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Abstract—An improved confinement regime with an external transport barrier (H-mode) is obtained during
electron-cyclotron resonance heating of a plasmain the T-10 tokamak. A characteristic feature of thisregimeis
aspontaneous density growth accompanied by adrop in theintensity of D, lineand anincreasein B, by afactor
of ~1.6. The threshold power for the L—H transition is close to that predicted by the ITER scaling. The best
characteristics of the H-mode are achieved with decreasing g, to 2.2. It is shown that the external transport bar-
rier arisesfor electrons, whereas the heat transport barrier insignificantly contributesto improved confinement.
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1. INTRODUCTION. EXPERIMENTAL
CONDITIONS

During electron-cyclotron resonance heating
(ECRH) in the T-10 tokamak, a regime of improved
confinement was obtained (Fig. 1) with features resem-
bling those observed in the regime with an external
transport barrier (H-mode) [1].

This regime was investigated over a wide range of
toroidal magnetic fields from By = 2.42 T (on-axis
microwave power deposition) to By = 2.14 T [the elec-
tron-cyclotron resonance (ECR) is shifted by 19 cm
toward higher magnetic fields (pgcg = 'gcr/a. = 0.65)].
To clarify the main features of the H-mode, the plasma
density was varied from n, = 1.2 x 10" t0 2.6 x 10" m
(intheL-phase). Thevalueof g, varied fromq, =2.2to
4.1 (which corresponded to a change in the plasma cur-
rent I, from 330 t0180 kA at By = 2.42 T). The micro-
wave power absorbed in the plasma attained P,, =
0.8 MW. Note that microwaves (second ECR har-
monic, X-mode) were launched into the plasma at an
angle of Y = 21° to the direction of the major radius R.
All experiments were carried out with the electron-
cyclotron current drive I, in the direction of the
plasmacurrent (co-CD). At high currents (I, > 180 kA),
lcp comprised asmall fraction of I, sothat itsinfluence
on the processes under study was negligible.

In the experiments under discussion, the limiter
radiuswas a, = 30 cm.

2. MAIN FEATURES OF THE OBSERVED MODE
OF IMPROVED PLASMA CONFINEMENT
(H-MODE)

1. Asisseen from Fig. 1, the transition to improved
confinement (t__, = 500 ms) manifestsitself as a spon-
taneous growth in the plasma density accompanied by
adecrease in the intensity I, of the D, linein various
plasma cross sections, including the limiter cross sec-
tion. In the best regimes, the plasma density n, nearly

doubled by the end of the microwave pulse when the
gas-puffing valve in the feedback system was switched
off completely. The intensity I, fell by afactor of 3to
4 (Fig. 1), indicating a substantial decrease in the
inward neutral flux (I = Kylpg, Where k, = const).

Figure 2 shows the profiles of the plasma density
ne(r) and its gradient grad(n,). These data demonstrate
that the density gradient increases predominantly inthe
region r =20 cm. Therefore, we may conclude that an
external transport barrier arises near the limiter.

2. After the L-H trangition, the plasma-density
growth is accompanied by an increase in the plasma
energy. This is evident from Fig. 1, which shows the
time behavior of thevalue 3 + |,/2 (together with cal cu-
lated values of (I;/2).,, and the value of 3, derived from
diamagnetic measurements).

An assessment of the improvement in the energy
confinement time in the H-mode (compared to the
L-mode) can be made using the data presented in the
tablefor several pulseswith nearly the same parameters
(Br=242T,1,=330kA, and g, =2.2).
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Fig. 1. Time evolutions of (a) the mean plasma density A ;
(b) quantities B + 1;/2 (data from the plasma equilibrium)
and B, (diamagnetic measurements) (here and below, the
scale for (1j/2)cy. iSthe same as for 3 + [;/2); (c) intensity
of the Dy ling; (d) electron temperature T, and (€) radiation
power P4 in the regime with the L—H transition (shot
no. 26154, By =242 T, 1, =330 kA, q. =22, and P, =
750 kW); t| _y istheinstant of the L—H transition.

tL—H = 500 ms aL

Fig. 2. Profiles of the density ng(r) and density gradient
grad(ng) in the L-phase (t = 470 ms) and at the end of the
microwave pulse in the H-phase (t = 790 ms).
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Thevalues of 3, shown in the table were determined
in different ways:

(i) B4 Was obtained from diamagnetic measure-
ments,

(ii) B, was obtained from the data on the plasma
equilibrium (with taking into account the calculated
vaue of 1;); and

(i) By;, Wwasobtained fromthe T, T;, and n, profiles.

Based on these data, we can characterize the
improvement of confinement in the H-mode by the
enhancement factor

H H

H o= E_Bo 16401
L L L
Te Bp

Aswas shown in [2], the experimental value of the

energy confinement time Tg" in the L-mode regimesin
the T-10 tokamak turned out to be ~30-40% lower than
that predicted by the ITER-89-P scaling ((Tg)ir.go)s
compared with the latter for h, = 3—4 x 10" m~, and
exceeded (Tg)r.go & higher densities. In high-current
low-density regimes (I, = 300 KA and N, = 1.5 X

10" m3), the energy confinement time is Tg" =~ 12—
13 ms, which is about one-half of (Tg)r.go-

3. As will be shown below (see Sections 5 and 6),
the L—H transition is accompanied by the generation of
an electric field in anarrow layer (A, = 2 cm) near the
limiter and by a decrease in the amplitude of turbulent
fluctuations.

4. The plasma-density growth in the H-mode cannot
be explained by an increase in theimpurity flux into the
plasma. Theintensity of the Cy; linein thelimiter cross

section, I(L;m , remains almost unchanged after the L—H
transition. An insignificant increase in the radiation
power P, (Fig. 1) in the H-phase may be explained by
the increase in the plasma density.

There is no evidence of a substantial accumulation
of impurities in the plasma core in the H-mode. The
intensity of X-ray emission and the increase in the
intensity of continuum correlate with the plasma-den-
sity growth.

3. THRESHOLD POWER
FOR THE L-H TRANSITION

To determine the threshold power Py, for the L—H
transition, we carried out experiments in which the
heating microwave power was gradually elevated in the
regime with By = 2.42 T (on-axis heating), I, = 330 kA
(q.=2.2),and 0, = 1.5 x 10" m~3 (beforethe L—H tran-
sition).

The results of this series of experiments are pre-
sented in Fig. 3 as the dependence of the enhancement

PLASMA PHYSICS REPORTS Vol. 26 No. 11 2000
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Table
L-phase H-phase H = p"/p-

Shot no.

Beg Baia Bxin Beg Bia Byin €q dia kin
26154 0.200 0.167 0.168 0.310 0.267 0.267 155 159 1.60
26308 0.160 0.149 0.168 0.266 0.250 0.273 1.66 1.62 1.68
26319 0.160 - - 0.260 - - 1.63 - -
26321 0.167 0.158 0.14 0.260 0.247 0.281 1.56 1.56 2
26322 0.170 0.172 - 0.270 0.265 - 1.59 154 -

factor H_ = B, /B, on the total heating power P, =
P + Pons, Where Pgy is the Ohmic heating power. As
P, decreases, the value of H, drops, approaching unity

near P, = Py = 600 kW. Thus, in typical regimes
with the maximum ECRH power, P, exceeds the

threshold power P by ~70%. The threshold power

P =600 kW is close to that predicted by the ITER
scaling [3]:

P{IER =284 M—l B_(I)_.82n2.58Ra0.81’

where B, is expressed in T; aand R, in m; and n, in
units of 10%° m=3,

In these estimates, the radiation power P,,4 (whichis
~170 KW in the regimes under discussion) was not
taken into account, becausetheradial profileof P,,; was
not measured in the T-10 tokamak. We believe that
accurately taking P,,4 into account might only dightly
decrease the threshold power for the L-H transition
in T-10.

4. DOMAIN OF EXISTENCE OF THE H-MODE
(GENERAL FEATURES)

4.1. Dependence on g,

It is seen from Fig. 4 that, for on-axis heating (B; =
2.42 T), the H-mode is observed over a wide range of
plasma currents I, (i.e., q). As I, decreases (q
increases), the enhancement factor H, in the H-mode
falls and, for g, > 4 (I, < 180 kA), the L—H transition
does not occur.

We note that a similar tendency (Fig. 4) toward the
improvement of plasma confinement in the H-mode
(i.e., an increase in the factor H, with decreasing q,)
was al so observed for off-axis heating (Br = 2.14T). In
this case, the largest value of H, was also attained at
low values of the safety factor (at g, = 2, other parame-
ters being the same).

These results should be regarded not as an enhanced
(in comparison with the L-mode) dependence of 1z on
I, in the H-mode but as the fact that the threshold power
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P:" increases as g, increases. Such a dependence was
not observed in other devices (the ITER scaling for

P:" does not contain any dependence on q,). Appar-
ently, this may be explained as a specific feature of T-
10regimes: therate of effective electron transport at the
edge is proportional to the safety factor squared
((XDer ~ ), Which leads to a narrowing of the T, pro-
file; a decrease in the temperature gradient T, at the
edge; and, as a consequence, an increase in Py with
increasing g .

4.2. Dependence on the Density

It follows from Fig. 5 that, as the plasmadensity n,

increases, the factor H, characterizing the increase in
the energy confinement time 1 in the H-mode
decreases.

In the main regime with g = 2.2 (I, = 330 kA) and
Br =242 T, the L-H transition is no longer observed
for n, = 3.4 x 10" m™ (Fig. 5). The fact that the L-H

transition disappears as the density increases may
apparently be explained by theincreasein the threshold
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Fig. 3. Dependence of the enhancement factor H; on the
total heating power P.
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Fig. 4. Variations in the characteristics of the H-mode (the increase in n, and B, and the decrease in Ipy) With increasing g for

Bp=242T and P, =750 kW: (a) ¢ = 2.2 (shot no. 26 308, I, = 330 kA), (b) g, = 3 (shot no. 26 311, I, =240 kA), and (c) q_ =
4.1 (shot no. 26 314, I, = 180 kA). (d) The enhancement factor H, as afunction of q .

power P for the L—H transition. Indeed, according to

the I TER scaling, wehave P ~ n®38. Since, in theini-
tial regime (in the L-phase), the density isequal to n, =
1.4-1.5 x 10" m> and the total heating power P,

exceeds the threshold power P by nearly 70%, we

can expect that, according to the scaling, the L—H tran-
sition should disappear at the plasmadensity n,, ~ 1.5 x

1019 x (1.7)1058 ~ 3.6 x 10" m3, which is close to the
experimentally observed limit.

Hence, the data obtained in T-10 are consistent with

the prediction that Py, should grow with increasing
plasma density.

The data presented in Figs. 6 and 7 provide addi-
tiona information on the features of the H-mode in the
T-10 tokamak. As was noted above, the main featureis

the fact that the plasma density n, continues to grow
when the gas-puffing valve is switched off completely
and the intensity Iy, (i.e, the neutral flux into the
plasma) decreases. In the main regime (By = 242 T,
I, =330 kA), the plasma density n, in the H-mode
nearly doubles by the end of the microwave pulse,
reaching n, =3 x 10 m.

For the ECRH experiments in T-10 [4], the charac-
teristic feature of the L-modeisthat the energy confine-
ment time grows with increasing plasma density.

PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 5. (a—) Variations in the characteristics of the H-mode with increasing plasma density (shot nos. 26308, 26324, and 26326)
for Br=242T, q =22 (I, =330KkA), and P, = 750 kW. (d) The enhancement factor H,_as afunction of the plasma density.

It is seen from Fig. 6 that, if we increase the plasma
density to the same level (3 x 10" m) asisattained in
the H-mode by the end of the microwave pulse, then the
value of (3, and the energy confinement time T in the
L-mode turn out to be close to those in the H-mode (the
values of P, in both cases are nearly the same).

Figure 7 shows the time dependences of the electron
temperature T, (the second harmonic of electron-cyclo-
tron emission) at different radii. It is seen that the elec-
tron temperature increases insignificantly during the
L-H transition.

Hence, the transport barrier observed experimen-
tally in the H-mode is a barrier for particles, whereas

PLASMA PHYSICS REPORTS  Vol. 26
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thethermal barrier, which isidentified by anincreasein
T, islow and insignificantly contributesto the increase
in the plasma energy in the H-mode. Thisis also con-
firmed by the results from modeling the external barrier
in the H-mode (see Section 8).

4.3. Dependence on the Magnetic Field By

In T-10, an L—H transition was observed throughout
the entire investigated range of B; from 2.42 T, when
microwave power was absorbed in the center of the
plasma, up to By = 2.14 T, when the absorption region
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was shifted by ~18-19 cm toward higher magnetic
fleIdS (pECR = 0.65).

Figure 8 illustrates the time dependences of the
plasmadensity n,, the value of B, + I;/2 (together with
the calculated values of (1;/2).,.), and theintensity of D,
emission. It is seen that the main features of the
H-mode (such as spontaneous density growth, the drop
in Iy, and the increase in the plasma energy) vary only
dlightly even though there is a substantial differencein
the values of B. Both the density and 3 incrementsvary
dlightly as B; varies.

Aswas expected (see Fig. 8d), the strong shift of the
ECR region (B;=2.14T) leadsto asmall changein the
plasma energy after the microwave power is switched
on. Therefore, in this case of off-axis heating, the
plasma energy and, consequently, the energy confine-
ment time 1 in the H-mode are markedly lower than
those for on-axis heating (Br = 2.42T).

The effect of B variationsis most pronounced in the
behavior of the electron temperature.

Asisseenfrom Fig. 9 (cf. Fig. 7), theincreasein T,
in the region r/a < 0.65 after the L—H transition in the
case of off-axis heating (B = 2.14 T) is more pro-
nounced than for on-axis heating (B; =2.42T). In addi-
tion, in the case of off-axis heating, the electron tem-
perature in the H-mode does not decrease with increas-
ing density. In contrast, as the power-deposition region
shifts closer to the center of the plasma, the decrease in
T. due to the density growth becomes more pro-
nounced.

Presumably, the fact that the decrease in the incre-
ment of the temperature T, becomes smaller asthe ECR
region approaches the plasma axis is related to the
increase in the power Py transferred from electrons to
ions. This is evidenced by the following experimental
results:

() In the case of on-axis heating in the steady-state
phase of the H-mode, the central ion temperature T,(0)
is significantly higher than that for off-axis heating:
Ti(0) =550 eV at By = 2.42 T (on-axis heating) in com-
parison with T;,(0) = 420 eV at By = 2.14 T (off-axis
heating).

(i) In the regimes with on-axis heating in which the
increasein the density islower, the temperature T, after
the L—H transition dlightly increases.

In[5], it isasserted that, in the case of off-axis heat-
ing (By < 2.14 T), an internal transport barrier (1TB)
arises near the microwave absorption region in the
H-mode; as a result, the T, increment in these regimes
is larger than that for on-axis heating. However, as is
seen from Fig. 8, the contribution from the ITB to the
global improvement of confinement in the H-mode is
insignificant if we also take into account the depen-
dence of the energy confinement time on the plasma
density.

PLASMA PHYSICS REPORTS Vol. 26 No. 11 2000
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2.2 and P, = 750 kW.

5. MEASUREMENTS OF THE RADIAL
ELECTRIC FIELD IN REGIMES
WITH THE L-H TRANSITION

The plasma potential and, consequently, the radial
electric field E, in the outer (r/a > 0.65) region of the
plasma column were measured with a heavy-ion beam
probe diagnostic using a 170-keV Tl beam [6].

The results of the measurements of the plasma
potential A are presented in Fig. 10 for the case of on-
axis heating (By = 2.42 T). The time dependences of

Ipes Ne, and A¢ at the radius r(¢,,;,,)/a = 0.95 corre-

sponding to the minimum potentia ¢,,;, (See Fig. 10b)

are shown in Fig. 10a. Figure 10b showsthe A¢(r) pro-

filesfor the instants indicated in Fig. 10a.
PLASMA PHYSICS REPORTS  Vol. 26
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We note that the quantity Ad presented in Fig. 10is
defined with respect to the “base” plasma potential ¢',;

inthe L-phase of thedischarge (Ad = ¢ — ¢§). Thetime

interval in which the base potential ¢ was determined

is also shown in the figure. Thus, the presented data
characterize the variations in the potential (and, conse-
quently, intheradial electric field E, = —grad(¢) relative
to its value in the L-phase of the discharge). Figure 11
also shows the variationsin A (at r = r(,,,)), includ-
ing the earlier stage of the discharge before switching
on the heating microwave pulse.

The characteristic features of the behavior of the
electric field in the H-mode discharges are the fol-
lowing:



924

T,, arb. units

0
200
108“
i r=-17.3 cm
. | ECRH . |
0 200 400 600 800
t, ms

Fig. 9. Time evolution of the electron temperature T, in the
H-mode in the case of off-axis heating (shot no. 26019,
Br=214T,q =22, 1,=293kA).

(i) During the L—H transition, theradial electricfield
is generated in a narrow region (Ar = 1.5-2 cm) adja
cent to the limiter.

(ii) After the microwave pulse is switched on, apos-
itive (i.e., directed outward) electric field E, is gener-
ated in this region. This indicates that, in the L-phase,
the ratio v [d/0V,[J, between the transverse (diffusion)
velocities of electrons and ions at the plasma edge
increases with respect to the Ohmic phase of the dis-
charge.

(iii) During the L—H transition, the field E, changes
its sign and becomes negative (directed inward). How-
ever, during the L—H transition, this negative field is
low compared to its maximum val ue reached before the
end of the microwave pulse, when the H-modeis nearly
Steady-state.

(iv) After the L-H trangition, the negative radial
field E, increases in magnitude with a characteristic
time close to that for the intensity I, and reaches its
maximum (E, = —<(400-500) V/cm) when the H-mode
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(b) radial profiles of A for the instants indicated by the
arrows in plot (8). The interval for determining the base

value of the potential ¢E isalso shownin plot (a).

isnear its steady state (i.e., the density and 3, are nearly
maximum).

Notethat, asisseen from Fig. 10b, the potential pro-
file has the shape of awell. This means that, along with
the negative field considered above, a positive field E,
is generated on the inner side of the barrier. However,
the role of thisfield and its influence on the features of
the H-mode are still unknown and will be the subject of
further investigations of the H-mode in T-10.

6. CHANGE IN THE PLASMA TURBULENCE
DURING THE L-H TRANSITION

The measurements of plasma turbulence were pri-
marily carried out with a two-frequency reflectometer
[7]; the frequency was varied in the range f = 26.4—
36 GHz, which corresponded to the variations in the
plasma density in the reflection layer in the range n, =
(0.85-1.6) x 10" m3. In addition, oscillations in the
frequency range f = 2—6 GHz were measured with the
help of a loop placed outside the limiter and with an
PLASMA PHYSICS REPORTS  Vol. 26
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X-ray diagnostics detecting fluctuations in the fre-
guency rangef < 50 kHz.

Figure 12 shows the reflectometer signals for two
probing frequencies (indicated in figure) in the regime
withB;=242T,1 =330KA (q.=2.2),and n, = 1.6 x

10" m~ (shot no. 26308). The figure also shows the
time dependences of the reflection-layer radius r ¢ for
both probing frequencies.

The general features of the phenomena observed
can be described as follows.

(i) In the frequency range f < 100 kHz, in which the
amplitude of turbulent fluctuations was maximum (see
Fig. 12), the fluctuation amplitude did not decrease dur-
ing the L—H transition (in some shots, the amplitude
even increased). However, more detailed studies
showed that, during the L—H transition, coherent turbu-
lent fluctuations at frequencies f = 100 kHz were sub-
stantialy suppressed.

(if) Asis seen from Fig. 12, the amplitude of turbu-
lent fluctuations decreased in the range of higher fre-
quencies f > 200 kHz. The amplitude of fluctuations
began to fal after the L—H transition, when the radius
r.¢ Of the reflection layer increased (due to the increase
inthe plasmadensity at theedge) tor,., = 27-28 cm. In
the subsequent phase of the H-mode, theradiusr ., var-
ied more dlightly, remaining in the range 27 < r; <
30 cm, and the level of turbulent fluctuations did not
change.

An anaysis of the results of these experiments
showed that aradius of 27.5 cm may be regarded as a
boundary of the transport barrier arising during the
L-H transition (see also Section 5).

(iii) At higher values of the initial plasma density,
when the radius r ., was larger and the reflection layer
wasin theregionr > 27 cm even before the L—H tran-
sition, the decrease in the amplitude of turbulent fluctu-
ations occurred earlier (at the instant of the L—H transi-
tion).

However, we did not observe arapid suppression of
turbulence during the L—H transition. The characteris-
tic decay time of turbulent fluctuations was equal to
~100 ms.

(iv) When the reflectometer probing frequency was
increased so that, even for the maximum density at the
end of the H-mode, the radiusr ¢ of the reflection layer
did not attain 27 cm, no change was observed in the
level of turbulence at frequenciesf > 100 kHz.

(v) The X-ray signals did not exhibit noticeable
variations in the turbulence level at frequencies f <
50 kHz during the L—H transition.

On the other hand, the amplitude Ay of the signal
from a high-frequency probe measuring fluctuations of
the electric and magnetic fields near the limiter grew
substantially (by a factor of 3 to 4) during the micro-
wave pulse. At the instant of the L-H transition, the
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amplitude began to fall with a characteristic time close
to that for the intensity of D, emission (Fig. 13).

7. FEATURES OF PROCESSES
IN THE SCRAPE-OFF LAYER REGION
DURING THE L-H TRANSITION

In the investigated regimes, we also measured the
parameters of the edge plasma. For this purpose, we
used Langmuir probes located in the scrape-off layer
(SOL) (r,~33-34.5 cm) and at the limiter (a_= 30 cm).

In the main regimes, the electron temperature T, the
ion saturation current at the probe I';, and the probe
potential inside the SOL (r = 34 cm) change abruptly at
the instant of the L—H transition (see Fig. 134). In these
regimes, the characteristic time of variations in the
above parametersisequal to 5-10 ms. Sincethe signals
from the probes located at the limiter vary slightly dur-
ing the L—H transition, the drop in the signals from the
probes located in the SOL indicates that the decay
length A of T, and n, in the SOL decreases during the
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Fig. 12. Results of measurements of plasma turbulence by a reflectometer and time variations in the reflecting-layer radius (shot

no. 26308, By = 2.42T, q_ = 2.2, |, = 330 kA, and P, = 750 kW)

trangition (i.e., the transverse diffusion velocity V(g
decreases). The effect isillustrated in Fig. 13c.

8. RESULTS OF SIMULATION
OF THE EXTERNAL TRANSPORT BARRIER

To estimate the depth of the transport barrier arising
during the L—H transition and its time variations in the
course of the evolution of the H-mode, we carried out
numerical simulations of the main regime with B; =
242Tand q = 2.2 (Fig. 1).

By the transport-barrier depth, we mean the ratio of
the diffusion coefficients D (in the region where the
barrier exists) in the absence and presence of the bar-
rier.

The main features of the model are the following.

(i) For simulations, we used a transport model of
canonical profiles[8] with the additional condition that
To(r) and ng(r) fit, asclosely as possible, the experimen-

tal profilesin both the Ohmic phase and L-phase of the
discharge.

PLASMA PHYSICS REPORTS Vol. 26 No. 11 2000
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(ii) Wetook into account that the flux of theworking
gas into the plasma after the L—H transition decreased

according to the relationship

My = kylpg(Kye = const),

where ' is the neutral flux into the plasmaand I, is
the intensity of the D, line. The factor k, was deter-
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mined in the L-phase of the discharge from the condi-

tion that the calculated mean density > should coin-

cide with the experimental value.

(iii) The depth of the transport barrier and its time
evolution were chosen from the condition that the cal-
culated functions ng(r, t) and ((r, t) should coincide
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isfiesthe condition Dsﬁ(r,t)= k(r,1) D'éﬁ (r), where D'éﬁ and D:ﬁ arethe effective diffusivitiesin the L - and H-phases, respectively.
Columns (a) and (b) refer to different assumptions on the time evolution of the barrier depth adopted in cal culations (see the text).

with the experimental dependences. According to the
data presented in Section 6, the barrier width was
assumed to be equal to Ary, = 2.5 cm.

The results of simulations (see Fig. 14) show that
the model correctly describes the experimentally
observed increase in the density and plasma energy in
the H-mode if we strongly reduce the rate of transverse

transport of particles to about one-fifth of its initial
level in the L-mode. The results of calculations confirm
that the decrease in the thermal diffusivity in the trans-
port barrier is substantially less than a decrease in the
diffusivity.

To bring into coincidence the calculated and exper-
imental time dependences of N, and B, it is necessary
PLASMA PHYSICS REPORTS  Vol. 26
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to take into account that the transport barrier arising at
the instant of the L—H transition initially has a small
depth; then, the depth increases with a characteristic
time close to that for the intensity of D, emission
(Fig. 14a).

Notethat, if we assume that the transport barrier has
alarge depth at theinstant of the L—H transition and this
depth further remains constant, then the plasma density
n, and 3 grow much more rapidly than observed in the

experiment (Fig. 14b).

9. DISCUSSION

1. Frequently, in order to explain the L—H transition,
it is assumed that an increase in both the ion-pressure
gradient [p; and the transverse velocity v givesriseto
theradial electric field E,, which produces the velocity
shear E, B, that is higher than the growth rate of turbu-
lent fluctuations y. This meansthat, by theinstant of the
L—H transition, the following condition is satisfied:

1'gEqu, >y.

rdr M
Condition (1) means that turbulence cannot grow
(i.e., it is suppressed) and a transport barrier should
form at the instant of the L—H transition. However, the
results of T-10 experiments described in the preceding
sections, such as (i) afairly long time during which tur-
bulenceis suppressed, (ii) alow (as compared to maxi-
mum) value of E, at the instant of the L—H transition
and the subsequent substantial growth of E, as the H-
mode approaches its steady state, and (iii) the forma
tion of a transport barrier during the L—H transition
with a depth nearly one-half less than the steady-state
value, contradict the above assumptions.

Apparently, the data from T-10 experiments agree
better with the theoretical predictions formulated in
[9, 10].

2. In order to compare the T-10 data with the predic-
tions of [9, 10], we first examine how the plasma
parameters change when the microwave pulse is
applied.

The input of microwave power has the following
effects on the plasma:

(i) both the energy and particle confinement times
decrease (the density profile flattens);

(ii) the neutral flux I,y into the plasmaincreases;

(iii) the amplitude of turbulent fluctuations grows;
and

(iv) OT.increases (in particul ar, at the plasmaedge).

At the sametime, based on the results of T-10 exper-
iments, it was shown in[11] that, at high (>1 MW) lev-
els of the microwave power, variations in the ion tem-
perature can be explained by variationsin the power Py
transferred from electrons to ions by Coulomb colli-
sions. This means that the input of microwave power
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into a plasmais not accompanied by any additional (in
comparison with an Ohmically heated plasma) turbu-
lent mechanism governing ion transport.

This allows us to suggest that, in the T-10 plasma,
the switching-on of the microwave power enhances
electron turbulence, which causes the enhanced trans-
port of electrons. According to [11], theratio OV [3/V; [
between the transverse vel ocities of electrons and ions
increases in this case. Actually, as was shown in Sec-
tion 5, this leads to the generation of a positive (out-
ward directed) radia electric field E, .

3. According tothetheory [9, 10], theincreaseinthe
turbulence level and transverse electron flux I'; leadsto
the generation of the poloidal velocity [v,[producing a
stabilizing effect on turbulence. As the poloidal veloc-
ity attains a certain threshold value [V, [, the stabiliz-
ing action of [W,[Jbecomes dominant; as a result, both
the turbulence level and turbulence-driven transverse
flux decrease. This phenomenon is referred to as the
L-H transition. The value v,[j, can be related to the

threshold power Py for the L—H transition, because
the input power Py is, in fact, a source that provides

the increase in both the turbulence level and transverse
transport.

According to [9, 10], the poloidal velocity [W,[is
generated at the plasma periphery due to the tempera-

ture and density gradients, which does not contradict the
above conclusion about the role of 0T, (see Section 4).

Finally, according to [9, 10], after the transition to
the H-mode, turbulence is not suppressed completely,
which isaso consistent with the experimental observa-
tionsin T-10 (see Section 6).

