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Abstract—The structure of the acoustic field formed in the gap between a rigid plane and an elastic plate
excited by a point force is considered. Special attention is given to the frequency range near the coincidence
frequency in the case of the small values of the load parameter characterizing the plate loading with the
medium. Expressions for the energy fluxes in the plate and in the gap are obtained, and the characteristic
length of the energy transfer into the gap, as well as the degree of completeness of such a transfer, is deter-
mined. © 2000 MAIK “Nauka/Interperiodica”.
In previous studies [1–3], two-mode acoustic
waveguides with a pronounced spatial modulation of
the acoustic energy flux along their axes were consid-
ered. It was found [1] that, in the case of an axial exci-
tation of a liquid-filled elastic shell, the shell and liquid
modes have approximately equal amplitudes of pres-
sure in a liquid. Because of the different phase veloci-
ties of these modes, the total pressure field in a liquid has
pronounced maximums and minimums. A waveguide
formed by two narrow, acoustically coupled pipes was
considered in [2]. The existence of coupling leads to
periodic pumping of acoustic energy from one pipe to
the other and back. In [3], a waveguide formed by a
water-filled pipe with the insertion made of an elastic
water-like material (rubber) was studied. Two modes
(one symmetric and one antisymmetric) interfere in
such way that the sound pressure in the water part of the
waveguide vanishes in certain cross-sections of the
pipe. Utilization of an insert made of an elastic material
in a waveguide with rigid walls for designing acoustic
silencers was considered in [4].

The purpose of this work is the investigation of
acoustic energy fluxes in a two-mode waveguide
formed by a flexurally oscillating plate and the gap
between it and a rigid plane.

Let us consider an infinite homogeneous thin plate,
which can perform flexural oscillations under the effect
of the force f applied normally to it (Fig. 1). A vacuum
is on one side of this plate (z > 0), and a gap filled with
a compressible liquid and bounded by a perfectly rigid
plane is on the other side (z < 0). The thicknesses of the
plate h and the gap H are assumed to be small as com-
pared to the wavelengths of the waves propagating in
such a waveguide. We assume a harmonic (with the cir-
cular frequency ω) time dependence of all parameters
of the problem.
1063-7710/00/4606- $20.00 © 20635
Let us write down a system of equations for the nor-
mal displacement of the plate ζ and the pressure in the
gap p:

(1)

where ρ0 and c0 are the density and the sound velocity
in a liquid, ρ and D are the density and the flexural
rigidity of the plate, and f is the distributed external

force applied to the plate. The term – ω2ς in the first

equation describes the source of the volume velocity in
the gap which is formed by the plate oscillations. The
term p in the second equation describes the force acting
upon the plate from the side of the liquid in the gap.
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Fig. 1. Schematic diagram of the waveguide formed by (1) a
plate and (2) a rigid plane.
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Using the Fourier transform with respect to the lon-
gitudinal coordinate x, the solution of the system of
Eqs. (1) can be presented in an integral form

(2)

where

(3)

and ∆ = 0 is the dispersion equation of the system of
Eqs. (1). The contour of integration Γ is drawn in a
standard way; i.e., the poles located at the positive real
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Fig. 2. (a) Frequency dependence of the real part of the
squared wave number at q = 10–2. The numbers 1–3 indicate
the corresponding roots. (b) Positions of the roots of the dis-
persion equation in the complex plane depending on fre-
quency at q = 10–2. The arrows indicate the direction of the
root motion with increasing frequency.
half-axis are bypassed from below and those at the neg-
ative half-axis, from above.

As in other problems on flexural oscillations of thin
plates in contact with a liquid (e.g., see [5–7]), it is con-
venient to use wave numbers and frequencies normal-
ized to the wave number and frequency of coinci-
dence, for which the phase velocity of the flexural
wave in an unloaded plate coincides with the sound
velocity in a liquid:

(4)

In terms of the dimensionless quantities K = k/kc and
Ω = ω/ωc, the dispersion equation ∆ = 0 takes the form

(5)

The solutions K(Ω) to Eq. (5) depend on a single
parameter

(6)

which characterizes the degree of loading of the plate
with the liquid layer. In the case of sound radiation by a
thin plate into a halfspace, an analogous parameter is κ =
ρ0/ρkch [5–7], which is be a factor of (kcH)–1 less than the
parameter q. In the problem formulation under study, we
have kcH ! 1. This means that in the case of constant
parameters of both the liquid and the plate, the loading of
the plate with the liquid in the gap is greater than the
loading with the liquid in the halfspace, i.e., q @ κ.

The roots of the dispersion equation [Eqs. (3) and
(5)] are simultaneously the poles of the integrands of
solution (2) and determine the discrete spectrum of the
eigenfunctions of system (1). The solution to Eq. (5),
which is bicubic with respect to K, consists of three
pairs of roots ±K1, ±K2, and ±K3. In the case of small
load parameters, they can be associated with the corre-
sponding roots of the dispersion equation of an
unloaded plate and the roots of the dispersion equation
of plane waves in an unbounded liquid medium.

Analysis shows that the pair of roots ±K1 is real in
the entire frequency range. If the frequency tends to
infinity for small load parameters q, the dispersion
curve of these roots asymptotically tends to the disper-
sion curve of plane waves in an unbounded medium
K1  Ω , and the phase velocity tends to c0 remaining
slightly less than this asymptotic value (see Fig. 2a). At
high frequencies, this provides an opportunity to for-
mally attribute this wave to the class of the so-called
“creeping” waves, which arise, for example, in the
problems on sound radiation by a plate into a halfspace
[6]. In the case of low frequencies Ω < 1 for small q,
this wave is close to the propagating flexural mode of

an unloaded plate K1  .
The frequency range for the pair of roots ±K2 can be

split into three regions determined by two characteristic
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frequencies ΩÒ and ΩÒÓ, Ωcp < Ωco. The frequency Ωco =

 is the critical frequency of this waveguide for
which ±K2 = 0. At frequencies higher than this, Ω > Ωco,
the roots ±K2 acquire purely real values. For Ω  ∞,
they asymptotically tend to the corresponding roots of
the propagating flexural mode of the unloaded plate

K2  . Note that Ωcp and Ωco can be both higher
and lower than the coincidence frequency Ω = 1. In the
case of a small load parameter q, when Ωco ! 1, the
curve K2(Ω) is close to the dispersion curve of sound
waves in an unbounded liquid K2 ≈ Ω . Thus, with the
transition through the coincidence frequency, the nor-
mal modes corresponding to the pairs of roots ±K1 and
±K2 exchange places. If, below the coincidence fre-
quency, e.g., a propagating flexural wave of an
unloaded plate corresponds to some of these normal
modes, then, above the coincidence frequency, a plane
wave in an unbounded liquid corresponds to it, and vice
versa (Fig. 2a).

If the frequency becomes lower than the critical one
Ωco, the roots ±K2 appear in the complex plane (Fig. 2b),
and their normal modes become attenuating along the
longitudinal ox axis. If the frequency decreases further,
these roots stay at the imaginary axis, and, at the fre-

quency Ωcp ≈ q of the double root of Eq. (5) Kcp ≈

, they merge with the corresponding roots of the

pair ±K3. In the case of lower frequencies 0 < Ω < Ωcp,
the roots of the pairs ±K2 and ±K3 are essentially com-
plex and conjugate to each other, while their normal
modes form a standing wave with the amplitude
decreasing along the ox axis and with the total energy
flux being equal to zero.

The roots of the pair ±K3 higher than the frequency
of the double root Ωcp lie on the imaginary axis. As the
frequency increases, their magnitude also increases. At
high frequencies, the asymptotic behavior of these
roots corresponds to the attenuating modes of an

unloaded plate K3  i . For a wide waveguide
with elastic boundaries, the root motion was considered
in [8].

Let the force acting on the plate be a point force: f =
f0δ(x). According to the residue theorem, solution (2)
can be represented in the form of the sum of normal
modes propagating along the ox axis:

(7)
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where X = kcx is the dimensionless coordinate and Ri

are the factors related to the contribution of the residues

of the integrand (ρh)2 /D∆ in the poles Ki:

. (8)

By virtue of the symmetry of the problem, we can
restrict our consideration to the region of negative val-
ues of the x coordinate. Here, Eqs. (7) and (8) involve
only the roots Ki of the dispersion equation (5) that have
a positive imaginary part or lie on the positive real half-
axis.

Using the representation of the field in the form of a
sum of normal modes, i.e., Eq. (7), we write down the
time-average total energy fluxes passing through the
gap and plate cross-sections that are normal to the ox
axis. According to the known expressions for the
energy flux in a liquid and in a flexurally oscillating
thin plate [9], we have

(9)

,

where Wp is the energy flux in the gap and Wζ is that in
the plate. The sum of two these fluxes gives the total
energy flux going out through the plate and the gap in
the positive direction of the ox axis and equal to half of
the total power emitted into the plate by the force
applied to it:

(10)

Let us consider the frequencies above the critical
frequency of the waveguide Ωco. Apart from the normal
mode of the invariably real root K1, the wave corre-
sponding to the root K2 is also a propagating wave. The
contribution of the attenuating wave K3 to the total field
(7) at large distances along the ox axis from the region
of application of the point force, |K3|X @ 1, can be
ignored, since the energy flux associated with it is equal
to zero.

In the case of a small load parameter q ! 1, the dis-
persion curves of the roots K1 and K2 are close to the
corresponding dispersion curves of sound waves in an
unbounded liquid and of flexural waves in the plate.
Near the coincidence frequency Ω = 1, the roots expe-
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rience a small splitting, which depends on the parame-
ter q. At the coincidence frequency, we have

. (11)

The values of the amplitudes of normal modes for a
fixed frequency are completely determined by the posi-
tion of the corresponding roots of the dispersion equa-
tion in the complex plane. Therefore, if K1 and K2 are
located close to each other in the complex plane, e.g.,
at frequencies in the vicinity of the coincidence fre-
quency (Fig. 2), the difference in the values of the
amplitudes of their normal modes will also be small.
The field given by Eqs. (7) and also the distribution of
the energy fluxes (9) along the ox-axis have a pro-
nounced periodic structure and represent contrast inter-
ference bands formed by two waves propagating with
close velocities and having almost equal amplitudes.

In the general case, for an arbitrary frequency
(above the critical one), the total energy flux of the
waves K1 and K2 can be written in the form

(12)

Expanding it with respect to the small parameter q at
the frequency Ω = 1, we obtain approximate expres-
sions for the energy fluxes in the gap and in the plate

(13)

From these expressions and the more general
expressions (12), it follows that the energy fluxes in the
gap and in the plate consist of constant (with respect to

the longitudinal x coordinate) terms  and  and
an interference term with the amplitude ∆W oscillating
around them. The spatial period of these oscillations is
equal to the doubled distance d at which the energy flux
in the plate or in the gap changes to its opposite value.
At the coincidence frequency, we have

. (14)

The phase relations in Eq. (13) show that the spatial
scale of “pumping” given by Eq. (14) is just the mini-
mal length at which an efficient flow of power from the
plate to the gap occurs with the increase in the distance
along the longitudinal x coordinate from the place of
the point force application. Below, the quantity d will
be called the pumping length.

The amplitudes of the constant and the interference
terms of the fluxes (13) in the zeroth order of smallness
with respect to the load parameter q are equal. This
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means that, under this approximation, the whole energy
flux at the pumping length is transferred from the plate
into the gap and back; i.e., in this sense, the energy
emission from the plate into the gap is complete. How-
ever, the inclusion of the terms of the first order of
smallness shows that, in reality, part of the flux can
remain uninvolved in the process of pumping and, cor-
respondingly, remain in the plate or in the gap.
Although this part is proportional to q and small, it is
still nonzero. The quantity characterizing the degree of
incompleteness of the energy transfer from the plate
into the gap may be, for example, the ratio of the min-
imal (in the X coordinate) flux in the gap given by
Eqs. (13) to its maximal value:

. (15)

A similar parameter Vζ expressed through  and ∆W
can be introduced for the plate. In the general case of
load parameters q that are not small, its value does not
coincide with Eq. (15).

There is a certain correlation between the pumping
length (14) and the incompleteness (15). If one of these
parameters grows, then the other decreases, and vice
versa. Therefore, for example, if it is necessary to emit
energy from the plate into the gap at a smaller length d,
then the degree of completeness of such emission will
also be smaller. In its turn, a more complete emission
will lead to a greater length at which it will be attained.

It is necessary to note that the minimal energy flux
in the plate can be negative (directed in the negative
direction of the x-axis), and the maximal energy flux in
the gap can exceed half of the total power emitted by
the force into the plate:

. (16)

The regions along the x coordinate where this can occur
are located symmetrically about the points of the mini-
mal energy flux in the plate, X  = d (1 + 2n), n ∈  Z. The
linear dimension of each of these regions is equal to

, (17)

which is just a small part of the pumping length, and,
as we can see, it is equal to half of the reduced wave-
length 1/kc.

It is convenient to represent the distribution of
energy fluxes in these regions in the following way.
A vortex flow with a small amplitude proportional to q
is superimposed on the constant (with respect to the
coordinate) energy fluxes in the plate and in the gap, the
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values of which are equal to zero and half of the total
power Wf given by Eq. (16), respectively:

(18)

where ∆X = X – Xd (–δ < ∆X < +δ) is the deviation of
the longitudinal X coordinate from the points Xd corre-
sponding to the minimal value of the flux in the plate,

 is the energy flux in the gap along the longitudinal

ox-axis,  is the density of the energy flux directed
along the transverse oz-axis from the plate into the gap

through their interface, and  and  are the corre-
sponding values for the plate.

Let us investigate the distribution of the energy
fluxes in the plate and in the gap for the case of fre-
quency deviation from the coincidence frequency. It is
possible to demonstrate that, at high frequencies Ω @
1, almost the whole total energy flux carried in the pos-
itive direction of the ox-axis through the plate and the
gap is concentrated in the plate itself (Fig. 3). By virtue
of the smallness of the interference term at these fre-
quencies, the difference of this flux from its average
value is insignificant, and the degree of completeness of
energy pumping from the plate to the gap is small.
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As the frequency decreases and approaches the
coincidence frequency Ω = 1, the values of amplitudes
of the interference and constant terms of the energy flux

in the gap, ∆W and , increase until they attain
approximately half of the value of the total flux through
the plate and the gap and become equal to the constant

term  of the flux in the plate. Due to the approxi-
mate equality of these terms in the vicinity of these fre-

quencies, the minimal fluxes in the plate  and the

gap  are close to zero, and the maximal fluxes

 and  are close to unity. Then, the energy
pumping between the plate and the gap is almost com-
plete. A further decrease in the frequency leads to a
decrease in the degree of pumping completeness.

A detailed analysis of the frequency dependences of
the terms of fluxes (12) divided by half of the total
power (10) shows that their extremums near the coinci-
dence frequency are attained not exactly at this fre-
quency, but are somewhat shifted to lower frequencies
(Fig. 3). In the general case, these frequencies, as well
as the frequencies of extremums of the minimal and
maximal fluxes in the plate and the gap, are different.
However, to the first order of smallness with respect to
q, all of them are equal and take the following value:

Wext = 1 – q/2. (19)
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Fig. 3. Ratios of amplitudes of the constant and interference terms and the minimal and maximal total energy fluxes in the plate and
in the gap to half of the total power as functions of frequency at q = 10–2. The inset demonstrates the corresponding curves near the
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The total energy fluxes (12) in the gap and the plate at
this frequency are expressed as

(20)

while the total power (10) emitted by the force into the
plate is

. (21)

The values of the roots K1 and K2 and their splitting
∆K at the frequency corresponding to the extremums
differ from the analogous values at the coincidence fre-
quency (11) only in higher orders of smallness with
respect to q. The pumping length for Ωext can be con-
sidered equal to d determined by Eq. (14) with the same
accuracy. As one can see from expressions (20) for

fluxes, the constant and interference terms,  and
∆W, experience equal increases relative to their values
at the coincidence frequency, and, therefore, the incom-
pleteness of pumping for the gap Vp at the frequency of
extremums coincides with its value for Ω = 1, Eq. (15).

The appearance of a vortex energy flux near the
points of minimal Wζ occupies only a limited frequency
band near Ωext (Fig. 3) with the half-width

. (22)

Comparison of Eqs. (19) and (22) shows that, for small
q, the coincidence frequency always falls into the con-
sidered frequency band 2∆Ωg.

In conclusion, we consider a numerical example.
Let us take an aluminum plate of thickness h = 0.80 mm
positioned at the distance H = 0.75 mm from a rigid
plane. The medium filling the gap is air. The coincidence
frequency of such a combination is equal to 15 kHz, and
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the wavelength corresponding to it is 2.3 cm. The ratio
of the wavelength to the plate thickness is approxi-
mately equal to 30. As was demonstrated in [10],
already at the values of this ratio exceeding about 10,
the classical equations (1) describe the frequency
behavior of the zeroth mode of the flexural vibrations of
a plate with an acceptable accuracy. Thus, in our case,
at the coincidence frequency, as well as at lower and
somewhat higher frequencies, the plate can be really
considered as thin. The dimensionless load parameter q
takes a small value of 1.0 × 10–2.

The pumping length d of the waveguide is equal to
16 cm, and the half-bandwidth is ∆Ω1/2 = 2.3 kHz,
which constitutes 0.15 of the coincidence frequency.
The frequency shift of extremums 1 – Ωext is equal to
79 Hz. One can ignore this shift in comparison with
∆Ω1/2. The half-bandwidth of the vortex flow ∆Ωg is of
the same order of magnitude.

