
rule prescribed by binary collisions.

Two additional interaction terms appear in expres-
sion (122). The part of the last term that is proportional
to ZiZj is the Salpeter term [1]. The part of the third term
that is proportional to ZiZj results from the energy vari-
ation of the tunneling probability, which is proportional
to the first derivative of the probability with respect to
the nuclei relative energy, in combination with the fluc-
tuation of the distribution function [cf. the term

∂ /∂Er in expression (118)]. This term is peculiar of
our approach and does not seem to have been consid-
ered so far.

The net result of the three interaction contributions
proportional to ZiZj is zero; i.e., Salpeter’s term plus the
Gruzinov-type term are completely cancelled by the
new “interference” term (the contribution from the
third term proportional to ZiZj).

As for the second term in expression (122), it is
related to the static self-energy and is due to the static

part of the renormalization effect, i.e., to the terms 

and  in expression (118). The second term is can-
celed by the contributions from the terms proportional

to  and  in expression (122). In respect to the terms

proportional to (  + ) in expression (122), let us
again note that the reacting nuclei (rather than bare
nuclei) are to be considered as excitations endowed with
the free energy related to the self-energy stemming from
the plasma fluctuations. The cancellation of the self-
energy terms in the static approximation reflects the fact
that the static self-energy cannot affect the nuclear reac-
tions and is, in fact, stored in the heath bath.

The ZiZj part of the last term within the curly brack-
ets of expression (122) (i.e., Salpeter’s term) has also
been obtained through a detailed statistical description
[10] on the assumption of nonfluctuating Maxwellian
distributions for the reacting bare nuclei, in contrast
with our treatment of nuclei as excitations with fluctu-
ating polarization clouds. These fluctuations lead to
fluctuations in particle distributions. They are changed
by interaction, and the effect proportional to the prod-
uct of charges of interacting nuclei appears in the self-

wij
0( )

Ii
R 0,( )

I j
R 0,( )

Zi
2

Z j
2

Zi
2

Z j
2
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energy particle polarization clouds. In fact, the fluctua-
tions that create the self-energy and the fluctuations
responsible for the polarization effects are not separa-
ble, and their interference during nuclear reactions
makes the net effect of static screening and static self-
energy equal to zero.

As for the equality of the Gruzinov-type term, i.e.,
the first term of expression (122) and Salpeter’s term, it
appears that the fluctuations in the nuclei distribution
function together with the change of the probability lin-
ear in the fluctuation potential yield an increase, on
average, in the relative energy of the reacting nuclei,
thus enhancing the reaction rates by the same amount
as that resulting from the lowering of the potential bar-
rier due to the fluctuation of the potential.

6.3. Explicit Evaluation of Plasma Corrections

Let us now evaluate the effect on the reaction rates of
the dynamically screened part of the self-energy, which
depends on the velocities of the two interacting nuclei,
as described by expression (119), which is the only con-
tribution to the change of the nuclear reaction rates in a
plasma. Such an effect occurs under the resonant condi-
tion ω = k · v [see (116)] and is easily obtained from the
test-particle approach. Let us first rearrange the second
term of relation (116) in a form more suitable to the
evaluation of expression (119). In this regard,

(i) the integration over k is such that only the com-
ponent of the corresponding integrand that is directed
along v contributes; i.e., denoting the quantity within
the square brackets by g(k · v), one has

(123)

the last equality following from

(124)

(ii) the part dependent on k · v can be expressed
through an integral over ω by using the function δ(ω –
k · v); i.e.,

(125)
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where the last equality is based on

(126)

(iii) the integral over ω can be integrated by parts.
Using the notation of (116), one thus obtains

(127)

Let us now return to expression (119), for which we
make use of relation (120) along with the change of
variables (p, p')  (P, pr), the corresponding Jacobian
of the transformation being equal to 1. On adopting
spherical coordinates, let us perform first the integra-

tion over the relative energy Er = /2µ, with µ =
mimj/(mi + mj) the reduced mass. Recalling relation (56)
along with identity (113), the part of expression (119)
related to the integration over Er is

(128)

where the last (approximate) equality takes into
account that the integrand of the preceding integral is

peaked at the Gamow energy  [see (4)]. It remains

to carry out the angular integration over  = pr/pr and
the integration over P = (mi + mj)V . The velocities of
the reacting nuclei occurring in expression (127) can be
expressed in terms of the velocity of the center of mass
V and the relative velocity vr = vi – vj:

(129)

The dielectric function εk, k · v occurring in (127) is
given by expressions (7) and (8), with ω = k · v, and the
argument of the function W in expression (7) can be
expressed as

(130)
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(131)

where vT, α =  is the thermal velocity of a
plasma particle of species α (α includes both electrons
and ions; i.e., α = {e, j '}); x and z are the cosine of the
angle between k and V and the cosine of the angle
between k and vr , respectively; and

(132)

where y is the velocity of the motion of the center of
mass of the two nuclei normalized to the thermal veloc-
ity of the center of mass and λij is the normalized veloc-

ity corresponding to the Gamow energy  =

, with µij the reduced nuclear mass.

In terms of the quantities defined in expressions
(132), the kinetic energy of the particle i that occurs in
the second term of relation (127) can be expressed as

(133)

The last term in expression (133) is dominant since
the Gamow energy is much larger than the thermal
energy, with the result being that the contribution from
the term T/miv2 in relation (127) is smaller than that
corresponding to the first one. Substituting relation
(127) into expression (119) yields

(134)

The first and second terms in expression (134) stem
from the first and second terms of relation (127),
respectively (the numerical analysis shows that the con-

tribution from the term with δ  is no more than 10%
of the first term). The first (dominant) term in expres-

sion (134)— —describes the effect of the nuclei
free energy on the reaction rate. This effect tends to a

decrease in the reaction rates, since  turns out to
be negative.

The explicit evaluation of the two terms in expres-
sion (134) requires the integration over k, x, z, and y; as
for integration over k in relation (127), it can be per-
formed in the complex k-plane after transforming the
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integral over k from 0 to ∞ to the integral over k from
−∞ to ∞. One thus obtains

(135)
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(136)

where (i  j) and (i  j) indicate that one should
write the same term as the preceding one with i
replaced by j and vice versa. With reference to expres-
sion (136), we have
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Let us note that in arriving at results (135) and
(136), we used the expression for the derivative of the
dielectric permittivity (7) [see (127)] and the equation
for the dispersion function W(s):

(139)

It is convenient to rewrite expression (134) in the
form

(140)

The relation between expressions (134) and (140) is
straightforward; namely, I in expression (140) is related
to the first term in expression (134) and δI in expression
(140) is related to the second term in expression (134),
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while the expressions for I and δI are given by formulas
(135) and (136), respectively.

One should note that the reciprocal of the square of

the Debye length,  = (4πe2/T) nα [see (2)], occur-
ring in the summation in both the numerator and
denominator of expressions (135) and (136) can be

replaced by nα, because the remaining factors can-
cel each other. As for the electron contribution, since
the electron thermal speed is larger than the velocity of
the reacting nuclei so that se, i ! 1 [see (130) and (131)],

one can neglect (to lowest order in ) the electron

contribution to W(sα, i) and approximate

W(se, i) ≈ 1 in the factor W(sα, i) in the denomina-
tor of expression (135). Furthermore, the charge neu-
trality condition ne =  is to be used. The first
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term of expression (140) can then be written in the form

(141)

The term Ij is obtained from (141) with i  j. In for-
mula (141),

(142)

where Xj’ is the relative mass density abundance of the
ions of species j'.

The term  in formula (136) and, as consequence,
the term δIi in expression (140) can be expressed in terms
of the same quantities as in formula (141).

In the limit for which sj', i @ 1 (i.e., the Gamow
energy is significantly larger than the thermal energy of
the reacting nuclei), one can make use of the asymp-
totic expansion W(s) = –(1/2s2), which is valid for the
lowest significant order in s–2 ! 1, and formula (141)

yields  ≈ 1/2 . The corresponding asymp-
totic limit of expression (140) is
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describes the plasma effects on the nuclear reaction
rates [see (69)]. In this respect, we make the following
two comments.

(i) Λij < 0, in contrast with Salpeter’s term  > 0;
i.e., the plasma corrections to the reaction rates are
negative [cf. (143)].

(ii) In contrast with the ZiZj scaling of Salpeter’s
static screening [see (6)], the plasma corrections to the
nuclear reaction rates scale as the square of the nuclear
charge [cf. (140)].Thus, for nuclear reactions involving
high-Z nuclei, the slowing down of nuclear reaction
rates is expected to be significant.

7. NUMERICAL RESULTS

7.1. Nuclear Reactions of the Hydrogen Cycle
in the Solar Interior

For a quantitative evaluation of the plasma effects
on the nuclear reaction rates, we consider the thermo-
nuclear reactions relevant to the Sun’s core.

The standard solar model provides the abundances
of different ions for the central part of the solar interior
[30–33]. For the mass abundances Xi and the quantity
Zeff, defined by (142), the reference values are XH =
0.3411, XHe = 0.6387, XC = 0.00003, XN = 0.0063, XO =

0.0085, /mj = 0.661, and Zeff = 1.551. For a
temperature of T = 1.5 keV and density of n = 5 ×
1025 cm–3, corresponding to the Sun’s interior, we have
e2/Td = 0.05, which amounts to Salpeter’s enhancement
factor (6) equal to 5% for the (p, p) reaction. The results
of numerical calculations are presented in Tables 1 and 2.

With reference to the most relevant reactions of the
hydrogen cycle listed in the first column of Table 1, the
values of the argument of the W function [see (141),
(130), and (131)] are obtained from the relevant
Gamow energies and the values of the parameter λij

determined by the Gamow energies are given in the sec-
ond column of Table 1.

The values of both Ii, given by formula (141), and δIi,
obtained from formula (136) along with expression (140),
as well as Ij and δIj , occurring in expression (140), are

Λ ij
S

Z j X jj∑
Table 1.  Thermonuclear reactions of the hydrogen cycle for the Sun’s core. The numerical results refer to the normalized
Gamow velocity λij , defined in (132); the integral quantities I, defined in (141); δI, given by (136) and (140); and the corre-
sponding sum for each pair of fusing nuclei

Reaction λij Ii δIi Ii + δIi Ij δIj Ij + δIj

p + p 4.280 0.906 0.115 1.021 0.906 0.115 1.021

p + 2H 4.757 1.060 0.052 1.061 0.848 0.098 0.942
3He + 3He 8.150 0.888 0.040 0.928 0.888 0.040 0.928
3He + 4He 8.420 0.851 0.034 0.885 0.972 0.038 1.010
7Li + p 10.234 1.144 –0.032 1.112 0.689 0.024 0.713
7Be + p 11.264 1.127 –0.025 1.102 0.661 0.019 0.680
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Table 2.  With reference to the same reactions as in Table 1, the numerical results for , defined in (140); the correspond-

ing asymptotic expression  [see (143)]; Salpeter’s term  = ZiZje
2/Td [see (6)]; the factor Fij by which the reaction

rates calculated based on Salpeter’s enhancement should be divided; and the percentage deviation (Fij – 1)%

Reaction Fij (Fij – 1)%

p + p –0.0510 –0.03 +0.05 1.106 10.6%

p + 2H –0.0514 –0.03 +0.05 1.107 10.7%
3He + 3He –0.125 –0.2 +0.20 1.223 22.3%
3He + 4He –0.125 –0.2 +0.2 1.223 22.3%
7Li + p –0.157 –0.250 +0.15 1.571 57.1%
7Be + p –0.266 –0.425 +0.2 2.087 108.7%

Λij
F( )

Λij
F as,( ) Λij

S( )

Λij
F( ) Λij

F as,( ) Λij
S( )
calculated for the two nuclei of each reaction and are
presented in the third to eighth columns of Table 1
together with the sums Ii + δIi and Ij + δIj. The values of

both  and the corresponding asymptotic expansion,

 [see (140) and (143)] are given in the second and
third columns of Table 2. The values of Salpeter’s term
Λij = ZiZje2/Td are given in the fourth column of Table 2.
The fifth column of Table 2 gives the factor

(144)

by which the reaction rates previously calculated on the
basis of Salpeter’s enhancement, due to static screen-
ing, should be divided to obtain the rates according to
our treatment. The last column of Table 2 gives the
change in the reaction rates (in percent).

From the numerical results presented in Tables 1
and 2, it follows that

(i) the δI corrections vary between 2 and 10%, the
lower values corresponding to the higher values of the
normalized Gamow velocity;

(ii) the value of  increases with the nuclear

charge according to the  +  scaling in the asymp-
totic limit for which result (143) is valid;

(iii) the values obtained from the asymptotic
approximation (143) tend to underestimate the exact
value;

(iv) for the (7Be, p) reaction, the requirement that

 < 1 is satisfied only marginally.

Let us again emphasize that the plasma effects on
the nuclear reactions are such that the reaction rates are
slower than the corresponding ones in vacuum; namely,

the  corrections are negative. As a result, in partic-
ular, the reaction rates accounting for Salpeter’s
enhancement should be divided by the factor Fij > 1
[see (144) and the last two columns of Table 2]. A sig-

Λ ij
F( )

Λ ij
F as,( )

Fij

1 Λ ij
S( )

+

1 Λ ij
F( )

+
------------------- 1,>=

Λij
F( )

Zi
2

Z j
2

Λ ij
F( )

Λ ij
F( )
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nificant (and only marginally acceptable with regard to
our perturbative scheme) decrease in the rate of the
(7Be, p) reaction is expected to be relevant to the solar
neutrino problem [30–33] (see also [34–37]). More
specifically, from the solar neutrino experiments [34], it
follows that the neutrino flux from the reaction 8B 
8Be + e+ + ν, where 8B is produced through the reaction
7Be + p  8B + γ, is reduced by about a factor of three
with respect to the value predicted by a standard solar
model [30–33]. The effect that the reduction of the rate
of proton capture by 7Be produces on the 8B solar neu-
trino (see the last row of Table 2) is under investigation
by means of a code for a standard solar model taking
into account the plasma effects on the solar opacity as
well [38, 39].

7.2. The 7Be Electron Capture Rate

So far, we have referred to nuclear reactions charac-
terized by the tunneling through the Coulomb barrier.
Nuclear processes involving electron capture, instead,
exhibit no Coulomb barrier, the electrons being
attracted by the nuclei. The change of the electron func-
tion in the vicinity of the nuclei with respect to the
plane wave function describing an electron far from the
nuclei enhances the electron capture rate, which was
first calculated by Bahcall [40] and then by Brown and
Sawyer [23], as well as by Gruzinov and Bahcall [22].
Such an enhancement is accounted for in both (118)

and (119) through the replacement  

(v) , such a replacement also being made in

 in the denominator of both (118) and (119) with
[22, 40]

(145)

wie
0( )

Λ i
B

wie
0( )

Rij
0( )

Λ i
B
v( )

2πZie
2

v"
-----------------

1
2πZie

2

v"
-----------------– 

 exp–

--------------------------------------------,=
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where v is the electron velocity. For the 7Be + e reac-
tion, the average of factor (145) with respect to the elec-
tron thermal distribution yields an enhancement factor
of 3.18 for the value of the temperature of the solar inte-
rior [22, 40].

To proceed further, one should note that the Gamow
energy is zero and the center of the mass system is
approximately the same as the laboratory system,
which permits us to carry out the averaging directly
over the thermal distributions of both electron and
nucleus momenta [see (120)].

We again obtain cancellation (122). Let us consider
now corrections (140) along with formulas (135) and
(136). As for the nuclei contribution, one can make use

of the foregoing expressions with the argument of the
W function equal to xy [see (130) or (131), where λij =
0]. Moreover, the integration involving the electrons
occurs in the form of the same factor in both the numer-
ator and denominator and thus it cancels out. As for the
electron contribution, one can neglect the contribution
to the dielectric permittivity from the ions, taking into
account that the ion velocity is significantly smaller
than the electron velocity. For the specific case of the
(7Be + e) reaction, one obtains the following result [see
(140)]:

(146)

where

(147)

ΛBe e,
F e

2

2Td
---------- 16 IBe δIBe+( ) Ie δIe+ +( ),–=
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Table 3.  Plasma corrections to the (7Be, e) reaction rate for
the Sun’s core [see (146)–(150)] and the factor FBe by which
the electron capture rate calculated based on Salpeter's en-
hancement should be divided

IBe δIBe Ie δIe FBe = 

0.0558 –0.030 0.353 0.126 2.166

1 ΛBe e,
S( )

+

1 ΛBe e,
F( )

+
----------------------
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For the temperature of the solar interior, factor (145) is

equal to (y) = (2.6/y)[1 – exp(–(2.6/y)]–1.

The numerical results for the integrals for the 7Be
electron capture relevant to the solar interior are given
in Table 3, along with the factor FBe, by which the
(7Be + e) reaction rate evaluated according to Salpeter’s
approach should be divided to obtain our results.

A significant decrease in the reaction rate of elec-
tron capture by 7Be is expected to reduce the flux of 7Be
solar neutrinos that are produced from the reaction
7Be + e  7Li + ν. Whether such a reduction can
explain the strong deficit of 7Be neutrinos measured in
the solar neutrino experiments [34–37] is under inves-
tigation.

8. GENERAL DISCUSSION AND CONCLUSIONS

In this section, we touch upon a few issues related to
the subjects developed in the preceding sections. The
discussion is somewhat speculative and intends mainly
to identify a number of topics that need further investi-
gation. More specifically, we briefly discuss the effects
on the reaction rates of both nonlinear fluctuations and
turbulence, as well as the effects due to wave emission.
The section ends with a few concluding remarks.

8.1. Nonlinear Fluctuations

The perturbation theory used to describe the plasma
corrections to the rates of nuclear reactions can be
extended to the next-order approximation in the fluctu-
ations to account for nonlinear effects. One can proceed
to make an expansion in the small parameter that is the
ratio between the particle thermal energy and the
Gamow energy and/or take into account only the terms
with the largest power of Z, which contribute the most
to the corrections. From a preliminary analysis, it fol-
lows that:

(i) The corrections due to nonlinear dielectric per-
mittivities tend to be small since both the Gamow
energy is large and the parameter related to the recipro-
cal of the number of particles in the Debye sphere is
small. Moreover, the relative contribution of heavy ions

to the nonlinear dielectric permittivities is nimp/mi ,
which is small since Zimp/mi ≈ 2 and Zini/np ! 1 for
heavy ions.

(ii) An additional renormalization is needed in fluc-
tuation theory, which leads to proper treatment of the
Landau poles.

(iii) The corrections related to the ions with large
charges are the most important.

+
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(iv) An extrapolation of these results to the case of a
strong change of the reaction rates by plasma fluctua-
tions leads to a substitution of the linear corrections
obtained here by exponential ones.

8.2. Nuclear Reactions in Nonthermal 
and Turbulent Plasmas

The results obtained in the foregoing are valid for
the general case of nonthermal plasmas, for which,
however, the analytical properties of the dielectric
functions (fluctuation-dissipation theorem) are, in gen-
eral, no longer applicable. For arbitrary, non-thermal
distributions, the sign of the effect of plasma fluctua-
tions on the nuclear reaction rates is not determined and
it can lead to either enhancement or suppression of the
reactions. An electron distribution function of interest
is the one accounting for drift motion, because it results
from currents in a plasma related to strong magnetic
fields, which are expected to be present in many stars
and probably in the center of the Sun.