Thus, based on the above considerations, it may be
suggested that electron turbulence arising during the
microwave-power input triggers the L—H transition in
T-10 through the generation of the transverse flux '
and the stabilizing poloidal velocity [v,[]

4. As was said above, the edge electric field E,,
which is initially positive, changes its sign during the
L—H transition. Consequently, the ratio of the trans-
verse transport velocities [V [d/[V; [ becomes less than
unity. In view of [11], this suggests that, at the instant
of the L-H transition, the turbulence responsible for
electron transport becomes suppressed and the trans-
port barrier for electrons arises. Thisassumptioniscon-
sistent with the dataindicating a shorter decay length of
T.inthe SOL (see Section 7).

However, both the value of the negative electric field
E, and (according to the simulation results) the trans-
port-barrier depth are still far from the values that are
reached when the steady-state conditions are
approached.

The question arises as to why the electric field E,
increases as the H-mode devel ops and the depth of the
transport barrier for electrons increases.
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We note that the maximum value of E, in the best
regimes attains |E,| = 400-500 V/cm, which, according
to the equation

dv;, _ 1

a o

corresponds to significant variations in the transverse

velocity v, = 2 x 10* m/s or Op; (Ti(r(¢,,;,) = 200—

250 eV for T;(0) = 600 eV). Under the steady-state con-

ditions, these variations must occur because Eq. (2)
must be satisfied.

This suggests the existence of a positive feedback
whose scheme can be described as follows.

(i) Thelow electric field dE, arising during the L—H
transition generates the shear of the E x B flow, which
partially suppresses turbulence.

(ii) The drop in the turbulence level leads to an
increase in the transport barrier for electrons, whereas
the ion transport velocity WG], according to [11],
changes insignificantly.

(iii) All of this decreases the ratio [V [d/[V;[J and,
consequently, increases (by an absolute value) the
radial electric field E,. Thus, the feedback loop is
closed.

(iv) This process continues until a steady state is
reached, which determines the final value of E, and the
depth of the electron transport barrier.

Op, +2vB,

~Zne c (2

10. CONCLUSION

(i) Animproved plasma confinement regime with an
external transport barrier (H-mode) is obtained in
ECRH experiments in T-10. The improvement factor

H, =T /T¢ attains 1.6.

(i) The threshold power Py, for the L—H transition
is closeto that predicted by the ITER scaling. The fact

that the threshold power P increaseswith increasing
plasma density also agrees with the predictions of the
ITER scaling.

(iii) The best results are obtained at low values of the
safety factor (g, — 2).

(iv) It is shown that, in the H-mode in T-10, atrans-
port barrier for electrons arises. The thermal transport

ALIKAEV et al.

barrier has a much smaller depth and its contribution to
improved confinement is insignificant.
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Abstract—A study is made of radio-wave scattering by Langmuir turbulent pulsations in a plasmain a mag-
netic field. The effect of this process on the polarization of radio waves at frequencies far above or closeto the
electron plasma frequency is investigated. The wave scattering by Langmuir turbulence is shown to strongly
affect the polarization characteristics. When the optical thicknesstypical of the scattering processis on the order
of unity, the degree of wave polarization can change by 30% both at high frequencies and at frequencies close
to the plasmafrequency, in which casethe circular polarization can reversedirection. It is shown that, asaresult
of wave scattering by Langmuir turbulence, the degree of circular polarization of radio waves depends on the
wavelength even in a uniform magnetic field. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The polarization characteristics of radio emission
from plasmas are of considerable interest for both lab-
oratory experiments and space research. Under astro-
physical conditions and in laboratory experiments, the
interaction between electron beams and plasmas is
often accompanied by the onset of turbulence (in par-
ticular, Langmuir turbulence). Astrophysical plasmas
(e.g., the solar corona) are often homogeneous on spa-
tial scales typical of the scattering of electromagnetic
radiation by Langmuir turbulent pulsations. In labora-
tory deviceswith injection of electron beams (in partic-
ular, in the GOL-3 device [1-3]), many methods for
diagnosing high-temperature plasmas (with an electron
temperature of about 10 keV) are based on analyzing
the parameters of both intrinsic electromagnetic radia-
tion emitted from the plasma and laser light scattered
by the plasma [1-8], in which case the plasma can be
assumed to be essentially homogeneous al ong the mag-
netic field.

The polarization of the emitted electromagnetic
waves, along with the other wave parameters, is an
important characteristic that provides insights into the
mechanisms for radio emission from space objects and
the conditions prevailing in the regions where radio
waves are generated [9]. Of particular interest is the
study of solar radio waves, because there is a large
amount of experimental data in this area of research
[10, 11]. However, the experimental data often disagree
with theoretical predictions. Thus, Ledenev [12]
showed that some types of radio waves emitted from
the Sun should be compl etely polarized, while observa-
tions do not usually reveal such a high degree of polar-
ization [13]. Additionally, in many broadband sources,
the degree of polarization of the emitted radio waves

depends on the wavelength [11]. Moreover, it was
found that radio waves of the same type may have dif-
ferent polarizations (see [14, 15]), which also contra-
dictsthe results of calculations. However, these contra-
dictions can naturally be explained if we take into
account the fact that, under astrophysical conditions
and in many laboratory experiments, radio waves are
generated and propagate in turbulent plasmas. Below,
wewill consider the scattering of radio waves by turbu-
lent pulsationsin a homogeneous plasma and the effect
of this scattering process on the polarization character-
istics of radio waves at frequencies far above (Section
2) and close to (Section 3) the electron plasma fre-

quency.

2. SCATTERING OF HIGH-FREQUENCY
RADIO WAVES

2.1. Basic Equations

The equations describing the Raman scattering of
polarized radio waves by turbulent pulsations in a
plasma in a magnetic field were derived in [6]. In this
section, we analyze a plasma with an isotropic Lang-
muir turbulence described by the spectral function
W(k), which is inversely proportional to the sgquared
wavenumber of the Langmuir plasmons [5]. We begin
by assuming that the following conditions are satisfied:

(Whdw)?,  (0udw)” < 1, 0
(Wl ), (0, w)* < 1,

where wy, is the electron Langmuir frequency, wy. is
the electron gyrofrequency, and w and w' are the fre-
guencies of the incident and scattered electromagnetic
waves. When the optical thickness characteristic of the

1063-780X/00/2611-0931$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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scattering process is on the order of unity and the con-
dition Aw < wy,, (Where Aw is the spectral width of the
frequency spectrum of the emitted radiation) holds, the
eguations describing the propagation of polarized radio
waves in a plasma in a uniform magnetic field with
allowance for wave scattering by Langmuir turbulent
pulsations have the form

%“’ = —0pf (W), — 0, f(W)V,c089 + v S(w), (2)
%’ = —0,f W)V, —0p f ()1 ,€089 + v (Sy(w),(3)
dd%’ = —0pf (W)U, + vSy(w), )
W 0,40+ V(). (5)

Here, I, U, Q., and V, are the Stokes parameters of
the radio emission; the functions f, and f, are equal to
1/2
F1() = (0= 0pe)" — pe)

2 12

, (©)
+ ((w+(’ope) _wpe) )/200,

Fo(0) = (el @+ Wpe) ™ + W ) (0 + Wpe)”

)

2 12 -1 —1
_(’ope) +((*)He((*)_wpe) +wHe(’~))

X ((w— oope)2 - wﬁe)ﬂz)/Zoo;

and
2
T[wpe Te W l
o, = Dok , ®)
° 3 Vg meCZneTeklmax - k1min
1.6r (a) 1.5
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where T, is the electron temperature expressed in J, n,
is the electron plasma density, ¢ is the speed of light in
vacuum, v isthe group velocity of the electromagnetic
waves, K., and k; ., are the maximum and minimum
wavenumbers of the Langmuir turbulence spectrum,

and W:J‘ dk 3

(2m)
tions per unit plasmavolume. All quantities (except for
temperature) are expressed in Sl units. The functions
S. S, &, and S, describe the sources of radio emission
in aplasma.

W) is the energy of turbulent pulsa-

2.2. How the Polarization of Radio Waves Changes
due to Scattering in a Turbulent Plasma Sab

When highly directed (A8 < 1) narrowband (Aw <
radio emission penetrates through a plane-parallel
turbulent plasma slab in which there are no sources of
radio wavesin the frequency range under consideration

(S, S, & S/ = 0), Egs. (2—5) yield the following
expressions for the intensities I, = (I — V)/2 and I =
(I + V)/2 of the ordinary and extraordinary waves that
have crossed the dlab:

Ir(2) = Ipo€XP(—0pzv 5 (cOSY) ™
x (f1(w) + fp(w)cosd)),

®

1. (2) = ILoexp(—cozvg_l(cosﬁ)_1
x (f1(w) - f2(w)cosd)),
wherel , and | g, are theintensities of the incident ordi-

nary and extraordinary waves, respectively.

Figure 1 shows the profiles of Ix(2)/1,(2) as afunc-
tion of the optical thickness 1 = g,f(w)z/'v, of the
plasma slab for radio waves at the second harmonic of

(10)

(b)

06 | | | J
0

Fig. 1. Ratio of the intensities of extraordinary and ordinary waves propagating along the magnetic field at the second harmonic of
the electron Langmuir frequency vs. the optical thicknessat o = 0 for different ratios of theinitial intensities of these waves and for
WHe/Wpe = (a) 0.1, (b) 0.2, and (c) 0.3.
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the electron plasma frequency. The profiles were
obtained for different values of | zy/I o and for wye/wy. =
0.1, 0.2, and 0.3. We can see that, for optical thick-
nesses on the order of unity, the degree of polarization
can change by 20-30%. Since extraordinary waves are
scattered more efficiently than ordinary waves, the
polarization of radio waves that have crossed the dab
can reverse direction if the extraordinary mode domi-
natesin the incident radiation (provided that the degree
of polarization of the incident radiation is lower than
30%). As the frequency increases, theratio I/l grows
essentially in the same way as it does when wy,
decreases.

2.3. How the Polarization of Radio Waves Changes
due to Scattering at the Exit from a Spherical
Plasma Sab

We consider an isotropic source with a sufficiently
narrow bandwidth (Aw < w,) inside a plasma region
with Langmuir turbulence, assuming that the source is
much smaller in size than the turbulent region. In this
case, the scattering process can also change the polar-
ization of radiation emitted from thisregion. Setting S,
S & and S, = 0in Egs. (2)«5), we obtain the inten-
sities |, and I of the ordinary and extraordinary waves
that have passed through a semitransparent spherical
plasma slab:

Ir(2) = |RoeXp(—ooZV;l(f1(w) + f,(w)cosd)), (11)

1.(2) = |LoeXp(—GoZVg;l(f1(°0) — f,(w)cosd)), (12)

wherel , and I g, are, respectively, theintensities of the
ordinary and extraordinary waves emitted by the
source.

Our calculations show that the scattering process
can polarize even unpolarized radiation from an isotro-
pic source. Thus, if the optical thickness of the slab is
equal to T = 0.5, then expressions (11) and (12) at
Whe/Wpe = 0.2-0.3 and 6 = O indicate that the degree of
polarization of radio waves at the exit from the slab can
be as high as 10% (the extraordinary mode being dom-
inant) because the frequency of the scattered radiation
is shifted from the frequency of the source by .

2.4. Polarization of Radio Waves Emitted
froma Spoherical Turbulent Plasma Sab
with a Source

We consider a source that is equal in size to the
spherical plasma dab with Langmuir turbulence,
assuming that Aw< w,,. If the dab is semitransparent to
the scattered radiation, then Egs. (2)—«(5) give the fol-
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lowing expressions for the intensities of the ordinary
and extraordinary waves emitted from the dab:

Iz = Qu(1— exp(—0ozvy (f1(w) + f5(w)cosd)))

X Vg(0o(fr(w) + fr(w) COSS))_l, (13)

I = Qu(1— exp(—0ozv; (f1(w) — f5(02) COS9)))
x vy(Og( (@) - f(w)cosd)y ™, (19

where Qr=(§ + S))/2 and Q_=(§ - S))/2.

Estimates from formulas (13) and (14) at (ye/Wpe =
0.2-0.3 and 1 = 0.5 show that, as aresult of scattering,
the degree of circular polarization of the emitted radio
waves can change by approximately 10% because
extraordinary waves are scattered more efficiently.

Hence, our calculations show that, when the optical
thickness of the scattering plasma slab is on the order
of unity, the polarization of high-frequency (w >
1.80,) radio emission that is dominated by the extraor-
dinary mode and is scattered by Langmuir turbulent
pulsations can change by approximately 30%. If the
degree of polarization in the source is below 30%, then
the polarization can reverse direction.

3. SCATTERING OF RADIO WAVES
WITH FREQUENCIES ABOVE THE ELECTRON
LANGMUIR FREQUENCY

Here, we analyze how the scattering process affects
the polarization of radio waves with frequencies 1.05-
1.103,, assuming that the ratio of the electron gyrofre-
guency to the electron Langmuir frequency liesin the
range 0.1-0.33. As in Section 2, we assume that the
spectral function W(k) of the Langmuir turbulence is
isotropic and is inversely proportional to the squared
wavenumber of the Langmuir plasmons [5]. We con-
sider two cases: radio waves propagating nearly along
and nearly transverse to the magnetic field.

3.1. Scattering of Radio Waves Propagating Nearly
along the Magnetic Field

If we ignore thermal corrections, then electromag-
netic waves in a magnetized plasma are described by
the dispersion relation [16]

2
Ki(eoks + &) - S1(e5 - 0" — 20K
(15)
2 (A)4 2 2
+2Keqg] + gs”(sm—g ) = 0.
Here,
e = g = 1-(0p®)’; (16)

0 = (e 00°); (17)
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Fig. 2. Ratio of the intensities of ordinary waves propagat-
ing across and along the magnetic field at nearly the electron
Langmuir frequency vs. the optical thickness at a = O for

Whe/dpe = (1) 0.1, (2) 0.2, and (3) 0.3.

k, and k5 are the wave vector components parallel and
perpendicular to the magnetic field, respectively; and k
is the absolute value of the wave vector of the emitted
radiation.

Under the conditions
K2 <1, (g°k%/2K’e?) < 1, (18)

the dispersion relation for transverse waves (i.e., waves
propagating nearly along the magnetic field) has the
form

K’c® = ooz(smilgl). (19)

The plus and minus signs correspond to two inde-
pendent polarized waves. the plus sign refers to the
right-hand polarized (ordinary) wave and the minus
sign refers to the left-hand polarized (extraordinary)
wave.

Expressions (19), (16), and (17) imply that, under
the condition € < |g|, only ordinary waves can propa-
gate nearly along the magnetic field. The intensity of
right-hand polarized (ordinary) waves propagating in a
plasma satisfies the transport equation [6]

di,, . .
TL = —(0¢f f1(w) - f;(w)cosb} 20)
Vg a)ly + v S (W),

where vy isthe group velocity of the ordinary waves,

F1(@) = {(0+ W) —whe} 1200, @1)

fo(@) = {ou(@r @) "t}
x { ((*) + wpe)z - (*);Z)e} 112/2(*),

and a(w) isthe coefficient of the collisional absorption
of radio waves by plasma particles.

TIRSKY et al.

Thetransport equation (20) for radio radiation emit-
ted from a plane-parallel plasma slab has the solution

S_(w) VgL

I (wz0)=
{00{ fjll.((*)) - f|2((*)) COSB} + VgLa}(23)
{ 0of f1(w) — f(w)cosB} + vy a}
x[l—exp%—z c V. C0S0 g E}

3.2. Scattering of Radio Waves Propagating Nearly
Transverse to the Magnetic Field (¢ < |g])

For radio waves propagating nearly transverseto the
magnetic field, i.e., under the conditions opposite to
inequalities (18), EqQ. (19) yields the dispersion relation

2
W
=& (24)

2
c

K® =
for an ordinary wave and the dispersion relation

w{e-g%

2
k™ = >
c €p

(25)
for an extraordinary wave. When € < |g|, extraordinary
waves cannot propagate, because the right-hand side of
(25) is negative and the corresponding conditionsfail to
hold.

The intensity of the scattered ordinary waves satis-
fies the equation [6]

dlo
dt
where v isthe group velocity of the ordinary waves.

For a plane-parallel plasma dlab, the solution to
Eq. (26) hasthe form

= —(0pfi(w) +vga)l, +vg S (W), (26)

S (w)Vg
{oof f1(w)} + vy a}

{oo{ f1(w)} + vy a}
7= g E}

I (w,20=12) =
(27)

x[l—exp%— v

gL

3.3. Effect of the Scattering Process on the Intensities
of Ordinary Waves Propagating at Different Angles
to the Magnetic Field (5 < |g])

Formulas (23) and (27) makeit possible to calculate
the intensities I, of ordinary waves propagating nearly
transverse to the magnetic field and the intensities |, of
ordinary waves propagating nearly along the magnetic
field at the exit from a plane-parallel plasma slab with
allowance for wave scattering by Langmuir turbulent
pulsations. Figure 2 shows the ratio of the intensity of
ordinary waves propagating transverse to the magnetic
field to the intensity of ordinary waves propagating
along the field as a function of the optical thickness of
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the plasma slab for different values of @/, Without
taking into account collisional absorption. We can see
that, when the optical thickness is below unity, the
waves propagating transverse to the magnetic field are
scattered more efficiently than those propagating along
the magnetic field. In other words, in the presence of
scattering turbulent pulsations in the plasma region
where radio waves with frequencies (1.05-1.1)w,, are
generated, transversely propagating ordinary waves are
more efficiently (in comparison with longitudinally
propagating ordinary waves) transformed into radio
waves with frequencies close to the second harmonic of
the electron Langmuir frequency, and this process is
accompanied by the redistribution of transversely prop-
agating waves over a4ttsolid angle. Asaresult, theini-
tially isotropic radiation can become anisotropic; i.e.,
radiation emitted along the magnetic field can be more
intense than radiation emitted transverse to the mag-
netic field.

3.4. Radio Waves Propagating Nearly
along the Magnetic Field (|g] < €p)

When the absolute value of g is smaller than ¢,
Eqg. (19) implies that both ordinary and extraordinary
waves can propagate nearly along the magnetic field.
To thefirst order in the ratio wy,./w, the dispersion rela-
tion for these types of waves can be obtained from
Eqg. (19):

2 2 2

O
w = kc “re [ (28)

Jkic? + wp

where the plus and minus signs refer to extraordinary
and ordinary waves, respectively.

The transport equation for extraordinary waves can
be written as [6]

2 D
+ W[ F
O

%e = {0f F3() + f1(e)Cose} 00
+V gr0 (W)} r + VgrSe(W),

where v is the group velocity of the extraordinary
waves. In the case of a plane-paralel plasma dab,
Eq. (29) has the solution

IR((A), Z, e) - SR(w)VgR
{00 13(@) + 13(0) 0086} + Vgrar} 30
{ 0of f1(w) + f5(w)cosB} + v ra}
x [1 —exp E—z 0 e 9 E}.

Equation (29) is similar in form to Eq. (20), and, in
the case of aplane-paralel dab, solution (30) coincides
with solution (23). Figure 3 displays profiles of the
ratio I/l as a function of the optical thickness 1 =

0y f1 (W)Z/vy at wye/w=0.1,0.2, and 0.3. Figure 4 pre-
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Fig. 3. Ratio of theintensities of extraordinary and ordinary
waves propagating along the magnetic field at nearly the
electron Langmuir frequency vs. the optical thickness at
a =0 for whe/tpe = (1) 0.1, (2) 0.2, and (3) 0.3.
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Fig. 4. The same as in Fig. 3 but for different ratios of the
initial intensities of extraordinary and ordinary waves at

WHe/Wpe = 0.2.

sents the same profiles but for different initial values of
lro/lo & Wye/w = 0.2. We can see that the degree of
polarization can change by 20% when the optical thick-
nessis on the order of unity and the polarization of the
emitted radiation can even reverse direction when the
emission from the source is dominated by an extraordi-
nary mode.

Note that solutions (23) and (30) are valid up to fre-
quencies close to 2w, and as the frequency increases,
the ratio I/l grows essentially in the same way as it
does when the magnetic field decreases (Fig. 3).

3.5. Radio Waves Propagating Nearly Transverse
to the Magnetic Field (|g| < €p)

When the absolute value of g is smaller than ¢,
Egs. (24) and (25) imply that both ordinary and extraor-
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dinary waves can propagate nearly transverse to the
magnetic field. To the first order in the ratio wy./w, the
dispersion relation for these types of waves can be
obtained from Egs. (24) and (25):

(€29)

The transport equation for extraordinary waves has
the form [6]

= {0 F1(00)} + VgrO (W)} or

+V grSp(W).

In the case of aplane-parallel plasmasdlab, thisequation
has the solution

2 _ 22 2
W = K€"+ Wpe.

dl s

dt (32)

la(w, 2,0 = T02) = S(W)V 4r
{oof1(w) + vra} .
0 _{oofi(w)+veo}
x[l_e"pm‘z e D}.

Equation (32) is similar in form to Eq. (26), and, in
the case of aplane-paralel dab, solution (33) coincides
with (27). According to formulas (27) and (33), the
extraordinary and ordinary waves are scattered essen-
tially in the same manner, so that the scattering process
has no impact on the degree of circular polarization of
the radiation propagating transverse to the magnetic
field.

4. CONCLUSION

Our calculations show that the scattering of radio
waves by Langmuir turbulent pulsations can substan-
tially change the polarization characteristics of radia-
tion. When the optical thickness characteristic of the
scattering process is on the order of unity, the degree of
polarization of both high-frequency radio waves (w =
2wy,) and radio waves with frequencies close to the
electron Langmuir frequency can change by up to 30%.
However, we must keep in mind that, when the same
source generates radio waves at both the fundamental
and higher harmonics of the electron Langmuir fre-
guency, the polarization of radiation at the fundamental
harmonic changes most strongly. The reason for thisis
that the group vel ocity of radiation at higher harmonics
is higher than at the fundamental harmonic; thus, for
higher harmonics, the plasma is far more transparent
with respect to scattering. The most interesting result is
that the polarization of the emitted radiation propagat-
ing through aplasma slab with the developed Langmuir
turbulence can reverse direction, because extraordinary
waves are scattered more efficiently than ordinary
waves. After passing through aturbulent dab, the radi-
ation that is emitted by the source and isinitially dom-
inated by the extraordinary mode may become domi-
nated by an ordinary mode. Generaly, this effect low-
ersthe degree of polarization of radiation dominated by

TIRSKY et al.

an extraordinary mode and raises the degree of polar-
ization of radiation dominated by an ordinary mode.

Another interesting result is that, because of the
wave scattering by Langmuir turbulent pulsations, the
degree of circular polarization of radio waves depends
on the wavelength evenin auniform magnetic field: the
longer the wavelength, the higher the degree of polar-
ization of radiation dominated by an ordinary mode.

Extraordinary and ordinary radio waves propagat-
ing nearly transverse to the magnetic field are both
characterized by the same scattering coefficient. Con-
sequently, the scattering process has no impact on the
degree of circular polarization of radiation propagating
transverse to the magnetic field. On the other hand, the
scattering efficiencies of radio waves of the same type
propagating in different directions with respect to the
magnetic field are different, which gives rise to the
anisotropy of the initially isotropic radiation (Fig. 2).

All of the above effects can be observed in labora-
tory experiments on the scattering of electromagnetic
waves and in space plasmas in the presence of a mag-
netic field. These effects are most pronounced in the
frequency range between the electron Langmuir fre-
guency and the doubled electron Langmuir frequency.

Thus, Langmuir turbulence was observed to be gen-
erated during the interaction between a relativistic
(0.8-1 MeV) electron beam with a current density of
J =10 kA/cm? and a plasmawith adensity of 105 cm®
in experiments carried out in the GOL-3 device (of
length | = 7.5 m) at the Budker Institute of Nuclear
Physics (Novosibirsk, Russia) [1-3]. Devices of this
type are capable of creating plasmas with temperatures
of up to 10® K. Langmuir turbulence can also be gener-
ated during the injection of an electron beam into a
plasma with such a temperature and with a density of
10310 cm, in which case the optical thickness
characteristic of the scattering of electromagnetic
waves by Langmuir turbulent pulsations is equa in
order of magnitude to

ol Ewpel Te W
Cc

3¢ meczﬁ;:r—e-

T =

Consequently, for an electron energy of about 10—
30 keV and aturbulence level of about W/n.T, ~ 10—

10, the optical thickness for the electromagnetic radi-
ation propagating at nearly the electron Langmuir fre-
guency along the magnetic field in GOL-3 can beonthe
order of unity.

In space plasmas, the scattering by Langmuir turbu-
lence manifests itself in the dependence of the degree
of circular polarization of the emitted radiation on the
turbulence level in the region where radio waves are
generated. For example, during solar radio bursts, the
polarization of the radio emission usually experiences
fast variations and may even reverse direction [10].
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Abstract—The features of the large-angle stimulated Raman scattering of short laser pulsesin ahomogeneous
underdense plasma are studied analytically. It isfound that, for scattering angles that are not too close to zero,
a steady-state regime of the convective amplification of unstable waves is established in the frame of reference
comoving with the laser pulse. The problem of convective amplification in atwo-dimensional region is solved
in both weak- and strong-coupling regimes. It is shown that the steady-state envel opes of the scattered radiation
and scattering plasma waves are two-dimensional in nature. It is found that, for a given scattering angle, the
maximum possible spatial amplification at the trailing edge of the pulseis achieved if the ratio of the transverse
to longitudinal size of the pulse is larger than the cotangent of one-half of the scattering angle. © 2000 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

Stimulated Raman scattering (SRS) [1] is one of the
most important parametric processes[2] accompanying
the propagation of high-power ultrashort (subpicosec-
ond) [3] laser pulses in an underdense plasma (wy, >
Wy, Where «y, is the laser frequency and w, =
(41e’n,/my)'? is the electron plasma frequency corre-
sponding to the unperturbed plasma electron density
ny,). The incident electromagnetic (EM) wave (the
pump wave) is scattered by spontaneous electron den-
sity fluctuations, which in turn can be enhanced by the
ponderomotive force at the beat frequency of the pump
wave and the scattered EM wave. If the waves meet cer-
tain phase relations, a positive feedback arises, which
leads to the onset of either temporal or spatial instabil-
ity [4]. Large-angle SRS can significantly affect the
propagation of ultrashort (subpicosecond) laser pulses
in plasma and, consequently, the operation of plasma
based laser accelerators using such pulses [5]. In this
connection, it is important to determine the maximum
achievable amplification coefficient of unstable waves
for a given scattering angle, as well as to find out
whether this amplification coefficient is achievable for
the given pulse dimensions.

In the weak-coupling regime (a, < (wpe/wy)"?,
where a, = eE,/(m.w,C) isthe normalized amplitude of
the laser field), and SRS at angles that are not too close
to zero is a three-wave process. A high-frequency EM
pump wave (w,, k) decays into a high-frequency scat-
tered EM wave (w), — Wys, k9 and an electron mode
close to the natural plasma mode (wgg, ko), where k.=

ko — kg and (g = [Whe + 3(ke V212 = (), is the fre-

guency of the scattering plasmawave. In this case, the
spectral width of the scattered radiation is small com-
pared to the electron plasma frequency, because the
weak-coupling regimeimpliesthat the temporal growth
rate of the instability is much less than wy.. In the
strong-coupling regime [6] (a, > (wye/0)'?), the scat-
tering is nonresonant in character: the scattering elec-
tron modes are not close to the natural plasma modes,
and their spectrum is much wider than the electron
plasmafrequency (thisimpliesthat the maximum value
of the temporal growth rate is larger than w,). A com-
prehensive review of the temporal growth rates of the
SRS instability in various regimesis presented in [7].
The solution to the problem of the temporal SRS
instability (i.e., theinitial problem) does not provide an
adequate description of large-angle SRS under rea
experimental conditions when the instability develops
in aspatialy limited region, which requires taking into
account the boundary conditions on the plasma bound-
ary and the laser-pulse edges. The region of the wave
interaction may be limited by the finite dimensions of
the laser focal region [8] where the plasmais produced.
Such a situation is characteristic of sufficiently long
laser beams with alength L, much longer than the Ray-

leigh length rg = k, L% /2, where L isthe focal spot size
(in this case, the longitudinal size of the plasma pro-
duced in the laser focusis on the order of the Rayleigh
length). Here, we will consider the opposite situation,
where the laser pulse is fairly short (L, < rg) and the
longitudinal size of the interaction region is determined
by the pulselength. If the plasmalength is much longer
than the pulse length and the scattering occurs at an
angle that is not too close to zero, then, in the frame of

1063-780X/00/2611-0938%$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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reference moving with the pulse, a steady-state regime
of convective amplification of unstable waves can be
established in the region occupied by the pulse. In this
case, the amplification is two-dimensional in character
[9, 10].