REFERENCES
1. S. D. Danilov and M. A. Mironov, Akust. Zh. 32, 387

(1986) [Sov. Phys. Acoust. 32, 240 (1986)].
2. M. A. Mironov and D. E. Orekhov, in Proceedings of the

Second International Symposium on Transport Noise
and Vibration, St. Petersburg, 1994, p. 97.

3. M. A. Mironov and D. E. Orekhov, Akust. Zh. 43, 531
(1997) [Acoust. Phys. 43, 455 (1997)].

4. L. Huang, J. Acoust. Soc. Am. 106, 1801 (1999).
5. L. Ya. Gutin, Akust. Zh. 10, 431 (1964) [Sov. Phys.

Acoust. 10, 369 (1964)].
6. A. D. Stuart, J. Acoust. Soc. Am. 59, 1160 (1976).
7. D. G. Crighton, J. Sound Vib. 63, 225 (1979).
8. Yu. A. Lavrov, Akust. Zh. 36, 308 (1990) [Sov. Phys.

Acoust. 36, 167 (1990)].
9. V. N. Krasil’nikov, Akust. Zh. 6, 220 (1960) [Sov. Phys.

Acoust. 6, 216 (1960)].
10. R. Mindlin, J. Appl. Mech. 18, 31 (1951).

Translated by M. Lyamshev
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000



  

Acoustical Physics, Vol. 46, No. 6, 2000, pp. 641–647. Translated from Akusticheski

 

œ

 

 Zhurnal, Vol. 46, No. 6, 2000, pp. 732–739.
Original Russian Text Copyright © 2000 by Alekseev, Semenov.

                                                                                                                
The Role of the Wake in the Sound Scattering
by a Moving Body

V. N. Alekseev and A. G. Semenov
Andreev Acoustics Institute, Russian Academy of Sciences,

ul. Shvernika 4, Moscow, 117036 Russia
e-mail: bvp@akin.ru

Received October 18, 1999

Abstract—The propagation of sound is considered in the vicinity of an axially symmetric body moving
in a viscous fluid so that a laminar wake is formed behind it. The sound scattering amplitude is determined
as the function of the characteristic parameters of the fluid for an arbitrary ratio between the characteristic
size of the body and the sound wavelength. The important role of the wake at high Reynolds numbers is
demonstrated, and the specific features of the angular dependence of the scattering amplitude are analyzed.
© 2000 MAIK “Nauka/Interperiodica”.
The scattering of sound by moving bodies, sus-
pended particles, and inhomogeneities is one of the top-
ical, as well as complicated, problems in acoustics of
moving media. Such problems arise in different fields
of engineering. The solution of this problem is of fun-
damental value for calculating the laws of sound prop-
agation and attenuation in the ocean and in the atmo-
sphere, as well as for the assessment of the efficiency of
some chemical and thermal processes in power or bio-
logical systems. Many recent publications were con-
cerned with theoretical and experimental studies of this
problem [1, 2]. The basic phenomenon considered in
these publications is the scattering of sound by a body
or a particle of a complex shape moving in a viscous
fluid flow at different flow conditions. In our previous
papers [3–8], we considered some reference problems
concerned with the sound propagation near spherical
bodies moving steadily in ideal and viscous fluids. We
assumed that the velocity of the body motion V was
well below the sound velocity in the fluid c and that a
moving body produced in the surrounding fluid a con-
current flow U(r, t) whose velocity inhomogeneities
formed the centers of additional sound scattering.
Therefore, the sound propagation near a moving body
was described not by the common classical wave equa-
tion, but by the more general Lighthill equation [9]:

(1)

In studying the sound scattering by moving bodies [3–8],
we showed that the total field p(r, t) can be represented
as usual in the form of the sum of the incident and scat-
tered fields, and the scattered field ps(r, t), in its turn,
can be separated into two components one of which is
related to the sound scattering by the moving body,
psp(r, t), and the other is related to the sound scattering

∂
∂t
----- ∆p

1

c2
----∂2 p

∂t2
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  2
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∂2 p
∂xα∂xβ
----------------- 

  .=
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by the inhomogeneities of the concurrent flow, psf(r, t).
However, it was noted that such a separation is a matter
of convention, and, to some extent, it is ambiguous. In
fact, the presence of a scattering body always leads to
the presence of waves reflected from it, and, when
propagating in the medium, these waves may be addi-
tionally scattered by the inhomogeneities of the concur-
rent flow. Nevertheless, for computational purposes, it
is convenient to separate the component psf(r, t) related
to the scattering of the incident wave by the flow. In
addition, in some cases, e.g., in the case of acoustically
transparent bodies or localized vortices moving in an
unbounded fluid, the scattering of sound by the bodies
is basically absent and occurs exclusively by the inho-
mogeneities of the fluid flow.

A mathematically rigorous and detailed study was
carried out for the scattering of low-frequency sound by
a sphere of radius a whose center r0(t) was moving in
an ideal fluid with a constant velocity (t) = V. On the
condition that the flow about the body was a potential
one, the velocity distribution U(r, t) in the fluid was
described by the widely known formula [10]

(2)

where the unit vector n = (r – r0)/|r – r0 | was directed
toward the observation point r. The total scattering
cross-section σ calculated for the sound scattering by a
perfectly rigid sphere had a rather simple form [4]:

(3)

Here, M = V/c is the Mach vector, and n0 is the unit
vector along the direction of the incident sound wave.

ṙ0

U r t,( ) a33 Vn( )n V–

2 r r0– 3
------------------------------; r r0– a≥( ),=
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9
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From the derivation of Eq. (3), it followed that the
absolute corrections that should be introduced in the
scattering amplitude obtained for a stationary sphere in
order to allow for both the sphere motion and the sound
scattering by the inhomogeneities of the concurrent
flow are of the order of k2a3M. Hence, it follows that,
when the Mach number M and the parameter ka are
small, these corrections are very small, and their rela-
tive contribution to the total scattering amplitude and
the total scattering cross-section of low-frequency
sound is proportional to the Mach number M. On the
other hand, in [6] we carried out similar calculations for
a moving sphere whose radius was much greater than
the incident sound wavelength (ka @ 1). The solution of
Eq. (1) with the same sound velocity distribution [given
by Eq. (2)] yielded the following expression for the
total scattering cross-section [8]:

(4)

where C0 is a dimensionless quantity of the order of
unity and, to the zeroth approximation in M, this quan-
tity is independent of the Mach number and the dimen-
sionless parameter ka. We note the qualitative differ-
ence between Eqs. (3) and (4). In the case of the low-
frequency sound scattering, the relative correction to
the scattering cross-section given by Eq. (3) is propor-
tional to the small Mach number and, hence, for M ! 1,
the correction is small. For a large-radius sphere (ka @
1), the corresponding correction in Eq. (4) is propor-
tional to the product of the small Mach number M by
the large parameter ka. In the latter case, the correction
may be comparable to unity and, hence, in the general
diffraction problem, the flow should necessarily be
taken into account.

An analysis of the results obtained earlier [4, 6, 11]
showed that the features of the fluid flow both near the
sphere and away from it strongly affect the character of
the sound scattering by the flow. In this connection, we
calculated the scattering amplitude for sound scattered
by a rigid sphere moving in a viscous fluid at low Rey-
nolds numbers [5]. It has been known [10] that, in the
case of a Stokes flow about a sphere, the velocity of the
concurrent flow decreases more slowly with distance
from the body, as compared to the case of a potential
flow. In contrast to the flow described by Eq. (2), the
velocity of the fluid decreases with distance as 1/r, and
such a distribution of the flow velocity extends to dis-
tances of the order of ~a/Re, where Re = aV/ν is the
Reynolds number and ν is the kinematic viscosity of
the fluid. The calculation of the sound scattering ampli-
tude for such a flow [5] showed that the generation of
vorticity in the medium and a formal increase in the
scattering region could give rise to a considerable
increase in the scattering amplitude and the scattering
cross-section. This paper is an attempt to take into
account the real character of the fluid flow about a mov-
ing body with less strict limitations on the shape of the
body and the type of its motion.

σ 2πa2 1 C0ka Mn0( )+[ ] ; ka @ 1( ),=
We assume that an axially symmetric body with a
characteristic size a moves in a viscous fluid at a con-
stant velocity V = (t). At large distances behind the
body, the motion of the fluid has certain specific fea-
tures [10, 12]. In the case of moderate Reynolds num-
bers, the velocity of the fluid far behind the body is non-
zero only within a relatively narrow region. This region
is called the wake, and the fluid flow in the wake is
commonly considered to be laminar for the Reynolds
numbers up to Re ~ 104. The fluid particles falling in
this region are those moving along the streamlines
passing the body at relatively small distances from its
surface. The streamlines separated from the body sur-
face form a boundary surface that divides the whole
region of the fluid flow into two parts. In the outer
region, the flow past the body can be considered as a
potential one, as in the case of an ideal fluid flow about
the body. In the region within the wake, the flow is
characterized by vorticity. For simplicity, we assume
that the axially symmetric body moves along its sym-
metry axis, which will serve as the x axis of our coordi-
nate system. In this case, the forces that act on the body
in the transverse direction are absent, and the body
experiences only the drag force Fx. In the coordinate
system fixed to the body, we select the x axis along the
direction of the velocity V of the fluid flowing toward
the body from infinity. When the characteristic size of
the body is small relative to the distance x, the velocity
distribution Ux = V + vx formed within the wake suffi-
ciently far from the body is expressed as [10]

(5)

Here, ρ is the fluid density and Fx is the drag force act-
ing on the body in the direction of the flow around it.
According to [10], the drag force can be expressed
through the velocity vx:

(6)

As long as the boundary layer remains laminar, the flow
pattern observed near the body at large Reynolds num-
bers is practically independent of the viscosity. From
the dimensional considerations, one can obtain the fol-
lowing expression for the drag force [10]:

(7)

Here, S is the cross-sectional area of the body with
respect to the direction of its motion and Cx is the drag
coefficient, which depends on the body shape. In the
general case, the dimensionless coefficient Cx also
depends on the Reynolds number Re. Recall that for
Re ! 1, i.e., for a Stokes flow, the drag coefficient is
inversely proportional to the Reynolds number. With
increasing Re, the decrease in Cx becomes slower and
corresponds to a weaker dependence than 1/Re. The
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decrease occurs up to the Reynolds numbers Re ≈ 5 ×
103, and, somewhere in this region, the coefficient Cx
reaches its minimal value, after which the function
Cx(Re) exhibits some growth. In the region of Reynolds
numbers 104–105, the drag coefficient is practically con-
stant and approximately equal to 0.5. At Re ≈ (2–3) ×
105, a drag crisis occurs, and Cx suffers a four- to five-
fold drop [10].

We note that, strictly speaking, Eq. (5) is valid only
far away from the body when r @ a. In the vicinity of
the body, Eq. (5) does not hold. This specifically fol-
lows from the fact that the direct application of Eq. (5)
leads to the violation of the boundary condition set at
the body surface, vn = Vn. However, as will be seen
from the following calculations, the maximal contribu-
tion to the integrals that determine the scattering ampli-
tude caused by the flow inhomogeneities is made by the
regions lying far away from the body. Therefore, below
we will assume that, to the first approximation, Eq. (5)
can be used for estimating the desired scattering ampli-
tude in the whole range of distances r up to the body
boundary.

As for the velocity distribution in the fluid outside
the wake, it can be considered as a potential one. How-
ever, unlike an ideal fluid flow, which occurs in the
vicinity of the body without the separation of the
streamlines from the body surface, the distribution of
the velocity outside the wake contains a monopole
component in addition to the dipole one corresponding
to Eq. (2). Restricting our consideration to the mono-
pole and dipole terms that are characterized by the
slowest decrease at large distances, we can write the
expression for the velocity outside the wake produced
by an axially symmetric body in the form

(8)

Here, the unknown coefficients A0 and A1 are deter-
mined as usual from the boundary conditions. The first
coefficient A0 is determined from the condition that the
total flow through a large-radius sphere, as well as
through any closed surface, must be equal to zero. The
corresponding calculations with the use of Eqs. (5) and
(8) yield A0 = Fx/(4πρV) [10]. Away from the axially
symmetric body, the potential component of the fluid
flow is of a radial character and has the most simple
form:

(9)

We note that the velocity distribution Eq. (9), as well
as formula (5), is not valid in the immediate vicinity of
the body surface. However, if we assume that the axi-
ally symmetric body is a solid sphere of radius a with
the boundary condition vn = nV being fulfilled at its

v A0
n

r r0 t( )– 2
------------------------- A1

3 Vn( )n V–
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surface, we can determine the unknown coefficient A1.
The calculations show that, in this case, we have A1 =
a3/2, and the dipole component in the general Eq. (8)
has a form similar to Eq. (2), which is valid in the case
of an ideal fluid. It should be noted that solutions (8)
and (9) are valid in the angular region θ @ θ0 =

, and expression (5) refers to the region θ ! 1;

in the general case, when the inequalities  !
θ ! 1 are valid, these regions can overlap.

Going back to the problem on the sound scattering
by the flow generated in the vicinity of an axially
symmetric moving body, we note that now the pro-
cess will be formally described in terms of the Light-
hill equation (1). We assume that the velocity distri-
bution U(r, t ) = V + v is approximately described by
Eqs. (5) and (8) and that a plane monochromatic wave
of the type pi(r, t) = p0exp(ik0r – iω0t) is incident on the
body from infinity in the direction n0. The wave vector
k0 is directed along the unit vector n0, and its magnitude
is related to the sound frequency ω0 and the sound
velocity in the fluid by the common formula k0 = ω0/c.
Since the body under consideration moves in the fluid
with a constant velocity, it is convenient to solve the
problem in the moving coordinate system in which the
center of gravity of the body is at rest: r' = r – r0(t). In
this coordinate system, the coefficients of the trans-
formed Eq. (1) become constant, i.e., time-indepen-
dent, and the time dependence is retained only in the
formulation of the boundary condition at infinity for the
incident wave. As we change to the moving coordinate
system, the field of the plane monochromatic wave is
transformed to a sound wave of a similar form, pi(r', t) =
p0exp(ik0r' – iωt), but with another frequency. The new
sound frequency ω is shifted relative to the initial fre-
quency ω0 by a small value proportional to the Mach
number: ω0(1 – Mn0). The time dependence of the
sought-for sound pressure in the moving coordinate
system is determined by the temporal factor of the type
exp(–iωt), and it will be omitted in the following calcu-
lations (as usual).

Using the relation between the sound pressure and
the velocity and performing simple transformations, we
represent Eq. (1) in the moving coordinate system:

(10)

For simplification, in what follows, we omit the primes
marking the coordinate r'. However, it should be
remembered that all results obtained below will be
valid only in the moving coordinate system, and, in the
final formulas, it will be necessary to formally replace
the coordinate r by r – r0(t).

ν/ rV( )
ν/ rV( )

∆' p k2 p+
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We consider Eq. (10) in combination with the con-
dition at infinity and seek the solution to it in the form
of the sum of the incident and scattered waves:

(11)

Here, k is the new wave number related to the Doppler
frequency ω by the formula k = ω/c, and Ps is the so-
called gauge pressure (by analogy with the gauge
potential in the theory of scattering). Assuming that Ps
is proportional to the hydrodynamic Mach number M =
V/c and substituting solution (11) into Eq. (10), we
obtain that, correct to the terms linear in M, the field Ps
satisfies the following equation [8]:

(12)

In the general case, the scattered field Ps is a sum of
the field Psp scattered by the moving body and the field
Psf scattered by the concurrent flow. Above, we already
mentioned that such a separation is a matter of conven-
tion. The scattering by the surface of the moving body,
Psp, was studied in detail in our previous papers [4, 6, 7],
and here we will not consider the characteristics of this
component. Below, we will concentrate on the field Psf
scattered by the concurrent flow and reveal its specific
features. In fact, by the field Psf we mean an imaginary
field formed as a result of the scattering of incident
sound by the flow as though the body generating the
concurrent flow outside the sphere were absent.

Using Green’s function for the free space, we repre-
sent the approximate solution to Eq. (12) in the form of
the Born integral. The first term of the perturbation
series expansion without regard for the wave reradia-
tion by the moving body surface has the form

(13)

The integration in this formula is performed over the
whole region occupied by the flow. As usual, we con-
sider the behavior of this integral in the far wave
zone and perform the conventional transformation of
Green’s function. Then, we take the resulting integral
by parts and use the known Gauss formula for convert-
ing the volume integrals into surface ones. Here, it
should be noted that, because of the aforementioned
weak velocity decrease with distance from the body,
the integral over an infinitely distant surface is nonzero
and in the general case it should be taken into account.
After the described transformations, we express the
field Ps through the scattering amplitude ff, which is the
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factor multiplying the divergent spherical wave in the
expression Ps = (ff/r)exp(ikr):

(14)

Here, the unit vector n = r/r characterizes the direction
of the scattered wave, and the wave vector q = k(n0 – n)
has the physical meaning of the “momentum” trans-
ferred from the wave to the medium. The magnitude of
the vector q is q = 2ksin(ϑ /2), where ϑ  is the scattering
angle determined from the equality cosϑ  = nn0. To sim-
plify the following calculations, we assume that the
body has the form of a solid sphere of radius a. Then,
the integration in the second integral on the right-hand
side of Eq. (14) will be performed over two spherical
surfaces: the surface of the solid sphere S1 and the infi-
nitely distant spherical surface S2. The normals to the
surface elements dS1 and dS2 are directed toward each
other and toward the fluid volume enclosed between
these two surfaces.

