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Abstract—An improved confinement regime with an external transport barrier (H-mode) is obtained during
electron-cyclotron resonance heating of a plasma in the T-10 tokamak. A characteristic feature of this regime is
a spontaneous density growth accompanied by a drop in the intensity of Dα line and an increase in βp by a factor
of ~1.6. The threshold power for the L–H transition is close to that predicted by the ITER scaling. The best
characteristics of the H-mode are achieved with decreasing qL to 2.2. It is shown that the external transport bar-
rier arises for electrons, whereas the heat transport barrier insignificantly contributes to improved confinement.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION. EXPERIMENTAL 
CONDITIONS

During electron-cyclotron resonance heating
(ECRH) in the T-10 tokamak, a regime of improved
confinement was obtained (Fig. 1) with features resem-
bling those observed in the regime with an external
transport barrier (H-mode) [1].

This regime was investigated over a wide range of
toroidal magnetic fields from BT = 2.42 T (on-axis
microwave power deposition) to BT = 2.14 T [the elec-
tron-cyclotron resonance (ECR) is shifted by 19 cm
toward higher magnetic fields (ρECR . rECR/aL = 0.65)].
To clarify the main features of the H-mode, the plasma
density was varied from  = 1.2 × 1019 to 2.6 × 1019 m–3

(in the L-phase). The value of qL varied from qL = 2.2 to
4.1 (which corresponded to a change in the plasma cur-
rent Ip from 330 to180 kA at BT = 2.42 T). The micro-
wave power absorbed in the plasma attained Pab =
0.8 MW. Note that microwaves (second ECR har-
monic, X-mode) were launched into the plasma at an
angle of ψ = 21° to the direction of the major radius R.
All experiments were carried out with the electron-
cyclotron current drive ICD in the direction of the
plasma current (co-CD). At high currents (Ip > 180 kA),
ICD comprised a small fraction of Ip, so that its influence
on the processes under study was negligible.

In the experiments under discussion, the limiter
radius was aL = 30 cm.
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2. MAIN FEATURES OF THE OBSERVED MODE 
OF IMPROVED PLASMA CONFINEMENT 

(H-MODE)

1. As is seen from Fig. 1, the transition to improved
confinement (tL–H . 500 ms) manifests itself as a spon-
taneous growth in the plasma density accompanied by
a decrease in the intensity IDα of the Dα line in various
plasma cross sections, including the limiter cross sec-
tion. In the best regimes, the plasma density  nearly
doubled by the end of the microwave pulse when the
gas-puffing valve in the feedback system was switched
off completely. The intensity IDα fell by a factor of 3 to
4 (Fig. 1), indicating a substantial decrease in the
inward neutral flux (ΓIN = kαIDα, where kα ≈ const).

Figure 2 shows the profiles of the plasma density
ne(r) and its gradient grad(ne). These data demonstrate
that the density gradient increases predominantly in the
region r ≥ 20 cm. Therefore, we may conclude that an
external transport barrier arises near the limiter.

2. After the L–H transition, the plasma-density
growth is accompanied by an increase in the plasma
energy. This is evident from Fig. 1, which shows the
time behavior of the value β + li/2 (together with calcu-
lated values of (li/2)calc and the value of βp derived from
diamagnetic measurements).

An assessment of the improvement in the energy
confinement time in the H-mode (compared to the
L-mode) can be made using the data presented in the
table for several pulses with nearly the same parameters
(BT = 2.42 T, Ip = 330 kA, and qL = 2.2).
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Fig. 1. Time evolutions of (a) the mean plasma density ;

(b) quantities β + li/2 (data from the plasma equilibrium)
and βp (diamagnetic measurements) (here and below, the
scale for (li/2)calc is the same as for β + li/2); (c) intensity
of the Dα line; (d) electron temperature Te; and (e) radiation
power Prad in the regime with the L–H transition (shot
no. 26 154, BT = 2.42 T, Ip = 330 kA, qL = 2.2, and Pab =
750 kW); tL−H is the instant of the L–H transition.
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Fig. 2. Profiles of the density ne(r) and density gradient
grad(ne) in the L-phase (t = 470 ms) and at the end of the
microwave pulse in the H-phase (t = 790 ms).
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The values of βp shown in the table were determined
in different ways:

(i) βdia was obtained from diamagnetic measure-
ments;

(ii) βeq was obtained from the data on the plasma
equilibrium (with taking into account the calculated
value of li); and

(iii) βkin was obtained from the Te , Ti, and ne profiles.
Based on these data, we can characterize the

improvement of confinement in the H-mode by the
enhancement factor

As was shown in [2], the experimental value of the

energy confinement time  in the L-mode regimes in
the T-10 tokamak turned out to be ~30–40% lower than
that predicted by the ITER-89-P scaling ((τE)IT-89),
compared with the latter for  ≈ 3–4 × 1019 m–3, and
exceeded (τE)IT-89 at higher densities. In high-current
low-density regimes (Ip = 300 kA and  . 1.5 ×

1019 m–3), the energy confinement time is  . 12–
13 ms, which is about one-half of (τE)IT-89.

3. As will be shown below (see Sections 5 and 6),
the L–H transition is accompanied by the generation of
an electric field in a narrow layer (∆H . 2 cm) near the
limiter and by a decrease in the amplitude of turbulent
fluctuations.

4. The plasma-density growth in the H-mode cannot
be explained by an increase in the impurity flux into the
plasma. The intensity of the CIII line in the limiter cross

section, , remains almost unchanged after the L–H
transition. An insignificant increase in the radiation
power Prad (Fig. 1) in the H-phase may be explained by
the increase in the plasma density.

There is no evidence of a substantial accumulation
of impurities in the plasma core in the H-mode. The
intensity of X-ray emission and the increase in the
intensity of continuum correlate with the plasma-den-
sity growth.

3. THRESHOLD POWER 
FOR THE L–H TRANSITION

To determine the threshold power  for the L–H
transition, we carried out experiments in which the
heating microwave power was gradually elevated in the
regime with BT = 2.42 T (on-axis heating), Ip = 330 kA
(qL = 2.2), and  = 1.5 × 1019 m–3 (before the L–H tran-
sition).

The results of this series of experiments are pre-
sented in Fig. 3 as the dependence of the enhancement
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Table

Shot no.
L-phase H-phase HL = βH/βL

βeq βdia βkin βeq βdia βkin eq dia kin

26154 0.200 0.167 0.168 0.310 0.267 0.267 1.55 1.59 1.60

26308 0.160 0.149 0.168 0.266 0.250 0.273 1.66 1.62 1.68

26319 0.160 – – 0.260 – – 1.63 – –

26321 0.167 0.158 0.14 0.260 0.247 0.281 1.56 1.56 2

26322 0.170 0.172 – 0.270 0.265 – 1.59 1.54 –
factor HL = /  on the total heating power Ptot =
Pab + POH, where POH is the Ohmic heating power. As
Ptot decreases, the value of HL drops, approaching unity

near Ptot =  . 600 kW. Thus, in typical regimes
with the maximum ECRH power, Ptot exceeds the

threshold power  by ~70%. The threshold power

 = 600 kW is close to that predicted by the ITER
scaling [3]: 

where BT is expressed in T; a and R, in m; and ne, in
units of 1020 m–3.

In these estimates, the radiation power Prad (which is
~170 kW in the regimes under discussion) was not
taken into account, because the radial profile of Prad was
not measured in the T-10 tokamak. We believe that
accurately taking Prad into account might only slightly
decrease the threshold power for the L–H transition
in T-10.

4. DOMAIN OF EXISTENCE OF THE H-MODE 
(GENERAL FEATURES)

4.1. Dependence on qL

It is seen from Fig. 4 that, for on-axis heating (BT =
2.42 T), the H-mode is observed over a wide range of
plasma currents Ip (i.e., qL). As Ip decreases (qL

increases), the enhancement factor HL in the H-mode
falls and, for qL > 4 (Ip ≤ 180 kA), the L–H transition
does not occur.

We note that a similar tendency (Fig. 4) toward the
improvement of plasma confinement in the H-mode
(i.e., an increase in the factor HL with decreasing qL)
was also observed for off-axis heating (BT = 2.14 T). In
this case, the largest value of HL was also attained at
low values of the safety factor (at qL ≈ 2, other parame-
ters being the same).

These results should be regarded not as an enhanced
(in comparison with the L-mode) dependence of τE on
Ip in the H-mode but as the fact that the threshold power

βp
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L
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 increases as qL increases. Such a dependence was
not observed in other devices (the ITER scaling for

 does not contain any dependence on qL). Appar-
ently, this may be explained as a specific feature of T-
10 regimes: the rate of effective electron transport at the
edge is proportional to the safety factor squared
((χl)eff ~ q2), which leads to a narrowing of the Te pro-
file; a decrease in the temperature gradient ∇ Te at the

edge; and, as a consequence, an increase in  with
increasing qL.

4.2. Dependence on the Density

It follows from Fig. 5 that, as the plasma density 
increases, the factor HL characterizing the increase in
the energy confinement time τE in the H-mode
decreases.

In the main regime with qL = 2.2 (Ip = 330 kA) and
BT = 2.42 T, the L–H transition is no longer observed
for  ≥ 3.4 × 1019 m–3 (Fig. 5). The fact that the L–H
transition disappears as the density increases may
apparently be explained by the increase in the threshold
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Fig. 3. Dependence of the enhancement factor HL on the
total heating power Ptot.
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BT = 2.42 T and Pab = 750 kW: (a) qL = 2.2 (shot no. 26 308, Ip = 330 kA), (b) qL = 3 (shot no. 26 311, Ip = 240 kA), and (c) qL =
4.1 (shot no. 26 314, Ip = 180 kA). (d) The enhancement factor HL as a function of qL.

ne
power  for the L–H transition. Indeed, according to

the ITER scaling, we have  ~ n0.58. Since, in the ini-

tial regime (in the L-phase), the density is equal to  .
1.4–1.5 × 1019 m–3 and the total heating power Ptot

exceeds the threshold power  by nearly 70%, we
can expect that, according to the scaling, the L–H tran-
sition should disappear at the plasma density nth ~ 1.5 ×
1019 × (1.7)1/0.58 . 3.6 × 1019 m–3, which is close to the
experimentally observed limit.

Hence, the data obtained in T-10 are consistent with

the prediction that  should grow with increasing
plasma density.

Pth
LH
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ne
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LH
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The data presented in Figs. 6 and 7 provide addi-
tional information on the features of the H-mode in the
T-10 tokamak. As was noted above, the main feature is
the fact that the plasma density  continues to grow
when the gas-puffing valve is switched off completely
and the intensity IDα (i.e., the neutral flux into the
plasma) decreases. In the main regime (BT = 2.42 T,
Ip = 330 kA), the plasma density  in the H-mode
nearly doubles by the end of the microwave pulse,
reaching  = 3 × 1019 m–3.

For the ECRH experiments in T-10 [4], the charac-
teristic feature of the L-mode is that the energy confine-
ment time grows with increasing plasma density.
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It is seen from Fig. 6 that, if we increase the plasma
density to the same level (3 × 1019 m–3) as is attained in
the H-mode by the end of the microwave pulse, then the
value of βp and the energy confinement time τE in the
L-mode turn out to be close to those in the H-mode (the
values of Ptot in both cases are nearly the same).

Figure 7 shows the time dependences of the electron
temperature Te (the second harmonic of electron-cyclo-
tron emission) at different radii. It is seen that the elec-
tron temperature increases insignificantly during the
L−H transition.

Hence, the transport barrier observed experimen-
tally in the H-mode is a barrier for particles, whereas
PLASMA PHYSICS REPORTS      Vol. 26      No. 11      2000
the thermal barrier, which is identified by an increase in
Te, is low and insignificantly contributes to the increase
in the plasma energy in the H-mode. This is also con-
firmed by the results from modeling the external barrier
in the H-mode (see Section 8).

4.3. Dependence on the Magnetic Field BT

In T-10, an L–H transition was observed throughout
the entire investigated range of BT from 2.42 T, when
microwave power was absorbed in the center of the
plasma, up to BT = 2.14 T, when the absorption region
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the L–H transition in shot no. 26 326).

Fig. 7. Time evolution of the electron temperature Te after
the transition to the H-mode (shot no. 26034, BT = 2.42 T,
qL = 2.34, Ip = 310 kA, and Pab = 750 kW).
was shifted by ~18–19 cm toward higher magnetic
fields (ρECR . 0.65).

Figure 8 illustrates the time dependences of the
plasma density , the value of βp + li/2 (together with
the calculated values of (li/2)calc), and the intensity of Dα
emission. It is seen that the main features of the
H-mode (such as spontaneous density growth, the drop
in IDα, and the increase in the plasma energy) vary only
slightly even though there is a substantial difference in
the values of BT. Both the density and β increments vary
slightly as BT varies.

As was expected (see Fig. 8d), the strong shift of the
ECR region (BT = 2.14 T) leads to a small change in the
plasma energy after the microwave power is switched
on. Therefore, in this case of off-axis heating, the
plasma energy and, consequently, the energy confine-
ment time τE in the H-mode are markedly lower than
those for on-axis heating (BT = 2.42 T).

The effect of BT variations is most pronounced in the
behavior of the electron temperature.

As is seen from Fig. 9 (cf. Fig. 7), the increase in Te

in the region r/a ≤ 0.65 after the L–H transition in the
case of off-axis heating (BT = 2.14 T) is more pro-
nounced than for on-axis heating (BT = 2.42 T). In addi-
tion, in the case of off-axis heating, the electron tem-
perature in the H-mode does not decrease with increas-
ing density. In contrast, as the power-deposition region
shifts closer to the center of the plasma, the decrease in
Te due to the density growth becomes more pro-
nounced.

Presumably, the fact that the decrease in the incre-
ment of the temperature Te becomes smaller as the ECR
region approaches the plasma axis is related to the
increase in the power Pei transferred from electrons to
ions. This is evidenced by the following experimental
results:

(i) In the case of on-axis heating in the steady-state
phase of the H-mode, the central ion temperature Ti(0)
is significantly higher than that for off-axis heating:
Ti(0) = 550 eV at BT = 2.42 T (on-axis heating) in com-
parison with Ti(0) = 420 eV at BT = 2.14 T (off-axis
heating).

(ii) In the regimes with on-axis heating in which the
increase in the density is lower, the temperature Te after
the L–H transition slightly increases.

In [5], it is asserted that, in the case of off-axis heat-
ing (BT ≤ 2.14 T), an internal transport barrier (ITB)
arises near the microwave absorption region in the
H-mode; as a result, the Te increment in these regimes
is larger than that for on-axis heating. However, as is
seen from Fig. 8, the contribution from the ITB to the
global improvement of confinement in the H-mode is
insignificant if we also take into account the depen-
dence of the energy confinement time on the plasma
density.
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5. MEASUREMENTS OF THE RADIAL 
ELECTRIC FIELD IN REGIMES 
WITH THE L–H TRANSITION

The plasma potential and, consequently, the radial
electric field Er in the outer (r/a > 0.65) region of the
plasma column were measured with a heavy-ion beam
probe diagnostic using a 170-keV Tl beam [6].

The results of the measurements of the plasma
potential ∆ϕ are presented in Fig. 10 for the case of on-
axis heating (BT = 2.42 T). The time dependences of
IDα, , and ∆ϕ at the radius r(ϕmin)/a . 0.95 corre-
sponding to the minimum potential ϕmin (see Fig. 10b)
are shown in Fig. 10a. Figure 10b shows the ∆ϕ(r) pro-
files for the instants indicated in Fig. 10a.
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We note that the quantity ∆ϕ presented in Fig. 10 is

defined with respect to the “base” plasma potential 

in the L-phase of the discharge (∆ϕ = ϕ – ). The time

interval in which the base potential  was determined
is also shown in the figure. Thus, the presented data
characterize the variations in the potential (and, conse-
quently, in the radial electric field Er = –grad(ϕ) relative
to its value in the L-phase of the discharge). Figure 11
also shows the variations in ∆ϕ (at r = r(ϕmin)), includ-
ing the earlier stage of the discharge before switching
on the heating microwave pulse.

The characteristic features of the behavior of the
electric field in the H-mode discharges are the fol-
lowing:

ϕB
L

ϕB
L

ϕB
L
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(i) During the L–H transition, the radial electric field
is generated in a narrow region (∆r . 1.5–2 cm) adja-
cent to the limiter.

(ii) After the microwave pulse is switched on, a pos-
itive (i.e., directed outward) electric field Er is gener-
ated in this region. This indicates that, in the L-phase,
the ratio 〈ve〉 ⊥ /〈vi〉 ⊥  between the transverse (diffusion)
velocities of electrons and ions at the plasma edge
increases with respect to the Ohmic phase of the dis-
charge.

(iii) During the L–H transition, the field Er changes
its sign and becomes negative (directed inward). How-
ever, during the L–H transition, this negative field is
low compared to its maximum value reached before the
end of the microwave pulse, when the H-mode is nearly
steady-state.

(iv) After the L–H transition, the negative radial
field Er increases in magnitude with a characteristic
time close to that for the intensity IDα and reaches its
maximum (Er . –(400–500) V/cm) when the H-mode
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Fig. 9. Time evolution of the electron temperature Te in the
H-mode in the case of off-axis heating (shot no. 26019,
BT = 2.14 T, qL = 2.2, Ip = 293 kA).
is near its steady state (i.e., the density and βp are nearly
maximum).

Note that, as is seen from Fig. 10b, the potential pro-
file has the shape of a well. This means that, along with
the negative field considered above, a positive field Er

is generated on the inner side of the barrier. However,
the role of this field and its influence on the features of
the H-mode are still unknown and will be the subject of
further investigations of the H-mode in T-10.

6. CHANGE IN THE PLASMA TURBULENCE 
DURING THE L–H TRANSITION

The measurements of plasma turbulence were pri-
marily carried out with a two-frequency reflectometer
[7]; the frequency was varied in the range f = 26.4–
36 GHz, which corresponded to the variations in the
plasma density in the reflection layer in the range ne =
(0.85–1.6) × 1019 m–3. In addition, oscillations in the
frequency range f = 2–6 GHz were measured with the
help of a loop placed outside the limiter and with an
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Fig. 10. Results from measurements of the plasma potential
∆ϕ in the H-mode (BT = 2.42 T, qL = 2.2, Ip = 330 kA, and
Pab = 750 kW): (a) time evolution of ∆ϕ for r(ϕmin) and
(b) radial profiles of ∆ϕ for the instants indicated by the
arrows in plot (a). The interval for determining the base

value of the potential  is also shown in plot (a).ϕB
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X-ray diagnostics detecting fluctuations in the fre-
quency range f ≤ 50 kHz.

Figure 12 shows the reflectometer signals for two
probing frequencies (indicated in figure) in the regime
with BT = 2.42 T, I = 330 kA (qL = 2.2), and  . 1.6 ×
1019 m–3 (shot no. 26308). The figure also shows the
time dependences of the reflection-layer radius rref for
both probing frequencies.

The general features of the phenomena observed
can be described as follows.

(i) In the frequency range f < 100 kHz, in which the
amplitude of turbulent fluctuations was maximum (see
Fig. 12), the fluctuation amplitude did not decrease dur-
ing the L–H transition (in some shots, the amplitude
even increased). However, more detailed studies
showed that, during the L–H transition, coherent turbu-
lent fluctuations at frequencies f . 100 kHz were sub-
stantially suppressed.

(ii) As is seen from Fig. 12, the amplitude of turbu-
lent fluctuations decreased in the range of higher fre-
quencies f > 200 kHz. The amplitude of fluctuations
began to fall after the L–H transition, when the radius
rref of the reflection layer increased (due to the increase
in the plasma density at the edge) to rref . 27–28 cm. In
the subsequent phase of the H-mode, the radius rref var-
ied more slightly, remaining in the range 27 < rref <
30 cm, and the level of turbulent fluctuations did not
change.

An analysis of the results of these experiments
showed that a radius of 27.5 cm may be regarded as a
boundary of the transport barrier arising during the
L−H transition (see also Section 5).

(iii) At higher values of the initial plasma density,
when the radius rref was larger and the reflection layer
was in the region r ≥ 27 cm even before the L–H tran-
sition, the decrease in the amplitude of turbulent fluctu-
ations occurred earlier (at the instant of the L–H transi-
tion).

However, we did not observe a rapid suppression of
turbulence during the L–H transition. The characteris-
tic decay time of turbulent fluctuations was equal to
~100 ms.

(iv) When the reflectometer probing frequency was
increased so that, even for the maximum density at the
end of the H-mode, the radius rref of the reflection layer
did not attain 27 cm, no change was observed in the
level of turbulence at frequencies f > 100 kHz.

(v) The X-ray signals did not exhibit noticeable
variations in the turbulence level at frequencies f <
50 kHz during the L–H transition.

On the other hand, the amplitude AHF of the signal
from a high-frequency probe measuring fluctuations of
the electric and magnetic fields near the limiter grew
substantially (by a factor of 3 to 4) during the micro-
wave pulse. At the instant of the L–H transition, the

ne
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amplitude began to fall with a characteristic time close
to that for the intensity of Dα emission (Fig. 13).

7. FEATURES OF PROCESSES
IN THE SCRAPE-OFF LAYER REGION

DURING THE L–H TRANSITION

In the investigated regimes, we also measured the
parameters of the edge plasma. For this purpose, we
used Langmuir probes located in the scrape-off layer
(SOL) (rp ~ 33–34.5 cm) and at the limiter (aL = 30 cm).

In the main regimes, the electron temperature Te, the
ion saturation current at the probe Γi , and the probe
potential inside the SOL (r = 34 cm) change abruptly at
the instant of the L–H transition (see Fig. 13a). In these
regimes, the characteristic time of variations in the
above parameters is equal to 5–10 ms. Since the signals
from the probes located at the limiter vary slightly dur-
ing the L–H transition, the drop in the signals from the
probes located in the SOL indicates that the decay
length λ of Te and ne in the SOL decreases during the
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Fig. 11. Time evolution of the plasma potential ∆ϕ after
switching on the microwave pulse and during the L–H tran-
sition (shot no. 23779). The base value ϕB is measured in the
Ohmic phase of the discharge. The time evolution of IDα is
also shown.
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Fig. 12. Results of measurements of plasma turbulence by a reflectometer and time variations in the reflecting-layer radius (shot
no. 26308, BT = 2.42 T, qL = 2.2, Ip = 330 kA, and Pab = 750 kW).
transition (i.e., the transverse diffusion velocity 〈v〉 ⊥
decreases). The effect is illustrated in Fig. 13c.

8. RESULTS OF SIMULATION 
OF THE EXTERNAL TRANSPORT BARRIER

To estimate the depth of the transport barrier arising
during the L–H transition and its time variations in the
course of the evolution of the H-mode, we carried out
numerical simulations of the main regime with BT =
2.42 T and qL = 2.2 (Fig. 1).
By the transport-barrier depth, we mean the ratio of
the diffusion coefficients D (in the region where the
barrier exists) in the absence and presence of the bar-
rier.

The main features of the model are the following.

(i) For simulations, we used a transport model of
canonical profiles [8] with the additional condition that
Te(r) and ne(r) fit, as closely as possible, the experimen-
tal profiles in both the Ohmic phase and L-phase of the
discharge.
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ne
(ii) We took into account that the flux of the working
gas into the plasma after the L–H transition decreased
according to the relationship

where Γ IN is the neutral flux into the plasma and IDα is
the intensity of the Dα line. The factor kα was deter-

Γ IN kα IDα kα const=( ),=
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mined in the L-phase of the discharge from the condi-

tion that the calculated mean density  should coin-
cide with the experimental value.

(iii) The depth of the transport barrier and its time
evolution were chosen from the condition that the cal-
culated functions ne(r, t) and β(r, t) should coincide

ne
calc
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with the experimental dependences. According to the
data presented in Section 6, the barrier width was
assumed to be equal to ∆rH = 2.5 cm.

The results of simulations (see Fig. 14) show that
the model correctly describes the experimentally
observed increase in the density and plasma energy in
the H-mode if we strongly reduce the rate of transverse
transport of particles to about one-fifth of its initial
level in the L-mode. The results of calculations confirm
that the decrease in the thermal diffusivity in the trans-
port barrier is substantially less than a decrease in the
diffusivity.

To bring into coincidence the calculated and exper-
imental time dependences of  and β, it is necessaryne
PLASMA PHYSICS REPORTS      Vol. 26      No. 11      2000
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to take into account that the transport barrier arising at
the instant of the L–H transition initially has a small
depth; then, the depth increases with a characteristic
time close to that for the intensity of Dα emission
(Fig. 14a).

Note that, if we assume that the transport barrier has
a large depth at the instant of the L–H transition and this
depth further remains constant, then the plasma density

 and β grow much more rapidly than observed in the
experiment (Fig. 14b).

9. DISCUSSION

1. Frequently, in order to explain the L–H transition,
it is assumed that an increase in both the ion-pressure
gradient ∇ pi and the transverse velocity v⊥  gives rise to
the radial electric field Er , which produces the velocity
shear Er Bϕ that is higher than the growth rate of turbu-
lent fluctuations γ. This means that, by the instant of the
L–H transition, the following condition is satisfied:

(1)

Condition (1) means that turbulence cannot grow
(i.e., it is suppressed) and a transport barrier should
form at the instant of the L–H transition. However, the
results of T-10 experiments described in the preceding
sections, such as (i) a fairly long time during which tur-
bulence is suppressed, (ii) a low (as compared to maxi-
mum) value of Er at the instant of the L–H transition
and the subsequent substantial growth of Er as the H-
mode approaches its steady state, and (iii) the forma-
tion of a transport barrier during the L–H transition
with a depth nearly one-half less than the steady-state
value, contradict the above assumptions.

Apparently, the data from T-10 experiments agree
better with the theoretical predictions formulated in
[9, 10].

2. In order to compare the T-10 data with the predic-
tions of [9, 10], we first examine how the plasma
parameters change when the microwave pulse is
applied.

The input of microwave power has the following
effects on the plasma:

(i) both the energy and particle confinement times
decrease (the density profile flattens);

(ii) the neutral flux ΓIN into the plasma increases;
(iii) the amplitude of turbulent fluctuations grows;

and
(iv) ∇ Te increases (in particular, at the plasma edge).
At the same time, based on the results of T-10 exper-

iments, it was shown in [11] that, at high (>1 MW) lev-
els of the microwave power, variations in the ion tem-
perature can be explained by variations in the power Pei

transferred from electrons to ions by Coulomb colli-
sions. This means that the input of microwave power

ne

1
r
--- d

dr
-----ErBϕ γ.>
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into a plasma is not accompanied by any additional (in
comparison with an Ohmically heated plasma) turbu-
lent mechanism governing ion transport.

This allows us to suggest that, in the T-10 plasma,
the switching-on of the microwave power enhances
electron turbulence, which causes the enhanced trans-
port of electrons. According to [11], the ratio 〈ve〉 ⊥ /〈vi〉 ⊥
between the transverse velocities of electrons and ions
increases in this case. Actually, as was shown in Sec-
tion 5, this leads to the generation of a positive (out-
ward directed) radial electric field Er .

3. According to the theory [9, 10], the increase in the
turbulence level and transverse electron flux Γ⊥  leads to
the generation of the poloidal velocity 〈vp〉  producing a
stabilizing effect on turbulence. As the poloidal veloc-
ity attains a certain threshold value 〈vp〉 th, the stabiliz-
ing action of 〈vp〉  becomes dominant; as a result, both
the turbulence level and turbulence-driven transverse
flux decrease. This phenomenon is referred to as the
L−H transition. The value 〈vp〉 th can be related to the

threshold power  for the L–H transition, because
the input power PHF is, in fact, a source that provides
the increase in both the turbulence level and transverse
transport.

According to [9, 10], the poloidal velocity 〈vp〉 is
generated at the plasma periphery due to the tempera-
ture and density gradients, which does not contradict the
above conclusion about the role of ∇ Te (see Section 4).

Finally, according to [9, 10], after the transition to
the H-mode, turbulence is not suppressed completely,
which is also consistent with the experimental observa-
tions in T-10 (see Section 6).

Thus, based on the above considerations, it may be
suggested that electron turbulence arising during the
microwave-power input triggers the L–H transition in
T-10 through the generation of the transverse flux Γ⊥
and the stabilizing poloidal velocity 〈vp〉 .