In this paper, werestrict ourselvesto considering the
linear stage of the SRS instability. Therefore, the appli-
cability conditions of the linear theory [11], which are
associated with the depletion of the pump wave and
determine the limiting value of the convective amplifi-
cation coefficient, are assumed to be satisfied. We con-
sider the linear regime of the steady-state convective
amplification in a spatially limited (rectangular) two-
dimensional region in the comoving frame of reference
under the conditions of weak and strong coupling. In
the strong-coupling regime, the electron motion in a
pump field is assumed to be nonrdativistic (large-angle
SRS of relativistically strong laser pulsesis studied in
[12]). In Section 2, we write the basic equationsthat are
used to analyze the instability in the weak- and strong-
coupling regimes. Theinitial-boundary problem isfor-
mulated in arectangular two-dimensional region in the
comoving frame. The boundary conditions at the lead-
ing edge and side boundaries of the pulse correspond to
a certain constant level of the electron density fluctua-
tions in an unperturbed plasma. In Section 3.1, atime-
independent boundary problem is solved. It is shown
that the SRS instability depends substantially on the
transverse size of the pulse; under certain conditions,
the finite transverse size of the pulse can significantly
limit the maximum amplification coefficient of unsta-
ble waves. It is found that the maximum achievable
amplification coefficient at thetrailing edge of the pulse
does not depend on the scattering angle; for the given
scattering angle a (counted from the propagation direc-
tion of the pulse), it isachieved if theinequality L/L, >
cot(a/2) issatisfied. Thisresult isvalid for both weak-
and strong-coupling regimes (in the former case, it
coincides with the results of [9, 10]). It is shown that,
within the applicability limits of the basic equations,
the solution to the initial-boundary problem
approaches the mentioned steady-state amplification
regime. By using the explicit steady-state solutions
obtained, we study in Section 3.2 the applicability lim-
its of the basic model equations; in particular, it is
shown that our results are consistent with the results of
[13, 14], from which it follows that the steady-state
spatial amplification cannot be realized for sufficiently
small scattering angles, such that o < (k)L™

In the Conclusion, the results obtained are sum-
marized.

2. BASIC EQUATIONS
We represent the high-frequency electric field in
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the form
a(r,t)

e—iooot+ikoz —iwgt +i(kgr)

+ayr,t)e M)

= 2(a(r, ) )+ cc.
where w, = . The normalized envelopes of the laser
pulse and scattered radiation (a, = eE,/(mw,C) and a;=
eE./(mw.C) are assumed to vary slowly in time and
space on the scales woi, and Ky, respectively; i.e.,
|08 /0t] < Wyslap| and [9ay)/0r| < Kyglaggl- 1N this
paper, the problem is solved in the nonrel ativistic limit;
I.e., we assume [a,| < 1. Both the incident and scat-
tered waves are assumed to satisfy the dispersion rela-
tion for EM wavesin aplasma Wy = (ko) + Whe-
Since we will consider below the SRS in a highly
underdense plasma, we can set w, = ), and k; = kJ =
ko, including small deviations of the frequency and
wave vector of scattered radiation from wy, and k,, into
the spatiotemporal dependence of the envelope aJr, t).
Thus, the longitudinal and transverse components of
the wave vector of scattered radiation are determined
by k. = (kg, kycosa), where K = ky| = Kgsina. The
ponderomotive force at the beat frequency of the pump
wave and scattered EM wave excites the scattering
€electron density perturbations

2

with the characteristic wave vector k, = e, k, — k¢ such
that ke, = 2kysin?(a/2) and k, = k¢ = 2k;sin(a/2).

We assume that the electron plasma is on average
uniform and that there are no long-wavelength (A >

k;l) perturbations of the electron density. (Note that

such perturbations can significantly suppress the SRS
instability [15, 16].) We will describe the SRS of ashort
laser pulse (Ly/c < w, = (4T2nym)'2, where w, is
the ion plasma frequency) at a given angle in an under-
dense plasma using nonrelativistic hydrodynamic
equations for acold electron fluid against the immobile
ion background and the Maxwell equationsfor the scat-
tered radiation. From this set of equations, we obtain
the coupled reduced equations for the amplitude ag of
the scattered EM wave and the dimensionless envel ope
N, = dn./n, of the scattering electron density perturba
tions

Shg(r, 1) = %5n5(r,t)e“ke")+c.c.

|:| Dg +Vg . DE+ C_ZADi|as
Lot 20,

W k ©)
= Dpe} _ Ksopp *
= Z o (o a0) N,
0’ s 1 *
ot e = Sk ) @
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Fig. 1. Geometry of large-angle SRS. (a) Wave-vector dia-
gram in the laboratory frame of reference. (b) The interac-
tion region in the coordinates x and & = ct — z (in the comov-
ing frame of reference). The boundary conditions are
imposedat x=0and & =0. Inregion |, in which the solution
is affected by the boundary condition at the side boundary
x = 0, the spatial amplification of the decay waves is two-
dimensional in character. Region Il corresponds to the
regime of one-dimensional amplification of the decay waves
along the §-axis (i.e., toward the trailing edge of the pulse).
For the scattering angles satisfying the inequality a <
2arctan(LyyLp), the training edge of the pulse entirely lies
in the region affected by the boundary condition at x = 0.

where v, = ¢’k,/a, isthe group velocity of the scattered
EM wave. For a highly underdense plasma, we can
neglect the difference between v = v| and the speed of
light in avacuum c. Below, we will consider the case of
linearly polarized laser light and analyze the SRS in the
plane that is orthogonal to the plane of polarization
(kg O ag) and in which the amplification coefficient of
unstable waves is maximum [11]. Thereby, the two-
dimensional geometry of the SRS is defined as is
shownin Fig. 1a. Wewill investigate the SRS at agiven
anglein the frame of reference comoving with the laser
pulse. In this frame, it is convenient to choose the dis-
tance from the leading edge of the pulse & = ct — zasthe
longitudinal variable; thetimet and the transverse vari-
able x are not transformed when passing over to the
comoving frame. It is assumed that the pulse is local-
ized in the longitudinal and transverse directionsin the
scattering plane and has a rectangular envelope:

&)

where e, is the unit polarization vector of the pump
field and the pump-field amplitude &, is constant at
0<&<ljand0<x<Lyandisequal to zero outside of
this region. Therefore, the region of the wave interac-

ao(X,E) = eOaOl

KALMYKOV

tion is a rectangle with the longitudinal size L, and
transverse size L (see Fig. 1b).

Under the condition

< kslad = kosinalad,

0a, 6
‘a_x (6)

which implies that the scattered EM wave is short-
wavelength in both the longitudinal and transverse
directions, we can consider the scattered EM wave to
be quasi-planar and neglect the transverse Laplacian in
Eq. (3). In Section 3.2, we will show that this condition
determines the lower and upper limiting values of the
scattering angle at which condition (6) is satisfied and
the related reduction of the order of the equation for the
envelope of scattered radiation is formally justified.
The following analysis is related to different approxi-
mations of EQ. (4) for the scattering electron density
perturbations in the weak- and strong-coupling
regimes.

In the weak-coupling regime (/0 > aé), the
scattering electron density wave is close to the natural
plasmamode. This allows us to further reduce Egs. (3)

and (4) representing the amplitudes of the decay waves
in the form

{as’ N;‘} — {é-s, N:}eiwpet—i(kp.r)’ (7)
where K, || ke, K, = [k,| = Wye/c, and the amplitudes Ns

and &, vary sowly on the scales we and k' . In the
comoving frame, the reduced equations take the form

0 ) o Ol7 _ o =
[a +2csin (G/Z)Di_ﬁ + COt(G/Z)&D}Al = YoA2,(8)

%% + C()%E?‘Z = YoAs, ®

where Ay = 28, (wy/0y,0)*2sin(0/2), Az = Ni, and

Yo = (89/2)(WyUdpe)?sin(0/2) < Wy isthe familiar tem-
poral growth rate of the instability associated with the
SRS at the angle a in an unbounded plasma[7] in the
weak-coupling regime. We formulate the initia—
boundary problem for Egs. (8) and (9) with the follow-
ing initial conditions and boundary conditions at the
leading edge (¢ = 0) and side boundary (for definite-
ness, X = 0) of the pulse:

Au(t,x, & =0) = Ay(t,x=0,8§)
= Ai(t=0,x &) =0,
As(t, %, & =0) = Ay(t,x=0,¢)
= Ax(t=0,% &) = No = const.

(10)

(1D

In the strong-coupling regime (wye/ty, < af) < 1),
the scattering electron density perturbations are not
PLASMA PHYSICS REPORTS  Vol. 26
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close to the natural plasma modes and the growth rate
of the SRS instability is much higher than the electron
plasma frequency. This allows us to neglect the term
with the plasma frequency sgquared as compared to the
second time derivativein Eq. (4). As aresult, the equa-
tionsin the comoving frame take the form

9 4 sty a0
[at +2csin (G/Z)@E + cot(O(/Z)aXD}Al

’ (12)

2
Az,

- —id2r
D@ o0

Dg + CiﬁA = _Dir D3/2'6\
2 D,\/é o] 1s
1/2

where A; = a(2wy/wye)**sin(0/2), Ay = N5 /wipe ,

Mo = /3842wy SinX(0/2)]" is the familiar
growth rate of the instability associated with SRS at the
angle a in an unbounded plasma [7] in the strong-cou-
pling regime (I, > ). For this set of equations, we
also formulate the initial—-boundary problem with the
following initial conditions and boundary conditions at
the leading edge and side boundary of the pulse:

Al(t,x,&=0) = A(t,x=0,8)
= A(t=0,%2¢&)=0,
A(t,x, & =0) = Ay(t,x=0,8)

= Ay(t=0,%&) = wye N, = cong,
o,
0¢

The boundary conditions for Egs. (8) and (9) or (12)
and (13) correspond to the propagation of alaser pulse
in a plasma with a constant level of seed electron den-
sity fluctuations. The side boundary (x= L) and trailing
edge (€ = L) of the pulse are the transparent boundaries
through which the decay waves leave the interaction
region. At these boundaries, the amplitudes of the
decay waves are completely determined by the solu-
tions to the initial—boundary problem for Egs. (8) and
(9) or (12) and (13). In the next section, wewill analyze
these solutions.

(13)

and

(14)
(15)

(t,x, & =0) = %(tzo, x£)=0. (16)

3. SPATIAL AMPLIFICATION OF WAVES
IN A TWO-DIMENSIONAL REGION
IN A COMOVING FRAME OF REFERENCE

3.1. Seady-State Solutions Describing
the Amplification of Waves in a Two-Dimensional
Region

If the scattering angleis not too closeto zero (if a >
max { (kL) ™, 2(LyLo)(k, Lo)™2}, as will be shown in
Section 3.2), then both the scattered EM wave and the
scattering plasma wave leave the interaction region
PLASMA PHYSICS REPORTS  Vol. 26
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through the trailing edge (¢ = L;) and side boundary
(x=Lp) of the pulse. Since, in this case, the SRS insta-
bility is convective in character, we can expect that, in
the comoving frame of reference, the interacting waves
will arrive at a steady state as time elapses. In this sec-
tion, we obtain steady-state solutions to the boundary
problemsfor Egs. (8) and (9) or (12) and (13), describ-
ing convective amplification of waves in a two-dimen-
sional region, and prove that the solutionsto theinitial—
boundary problem arrive at this steady-state regime of
amplification. In Section 3.2, we determine the range of
scattering angles in which the solutions obtained for-
mally satisfy the applicability condition (6) of Egs. (8)
and (9) or (12) and (13).

In order to obtain steady-state solutions to the
boundary problems, we omit the time derivatives in
Egs. (8) and (9) or (12) and (13). Intheregion & = 0 and
x = 0, we apply the L aplace transformation with respect
to & to obtain an ordinary differential equation with the
boundary condition at x = O, from which we get the
Laplace transform as a function of x. The inversion of
the Laplace transform gives us the sought solution to
the two-dimensional time-independent boundary prob-
lem.

When solving Egs. (8) and (9), describing the insta-
bility in the weak-coupling regime, it is convenient to
introduce the normalized amplitude of scattered radia-

tion By(x, &) = /2 sin(a/2)A1(x, &) whose Laplace
transform s

Nok, O KS a0
[ﬂ—exp[— _%o tan—}g (17)
S -kl % S%( 219

The quantity K, = (ay/2)(kky/2)'"* < K, is the familiar
gpatia growth rate of the convective instability associ-
ated with a large-angle SRS in the comoving frame of
reference in the weak-coupling regime [11, 16]. The
normalized amplitude By (x, &) obtained by inverting
expression (17) has the form

Bi(x,s) =

Bi(x, £) = No[sinh(KOE) ~HE —xtan%%

® 0 g _ d—l/z
leB(tan(O(IZ) 15

1o -t een]

whereH(y)=laty=0andH(y)=0aty<O0andl, _;
is an odd-order modified Bessel function. Figure 2

shows the reliefs and contour plots of B1 (x, &) for two
valuesof theratio L /L, equal to 1.2 and 0.6 at the scat-
tering angle a = 172, corresponding to side scattering.
Expression (18) for the normalized amplitude of scat-
tered radiation was earlier obtained in [9, 10], where

(18)
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Fig. 2. Side SRS in the weak-coupling regime: (a, c) the reliefs and (b, d) contour plots of the ratio Bl/NO corresponding to the
amplification coefficient koL = 5 for theratios of the transverse to longitudinal size of the pulse L/L;; = (, b) 1.2 and (c, d) 0.6. In

region | (€ > x), two-dimensional amplification takes place. Inregion Il (§ < x), amplification is one-dimensional. The influence of
the boundary condition at x = 0 reduces the growth rate of perturbationsin region I. The maximum possible amplification coefficient

a & =L isnot achieved if L/l < cot(0/2) =1 (c, d).

the spatiotemporal linear theory of alarge-angle SRS of
a short laser pulse with finite transverse dimensions
was developed. Amplitude (18) corresponds to the
steady-state regime of convective amplification in a
two-dimensional region. This steady-state solution is
established in atime of 1, =max{Ly/c, L /[2csin*(a/2)]}
after the pulse has entered the plasma.

When solving Egs. (12) and (13), describing
the SRS instability in the strong-coupling regime, it
is convenient to introduce the normalized amplitude
of scattered radiation in the form B,(X, §) =
=3./25in(@/2)(Go/ky) PAX, &), where G, =

[(3y/2)? kﬁ k,]'. The Laplace transform of the normal-

ized amplitudeis

. NoGgs
Bi(x,5) = 3i
' S —iGy
(19)
O O iGH . alO
Xl —exp|-5— — Xtan3 |0
0 O &0 2|0

The quantity K, = (./3/2)G, is the familiar spatial
growth rate of the convective instability associated with
large-angle SRS in the comoving frame of referencein
the strong-coupling regime [11, 16]. The normalized
amplitude B, (x, &) obtained by inverting Laplace trans-
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Fig. 3. Side SRSin the strong-coupling regime: (a) therelief and (b) contour plot of [B;/Ng| corresponding to the amplification coef-

ficient Kol =5 /3 /2 for theratio of the transverseto longitudinal size of the pulse L/l =1.2. AsinFig. 2, inregion| (& > x), two-

dimensional amplification takes place, whereasin region Il (€ < x), amplification is one-dimensional. The influence of the boundary
condition B; (&, X = 0) = 0 reduces the growth rate of perturbationsin region | as compared to region |1.

form (19) has the form

3
By(x, &) = No ') cjexp(c;Gof)

=1

x|1-H % —xtan%%exp E—CJ-GoxtangD

o5 @0

a

O———————————(ZI)!” y%l +1, chO[E —xtan%E ,

where

vma=£2%§l

sl(B+5s)

is the incomplete gamma-function [17] and ¢ are the

roots of the equation cf‘ = i. Figure 3 shows the relief
and contour plot of [B,(x, &)| for Ly/L=1.2anda =T172.

In the region where the solution is affected by the
boundary condition at x = O (this region is bounded by
the characteristics § = xtan(a/2) and x = 0 and is des-
ignated asregion | in Figs. 1-3), the amplitude of scat-
tered radiation shows a two-dimensional behavior: the
solution monotonically increases along both the x- and
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&-axes. In region 11, solutions (18) and (20) are com-
pletely determined by the boundary condition at the
leading edge of the pulse; in this region, the solution
depends only on the longitudina coordinate and
increases as O{exp(KqE), exp(Ky§)} with the growth
rate K, or K,, which is independent of the scattering
angle. A correction suppressing the exponential growth
of the amplitude of scattered radiation in region | [see
expressions (18) and (20)] appears because the solu-

tions must satisfy the boundary condition {B:,
B,}(x=0,8)=0.

For asufficiently largefocal-spot size L or for near-
backward scattering (o = 1), when the inequality L, >
cot(a/2)L is satisfied, the one-dimensional regime of
amplification dominatesin amost the entire interaction
region. In this case, the contribution of the boundary
effects on scattering is insignificant (see also the
remark at the end of Section 3.2.1) and the influence of
the boundary conditions at the side boundaries of the
pulse can be neglected. (Note that, in [16], the problem
of large-angle SRS in the presence of long-wavelength
perturbations of the electron density was solved just in
this approximation.) In the opposite casg, i.e, a L <

cot(a/2)L; (see Fig. 1b), the evolution of the decay
wavesistwo-dimensional in the entire region occupied
by the pulse.

Solutions (18) and (20) allow usto answer the ques-
tion of whether the maximum possible amplification
coefficient can be achieved for the given scattering
angle and the given ratio of the transverse to longitudi-
nal size of the pulse. In the interaction region, the
amplitudes of the waves increase monotonically along
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both the x- and ¢-axes. Hence, the amplitude of scat-
tered radiation reachesits maximum at thetrailing edge
of the pulse (€ = L;). The maximum amplification coef-

ficient { B1, [B,|} T {exp(KoLy), exp(KyLp} is attained
in the one-dimensional regime of amplification and can
be achieved if at |east part of the trailing edge does not
fall in region I, where the solution is affected by the
boundary condition at the side boundary. This takes
placeif the pulse dimensions satisfy the inequality (see
Fig. 1b)

Lo ot (PO
-L—” > COtEED

If the opposite inequality is satisfied, then the finite
transverse size of the pulse significantly reduces the
amplitude of scattered radiation (cf. Figs. 2aand 2b).

Above, we have studied steady-state solutions (18)
and (20) in the comoving frame of reference in the
weak- and strong-coupling regimes. Below, we will
show that the solutionsto the initial—boundary problem
for Egs. (8) and (9) or (12) and (13) with theinitial and
boundary conditions (10) and (11) or (14) and (16),
respectively, arrive at the steady-state solutions
obtained ast — . The initial-boundary problem is
solved by the double Laplacetransformation inthetime
t and the longitudinal coordinate & (the corresponding
variables in the Laplace transforms are p and s, respec-
tively). The Laplace transforms of the normalized

amplitudes B (t, x, &) (weak coupling) and B,(t, x, &)
(strong coupling) are

21)

. Noko/(ps
Bi(p. %, 8) = KPS)
P s Ko
2csin’(a/2) (plc) +s (22)
O 2 g
xgl—exp —xtan2 f b5 N0 0 %
0 2pcsin’(a/2) (p/c) +s0| O

3iN,Gy/(ps)

Bi(p, %, 8) =

P .o G
2csn’(a/2)  [(plo) + 1% (23
0 iGg O
><E1L—exp—xtangE)ZL““S—L%El
0 2[pcsin’(a/2) [(p/c) +sI'TI0

respectively. To examine the functions B: (t, x, &) and
B/, X, & at t —= oo, we consider the expressions

limpBi1(p, x, s) and limpB,(p, X, S) a p — 0. Passing
over to thelimit p — 0 (at a # 0) in expressions (22)
and (23), we obtain formulas (17) and (19), respec-
tively. It followsfrom herethat, at t — oo, the interact-
ing waves arrive at the steady-state regime described by
formulas (18) or (20). Thisisformally truefor arbitrary
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small scattering angles, excluding a = 0. To verify that
there is no asymptotic steady-state solutions for inter-
acting waves in the case of direct-forward scattering,

we return to the dimensional amplitudes a,(p, X, S) =
=i (Wpe/ 20)¥*sin"2(01/2) B1(p, x, s) (weak coupling) and

1/3

ayp, X, 8) = —(1/6)(e/20)*" x &5 “sin2(01/2)B,(p, X, 9)
(strong coupling) and pass over to the limit o — 0
taking into account expressions (22) and (23). As a
result, we obtain the expression

lim{a, ah(px,s) =

2
Whe . o 1
4| (*)0{ NO’ NO} aO pzsi (24)

from which it follows that the limit Iimop {4, &} is
p-

absent. This means that there is no steady state for the
case of direct-forward scattering, which agreeswith the
familiar results for the direct-forward SRS [13].

3.2. Applicability Conditions of Two-Dimensional
Seady-Sate Solutions

The explicit solutions (18) and (20) to the time-
independent boundary problem correctly describe SRS
only within the applicability limits of the model based
on the reduced equations (8) and (9) or (12) and (13),
respectively. In particular, condition (6), which allows
us to reduce the order of the equation for the scattered-
field envelope with respect to the variable x, must be
satisfied. Obvioudly, this condition can be violated for
scattering angles close to either 1t (near-backward scat-
tering) or zero (near-forward scattering). Below, we
will determine the range of scattering angles in which
the steady-state regime of convective amplification of
perturbations in the course of SRS is correctly
described by the solutions to the boundary problem for
the reduced equations.

3.2.1. Near-backward scattering (o = x). As the
scattering angle tends to T, the characteristic x =
& cot(a/2) tendstox = 0. Asaresult, region |, in which
the solution is affected by the boundary condition at
x=0, becomes progressively narrower; correspond-
ingly, the absolute value of the x-derivative of the solu-
tion to the boundary problem increases and becomes
infinite at o = 11, when the amplitude of scattered radia-
tion, determined by expressions (18) or (20), undergoes
a discontinuity at the boundary x = 0. In order to esti-
mate the characteristic value of the transverse derivative
of the envelope of scattered radiation in region |, we
approximate the x profile of the envelope at the given ¢
by a linear function: a(x, &) = (x/§)tan(a/2)ay§, x =
& cot(a/2)). We substitute this approximation into con-
dition (6) to obtain the upper estimate for the range of
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scattering anglesin which expressions (18) and (20) are
formally valid. As aresult, we obtain

(25)

Notethat the transverse derivative da,/0x obtained from
the linear approximation gives a somewhat underesti-
mated value of the derivative compared to its maximum
valuein region |. However, thisfact is of minor impor-
tance, and the upper estimate (25) for the range of
admissible scattering angles remains valid in order of
magnitude. For example, in the weak-coupling regime,
substituting the exact maximum value of da,/0x
obtained from the explicit solution (18) into condition
(6) givesthe inequality Tt— o > 2(koL)~2(TTKo L}/ 2)~,
where KL is the maximum achievable amplification
coefficient for the scattering at the angle a. Under the
applicability conditions of the linear theory, this coeffi-
cient is not too large, KoL ~ 10-20, from which we
obtain (Ttk,L/2)~""* ~ 0.5. Hence, the use of condition
(25) as the order-of-magnitude estimate is well justi-
fied.

If condition (25) isviolated, expressions (18) or (20)
fail to describe the scattered-field envelope in region |
(in fact, in the boundary layer of width I, =
[L)/(2ky)]"?). To correctly describe the boundary
effects, it is necessary to take into account the second-
ary derivative with respect to the transverse coordinate
and to correctly specify the pulse shape, which must
correspond to the smooth vanishing of the pulse ampli-
tude at the side boundary. At the sametime, inregion 1,
solutions (18) and (20) areindependent of the boundary
conditions at the side boundary (x = 0) of the pulse and
condition (6) is satisfied throughout this region. There-
fore, at - (k)L /2)""* < a < 11, the applicability of the
solutions obtained is only violated in a narrow bound-
ary layer of width I, < L, whereas in most of the
region occupied by the pulse (I, < x<Lp, 0 <€ < L),
these solutions correctly describe the envelope of scat-
tered radiation.

3.2.2. Small-angle scattering (o = 0). As the scat-
tering angle formally tends to zero, the characteristic
¢ = xtan(a/2) tends to the vertical line { = 0 and the
region in which the solution is affected by the boundary
condition at X = 0 extends over the entire region occu-
pied by the pulse. At a < 2 arctan( &/x), the asymptotic
behavior of solutions (18) and (20) at a given point
(%, &) inside the pulse is described by the formulas

Bu(x, & a < 2arctan(E/x)) D%NOKO, (26)

B.(X, & a < 2arctan(&/x))
. 27
Dz(zlg{iNoGoz exp(c;Goé)[2-VY(3, C‘GoE)]}, @7
<
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respectively. At a < 2arctan(&/x), condition (6) with
allowance for formulas (26) and (27) leads to the ine-
quality sina = a > (k,x)~!. If thisinequality is violated
in the entire interaction region (i.e., at 0 < X< L), then
we cannot examinetheinstability within the framework
of Egs. (8) and (9) or (12) and (13) and must use the
more general initial set of equations (3) and (4), which
contain the second derivatives with respect to the trans-
verse coordinate.

As was shown in [14], where equations similar to
Egs. (3) and (4) were used to describe the three-dimen-
sional instability of alaser pulse with respect to trans-
verse perturbations of the envelopewith acharacteristic

scale length of L (i.e., k;Ll ~ Lp), taking into account

the higher spatial derivatives|eadsto the absoluteinsta-
bility of the pulse amplitude in the comoving frame of
reference. Thus, we obtain the lower limit for the
admissible scattering angles: a > (k,Lp)™'. For lower
scattering angles, our results become invalid. More-
over, when estimating the lower limit for scattering
anglesfor which theinteracting waves arrive at asteady
state in the comoving frame, we must take into account
the finite duration of the pul se propagation in a plasma.
Assuming that the characteristic length of a plasma
produced in the laser focal region is on the order of the
Rayleigh length rg, we compare the propagation time
of the pulse in the plasma 1 = rg/c with the character-
istic time T, = Ly/[2csin*(a/2)] required for the steady-
state solution describing a small-angle SRS in the
comoving frame to be established [9, 10]. Under the
condition 1, < Tg (from which we obtan a >
2(LyLp)"2(koLp)™7%), the propagation time is sufficient
for the steady-state solution in the comoving frame to
be established. Therefore, in order for the steady-state
regime of two-dimensional spatial amplification of per-
turbations arising due to a small-angle SRS can be
established in the comoving frame of reference and we
can describe this steady state in terms of solutions (18)
or (20) to the boundary problem for the reduced equa-
tions (8) and (9) or (12) or (13), respectively, the scat-
tering angles must satisfy the inequality

U L1/ U
o > max L EL—”H 2 750
obo "o (kL) ™20

Summarizing the obtained results concerning the
applicability of the steady-state solutions (18) or (20) to
the boundary problems for Egs. (8) and (9) or (12) and
(13), respectively, in the entire region occupied by the
laser pulse, we can state the following.

In the range

max —' Lg<a<n— n2 ” ,(28)
% guisn (koL D)l’z |:kOL”
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expressions (18) and (20) correctly describe the ampli-
tude of scattered radiation in the comoving frame of
referencein the steady-state regime of two-dimensional
convective amplification in the region occupied by the
pulse.

For

0 2 D‘UZ
nm— 5 <O<T,
koL, H

solutions (18) and (20) becomeinvaidinregion I, where
they are affected by the boundary conditions at the side
boundary of the pulse x = 0, whereas in region |1, the
amplitude of scattered radiation is correctly described
by expressions (18) and (20).

For

/12
0s0(<maxD 1 Dﬂml LD

, 0
ol L d (kOLD)l/2 H

solutions (18) and (20) are inapplicable in the entire
region occupied by the pulse.