As was mentioned above, the integration in the first
term on the right-hand side of Eq. (14) is performed
over the whole region occupied by the flow. We first
calculate the part of this integral that is determined by
the fluid outside the wake. Since, in this region, the
velocity distribution v is of a potential type and is deter-
mined by Eq. (9), the corresponding integral can be
represented in the form

(15)

Here, the inner integral over the spherical angles is cal-
culated as in [9] by differentiating with respect to the
parameter irqα. Since the inner integral has no singular-

ities and the angle θ0 =  is small, the integra-
tion over the solid angle dΩ can be extended to the inte-
gration over the whole region 4π. In this case, the inner
integral is easily calculated and proves to depend exclu-
sively on the wave vector magnitude q = k(n0 – n). In
differentiating the resulting expression with respect to
the components of the vector q, it is necessary to follow
the rule ∂f(q)/∂qα = (qα/q)(df/dq). Simple calculations
show that the integral sought in Eq. (15) is equal to

(16)

According to the general formula (14), the resulting
expression (16) contributes to the scattering amplitude
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for the sound scattering by the fluid flow [Eq. (14)], and
the corresponding term has the form

(17)

If for the velocity distribution we use the more gen-
eral Eq. (8), we take the expression for the velocity v in
the form of Eq. (2) and, for the volume integral given
by Eq. (16), we obtain an additional term, which was
calculated in our previous paper [8] and was found to
be equal to

(18)

Here, j1(z) = –d/dz(sinz/z) is the first-order spherical
Bessel function. The corresponding term in the scatter-
ing amplitude determined by Eq. (14) has the form [8]

(19)

Now, we calculate the part of the volume integral
corresponding to the flow region occupied by the lami-
nar wake. For this purpose, we take the velocity distri-
bution within the wake in the form of Eq. (5). Then, the
integral sought will have the form

(20)

For an axially symmetric flow, the inner integrals with
respect to the y and z coordinates are of the same type,
and, because of the narrowness of the wake and the fast
decay of the integrands, the integration regions for
these integrals can be extended to infinity. The corre-
sponding calculations show that the integrals I(x, qy)
and I(x, qz) are expressed as

(21)

We substitute these integrals in Eq. (20) and, upon inte-
grating with respect to the longitudinal x coordinate, we
obtain

(22)

Here, qx and q⊥  =  are the longitudinal and
transverse components of the wave vector q = k(n0 – n)
with reference to the direction of the body motion. The
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contribution of the volume integral given by Eq. (22) to
the total scattering amplitude (14) is as follows:

(23)

Now, we proceed to calculating the surface integrals
in Eq. (14). As above, we divide each of the spherical
surfaces, S1 and S2, into two parts. One part of each sur-
face will bound the region of the potential flow, and the
other part will bound the region of the vorticity flow,
i.e., the wake. First, we take the velocity distribution
outside the wake in the form of Eq. (9) and, using the
method of differentiation with respect to a parameter,
calculate each of the surface integrals over the corre-
sponding regions. As above, taking into account the
narrowness of the wake and the absence of singularities
in the integrand, we extend the integration over the
solid angle to the integration over the whole region 4π.
In this case, one can easily show that, with the velocity
distribution (9), the second integral involved in Eq. (14)
and taken over the entire body surface S1 is equal to

(24)

One can see that, when the radius of the surface grows
infinitely, the latter expression tends to zero. This
means that a similar integral taken over an infinitely
distant surface S2 is equal to zero. Thus, the contribu-
tion of the surface integrals (24) to the total scattering
amplitude has the form

(25)

Now, we determine the expression for the corre-
sponding term in expression (14) in the case of the
velocity distribution in the form of Eq. (2). The calcu-
lations performed in [8] for the corresponding surface
integral show that, in this case, the new additional term

 that appears in the expression for the scattering
amplitude has the form

(26)

As for the surface integrals taken over the parts of
the spherical surfaces S1 and S2 bounding the wake, one

f v
3( ) Cx

4
------k2a3 Mn0( ) nn0( )–=

×
iaqx q⊥

2 a2/Re–( )exp

iaqx q⊥
2 a2/Re–

--------------------------------------------------.

Is
1( ) Fx

ρV
-------

j1 qa( )
qa( )

---------------- n0qa( )2 j2 qa( )
qa( )2

----------------– .=

f s
1( ) i

Cx

4
------ka2M–=

×
j1 qa( )

qa( )
---------------- k2a2 1 nn0–( )2 j2 qa( )

qa( )2
----------------– .

f s
2( )

f s
2( ) k2a3 3 Mn0 Mn( ) nn0( )–[ ]

j2 qa( )
qa( )2

----------------




=

+
1
2
--- 1 nn0–( ) Mn0 3Mn–( )

j1 qa( )
qa( )

---------------- 3
j2 qa( )

qa( )2
----------------–





.



646 ALEKSEEV, SEMENOV
can easily show that their total contribution is equal to
zero. Formally, this result is related to the fact that, in
the approximation used above, each of the integrals is
virtually reduced to the flux of matter in the wake.
Since the flux of the fluid in the wake is constant, the
corresponding integrals must be equal. Since the nor-
mals to the selected surfaces S1 and S2 are directed
toward each other, the desired sum of the integrals is

equal to zero. Hence, the additional term  in the
scattering amplitude will also be zero.

Adding together the components of the scattering
field that are determined by Eqs. (17), (19), (23), (25),
and (26), from using Eq. (14) we can determine the
sound scattering amplitude caused by the inhomogene-
ities of the fluid flow in the vicinity of the moving body.
Formally, the expression for the amplitude ff can be
written in the form

(27)

However, because the resulting expressions are cum-
bersome, we will not specify here the form of Eq. (27).
Below, we consider only some specific features of the
derived scattering amplitude.

First, it should be noted that the expression obtained
for the scattering amplitude ff is valid for any ratio
between the sound wavelength and the characteristic
size of the body. However, for small-size bodies, when
the inequality ka ! 1 is valid, the corrections to the
total scattering amplitude ft = fp + ff that are related to
the sound scattering by the flow prove to be small
because of the smallness of the Mach number. There-
fore, of most interest are the large-size bodies for
which the inequality ka @ 1 is valid. As one can see
from Eqs. (19), (23), and (26), the corresponding com-
ponents of the scattered field are proportional to the
product of the small Mach number by the large param-
eter (ka)2. In this case, the scattering amplitude ff can be
comparable to, or even much greater than, the scatter-
ing amplitude corresponding to the sound scattering by
the body itself, fp ~ a.

Second, the derived scattering amplitude proves to
be anisotropic. This anisotropy is most pronounced
when the condition ka @ 1 is satisfied. In this case, at
finite scattering angles, the dimensionless parameter
qa = 2kasin(ϑ /2) is fairly large, and, hence, from
Eqs. (17), (19), (23), (25), and (26), it follows that the
scattering of high-frequency sound occurs exclusively
in the forward direction. We note that the scattering
amplitude that was obtained for the sound scattering by
the flow formed near a sphere in an ideal fluid was also
found to be anisotropic in the case ka @ 1 and reached
its maximum at ϑ  = 0 [8]:

(28)
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The analysis of Eq. (27) shows that, in the transmis-
sion-type scattering, the total scattering amplitude
caused by the flow behaves as ff ∝  1/ϑm when ϑ  0.
Depending on the scattering direction relative to the
body motion, the parameter m can be equal to unity at
q⊥  = 0 or to two at qx = 0. In the latter case, as one can
see from Eq. (23), the scattering amplitude is propor-
tional to the Reynolds number.

The fact that the scattering amplitude due to the
scattering from the wake tends to infinity for ϑ   0 is
related to the linear divergence of the integral (22) at
zero values of all components of the wave vector q.
However, this divergence is of a purely formal charac-
ter and can be easily eliminated by changing the form
of the integrand in Eq. (22), as well as by selecting a
finite domain of integration. The required change in the
form of the integrand is related to using a more rigor-
ous expression for Green’s function in passing from
Eq. (13) to its approximate version (14). The choice of
a finite domain of integration can be made by taking
into account the finite length of the transmitter–receiver
base or by selecting a finite length of the wake. We note
that, formally, at q = 0, integral (22) is proportional to
the wake length, as well as to the momentum of the
fluid in the wake. In its turn, the determination of the
finite length of the wake presents a special problem of
hydrodynamics and falls outside the scope of this
paper. Taking into account the aforementioned circum-
stances, we simply introduce a finite wake length L
and, thus, eliminate the divergence in Eq. (22) at the
zero scattering angle. Then, the scattering amplitude
described by Eq. (27) will be finite for the scattering in
the transmission direction, and, in order of magnitude,
it will be by a factor of (L/a) greater than the scattering
amplitude (28), which corresponds to the scattering by
the flow in an ideal fluid at ϑ  = 0. Estimates of Eq. (23)
show that, in the presence of the wake, the total scatter-
ing amplitude f at the zero scattering angle is approxi-
mately (in the order of magnitude) equal to the quantity

(28)

The third feature of the scattering amplitude derived
for the sound scattering by the flow with a wake is its
possible nonmonotone dependence on the scattering
angle ϑ . Studying the behavior of Eq. (25), one can
notice that, at finite angles ϑ , this expression is propor-
tional to k3a4M, and, depending on the ratios between
the parameters ka, L, and ϑ , the sought amplitude f for
finite scattering angles can exceed the value given by
expression (28) for the zero angle. The same conclu-
sion can be inferred from analyzing Eq. (23) at different
ratios between the parameters ka, Re, and ϑ . Thus, we
can conclude that, in some cases, the curve f(ϑ) can
have a two-peak shape.

The fourth feature of the sound scattering by a flow
with a wake is the specific angular dependence of the
scattering amplitude corresponding to the transmission
direction on the direction of the body motion. The anal-

f f 0( ) k2a2LM.∝
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ysis of Eq. (23) shows that the maximal amplitude val-
ues occur when the sound rays are directed along the
line of the body motion. This fact agrees well with intu-
itive physical concepts of ray acoustics. It is precisely
in this case that the maximal flow anisotropy along the
sound ray is observed, and this anisotropy leads to the
maximal focusing or defocusing of the acoustic lens
formed in the fluid [3].

In connection with the latter effect, we note the fifth
feature of the result under consideration. It is known
that for short-wave sound scattering by a stationary,
elongated, axially symmetric body, the scattering
cross-section is minimal when sound is incident along
the body axis and maximal for the perpendicular direc-
tion of incidence. In the case of the sound scattering by
a fluid flow with a wake produced by the motion of the
body, the corresponding scattering cross-section is
maximal already for the scattering along the body axis.
In closing, we note that all the described characteristic
features of sound scattering by moving bodies testify to
a considerable contribution of the wake to the total scat-
tering pattern, and these features are characteristic not
only of axially symmetric bodies, but also of bodies
with arbitrary shapes. They can facilitate the interpreta-
tion of the experimentally observed specific features of
sound scattering by moving particles, e.g., in the crys-
tallization of particles from solutions or in the filtration
of particles in a sound field [1, 2]. Preliminary esti-
mates show that, by taking into account the asymmetric
shape of the body (particle) and the lifting and lateral
drag forces that occur in this case, we obtain an addi-
tional increase in the scattering intensity and a more
complex angular dependence of the total scattering
amplitude.
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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Abstract—Results of experimental measurements of the coordinates and trajectories of an MI-8 helicopter
flight are presented for various types of maneuvers and the landing approach. The current coordinates are mea-
sured in real time by acoustic differential navigation methods using the noise radiation of a helicopter. It is
shown that, when a measuring base with a microphone spacing of 2 m or less is used, the spatial correlation
coefficient for the signals in the frequency band from 200 to 5000 Hz approaches unity. This makes it possible
to estimate the position of the helicopter with rms errors less than 0.4 m at all stages of flight and at the landing
approach. © 2000 MAIK “Nauka/Interperiodica”.
The current instrument landing systems for helicop-
ters are based on the use of radiolocation and pulse-
phase (correlation) navigation methods. In acoustics,
these methods are known as differential navigation
methods [1]. Without going into specific details of var-
ious navigation systems, one can conclude that, in the
general case, their potential accuracy of coordinate
determination depends on the wave size of the measur-
ing base and the accuracy of measurement of the phase
differences or the time delays (the ray path differences)
between separate receivers (antennas). In its turn, the
potential accuracy of the time delay measurement is
inversely proportional to the bandwidth of the measur-
ing signal.

In radio navigation systems with active radiation of
signals, the resolution ∆X in a space coordinate is deter-
mined as ∆X = C(el)/∆F(el), where C(el) is the velocity of
the electromagnetic wave propagation and ∆F(el) is the
signal bandwidth. A similar relation is true for an
acoustic system that uses the noise signals radiated by
the helicopter as navigation data: ∆X = C(ac)/∆F (ac). Let
the two systems, i.e., the acoustic and the radio, provide
the same space resolution, for instance, 0.3 m. For
realizing this resolution in a radio system, we need a
signal (or an equivalent short pulse) with a bandwidth
of about ∆F(el) = 109 Hz. Since the sound velocity is
much less than the light velocity, the corresponding
bandwidth for an acoustic system is only 103 Hz. Tak-
ing into account that the real bandwidth of the helicop-
ter noise exceeds 7 kHz, it is possible to evaluate the
potential spatial resolution achievable in the acoustic
frequency band: it proves to be about several centime-
ters. For electromagnetic waves, such an accuracy can
be obtained only in the infrared and optical bands.
1063-7710/00/4606- $20.00 © 20648
Obviously, an acoustic system will not efficiently
operate if the velocity of the flying vehicle (FV) is com-
mensurable with the velocity of the sound wave propa-
gation. In this case, the measurement of current coordi-
nates by a single-position acoustic system will always
lag. However, for helicopters in the course of landing,
this lag can be neglected, because the velocity of a land-
ing helicopter is very small, which allows the acoustic
system to operate in real time without any lags. 

It should be noted that the interest in acoustical
methods of detecting FV increased significantly since
the mid-1980s, which was associated primarily with
the problem of detecting low-altitude targets inaccessi-
ble for radar. Interesting references to acoustic systems
of this kind can be found in papers [3, 4] and patents
[5, 6]. The success achieved in the development and
application of acoustic technologies in helicopter avia-
tion is largely related to the fact that helicopters are
powerful sources of wide-band noise and move with
comparatively low velocities. In particular, at the stage
of level-off (descent from a height of flight of about
150 m along a slanting trajectory), the vertical velocity
of a helicopter decreases from 3–4 to 0.5–1 m/s and fur-
ther to 0.2 m/s at the moment of touchdown. 

It is also very important that helicopter noise is rel-
atively low frequency, and the propagating sound
waves undergo neither scattering nor noticeable attenu-
ation in the presence of atmospheric inhomogeneities
such as fog, smoke, snow, or heavy rain. Sound attenu-
ation in the atmosphere is characterized by the values
β = 0.003 dB/m for f = 200 Hz and β = 0.4 dB/m for f =
10 kHz, and it can be neglected, especially, taking into
account that the reduced noise level of a helicopter at a
frequency of 1 kHz is about 95–105 dB relative to 2 ×
10–5 Pa Hz–1/2 [2]. Thus, a receiving acoustic system at
000 MAIK “Nauka/Interperiodica”
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short distances will always work with high values of the
signal-to-noise ratio and, hence, provide a high accu-
racy in the determination of coordinates.

Weather conditions are always decisive in helicopter
aviation for the safety of the landing approach and the
landing itself, because these most crucial stages of
flight are controlled only visually. 

All the factors mentioned allow us to expect that
acoustical methods of helicopter navigation can pro-
vide a high accuracy of the determination of the current
coordinates and remain effective in the most unfavor-
able weather conditions. 

In support of this statement, we present and discuss
below some results of experimental studies of acousti-
cal methods for measuring the current coordinates of a
helicopter by its noise radiation.

The measuring setup consisted of a remote micro-
phone receiving base, connecting cables, and a hard-
ware–software system for signal processing on the
basis of a PC. The receiving base included VSSh-201
acoustic systems, which included VMK-201 capacitor
microphones, preamplifiers, power supply units, and
units of temperature stabilization (Fig. 1).

The VSSh-201 acoustic system is designed for
operation in the frequency range from 2 Hz to 20 kHz
with a maximal acoustic pressure level of 160 dB rel-
ative to 2–10 Pa in the temperature range from –30 to
+50°C. Signals from microphones were fed through
cables to a wide-band multichannel amplifier with a
unit of stepwise adjustment of the amplification, an
overload indicator, and a preliminary filtering of sub-
sonic and low-frequency components of signals. Every
VSSh-201 system could be rigidly fixed on the ground,
so that various schemes of the receiving base could be
arranged: in the form of a line, a cross, a square, a tri-
angle, and so on. 

The hardware–software system was assembled on
the basis of a PC with a DT 2838 signal input board (a
multiplexer and an A/D converter). The A/D converter
provided a sampling rate of 160 kHz with eight input
channels of 16-bit capacity and contained a simulta-
neous sample-and-hold circuit for all input channels.
The measuring system also included an ONOSOCI
panoramic spectral analyzer for proximate analysis of
signals and noise conditions, as well as TEAC and
7005 B&K multichannel tape recorders.