4. As was said above, the edge electric field Er ,
which is initially positive, changes its sign during the
L–H transition. Consequently, the ratio of the trans-
verse transport velocities 〈ve〉 ⊥ /〈vi〉 ⊥  becomes less than
unity. In view of [11], this suggests that, at the instant
of the L–H transition, the turbulence responsible for
electron transport becomes suppressed and the trans-
port barrier for electrons arises. This assumption is con-
sistent with the data indicating a shorter decay length of
Te in the SOL (see Section 7).

However, both the value of the negative electric field
Er and (according to the simulation results) the trans-
port-barrier depth are still far from the values that are
reached when the steady-state conditions are
approached.

The question arises as to why the electric field Er

increases as the H-mode develops and the depth of the
transport barrier for electrons increases.

Pth
LH
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We note that the maximum value of Er in the best
regimes attains |Er| . 400–500 V/cm, which, according
to the equation

(2)

corresponds to significant variations in the transverse
velocity v⊥  . 2 × 104 m/s or ∇ pi (Ti(r(ϕmin)) . 200–
250 eV for Ti(0) . 600 eV). Under the steady-state con-
ditions, these variations must occur because Eq. (2)
must be satisfied.

This suggests the existence of a positive feedback
whose scheme can be described as follows.

(i) The low electric field δEr arising during the L–H
transition generates the shear of the E × B flow, which
partially suppresses turbulence.

(ii) The drop in the turbulence level leads to an
increase in the transport barrier for electrons, whereas
the ion transport velocity 〈v⊥ 〉 i , according to [11],
changes insignificantly.

(iii) All of this decreases the ratio 〈ve〉 ⊥ /〈vi〉 ⊥  and,
consequently, increases (by an absolute value) the
radial electric field Er . Thus, the feedback loop is
closed.

(iv) This process continues until a steady state is
reached, which determines the final value of Er and the
depth of the electron transport barrier.

10. CONCLUSION

(i) An improved plasma confinement regime with an
external transport barrier (H-mode) is obtained in
ECRH experiments in T-10. The improvement factor

HL = /  attains 1.6.

(ii) The threshold power  for the L–H transition
is close to that predicted by the ITER scaling. The fact

that the threshold power  increases with increasing
plasma density also agrees with the predictions of the
ITER scaling.

(iii) The best results are obtained at low values of the
safety factor (qL  2).

(iv) It is shown that, in the H-mode in T-10, a trans-
port barrier for electrons arises. The thermal transport

M
dv i r,

dt
------------ Er

1
Zinie
------------∇ pi–

1
c
---v ⊥ B,+=

τE
H τE

L

Pth
LH

Pth
LH
barrier has a much smaller depth and its contribution to
improved confinement is insignificant.
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Abstract—A study is made of radio-wave scattering by Langmuir turbulent pulsations in a plasma in a mag-
netic field. The effect of this process on the polarization of radio waves at frequencies far above or close to the
electron plasma frequency is investigated. The wave scattering by Langmuir turbulence is shown to strongly
affect the polarization characteristics. When the optical thickness typical of the scattering process is on the order
of unity, the degree of wave polarization can change by 30% both at high frequencies and at frequencies close
to the plasma frequency, in which case the circular polarization can reverse direction. It is shown that, as a result
of wave scattering by Langmuir turbulence, the degree of circular polarization of radio waves depends on the
wavelength even in a uniform magnetic field. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The polarization characteristics of radio emission
from plasmas are of considerable interest for both lab-
oratory experiments and space research. Under astro-
physical conditions and in laboratory experiments, the
interaction between electron beams and plasmas is
often accompanied by the onset of turbulence (in par-
ticular, Langmuir turbulence). Astrophysical plasmas
(e.g., the solar corona) are often homogeneous on spa-
tial scales typical of the scattering of electromagnetic
radiation by Langmuir turbulent pulsations. In labora-
tory devices with injection of electron beams (in partic-
ular, in the GOL-3 device [1–3]), many methods for
diagnosing high-temperature plasmas (with an electron
temperature of about 10 keV) are based on analyzing
the parameters of both intrinsic electromagnetic radia-
tion emitted from the plasma and laser light scattered
by the plasma [1–8], in which case the plasma can be
assumed to be essentially homogeneous along the mag-
netic field.

The polarization of the emitted electromagnetic
waves, along with the other wave parameters, is an
important characteristic that provides insights into the
mechanisms for radio emission from space objects and
the conditions prevailing in the regions where radio
waves are generated [9]. Of particular interest is the
study of solar radio waves, because there is a large
amount of experimental data in this area of research
[10, 11]. However, the experimental data often disagree
with theoretical predictions. Thus, Ledenev [12]
showed that some types of radio waves emitted from
the Sun should be completely polarized, while observa-
tions do not usually reveal such a high degree of polar-
ization [13]. Additionally, in many broadband sources,
the degree of polarization of the emitted radio waves
1063-780X/00/2611- $20.00 © 0931
depends on the wavelength [11]. Moreover, it was
found that radio waves of the same type may have dif-
ferent polarizations (see [14, 15]), which also contra-
dicts the results of calculations. However, these contra-
dictions can naturally be explained if we take into
account the fact that, under astrophysical conditions
and in many laboratory experiments, radio waves are
generated and propagate in turbulent plasmas. Below,
we will consider the scattering of radio waves by turbu-
lent pulsations in a homogeneous plasma and the effect
of this scattering process on the polarization character-
istics of radio waves at frequencies far above (Section
2) and close to (Section 3) the electron plasma fre-
quency.

2. SCATTERING OF HIGH-FREQUENCY 
RADIO WAVES

2.1. Basic Equations

The equations describing the Raman scattering of
polarized radio waves by turbulent pulsations in a
plasma in a magnetic field were derived in [6]. In this
section, we analyze a plasma with an isotropic Lang-
muir turbulence described by the spectral function
W(k), which is inversely proportional to the squared
wavenumber of the Langmuir plasmons [5]. We begin
by assuming that the following conditions are satisfied:

(1)

where ωpe is the electron Langmuir frequency, ωHe is
the electron gyrofrequency, and ω and ω' are the fre-
quencies of the incident and scattered electromagnetic
waves. When the optical thickness characteristic of the

ωHe/ω( )2
, ωHe/ω'( )2

 ! 1,

ωpe/ω( )4
, ωpe/ω'( )4

 ! 1,
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scattering process is on the order of unity and the con-
dition ∆ω < ωpe (where ∆ω is the spectral width of the
frequency spectrum of the emitted radiation) holds, the
equations describing the propagation of polarized radio
waves in a plasma in a uniform magnetic field with
allowance for wave scattering by Langmuir turbulent
pulsations have the form

(2)

(3)

(4)

(5)

Here, Iω, Uω, Qω, and Vω are the Stokes parameters of
the radio emission; the functions f1 and f2 are equal to

(6)

(7)

and

(8)

dIω

dt
-------- σ0 f 1 ω( )Iω– σ0 f 2 ω( )Vω ϑcos– v gSI ω( ),+=

dVω

dt
---------- σ0 f 1 ω( )Vω– σ0 f 2 ω( )Iω ϑcos– v gSV ω( ),+=

dUω

dt
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dQω
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2
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neTe
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where Te is the electron temperature expressed in J, ne

is the electron plasma density, c is the speed of light in
vacuum, vg is the group velocity of the electromagnetic
waves, k1max and k1min are the maximum and minimum
wavenumbers of the Langmuir turbulence spectrum,

and W = W(k) is the energy of turbulent pulsa-

tions per unit plasma volume. All quantities (except for
temperature) are expressed in SI units. The functions
SI , SU, SQ, and SV describe the sources of radio emission
in a plasma.

2.2. How the Polarization of Radio Waves Changes 
due to Scattering in a Turbulent Plasma Slab

When highly directed (∆θ ! π) narrowband (∆ω !
ωpe) radio emission penetrates through a plane-parallel
turbulent plasma slab in which there are no sources of
radio waves in the frequency range under consideration
(SI, SU, SQ, SV = 0), Eqs. (2)–(5) yield the following
expressions for the intensities IL = (I – V)/2 and IR =
(I + V)/2 of the ordinary and extraordinary waves that
have crossed the slab:

(9)

(10)

where IL0 and IR0 are the intensities of the incident ordi-
nary and extraordinary waves, respectively.

Figure 1 shows the profiles of IR(z)/IL(z) as a func-
tion of the optical thickness τ = σ0 f1(ω)z/vg of the
plasma slab for radio waves at the second harmonic of

kd

2π( )3
-------------∫

IR z( ) IR0 σ0zv g
1– ϑcos( ) 1–

–(exp=

× f 1 ω( ) f 2 ω( ) ϑcos+( ) ),

IL z( ) IL0 σ0zv g
1– ϑcos( ) 1–

–(exp=

× f 1 ω( ) f 2 ω( ) ϑcos–( ) ),
IR/IL
1.6

1.4

1.2

1.0

0.8

0.6
0 0.5 1.0 1.5 2.0

(‡) (b)1.5
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0.5
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Fig. 1. Ratio of the intensities of extraordinary and ordinary waves propagating along the magnetic field at the second harmonic of
the electron Langmuir frequency vs. the optical thickness at α = 0 for different ratios of the initial intensities of these waves and for
ωHe/ωpe = (a) 0.1, (b) 0.2, and (c) 0.3.
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the electron plasma frequency. The profiles were
obtained for different values of IR0/IL0 and for ωHe/ωpe =
0.1, 0.2, and 0.3. We can see that, for optical thick-
nesses on the order of unity, the degree of polarization
can change by 20–30%. Since extraordinary waves are
scattered more efficiently than ordinary waves, the
polarization of radio waves that have crossed the slab
can reverse direction if the extraordinary mode domi-
nates in the incident radiation (provided that the degree
of polarization of the incident radiation is lower than
30%). As the frequency increases, the ratio IR/IL grows
essentially in the same way as it does when ωHe

decreases.

2.3. How the Polarization of Radio Waves Changes 
due to Scattering at the Exit from a Spherical 

Plasma Slab

We consider an isotropic source with a sufficiently
narrow bandwidth (∆ω < ωpe) inside a plasma region
with Langmuir turbulence, assuming that the source is
much smaller in size than the turbulent region. In this
case, the scattering process can also change the polar-
ization of radiation emitted from this region. Setting SI,
SU, SQ, and SV = 0 in Eqs. (2)–(5), we obtain the inten-
sities IL and IR of the ordinary and extraordinary waves
that have passed through a semitransparent spherical
plasma slab:

(11)

(12)

where IL0 and IR0 are, respectively, the intensities of the
ordinary and extraordinary waves emitted by the
source.

Our calculations show that the scattering process
can polarize even unpolarized radiation from an isotro-
pic source. Thus, if the optical thickness of the slab is
equal to τ = 0.5, then expressions (11) and (12) at
ωHe/ωpe . 0.2–0.3 and θ = 0 indicate that the degree of
polarization of radio waves at the exit from the slab can
be as high as 10% (the extraordinary mode being dom-
inant) because the frequency of the scattered radiation
is shifted from the frequency of the source by ωpe.

2.4. Polarization of Radio Waves Emitted 
from a Spherical Turbulent Plasma Slab 

with a Source

We consider a source that is equal in size to the
spherical plasma slab with Langmuir turbulence,
assuming that ∆ω < ωpe. If the slab is semitransparent to
the scattered radiation, then Eqs. (2)–(5) give the fol-

IR z( ) IR0 σ0zv g
1–

f 1 ω( ) f 2 ω( ) ϑcos+( )–( ),exp=

IL z( ) IL0 σ0zv g
1–

f 1 ω( ) f 2 ω( )– ϑcos( )–( ),exp=
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lowing expressions for the intensities of the ordinary
and extraordinary waves emitted from the slab:

(13)

(14)

where QR = (SI + SV)/2 and QL = (SI – SV)/2.
Estimates from formulas (13) and (14) at ωHe/ωpe .

0.2–0.3 and τ = 0.5 show that, as a result of scattering,
the degree of circular polarization of the emitted radio
waves can change by approximately 10% because
extraordinary waves are scattered more efficiently.

Hence, our calculations show that, when the optical
thickness of the scattering plasma slab is on the order
of unity, the polarization of high-frequency (ω >
1.8ωpe) radio emission that is dominated by the extraor-
dinary mode and is scattered by Langmuir turbulent
pulsations can change by approximately 30%. If the
degree of polarization in the source is below 30%, then
the polarization can reverse direction.

3. SCATTERING OF RADIO WAVES 
WITH FREQUENCIES ABOVE THE ELECTRON 

LANGMUIR FREQUENCY

Here, we analyze how the scattering process affects
the polarization of radio waves with frequencies 1.05–
1.1ωpe, assuming that the ratio of the electron gyrofre-
quency to the electron Langmuir frequency lies in the
range 0.1–0.33. As in Section 2, we assume that the
spectral function W(k) of the Langmuir turbulence is
isotropic and is inversely proportional to the squared
wavenumber of the Langmuir plasmons [5]. We con-
sider two cases: radio waves propagating nearly along
and nearly transverse to the magnetic field.

3.1. Scattering of Radio Waves Propagating Nearly 
along the Magnetic Field

If we ignore thermal corrections, then electromag-
netic waves in a magnetized plasma are described by
the dispersion relation [16]

(15)

Here,

(16)

(17)
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kz and k⊥  are the wave vector components parallel and
perpendicular to the magnetic field, respectively; and k
is the absolute value of the wave vector of the emitted
radiation.

Under the conditions

, (18)

the dispersion relation for transverse waves (i.e., waves
propagating nearly along the magnetic field) has the
form

(19)

The plus and minus signs correspond to two inde-
pendent polarized waves: the plus sign refers to the
right-hand polarized (ordinary) wave and the minus
sign refers to the left-hand polarized (extraordinary)
wave.

Expressions (19), (16), and (17) imply that, under
the condition ε⊥  < |g |, only ordinary waves can propa-
gate nearly along the magnetic field. The intensity of
right-hand polarized (ordinary) waves propagating in a
plasma satisfies the transport equation [6]

(20)

where vgL is the group velocity of the ordinary waves,

(21)

(22)

and α(ω) is the coefficient of the collisional absorption
of radio waves by plasma particles.

k ⊥
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/kz
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2
k ⊥

2
/2k

2ε⊥
2( ) ! 1
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2
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2 ω2 ε⊥ g±( ).=

dIωL

dt
----------- σ0 f 1' ω( ) f 2' ω( ) θcos–{ }(–=

+ v gLα )IωL v gLSL ω( ),+
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Fig. 2. Ratio of the intensities of ordinary waves propagat-
ing across and along the magnetic field at nearly the electron
Langmuir frequency vs. the optical thickness at α = 0 for
ωHe/ωpe = (1) 0.1, (2) 0.2, and (3) 0.3.
The transport equation (20) for radio radiation emit-
ted from a plane-parallel plasma slab has the solution

(23)

3.2. Scattering of Radio Waves Propagating Nearly 
Transverse to the Magnetic Field (ε⊥  < |g |)

For radio waves propagating nearly transverse to the
magnetic field, i.e., under the conditions opposite to
inequalities (18), Eq. (19) yields the dispersion relation

(24)

for an ordinary wave and the dispersion relation

(25)

for an extraordinary wave. When ε⊥  < |g|, extraordinary
waves cannot propagate, because the right-hand side of
(25) is negative and the corresponding conditions fail to
hold.

The intensity of the scattered ordinary waves satis-
fies the equation [6]

(26)

where vgL is the group velocity of the ordinary waves.
For a plane-parallel plasma slab, the solution to
Eq. (26) has the form

(27)

3.3. Effect of the Scattering Process on the Intensities 
of Ordinary Waves Propagating at Different Angles

to the Magnetic Field (ε⊥  < |g |)
Formulas (23) and (27) make it possible to calculate

the intensities IL of ordinary waves propagating nearly
transverse to the magnetic field and the intensities IL of
ordinary waves propagating nearly along the magnetic
field at the exit from a plane-parallel plasma slab with
allowance for wave scattering by Langmuir turbulent
pulsations. Figure 2 shows the ratio of the intensity of
ordinary waves propagating transverse to the magnetic
field to the intensity of ordinary waves propagating
along the field as a function of the optical thickness of
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the plasma slab for different values of ωHe/ωpe without
taking into account collisional absorption. We can see
that, when the optical thickness is below unity, the
waves propagating transverse to the magnetic field are
scattered more efficiently than those propagating along
the magnetic field. In other words, in the presence of
scattering turbulent pulsations in the plasma region
where radio waves with frequencies (1.05–1.1)ωpe are
generated, transversely propagating ordinary waves are
more efficiently (in comparison with longitudinally
propagating ordinary waves) transformed into radio
waves with frequencies close to the second harmonic of
the electron Langmuir frequency, and this process is
accompanied by the redistribution of transversely prop-
agating waves over a 4π solid angle. As a result, the ini-
tially isotropic radiation can become anisotropic; i.e.,
radiation emitted along the magnetic field can be more
intense than radiation emitted transverse to the mag-
netic field.

3.4. Radio Waves Propagating Nearly 
along the Magnetic Field (|g | < ε⊥ )

When the absolute value of g is smaller than ε⊥ ,
Eq. (19) implies that both ordinary and extraordinary
waves can propagate nearly along the magnetic field.
To the first order in the ratio ωHe/ω, the dispersion rela-
tion for these types of waves can be obtained from
Eq. (19):

(28)

where the plus and minus signs refer to extraordinary
and ordinary waves, respectively.

The transport equation for extraordinary waves can
be written as [6]

(29)

where vgR is the group velocity of the extraordinary
waves. In the case of a plane-parallel plasma slab,
Eq. (29) has the solution

(30)

Equation (29) is similar in form to Eq. (20), and, in
the case of a plane-parallel slab, solution (30) coincides
with solution (23). Figure 3 displays profiles of the
ratio IR/IL as a function of the optical thickness τ =

σ0 (ω)z/vg at ωHe/ω = 0.1, 0.2, and 0.3. Figure 4 pre-
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sents the same profiles but for different initial values of
IR0/IL0 at ωHe/ω = 0.2. We can see that the degree of
polarization can change by 20% when the optical thick-
ness is on the order of unity and the polarization of the
emitted radiation can even reverse direction when the
emission from the source is dominated by an extraordi-
nary mode.

Note that solutions (23) and (30) are valid up to fre-
quencies close to 2ωpe, and as the frequency increases,
the ratio IR/IL grows essentially in the same way as it
does when the magnetic field decreases (Fig. 3).

3.5. Radio Waves Propagating Nearly Transverse 
to the Magnetic Field (|g | < ε⊥ )

When the absolute value of g is smaller than ε⊥ ,
Eqs. (24) and (25) imply that both ordinary and extraor-
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Fig. 3. Ratio of the intensities of extraordinary and ordinary
waves propagating along the magnetic field at nearly the
electron Langmuir frequency vs. the optical thickness at
α = 0 for ωHe/ωpe = (1) 0.1, (2) 0.2, and (3) 0.3.

Fig. 4. The same as in Fig. 3 but for different ratios of the
initial intensities of extraordinary and ordinary waves at
ωHe/ωpe = 0.2.



936 TIRSKY et al.
dinary waves can propagate nearly transverse to the
magnetic field. To the first order in the ratio ωHe/ω, the
dispersion relation for these types of waves can be
obtained from Eqs. (24) and (25):

(31)

The transport equation for extraordinary waves has
the form [6]

(32)

In the case of a plane-parallel plasma slab, this equation
has the solution

(33)

Equation (32) is similar in form to Eq. (26), and, in
the case of a plane-parallel slab, solution (33) coincides
with (27). According to formulas (27) and (33), the
extraordinary and ordinary waves are scattered essen-
tially in the same manner, so that the scattering process
has no impact on the degree of circular polarization of
the radiation propagating transverse to the magnetic
field.

4. CONCLUSION
Our calculations show that the scattering of radio

waves by Langmuir turbulent pulsations can substan-
tially change the polarization characteristics of radia-
tion. When the optical thickness characteristic of the
scattering process is on the order of unity, the degree of
polarization of both high-frequency radio waves (ω ≥
2ωpe) and radio waves with frequencies close to the
electron Langmuir frequency can change by up to 30%.
However, we must keep in mind that, when the same
source generates radio waves at both the fundamental
and higher harmonics of the electron Langmuir fre-
quency, the polarization of radiation at the fundamental
harmonic changes most strongly. The reason for this is
that the group velocity of radiation at higher harmonics
is higher than at the fundamental harmonic; thus, for
higher harmonics, the plasma is far more transparent
with respect to scattering. The most interesting result is
that the polarization of the emitted radiation propagat-
ing through a plasma slab with the developed Langmuir
turbulence can reverse direction, because extraordinary
waves are scattered more efficiently than ordinary
waves. After passing through a turbulent slab, the radi-
ation that is emitted by the source and is initially dom-
inated by the extraordinary mode may become domi-
nated by an ordinary mode. Generally, this effect low-
ers the degree of polarization of radiation dominated by
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σ0 f 1' ω( ) v gRα+{ }
-----------------------------------------------=

× 1 z
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v gR

-----------------------------------------------– 
 exp– .
an extraordinary mode and raises the degree of polar-
ization of radiation dominated by an ordinary mode.

Another interesting result is that, because of the
wave scattering by Langmuir turbulent pulsations, the
degree of circular polarization of radio waves depends
on the wavelength even in a uniform magnetic field: the
longer the wavelength, the higher the degree of polar-
ization of radiation dominated by an ordinary mode.

Extraordinary and ordinary radio waves propagat-
ing nearly transverse to the magnetic field are both
characterized by the same scattering coefficient. Con-
sequently, the scattering process has no impact on the
degree of circular polarization of radiation propagating
transverse to the magnetic field. On the other hand, the
scattering efficiencies of radio waves of the same type
propagating in different directions with respect to the
magnetic field are different, which gives rise to the
anisotropy of the initially isotropic radiation (Fig. 2).

All of the above effects can be observed in labora-
tory experiments on the scattering of electromagnetic
waves and in space plasmas in the presence of a mag-
netic field. These effects are most pronounced in the
frequency range between the electron Langmuir fre-
quency and the doubled electron Langmuir frequency.

Thus, Langmuir turbulence was observed to be gen-
erated during the interaction between a relativistic
(0.8–1 MeV) electron beam with a current density of
J = 10 kA/cm2 and a plasma with a density of 1015 cm–3

in experiments carried out in the GOL-3 device (of
length l = 7.5 m) at the Budker Institute of Nuclear
Physics (Novosibirsk, Russia) [1–3]. Devices of this
type are capable of creating plasmas with temperatures
of up to 108 K. Langmuir turbulence can also be gener-
ated during the injection of an electron beam into a
plasma with such a temperature and with a density of
1013–1014 cm–3, in which case the optical thickness
characteristic of the scattering of electromagnetic
waves by Langmuir turbulent pulsations is equal in
order of magnitude to

Consequently, for an electron energy of about 10–
30 keV and a turbulence level of about W/neTe ~ 10–3–
10–4, the optical thickness for the electromagnetic radi-
ation propagating at nearly the electron Langmuir fre-
quency along the magnetic field in GOL-3 can be on the
order of unity.

In space plasmas, the scattering by Langmuir turbu-
lence manifests itself in the dependence of the degree
of circular polarization of the emitted radiation on the
turbulence level in the region where radio waves are
generated. For example, during solar radio bursts, the
polarization of the radio emission usually experiences
fast variations and may even reverse direction [10].
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Abstract—The features of the large-angle stimulated Raman scattering of short laser pulses in a homogeneous
underdense plasma are studied analytically. It is found that, for scattering angles that are not too close to zero,
a steady-state regime of the convective amplification of unstable waves is established in the frame of reference
comoving with the laser pulse. The problem of convective amplification in a two-dimensional region is solved
in both weak- and strong-coupling regimes. It is shown that the steady-state envelopes of the scattered radiation
and scattering plasma waves are two-dimensional in nature. It is found that, for a given scattering angle, the
maximum possible spatial amplification at the trailing edge of the pulse is achieved if the ratio of the transverse
to longitudinal size of the pulse is larger than the cotangent of one-half of the scattering angle. © 2000 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

Stimulated Raman scattering (SRS) [1] is one of the
most important parametric processes [2] accompanying
the propagation of high-power ultrashort (subpicosec-
ond) [3] laser pulses in an underdense plasma (ω0 @
ωpe, where ω0 is the laser frequency and ωpe =
(4πe2n0/me)1/2 is the electron plasma frequency corre-
sponding to the unperturbed plasma electron density
n0). The incident electromagnetic (EM) wave (the
pump wave) is scattered by spontaneous electron den-
sity fluctuations, which in turn can be enhanced by the
ponderomotive force at the beat frequency of the pump
wave and the scattered EM wave. If the waves meet cer-
tain phase relations, a positive feedback arises, which
leads to the onset of either temporal or spatial instabil-
ity [4]. Large-angle SRS can significantly affect the
propagation of ultrashort (subpicosecond) laser pulses
in plasma and, consequently, the operation of plasma-
based laser accelerators using such pulses [5]. In this
connection, it is important to determine the maximum
achievable amplification coefficient of unstable waves
for a given scattering angle, as well as to find out
whether this amplification coefficient is achievable for
the given pulse dimensions.

In the weak-coupling regime (a0 ! (ωpe /ω0)1/2,
where a0 = eE0/(meω0c) is the normalized amplitude of
the laser field), and SRS at angles that are not too close
to zero is a three-wave process. A high-frequency EM
pump wave (ω0, k0) decays into a high-frequency scat-
tered EM wave (ω0 – ωBG, ks) and an electron mode
close to the natural plasma mode (ωBG, ke), where ke =

k0 – ks and ωBG = [  + 3(ke VTe)2]1/2 ≈ ωpe is the fre-ωpe
2
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quency of the scattering plasma wave. In this case, the
spectral width of the scattered radiation is small com-
pared to the electron plasma frequency, because the
weak-coupling regime implies that the temporal growth
rate of the instability is much less than ωpe. In the
strong-coupling regime [6] (a0 @ (ωpe/ω0)1/2), the scat-
tering is nonresonant in character: the scattering elec-
tron modes are not close to the natural plasma modes,
and their spectrum is much wider than the electron
plasma frequency (this implies that the maximum value
of the temporal growth rate is larger than ωpe). A com-
prehensive review of the temporal growth rates of the
SRS instability in various regimes is presented in [7].

The solution to the problem of the temporal SRS
instability (i.e., the initial problem) does not provide an
adequate description of large-angle SRS under real
experimental conditions when the instability develops
in a spatially limited region, which requires taking into
account the boundary conditions on the plasma bound-
ary and the laser-pulse edges. The region of the wave
interaction may be limited by the finite dimensions of
the laser focal region [8] where the plasma is produced.
Such a situation is characteristic of sufficiently long
laser beams with a length L|| much longer than the Ray-

leigh length rR = k0 /2, where L⊥  is the focal spot size
(in this case, the longitudinal size of the plasma pro-
duced in the laser focus is on the order of the Rayleigh
length). Here, we will consider the opposite situation,
where the laser pulse is fairly short (L|| ! rR) and the
longitudinal size of the interaction region is determined
by the pulse length. If the plasma length is much longer
than the pulse length and the scattering occurs at an
angle that is not too close to zero, then, in the frame of

L⊥
2
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reference moving with the pulse, a steady-state regime
of convective amplification of unstable waves can be
established in the region occupied by the pulse. In this
case, the amplification is two-dimensional in character
[9, 10].