The results obtained in this work can be applied to
turbulent fluctuations. For the case in which the particle
distribution functions are thermal and the level of tur-
bulent fluctuations is much higher than the thermal
level and assuming that the frequency of fluctuations ω
is much less than kvT, one can generalize result (140) to

(151)

where |δφ  describes the turbulent potential fluctua-
tions

(152)

The corrections to the reaction rates described by
expression (151) are always negative. With reference
to the Sun, of particular relevance are the acoustic heli-
oseismological fluctuations [41], which are mainly
hydrodynamic fluctuations. The total energy density of
these fluctuations is

From the known level of the Sun’s oscillations, we can
estimate that, even for Zi = 8 (16O), corrections (151)
are negligible (less than 0.01%). In this case, the
assumption that the level of turbulent fluctuations is
higher than the level of thermal fluctuations is not valid
and the whole effect is described by thermal fluctua-
tions as considered above. One can think of other types
of fluctuations [42], including Langmuir waves, whose
wave number spectrum, however, is very narrow since
the number of particles in the Debye sphere is not large
(about six) for parameters relevant to the solar interior.

In turbulent plasmas, the particle distributions often
exhibit nonthermal (power-law) tails (see, e.g., [43]),
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which can significantly affect the reaction rates. On the
other hand, for the solar interior, the plasma relaxation
time is of the order of Nd/ωpe and the effects of nonther-
mal tails are thus negligible (see also [44]).

8.3. Emission of Waves in Nuclear Reactions

The self-energy of the fusing nuclei undergoes an
abrupt change during nuclear reactions, which can result,
in particular, in transition radiation [21]. The calculation
of the energy emitted in longitudinal waves can be per-
formed along the lines described in detail in [21]. Emis-
sion of electromagnetic waves is negligible for particles
moving with nonrelativistic velocities. For the specific
case of a nuclei moving along a straight trajectory with
velocity v and disappearing in the reaction at the moment
t = 0, the energy of transition radiation can be obtained
as the work done by the electric field on the charge (inte-
grated with respect to the entire time and volume):

(153)

where j is the particle current density and ωk is the fre-
quency of the plasma mode emitted. In the derivation of
relation (153), we used the expression for the charge
density ρkω of a nuclei that moves with a constant
velocity until t = 0 and Poisson’s equation

(154)

For Langmuir waves, the emission of which is most
significant and for which ωk @ kvTe, relation (153) yields

(155)

where f is the ratio between the maximum wavenumber
and 1/de , with de being the electron Debye length. Usu-
ally, this ratio is f = 1/2 or 1/3.

From relation (155), it follows that the energy emit-
ted is of the same order as the self-energy, in accor-
dance with the general statement proved in the theory
of transition radiation. This emission guarantees the
conservation of the sum of all the self-energies relevant
to both the reactions and the emitted waves. The emis-
sion of plasma waves is concomitant to any nuclear
reaction occurring in a plasma.

The total power density Qij emitted due to the
nuclear reaction i + j  i' + j' is determined by

(156)

where τij is the time of the nuclear reaction. The level of
the emitted Langmuir waves can be obtained from bal-
ancing emission power (156) by the Landau damping;
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i.e., –2γLWl = Ql, which, being normalized to the parti-
cle thermal energy, is of the order of Z2/νcollτ, where
νcoll is the collision frequency. For all of the reactions in
the solar interior (even with very large Z), this level is
much less than the thermal fluctuation level. This
means that the Langmuir waves are almost instanta-
neously absorbed as soon as they are emitted, so that
taking into account only thermal fluctuations (as we
did) is quite justified.

8.4. Concluding Remarks

In summary, we have obtained a remarkable result,
according to which the rates of nuclear reactions occur-
ring in a plasma are slower than those in vacuum. This
result might be of particular relevance to the solar neu-
trino problem. Let us briefly summarize the basic con-
cepts underlying our result.

(i) Only the fluctuation approach can provide an
adequate description of the plasma effects on the rate of
thermonuclear reactions.

(ii) The fluctuations responsible for binary plasma
collisions are strictly connected to the fluctuations
affecting the reaction rates.

(iii) The kinetic equations describing the binary
plasma collisions due to fluctuations in nonequilibrium
plasmas are generalized by taking into account the
nuclear reactions, the general kinetic description of
which is given for nonequilibrium plasmas.

(iv) The reacting nuclei are treated as plasma excita-
tions, i.e., charges endowed with fluctuating self-
energy clouds, which makes their interactions with
plasma particles significantly different from the corre-
sponding interactions of bare nuclei.

(v) The fluctuations causing the screening of the
nuclei interactions and the fluctuations responsible for
the nuclei self-energy are not separable, with the result
being that the net effect on the nuclear reaction rates
related to both the interaction energy and the static part
of the self-energy seems to be zero.

(vi) The renormalization of the particle distribution
function provides the free energy related to the self-
energy of the plasma particles treated as plasma excita-
tions.

(vii) The slowing-down of the thermonuclear reac-
tion rates resulting from the plasma fluctuations is the
same as that obtained in the context of the dynamically
screened test particle approach.

(viii) A simple physical explanation of the slowing-
down of the reaction rates by plasma fluctuations rests
on a decrease in the dynamically screened part of the
nuclei self-energy with increasing the velocity of the
reacting nuclei.

Note added in the proof: The aim of this review is to
describe the new possibilities of applying the fluctuation
approach to calculating the rates of thermonuclear reactions
in dense plasmas. Since the problem is formulated in such a
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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way for the first time, a further comprehensive development
and implementation of this approach seem to be desirable
and necessary. Among questions that can be raised are the
following: (i) May there exist an additional effect of the dis-
tribution function renormalization when the additional fluc-
tuations (63), induced by nuclear reactions, are taken into
account? (ii) Whether the influence of the plasma correla-
tions related to the difference between the two-particle distri-
bution function and the product of two one-particle distribu-
tion functions is important? (iii) Are the corrections to the
interaction canceled completely or not? For future improve-
ments, one should keep in mind that, from the physical point
of view, purely static plasma corrections are unacceptable.
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Abstract—The dynamics of an X-pinch in the diode of a high-power nanosecond current generator is studied
experimentally and theoretically. The X-ray backlighting technique with subnanosecond time resolution and
micron space resolution made it possible to trace both the formation of the constriction before the X-ray burst
and the subsequent breaking and decay of the constriction. The radiative MHD model allowed simulation of the
main characteristics of the process, including the formation of a minidiode and constriction, microexplosion of
the hot point, and the generation of shock waves, followed by breaking of the constriction. © 2000 MAIK
“Nauka/Interperiodica”.
Nanosecond explosions of thin wires are usually
accompanied by the formation of constrictions and hot
points. The physical picture of the associated processes
remains unclear because of the insufficient resolution
of the conventional experimental techniques. In this
study, we apply the novel X-ray backlighting technique
[1, 2] using X-pinches as radiation sources to trace the
processes with a time resolution higher than 0.5 ns and
space resolution about 1 µm. This allows us to
approach the scale length of hot points and provides
better insights into these objects in comparison with
our previous works [3]. Recent experiments [4] showed
that the most interesting processes are localized within
±2 ns around the X-ray burst.

In this paper, the dynamics of an X-pinch in the
diode of a high-power nanosecond current generator is
studied both experimentally and theoretically. Using
two X-pinches that play the role of radiation sources
and, at the same time, are the subjects of inquiry
(Fig. 1c) allowed us to trace the evolution of the con-
striction in detail.

Experiments were carried out in the XP device
(470 kA, 0.5 Ω, 100 ns) at Cornell University. Pairs of
crossed 1-cm-long and 12.7-, 17-, 25-, or 30-µm-diam-
eter molybdenum wires exploded in a diode. X radia-
tion was detected by photoconductive diamond detec-
tors. Signals were recorded with the help of a Tektronix
684B oscillograph with 0.4-ns time resolution. The
spatial resolution of X-ray images depended on a num-
ber of factors (the size of a hot point, its distance from
the object and film, and the types of filters and films
used) and was estimated as .1 µm by digitizing photos
with a Nikon LS-2000 scanner. Films of different sen-
sitivities (Kodak RAR 2497, DEF, and Mikrat VE)
were loaded as “sandwiches” with a 12.5-µm-thick Ti
1063-780X/00/2610- $20.00 © 0868
foil in front of them, which allowed us to obtain several
images in various X-ray spectral regions.

Two X-pinches in the diode were positioned in par-
allel, irradiating each other. The time delay of X-ray
bursts was specified by choosing the difference
between load masses, taking into account the results
from previous studies. It is important that, when
pinches were arranged in pairs in the diode, the induc-
tive coupling of loads allowed us to reduce the number
of hot-point bursts to 1–2, which ensured a fairly high
quality of the photos. The optimization of the source
dimensions made it possible to operate in the spectral
range of 1–5 Å covering the Ti-foil pass band of 2.5–4 Å.
In this scheme, only the total current was measured,
whereas the currents of individual X-pinches were
assumed to be nearly the same, attaining 200–230 kA
at maximum. In addition to molybdenum X-pinches,
we investigated tungsten X-pinches; however, the data-
base for the latter was substantially smaller. For this
reason, below, we only present the data for molybde-
num X-pinches with 17-µm wires.

The images in Fig. 1a clearly demonstrate two basic
types of structures in the discharge: a minidiode (the
central region where the wires are crossed and the con-
striction is formed) and cores positioned along the axes
of initial wires and surrounded by a plasma corona.
One can also see axial jets that are adjacent to the min-
idiode and have the same density as the corona. In this
paper, our attention is mainly focused on the processes
occurring in the minidiode; a more detailed description
of results obtained in the experiments with X-pinches is
the subject of a separate paper.

The minidiode images in Fig. 1a demonstrate that,
when approaching the instant of the X-ray burst, the
characteristic time scale of the constriction implosion
2000 MAIK “Nauka/Interperiodica”
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Fig. 1. (a, b) X-ray images of an X-pinch and (c) schematic of the experiment.
reduces from an initial value of 10 ns to ~5 ns before the
burst and, then, to less than 0.5 ns. Thus, even 2 ns
before the burst, there is no evidence of the formation
of a narrow neck in the constriction, but it is clearly
seen 1 ns later. According to measurements, the hot-
point burst is almost instantaneous: its actual duration
was shorter than the resolution of the apparatus (i.e.,
YSICS REPORTS      Vol. 26      No. 10      2000
shorter than 0.4 ns). The currents flowing at this instant
through each of the two X-pinches were usually about
150–170 kA.

After the burst, the time scale of the process
increases. A rapid emptying of the minidiode occurs. In
the last frame in Fig. 1a, one can see how the “minielec-
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trodes” bounding this region are extruded by a flow of
dense plasma expelled from the minidiode. These pro-
cesses are similar to those occurring when a body flying
at a high speed collides with an obstacle: fragments of
a matter flying apart are seen, while, in the middle, we
see how the minielectrodes are gradually extruded into
the space between the almost immobile cores. Note that
the dimensions of the plasma objects and cores gradu-
ally increase (the spatial scale is the same in all of the
frames).

All these data refer to molybdenum, which turns out
to be the most convenient metal for the experiments due
to such factors as the absence of hard bremsstrahlung
that is produced by an electron beam in the last stage of
the constriction and worsens the images and a high
intensity of radiation emitted from the minimum-size
plasma region in the probing spectral range of 2–5 Å.
However, a similar dynamics was observed for other
metals, in particular tungsten, which was chosen for
numerical calculations. This choice was motivated
merely by a simpler modeling of a tungsten plasma,
which has a higher optical thickness. The necessity of
such calculations is dictated by the lack of experimental
data on the rate of processes occurring in X-ray bursts
because the available time resolution is insufficient.

Unlike the previous models [5, 6], here we used the
experimental data to formulate the boundary condi-
tions. The following facts were taken into consider-
ation. Undoubtedly, the geometry of a discharge
through crossed wires is, as a whole, more complicated
than that through a single wire because the plane in
which the wires are positioned plays a decisive role,
determining the azimuthal inhomogeneity and the
three-dimensional (3D) geometry of the magnetic field.
In the region where the wires cross, an essentially 3D
expansion (unlike quasi-cylindrical expansion, as in the
other discharge regions) of the material occurs. The
role of these factors is not yet completely understood,
and the theoretical analysis encounters difficulties.
Hence, it is reasonable to use a simplified two-dimen-
sional model of the phenomenon in order to adequately
describe only the most important region, namely, the
constriction. We assume that the minidiode is autono-
mous, whereas the other parts of the X-pinch merely
serve to supply the current. At the initial instant (which
was chosen to correspond to a certain instant after the
current start-up), the immobile plasma column was
assumed to be in equilibrium and to have the shape of a
paraboloid of revolution (Fig. 2). The radius of the
minor cross section of the plasma column in the center
was equal to 100 µm, and, at the ends, it was equal to
150 µm. The length of the fragment of interest was
400 µm1 The density distribution corresponded to a
pair of wires 10 µm in diameter. The current at t = 0 was
assumed to be 50 kA; then, it increased by a sinusoidal

1 This geometry and dimensions approximately correspond to the
photos presented in Fig. 1 for the instant ~15 ns before the burst.
law to 300 kA within 50 ns. The temperature (which
determines the average ion charge Z through the Moor
formula) was chosen according to the Bennet formula,
and its profile decayed exponentially with depth. The
temperature at the plasma surface was estimated as
16 eV. We note that variations in these parameters (the
initial current was decreased to 10 kA and the temper-
ature was increased to 3 eV) did not change the calcu-
lation results significantly.

We used the generalized version [6] of the model
[7]. Along with the electron and ion temperatures, we
introduced the radiative temperature. The model
included the MHD equations of continuity and motion,
the equation for heat transfer by particles, the equation
for radiation transfer in an optically dense medium
(with the transition to a transparent plasma in the outer
plasma layers), the equations of ionization kinetics in
the average-charge approximation, and the equation
describing the generation of a magnetic field. The equa-
tion of state incorporated the effects related to the non-
ideal character of the ion component and quantum
degeneration of electrons; in addition to [6], the contri-
bution from radiation was also taken into account. In
other respects, the model was almost the same in [7]: as
previously, we used the Braginskii transport coeffi-
cients and assumed the resistance to be anomalous due
to ion-acoustic, modified Buneman, or hybrid turbu-
lence. We used the same power approximations for the
averaged Planck and Rossealand mean free paths of
photons and took into account the processes of electron
impact ionization, photorecombination, and three-body
recombination. The dependence of the ionization
energy on Z was obtained by interpolating the available
data for free ions; a correction for increasing the ioniza-
tion threshold and evanescence of higher excited levels
under the action of ion microfields was introduced. The
numerical algorithm was developed according to the
D’yachenko free-point method improved by Jach [8].
At the lateral boundaries, we applied the usual symmet-
ric conditions, according to which the constriction, in
fact, was considered to be a very short column. At the
ends, the condition vz = 0 did not exclude the numerical
diffusion of the calculation points through the bound-
aries, thus imitating the plasma outflow along the axis
from the constriction. In computations, we used 15 ×
60, 20 × 80, or 25 × 100 meshes. In all cases, we
obtained similar results.

After a short phase of adaptation to physical condi-
tions, the results of computations (Fig. 2) describe the
physical evolution of the constriction. In the initial
stage of evolution, we observe the development of slow
MHD processes with a characteristic time of 10 ns and
subsonic velocities of about .105 cm/c. Thus, by time
t = 5 ns, one can see the ionization wave approaching
the axis and the heating of wire material by the current.
The maximum values of the temperature (.30 eV) and
ion charge are observed behind the wave front, whereas
the maximum density values are observed ahead of the
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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Fig. 2. Electron temperature and density distributions in an X-pinch calculated using the two-dimensional model at different instants.
wave front, in the center of the minidiode. The heated
plasma behind the front expands gradually. In the axial
region and at the ends, the plasma flows slowly out
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
from the minidiode at velocities of (3–4) × 104 cm/s,
the velocity of the plasma flowing toward the cathode
being higher than that flowing toward the anode. Shock
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Fig. 3. States of the maximum compression of an X-pinch: (a) basic and (b) weakly perturbed versions.
waves are absent, the temperature near the anode is
lower than near the cathode, and the compression ratio
is still small.

The slow phase ends by the instant t = 10 ns. This
time coincides with the time needed to heat the plasma
volume near the constriction: τ . a2/2πχ, where a .
100 µm is the constriction radius and χ = 2κ/3ni ~
Z−1T 5/2 is the electron thermal diffusivity (with κ being
the thermal conductivity). Behind the collapsing heat-
ing wave, the magnetic viscosity χm = c2/4πσ ~ ZT –3/2

attains a value of about . 5 × 104 cm2/s and the Rey-
nolds magnetic number is Rm = va/χm < csa/χm . 0.1
(with cs = (ZT/mi)1/2 . 7 × 105 cm/s being the speed of
sound). Under these conditions, it is diffusion that gov-
erns the penetration of the current and the magnetic
field into the plasma. The time τm = a2/2πχm required
for the penetration is shorter than 1 ns, and the released
Joule heat power density at a current of I . 100 kA
attains a value of j2/σ = 2I2/π2c2a2τm . 10 TW/cm3.
These are the conditions under which a rapid compres-
sion of the constriction begins.

Further, two necks appear in the constriction near its
ends. The centers of the necks are located at distances
of one-fourth of the constriction length from the ends.
The temperature is maximum in the centers of the
necks, whereas the density is maximum near the con-
striction ends. Near the points where the constriction
cross section is minimum, the plasma moves at a veloc-
ity close to the speed of sound, whereas in the middle
of the constriction, the plasma motion remains sub-
sonic. As a result, during the following 2 ns, the plasma
radius in the minimum cross sections reduces by sev-
eral times to form two narrow necks with a maximum
electron temperature of Te . 80 eV and density of ne .
4.5 × 1022 cm–3. Further evolution is accompanied by
an enhancement of the emission intensity and proceeds
more rapidly. As soon as 400 ps later, the radius of the
anode constriction decreases to 1 µm; 20 ps later, by the
instant of maximum compression t = 12.425 ns (when
the current is 145 kA), a small-sized region of strongly
inhomogeneous plasma of radius .0.1 µm arises (the
Rossealand mean free path of photons becomes nearly
equal to this value). The abrupt decrease in the implo-
sion velocity from higher than 5 × 106 cm/s to zero
results in plasma heating, the electron temperature
attains a value of Te = 0.9–1 keV, and the ion tempera-
ture is Ti = 1.1–1.6 keV for Z = 32–35. The anomalous
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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conductivity is less than 1%, the electron density
attains (2–3) × 1025 cm–3, and the pressure is 30–
50 Gbar. First, the ion temperature Ti reaches its maxi-
mum, then the average charge Z reaches its maximum,
and finally Te does. Only after this, the constriction
radius becomes minimum. Sometimes, the constriction
can undergo several rapid compressions with a period
of 10–20 ns. The energy loss from this small-sized, but
very hot and dense region is evidently insufficient for
the constriction to evolve gradually, and the series of
compressions is finished with a microexplosion fol-
lowed by sharp expansion and the formation of shock
waves. The shock fronts are clearly seen at t = 12.7 ns.
Here, one can also see an anisotropy of the expansion
and the formation of a break in the plasma near the
anode. At first, this is merely a region of strongly low-
ered density; however, at t > 12.7 ns, the number of car-
riers in this region becomes insufficient to maintain the
Ohmic current, and we have to stop the computation.
Probably, this points to a tendency toward the genera-
tion of beams. Note that the velocity with which the
plasma flows out from the constriction is always rela-
tively low (.105 cm/s), so that intense axial plasma
flows from the constriction can appear only when shock
waves arrive at the ends. We should also emphasize that
the dominant hot point appears spontaneously on either
the anode or cathode side of the constriction at a dis-
tance of one-fourth of the constriction length from the
ends (Fig. 3). Note that this is in spite of asymmetry
that is introduced into the model by the influence of the
current-generated magnetic field on the plasma kinetic
coefficients.