4. CONCLUSION

In this paper, we have examined the steady-state (in
the comoving frame of reference) regime of amplifica-
tion of the perturbations arising due to an SRS at angles
satisfying condition (28) in the two-dimensional region
in which the pump field is localized. It is established
that the amplification of unstable modes in the comov-
ing frameistwo-dimensional in nature. It is shown that
the finite transverse dimensions of the laser pulse can
limit the coefficient of convective amplification. It is
found that, in order for the maximum possible (in linear
theory) amplification coefficient to be achieved for SRS
at the given angle a, theratio of the transverseto longi-
tudina size of the pulse must satisfy the inequality

Ly/L > cot(a/2).
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Abstract—One-dimensiona equations are derived that describe the hydrodynamic and electrodynamic prop-
erties of a plasma created through gas ionization by a short intense laser pulse. Different approaches (in partic-
ular, the particle-in-cell method) are used to show that, with ionization processes included, the excitation of a
wakefield by an intense laser pulse can be described by the method of slowly varying amplitudes. It is shown
that ionization processes enhance the wakefield excited by a moderate-intensity laser by about 10% in the case
of alinearly polarized laser and by about 50% in the case of a circularly polarized laser. lonization processes
in light gases irradiated with high-intensity laser pulses have essentially no effect on the wakefield during the
resonant excitation of a plasma wave by the ponderomotive force and play a governing role far from the reso-

nance. © 2000 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The progress achieved over the past decade in the
creation of compact devices generating intense femto-
second laser pulses (so-called T3 systems) has made it
possible to substantialy extend the area of theoretical
and experimental research on the interaction of highly
localized (in both space and time) intense electromag-
netic fieldswith matter (see, e.g., [1]). Thus, combining
the high intensity of laser pulses with a properly
adjusted pulse duration provides the possibility of gen-
erating a large-amplitude wake plasma wave [2, 3],
which can be employed in modern-day laser wakefield
accelerators (plasmabased €electron acceleration
schemes) [4].

The theory of wakefield excitation by short laser
pulses in fully ionized homogeneous plasmas and in
preformed plasmadensity channels has been devel oped
in considerable detail [5-12] (see also reviews[13, 14]
and the literature cited therein). However, the theory of
the propagation of high-intensity laser pulsesin a mat-
ter whose charge content changes due to ionization by
intense optical radiation requires further development.
In particular, theionization of matter by laser pulsesnot
only may give rise to radiation energy losses but may
also serioudly distort the incident laser pulse shape on
the particle-acceleration time scale [ 15, 16] and provide
conditions for optical guiding by preformed plasma
channels[17].

Our purpose here is to analyze how ionization pro-
cesses affect the wakefield excitation by alaser pulsein
a gas. The generation of plasma waves by laser pulses
with allowance for ionization processes was studied in
[18, 19]. Mori and Katsouleas [18] applied the single
particle model to determine the ponderomotive force
that excites a plasmawave during ionization. However,
in deriving the expression for the ponderomotive force

(see formula (15) in [18]), they neglected the fact that
the growth rate of the electron density dueto ionization
contains oscillations at the harmonics of the laser field
frequency (see relation (13) in [18]) because of the
strongly nonlinear dependence of the ionization proba-
bility on the laser field intensity. Moreover, the expres-
sion for the ponderomotive force obtained in [18] con-
tained such parameters as the phase ¢ and amplitude E
of the ionizing electric field, which remained undeter-
mined. Asaresult, Mori and Katsouleas [ 18] described
the effect of ionization processes on the amplitude of
the wake plasma wave by the phenomenological
expression with two undetermined parameters. The
approach developed by Fisher and Tgjima[19] was also
phenomenological, with undetermined main parame-
ters that governed the contribution of ionization pro-
cesses to the wakefield amplitude.

Below, we apply the kinetic and hydrodynamic
equations that describe the relativistic dynamics of the
interaction of intense laser fields with plasma and sys-
tematically take into account ionization processes (cf.
[20]) in order to study the excitation of a wake plasma
wave by an intense laser pulse. Since the irradiation of
agas by ashort laser pulse is usually characterized by
the inequality y < 1, where y is the Keldysh parameter
[21], the plasma production can be examined using the
tunneling-ionization model. In this way, we can turn to
the so-called “two-stage” model, in which the transi-
tion of an electron from the bound state to the state of
free motion is described by the methods of quantum
mechanics in the spirit of the theory of tunneling ion-
ization, and the dynamics of the free electrons them-
selves in the laser field is described by the classica
equations of motion [22, 23]. Recently, this approach
has been used to study nonadiabatic gas heating by
intense laser pulses[20, 24]. In our paper, the two-stage
model is used to investigate the characteristic features
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of the wakefield excitation with allowance for ioniza-
tion processes.

Using the one-dimensional approximation, we com-
pare the results obtained by the following three
approaches: the most complete numerical investigation
based on particle-in-cell (PIC) simulations; numerical
solution of the set of equations consisting of the Max-
well equations and the hydrodynamic equations for an
electron fluid, which are derived from the kinetic equa-
tion by the method of moments; and numerical and ana-
Iytical solution of the equation for the wakefield ampli-
tude, which is derived from the Maxwell equations and
hydrodynamic equations by averaging over time.

We demonstrate that the results of the hydrody-
namic calculations based on the full set of equations
and the results obtained by analytically solving the
reduced equation for the wakefield amplitude both
agree well with the kinetic PIC simulation results.

2. BASIC EQUATIONS

We describe the ionization process and free electron
motion in the field of a short high-power laser pulse by
the hydrodynamic equations. We incorporate ionization
into the basic equations through the standard procedure
of deriving hydrodynamic equations from the kinetic
eguation for the momentum el ectron distribution func-
tion f(r, p, t):

0, of

of 1
(—ﬁ+(v-D)f+eBE+(—:v><BD ap

= I(r,t)3(p),
(1
where E and B are the electric and magnetic fieldsin a
plasma. Theterm I (r, t)d(p) describes the source of the
electrons produced during ionization by a strong elec-
tromagnetic field. The atoms (or ions) are ionized by
thefield of ashort (with aduration T, of about 100 fsor
shorter) high-power laser pulse viathe tunneling mech-
anism, because the Keldysh parameter y =
w./2m.U /|e|E (where wisthelaser frequency, U isthe
ionization potential of an atom (or ion), and my(e) and
e are the mass and charge of an electron) is compara-
tively small (about unity or smaller) [21]. In this case,
we can assume that the initial velocity of free electrons
produced during such an ionization process is zero
[22, 23, 25]. For this reason, the ionization term in
Eq. (1) is proportional to &p). Note that, in order to
study the distribution function of the electrons that are
gected out of the atoms during tunneling ionization,
Tikhonchuk and Bychenkov [26] incorporated ioniza-
tion processes into the kinetic equation through the
source term of the form I'(r, t)&(p). More recently, an
analogous approach was applied in [20, 27] to the
kinetic equation in order to derive the hydrodynamic
eguations describing gas ionization.
In Eqg. (1), we neglected recombination and both

elastic and inelastic collision processes (€l ectron—neu-
tral, electron-on, and electron—electron collisions)
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because, in amoderately dense plasma, these processes
occur on time scales far longer than the characteristic
time scales of our problem, i.e., the pulse duration and
the plasma period, which is approximately the pulse
duration or shorter (see below). In fact, if the neutra
atom density is about 10" cm or lower and the elec-
tron velocity is about ~10'° cm/s (which is close to the
speed of light), then even for acollision cross section of
about o ~ 10716 cm? the time interval between succes-
sive non-Coulomb collisions is approximately equal to
100 fs, which is comparable with the pulse duration.
However, for such electron velocities, the collision
cross section ismuch lower: o < 107 cm? [28]. During
a short high-power laser pulse, Coulomb collisions
between el ectrons and ions can definitely be neglected,
because, first, the relative velocities of colliding parti-
cles are high [29] and, second, the electron—electron
collision time is longer than 100 fs even for electron
temperatures of about several electronvolts [20]. We
can aso ignore recombination processes because the
recombination timeis estimated to be much longer than
the pulse duration (see, e.g., [28]).

We integrate Eqg. (1) over momenta to obtain the

equation for the electron density ng(r, t) = I d3pf(r, p, t):

ong . . _
E+dlv(neve) =T, 2)

where V(r, t) = n;l(r, t) dspvf(r, p, ) is the mean

directed electron velocity. Integrating Eq. (1) mul-
tiplied by p over p and using Eq. (2), we arrive at
the equation for the mean momentum Pgr, t) =

n. (r,b) [pf(r. p.Od:

0P, r
ﬁ +(Ve ’ D)Pe+n_e

In deriving EQ. (3), we neglected the pressure force
n;lal_l,]/arj (Where (I_I” = I(Vl - Ve,])(pl — Pe’i)fd3p is

the pressure tensor) in comparison with the pondero-
motive force that acts on the electron fluid and is
described by the second term on the left-hand side of
Eqg. (3) and by its right-hand side. Recall that, during
gas ionization by a short laser pulse, we can actually
ignore electron—neutral and electron—on callisions, in
which case the energy of the electrons in the ionized
gas (the so-called residual electron energy [22, 20, 24])
is governed by their nonadiabatic interaction with the
laser field at the instants at which they are gected out
of the atom rather than by inverse bremsstrahlung.
Although the residual electron energy may be signifi-
cant, we can readily show that, a least in the one-
dimensional approximation discussed below, it does
not contribute to the pressure force, because the ioniza-
tion-produced electrons preferentially move transverse
to the propagation direction of the laser pulse (see Sec-

P, = e%+%vex3% 3)
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tion 4).1 On the other hand, in the one-dimensiona
approximation, the ionized gas is inhomogeneous only
in the propagation direction of the pulse, so that the
derivative of the pressure tensor, which is mainly gov-
erned by the residual electron energy, equals zero.

The hydrodynamic equations (2) and (3) contain the
source term I, which characterizes the rate at which
free electrons originate per unit volume. To determine
I", we must calculate the rate at which the €lectrons are
gjected out of all atomic shells:

Z-1 Z-1
r=9SY wN,=5r™

mZO mZO
where ™= N \Wi,,,, W, is the probability of the tunnel-
ing ionization of an ion in the mth ionization state per
unit time (m= 0 corresponds to a neutral atom), N{(N,)
isthe density of suchions, and N, isthe density of neu-
tral atoms. The probability W, is described by the

familiar Ammosov—Delone-Krainov formula, whichis
not averaged over the pulse period [30, 31]:

4

_ o exp(l)(m+1)°

Wm(E)_wat 211 M4
2M 1 ) (5)
(m+1)°Ea[ " H2(m+ 1) Eaf
x{4eXp(l) M. E EXDBLC*’ M3 E%

whereE; =5.142 x 10°V/cm, E = [E|istheingtantaneous

electric field amplitude, M,,= (m+ 1) ,/13.606/U ,, the
ionization potential U,,, of an ion in the mth ionization
stateismeasured in eV, and w,; =4.134 x 106 stisthe
atomic frequency. The time evolution of the densities
N,, of atoms and ions, which are both assumed to be
immobile, can be described by the equations[32, 33]

N
aa_tm = -W,N,+W,_;N,_;, m=1..,2Z2-1,
z (6)
ON
—a—t—z = Wz_1Nz_;, N = Ng-— lemv
m=

where Z isthe nuclear charge of an atom and N,, = const
is the net density of the gas atoms and ions. Solving
Eqgs. (6) at afixed laser field amplitude E yieldsthetime
dependence of I'. Figure 1 shows that the time evolu-
tion I (t) is smooth in the case of a circularly polarized
pulse and experiences rapid oscillations[34] in the case
of a linearly polarized pulse, the oscillation period
being equa to one-half of the laser field period. The
envelope of I (t) ischaracterized by a sequence of peaks

1The isotropization of the momentum electron distribution func-
tion via electron—€lectron and electron—neutra (ion) collisions
can be neglected, because the collision times and, accordingly, the
rise time of the ionization front are much longer than the pulse
duration.
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Fig. 1. Source term I" (t)/(wN,,) (heavy solid curves) for the
electrons originating during the ionization of helium atoms
by a Gaussian laser pulse with the peak intensity I, =5 x
106 W/em?, full width at half-maximum 1, = 50 fs, and
wavelength A = 0.8 um. The zero time corresponds to the

pulse center. The light solid curves show the absolute value
of the dimensionless laser field amplitude a() =
elE(t)[/(mewc), where the field amplitude is related to the
laser intensity 1| by (E*(t)C}= 47d,/c (the angular brackets
stand for averaging over the laser field period). The dashed
curves show the mean ion charge Z = ng/N,, in the case of
(a) linear and (b) circular polarization.

corresponding to ionization of ions in the correspond-
ing ionization states. The peak widths aong the time
axis, T,,,, which can be regarded as characteristic time
scales on which ions in the corresponding ionization
states are ionized, are approximately equal to severa
laser field periods. Such short ionization time scales
allow us, in particular, to speak of the threshold inten-

sity It(,T) for the ionization of an ion in the mth ioniza-
tion state.
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Inthe Maxwell equations and in the kinetic equation
(1), we must take into account ionization processes. To
do this, we must consider not only the current J of free
electronsbut also the current J,,, driven by the polariza-
tion of atoms ionized by the laser field [35]. To deter-
mine the current J, ,,, we take into account the fact that,
because of the direct ionization of gasatoms by an elec-
tromagnetic field with the wave vector k and frequency
w, the energy density w; ,, of the laser radiation
decreases at the rate

[OWk, o]
0ot O

on

Z-1

= _Z WmNmUm! (7)

and the momentum flux of the laser radiation, S/c?
(whereS = (c/4T)E x B isthe Poynting vector), changes
a therate

o SD _
[FC ion

The rates (7) and (8) at which the energy and
momentum of the laser radiation change can be incor-
porated into the Maxwell equation

Z-1

ZWNUk

(8)

10E
oot ©)

by supplementing the current J = en,V,, of free elec-
trons with the ionization current J. , defined as

curlB = ——(J+J|0n)+

Z-1

E
Jion = - Z WiNpUp,. (10)

In order to take into account the ionization current
Jion 1N EQ. (9), we must add the ionization-induced
charge density p,,, to the conventional hydrodynamic

z

density p(r, t) = en. + |e| z mN,, of free electronsin

m=1
the Maxwell equation for the electric field E, divE =
4Tip + 411p,,. In fact, Egs. (2) and (6) with expression
(4) imply that, at each instant, the charge of the free
electrons is equal in magnitude to the total ion charge;
therefore, the hydrodynamic free-charge density p and
hydrodynamic current density J satisfy the free-charge
conservation law dp/ot + divJ = 0. Taking the diver-
gence of Eq. (9) and using the free-charge conservation
law, we arrive at the conservation law for the ioniza-
tion-induced ion charge, dp,,,/ot + divJ,,, = 0. In par-
ticular, we can seethat, if div J,, # 0, then p,,, # 0. Note
that, in one-dimensional geometry, the ionization cur-
rent (10), which results from gas ionization by the
transverse field of the laser pulse, is purely transverse,
so that we have div J;,,, = 0 and, accordingly, dp,,,/0t = 0
and p,,, = 0. Previously, Rae and Burnett [36] intro-
duced the current (10) on the basis of energy consider-
ations, and then it was used in [32, 33, 27, 16]. Rela-
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tionship (8) shows that using the polarization current
(10) can a'so bejustified on the basis of the momentum
conservation law for a“field—matter” system during the
ionization of matter by aradiation field.

Since, in the approximation of immobile ions, the
Maxwell equation for the electric field E,
LO'E _

+ ]
curl curl E + = ﬂ;‘M, (11)
¢’ ot? ¢ ot
contains the electric current density J = en.V,, of free
electrons, it is convenient to rewrite Eq. (3) in terms of
J. With the relativistic relationship between the elec-
tron momentum P, and the electron velocity V(r, t) =

P(r, 0)/.JmE + [Po(r, t)/c]?, we obtain

0J J
T + —(J J + JdIVp—

3 0
1-——=PE+ JxB————J(J E)D

e . J
+ —3FJ—2,
Pe C

where p, = en, is the charge density of free electrons.

3. WAKEFIELD EXCITATION
IN ONE-DIMENSIONAL GEOMETRY

In order to clarify the main effect of optical ioniza-
tion on the longitudinal electric field of awake plasma
wave excited by a short laser pulse, we treat the prob-
lem in one-dimensional geometry, in which case all of
the quantities depend solely on the spatial variable x in
the propagation direction of the laser pulse. The longi-
tudinal component E, of the electric field of the wake
wave driven by alaser pulsein aplasmaturns out to be
potential and satisfies the equation

o,
ot

Recall that the source term I' in Egs. (2), (3), and
(12) is nonzero only over short time intervals corre-
sponding to ionization of ionsin the corresponding ion-
ization state (Fig. 1). Thelaser intensity required to fur-
ther ionize ions with a comparatively low ionization
energy is far below the relativistic intensity, which is
about 10" W/cm? for laser wavelengths of A ~ 1 um.
Consequently, in order to study the characteristic fea-
tures of the excitation of the longitudinal electric field
during ionization, we can solve Eq. (12) in the weakly
relativistic approximation, omitting terms of second
order in J, and higher and retaining terms quadratic in
E, (below, for simplicity, we will consider laser pulses

= 41, (13)

PLASMA PHYSICS REPORTS Vol. 26 No. 11 2000
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with linear polarization along the z-axis):
0 _e p__®
it m, e~

Here, J, can betakento belinear in E,

J,B..

mc 7By (14)
e

0J, e
E - mepeEz- (15)

Taking into account the fact that the plasma is highly
underdense, n, < n, = MW’/41Te’, we obtain from the
Maxwell equations the relationship

B, = -E,

which isvalid to zero order in the parameter n./n. and
enables us to rewrite Eq. (14) as

0J e e
a_tx = _peEx +

—J,E,.
m, meC *

(16)

Note that Egs. (13), (15), and (16), supplemented
with Egs. (4)—<6) and the eguation p(0p/ot = €l") for
the electron density, which is analogous to Eq. (2) and
in which the term div(n,V,) is discarded, completely
describe one-dimensional excitation of the longitudinal
plasma field E, by a plane-polarized laser pulsein the
approximation that is linear in the electron density n,
and quadratic in E,. In the approximation cubic in the
relativistic corrections (i.e., with allowance for the
inverse effect of the wakefield on the laser radiation),
the laser pulse propagation is described by the z-com-
ponent of Eq. (11) and the projection of Eqg. (12) for the
current onto the z-axis:?

a‘]z 0 DJZJXD_ e 3\]22 ‘]x
N X

We emphasize that this approach accounts for the
full set of harmonics of the electron source term [ (t)
(Figs. 1, 2).

3.1. Equations for Sowly Varying Amplitudes
of the Longitudinal Wake Electric Field
and the Transverse Laser Electric Field

Using the set of equations derived above, we can
analyze, on the one hand, the effect of ionization pro-
cesses on the wakefield excitation and, on the other
hand, the nonlinear effect of both ionization processes
and the generation of a plasmawave on the electromag-
netic field of alaser pulse. We can simplify the analysis
and obtain analytic results by averaging Egs. (2), (4)—

2 In this equation, the electron charge density in the term epeE,/me
should be deduced from the continuity equation with the term
div(ngVy), specifically, dpg/ot + divl =el.
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Fig. 2. Spectrum || (arb. units) of the ionization term I (t)

for a carbon gas. The laser parameters are the same as in
Fig. 1.

(6), (11), and (13)—«(17). We thus arrive at equations for
the dowly varying (over the pulse period) complex
amplitudes of the transverse laser electric field E, | =
[E,exp(iwt)Uand longitudinal electric field E, , = [E,0
(the angular brackets indicate averaging over the time
interval 21700, where w is the laser frequency). We
expand each of the quantitiesE,, E,, J,, J,, ', and n,,
which vary rapidly on the time scale 217w, in a har-
monic series of the form

A(X 1) = Ay(x t)

+

NI

Z [An(X, 1:)e—inm(t—x/c) + A: (X, t)einoo(t—x/c)],
n=1

where A stands for any of these quantities and A,, isthe
slowly varying (on the time scale 217w) amplitude of
the nth harmonic of A. The main condition for this
expansion to be valid is the inequality I'y/(nw) < 1,
which should hold in the region where the bulk atoms
are already ionized. Our calculations show that thisine-
quality is satisfied for moderately short laser pulses,
which are at |east aslong as several oscillation periods.

We should take into account two circumstances.
First, the series expansion for the electron density con-
tains only even harmonics, which stem, on the one
hand, from the ionization processes (n, increases in a
steplike manner each half-period of the laser field; see
Fig. 1) and, on the other hand, from the hydrodynamic
and relativistic nonlinear effects. Second, in the weakly
rel ativistic approximation, theamplitude E, | of thefirst
harmonic of the laser field is maximum. Then, using
Egs. (13), (15), and (16) and taking into account
Eqg. (2), we obtain the following equation for the owly
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varying dimensionless amplitude a, =
the longitudinal electric field:

€E, o/(MQ0) of

azap
+ co a,
ot’

o EBIaJ
- 4QpD or T2

r 0 I,
S -3Red@) A 0
2 0 nevom

where n, , = J:oro(t')dt', corz, = 4T N, o/ M, Qf) =

(4Trez/me)J’:f Mo(bdt, and a = eE, ,/(mwc). For an
eliptically polarized laser pulse, we have a =
ek, /(muwc), where the laser field amplitude E, is deter-
mined by the pulse intensity |, = (¢/8T)|E J*. Since, in
the variables § = x — ct, T = t, the quantities E, and n,
treated in the quasistatic approximation [5] depend
mainly on &, the latter equation becomes
2

aap+ka
o8
ki O dlal? O o (e
_ X 1 Iy
= 2o 0al g2 2 4 Irer(ar
4Q p[] 0 ne,O 2 lj ) eOD:J

where kf) = wﬁ /c%. From Egs. (11) and (17), we obtain
an equation for the dimensionless envelope a of the
transverse laser field:

da p |a|
ZooaT 2|caEa @o cQ,— oo%a
(19)
ZQ) ro Um + rz().)p %
ar £ n mc”  4wne o

In deriving (19), we used the Maxwell equation divE =
41pto express the zeroth harmonic of the electron den-
sity through the background electron density, which is

proportional to ooﬁ , and the perturbed electron density,
which is proportional to da,/0¢ and is associated with
the generation of awake plasmawave.

An attempt to analyze how ionization influences the
wakefield excitation was made, in particular, in
[18, 19]. However, in contrast to Eq. (18), which was
derived here by applying the kinetic approach to gas
ionization, the model equations analogous to (18) that
were proposed in [18, 19] are phenomenological and
contain some undetermined parameters. In our model,
supplementing Eq. (18) with Egs. (19) and (4)—6),
fromwhichwefind Iy, I',, and ng , yieldsaclosed self-
consistent set of equations.

Note that Eq. (18) differs markedly from the set of
Egs. (13), (15), and (16) in that it contains only slowly
varying quantities; moreover, in the weakly relativistic
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approximation, Eq. (18) includes only the zeroth (I")
and second (I",) harmonics from the full set of harmon-
ics of the source I' of free electrons (see the spectrum
of I' in Fig. 2). We emphasize that the model proposed
by Mori and Katsouleas [18] differs qualitatively from
our approach to the theory of wakefield generation in
that it neglects the highest harmonics of the free-elec-
tron source.

Equation (19) implies that the energy of laser radia-
tion changes according to the law

e05|al

Idil a® = ——_[dE

_1g)20 eod_ el

P *2[] K U
—_ i< + —X
0¢Un U Eanca U 4KZO Ne mecEl

According to Eq. (20), the losses of laser energy can be
classified into two groups. adiabatic losses, which are
associated with the ponderomative force, and nonadia-
batic losses, which stem from gas ionization by laser
radiation. Adiabatic losses include, in particular, the
fraction of energy that is expended on the excitation of
a wake plasma wave [2] and is described by the first
term on the right-hand side of Eq. (20). Since these adi-
abatic energy losses depend resonantly on the pulse
duration and are maximum when the pulse duration is
approximately equal to the period of plasma waves,
they can be neglected even when the propagation dis-
tance of alaser pulseis long and the plasmais highly
underdense[2, 3].

Nonadiabatic losses result from the nonadiabatic
nature of ionization and consist of two parts. First, they
include energy losses associated with overcoming the
atomic potential barrier [32, 16], which are described
by the fourth term with U, on the right-hand side of
(20). These losses can be ignored if the penetration
depth x of laser radiation into the plasma satisfies the

inequality x < X, :%{ﬁwEg(t)m/Zilem(t =

+00) § M U, where E(t) isthe amplitude of the elec-
tric field of the laser pulse at the entrance to the region
occupied by the gasand Nt = + ) isthe density of the
ions in the mth ionization state after the ionizing pulse.
For convenience in estimates, we can represent X, in
the form

mac [W/em ]D:’Nat [em™) 0

XulL = 2 X 10 D
[10% [W/cm ]ED].O [cm™ ]D
02 t=+
x0y —---—m( ©) z u, [keV]D,
=
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where L, = ct,, is the characteristic length of the pulse
and |, is its peak intensity. Second, the laser field
energy islost due to losses associated with the conver-
sion of afraction of the laser energy into residual elec-
tron energy [37, 38]. These losses are described by the
second and third terms on the right-hand side of
Eqg. (20), which constitute afunction localized in & [20]
and are unimportant on spatial scales X < Xg =

-1
CNg w0 2 _
5 [ Eo (OAtQut =

+0), where Qg t = +o) =

-1 oon(t = +oo, t*) N .
n, J’;o o, [ (t*)dt* is the residual electron
energy behind the laser pulse and P(t = +, t*) is the
momentum that the electrons originating at approxi-
mately the instant t = t* gain up to the time t = +oo.
According to [24], the energy Q. can be estimated as

3
Q.= Zimaxl(zu) [ ol () + na (tm)} for alaser

pulse with a nearly linear polarization (1 —n? > 3a,,)
3

~ 1 + r]2 Zinax 3Um
) Zm= 1 (hw)z
pulse with nearly circular polarization (1 —n? < 3a,,).
Here, n isthe polarization ellipticity (n = 1 corresponds
to circular polarization and n = O refersto linear polar-
ization), t,, is the instant a which the electrons are
gjected out of the [m— 1]th shell of the ions (atoms) at
the highest rate, a(t) = [M,/(m+ D|E (H))/E4 ~ 1071 is
a small parameter in the region where the ionization
rate is essentially nonzero, and Z,,, is the maximum
number of completely ionized electron shells at fixed

parameters of the laser radiation. The last formulas
enable us to estimate X as

and as Q. a,i(tm) for a laser

[W/cm ]EDNat [cm ] E

Xo/L, =6 %10 Dmax
[W/cm]EI:ILO [cm™ ]D

z - nlev] [[i]]gu [um])*

|jxm( m)D3 63 me(tm)ﬁ |:|_1
[ 10t U U0 D}E

for 1—r]2 > 30, and

[W/cm ]EDNat [cm™ ] %
[W/cm ]EI:ILO [cm™ ]D

Xo/Lp= 8% 10 [jmax

D1+r]

U [eV] 2 m(tm) 0
Z o0 [eV]E( [mi) 5}1 1 g%
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Fig. 3. Harmonics of theionization rate, 'y (t) (solid curve)
and IM,(t) (dashed curve), normalized to N,,w, for a carbon

gas (the zero time correspondsto the pul se center). Thelaser
parameters are the same asin Fig. 1.

for 1—r]2 < 30,

The above estimates for x; and x5 imply that, in
most of the cases that are important from a practical
standpoint (Z < 10, N, < 10"® cm?, and I, >
10'® W/cm?), the energy losses are significant only on
gpatial scales of about several hundreds of laser wave-
lengths or longer. On shorter spatial scales, variations
in Jaj* asaresult of losses of the pul se energy dueto gas
ionization can be discarded, in which case we can
determine the wakefield amplitude a, assuming that the
laser pulse is prescribed and neglecting possible self-
modulation of the pulse [6-10, 13, 14]).

The plots of 'y(&§) and I",(&), which enter Egs. (18)
and (19), are shown in Fig. 3 for the particular case of
ionization of a carbon gas by alinearly polarized laser
pulse. In this case, the quantity (&) = (1/2)I (/T (&)
obeys the relationship

z

PA
z No-s£ 5 M1 =3 (@)1

which holds when the power index of the exponential
function in formula (5) is sufficiently large (i.e., when
o0& < 1/3). For such values of a,(&), the quantity

1m+ [ 1——} m<a)m
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M(&) depends weakly on &. For different gases, it liesin
the range (0.7, 1); for example, for hydrogen, we have
K(&) = 0.83. Note that the expression for u(€) derived
by Brunel [34] differs from our expression because,
first, he used the ionization rate for hydrogen rather
than theionization rate adopted in [34] and, second, our
expression for I, is more exact.

In the case of acircularly polarized pulse, the spec-
trum of the ionization source contains no satellite har-
monics and the wakefield excitation is described by
Eq. (18) with I, =0 (u = 0). Below, most of our atten-
tion will be focused on a pulse with linear polarization,
in which case both the zeroth and second harmonics
should be taken into account.