In this paper, we restrict ourselves to considering the
linear stage of the SRS instability. Therefore, the appli-
cability conditions of the linear theory [11], which are
associated with the depletion of the pump wave and
determine the limiting value of the convective amplifi-
cation coefficient, are assumed to be satisfied. We con-
sider the linear regime of the steady-state convective
amplification in a spatially limited (rectangular) two-
dimensional region in the comoving frame of reference
under the conditions of weak and strong coupling. In
the strong-coupling regime, the electron motion in a
pump field is assumed to be nonrelativistic (large-angle
SRS of relativistically strong laser pulses is studied in
[12]). In Section 2, we write the basic equations that are
used to analyze the instability in the weak- and strong-
coupling regimes. The initial–boundary problem is for-
mulated in a rectangular two-dimensional region in the
comoving frame. The boundary conditions at the lead-
ing edge and side boundaries of the pulse correspond to
a certain constant level of the electron density fluctua-
tions in an unperturbed plasma. In Section 3.1, a time-
independent boundary problem is solved. It is shown
that the SRS instability depends substantially on the
transverse size of the pulse; under certain conditions,
the finite transverse size of the pulse can significantly
limit the maximum amplification coefficient of unsta-
ble waves. It is found that the maximum achievable
amplification coefficient at the trailing edge of the pulse
does not depend on the scattering angle; for the given
scattering angle α (counted from the propagation direc-
tion of the pulse), it is achieved if the inequality L⊥ /L|| >

α/2) is satisfied. This result is valid for both weak-
and strong-coupling regimes (in the former case, it
coincides with the results of [9, 10]). It is shown that,
within the applicability limits of the basic equations,
the solution to the initial–boundary problem
approaches the mentioned steady-state amplification
regime. By using the explicit steady-state solutions
obtained, we study in Section 3.2 the applicability lim-
its of the basic model equations; in particular, it is
shown that our results are consistent with the results of
[13, 14], from which it follows that the steady-state
spatial amplification cannot be realized for sufficiently
small scattering angles, such that α < (k0L⊥ )–1.

In the Conclusion, the results obtained are sum-
marized.

2. BASIC EQUATIONS

We represent the high-frequency electric field in

(cot
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the form

(1)

where ωs ≈ ω0. The normalized envelopes of the laser
pulse and scattered radiation (a0 = eE0/(meω0c) and as =
eEs/(meωsc) are assumed to vary slowly in time and

space on the scales  and , respectively; i.e.,
|∂a0(s) /∂t| ! ω0(s)|a0| and |∂a0(s) /∂r| ! k0(s)|a0(s)|. In this
paper, the problem is solved in the nonrelativistic limit;
i.e., we assume |a0(s)| ! 1. Both the incident and scat-
tered waves are assumed to satisfy the dispersion rela-

tion for EM waves in a plasma:  = (k0(s)c)2 + .
Since we will consider below the SRS in a highly
underdense plasma, we can set ωs = ω0 and ks ≡ |ks| =
k0, including small deviations of the frequency and
wave vector of scattered radiation from ω0 and k0 into
the spatiotemporal dependence of the envelope as(r, t).
Thus, the longitudinal and transverse components of
the wave vector of scattered radiation are determined
by ks = (ks⊥ , k0cosα), where ks⊥  ≡ |ks⊥ | = k0sinα. The
ponderomotive force at the beat frequency of the pump
wave and scattered EM wave excites the scattering
electron density perturbations

(2)

with the characteristic wave vector ke = ez k0 – ks  such
that  = 2k0sin2(α/2) and ke ≡ |ke| = 2k0sin(α/2).

We assume that the electron plasma is on average
uniform and that there are no long-wavelength (λ @

) perturbations of the electron density. (Note that
such perturbations can significantly suppress the SRS
instability [15, 16].) We will describe the SRS of a short

laser pulse (L||/c !  = (4πe2n0/mi)–1/2, where ωpi is
the ion plasma frequency) at a given angle in an under-
dense plasma using nonrelativistic hydrodynamic
equations for a cold electron fluid against the immobile
ion background and the Maxwell equations for the scat-
tered radiation. From this set of equations, we obtain
the coupled reduced equations for the amplitude as of
the scattered EM wave and the dimensionless envelope
Ns ≡ δns/n0 of the scattering electron density perturba-
tions

(3)

(4)

a r t,( )

=  
1
2
--- a0 r t,( )e

iω0t– ik0z+
as r t,( )e

iωst– i ks r,( )+
+( ) c.Ò.,+

ω0 s( )
1– k0 s( )

1–

ω0 s( )
2 ωpe

2

δñs r t,( ) 1
2
---δns r t,( )e

i ke · r( )
c.Ò.+=

kez

ke
1–

ωpi
1–

i
∂
∂t
----- vg · ∇+ 

  c2

2ω0
---------∆⊥+ as

=  
ωpe

2

4ω0
--------- a0

ks⊥

k0
2

------- ks⊥  · a0( )– 
  Ns*,

∂2

∂t2
------- ωpe

2+ 
  Ns*

1
2
--- kec( )2 a0* · as( ),–=



940 KALMYKOV
where vg = c2ks/ω0 is the group velocity of the scattered
EM wave. For a highly underdense plasma, we can
neglect the difference between vg ≡ |vg| and the speed of
light in a vacuum c. Below, we will consider the case of
linearly polarized laser light and analyze the SRS in the
plane that is orthogonal to the plane of polarization
(ks⊥  ⊥ a0) and in which the amplification coefficient of
unstable waves is maximum [11]. Thereby, the two-
dimensional geometry of the SRS is defined as is
shown in Fig. 1a. We will investigate the SRS at a given
angle in the frame of reference comoving with the laser
pulse. In this frame, it is convenient to choose the dis-
tance from the leading edge of the pulse ξ = ct – z as the
longitudinal variable; the time t and the transverse vari-
able x are not transformed when passing over to the
comoving frame. It is assumed that the pulse is local-
ized in the longitudinal and transverse directions in the
scattering plane and has a rectangular envelope:

(5)

where e0 is the unit polarization vector of the pump
field and the pump-field amplitude a0 is constant at
0 ≤ ξ ≤ L|| and 0 ≤ x ≤ L⊥  and is equal to zero outside of
this region. Therefore, the region of the wave interac-

a0 x ξ,( ) e0a0,=

keks

ezk0

α

I

II

(‡)

(b)
x

L⊥

L|| cot α/2

0
L||

(π – α)/2 ξ = ct – z

Fig. 1. Geometry of large-angle SRS. (a) Wave-vector dia-
gram in the laboratory frame of reference. (b) The interac-
tion region in the coordinates x and ξ = ct – z (in the comov-
ing frame of reference). The boundary conditions are
imposed at x = 0 and ξ = 0. In region I, in which the solution
is affected by the boundary condition at the side boundary
x = 0, the spatial amplification of the decay waves is two-
dimensional in character. Region II corresponds to the
regime of one-dimensional amplification of the decay waves
along the ξ-axis (i.e., toward the trailing edge of the pulse).
For the scattering angles satisfying the inequality α <
2 L||/L⊥ ), the training edge of the pulse entirely lies
in the region affected by the boundary condition at x = 0.

(arctan
tion is a rectangle with the longitudinal size L|| and
transverse size L⊥  (see Fig. 1b).

Under the condition

(6)

which implies that the scattered EM wave is short-
wavelength in both the longitudinal and transverse
directions, we can consider the scattered EM wave to
be quasi-planar and neglect the transverse Laplacian in
Eq. (3). In Section 3.2, we will show that this condition
determines the lower and upper limiting values of the
scattering angle at which condition (6) is satisfied and
the related reduction of the order of the equation for the
envelope of scattered radiation is formally justified.
The following analysis is related to different approxi-
mations of Eq. (4) for the scattering electron density
perturbations in the weak- and strong-coupling
regimes.

In the weak-coupling regime (ωpe/ω0 @ ), the
scattering electron density wave is close to the natural
plasma mode. This allows us to further reduce Eqs. (3)
and (4) representing the amplitudes of the decay waves
in the form

(7)

where kp || ks , kp ≡ |kp| = ωpe/c, and the amplitudes 

and  vary slowly on the scales  and . In the
comoving frame, the reduced equations take the form

(8)

(9)

where  ≡ 2i (ω0/ωpe)3/2sin(α/2),  ≡ , and
γ0 = (a0/2)(ω0ωpe)1/2sin(α/2) ! ωpe is the familiar tem-
poral growth rate of the instability associated with the
SRS at the angle α in an unbounded plasma [7] in the
weak-coupling regime. We formulate the initial–
boundary problem for Eqs. (8) and (9) with the follow-
ing initial conditions and boundary conditions at the
leading edge (ξ = 0) and side boundary (for definite-
ness, x = 0) of the pulse:

(10)

(11)

In the strong-coupling regime (ωpe/ω0 !  < 1),
the scattering electron density perturbations are not

x∂
∂as  ! ksx

as k0 α as ,sin=

a0
2

as Ns*,{ } âs N̂s*,{ } e
iωpet i kp · r( )–

,=

N̂s

âs ωpe
1– kp

1–

∂
∂t
----- 2c α /2( ) ∂

∂ξ
------ α /2( ) ∂

∂x
------cot+ 

 sin
2

+ Â1 γ0 Â2,=

∂
∂t
----- c

∂
∂ξ
------+ 

  Â2 γ0 Â1,=

Â1 âs Â2 N̂s*

Â1 t x ξ 0=, ,( ) Â1 t x 0 ξ,=,( )=

=  Â1 t 0 x ξ, ,=( ) 0,≡

Â2 t x ξ 0=, ,( ) Â2 t x 0 ξ,=,( )=

=  Â2 t 0 x ξ, ,=( ) N̂0 const.= =

a0
2
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close to the natural plasma modes and the growth rate
of the SRS instability is much higher than the electron
plasma frequency. This allows us to neglect the term
with the plasma frequency squared as compared to the
second time derivative in Eq. (4). As a result, the equa-
tions in the comoving frame take the form

(12)

(13)

where A1 ≡ as(2ω0/ωpe)3/2sin(α/2), A2 ≡ / , and

Γ0 = [(a0/4)2 ω0sin2(α/2)]1/3 is the familiar
growth rate of the instability associated with SRS at the
angle α in an unbounded plasma [7] in the strong-cou-
pling regime (Γ0 @ ωpe). For this set of equations, we
also formulate the initial–boundary problem with the
following initial conditions and boundary conditions at
the leading edge and side boundary of the pulse:

(14)

(15)

(16)

The boundary conditions for Eqs. (8) and (9) or (12)
and (13) correspond to the propagation of a laser pulse
in a plasma with a constant level of seed electron den-
sity fluctuations. The side boundary (x = L⊥ ) and trailing
edge (ξ = L||) of the pulse are the transparent boundaries
through which the decay waves leave the interaction
region. At these boundaries, the amplitudes of the
decay waves are completely determined by the solu-
tions to the initial–boundary problem for Eqs. (8) and
(9) or (12) and (13). In the next section, we will analyze
these solutions.

3. SPATIAL AMPLIFICATION OF WAVES
IN A TWO-DIMENSIONAL REGION

IN A COMOVING FRAME OF REFERENCE

3.1. Steady-State Solutions Describing
the Amplification of Waves in a Two-Dimensional 

Region

If the scattering angle is not too close to zero (if α >
max{(k0L⊥ )–1, 2(L||/L⊥ )1/2(k0 L⊥ )–1/2}, as will be shown in
Section 3.2), then both the scattered EM wave and the
scattering plasma wave leave the interaction region

∂
∂t
----- 2c α /2( ) ∂

∂ξ
------ α /2( ) ∂

∂x
------cot+ 

 sin
2

+ A1

=  i
2

3
-------Γ0 

  3/2

A2,–

∂
∂t
----- c

∂
∂ξ
------+ 

 
2

A2
2

3
-------Γ0 

  3/2

A1,–=

Ns* ωpe
1/2

3 ωpe
2

A1 t x ξ 0=, ,( ) A1 t x 0 ξ,=,( )=

=  A1 t 0 x ξ, ,=( ) 0,≡

A2 t x ξ 0=, ,( ) A2 t x 0 ξ,=,( )=

=  A2 t 0 x ξ, ,=( ) ωpe
1/2– N0 const,= =

∂A2

∂ξ
--------- t x ξ 0=, ,( )

∂A2

∂t
--------- t 0 x ξ, ,=( ) 0.≡=
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through the trailing edge (ξ = L||) and side boundary
(x = L⊥ ) of the pulse. Since, in this case, the SRS insta-
bility is convective in character, we can expect that, in
the comoving frame of reference, the interacting waves
will arrive at a steady state as time elapses. In this sec-
tion, we obtain steady-state solutions to the boundary
problems for Eqs. (8) and (9) or (12) and (13), describ-
ing convective amplification of waves in a two-dimen-
sional region, and prove that the solutions to the initial–
boundary problem arrive at this steady-state regime of
amplification. In Section 3.2, we determine the range of
scattering angles in which the solutions obtained for-
mally satisfy the applicability condition (6) of Eqs. (8)
and (9) or (12) and (13).

In order to obtain steady-state solutions to the
boundary problems, we omit the time derivatives in
Eqs. (8) and (9) or (12) and (13). In the region ξ ≥ 0 and
x ≥ 0, we apply the Laplace transformation with respect
to ξ to obtain an ordinary differential equation with the
boundary condition at x = 0, from which we get the
Laplace transform as a function of x. The inversion of
the Laplace transform gives us the sought solution to
the two-dimensional time-independent boundary prob-
lem.

When solving Eqs. (8) and (9), describing the insta-
bility in the weak-coupling regime, it is convenient to
introduce the normalized amplitude of scattered radia-

tion (x, ξ) = sin(α/2) (x, ξ) whose Laplace
transform is

(17)

The quantity κ0 = (a0/2)(kpk0/2)1/2 ! kp is the familiar
spatial growth rate of the convective instability associ-
ated with a large-angle SRS in the comoving frame of
reference in the weak-coupling regime [11, 16]. The

normalized amplitude (x, ξ) obtained by inverting
expression (17) has the form

(18)

where H(y) = 1 at y ≥ 0 and H(y) = 0 at y < 0 and I2l – 1
is an odd-order modified Bessel function. Figure 2

shows the reliefs and contour plots of (x, ξ) for two
values of the ratio L⊥ /L|| equal to 1.2 and 0.6 at the scat-
tering angle α = π/2, corresponding to side scattering.
Expression (18) for the normalized amplitude of scat-
tered radiation was earlier obtained in [9, 10], where

B̂1 2 Â1
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Fig. 2. Side SRS in the weak-coupling regime: (a, c) the reliefs and (b, d) contour plots of the ratio /  corresponding to the
amplification coefficient κ0L|| = 5 for the ratios of the transverse to longitudinal size of the pulse L⊥ /L|| = (a, b) 1.2 and (c, d) 0.6. In
region I (ξ > x), two-dimensional amplification takes place. In region II (ξ < x), amplification is one-dimensional. The influence of
the boundary condition at x = 0 reduces the growth rate of perturbations in region I. The maximum possible amplification coefficient
at ξ = L|| is not achieved if L⊥ /L|| < α/2) = 1 (c, d).

B̂1 N̂0

(cot
the spatiotemporal linear theory of a large-angle SRS of
a short laser pulse with finite transverse dimensions
was developed. Amplitude (18) corresponds to the
steady-state regime of convective amplification in a
two-dimensional region. This steady-state solution is
established in a time of τ0 = max{L||/c, L||/[2csin2(α/2)]}
after the pulse has entered the plasma.

When solving Eqs. (12) and (13), describing
the SRS instability in the strong-coupling regime, it
is convenient to introduce the normalized amplitude
of scattered radiation in the form B1(x, ξ) =

−3 sin(α/2)(G0/kp)–1/2A1(x, ξ), where G0 =

[(a0 /2)2 k0]1/3. The Laplace transform of the normal-

2

kp
2

ized amplitude is

(19)

The quantity K0 = ( /2)G0 is the familiar spatial
growth rate of the convective instability associated with
large-angle SRS in the comoving frame of reference in
the strong-coupling regime [11, 16]. The normalized
amplitude B1(x, ξ) obtained by inverting Laplace trans-
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Fig. 3. Side SRS in the strong-coupling regime: (a) the relief and (b) contour plot of  |B1/N0| corresponding to the amplification coef-

ficient K0L|| = 5 /2 for the ratio of the transverse to longitudinal size of the pulse L⊥ /L|| = 1.2. As in Fig. 2, in region I (ξ > x), two-
dimensional amplification takes place, whereas in region II (ξ < x), amplification is one-dimensional. The influence of the boundary
condition B1(ξ, x = 0) ≡ 0 reduces the growth rate of perturbations in region I as compared to region II.

3

form (19) has the form

(20)

where

is the incomplete gamma-function [17] and cj are the

roots of the equation  = i. Figure 3 shows the relief
and contour plot of |B1(x, ξ)| for L⊥ /L|| = 1.2 and α = π/2.

In the region where the solution is affected by the
boundary condition at x = 0 (this region is bounded by
the characteristics ξ = x α/2) and x = 0 and is des-
ignated as region I in Figs. 1–3), the amplitude of scat-
tered radiation shows a two-dimensional behavior: the
solution monotonically increases along both the x- and
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ξ-axes. In region II, solutions (18) and (20) are com-
pletely determined by the boundary condition at the
leading edge of the pulse; in this region, the solution
depends only on the longitudinal coordinate and
increases as ∝ {exp(κ0ξ), exp(K0ξ)} with the growth
rate κ0 or K0, which is independent of the scattering
angle. A correction suppressing the exponential growth
of the amplitude of scattered radiation in region I [see
expressions (18) and (20)] appears because the solu-

tions must satisfy the boundary condition { ,
B1}(x = 0, ξ) ≡ 0.

For a sufficiently large focal-spot size L⊥  or for near-
backward scattering (α ≈ π), when the inequality L⊥  @

α/2)L|| is satisfied, the one-dimensional regime of
amplification dominates in almost the entire interaction
region. In this case, the contribution of the boundary
effects on scattering is insignificant (see also the
remark at the end of Section 3.2.1) and the influence of
the boundary conditions at the side boundaries of the
pulse can be neglected. (Note that, in [16], the problem
of large-angle SRS in the presence of long-wavelength
perturbations of the electron density was solved just in
this approximation.) In the opposite case, i.e., at L⊥  ≤

α/2)L|| (see Fig. 1b), the evolution of the decay
waves is two-dimensional in the entire region occupied
by the pulse.

Solutions (18) and (20) allow us to answer the ques-
tion of whether the maximum possible amplification
coefficient can be achieved for the given scattering
angle and the given ratio of the transverse to longitudi-
nal size of the pulse. In the interaction region, the
amplitudes of the waves increase monotonically along

B̂1

(cot

(cot
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both the x- and ξ-axes. Hence, the amplitude of scat-
tered radiation reaches its maximum at the trailing edge
of the pulse (ξ = L||). The maximum amplification coef-

ficient { , |B1|} ∝  {exp(κ0 L||), exp(K0L||)} is attained
in the one-dimensional regime of amplification and can
be achieved if at least part of the trailing edge does not
fall in region I, where the solution is affected by the
boundary condition at the side boundary. This takes
place if the pulse dimensions satisfy the inequality (see
Fig. 1b)

(21)

If the opposite inequality is satisfied, then the finite
transverse size of the pulse significantly reduces the
amplitude of scattered radiation (cf. Figs. 2a and 2b).

Above, we have studied steady-state solutions (18)
and (20) in the comoving frame of reference in the
weak- and strong-coupling regimes. Below, we will
show that the solutions to the initial–boundary problem
for Eqs. (8) and (9) or (12) and (13) with the initial and
boundary conditions (10) and (11) or (14) and (16),
respectively, arrive at the steady-state solutions
obtained as t  ∞. The initial–boundary problem is
solved by the double Laplace transformation in the time
t and the longitudinal coordinate ξ (the corresponding
variables in the Laplace transforms are p and s, respec-
tively). The Laplace transforms of the normalized

amplitudes (t, x, ξ) (weak coupling) and B1(t, x, ξ)
(strong coupling) are

(22)

(23)

respectively. To examine the functions (t, x, ξ) and
B1(t, x, ξ) at t  ∞, we consider the expressions

limp (p, x, s) and limpB1(p, x, s) at p  0. Passing
over to the limit p  0 (at α ≠ 0) in expressions (22)
and (23), we obtain formulas (17) and (19), respec-
tively. It follows from here that, at t  ∞, the interact-
ing waves arrive at the steady-state regime described by
formulas (18) or (20). This is formally true for arbitrary
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small scattering angles, excluding α = 0. To verify that
there is no asymptotic steady-state solutions for inter-
acting waves in the case of direct-forward scattering,
we return to the dimensional amplitudes (p, x, s) =

−i(ωpe/2ω0)3/2sin–2(α/2) (p, x, s) (weak coupling) and

as(p, x, s) = –(1/6)(ωpe/2ω0)4/3 × sin–2(α/2)B1(p, x, s)
(strong coupling) and pass over to the limit α  0
taking into account expressions (22) and (23). As a
result, we obtain the expression

(24)

from which it follows that the limit { , as} is

absent. This means that there is no steady state for the
case of direct-forward scattering, which agrees with the
familiar results for the direct-forward SRS [13].

3.2. Applicability Conditions of Two-Dimensional 
Steady-State Solutions

The explicit solutions (18) and (20) to the time-
independent boundary problem correctly describe SRS
only within the applicability limits of the model based
on the reduced equations (8) and (9) or (12) and (13),
respectively. In particular, condition (6), which allows
us to reduce the order of the equation for the scattered-
field envelope with respect to the variable x, must be
satisfied. Obviously, this condition can be violated for
scattering angles close to either π (near-backward scat-
tering) or zero (near-forward scattering). Below, we
will determine the range of scattering angles in which
the steady-state regime of convective amplification of
perturbations in the course of SRS is correctly
described by the solutions to the boundary problem for
the reduced equations.

3.2.1. Near-backward scattering (a ≈ p). As the
scattering angle tends to π, the characteristic x =
ξ α/2) tends to x = 0. As a result, region I, in which
the solution is affected by the boundary condition at
x = 0, becomes progressively narrower; correspond-
ingly, the absolute value of the x-derivative of the solu-
tion to the boundary problem increases and becomes
infinite at α = π, when the amplitude of scattered radia-
tion, determined by expressions (18) or (20), undergoes
a discontinuity at the boundary x = 0. In order to esti-
mate the characteristic value of the transverse derivative
of the envelope of scattered radiation in region I, we
approximate the x profile of the envelope at the given ξ
by a linear function: as(x, ξ) = (x/ξ) α/2)as(ξ, x =
ξ α/2)). We substitute this approximation into con-
dition (6) to obtain the upper estimate for the range of

âs

B̂1

a0
1/3

âs as,{ } p x s, ,( )
a 0→
lim

ωpe
2

4iω0
----------- N̂0 N0,{ } a0
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scattering angles in which expressions (18) and (20) are
formally valid. As a result, we obtain

(25)

Note that the transverse derivative ∂as/∂x obtained from
the linear approximation gives a somewhat underesti-
mated value of the derivative compared to its maximum
value in region I. However, this fact is of minor impor-
tance, and the upper estimate (25) for the range of
admissible scattering angles remains valid in order of
magnitude. For example, in the weak-coupling regime,
substituting the exact maximum value of ∂as/∂x
obtained from the explicit solution (18) into condition
(6) gives the inequality π – α > 2(k0L||)–1/2(πκ0L||/2)–1/4,
where κ0L|| is the maximum achievable amplification
coefficient for the scattering at the angle α. Under the
applicability conditions of the linear theory, this coeffi-
cient is not too large, κ0L|| ~ 10–20, from which we
obtain (πκ0L||/2)–1/4 ~ 0.5. Hence, the use of condition
(25) as the order-of-magnitude estimate is well justi-
fied.

If condition (25) is violated, expressions (18) or (20)
fail to describe the scattered-field envelope in region I
(in fact, in the boundary layer of width lb ≈
[L||/(2k0)]1/2). To correctly describe the boundary
effects, it is necessary to take into account the second-
ary derivative with respect to the transverse coordinate
and to correctly specify the pulse shape, which must
correspond to the smooth vanishing of the pulse ampli-
tude at the side boundary. At the same time, in region II,
solutions (18) and (20) are independent of the boundary
conditions at the side boundary (x = 0) of the pulse and
condition (6) is satisfied throughout this region. There-
fore, at π – (k0L||/2)–1/2 < α ≤ π, the applicability of the
solutions obtained is only violated in a narrow bound-
ary layer of width lb ! L⊥ , whereas in most of the
region occupied by the pulse (lb < x ≤ L⊥ , 0 ≤ ξ ≤ L||),
these solutions correctly describe the envelope of scat-
tered radiation.

3.2.2. Small-angle scattering (a ≈ 0). As the scat-
tering angle formally tends to zero, the characteristic
ξ = x α/2) tends to the vertical line ξ = 0 and the
region in which the solution is affected by the boundary
condition at x = 0 extends over the entire region occu-
pied by the pulse. At α ! 2 ξ/x), the asymptotic
behavior of solutions (18) and (20) at a given point
(x, ξ) inside the pulse is described by the formulas

(26)

(27)

π α 2
k0L||
---------- 

  1/2

.>–

(tan

(arctan

B̂1 x ξ α  ! 2 ξ /x( )arctan, ,( ) xα
2

------ N̂0κ0,∼

B1 x ξ α  ! 2 ξ /x( )arctan, ,( )

∼ xα
4

------ iN0G0 c jG0ξ( ) 2 γ 3 c jG0ξ,( )–[ ]exp
j 1=

3

∑ ,
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respectively. At α ! 2 ξ/x), condition (6) with
allowance for formulas (26) and (27) leads to the ine-
quality sinα ≈ α @ (k0x)–1. If this inequality is violated
in the entire interaction region (i.e., at 0 ≤ x ≤ L⊥ ), then
we cannot examine the instability within the framework
of Eqs. (8) and (9) or (12) and (13) and must use the
more general initial set of equations (3) and (4), which
contain the second derivatives with respect to the trans-
verse coordinate.

As was shown in [14], where equations similar to
Eqs. (3) and (4) were used to describe the three-dimen-
sional instability of a laser pulse with respect to trans-
verse perturbations of the envelope with a characteristic

scale length of L⊥  (i.e.,  ~ L⊥ ), taking into account
the higher spatial derivatives leads to the absolute insta-
bility of the pulse amplitude in the comoving frame of
reference. Thus, we obtain the lower limit for the
admissible scattering angles: α @ (k0L⊥ )–1. For lower
scattering angles, our results become invalid. More-
over, when estimating the lower limit for scattering
angles for which the interacting waves arrive at a steady
state in the comoving frame, we must take into account
the finite duration of the pulse propagation in a plasma.
Assuming that the characteristic length of a plasma
produced in the laser focal region is on the order of the
Rayleigh length rR , we compare the propagation time
of the pulse in the plasma τR = rR/c with the character-
istic time τ0 = L||/[2csin2(α/2)] required for the steady-
state solution describing a small-angle SRS in the
comoving frame to be established [9, 10]. Under the
condition τ0 < τR (from which we obtain α >
2(L||/L⊥ )1/2(k0L⊥ )–1/2), the propagation time is sufficient
for the steady-state solution in the comoving frame to
be established. Therefore, in order for the steady-state
regime of two-dimensional spatial amplification of per-
turbations arising due to a small-angle SRS can be
established in the comoving frame of reference and we
can describe this steady state in terms of solutions (18)
or (20) to the boundary problem for the reduced equa-
tions (8) and (9) or (12) or (13), respectively, the scat-
tering angles must satisfy the inequality

Summarizing the obtained results concerning the
applicability of the steady-state solutions (18) or (20) to
the boundary problems for Eqs. (8) and (9) or (12) and
(13), respectively, in the entire region occupied by the
laser pulse, we can state the following.

In the range

(28)
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expressions (18) and (20) correctly describe the ampli-
tude of scattered radiation in the comoving frame of
reference in the steady-state regime of two-dimensional
convective amplification in the region occupied by the
pulse.

For

,

solutions (18) and (20) become invalid in region I, where
they are affected by the boundary conditions at the side
boundary of the pulse x = 0, whereas in region II, the
amplitude of scattered radiation is correctly described
by expressions (18) and (20).

For

,

solutions (18) and (20) are inapplicable in the entire
region occupied by the pulse.