We also note that the characteristic temporal and
spatial scales of the solution, as well as the current at
the instant of the burst, are in good agreement with the
experiment. Even in the slow phase of compression, we
observe an increasing deviation of the shape of the con-
verging current-heating wave from cylindrical. The
mechanism for this phenomenon is related, probably, to
the onset of instability. The deformation of the free sur-
face according to the symmetry of the problem leads to
a situation when two toroidal vortices rotate in counter
directions in each half of the constriction: at the ends
and in the middle of the constriction, the plasma moves
from the axis toward the surface, whereas between
them, the plasma moves in the opposite direction. Fur-
ther, when the velocity of this motion reaches and then
exceeds the velocity of fast magnetic sound, this
motion transforms into a cumulative heating of the
material, which manifests itself as an anisotropic explo-
sion. The formed shock waves mainly propagate
toward the minidiode ends. The axial plasma flow aris-
ing behind the explosion fronts is accompanied by a
decrease in the maximum density against the back-
ground of the increase in the density at the periphery.
The plasma break is seen in the images corresponding
to t = 12.7 ns in Fig. 2.
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
In essence, all of the above said is directly related to
the effect observed in Figs. 1a and 1b. During the
implosion, the characteristic time scale of compression
decreases by four orders of magnitude, the constriction
radius reduces by one thousand times, and the above-
listed parameters of the material attain a fusion level.
The limiting ion charge W corresponds to an ionization
energy of ~2 keV, and the radiation is emitted as a high-
intensity X-ray burst. Down to a radius of .1 µm, the
implosion proceeds symmetrically in both minimum
cross sections equally distant from the ends; however,
further, a dominant hot point arises under the action of
occasional factors. The Ohmic impedance of this point
R . 1 Ω falls just within the region of usual values of
the loads matched to a moderate-power high-current
generator. This allows us to estimate the maximum flux
of radiation energy from the formed hot point under the
simplest assumption that the radiative loss is equal to
the released Joule heat. For the neck radius a . 0.1 µm
and current I . 150 ka, the volume current density is
equal to .3RI2/4πa3; consequently, the energy flux is
.RI2/4πa2 . 1.5 × 1019 W/cm2. The corresponding pres-
sure of .5 Gbar is quite comparable with the pressure
produced by the plasma particles and evidently plays an
important role in the plasma compression. Apparently,
these hot-point parameters are somewhat overestimated
because, for instance, it is assumed that the total current
flows through the small-sized constriction.

As a whole, the numerical solution describes fairly
well the processes observed (in particular, the explo-
sion of the hot point and the generation of shock waves)
and is consistent with the time-integrated spectral mea-
surements [3]. A detailed comparison of the plasma
parameters in hot points requires X-ray spectral diag-
nostics with a high time resolution. As for the breaking
of the construction, we note that, although this effect
was observed in [3], an explanation of this phenomenon
is still lacking. Note also that the insufficient time res-
olution of optical interferometry cannot assure a true
result and only the data obtained in this study confirm
the existence of the effect in question.
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Abstract—A one-dimensional hybrid model of the dynamics of atoms, ions, and electrons in the channel of a
stationary plasma thruster is developed. The relevant set of integrodifferential equations is studied numerically.
The results obtained are compared with the results of previous calculations based on a hydrodynamic model. It
is shown that, with the use of one fitting parameter (the channel resistance), the calculated integral characteris-
tics agree well with the experimental ones. The current–voltage characteristic is obtained. The general features
of low-frequency oscillations that have been revealed in numerical simulations using the model proposed are
also in fairly good agreement with experimental results. The value of the electron thermal conductivity is esti-
mated. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

To our knowledge, a self-consistent one-dimen-
sional model incorporating a set of time-dependent
hydrodynamic equations describing the dynamics of
atoms and ions in the channel of a stationary plasma
thruster (SPT) and a supplementary integral equation
for the discharge circuit was first formulated in [1] and
investigated in detail in [2]. As follows from [2], even
in this relatively simple model, the behavior of the sys-
tem is nontrivial and very complicated. Clearly, a rea-
sonable approach to developing the theory of the pro-
cesses occurring in SPTs is to develop and study a
series of increasingly complicated, but more adequate
models.

In this paper, results are presented from a numerical
study of a hybrid one-dimensional model of the pro-
cesses occurring in SPTs. In this model, briefly out-
lined in [1], the ion dynamics is described by a kinetic
equation, whereas the dynamics of atoms and electrons
is described by hydrodynamic equations. The electron
energy equation is also used, which makes it possible to
understand the role of the electron heat conduction.

Here, our attention is primarily focused on three
issues: (i) the correspondence between the local and
integral characteristics of a plasma flow in the hydrody-
namic and hybrid models, (ii) the character of the ion
distribution function in different cross sections of the
channel, and (iii) the influence of heat conduction on
the discharge characteristics.

2. FORMULATION OF THE PROBLEM

The development of a theoretical model for the SPT
processes occurring with characteristic times τ ≥ τd,
where τd is the drift time,1 is facilitated by the absence

1 τd = 2πR/uE, where R is the average channel radius and uE is the
velocity of the azimuthal electric drift.
1063-780X/00/2610- $20.00 ©0875
of azimuthally asymmetric oscillations in an operating
thruster [3]. Hence, as a first step, it is reasonable to
restrict ourselves to a one-dimensional model of the
dynamics of electrons, atoms, and ions. We assume
that, throughout the channel, ions are singly ionized.

Let the x-axis be directed along the channel; V be
the longitudinal ion velocity; and the points x = 0 and
x = L correspond to the anode and outlet from the chan-
nel (cathode), respectively.

The basic parameters of a hybrid model are the ion
distribution function f(x, V, t), the neutral density na(x, t),
the electron temperature T(x, t), and the longitudinal
electric current J(t). The basic equations of the model
are the kinetic equation for ions with a mass M

(1)

the continuity equation for neutrals 

(2)

where Va = const > 0 is the neutral velocity; the energy
balance equation for electrons

(3)

where Ve = –  = –  is the longitudinal (current)

electron velocity; and, finally, the equation for the
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electric circuit

(4)

where U0 is the e.m.f. of the power supply source and
Lc and R are the inductance and resistance of the circuit.

Taking into account that the model is one-dimen-
sional and the discharge current is independent of x, the
longitudinal electric field is described by Ohm’s law:2 

(5)

The right-hand side of Eq. (1) describes the electron
impact ionization, β(T) being the ionization rate coeffi-
cient. On the right-hand side of Eq. (3), κe is the elec-
tron thermal conductivity across the magnetic field and
α is the cost of ionization. In Eq. (5), σ(x) is the plasma
conductivity; in our case, it depends only on the trans-
verse magnetic field, which is a parameter of the
model:3

(6)

where H0 is the magnetic field at the outlet from the
channel and H(x) is the profile of the transverse mag-
netic field.

For the set of Eqs. (1)–(4), we impose quite arbitrary
initial conditions and the following time-independent
boundary conditions: at x = 0 (anode), we specify na =
na0, ∂T/∂x = 0, f = f0(V) for V > 0 and, at x = L (the outlet
from the channel), we set T = T0. As f0(V), we used the
function

where n0 and V0 (the density and average velocity of
ions at the anode) are the parameters.

The function σ(x) in (6) depends on the profile of the
transverse magnetic field. As in [2], this field is
described by the expression

which is consistent with actual magnetic field profiles
in SPTs.

2 We neglect the longitudinal pressure gradient.
3 Here, we take into account the fact that, under actual conditions,
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It only remains to define the functions β(T) and κe.
They were taken in the following form:

(7)

(8)

Expression (7) for β was obtained by approximating the
experimental and calculated data for Xe with β0 = 2.2 ×
10–8 cm3/s and T* = 4 eV. The choice of the thermal
conductivity κe in the form (8) is quite arbitrary
because theoretical or experimental data on its value for
the SPT conditions are still unavailable.

For further analysis and numerical solution, it is
convenient to go over to dimensionless units. Let L (the
channel length) be the unit length; na0 (the initial atom
density) be the unit density; E0 = U0/L be the unit elec-
tric field; V0 (the initial mean ion velocity) be the unit
velocity; t0 = L/V0 (the transit time) be the unit time; and
I0 = U0/Rch be the unit electric current, where Rch = L/σ0
is the resistance of the channel with a cross section
S = 1 cm2. In these units, the problem is described by
the following dimensionless parameters:

(9)

The problem formulated above was solved numeri-
cally by the difference method. When approximating
the hydrodynamic part of the set of Eqs. (1)–(4), we
used the FCT method [4]. When solving the kinetic
equation, we used the positive second-order difference
scheme [5]. A standard mesh used in our calculations
was 100 × 150 steps in x and V, respectively.

3. RESULTS OF CALCULATIONS

3.1. Estimates of the Parameters

The one-dimensional hybrid model formulated
above significantly simplifies the real process. Never-
theless, it turns out to be fairly complicated and multi-
parametric, which renders the general analysis of the
set of equations quite laborious.

At the same time, the calculations using a hydrody-
namic model [2] showed that the behavior of the system
is rather nontrivial and depends strongly on the param-
eters of the model. For this reason, in this study, we
restrict ourselves to the range of SPT parameters that is
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of current interest: the mass flow rate is  = 2–4 mg/s,
the discharge voltage is U0 = 200–400 V, and the work-
ing gas is Xe [6].

Let us estimate the basic dimensionless parame-
ters (9). Let the mass flow rate be  = 3 mg/s. If the
channel cross-section area is equal to .25 cm2, then,
for the neutral density at the anode, we have na0 .
1013 cm–3 and the neutral velocity near the anode is
equal to Va . 4 × 104 cm/s. The ion velocity near the
anode is assumed to be V0 . 2 × 105 cm/s (the ion
energy is .3 eV). For a channel length of L . 3 cm, we
have t0 . 15 µs. From here, we obtain the following
estimates:

Under typical experimental conditions, we have T0 ~
20 eV, T* = 4 eV, α = 40 eV, and U0 = 300 V; therefore,
we obtain

Some difficulty is encountered in estimating the
value of the channel resistance Rch and, consequently,
the parameter χ:

In [2], we estimated Rch from the requirement that, for
U0 = 300 V, the time-independent hydrodynamic model
should give the proper discharge current J ≈ 3 A. Cal-
culations show that this requirement is satisfied with
Rch . 8 × 104 Ω cm2. Thus, we have

For the parameters l, r, and h0, we take the values
corresponding to the experimental conditions:

The choice of the thermal conductivity will be dis-
cussed below.

3.2. Comparison between the Hydrodynamic 
and Hybrid Models

Apparently, it is hard to expect that two different
models might give close results (even if qualitatively)
in all cases. However, it could be expected that at least
the average values of various physical characteristics
will be close. For this reason, we begin the presentation
of the results obtained using the hybrid model from the
case when both models have steady-state solutions. We
assume now that β(T) ≡ const so that the equation for T
is not needed.

We assume that µ = 10, ν = 7, χ = 15, Va0 = 0.3, and
n0 = 0.02. In this case, both models give (by the estab-
lishing method) a steady-state solution. The discharge

ṁ

ṁ

µ 1
6
---U0 B( ), ν 10, Va 0.2.≈≈≈

µ 50, α 2, ς 15, T* 0.2.≈ ≈≈=

χ 0.9
Rch

U0
-------, Rch[ ]≈ Ω Òm2.=

χ 7 104/U0.×≈

l 10 2– , r 10 3– , h0 0.1.≈≈≈
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currents in the hydrodynamic and hybrid models are
equal to 8.72 and 8.76, respectively. The channel volt-

ages are the same and are equal to U = dx = 0.95.

There is not only a qualitative, but also a quantitative
agreement between the results, even in the spatial pro-
files of the main SPT parameters (Fig. 1).

Now, let us compare the current–voltage (I–V) char-
acteristics obtained using the two models. Calculations
show that the I–V characteristics for both models
almost coincide in the range 200–600 V. The closest
coincidence was obtained for the channel voltages. As
µ decreases (at µχ = const, i.e., when only the voltage
is varied), the plasma flow becomes unstable and the
solution becomes nearly periodic. In the hybrid model,
this occurs at a lower value of µ than for the hydrody-
namic model. As µ decreases further, the solution
becomes nonperiodic; in this case, the transition again
occurs earlier in the hydrodynamic model. Thus, the
hybrid model turns out to be more stable.

A comparison of the time dependences of the main
SPT parameters at β(T) ≡ const shows that, although
the time dependences obtained with the two models are
different, there is good agreement for the fundamental
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Fig. 1. Steady-state spatial profiles of the ion density, ion
velocity, and neutral density calculated using the hydrody-
namic (solid line) and hybrid (dashed line) models.



878 MOROZOV, SAVEL’EV
50

30
20
10

0

ni/na0

6

4

2

0

–2
0 0.2 0.4 0.6 0.8 1.0

x/L

E/E0

40
1
2
3
4

5

0

Vi/V0

10

0.4

0

na/na0

0.8

J/J0

40

30

20

10

1 2 3 4 5 7 8
t/t0

4

3

2

1
0

6

U/U0

0

Fig. 2. Spatial profiles of the ion density, ion velocity, neu-
tral density, and electric field calculated using the complete
hybrid model at t/t0 = (1) 3.9, (2) 4.4, (3) 5.2, and (4) 5.8.

Fig. 3. Waveforms of the discharge current and channel
voltage.
low-frequency (with a period of ~30 µs) component
and the total oscillation amplitude.

The low-frequency oscillations observed in the
hybrid model are associated with the ionization of the
inflowing working gas and resemble the rarefaction-
wave instability. Thus, it is not surprising that, when a
fully ionized plasma is injected into the SPT channel,
the solution always arrives at a steady-state regime. We
note another characteristic feature of the one-dimen-
sional model in the parameter range of interest, namely,
the absence of high-frequency transit oscillations at a
frequency of ~300 kHz that are usually observed in
experiments. The reason for this is not yet understood.

3.3. Complete Model

Below, we will consider the complete set of
Eqs. (1)–(5) of the hybrid model. We assume that U0 =
300 V (µ = 50, χ = 80) and set ν = 10 and κ0 = 1. In this
case, the flow does not arrive at a steady state. Figure 1
shows the x-profiles of the main SPT parameters at dif-
ferent instants. The presented spatial distributions of
the density, ion velocity, and electric field are typical
for all of the runs. By x = 0.25, the gas is almost fully
ionized. Then, the flow accelerates to an average veloc-
ity of about 8V0 (≈1.6 × 106 cm/s. The temperature T
varies only slightly (due to high electron thermal con-
ductivity in this case). The electron velocity increases
rapidly near the anode and attains ≈10 V0 = 2 ×
106 cm/s.

Figure 3 shows the waveforms of the current J and
the channel voltage U. The flow oscillates almost peri-
odically with a main period of ≈2 t0 = 30 µs. The aver-
age current is nearly 24.2I0. The current and voltage
oscillations are in antiphase. Figure 2 covers nearly one
oscillation period.

An important feature observed in both the experi-
ments and numerical simulations is that the neutral
component is rather conservative. It is seen from Fig. 2
that, over a certain spatial interval near the entrance to
the channel, the neutral density na(x, t) remains nearly
constant and the neutral density oscillations occur only
at a sufficiently large distance from the entrance. After
a breakdown occurs in the region where the neural den-
sity is relatively high, a plasma bunch is formed and
then propagates as a single entity along the channel. As
it approaches the outlet from the channel, the next
breakdown occurs and so on. As the voltage varies in
the range 150 V < U0 < 600 V, the behavior of the sys-
tem qualitatively remains the same. The only parameter
that varies is the main oscillation period, which
decreases as the voltage increases.

Figure 4 shows the I–V characteristic of the system
(i.e., the dependence of the time-averaged current 〈J〉
on U0) in the range of 150–600 V (in dimensional
units). The I–V characteristic is nearly a straight line
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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and, as previously, depends only slightly on the model
used.

3.4. Ion Distribution Function

Unlike the hydrodynamic model [2], the hybrid
model allows us to determine the ion distribution func-
tion in different cross sections at different instants.

From Eq. (1) and the results of calculations, it fol-
lows that, if a fully ionized plasma is injected into the
channel, then, in the steady state, the shape of the ion
distribution function f(ε) (where ε = MV2/2 + eϕ and ϕ
is the electric potential) does not change but only shifts
along the energy axis. If a weakly ionized gas is
injected into the channel, then, in the steady state, f(ε)
increases along the x-axis until the plasma flow reaches
the boundary of the ionization region at a certain point
x*. Further, at x > x*, the magnitude and the shape of
the distribution function f(ε) remain unchanged. The
width of the distribution function over ε depends on the
potential drop across the ionization region. As a func-
tion of velocity, the ion distribution function f(V)
decreases.

In the presence of oscillations, the behavior of the
ion distribution function cannot be described in such a
simple way. As an example, Fig. 5 shows the differen-
tial density of the ion flux Vf(V) at x = 0, 0.5, and 1 at
different instants for the same parameter values as in
Figs. 2 and 3. The ion velocities at the outlet (x = 1) lie
in the range 8 × 105–2.4 × 106 cm/s. For these parameter
values, the transformation factor ζ defined as the ratio
of the average energy of the ions leaving the channel to
the average channel voltage is equal to

which agrees well with the experimental data [3, 6].

3.5. Influence of Electron Heat Conduction

The processes occurring in the SPT channel should
be substantially affected by electron heat conduction.
Indeed, the electrons play a key role in the ionization of
the injected gas. However, they can gain the required
energy ε only if they cover a distance of δ ~ ε/Ei when
moving toward the anode (here, Ei is the characteristic
electric field strength in the ionization region). There-
fore, if the electron thermal conductivity is set to zero,
intense oscillations should arise in the channel, which
should be accompanied by a shift of the ionization
region toward the anode or even by quenching of the
discharge. The above calculations were performed
either with T = const or with a fairly high thermal con-
ductivity. In both cases, strong oscillations of the tem-
perature T are absent, whereas in the experiment, oscil-
lations of T with an amplitude five to six times higher
than the average level are sometimes observed. To esti-
mate the actual value of the thermal conductivity in the

ς
εi〈 〉

eU〈 〉
------------- 0.63,= =
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SPT, we performed calculations at different values of
the parameter κ0. The calculations showed that, in our
model, the ionization of the gas injected into the chan-
nel is negligibly small at κ0 ≤ 0.1.
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Fig. 4. Waveforms of the discharge current and channel volt-
age.
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4. CONCLUSION

The results of a numerical study of the hybrid model
of an SPT allow us to draw the following conclusion.
Although the one-dimensional hybrid model ignores
many important details (in particular, the interaction of
electrons with the channel wall, the non-Maxwellian
electron distribution, and the two-dimensional charac-
ter of the plasma flow), it provides, as a whole, a rea-
sonable qualitative description of the processes occur-
ring in actual SPTs. The model allows one to describe
the ionization instability and the formation of the ion
distribution function and to clarify the role of electron
heat conduction. With one or two fitting parameters (for
instance, the channel resistance), the model gives rea-
sonable values for the integral characteristics of an
SPT.
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Abstract—A study is made of the combined action of the losses associated with overcoming the ionization
potential barrier and those associated with the residual energy acquired by the electrons on a laser pulse prop-
agating in a gas and ionizing it. It is shown that, depending on the laser and gas parameters, the losses due to
overcoming the ionization potential barrier may be either larger or smaller than those associated with the resid-
ual electron energy. However, for pulses that penetrate sufficiently deeply into the gas, the residual energy–
related losses are always larger than the ionization potential–related losses because of the steepening of the laser
pulse profile during ionization. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, the interaction of short intense laser
pulses (with a duration of τimp < 100 fs and a peak inten-
sity of Imax > 1016 W/cm2) with matter is being actively
studied both experimentally and theoretically (see, e.g.,
[1]). Success in experimental research in this field is
mainly a consequence of the progress achieved in cre-
ating compact high-power devices capable of generat-
ing femtosecond laser pulses (so-called T3 lasers).
Experimental progress in turn stimulates theoretical
investigations associated with possible applications of
short intense laser pulses. A problem common to many
practical applications is the change in the parameters of
a laser pulse as it propagates in matter. In particular,
both the frequency spectrum (see, e.g., [2]) and the
temporal profile [3] of a pulse propagating in a gas and
ionizing it change in time. The deformation of the laser
pulse profile due to the loss of part of the pulse electro-
magnetic energy that is expended on ionizing gas atoms
and exactly corresponds to overcoming the ionization
potential barrier was studied in my earlier paper [3].
However, it should be noted that the nonadiabatic
nature of gas ionization by the field of a short intense
laser pulse gives rise to an additional energy loss: part
of the electromagnetic energy is converted into so-
called residual electron energy (REE) [4–6]. Gil’den-
burg et al. [6] asserted (without any justification) that
the losses associated with the REE are larger than those
due to overcoming the ionization potential barrier. For
brevity, these loss channels will be referred to as resid-
ual energy–related losses (REL) and ionization poten-
tial–related losses (IPL). Andreev et al. [7] investigated
the REE as a function of the laser and gas parameters
1063-780X/00/2610- $20.00 © 20881
and showed that, during ionization, the REE increases
with the laser field intensity I as I3/2. For this reason, it
can be expected that the fraction of REL in the total
energy loss will be large.