3.2. Analytic Solution for a Prescribed Laser Pulse
Equation (18) iseasy to solve analyticaly if wetake
into account the fact that the width of the ionization
front, L,.,, = CT,,,, IS much shorter than both the wave-
length of alaser pulse, L, = ct,, and the plasma wave-
length. We approximate the electron density profile

Neo(®) 8 Ngy(®) = Ny 2™ B (& — &), Where &, is the

position of the mth ionization front and the integer Z,,,
is equa to the maximum possible ion charge for the
given parameters of the laser pulse. Since, in the gen-
era case of multielectron atoms (when Z,,,, is large),
the solution is somewhat involved, we present it for the
case of hydrogen (Z,,,., = 1):

a, = —3a°(€)Gr (1) Sin[k,(€, ~ )]

g
+3 [ & @) coslky(E &)k,

§-0

+ 2a(8, ~0)sin[ky(€,~2)],

21

=1 HE)
Gr(5)=1-F,

where k, = Q,/c isthe wave vector of the plasmawave
behind the pulse and &, isthe point at which the ioniza-
tion rate 'y is the highest. The term proportional to
Gr (&) stems from the ionization source, and the second
and third terms on the right-hand side of (21) describe
the ponderomotively driven wakefield. When the pulse
propagates in a preionized gas [in which case &, = o
and a(¢,) = 0], we have B = 0. When the gasisionized
immediately by a pulse with a smooth front of width
L; > L, wehaveB = 1.

We use formula (21) to investigate the effect of ion-
ization of an initially neutral gas at the laser pulse front
on the wakefield excitation. For simplicity, we consider
arectangular pulse (a(§) = 0 for |§| > L/2) with the total
length L > L;, assuming again that L; > L,,, in which
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case B = 1. We also assume that k;l > L. If sucharect-
angular pulse propagates in a preionized homogeneous
gas, then, for & < —L/2, the second term on the right-
hand side of (21) yields a familiar result [2]: a, =

(1/2)@5 cos(kE)sin(k,L/2). This indicates that the
wakefield isthe strongest at kL = (1 + 2n) (wherenis
an integer), the maximum field amplitude being

(1/2)a (Where ) = €E,,,, (MGX), Eyygy = /BTl 1 /C).
When a rectangular pulse ionizes an initially neutral
gas, the second and third terms on the right-hand side
of (21), which describe the ponderomotively driven
plasma wave, give the following expression for the
wakefield amplitude at & < —L/2:

a, = —V4[[2a;—a’(&,)] cos(k,E)sin(k,L/2)
+a’(&;) sin(k,€) cos(k,L/2)].

The amplitude is seen to be maximum under the same
condition k,L = 1(1 + 2n), in which case the total wake-
field amplitude in an ionized gas has the form

8p

Mt Lyr 2, 2 (22)
= [(-1)" "/2][ag +a"(&,)(Gr — L2)] cos(k,é),
where the term proportional to G- a(&,) stemsfrom the
ionization source and the remaining terms describe the
ponderomotively driven wakefield. From the above
expressionsfor G- and |, we have G = 0.6 for acircu-
larly polarized pulse and G = 1 for a pulse with linear
polarization. Accordingly, when |, iscloseto theion-

ization threshold 1,,, we have &(¢,) = a§ . As aresult,

from (22), we find that the total (with alowance for
both ionization and ponderomotive forces) maximum
amplitude of the wakefield excited in an initialy neu-
tral gas is larger than that of a wakefield excited in a
completely preionized gas by approximately 10% in
the case of alinearly polarized pulse and by approxi-
mately 50% in the case of a circularly polarized pulse.

Forl_. > I, wehavea(&,) < a;, so that, in the case
of an initially neutral gas, the wakefield amplitude is
essentially the same as that in the case of a completely
preionized gas.>

Using expression (21), we can show that the situa-
tion with a Gaussian laser pulse is qualitatively the
same. Specificaly, for |, > |, ionization processes
aso have an insignificant impact on the wakefield
amplitude.* When'l _, is close to |, ionization pro-
cesses act to enhance the wakefield amplitude by

3 This s true for koL # 2mm; otherwise, we have a; = 0 in the case
of apreionized gas and a; # 0 when the gasisionized directly by
the laser pulse.

4 This is true for the case of nearly resonant excitation of a wake
wave by ponderomotive forces, i.e., when the laser pulse lengthis
slightly longer than the plasma wavel ength.
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approximately 10% in the case of linear polarization
and by approximately 50% in the case of circular polar-
ization. However, the dependence of the maximum
amplitude of the wakefield excited by a Gaussian pulse
in an initially neutral gas on the dimensionless pulse
length is peaked at a pulse length somewhat longer than
that in the case of wakefield generation in a preionized
gas (see Fig. 4).

3.3. Results of the Numerical Solution

The above analytic conclusions agree well with the
results of a more exact numerical solution of Eq. (18);
simulations of the wakefield generation on the basis of
Egs. (2), (4)—(6), (13), (15), and (16), with the full set
of the harmonics of I'; and PIC simulations (see the
next section). We used Eqg. (18) and the above expres-
sion for Y(€) to calculate the longitudinal wakefield
excited during gasionization by a Gaussian laser pulse

a(&) = ayexp[-2In2(&/Ly)*], (23)

where L, = 1,cisthe laser-pulse full width at half-max-
imum. The zeroth harmonics of the ionization rate I',

and electron density n,, = —% ﬁm I, (9ds were com-

puted from (4) and (6), which were averaged over the
laser field period and in which the ionization rates were
calculated from formula (5), which was also averaged
over the laser field period. For a linearly polarized
pulse, formula (5) becomes[30, 31]

_ Bexp(1)FA(m+ 1)°
= WagTr O VEE

Wi(&)

Jaep@(m+1)® E, T
¢ Ea®

3 Eat
" exp[‘é M2 Eﬂ(z)}'

The results of studying the wakefield amplitude asa
function of the pulse length are presented in Fig. 4. The
amplitude of the wakefield excited in a preionized gas
is shown by the dashed curve. The solutionsto Eq. (18)
for circularly polarized and linearly polarized lasersare
illustrated by the heavy and light solid curves, respec-
tively. We can see that the solid curves essentially coin-
cide with the results of solving the more complicated
equations (2), (13), (15), and (16), which are not aver-
aged over time. Finally, in Fig. 4a, the PIC simulation
results for circularly polarized and linearly polarized
lasers are presented by the closed and open circles,
respectively. Thecirclesare al so seento agree well with
the solutions to Eq. (18).

Analyzing Fig. 4, we can draw the following con-
clusions. On the one hand, ionization processes act to
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 4. Maximum normalized wakefield amplitude

2
Q, max/ao , Where A, max = EEX, Omax/(merC) and Qp =
[4TENg 10 /Ml 2, vs. the dimensionless length L,Q,/c of
a Gaussian ionizing laser pulse (23) (with the wavelength
A =1 um) propagating in (8) a hydrogen gas with the den-
Sity Ny, =10‘2nC and (b) a nitrogen gas with the density
N, = 2 x 10~n;. The dimensionless peak amplitude of the
pulse is equal to ay = €E. /(M) = 0.025 (l,0x =

cEriaX /(8T0) = 8.57 x 10'* W/cm?) for hydrogen and &, =

0.175 (10 = 4.2 x 10'© W/cm?) for nitrogen. The light and
heavy solid curves refer to linearly polarized and circularly
polarized pulses, respectively. The dashed curves are
depicted for apulse propagating in apreionized gaswith the
maximum electron density Ngpax = ZmaxMNat = 10720
(Zmax = 1for hydrogenand Z,,,,, = 5for nitrogen). The open
and closed circles reflect the PIC simulation results for
hydrogen in the case of (a) linear and (b) circular polariza-
tion, respectively.

increase the maximum amplitude of the wakefield
driven by the ponderomotive forces in the range of res-
onant pulse lengths (k,L, = 2.4). On the other hand (and
more importantly), ionization processes make it possi-
ble to generate wake plasma waves by substantially
longer laser pulses. The latter effect is especialy pro-
nounced in the case of ionization of atoms with asmall
number of electron shells (see Fig. 4a for hydrogen);
moreover, for the parameters adopted here, the ampli-
tude of the wakefield excited by long nonresonant
(k,L, > 1) pulsesis comparable with that in the case of
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Fig. 5. Maximum normalized wakefield amplitude
a, max/a(z) vs. thepeak intensity | .., of aGaussianionizing

laser pulse with the wavelength A = 1 um in the case of
(a) linear and (b) circular polarization. The dimensionless
pulse length is L,Qp/c = 2.7, and the maximum electron

density in a gas after the passage of the pulse is Ng .y =
ZwaxNy = 10720, The results presented were obtained for
(2) hydrogen, Z,.,,, = 1; (2) helium, Z,,,, = 2; (3) nitrogen,
Znax = 5; and (4) neon, Z,,,, = 8. Curve (5) presents the
wakefield amplitude in the case of propagation of a laser
pulse through a preionized gas with the electron density

ne max-

resonant pulses. In the case of ionization from many
electron shells, this effect isless pronounced (compare
Figs. 4aand 4b). We can expect that this effect will be
significant in the case of ionization from the lowest s
shell of multielectron atoms, which are characterized
by high ionization energies (e.g., 552 and 667 eV for
electronsfrom the sshell of anitrogen atom). However,
theionizing fields required to gect the electrons out of
the lowest shells are so strong that, strictly speaking,
the weakly relativistic approximation used in our study
failsto hold.

Figure 5illustrates the results of calculations of the
wakefield amplitude as a function of the peak intensity
of the laser pulse for different gases. In computations,
the gas density was chosen in such away that the con-
ditions for the resonant excitation of a plasmawave by
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the ponderomotive force were satisfied at the maximum
possible (in the laser intensity range under consider-
ation) electron density. For multielectron gases, the
maximum amplitude a,, ,,,,, iSamore complicated func-
tion of I,,,, in comparison with that for hydrogen. The
peaks in the dependence of a, ,,,, ON |, steém from the
successive ionization of the electron shells, starting
from the shell farthest from the nucleus. The effect of
the ionization processes on the wakefield amplitude is
expected to be the strongest for laser pulses with mod-
erate peak intensities, when the ionization saturates
near the pulse center. In this case, the amplitude of the
wakefield driven resonantly in aninitially neutral gasis
larger than that of a wakefield excited in a preionized
gas by about 10% for alinearly polarized pulse and by
about 50% for a circularly polarized pulse. The ampli-
tude of the wakefield generated by a high-intensity
laser pulsein aninitially neutral gas (when the ioniza-
tion saturates at the leading portion of the pulse far
from the pulse center) is essentially the same as that in
the case of a preionized gas and does not depend on the
pulse polarization.

4. RESULTS FROM PIC SIMULATIONS
OF LASER PULSE PROPAGATION IN A GAS
AND WAKEFIELD GENERATION

The kinetic processes that occur during gas ioniza-
tion by a laser pulse were modeled with a relativistic
electromagnetic 1D3V PIC code, in which the standard
PIC method for plasma simulation was supplemented
with an agorithm suitable for modeling gas ionization
inastrong field. The production of particles that model
free electrons originating from gasionization in alaser
field was simulated by thisalgorithm asfollows: (i) par-
ticles originate at a zero initial velocity and (ii) the
number AN of particlesin each cell over the timeinter-
va At is computed from the formula AN =

Ncell

ZNgJt

ships (4)—(6) taken with the instantaneous electric field
amplitude [E(x, t)], ZN,, isthe electron density, and N,
isthe number of particlesin acell in the case of acom-
pletely ionized gas. Note that, since the number An of
free electrons originating over the time interval At per

unit volumeis equal to An = t+m I dt', the number of

particles An produced in each cell is related to AN by
AN/N;; = An/ZN,,. The dynamics of the ionization-
produced free electrons was simulated in the standard
manner [39]. On the time scales under consideration,
the atoms and ions were assumed to be immobile. For
hydrogen, the simulations were carried out with N, =
75 (varying the number N, of particlesin acell from
50 to 150 did not significantly influence the calculation
accuracy). In the simulations described here, the spatial
and temporal steps for numerical modeling were deter-
mined from the shortest spatial scale (the spatial cell

+Atrdt', where I is calculated from relation-
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size), which was chosen in order to resolve the ioniza-
tion front (which depends on both the pulse duration
and intensity). Thus, for a pulse with an amplitude a, =
0.025 and a duration of 10w '-100w™, the spatial step
was chosen to lie in the interval 0.025¢/w-0.1¢c/w,
which ensured the desired accuracy of computations.

Thefraction of laser energy expended on gasioniza-
tion was modeled by supplementing the Maxwell equa-
tions with the dissipative currents, which were calcu-
lated from the phenomenological formula (10). The
Maxwell equations were integrated by the method of
vacuum characteristics [39].

Theresultsfrom calculations of the amplitude of the
wakefield excited by linearly polarized and circularly
polarized laser pulses are illustrated in Fig. 4, which
shows that they agree well with the results obtained
from the equations for the averaged amplitudes.®

Our PIC code can be used not only to obtain the
wakefield amplitude but also to calculate the electron
velocity distribution function f(v,, v,, t, X). Figure 6
displaysthefunctionf(v,, 0, t, X,) calculated at two dif-
ferenttimest=t, and t =t, at the point X, after the pas-
sage of alinearly polarized ionizing laser pulse. Behind
the pulse, the electrons oscillate in awakefield, so that,
at an arbitrary timet, the function f(v, 0, t, X,) is shifted
from v, = 0 by an amount V,(t), which coincides with
the velocity determined from the hydrodynamic equa-
tions. The instantst; and t, were chosen to correspond
to the maximum hydrodynamic velocities V, =
Vy max(—Vx max) Of the electrons moving along the x-axis
in the positive and negative direction, respectively. In
this case, the peak inthe function f(v,, 0, t, X,) is shifted
from v, = 0 by an amount V, .., a t =t; and by an
amount -V, ... a t =1, (Fig. 6). Let us compare the
value of [V, ...| obtained from Eq. (18) with that pre-
dicted by PIC simulations. We use Eq. (18) to calculate
the dimensionless amplitude a(t) for the parameters of
Fig. 6. Then, we find the longitudina electric field
amplitude [E, ,..«| = 8.5 x 10° V/cm. From the conse-
quence of relationship (13), My max| = €l mux VM),
we obtain |V, ,..//c = 2.64 x 10, which coincides
with the corresponding result of PIC simulations to
within 4%.

Figure 7 shows the function f(0, v, t;, X,) for the
same parameters as in Fig. 6. After the passage of the
pulse, the plasma stops moving along the z-axis, so that
the width of the distribution function in v, is governed
by the stochastic motion of the el ectrons due to the non-
adiabatic character of their interaction with the laser
field during ionization [20]. On the time scales under

5Note that the three calculation methods (the hydrodynamic
method based on the full set of equations, the hydrodynamic
method based on the reduced (averaged) equations, and the
kinetic PIC method) yield not only nearly the same amplitudes of
the electric field but also nearly the same field phases; in other
words, the time evolutions a,(t) computed using these methods
essentially coincide.
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Fig. 6. Electron distribution function over the longitudinal
velocities (v, = 0), normalized to its maximum value, at the
instants t; and t, at which a ay(t;) = ay(ty) = 0 (when the
absolute value of the directed electron velocity, [Vy|, ismax-
imum): the solid curve refers to f(vy, 0, 1)) at Vy = Vy max
and the dashed curve refersto f(vy, 0, tp) a Vy = -V ax-
The results were obtained for alinearly polarized Gaussian
laser pulse (With T,0= 30, |, = 8.57 x 10" W/em?, and
A =1 um) propagating in a hydrogen gas with the density

Ny = 1.1 x 1012 em™.
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Fig. 7. Electron distribution function (0, v, t;) over the
transverse velocities (solid curve) and the Maxwellian dis-
tribution function with the electron temperature 15.4 eV
(dashed curve). The functions are normalized to their maxi-
mum values. The laser parameters are the same asin Fig. 6.
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consideration, which are shorter than the electron—ion
and electron—€lectron collision times, the total energy
of the stochastic electron motion (the residual electron
energy) is completely converted into the energy of the
electron motion along the z-axis. This circumstance
permits us to identify the residual energy with the
“transverse” (in the z-direction) temperature T,
[20, 26]. Since, in the case of alinearly polarized laser
pulse, the transverse electron motion is one-dimen-
sional, we have T ,/2 = Q,, Where Q, is the residual
energy per electron (see Section 3.1). Also shown in
Fig. 7 is the Maxwellian electron distribution function
over velocities v, with the temperature T, , = 2Q, =
15.4 eV, where the energy Q. was determined analyti-
cally according to the theory developed by Andreev
et al. [20]. We can see that the Maxwellian function is
fairly close to that obtained from PIC simulations. A
comparison between Figs. 6 and 7 showsthat the resid-
ual energy of thetransverse (to the laser-pul se propaga
tion) electron motion along the z-axis is much higher
than both the residual energy of the longitudinal elec-
tron motion along the x-axis [30] (this energy deter-
mines the width of the distribution function in Fig. 6)
and the residua energy of the longitudinal electron
motion in awakefield (this energy governs the shift of
distribution functions relative to the point x = 0 in
Fig. 6).

Our PIC simulation results also confirm the above
estimates for the ionization-related laser-energy losses
associated with theionization current and residual elec-
tron energy, which are described by the fourth term and
by the second and third terms on the right-hand side of
Eq. (20), respectively. According to PIC simulations,
the residua energy per plasma electron,

(m/2n,) v f(v, t, X)), is equal to 7.6 eV. This value

is close to the energy Q. = 7.7 eV calculated from the
formulas presented in [20] and, to a high accuracy,
agrees with the law of energy conservation in the inter-
action of alaser pulse with matter.

5. CONCLUSION

We have developed two hydrodynamic models and
used them to calculate the generation of a wakefield,
taking into account ionization processes in a gas. The
reduced equation obtained for the wakefield envelope
makes it possible to analytically study how ionization
processes affect the wakefield amplitude and to investi-
gateit as afunction of the gas and pulse parameters.

We have shown that, when the peak intensity of the
laser pulse is far above the ionization threshold and
under conditions close to the resonant excitation of a
wake plasma wave by the ponderomotive force, ioniza-
tion processes have little effect on the wakefield excita-
tion: the amplitude of the wakefield excited in an ini-
tially neutral gasis essentially the same as that of the
wakefield excited by a laser pulse propagating in a
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preionized gas and does not depend on the pulse polar-
ization. The most important result is that, under condi-
tions that are far from resonance (i.e., for long laser
pulses), the wakefield amplitude is enhanced by ioniza-
tion and is much larger than that in the case of apreion-
ized gas (see therange k,L, > 8inFig. 4).

During ionization, the wakefield can be generated
by alonger laser pulse with peak intensities closeto the
ionization threshold, in which case the maximum
amplitude of the ionization-enhanced wakefield is
larger than that in the case of a preionized gas. This
effect ismost pronounced in light gases, such as hydro-
gen and helium. In the case of alinearly polarized |aser,
ionization processes act to increase the maximum
amplitude of the wakefield at resonant pulse lengths by
approximately 10% in comparison with that in a
preionized gas. In the case of a circularly polarized
laser radiation, this difference may be even larger: the
increase in maximum amplitude may be as large as
50%.

The results of solving reduced (averaged) hydrody-
namic equations for the slowly varying wakefield
amplitude agree well with both kinetic PIC simulations
and the results of solving the full set of hydrodynamic
equations.
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Abstract—A new class of annular confinement configurations of a single-charged plasma corresponding to
global thermodynamic equilibriain a cylindrical Mamberg—Penning trap with an axial conductor is investi-
gated both numerically and analytically. In the case of an infinite plasma length, the density turns out to be
essentially constant inside a surface of revolution and to fall off abruptly outside of it. Analytical limiting cases
are calculated explicitly in the limit of small Debye lengths. In the case of afinite plasmalength, the self-con-
sistent solution to Poisson’s equation describing thermodynamic equilibrium is obtained numerically and the
dependence of the plasma density distribution on the various parameters of the system is investigated. © 2000

MAIK “ Nauka/Interperiodica” .

A peculiar characteristic of single-charged plasmas
is that they can approach thermodynamic equilibrium
while remaining confined by static electric and mag-
netic fields, asis the case of a Mamberg—Penning trap
[1, 2]. The long confinement times obtained experi-
mentally suggest that the equilibrium states in which a
single-charged plasma fills a simply connected region
of space are indeed achievable [3, 4]. For the confine-
ment geometry of these experiments, a class of equilib-
rium density distributions that are consistent with Pois-
son's equation was determined in [5, 6] and was exten-
sively discussed in [7]. Here, we consider a different
thermodynamic equilibrium; a hollow plasma column
in a Malmberg—Penning trap with an axial charged
(biased) rod. This system shows the existence of a new
class of axisymmetric plasma configurations ranging
from long thin-wall structures to ringlike (doughnut)
structures.

For definiteness, we consider apure electron plasma
confined in a conducting cylinder (of radius R) divided
into three sections, the two end-plug sections being
biased negatively relative to the central section. A uni-

form magnetic field B is directed aong the cylinder
axis, where a central rod (of radiusry) is located. The
confinement geometry is shownin Fig. 1.

Since the system is steady-state and has cylindrical
symmetry, the equilibrium distribution function f
depends on the electron energy h=m.v?/2 — ed and the
electron canonical angular momentum pg = MyVgr —

mQr?/2 as[8]
f = no(my/2nT)?exp[~(L/T)(h—wpe)]. (1)

Here, Q = eB/mc isthe electron-cyclotron frequency, w
isthe azimuthal plasma rotation frequency, and the rest
of the notation is standard. The constant parameters n,,
T, and w are determined by the total number of parti-
cles, the total energy, and the total canonical angular
momentum. The plasma density n obeys the Maxwell—
Boltzmann distribution law

N = noexp[—_Tl_E—e¢+?w(Q—w)r%] 2)

I

IH

Fig. 1. Schematics of a Mamberg—Penning trap without a central rod (on the left) and with a central rod (on the right).

1063-780X/00/2611-0960$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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Fig. 2. Effective potential - (solid line) and electron density n = exp (dashed line) vs. the normalized radius for p =20 and

y= 1073 (on theleft) and for p =20 and y= 10" (on the right). The approximate solution (7) to Eq. (4) for the effective potential
and the corresponding electron density are shown by triangles and squares, respectively.

The self-consistent electric potential is described by
Poisson’s equation

2
10,00 0%
ror or 574

This equation must be supplemented by the boundary
conditions on the walls of the cylinder and central rod.
The solution depends on several parameters; however,
with a proper scaling of Eq. (3), the number of param-
eters can be reduced. In terms of the dimensionless
potential

= 4T11en.

3)

_ed mw(Q-w)r’

Y T 2T
and dimensionless coordinates
- - Z
p - )\D, Z )\D’
Eq. (3) takesthe form
10 oy o'y "
S—p—=+—L =[eT-1-vV], 4
pappap 22 [ vl )
where
Ao = |——,
41en,
20(Q —
y=200-0)
W

4me’n,
W, = .
m

Since the density is given by n = nyexp(y), the plasma
resides near the maximum of the effective potential .
This maximum value can be set equal to zero because
Y is defined up to an unimportant constant addend. In
this case, the parameter n, is equal to the maximum
plasma density.

No. 11

PLASMA PHYSICS REPORTS  Vol. 26 2000

We first consider the one-dimensional equilibrium,
neglecting the dependence of Y on {. We will look for
an annular plasma configuration; hence, we assume that
the density profile is peaked at a certain radius p > 0
and that ' = 0 (where the prime stands for the deriva-
tive with respect to p) at the same radius. Taking
Y(p)=0andY'(p) = 0asthe boundary conditions for
the potentia inside the radia interval of interest, we
can find the solution to Poisson’s equation. A localized
solution exists for y > 0. It is governed by the two
dimensionless parameters. y and p. Numerical solu-

tionsfor givenvaluesof yand p arepresentedin Fig. 2.
Asy —= 0, the density profile becomes steplike; in
contrast, as y increases, the density profile becomes
smoother.

The other parameters can be expressed through
and dimensional inputs such as n,, T, R, and rq4. For
example, the charge of the central rod (in terms of

en,A3) isequal to

q = —T[2paW'(pg) + (1 +Y)pal, (5)

where pq = ry/Ap, and the potential difference between
the external cylinder and internal conductor (in terms of
T/e) is given by

2 p =R/
Vo= [W(p) + (1+Y)p /4] =ryno- (©)

Density profiles with an annulus width much larger
than the Debye lengths A correspond to y — 0. For
y < 1, the annulus parameters relevant to the experi-
mental conditions can be found analytically. Indeed,
inside the plasma at || < 1, we have e¥ — 1 = |; thus,
we obtain

K1(p)lo(p) + Il<r>)Ko(p)] )

V=Y - ) T T ORAD)
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Fig. 3. Contour plots of the electric potential ¢ (top) and plasmadensity (bottom) for Ap =0.35cm, T=1.0eV,y=0.3,r4=0.5cm,

R=4.0cm, z,,e1 = 12 €M, 755 = 15 CM, Vi, = 32.16V, Vg

For p — 0, thissolution recoverstheresult of [6] (see
aso[7,9)]):

W=y[1-1o(p)]. (®)
In the opposite case (p > 1), solution (7) reducesto

Y =y[1-cosh(p-p)]. ©)
In this case, the annulus width 2A at the density level
n = ny/e can be evaluated as

A=In(2/ey).
It isinteresting to note that the thermodynamic equilib-
rium of a plasmawith a step density profile can be con-
tinuoudly transformed into the thermodynamic equilib-
rium of an annular plasma by gathering the entire
charge inside theinner radius p — A on the central rod.
Hence, we have

q=-m(p-4)"

In the case of afinite plasma length, a two-dimen-
sional thermodynamic equilibrium was obtained by
solving Eq. (4) numericaly using the finite-difference
overrelaxation method. Starting with a certain initial
approximation Yy(p, ¢) for the effective potential, the
solution ; (p, ) obtained at the jth iteration step was
substituted into the right-hand side of Eq. (4) to yield

=-83V,and V,

jug = —100V.

the next approximate solution yJ; . ,(p, ¢) at the (j + 1)th
step. For simplicity, we assumed that the axisymmetric
equilibrium was also symmetric about the midplane
z=0. The electrostatic potential was assumed to satisfy
the following boundary conditions: ¢(ry, 2) = V,,4 On
the central rod and d¢/0z = 0 at the midplane (z=0) and
at the end plate (z= b). On the conducting external wall
(except the plug section), the potentia is equal to
O(R, 2 = Vui; intheplug section, we set §(R, 2) = V-
The iteration procedure appeared to be insensitive to
the choice of the initial approximation. For a required
accuracy better than 1077, it converges after several
hundred iterations.

Results of calculations are shown in Figs. 3-6. Asis
seen in Fig. 4, the one-dimensional solution provides a
good approximation to the density profile n(r, 0) in the
midplane of the trap. Excellent agreement is found to
be valid even for relatively short plasma clouds. It is
seen from Figs. 5 and 6 that the central density profile
differs appreciably from that predicted by the one-
dimensional theory only for very short (doughnut)
plasma clouds.

A nonneutral plasma that is in globa thermody-
namic equilibrium must be stable against any type of
small perturbations. This is valid in particular for the
diocotron instability. Earlier experiments found an
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 4. Radial profiles of the density (top) and potential (middle) in the midplane z= 0 and the axial density profile (bottom) at the
radius corresponding to the maximum density, r = f . The parameters are the same asin Fig. 3. The solid line shows the numerical

two-dimensional solution, rhombuses (on the top) indicate the numerical one-dimensional solution for the density profile, and the
triangles (in the middle) show the two-dimensional vacuum potential profile.
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Fig. 5. Contour plots of the electric potential ¢ (top) and plasma density (bottom) for 7,4 = 4 cm and z,;,4> = 7 cm; the other
parameters are the same asin Fig. 3.
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Fig. 6. Radia profiles of the density (top) and potential
(middle) in the midplane z= 0 and the axial density profile
(bottom) at the radius corresponding to the maximum den-
sity, r = F . The parameters are the same as in Fig. 5. The
solid line shows the numerical two-dimensional solution,
rhombuses (on the top) indicate the numerical one-dimen-
sional solution for the density profile, and the triangles (in
the middle) show the two-dimensional vacuum potential
profile.

exponentially unstable m = 1 diocotron mode for a hol-
low electron column [10]. We suggest here that adding
a central biased rod to the standard configuration of a
Malmberg—Penning trap allows one to obtain thermo-
dynamic equilibriawith hollow density profilesthat are
stable against the m = 1 diocotron mode.