4. CONCLUSION

In this paper, we have examined the steady-state (in
the comoving frame of reference) regime of amplifica-
tion of the perturbations arising due to an SRS at angles
satisfying condition (28) in the two-dimensional region
in which the pump field is localized. It is established
that the amplification of unstable modes in the comov-
ing frame is two-dimensional in nature. It is shown that
the finite transverse dimensions of the laser pulse can
limit the coefficient of convective amplification. It is
found that, in order for the maximum possible (in linear
theory) amplification coefficient to be achieved for SRS
at the given angle α, the ratio of the transverse to longi-
tudinal size of the pulse must satisfy the inequality
L⊥ /L|| > α/2).
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Abstract—One-dimensional equations are derived that describe the hydrodynamic and electrodynamic prop-
erties of a plasma created through gas ionization by a short intense laser pulse. Different approaches (in partic-
ular, the particle-in-cell method) are used to show that, with ionization processes included, the excitation of a
wakefield by an intense laser pulse can be described by the method of slowly varying amplitudes. It is shown
that ionization processes enhance the wakefield excited by a moderate-intensity laser by about 10% in the case
of a linearly polarized laser and by about 50% in the case of a circularly polarized laser. Ionization processes
in light gases irradiated with high-intensity laser pulses have essentially no effect on the wakefield during the
resonant excitation of a plasma wave by the ponderomotive force and play a governing role far from the reso-
nance. © 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The progress achieved over the past decade in the
creation of compact devices generating intense femto-
second laser pulses (so-called T3 systems) has made it
possible to substantially extend the area of theoretical
and experimental research on the interaction of highly
localized (in both space and time) intense electromag-
netic fields with matter (see, e.g., [1]). Thus, combining
the high intensity of laser pulses with a properly
adjusted pulse duration provides the possibility of gen-
erating a large-amplitude wake plasma wave [2, 3],
which can be employed in modern-day laser wakefield
accelerators (plasma-based electron acceleration
schemes) [4].

The theory of wakefield excitation by short laser
pulses in fully ionized homogeneous plasmas and in
preformed plasma density channels has been developed
in considerable detail [5–12] (see also reviews [13, 14]
and the literature cited therein). However, the theory of
the propagation of high-intensity laser pulses in a mat-
ter whose charge content changes due to ionization by
intense optical radiation requires further development.
In particular, the ionization of matter by laser pulses not
only may give rise to radiation energy losses but may
also seriously distort the incident laser pulse shape on
the particle-acceleration time scale [15, 16] and provide
conditions for optical guiding by preformed plasma
channels [17].

Our purpose here is to analyze how ionization pro-
cesses affect the wakefield excitation by a laser pulse in
a gas. The generation of plasma waves by laser pulses
with allowance for ionization processes was studied in
[18, 19]. Mori and Katsouleas [18] applied the single
particle model to determine the ponderomotive force
that excites a plasma wave during ionization. However,
in deriving the expression for the ponderomotive force
1063-780X/00/2611- $20.00 © 20947
(see formula (15) in [18]), they neglected the fact that
the growth rate of the electron density due to ionization
contains oscillations at the harmonics of the laser field
frequency (see relation (13) in [18]) because of the
strongly nonlinear dependence of the ionization proba-
bility on the laser field intensity. Moreover, the expres-
sion for the ponderomotive force obtained in [18] con-
tained such parameters as the phase φ and amplitude E
of the ionizing electric field, which remained undeter-
mined. As a result, Mori and Katsouleas [18] described
the effect of ionization processes on the amplitude of
the wake plasma wave by the phenomenological
expression with two undetermined parameters. The
approach developed by Fisher and Tajima [19] was also
phenomenological, with undetermined main parame-
ters that governed the contribution of ionization pro-
cesses to the wakefield amplitude.

Below, we apply the kinetic and hydrodynamic
equations that describe the relativistic dynamics of the
interaction of intense laser fields with plasma and sys-
tematically take into account ionization processes (cf.
[20]) in order to study the excitation of a wake plasma
wave by an intense laser pulse. Since the irradiation of
a gas by a short laser pulse is usually characterized by
the inequality γ < 1, where γ is the Keldysh parameter
[21], the plasma production can be examined using the
tunneling-ionization model. In this way, we can turn to
the so-called “two-stage” model, in which the transi-
tion of an electron from the bound state to the state of
free motion is described by the methods of quantum
mechanics in the spirit of the theory of tunneling ion-
ization, and the dynamics of the free electrons them-
selves in the laser field is described by the classical
equations of motion [22, 23]. Recently, this approach
has been used to study nonadiabatic gas heating by
intense laser pulses [20, 24]. In our paper, the two-stage
model is used to investigate the characteristic features
000 MAIK “Nauka/Interperiodica”
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of the wakefield excitation with allowance for ioniza-
tion processes.

Using the one-dimensional approximation, we com-
pare the results obtained by the following three
approaches: the most complete numerical investigation
based on particle-in-cell (PIC) simulations; numerical
solution of the set of equations consisting of the Max-
well equations and the hydrodynamic equations for an
electron fluid, which are derived from the kinetic equa-
tion by the method of moments; and numerical and ana-
lytical solution of the equation for the wakefield ampli-
tude, which is derived from the Maxwell equations and
hydrodynamic equations by averaging over time.

We demonstrate that the results of the hydrody-
namic calculations based on the full set of equations
and the results obtained by analytically solving the
reduced equation for the wakefield amplitude both
agree well with the kinetic PIC simulation results.

2. BASIC EQUATIONS

We describe the ionization process and free electron
motion in the field of a short high-power laser pulse by
the hydrodynamic equations. We incorporate ionization
into the basic equations through the standard procedure
of deriving hydrodynamic equations from the kinetic
equation for the momentum electron distribution func-
tion f(r, p, t):

(1)

where E and B are the electric and magnetic fields in a
plasma. The term Γ(r, t)δ(p) describes the source of the
electrons produced during ionization by a strong elec-
tromagnetic field. The atoms (or ions) are ionized by
the field of a short (with a duration τp of about 100 fs or
shorter) high-power laser pulse via the tunneling mech-
anism, because the Keldysh parameter γ =

ω / |e |E (where ω is the laser frequency, U is the
ionization potential of an atom (or ion), and me(e) and
e are the mass and charge of an electron) is compara-
tively small (about unity or smaller) [21]. In this case,
we can assume that the initial velocity of free electrons
produced during such an ionization process is zero
[22, 23, 25]. For this reason, the ionization term in
Eq. (1) is proportional to δ(p). Note that, in order to
study the distribution function of the electrons that are
ejected out of the atoms during tunneling ionization,
Tikhonchuk and Bychenkov [26] incorporated ioniza-
tion processes into the kinetic equation through the
source term of the form Γ(r, t)δ(p). More recently, an
analogous approach was applied in [20, 27] to the
kinetic equation in order to derive the hydrodynamic
equations describing gas ionization.

In Eq. (1), we neglected recombination and both
elastic and inelastic collision processes (electron–neu-
tral, electron–ion, and electron–electron collisions)

∂f
∂t
----- v · ∇( ) f e E

1
c
---v B×+ 

   · 
∂f
∂p
------+ + Γ r t,( )δ p( ),=

2meU
because, in a moderately dense plasma, these processes
occur on time scales far longer than the characteristic
time scales of our problem, i.e., the pulse duration and
the plasma period, which is approximately the pulse
duration or shorter (see below). In fact, if the neutral
atom density is about 1019 cm–3 or lower and the elec-
tron velocity is about ~1010 cm/s (which is close to the
speed of light), then even for a collision cross section of
about σ ~ 10–16 cm2 the time interval between succes-
sive non-Coulomb collisions is approximately equal to
100 fs, which is comparable with the pulse duration.
However, for such electron velocities, the collision
cross section is much lower: σ ! 10–16 cm2 [28]. During
a short high-power laser pulse, Coulomb collisions
between electrons and ions can definitely be neglected,
because, first, the relative velocities of colliding parti-
cles are high [29] and, second, the electron–electron
collision time is longer than 100 fs even for electron
temperatures of about several electronvolts [20]. We
can also ignore recombination processes because the
recombination time is estimated to be much longer than
the pulse duration (see, e.g., [28]).

We integrate Eq. (1) over momenta to obtain the

equation for the electron density ne(r, t) ≡ pf(r, p, t):

(2)

where Ve(r, t) ≡ (r, t) pvf(r, p, t) is the mean

directed electron velocity. Integrating Eq. (1) mul-
tiplied by p over p and using Eq. (2), we arrive at
the  equation for the mean momentum Pe(r, t) ≡

(r, t) d3p:

(3)

In deriving Eq. (3), we neglected the pressure force

∂Πij/∂rj (where (Πij =  – Ve, j)(pi – Pe, i)fd3p is

the pressure tensor) in comparison with the pondero-
motive force that acts on the electron fluid and is
described by the second term on the left-hand side of
Eq. (3) and by its right-hand side. Recall that, during
gas ionization by a short laser pulse, we can actually
ignore electron–neutral and electron–ion collisions, in
which case the energy of the electrons in the ionized
gas (the so-called residual electron energy [22, 20, 24])
is governed by their nonadiabatic interaction with the
laser field at the instants at which they are ejected out
of the atom rather than by inverse bremsstrahlung.
Although the residual electron energy may be signifi-
cant, we can readily show that, at least in the one-
dimensional approximation discussed below, it does
not contribute to the pressure force, because the ioniza-
tion-produced electrons preferentially move transverse
to the propagation direction of the laser pulse (see Sec-

d
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tion 4).1 On the other hand, in the one-dimensional
approximation, the ionized gas is inhomogeneous only
in the propagation direction of the pulse, so that the
derivative of the pressure tensor, which is mainly gov-
erned by the residual electron energy, equals zero.

The hydrodynamic equations (2) and (3) contain the
source term Γ, which characterizes the rate at which
free electrons originate per unit volume. To determine
Γ, we must calculate the rate at which the electrons are
ejected out of all atomic shells:

(4)

where Γ〈m〉 ≡ NmWm , Wm is the probability of the tunnel-
ing ionization of an ion in the mth ionization state per
unit time (m = 0 corresponds to a neutral atom), Nm(N0)
is the density of such ions, and N0 is the density of neu-
tral atoms. The probability Wm is described by the
familiar Ammosov–Delone–Kraœnov formula, which is
not averaged over the pulse period [30, 31]:

(5)

where Eat = 5.142 × 109 V/cm, E ≡ |E| is the instantaneous

electric field amplitude, Mm = (m + 1) , the
ionization potential Um of an ion in the mth ionization
state is measured in eV, and ωat = 4.134 × 1016 s–1 is the
atomic frequency. The time evolution of the densities
Nm of atoms and ions, which are both assumed to be
immobile, can be described by the equations [32, 33]

(6)

where Z is the nuclear charge of an atom and Nat = const
is the net density of the gas atoms and ions. Solving
Eqs. (6) at a fixed laser field amplitude E yields the time
dependence of Γ. Figure 1 shows that the time evolu-
tion Γ(t) is smooth in the case of a circularly polarized
pulse and experiences rapid oscillations [34] in the case
of a linearly polarized pulse, the oscillation period
being equal to one-half of the laser field period. The
envelope of Γ(t) is characterized by a sequence of peaks

1 The isotropization of the momentum electron distribution func-
tion via electron–electron and electron–neutral (ion) collisions
can be neglected, because the collision times and, accordingly, the
rise time of the ionization front are much longer than the pulse
duration.
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corresponding to ionization of ions in the correspond-
ing ionization states. The peak widths along the time
axis, τion, which can be regarded as characteristic time
scales on which ions in the corresponding ionization
states are ionized, are approximately equal to several
laser field periods. Such short ionization time scales
allow us, in particular, to speak of the threshold inten-

sity  for the ionization of an ion in the mth ioniza-
tion state.

I th
m( )
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a(t), Z~ ~ Γ(t)/ωNat

Fig. 1. Source term Γ(t)/(ωNat) (heavy solid curves) for the
electrons originating during the ionization of helium atoms
by a Gaussian laser pulse with the peak intensity Imax = 5 ×
1016 W/cm2, full width at half-maximum τp = 50 fs, and
wavelength λ = 0.8 µm. The zero time corresponds to the
pulse center. The light solid curves show the absolute value
of the dimensionless laser field amplitude (t) =
e |E(t)|/(meωc), where the field amplitude is related to the

laser intensity Il by 〈E2(t)〉  = 4πIl/c (the angular brackets
stand for averaging over the laser field period). The dashed
curves show the mean ion charge  = ne/Nat in the case of
(a) linear and (b) circular polarization.
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In the Maxwell equations and in the kinetic equation
(1), we must take into account ionization processes. To
do this, we must consider not only the current J of free
electrons but also the current Jion driven by the polariza-
tion of atoms ionized by the laser field [35]. To deter-
mine the current Jion, we take into account the fact that,
because of the direct ionization of gas atoms by an elec-
tromagnetic field with the wave vector k and frequency
ω, the energy density wk, ω of the laser radiation
decreases at the rate

(7)

and the momentum flux of the laser radiation, S/c2

(where S = (c/4π)E × B is the Poynting vector), changes
at the rate

(8)

The rates (7) and (8) at which the energy and
momentum of the laser radiation change can be incor-
porated into the Maxwell equation

(9)

by supplementing the current J = eneVe of free elec-
trons with the ionization current Jion defined as

(10)

In order to take into account the ionization current
Jion in Eq. (9), we must add the ionization-induced
charge density ρion to the conventional hydrodynamic

density ρ(r, t) ≡ ene + |e |  of free electrons in

the Maxwell equation for the electric field E, divE =
4πρ + 4πρion. In fact, Eqs. (2) and (6) with expression
(4) imply that, at each instant, the charge of the free
electrons is equal in magnitude to the total ion charge;
therefore, the hydrodynamic free-charge density ρ and
hydrodynamic current density J satisfy the free-charge
conservation law ∂ρ/∂t + divJ = 0. Taking the diver-
gence of Eq. (9) and using the free-charge conservation
law, we arrive at the conservation law for the ioniza-
tion-induced ion charge, ∂ρion/∂t + divJion = 0. In par-
ticular, we can see that, if divJion ≠ 0, then ρion ≠ 0. Note
that, in one-dimensional geometry, the ionization cur-
rent (10), which results from gas ionization by the
transverse field of the laser pulse, is purely transverse,
so that we have divJion = 0 and, accordingly, ∂ρion/∂t = 0
and ρion = 0. Previously, Rae and Burnett [36] intro-
duced the current (10) on the basis of energy consider-
ations, and then it was used in [32, 33, 27, 16]. Rela-
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tionship (8) shows that using the polarization current
(10) can also be justified on the basis of the momentum
conservation law for a “field–matter” system during the
ionization of matter by a radiation field.

Since, in the approximation of immobile ions, the
Maxwell equation for the electric field E,

, (11)

contains the electric current density J = eneVe of free
electrons, it is convenient to rewrite Eq. (3) in terms of
J. With the relativistic relationship between the elec-
tron momentum Pe and the electron velocity Ve(r, t) =

Pe(r, t)/ , we obtain

(12)

where ρe ≡ ene is the charge density of free electrons.

3. WAKEFIELD EXCITATION
IN ONE-DIMENSIONAL GEOMETRY

In order to clarify the main effect of optical ioniza-
tion on the longitudinal electric field of a wake plasma
wave excited by a short laser pulse, we treat the prob-
lem in one-dimensional geometry, in which case all of
the quantities depend solely on the spatial variable x in
the propagation direction of the laser pulse. The longi-
tudinal component Ex of the electric field of the wake
wave driven by a laser pulse in a plasma turns out to be
potential and satisfies the equation

(13)

Recall that the source term Γ in Eqs. (2), (3), and
(12) is nonzero only over short time intervals corre-
sponding to ionization of ions in the corresponding ion-
ization state (Fig. 1). The laser intensity required to fur-
ther ionize ions with a comparatively low ionization
energy is far below the relativistic intensity, which is
about 1018 W/cm2 for laser wavelengths of λ ~ 1 µm.
Consequently, in order to study the characteristic fea-
tures of the excitation of the longitudinal electric field
during ionization, we can solve Eq. (12) in the weakly
relativistic approximation, omitting terms of second
order in Jx and higher and retaining terms quadratic in
Ez (below, for simplicity, we will consider laser pulses
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with linear polarization along the z-axis):

(14)

Here, Jz can be taken to be linear in E,

(15)

Taking into account the fact that the plasma is highly
underdense, ne ! nc ≡ meω2/4πe2, we obtain from the
Maxwell equations the relationship

which is valid to zero order in the parameter ne/nc and
enables us to rewrite Eq. (14) as

(16)

Note that Eqs. (13), (15), and (16), supplemented
with Eqs. (4)–(6) and the equation ρe(∂ρe/∂t = eΓ) for
the electron density, which is analogous to Eq. (2) and
in which the term div(neVe) is discarded, completely
describe one-dimensional excitation of the longitudinal
plasma field Ex by a plane-polarized laser pulse in the
approximation that is linear in the electron density ne

and quadratic in Ez. In the approximation cubic in the
relativistic corrections (i.e., with allowance for the
inverse effect of the wakefield on the laser radiation),
the laser pulse propagation is described by the z-com-
ponent of Eq. (11) and the projection of Eq. (12) for the
current onto the z-axis:2 

(17)

We emphasize that this approach accounts for the
full set of harmonics of the electron source term Γ(t)
(Figs. 1, 2).

3.1. Equations for Slowly Varying Amplitudes
of the Longitudinal Wake Electric Field 
and the Transverse Laser Electric Field

Using the set of equations derived above, we can
analyze, on the one hand, the effect of ionization pro-
cesses on the wakefield excitation and, on the other
hand, the nonlinear effect of both ionization processes
and the generation of a plasma wave on the electromag-
netic field of a laser pulse. We can simplify the analysis
and obtain analytic results by averaging Eqs. (2), (4)–

2 In this equation, the electron charge density in the term eρeEz/me
should be deduced from the continuity equation with the term
div(neVe), specifically, ∂ρe/∂t + divJ = eΓ.
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(6), (11), and (13)–(17). We thus arrive at equations for
the slowly varying (over the pulse period) complex
amplitudes of the transverse laser electric field Ez, 1 =
〈Ezexp(iωt)〉  and longitudinal electric field Ex, 0 = 〈Ex〉
(the angular brackets indicate averaging over the time
interval 2π/ω, where ω is the laser frequency). We
expand each of the quantities Ex , Ez , Jx , Jz , Γ, and ne,
which vary rapidly on the time scale 2π/ω, in a har-
monic series of the form

where A stands for any of these quantities and An is the
slowly varying (on the time scale 2π/ω) amplitude of
the nth harmonic of Ä. The main condition for this
expansion to be valid is the inequality Γ0/(neω) < 1,
which should hold in the region where the bulk atoms
are already ionized. Our calculations show that this ine-
quality is satisfied for moderately short laser pulses,
which are at least as long as several oscillation periods.

We should take into account two circumstances.
First, the series expansion for the electron density con-
tains only even harmonics, which stem, on the one
hand, from the ionization processes (ne increases in a
steplike manner each half-period of the laser field; see
Fig. 1) and, on the other hand, from the hydrodynamic
and relativistic nonlinear effects. Second, in the weakly
relativistic approximation, the amplitude Ez, 1 of the first
harmonic of the laser field is maximum. Then, using
Eqs. (13), (15), and (16) and taking into account
Eq. (2), we obtain the following equation for the slowly

A x t,( ) A0 x t,( )=

+
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Fig. 2. Spectrum |ΓΩ| (arb. units) of the ionization term Γ(t)
for a carbon gas. The laser parameters are the same as in
Fig. 1.
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varying dimensionless amplitude ap = eEx, 0/(meΩpc) of
the longitudinal electric field:

where ne, 0 = (t')dt',  = 4πe2ne, 0 /me ,  =

(4πe2/me) (t)dt, and a = eEz, 1/(meωc). For an

elliptically polarized laser pulse, we have a =
eEl/(meωc), where the laser field amplitude El is deter-
mined by the pulse intensity Il = (c/8π)|El |2. Since, in
the variables ξ = x – ct, τ = t, the quantities Ez and ne

treated in the quasistatic approximation [5] depend
mainly on ξ, the latter equation becomes

(18)

where  = /c2. From Eqs. (11) and (17), we obtain
an equation for the dimensionless envelope a of the
transverse laser field:

(19)

In deriving (19), we used the Maxwell equation divE =
4πρ to express the zeroth harmonic of the electron den-
sity through the background electron density, which is

proportional to , and the perturbed electron density,
which is proportional to ∂ap/∂ξ and is associated with
the generation of a wake plasma wave.

An attempt to analyze how ionization influences the
wakefield excitation was made, in particular, in
[18, 19]. However, in contrast to Eq. (18), which was
derived here by applying the kinetic approach to gas
ionization, the model equations analogous to (18) that
were proposed in [18, 19] are phenomenological and
contain some undetermined parameters. In our model,
supplementing Eq. (18) with Eqs. (19) and (4)–(6),
from which we find Γ0, Γ2, and ne, 0, yields a closed self-
consistent set of equations.

Note that Eq. (18) differs markedly from the set of
Eqs. (13), (15), and (16) in that it contains only slowly
varying quantities; moreover, in the weakly relativistic
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approximation, Eq. (18) includes only the zeroth (Γ0)
and second (Γ2) harmonics from the full set of harmon-
ics of the source Γ of free electrons (see the spectrum
of Γ in Fig. 2). We emphasize that the model proposed
by Mori and Katsouleas [18] differs qualitatively from
our approach to the theory of wakefield generation in
that it neglects the highest harmonics of the free-elec-
tron source.

Equation (19) implies that the energy of laser radia-
tion changes according to the law

(20)

According to Eq. (20), the losses of laser energy can be
classified into two groups: adiabatic losses, which are
associated with the ponderomotive force, and nonadia-
batic losses, which stem from gas ionization by laser
radiation. Adiabatic losses include, in particular, the
fraction of energy that is expended on the excitation of
a wake plasma wave [2] and is described by the first
term on the right-hand side of Eq. (20). Since these adi-
abatic energy losses depend resonantly on the pulse
duration and are maximum when the pulse duration is
approximately equal to the period of plasma waves,
they can be neglected even when the propagation dis-
tance of a laser pulse is long and the plasma is highly
underdense [2, 3].

Nonadiabatic losses result from the nonadiabatic
nature of ionization and consist of two parts. First, they
include energy losses associated with overcoming the
atomic potential barrier [32, 16], which are described
by the fourth term with Um on the right-hand side of
(20). These losses can be ignored if the penetration
depth x of laser radiation into the plasma satisfies the

inequality x ! xU = (t)dt/ (t =

+∞) , where E0(t) is the amplitude of the elec-
tric field of the laser pulse at the entrance to the region
occupied by the gas and Nm(t = +∞) is the density of the
ions in the mth ionization state after the ionizing pulse.
For convenience in estimates, we can represent xU in
the form
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where Lp = cτp is the characteristic length of the pulse
and Imax is its peak intensity. Second, the laser field
energy is lost due to losses associated with the conver-
sion of a fraction of the laser energy into residual elec-
tron energy [37, 38]. These losses are described by the
second and third terms on the right-hand side of
Eq. (20), which constitute a function localized in ξ [20]
and are unimportant on spatial scales x ! xQ =

(t)dt/Qe(t = +∞), where Qe(t = +∞) =

Γ(t*)dt* is the residual electron

energy behind the laser pulse and P(t = +∞, t*) is the
momentum that the electrons originating at approxi-
mately the instant t = t* gain up to the time t = +∞.
According to [24], the energy Qe can be estimated as

Qe ≈ (tm ) + η2 (tm )  for a laser

pulse with a nearly linear polarization (1 – η2 @ 3αm)

and as Qe ≈ (tm ) for a laser

pulse with nearly circular polarization (1 – η2 ! 3αm).
Here, η is the polarization ellipticity (η = 1 corresponds
to circular polarization and η = 0 refers to linear polar-
ization), tm is the instant at which the electrons are
ejected out of the [m – 1]th shell of the ions (atoms) at
the highest rate, αm(t) ≡ [Mm/(m + 1)]3|El(t)|/Eat ~ 10–1 is
a small parameter in the region where the ionization
rate is essentially nonzero, and Zmax is the maximum
number of completely ionized electron shells at fixed
parameters of the laser radiation. The last formulas
enable us to estimate xQ as
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for 

The above estimates for xU and xQ imply that, in
most of the cases that are important from a practical
standpoint (Z < 10, Nat < 1018 cm–3, and Imax >
1016 W/cm2), the energy losses are significant only on
spatial scales of about several hundreds of laser wave-
lengths or longer. On shorter spatial scales, variations
in |a |2 as a result of losses of the pulse energy due to gas
ionization can be discarded, in which case we can
determine the wakefield amplitude ap assuming that the
laser pulse is prescribed and neglecting possible self-
modulation of the pulse [6–10, 13, 14]).

The plots of Γ0(ξ) and Γ2(ξ), which enter Eqs. (18)
and (19), are shown in Fig. 3 for the particular case of
ionization of a carbon gas by a linearly polarized laser
pulse. In this case, the quantity µ(ξ) = (1/2)Γ2(ξ)/Γ0(ξ)
obeys the relationship

which holds when the power index of the exponential
function in formula (5) is sufficiently large (i.e., when
αm(ξ) ! 1/3). For such values of αm(ξ), the quantity
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Fig. 3. Harmonics of the ionization rate, Γ0(t) (solid curve)
and Γ2(t) (dashed curve), normalized to Natω, for a carbon
gas (the zero time corresponds to the pulse center). The laser
parameters are the same as in Fig. 1.
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µ(ξ) depends weakly on ξ. For different gases, it lies in
the range (0.7, 1); for example, for hydrogen, we have
µ(ξ) ≈ 0.83. Note that the expression for µ(ξ) derived
by Brunel [34] differs from our expression because,
first, he used the ionization rate for hydrogen rather
than the ionization rate adopted in [34] and, second, our
expression for Γ2 is more exact.

In the case of a circularly polarized pulse, the spec-
trum of the ionization source contains no satellite har-
monics and the wakefield excitation is described by
Eq. (18) with Γ2 = 0 (µ = 0). Below, most of our atten-
tion will be focused on a pulse with linear polarization,
in which case both the zeroth and second harmonics
should be taken into account.

3.2. Analytic Solution for a Prescribed Laser Pulse

Equation (18) is easy to solve analytically if we take
into account the fact that the width of the ionization
front, Lion = cτion, is much shorter than both the wave-
length of a laser pulse, Lp = cτp, and the plasma wave-
length. We approximate the electron density profile

ne0(ξ) as ne0(ξ) = nat (ξm – ξ), where ξm is the
position of the mth ionization front and the integer Zmax
is equal to the maximum possible ion charge for the
given parameters of the laser pulse. Since, in the gen-
eral case of multielectron atoms (when Zmax is large),
the solution is somewhat involved, we present it for the
case of hydrogen (Zmax = 1):

(21)

where kp = Ωp/c is the wave vector of the plasma wave
behind the pulse and ξ1 is the point at which the ioniza-
tion rate Γ0 is the highest. The term proportional to
GΓ(ξ) stems from the ionization source, and the second
and third terms on the right-hand side of (21) describe
the ponderomotively driven wakefield. When the pulse
propagates in a preionized gas [in which case ξ1 = ∞
and a(ξ1) = 0], we have B = 0. When the gas is ionized
immediately by a pulse with a smooth front of width
Lf @ Lion, we have B = 1.

We use formula (21) to investigate the effect of ion-
ization of an initially neutral gas at the laser pulse front
on the wakefield excitation. For simplicity, we consider
a rectangular pulse (a(ξ) = 0 for |ξ| > L/2) with the total
length L @ Lf , assuming again that Lf @ Lion, in which
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case B = 1. We also assume that  @ Lf . If such a rect-
angular pulse propagates in a preionized homogeneous
gas, then, for ξ < –L/2, the second term on the right-
hand side of (21) yields a familiar result [2]: ap =

(1/2) cos(kpξ)sin(kpL/2). This indicates that the
wakefield is the strongest at kpL = π(1 + 2n) (where n is
an integer), the maximum field amplitude being

(1/2)  (where a0 = eEmax/(mωc), Emax = ).
When a rectangular pulse ionizes an initially neutral
gas, the second and third terms on the right-hand side
of (21), which describe the ponderomotively driven
plasma wave, give the following expression for the
wakefield amplitude at ξ < –L/2:

The amplitude is seen to be maximum under the same
condition kp L = π(1 + 2n), in which case the total wake-
field amplitude in an ionized gas has the form

(22)

where the term proportional to GΓ a2(ξ1) stems from the
ionization source and the remaining terms describe the
ponderomotively driven wakefield. From the above
expressions for GΓ and µ, we have GΓ . 0.6 for a circu-
larly polarized pulse and GΓ = 1 for a pulse with linear
polarization. Accordingly, when Imax is close to the ion-

ization threshold Ith, we have a2(ξ1) ≈ . As a result,
from (22), we find that the total (with allowance for
both ionization and ponderomotive forces) maximum
amplitude of the wakefield excited in an initially neu-
tral gas is larger than that of a wakefield excited in a
completely preionized gas by approximately 10% in
the case of a linearly polarized pulse and by approxi-
mately 50% in the case of a circularly polarized pulse.