This paper is aimed at investigating how a laser
pulse propagating in a gas and ionizing it is affected by
both IPL and REL. We show that, depending on the
relation between the IPL and REL, the substances
under tunneling ionization conditions may be divided
into two groups. If the electron shells of the gas atoms
have comparatively low ionization energies (e.g., the
electron shells of hydrogen atoms and the outer shells
of the atoms of such gases as argon, krypton, and car-
bon), then, in the region where the laser pulse enters the
gas, the IPL are larger than the REL. If the electron
shells of the gas atoms have higher ionization energies
(e.g., the electron shells of helium and neon atoms and
the inner shells of heavy atoms), then, immediately at
the entrance to the region occupied by the gas, the IPL
are smaller than the REL. Note also that, even in the
case of comparatively low ionization energies, the
steeper the laser pulse profile, the larger the REL in
comparison with the IPL. This indicates that the rela-
tion between REL and IPL changes as the pulse pene-
trates deeper into the plasma. In fact, a laser pulse prop-
agating in a gas is eroded due to ionization [3]. The
pulse profile becomes steeper, thereby raising the laser
field intensity at which ionization occurs. As a result, as
the laser pulse penetrates deep into the gas, the REL
will inevitably start to dominate over the IPL, in which
case the inverse effect of the ionization-related losses
on the pulse profile will be substantially larger than that
000 MAIK “Nauka/Interperiodica”
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in the absence of REL and the erosion rate will
increase.

We will study the role of IPL and REL in the ioniza-
tion process using a one-dimensional model of laser
pulse propagation. From an experimental standpoint,
the one-dimensional model applies to laser pulses with
sufficiently large transverse dimensions. In addition,
we may hope (see, e.g., [3]) that the one-dimensional
approximation will make it possible to determine the
ionization-related losses for laser pulses guided with
preformed plasma channels (e.g., in capillary dis-
charges [8]), in which case the diffractive spreading is
prevented by the focusing refraction effects if the pro-
file of the refractive index across the channel is appro-
priately adjusted.

Of course, ionization is not the only possible mech-
anism for laser energy losses. However, an important
feature of ionization-related losses is that the time
required for ionization of an atom (or ion) is compara-
tively short and is independent of the particle density.
For laser pulses with a sufficiently high intensity, the
ionization time is approximately equal to several half-
periods of the rapid oscillations of laser radiation (see
[3, 7, 9], the discussion below, and Fig. 1). As a result,
in the case of interaction between a short laser pulse
with a sufficiently high intensity and a gas with a com-
paratively low density, the collision-induced losses of
laser energy are insignificant in comparison with the
ionization-related losses (see, e.g., [9]). In particular,
the fraction of laser energy that is expended on exciting
gas atoms and/or molecules is unimportant when the
laser wavelength satisfies none of the resonance condi-
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Fig. 1. The source term Γ(t) (dotted curve) describing the
production of free electrons during ionization of a helium
gas by a Gaussian laser pulse with the duration τimp =

100 fs, peak intensity Imax = 1017 W/cm2, and wavelength
λ = 0.8 µm (the scale on the left). The source term is nor-
malized to the laser frequency ω0 and the initial density nat
of neutral atoms. Curves 1 and 2 give the Keldysh parameter
γ for ionization of neutral atoms and singly charged ions,
respectively (the scale on the right). The zero time corre-
sponds to the pulse center.
tions [10]. In the case of interaction between a compar-
atively short laser pulse with a nonrelativistic maxi-
mum intensity (Imax < 1018 (λ[µm])2 W/cm2) and a low-
density gas (such that the density ne of the ionization-
produced free electrons is lower than the critical plasma
density nc for the given laser wavelength λ), we can
neglect the losses resulting from stimulated Raman
scattering (see, e.g., [11, 12]) and the associated excita-
tion of plasma waves, which trap the electrons and
accelerate them to high energies (see, e.g., [13]). Note
that ionization processes can have a substantial impact
on the propagation dynamics of relativistic laser pulses
even in the case of light gases, which are characterized
by low ionization energies. For example, the steepening
of the laser pulse profile because of the pulse erosion
during ionization significantly facilitates the onset of
the self-modulational instability of the pulse, accompa-
nied by the generation of an intense wake field [14].

2. BASIC EQUATIONS

Since, in the interaction between a short intense
laser pulse and a comparatively low-density gas, ioniz-
ing inelastic collisions of free electrons with ions and
neutral particles occur on time scales longer than the
pulse duration [9], we neglect electron-impact ioniza-
tion and consider only ionization by the laser field.
According to the classical paper by Keldysh [15], in the
interaction between the electromagnetic field and a gas,
the plasma is produced via two different mechanisms—
multiphoton ionization and tunneling ionization—
depending on the value of the Keldysh parameterγ.
Below, we will show that, for the short intense laser
pulses under consideration, the γ values are such that
the gas atoms and ions are ionized predominantly
through the tunneling mechanism, in which case the
initial velocity of free electrons is zero [16, 17]. How-
ever, since free electrons originate at different phases of
the electric field of a laser pulse, part of the laser energy
is converted into the REE [4, 5].

In order to describe the combined action of the IPL
and REL, we turn to the approach developed in [3] and
the results obtained in [7]. We consider a laser pulse
with the electric field E = ez%(x, t) = ezE(x, t)cos(ω0t –
k0x); frequency ω0; and amplitude E(x, t), which varies
slowly on the time scale 2π/ω0. Let the pulse be linearly
polarized along the z-axis and propagate along the
x-axis. The REE, which is defined as the mean kinetic
energy q acquired from the electromagnetic field by a
free electron that originates in the vicinity of the point
x during ionization, has the form (cf. [7])

q x( ) 1
ne ∞ x,( )
--------------------=

×
∂ne t x,( )

∂t
-------------------- m

2
c

4 p∞
2

t x,( )c
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+ mc
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∫
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where ne(t, x) is the electron density in the vicinity of
the point x at the time t, p∞(t, x) is the momentum of an
electron originating at the time t after the passage of the
pulse, m is the mass of an electron, and c is the speed of
light. The slowly varying amplitude E(x, t) of a one-
dimensional laser pulse satisfies the relationship [18]

where the electrons are assumed to originate at a zero
initial velocity.

Since the rate ∂ne/∂t at which the density of free
electrons increases is governed by the ionization of
both neutral atoms and ions (regardless of their ioniza-
tion state), the time derivative ∂ne/∂t can be written as

where na, k is the density of the ions stripped to the ion-
ization state k (k = 0 corresponds to a neutral atom) in
a gas of species a with the nuclear charge number Za.
The probability wa, k for an ion in the related ionization
state to be ionized per unit time is determined by the
Ammosov–Delone–Kraœnov formula [19, 20]

where n∗  = (k + 1) , UH is the potential for
ionization of a hydrogen atom from the ground state,
Eat ≈ 5.1 × 109 V/cm is the electric field strength of an
atom, Ua, k is the potential for ionization of an ion in the
kth ionization state in a gas of species a to an ion in the
[k + 1]th ionization state, ωat ≈ 4.1 × 1016 s–1 is the
atomic frequency, and e1 ≈ 2.72 is the base of natural
logarithms.

To express the REE through the quantities that vary
slowly on the time scale 2π/ω0, we substitute the above
relationships into the formula for q:

Here, the integral can be represented as the sum of inte-
grals over the time intervals π/(2ω0). Evaluating each of
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the integrals asymptotically and carrying out the sum-
mation, we find

Here,

(1)

(2)

where Qp(x, t) = e2 |E(x, t)|2/(4m ) is the pondero-
motive potential of an electron. The expression in
braces in (1) contains the first three terms of the
asymptotic series with the expansion parameter αk ≡
(UH/Ua, k)3/2 |E(x, t)|/Eat [7]. According to [7], in the
region of intense ionization of the ions in the kth ioniza-
tion state in gases with comparatively light atoms (with
the nuclear charge number Z < 10), we have αk ! 1.
Expression (1) is just the mean fraction of laser energy
that is converted into the REE in the tunneling ioniza-
tion event. The quantity Wa, k in (2) is the probability
wa, k averaged over 2π/ω0 [19, 20].

The total ionization-related energy loss  is the
sum of the REL and IPL:

(3)

Consequently, in one-dimensional geometry, the laser
pulse intensity I(x, t) = (c/8π)|E(x, t)|2 evolves accord-
ing to the equation (cf. [3])

(4)

and the time evolution of the density na, k of the ions in
the kth ionization state in a gas of species a is described
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by the set of equations

(5)

where Wa, k is the probability of ionization of an ion in
the kth ionization state (or, at k = 0, of an atom) in a gas
of species a per unit time. In Eq. (4), we neglect time
dispersion and assume the electron density to be low

(ne ! nc, where nc = m /4πe2 is the critical electron
density). Equation (4) correctly describes the evolution
only of the laser intensity I that varies sufficiently grad-
ually (such that ∂lnI/∂x < ω0/c and ∂lnI/∂t < ω0), and it
yields merely rough estimates when ∂lnI/∂x ~ ω0/c and
∂lnI/∂t ~ ω0.

Equations (5) describe how the ion densities evolve
under the conditions of both multiphoton ionization
and tunneling ionization. It is precisely the ionization
mechanism that governs the dependence of Wa, k on the
laser and gas parameters. If, at the time t at which ion-
ization occurs, the Keldysh parameter γ =

ω0 / |e ||E(x, t)| (where e and m are the charge
and mass of an electron) is larger than unity, then the
gas particles are ionized through the multiphoton
mechanism, whereas, for γ < 1, ionization occurs via
the tunneling mechanism [15, 21]. Under the condi-
tions of tunneling ionization, the probability Wa, k of
ionization by linearly polarized laser radiation is
described by formula (2). Substituting the specified
dependence E(x, t) into (2) and (4), we determine the
point on the laser pulse profile and, accordingly, the γ
value that correspond to ionization of an ion in the kth
ionization state. Figure 1 illustrates the results of the
related calculations carried out for a Gaussian laser
pulse with the duration τimp = 100 fs, peak intensity
Imax = 1017 W/cm2, and wavelength λ = 0.8 µm in
helium. We can see that, in the regions of the most
intense ionization (which correspond to the peaks in the

time evolution of Γ ≡ na, k) in a laser field,
the Keldysh parameter is equal to γ ≈ 0.3 < 1 in the case
of ionization of neutral atoms and γ ≈ 0.2 < 1 when
helium nuclei are produced by ionization of singly
charged ions. For the same laser pulse propagating in
hydrogen, we have γ ≈ 0.7 < 1 near the maxima of Γ. As
Ua, k and Imax increase or τimp decreases, the γ values at
the peaks in Γ fall off. This indicates, in particular, that
the role of the tunneling ionization mechanism
increases as the laser pulse erodes when penetrating
deeper into the gas. In fact, as the pulse erodes, its pro-
file becomes steeper, thereby raising the intensity at

∂na 0,

∂t
------------ Wa 0, na 0, ,–=

∂na k,

∂t
------------ Wa k, na k,– Wa k 1–, na k 1–, ,+=

∂na Za,

∂t
-------------- Wa Za 1–, na Za 1–, , k 1 … Za 1,–, ,= =

ω0
2

2mUa k,

Wa k,k∑a∑
which ionization occurs. Hence, we are justified in
assuming that ionization occurs via the tunneling
mechanism.

Note that the time evolution Γ(t) superimposed on
the evolving laser pulse profile is seen as a sequence of
narrow peaks: the number of peaks is equal to the max-
imum possible degree of ionization for the given type
of gas and the adopted parameters of the laser pulse,
and the width of each peak is approximately equal to
several half-periods of the laser radiation (Fig. 1). Such
a high localization within the pulse temporal profile
indicates that ionization by the laser field is threshold in

nature. The threshold intensity  for ionization of an
ion in the kth ionization state in a gas of species a can
be estimated using the model in which ionization is
assumed to occur due to the reduction in the potential
barrier [22, 23]. In this model, an electron is assumed
to be in the potential field U(z) = –(k + 1)e2/|z| – e%zz,
which is a superposition of the Coulomb field of an ion
with the charge (k + 1)|e | and the electric field E of the
laser pulse. Under the condition "ω0 ! Ua, k, the laser
field is quasistatic. According to the model of [22, 23],

ionization occurs at the field strength |%z| = E =  at

which Umax(z) = –Ua, k. The threshold intensity  =

c| |2/8π of laser radiation can be estimated from the
threshold electric-field strength:

(6)

Formula (6) was obtained without consideration of the
dynamic nature of ionization. The threshold intensity
depends, in particular, on the shape, duration, and max-
imum intensity of the laser pulse. For example, for sin-
gly and doubly charged helium ions, the threshold
intensity is lower than that corresponding to the peaks
in Γ(t) by approximately 25%, and, in the case of
hydrogen, it is lower by a factor of two. We substitute
estimate (6) into (1) and divide the resulting expression
by Ua, k in order to better understand the relative frac-
tions of REL and IPL in the total ionization-related
losses. In particular, for a laser pulse with the above
parameters, we have

for nitrogen and

for helium.

Ia k,
th

Ea k,
th

Ia k,
th

Ea k,
th

Ia k,
th c

128π
--------------

Ua k,
4

e
6

k 1+( )2
------------------------.=

RH 0, IH 0,
th( )/UH 0, 0.094≈

RHe 0, IHe 0,
th( )/UHe 0, 0.71,≈

RHe 1, IHe 1,
th( )/UHe 1, 1.51≈
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Determining Ra, k/Ua, k from the laser pulse ampli-
tude |E(x, t)| at which Γ(t) reaches its maximum yields

These values are larger than the Ra, k/Ua, k values found
from the threshold intensity (6) by approximately a fac-
tor of 1.5–2. However, even in this case, we can see that
RH, 0 /UH, 0 ! 1 and that RHe, k/UHe, k is larger than or
about unity. The fact that, depending on the laser and
gas parameters, the ratio Ra, k/Ua, k can be either larger
or smaller than unity follows from expression (1). We
actually have

so that, in the theory of tunneling ionization, the ratio
Ra, k/Ua, k is a product of the small and large parameters:
"ω0/Ua, k ! 1 and (Qp/Ua, k)3/2 @ 1 [15, 17].

As the pulse penetrates deeper into the gas and its
profile becomes steeper, the relative fractions of REL
and IPL can be estimated as follows. For the cases with
and without REL, we integrate Eq. (4) over t from –∞
to +∞ to obtain

The right-hand sides of these relationships are pro-
portional to the laser energy losses per unit length. Con-
sequently, as a function of the penetration depth of the
pulse into the gas, the level of REL relative to the level
of IPL, k(x), can be estimated as

(7)

Since, in the case of ionization of electron-rich atoms,
the electrons are ejected out of many different atomic
shells, formula (7) describes the shell-averaged REL
and IPL.
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3. RESULTS OF A NUMERICAL SOLUTION

Equations (1)–(5) were solved numerically for dif-
ferent gases and laser pulses with different parameters.
Figure 2a illustrates the evolution of a laser pulse with

a Gaussian profile I0(t) = Imaxexp(–4ln2t2/ ) (where
Imax = 1018 W/cm2, τimp = 30 fs, and λ = 0.8 µm) at the

τ imp
2

1
2
3
4

5 62.0

1.5

1.0

0.5

0

I × 10–15, W/cm2

(‡)

–55
t, fs
–50 –45

1.0

0.6

0.4

0.2

0

ne/nat

(b)

0.8

Fig. 2. Time evolutions of (a) the intensity of a Gaussian
laser pulse (with the parameters Imax = 1018 W/cm2, τimp =
30 fs, and λ = 0.8 µm) propagating in a hydrogen gas with
the initial atom density nat = 5 × 1018 cm–3 and (b) the den-
sity ne of the ionization-produced free electrons in units of
nat in the accompanying frame. The zero time corresponds
to the pulse center. Curves 1 and 2 are for the penetration
depth x ≈ 1 mm obtained with and without consideration of
the REL, respectively; curves 3 and 4 are for the penetration
depth x ≈ 2 mm obtained with and without consideration of
the REL, respectively. The solid curve shows the initial laser
pulse profile. The vertical lines illustrate the positions fH, 0
of the ionization front that were obtained from Eq. (8) for
the penetration depths (1) x ≈ 1 mm and (2) x ≈ 2 mm, with
the REL taken into account.
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entrance x = 0 to the region occupied by a hydrogen gas
with the initial atom density nat = 5 × 1018 cm–3, which
corresponds to a pressure of 0.186 atm. The results
were obtained with and without consideration of REL
(I(x, t) and I(x, t, R = 0), respectively). In both cases, the
pulse erodes only in the region where the pulse inten-
sity I changes abruptly. It is this region in which the
electron density increases sharply (Fig. 2b); generally,
this region corresponds to the ionization front where
the ions in the kth ionization state in a gas of species a
are ionized to ions in the [k + 1]th state. As the coordi-
nate fa, k of this ionization front on the laser pulse profile
in the accompanying frame of reference f = t – x/c, we
can adopt the point at which the pulse intensity I
changes most abruptly due to the ionization of an ion in
the kth ionization state in a gas of species a. In the
region where the pulse enters the gas, the ionization
fronts on the pulse profiles I(x, t) and I(x, t, R = 0) are
close to one another. However, as the pulse propagates
in a gas, the distance between the coordinates fH, 0 and
fH, 0(R = 0) of the ionization fronts increases: the rate of
pulse erosion due to REL is significantly higher than
that due to IPL. As a result, as the pulse penetrates
deeper into the gas, the rate of ionization-related energy
losses with allowance for both REL and IPL becomes
higher than that in the case in which only IPL are taken
into account. Figure 3 displays the energy losses

as a function of the penetration depth of the pulse into
the gas with and without consideration of REL for the
same parameters as in Fig. 2. In the latter case, the

L x( ) I x t,( ) t I0 t( ) td
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+∞

∫
1–

d

∞–
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∫ 1–=

x, mm
1 2

0.015

0.010

0.005

0

1
2

L, %

Fig. 3. Energy loss level L(x) (%) vs. the penetration depth
of the pulse into the gas (1) with and (2) without consider-
ation of the REL. The parameters are the same as in Fig. 2.
dependence L(x) is seen to be linear, in agreement with
the theoretical predictions made in [3].