Remote microphone units were installed on the air-
field of the Gromov Flight Testing Center (in Zhu-
kovskiœ), between the runway and the taxiway, at a dis-
tance of about 100 m from each other. Two variants of
the microphone arrangement were used: along a line
with various spacings between them (six microphones)
and in the form of an equilateral triangle with an addi-
tional microphone at the triangle center (four micro-
phones). In the line variant, the microphones were
spaced at the intervals 2.5, 5, 10, 12.5, and 15 m for
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
measuring the functions and intervals of the space cor-
relation of noise signals of the helicopter. In the triangle
variant, the distance between the extreme microphones
was 2 m with a height of 1 m above the ground. At a dis-
tance of 20 m from the center of the measuring base, a
landing square 20 m on a side was marked on the
ground, the center of this square being the landing point
of the helicopter. The landing square was marked with
signal flags. The measurements were made in daylight.
For the tests, an MI-8 helicopter was used. 

The monitoring of the helicopter maneuvers was
carried out by using a TV camera, which could be
rotated in the horizontal and vertical planes, and visu-
ally. The helicopter was controlled by using a standard
ultrashortwave radio station and by the air-traffic con-
trol service. 

Let us consider the following simplest scheme of the
differential method of determining the coordinates. Let
three microphones be located at equal distances on a
circle of radius a, and the fourth, reference microphone
be located at the center. The model of the signal Sk(t) in
the kth receiver can be written as 

,

where S(t) is the desired signal generated by the heli-
copter, n(t) is the independent additive noise, Rk is the
length of the kth ray determining the attenuation of the
signal in a homogeneous medium due to the spherical
divergence, and R/C is the time of the signal propaga-
tion with the velocity C.

Let the position of the source be determined in a
Cartesian coordinate system by the vector r = (x, y, z),
and the position of the receivers by the vectors lying in
the X–Y plane 

(1)

where ϕk is the angle between the vector rk and the pos-
itive direction of the OX-axis. Let for definiteness the
first receiver be located on the OY-axis, i.e., 

(2)
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We introduce the following notation:

,

, (3)

where R is the length of the reference ray, Rk is the
length of the ray arriving at the kth receiver, and dk is
the ray path difference. After simple algebraic transfor-
mations, it is possible to derive from Eqs. (3) the fol-
lowing set of equations to solve for independent vari-
ables R, X, and Y, which fully determine the position of
the noise source: 

. (4)

The determinant of this set has the form

where D = d1 + d2 + d3 is the sum of all path differences
and is always positive, 0 < D ≤ 3a, and the set of Eq. (4)
always has a single-valued solution:

(5)

.

Thus, the algorithm of the coordinate measurement
includes the following sequence of operations: 

(i) measurement of the time delays τk (k = 1, 2, 3) of
the signals received by the peripheral receivers rela-
tive to the reference signal;
(ii) calculation of the ray path differences dk = Cτk;
(iii) calculation of the coordinates by Eqs. (5).
For measuring the time delays, we used preliminary

frequency filtering and a cross-correlation processing
of signals for the corresponding pairs of microphones.
All these operations of primary (time-domain) and
secondary (space-domain) processing were realized
as programs operating in real time. The flight trajec-
tory in the XY coordinates and the time dependence of
the height estimate Z(t ) were displayed on a monitor
screen.

Taking into consideration the limited flight time
available for experimental investigations, we gave
much attention to preliminary measurements with a
simulator, which was a specially made point source of
noise. The simulator could radiate a wide-band acoustic
signal in the range 0.5–5 kHz and provide acoustic
power of about 10 W. By using the simulator, we mea-
sured the current values of the sound speed (~336.6 m/s)
and revealed certain systematic shift errors due to the

R r x2 y2 z2+ +( )1/2
= =

Rk r rk– R2 2rrk– a2+( )1/2
= =

dk Rk R,–=

a2 dk
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R 3a2 d1
2– d2

2– d3
2–( )/2D,=

X d2 d3–( ) 2R d2 d3+ +( )/2a 3,=

Y a2 d1
2– 2Rd1–( )/2,=

Z R2 X2– Y2–( )1/2
=

                                         

low accuracy in determining the distance between the
microphones, especially for large spacings, and errors
in their height, since the ground surface at the test site
was uneven. It should be noted that all distances could
be measured accurately to 1 cm, which being converted
to the speed of sound made it possible to evaluate the
latter accurately to about 0.1%. Direct experimental
measurements of the speed of sound gave a somewhat
greater value of the error: 0.88 m/s, i.e., 0.25%. Appar-
ently, some contribution to the error was made by pos-
sible fluctuations of the wind speed, which varied from
4 to 6 m/s. The mean temperature at the test site was
about 4°ë. 

The flight assignment included 3 tasks. The first task
consisted in the approach of the helicopter to the land-
ing point and in landing. Then, the helicopter should
rise vertically and hover successively at the heights 10,
20, 30, 40, and 50 m. At one of the heights, the helicop-
ter should rotate through 360° if the wind speed was
less than 6 m/s. 

To fulfill the second task, the helicopter should fly
around the vertexes of the landing square at a height of
30 m with hovering at certain points. Finally, the last
task consisted in landing along a standard glide path.
The accuracy of executing various tacks was monitored
visually by the pilot, and the helicopter height was mea-
sured by an airborne radio altimeter. Periodically and at
the moments of hovering, the pilot reported by
ultrashortwave radio the values of height which were
registered. Unfortunately, we failed to realize optical
measurements of the current coordinates of the helicop-
ter with the use of spaced theodolites and a miniature
source of light attached to the helicopter. The lack of
such independent measurements caused some difficul-
ties in referencing the measured coordinates of the heli-
copter, i.e., in determining from which point of the heli-
copter the measured coordinates should be counted.

Since, in an acoustic navigation system, for deter-
mining current coordinates we used the correlation
methods of measuring the time delays between various
microphone pairs, the estimate of intervals of space
correlation and the values of correlation was the main
task. For this reason, we used various spacings between
microphones in the linear scheme of measurement.

It is obvious that a helicopter with a diameter of the
main rotor of about 20 m cannot be considered as an
ideal point source of acoustic noise. In addition to the
main rotor, the helicopter has other sources of noise:
turbines, the tail rotor, and so on. So, the helicopter is a
complex, spatially distributed source of noise, which
should create certain problems in its navigation at short
distances when the size of the measuring base, the size
of the sound source, and the distance to the base are
commensurable, and the measurements are performed
in the Fresnel zone.

The detailed analysis of the space and time correla-
tion functions of noise radiation of a helicopter, as well
as of the accuracy of measuring the coordinates for var-
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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Fig. 2. Results of measuring the height of a stationary noise simulator.
ious microphone spacings, will be given in a special
paper. Here, we mainly concentrate on the experimen-
tal results of the trajectory measurements. We note only
that, for distances between the helicopter and the mea-
suring base of 40 m and less, the space correlation of
signals from microphones with spacings more than
2.5 m was unstable and had low values. Therefore, for
coordinate measurements at the following stages of the
experiment, we used the scheme of the measuring base
in the form of a triangle with 2-m-long sides. For this
spacing, the coefficient of space correlation was within
0.7–0.95, and the correlation function had one stable
maximum, which made it possible to uniquely deter-
mine the time delays and the current coordinates of the
helicopter. Subsequent measurements showed that even
lesser spacings between the receivers (down to 1 m) are
possible. It should be noted that the obtained estimates
of microphone spacing correlate well with the data pre-
sented in [3, 4]. 

We now turn to the analysis of the experimental
results. 

First of all, it was necessary to investigate the long-
term stability of the whole measuring system, to evalu-
ate the optimal frequency range and the environmental
noise conditions taking into account that the landing
square was not far from the runway. For this purpose, at
a distance of 10 m from the center of the measuring
base, at a height of 1 m, a noise simulator was fixed.
Figure 2 shows the results of measurement for the
height of the fixed simulator within a long time interval.
It is seen that the fluctuations of the height estimate are
within ±10 cm, and they are most likely associated with
the changes in the wind velocity, although the influence
of powerful local noise from transport airplanes mov-
ing along the runway cannot be excluded from consid-
eration.

Then an operator, holding the simulator at the same
height of 1 m, moved with it along a straight line. The
trajectory of its movement could be seen on a display
(Fig. 3). On the basis of measurements with the noise
simulator, we made the conclusion that the system can
provide long-term stability and potential instrumental
L PHYSICS      Vol. 46      No. 6      2000
accuracy of measuring the coordinates within 10 cm in
the frequency range 200–5000 Hz for the exponential
averaging times used for the coordinate estimates 0.5–
0.8 s. The real instrumental error turned out to be some-
what greater: about 15–20 cm (the rms error). Note that
we could use a longer time of averaging, up to several
seconds, since, at the initial distances of tracking (350–
400 m), such small delays are of no significance. 

The next figures present some of the results. Fig-
ures 4a, 4b, and 4c show the estimates of the helicopter
trajectory during its landing along the glide path for the
microphone base with a spacing of 5 m (Fig. 4a) and the
results of the processing of the same tack for a 2-m
(Fig. 4b) spacing. It is clearly seen that, for the large
spacing between the microphones, large errors occur in
the determination of the current coordinates due to the
decorrelation of signals, especially at low heights. A
quite different and stable trajectory is observed for the
small spacing. In this case, the dispersion of the esti-
mates is small, and the trajectory is reproduced with
confidence. It is seen that, even at very low heights, 3 m
and less, the system is able to obtain an accurate height
estimate down to the moment of landing. Figure 4c pre-
sents the landing of the helicopter along a glide path,
but with the approach from a different relative bearing.

Figure 5 shows the results of measurement of the
trajectory of the helicopter flying above the landing
point at a height of 50 m. 

One should pay attention to the fact that the
obtained trajectories have small but regular deviations
from the mean curve along which the helicopter moves.
These deviations do not exceed 2–3 m, i.e., the acoustic
system makes it possible to evaluate the position of the
helicopter to a high accuracy.

The performed experimental investigations show
that the methods of correlation navigation of a helicop-
ter by its noise radiation can be used as the basis for cre-
ating high-accuracy real-time instrument systems for
helicopter landing.

For a 2-m spacing between the microphones, the
spatial correlation of the noise signals was sufficiently
high, which made it possible to estimate the current
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Movement of the noise simulator
at a height of 1 m

Fig. 3. Measured trajectory of the moving noise simulator.
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coordinates of the helicopter with a high accuracy. The
estimated rms errors of coordinate measurements did
not exceed 0.4–0.5 m for this microphone spacing. A
number of experiments were carried out with a smaller
spacing (1 m). It was shown that, for this spacing, the
accuracy in determining the horizontal coordinates was
practically the same as for the 2-m spacing. However,
the accuracy of the height measurements turned out to
be somewhat lower. One of the possible reasons con-
sists in the fact that the scheme of the measuring base
did not use the vertical diversity of the receivers and,
therefore, the initial instrumental accuracy of measur-
ing the height at grazing angles was less than the accu-
racy of the estimates of the horizontal coordinates. The
correctness of this statement is supported by the fact
that, in practically all the experiments when the height
of flight was 3 m and less, a somewhat greater disper-
sion of the estimates of the vertical coordinate was
observed. Consequently, in the future, it is necessary to
use additional vertical spacings between the micro-
phones and, probably, greater heights of their positions
above the ground. Since, for an approaching helicopter,
the input signal-to-noise ratio of a single microphone is
sufficiently high, the antenna array of the acoustic sys-
tem may consist of the minimal number of receivers,
which makes it compact and simple.

The small errors obtained for the estimates of the
coordinates required us to choose a certain algorithm
for relating the measured coordinates to a specific point
of the helicopter. The reference of height was obtained
by adding to the measured height the vertical size of the
helicopter from the center of the main rotor to the
ground. The reference of the horizontal coordinates
was somewhat more complex, since the acoustic center
of noise radiation migrated depending on the inclina-
tion of the main rotor. In this study, the acoustic center
was also related to the center of the main rotor, and, for
the performed experiments, the possible shift errors
could be neglected. However, if for some applications
of the acoustic navigation system, an accuracy higher
than 0.4 m is needed, the problem of a correct referenc-
ing should be considered in greater detail. 

If we compare the obtained data with the accuracy
characteristics of the existing differential radio naviga-
tion landing systems, we can conclude that the acoustic
systems are considerably superior to radio systems.
Thus, in accordance with the ICAO standards, the accu-
racy (the rms error) required for the landing approach
corresponding to the second and third (the highest) rat-
ing is 2–8.5 m, and, for carrying out special tasks (such
as geological exploration or referencing), the accuracy
should be within 0.25–4 m [7]. In civil aviation, there
are no navigation systems with such a high accuracy.
In particular, in paper [8], by using numerical model-
ing of a complex integrated system consisting of the
GLONASS or GPS satellite system, an airborne system
of inertial navigation, and an aneroid altimeter, it was
shown that, theoretically, the conditions of landing
according to the third rating could be provided, but with
very long time of evaluation: 100 s with an accuracy of
2 m in the horizontal coordinates and 3–4 m in height.
The accuracy of height measurements within 0.3–0.4 m
is considered to be a far prospect of phase-differential
radio navigation [9–11]. The existing radio navigation
systems are described in the handbook [10]. However,
not a single one of the 275 presented navigation systems
provides the accuracy in determining the coordinates of
flying vehicles according to the third rating of ICAO. 

At the same time, it is the helicopters that most of all
need precision instrument means of landing, especially
for badly equipped landing sites, and the results of our
experiments provide strong evidence for the promise of
acoustical methods. 

An acoustic navigation system, of course, cannot
fully replace a radio navigation system, but it can and
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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Fig. 4. (a) Landing of the helicopter along a glide path. Spacing between the microphones is 5 m. A wide scatter of the coordinate
estimates is observed due to the decorrelation of signals. (b) Landing of the helicopter along a glide path. Spacing between the micro-
phones is 2 m. (c) Landing of the helicopter along a glide path with the approach from a different relative bearing.
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Fig. 5. Helicopter flight over the landing point at a height of 50 m with a subsequent turn.
must become an important component of a combined
landing system for providing the safe approach and land-
ing beginning from distances of about 1500–2000 m,
depending of the type of the helicopter. 

This system may also be designed as an independent
system of instrument landing for small-size helicopter
landing platforms (on high-rise buildings, offshore
drilling platforms, or ship decks) or as a mobile naviga-
tion system that can be quickly put into operation, for
example, for accurate guidance of helicopters to the
source of a fire. The last application is especially topi-
cal taking into account that fires with a heavy smoke
screen drastically reduce the optical visibility and
hinder the orientation of a fire helicopter, whereas low-
frequency acoustic signals propagate in this medium
practically without interference. 
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Abstract—An effective technique proposed earlier (Acoustical Physics 45 (3) (1999)) for estimating the
kinetic and potential energy, the loss coefficient, and other energy characteristics of a vibrating elastic structure
is improved and tested experimentally. Refined formulas providing sufficiently accurate estimates of energy in
a wide range of low and medium frequencies are derived. An experimental estimation method based on the Padé
approximation is proposed. Results of a laboratory experiment demonstrating the efficiency of the proposed
technique are presented. © 2000 MAIK “Nauka/Interperiodica”.
For a linear elastic structure performing forced har-
monic vibrations under the effect of one or several
forces, an effective technique for estimating its energy
oscillatory characteristics (potential and kinetic energy,
loss coefficient, etc.) from the structure input imped-
ances (conductivities) and their first derivatives with
respect to frequency was proposed earlier [1, 2]. This
technique requires neither the measurement of the
parameters of the whole structure nor the use of its
computational oscillatory model. One needs only to
measure the forces and the velocities at the points of
application of the external forces. In the simplest case
when the structure vibrates under the effect of one point
force, it is necessary to measure only two quantities,
namely, the complex amplitude of the external force
and the velocity at the point of force application, in
order to calculate all the energy characteristics of the
structure. With the help of computer simulations [1, 2],
it was found that the technique provides fairly accurate
estimates at all frequencies except for the vicinities of
certain eigenfrequencies of the structure. This short-
coming was the main obstacle in the practical utiliza-
tion of the method.

In this paper, which continues the studies described
in [1, 2], the aforementioned shortcoming is elimi-
nated. Refined formulas for estimating the energy char-
acteristics, which are equally applicable at all frequen-
cies, are derived. The corresponding experimental
method for obtaining the energy characteristics of
vibrations of real structures by this technique is pro-
posed. The key feature of the method is the representa-
1063-7710/00/4606- $20.00 © 0655
tion of the measured input impedances of the structure
with the help of the so-called Padé approximation. The
results of a laboratory experiment with a flexurally
oscillating rod are also presented below. The estimates
of the energy-related quantities, which are obtained
using the proposed technique, agree well with the val-
ues obtained independently by other methods. The
major result of this paper is the conclusion that the pro-
posed effective technique for estimating the energy
characteristics of a vibrating elastic structure is now
modified to a form suitable for practical application.