For Imax @ Ith, we have a2(ξ1) ! , so that, in the case
of an initially neutral gas, the wakefield amplitude is
essentially the same as that in the case of a completely
preionized gas.3 

Using expression (21), we can show that the situa-
tion with a Gaussian laser pulse is qualitatively the
same. Specifically, for Imax @ Ith, ionization processes
also have an insignificant impact on the wakefield
amplitude.4 When Imax is close to Ith, ionization pro-
cesses act to enhance the wakefield amplitude by

3 This is true for kpL ≠ 2πn; otherwise, we have ap = 0 in the case
of a preionized gas and ap ≠ 0 when the gas is ionized directly by
the laser pulse.

4 This is true for the case of nearly resonant excitation of a wake
wave by ponderomotive forces, i.e., when the laser pulse length is
slightly longer than the plasma wavelength.
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approximately 10% in the case of linear polarization
and by approximately 50% in the case of circular polar-
ization. However, the dependence of the maximum
amplitude of the wakefield excited by a Gaussian pulse
in an initially neutral gas on the dimensionless pulse
length is peaked at a pulse length somewhat longer than
that in the case of wakefield generation in a preionized
gas (see Fig. 4).

3.3. Results of the Numerical Solution 

The above analytic conclusions agree well with the
results of a more exact numerical solution of Eq. (18);
simulations of the wakefield generation on the basis of
Eqs. (2), (4)–(6), (13), (15), and (16), with the full set
of the harmonics of Γ; and PIC simulations (see the
next section). We used Eq. (18) and the above expres-
sion for µ(ξ) to calculate the longitudinal wakefield
excited during gas ionization by a Gaussian laser pulse

a(ξ) = a0exp[–2ln2(ξ/Lp)2], (23)

where Lp = τpc is the laser-pulse full width at half-max-
imum. The zeroth harmonics of the ionization rate Γ0

and electron density ne, 0 = – (s)ds were com-

puted from (4) and (6), which were averaged over the
laser field period and in which the ionization rates were
calculated from formula (5), which was also averaged
over the laser field period. For a linearly polarized
pulse, formula (5) becomes [30, 31]

The results of studying the wakefield amplitude as a
function of the pulse length are presented in Fig. 4. The
amplitude of the wakefield excited in a preionized gas
is shown by the dashed curve. The solutions to Eq. (18)
for circularly polarized and linearly polarized lasers are
illustrated by the heavy and light solid curves, respec-
tively. We can see that the solid curves essentially coin-
cide with the results of solving the more complicated
equations (2), (13), (15), and (16), which are not aver-
aged over time. Finally, in Fig. 4a, the PIC simulation
results for circularly polarized and linearly polarized
lasers are presented by the closed and open circles,
respectively. The circles are also seen to agree well with
the solutions to Eq. (18).

Analyzing Fig. 4, we can draw the following con-
clusions. On the one hand, ionization processes act to

1
c
--- Γ0+∞

ξ∫

Wm ξ( ) ωat
3 1( )exp

π
-------------------- 

 
3/2 m 1+( )2

3Mm
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--------------------=
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increase the maximum amplitude of the wakefield
driven by the ponderomotive forces in the range of res-
onant pulse lengths (kpLp ≈ 2.4). On the other hand (and
more importantly), ionization processes make it possi-
ble to generate wake plasma waves by substantially
longer laser pulses. The latter effect is especially pro-
nounced in the case of ionization of atoms with a small
number of electron shells (see Fig. 4a for hydrogen);
moreover, for the parameters adopted here, the ampli-
tude of the wakefield excited by long nonresonant
(kp Lp @ 1) pulses is comparable with that in the case of

ap, max/a0
2

0.5

0.4

0 10
kp LFWHM

642

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

(‡)

(b)

8

Fig. 4. Maximum normalized wakefield amplitude

ap, max/ , where ap, max = eEx, 0 max/(meΩpc) and Ωp =

[4πe2ne max/me]
1/2, vs. the dimensionless length LpΩp /c of

a Gaussian ionizing laser pulse (23) (with the wavelength
λ = 1 µm) propagating in (a) a hydrogen gas with the den-
sity Nat =10–2nc and (b) a nitrogen gas with the density

Nat = 2 × 10–3nc . The dimensionless peak amplitude of the
pulse is equal to a0 = eEmax/(meωc) = 0.025 (Imax =

c /(8π) ≈ 8.57 × 1014 W/cm2) for hydrogen and a0 =

0.175 (Imax ≈ 4.2 × 1016 W/cm2) for nitrogen. The light and
heavy solid curves refer to linearly polarized and circularly
polarized pulses, respectively. The dashed curves are
depicted for a pulse propagating in a preionized gas with the
maximum electron density ne max = ZmaxNat = 10–2nc
(Zmax = 1 for hydrogen and Zmax = 5 for nitrogen). The open
and closed circles reflect the PIC simulation results for
hydrogen in the case of (a) linear and (b) circular polariza-
tion, respectively.

a0
2

Emax
2
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resonant pulses. In the case of ionization from many
electron shells, this effect is less pronounced (compare
Figs. 4a and 4b). We can expect that this effect will be
significant in the case of ionization from the lowest s
shell of multielectron atoms, which are characterized
by high ionization energies (e.g., 552 and 667 eV for
electrons from the s shell of a nitrogen atom). However,
the ionizing fields required to eject the electrons out of
the lowest shells are so strong that, strictly speaking,
the weakly relativistic approximation used in our study
fails to hold.

Figure 5 illustrates the results of calculations of the
wakefield amplitude as a function of the peak intensity
of the laser pulse for different gases. In computations,
the gas density was chosen in such a way that the con-
ditions for the resonant excitation of a plasma wave by

ap, max/a0
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Imax, W/cm2
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3
4
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0

Fig. 5. Maximum normalized wakefield amplitude

ap, max/  vs. the peak intensity Imax of a Gaussian ionizing

laser pulse with the wavelength λ = 1 µm in the case of
(a) linear and (b) circular polarization. The dimensionless
pulse length is LpΩp/c = 2.7, and the maximum electron
density in a gas after the passage of the pulse is ne max =

ZmaxNat = 10–2nc. The results presented were obtained for
(1) hydrogen, Zmax = 1; (2) helium, Zmax = 2; (3) nitrogen,
Zmax = 5; and (4) neon, Zmax = 8. Curve (5) presents the
wakefield amplitude in the case of propagation of a laser
pulse through a preionized gas with the electron density
ne max.

a0
2

the ponderomotive force were satisfied at the maximum
possible (in the laser intensity range under consider-
ation) electron density. For multielectron gases, the
maximum amplitude ap, max is a more complicated func-
tion of Imax in comparison with that for hydrogen. The
peaks in the dependence of ap, max on Imax stem from the
successive ionization of the electron shells, starting
from the shell farthest from the nucleus. The effect of
the ionization processes on the wakefield amplitude is
expected to be the strongest for laser pulses with mod-
erate peak intensities, when the ionization saturates
near the pulse center. In this case, the amplitude of the
wakefield driven resonantly in an initially neutral gas is
larger than that of a wakefield excited in a preionized
gas by about 10% for a linearly polarized pulse and by
about 50% for a circularly polarized pulse. The ampli-
tude of the wakefield generated by a high-intensity
laser pulse in an initially neutral gas (when the ioniza-
tion saturates at the leading portion of the pulse far
from the pulse center) is essentially the same as that in
the case of a preionized gas and does not depend on the
pulse polarization.

4. RESULTS FROM PIC SIMULATIONS 
OF LASER PULSE PROPAGATION IN A GAS 

AND WAKEFIELD GENERATION

The kinetic processes that occur during gas ioniza-
tion by a laser pulse were modeled with a relativistic
electromagnetic 1D3V PIC code, in which the standard
PIC method for plasma simulation was supplemented
with an algorithm suitable for modeling gas ionization
in a strong field. The production of particles that model
free electrons originating from gas ionization in a laser
field was simulated by this algorithm as follows: (i) par-
ticles originate at a zero initial velocity and (ii) the
number ∆N of particles in each cell over the time inter-
val ∆t is computed from the formula ∆N =

dt', where Γ is calculated from relation-

ships (4)–(6) taken with the instantaneous electric field
amplitude |E(x, t)|, ZNat is the electron density, and Ncell
is the number of particles in a cell in the case of a com-
pletely ionized gas. Note that, since the number ∆n of
free electrons originating over the time interval ∆t per

unit volume is equal to ∆n = dt', the number of

particles ∆n produced in each cell is related to ∆N by
∆N/Ncell = ∆n/ZNat . The dynamics of the ionization-
produced free electrons was simulated in the standard
manner [39]. On the time scales under consideration,
the atoms and ions were assumed to be immobile. For
hydrogen, the simulations were carried out with Ncell =
75 (varying the number Ncell of particles in a cell from
50 to 150 did not significantly influence the calculation
accuracy). In the simulations described here, the spatial
and temporal steps for numerical modeling were deter-
mined from the shortest spatial scale (the spatial cell

Ncell

ZNat
----------- Γ

t

t ∆t+∫

Γ
t

t ∆t+∫
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size), which was chosen in order to resolve the ioniza-
tion front (which depends on both the pulse duration
and intensity). Thus, for a pulse with an amplitude a0 =
0.025 and a duration of 10ω–1–100ω–1, the spatial step
was chosen to lie in the interval 0.025c/ω–0.1c/ω,
which ensured the desired accuracy of computations.

The fraction of laser energy expended on gas ioniza-
tion was modeled by supplementing the Maxwell equa-
tions with the dissipative currents, which were calcu-
lated from the phenomenological formula (10). The
Maxwell equations were integrated by the method of
vacuum characteristics [39].

The results from calculations of the amplitude of the
wakefield excited by linearly polarized and circularly
polarized laser pulses are illustrated in Fig. 4, which
shows that they agree well with the results obtained
from the equations for the averaged amplitudes.5 

Our PIC code can be used not only to obtain the
wakefield amplitude but also to calculate the electron
velocity distribution function f(vx, vz , t, x). Figure 6
displays the function f(vx , 0, t, x0) calculated at two dif-
ferent times t = t1 and t = t2 at the point x0 after the pas-
sage of a linearly polarized ionizing laser pulse. Behind
the pulse, the electrons oscillate in a wakefield, so that,
at an arbitrary time t, the function f(vx 0, t, x0) is shifted
from vx = 0 by an amount Vx(t), which coincides with
the velocity determined from the hydrodynamic equa-
tions. The instants t1 and t2 were chosen to correspond
to the maximum hydrodynamic velocities Vx =
Vx, max(−Vx, max) of the electrons moving along the x-axis
in the positive and negative direction, respectively. In
this case, the peak in the function f(vx, 0, t, x0) is shifted
from vx = 0 by an amount Vx, max at t = t1 and by an
amount –Vx, max at t = t2 (Fig. 6). Let us compare the
value of |Vx, max | obtained from Eq. (18) with that pre-
dicted by PIC simulations. We use Eq. (18) to calculate
the dimensionless amplitude ap(t) for the parameters of
Fig. 6. Then, we find the longitudinal electric field
amplitude |Ex, max | = 8.5 × 105 V/cm. From the conse-
quence of relationship (13), |Vx, max| = e|Ex, max |/(meΩp),
we obtain |Vx, max |/c = 2.64 × 10–4, which coincides
with the corresponding result of PIC simulations to
within 4%.

Figure 7 shows the function f(0, vz, t1, x0) for the
same parameters as in Fig. 6. After the passage of the
pulse, the plasma stops moving along the z-axis, so that
the width of the distribution function in vz is governed
by the stochastic motion of the electrons due to the non-
adiabatic character of their interaction with the laser
field during ionization [20]. On the time scales under

5 Note that the three calculation methods (the hydrodynamic
method based on the full set of equations, the hydrodynamic
method based on the reduced (averaged) equations, and the
kinetic PIC method) yield not only nearly the same amplitudes of
the electric field but also nearly the same field phases; in other
words, the time evolutions ap(t) computed using these methods
essentially coincide.
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f(vx, 0, t1), f(vx, 0, t2)
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Fig. 6. Electron distribution function over the longitudinal
velocities (vz = 0), normalized to its maximum value, at the
instants t1 and t2 at which a ap(t1) = ap(t2) = 0 (when the
absolute value of the directed electron velocity, |Vx |, is max-
imum): the solid curve refers to f(vx , 0, t1) at Vx = Vx, max
and the dashed curve refers to f (vx, 0, t2) at Vx = –Vx, max.
The results were obtained for a linearly polarized Gaussian
laser pulse (with τpω = 30, Imax = 8.57 × 1014 W/cm2, and
λ = 1 µm) propagating in a hydrogen gas with the density
Nat = 1.1 × 1019 cm–3.

Fig. 7. Electron distribution function f(0, vz , t1) over the
transverse velocities (solid curve) and the Maxwellian dis-
tribution function with the electron temperature 15.4 eV
(dashed curve). The functions are normalized to their maxi-
mum values. The laser parameters are the same as in Fig. 6.
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consideration, which are shorter than the electron–ion
and electron–electron collision times, the total energy
of the stochastic electron motion (the residual electron
energy) is completely converted into the energy of the
electron motion along the z-axis. This circumstance
permits us to identify the residual energy with the
“transverse” (in the z-direction) temperature Te, z
[20, 26]. Since, in the case of a linearly polarized laser
pulse, the transverse electron motion is one-dimen-
sional, we have Te, z/2 = Qe, where Qe is the residual
energy per electron (see Section 3.1). Also shown in
Fig. 7 is the Maxwellian electron distribution function
over velocities vz with the temperature Te, z = 2Qe =
15.4 eV, where the energy Qe was determined analyti-
cally according to the theory developed by Andreev
et al. [20]. We can see that the Maxwellian function is
fairly close to that obtained from PIC simulations. A
comparison between Figs. 6 and 7 shows that the resid-
ual energy of the transverse (to the laser-pulse propaga-
tion) electron motion along the z-axis is much higher
than both the residual energy of the longitudinal elec-
tron motion along the x-axis [30] (this energy deter-
mines the width of the distribution function in Fig. 6)
and the residual energy of the longitudinal electron
motion in a wakefield (this energy governs the shift of
distribution functions relative to the point x = 0 in
Fig. 6).

Our PIC simulation results also confirm the above
estimates for the ionization-related laser-energy losses
associated with the ionization current and residual elec-
tron energy, which are described by the fourth term and
by the second and third terms on the right-hand side of
Eq. (20), respectively. According to PIC simulations,
the residual energy per plasma electron,

(me/2ne) f(v, t, x0)d3v, is equal to 7.6 eV. This value

is close to the energy Qe ≈ 7.7 eV calculated from the
formulas presented in [20] and, to a high accuracy,
agrees with the law of energy conservation in the inter-
action of a laser pulse with matter.

5. CONCLUSION

We have developed two hydrodynamic models and
used them to calculate the generation of a wakefield,
taking into account ionization processes in a gas. The
reduced equation obtained for the wakefield envelope
makes it possible to analytically study how ionization
processes affect the wakefield amplitude and to investi-
gate it as a function of the gas and pulse parameters.

We have shown that, when the peak intensity of the
laser pulse is far above the ionization threshold and
under conditions close to the resonant excitation of a
wake plasma wave by the ponderomotive force, ioniza-
tion processes have little effect on the wakefield excita-
tion: the amplitude of the wakefield excited in an ini-
tially neutral gas is essentially the same as that of the
wakefield excited by a laser pulse propagating in a

v2∫
preionized gas and does not depend on the pulse polar-
ization. The most important result is that, under condi-
tions that are far from resonance (i.e., for long laser
pulses), the wakefield amplitude is enhanced by ioniza-
tion and is much larger than that in the case of a preion-
ized gas (see the range kpLp > 8 in Fig. 4).

During ionization, the wakefield can be generated
by a longer laser pulse with peak intensities close to the
ionization threshold, in which case the maximum
amplitude of the ionization-enhanced wakefield is
larger than that in the case of a preionized gas. This
effect is most pronounced in light gases, such as hydro-
gen and helium. In the case of a linearly polarized laser,
ionization processes act to increase the maximum
amplitude of the wakefield at resonant pulse lengths by
approximately 10% in comparison with that in a
preionized gas. In the case of a circularly polarized
laser radiation, this difference may be even larger: the
increase in maximum amplitude may be as large as
50%.

The results of solving reduced (averaged) hydrody-
namic equations for the slowly varying wakefield
amplitude agree well with both kinetic PIC simulations
and the results of solving the full set of hydrodynamic
equations.
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Abstract—A new class of annular confinement configurations of a single-charged plasma corresponding to
global thermodynamic equilibria in a cylindrical Malmberg–Penning trap with an axial conductor is investi-
gated both numerically and analytically. In the case of an infinite plasma length, the density turns out to be
essentially constant inside a surface of revolution and to fall off abruptly outside of it. Analytical limiting cases
are calculated explicitly in the limit of small Debye lengths. In the case of a finite plasma length, the self-con-
sistent solution to Poisson’s equation describing thermodynamic equilibrium is obtained numerically and the
dependence of the plasma density distribution on the various parameters of the system is investigated. © 2000
MAIK “Nauka/Interperiodica”.
A peculiar characteristic of single-charged plasmas
is that they can approach thermodynamic equilibrium
while remaining confined by static electric and mag-
netic fields, as is the case of a Malmberg–Penning trap
[1, 2]. The long confinement times obtained experi-
mentally suggest that the equilibrium states in which a
single-charged plasma fills a simply connected region
of space are indeed achievable [3, 4]. For the confine-
ment geometry of these experiments, a class of equilib-
rium density distributions that are consistent with Pois-
son’s equation was determined in [5, 6] and was exten-
sively discussed in [7]. Here, we consider a different
thermodynamic equilibrium: a hollow plasma column
in a Malmberg–Penning trap with an axial charged
(biased) rod. This system shows the existence of a new
class of axisymmetric plasma configurations ranging
from long thin-wall structures to ringlike (doughnut)
structures.

For definiteness, we consider a pure electron plasma
confined in a conducting cylinder (of radius R) divided
into three sections, the two end-plug sections being
biased negatively relative to the central section. A uni-
1063-780X/00/2611- $20.00 © 20960
form magnetic field B is directed along the cylinder
axis, where a central rod (of radius rd) is located. The
confinement geometry is shown in Fig. 1.

Since the system is steady-state and has cylindrical
symmetry, the equilibrium distribution function f
depends on the electron energy h = mev2/2 – eϕ and the
electron canonical angular momentum pθ = mevθr –
meΩr2/2 as [8]

(1)

Here, Ω = eB/mc is the electron-cyclotron frequency, ω
is the azimuthal plasma rotation frequency, and the rest
of the notation is standard. The constant parameters n0,
T, and ω are determined by the total number of parti-
cles, the total energy, and the total canonical angular
momentum. The plasma density n obeys the Maxwell–
Boltzmann distribution law

(2)

f n0 me/2πT( )3/2 1/T( ) h ωpθ–( )–[ ] .exp=

N n0
1
T
--- eϕ–

m
2
----ω Ω ω–( )r2+ 

 – .exp=
R R
EEB B

ωE ωE

rr

zz

–V–V –V –V

Fig. 1. Schematics of a Malmberg–Penning trap without a central rod (on the left) and with a central rod (on the right).
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Fig. 2. Effective potential –ψ (solid line) and electron density n = expψ (dashed line) vs. the normalized radius for  = 20 and

γ = 10–3 (on the left) and for  = 20 and γ = 10–1 (on the right). The approximate solution (7) to Eq. (4) for the effective potential
and the corresponding electron density are shown by triangles and squares, respectively.

ρ
ρ

The self-consistent electric potential is described by
Poisson’s equation

(3)

This equation must be supplemented by the boundary
conditions on the walls of the cylinder and central rod.
The solution depends on several parameters; however,
with a proper scaling of Eq. (3), the number of param-
eters can be reduced. In terms of the dimensionless
potential

and dimensionless coordinates

,

Eq. (3) takes the form

(4)

where

Since the density is given by n = n0exp(ψ), the plasma
resides near the maximum of the effective potential ψ.
This maximum value can be set equal to zero because
ψ is defined up to an unimportant constant addend. In
this case, the parameter n0 is equal to the maximum
plasma density.

1
r
--- ∂

∂r
-----r

r∂
∂ϕ ∂2ϕ

∂z2
---------+ 4πen.=

ψ eϕ
T

------ mω Ω ω–( )r2

2T
---------------------------------–=

ρ r
λD

------, ζ z
λD

------= =

1
ρ
--- ∂

∂ρ
------ρ ρ∂

∂ψ ∂2ψ
∂ζ2
---------+ eψ 1– γ–[ ] ,=

λD
T

4πe2n0

-----------------,=

γ 2ω Ω ω–( )
ωp

2
--------------------------- 1,–=

ωp

4πe2n0

m
-----------------.=
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We first consider the one-dimensional equilibrium,
neglecting the dependence of ψ on ζ. We will look for
an annular plasma configuration; hence, we assume that
the density profile is peaked at a certain radius  > 0
and that ψ' = 0 (where the prime stands for the deriva-
tive with respect to ρ) at the same radius. Taking
ψ( ) = 0 and ψ'( ) = 0 as the boundary conditions for
the potential inside the radial interval of interest, we
can find the solution to Poisson’s equation. A localized
solution exists for γ > 0. It is governed by the two
dimensionless parameters: γ and . Numerical solu-
tions for given values of γ and  are presented in Fig. 2.
As γ  0, the density profile becomes steplike; in
contrast, as γ increases, the density profile becomes
smoother.

The other parameters can be expressed through ψ
and dimensional inputs such as n0, T, R, and rd . For
example, the charge of the central rod (in terms of

en0 ) is equal to

(5)

where ρd = rd/λD , and the potential difference between
the external cylinder and internal conductor (in terms of
T/e) is given by

(6)

Density profiles with an annulus width much larger
than the Debye lengths λD correspond to γ  0. For
γ ! 1, the annulus parameters relevant to the experi-
mental conditions can be found analytically. Indeed,
inside the plasma at |ψ| ! 1, we have eψ – 1 ≈ ψ; thus,
we obtain

(7)

ρ

ρ ρ

ρ
ρ

λD
2

q π 2ρdψ' ρd( ) 1 γ+( )ρd
2+[ ] ,–=

V ψ ρ( ) 1 γ+( )ρ2/4+[ ]ρ rd /λD=
ρ R/λD=

.=

ψ γ 1
K1 ρ( )I0 ρ( ) I1 ρ( )K0 ρ( )+
K1 ρ( )I0 ρ( ) I1 ρ( )K0 ρ( )+
--------------------------------------------------------------– .≈
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Fig. 3. Contour plots of the electric potential ϕ (top) and plasma density (bottom) for λD = 0.35 cm, T = 1.0 eV, γ = 0.3, rd = 0.5 cm,
R = 4.0 cm, zplug1 = 12 cm, zplug2 = 15 cm, Vwall = 32.16 V, Vrod = –8.3 V, and Vplug = –100 V.
For   0, this solution recovers the result of [6] (see
also [7, 9]):

(8)

In the opposite case (  @ 1), solution (7) reduces to

(9)

In this case, the annulus width 2∆ at the density level
n = n0/e can be evaluated as

It is interesting to note that the thermodynamic equilib-
rium of a plasma with a step density profile can be con-
tinuously transformed into the thermodynamic equilib-
rium of an annular plasma by gathering the entire
charge inside the inner radius  – ∆ on the central rod.
Hence, we have

In the case of a finite plasma length, a two-dimen-
sional thermodynamic equilibrium was obtained by
solving Eq. (4) numerically using the finite-difference
overrelaxation method. Starting with a certain initial
approximation ψ0(ρ, ζ) for the effective potential, the
solution ψj (ρ, ζ) obtained at the jth iteration step was
substituted into the right-hand side of Eq. (4) to yield

ρ

ψ γ 1 I0 ρ( )–[ ] .≈

ρ
ψ γ 1 ρ ρ–( )cosh–[ ] .≈

∆ 2/eγ( ).ln≈

ρ

q π ρ ∆–( )2.–≈
the next approximate solution ψj + 1(ρ, ζ) at the (j + 1)th
step. For simplicity, we assumed that the axisymmetric
equilibrium was also symmetric about the midplane
z = 0. The electrostatic potential was assumed to satisfy
the following boundary conditions: ϕ(rd, z) = Vrod on
the central rod and ∂ϕ/∂z = 0 at the midplane (z = 0) and
at the end plate (z = b). On the conducting external wall
(except the plug section), the potential is equal to
ϕ(R, z) = Vwall; in the plug section, we set ϕ(R, z) = Vplug.
The iteration procedure appeared to be insensitive to
the choice of the initial approximation. For a required
accuracy better than 10–7, it converges after several
hundred iterations.

Results of calculations are shown in Figs. 3–6. As is
seen in Fig. 4, the one-dimensional solution provides a
good approximation to the density profile n(r, 0) in the
midplane of the trap. Excellent agreement is found to
be valid even for relatively short plasma clouds. It is
seen from Figs. 5 and 6 that the central density profile
differs appreciably from that predicted by the one-
dimensional theory only for very short (doughnut)
plasma clouds.

A nonneutral plasma that is in global thermody-
namic equilibrium must be stable against any type of
small perturbations. This is valid in particular for the
diocotron instability. Earlier experiments found an
PLASMA PHYSICS REPORTS      Vol. 26      No. 11      2000
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Fig. 4. Radial profiles of the density (top) and potential (middle) in the midplane z = 0 and the axial density profile (bottom) at the
radius corresponding to the maximum density, r = . The parameters are the same as in Fig. 3. The solid line shows the numerical
two-dimensional solution, rhombuses (on the top) indicate the numerical one-dimensional solution for the density profile, and the
triangles (in the middle) show the two-dimensional vacuum potential profile.

r

3

2

1

0

4

3

2

1

0

4

5 10 15 20
z, cm

ne(r, z)

ϕ(r, z)

r,
 c

m
r,

 c
m

Fig. 5. Contour plots of the electric potential ϕ (top) and plasma density (bottom) for zplug1 = 4 cm and zplug2 = 7 cm; the other
parameters are the same as in Fig. 3.
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exponentially unstable m = 1 diocotron mode for a hol-
low electron column [10]. We suggest here that adding
a central biased rod to the standard configuration of a
Malmberg–Penning trap allows one to obtain thermo-
dynamic equilibria with hollow density profiles that are
stable against the m = 1 diocotron mode.

In fact, a detailed study of the diocotron instability
in nonneutral annular plasmas [11] confined in a trap
with a biased central electrode has already established
the parameter domain where all azimuthal modes are
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Fig. 6. Radial profiles of the density (top) and potential
(middle) in the midplane z = 0 and the axial density profile
(bottom) at the radius corresponding to the maximum den-
sity, r = . The parameters are the same as in Fig. 5. The
solid line shows the numerical two-dimensional solution,
rhombuses (on the top) indicate the numerical one-dimen-
sional solution for the density profile, and the triangles (in
the middle) show the two-dimensional vacuum potential
profile.

r

stable. The global thermodynamic equilibrium of the
annular nonneutral plasma studied here turns out to be
located well inside this domain (to the left of the unsta-
ble region shown in Fig. 7 of [11]). Confinement stud-
ies of nonneutral annular plasmas were also recently
reported in [12]. It was shown in particular that the
plasma lifetime was limited by the transport across the
magnetic field, although the nature of the transport pro-
cess remained unclear. We believe that global thermo-
dynamic equilibrium was not achieved in those experi-
ments, because, for the plasma parameters reported in
[12], the equilibrium plasma annulus would be much
wider than the radial size of the confinement system.