Since the ionization front on the laser pulse profile
is narrow, we can analyze Eqs. (4) and (5) in a way sim-
ilar to what we did in [3]. As a result, we arrive at an
equation that is analogous to Eq. (15) in [3] and deter-
mines the coordinate fa, k of the ionization front on the

x, mm
1 2

1.2

1.0

0.2

0

k

0.8

0.6

0.4

Fig. 4. The level of REL relative to the level of IPL, k(x),
determined from Eq. (8) vs. the penetration depth x of the
pulse into the gas, for the same parameters as in Fig. 2.
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Fig. 5. Time evolutions of the intensity of a Gaussian laser
pulse (with the parameters Imax = 1016 W/cm2, τimp =
100 fs, and λ = 0.8 µm) in the accompanying frame at
(1) the entrance to and (2) at the exit from the region occu-
pied by the gas of doubly charged carbon ions with the ini-
tial atom density nC, 2 = 5 × 1018 cm–3. The zero time cor-
responds to the pulse center.
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pulse profile as a function of the penetration depth of
the pulse into the gas:

(8)

where Ra, k(I) is the REE (3) as a function of the laser
pulse intensity I and θ(p) is the Heaviside step function,
which is defined as θ(p) = 0 for p < 0 and θ(p) = 1 for
p ≥ 0. At Ra, k = 0, Eq. (8) passes over to Eq. (15) from
[3], which implies that L is a linear function of x. In
Fig. 2, the vertical lines correspond to the positions fH, 0
of the ionization front that were obtained from Eq. (8)
for the indicated depths of penetration of the pulse into
a hydrogen gas with the REL taken into account.

The ionization-induced erosion of the propagating
laser pulse causes the ionization front to become
steeper and to displace toward higher intensities on the
pulse profile. As a result, the level of REL relative to the
level of IPL increases with x. Figure 4, which shows the
function k(x) calculated from (7), demonstrates the
validity of this conclusion.

4. CONCLUSIONS

The features of the propagation of a laser pulse in
hydrogen that are illustrated in Figs. 2–4 also apply to
laser pulse propagation in other gases. In particular, it
is of interest to compare the total laser energy losses
measured by Ehrlich et al. [8] in experiments on the
propagation of a laser pulse with the parameters Imax =
1016 W/cm2, τimp = 100 fs, and λ = 0.8 µm through a cap-
illary discharge initiated in polypropylene with the total
ionization-related energy losses, including the REL.
Under the experimental conditions of [8], an incom-
pletely ionized substance is carbon contained in
polypropylene. Since the ionization energy of doubly
charged carbon ions is comparatively high (higher than
the ionization energies of hydrogen and carbon atoms
by a factor of approximately four), we can assume that,
in the channel of a capillary discharge, the carbon ions
are doubly charged and their density is equal to nC, 2 =
5 × 1018 cm–3. Solving Eqs. (4) and (5) under these con-
ditions and assuming that at the entrance to the capil-
lary discharge the laser pulse is Gaussian in shape, we
obtain the pulse profile at the exit from a capillary chan-
nel of length x ≈ 1 cm (see Fig. 5). With the REL taken
into account, the ionization-related losses are approxi-
mately equal to 13% of the total energy losses,
whereas, without allowance for the REL, they are equal
to 8%. Note that, under the optimum channeling condi-
tions in the experiments of [8], the total energy losses
were approximately equal to 16% of the input laser
energy. Hence, the main fraction (80%) of the net
energy loss of the laser pulse during its propagation

Id
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through a capillary discharge in the experiments of [8]
may be attributed precisely to the ionization-related
losses, including the REL, which in turn may be as
large as 40% of the total ionization-related energy
losses.

The erosion of the propagating laser pulse accompa-
nied by the steepening of its profile raises the REE. The
REE may be comparable to the temperature of the ion-
ization-created free electrons, because they obey an
anisotropic Maxwellian velocity distribution function
[17, 20]. Three-dimensional particle-in-cell simula-
tions of the interaction between a linearly polarized
ionizing laser pulse and a gas [24] confirm that, after
the passage of the pulse, free electrons obey an aniso-
tropic Maxwellian distribution with the peak tempera-
ture Te, z along the polarization direction (the z-axis)
and that the REE q is related to the peak temperature by
Te, z = 2q. As a result, the electron temperature in the
laser-produced plasma varies along the path of the
pulse. This circumstance may be particularly important
for creating active media by short intense laser pulses
in X-ray lasers.
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Abstract—The excitation of a wake wave by a relativistic electron beam in an unbounded magnetized plasma
and a plasma waveguide is studied theoretically. It is shown that, in a waveguide partially filled with a plasma,
the energy that the electrons of the accelerated beam can gain is 37 times higher than the energy of the electrons
of the beam generating wakefield. © 2000 MAIK “Nauka/Interperiodica”.
The idea of accelerating particles by means of col-
lective fields in plasmas and unneutralized charge par-
ticle beams was originated as far back as 1956 by
V.I. Veksler, G.I. Budker, and Ya.B. Fainberg [1–3].
Interest in the methods for collective acceleration of
charged particles increased considerably after the
development and fabrication of new high-power energy
sources such as lasers, high-current relativistic electron
beams, and superpower microwave generators. In
1979, Tajima and Dawson [4] and, in 1985, Chen et al.
[5] suggested new, modified versions of Fainberg’s
method for particle acceleration by space charge den-
sity waves in a plasma [3]: they proposed to excite
accelerating fields by laser pulses and relativistic elec-
tron bunches.

We think that the most promising acceleration
method is to excite accelerating fields in a plasma by an
individual relativistic electron bunch, because this exci-
tation mechanism is nonresonant in nature and, there-
fore, is weakly sensitive to the longitudinal plasma den-
sity variations observed in experiments. Additionally,
in order to avoid phenomena such as electromagnetic
filamentation or slipping instability [6–9], it is worth-
while to apply a stabilizing external longitudinal mag-
netic field [10], which not only serves to suppress insta-
bilities but also gives rise to a large number of new
wave branches, thereby substantially expanding the
possibilities of the wake field acceleration scheme.

1. Let us determine the wake field generated by an
axisymmetric relativistic electron bunch propagating
along the z-axis in a magnetized plasma, assuming that
the ions are immobile and neglecting the electron ther-
mal motion. We write the bunch current in the form

(1)

where I0 is the peak total bunch current, t is the time, z
and r are the longitudinal and radial coordinates, and
the unit vector ez is aligned with the external magnetic

jext I0
ψ r( )
2π

-----------T t
z

V0
------– 

  ez,–=
1063-780X/00/2610- $20.00 © 0889
field H0 = H0ez and indicates the propagation direction
of the bunch. The radial and longitudinal profiles of the
bunch current are described by the functions ψ(r) and

T  –  (such that maxT = 1), respectively. Formula

(1) describes the bunch current density under the
assumption that the bunch propagates as a single entity,
i.e., in the rigid-bunch approximation. The function
ψ(r) satisfies the normalization condition

where rb is the maximum radius of the bunch.
We pass over to the Fourier transforms of the elec-

tric field E, the magnetic field H, and the bunch current
density (1). Then, the Maxwell equations take the form

(2)

where k = ω/V0; k0 = ω/c; ε1 = 1 – ;

ε2 = ; ε3 = 1 – ; ωpe  and

ωHe are the Langmuir frequency and gyrofrequency of

t-
 z

V0
------



ψ r( )r rd

0

rb

∫ 1,=

kEωϕ k0Hωr, kHωϕ k0 ε1Eωr iε2Eωϕ+( ),= =

1
r
--- d

dr
-----rEωϕ ik0Hωz,=

dHωr

dr
------------ ikHωr– ik0 ε1Eωϕ iε2Eωr–( ),=

dEωz

dr
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1
r
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-----rHωϕ ik0ε3Eωz

2I0

c
-------ψ r( )T ω( ),–=

ωpe
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ω ω iν+( )2 ωHe
2
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-----------------------------------------------
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ω ω iν+( )2 ωHe
2

–[ ]
-----------------------------------------------

ωpe
2

ω ω iν+( )
------------------------
2000 MAIK “Nauka/Interperiodica”



890 BALAKIREV et al.
the plasma electrons, respectively; ν is the effective
collision frequency; and ϕ is the azimuthal coordinate.

It is convenient to reduce the first-order differential
equations (2) to the following coupled second-order
differential equations for the longitudinal components
of the electric and magnetic fields:

(3)

where

The inhomogeneous equations (3) have the solution

(4)

Here,

the transverse wavenumbers of the ordinary and
extraordinary waves, λ1, 2, which are defined as the
roots of the biquadratic equation

(5)

are equal to

where J0(λir) and (λir) are the Bessel and Hankel
functions, respectively.
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In the ultrarelativistic limit, we can set V0 = c, in
which case the transverse wavenumbers become

(6)

In the frequency range ω2 < , the transverse
wavenumbers are complex quantities.

In the limit of a strong magnetic field (  @ ),
the transverse wavenumbers are equal to

For simplicity, we consider an infinitely thin ring-
shaped bunch of radius rb such that

(7)

The electric field at the axis r = 0 of the bunch can be
represented in integral form:

(8)

where Q0 is the total charge of the bunch, γ0 is its rela-

tivistic factor, and  = (  – k2)ε3. Note that  > 0.
Consequently, in the frequency range ω < ωpe, the
bunch emits electromagnetic waves in the radial direc-
tion.

Expression (8) can be rewritten in the form

(9)

We evaluate the integral in (9) (see [11]) to obtain the
expression for the longitudinal component of the elec-
tric field

(10)

where

Far behind the bunch, the wake field falls off as 1/τ,
because the group velocity of plasma oscillations in a
strong magnetic field is finite. Because of the emission
of plasma waves from the axial region, the wake field
decreases in the longitudinal direction.

2. Let us consider a waveguide partially filled with a
plasma, i.e., a waveguide with a vacuum gap between
the plasma surface r = a and the conducting wall r = b.
We assume that the waveguide is placed in an external
magnetic field.
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In order to derive a dispersion relation for the eigen-
modes of this plasma waveguide, it is necessary to
determine the electromagnetic fields in the vacuum gap
a < r < b and to match them with the plasma fields
through the boundary conditions at the plasma surface.
The boundary conditions are imposed in a standard
way: the tangential components of the electric and
magnetic fields are assumed to be continuous at the
plasma surface. It is convenient to write the resulting
dispersion relation in the form

(11)

Here, the components of the matrix A are as follows:

where

The field distribution over the waveguide cross sec-
tion is governed by the transverse wavenumber. The

Det A 0,=

A11 1, A12 1, A13 1, A14– 0,= = = =

A21 Γ1
ω

cλ1
--------

J1 λ1a( )
J0 λ1a( )
-------------------, A22 Γ2

ω
cλ2
--------

J1 λ2a( )
J0 λ2a( )
-------------------,= =

A23 1, A24–
ω
cw
-------, A31 Γ1, A32 Γ2,= = = =

A33 0, A34 Q wa( ), A41 ε3
ω

cλ1
--------

J1 λ1a( )
J0 λ1a( )
-------------------,= = =

A42 = ε3
ω

cλ2
--------

J1 λ2a( )
J0 λ2a( )
------------------, A43 = 

ω
cw
-------F1 wa( ), A44–  = 0,

Q wa( )
I0 wa( )K1 wb( ) K0 wa( )I1 wb( )+
I1 wa( )K1 wb( ) I1 wb( )K1 wa( )–
------------------------------------------------------------------------------,=

F1

I0 wprb( ) ∆⋅ 0 wrb wb,( )
I0 wpa( ) ∆⋅ 0 wa wb,( )

-------------------------------------------------------,=

w
ω2

V0
2

------ ω2

c
2

------– , wp
ω
V0
------ 1

V0

c
------ 

 
2

ε3– ,= =

∆0 wr wb,( ) I0 wr( )K0 wb( ) I0 wb( )K0 wr( ),–=

Γ1 2,
1

2ε1
-------- ε1 ε3–( ) ε1

k
2

k0
2

-----– ε2
2

–








=

± ε1 ε3–( ) ε1
k

2

k0
2

-----–
 
 
 

ε2
2

–
 
 
  2

4ε2
2ε3

k
2

k0
2

-----+
1/2









,

λ1 2,
k0

2ε1
-------- ε1 ε3+( ) ε1

k
2

k0
2

-----–
 
 
 

ε2
2

–




=

± ε1 ε3–( ) ε1
k

2

k0
2

-----–
 
 
 

ε2
2

–
 
 
  2

4ε2
2ε3

k
2

k0
2

-----+
1/2





.

PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
ranges  > 0 and  < 0 correspond to the spatial
and surface modes, respectively. The complex values of

 refer to a hybrid mode. The boundaries of the
region where λ1, 2 are complex are determined by the
inequalities

where

(12)

In order for a relativistic electron bunch to excite a
hybrid mode, the relativistic factor of the bunch should
satisfy the condition

(13)

The electromagnetic field distribution and the fre-
quency of a hybrid mode that synchronously accompa-
nies the bunch were obtained numerically for the fol-
lowing parameters of the plasma waveguide: ωHe/ωpe =
6.3, ωpea/c = 23.3, b/a = 2.4, and γ0 = 4.6, in which case
the frequency of the wake hybrid mode is equal to
0.35ωpe . We found that, at the radius r/a = 0.8, the pro-
file of the absolute value of the longitudinal component
of the electric field has a pronounced peak, which cor-
responds to an energy conversion factor equal to

Note that, the energy conversion factor is defined as
the ratio of the amplitude of the electric field accelerat-
ing a driven bunch to the amplitude of the electric field
decelerating a driving bunch (the bunch exciting the
wakefield). Such a large value of RE indicates that the
maximum energy the driven bunch can gain during
acceleration is significantly higher (by a factor of RE)
than the initial energy of the driving bunch.

Hence, we have shown that, for a certain relation
among the parameters of the plasma–bunch–magnetic-
field system, the hybrid nature of the wake waves,
which are excited by a relativistic electron bunch in a
magnetized plasma and are a superposition of the sur-
face and spatial modes, makes it possible to accelerate
the driven bunch to the maximum energy εmax,

(14)

which is many times higher than the initial energy of
the driving bunch (even when the bunch is initially
unmodulated in the longitudinal direction).
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Abstract—A one-dimensional model is used to study the dynamics of the hydrodynamic parameters of the
lightning channel in the return stroke and after the pulse current is damped. The effect of the continuous residual
electric current during pauses between the successive strokes on the plasma cooling in the channel is analyzed.
It is shown that a continuous electric current, which is several orders of magnitude lower than the peak current
in the return stroke, is capable of maintaining the channel conductivity. This effect cannot be explained merely
by Joule heating but is largely governed by the fact that the turbulent heat transport is substantially suppressed.
In this case, even a continuous current as low as 50–100 A is capable of maintaining the conductivity of the
lightning channel at a level at which only M-components can develop in the channel rather than the dart leader
of the subsequent stroke. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Two out of every three lightning discharges are mul-
tistroke lightning flashes. In such a flash, each stroke
begins with the so-called leader stage, during which a
cloud-to-ground ionization wave produces a well-con-
ducting channel in air [1]. The leaders of subsequent
strokes (which are called a dart leaders) differ strongly
in character from the first leader of a negative lightning
flash, which is called the stepped leader because it
descends in a series of very rapid steps. When the
leader traverses the distance from the cloud to the
ground, the lightning flash evolves into the return
stroke accompanied by the main energy release.

During the pause between the strokes, which lasts
from several tens to several hundreds of milliseconds,
the channel conductivity is maintained by a quasisteady
current of 100–200 A. Current pulses with a duration of
100–1000 µs and an amplitude from several tens of A
to several hundred kA (the so-called M-components)
may be superimposed on the quasisteady current. In the
course of these pulses, the channel is observed to be
very bright.

Although the problem of the nature of the dart
leader, after which the lightning flash evolves into the
return stroke, has been widely discussed in the litera-
ture, there are basically no studies devoted to modeling
this phenomenon. Different ideas were set forth regard-
ing the nature of the dart leader: it was interpreted, e.g.,
as a shock wave in an electron gas [2]; as an electro-
magnetic wave in the channel, which plays the role of
the waveguide [3]; and as an ionization wave similar to
the wave at the streamer head [4, 5]. An analysis of the
1063-780X/00/2610- $20.00 © 20893
results of observations of lightning flashes [6] supports
the last hypothesis.

One of us [4] advanced the hypothesis that the dart
leader and M-components both stem from the same
cause: the channel formed by the preceding stroke
began to be affected by new charged centers (convec-
tive cells) in a thundercloud. Which of these two phe-
nomena (the dart leader or M-components) will occur
depends mainly on the channel conductivity at the time
the new cells come into play. The high conductivity of
a strongly heated channel ensures that the potential
decreases sufficiently uniformly and gradually from the
cloud to the ground. As a result, the grounded channel
is recharged in a wavelike fashion and the ionization
effects are insignificant. Numerical modeling per-
formed in [4] showed that the global parameters of the
recharging process are similar to those of the M-com-
ponents. The conditions in a heated channel whose con-
ductivity at the time the new cells come into play is suf-
ficiently low (such that the linear resistance exceeds
103 Ω/m) are favorable for the onset of a cloud-to-
ground ionization wave whose parameters are typical
of the dart leader. Hence, the occurrence of the subse-
quent stroke in the channel formed by the preceding
stroke is largely governed by the dynamics of the chan-
nel cooling.

In this paper, we apply a one-dimensional model to
numerically investigate hydrodynamic processes in the
lightning channel during the return stroke and during
pauses between successive strokes. The model incorpo-
rates the main mechanisms for heat transport and takes
into account the possible residual electric current in the
decaying channel. We show that the parameters charac-
000 MAIK “Nauka/Interperiodica”
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terizing the cooling of air in the channel depend
strongly on the comparatively low residual channel cur-
rent. We clarify the nature of this dependence and show
that it does not stem merely from the conventional
Joule heating but is also attributed to the fact that, in a
channel with a sufficiently high continuous current, the
turbulent heat transport is substantially suppressed. We
draw the conclusion that a low (50–100 A) residual cur-
rent can serve to maintain the channel conductivity at a
level at which, according to [4], only the M-compo-
nents can develop in the channel rather than the dart
leader of the subsequent strokes. This conclusion
agrees qualitatively with the data from natural obser-
vations.

2. MODEL OF THE LIGHTNING CHANNEL
IN THE RETURN STROKE

We consider the onset of a lightning channel in
unperturbed cold air at atmospheric pressure for the
following pulse currents characteristic of the return
stroke of a lightning discharge:

and

Here, Ia ~ 30–100 kA is the current amplitude in the
return stroke of a lightning discharge, Ires ~ 0–500 A is
the post-discharge current amplitude, τf = 5.5 µs is the
rise time of the linear front of the current pulse, and
τ* = 140 µs is the characteristic damping time of its
trailing edge.

In calculations, we followed the paper by Shneider
[7], who applied the same approach to solve an analo-
gous problem of the effect of the residual current on the
cooling of the post-arc channel but for essentially dif-
ferent parameter values.

It is convenient to solve the standard one-dimen-
sional gas-dynamic equations in the Lagrangian mass
coordinates, dm = ρrdr:

(1)

.

We supplement Eqs. (1) with the equation of state for air:

(2)

I Iat/τ f for t τ f≤=
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where ε and h = ε + p/ρ are the internal energy and
enthalpy per unit mass; r is the radial coordinate; u, ρ,
and p are the air velocity, mass density, and pressure; Y
is an artificially introduced viscosity; and the source
term Q accounts for the Joule heating of air by the cur-
rent flowing in the channel, heat transport, and heat
losses due to emission and heat conduction: Q = QJ +
Qrad + Qλ. Since similar problems have been solved by
many authors, we will not dwell on a detailed descrip-
tion of the numerical algorithm.