Let us consider a linear elastic system with distrib-
uted parameters (a structure) that performs harmonic
oscillations under the effect of a single force fexp(–iωt)
concentrated at a point x0. Let the complex amplitude f
of the force and the complex amplitude v of the veloc-
ity of the structure vibrations at the point of force appli-
cation be known (measured). The knowledge of the
parameters and properties of the structure, except for its
linearity, as well as the knowledge of other characteris-
tics of the vibration field, is not presumed. Then,
according to the proposed technique [1, 2], it is possible
to calculate exactly the period-average loss power Φ
and the difference between the kinetic and potential
energies (the Lagrangian L) of the structure vibrations
from the two known quantities f and v:

(1)
Φ 1/2( ) v 2Re z ω( )[ ] 1/2( ) f 2Re y ω( )[ ] ,= =

L 1/4( ) v 2Im z ω( )/ω[ ]– 1/4( ) f 2Im y ω( )/ω[ ] ,= =
2000 MAIK “Nauka/Interperiodica”
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and also estimate, i.e., determine approximately, the
period-average total energy of vibrations E:

(2)

(3)

Here the input impedance z(ω) and the input conductiv-
ity y(ω) are the functions of the measured quantities:

(4)

Combining Eqs. (1)–(3), it is easy to calculate sepa-
rately the kinetic and potential energies and the loss
factor of the structure. As it has been demonstrated in
the previous papers [1, 2], estimate (2) of the total
energy by the input impedance gives correct values of
the energy at all frequencies except for the antireso-
nance ones and their small vicinities. On the contrary,
estimate (3) by the input conductivity gives a good
approximation at the antiresonance frequencies and in
a wide frequency range, but leads to incorrect results at
the resonance frequencies of the structure and in their
vicinities. The estimate of the total energy derived below
combines the advantages of the estimates given by
Eqs. (2) and (3): at antiresonance frequencies, it coin-
cides with the estimate by Eq. (3), and at all other fre-
quencies including the resonance frequencies, it coin-
cides with the estimate by the impedance, i.e., by Eq. (2).

Below, we use the following representation of the
input impedance from Eqs. (4):

. (5)

The representation originates from the theory of elec-
tric circuits and is apparently correct for any linear con-
tinuous or discrete oscillating system [3, 4]. Here, z0 is
the frequency-independent dimensional factor, e.g., the
characteristic impedance; ∆r(ω) = 0 is an equation for
complex eigenfrequencies Ωrn = ωrn – iδrn, n = 1, 2, …,
of a structure in which the point x0 is free from external
action. In the vicinity of these frequencies, the input
impedance is minimal and the structure response to a
force acting at the point x0 is maximal. The frequencies
ωrn and other quantities with the index r will be called
below the resonance frequencies. The roots of the equa-
tion ∆a(ω) = 0, which correspond to zero values of the
denominator in expression (5) for the impedance, are
the complex eigenfrequencies Ωam = ωam – iδam, m = 1,
2, …, of the structure with the point x0 being fixed. In
the vicinities of these frequencies, which we will call
below the antiresonance frequencies (the index a), the
impedance (5) is maximal, and the response to a force
acting on the structure is minimal. We should note that,

E Eimp≅ 1
4
--- ν 2Im

∂z ω( )
∂ω

-------------- ,–=

E Emob≅ 1
4
--- f 2Im

∂y ω( )
∂ω

--------------- .–=

z ω( ) f /v , y ω( ) v / f .= =

z ω( ) z0

∆r ω( )
∆a ω( )
--------------- z0

ω Ωrn–( )
n

∏

ω Ωam–( )
m

∏
---------------------------------= =
in the case of a kinematic excitation of the structure,
when the velocity amplitude is set at the point x0, on the
contrary, the maximal response of the structure occurs
at antiresonance frequencies, while the minimal
response occurs at resonance frequencies. Therefore, in
the limiting case, when the structure is excited by a
force source, the estimate (2) for the total energy by the
input impedance can be used at all frequencies, because
its errors correspond to the response minimums (anti-
resonances). For the same reason, a kinematic excita-
tion is another limiting case of external action, when
the estimate (3) by the input conductivity is applicable
practically at all frequencies.

However, real sources of vibrations, in particular,
electrodynamic vibrators (without special correcting
devices), lead as a rule to mixed excitation: at some fre-
quencies, it is close to force excitation and at other fre-
quencies, to kinematic excitation. Therefore, practical
utilization of the estimates given by Eqs. (2) and (3) is
restricted by the necessity of a preliminary study of the
type of the source at all frequencies. Although the
improved estimate given below is somewhat more com-
plicated than the estimates given by Eqs. (2) and (3), it
is valid for external excitation of any type.

We derive the improved estimate by using the esti-
mate (2) by the input impedance as the basis and intro-
ducing a suitable frequency-dependent correction coef-
ficient for it. Since the estimate given by Eq. (2) does
not work at antiresonance frequencies, we consider in
more detail the input impedance (5) in the vicinity of
one of such frequencies with the number k and repre-
sent it in the form of a simple fraction

(6)

where the complex constant ϕk is calculated as

(7)

In this representation, we implicitly assume that the
losses in the structure are sufficiently small and the dis-
tance between neighboring antiresonance frequencies
exceeds the peak width |ω – Ωak |–1. Under this assump-
tion, the function (ω – Ωak)z(ω) is a slowly varying
function of frequency in the considered vicinity, and,
for simplicity, this function in Eq. (6) can be replaced
by a constant given by Eq. (7). Now, if we calculate the
estimates according to Eqs. (2) and (3) using the input
impedance (6) and its inverse value as the conductivity,
then, after simple algebraic transformations, we obtain
the relationship

(8)

which shows that, in the vicinity of the kth antireso-
nance frequency, the energy estimate by the impedance,

z ω( )
ϕk

ω Ωak–
------------------,=

ϕk ω Ωak–( )z ω( ) ω ωak= iδakz ωak( ).= =

Eimp α kEmob,=
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Eimp, differs from the estimate by the conductivity, Emob,
by the following factor depending on the frequency ω:

. (9)

However, since the estimate by the conductivity Emob
coincides with the exact value of energy E at the anti-
resonance frequency [1, 2], the factor given by Eq. (9)
can be considered as a correction coefficient for the
estimate by the impedance Eimp. Then, from Eq. (8), we
obtain the estimate

(10)

As it turned out, coefficient (9) has a remarkable prop-
erty: it is equal to unity outside the vicinity of the fre-
quency ωak (see Fig. 1). Therefore, it corrects the esti-
mate Eimp in the vicinity of the kth antiresonance fre-
quency in Eq. (10) and does not affect it at other
frequencies. Thus, estimate (10) has all advantages of
the estimate by the impedance (2) and additionally
gives true values of energy at the kth antiresonance fre-
quency and in its vicinity.

If several antiresonance frequencies occur in the fre-
quency range under consideration, we can take the
product of the coefficients (9) as the correction coeffi-
cient to the estimate by the impedance (2) for all these
frequencies:

(11)

This is one of the desired refined estimates, which
yields true values for the total energy of the structure at
all frequencies, including resonance and antiresonance
frequencies. Sometimes, it is more convenient to intro-
duce correction coefficients αk into the derivative of the
input impedance (5) with respect to frequency for each
antiresonance term separately,

, (12)

and then substitute Eq. (12) into Eq. (2). Analyzing
simple model examples and the experimental results
described below, we arrived at the conclusion that the
difference between the improved estimates given by
Eqs. (11) and (12) is small. It should be noted that the
improved estimates for energy similar to Eqs. (11) and
(12) are also obtained on the basis of the estimate by the
conductivity (3). We do not present them here, because
they have no advantages over the estimates given by
Eqs. (11) and (12).

The domain of applicability of Eqs. (11) and (12) is
the same as that of Eqs. (2) and (3). This is the fre-
quency range where the mean distance between the
neighboring eigenfrequencies of the structure is greater
than the width of the resonance peaks [2]. In the case of
real structures with the loss coefficient of material not

α k

Re ω Ωak–( )2 Im ω Ωak–( )2Re ϕk/Im ϕk–

ω Ωak– 2
----------------------------------------------------------------------------------------------------=

E Eimp/α k.≅

E Eimp/α , α≅ α k.
k

∏=

∂z ω( )
∂ω

-------------- z ω( ) 1
ω Ωrn–
------------------

1/αm( )
ω Ωam–
-------------------

m
∑–

n
∑=
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exceeding 0.05, the domain of applicability of the pro-
posed estimates is restricted to low and medium fre-
quencies.

Let us take as a numerical example a longitudinally
vibrating thin homogeneous rod of length l; the rod is
excited at its left end and free at the right end. Its input
impedance is equal to [1, 2]

(13)

where kc = ω(ρ/Ec)1/2 = k(1 – iη)–1/2 is the complex wave
number; z0 = (ρEcS2)1/2 is the characteristic impedance
of the rod; Ec = E(1 – iη), ρ, and η are the complex
Young modulus, density, and loss coefficient of the
material; and S is the area of the rod cross-section. The
correction coefficients for this structure, as well as for
many others, are noticeably simplified: at the antireso-
nance frequencies kl = πm + π/2, the constants given by
Eq. (7) are purely imaginary quantities (Reϕm = 0), and
the product of the real parts ΠRe(ω – Ωam)2 differs from
the real part of the product ReΠ(ω – Ωam)2 by the value
of the order of η. Therefore, we can take here

(14)

as the general correction coefficient in Eq. (11). Solid
lines in Fig. 2 present the exact values of the time-aver-
age total energy E of the rod, and the dots show the
improved estimate (11) with the correction coefficient
(14). These results correspond to the case of kinematic
excitation of the rod (the amplitude of the velocity v0 is
set at the left end, and this amplitude is the same at all
frequencies), which is most unfavorable for utilization
of the uncorrected estimate by the impedance (2): it
gives erroneous results at antiresonance frequencies
where the response is maximal (see Fig. 3a from [1]).
As one can see from Fig. 2, the introduction of the cor-
rection coefficient (14) improves the estimate (2): at
low frequencies (kl < 9), the approximate and exact val-
ues almost coincide, and, at medium frequencies (kl <
20), they differ by less than 10%; at higher frequencies,
their difference increases (Fig. 2b), but this frequency
range (as has been indicated above) falls outside the
domain of applicability of the proposed technique.

z ω( ) iz0 kcl( )/ kcl( ),cossin–=

α
Re kcl( )cos

2[ ]
kcl( )cos 2

----------------------------------=

αk

1

0

–1

62 64 66 68 70 72
Frequency, Hz

Fig. 1. Correction coefficient (9) for one of the experimental
antiresonance frequencies.
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Fig. 2. Exact values of the total energy of a rod in the case of kinematic excitation (solid lines) and its approximate values (dots)
obtained using the improved estimate (11) with the correction coefficient (14) for (a) small and (b) medium values of the wave size
of the rod kl. Energy is normalized to the value E2 = ρlS |v0 |2/4, and the loss coefficient of the rod material is equal to 0.05.
One of the problems of practical application of the
proposed technique for estimating the energy charac-
teristics is the differentiation of experimentally mea-
sured impedances or conductivities with respect to fre-
quency. Differentiation is an ill-conditioned operation
that is unstable with respect to variations of the input
data [5]. If the differentiated function is set with a ran-
dom error (as commonly happens in practice), the error
of the direct calculation of the derivative can be arbi-
trarily large. In order to reduce these errors, the experi-
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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mental data are usually subjected to preliminary
smoothing; i.e., they are approximated by smooth func-
tions and, most frequently, by polynomials, or multi-
point schemes are used [6]. In our opinion, from the
point of view of the interference stability, the most sta-
ble procedure for calculating the derivatives with
respect to frequency is the procedure based on the so-
called Padé approximation of the experimental data
with subsequent analytical differentiation of the
approximating function. This procedure takes into
account to the maximal extent the singularities of the
impedance functions and provides more precise results
as compared to other methods of differentiation.

The Padé approximation is the approximation of
functions with the help of the ratio of two polynomials
[7]. The grounds for its application in the problem
under consideration are the representation of the input
impedance on the whole frequency axis as a ratio of
two integer functions ∆r(ω) and ∆a(ω) [see Eq. (5)]. In
the finite part of the complex plane |ω| < a, each of them
contains a finite number of zeros [8]. Physically, this
means that the system under consideration has a finite
number of alternating resonances and antiresonances
within the interval of real frequencies 0–a (the Foster
theorem [3]). Each of the integer functions within this
frequency interval can be approximated by a polyno-
mial of finite degree, and, therefore, the impedance (5)
can be represented by a ratio of two polynomials, i.e.,
by the Padé approximation

(15)

where the complex parameters z0, Ωrj, and Ωak are
determined by the comparison of Eq. (15) with experi-
mental data.

The procedure of identification of the parameters of
the Padé model (15), which was used by us in the
experiment described below and is adequate at low and
medium frequencies, is as follows. First, the resonance
and antiresonance frequencies (i.e., the real parts of the
complex frequencies Ωrj and Ωak) are determined from
the experimentally measured frequency dependences
of the force f(ω) and of the acceleration a(ω). Then, the
constant z0 is determined from the function z(ω) at
ω  0. And, finally, the imaginary parts of the com-
plex frequencies are determined by the values of z(ωrj)
and y(ωak), which are proportional to the losses δrj and
δak at low and medium frequencies.

The proposed technique for estimating the energy
characteristics was tested in a laboratory experiment
with a flexurally vibrating rod. A steel rod with a rect-
angular cross-section and with the dimensions 40 ×
50 × 1500 mm was suspended on two strings and
excited at one of its ends in the horizontal plane by an
electrodynamic vibrator powered by a generator of har-
monic signals of variable frequency. The amplitudes
and phases of the force f(ω) and acceleration a(ω) were

z ω( ) zp ω( )≅ z0

ω Ωr1–( )… ω ΩrM–( )
ω Ωa1–( )… ω ΩaN–( )

-------------------------------------------------------,=
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measured. These data were fed into a computer, which
used them to calculate the speed v(ω) = ia(ω)/ω, the
impedance z(ω), the Padé approximant (15), and the
desired estimates of the energy quantities.

Figure 3 presents the measured amplitudes of the
force and the acceleration at the excitation point. As
one can see from the plot, the vibrator is not a source of
force or kinematic excitation: the force is constant only
at separate parts of the spectrum, e.g., within the range
100–200 Hz. At other frequencies, the amplitudes of
the force and acceleration vary within wide limits. In
the studied frequency range 40–700 Hz, the rod has
three resonances and three antiresonances. Their qual-
ity factor is high: Q ≅  200, which corresponds to the
loss coefficient in the material η ≅  0.005.

Dots in Fig. 4 represent the imaginary part of the rod
input impedance plotted according to the curves in Fig. 3,
while the solid line shows the magnitude of the Padé
approximant. In this case, the Padé approximant (15)
contains M = 5 resonance factors in the numerator and
N = 4 antiresonance factors in the denominator.
According to the above consideration, the parameters
of the model given by Eq. (15) were determined as fol-
lows. The first resonance frequency was assumed to be
equal to zero, Ωr1 = 0, since, at the lowest frequencies,
the suspended rod behaves with respect to an external
force as a mass meq, and the input impedance is propor-
tional to frequency

(16)

The next three resonance frequencies, 92, 254, and
487 Hz, were determined by the minimum of the force
plot in Fig. 3a, and the fifth resonance was taken to be
outside the operational frequency range. Analogously,
the first three antiresonance frequencies, 66.5, 214, and
439 Hz, were determined by the minimums of the

z ω( ) iωmeq.–≅
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(b)

40

Fig. 3. Amplitudes of (a) force and (b) acceleration of the
rod at the excitation point versus frequency.
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Fig. 4. Imaginary part of the experimental input impedance of the rod (dots) and its Padé approximant (the solid line).
acceleration curve in Fig. 3b, and the fourth one was
above 700 Hz. The frequencies Ωr5 and Ωa4 lying
beyond the operational range do not correspond to any
real resonances and antiresonances of the rod. They
were introduced into the Padé approximant (15) for
correcting the impedance model in the upper part of the
frequency range 500–700 Hz.

The constant z0 in the framework of approxima-
tion (15) was determined from the condition z(ω) ≅
–iωmeq [see Eq. (16)]. In this case, a quarter of the rod
total mass was taken as the equivalent mass: meq =
ρSl/4. One can verify the correctness of this equality by
considering the progressive and rotary motion of the
rod as a solid under the effect of an external harmonic
force of low frequency. The imaginary parts of the three
complex resonance frequencies, 0.9, 0.32, and 0.28,
and also the imaginary parts of the three antiresonance
frequencies, 0.16, 0.09, and 0.19, of the operational
range were determined from the condition of equality
of the minimal and maximal values of the magnitudes
of the experimental and model impedances. The Padé
model (15) with the values of the basic parameters
determined in such a way adequately describes the
impedance measured experimentally (see Fig. 4).
Here, we have to note that, according to the Ber-
noulli–Euler theory of the vibration of thin rods [9],
the input impedance of the rod under consideration is
equal to

(17)

where, according to the general condition given by
Eq. (5), the characteristic expression for the rod free at
both ends stands in the numerator, while the character-
istic expression for the rod free at one end and sup-
ported at the other end stands in the denominator; z0 =
(MB/l3)1/2 is the characteristic impedance; M, B, and l
are the mass, flexural rigidity, and length, respectively;
and kw is the flexural wave number of the rod. Assum-
ing that the Young modulus of the material is complex,
E = E0(1 – iη), and varying the elastic and geometric
parameters of the rod E0, η, ρS, B, and l about their
rated values, we tried to attain the maximal agreement
between the impedance given by Eq. (17) and the
experimental results. However, even in the best case it
was impossible to achieve the coincidence of all reso-
nance and antiresonance frequencies of the operational

zt ω( )

=  iz0

1 kwl( ) kwl( )coscosh–
kwl( ) kwl( )/kwl kwl( ) kwl( )/kwlsincosh–sinhcos

--------------------------------------------------------------------------------------------------------------------,
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range to better than 3%, which caused large errors in
the impedance derivatives with respect to frequency
and errors in the estimates of the energy quantities in
the most important parts of the spectrum. Thus, the
approximation of the experimentally measured input
impedance by the functions given by Eq. (17), which
are based on the classical theory of thin rods, proved to
be not quite adequate in this problem apparently
because of the influence of suspension and other factors
that were not taken into account by the model. The
commonly used methods of differentiation, which, as is
known [6], are based on preliminary approximation by
polynomials, proved to be even less accurate. With the
method of the parameter identification described
above, the Padé approximation provided the highest

** *
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*
*

*

*

* *

*

*

Total energy, J
10–2

10–3

10–4
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10–6
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40 100 600
Frequency, Hz

Fig. 5. Total energy of rod vibrations obtained experimen-
tally by the improved technique (the solid line) and by two
other methods (the dotted line and the stars).
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accuracy in estimating the energy characteristics of
vibrations of the structure by the proposed method.