Finally, in view of future applications, it worth not-
ing that our results also apply to the case where the cen-
tral rod carries a steady longitudinal current, thus
changing the magnetic field configuration. Although
the plasma dynamics is affected by the presence of the
azimuthal magnetic field produced by the longitudinal
current, the global thermodynamic equilibrium remains
the same as in the zero-current case [8].
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Abstract—A study is made of nonquasineutral vortex structures in a plasma with a magnetic field Bz in which
the charges separate on a spatial scale equal to the magnetic Debye radius rB = Bz/4πene. The electric field aris-
ing due to charge separation leads to radial expansion of the ions, thereby destroying the initial electron vortex.
It is shown that the ion pressure gradient stops ion expansion in a nonquasineutral electron vortex and gives rise
to a steady structure with a characteristic scale on the order of rB. With the electron inertia taken into account
in the hydrodynamic approximation, the magnetic vortex structure in a hot plasma manifests itself in the appear-
ance of a “hole” in the plasma density. © 2000 MAIK “Nauka/Interperiodica”.
1. Recent studies of electron vortices in a plasma in
a magnetic field have shown that Abrikosov’s model [1]
fails to correctly describe vortices with a nonquasineu-
tral plasma in the axial region [2, 3]. In addition to the
already existing model in which the ions are assumed to
be accelerated by the ponderomotive force of a laser
pulse, subsequent numerical investigations of the
dynamics of such vortices have made it possible to con-
struct an alternative model in which the ion accelera-
tion in a laser pulse is attributed to the space charge–
driven expansion (Coulomb explosion) of the vortex
[4]. Since the plasma in an electron vortex in a strong
magnetic field (B2 @ 4πnemec2) is highly nonquasineu-
tral, the ions expand at fairly high velocities on time
scales of approximately the reciprocal of the ion
plasma frequency. This result is confirmed quite well
by experiments and can serve to model a Coulomb
explosion in a laser-produced plasma [4–6]. Notably, as
early as 1994, Askar’yan et al. [7] pointed out that it is
necessary to take into account the effects of a quasis-
tatic magnetic field in a laser plasma. Considering the
dimensions of the region where the magnetic field is
localized and treating the electrons in the relativistic
approximation, they, in fact, obtained an order-of-mag-
nitude estimate of the magnetic Debye radius rB . How-
ever, they used a different method with different nota-
tion and did not completely clarify the physical mean-
ing of the spatial scale on which the magnetic field is
localized. Later, Bulanov et al. [8] pointed out that the
onset of magnetic vortex structures may significantly
affect the evolution of a laser plasma. However, they
used Abrikosov’s model and neglected the ion dynam-
ics; i.e., they considered static vortices. Note that it is
precisely the model proposed in [2–4] to describe elec-
tron vortices in a laser plasma that made it possible to
develop an alternative model of ion acceleration result-
1063-780X/00/2611- $20.00 © 0965
ing from the Coulomb explosion of electron vortices in
addition to the model of ion acceleration by the ponder-
omotive force.

In our paper [4], we modeled electron vortices by
treating the electrons in the quasistatic approximation,
which was adopted because of the slow ion motion dur-
ing the expansion of a vortex. However, the parameter
that is responsible for the quasistatic character of the
electrons is small only in the case of moderate magnetic
fields, B2 ! 4πnimic2. As a result, the magnetic field
should lie in the range

(1)

which corresponds to the characteristic vortex dimen-
sions [3]

(2)

As ∆ approaches c/ωpi, the magnetic field in a vortex

increases and the parameter e ~  that
ensures adiabaticity in the motion of the electrons
approaches unity, in which case the model of electron
vortices in a magnetic field should be constructed with
consideration of the ion motion. As the vortex dimen-
sion ∆ approaches c/ωpi, the ion velocity increases and,
at ∆ ~ c/ωpi, it becomes as high as the speed of light [3].
That the ion velocity increases with increasing charac-
teristic vortex dimension was also revealed by Esirke-
pov et al. [9], who simulated ion acceleration by the
ponderomotive force of a laser pulse. In a sufficiently
weak magnetic field (e ! 1), the ion velocity in the
r-direction is much higher than the ion velocity caused
by the inductive electric field, which is directed along
the θ-axis, so that we can speak of the radial ion expan-
sion under the action of the electric field of a vortex. In
a sufficiently strong magnetic field, the inductive ion

4πnemec
2
 ! B2

 ! 4πnimic
2,

c/ωpe ! ∆ ! c/ωpi.

B2/4πnimic
2
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velocity in the θ-direction is also high and the total ion
velocity is close to the speed of light.

Simulations of ion expansion under the influence of
the electric field revealed the excitation of a collision-
less shock wave [4]. During plasma expansion, the
electron and ion densities behind the shock front are
equalized, but, near the vortex axis, they are both sig-
nificantly lower than the constant electron and ion den-
sities in a plasma ahead of the front. Consequently, the
Coulomb explosion of an electron vortex gives rise to
ion motion in the radial direction and causes the forma-
tion of a hole in the plasma density around the axis. If
the electric field force in a vortex is counterbalanced,
e.g., by the ion pressure gradient, then the ions stop
expanding and the vortex evolves into a steady state
with a reduced plasma density in the axial region. It is
the equilibrium vortex structure that will be the subject
of our investigations. The plan of the paper is as fol-
lows. In Section 2, we present some of the results of
[2, 3] in order to make further analysis more clear. In
Section 3, we derive the full set of equations describing
the dynamics of an electron vortex with the ion pressure
taken into account. In Section 4, we describe the vortex
structure obtained by numerically solving these
dynamic equations by the relaxation method. In Sec-
tion 5, we calculate the same structure in the steady-
state approximation and analyze how the equilibrium
structure of the vortex is affected by its dimensions. In
Section 6, we summarize the main conclusions of our
study.

2. We start with the model of electron vortices that
was proposed by Gordeev and Levchenko [2], who
showed that the vortex structure is completely gov-
erned by the shape of the profile of the Lagrangian
invariant I, which is defined as the ratio of the electron
vorticity to the electron density: I = Ω/ne. In our
approach, the plasma is assumed to be nonquasineutral
on a spatial scale equal to the magnetic Debye radius
rB . B/4πene .

Simple and consistent equations for electron vorti-
ces in a plasma were derived in [10–12]. In those
papers, it was shown that taking into account the short
spatial scale rB . B/4πene makes it possible to construct
a correct model of electron vortices in a plasma. Note
that, in previous papers, it was assumed that the vorti-
ces exist in the range

(3)

corresponding to the spatial scales rB ! c/ωpe , in which
case the magnetic Debye radius is small and the plasma
is only slightly nonquasineutral.

However, the general equations derived in [10–12]
are also valid when rB and c/ωpe satisfy the opposite
condition rB @ c/ωpe , which corresponds to the range

(4)

B2
 ! 4πnemec

2

B2
 @ 4πnemec

2.
In [10–12], the equations for electron vortices were
obtained using the approximation of cold relativistic
electrons without allowance for collisions. In this
approximation, the main equation of electron motion
has the form

(5)

where Ω is the z-component of the electron vorticity in
the magnetic field B directed along the z-axis (Ω = Bz –

(c/e) (curlpe)z), γ = (1 – /c2)–1/2, pe = γmeve , and the
electron velocity ve is equal to

(6)

In deriving Eq. (5), we assumed that the electrons
move in the (x, y) plane.

The main difference between the model under con-
sideration and Abrikosov’s widely used model [1] is
that, along with the equation for the electron vorticity
Ω , we use Poisson’s equation

(7)

where ne and ni are the electron and ion densities. In
other words, the electron density ne is no longer
assumed constant, but should be found from Poisson’s
equation.

In a steady state, Eqs. (5)–(7) yield the following
equations for a cylindrically symmetric vortex [2]:

(8)

(9)

It is important that these equations give the electron
density ne in an explicit form:

(10)

where the quantities

satisfy the equations

(11)

∂pe

∂t
--------

1
4πenec
-----------------

t∂
∂E W×+

+ —γmec
2 Ω

4πne

-----------—B+ eE,–=

ve
2

ve
c

4πene

--------------— B×–
1

4πene

--------------
t∂

∂E
.+=

div E 4πe Zni ne–( ),=

1
r
--- d

dr
-----r mec

2

rd
dγ Ω

4πne

-----------
rd

dB
+ 

  4πe2 ne Zni–( ),=

Ω B
mec

2

4πe2
-----------1

r
--- d

dr
-----r

γ
ne

----
rd

dB
 
  .–=

4πγmec
2ne Ω G γ3F

mec
e

---------+ 
 +

=  G2 γ4F2 mec
e

--------- 
 

2

4πmec
2γ3Zni,+ +

G B γF
mec

e
---------, F+

v eθ

r
--------– 0>= =

rd
dG Ω G–

r
--------------

mec
e

---------γF
r
---–

4πene

c
--------------rF,–=
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(12)

Relationship (10), which follows from the momen-
tum conservation law, implies that, as the electron vor-
ticity Ω increases, the electron density ne decreases,
because the magnetic field is finite. However, relation-
ship (10) is difficult to apply, because the condition
ne ≥ 0 imposes restrictions on Ω. For this reason, it is
convenient to introduce the quantity I = Ω/ne in order
for the ion density n to be positive definite regardless of
the value of I. The quantity I has an even deeper physi-
cal meaning: one can readily see that I is a Lagrangian
invariant, because it satisfies the equation

(13)

Hence, the profile of I is “frozen” in the electron fluid
and is carried with it.

Of course, for the electron vortex described by
Eqs. (8) and (9), we have ∂I/∂t = 0, because the only
nonzero electron velocity component in such a vortex is
veθ and the condition ∂I/∂θ = 0 holds. However, with
the ion motion taken into account, we have ver ≠ 0 and
∂I/∂t ≠ 0. Therefore, incorporating perturbations into
time-independent equations (8) and (9) makes it possi-
ble to describe the transport and deformations of the
Lagrangian invariant I, which is frozen in the electron
fluid, and thereby the evolution of the vortex structure.
Note that, in the non-steady-state case, the magnetic
field changes at the expense of the induction electric
field (in the problem as formulated, this is the electric-
field component Eθ) and we can show that Eq. (13) is
equivalent to Faraday’s law of induction –(1/c)∂B/∂t =
curlE.

We introduce the dimensionless coordinate ρ =

r  and the dimensionless functions

in order to write the equations for an electron vortex in
the final form:

(14)

(15)

where the dimensionless electron density ν is equal to

(16)

rd
dF e

mec
---------Ω G–

γ3r
-------------- F

r
---.–=

t∂
∂I ve · —I+ 0.=

4πe2ne∞/mec
2
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G

4πne∞mec
2
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F
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i I ne∞/4πmec
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and the rest of the notation is g = b + γf, v = –ρf, where

γ = . In contrast to [2], our expression (16)
for ν contains the time-varying ion density n = ni/ni∞.
We thus take into account the effect of ion motion on
the evolution of the structure of an electron vortex. We
can say that Eqs. (14)–(16) define an effective adiabatic
functional b ≡ b[n(ρ)] for the ions, which makes it pos-
sible to close the ion equations. An approach based on
Eqs. (14)–(16) applies to electrons treated in the quasi-
static approximation rB/ct0 < 1, which corresponds to
the range B2 < 4πnimic2.

Note that we are not going to introduce the electron
temperature, although its effects are analogous to the
effects of the ion temperature.

Recall that the structure of an electron vortex is
completely governed by the shape of the profile of the
Lagrangian invariant i, in which case the only physical
boundary condition is that the electron velocity van-
ishes at infinity, v(ρ = ∞) = 0. This boundary condition
enables us to determine the actual eigenvalue of the
problem—the magnetic field at the vortex axis. Also,
our problem assumes an obvious boundary condition at
the vortex axis: v(ρ = 0) = db/dρ|ρ = 0 = 0.

3. The above set of equations describes a so-called
Coulomb explosion—the radial expansion of ions in
the radial electric field Er [4]. Note that, for laser fila-
ments in a plasma, the Coulomb explosion concept
(which implies that the ions expand under the action of
electrostatic forces on time scales of approximately the
inverse ion plasma frequency) was developed as early
as 1990 by Burnett and Enright [13]. It is interesting to
note that they obtained a quite reliable estimate for the
characteristic energy of the expanding ions: εi ~ mec2.

According to [2–4], the structure of an electron vor-
tex during such an expansion is affected by the nonuni-
form ion density, which acts to change the magnetic
field structure and destroy the vortex. Note that, since
the ion dynamics is much slower than the electron
dynamics, the equations for the vortex structure do not
contain the ion velocity.

We describe the ions by the hydrodynamic equa-
tions

(17)

(18)

Unlike in [4], these equations contain the ion pressure
(which is described here by the conventional adiabatic
equation of state with an adiabatic index equal to 2).
We emphasize that the ion currents play no role in the
formation of vortices whose dimensions obey condi-
tions (2), so that, in analogy with [4], the vortex equa-
tions contain the ion density and do not include the ion
currents (see [14]).

1 v 2–( ) 1 2⁄–

mi

dvi

dt
------- ZeE

Ze
c

------vi B×
— pi

ni

---------,–+=

∂ni

∂t
------- div nivi( )+ 0.=
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Note also that the gradient of the kinetic ion pres-
sure can counterbalance the radial electric force acting
on the ions, thereby ensuring that the vortex is in equi-
librium.

We will say a few words about the importance of
Eq. (13) for the Lagrangian invariant. By virtue of the
cylindrical symmetry of the problem, the only parame-
ter in Eq. (13) is the radial electron velocity:

(19)

The Maxwell equations imply that, by virtue of the
axial symmetry, the term with the magnetic field drops
out of the expression for the radial electron velocity,

; (20)

as a result, the radial dynamics of the Lagrangian invari-
ant I is determined by the characteristic ion velocity.

Note that, in the non-steady-state case, the symme-
try properties of the problem are responsible for the
appearance of the induction electric field Eθ, which
changes the magnetic field Bz. However, as will be seen
from the following considerations, our equations do not
explicitly include Eθ and Faraday’s law of induction
turns out to be equivalent to Eq. (13) for the electron
Lagrangian invariant I. Hence, Eq. (13) for the
Lagrangian invariant I provides a convenient tool for
describing the evolution of vortex structures.

t∂
∂I

v er r∂
∂I

+ 0.=

v er

Zni

ne

--------v ir
1

4πene

--------------
∂Er

∂t
--------+=

1.5

1.0

0.5

0

–0.5

n, b, v, ν i
10

5

0
2 4 6 80

1

2

3

45

ρ

Fig. 1. Profiles of (1) the ion density n, (2) the magnetic field
b, (3) the azimuthal electron velocity v, (4) the electron den-
sity ν, and (5) the Lagrangian invariant i calculated by the
relaxation method (light curves) and obtained from the
time-independent equations (heavy curves).
We introduce the characteristic time t0 and the char-
acteristic ion velocity v0,

(21)

in order to convert Eqs. (17)–(19) into dimensionless
form:

(22)

(23)

where τ = t/t0, u = vir/v0, b = B/ , and
ne∞ = Zni∞ is the electron density at infinity.

In analogy with [4], we can neglect slow ion motion
in the θ-direction, because, for magnetic fields satisfy-
ing conditions (1), the induction effects are insignifi-
cant.

The above set of equations describes an electron vor-
tex in the quasistatic approximation [Eqs. (14)–(16)] and
the evolution of the ions and electron Lagrangian
invariant during slow ion motion [Eqs. (22), (23)].
When the ion pressure is neglected, the expanding ions
give rise to a collisionless shock wave, which was con-
sidered in [4]. The ion pressure gradient acts to decel-
erate the expanding ions; as a result, an electron vortex
evolves into a steady state.

The boundary conditions for the ion equations
imply that the radial ion velocity vanishes at the vortex
axis, u(ρ = 0) = 0, and, at infinity, u(ρ = ∞) = 0. At infin-
ity, the ion density should be constant, n(ρ = ∞) = 1,
and, at λ ≠ 0, it should satisfy the condition ∂n/∂ρ|ρ = 0 = 0.
The initial conditions for the ions along the ρ-axis are
n(τ = 0) = 1 and u(τ = 0) = 0.

The initial structure of an electron vortex is assumed
to correspond to that against the background of the
immobile ions.

4. In calculations, we normalized the ion pressure as
pi = ne∞mec2λn2/2. It is seen that the characteristic ion
temperature at n ~ 1 is equal to mec2 and the factor λ can
be varied in a certain range. A steady electron vortex
was simulated by numerically solving the above set of
equations by the relaxation method. The initial vortex
structure was assumed to correspond to that of a purely
electron vortex at a constant ion density ni = const. The
resulting vortex structure for λ = 1 is illustrated by the
light curves in Fig. 1. We can see a dip in the plasma
density profile in the axial region (in other words, a hole
forms in the plasma density); moreover, in the vicinity
of the vortex axis, the ion density n is higher than the
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electron density ν. The results of calculations allow us
to trace the process of gradual relaxation to a steady
vortex structure. The values of the ion density n and ion
velocity u at different times are presented in Figs. 2 and 3.
The profiles in these figures were obtained with the
help of a modified nonlinear monotonic algorithm for
calculating transport processes by the flux correction
method [15]. We can see that, during the transient
relaxation process, the perturbations of n and u are
damped.

5. In this section, we calculate a steady vortex struc-
ture from the time-independent equations (14)–(16)
with the ion density found from the first equation in
(22). In this equation, we set ∂/∂t ≡ 0 and u = 0 and inte-
grate the resulting equation to obtain

(24)

In Fig. 1, the heavy curves, which were calculated for
λ = 1, illustrate the vortex structure determined by solv-
ing the time-independent equation for the typical vor-
tex dimension δ = 1 (here, the dimension δ characteriz-
ing the initial profile of the Lagrangian invariant i is
expressed in units of c/ωpe for an unperturbed state). We
find a good agreement between the profiles obtained
using the above two methods. Note that the vortex
structure with such a profile of the Lagrangian invariant
i(ρ) can be in equilibrium in a certain range of λ values.
However, there exists a minimum possible value of λ,
which corresponds to the lowest ion density at the cen-

λn λ 1 γ– i ρ∂
∂b ρ.d

ρ

∞

∫+ +=

1.0

0.5

1.0

0.5

n

86420
ρ

τ = 0.8
2.4 4

5.6

7.2 12.5

Fig. 2. Relaxation to a steady vortex structure. Profiles of
the dimensionless ion density n are shown at subsequent
times τ.
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ter of the “vortex hole”; at δ = 1, this minimum value of
λ is equal to 0.7. It is of interest to analyze how the
shapes of the profiles change as the characteristic
dimension δ for the Lagrangian invariant i increases.
The larger the dimension δ, the higher the magnetic
field in the vortex. Figure 4 shows how the difference
between the electron and ion densities at the vortex axis
varies as a function of the characteristic dimension for
the Lagrangian invariant i. One can see that, as the char-

0.2

0

0.2

0

u

86420
ρ

τ = 0.8

2.4
4

5.6

7.2

12.5

0.1

0.1

Fig. 3. Relaxation to a steady vortex structure. Profiles of
the dimensionless radial ion velocity u are shown at subse-
quent times τ.

0.4
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n(0) – ν(0)

0 10 20
δ

Fig. 4. Difference between the ion and electron densities at
the vortex axis, n(0) – ν(0), vs. the dimension δ characteriz-
ing the initial profile of the Lagrangian invariant i.
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acteristic dimension increases, the difference n(0) – ν(0)
decreases. Hence, for large dimensions δ, the hole that
forms in the ion density is almost quasineutral. Note that,
in calculating the equilibrium vortex structure, we used
the minimum possible value of λ for each value of δ.

Our steady-state model makes it possible to analyze
the role of electron inertia in the formation of electron
vortices of different dimensions. Let us consider strong

0.15

0 10 20
δ

0.10

0.05

γmax 1–( )mec2

eΦ0
------------------------------------

Fig. 5. Ratio of the maximum electron kinetic energy
(γmax – 1)mec

2 to the maximum (at the vortex axis) electron
potential energy eΦ0.

n, b

1.0

0.5

0
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2

3

4 6 82
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0

i

ρ

Fig. 6. Profiles of (1) the ion density n, (2) the magnetic field
b, and (3) the Lagrangian invariant i in a steady vortex con-
figuration at ρ  ∞ for a profile i(ρ) decreasing according
to a power law (light curves) and for an exponentially
decreasing profile i(ρ) (heavy curves).
magnetic fields and, accordingly, high electric poten-

tials; i.e., we assume that  @ 4πnemec2. In accordance
with the relationship between the Hall electric potential
Φ and the magnetic field, this inequality can also be
written as

(25)

We can see that electron inertia can be neglected. How-
ever, we do not rule out the possibility that the factor γ
may grow without bound. For this reason, we must
exactly determine the maximum value of γ. Our calcu-
lations based on the hydrodynamic equations show that
the factor γ does not grow excessively with increasing
vortex dimensions.

Figure 5 displays the quantity (γmax – 1)mec2/eΦ0
versus the vortex dimension. Here, γmax is the maximum
value of γ over the electron vortex and Φ0 is the highest
value of the electric potential (at the vortex axis). We
can see that electron inertia plays a particularly impor-
tant role in the formation of small-size vortices (which
are characterized by low electric potentials) and can be
completely neglected for larger-size vortices such that
δ @ 1.

It is interesting to note that the situation with ion
diodes is essentially the same: the higher the potential
in a diode, the smaller the role of the electron inertia
[16]. We stress that, when electron inertia is neglected,
the overall vortex structure changes radically: a peak
(rather than a dip) forms in the ion density profile at the
vortex axis.

In [2–4], the radial profile of the Lagrangian invari-
ant was chosen to decrease sharply according to a
power law: i = i0/(1 + ρ2)2. However, the asymptotic
behavior of the magnetic field in a real electron vortex
is better described by the invariants i(ρ) that decrease
exponentially at infinity. This circumstance is not of
fundamental importance for numerical integration over
finite radial intervals. However, in some time-depen-
dent problems in which a perturbation in the form of a
nonlinear wave can propagate over large distances in
the radial direction, exponentially decreasing profiles
can yield far more exact results than the profiles
decreasing according to a power law. To illustrate this
point, Fig. 6 shows the results of computations for the
exponentially decreasing profile i = i0 (1 + ρ)/(1 +
ρexpρ) of the Lagrangian invariant. At the same value
i(0), the exponential profile i(ρ) yields a wider vortex
and leads to larger equilibrium values of λ in compari-
son with those calculated for the power-law profile. The
profiles shown in Fig. 6 are characteristic of steady vor-
tex structures with λ = 2 and with the power-law and
exponential profiles of i.

6. Our investigations demonstrate the possibility of
the formation of steady plasma vortices in which the
plasma electrons drift in crossed electric and magnetic

Bz
2

eΦ
Bz

2

4πne

----------- @ mec
2.∼
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fields in the θ-direction and the ion plasma component
is in equilibrium because of the balance between the
electric force and the ion pressure gradient. In calculat-
ing such equilibrium vortices, we assume that the ions
start to expand in an unsteady fashion under the action
of the radial electric field. The radial profile of the
velocity acquired by the ions accelerated at the front of
an expanding shock wave corresponds to the ion veloc-
ity distribution function at the shock front (see Fig. 7).
In constructing the steady-state vortex solution, we
determined the ion pressure from the “temperature” that
is characteristic of this distribution function. In the
hydrodynamic approximation, taking into account elec-
tron inertia leads to a decrease in the plasma density in
the axial region; in other words, we can say that a hole
appears in the plasma density around the vortex axis.

We have shown that, although the electron kinetic
energy in such vortices is low, a self-consistent steady-
state solution should be constructed with allowance for
electron inertia. In fact, neglecting electron inertia
leads to a radically different equilibrium solution: at a
constant electron density, the ion density profile is
peaked at the vortex axis, in which case the plasma
charge at the axis remains positive.

The electron vortices under discussion should form
as a result of the onset of the Buneman electromagnetic
instability [17]. The study of such vortices may prove
to be useful for investigating the magnetic field evolu-
tion in a plasma. Thus, the equilibrium vortex structure
analyzed above may correspond to a hot plasma with a
“floating” magnetic vortex in which the plasma density
is reduced.

The most important result of our study is the dem-
onstration that a steady vortex structure may form in a
magnetic field in a plasma with a nonzero ion pressure.

1.0

0.5

fi, arb. units

0 0.05 0.20
u2/2

0.10 0.15

Fig. 7. Resulting ion distribution function in a collisionless
shock wave during the formation of a nonquasineutral shock
front. The abscissa is the characteristic ion energy normal-
ized to Zmec

2.
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Abstract—A study is made of the nonlocal nature of the electron energy distribution function in the positive
column of a glow discharge in a tube filled with pure oxygen. The distribution function and the axial (Ez) and
radial (Er) electric fields as functions of radius are measured using an array of mobile probes. The experimen-
tally obtained spatial profiles of the distribution function are used to test the applicability of the two-term
approximation to the distribution function of the electrons with a nonlocal energy spectrum. The distribution
function in a specified electric field E = Ez + Er (where Ez ⊥ Er) is calculated by solving the coordinate-depen-
dent Boltzmann equation in the two-term approximation and by directly integrating the equations of electron
motion using the Monte Carlo method. A comparison between the experimental data and the results of simula-
tions carried out for a broad parameter range shows that, in the case of a highly nonlocal electron energy spec-
trum, the two-term approximation makes it possible to calculate the electron distribution function with a fairly
good accuracy, in which case, however, in imposing the boundary conditions, the electron losses at the plasma
surface should be treated in the kinetic approximation. It is shown that using the reflection coefficient of the
plasma surface for electrons instead of the loss cone in space makes it possible to accurately calculate the elec-
tron energy distribution function over the entire parameter range under consideration, including the transient
region in which the electron-energy relaxation length is comparable to the characteristic plasma dimension.
© 2000 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Present-day plasma technologies related to micro-
electronics and the production of thin films deal mainly
with large-area dense homogeneous plasmas created by
alternating electric field–driven low-pressure dis-
charges. This circumstance has stimulated increased
interest in studying such discharges. The development
of discharge models is a key problem in theoretical
investigations aimed at searching for new technological
applications and further technological developments.

Calculation of the electron distribution function
(EDF), which determines the rate constants of the most
important elementary processes and transport coeffi-
cients in a plasma, is a central issue in modeling gas-
discharges. In a spatially nonuniform electric field
F(v, r, t), the EDF E(r, t) generally depends on seven
variables and can be found from the Boltzmann kinetic
equation

(1)

where r is the position vector; v is the electron velocity;
the collision integral Q determines how F(v, r, t)
changes in elastic and inelastic collisions; E(r, t) is the

∂F v r t, ,( )
∂t

------------------------- v · 
∂F v r t, ,( )

∂r
-------------------------+

+
eE r t,( )

me

------------------- · 
∂F v r t, ,( )

∂v
------------------------- Q,=
1063-780X/00/2611- $20.00 © 0972
electric field; and e and me are the charge and mass of
an electron, respectively. Since an efficient general
algorithm for solving Eq. (1) is lacking, various simpli-
fying approaches and approximations are used for this
purpose. This naturally brings up the question of the
accuracy of the solution method and its applicability
range. In solving certain problems, it is often difficult to
determine with considerable confidence the degree of
accuracy of specific approaches. The reason for this is
that the EDF is affected by a variety of factors (from
“microparameters,” such as the structure of the electron
flow scattered by gas particles, to “macroparameters,”
such as the way in which the discharge is initiated and
the presence of active particles). That is why there is
some uncertainty regarding the applicability ranges of
discharge models. However, to some extent, all
approaches for calculating the EDF and, accordingly,
for modeling discharges can be compared from the
standpoint of their ability to describe the effects of
anisotropic processes and nonlocal electron energy
spectra. Figure 1 illustrates the applicability ranges of
the most widely used approaches in the plane of the
parameters F1/F0 and Λε/L, where F0 and F1 are the iso-
tropic and anisotropic parts of the EDF; L is the scale
length on which the plasma density varies; and Λε is the
electron-energy relaxation length defined as Λε =

 [1], with λm and λ* being the electron meanλmλ*
2000 MAIK “Nauka/Interperiodica”
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free paths with respect to elastic and inelastic colli-
sions. Of course, since Fig. 1 merely illustrates the
applicability ranges of different models, the boundaries
are fairly arbitrary.