The problem treated in [9] is the most similar in for-
mulation to our problem. Paxton et al. analyzed radia-
tion in the multigroup diffusion approximation [11] (in
[8, 10], the absorption coefficient was assumed con-
stant). In this approximation, the radiation diffusion
equation is solved for each kth spectral group,

(3)

with the boundary conditions  = 0 and  =

−  = , where rN is a point at the

boundary of the computation region. Here, Uν is the
spectral density of the radiation energy, Upν is the equi-
librium radiation-energy density, κν is the absorption
coefficient for radiation of frequency ν, and Wν =

− gradUν is the radiation-energy flux. The emis-

sion-induced energy losses are written as

(4)

The contribution of the molecular heat conduction to Q
has the form

(5)

where λ = λ(T) is the molecular thermal conductivity.
The local Joule heating intensity is described by the
formula

(6)

where σ = σ(T) is the plasma conductivity, E(t) = IR is

the electric field strength, and R(t) = 1/ πrσ(T(r, t))dr

is the linear resistance of the channel.
In calculations, the radiation spectrum was divided

into three spectral groups. Within each group, the
absorption coefficient was assumed independent of the
frequency and equal to the Planck-averaged value over
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the given group. In partitioning the radiation spectrum
into groups, we adopted the following boundaries:
0.01–6.52, 6.52–9.96, and 9.96–247 eV. The absorption
coefficients κν ≡ κν(ρ, T) for the corresponding spectral
groups incorporate light absorption, inverse
bremsstrahlung, and photoabsorption. These coeffi-
cients were used in the form of the interpolation tables
that were compiled from the data of [12, 13]. This
three-group approach to describing radiation was
employed to model a light-erosive plasma flare [13], a
magnetoplasma compressor [14], and a pulsed arc dis-
charge in air [15]. The air temperature T was described
by the dependence T(ε, ρ) determined by interpolating
the data from the tables presented in [16]. The high-
temperature range T > 104 K was described by the inter-
polation formula for the specific internal energy of air
[17]. We also took into account the dependence γ(T).
The conductivity of a plasma channel, the partial con-
tent of air (with taking into account molecular dissoci-
ation and ionization up to doubly charged ions), and the
thermal conductivity of air as functions of the air tem-
perature T were found from the data presented in [8].

The initial channel radius was set to be r0 ~ 0.1 cm,
the initial air temperature being T(r, 0) = T0 + T(0,

0)/(1 + r
2/ ), where T0 = 300 ä and T(0, 0) ~

10000 K. Our simulations showed that, during the dis-
charge evolution, the solution rapidly “forgets” the ini-
tial conditions.

3. NUMERICAL RESULTS

For Joule heating intensities characteristic of the
lightning discharges under discussion, the expansion of
the lightning channel gives rise to a high-power shock
wave (SW). Radial profiles of the air parameters in the
channel and in the SW at different instants for Ia =
100 kA are shown in Fig. 1 (for t ≤ 300 µs) and Fig. 2
(for t > 300 µs). For the other current pulses of interest
to us, the lightning discharges develop in a similar man-
ner.

During the development of the spark channel, the
emitted radiation plays a key role in the overall energy
balance and energy transport. Our simulations show
that a significant fraction of the emitted radiant energy
is absorbed at the channel boundary, thereby heating
the nearest layers of the cold air. When the air temper-
ature in the channel is high (T > 104 K), the molecular
heat conduction plays a minor role in the energy bal-
ance. As time elapses, the rate at which the energy is
lost via the emitted radiation decreases and, when the
air temperature in the channel falls to T(0) < 8000 K (in
the case at hand, this occurs at t > 1 ms), the energy
losses are governed primarily by molecular heat con-
duction.

The postdischarge channel is cooled via molecular
heat conduction on very long time scales. Thus, under
the assumption that heat diffusion is described by the

r0
2
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enhanced molecular thermal conductivity χλ = λ/cpρ ≈
50 cm2/s (this corresponds to T = 104 K), the thickness
of the layer of air heated over a time interval of 10–2 s
is δr = (χt)1/2 ≈ 0.7 cm, which is much smaller than typ-
ical channel radii for the current pulses under consider-
ation. However, if the air in the postdischarge channel
evolves into a turbulent state, the cooling and expansion
rates of the channel both become much higher. The
mechanisms responsible for the loss of stability of the
channel boundaries and the onset of the turbulent
motion of air in the channel will be considered in the
next section.

In Figs. 1 and 2, one can clearly see the phase of the
negative pressure drop. This phase is known in the the-
ory of explosions (see, e.g., [18]) and can be explained
as follows. The air pressure in the expanding channel
inevitably falls to p = p0 = 1 atm, but the channel itself
continues to expand by inertia, in which case the pres-
sure drop becomes negative (the phase of the negative
pressure drop at p < p0) and the channel stops expand-
ing. Then, the air begins to contract and is compressed
in the channel, so that the air pressure and temperature
grow. In the next section, we will show that a slowed
contraction of air toward the channel axis is one of the
possible mechanisms for the onset of the hydrodynamic
Rayleigh–Taylor instability in the region of large den-
sity gradients at the channel boundary. The Rayleigh–
Taylor instability may give rise to the turbulent motion
of air in the channel, in which case the channel is
cooled and expands at much higher rates.

Our simulations revealed that, on time scales longer
than 1 ms, a low (in comparison with the peak value)
residual current Ires has a substantial impact on the cool-
ing process (Fig. 3). In the absence of the residual cur-
rent (Ires = 0), the air temperature in the channel contin-
uously decreases, while even a low residual current can
terminate the cooling process and maintain a relatively
high conductivity in the channel. The higher the resid-
ual current, the earlier the air cooling in the channel
stops. The channel fairly rapidly evolves into a qua-
sisteady free arc in air with a characteristic longitudinal
electric field of about E ~ 5–8 V/cm (Fig. 3) [19].

4. HYDRODYNAMIC INSTABILITY 
OF THE BOUNDARY OF THE POST-ARC 

CHANNEL

The air pressure in the cooled channel becomes
approximately equal to the pressure of the surrounding
air when the air temperature in the channel is still high:
T ~ 104 K. The air temperature continues to decrease,
while the pressure remains essentially constant. Since,
during this process, the air density in the channel
increases, the air should come into the channel from its
edge. This unstable reverse radial air flow gives rise to
the turbulent air motion in the channel. According to
present-day opinions [7], the main cause for the natu-
rally observed hydrodynamic instability is the Ray-
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Fig. 1. Radial profiles of the (a) pressure, (b) temperature, (c) density, and (d) relative velocity (Mach number) of air for a current
pulse with the amplitude Ia = 100 kA at different times in the interval t ≤ 300 µs: (1) 5, (2) 20, (3) 50, (4) 100, (5) 200, and (6) 300 µs.
leigh–Taylor instability [20] in the peripheral channel
region where the density gradient is large. The Ray-
leigh–Taylor instability can occur in the transient layer
at the channel boundary if the boundary contracts
toward the channel axis at a slowed rate. The channel
boundary can move in such a manner only when the
pressure and density gradients at the boundary are
oppositely directed, which corresponds to the condition
—p—ρ < 0. The representative radial profiles of the air
pressure and density are shown in Fig. 4 on an enlarged
scale. The profiles were calculated for Ia = 100 kA at the
instants t = 200 µs (when the channel continues to
expand by inertia) and t = 800 µs (when the channel
boundary contracts). At the boundary of the expanding
channel, we have —p—ρ > 0 (Fig. 4a), so that the expan-
sion process is stable. A higher pressure of the sur-
rounding air terminates the expansion, and the channel
starts to contract. As the volume of the channel
decreases, the pressure in the channel increases and
acts to prevent further air contraction, in which case the
pressure and density gradients inevitably become oppo-
sitely directed, —p—ρ < 0 (Fig. 4b), thereby giving rise
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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to the Rayleigh–Taylor instability. Taking into account
the fact that the air density in the channel satisfies the
condition ρ ! ρ0, we can estimate the time scale on
which the Rayleigh–Taylor instability develops as
τinst ~ (2π /λw)–1/2, where λw is the perturbation wave-
length (δr < λw ≤ r) and δr is the thickness of the bound-
ary layer where the density gradient is large. For exam-
ple, for our numerical results obtained at Ia = 100 kA,
this estimate yields 10–4 < τinst < 10–3, which is compa-
rable to the duration of the phase of the negative pres-

ṙ̇
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sure drop. We emphasize that this estimate applies only
to the linear instability stage. Such involved problems
as the nonlinear stage of the hydrodynamic instability
and the evolution of air into a developed turbulent
motion in the postarc channel require a separate analy-
sis and go beyond the scope of this paper. However, the
results from experimental investigations of the pro-
cesses in the postarc channel (in particular, schlieren
photographs) (see, e.g., [21, 22]) permit us to suggest
that, in order of magnitude, the above estimate for τinst

gives a correct duration of the nonlinear stage.
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5. ISOBARIC STAGE OF TURBULENT COOLING
In our study, we describe the turbulent cooling of the

channel using the model that was considered in detail in
[7] (an analogous model, which differs from our model
only in that it neglects the spatial dependence of the
averaged thermodynamic parameters of air in the chan-
nel, was used in [23, 24]). As before, we describe the
cooling process by the one-dimensional Lagrangian
equations (1). We also assume that the air pressure is
constant and take into account only velocity pulsations,
neglecting the pulsations of the remaining parameters.

According to Boussinesq’s hypothesis, the turbulent
shear deformations can be related to the mean deforma-
tion rate through the effective scalar turbulent viscosity
ηT. By analogy with the kinetic theory of gases, the tur-
bulent viscosity coefficient ηT can be represented as

(7)

where vT is the characteristic velocity of turbulent pul-
sations and LT is their characteristic spatial scale. It is
natural to assume that

where c1 and c2 are numerical coefficients on the order
of unity, which should be adjusted to achieve the best

agreement with the natural observations; KT = /2 ≈

WT/2π rdr is the kinetic energy of turbulent

motion of the air per unit mass; WT is the total linear
kinetic energy of turbulent pulsations in the channel;
and rch is the channel radius.

Taking into account the fact that heat diffusion from
the cooled channel is governed by the molecular and

ηT ρv T LT ,=

v T c1 u'2 c1 2KT and LT≈ c2rch,= =

ui'ui'
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Fig. 3. Time evolutions of the air temperature at the channel
axis and the averaged (over the channel cross section) elec-
tric field for Ia = 30 kA and for different residual currents
Ires = (1) 0, (2) 25, (3) 50, and (4) 100 A.
turbulent transport processes (the latter process is far
more intense), we introduce the effective thermal diffu-
sivity χeff and thermal conductivity λeff [24]:

where χλ and λ are the associated molecular transport
coefficients.

χeff χλ χT+
λ

cpρ
-------- 1

χTρ
λ /cp

----------+ 
  λeff

cpρ
--------,≡= =

λeff T( ) λ T( ) 1
χTρ
λ /cp

----------+ 
  , χT v T LT∼≡ ηT /ρ,=
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100 kA.
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Outside the cooled channel, the air flow is laminar.
During the cooling process, the kinetic energy of the air
flow contracting toward the channel axis is converted
into the energy of turbulent pulsations (except for a
fraction of the kinetic energy that is converted into the
thermal energy via air viscosity). As was shown in the
previous section, the conditions for the onset of a
hydrodynamic instability at the channel boundary are
satisfied during the reverse radial motion of the bound-
ary toward the axis, when the air pressure in the channel
increases from the minimum value to atmospheric pres-
sure. Consequently, we can assume that, when the
channel boundary starts to contract toward the axis, the
kinetic energy of turbulent pulsations of the air begins
to flow into the channel. The energy influx per unit
channel length is described by the equation [23, 24, 7]

(8)

where  is the velocity of the conditional channel
boundary and un(rch) is the air flow velocity through the
boundary with respect to the immobile axis. The quan-
tity Λ(t) accounts for the delay of the onset of turbulent
air motion in the channel; we can approximately set
Λ(t) = 1 – exp[–(t – tp)/τinst], where tp is the instant at
which the channel boundary starts to contract, thereby
giving rise to the hydrodynamic instability. The term

(9)

accounts for the fraction of the kinetic energy of turbu-
lent pulsations that is converted into thermal energy via
the air viscosity, which is described by the kinematic
viscosity coefficient ν(T).

If there is a heat source that acts to prevent air cool-
ing in the channel (e.g., the air is Joule-heated by the
residual current), then the cold air (and, accordingly,
the kinetic energy) stops flowing into the channel. In
this case, only the kinetic energy of turbulent pulsations
dissipates in the channel:

(10)

Equations (8) and (10) should be supplemented with
the initial condition

Equations (8) and (10) and expression (9) are valid
under the assumption that the total kinetic energy of
turbulent pulsations is accumulated in the longest scale
pulsations such that LT ~ rch(t). Here, we neglect cascad-
ing of the kinetic energy of turbulent pulsations to

ẆT 2πrchρ rch( )Λ t( ) un ṙch+( )un
2/2=

– 2πΩ ν( ) ρr r, un ṙch 0,<+d

0

rch

∫
ṙch

Ω νk2u'2 2νk2KT , k 2π/rch≈≈ ≈

ẆT 2πΩ ν( ) ρr rd

0

rch

∫– 2νk2WT ,–≈=

un ṙch+ 0.>

WT tp( ) 0.=
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shorter scale lengths, because the estimates carried out
on the basis of the model of [23, 24] show that, for the
range of Reynolds numbers characteristic of the longest

scale pulsations (Re ≈ rch/ν(T) ~ 10–102), the time
scale on which the ionized air evolves into a fully
developed turbulent state is comparable to or even
longer than the time interval over which the decaying
channel is stabilized by the residual current.

In our one-dimensional model, turbulent air motion
is incorporated through the formal replacement p +
Y  p + Y + 2ρKT in Eqs. (1). We also must supple-
ment the right-hand side of the energy balance equation
with the effective thermal conductivity λeff(T) and addi-
tional source term QT = +Ω(ν), starting from the instant
t = tp.

Figure 5 illustrates the results of simulation of the
turbulent cooling of the channel at Ia = 100 and 30 kA
for different residual currents Ires. We can see that, with
no residual current present, the turbulent pulsations
enhance the rate at which the channel is cooled. As a
result, the thermal conductivity falls to zero and the
plasma in the channel rapidly decays. In contrast, a low
(in comparison with the peak value) residual current is
capable of stopping the cooling of the channel and
maintaining a relatively high air temperature and ther-
mal conductivity at levels typical of the quasisteady
free arc. In this case, each discharge-current pulse is
characterized by its own minimum residual current Ires ,
which stabilizes the decaying channel. At Ia = 100 kA,
the channel is stabilized at Ires ≈ 100 A. On the other
hand, the residual current Ires ≈ 40 A is sufficient to pre-
vent the channel with Ia = 30 kA from decaying.

Under the conditions that we adopted for the stabi-
lization stage, the electric field in the channel was
found to be about (1–2) × 104 V/m, which is far above
the electric field in Fig. 3. This discrepancy stems from
the fact that, for the same temperature and same chan-
nel radius, the field ET in a turbulence-stabilized chan-
nel is stronger than the corresponding field Eλ in a tur-
bulence-free channel by virtue of the estimate ET ~
Eλ(λeff/λ)1/2, which follows from the quasisteady bal-
ance condition for the Joule heat release in the channel
and heat losses through the channel boundary.

6. DISCUSSION OF NUMERICAL RESULTS

Our simulations revealed that the residual current
plays an important role in the stabilization of a cooled
arc channel and the suppression of the originating tur-
bulent pulsations. Even when the pulse current is
extremely high (about 100 kA), no turbulent pulsations
occur if the continuous residual current is sustained at
a level of 100 A, which is a typical current during
pauses between strokes of a lightning discharge. Con-
sequently, if the gas-discharge processes in a cloud are
capable of ensuring a continuous current at a level of at

u'2
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least 103 of the pulse current, then the turbulent pulsa-
tions cannot destroy the lightning channel as the pulse
current is being damped. In other words, the cloud-to-
ground channel continues to exist after the return stroke
of a lightning discharge. According to our model simu-
lations, this channel is in a transient stage, in which the
channel radius (which is equal approximately to 5–8 cm
because of the expansion of the channel in the return
stroke) is noticeably larger than the radius of the steady
arc channel. Presumably, for this reason, the air temper-
ature in the channel is somewhat lower. Nevertheless,
the air temperature is maintained by the accompanying
residual current at a level of 6000–7000 K, which is
typical of a quasisteady free arc. On a time scale of
about 1 ms, on which the thermodynamically equilib-
rium state is reached, the plasma conductivity in a
channel heated to 6000 K is about 1 (Ω cm)–1 and the
linear resistance R0 of a channel with a radius of about
5 cm is estimated to be 2 Ω/m.

On the one hand, for characteristic distances
between the cloud and the ground (l ≈ 3000 m), the esti-
mated value of the linear channel resistance R0 is suffi-
cient for the total channel resistance to be as high as
Rch = R0l @ Z, where Z ≈ 500–600 Ω is the wave resis-
tance of the lightning channel. This indicates that any
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Fig. 5. Time evolutions of the air temperature at the channel
axis for Ia = (a) 100 and (b) 30 kA. Profile (1) was calculated
neglecting turbulent pulsations, and the remaining profiles
were obtained with turbulent pulsations taken into account
for the residual currents Ires = (2) 200, (3) 100, (4) 75, and
(5) 50, (5a) 35, and (6) 0 A.
process associated with the recharging of the channel is
aperiodic. As a result, an aperiodic process will eventu-
ally result in the diffusion of the potential and current
rather than the propagation of weakly damped waves of
the potential and current. On the other hand, a linear
resistance on the order of 1 Ω/m is insufficient for the
electric field to exceed the ionization threshold in any
region of the channel not only for the continuous cur-
rent during pauses between the successive strokes but
also for the typical current of the dart leader of the sub-
sequent strokes, which are characterized by currents of
about 103 A.

It is the regime of the propagation of electric pertur-
bations that is peculiar to the M-components. It was
shown in [4, 25] that the perturbation that propagates
diffusivity upward and is driven, e.g., when an intrac-
loud leader with a high potential U comes into contact
with the grounded channel under consideration is rap-
idly damped and the initially steep fronts of the poten-
tial and current flatten and become as long as several
hundreds of meters. Such phenomena are characteristic
of the M-components.

Presumably, the so-called dart leader is also gener-
ated when an intracloud leader comes into contact with
the grounded channel. However, the data from optical
measurements can most likely be interpreted as result-
ing from the propagation of a cloud-to-ground ioniza-
tion wave along the already developed channel rather
than from another reason. The front of such an ioniza-
tion wave is narrow and its main parameters (in partic-
ular, velocity) are analogous to those of the ionization
wave at the streamer head. For a cloud-to-ground ion-
ization wave to be excited, the linear resistance of the
channel should be at least three orders of magnitude
higher than that maintained by the continuous current
during pauses between the successive strokes [4]. The
above analysis allows us to conclude that such a high
linear resistivity can be achieved only when the current
in the channel terminates. This conclusion agrees with
field observations [6, 26], according to which the gen-
eration of the dart leader of each successive stroke is
always preceded by a decrease in the channel current to
nearly zero.
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Abstract—A complete self-consistent electrodynamic model of a pulsed gas discharge excited by surface
waves is developed. The model allows one to calculate both the initial phase of the discharge front propagation
and the parameters of the produced plasma. The spatiotemporal evolution of the electromagnetic field and
plasma parameters at the discharge front is investigated for the first time. It is shown that discharge propagation
is mainly governed by a breakdown wave in an inhomogeneous electric field at the leading edge of the ioniza-
tion front. It is found that the effect of the electric field enhancement in the plasma resonance region signifi-
cantly affects the velocity of the breakdown wave. The results of calculations agree well with experimental data.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Microwave gas discharges excited by electromag-
netic surface waves (SW) are promising for wide appli-
cation in various plasma technologies [1–7]. The
parameters of SW discharge plasmas can be easily con-
trolled by changing the frequency and power of the
exciting radiation. Continuous SW discharges can be
sustained at radiation frequencies from 1 MHz to
40 GHz over a wide range of pressures from 10–5 torr to
atmospheric pressure in various types of plasma reac-
tors and gas-discharge tubes.