In fact, a detailed study of the diocotron instability
in nonneutral annular plasmas [11] confined in a trap
with a biased central electrode has already established
the parameter domain where all azimuthal modes are

KOTELNIKOV et al.

stable. The global thermodynamic equilibrium of the
annular nonneutral plasma studied here turns out to be
located well inside this domain (to the left of the unsta-
ble region shown in Fig. 7 of [11]). Confinement stud-
ies of nonneutral annular plasmas were also recently
reported in [12]. It was shown in particular that the
plasma lifetime was limited by the transport across the
magnetic field, although the nature of the transport pro-
cess remained unclear. We believe that global thermo-
dynamic equilibrium was not achieved in those experi-
ments, because, for the plasma parameters reported in
[12], the equilibrium plasma annulus would be much
wider than the radia size of the confinement system.

Finally, in view of future applications, it worth not-
ing that our results also apply to the case where the cen-
tral rod carries a steady longitudinal current, thus
changing the magnetic field configuration. Although
the plasma dynamics is affected by the presence of the
azimuthal magnetic field produced by the longitudinal
current, the global thermodynamic equilibrium remains
the same asin the zero-current case [8].
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Abstract—A study is made of nonquasineutral vortex structuresin a plasmawith amagnetic field B, in which
the charges separate on a spatial scale equal to the magnetic Debye radiusrg = B,/41en,. The electric field aris-
ing dueto charge separation leads to radial expansion of theions, thereby destroying the initial electron vortex.
It isshown that the ion pressure gradient stopsion expansion in anonquasineutral electron vortex and givesrise
to a steady structure with a characteristic scale on the order of rg. With the electron inertia taken into account
in the hydrodynamic approximation, the magnetic vortex structurein ahot plasmamanifestsitself in the appear-
ance of a“hole” in the plasmadensity. © 2000 MAIK “ Nauka/Interperiodica” .

1. Recent studies of eectron vorticesin aplasmain
amagnetic field have shown that Abrikosov’s model [1]
failsto correctly describe vortices with a nonquasi neu-
tral plasmain the axial region [2, 3]. In addition to the
already existing model in which theionsare assumed to
be accelerated by the ponderomotive force of a laser
pulse, subsequent numerical investigations of the
dynamics of such vortices have madeit possibleto con-
struct an alternative model in which the ion accelera-
tion in alaser pulse is attributed to the space charge-
driven expansion (Coulomb explosion) of the vortex
[4]. Since the plasma in an electron vortex in a strong
magnetic field (B* > 4mm.c?) is highly nonquasineu-
tral, the ions expand at fairly high velocities on time
scales of approximately the reciprocal of the ion
plasma frequency. This result is confirmed quite well
by experiments and can serve to model a Coulomb
explosion in alaser-produced plasma[4—6]. Notably, as
early as 1994, Askar’yan et al. [ 7] pointed out that it is
necessary to take into account the effects of a quasis-
tatic magnetic field in a laser plasma Considering the
dimensions of the region where the magnetic field is
localized and treating the electrons in the relativistic
approximation, they, in fact, obtained an order-of-mag-
nitude estimate of the magnetic Debye radius rg. How-
ever, they used a different method with different nota-
tion and did not completely clarify the physical mean-
ing of the spatial scale on which the magnetic field is
localized. Later, Bulanov et al. [8] pointed out that the
onset of magnetic vortex structures may significantly
affect the evolution of a laser plasma. However, they
used Abrikosov’s model and neglected the ion dynam-
ics; i.e., they considered static vortices. Note that it is
precisely the model proposed in [2—4] to describe elec-
tron vortices in alaser plasma that made it possible to
develop an alternative model of ion accel eration result-

ing from the Coulomb explosion of electron vorticesin
addition to the model of ion acceleration by the ponder-
omotive force.

In our paper [4], we modeled electron vortices by
treating the electrons in the quasistatic approximation,
which was adopted because of the slow ion motion dur-
ing the expansion of a vortex. However, the parameter
that is responsible for the quasistatic character of the
electronsissmall only in the case of moderate magnetic
fields, B> < 4tiymc?. As a result, the magnetic field
should liein the range

Arn,m,c” < B® < 4inmc?, (1)

which corresponds to the characteristic vortex dimen-
sions[3]

C/wpe < A < clwy,. 2)
As A approaches c¢/wy;, the magnetic field in avortex

increases and the parameter € ~ ,/B*/4Tnmc’ that
ensures adiabaticity in the motion of the electrons
approaches unity, in which case the model of electron
vortices in a magnetic field should be constructed with
consideration of the ion motion. As the vortex dimen-
sion A approaches ¢/wy;, theion velocity increases and,
at A ~ c/wy,;, it becomes as high as the speed of light [3].
That the ion velocity increases with increasing charac-
teristic vortex dimension was also revealed by Esirke-
pov et al. [9], who simulated ion acceleration by the
ponderomotive force of alaser pulse. In a sufficiently
weak magnetic field (e < 1), the ion velocity in the
r-direction is much higher than the ion velocity caused
by the inductive electric field, which is directed along
the B-axis, so that we can speak of theradia ion expan-
sion under the action of the electric field of avortex. In
a sufficiently strong magnetic field, the inductive ion

1063-780X/00/2611-0965$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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velocity in the 8-direction is also high and the total ion
velocity is close to the speed of light.

Simulations of ion expansion under the influence of
the electric field revealed the excitation of a collision-
less shock wave [4]. During plasma expansion, the
electron and ion densities behind the shock front are
equalized, but, near the vortex axis, they are both sig-
nificantly lower than the constant electron and ion den-
sities in a plasma ahead of the front. Consequently, the
Coulomb explosion of an electron vortex gives rise to
ion motion in the radial direction and causesthe forma-
tion of a hole in the plasma density around the axis. If
the electric field force in a vortex is counterbalanced,
e.g., by the ion pressure gradient, then the ions stop
expanding and the vortex evolves into a steady state
with areduced plasma density in the axial region. It is
the equilibrium vortex structure that will be the subject
of our investigations. The plan of the paper is as fol-
lows. In Section 2, we present some of the results of
[2, 3] in order to make further analysis more clear. In
Section 3, we derive the full set of equations describing
the dynamics of an electron vortex with theion pressure
taken into account. In Section 4, we describe the vortex
structure obtained by numerically solving these
dynamic equations by the relaxation method. In Sec-
tion 5, we calculate the same structure in the steady-
state approximation and analyze how the equilibrium
structure of the vortex is affected by its dimensions. In
Section 6, we summarize the main conclusions of our
study.

2. We start with the model of electron vortices that
was proposed by Gordeev and Levchenko [2], who
showed that the vortex structure is completely gov-
erned by the shape of the profile of the Lagrangian
invariant |, which is defined as the ratio of the electron
vorticity to the electron density: | = Q/n.. In our
approach, the plasma is assumed to be nonguasineutral
on a spatial scale equal to the magnetic Debye radius
rg = B/4Ten,.

Simple and consistent equations for electron vorti-
ces in a plasma were derived in [10-12]. In those
papers, it was shown that taking into account the short
spatial scalerg = B/41en, makesit possibleto construct
a correct model of electron vortices in a plasma. Note
that, in previous papers, it was assumed that the vorti-
ces exist in the range

B® < 4mn.m,c’ 3)
corresponding to the spatial scalesrg < ¢/wy,e, inwhich
case the magnetic Debyeradiusis small and the plasma
isonly slightly nonquasineutral.

However, the general equations derived in [10-12]
are also valid when rg and c/wy, satisfy the opposite
condition rg > ¢/, Which corresponds to the range

B® > 4mn,m.c’. 4)

GORDEEV, LOSSEVA

In [10-12], the equations for €lectron vortices were
obtained using the approximation of cold relativistic
electrons without allowance for collisions. In this
approximation, the main equation of electron motion
has the form

., 1 OE,
ot 4ren.cot

&)

Q VB = —eE,

2
tVyme + 41in,

where Q is the z-component of the electron vorticity in
the magnetic field B directed along the z-axis (Q = B, -

(c/e) (curlpy),), y = (1 — Ve /c®) ™2, pe = ymy,, and the
electron velocity v, isequa to

1_oE
4men0t

Ve = (6)

~ 47ten,

In deriving Eq. (5), we assumed that the electrons
move in the (X, y) plane.

The main difference between the model under con-
sideration and Abrikosov's widely used model [1] is
that, along with the equation for the electron vorticity
Q, we use Poisson’s equation

divE = 4me(Zn,—n,), @)

where n, and n; are the electron and ion densities. In
other words, the electron density n, is no longer
assumed constant, but should be found from Poisson’s
equation.

In a steady state, Egs. (5)—7) yield the following
equations for acylindrically symmetric vortex [2]:

1d 2dy , Q dB[_ 2,
T OneC ﬁ+4nnea5 = 4ne(ne—2Zn;), (8)
2
0=p_MeC1d rydBQ )

Ame?rdr LhdrU
It isimportant that these equations give the electron
density n, in an explicit form:
m.C
anymc’n, + QG + ySF?‘*E
o (10)
= G*+y'F*HEE + 4mmc’y’zn,

where the quantities

Veg

meC
G=B+yF—, F=-—-2>0
e r
satisfy the equations
- m.C 4Ten
aG _Q-G_MmcF_ °rF, (11)
dr r e ’'r c
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dF _ e Q-G F
- mg 3 1’
Relationship (10), which follows from the momen-
tum conservation law, implies that, as the electron vor-
ticity Q increases, the electron density n, decreases,
because the magnetic field is finite. However, relation-
ship (10) is difficult to apply, because the condition
n. = 0 imposes restrictions on Q. For this reason, it is
convenient to introduce the quantity | = Q/n, in order
for theion density n to be positive definite regardless of
the value of |. The quantity | has an even deeper physi-
cal meaning: one can readily seethat | isaLagrangian
invariant, because it satisfies the equation

ol

3t +v.-VI =0.
Hence, the profile of | is “frozen” in the electron fluid
and is carried with it.

Of course, for the electron vortex described by
Egs. (8) and (9), we have dl/dt = O, because the only
nonzero el ectron velocity component in such avortex is
Ve and the condition d1/08 = 0 holds. However, with
the ion motion taken into account, we have v, # 0 and
dl/ot # 0. Therefore, incorporating perturbations into
time-independent equations (8) and (9) makes it possi-
ble to describe the transport and deformations of the
Lagrangian invariant |, which is frozen in the electron
fluid, and thereby the evolution of the vortex structure.
Note that, in the non-steady-state case, the magnetic
field changes at the expense of the induction electric
field (in the problem as formulated, thisis the electric-
field component Eg) and we can show that Eq. (13) is
equivalent to Faraday’s law of induction —(1/c)0B/ot =
curlE.

We introduce the dimensionless coordinate p =

r J4me’n,./m,c” and the dimensionless functions

vV=— g=
I

(12)

(13)

Ne G _ F
Meco J4Tmn,,,m.c’ Jamn..e’/m,

, f
i = 1, /n./4mmc’, v =

in order to write the equations for an electron vortex in
the final form:

Ves
C

~L _ypf, (14)

o
©
©
©

—= (15)

where the dimensionless electron density v is equal to
- y3n+gz+y4f2

, 16
y+i(g+y°’f) 4o
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and therest of the notationisg = b + yf, v = —pf, where

y=(1-v3 ™% Incontrast to [2], our expression (16)
for v contains the time-varying ion density n = n;/n;,.
We thus take into account the effect of ion motion on
the evolution of the structure of an electron vortex. We
can say that Egs. (14)—(16) define an effective adiabatic
functional b = b[n(p)] for theions, which makesit pos-
sible to close the ion equations. An approach based on
Egs. (14)—(16) appliesto electrons treated in the quasi-
static approximation rg/ct, < 1, which corresponds to
therange B? < 4Tnm c?.

Note that we are not going to introduce the electron
temperature, although its effects are analogous to the
effects of the ion temperature.

Recall that the structure of an electron vortex is
completely governed by the shape of the profile of the
Lagrangian invariant i, in which case the only physical
boundary condition is that the electron velocity van-
ishes at infinity, v(p = «) = 0. This boundary condition
enables us to determine the actual eigenvalue of the
problem—the magnetic field at the vortex axis. Also,
our problem assumes an obvious boundary condition at
the vortex axis: v(p =0) = db/dp},_, = 0.

3. The above set of equations describes a so-called
Coulomb explosion—the radial expansion of ions in
the radia electric field E, [4]. Note that, for laser fila-
ments in a plasma, the Coulomb explosion concept
(which impliesthat the ions expand under the action of
electrostatic forces on time scales of approximately the
inverse ion plasma frequency) was developed as early
as 1990 by Burnett and Enright [13]. It isinteresting to
note that they obtained a quite reliable estimate for the
characteristic energy of the expanding ions: g ~ m.c>.

According to [2-4], the structure of an electron vor-
tex during such an expansion is affected by the nonuni-
form ion density, which acts to change the magnetic
field structure and destroy the vortex. Note that, since
the ion dynamics is much slower than the electron
dynamics, the equations for the vortex structure do not
contain the ion velacity.

We describe the ions by the hydrodynamic equa-
tions

dv;, _ Ze Vp;
mia = ZeE+?ViXB—Ti, (17)
%+div(nivi) = 0. (18)

ot

Unlike in [4], these equations contain the ion pressure
(which is described here by the conventional adiabatic
equation of state with an adiabatic index equal to 2).
We emphasize that the ion currents play no role in the
formation of vortices whose dimensions obey condi-
tions (2), so that, in analogy with [4], the vortex equa-
tions contain the ion density and do not include the ion
currents (see[14]).
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Note also that the gradient of the kinetic ion pres-
sure can counterbalance the radial electric force acting
on the ions, thereby ensuring that the vortex isin equi-
librium.

We will say a few words about the importance of
Eqg. (13) for the Lagrangian invariant. By virtue of the
cylindrical symmetry of the problem, the only parame-
terin Eq. (13) istheradial electron velocity:

ol ol _
m+ vera = 0.

The Maxwell equations imply that, by virtue of the
axial symmetry, the term with the magnetic field drops
out of the expression for the radial electron velocity,

_Zn, , 1 0

Ve = —V, ;
& n, " 4men, 0t

(19)

(20)

asaresult, theradial dynamics of the Lagrangian invari-
ant | is determined by the characteristic ion velocity.

Note that, in the non-steady-state case, the symme-
try properties of the problem are responsible for the
appearance of the induction electric field Eg, which
changes the magnetic field B,. However, aswill be seen
from the following considerations, our equations do not
explicitly include Ey and Faraday’s law of induction
turns out to be equivalent to Eq. (13) for the electron
Lagrangian invariant 1. Hence, Eq. (13) for the
Lagrangian invariant | provides a convenient tool for
describing the evolution of vortex structures.

n, b, v,v i
1.5

1.0

0.5

Fig. 1. Profilesof (1) theion density n, (2) themagneticfield
b, (3) theazimuthal electron velocity v, (4) the electron den-
sity v, and (5) the Lagrangian invariant i calculated by the
relaxation method (light curves) and obtained from the
time-independent eguations (heavy curves).

GORDEEV, LOSSEVA

We introduce the characteristic timet, and the char-
acteristic ion velocity v,

m Zm,
= 2—1 VO = C 7
4ne“Zn,,, m;

in order to convert Egs. (17)—(19) into dimensionless
form:

21)

ou udu _ oy iab on
= —5E—izo=As,
ot 0p op 0dp p 22)
an 16 _
OT (pnu) 0,
oi (Lh 10@u, onpoi  _
ot EC votot | +)\%D =0 @
where T = tft,, U = v;,/V,, b = B/,/4Tn.,,m.c°, and

Ne = ZN,,, IS the electron density at infinity.

In analogy with [4], we can neglect slow ion motion
in the B-direction, because, for magnetic fields satisfy-
ing conditions (1), the induction effects are insignifi-
cant.

The above set of equations describes an electron vor-
tex in the quasi static approximation [ Egs. (14)—(16)] and
the evolution of the ions and electron Lagrangian
invariant during slow ion motion [Egs. (22), (23)].
When the ion pressure is neglected, the expanding ions
giverise to a collisionless shock wave, which was con-
sidered in [4]. The ion pressure gradient acts to decel-
erate the expanding ions; as aresult, an electron vortex
evolves into a steady state.

The boundary conditions for the ion equations
imply that the radial ion velocity vanishes at the vortex
axis, u(p=0) =0, and, at infinity, u(p = ©) = 0. At infin-
ity, the ion density should be constant, n(p = o) = 1,
and, a A # 0, it should satisfy the condition 6n/6p|p=0 =0.
The initia conditions for the ions along the p-axis are
nt=0)=1landu(t=0)=0.

Theinitia structure of an electron vortex is assumed
to correspond to that against the background of the
immobile ions.

4. In calculations, we normalized theion pressure as
P = NeMC?AN?/2. It is seen that the characteristic ion
temperatureat n~ 1 isequal to m,c? and the factor A can
be varied in a certain range. A steady electron vortex
was simulated by numerically solving the above set of
equations by the relaxation method. The initia vortex
structure was assumed to correspond to that of apurely
electron vortex at aconstant ion density n; = const. The
resulting vortex structure for A = 1isillustrated by the
light curves in Fig. 1. We can see a dip in the plasma
density profilein the axial region (in other words, ahole
forms in the plasma density); moreover, in the vicinity
of the vortex axis, the ion density n is higher than the
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5.6

12.5

0.5

Fig. 2. Relaxation to a steady vortex structure. Profiles of
the dimensionless ion density n are shown at subsequent
timesT.

electron density v. The results of calculations allow us
to trace the process of gradual relaxation to a steady
vortex structure. The values of theion density nand ion
velocity u at different timesare presentedin Figs. 2 and 3.
The profiles in these figures were obtained with the
help of a modified nonlinear monotonic algorithm for
calculating transport processes by the flux correction
method [15]. We can see that, during the transient
relaxation process, the perturbations of n and u are
damped.

5. In this section, we calcul ate a steady vortex struc-
ture from the time-independent equations (14)—(16)
with the ion density found from the first equation in
(22). Inthisequation, we set 0/0t =0 and u = 0 and inte-
grate the resulting equation to obtain

~ b
An = )\+1—y+J’|—dp. (24)
]
) p

In Fig. 1, the heavy curves, which were calculated for
A =1, illustrate the vortex structure determined by solv-
ing the time-independent equation for the typical vor-
tex dimension & = 1 (here, the dimension o characteriz-
ing the initial profile of the Lagrangian invariant i is
expressed in units of c/w, for an unperturbed state). We
find a good agreement between the profiles obtained
using the above two methods. Note that the vortex
structure with such aprofile of the Lagrangian invariant
i(p) can bein equilibrium in acertain range of A values.
However, there exists a minimum possible value of A,
which corresponds to the lowest ion density at the cen-
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1=0.8

12.5

Fig. 3. Relaxation to a steady vortex structure. Profiles of
the dimensionless radial ion velocity u are shown at subse-
quent times T.

ter of the“vortex hol€’; at 6 = 1, this minimum val ue of
A isequa to 0.7. It is of interest to analyze how the
shapes of the profiles change as the characteristic
dimension o for the Lagrangian invariant i increases.
The larger the dimension 9, the higher the magnetic
field in the vortex. Figure 4 shows how the difference
between the electron and ion densities at the vortex axis
varies as a function of the characteristic dimension for
the Lagrangian invariant i. One can seethat, asthe char-

n(0) — v(0)

04r

0.2

! I
0 10 20
o)

Fig. 4. Difference between the ion and electron densities at
the vortex axis, n(0) — v(0), vs. the dimension o characteriz-
ing theinitial profile of the Lagrangian invariant i.
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2
(ymax B 1) MmeC
ed,

0.10F

0.05r

0 10 20
0
Fig. 5. Ratio of the maximum electron kinetic energy
(Yimax — 1)mec2 to the maximum (at the vortex axis) electron
potential energy ed,,.

n, b

Fig. 6. Profiles of (1) theion density n, (2) themagneticfield
b, and (3) the Lagrangian invariant i in a steady vortex con-
figuration at p— oo for aprofile i(p) decreasing according
to a power law (light curves) and for an exponentialy
decreasing profile i(p) (heavy curves).

acteristic dimension increases, the difference n(0) — v(0)
decreases. Hence, for large dimensions 9, the hole that
formsintheion density isalmost quasineutral. Notethat,
in calculating the equilibrium vortex structure, we used
the minimum possible value of A for each value of o.

Our steady-state model makesit possible to analyze
the role of electron inertiain the formation of electron
vortices of different dimensions. Let us consider strong

GORDEEV, LOSSEVA

magnetic fields and, accordingly, high electric poten-

tials;i.e., weassumethat Bi > 4Thym,C2. In accordance

with the relationship between the Hall electric potential
@ and the magnetic field, this inequality can aso be
written as

2

B,
ed 4mn,

We can see that el ectron inertia can be neglected. How-
ever, we do not rule out the possibility that the factor y
may grow without bound. For this reason, we must
exactly determine the maximum value of y. Our calcu-
lations based on the hydrodynamic equations show that
the factor y does not grow excessively with increasing
vortex dimensions.

Figure 5 displays the quantity (Y., — 1)mc?/ed,
versusthevortex dimension. Here, y,,,, iSthe maximum
value of y over the electron vortex and @, is the highest
value of the electric potential (at the vortex axis). We
can see that electron inertia plays a particularly impor-
tant role in the formation of small-size vortices (which
are characterized by low electric potentials) and can be
completely neglected for larger-size vortices such that
o> 1.

It is interesting to note that the situation with ion
diodes is essentially the same: the higher the potential
in a diode, the smaller the role of the electron inertia
[16]. We stress that, when electron inertiais neglected,
the overall vortex structure changes radically: a peak
(rather than adip) formsin theion density profile at the
vortex axis.

In [2-4], theradial profile of the Lagrangian invari-
ant was chosen to decrease sharply according to a
power law: i = iy/(1 + p?)>. However, the asymptotic
behavior of the magnetic field in areal electron vortex
is better described by the invariants i(p) that decrease
exponentially at infinity. This circumstance is not of
fundamental importance for numerical integration over
finite radial intervals. However, in some time-depen-
dent problems in which a perturbation in the form of a
nonlinear wave can propagate over large distances in
the radial direction, exponentially decreasing profiles
can yield far more exact results than the profiles
decreasing according to a power law. To illustrate this
point, Fig. 6 shows the results of computations for the
exponentially decreasing profile i = i, (1 + p)/(1 +
pexpp) of the Lagrangian invariant. At the same value
i(0), the exponentia profile i(p) yields a wider vortex
and leads to larger equilibrium values of A in compari-
son with those calcul ated for the power-law profile. The
profiles shown in Fig. 6 are characteristic of steady vor-
tex structures with A = 2 and with the power-law and
exponential profiles of i.

6. Our investigations demonstrate the possibility of
the formation of steady plasma vortices in which the
plasma electrons drift in crossed electric and magnetic

2
> myC.

(25)
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fi» ab. units
1.0+
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0 0.05 0.10 0.15 0.20
w2

Fig. 7. Resulting ion distribution function in a collisionless
shock wave during theformation of anonguasineutral shock
front. The abscissa is the characteristic ion energy normal-

ized to Zmec?.

fields in the B-direction and the ion plasma component
is in equilibrium because of the balance between the
electric force and theion pressure gradient. In calculat-
ing such equilibrium vortices, we assume that the ions
start to expand in an unsteady fashion under the action
of the radial electric field. The radia profile of the
velocity acquired by theions accelerated at the front of
an expanding shock wave correspondsto theion veloc-
ity distribution function at the shock front (see Fig. 7).
In constructing the steady-state vortex solution, we
determined the ion pressure from the “temperature” that
is characteristic of this distribution function. In the
hydrodynamic approximation, taking into account elec-
tron inertia leads to a decrease in the plasma density in
the axial region; in other words, we can say that a hole
appears in the plasma density around the vortex axis.

We have shown that, although the electron kinetic
energy in such vortices is low, a self-consistent steady-
state solution should be constructed with allowance for
electron inertia. In fact, neglecting electron inertia
leads to aradically different equilibrium solution: at a
constant electron density, the ion density profile is
peaked at the vortex axis, in which case the plasma
charge at the axis remains positive.

The electron vortices under discussion should form
asaresult of the onset of the Buneman electromagnetic
instability [17]. The study of such vortices may prove
to be useful for investigating the magnetic field evolu-
tion in aplasma Thus, the equilibrium vortex structure
analyzed above may correspond to a hot plasma with a
“floating” magnetic vortex in which the plasma density
is reduced.

The most important result of our study is the dem-
onstration that a steady vortex structure may formin a
magnetic field in a plasmawith anonzero ion pressure.
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Abstract—A study is made of the nonlocal nature of the electron energy distribution function in the positive
column of a glow discharge in atube filled with pure oxygen. The distribution function and the axial (E,) and
radia (E,) electric fields as functions of radius are measured using an array of mobile probes. The experimen-
tally obtained spatial profiles of the distribution function are used to test the applicability of the two-term
approximation to the distribution function of the electrons with a nonlocal energy spectrum. The distribution
functionin a specified electricfield E = E, + E, (where E, O E,) is calculated by solving the coordinate-depen-
dent Boltzmann equation in the two-term approximation and by directly integrating the equations of electron
motion using the Monte Carlo method. A comparison between the experimental data and the results of simula-
tions carried out for a broad parameter range shows that, in the case of a highly nonlocal electron energy spec-
trum, the two-term approximation makes it possible to cal culate the electron distribution function with afairly
good accuracy, in which case, however, in imposing the boundary conditions, the el ectron losses at the plasma
surface should be treated in the kinetic approximation. It is shown that using the reflection coefficient of the
plasma surface for electronsinstead of the loss cone in space makes it possible to accurately cal culate the el ec-
tron energy distribution function over the entire parameter range under consideration, including the transient
region in which the electron-energy relaxation length is comparable to the characteristic plasma dimension.

© 2000 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Present-day plasma technologies related to micro-
electronics and the production of thin films deal mainly
with large-area dense homogeneous plasmas created by
aternating electric field—driven low-pressure dis
charges. This circumstance has stimulated increased
interest in studying such discharges. The development
of discharge models is a key problem in theoretica
investigations aimed at searching for new technol ogical
applications and further technological developments.

Calculation of the electron distribution function
(EDF), which determines the rate constants of the most
important elementary processes and transport coeffi-
cientsin a plasma, is a central issue in modeling gas-
discharges. In a spatially nonuniform electric field
F(v,r, t), the EDF E(r, t) generally depends on seven
variables and can be found from the Boltzmann kinetic
equation

o0F(v,r,1) Ly oF(v,r,1)

ot or W
eE(r,t) 9dF(v,r,t) _
* m, v - @

wherer isthe position vector; v isthe electron vel ocity;
the collision integral Q determines how F(v, r, t)
changesin elastic and inelagtic collisions; E(r, t) isthe

electric field; and e and m, are the charge and mass of
an electron, respectively. Since an efficient genera
algorithm for solving Eq. (1) islacking, various simpli-
fying approaches and approximations are used for this
purpose. This naturally brings up the question of the
accuracy of the solution method and its applicability
range. In solving certain problems, it isoften difficult to
determine with considerable confidence the degree of
accuracy of specific approaches. The reason for thisis
that the EDF is affected by a variety of factors (from
“microparameters,” such asthe structure of the electron
flow scattered by gas particles, to “macroparameters,”
such as the way in which the discharge is initiated and
the presence of active particles). That is why there is
some uncertainty regarding the applicability ranges of
discharge models. However, to some extent, al
approaches for calculating the EDF and, accordingly,
for modeling discharges can be compared from the
standpoint of their ability to describe the effects of
anisotropic processes and nonlocal electron energy
spectra. Figure 1 illustrates the applicability ranges of
the most widely used approaches in the plane of the
parametersF,/F, and \./L, where F, and F, aretheiso-
tropic and anisotropic parts of the EDF; L is the scale
length on which the plasmadensity varies; and A\, isthe
electron-energy relaxation length defined as A, =

JALA* [1], with A, and A* being the electron mean

1063-780X/00/2611-0972$20.00 © 2000 MAIK “Nauka/ Interperiodica’
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free paths with respect to elastic and inelastic colli-
sions. Of course, since Fig. 1 merely illustrates the
applicability ranges of different models, the boundaries
arefairly arbitrary.