One of the most widely used approximations, spe-
cifically, the approximation in which the “local” distri-
bution function is evaluated under the assumption that
the plasma is homogeneous, is valid when L @ Λε.
However, the dimensions of real discharge devices
operating at reduced pressures satisfy the opposite ine-
quality; consequently, in solving the Boltzmann equa-
tion, we cannot assume that the plasma is spatially
homogeneous. In an inhomogeneous plasma, the EDF
is not determined by the local electric fields, so that, in
this sense, it is “nonlocal.” The spatial profiles of the
EDF can be evaluated by solving the kinetic equation (1)
using different approaches. Physically, the most
insightful approach [1–5] is that based on the assump-
tion that the total electron energy in a weakly colli-
sional plasma is approximately conserved; this
approach makes it possible to calculate the spatial pro-
files of the EDF treated as a function of the total elec-
tron energy. Approaches in which the coordinate-
dependent Boltzmann equation is solved directly by
various numerical methods are more involved and,
accordingly, require large amounts of computer time
[6–11]. The most exact solutions can be obtained by
directly integrating the equations of electron motion in
a prescribed potential by the Monte Carlo (MC)
method [12–14] or in a self-consistent potential by the
combined particle-in-cell–Monte Carlo (PIC–MC)
method [15–18]. (Various approaches to determining
EDFs in plasmas were considered in detail in the col-
lection of articles [19].) In order to calculate EDFs
whose anisotropy is so high that the applicability of
approximate models is questionable, it is especially
important to employ exact numerical methods. How-
ever, at present, the applicability of the MC method is
restricted because of the enormous computational
resources required and lack of experimental data on the
differential scattering cross sections. In this connection,
it becomes relevant to develop simpler methods for cal-
culating EDFs with allowance for spatial nonlocal
effects. The “hybrid” models based on such methods
(see, e.g., [20, 21]) extend the applicability ranges of
particular approaches (Fig. 1) and make it possible to
develop much faster computer codes.

A low-pressure glow discharge in a long cylindrical
tube with a longitudinal electric field is one of the most
convenient objects for experimental and theoretical
analyses of the nonlocal and anisotropic nature of the
EDF and also various plasmochemical processes. The
main feature of such discharges is that they are, on the
one hand, highly nonequilibrium and spatially inhomo-
geneous in the radial direction and, on the other hand,
isotropic and homogeneous along the tube axis. In elec-
tronegative gases, glow discharges are usually stable in
the parameter range pd > 0.1 torr cm (where p is the
pressure and d is the characteristic plasma column
PLASMA PHYSICS REPORTS      Vol. 26      No. 11      2000
diameter). In many cases, the radial electric field Er is
only incorporated into the macroscopic electrodynamic
equations and is neglected in the kinetic equation for
the EDF, which is assumed to depend only on the lon-
gitudinal uniform field Ez. In this paper, we analyze the
applicability of the two-term approximation (TTA) for
the EDF in a spatially nonuniform field E = Ez + Er

(where Ez ⊥ Er) by comparing the results of MC simu-
lations with experimental data on dc discharges in pure
oxygen in the range pd ≈ 0.15–1.5 torr cm (where d is
the tube diameter), for which we have Λε > L at pd =
0.15 torr cm and Λε < L at pd ≈ 1.5 torr cm. Note that
the cross sections for electron scattering by oxygen
molecules are such that the EDF is nearly isotropic
everywhere except for a high-energy range correspond-
ing to electron-impact ionization. Consequently, we
can hope that, in solving Eq. (1), the EDF can be eval-
uated in the TTA. However, we must keep in mind that
for many polyatomic gases (CF4, SF6, etc.) the TTA
may become inapplicable even in the range of moderate

F1/F0
1

0.1

0.01 0.1 1 10 100
Λε/L

LTTA

NTTA

NMA

CTEA

MC (everywhere)

Fig. 1. Approximate applicability ranges of the approaches
that are most widely used in solving the Boltzmann kinetic
equation (1) for the EEDF in the plane of the parameters
F1/F0 and Λε/L, where F0 and F1 are the isotropic and
anisotropic parts of the EDF, L is the scale length on which
the plasma density varies, and Λε is the electron-energy

relaxation length defined as Λε =  [1], with λm and

λ* being the electron mean free paths with respect to elastic
and inelastic collisions. The applicability ranges are
bounded by the coordinate axes and the curves. The arrows
mark the applicability ranges of the following approaches:
the local two-term approximation (LTTA), which is based
on solving the coordinate-independent Boltzmann equation;
the nonlocal two-term approximation (NTTA), which is
based on solving the coordinate-dependent Boltzmann
equation; the nonlocal multiterm approximation (NMA),
which is based on solving the set of coupled coordinate-
dependent kinetic equations; the “conserved total energy”
approximation (CTEA), which is based on solving the gen-
eralized Boltzmann equation that is homogeneous in the
total energy; and the MC method, which implies direct inte-
gration of the equations for electron motion.

λmλ*
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Fig. 2. Experimentally measured EEDFs vs. the total electron energy u = ε + eϕ (where ε is the kinetic energy of the electrons and
eϕ is their potential energy) at a fixed discharge current density of 5 mA/cm 2 for pd = 0.18, 0.36, 0.6, and 1.2 torr cm. The curves
f(0), f(3), and f(5) refer to the radial positions r = 0 (the discharge axis), 3, and 5 mm.
energies because of the large inelastic losses corre-
sponding to the high anisotropy of the EDF [22].

In an O2 plasma, the discharge electrodynamics is
strongly affected by active particles (oxygen atoms and
metastable molecules) [23–26]. In addition, the radial
plasma potential is largely governed by the heating of
negative ions in strong longitudinal electric fields and
also ion–molecule charge-exchange and detachment
reactions [22, 25]. Therefore, a complete self-consis-
tent discharge model should incorporate all of the
above processes. In simulations, we used the experi-
mentally measured fields Er(r) and Ez in order to sim-
plify matters and to analyze the applicability of the
TTA more correctly.

2. EXPERIMENT

We carried out a comprehensive study of a glow dis-
charge in a glass tube (with the inner diameter d =
12 mm and an interelectrode distance of 490 mm) filled
with pure O2 over the pressure range from 0.15 to 6 torr
at current densities of 3–40 mA/cm2. In experiments,
we measured the following parameters: the longitudi-
nal electric field, the EDF as a function of radius, the
radial profile of the plasma potential (the radial field
profile Er(r) was calculated from the plasma potential
gradient), the densities of negative ions, the plasma
temperature at the axis of the positive discharge col-
umn, the temperature of the wall of the discharge tube,
and the densities of such active particles as O(3P) atoms
and oxygen molecules in the two lowest metastable

states a1∆g and b1 . Below, we will describe only the
results of measurements of spatial variations in the
EDF and electric fields. The radial profiles of the EDF
were recorded by a specially designed array of mobile
probes with the help of the conventional method of
modulation of the probe potential [27]. The second
probe in the feedback loop was used to suppress plasma
noises and to stabilize the operating point of the device.
The plasma potential was determined from the point in
the current-voltage characteristic of the probe at which
the second derivative of the probe current vanishes. In
[27], one can find a more detailed description of our
experiments.

Σg
+
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The nonlocal nature of the EDF can be revealed
experimentally in gas-discharge plasmas at low pres-
sures [3–5, 28], when the spatial profiles of the electron
energy distribution function (EEDF) are governed pri-
marily by the potential energy of the electrons in the
space charge field. The EDFs measured at two different
points should coincide (to within the potential differ-
ence between the points, which corresponds to a shift
along the energy axis). Figure 2 shows the EEDF
obtained experimentally for different values of the
parameter pd versus the total electron energy u = ε +
eϕ, where ε is the kinetic energy of the electrons and eϕ
is their potential energy. The EEDF was measured at a
discharge current density of 5 mA/cm2 at three radial
positions: r = 0 (the discharge axis), 3, and 5 mm. We
can see that, at a pressure such that pd = 0.18 torr cm,
the spatial profiles of the EEDF are well approximated
by functions of only the total electron energy; i.e.,
F(ε, r) = F(u(r)). Up to the energy ε ~ 13 eV, the EEDFs
at different radial positions coincide as functions of the
total electron energy. The electron energy spectrum at a
given radius is governed exclusively by the electrons
whose kinetic energy is higher than the potential energy
at this point. Hence, the shape of the EEDF is as if its
low-energy part were “truncated.” For larger values of
the parameter pd, the EEDFs measured at different
points do not coincide, so that the EEDF can no longer
be approximated by a function of only the total energy
u(r). Our calculations (see below) show that, even in the
range pd ≈ 1 torr cm at Λε < d, the radial electric fields
still have a significant impact on the electron energy
spectrum. In this sense, the EEDF remains nonlocal.

Figure 3 shows radial profiles of the mean electron

energy 〈ε〉 r = F(ε, r)dε for pd = 0.18, 0.36, 0.6, and

1.2 torr cm at a current density of 5 mA/cm2. The pres-
ence of a fairly long radial interval in which the mean
energy is decreasing can be attributed to the specific
energy dependence of the EEDF. The slope of the
EEDF increases with increasing energy (Fig. 2), which
means that the mean energy of the electrons decreases
with increasing the distance from the discharge axis.
This leads to the effect of “cooling” of the electrons by
the radial charge-separation electric field, which is
ignored in the local approximation.

3. DISCUSSION

In the TTA, the electron velocity distribution func-
tion F(v, r, t) is represented as

(2)

where F0(v, r, t) and F1(v, r, t) are the symmetric and
antisymmetric parts of the distribution function such
that F1 ! F0, v is the absolute value of the velocity vec-
tor, and θ is the angle between the electric field and the
velocity vector. Substituting expression (2) into Eq. (1)
yields the following equation for the symmetric part

ε3/2∫

F v r t, ,( ) F0 v r t, ,( ) F1 v r t, ,( ) θ,cos+=
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F0(ε, r, t) of the distribution function in cylindrical
geometry [29, 30]:

(3)

Here, ε is the electron kinetic energy and the coeffi-
cients Dr , Dε, and Drε have the form

(4)

where Er and Ez are the radial and longitudinal compo-
nents of the electric field in a plasma, σ(ε) is the trans-
port scattering cross section, and N is the neutral den-
sity. In writing (3) and (4), we assumed that the plasma
column is homogeneous along the z-axis. In numerical
modeling, the symmetric part F0(ε, r, t) of the EDF for
a steady discharge was calculated using the relaxation
method, i.e., by integrating Eq. (3) in time. Following
[30], we chose the boundary conditions in such a way
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Fig. 3. Radial profiles of the mean electron energy 〈ε〉
defined as 〈ε〉 r = F(ε, r)dε (where the subscript r indi-
cates the radial position with respect to the discharge axis)
for pd = 0.18, 0.36, 0.6, and 1.2 torr cm at a fixed discharge
current density of 5 mA/cm2. The circles show the experi-
mental data, and the solid and dashed curves illustrate the
results obtained from the discharge models in which the
EEDF was calculated by the MC method and in the TTA,
respectively. The longitudinal field Ez was taken from the
experiment and was assumed to be fixed.

ε3/2
∫
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that the electrons were not reflected from the tube wall
and escaped freely from the plasma volume.

In MC simulations, the equation of electron motion
in the prescribed field E = Ez + Er,

(5)

was solved by a finite-difference scheme of second-
order accuracy. At each time step, we modeled a statis-
tical process that might involve electrons with the spec-
ified energy. The time step was determined from the
requirement for the equation of motion (5) to be solved
with the desired accuracy and from the condition that
the total probability for all of the processes to occur at
each time step be small compared to unity.

Recall that, in a discharge plasma, the radial electric
field acts to cool the electrons and to equalize the effec-
tive electron and ion diffusion coefficients. Conse-
quently, in simulations, it is extremely important to
know the wall potential UW, which governs the fraction
of electrons that can overcome the ambipolar potential
barrier and leave the plasma (the escape of electrons
toward the wall is the main channel of electron losses).

me td
dv

eE=

101

σ, 10–16 Òm2
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10–1 100 101 102
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4

Fig. 4. The set of cross sections for electron scattering by O2
molecules that was used to calculate the EEDF: (1) elastic
scattering cross section; (2) integral cross section for the
excitation of rotational states; (3) cross section for the exci-
tation of the first vibrational level of the ground state;
(4) cross section for the excitation of the second vibrational
level of the ground state; (5) cross section for the excitation
of the a1∆g electron state; (6) cross section for the excitation

of the b1  electron state; (7) integral cross section for the

excitation of the electron states A3 , c1 , and A'3∆u;
(8) dissociative attachment cross section; (9) dissociative
cross section with a threshold of 5.58 eV; (10) dissocia-
tive cross section with a threshold of 7.34 eV; (11) disso-
ciative cross section with a threshold of 9.74 eV; and
(12) ionization cross section.

Σg
+

Σu
+ Σu

–

Unfortunately, in our experiments, we failed to deter-
mine the plasma potential drop near the wall. For this
reason, in simulations, we adjusted the wall potential so
that the computed EDF was steady. In simulations with
higher or lower values of UW , the plasma electron den-
sity increased or decreased exponentially in time. In
this connection, the value of the wall potential UW used
to calculate the EEDF in the TTA differed from that
used in MC simulations.

In order to make a comparison between the results
obtained in the TTA and MC simulations correct, we
used the same set of cross sections for electron scatter-
ing by O2 molecules (see Fig. 4). Using the same set is
justified because, in our experiments, the total scatter-
ing cross section is only slightly anisotropic up to high
electron energies of about 20–30 eV.

In Figs. 5a and 5b, which were obtained for pd =
0.18 and 1.2 torr cm, respectively, and illustrate the
dependence of the electron distribution function on the
electron kinetic energy ε, we compare the local EEDF
obtained by solving the spatially homogeneous Boltz-
mann equation with both the EEDF measured experi-
mentally and the EEDFs calculated in the TTA and by
the MC method. Since, in Fig. 5b, Λε < d, we can natu-
rally expect that the EEDF will be close to the local dis-
tribution function over the entire plasma cylinder
except for a narrow wall layer. In fact, Fig. 5b shows
that the EEDFs obtained experimentally and computed
for a spatially nonuniform field are close to the local
EEDF everywhere except for a wall layer with a thick-
ness of about Λε. As can be seen from Fig. 5a, the lower
the pressure, the more important the effects of the non-
local nature of the electron distribution: the experimen-
tal and calculated EEDFs deviate from the local EEDF
over the entire plasma column. In the high-energy
range, the nonlocal nature of the electron energy spec-
trum obtained in the TTA is seen to be more pro-
nounced than in the case of EEDFs measured experi-
mentally and calculated by the MC method. This dis-
crepancy is associated with the boundary conditions
imposed in the TTA. Although the TTA can be used to
describe the electron flux in coordinate space, it fails to
hold in a fairly narrow wall layer (with a thickness of
about the electron mean free path). Since Eq. (3) does
not describe the real electron motion in velocity space,
the electron flux to the wall turns out to be overesti-
mated. Such an electron flux can be corrected by intro-
ducing a nonzero reflection coefficient of the plasma
surface for electrons. In other words, in the total elec-
tron flux, we must take into account only the electrons
whose velocity vector lies inside the loss cone δΩ. To
do this, we incorporate the loss cone into the boundary
condition for Eq. (3) through a relationship analogous
to that presented in [5, 14]:

(6)δΩ 2π 1
e U r( ) UW–( )

ε r( )
---------------------------------– 

 
r R=

.=
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Fig. 5. Comparison of the local EEDF calculated as a function of the kinetic energy by solving the coordinate-independent Boltz-
mann equation with both the experimentally measured EEDF and the EEDFs computed by the MC method and in the TTA. The
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calculations were carried out for pd = (a) 0.18 and (b) 1.2 torr cm.
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Condition (6) differs from the corresponding expres-
sion for δΩ in [5, 14] in that it describes the reflection
of electrons from the plasma surface with the probabil-

ity  rather than the loss cone in the

plasma volume. Kortshagen et al. [14] showed that the

1
2
---

e U R( ) UW–( )
ε R( )

-----------------------------------
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electron losses can be described as an electron flux to
the wall through the loss cone only when Λε @ L. Con-
dition (6) assumes that there is a jump UW – U(R) in the
plasma potential near the wall. Physically, this corre-
sponds to a plasma-wall layer whose thickness is of
about the electron mean free path and in which the
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space charge is unneutralized. In this case, the wall
potential UW should again be found self-consistently
from the condition that the EEDF be steady. According
to (6), taking into account electron reflection from the
plasma surface makes it possible to achieve good
agreement between the radial profiles of the EEDF cal-
culated in the TTA and by the MC method, except, of
course, for a narrow wall region where the EDF is still
highly anisotropic. That the values of UW obtained by
the two calculation methods approximately coincide is,
in our opinion, additional evidence of the applicability
of the TTA to the problem under discussion.

We emphasize that the above discrepancy between
the EEDF obtained in the TTA without allowance for
electron reflection from the plasma surface and the
EEDF calculated by the MC method weakly affects the
ionization rate and other global kinetic coefficients of
the discharge plasma. In fact, the EEDFs computed on
the basis of the above approaches differ strongly only
in the energy range ε ≥ 20 eV, which is far above the
thresholds for all inelastic processes, including the
threshold 12.07 eV for ionization of O2 molecules. That
is why simulations of the discharge plasma kinetics car-
ried out by different approaches for determining the
spatially inhomogeneous EEDF yield essentially the
same results. This is illustrated in Fig. 3, which pre-
sents, in addition to the experimentally measured pro-
files of 〈ε〉 , the radial profiles of the mean electron
energy calculated using a unified discharge model in
which the EEDF was computed in different ways at a
fixed axial electric field Ez. Figure 3 shows good agree-
ment between the profiles corresponding to the EEDFs
obtained in the TTA and by the MC method. The

radius-averaged ionization rates  =

/  obtained from the EEDFs computed in
these ways are nearly the same over the entire range of
the parameter pd (here, the angular brackets denote
averaging over the EEDF and the overbar stands for
averaging over radius). A slight discrepancy in the
range pd < 0.2 torr cm stems from the physical reasons
that we have discussed above. However, a comparison
between the mean ionization rates obtained from the
nonlocal and local models shows that, even in the range
of large values of the parameter pd (pd > 1 torr cm), the
local model gives a somewhat overestimated rate

. In other words, the electric field obtained
from the discharge models in which the EEDF is calcu-
lated in the local approximation is lower than the real
electric field in a discharge plasma.

To construct a completely self-consistent discharge
model that would be valid for the entire range of values
of the parameter pd requires a self-consistent solution
of the Boltzmann kinetic equation (1) supplemented
with the continuity equations for charged particles and
Poisson’s equation for the electric field. More exact
approaches (e.g., the PIC–MC method) make it possi-

σv〈 〉 ion

σv〈 〉 ionne ne

σv〈 〉 ion
ble to determine various spatial characteristics of the
discharge in a broad parameter range, but they involve
a considerable expenditure of computational resources.
Our work makes it possible to carry out simulations
using an algorithm that is much faster than that based
on the PIC–MC method. For dc discharges in pure oxy-
gen, such a simplified approach was developed in our
paper [25], which allowed us to investigate the kinetics
of negative oxygen ions in detail.

4. CONCLUSION

We have studied the nonlocal nature of the EEDF in
a positive column of a glow discharge in a tube filled
with pure oxygen. The experimentally measured radial
profiles of the EEDF were used to analyze whether the
TTA is applicable for determining the EEDF in a dis-
charge with a nonlocal electron energy spectrum. With
this purpose, we calculated the EEDF in the specified
field E = Ez + Er with the Ez and Er components taken
from the experiment. The EEDF was computed by
solving the coordinate-dependent Boltzmann equation
in the TTA and by the MC method for direct integration
of the equations for electron motion. A comparison
between the experimental and numerical results shows
that, even when the electron energy spectrum is highly
nonlocal, the TTA makes it possible to calculate the
EEDF quite accurately over a broad parameter range, in
which case, however, the boundary conditions should
reflect the kinetic nature of electron losses at the plasma
surface.
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in a Glow-Discharge in Pure O2: II. Actinometry of O(3P) Atoms 

in a Plasma at Low Gas Pressures
V. V. Ivanov, K. S. Klopovskiœ, D. V. Lopaev, A. T. Rakhimov, and T. V. Rakhimova

Research Institute of Nuclear Physics, Moscow State University, Vorob’evy gory, Moscow, 119899 Russia
Received April 3, 2000

Abstract—Results are presented from measurements of the density of oxygen atoms in the positive column of
a dc discharge in pure oxygen by the actinometric technique using Ar atoms. Based on the excitation rate con-
stants calculated using two different approaches (namely, the two-term approximation and the Monte Carlo
method) to solving the Boltzmann equation for a spatially inhomogeneous electron distribution function, the
applicability of the actinometric technique is analyzed. The effects of the discharge kinetics and the nonlocal
character of the electron energy spectrum on the accuracy of actinometric measurements are studied. It is shown
that the results of measurements depend only slightly on the accuracy with which the electron energy distribu-
tion function is described. Over a wide range of the reduced electric field E/N ≈ 40–250 Td, the oxygen atom
density calculated using the spatially homogeneous distribution function differs by several percent from that
calculated accurately, taking into account the nonlocal character of the electron energy spectrum. It is shown
that using the actinometric technique to measure the absolute concentration of oxygen atoms in a plasma
requires a detailed description of the discharge plasmochemical kinetics, including a thorough analysis of all
possible processes (particularly, surface heterogeneous reactions) that determine the density of active particles
at low pressures. At the same time, the use of the actinometric technique for monitoring the behavior of the den-
sity of oxygen atoms in a plasma is justified over a wide range of reduced electric fields up to ~200 Td when
the O(3p3P–3p3S) transition (λ = 844.6 nm) is used and the degree of dissociation is [O]/[O2] > 0.02. © 2000
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

At present, low-temperature plasmas of molecular
gases are attracting wide scientific interest. This is pri-
marily due to the great importance of active particles
(first of all, atoms and radicals) formed via the electron-
impact dissociation of molecules in a gas-discharge
plasma of molecular gases. In fact, the role that plasma
technology plays in modern microelectronics, engi-
neering, ecology, medicine, etc., is mostly determined
by the possibility of efficiently producing and using
active particles

In many cases, the concentrations of atoms and rad-
icals are so high that they not only significantly affect
particular elementary processes in a plasma, but also
govern the electrodynamics and macroscopic parame-
ters of a discharge as a whole. This is most pronounced
in plasmas of electronegative gases, in which, due to
the efficient production of negative ions, their density
can significantly exceed the electron density [1–5].
Under conditions typical of various applications of
such plasmas (e.g., oxygen and hydrogen gas-discharge
plasmas [5–7]), the kinetics of negative ions is gov-
erned largely by the atomic kinetics. Therefore, knowl-
edge of the absolute concentrations of oxygen and
hydrogen atoms is of great importance for understand-
ing the physics of discharges in O2 and H2.
1063-780X/00/2611- $20.00 © 20980
Currently, the most powerful and relatively univer-
sal method for detecting atoms and small molecular
radicals in the ground and long-lived excited states is
laser-induced fluorescence (LIF), including its various
modifications, e.g., the method of two-photon LIF and
the detection of nonspontaneous (laser-stimulated)
emission [8–12]. The advantages of this method are
obvious: it does not disturb the plasma and has high
space and time resolution and high sensitivity. How-
ever, the implementation of this diagnostics requires
not only a rather complicated and expensive laser tech-
nique necessary to generate high-power narrow-band
radiation in the far UV region, but also an accurate (and
frequently very complicated) calibration of the LIF sig-
nals referring to the density of atoms in the ground state
(in other words, the adaptation of LIF diagnostics to the
discharge plasma). For this reason, the multiphoton LIF
diagnostics is used only at major scientific centers and,
most frequently, only when the problem itself requires
it. However, the necessity to know the absolute concen-
trations of atoms in molecular-gas plasmas is of pri-
mary importance for a wide class of problems, espe-
cially, for those related to various applications. For this
reason, simple methods to diagnose atoms and radicals
at the ground state are of considerable interest.

In our opinion, the most advantageous among these
methods is the actinometric technique. It is most often
000 MAIK “Nauka/Interperiodica”
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used to detect atoms in a chemically active plasma
when other methods are difficult to use. The actinomet-
ric technique has already been widely used to measure
the densities of various radicals in discharge plasmas
[13–16] (in particular, O atoms [17–22]). However, we
note that the accuracy of the actinometric technique and
thus its potentiality are completely determined by the
extent to which the discharge model used is adequate to
the actual situation in the plasma. Let us briefly explain
this.

According to the concept of the actinometry tech-
nique, the electronic states  and  of a radical and
an actinometer atom (usually, the actinometer is an
atom of a noble gas, most frequently, argon) in a dis-
charge are chosen such that they are mainly populated
via electron impact, whereas deactivation occurs via
radiative decay [processes (1) and (2), respectively]:

e + X  e + , (1‡)

e + Z  e + , (1b)

   + hνij , (2‡)

   + hνlm . (2b)

Here,  and  are the electron-impact ionization

rate constants of the  and  excited states and 

and  are the Einstein coefficients for spontaneous

radiative decay of the  and  states through the
X*(i  j) and Z*(l  m) channels, respectively.
However, there may be other channels for populating
and quenching the  and  states. Among them, the
main processes are nonradiative quenching of the
excited states by plasma particles (primarily, neutrals)
and dissociative excitation of the  state during the
scattering of electrons by XY molecules [processes (3)
and (4), respectively]:

 + Mq  X + Mq , (3‡)

 + Mq  Z + Mq , (3b)

e + XY   + Y + e, (4)

where  and  are the quenching rate constants of

the  and  states by M particles and  is the

constant of  production during the dissociative exci-
tation of XY molecules. Hence, in a steady-state dis-
charge, the emission intensity of X* excited states due
to the (i  j) transition can be written in the form [22]
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(5)

where ne is the electron density and  and  are
the sums over the processes of radiative and nonradia-

tive decay of the  state. A similar expression can
also be written for the emission intensity of the acti-
nometer atom in a discharge:

(6)

Hence, from relations (5) and (6), it follows that

(7)

(8)

The rate constants , , and  are determined by
the cross sections σe for the corresponding electron-
scattering processes and the electron energy distribu-
tion function (EEDF) f(ε) in a plasma:

(9)

where ε* is the threshold energy of the process; v(ε) is
the velocity of electrons with energy ε; and e and me are
the electron mass and charge, respectively. It is evident
from formula (7) that the actinometric method is appli-
cable (i.e., the radical density can be derived from the
ratio of two line intensities and a known value of the
actinometer concentration) if, under certain experimen-

tal conditions, we have  ≈ const and the inequality

/  ! [X]/[XY] holds. As applied to actual experi-
ments, the verification of the validity of these relation-
ships means that the values of all the coefficients enter-
ing formula (7) should be accurately determined. How-
ever, in this case, it is necessary to know both the
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excitation cross sections of the excited states and their
quenching rate constants and to rather accurately
describe the EEDF in a plasma because the inequality
ε* @ εm (where εm is the mean electron energy) almost
always holds. Hence, in order to use the actinometric
technique to not only monitor the behavior of atoms
and radicals in a plasma, but also to accurately measure
their densities, it is necessary that all the quantities con-
tributing to the actinometer signal be measured with a
high accuracy.

The applicability of the actinometric technique in
particular to the detection of O atoms using argon
atoms was verified in [17–22]. However, the accuracy
of the method was determined in an indirect way,
namely, by detecting atoms in the ground state by
another (more direct) method (e.g., by the two-photon
LIF or resonant VUV absorption). The factors govern-
ing the applicability of the actinometric method were
not analyzed in detail. Among these factors, the elec-
tron-excitation rate constants are the most important
because the emitting states have high excitation thresh-
olds. Therefore, such an analysis must include the fol-
lowing:

(i) Determination of the electronic excitation cross
sections near the threshold, where these cross sections
are usually known with an insufficient accuracy.

(ii) Determination of the EEDF, which means either
accurate spatial measurements of the EEDF or a suffi-
ciently accurate calculation of the EEDF based on the
model including all of the basic processes governing
the EEDF formation. Depending on the discharge con-
ditions, these may be either effects related to the nonlo-
cal nature of the electron energy spectrum [23, 24] or
the processes of ion and chemical kinetics [5, 6, 25].
The influence of the latter can be very strong; for exam-
ple, in an é2 plasma at pressures of a fraction of torr to
several torr, due to the high density of metastable parti-
cles, the field in the plasma and, thereby, the EEDF and
electron density [5, 6] are governed by electron detach-
ment from negative ions.