In addition, pulsed SW discharges have attracted
considerable interest. In the pulsed mode, microwave
radiation with a higher power and frequency can be
used; consequently, it is possible to attain higher densi-
ties of electrons, radicals, and excited molecules as
compared to the continuous mode. Furthermore, in the
pulsed mode, a high peak microwave power can be
attained at a low level of the average power, which
makes it possible to avoid strong gas heating.

The electron density Nc in SW discharge plasmas
exceeds the value Nd ≥ Nc(1 + ε), where Nc = m(ν2 +
ω2)/4πe2 is the critical electron density, m and e are the
electron mass and charge, ω = 2πf is the circular fre-
quency of the microwave radiation (f is the radiation
frequency), ε is the permittivity of the tube wall, and ν
is the electron–molecule collision frequency. For f =
10 GHZ, we have Nc ≥ 1012 cm–3. It follows from here
that the electron density increases substantially with
increasing the microwave frequency in the range ν < ω.
The microwave power needed to sustain the discharge
also increases in this case. Hence, in order to excite
large-volume discharges by short-wavelength radia-
tion, it is necessary to use high-power microwave
sources.
1063-780X/00/2610- $20.00 © 20902
Although there are many experimental works on
pulsed SW discharges [8–15], a theoretical model
describing the time evolution of such a discharge is still
lacking. The mechanism governing the propagation of
the ionization front of the SW discharge is not yet
understood, and both the field structure and plasma
parameters at the front are still unknown.

In this paper, based on the finite-difference time-
domain (FDTD) method, we develop a numerical self-
consistent model of a pulsed discharge. The model
allows one to calculate both the initial phase of SW
propagation and the parameters of the produced
plasma. The theoretical analysis is based on the exper-
imental results obtained for discharges produced with a
novel SW launcher [15, 16] operating at the E01 mode
of a circular waveguide. The results obtained are also
applicable to pulsed discharges produced by using con-
ventional launchers because the spatial distribution of
electromagnetic fields and plasma in SWs is indepen-
dent of the type of launcher.

2. DESCRIPTION OF THE NUMERICAL MODEL

At present, fairly well developed self-consistent
models of a continuous SW discharge are available [6,
7, 17]. These models are usually based on the time-
independent Helmholtz equation for the complex elec-
tric field amplitudes and balance equations for particles
and electron energy, complemented with appropriate
boundary conditions. Depending on the dominant
mechanism for electron loss, diffusion or recombina-
tion regimes for sustaining the discharge can be real-
ized. Solving the above equations simultaneously, one
can determine the steady-state structure of the field and
the distribution of electron density Ne along the gas-dis-
charge tube. It is evident that such an approach is inap-
000 MAIK “Nauka/Interperiodica”
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plicable for describing the unsteady processes in pulsed
SW discharges.

In this paper, the processes of SW excitation are
described using a numerical model based on the FDTD
method proposed in [18] and successfully used now to
calculate the parameters of plasma reactors (see, e.g.,
[19]). The method is based on the direct solution of the
Maxwell equations on a specially adapted space-time
mesh.

Calculations were carried out for an SW launcher
used in the experiments [15, 16] and shown schemati-
cally in Fig. 1. In the experiments, magnetron radiation

at the wavelength λ = 3 cm was generated as the 
rectangular-waveguide mode, which then was con-

verted into the  circular-waveguide mode and,

finally, into the  beyond-cutoff circular-waveguide
mode with the help of a wave converter [20]. A thin
metal diaphragm whose diameter was somewhat larger
than that of the gas-discharge tube was installed at the
exit from the launcher. The diameter of the diaphragm
aperture was chosen such that, in the absence of a dis-

charge, a considerable fraction of the power of the 
mode was reflected from the diaphragm. In this case, a
standing wave that was formed in the launcher facili-
tated the ignition of the discharge over a wide range of
gas pressures; another favorable factor was an increase
in the electric field amplitude at the diaphragm edge. At
the same time, an SW propagating along the tube wall
freely penetrated through the aperture of the dia-
phragm. Thus, the launcher was, in fact, a so-called sur-
faguide (a waveguide launcher of surface waves) [3] in
which the diaphragm and the coupling aperture were
oriented in the propagation direction of the electromag-
netic wave in the waveguide. The discharge was ignited
in quartz tubes with inner diameter 2a = 4–6 mm, outer
diameter 2R = 6–20 mm, and length L = 30–100 cm.
The tubes were positioned along the axis of the circular
waveguide. The experiments were conducted at an air
pressure of p = 0.1–10 torr (see [15] for details).

When modeling the discharge, we consider only
azimuthally symmetric surface E-waves with E = ezEz +
erEr and H = eφHφ. The Maxwell equations were written
in cylindrical coordinates:

(1)

where c is the speed of light and j = ez jz + er jr is the
plasma-current density. The dielectric permittivity ε of

H10
h

H11
O

E01
O

E01
O

∂Hφ

∂t
---------- c

∂Ez

∂r
--------

∂Er

∂z
--------– 

  ,=

∂Er

∂t
--------

c
ε
--
∂Hφ

∂z
----------– 4πjr,–=

∂Ez

∂t
--------

c
ε
--1

r
---

∂rHφ

∂r
------------ 4πjz,–=
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the tube material was assumed to be ε = 4; outside of
the tube, we set ε = 1.

In calculations, we used the mesh shown in Fig. 2a.
According to the FDTD method, the electric field val-
ues at nodal points of the mesh at the time t + dt were
computed from the known field values at the time t. The
electric and magnetic fields were computed at different
nodal points of the same mesh taking into account that,
according to Eqs. (1), the time variations in the electric
field E are caused by the spatial variations in the mag-
netic field H and vice versa. Thus, new values of Ez

were first computed throughout the entire calculation
region and, then, the values of Er and Hφ were com-
puted. The spatial step of the mesh (h = 0.5–1 mm) was
chosen depending on the discharge-tube diameter. The
time step was chosen from the condition h > cdt ensur-
ing the stability of the numerical scheme and was equal
to nearly 1/50 of the microwave oscillation period.

Figure 2b illustrates the geometry of the model used
in calculations. This geometry completely matched the
launcher schematic shown in Fig. 1. The boundary con-
ditions corresponded to a vanishing of the tangential
components of the electric field on metal surfaces. A
source was modeled by specifying the electric and
magnetic currents exciting the E01 mode propagating in
the +z-direction along the circular waveguide. The dia-
phragm diameter D and the tube diameter were chosen
in compliance with the experimental conditions. The
part of the discharge tube outside the exciter was sur-
rounded by a cylinder with a well-absorbing wall. The
cylinder radius was chosen to be much larger than the
characteristic attenuation length of the SW electric field
outside the tube, which excluded the influence of the
absorber on the conditions of SW propagation. In this
case, microwave power radiated from the discharge was
absorbed at a fairly large distance from the tube axis. In
this way, we modeled the conditions of SW propaga-
tion along a tube placed in free space. The initial elec-
tron density distribution was assumed to be uniform
both along the axis and in the radial direction, and its
value varied within the range 106–109 cm–3. Estimates
show that such an electron density ahead of the ioniza-

1 3

2
4

5

E01

H11

Fig. 1. Schematic of the surface-wave launcher: (1)

   mode converter, (2)    mode

converter, (3) horn, (4) diaphragm, and (5) gas-discharge
tube.

H11
h H11

O
H11

O
E01

O
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tion front can be produced by UV radiation from the
discharge or by electron flows arising due to either dif-
fusion or the action of a ponderomotive force. In addi-
tion, the calculations show that variations in the initial
density N0 have little or no effect on the spatiotemporal
dynamics of the discharge and only lead to a change in
the propagation velocity of the ionization wave.

As in [19], the equation for the plasma-current den-
sity entering Eq. (1) was written in the simplest form:

(2)

where ν(s–1) = 5 × 109p [21] is the frequency of elec-
tron–molecule collisions in air. The set of Eqs. (1)–(2)
was complemented with the electron balance equation

(3)

t∂
∂j e2
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Fig. 2. (a) FDTD mesh in cylindrical coordinates and (b) the

launcher scheme used in calculations: (1) exciter of 

mode, (2) metal diaphragm, (3) quartz tube, and (4)
absorber.

E01
O

where α is the dissociative recombination coefficient;
νi and νa are the ionization and attachment rates,
respectively; and Da is the ambipolar diffusivity. The
ionization rate is a sharp function of the effective elec-
tric field Ee = |E |ν/(ν2 + ω2)0.5. In calculations, we used
the values of νa, Da, and α from [21] and the depen-
dence νi (Ee/p) given in [22].

Calculations were performed for gas pressures p ≥
1 torr, which were not too low so that the electron mean
free path Le = VTe/ν (where VTe is the electron thermal
velocity) was less than the radius of the gas-discharge
tube and the characteristic scale length of the electric
field inhomogeneity ΛE. In addition, at high pressures,
the characteristic electron heat-conductivity length LT =
Le/δ0.5 was less than ΛE (here, δ ~ 10–3–10–2 is the frac-
tion of electron energy lost in a collision with a mole-
cule). The relaxation time of the electron temperature
τe ~ 1/δν at such pressures was also shorter than the
characteristic time τE of the electric field variations
related to the propagation of the discharge (τE ~ ΛE/Vf,
where Vf is the ionization-front velocity). Under these
conditions, the relation between the ionization rate νi

and the electric field strength has a local character: νi =
νi(Ee). The influence of gas heating in the initial phase
of the discharge was neglected because the ionization-
front velocities observed in experiments [12, 15] sub-
stantially exceeded the speed of sound in air.

3. RESULTS OF CALCULATIONS 
AND DISCUSSION

The self-consistent evolution of the electric field
and electron density in an SW discharge was investi-
gated by numerically solving the set of Eqs. (1)–(3).
The calculations showed that the gas breakdown ini-
tially occurs in the part of the tube that is located inside
the waveguide. When the electron density in this region
approaches the critical density (Ne ≥ 1012 cm–3), an SW
is formed there and the ionization front begins to prop-
agate along the tube. The initiation of the discharge,
excitation of an SW, and its absorption in a plasma
result in a significant decrease in the microwave power
reflected from the launcher back toward the waveguide.
The time dependence of the reflection coefficient is
shown in Fig. 3. It is seen from the figure that up to 90%
of the incident microwave power can be converted into
an SW. This value coincides with experimental data
[15, 16]. Oscillations of the calculated reflected signal
(which were also observed in [15, 16]) may be attrib-
uted to the reflection of the SW from the propagating
front of the discharge.

Figure 4 shows the spatiotemporal dynamics of the
propagation of the ionization front in gas-discharge
tubes of different diameters. The calculations show that
the dynamics and structure of the discharge depend
substantially on the gas pressure and the discharge tube
diameter. Thus, at low gas pressures in small-diameter
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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tubes (when pa < 1 torr cm), the electron density starts
growing in the center of the discharge tube. Figure 5
shows the characteristic radial profiles of the ampli-
tudes of Ez and Er components of the electric field and
electron density Ne at different instants for this case. It
is seen from the figure that, in the region where the
electron density reaches its critical value Nc, both elec-
tric field components are significantly enhanced
because of the plasma resonance. Note that the exist-
ence of the plasma resonance for the Er-component of
the SW field was observed experimentally [23]. The
increase in the ionization rate in this field leads to an
increase in the electron density and to the displacement
of the discharge boundary toward the discharge tube
wall. Further, the electron density continues growing
and the distribution Ne(r) flattens. At the same time, the
electric field amplitude is redistributed over the tube
cross section. As the discharge front propagates far
away from the given cross section, the electron density
distribution in this cross section becomes quasi-uni-
form (the electron density even somewhat increases
from the tube axis to the periphery), the electric field
reaches its maximum near the tube wall, and the elec-
tric field profile takes a form characteristic of steady-
state SWs.

As the gas pressure and tube diameter increase (pa ≥
1 torr cm), the electron density starts growing near the
tube wall, where the electric field is maximum. In this
case, the effect of the enhancement of the electric field
in the plasma resonance region is not so pronounced
and occurs on both sides of the maximum of the Ne(r)
profile. The resonance is less pronounced near the tube
wall because of a steeper gradient of the electron den-
sity in this region. As time elapses, the Ne(r) profile
broadens, shifts toward the tube axis, and becomes
more uniform. At the same time, the axial region with a
decreased electron density continues to exist. There-
fore, in the quasi-steady stage, the discharge takes the
form of a plasma tube aligned with the quartz tube. The
spatiotemporal dynamics of the discharge at higher air
pressures is shown in Fig. 6.

The self-consistent evolution of the longitudinal
profiles of the Ez component of the electric field and
electron density is shown in Fig. 7. Calculations show
that the electron density in the plasma column is sub-
stantially (by more than one order of magnitude) higher
than the critical density Nc = 1012 cm–3. In the quasi-
steady phase, the electron density gradually decreases
from the launcher toward the end of the plasma column.
These data agree well with experimental results [24].

At the discharge front, where the electron density
gradient is maximum, one can see a sharp maximum of
the amplitude of the electric field Ez, which is related to
the plasma resonance. In this case, as is seen from the
figure, the enhanced ionizing field penetrates into the
neutral gas ahead of the discharge front to a depth of
several centimeters. It is the avalanche growth of the
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
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Fig. 3. Time dependence of the microwave reflection coeffi-
cient. The incident microwave power is P = 50 kW, the gas
pressure is p = 1.5 torr, and the tube diameter is 2a = 8 mm.

Fig. 4. Spatiotemporal dynamics of the electron density at
the ionization front for p = 1.5 torr and tube diameters of (a)
2a = 8 mm at the instants (1) 30, (2) 50, (3) 70, (4) 85,
(5) 100, and (6) 130 ns and (b) 2a = 15mm at the instants
(1) 40, (2) 510, (3) 260, (4) 370, and (5) 500 ns.
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electron density in this field that causes the ionization
front to move along the discharge tube. Note that the
decrease in the electric field ahead of the ionization
front in an SW was also observed in experiments [12,
15]. The enhancement of the field becomes less pro-
nounced as the gas pressure (and, consequently, the
electron–molecule collision frequency) increases. In
addition, the electric-field amplitude at the front falls
far away from the launcher because of the SW absorp-
tion. Behind the ionization front (in the plasma col-
umn), the electric-field strength falls sharply to a cer-
tain quasi-steady level sufficient to sustain the dis-
charge.
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Fig. 5. Radial profiles of (a) the electron density and (b) Er
and (c) Ez components of the electric field at the instants (1)
85 and (2) 130 ns for P = 50 kW, p = 1.5 torr, 2a = 8 mm,
and z = 5 cm.
Figure 8 shows the position of the discharge front Zf

as a function of time for different pressures and dis-
charge tube diameters. In calculations, the front coordi-
nate was specified as a point at which the electron den-
sity reached the critical value Nc. Figure 9 shows how
the calculated discharge front velocity varies along the
tube. For comparison, the experimental data [15] on the
variation in the ionization-front velocity are also
shown. It is seen from the figure that, at higher gas pres-
sures, the increase in the collision frequency ν and,
consequently, the increase in the damping rate of the
SW with increasing the distance from the launcher
result in a decrease in the discharge propagation veloc-

200

0 0.2

Ez, V/Òm

r, cm
0.4 0.6 0.8 1.4

400

600

800

1000

R

12

(c)

(‡)

(b)
Er, V/cm

1

2

2000

1500

1000

500

3

2

1014

1013

1012

1011

1010

109

3

1.21.0

3

1

Ne, Òm–3

108

Fig. 6. The same as in Fig. 5 for the gas pressure p = 4 torr
and tube diameter 2a = 15 mm for the instants (1) 350, (2)
430, and (3) 600 ns.
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ity. A similar effect is observed with increasing the
inner diameter of the quartz tube. Actually, in this case,
both the volume of the plasma column and the absorbed
microwave power per unit length in the discharge
increase; consequently, the SW damping rate also
increases. Note that the position Zf of the ionization
front as a function of time is well approximated by the
dependence Zf ~ ln(βt), where β is the factor depending
on the air pressure and tube radius. This dependence
points to an exponential drop in the SW field amplitude
along the tube axis and is characteristic of a breakdown
wave [12, 15]. At large distances from the launcher
where the discharge approaches its steady-state length,
one can see a sharp decrease in the propagation velocity
of the discharge front and, thus, a deviation from the
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Fig. 7. Longitudinal profiles of (a) the electron density and
(b) Ez component of the electric field at the instants (1) 32,
(2) 70, (3) 100, and (4) 130 ns for P = 50 kW, p = 4 torr,
2a = 8 mm, and r = 2 mm.
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exponential function. In this region, because of the SW
damping, the microwave field amplitude and the ion-
ization rate decrease below the level needed for rapid
gas breakdown ahead of the discharge front. Therefore,
the breakdown-wave mechanism for the fast propaga-
tion of the discharge front changes to a slower mecha-
nism for the front propagation along the electron-den-
sity gradient due to the ambipolar diffusion of charged
particles [12, 25, 26].

4. CONCLUSION

In this paper, based on the FDTD method, a numer-
ical electrodynamic model of a pulsed SW discharge
has been developed. The model allows one to calculate
both the initial phase of SW propagation and the
plasma parameters in the quasi-steady regime. The self-
consistent evolution of the radial and axial profiles of
the electric field and plasma density at the discharge
front is investigated. It is found that the discharge
dynamics depends strongly on the gas pressure and the
discharge tube diameter. It is shown that the electron
density in an SW produced by high-power microwave
radiation in the 3-cm-wavelength range is more that
one order of magnitude higher than the critical density
for the microwave frequency and attains the values
Ne ≥ 1013 cm–3. It follows from calculations that a
strong ionizing electric field penetrates into the neutral-
gas region at the SW front. This confirms the previously
proposed mechanism for discharge front propagation
related to a breakdown wave [12]. It is found that the
effect of the electric field enhancement in the plasma
resonance region at the leading front of the discharge
significantly affects the propagation velocity of the SW
front. It is shown that, at the distance where the dis-
charge approaches its steady-state length, the break-
down-wave mechanism changes to a slower diffusion
mechanism for the front propagation along the elec-
tron-density gradient.
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Abstract—A two-dimensional gas-dynamic model is applied to calculate the characteristics of the steady-state
propagation of a microwave discharge excited by the H10 waveguide mode. The stream pattern is found on the
basis of gas dynamics of a slowly propagating discharge, taking into account the non-one-dimensional character
of the gas flow ahead of the discharge front. The calculated values of the propagation velocity agree with the
experimental results. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The theory of microwave discharge propagation due
to heat conduction implies that continuous motion of
the leading front of the discharge toward the source of
electromagnetic energy is caused by gas heating asso-
ciated with the convective outflow of the energy dissi-
pated in the discharge [1, 2]. An analysis of the pro-
cesses in the frame of reference related to the plane
front of a discharge is based on the equation of the
energy balance, the one-dimensional continuity equa-
tion, and the wave equation for a monochromatic elec-
tromagnetic wave. The velocity of gas flowing into the
discharge is the parameter to be determined and is
treated as the normal propagation velocity of the dis-
charge in a cold gas [2]. An experimental investigation
of the microwave discharge propagation in a rectangu-
lar waveguide filled with air at atmospheric pressure
was carried out in [3]. In the steady stage of propaga-
tion, the microwave discharge is located in the mid-
plane (with respect to the wide wall) of the waveguide
and is stretched out along the electric field lines. In this
stage, the discharge absorbs and reflects about 75 and
25% of the incident power, respectively. A comparison
of the numerical and experimental results showed [2]
that the measured values of the discharge propagation
velocity [3] significantly exceed the calculated ones.
The authors of [2] explain this discrepancy by the fact
that, under the experimental conditions of [3], the prop-
agation of the discharge was analogous to combustion
in a tube with a closed end. It was supposed in [4] that,
during the discharge propagation, a fraction of the gas
is expelled toward the waveguide walls and flows
around the discharge; as a result, the gas is not entirely
heated to the maximum temperature. A two-dimen-
sional model of the gas flow ahead of the front of an
optical discharge made it possible to explain the differ-
ence between the measured velocity of the discharge
propagating toward the laser [5, 6] and the normal
velocity of a slowly propagating optical discharge [7–9].
1063-780X/00/2610- $20.00 © 20909
The mechanism for this phenomenon was considered in
[7, 8] using as an example a cold gas flowing around a
hot gaseous sphere. In [9], the gas-dynamics of a slowly
propagating discharge was considered with allowance
for Bernoulli’s relation, taking into account the non-
one-dimensional paraxial motion of the gas ahead of
the discharge front.