One of the most widely used approximations, spe-
cificaly, the approximation in which the “local” distri-
bution function is evaluated under the assumption that
the plasma is homogeneous, is valid when L > A,.
However, the dimensions of real discharge devices
operating at reduced pressures satisfy the opposite ine-
quality; consequently, in solving the Boltzmann equa-
tion, we cannot assume that the plasma is spatialy
homogeneous. In an inhomogeneous plasma, the EDF
is not determined by the local electric fields, so that, in
this sense, it is “nonlocal.” The spatial profiles of the
EDF can be evaluated by solving the kinetic equation (1)
using different approaches. Physically, the most
insightful approach [1-5] isthat based on the assump-
tion that the total electron energy in a weakly colli-
sional plasma is approximately conserved; this
approach makes it possible to calculate the spatial pro-
files of the EDF treated as a function of the total elec-
tron energy. Approaches in which the coordinate-
dependent Boltzmann equation is solved directly by
various numerical methods are more involved and,
accordingly, require large amounts of computer time
[6-11]. The most exact solutions can be obtained by
directly integrating the equations of electron motion in
a prescribed potential by the Monte Carlo (MC)
method [12-14] or in a self-consistent potential by the
combined particle-in-cell-Monte Carlo (PIC-MC)
method [15-18]. (Various approaches to determining
EDFs in plasmas were considered in detail in the col-
lection of articles [19].) In order to calculate EDFs
whose anisotropy is so high that the applicability of
approximate models is questionable, it is especially
important to employ exact numerica methods. How-
ever, at present, the applicability of the MC method is
restricted because of the enormous computational
resources required and lack of experimental dataon the
differential scattering cross sections. In thisconnection,
it becomes relevant to devel op simpler methods for cal-
culating EDFs with alowance for spatial nonlocal
effects. The “hybrid” models based on such methods
(see, eg., [20, 21]) extend the applicability ranges of
particular approaches (Fig. 1) and make it possible to
develop much faster computer codes.

A low-pressure glow dischargein along cylindrical
tube with alongitudinal electric field is one of the most
convenient objects for experimental and theoretical
analyses of the nonlocal and anisotropic nature of the
EDF and also various plasmochemical processes. The
main feature of such discharges is that they are, on the
one hand, highly nonequilibrium and spatially inhomo-
geneous in the radia direction and, on the other hand,
isotropic and homogeneous along the tube axis. In elec-
tronegative gases, glow discharges are usually stablein
the parameter range pd > 0.1 torr cm (where p is the
pressure and d is the characteristic plasma column
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Fig. 1. Approximate applicability ranges of the approaches
that are most widely used in solving the Boltzmann kinetic
equation (1) for the EEDF in the plane of the parameters
Fi/Fo and AL, where Fy and F; are the isotropic and

anisotropic parts of the EDF, L is the scale length on which
the plasma density varies, and A is the electron-energy
relaxation length defined as Ay = /A A* [1], with A, and

A* being the electron mean free paths with respect to elastic
and indlastic collisions. The applicability ranges are
bounded by the coordinate axes and the curves. The arrows
mark the applicability ranges of the following approaches:
the local two-term approximation (LTTA), which is based
on solving the coordinate-independent Boltzmann equation;
the nonlocal two-term approximation (NTTA), which is
based on solving the coordinate-dependent Boltzmann
equation; the nonlocal multiterm approximation (NMA),
which is based on solving the set of coupled coordinate-
dependent kinetic equations; the “conserved total energy”
approximation (CTEA), which is based on solving the gen-
eralized Boltzmann equation that is homogeneous in the
total energy; and the M C method, which impliesdirect inte-
gration of the equations for electron motion.

diameter). In many cases, the radial electric field E, is
only incorporated into the macroscopic electrodynamic
equations and is neglected in the kinetic equation for
the EDF, which is assumed to depend only on the lon-
gitudinal uniform field E,. In this paper, we analyze the
applicability of the two-term approximation (TTA) for
the EDF in a spatialy nonuniform field E = E, + E,
(where E, O E,) by comparing the results of MC simu-
lations with experimental data on dc dischargesin pure
oxygen in the range pd = 0.15-1.5 torr cm (whered is
the tube diameter), for which we have A, > L at pd =
0.15torr cmand A, < L at pd = 1.5 torr cm. Note that
the cross sections for electron scattering by oxygen
molecules are such that the EDF is nearly isotropic
everywhere except for ahigh-energy range correspond-
ing to electron-impact ionization. Consequently, we
can hope that, in solving Eg. (1), the EDF can be eval-
uated in the TTA. However, we must keep in mind that
for many polyatomic gases (CF,, SF;, etc.) the TTA
may become inapplicable even in the range of moderate
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Fig. 2. Experimentally measured EEDFsvs. the total electron energy u = € + e$ (where € isthe kinetic energy of the electrons and

ef istheir potential energy) at afixed discharge current density of 5 mA/cm 2 for pd = 0.18, 0.36, 0.6, and 1.2 torr cm. The curves
f(0), f(3), and f(5) refer to the radial positionsr = 0 (the discharge axis), 3, and 5 mm.

energies because of the large indlastic losses corre-
sponding to the high anisotropy of the EDF [22].

In an O, plasma, the discharge electrodynamics is
strongly affected by active particles (oxygen atoms and
metastable molecules) [23-26]. In addition, the radial
plasma potential is largely governed by the heating of
negative ions in strong longitudinal electric fields and
also ion—molecule charge-exchange and detachment
reactions [22, 25]. Therefore, a complete self-consis-
tent discharge model should incorporate all of the
above processes. In simulations, we used the experi-
mentally measured fields E,(r) and E, in order to sim-
plify matters and to analyze the applicability of the
TTA more correctly.

2. EXPERIMENT

We carried out acomprehensive study of aglow dis-
charge in a glass tube (with the inner diameter d =
12 mm and an interel ectrode distance of 490 mm) filled
with pure O, over the pressure range from 0.15 to 6 torr

at current densities of 3-40 mA/cm?. In experiments,

we measured the following parameters. the longitudi-
nal electric field, the EDF as a function of radius, the
radia profile of the plasma potentia (the radial field
profile E,(r) was calculated from the plasma potential
gradient), the densities of negative ions, the plasma
temperature at the axis of the positive discharge col-
umn, the temperature of the wall of the discharge tube,
and the densities of such active particles as O(°P) atoms
and oxygen molecules in the two lowest metastable

states a'A; and b' =, . Below, we will describe only the

results of measurements of spatial variations in the
EDF and electric fields. The radia profiles of the EDF
were recorded by a specially designed array of mobile
probes with the help of the conventional method of
modulation of the probe potential [27]. The second
probein the feedback |oop was used to suppress plasma
noises and to stabilize the operating point of the device.
The plasma potential was determined from the point in
the current-voltage characteristic of the probe at which
the second derivative of the probe current vanishes. In
[27], one can find a more detailed description of our
experiments.
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The nonlocal nature of the EDF can be revealed
experimentally in gas-discharge plasmas at low pres-
sures[3-5, 28], when the spatia profiles of the electron
energy distribution function (EEDF) are governed pri-
marily by the potential energy of the electrons in the
space chargefield. The EDFs measured at two different
points should coincide (to within the potential differ-
ence between the points, which corresponds to a shift
along the energy axis). Figure 2 shows the EEDF
obtained experimentally for different values of the
parameter pd versus the total electron energy u = € +
ep, where e isthekinetic energy of the electrons and e
istheir potentia energy. The EEDF was measured at a
discharge current density of 5 mA/cm? at three radia
positions: r = 0 (the discharge axis), 3, and 5 mm. We
can see that, at a pressure such that pd = 0.18 torr cm,
the spatial profiles of the EEDF are well approximated
by functions of only the total electron energy; i.e.,
F(g, r)=F(u(r)). Uptotheenergy € ~ 13 eV, the EEDFs
at different radial positions coincide as functions of the
total electron energy. The electron energy spectrum at a
given radius is governed exclusively by the electrons
whose kinetic energy is higher than the potential energy
at this point. Hence, the shape of the EEDF is as if its
low-energy part were “truncated.” For larger values of
the parameter pd, the EEDFs measured at different
points do not coincide, so that the EEDF can no longer
be approximated by a function of only the total energy
u(r). Our calculations (see bel ow) show that, eveninthe
range pd = 1 torr cm at A\, < d, theradia electric fields
still have a significant impact on the electron energy
spectrum. In this sense, the EEDF remains nonlocal.

Figure 3 shows radial profiles of the mean electron
energy B[] = Isslz F(g, r)de for pd=0.18, 0.36, 0.6, and

1.2 torr cm at acurrent density of 5 mA/cm?. The pres-
ence of afairly long radial interval in which the mean
energy is decreasing can be attributed to the specific
energy dependence of the EEDF. The dope of the
EEDF increases with increasing energy (Fig. 2), which
means that the mean energy of the electrons decreases
with increasing the distance from the discharge axis.
Thisleadsto the effect of “cooling” of the electrons by
the radia charge-separation electric field, which is
ignored in the local approximation.

3. DISCUSSION

In the TTA, the electron velocity distribution func-
tion F(v, r, t) isrepresented as

F(v,r,t) = Fo(v,r,t)+Fy(v,r,t)cosh, 2)

where Fy(v, r, t) and F,(v, r, t) are the symmetric and
antisymmetric parts of the distribution function such
that F, < F,, v isthe absolute val ue of the vel ocity vec-
tor, and O isthe angle between the electric field and the
velocity vector. Substituting expression (2) into Eqg. (1)
yields the following equation for the symmetric part
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Fig. 3. Radia profiles of the mean electron energy €00

defined as 80 = Ie3/2 F(g, r)de (where the subscript r indi-

cates the radial position with respect to the discharge axis)
for pd = 0.18, 0.36, 0.6, and 1.2 torr cm at afixed discharge

current density of 5 mA/cm?. The circles show the experi-
mental data, and the solid and dashed curves illustrate the
results obtained from the discharge models in which the
EEDF was calculated by the MC method and in the TTA,
respectively. The longitudinal field E, was taken from the

experiment and was assumed to be fixed.

Fo(e, 1, t) of the distribution function in cylindrical
geometry [29, 30]:
0 0 Fo%\l +
0

0 _
E(FO“/E) 0t
2 o0
¥ rar%DrarFOD+ Q

el coe
Here, € is the electron kinetic energy and the coeffi-
cientsD,, D,, and D, have the form

1ogp 9,0
roed fge O
3)

- |20 & O
' mBNo(g)U

_ [2_& R0, eEf
D. = J%So(s)[ﬂ N O ON D}’

“)

- ED € eEr(r)[l
re mBa(e) N U

where E, and E, are the radial and longitudinal compo-
nents of the electric field in aplasma, o(€) isthe trans-
port scattering cross section, and N is the neutral den-
sity. Inwriting (3) and (4), we assumed that the plasma
column is homogeneous along the z-axis. In numerical
modeling, the symmetric part Fy(g, r, t) of the EDF for
a steady discharge was calculated using the relaxation
method, i.e., by integrating Eqg. (3) in time. Following
[30], we chose the boundary conditions in such a way

D
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Fig. 4. The set of cross sectionsfor electron scattering by O,

molecules that was used to calculate the EEDF: (1) elastic
scattering cross section; (2) integral cross section for the
excitation of rotational states; (3) cross section for the exci-
tation of the first vibrational level of the ground state;
(4) cross section for the excitation of the second vibrational
level of the ground state; (5) cross section for the excitation

of the alAg electron state; (6) cross section for the excitation
of theb! Zg electron state; (7) integral cross section for the

excitation of the electron states A’S; , ¢!z, and A%A;

(8) dissociative attachment cross section; (9) dissociative
cross section with a threshold of 5.58 eV; (10) dissocia-
tive cross section with athreshold of 7.34 eV; (/1) disso-
ciative cross section with a threshold of 9.74 eV; and
(12) ionization cross section.

that the electrons were not reflected from the tube wall
and escaped freely from the plasma volume.

In MC simulations, the equation of €lectron motion
inthe prescribed field E =E, + E,,

dv
Moy = ©E 5)
was solved by a finite-difference scheme of second-
order accuracy. At each time step, we modeled a statis-
tical process that might involve el ectrons with the spec-
ified energy. The time step was determined from the
requirement for the equation of mation (5) to be solved
with the desired accuracy and from the condition that
the total probability for all of the processes to occur at
each time step be small compared to unity.

Recall that, in adischarge plasma, theradial electric
field actsto cool the electrons and to equalize the effec-
tive electron and ion diffusion coefficients. Conse-
guently, in simulations, it is extremely important to
know thewall potential Uy, which governsthe fraction
of electrons that can overcome the ambipolar potential
barrier and leave the plasma (the escape of electrons
toward the wall isthe main channel of electron losses).

IVANOV et al.

Unfortunately, in our experiments, we failed to deter-
mine the plasma potential drop near the wall. For this
reason, in simulations, we adjusted the wall potential so
that the computed EDF was steady. In simulations with
higher or lower values of Uy, the plasma electron den-
Sity increased or decreased exponentialy in time. In
this connection, the value of the wall potential Uy, used
to calculate the EEDF in the TTA differed from that
used in MC simulations.

In order to make a comparison between the results
obtained in the TTA and MC simulations correct, we
used the same set of cross sections for electron scatter-
ing by O, molecules (see Fig. 4). Using the same set is
justified because, in our experiments, the total scatter-
ing cross section is only slightly anisotropic up to high
electron energies of about 20-30 eV.

In Figs. 5a and 5b, which were obtained for pd =
0.18 and 1.2 torr cm, respectively, and illustrate the
dependence of the electron distribution function on the
electron kinetic energy €, we compare the local EEDF
obtained by solving the spatially homogeneous Boltz-
mann equation with both the EEDF measured experi-
mentally and the EEDFs calculated in the TTA and by
the MC method. Since, in Fig. 5b, A, < d, we can natu-
rally expect that the EEDF will be closeto thelocal dis-
tribution function over the entire plasma cylinder
except for a narrow wall layer. In fact, Fig. 5b shows
that the EEDFs obtained experimentally and computed
for a spatially nonuniform field are close to the local
EEDF everywhere except for awall layer with a thick-
ness of about A,. As can be seen from Fig. 5a, the lower
the pressure, the more important the effects of the non-
local nature of the electron distribution: the experimen-
tal and calculated EEDFs deviate from the local EEDF
over the entire plasma column. In the high-energy
range, the nonlocal nature of the electron energy spec-
trum obtained in the TTA is seen to be more pro-
nounced than in the case of EEDFs measured experi-
mentally and calculated by the MC method. This dis-
crepancy is associated with the boundary conditions
imposed in the TTA. Although the TTA can be used to
describe the electron flux in coordinate space, it failsto
hold in afairly narrow wall layer (with a thickness of
about the electron mean free path). Since Eq. (3) does
not describe the real electron mation in velocity space,
the electron flux to the wall turns out to be overesti-
mated. Such an electron flux can be corrected by intro-
ducing a nonzero reflection coefficient of the plasma
surface for electrons. In other words, in the total elec-
tron flux, we must take into account only the electrons
whose velocity vector lies inside the loss cone dQ To
do this, we incorporate the loss cone into the boundary
condition for Eq. (3) through a relationship analogous
to that presented in [5, 14]:

e(U<r)—uW>H

5Q = ond - S —Pwn (6)
% s(r) r=R
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Fig. 5. Comparison of the local EEDF calculated as a function of the kinetic energy by solving the coordinate-independent Boltz-
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profiles f(0), f(3), and f(5) refer to the radial positionsr = 0, 3, and 5 mm. The heavy solid curve shows the local EEDF fo.. The

calculations were carried out for pd = (a) 0.18 and (b) 1.2 torr cm.

Condition (6) differs from the corresponding expres-
sion for 8Q in [5, 14] in that it describes the reflection
of electrons from the plasma surface with the probabil-

1 [e(U(R)=Uy) .
ity 5 (R rather than the loss cone in the

plasma volume. Kortshagen et al. [14] showed that the
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electron losses can be described as an electron flux to
the wall through the loss cone only when A, > L. Con-
dition (6) assumesthat thereisajump Uy, — U(R) inthe
plasma potential near the wall. Physically, this corre-
sponds to a plasma-wall layer whose thickness is of
about the electron mean free path and in which the



978

space charge is unneutralized. In this case, the wall
potential Uy, should again be found self-consistently
from the condition that the EEDF be steady. According
to (6), taking into account electron reflection from the
plasma surface makes it possible to achieve good
agreement between the radial profiles of the EEDF cal-
culated in the TTA and by the MC method, except, of
course, for a narrow wall region where the EDF is still
highly anisotropic. That the values of U, obtained by
the two cal culation methods approximately coincideis,
in our opinion, additional evidence of the applicability
of the TTA to the problem under discussion.

We emphasize that the above discrepancy between
the EEDF abtained in the TTA without allowance for
electron reflection from the plasma surface and the
EEDF calculated by the MC method weakly affectsthe
ionization rate and other global kinetic coefficients of
the discharge plasma. In fact, the EEDFs computed on
the basis of the above approaches differ strongly only
in the energy range € = 20 €V, which is far above the
thresholds for all inelastic processes, including the
threshold 12.07 eV for ionization of O, molecules. That
iswhy simulations of the discharge plasmakinetics car-
ried out by different approaches for determining the
spatialy inhomogeneous EEDF yield essentially the
same results. This is illustrated in Fig. 3, which pre-
sents, in addition to the experimentally measured pro-
files of @0 the radia profiles of the mean electron
energy calculated using a unified discharge model in
which the EEDF was computed in different ways at a
fixed axial electric field E,. Figure 3 shows good agree-
ment between the profiles corresponding to the EEDFs
obtained in the TTA and by the MC method. The

radius-averaged ionization rates [ovl,, =

[V Oy,Ne/N, Obtained from the EEDFs computed in

these ways are nearly the same over the entire range of
the parameter pd (here, the angular brackets denote
averaging over the EEDF and the overbar stands for
averaging over radius). A dlight discrepancy in the
range pd < 0.2 torr cm stems from the physical reasons
that we have discussed above. However, a comparison
between the mean ionization rates obtained from the
nonlocal and local models showsthat, even in therange
of large values of the parameter pd (pd > 1 torr cm), the
local model gives a somewhat overestimated rate

(ov[,,. In other words, the electric field obtained

from the discharge modelsin which the EEDF is calcu-
lated in the local approximation is lower than the real
electric field in adischarge plasma.

To construct a completely self-consistent discharge
model that would be valid for the entire range of values
of the parameter pd requires a self-consistent solution
of the Boltzmann kinetic equation (1) supplemented
with the continuity eguations for charged particles and
Poisson’'s equation for the electric field. More exact
approaches (e.g., the PIC-MC method) make it possi-

IVANOV et al.

ble to determine various spatial characteristics of the
discharge in a broad parameter range, but they involve
aconsiderable expenditure of computational resources.
Our work makes it possible to carry out simulations
using an algorithm that is much faster than that based
on the PIC-M C method. For dc dischargesin pure oxy-
gen, such a simplified approach was developed in our
paper [25], which allowed us to investigate the kinetics
of negative oxygen ionsin detail.

4. CONCLUSION

We have studied the nonlocal nature of the EEDF in
a positive column of a glow discharge in a tube filled
with pure oxygen. The experimentally measured radial
profiles of the EEDF were used to analyze whether the
TTA is applicable for determining the EEDF in a dis-
charge with anonlocal electron energy spectrum. With
this purpose, we calculated the EEDF in the specified
field E = E, + E, with the E, and E, components taken
from the experiment. The EEDF was computed by
solving the coordinate-dependent Boltzmann equation
inthe TTA and by the MC method for direct integration
of the eguations for electron motion. A comparison
between the experimental and numerical results shows
that, even when the electron energy spectrum is highly
nonlocal, the TTA makes it possible to calculate the
EEDF quite accurately over abroad parameter range, in
which case, however, the boundary conditions should
reflect the kinetic nature of electron losses at the plasma
surface.
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Abstract—Results are presented from measurements of the density of oxygen atoms in the positive column of
adc discharge in pure oxygen by the actinometric technique using Ar atoms. Based on the excitation rate con-
stants calculated using two different approaches (namely, the two-term approximation and the Monte Carlo
method) to solving the Boltzmann equation for a spatially inhomogeneous e ectron distribution function, the
applicability of the actinometric technique is analyzed. The effects of the discharge kinetics and the nonlocal
character of the electron energy spectrum on the accuracy of actinometric measurementsare studied. It isshown
that the results of measurements depend only slightly on the accuracy with which the electron energy distribu-
tion function is described. Over awide range of the reduced electric field E/N = 40-250 Td, the oxygen atom
density calculated using the spatially homogeneous distribution function differs by several percent from that
calculated accurately, taking into account the nonlocal character of the electron energy spectrum. It is shown
that using the actinometric technique to measure the absolute concentration of oxygen atoms in a plasma
requires a detailed description of the discharge plasmochemical kinetics, including a thorough analysis of all
possible processes (particularly, surface heterogeneous reactions) that determine the density of active particles
at low pressures. At the sametime, the use of the actinometric technique for monitoring the behavior of the den-
sity of oxygen atomsin aplasmais justified over a wide range of reduced electric fields up to ~200 Td when
the O(3p’P-3p’S) transition (A = 844.6 nm) is used and the degree of dissociation is [0]/[O,] > 0.02. © 2000

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

At present, low-temperature plasmas of molecular
gases are attracting wide scientific interest. Thisis pri-
marily due to the great importance of active particles
(first of al, atomsand radicals) formed viathe el ectron-
impact dissociation of molecules in a gas-discharge
plasma of molecular gases. In fact, the role that plasma
technology plays in modern microelectronics, engi-
neering, ecology, medicine, etc., is mostly determined
by the possibility of efficiently producing and using
active particles

In many cases, the concentrations of atoms and rad-
icals are so high that they not only significantly affect
particular elementary processes in a plasma, but also
govern the electrodynamics and macroscopic parame-
ters of adischarge asawhole. Thisis most pronounced
in plasmas of electronegative gases, in which, due to
the efficient production of negative ions, their density
can significantly exceed the electron density [1-5].
Under conditions typical of various applications of
such plasmas (e.g., oxygen and hydrogen gas-discharge
plasmas [5-7]), the Kinetics of negative ions is gov-
erned largely by the atomic kinetics. Therefore, knowl-
edge of the absolute concentrations of oxygen and
hydrogen atoms is of great importance for understand-
ing the physics of dischargesin O, and H,.

Currently, the most powerful and relatively univer-
sal method for detecting atoms and small molecular
radicals in the ground and long-lived excited states is
laser-induced fluorescence (LIF), including its various
modifications, e.g., the method of two-photon LIF and
the detection of nonspontaneous (laser-stimulated)
emission [8-12]. The advantages of this method are
obvious: it does not disturb the plasma and has high
space and time resolution and high sensitivity. How-
ever, the implementation of this diagnostics requires
not only arather complicated and expensive laser tech-
nigue necessary to generate high-power narrow-band
radiationin thefar UV region, but also an accurate (and
frequently very complicated) calibration of the LIF sig-
nalsreferring to the density of atomsin the ground state
(in other words, the adaptation of LI1F diagnosticsto the
discharge plasma). For thisreason, the multiphoton LIF
diagnostics is used only at major scientific centers and,
most frequently, only when the problem itself requires
it. However, the necessity to know the absol ute concen-
trations of atoms in molecular-gas plasmas is of pri-
mary importance for a wide class of problems, espe-
cialy, for those related to various applications. For this
reason, simple methods to diagnose atoms and radicals
at the ground state are of considerable interest.

In our opinion, the most advantageous among these
methods is the actinometric technique. It is most often
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used to detect atoms in a chemically active plasma
when other methods are difficult to use. The actinomet-
ric technique has already been widely used to measure
the densities of various radicals in discharge plasmas
[13-16] (in particular, O atoms [17-22]). However, we
note that the accuracy of the actinometric technique and
thus its potentiality are completely determined by the
extent to which the discharge model used is adequate to
the actual situation in the plasma. Let us briefly explain
this.

According to the concept of the actinometry tech-
nique, the electronic states X;* and Z* of aradical and
an actinometer atom (usually, the actinometer is an
atom of a noble gas, most frequently, argon) in a dis-
charge are chosen such that they are mainly populated
via electron impact, whereas deactivation occurs via
radiative decay [processes (1) and (2), respectively]:

e+ X K. e+ X, (1a)

e+Z K, e+ 7%, (1b)

X A X* +hyy, (2a)
x AN *

Z| I Zm + hV|m. (2b)

Here, k: ' and kf ' are the electron-impact ionization
rate constants of the X;* and Z;* excited states and Af,-(

and A|Zrn are the Einstein coefficients for spontaneous

radiative decay of the X and Z states through the
X*(i — j) and Z*(I — m) channels, respectively.
However, there may be other channels for populating
and quenchingthe X* and Z* states. Among them, the

main processes are nonradiative quenching of the
excited states by plasma particles (primarily, neutrals)

and dissociative excitation of the X;* state during the

scattering of electrons by XY molecules [processes (3)
and (4), respectively]:

X
XF + Mg —2e X+ M, (3a)
Z
ZF + My S Z+ M, (3b)
kf;‘
e+ XY & X* +Y+e, )

where k;( ' and kf ' are the quenching rate constants of

the X* and Z* states by M particles and k:,(;3 is the
constant of X* production during the dissociative exci-
tation of XY molecules. Hence, in a steady-state dis-
charge, the emission intensity of X* excited states due
tothe (i — j) transition can bewrittenintheform [22]
2000
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ko [X] + ke[ XY]

ZA”* +y ko [M]
j q
are

where n, is the electron density and j and a
the sums over the processes of radiative and nonradia-

tive decay of the X[ state. A similar expression can

also be written for the emission intensity of the acti-
nometer atom in a discharge:

lij = hv; AIJ R

&)

Z
IIm = hVImAIzmne ke [Z] (6)
ZAfm+Zk§'[M
m q
Hence, from relations (5) and (6), it follows that
. Ciz
[X] = ﬁ—xx[i o ™
ml+kd§[XY]
ke [X]
Am+ K. [M
; _ hv,A k Z ! Z
Cx = (®)

hVImAIm

ZA” Zk ™]

The rate constants kei , kd;, and ke‘ are determined by
the cross sections g, for the corresponding electron-

scattering processes and the electron energy distribu-
tion function (EEDF) f(¢) in a plasma:

Kk, = EQEDU Iv(e)oe(s)f(s)ds
9

o

J’f(s)sﬂzde =1,

where €* isthe threshold energy of the process; v(g) is
the velocity of electronswith energy €; and eand m, are
the electron mass and charge, respectively. It is evident
from formula (7) that the actinometric method is appli-
cable (i.e, the radical density can be derived from the
ratio of two line intensities and a known value of the
actinometer concentration) if, under certain experimen-

tal conditions, we have Ci = const and the inequality

Ko /ke' < [X)/IXY] holds. As applied to actual experi-
ments, the verification of the validity of these relation-
ships means that the values of all the coefficients enter-
ing formula(7) should be accurately determined. How-
ever, in this case, it is necessary to know both the
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excitation cross sections of the excited states and their
guenching rate constants and to rather accurately
describe the EEDF in a plasma because the inequality
e* > g, (where g, is the mean electron energy) almost
always holds. Hence, in order to use the actinometric
technique to not only monitor the behavior of atoms
and radicalsin a plasma, but also to accurately measure
their densities, it isnecessary that all the quantities con-
tributing to the actinometer signal be measured with a
high accuracy.

The applicability of the actinometric technique in
particular to the detection of O atoms using argon
atoms was verified in [17-22]. However, the accuracy
of the method was determined in an indirect way,
namely, by detecting atoms in the ground state by
another (more direct) method (e.g., by the two-photon
LIF or resonant VUV absorption). The factors govern-
ing the applicability of the actinometric method were
not analyzed in detail. Among these factors, the elec-
tron-excitation rate constants are the most important
because the emitting states have high excitation thresh-
olds. Therefore, such an analysis must include the fol-
lowing:

(i) Determination of the electronic excitation cross
sections near the threshold, where these cross sections
are usually known with an insufficient accuracy.

(i) Determination of the EEDF, which means either
accurate spatial measurements of the EEDF or a suffi-
ciently accurate calculation of the EEDF based on the
model including all of the basic processes governing
the EEDF formation. Depending on the discharge con-
ditions, these may be either effects related to the nonlo-
cal nature of the electron energy spectrum [23, 24] or
the processes of ion and chemical kinetics [5, 6, 25].
Theinfluence of the latter can be very strong; for exam-
ple, in an O, plasmaat pressures of afraction of torr to
several torr, due to the high density of metastable parti-
cles, thefield in the plasmaand, thereby, the EEDF and
electron density [5, 6] are governed by electron detach-
ment from negative ions.

(iii) Comparison of experimental results with calcu-
lations over awide range of the discharge conditions.