After the determination of the analytical Padé
approximant for the experimental impedance, the total
energy and other energy characteristics of the rod
vibrations can be easily determined by the refined for-
mulas (2), (12), and (9). The solid line in Fig. 5 shows
the total energy of the rod vibrations calculated in this
way. The dashed line shows the energy calculated
according to the analytical solution of the problem on
the basis of the Bernoulli–Euler theory with the substi-
tution of the experimentally measured amplitudes of
the external force and the experimental loss coefficient.
The stars indicate the energy values obtained for certain
characteristic frequencies by one more independent
method based on a detailed measurement of the form of
rod vibrations. As one can see from Fig. 5, the agree-
ment of the results is fairly good.

We should note that the calculation by the unim-
proved Eq. (2) also provides adequate estimates of
energy at all frequencies except for the narrow vicini-
ties of three antiresonance frequencies of the opera-
tional range. Figure 6 demonstrates the vicinity of the
third antiresonance frequency 439 Hz. The unimproved
estimate (dots) gives erroneous results in this region,
while the improved estimate by Eqs. (2), (12), and (9)
(the solid line) coincides with the energy values
obtained by other methods (stars).

Thus, the new effective technique for estimating the
energy characteristics of a vibrating elastic structure,
which was proposed in [1, 2], is improved and experi-
mentally justified in this paper. The necessary refined
formulas are derived, and the corresponding experi-
mental technique using standard measuring equipment
is presented. Now, the proposed technique is theoreti-
cally justified, tested by computer simulation and in a
laboratory experiment, and can be used for studying the
*

*
*

*

*

*
10–6

430 432 434 436 438 440 442 444 446 448 450
Frequency, Hz

Total energy, J

Fig. 6. Energy values in the vicinity of the antiresonance frequency: unimproved estimate by Eq. (2) (dots), improved estimate by
Eq. (12) (the solid line), and the exact values (stars).
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vibrations of practical engineering structures in the low
and medium frequency ranges.
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Abstract—Experimental data are presented on time and frequency dependences of the reverberation level for
bistatic transmission and reception at low acoustic frequencies. The data are obtained from the studies carried
out in a coastal shallow-water region and in the central region of the Barents Sea with explosion-generated and
pulsed cw signals. By using the simplest computational model, approximate estimates are obtained for the
effective coefficient of spatial attenuation and the effective scattering coefficient in the frequency band 40–400 Hz.
© 2000 MAIK “Nauka/Interperiodica”.
In numerous publications on the sea reverberation
(the information on these studies can be found, e.g., in
monographs and reviews [1–7]), not much experimental
data are available on the low-frequency (below 500 Hz)
reverberation in shallow sea. Not long ago, these data
were actually limited to those published in [4, 8–10],
which dealt with power and correlation characteristics
of reverberation generated by explosive sound sources.
Also, there is insufficient information on the low-fre-
quency reverberation for the case of a spatially separated
source and receiver (the bistatic case) in a waveguide,
when the distance between them is comparable with that
to the scattering region, or even exceeds it [4, 11]. In
recent years, a number of publications [12–19] appeared
that present experimental data on the low-frequency
reverberation for shallow-water regions, including the
shelf zone of the ocean, for both monostatic and bistatic
experimental layouts.

Here, we consider the data of the experiments car-
ried out in the 1980s, in two regions of the Barents Sea,
with the use of both pulsed cw signals and explosion-
generated ones. The experiments were performed in the
summer–autumn season, with a negatively refracting
medium and a near-bottom sound channel. The wind
speed was 4–5 m/s, the sea state was not higher than
Beaufort 3. In the first region, the signal was received
by hydrophones of a multielement linear array, which
was bottom-moored in the coastal zone near Mur-
mansk, at the depth about 135 m. At different distances
(25 to 85 km) from the receiving system, at a depth of
about 100 m, charges of 200 g in mass were exploded.
On a path oriented from south to north, the sea depth
increased from 135 m at the reception point to 200 m at
a distance of 30 km, and then to 240 m at a distances of
80–90 km. On another path oriented from east to west,
the sea depth varied from 130 to 145 m. According to
the data of continuous echo-sounding along the path,
1063-7710/00/4606- $20.00 © 20663
the bottom microrelief at the experimental site can be
characterized by distances between bottom rises and
depressions 0.5 to 3 km, by depth differences 5 to 12 m,
and by bottom slope angles 1°–1.5°. The bottom struc-
ture in this region is characterized by strong spatial
inhomogeneity. On the background of a smooth bottom
slope, features of a glacial nature (hills, billows, and
knolls) are observed with outcrops of boulders, peb-
bles, and gravel onto the water–sediment interface. The
studies showed a wide spread in the values of the acous-
tical parameters of the bottom even for a single sedi-
ment type. On average, the density of the upper sedi-
ment layer is 1.5–1.7 g/cm3, the sound speed is 1550–
1750 m/s, and both these quantities decrease as the
distance from the coast and the sea depth increase.

Figure 1 presents examples of envelopes of the
received explosion-generated signals after filtering in
1/3-octave bands at different frequencies from 40 to
400 Hz and integrating over 0.25-s time intervals. One
can clearly distinguish the arrivals of the direct signal
with the effective duration less than 1 s and the rever-
beration background whose level decreases as the time
delay td relative to the direct arrival increases. For
rather high separation (25 km) of the source and
receiver and for time delays lower than 10–20 s, the
observed reverberation is formed by both backscatter-
ing and side-scattering, which sometimes can be
accompanied by a considerable increase in the rever-
beration level. For the low frequencies at hand, the
dominant factor is the boundary reverberation caused
by scattering from inhomogeneities of the upper sedi-
ment layer, from the rough relief of its boundaries, and
from the rough sea surface.

The analysis of the records showed that, as the fre-
quency becomes lower, the reverberation level notice-
ably decreases relative to the levels of the direct signal
and interfering noise, and the effective reverberation
000 MAIK “Nauka/Interperiodica”
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0 2 4 6 8 10 12 td, s

f = 315 Hz

f = 125 Hz

f = 40 Hz

10 dB

Fig. 1. Examples of envelopes of the direct signal and the reverberation in the 1/3-octave filter band at different frequencies for the
source–receiver separation r12 = 25 km. An explosive source, coastal region, path 1.
duration shortens. At the frequencies 400 and 315 Hz,
traces of the reverberation can be found at times up to
15–20 s, at the frequencies 160–250 Hz, they extend up
to 5–10 s, and, at 80–125 Hz, the reverberation is hid-
den under the interfering noise within 3–4 s after the
direct arrival. Figure 2 presents the frequency depen-
dences of the ratio δ = (Ir + In)/Ids, where Ids is the inten-
sity of the direct signal, Ir is the reverberation intensity
at different delays td , and In is the intensity of the inter-
fering noise. At td = 2–4 s, when the reverberation over-
rides the noise at all frequencies except for 40 Hz, the
ratio δ decreases as the frequency increases. At td = 6 s,
the frequency dependence of δ(f) is affected by the fre-
quency dependences of In(t) and Ids(t), because the
interfering noise becomes comparable with the rever-
beration in its level and begins to noticeably exceed it
at frequencies lower than 250 Hz when ∆td ≥ 10 s. The
increase in δ observed with decreasing frequency

2 s
3 s
4 s
5 s
8 s
12 s
15 s
20 s

100 200 300 400

–40

–30

–20

–10

δ( f ), dB

f, Hz

Fig. 2. Frequency dependences of the ratio δ of the total
intensity of reverberation Ir and interfering noise In to the
intensity Ids of the direct signal for different time delays td.
Coastal region, path 1, r12 = 25 km.
within the band 100–400 Hz is governed by the weak
frequency dependence of the signal spectral density in
this band and by the decrease in the spectral density of
the interfering noise with frequency. According to the
performed analysis, a sharp decrease in δ at the fre-
quency 40 Hz is associated with the considerable
decrease in the noise level rather than with interference
effects in the field of the direct signal. Comparison of
the ratios δ for different spatial separations of the
source and receiver showed no pronounced dependence
on the separation (Fig. 3) for sufficiently low delays
(td = 2–4 s), when δ is close to the relative reverbera-
tion level (RRL) measured with respect to the level of
the direct signal. The spread of the values of δ is
caused mainly by the interference in the field of the
direct signal. On average, for the separation (dis-
tances) within 25–85 km, at frequencies 80–400 Hz,
and for td = 3–6 s, the RRL somewhat decreases as the
separation increases.

In Fig. 4, examples are presented of the signal enve-
lopes for a source–receiver separation of 31 km along
the path passing from east to west. On the background
of the smoothly decaying average level of reverbera-
tion, an additional maximum can be seen within
approximately 3 s from the beginning of the direct sig-
nal. This maximum is caused by the side reflection
from the island coast (to be more precise, by refraction
of the low-frequency sound field in the coastal wedge).
This is confirmed by the calculation of the ellipses of
scattering for different time delays td and the relative
source and receiver positions at hand. At the frequency
400 Hz, the level of the near-field reverberation (td = 2–
4 s) is so high that the coastal reflection is nearly invis-
ible against it. As the frequency decreases, the level of
the near-field reverberation noticeably decreases, and,
therefore, the coastal signal is clearly seen. The highest
level of the coast-reflected signal, which was observed
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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at the frequencies 100–315 Hz, is by as little as 5–7 dB
lower than the level of the direct signal. The coast
reflection leads to a considerable increase in the rever-
beration level for the time delays 3–4 s but, at td > 5 s,
the difference between the reverberation levels observed
on the two studied paths becomes insignificant. At f =
40 Hz, both the coast-reflected signal and the reverber-
ation background are masked by the interfering noise.
Note that the envelopes shown in Fig. 4 were obtained

–10

–20

–30
–30

–20

–10
25 50 75 25 50 75

(a) (b)
δ, dB

r, km

δ, dB

Fig. 3. Dependences of the ratio δ on the separation of the
receiver and an explosive source (a) for different time
delays td at the frequency 100 Hz and (b) at different fre-
quencies for the time delay td = 4 s. (a) td = ( ) 2, ( ) 3, (×) 4,
and ( ) 6 s; (b) f = ( ) 400, ( ) 315, ( ) 200, (×) 100, and
( ) 80 Hz.
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without the 0.25-s integration, and, therefore, the fluc-
tuations of the reverberation level and interfering noise
are higher than in Fig. 1.

The reverberation levels were also compared at the
separated hydrophones of the multielement linear
array. The comparison showed that only for the shortest
distance between the receivers (7.5 m) and for time
delays lower than 3 s does a partial correlation remain
in the space–time fluctuations of the envelopes at the
frequencies of 80–200 Hz (the correlation coefficient
was 0.5–0.6). At higher frequencies and with receiver
separations of 15 m or more, the fluctuations become
nearly uncorrelated. In the sequence of explosions that
were performed each 30–60 s, the reverberation enve-
lopes obtained at 80–400 Hz poorly replicate each
other in detail, although the explosion depths were kept
virtually constant and the distance to the receiving
array varied by less that 10–20 m due to the vessel drift.

In the same coastal region, low-frequency narrow-
band sound sources deployed at the depth 50 m were
used for sensing the sea medium with pulsed cw sig-
nals. These signals had carrier frequencies of 100 and
300 Hz, durations of 0.5 s, and a repetition rate of 15 s.
In the experiments, the transmitting vessel drifted at a
distance of 6.5 km, north from the bottom-moored
receiving array. Figure 5 shows examples of the enve-
lopes of the received signals filtered within the 3%
band. When measured relative to the level of the direct
signals, the 300-Hz reverberation level was signifi-
0 2 4 6 8 10 12 td, s

f = 315 Hz

f = 100 Hz

f = 40 Hz

10 dB
f = 400 Hz

Fig. 4. Examples of envelopes of the direct signal and reverberation at different frequencies for the source–receiver separation 31 km.
An explosive source, the coastal region, path 2.
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cantly higher than that at 100 Hz; it decays down to the
level of the interfering noise in a time that is somewhat
longer than the repetition period (15 s) of the pulses. At
100 Hz, the reverberation time (time of decay down to
the noise level) is not higher than 3–4 s. On average, the
RRL values insignificantly differ for the pulsed cw and
explosion-generated signals at both frequencies.

From the periods of the beats in the reverberation
envelope obtained with the pulsed cw signals of a long
duration (2 min), approximate estimates were obtained
for the effective width of the reverberation spectrum at
the frequencies 100 and 320 Hz, with towing the sound
sources at the speed about 3 k. For source–receiver sep-
arations of 9–12 km, the beat periods observed in dif-
ferent realizations after the direct arrivals were 5, 10, 3,
6, and 10 s at the frequency 100 Hz, and 2.5–3, 5, 2, 3,
and 4 s at 320 Hz. These values correspond to the spec-
tral components that are separated by 0.1–0.3 Hz at f =
100 Hz and 0.2–0.5 Hz at f = 320 Hz. The observed
increase in the width of the reverberation spectrum (rel-
ative to the spectrum of the emitted signal) can be
caused both by scattering from the rough sea surface
and by bottom scattering that, with the moving source,
leads to Doppler frequency shifts depending on the
arrival direction of the scattered signals.

100 Hz
10 dB

0 5 10

300 Hz

td, s

Fig. 5. Examples of envelopes of the direct signal and rever-
beration for the pulsed cw transmission at the frequencies
100 and 300 Hz in the coastal region. The source and
receiver are separated by 6.5 km.
The second studied region was in the Central Hollow
of the Barents Sea. According to the echo-sounding data,
the sea depth here varied from 350 to 375 m. In geomor-
phologic terms, the sea bottom in the region is classified
as “sub-horizontal accumulative surfaces of hollows.”
Within a rather thick (up to 50 m) layer of the bottom
sediments (mainly clay and aleuritic-clay silts), the den-
sity and sound speed were 1.4–1.6 g/cm3 and 1460–
1500 m/s, respectively. At distances of 1.7–17.5 km from
the drifting receiving vessel, 330-g charges were
exploded at the depths 150 and 300 m. The signals were
received by an omnidirectional hydrophone at a depth
of 100 m. The data obtained in this relatively deep-
water region of the Barents Sea are shown in Fig. 6. The
shown reverberation envelopes decay more slowly than
those obtained in the coastal region. At frequencies
higher than 100 Hz, the reverberation time exceeds 20 s,
and, at the frequencies 50–100 Hz, it decreases down to
5–10 s because of the increase in the noise level. Note
that similar examples of the explosion-generated sig-
nals are reported in [20] to illustrate the shapes of low-
frequency arrivals on a path in the central region of the
Barents Sea. The noticeable difference between the
shapes of the signals received at 20 km from the explo-
sive source in [20] and our signals received at 25, 31,
and 1.7 km (Figs. 1, 4, 6) testifies to a high spatial vari-
ability of the medium (in particular, the variability of
the scattering properties of the bottom), which governs
the low-frequency reverberation in the Barents Sea.

Figure 7 shows the frequency dependences of the
reverberation level obtained in the central region for
two distances between the source and receiver and
three values of the time delay td. At 0 dB, we use the
spectral level of the explosion-generated signal that is
normalized to a 1-m distance for the field of a spherical
wave and averaged over the filter band. This level was
calculated for a given mass of the charge and a given
explosion depth (see [4], p. 117). The values shown in
Fig. 7 and taken with the opposite sign can be condi-
tionally called losses due to propagation and scattering.
This quantity, experimentally estimated for different
distances and delays, weakly depends on the frequency
within the band 60–500 Hz. When the source–receiver
separation increases from 1.7 to 14.2 km, the losses
increase up to 4–8 dB for the same time delays. For the
band 60–500 Hz and the delays td = 3–10 s, the propa-
gation and scattering losses are within 85–98 dB
(according to the data of Fig. 7).