In this paper, we propose a two-dimensional gas-
dynamic model of the propagation of a microwave dis-
charge excited by the H10 waveguide mode. A gas-
dynamic regime of discharge propagation is found. The
results obtained are compared with the experiment. The
model [9] is considered to be suitable for estimating the
discharge propagation velocity.

2. MODEL

2.1. Basic Assumptions

We consider a microwave discharge in a rectangular
waveguide of cross section a × b (Fig.1) under the
experimental conditions of [3]. The plasma exists due
to dissipation of the electromagnetic energy of the TE
wave with the components E(0; Ey = E; 0)exp(iωt –
ikz), B(Bx; 0; Bz)exp(iωt – ikz). The wave passes
through the discharge and is partially reflected from it.
We assume that the flow is subsonic and laminar and
the plasma is in local thermodynamic equilibrium. The
variations of the parameters along the electric field
direction are neglected.

2.2. Basic Equations

The plasma parameters are described in Cartesian
coordinates related to the discharge front (Fig. 1). The
model includes the following set of equations consist-
000 MAIK “Nauka/Interperiodica”
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ing of the time-independent continuity, Navier–Stokes,
energy balance, and wave equations:

(1)

Here, V = (Vx = u, Vy = 0, Vz = w) is the plasma velocity;
p is the pressure; T is the temperature; ρ, Cp, η, and λ
are the density, heat capacity, viscosity, and thermal
conductivity, respectively; ε = 1 – σ/ε0νe is the permit-

tivity; σ = e2neνe/me(ω2 + ) is the electric conductiv-
ity; νe is the effective collision frequency; ne, e, and me

are the electron density, charge, and mass, respectively;

k =  is the longitudinal wavenum-
ber; c is the speed of light; and ε0 is the absolute permit-
tivity.

2.3. Boundary Conditions

The boundary conditions at the contour of the rect-
angular integration region 0 ≤ x ≤ a/2, –L ≤ z ≤ L (Fig. 1)
are set as follows.
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Fig. 1. Schematic of a waveguide microwave discharge.
(i) At the entrance (z = –L), we assume that the cold
gas flow is uniform and the electromagnetic field is a
superposition of the incident and reflected electromag-
netic waves:

(2)

(ii) At the exit end (z = L), we assume that the gas
flows out freely and there is a transmitted electromag-
netic wave:

(3)

(iii) At the axis x = a/2, we impose the symmetry
conditions

(4)

(iv) At the side boundary (x = 0), we assume the con-
ditions of sliding (in the laboratory frame, it would be
“sticking”) over the cold, perfectly conducting walls of
the channel:

(5)

Here, EI , ER , and ET are the amplitudes of the incident,
reflected, and transmitted waves of the H10 mode,
respectively. When formulating the boundary condi-
tions for E, we consider the dimensions a and b as those
of a monomode waveguide that allow the main H10
wave to pass but cause the higher harmonics that
emerge in the discharge area in the course of numerical
solution to vanish before reaching the boundary z = ±L.

2.4. Solution Technique

To solve the above set of equations numerically, we
use the finite-difference scheme on a nonuniform rect-
angular grid. The control volume method is used to
make the equations discrete. The pressure pattern is
computed by means of the SIMPLE numerical code
[10]. The velocity V∞ is regarded as given, and the
microwave power PI is iteratively determined from the
temperature T∗  at the point (a/2, 0) [9]. The singulari-

ties of the solution to the wave equation are related to
the numerical realization of the boundary conditions
reduced to emission conditions:

(6)

(7)

u 0, w V∞, T T∞,= = =
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Since the wave equation determines the electric field
amplitude accurate to a constant factor, condition (6) is

substituted by the expression  = sin(πx/a) at z = –L.
The iterative character of the right boundary condition
is left unchanged. The obtained numerical solution

(x, z) is to be scaled (E(x, z) = KE (x, z)) with the

coefficient KE = |E∗ |/ | | at x = a/2 and z = 0. The mod-
ulus |E∗ (a/2, 0)| provides the energy balance for the
current values of the sought variables (at a given itera-
tion step) in the control volume with temperature T∗ .
Based on the obtained field E(x, z), we calculate the
amplitudes EI , ER , and ET and the corresponding micro-

wave powers PI, R, T = k ab/4µ0ω.

3. RESULTS

We calculated the characteristics of a microwave
discharge in air at atmospheric pressure based on the
experimental data from [3]: a = 22.9 mm; b = 10.2 mm;
ω/2π = 10 GHz; T∗  = 4500 ä; and V∞ = 0.5, 1, 1.5, and
2 m/s. The parameters of air plasma at atmospheric
pressure were taken from [7, 11]. The electron density
was taken from the computed equilibrium composition.
The dependence of the electron collision rate on tem-
perature was derived from the values of the conductiv-
ity σ0 at ω = 0; namely, νe = e2ne/meσ0.

As is seen from Figs. 2 and 3 (V∞ = 1 m/s), the
inflowing cold gas forms an abrupt (thermal and gas-
dynamic) leading front of the microwave discharge.
The elevated pressure region formed near the front
deflects the paraxial flow in the transverse direction.
The bulk of the gas flows around the high-temperature
region of the discharge. After the paraxial cold gas flow
has entered the discharge, it is heated, expands, and
occupies the high-temperature region. A quasi-homo-
geneous flow takes place behind the front. The interac-
tion between the plasma and the electromagnetic field
leads to condensing of the lines |E | = const at the dis-
charge front. The superposition of the incident (PI =
0.97 kW) and reflected (PR = 0.75 kW) electromagnetic
waves results in a standing wave. A power of
0.23 kW/cm is dissipated in the discharge. The discrep-
ancy with the measured value of the reflected power [3]
is caused by the transformation of the incident electro-
magnetic wave (the H10 mode) into other types of
waves, thus enabling the microwave power transfer in
the discharge along the y direction.

In the laboratory frame, the gas bulk flows around
the high-temperature region (T > 4000 K), which corre-
sponds to pushing the cold gas toward the waveguide
walls by the propagating microwave discharge. At the
front, oppositely directed gas flows are formed: the
cold gas flow is directed toward the discharge propaga-
tion direction and the hot gas flow is directed toward the

Ẽ

Ẽ Ẽ

Ẽ

EI R T, ,
2
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center of the discharge. The existence of these flows
was established in experiments with an optical dis-
charge [6].

At V∞ = 0.5, 1.5, and 2 m/s, the stream and gas-heat-
ing patterns do not change qualitatively. The measured
[3] and calculated dependences of the observed dis-
charge propagation velocity on the microwave power
are in fair agreement (Fig. 4). At V∞ > 2 m/s, it is impos-
sible to obtain a convergent solution: there are iterative
oscillations of the temperature and velocity behind the
discharge front. In this case, the numerical procedure
remains stable as a whole and the plasma parameters at
the discharge head are almost independent of the oscil-
lations at the right border. Similar instabilities took
place when calculating a continuous optical discharge
in the flow of atmospheric air [12].
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Fig. 2. (a) Velocity field and isotherms (the temperature
increment is 1000 K) and (b) the contour lines of the electric
field E(x, z)/Emax (Emax = 1.55 kV) in a microwave dis-
charge.



912 KULUMBAEV, LELEVKIN
5

4

3

2

1

–1
3020100–10–20–30

(b)

u,
 m

/s
; p

, P
a

p

u

6

5

4

3

2

1

0

(‡)
E

, k
V

/c
m

; T
, k

K

E

T

0

z, mm

6

5

4

3

2

1

0

V∞, m/s

2.52.01.51.00.5
PI, kW

Fig. 3. The z-profiles of (a) the electric field and temperature
and (b) the pressure and velocity at x = a/2.

Fig. 4. The measured (crosses) [3] and calculated (circles)
propagation velocity of a microwave discharge vs. the elec-
tromagnetic power.
The calculated gas-dynamic pattern of a discharge is
almost identical to that of a moving optical discharge [9].
The gas dynamics of the microwave discharge propaga-
tion is described by the expressions

(8)

obtained from the solution to the gas-dynamic problem
of slow combustion [13], which was supplemented
with Bernoulli’s relation in order to account for the
non-one-dimensional motion of gas ahead of the dis-
charge front [9]. Here, ρ0 and V0 are the mass density
and velocity of the gas in the discharge and ∆p1 is the
excess pressure occurring as a result of the velocity
drop from V∞ to V1 during the motion of the gas toward
the front.

At V∞ = 1 m/s and T0 = 5840 K, the velocities esti-
mated in accordance with (8) are V1 ≈ 0.2 m/s and V0 ≈
3.5 m/s (the minimum and maximum calculated values
are 0.4 and 4.8 m/s, respectively). The observed propa-
gation velocity of the microwave discharge front is
related to the normal velocity of the discharge propaga-
tion, which, in the one-dimensional model, is defined

by the expression V∞ ≈ V1  [2].

4. CONCLUSIONS

A gas-dynamic regime of the propagation of a
microwave discharge excited by the H10 waveguide
mode is obtained by numerical modeling. An analysis
of the gas-dynamic pattern of the discharge allows one
to explain the difference between the observed velocity
at which the discharge front propagates toward the
electromagnetic wave source and the normal velocity
of a slowly propagating discharge. The calculated val-
ues of the microwave discharge propagation velocity
agree with experiment.
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Abstract—By modeling the dynamics of a large ensemble of particles, it is shown that slow electrons in a two-
temperature plasma are in equilibrium with the electron component rather than with cold ions. The result of
cooling by a cold ion component is that the number of the low-energy electrons only slightly exceeds that in
the equilibrium Maxwellian distribution. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Due to the large ion-to-electron mass ratio, electron
and ion plasma components may obey Maxwellian dis-
tributions with different temperatures. Such a system
may be steady if equilibrium is sustained in each sub-
system (e.g., when the electron component in a dis-
charge is heated with an RF field, whereas the ions are
in equilibrium with a neutral gas). It may also be quasi-
steady (e.g., after the pulsed heating of the electron
component). In the latter case, each subsystem acquires
its own temperature and then the temperatures equalize.
Of interest is the problem of how the electron distribu-
tion function differs from Maxwellian in the low-
energy region. It is the low-energy electrons that deter-
mine the recombination flux and, thus, the ion level
populations, ion line emission, and possible population
inversion. Since the cross section for Coulomb scatter-
ing decreases with energy, the slow electrons undergo
the most intense cooling in Coulomb collisions with
cold ions. This effect influences the formation of a
quasi-steady electron distribution function in a two-
temperature plasma in the course of temperature equal-
ization.

In a recent paper [1] based on the analysis of Boltz-
mann’s equation with the Landau collisions integral for
a two-temperature plasma, it was concluded that the
fraction of the low-energy electrons

, (1)

where z is the ion charge number and ne is the electron
density, would be in quasi-equilibrium with the cold
heavy plasma component (ions or, under certain condi-
tions, neutral atoms) and would possess its tempera-
ture. This conclusion, being very important for X-ray
lasers with recombination pumping [2], requires addi-
tional verification. Computer simulations based on
ab initio principles for an ensemble of classical Cou-
lomb particles [3, 4] can provide such verification. In

Y
me

mi

------zne≈
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this paper, we consider the equalization of electron and
ion temperatures due to Coulomb collisions.

2. NUMERICAL SIMULATION 
OF THE DYNAMICS OF A LARGE ENSEMBLE 

OF PARTICLES
Let us consider a fully ionized plasma consisting of

ions with mass mi and positive charge +ze and electrons
with mass me and charge –e. The plasma is modeled by
the method of molecular dynamics. We consider the
time evolution of a system consisting of n(1 + z) parti-
cles housed in a cube with specularly reflecting walls.
The trajectories of n ions and zn electrons are deter-
mined by solving the Newton equations

(2)

where rk(t) is a radius-vector of the kth particle with
mass mk and charge qk. The Coulomb interaction force
fkl for a distance between the particles of less than r0
was taken to be equal to the interaction force between
uniformly charged interpenetrating spheres of diameter
r0 [3]. Such a modification of the Coulomb force at
short distances eliminates a singularity at a zero dis-
tance and reduces the equation stiffness caused by the
short-range collisions. The adopted value of r0 is much
less than the mean interparticle distance (r0 ! N–1/3,
where N is the particle number density); in our runs, we
set r0 = 0.025N–1/3. Additional runs were carried out in
order to estimate the influence of the r0 value on the
characteristics a Coulomb system [4]. A particle–parti-
cle method [3] was used to solve the set of Eqs. (2). The
nearest neighbors were separated out to enhance the
accuracy of numerical integration.

A fully ionized plasma with z = 1, Ni = 1018 cm–3,
and initial electron and ion temperatures of Te = 10 eV

d2rk dt2⁄ Fk mk, Fk⁄ f kl,
l k≠

n z 1+( )

∑= =

k 1 2 … n z 1+( );, , ,=
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and Ti = 1 eV, respectively, was investigated. In order to
embrace a greater number of slow electrons, the ion-to-
electron mass ratio was chosen to be 20. According to
(1), for these plasma parameters, the fraction of elec-
trons possessing the temperature of ions (Ti = 1 eV)
would amount to 5%. The total number of particles in
the system to be modeled was taken to be (1 + z)n =
4000. The system dynamics was computed over the
time interval t0 = 12.8 × 10–12 s, which substantially
exceeds the time during which a steady-state electron
energy distribution is established but is less than the
time of equalization of electron and ion temperatures.
Over the time t0, the energy exchange between the cold
and hot components leads to a 3% drop in the electron
temperature.

Figure 1 presents the calculated electron kinetic-
energy distribution function. To make an analysis of the
distribution function in the low-energy region more
convenient, a logarithmic energy scale is adopted. The
calculated electron distribution function differs from
Maxwellian at most by 30% in that region. The time
evolution of the electron kinetic energy is illustrated in
Fig. 2 by the example of electrons with a low initial
kinetic energy. The solid curve shows the evolution of
the kinetic energy of an electron whose total energy at
the initial instant is positive (“free” electron), and the
dashed curve corresponds to an electron with a negative
total initial energy (“bound” electron). In both cases,
electrons acquire kinetic energy rather than stay in
equilibrium with cold ions.

3. DISCUSSION OF THE RESULTS 
OF NUMERICAL SIMULATION

The results of our calculations show that the
increase in the fraction of slow electrons is fairly small.
Taking into account that this increase was a hundred-
fold magnified by the chosen ion-to-electron mass
ratio, we can expect that, for a real mass ratio, the pop-
ulation of ion levels will hardly be influenced by this
effect. The electron distribution stated in [1] was
obtained based on the spherical cavity effect (first noted
by Belyaev and Budker [5]), which implies that a probe
particle does not exchange energy with faster particles
under the condition that the distribution function is
spherically symmetric in velocity space. It is of interest
to explore the spherical cavity effect, in particular, its
influence on collisional relaxation in a two-temperature
plasma.

An analogy with electrostatics (the Trubnikov–
Rosenblut potentials) leads to a formal consequence
that the slowest particle is not able to acquire any
energy at all. However, it is obvious that the applicabil-
ity of this result is limited, especially, in the case of
slow particles. The evolution of slow electrons in Fig. 2
clearly demonstrates that the spherical cavity effect
does not apply to slow particles. It was pointed out by
Sivukhin ([6], p. 123) that the spherical cavity effect
PLASMA PHYSICS REPORTS      Vol. 26      No. 10      2000
stems from neglecting the dependence of the Coulomb
logarithm on the relative particle velocity. In deriving
this effect, a low momentum transfer per collision
(straight-trajectory approximation) and the binary
nature of collisions were also assumed. However, a
slow particle interacts simultaneously with many others
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Fig. 1. Electron kinetic-energy distribution function: the
solid curve is the Maxwellian distribution; dots show the
results of numerical simulations.

Fig. 2. Time evolution of the kinetic energy of electrons
with low initial energies.
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and the binary-collision approximation is hardly appli-
cable in this case.

4. DISCUSSION OF THE RESULTS 
OF [1] AND CONCLUSIONS

In [1], two subjects are discussed: the level popula-
tion and the formation of a group of cold electrons with
a temperature equal to the ion temperature. As for the
first issue, I will make just one remark. The author used
the cross-section value (referring to Zel’dovich and
Raœzer [7]) that provides the right asymptotic behavior
at high energies and could be applied to ionization from
the ground state. For the excitation of higher levels,
Dravin’s cross sections are commonly used. They have
another asymptotics: for an excess energy of 0 to 2.85
(in units of transition energy), the cross section is
assumed to be constant (namely, 0.302 in dimension-
less units [8]). As the energy increases, the asymptotic
used in [1] becomes valid. This difference can essen-
tially affect the populations. The second issue is of
more interest, being the major statement of paper [1].
Of course, there is certain logic in that study; a formal
analogy with heat supports this. However, in my opin-
ion, the effect is just a consequence of approximations
under which the Landau collisions integral is derived.
The numerical simulations confirm this opinion. An
example of energy trajectories of initially slow elec-
trons that should not acquire energy, but successfully
do it in the numerical simulation (in full accordance
with common sense), is most convincing. In the param-
eter region where the ideality approximation is vio-
lated, i.e., when the electron energy is on the order of
its potential energy (the case of highly excited states),
the collisions cannot be described by the Rutherford
formula because of collective interaction. As was
pointed out by Sivukhin, the Coulomb logarithm is sub-
stantially altered in this region and cannot be factored
out of the integral sign.

It is worthwhile to make a terminological remark. It
is reasonable to talk about the second temperature only
when the temperatures differ greatly. The local slope of
the distribution function on a logarithmic scale is not a
temperature. An interaction stronger than the Coulomb
one is known to be able to decrease the distribution
function in a certain energy range, but nobody speaks
about the temperature of the subtracted (or added) part
of the distribution function. The temperature is either a
thermodynamic parameter or a factor in the exponent
index of the Maxwellian distribution (which, by the
way, is also a thermodynamic characteristic of an ideal
gas). The only advantage of defining the temperature
from the slope of the distribution function (the deriva-
tive of logarithm of the distribution function without
statistical weight) is that it coincides with the true tem-
perature in the case of a Maxwellian distribution. If we
determine the temperature from the distribution func-
tion itself (rather than from its slope), then, in the
region where the distribution function is increased, the
temperature will be negative. Sometimes, the popula-
tion inversion is referred to as a state with a negative
temperature.

Paper [1] is based on the binary-collision approxi-
mation, namely, on the Landau collision integral. For
slow particles, this approximation is not valid, and,
hence, the conclusions drawn in that paper are not jus-
tified. Numerical simulations by the particle method
based on ab initio principles prove the lack of equilib-
rium between cold ions and a group of low-energy elec-
trons.
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