(iii) Comparison of experimental results with calcu-
lations over a wide range of the discharge conditions.

The problems mentioned in the first item (i.e., ana-
lyzing and testing the electron-impact cross sections for
radiative transitions of oxygen atoms, including the dis-
sociative excitation of é2 and argon molecules) were
studied in [22]. Our study is devoted to items (ii) and
(iii). In this paper, we present the results from actino-
metric measurements of the density of é atoms using
Ar atoms in a positive column of a dc discharge in pure
oxygen. The method and results obtained are analyzed
based on a self-consistent model of a discharge using
different approaches to determining the EEDF: (a) the
two-term approximation (TTA), involving the solution
of the kinetic Boltzmann equation for the spatially
inhomogeneous EEDF, and (b) the particle-in-cell
method combined with the Monte Carlo technique
(PIC–MC technique). The effect of nonlocal electron
kinetics on the accuracy of the actinometric technique
is analyzed for the first time. In addition, the influence
of the dissociative excitation of O* on the results of
measurements of the O atom density by the actinomet-
ric technique is also examined.

2. EXPERIMENT

A dc discharge in pure O2 was ignited in a 12-mm-
diameter molybdenum glass tube. The distance
between two profiled molybdenum electrodes was
490 mm. The experiments were carried out at pressures
of 0.15–6 torr and gas discharge currents of 3–
40 mA/cm2. In the experiment, the following discharge
characteristics were determined:

(i) The radial profiles of the plasma potential (and,
correspondingly, the electric field) in the positive col-
umn of a discharge were measured using three movable
electric probes [23].

(ii) The radial profiles of the EEDF were measured
using the second harmonic technique and a newly elab-
orated system of movable probes with optical recep-
tion–transmission channels and a feedback system for
active suppression of plasma noise [23].

(iii) The spatial profiles of the negative-ion density
were measured using the laser photodetachment tech-
nique [5].

(iv) The molecular oxygen density in two lower

(a1∆g and b ) excited states was measured using IR
emission spectroscopy at 1268- and 762-nm wave-
lengths, respectively.

(v) The temperature of the discharge tube wall was
determined using chromel–alumel thermocouples.

(vi) The gas temperature near the axis of the positive
discharge column was determined using the spectro-
scopy of the vibrationally resolved QP-branch of the

band O2(b , v = 0)  O2(X , v = 0) λ =
762 nm).

(vii) The density of O atoms in the ground state was
measured with the help of the actinometric technique
using argon atoms and the optical transitions O(3p3P–
3p3S) (λ = 844.6 nm) and Ar(2p9 – 1s5) (λ = 811.5 nm).

(viii) The recombination rate of O atoms on the tube
wall under discharge conditions was measured using
the actinometric technique for recording the decay
dynamics of the nonequilibrium oxygen atom density,
which was modulated by slightly modulating the dis-
charge current [26].

In this paper, we only present the results of measure-
ments referring to items (vii) and partly (viii), although
it is evident that all of the above measurements are
related to each other: when analyzing the results of
each particular experiment, we must invoke the data
from at least several other experiments. The block dia-
gram of the experiment is shown in Fig. 1.

Σ1 +
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Σ1 +
g Σ3 –

g
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In the experiment, we used an O2 : Ar = 98 : 2 mix-
ture. The radiation emitted by electronically excited
oxygen and argon atoms from the axial region of the
discharge tube (with a diameter of about 0.5–0.6 of the
tube diameter) was separated using a set of diaphragms.
Then, the radiation was focused on the slit of a mono-
chromator and was detected by either a photomultiplier
with a GaAs photocathode or a 512-channel silicon
CCD array. In the latter case, an OMA system based on
an IBM PC was used. In the scheme using a photomul-
tiplier, the discharge emission was modulated with a
mechanical shutter and the radiation in the 750- to
850-nm spectral region was recorded by a synchronous
detector (a PAR-5209 lock-in amplifier interface-con-
nected to the computer). Simultaneously, the synchro-
nous detector (with the help of a program-controlled
channel of a 16-bit ADC) recorded the electric probe
signal corresponding to the electric field strength in the
plasma.

To determine the loss rate of O atoms at the tube
wall during the discharge, the following method was
used. It is known that, for weak perturbations of the dis-
charge parameters, the time required for the steady-
state EEDF to be established in a gas-discharge plasma
at a pressure of ~1 torr and E/N > 10 Td is shorter than
1 µs. Experiments showed (see, e.g., [27, 28]) that the
time required for the electron density in O2 plasmas to
reach a steady-state value is also short (on the order of
several tens of microseconds). Under the same condi-
tions, the characteristic time required for the density of
oxygen atoms to reach a steady-state value is longer
than 1 ms because this time is determined by the loss of
oxygen atoms at the discharge tube wall (for a tube
diameter of 10–20 mm) [20, 29, 30]. This fact was used
to determine the rate of heterogeneous loss of O atoms
on glass under conditions of a discharge in pure é2. To
do this, the discharge current was modulated by varying
the ballast resistance within several percent of its nom-
inal value. In this case, variations in the electric field in
the positive column of the discharge did not exceed sev-
eral percent. The current was modulated with a fre-
quency of several tens of Hz; in this case, the relative
increase in the steady-state concentration of oxygen
atoms (∆[O]) in the higher current phase was no more
than 2–3%. Therefore, one steady-state concentration
of oxygen atoms [O] changed to another: [O] + ∆[O].
In contrast, when going to the lower current phase, the
steady-state concentration of oxygen atoms [O] + ∆[O]
changed to [O]. The characteristic time of these transi-
tions corresponded to the time during which the steady-
state oxygen atom concentration in the discharge was
reached; in turn, this time was determined by the
recombination rate of O atoms on the tube wall. The
experiments showed that, nearly 0.1 ms after the addi-
tional current was switched on or off, it was possible to
observe an increase or decrease in the oxygen atom
concentration by the value ∆[O] using the actinometric
technique. In other words, the discharge electrons,
whose density rapidly reached a steady-state value after
PLASMA PHYSICS REPORTS      Vol. 26      No. 11      2000
switching the additional discharge current, “high-
lighted” the process of establishing the steady-state
atomic oxygen concentration. In this experiment, the
signals from the photomultiplier anode were fed to a
preamplifier and then to a digital oscillograph synchro-
nized with the modulation pulse. The oscillograph was
interface-connected to an IBM PC for data acquisition
and processing.

3. MODEL. CALCULATION 
OF THE ELECTRONIC EXCITATION RATES, 

INFLUENCE OF THE NONLOCAL CHARACTER 
OF THE ELECTRON SPECTRUM

According to the scheme (1)–(4), the following
basic processes of excitation and deactivation of
O(3p3P) and Ar(2p9) atoms are possible:

e + Ar(1p0)  e + Ar(2p9), (10)

e + O(2p4 3P)  e + O(3p 3P), (11)

Ar(2p9)  Ar(1s5) + hν811, (12)

O(3p 3P)  O(3s3S) + hν844, (13)

e + O2  e + O + O(3p3P), (14)

O(3p3P) + O2  O + O2, (15)

Ar(2p9) + O2  Ar + O2. (16)
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Fig. 1. Schematic of the experiment: (1) discharge tube,
(2) movable probes, (3) high-voltage power supply, (4) dis-
charge-current modulation circuit, (5) optical system for
spatial separation of emission, (6) monochromator, (7) pho-
tomultiplier, (8) silicon CCD array, (9) CCD controller
plate, (10) synchronous detector or digital oscillograph, and
(11) computer.
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According to (5)–(8), the degree of dissociation of oxy-
gen in a plasma can be represented as

(17)

where

(18)

A detailed analysis of the processes of radiative decay
(12) and (13) and collisional quenching (15) and (16)
was performed in [21, 22], where it was found that

 =  = 2.98 × 107 s–1,  ≈  = 4.6 ×

107 s–1 (the O(3p3P – 3p3S) and Ar(2p9 – 1s5) transi-
tions are the main processes of radiative decay of the

corresponding excited atomic levels), and  = 8 ×

10−10  cm3/s. We note that accurate data on the
rate constant for process (16) are not available; for this

reason, we used the value  ≈ 2.2 × 10–10  cm3/s
for the total rate constant of quenching the 2p9 level by
argon [23] because, for most of the 4p levels of Ar, the
cross sections for quenching by argon and oxygen have
nearly the same values. The chosen value agrees with
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Fig. 2. Electron-impact excitation cross sections for
O(3p3P) and Ar(2p9) atoms as functions of the electron
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the data from [22] on the rate constant for quenching
the Ar(2p1) level by é2 molecules. The influence of
process (16) becomes significant at pressures above
~3 torr; therefore, inaccuracy in determining its rate
constant can lead to a certain inaccuracy of actinomet-
ric measurements.

As for the processes of electronic excitation (10),
(11), and (14), the calculation of the corresponding rate

constants , , and  requires not only a
detailed consideration of the cross sections of these
electronic processes, but also a thorough analysis of all
the processes involved in the formation of the EEDF in
a plasma (including the calculation of the full set of
scattering cross sections for electrons). The latter, in
turn, includes an analysis of the correctness of the
approach used to calculate the EEDF for the given
experimental conditions. Therefore, the choice of the
electronic-excitation cross sections and methods for
calculating the EEDF is of key importance for the prob-
lem of the applicability limits and accuracy of the acti-
nometric technique.

The cross sections that are necessary to calculate the
rate constants must be chosen based on independent
measurements of the atomic oxygen concentration.
Since we did not conduct such measurements, we used
a set of cross sections for the direct and dissociative
excitation of é(3p3P) atoms by electron impact from
[21, 22]. These cross sections were tested by measuring
the density of O atoms in a dc discharge in pure é2 with
the help of resonant UV absorption spectroscopy.
When choosing the excitation cross sections for the 2p9
level, we used the results of an analysis of electron-
impact excitation cross sections for heavy noble gases
[24]. The chosen energy profiles of the excitation cross
section for Ar(2p9) [31] also allowed for cascade exci-
tation processes. The obtained cross section corre-
sponds to a similar cross section from the set [25] also
used in [22] to calculate the excitation rate constant for
the transition Ar(2p1 – 1s2) (λ = 750.3 nm). The energy
profiles of the excitation cross sections used to calcu-
late the corresponding electronic states of oxygen and
argon atoms are shown in Fig. 2.

The following approaches were used to analyze how
the methods for determining the EEDF affect the accu-
racy of actinometry. The first approach (which is com-
monly used) is to use a discharge model in the local
approximation; i.e., the EEDF is calculated by solving
the coordinate-independent Boltzmann equation. The
second approach consists in using a nonlocal model of
a discharge. In this case, two methods were used to
determine the spatially inhomogeneous EEDF:

(i) The EEDF is determined by solving the coordi-
nate-dependent kinetic equation for the radial electric
field using the two-term approximation for the EEDF
(see Part I of this paper dedicated to the nonlocal char-
acter of the EEDF) [5, 26, 27].
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(ii) The EEDF is calculated by the PIC–MC tech-
nique, which allows one to accurately take into account
the spatial inhomogeneity of the EEDF [4, 5, 28]. In all
cases, we used the same set of electron-scattering cross
sections for é2 (see Fig. 4 in Part I of this paper). This
set of cross sections was tested in many experiments.
The basic processes determining the electrodynamics
of a glow discharge in pure é2 are listed in [5].

The EEDF was calculated self-consistently at pres-
sures of 0.15–6 torr and currents of 5–40 mA/cm2. In
the approach using the PIC–MC technique, we used the
fast numerical code developed in [28].

The electron motion was described by a time-depen-
dent equation for the distribution function F(v, r, t) in
one-dimensional coordinate space and three-dimen-
sional momentum space [see Eq. (1) in Part I of this
paper]. Here, r is the radial coordinate and v = (vr, vϕ, vz)
is the velocity. The electric field was assumed to have
radial and axial coordinates only: E = (Er, 0, Ez). The
radial density profiles of positive and negative ions
were determined from the continuity equation in which
a diffusion–drift model was used to describe positive-
and negative-ion flows [5, 27]. The densities of active
particles were obtained from experimental data. The set
of equations was closed by Poisson’s equation for the
radial component of the electric field. The axial compo-
nent Öz of the electric field was assumed to be indepen-
dent of r; consequently, its value could be found from
the condition that the total axial current is equal to that
measured experimentally.

The importance of the nonlocal character of the
EEDF in the plasma of é2 is demonstrated in Part I of
this paper, where, by comparing the experiment with
the MC calculations, we analyze the applicability of the
two-term approximation to the solution of the coordi-
nate-dependent Boltzmann equation. It is shown that
the two-term approximation correctly takes into
account the effects associated with the nonlocal charac-
ter of the EEDF in the range of plasma parameters
where the anisotropy of the EEDF is still relatively
small. However, for sufficiently small values of the
parameter RN (where R is the tube radius and N is the
neutral density at the axis of the positive column) and a
relatively high reduced electric field (RN < 1016 cm–2

and E/N > 150 Td), only rigorous approaches to calcu-
lating the EEDF (such as the PIC–MC method) permit
one to accurately take into account the spatial inhomo-
geneity of the EEDF and, consequently, the atom emis-
sion intensity. Thus, the use of the PIC–MC technique
is well justified for pressures below 0.5 torr (see Fig. 3).

In addition to the effects associated with the nonlo-
cal character of the EEDF, a correct description of the
electron kinetics in a pure oxygen plasma requires a
self-consistent description of the ion–molecule kinet-
ics, which strongly affects the EEDF through the redis-
tribution of the electric field in the plasma due to non-
equilibrium ion diffusion and detachment from nega-
tive ions [4, 5, 29, 30, 32, 33]. The importance of taking
PLASMA PHYSICS REPORTS      Vol. 26      No. 11      2000
into account the ion kinetics in the accurate description
of the EEDF and the large role of nonequilibrium heat-
ing of ions by the longitudinal electric field were dem-
onstrated in [4, 5]. Figure 3 shows the experimentally
measured and calculated reduced electric fields in the
center of the positive column of a dc discharge in pure
oxygen as functions of the parameter RN. Calculations
were carried out with and without taking into account
both detachment from oxygen atoms and singlet oxy-
gen molecules and ion diffusion due to nonequilibrium
heating of plasma ions. From a comparison with the
experiment, it is evident that detachment and nonequi-
librium ion diffusion significantly affect the value of
the electric field in the discharge, thus also affecting the
excitation coefficients of atoms and molecules (espe-
cially the excitation of higher levels). However, these
processes (first of all, ion heating by the longitudinal
electric field) also change the radial density profiles of
charged particles. In [5], from a comparison of the cal-
culated and measured radial profiles of the negative-ion
density by the laser-detachment technique, it was found
that nonequilibrium ion diffusion significantly affects
the density profile of negative ions. This leads to the

200

E/N, íd

RN × 10–16, cm–2
1.0 10.0

100

0
0.1

300

Fig. 3. Reduced electric field at the axis of a dc discharge in
pure O2 as a function of the parameter RN, where R is the
tube radius and N is the gas density at the discharge axis.
Open circles show the experimental data in the current range
10–30 mA/cm2. Closed circles show the experimental data
for J = 5 mA/cm2. The solid curve corresponds to calcula-
tion by the PIC–MC technique taking into account detach-
ment and nonequilibrium ion diffusion. The dashed-and-
dotted curve corresponds to the EEDF calculated using the
two-term approximation for solving the coordinate-depen-
dent Boltzmann equation. The dashed curve corresponds to
the latter calculation, but without taking into account ion
heating in an external electric field. The dotted curve corre-
sponds to the same calculation, but without taking into
account the detachment from negative ions and nonequilib-
rium ion diffusion. All of the calculations were performed
for a current density of 5 mA/cm2.
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spatial redistribution of the field in the plasma and, con-
sequently, the emission intensity.

Figure 4 illustrates the averaged (over the discharge

tube cross section) rate constants , , and  for
the direct electron-impact excitation of O(3p3P) and
Ar(2p9) atoms and dissociative excitation of O(3p3P)
atoms, respectively, as functions of the reduced electric
field. The solid curves show the rate constants obtained
from the EEDFs calculated by the MC technique, the
dashed curves show the rate constants calculated from
the EEDFs using the two-term approximation, and the
dashed-and-dotted curves correspond to the rate con-
stants obtained from the EEDFs calculated using the
local approximation.

The study of the process of establishing the steady-
state oxygen atom concentration by modulating the dis-
charge current with the use of the actinometric tech-
nique allowed us to determine how the contribution
from dissociative excitation to the actinometric signal
depends on the discharge parameters. By virtue of the
fact that the contribution to the emission intensity
related to the transition O(3p3P – 3p3S) comes from the
direct electron-impact excitation of O atoms (11) and
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Fig. 4. Averaged (over the discharge tube cross section) rate

constants , , and  for direct electron-impact

excitation of O(3p3P) and Ar(2p9) atoms and dissociative

excitation of O(3p3P) atoms, respectively, as functions of
the reduced electric field. The solid curves show the rate
constants calculated by the PIC–MC technique. The dashed
curves show the rate constants calculated from the EEDF
with the use of the two-term approximation for solving the
coordinate-dependent Boltzmann equation. The dashed-
and-dotted curves correspond to the rate constants obtained
from the EEDF calculated using the “local” (coordinate-
independent) approximation for solving the Boltzmann
equation.
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the dissociative excitation of é2 molecules (14), the
characteristic times of these processes are determined
by the time it takes for the steady-state hydrogen-atom
and electron densities, respectively, to be established.
The contribution from each of these processes can be
derived from the emission intensity of oxygen atoms.
Figure 5 shows the typical time behavior of the ratio
between the emission intensities at wavelengths of
844.6 and 811.5 nm (I844/I811) in the course of dis-
charge-current modulation. It is clearly seen that there
are two components in the signal. The first component
varies synchronously with the current modulation and
produces a certain constant level of the signal. This
component is associated with the dissociative excita-
tion of oxygen molecules. The second component var-
ies much more slowly and has a characteristic time on
the order of several milliseconds. This component can
be associated with the direct excitation of oxygen
atoms; thus, it reflects the time evolution of their den-
sity. From a comparison of these two components in the
modulated signal, we could determine the contribution
from processes (11) and (14) to the total intensity of the
844.6-nm line.

4. DISCUSSION

It is seen from Fig. 4 that taking into account the
nonlocal character of the EEDF can lead to a significant
change even in the averaged (over the cross section of
the tube) values of the excitation rate constants for the
atomic and molecular levels. This effect is more pro-
nounced near the tube wall. It is obvious that, for the
higher states of oxygen and argon atoms, this effect is
more significant at higher values of the reduced electric
field, i.e., at lower pressures (RN < 1016 cm–2). As fol-
lows from (7) and (8) or (17) and (18), the actinometric
technique does not use the electronic excitation rate
constants, but their ratio instead. Figure 6 shows the

ratios of the rate constants /  and /  calcu-
lated using the above approaches to solving the Boltz-
mann equation: the two-term approximation and the
PIC–MC technique. It is seen that, although the calcu-

lated values of the rate constants , , and 
depend on the accuracy with which the effect of spatial
inhomogeneity on the electron kinetics in the discharge
is described, their ratio does not need such a detailed
analysis even in the region where the EEDF has a
strongly nonlocal character (in the case at hand, at
higher values of E/N corresponding to lower pressures).
This is the reason why the actinometric technique has
been successfully used in discharges of different con-
figurations and over a wide range of discharge parame-

ters. Figure 6 also shows the values of the ratio /
derived from the contribution of the dissociative excita-
tion to the intensity of the 844.6-nm line in the experi-
ments with discharge current modulation. It is seen that
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Fig. 5. Time behavior of the ratio between the emission intensities at wavelengths of 844.6 and 811.5 nm (I844/I811) in the course of
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impact excitation of O(3p3P), respectively. The degree of oxygen dissociation is  = .
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the experimental values of /  lie nearly one-half
lower than the calculated curve. A plausible explana-
tion of this fact will be given below.

Figure 7 shows the degree of dissociation [O]/[O2]
as a function of the discharge current J for different
pressures; the curves are calculated using expressions
(17) and (18) and the experimentally measured inten-
sity ratio I844/I811. It is seen that the degree of dissocia-
tion increases with increasing both the pressure and
discharge current. The increase in [O]/[O2] with
increasing the discharge current is caused by an
increase in the dissociation rate, which, in turn, is
caused primarily by an increase in the electron density.
An increase in [O]/[O2] with increasing pressure
(which was also observed in [22]) can be only be
explained by a decrease in the loss rate of O atoms,
because the rate constants of electron-impact dissocia-
tion decrease as the pressure increases (i.e., as the
reduced electric field E/N decreases). Since the recom-
bination of oxygen atoms on the tube wall is the main
process leading to their loss under these conditions
[34], it is reasonable to assume that the probability of
the recombination of O atoms on the surface of the dis-
charge tube increases with decreasing pressure. A sim-
ilar result was obtained experimentally in [35] when the
loss of O atoms on Pyrex was studied by the resonant
UV absorption technique. Therefore, the oxygen atom
density in a low-pressure discharge (and, consequently,
the structure of the discharge, because the balance of
charged particles is governed by detachment processes,
among which the detachment from O atoms is one of
the main processes) is determined by the loss of O
atoms on the discharge chamber wall. Since this loss
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depends on many factors (e.g., the chamber material
and the methods for processing and cleaning the cham-
ber wall surface), it is possible to obtain different dis-
charge structures for different coatings of the discharge
chamber wall at the same discharge parameters, which
is of scientific and practical interest.

Note that, as the pressure decreases (i.e., E/N
increases), the obtained degree of dissociation [O]/[O2]
does not vanish at J  0, but approaches a certain
negative value. Presumably, this is due to the fact that
the calculated contribution of dissociative excitation to
the emission intensity of oxygen atoms I844 is some-
what overestimated. This is also evidenced by the data
represented in Fig. 6. As a plausible explanation of such
an “artefact,” we can suggest that either the dissociative
excitation cross section is incorrectly evaluated or the
EEDF is incorrectly described near the threshold (in the
energy range of 16–20 eV). In principle, both situations
are possible. In a low-pressure glow discharge, when
recombination on the tube wall is the dominating elec-
tron-loss process, the EEDF at electron energies higher
than the ionization energy of the gas (12.06 eV for é2
molecules) is determined by the value of the wall
potential [36], which is a very complicated function of
the plasma parameters and boundary conditions. An
accurate description of the electron loss on the wall is a
rather complicated problem calling for knowledge of
the coefficients of loss and reflection of electrons from
the wall material; moreover, these coefficients may
depend on the state of this surface. At low pressures,
when the kinetic regime of electron loss is realized, we
should know the differential loss and reflection coeffi-
cients. Note that, with the set of cross sections normal-
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ized to transport coefficients (in particular, to the ion-
ization coefficient for é2), the self-consistent calcula-
tion by the PIC–MC technique yields a value of the
reduced electric field close to that observed experimen-
tally at a given discharge current. This means that the
calculated EEDF is also close to the real distribution
function. However, this assertion is true only in the case
of an absolutely precise description of the ion kinetics.
In our calculations, the ions were described in the
hydrodynamic approximation. However, as the pres-
sure decreases below 1 torr, this approximation is no
longer sufficiently accurate in the region of the wall
potential jump because the ion mean free path becomes
comparable with the size of this region. The hydrody-
namic approximation overestimates the ion flow toward
the wall, thereby overestimating the wall potential and
the high-energy part of the EEDF. The latter, in turn,
leads to overestimating the calculated excitation coeffi-
cients for higher levels of atoms and molecules in com-
parison with the experiment, which is reflected in
Fig. 6.

It should be noted that reliable experimental data on
the dissociative excitation cross section for O(3p3P) in the
near-threshold region are still lacking. Usually, the adia-
batic energy of the dissociation products O(3p3P) + O
equal to ~16 eV is taken as the threshold energy for this

E/N, Td
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Fig. 6. Ratios of the rate constants /  and /

(the ratio /  is increased by a factor of 100) calculated

using the PIC–MC technique (solid curves) and the two-term
approximation (dashed curves) for solving the coordinate-
dependent Boltzmann equation. The dashed-and-dotted
curves show the results obtained using the “local” (coordi-
nate-independent) approximation for solving the Boltzmann

equation. Symbols show the ratio /  obtained from the

current-modulation experiments:  = .
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process, but the actual threshold energy may be differ-
ent because of the relative positions of the ground and
excited terms of é2 molecules (which, however, is not
definitely established in experiments). In principle, the
positions of the terms of  molecules in the energy
range of 16–19 eV permit the existence of a certain
threshold. For this reason, to avoid the above “artefact”
in the J-profiles of the degree of dissociation [O]/[O2],
the threshold energy for process (14) of dissociative
excitation of O(3p3P) atoms was increased by ~2 eV.
This allowed us to decrease the contribution of this pro-
cess at high values of the parameter E/N by a factor of
about 2 and to achieve satisfactory agreement between
the calculated and experimental values of the ratio

/ . The results of calculations of [O]/[O2] for this
case are shown by the dashed curves in Fig. 7. It is seen
that the decrease in the dissociative excitation rate by
shifting the threshold energy for this process toward
higher energies leads to a physically reasonable behav-
ior of the dependence of the degree of oxygen dissoci-
ation on the discharge current at low pressures:
[O]/[O2]  0 as J  0.

Thus, along with the fact that the nonlocal character
of the EEDF does not significantly influence the acti-
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Fig. 7. Degree of dissociation [O]/[O2] as a function of the
discharge current for different pressures. The curves are cal-
culated using expressions (17) and (18) and the experimen-
tally measured intensity ratio I844/I811. The dashed curves
show the results of calculations for pressures 0.15, 0.3, and
0.5 torr for the dissociative-excitation threshold energy
[process (14)]shifted by 2 eV toward higher energies. For
pressures above 0.75 torr, the contribution from dissociative
excitation is negligibly small and the dashed and solid
curves coincide.
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nometry of atomic oxygen, it is also of importance that,
for E/N < 200 Td and a degree of oxygen dissociation
higher than ~0.02, there is no need to take into account
the dissociative excitation of O(3p3P) atoms when
using the transition O(3p3P)  O(3p3S).

5. CONCLUSION

In this paper, we have presented the results from
measurements of the oxygen atom density in the posi-
tive column of a dc discharge in pure oxygen by the act-
inometric technique using Ar atoms. This technique
and the results obtained are analyzed using two differ-
ent approaches to solving the Boltzmann equation for a
spatially inhomogeneous EEDF: the two-term approxi-
mation and the Monte Carlo method. Based on a
detailed consideration of the processes governing the
behavior of the EEDF in the discharge, the influence of
both the nonlocal nature of the electron energy spec-
trum and the discharge kinetics on the accuracy of such
measurements is examined. It is shown that the nonlo-
cal character of the EEDF can appreciably affect the
intensity of the emission lines of oxygen and argon
atoms, but has little effect on the actinometric signal as
compared to the case where a spatially homogeneous
EEDF is used to calculate the electronic excitation
coefficients for the emitting states of O and Ar atoms
(the difference does not exceed 1–3%). The reason for
this is that the excitation thresholds of the O* and Ar*
states are close to each other and the energy profiles of
the cross sections for the excitation of these states are
similar in shape. The effect of the discharge kinetics is
more pronounced because it significantly influences the
plasma parameters. Over a wide range of parameters,
the electric field in a pure é2 discharge is determined
by electron detachment from negative ions by active
particles, O atoms, and metastable é2 molecules.
Therefore, because of the very sharp dependence on the
field, an incorrect description of these processes leads
to large errors in determining the rate constants for the
atom excitation. Hence, the use of the actinometric
technique for measuring the absolute concentration of
oxygen atoms in the ground state requires, first of all, a
very detailed description of the discharge plasmochem-
ical kinetics and a thorough analysis of all the possible
processes. It should be emphasized that applying this
technique to low-pressure discharges (RN < 1017 cm–2)
requires that the processes of active-particle loss on the
discharge chamber wall also be considered in detail
because, in this case, these processes determine the
active-particle density. However, the use of the actino-
metric technique for monitoring the behavior of the O
atom density in a plasma is justified over a wide range
of reduced electric fields (up to ~200 Td) when the
O(3p3P – 3p3S) transition (λ = 844.6 nm) is used and the
degree of dissociation is [O]/[O2] > 0.02.
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