To interpret the experimental data on bistatic low-fre-
quency reverberation in the Barents Sea, consider the
simplest semiphenomenological model for boundary
reverberation in a shallow-water waveguide. Assuming
incoherent scattering, for the time delay td relative to
the direct arrival, one can represent the bistatic rever-
beration intensity as follows:

(1)Ir td( ) I0 msη1η2 s,d

S

∫∫=
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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where I0 is the intensity of the direct field at a unit dis-
tance in the zone of spherical spread of the wavefront
(the normalized transmitting level); ms is the scattering
coefficient; and η1 and η2 are the attenuation coeffi-
cients on the path from the source to the elementary
scattering area and from the latter to the reception
point, respectively. Integration is performed over scat-
tering areas of the waveguide boundaries that form
reverberation at the time delay td. If the distance from
the sound source is long as compared to the thickness

of the water layer, we have η1 = (A13/ ) × 

and η2 = (A23/ ) × , where r13 and r23 are the
horizontal distances from the elementary area to the
source and receiver, respectively; A13 and A23 are the
coefficients that determine the anomaly of the sound
field at distances r13 and r23; and β is the effective coef-
ficient of spatial attenuation (in dB/km) (r13 and r23
should be expressed in km). Expression (1) can be con-
siderably simplified if we assume that the coefficients
A13 and A23 are determined by the relations A13 = r13/r0
and A23 = r23/r0, where the transition distance r0 does
not depend on the position of the scattering area relative
to the source and the receiver. Then, we can introduce
the effective scattering coefficient  that does not
depend on the distance and the azimuth angle. Suppose
also that, within the scattering area, the factor which
governs the spatial attenuation can be factored out from
under the integral sign. Then, Eq. (1) is reduced to

(2)

where the substitution r13 + r23 = td + r12 is made.
Here, r12 is the distance between the source and the
receiver and  is the average horizontal velocity of
sound propagation in the waveguide. For the duration T
of the emitted pulsed signal, the integration domain at
the scattering surface (more precisely, at two scattering
boundaries of the waveguide) is bounded by two
ellipses with major semiaxes a1 = 0.5(r12 + td) and a2 =
0.5[r12 + (td + T)]. Upon integration on the assumption
that T ! td + r12, we obtain

(3)

or, relative to the level of the direct signal, for r12 @ r0,

(4)

The expressions obtained above can be used to esti-
mate the effective coefficient of spatial attenuation and
the effective scattering coefficient from the known
parameters I0, T, and r12; the estimated values of r0 and

r13
2 10

0.1βr13–

r23
2 10

0.1βr23–

ms

Ir td( ) I0/r0( ) 10
0.1β ctd r12+( )–

ms s/ r13r23( ),d∫∫×=

c

c

c
c

c c

Ir td( ) 2πms 1 2r12/ ctd( )+[ ] 1/2–≅

× I0/r0
2( ) T /td( ) 10

0.1β r12 ctd+( )–
×

Ir td( )/Ids 2πms r12/r0( ) T /td( )≅

× 1 2r12/ ctd( )+[ ] 1/2– 10
0.1βctd–

.×
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; and the experimentally determined values of the
reverberation intensity Ir or ratio Ir(td)/Ids. Equations (3)
and (4) can also be used in the case of explosion-gener-
ated signals. In this case, the duration T of the emitted
signal in Eq. (3) should be replaced by the effective
duration Teff of the received signal, in view of its pro-
traction in the conditions of multimode propagation in
the waveguide. In Eq. (3), it is more convenient to
change from the normalized transmission level to the
total signal energy E within the filter band. Then,
expression (3) can be reduced to the form

(5)

where W2 means the attenuation coefficient

(6)

c

Ir td( ) πEW2cmsr̃ 1 r12/2r̃( )2–[ ] 1/2–
,=

W2 r̃ 2– r0
2– 10 0.2βr̃–×=

325 Hz
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10 dB
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Fig. 6. Examples of envelopes of the direct signal and rever-
beration in the 1/3-octave filter band at different frequencies
for the source–receiver separation 1.7 km. An explosive
source, the central region.

Fig. 7. Frequency dependences of the average reverberation
level relative to the level of transmission for different time
delays td and separations r12 of the receiver and an explosive
source: the data obtained in the central region for td = (s) 3,
(n) 5, and (×) 10 s; r12 = (—) 1.7 and (- - -) 14.2 km.
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and  = 0.5 (r12 + td). At r12 = 0, i.e., for the source
and receiver being coincident in space, Eq. (5) coin-
cides with the formula presented in [4].

With Eqs. (3)–(5), the values of β and ms were esti-
mated for the experiment in the Barents Sea at different
frequencies. In accordance with the obtained data on
the range dependences of the averaged sound intensity
(the propagation loss), the value of r0 was specified to be
250 m for the coastal region and 350 m for the central
region. By applying the least squares method and using
Eq. (3), it was shown that the values β ≅  0.7–0.75 dB/km
yield the best approximation to the time dependences
of the average reverberation intensities Ir(td) for the
coastal region in the case of a large separation (r12 =
25 km) of the explosive source and the receiver (the
corresponding approximating curves are shown in
Figs. 1, 5, 6). These values weakly depend on fre-
quency within the band 100–400 Hz. For the pulsed cw
transmissions in the same region, β ≅  0.7 dB/km at the
frequency 300 Hz and β ≅  0.9 dB/km at the frequency
100 Hz. According to the data of the studies with explo-
sions in the central region, the attenuation coefficient
decreases from 0.4 dB/km at the frequencies 300–500 Hz
to 0.2–0.3 dB/km at the frequencies 100–160 Hz and
to 0.1 dB/km at 60–80 Hz. For the two studied regions
of the Barents Sea, the differences in the spatial attenu-
ation coefficients and in their frequency dependences
are mainly caused by the difference in sea depths and
bottom structures in these regions. Note that the esti-
mates of β obtained by processing the dependences
characterizing the reverberation decay with time agree
well with the data on the spatial attenuation of the direct
low-frequency signals on paths of several tens of kilo-
meters in length. At the same time, on longer paths
(100–200 km) in the Barents Sea (see [21]), the effec-
tive coefficient of spatial attenuation is lower than the
aforementioned values. This is explained by the strong
attenuation of rapidly decaying high-order modes,
which significantly contribute to the field at short dis-
tances.

r̃ c

–25

–30

–35

–40

1000 200 300 400 500 f, Hz

10logms

1
2
3

Fig. 8. Frequency dependences of the effective scattering
coefficient calculated from the low-frequency reverberation
data obtained in the (1, 2) central and (3) coastal regions of
the Barents Sea with the use of (1, 3) explosion-generated
and (2) pulsed cw signals.
The obtained attenuation coefficients were used to
estimate the effective scattering coefficient  at dif-
ferent frequencies. At the frequencies 40 and 80 Hz, for
the coastal region, the values of β were set to be equal
to 1.5 and 1 dB/km, respectively, according to the mea-
surements in the direct field. The frequency depen-
dences of  are shown in Fig. 8. The observed
decrease in the effective scattering coefficient agrees
well with the data presented in [4]. The spread of the
values of  is caused by both the inaccuracy of the
method and the use of different values of td and r12 in
estimating the scattering coefficient by Eqs. (3)–(6).
Rather high values of the scattering coefficient 
(from –25 to –40 dB) show that the bottom reverbera-
tion predominates, which is typical of negative refrac-
tion in a shallow sea. Noticeable differences exist in the
values of  obtained for the coastal and central regions
at frequencies higher than 150 Hz (at 200–400 Hz, the
values of  are by 5–6 dB higher in the coastal region
than in the central one). These differences presumably
are caused by different characteristics of the bottom
scattering and different effective grazing angles of the
power-significant rays (modes) near the bottom in the
two regions. At lower frequencies, the effect of the
refraction phenomena becomes weaker. This fact can
be a reason for the smaller differences in the values of

 obtained in the studied regions at frequencies lower

than 150 Hz. For pulsed cw signals,  was estimated

according to Eq. (4). The underestimated values of 
obtained at 100 and 300 Hz for the pulsed cw signals
can be explained by the fact that, in the data processing,
realizations were used with sufficiently high signal-to-
noise ratios, which corresponded to the interference
maximums of the sound field.

With formulas (5) and (6) in view of the estimated
β, we also calculated the ratios of the reverberation
intensities for the source–receiver distances r12 = 1.7
and 14.2 km with equal time delays (td = 3, 5, and 10 s).
This calculation was performed for the conditions of the
central region. The resulting values of 5–7 dB agree well
with the experimental data (4–8 dB). 

In the case of time delays that exceed the effective
duration of the received signal, with sufficiently large
source–receiver separations (r12 @ r0), the near-field
reverberation produced by bottom and surface scatter-
ing is superimposed on multiple reflections from the
bottom and surface. To estimate their contribution, we
calculated the ray structure of the sound field for a
waveguide whose parameters corresponded to the exper-
imental conditions. In the calculations, the medium was
modeled by an inhomogeneous liquid layer overlying an
absorbing homogeneous liquid halfspace. For the speci-
fied values h = 135 m (the sea depth), r12 = 5–25 km, and
β = 0.7–1 dB/km (the bottom parameters were selected
to provide the spatial attenuation with the given values
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of β), the calculated level of the bottom-surface reflec-
tions rapidly decays in time, and, already at td ≅  1.5–2 s,
it becomes 30–40 dB lower than the level of the direct
field and, hence, lower than the observed level of the
near-field reverberation. Similar calculations performed
for the environment of the central region at r12 = 20 km
showed that the observed reverberation levels exceed
the level of the bottom reflections at delays td ≥ 2–3 s.

In conclusion, it should be noted that the introduc-
tion of the effective scattering coefficient for predicting
the average level of bistatic low-frequency reverbera-
tion in a shallow sea is expedient for at least two rea-
sons. The first one consists in the small difference
between the effective coefficients of spatial attenuation,
which are determined from the decay of the level of the
direct field with distance and from the decay of the
reverberation level with time in the framework of the
simplest model. The second reason is associated with
the small spread of the values of  obtained for differ-
ent time delays td and source–receiver separations. For
a more detailed analysis of the experimental data, more
complicated reverberation models should be used that
account for the refraction and multiray (multimode)
nature of sound propagation in a shallow sea [22–24].
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Abstract—The scattering of acoustic waves by a vortex street formed behind a cylinder in an air flow is
studied both theoretically and experimentally for the case of the sound wavelength being much less than the
vortex size. The theoretical calculations show that, at flow velocities well below the sound velocity, the vor-
tex street can be considered as a moving phase screen. The spectrum of scattered sound in the far zone is
shown to consist of harmonics whose frequencies differ by a multiple of the vortex rate. The computational
results agree well with the experimental data obtained for the diffraction of ultrasound of the wavelength
λ = 3 mm by the Karman street formed behind a circular cylinder with an 8 mm diameter at a flow velocity
of 7 m/s. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Until now, the theoretical and experimental studies
of sound scattering by a vortex wake behind a cylinder
have been carried out for the case of the vortex core size
being much less than the sound wavelength [1, 2]. In
this case, the wake behind the cylinder can be approxi-
mated by a sequence of point vortices [1, 2]. Such an
approximation made it possible to derive analytical
expressions relating the flow parameters (the vortex
rate, the spatial period, and the vortex circulation) to the
spectrum of the scattered sound and to justify the
method of remote acoustic sensing [3]. In practice, the
point vortex approximation is often inappropriate.
Even though it may be valid at short distances from the
cylinder placed in a flow, it becomes incorrect at longer
distances, because the size of vortices increases down-
stream due to the diffusion. A typical situation is that
with the vortex core size being comparable to the sound
wavelength or even much greater than it. The latter case
is studied in this paper. We begin with describing the
results of numerical calculations for the acoustic wave
scattering by large-scale vortices. Then, relying on
these results, we show that, in some cases, the scatter-
ing process can be analyzed by using a simple model
that allows one to reduce the effect of vortices to phase
distortions. In terms of this model, we calculate the
spectrum of the scattered sound in the far zone. Finally,
we present the results of the experiment performed in a
wind tunnel and compare these results with our calcu-
lations.

NUMERICAL ANALYSIS OF RAY PATHS

Let us consider the scattering of a plane sound wave
by a two-dimensional Karman vortex street whose
1063-7710/00/4606- $20.00 © 20670
velocity field U(r, t) = (U, V) is induced by vortices with
a finite core size. We neglect the effects of viscosity and
heat conduction and assume that the flow velocity is
small as compared to the sound velocity c: M = |U|/c ! 1.
From the linearized equations of motion of an ideal
barotropic gas of density ρ0, for the perturbations of
density  and the horizontal and vertical velocity com-
ponents  and , we obtain:

(1)

(2)

(3)

We assume that the characteristic length L of the vortex
field variation in the Karman street far exceeds the
sound wavelength: λa ! L. We represent the solution to
Eqs. (1)–(3) in the form [4]

(4)

where θ(x, y) is the eikonal.
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ũ x y t, ,( )
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Assuming that the frequency ω is a large parameter,
we retain only the terms of the highest order in ω in
Eqs. (1)–(3); then, we obtain

(5)

(6)

(7)

For the system of Eqs. (5)–(7) to have a nonzero
solution, its determinant must be equal to zero. The lat-
ter condition yields

(8)

Here, f = ∂θ/∂x and g = ∂θ/∂y. It can be readily seen that
the solution to the equation Uf + Vg – 1 = 0 corresponds
to disturbances carried by the flow rather than to an
acoustic wave. We will seek the solution to Eq. (8) on
the assumption that the first factor in Eq. (8) is nonzero.

To determine the solution, we used the method of
characteristics (see, e.g., [5]). For this purpose, we
introduced the ray parameter z. We determined the ray
paths (x(z), y(z)) and the phase θ(z) correct to first-order
terms in M from the solution of a system of nonlinear
first-order differential equations. In numerically calcu-
lating the acoustic ray paths, we used the model of a
Karman street consisting of nonpoint vortices whose
vorticity Ω was concentrated in a bounded region of
radius R0. We assumed that, for a single vortex with the
circulation Γ0, the vorticity had the form

(9)

The ray paths were calculated for fifty rays that were
perpendicular to the mean line of the Karman street at
y = 10 and were equidistant within the spatial period
(Fig. 1). When the flow velocity is low (Fig. 1a), the ray
paths are undistorted (compare with Fig. 1b showing
the ray paths for higher velocities) and the wave ampli-
tude remains constant. In this case, the effect of the vor-
tex field on acoustic waves is reduced to an additional
phase shift. From the eikonal θ(x, y), we eliminate the
component that linearly grows with y, this component
being the same for all fifty rays. Then, the quantity
Ψ(x) = ωθ(x, y) – ky will harmonically depend on the x
coordinate along the flow (see the solid line in Fig. 2).
The period of the spatial modulation of the additional
phase shift Ψ coincides with the period of the vortex
street, and the modulation amplitude can be of the order
of π even at low flow velocities. In terms of physics,
this can be interpreted as follows. The vortex street con-
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sists of vortices rotating in opposite directions. When a
ray passes through the vortex street (see Figs. 1a, 1b),
the vortices from the upper and lower rows deflect the
ray in opposite directions and their effects compensate
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Fig. 1. Fifty ray paths uniformly distributed over the spatial
period of the vortex street; the paths are calculated for M =
(a) 0.02 and (b) 0.1; all distances are normalized to the
width of the vortex street h.

Fig. 2. Phase of the acoustic wave transmitted through the
vortex street. The solid line corresponds to the numerical
calculation by the ray theory, and the dotted line represents
the calculation by the approximate formulas.
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each other. For the additional phase shift, such a com-
pensation does not occur and the effects of the vortices
add up. Thus, in the case of low Mach numbers, the
Karman street does not cause any curvature of rays and,
for acoustic waves, it is equivalent to a phase plate.
Using this result, we can analytically calculate the
phase shifts for practically important cases.

APPROXIMATE CALCULATION
OF THE CHARACTERISTICS OF SOUND 

SCATTERED BY LARGE-SCALE VORTICES

The characteristics of the scattered sound were cal-
culated as follows. In the geometric acoustics approxi-
mation, the Karman street is equivalent to a phase
screen (as was shown above). Relying on this fact, we
determined the phase modulation of the acoustic wave
and, using the method of secondary sources (the Huy-
gens–Fresnel principle), calculated the far field. Such a
combination of the methods of geometric optics and
secondary sources has been used in, e.g., studies of
light scattering by large particles [6]. The necessity of
applying the Huygens–Fresnel principle is related to
the fact that we intend to consider the field at large dis-
tances from the vortex street. As was shown in the pre-
vious section, the ray curvature can be neglected only
in the immediate vicinity of the vortex street. The accu-
mulation of such a curvature will lead to the intersec-
tion of rays. The method used in our study allows one
to correctly calculate the sound field at distances as
long as one wishes.

For a plane acoustic wave propagating normally to
the axis of the vortex street, the additional phase shift
caused by the flow can be represented in the form

. (10)

In our calculations, we used the fact that the super-
position principle is valid for Eq. (10) and represented
the additional phase shift of the acoustic wave transmit-
ted through the Karman street as a sum of the phase
shifts caused by pairs of vortices with circulations of
opposite signs. We calculated the phase shift caused by
one pair of vortices and, then, performed the summa-
tion over an infinite number of pairs. When only point
vortices are present and the rays are not curved, the
additional phase shift that is caused by the vortices
located at the points with the coordinates x+ = – l/4, y+ =
2h and x– = +l/4, y– = h has the form

(11)

where Γ0 is the vortex circulation.
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For an infinite periodic vortex street consisting of
vortices moving with the speed U0, the additional phase
shift is represented as the sum

(12)

where l is the period of the vortex street and h = 1 is the
distance between the vortex rows (see Fig. 1).

To apply the Huygens–Fresnel principle, we place the
plane of the secondary sources at a distance y = y∞ = 10
from the vortex street axis. At large distances, the
velocity fluctuations in the vortex street exponentially
decrease and, at y > 10, the contribution of the eddy
velocity field to the additional phase shift is small. To
compare our theory with the experimental data, we
used the following approach. We assumed that the vor-
tex intensity depends on the x coordinate along the flow
in such a way that the vortex street is of finite length.
This dependence can be represented by the empirical
function

(13)

We assume that, for the vortex street, we have L = 3l,
where l is the spatial period of the vortex street. Such an
approximation fits well the results of the direct mea-
surements of velocity fluctuations behind the cylinder.
With allowance for the variations in the vortex circula-
tion, the phase can be represented in the form

(14)

This expression yields the additional phase shift,

which, at M =  = 0.02, is close to that obtained from

the exact calculation by the ray theory. Figure 2 pre-
sents the comparison between the additional phase shift
calculated by the ray theory (the solid line) and that cal-
culated by the approximate formula (12) (the dotted
line). When a plane wave of amplitude  is incident
on the vortex street, the scattered sound field ρscat

formed at the distance r from the vortex street can be
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represented as an integral over the region of secondary
sources:

(15)

where r = Ã .