The problems mentioned in the first item (i.e., ana-
lyzing and testing the el ectron-impact cross sectionsfor
radiative transitions of oxygen atoms, including thedis-
sociative excitation of O, and argon molecules) were
studied in [22]. Our study is devoted to items (ii) and
(iii). In this paper, we present the results from actino-
metric measurements of the density of O atoms using
Ar atomsin a positive column of adc dischargein pure
oxygen. The method and results obtained are analyzed
based on a self-consistent model of a discharge using
different approaches to determining the EEDF: (@) the
two-term approximation (TTA), involving the solution
of the kinetic Boltzmann equation for the spatially
inhomogeneous EEDF, and (b) the particle-in-cell
method combined with the Monte Carlo technigue
(PIC-MC technique). The effect of nonlocal electron
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kinetics on the accuracy of the actinometric technique
is analyzed for the first time. In addition, the influence
of the dissociative excitation of O* on the results of
measurements of the O atom density by the actinomet-
ric technique is also examined.

2. EXPERIMENT

A dc discharge in pure O, was ignited in a 12-mm-
diameter molybdenum glass tube. The distance
between two profiled molybdenum electrodes was
490 mm. The experiments were carried out at pressures
of 0.15-6 torr and gas discharge currents of 3—
40 mA/cm?. In the experiment, the following discharge
characteristics were determined:

(i) Theradial profiles of the plasma potential (and,
correspondingly, the electric field) in the positive col-
umn of adischarge were measured using three movable
electric probes [23].

(i) The radia profiles of the EEDF were measured
using the second harmonic technique and anewly elab-
orated system of movable probes with optical recep-
tion—transmission channels and a feedback system for
active suppression of plasma noise [23].

(iii) The spatial profiles of the negative-ion density
were measured using the laser photodetachment tech-
nique [5].

(iv) The molecular oxygen density in two lower
(a'Ag and blz;) excited states was measured using IR
emission spectroscopy at 1268- and 762-nm wave-
lengths, respectively.

(V) The temperature of the discharge tube wall was
determined using chromel—alumel thermocoupl es.

(vi) The gastemperature near the axis of the positive
discharge column was determined using the spectro-
scopy of the vibrationally resolved ®P-branch of the

band O,(b'%y, v = 0) — OxX’Z,, v = 0) A =
762 nm).

(vii) The density of O atomsin the ground state was
measured with the help of the actinometric technique
using argon atoms and the optical transitions O(3p*P-
3p°S (A = 844.6 nm) and Ar(2p, — 1s5) (A = 811.5 nm).

(viii) Therecombination rate of O atoms on the tube
wall under discharge conditions was measured using
the actinometric technique for recording the decay
dynamics of the nonequilibrium oxygen atom density,
which was modulated by dightly modulating the dis-
charge current [26].

In this paper, we only present the results of measure-
ments referring to items (vii) and partly (viii), although
it is evident that all of the above measurements are
related to each other: when analyzing the results of
each particular experiment, we must invoke the data
from at |east several other experiments. The block dia-
gram of the experiment is shown in Fig. 1.
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In the experiment, we used an O, : Ar =98 : 2 mix-
ture. The radiation emitted by electronically excited
oxygen and argon atoms from the axial region of the
discharge tube (with a diameter of about 0.5-0.6 of the
tube diameter) was separated using aset of diaphragms.
Then, the radiation was focused on the it of a mono-
chromator and was detected by either a photomultiplier
with a GaAs photocathode or a 512-channel silicon
CCD array. In thelatter case, an OMA system based on
an IBM PC was used. In the scheme using a photomul -
tiplier, the discharge emission was modulated with a
mechanical shutter and the radiation in the 750- to
850-nm spectral region was recorded by a synchronous
detector (a PAR-5209 lock-in amplifier interface-con-
nected to the computer). Simultaneously, the synchro-
nous detector (with the help of a program-controlled
channel of a 16-bit ADC) recorded the electric probe
signal corresponding to the electric field strength in the
plasma.

To determine the loss rate of O atoms at the tube
wall during the discharge, the following method was
used. Itisknown that, for weak perturbations of thedis-
charge parameters, the time required for the steady-
state EEDF to be established in a gas-discharge plasma
at apressure of ~1 torr and E/N > 10 Td is shorter than
1 us. Experiments showed (see, e.g., [27, 28]) that the
time required for the electron density in O, plasmas to
reach a steady-state value is also short (on the order of
severa tens of microseconds). Under the same condi-
tions, the characteristic time required for the density of
oxygen atoms to reach a steady-state value is longer
than 1 ms because thistime is determined by the loss of
oxygen atoms at the discharge tube wall (for a tube
diameter of 1020 mm) [20, 29, 30]. Thisfact was used
to determine the rate of heterogeneous loss of O atoms
on glass under conditions of a discharge in pure O,. To
do this, the discharge current was modul ated by varying
the ballast resistance within several percent of its nom-
inal value. In this case, variationsin the electric field in
the positive column of the discharge did not exceed sev-
eral percent. The current was modulated with a fre-
guency of several tens of Hz; in this case, the relative
increase in the steady-state concentration of oxygen
atoms (A[O]) in the higher current phase was no more
than 2—3%. Therefore, one steady-state concentration
of oxygen atoms [O] changed to another: [O] + A[O].
In contrast, when going to the lower current phase, the
steady-state concentration of oxygen atoms|[O] + A[O]
changed to [O]. The characteristic time of these transi-
tions corresponded to the time during which the steady-
state oxygen atom concentration in the discharge was
reached; in turn, this time was determined by the
recombination rate of O atoms on the tube wall. The
experiments showed that, nearly 0.1 ms after the addi-
tional current was switched on or off, it was possible to
observe an increase or decrease in the oxygen atom
concentration by the value A[O] using the actinometric
technique. In other words, the discharge electrons,
whose density rapidly reached a steady-state value after
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Fig. 1. Schematic of the experiment: () discharge tube,
(2) movable probes, (3) high-voltage power supply, (4) dis-
charge-current modulation circuit, (5) optical system for
spatial separation of emission, (6) monochromator, (7) pho-
tomultiplier, (8) silicon CCD array, (9) CCD controller
plate, (10) synchronous detector or digital oscillograph, and
(11) computer.

switching the additional discharge current, “high-
lighted” the process of establishing the steady-state
atomic oxygen concentration. In this experiment, the
signals from the photomultiplier anode were fed to a
preamplifier and then to adigital oscillograph synchro-
nized with the modulation pulse. The oscillograph was
interface-connected to an IBM PC for data acquisition
and processing.

3. MODEL. CALCULATION
OF THE ELECTRONIC EXCITATION RATES,
INFLUENCE OF THE NONLOCAL CHARACTER
OF THE ELECTRON SPECTRUM

According to the scheme (1)—(4), the following
basic processes of excitation and deactivation of
O@3p?P) and Ar(2p,) atoms are possible:

2p,
e+ Ar(1py) <~ e+ Ar(2py), (10)

P
e+ 0(2p*3P) ke, e+ O(3p?3P),

2p,

Ar(2p,) Py Ar(1s;) + hvgy,

(11)

(12)

p

0(3pP) 4 038’9 + hvyy,, (13)

P

e+0, ® e+0+03pP), (14)

P
OGBpPP) + 0, X 0+ 0,,

1p,

Ar(2ps) + O, = Ar+0,.

(15)

(16)
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According to (5)—8), the degree of dissociation of oxy-
gen in aplasma can be represented as

O] _ f"g'_f“;‘*_[(gg, (17)
[O,] Plen | P
e
where
oy 25, S Am + S k(10
D32pg _ [Ar]hvg; Agp ke ™ 43 q (18)

=]

B [Oalfyy AP (P 2p, 2p,
Voulonfe 5 AT+ Y Ky O]
i q

A detailed analysis of the processes of radiative decay
(12) and (13) and collisional quenching (15) and (16)
was performed in [21, 22], where it was found that

Ao =Y An =298 x 10757, AL = ZA?"" = 4.6
m j

107 s7! (the O(3p’P - 3p’S) and Ar(2p, — 1s5) transi-

tions are the main processes of radiative decay of the

corresponding excited atomic levels), and k:P =8 X

10719,/T/300 cm®/s. We note that accurate data on the
rate constant for process (16) are not available; for this

reason, we used thevalue ks P =22 x10-19,/T/300 cm/s
for the total rate constant of quenching the 2p, level by
argon [23] because, for most of the 4p levels of Ar, the
cross sections for quenching by argon and oxygen have
nearly the same values. The chosen value agrees with

o, 10710 cm?
10°

107!
1072
1073

TTTTIT T T T T T T T T TTrm
w

10 100
g, eV

Fig. 2. Electron-impact excitation cross sections for
O(3p3P) and Ar(2pg) atoms as functions of the electron

3,
energy: oeP isthedirect-impact excitation cross section for

3,
0o@3p3P), odz isthe dissociative excitation cross section for

9

3 2p
O@3p °P), and o
Ar(2pg).

is the excitation cross section for
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the data from [22] on the rate constant for quenching
the Ar(2p,) level by O, molecules. The influence of
process (16) becomes significant at pressures above
~3 torr; therefore, inaccuracy in determining its rate
constant can lead to a certain inaccuracy of actinomet-
ric measurements.

As for the processes of electronic excitation (10),
(11), and (14), the calculation of the corresponding rate

constants k., k-, and k. requires not only a
detailed consideration of the cross sections of these
electronic processes, but also athorough analysis of al
the processes involved in the formation of the EEDF in
a plasma (including the calculation of the full set of
scattering cross sections for electrons). The latter, in
turn, includes an analysis of the correctness of the
approach used to calculate the EEDF for the given
experimental conditions. Therefore, the choice of the
electronic-excitation cross sections and methods for
calculating the EEDF is of key importance for the prob-
lem of the applicability limits and accuracy of the acti-
nometric technique.

The cross sectionsthat are necessary to calculate the
rate constants must be chosen based on independent
measurements of the atomic oxygen concentration.
Since we did not conduct such measurements, we used
a set of cross sections for the direct and dissociative
excitation of O(3p*P) atoms by electron impact from
[21, 22]. These cross sectionswere tested by measuring
the density of O atomsin adc dischargein pure O, with
the help of resonant UV absorption spectroscopy.
When choosing the excitation cross sections for the 2p,
level, we used the results of an analysis of electron-
impact excitation cross sections for heavy noble gases
[24]. The chosen energy profiles of the excitation cross
section for Ar(2p,) [31] also alowed for cascade exci-
tation processes. The obtained cross section corre-
sponds to a similar cross section from the set [25] also
used in [22] to calculate the excitation rate constant for
thetransition Ar(2p, — 1s,) (A = 750.3 nm). The energy
profiles of the excitation cross sections used to calcu-
late the corresponding electronic states of oxygen and
argon atoms are shown in Fig. 2.

Thefollowing approaches were used to analyze how
the methods for determining the EEDF affect the accu-
racy of actinometry. The first approach (which is com-
monly used) is to use a discharge model in the local
approximation; i.e., the EEDF is calculated by solving
the coordinate-independent Boltzmann eguation. The
second approach consistsin using a nonlocal model of
a discharge. In this case, two methods were used to
determine the spatially inhomogeneous EEDF:

(i) The EEDF is determined by solving the coordi-
nate-dependent kinetic equation for the radial electric
field using the two-term approximation for the EEDF
(see Part | of this paper dedicated to the nonlocal char-
acter of the EEDF) [5, 26, 27].
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(ii) The EEDF is calculated by the PIC-MC tech-
nique, which allows one to accurately take into account
the spatial inhomogeneity of the EEDF [4, 5, 28]. In all
cases, we used the same set of electron-scattering cross
sections for O, (see Fig. 4in Part | of this paper). This
set of cross sections was tested in many experiments.
The basic processes determining the electrodynamics
of aglow discharge in pure O, arelisted in [5].

The EEDF was calculated self-consistently at pres-
sures of 0.15-6 torr and currents of 5-40 mA/cm?. In
the approach using the PIC-MC technique, we used the
fast numerical code developed in [28].

The electron motion was described by a time-depen-
dent equation for the distribution function F(v, r, t) in
one-dimensional coordinate space and three-dimen-
siona momentum space [see EQ. (1) in Part | of this
paper]. Here, r istheradial coordinateand v = (v, vy, V)
is the velocity. The electric field was assumed to have
radial and axial coordinates only: E = (E, 0, E). The
radial density profiles of positive and negative ions
were determined from the continuity equation in which
a diffusion—drift model was used to describe positive-
and negative-ion flows [5, 27]. The densities of active
particles were obtained from experimental data. The set
of equations was closed by Poisson’s equation for the
radial component of the electric field. The axial compo-
nent E, of the electric field was assumed to be indepen-
dent of r; consequently, its value could be found from
the condition that the total axial current is equal to that
measured experimentally.

The importance of the nonlocal character of the
EEDF in the plasma of O, is demonstrated in Part | of
this paper, where, by comparing the experiment with
the MC calculations, we analyze the applicability of the
two-term approximation to the solution of the coordi-
nate-dependent Boltzmann equation. It is shown that
the two-term approximation correctly takes into
account the effects associated with the nonlocal charac-
ter of the EEDF in the range of plasma parameters
where the anisotropy of the EEDF is dtill relatively
small. However, for sufficiently small values of the
parameter RN (where R is the tube radius and N is the
neutral density at the axis of the positive column) and a
relatively high reduced electric field (RN < 106 cmr?
and E/N > 150 Td), only rigorous approaches to calcu-
lating the EEDF (such as the PIC-MC method) permit
one to accurately take into account the spatial inhomo-
geneity of the EEDF and, consequently, the atom emis-
sion intensity. Thus, the use of the PIC-MC technique
iswell justified for pressuresbelow 0.5 torr (see Fig. 3).

In addition to the effects associated with the nonlo-
cal character of the EEDF, a correct description of the
electron kinetics in a pure oxygen plasma requires a
self-consistent description of the ion—molecule kinet-
ics, which strongly affects the EEDF through the redis-
tribution of the electric field in the plasma due to non-
equilibrium ion diffusion and detachment from nega-
tiveions[4, 5, 29, 30, 32, 33]. Theimportance of taking
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Fig. 3. Reduced electric field at the axis of adc dischargein
pure O, as a function of the parameter RN, where R is the

tube radius and N is the gas density at the discharge axis.
Open circles show the experimental datainthe current range

10-30 mA/cm?. Closed circles show the experimental data

for J =5 mA/cm?. The solid curve corresponds to calcula
tion by the PIC-MC technique taking into account detach-
ment and nonequilibrium ion diffusion. The dashed-and-
dotted curve corresponds to the EEDF calculated using the
two-term approximation for solving the coordinate-depen-
dent Boltzmann equation. The dashed curve corresponds to
the latter calculation, but without taking into account ion
heating in an externa electric field. The dotted curve corre-
sponds to the same calculation, but without taking into
account the detachment from negative ions and nonequilib-
rium ion diffusion. All of the calculations were performed

for acurrent density of 5 mA/cm?.

into account the ion kinetics in the accurate description
of the EEDF and the large role of nonequilibrium heat-
ing of ions by the longitudinal electric field were dem-
onstrated in [4, 5]. Figure 3 shows the experimentally
measured and calculated reduced electric fields in the
center of the positive column of a dc discharge in pure
oxygen as functions of the parameter RN. Calculations
were carried out with and without taking into account
both detachment from oxygen atoms and singlet oxy-
gen molecules and ion diffusion due to nonequilibrium
heating of plasma ions. From a comparison with the
experiment, it is evident that detachment and nonequi-
librium ion diffusion significantly affect the value of
the electric field in the discharge, thus also affecting the
excitation coefficients of atoms and molecules (espe-
cidly the excitation of higher levels). However, these
processes (first of all, ion heating by the longitudinal
electric field) also change the radial density profiles of
charged particles. In [5], from a comparison of the cal-
culated and measured radial profiles of the negative-ion
density by the laser-detachment technique, it wasfound
that nonequilibrium ion diffusion significantly affects
the density profile of negative ions. This leads to the
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Fig. 4. Averaged (over the discharge tube cross section) rate

2p P - i
constants k. , k. *, and kg, for direct electron-impact

e
excitation of 0(3p3P) and Ar(2py) atoms and dissociative

excitation of O(3p>P) atoms, respectively, as functions of
the reduced electric field. The solid curves show the rate
constants cal culated by the PIC-M C technique. The dashed
curves show the rate constants calculated from the EEDF
with the use of the two-term approximation for solving the
coordinate-dependent Boltzmann equation. The dashed-
and-dotted curves correspond to the rate constants obtained
from the EEDF calculated using the “local” (coordinate-
independent) approximation for solving the Boltzmann
equation.

spatial redistribution of thefield in the plasmaand, con-
sequently, the emission intensity.

Figure 4 illustrates the averaged (over the discharge

i 3 2 3
tube cross section) rate constants keF> , Ke P and kdz for

the direct electron-impact excitation of O(3p*P) and
Ar(2p,) atoms and dissociative excitation of O(3p’P)
atoms, respectively, as functions of the reduced el ectric
field. The solid curves show the rate constants obtained
from the EEDFs calculated by the MC technique, the
dashed curves show the rate constants calculated from
the EEDFs using the two-term approximation, and the
dashed-and-dotted curves correspond to the rate con-
stants obtained from the EEDFs calculated using the
local approximation.

The study of the process of establishing the steady-
state oxygen atom concentration by modulating the dis-
charge current with the use of the actinometric tech-
nique alowed us to determine how the contribution
from dissociative excitation to the actinometric signal
depends on the discharge parameters. By virtue of the
fact that the contribution to the emission intensity
related to the transition O(3p°P — 3p*S) comes from the
direct electron-impact excitation of O atoms (11) and

IVANOV et al.

the dissociative excitation of O, molecules (14), the
characteristic times of these processes are determined
by the time it takes for the steady-state hydrogen-atom
and electron densities, respectively, to be established.
The contribution from each of these processes can be
derived from the emission intensity of oxygen atoms.
Figure 5 shows the typical time behavior of the ratio
between the emission intensities at wavelengths of
844.6 and 811.5 nm (lgu/lg1) in the course of dis-
charge-current modulation. It is clearly seen that there
are two components in the signal. The first component
varies synchronously with the current modulation and
produces a certain constant level of the signal. This
component is associated with the dissociative excita-
tion of oxygen molecules. The second component var-
ies much more slowly and has a characteristic time on
the order of severa milliseconds. This component can
be associated with the direct excitation of oxygen
atoms; thus, it reflects the time evolution of their den-
sity. From acomparison of these two componentsin the
modulated signal, we could determine the contribution
from processes (11) and (14) to the total intensity of the
844.6-nm line.

4. DISCUSSION

It is seen from Fig. 4 that taking into account the
nonlocal character of the EEDF can lead to asignificant
change even in the averaged (over the cross section of
the tube) values of the excitation rate constants for the
atomic and molecular levels. This effect is more pro-
nounced near the tube wall. It is obvious that, for the
higher states of oxygen and argon atoms, this effect is
more significant at higher values of the reduced electric
field, i.e., at lower pressures (RN < 10'¢ cm2). As fol-
lowsfrom (7) and (8) or (17) and (18), the actinometric
technique does not use the electronic excitation rate
constants, but their ratio instead. Figure 6 shows the

. 2py %P % %
ratios of therate constants k, ~/k, and ky./k, calcu-

lated using the above approaches to solving the Boltz-
mann equation: the two-term approximation and the
PIC-MC technique. It is seen that, although the calcu-

3, 2 3,
lated values of the rate constants kep, kep", and kdz

depend on the accuracy with which the effect of spatial
inhomogeneity on the electron kineticsin the discharge
is described, their ratio does not need such a detailed
analysis even in the region where the EEDF has a
strongly nonlocal character (in the case at hand, at
higher values of E/N corresponding to lower pressures).
This is the reason why the actinometric technique has
been successfully used in discharges of different con-
figurations and over awide range of discharge parame-

ters. Figure 6 also shows the values of theratio kZZ/ k:P

derived from the contribution of the dissociative excita-
tion to the intensity of the 844.6-nm line in the experi-
ments with discharge current modulation. It is seen that
PLASMA PHYSICS REPORTS  Vol. 26
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Fig. 5. Time behavior of the ratio between the emission intensities at wavelengths of 844.6 and 811.5 nm (Ig44/lg11) in the course of
the discharge current modulation; Al g and Al denote the fractions of the emission intensity related to dissociative and electron-

[O] _ ~2Pslsas Ble

impact excitation of O(3p3P), respectively. The degree of oxygen dissociation is

the experimental values of k:,'Z/ kzp lie nearly one-half

lower than the calculated curve. A plausible explana
tion of thisfact will be given below.

Figure 7 shows the degree of dissociation [0]/[O,]
as a function of the discharge current J for different
pressures; the curves are calculated using expressions
(17) and (18) and the experimentally measured inten-
Sity ratio lgy/lg;. It is seen that the degree of dissocia-
tion increases with increasing both the pressure and
discharge current. The increase in [O]/[O,] with
increasing the discharge current is caused by an
increase in the dissociation rate, which, in turn, is
caused primarily by an increase in the electron density.
An increase in [0O]/[O,] with increasing pressure
(which was also observed in [22]) can be only be
explained by a decrease in the loss rate of O atoms,
because the rate constants of electron-impact dissocia-
tion decrease as the pressure increases (i.e., as the
reduced electric field E/N decreases). Since the recom-
bination of oxygen atoms on the tube wall is the main
process leading to their loss under these conditions
[34], it is reasonable to assume that the probability of
the recombination of O atoms on the surface of the dis-
charge tube increases with decreasing pressure. A sim-
ilar result was obtained experimentally in[35] when the
loss of O atoms on Pyrex was studied by the resonant
UV absorption technique. Therefore, the oxygen atom
density in alow-pressure discharge (and, consequently,
the structure of the discharge, because the balance of
charged particlesis governed by detachment processes,
among which the detachment from O atoms is one of
the main processes) is determined by the loss of O
atoms on the discharge chamber wall. Since this loss
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[O2] = %P lgy1Blgy,

depends on many factors (e.g., the chamber material
and the methods for processing and cleaning the cham-
ber wall surface), it is possible to obtain different dis-
charge structures for different coatings of the discharge
chamber wall at the same discharge parameters, which
is of scientific and practical interest.

Note that, as the pressure decreases (i.e,, E/N
increases), the obtained degree of dissociation [O]/[O,]
does not vanish at J — 0, but approaches a certain
negative value. Presumably, this is due to the fact that
the calculated contribution of dissociative excitation to
the emission intensity of oxygen atoms lg,, iS SOme-
what overestimated. Thisis also evidenced by the data
represented in Fig. 6. Asaplausible explanation of such
an “artefact,” we can suggest that either the dissociative
excitation cross section is incorrectly evaluated or the
EEDF isincorrectly described near the threshold (in the
energy range of 16-20 eV). In principle, both situations
are possible. In a low-pressure glow discharge, when
recombination on the tube wall is the dominating elec-
tron-loss process, the EEDF at electron energies higher
than the ionization energy of the gas (12.06 eV for O,
molecules) is determined by the value of the wall
potential [36], which is a very complicated function of
the plasma parameters and boundary conditions. An
accurate description of the electron losson thewall isa
rather complicated problem calling for knowledge of
the coefficients of loss and reflection of electrons from
the wall material; moreover, these coefficients may
depend on the state of this surface. At low pressures,
when the kinetic regime of electron lossisrealized, we
should know the differential loss and reflection coeffi-
cients. Note that, with the set of cross sections normal-
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ized to transport coefficients (in particular, to the ion-
ization coefficient for O,), the self-consistent calcula-
tion by the PIC-MC technique yields a value of the
reduced electric field close to that observed experimen-
tally at a given discharge current. This means that the
calculated EEDF is also close to the rea distribution
function. However, thisassertionistrueonly in the case
of an absolutely precise description of theion kinetics.
In our calculations, the ions were described in the
hydrodynamic approximation. However, as the pres-
sure decreases below 1 torr, this approximation is no
longer sufficiently accurate in the region of the wall
potential jump because theion mean free path becomes
comparable with the size of this region. The hydrody-
namic approximation overestimatestheion flow toward
the wall, thereby overestimating the wall potential and
the high-energy part of the EEDF. The latter, in turn,
leads to overestimating the calcul ated excitation coeffi-
cientsfor higher levels of atoms and moleculesin com-
parison with the experiment, which is reflected in
Fig. 6.

It should be noted that reliable experimental data on
the dissoci ative excitation cross section for O(3p°P) inthe
near-threshold region are till lacking. Usudly, the adia-
batic energy of the dissociation products O3p’P) + O
equal to ~16 eV istaken asthe threshold energy for this
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Fig. 7. Degree of dissociation [0]/[O,] as afunction of the

discharge current for different pressures. The curvesarecal-
culated using expressions (17) and (18) and the experimen-
tally measured intensity ratio lgy44/lg11. The dashed curves

show the results of calculations for pressures 0.15, 0.3, and
0.5 torr for the dissociative-excitation threshold energy
[process (14)]shifted by 2 eV toward higher energies. For
pressures above 0.75 torr, the contribution from dissociative
excitation is negligibly small and the dashed and solid
curves coincide.

process, but the actual threshold energy may be differ-
ent because of the relative positions of the ground and
excited terms of O, molecules (which, however, is not
definitely established in experiments). In principle, the
positions of the terms of O3 molecules in the energy

range of 16-19 eV permit the existence of a certain
threshold. For this reason, to avoid the above “ artefact”
in the J-profiles of the degree of dissociation [0]/[O,],
the threshold energy for process (14) of dissociative
excitation of O(3p’P) atoms was increased by ~2 eV.
Thisalowed usto decrease the contribution of thispro-
cess at high values of the parameter E/N by afactor of
about 2 and to achieve satisfactory agreement between
the calculated and experimental values of the ratio

kzz / kzp . Theresults of calculations of [0]/[O,] for this

case are shown by the dashed curvesin Fig. 7. Itisseen
that the decrease in the dissociative excitation rate by
shifting the threshold energy for this process toward
higher energies leads to a physically reasonable behav-
ior of the dependence of the degree of oxygen dissoci-
ation on the discharge current at low pressures:
[0)/[0,] — 0asJ — 0.

Thus, along with the fact that the nonlocal character
of the EEDF does not significantly influence the acti-
PLASMA PHYSICS REPORTS  Vol. 26
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nometry of atomic oxygen, it isalso of importance that,
for E/N < 200 Td and a degree of oxygen dissociation
higher than ~0.02, there is no need to take into account
the dissociative excitation of O(3p’P) atoms when
using the transition O(3p°*P) —= O(3p’S).

5. CONCLUSION

In this paper, we have presented the results from
measurements of the oxygen atom density in the posi-
tive column of adc dischargein pure oxygen by the act-
inometric technique using Ar atoms. This technique
and the results obtained are analyzed using two differ-
ent approaches to solving the Boltzmann equation for a
spatially inhomogeneous EEDF: the two-term approxi-
mation and the Monte Carlo method. Based on a
detailed consideration of the processes governing the
behavior of the EEDF in the discharge, the influence of
both the nonlocal nature of the electron energy spec-
trum and the discharge kinetics on the accuracy of such
measurements is examined. It is shown that the nonlo-
cal character of the EEDF can appreciably affect the
intensity of the emission lines of oxygen and argon
atoms, but has little effect on the actinometric signal as
compared to the case where a spatially homogeneous
EEDF is used to calculate the electronic excitation
coefficients for the emitting states of O and Ar atoms
(the difference does not exceed 1-3%). The reason for
thisis that the excitation thresholds of the O* and Ar*
states are close to each other and the energy profiles of
the cross sections for the excitation of these states are
similar in shape. The effect of the discharge kineticsis
more pronounced becauseit significantly influencesthe
plasma parameters. Over a wide range of parameters,
the eectric field in a pure O, discharge is determined
by electron detachment from negative ions by active
particles, O atoms, and metastable O, molecules.
Therefore, because of the very sharp dependence onthe
field, an incorrect description of these processes leads
to large errors in determining the rate constants for the
atom excitation. Hence, the use of the actinometric
technique for measuring the absolute concentration of
oxygen atoms in the ground state requires, first of al, a
very detailed description of the discharge plasmochem-
ical kinetics and athorough analysis of all the possible
processes. It should be emphasized that applying this
technique to low-pressure discharges (RN < 10'7 cm)
requires that the processes of active-particle losson the
discharge chamber wall also be considered in detail
because, in this case, these processes determine the
active-particle density. However, the use of the actino-
metric technique for monitoring the behavior of the O
atom density in a plasmaisjustified over awide range
of reduced electric fields (up to ~200 Td) when the
O3p’P-3p’S transition (A = 844.6 nm) isused and the
degree of dissociation is[0]/[O,] > 0.02.
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