Our calculations showed that, in the case of the
sound scattering by a vortex street having the form of
a moving diffraction grating, the spectrum of scat-
tered sound contains new harmonics with the frequen-
cies F = F0 + nfs, where F0 is the incident sound fre-
quency, fs is the vortex separation frequency (the Strou-
hal frequency), and n = ±1, ±2, ….

Figure 3 shows the calculated spectra of scattered
sound for the incident wave of frequency F = 120 kHz
when the length of the scattering region is L = 12 cm
and the distance is r = 120 cm (the Fresnel parameter is

L/  ≈ 2); the spectra were obtained for three differ-
ent angles φ. The choice of the parameters used for the
calculations was determined by the conditions of the
experiment, which will be described in detail in the fol-
lowing section. We note that, at greater distances, the
spectra of scattered sound in the Fraunhofer diffraction
region were similar to those shown in Fig. 3, but the dif-
ference in the amplitudes of the adjacent combination
harmonics was 1–2 dB (compare with the spectra
shown in Fig. 3).

EXPERIMENT

The experiments on sound scattering by large-scale
vortices were performed in a weak-turbulence wind
tunnel belonging to the Institute of Applied Physics of
the Russian Academy of Sciences. The schematic dia-
gram of the experiment is shown in Fig. 4. We studied
the scattering of ultrasound of frequency F0 = 120 kHz
by the vortex street behind a circular cylinder. The
source of ultrasound (the radiator) was a piezoceramic
transducer placed behind a screen with an opening of
radius rem = 1 cm. The screen was positioned at a dis-
tance Lem = 65 cm. The Fresnel parameter calculated for

the radiator was Fr = rem/  = 0.2. The periodic
vortex street was formed behind a cylinder of diameter
D = 8 mm placed in the test section of the wind tunnel
with the dimensions 30 × 30 cm2; the flow velocity was
U = 7 m/s. At this flow velocity, the Reynolds number
was Re = UD/ν ≈ 3.7 × 103, where ν is the kinematic
viscosity of air and D is the diameter of the cylinder.
The vortex separation frequency was fs = 190 Hz, which
corresponded to the Strouhal number Sh = fsD/U ≈
0.21. To measure the parameters of ultrasound, we used
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a 4135 B&K high-frequency microphone; the electric
signal from this microphone was transferred to the
operating range of a 2034 B&K analyzer. The micro-
phone facing the radiator was placed on the other side

5

10

15

0
Frequency

F0

F0 – fs

F0 – 2fs

F0 + fs

F0 + 2fs

F0 + 3fs

φ = 10°

5

10

15

0

F0

F0 – fs

F0 – 2fs

F0 + fs

F0 + 2fs

φ = 5°

5

10

15

0

F0

F0 – fs F0 + fs

φ = 0°

H, dB

‡

–‡

0

P
r0k0

y

x

z

h

l

ξ

φ

Radiator

Cylinder
Scattering region

Line of secondary
sources

Fig. 3. Calculated spectra of scattered sound for different
angles φ.
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of the vortex street, at a distance rm ≈ 1.5 m from it. The
Fresnel parameter calculated by the size of the scatter-

ing region, Lsc, was Fr = Lsc/  ≈ 2. Positioning the
microphone at greater distances was hindered by two
factors: an excessive amount of equipment in the room
and an increase in noise masking the signal. In the
course of the measurements, the microphone could be
set at different angles to the direction of incident ultra-
sound to receive the acoustic radiation scattered by the
vortices. Since the Fraunhofer diffraction condition
was not fulfilled in the experiment, we recorded only
the spectra of scattered ultrasound without determining
the scattering patterns, as was done in our previous
experiments [1, 2]. Figure 5 shows the scattering spec-
tra for different scattering angles; each spectrum was
obtained by averaging over ten independent realiza-
tions. In addition to the fundamental carrier frequency
F0, these spectra contain harmonics with the frequen-
cies F0 ± n190 Hz. As one can see from Fig. 5, the ratio
between the amplitudes of these harmonics depends on
the angle φ. As the scattering angle increases, the
amplitudes of the higher combination harmonics
increase, while the amplitude of the combination har-
monic with n = 1 decreases.

DISCUSSION

The theoretical (Fig. 3) and experimental (Fig. 5)
spectra of acoustic waves prove to be qualitatively sim-
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Fig. 5. Experimental spectra of scattered sound.
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ilar, if we compare the ratios between the amplitudes of
harmonics as the functions of the scattering angle φ. We
note that the scattering spectra shown in Fig. 5 notice-
ably differ from those obtained in the previous experi-
ments [1]. The main difference is that, earlier [1], only
the scattering into the first combination harmonic (n =
1) was recorded; the amplitudes of all other harmonics
were much smaller and virtually undetectable against
the noise. The experiment described above provides the
spectrum of scattered sound that contains a great num-
ber of harmonics (see Fig. 5). At first glance, this con-
tradicts the fact (repeatedly mentioned in [1, 2]) that, in
the Karman street, the fluctuation energy is mainly con-
centrated in the first harmonic. Nevertheless, this result
correlates well with the calculations and can be inter-
preted in the following way. For acoustic waves, the
vortex street represents a phase plate. In the case of the
propagation of short-wave sound, the phase modulation
index can be fairly large even at a low flow velocity (see
the above theoretical consideration). In the case of a
large index of the sinusoidal phase modulation, the sig-
nal should contain a great number of harmonics, which
accounts for the type of experimental spectra shown in
Fig. 5.

Although the experimental and theoretical data
qualitatively agree, there is a quantitative difference
between the amplitude ratios of higher harmonics and
between the shapes of the spectra of scattered sound. In
our opinion, these differences are related to the fact
that, along with the scattering by regular fields for
which the corresponding theoretical model is devel-
oped, some noise-induced effects take place. Firstly,
the spectrum of scattered sound (Fig. 5) contains a ped-
estal, which is presumably caused by the eddy compo-
nent of the air flow. Secondly, the experimental ratios
between the amplitudes of the combination harmonics
widely deviate from those calculated in the framework
of the proposed model. For example, according to the
calculations, the decrease in the amplitudes of harmon-
ics with increasing number n should be within 2–5 dB,
while the experiment yields a value of 5–7 dB. Presum-
ably, this occurs because, at Reynolds numbers about
Re = 3.7 × 103, the separation of vortices occurs in a
quasi-regular way. The effect of the quasi-regularity
can be illustrated by a model example. Assume that we
calculate the spectrum of the periodic signal

The spectrum of such a signal consists of the harmonics
mΩ = m2π/T0. We assume that the sequence is a quasi-
periodic one; i.e., τn = T0n + ξn, where ξn are indepen-
dent random Gaussian quantities with the variance σ.

S ω( ) g t τn–( )eiωt

n

∑ t,d∫=

τn T0n.=
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Then, if we calculate the spectrum 〈S(ω)〉  averaged over
the ensemble, we obtain (see, e.g., [7])

Thus, a random spread in the time of vortex separa-
tion most strongly affects the amplitudes of the high-
frequency spectral components. Precisely this effect is
observed in the experiment: the amplitudes of combi-
nation harmonics with large numbers are much less
than those predicted by the model with a purely regular
vortex separation.

In closing, we note that the proposed theoretical
model makes it possible to efficiently combine the
method of geometric acoustics with the Huygens–
Fresnel method of secondary sources. This approach
allowed us to obtain an analytical solution for the high-
frequency sound field scattered by a vortex street con-
sisting of large-scale vortices. The solution agrees well
with the experimental data.

S ω( )〈 〉 g t τn–( )eiωt

n

∑ td∫〈 〉=

=  g t( ) e
iω t T0 ξn+ +( )
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n
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2
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Abstract—A technique for creating an acoustic image based on its mathematical model is proposed. The tech-
nique can be used when conventional methods are inapplicable because of the small aperture dimensions rela-
tive to the wavelength, the presence of fluctuations, or nonstationary conditions. The essence of the method and
its features are illustrated by examples. The method is used to create an image of the angular distribution of
scattered signals and of the angular spectrum of signals at the output of an array in a full-scale acoustic exper-
iment. © 2000 MAIK “Nauka/Interperiodica”.
Acoustic images can be created similarly to the opti-
cal and radio images formed by wave fields. These
methods are known and widely used. In acoustics, con-
ditions may exist under which conventional imaging
techniques encounter fundamental difficulties because
of the small dimensions of the receiving aperture rela-
tive to the wavelength, the small data averaging time,
the complex structure of the medium, and its nonsta-
tionary behavior. Below, we consider an alternate imag-
ing method suitable for the conditions of a full-scale
acoustic experiment.

The proposed imaging method is illustrated in Fig. 1.
The diagram is organized in two rows, which is of prin-
cipal significance. The upper row almost copies the
conventional imaging scheme, but it does not include
the final operation of creating the image. Traditionally,
this final operation is performed through transforming
the field received by an aperture [1] or transforming the
complex correlation function (the coherence function)
[2]. Instead, the row terminates by estimating a series
of parameters, which still cannot be considered as an
image of the input distribution. Based on these param-
eters, the conventional methods cannot produce an
image. The corresponding inverse problem has no solu-
tion, because the aperture may be too small, and the
fields may be irreversibly averaged. We will call this
row of the diagram the natural row (NR). The image is
created by the second row, which we will call the com-
puter row (CR). At the beginning of the CR, the com-
puter creates an initial image, which includes a series of
parameters that change it. Subsequently, this image is
transformed in the same way as the original image of
the upper row. After that, the signal is processed as in
the upper row producing the same parameters, which
can take different values in the CR or have a different
form (if they are functions) from those in the NR.
1063-7710/00/4606- $20.00 © 20676
The desired image is created in the CR by changing
the original input image so as to obtain the parameters
or functions at the CR output that are close to those in
the NR. These selection procedures include variations
in the parameters of the computer-formed input image
with the subsequent comparison between the results
obtained in the CR and NR.

This is the general imaging scheme considered here.
It is essential that no stage of the proposed procedure
includes the process of solving the inverse wave prob-
lem. This feature allows us to obtain minor, but quite
stable and reliable, data on the image and its parame-
ters.

We will fill this general scheme with content in the
course of considering particular examples. By now, the
author has solved three problems that fit the above
scheme. One of them has been published [3]. In this

1 2 3

8

75 6

4

Fig. 1. Flowchart of the image formation on the basis of its
numerical model: (1) original field (image); (2) field distor-
tion due to the propagation; (3) field reception by the array
aperture; (4) determination of a series of parameters of the
received signal; (5) numerical model of the image; (6) math-
ematical model of unit 2; (7) mathematical model of unit 4;
and (8) comparison of the results produced by units 4 and 6.
000 MAIK “Nauka/Interperiodica”



        

ACOUSTIC IMAGING BASED ON A MATHEMATICAL MODEL 677

                  
example, the coincidence between the parameters
obtained by the NR and CR was not achieved. Here, we
take into account and correct the drawbacks of that
model.

The results of the field experiment that is used here
as an example were reported in [4]. We will describe
this experiment below, in the course of our consider-
ation. The goal of the experiment was to find out the
possibilities of the modern methods for array signal
processing to suppress a strong signal in order to
receive a weak signal. The study was carried out with
acoustic signals propagating in the shallow sea (about
80-m deep with about 20-m variations) over a distance
of about 10 km. A 237.5-Hz signal was received by a
linear array consisting of 64 receiving elements spaced
at half-wave intervals. The signal intensity was high
enough to make the effect of additive noise negligibly
small. In order to determine how high the intensity of a
signal must be to be received in the presence of another
intense signal, we used the second 235.0-Hz source,
which was towed by a special ship. The difference in
frequencies of the radiated signals was such that the
signal of the second source could be filtered out, shifted
in frequency, and mixed with the high-intensity signal
in any proportion. Prior to being processed, the signals
received by the array’s hydrophones were transmitted
through 0.2-Hz bandpass filters centered at the fre-
quency of the intense radiation.

To characterize the conditions under which the
experiment was carried out, we use the results of the
preliminary processing of the high-intensity signal
received by the array. These results will serve as the NR
output signal. We use all the results presented in [4].
These are the instantaneous array responses and a num-
ber of particular correlation dependences. The cited
paper [4] does not provide the total correlation func-
tion; therefore, we cannot use it. The main correlation
dependence presented in [4] is

(1)

where k( j, 31) is the complex correlation coefficient
between the signals received by the jth and 31st hydro-
phone (all the hydrophones are numbered as they are
ordered in the array). This pattern was averaged over
240 time realizations. The following dependence is also
given in [4]

(2)

as is the ratio

(3)

Function (2) refines the behavior of dependence (1) in
the neighborhood of its minimum. Ratio (3) is defined
so as to be equal to 0.25 when the correlation interval
of the wave field is much greater than the distance
between the array hydrophones. Therefore, both the

A j( ) 1 k j 31,( ) ,–=

B j( ) 1 k j j 1+,( ) ,–=

C j( ) 1 k j j 1+,( )–
1 k j j 2+,( )–
------------------------------------.=
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numerator and the denominator in Eq. (3) can be
expanded in power series in the increment of the array
element number. These series must begin with qua-
dratic terms, which entails our statement. If this interval
is shorter than the hydrophone spacing, the magnitudes
of the correlation coefficients in the numerator and
denominator of Eq. (3) become small; hence, ratio (3)
becomes approximately equal to unity. Thus, ratio (3)
characterizes the interval of field coherence along the
array. In the figure presented in [4], this ratio averaged
over the array is equal to 0.496, which indicates that the
field coherence interval is smaller than the array length
(200 m), but larger than the array receiver spacing (3 m).

The purpose of the experiment was to find the ratio
between the signals of two radiators at which the signal
of the weaker source can be observed against the back-
ground of the signal produced by the stronger source.
This ratio was determined by the array signal extraction
methods [4]. As a result of the experiment, this ratio
was found to be less than 30 dB. Reception of the
weaker signal is hindered by the noise produced by the
stronger signal. This noise is caused by fluctuations of
the stronger signal, which determine the above correla-
tion dependences. The physical mechanism responsible
for the fluctuation noise is not discussed in [4]. Its phys-
ical nature was addressed in [5]. Here, we will show
how the computer method can be used to find the origin
of this noise. Correlation dependences (1)–(3) given in
[4] will serve as the final stage of the NR (Fig. 1).

According to our scheme, one should form a com-
puter image. Let us define more specifically what we
want to find out. We want to find out from which direc-
tions this noise, which shadows the weaker signal,
arrives and how high its intensity is. In order to create the
respective computer image, we use the physical model of
the phenomenon [5]. In this case, the fluctuation phe-
nomena are caused by scattering of acoustic waves by
the rough sea surface. The shallow sea can be treated as
an acoustic waveguide with an irregular boundary, which
scatters the waves incident on it. As applied to this exper-
iment, this phenomenon was considered in [6]. Through
a number of simplifying assumptions, we succeeded in
obtaining a smooth curve for the intensity of the scat-
tered signals versus the angle of arrival. We will consider
it as the initial computer image.

The main feature of a real wave field is that it con-
tains the nonaveraged interference. In principle, such a
field can be formed numerically using the results
obtained in [7, 8]. However, in this technique, points
should be placed on the surface with intervals shorter
than λ/2, which involves an enormous amount of calcu-
lations, because the scattering surface is very large.
Therefore, we will follow the approach used in [9] and
will take into account the interference only at the final
step of calculations ignoring the interference at all pre-
ceding steps (this requires a much smaller number of
points).
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Following paper [9], we form the complex random
numbers

. (4)

Here, A and B are the sequences of random numbers
generated by the computer. The sequences are taken to
be sufficiently long so that, as can be seen from Eq. (4),
they can be used to form sequences of complex numbers
for n realizations, each of which contains 360 numbers
ϑ , which can be connected with angular degrees. The
computer image is represented by samples spaced by 1°
apart.

We form the random spectral components

. (5)

Here, ZO is the constant number that must be deter-
mined through matching the parameters of the mathe-
matical model with the experimental results. The func-
tion δ(ϑ) is zero at all ϑ  except for ϑ  = 0, where it is
equal to unity. We associate each ϑ  represented in
degrees with a plane wave:

(6)

where the wave vector u(ϑ) has the form

(7)

and x is the coordinate of a point in space in the (x, y)
rectangular coordinate system. The receiving array is
aligned with the x axis, and its edge is at the origin. The
y-axis is directed towards the radiator placed on this
axis. To form a wave field, we superimpose the plane
waves (6) with the random amplitudes (5). As a result,
we obtain the following wave field:

. (8)

Introducing plane waves with random amplitudes
and phases in the form of Eq. (5), we obtain a field that
simulates the plane wave interference. Into this field,
we can place a linear array aligned with the x-axis.

Placing the array in this field, we obtain a set of
instantaneous array responses, which can be calculated
as the Fourier spectrum in the x coordinate over all
array elements. These responses can be compared with
the experimental results.

The statistical characteristics of the wave field that
are obtained in the experiment are represented as fol-
lows:

(9)

Qϑ n, Aϑ Ln+ iBϑ Ln++=

q ϑ n,( ) S ϑ( )Q ϑ n,( ) ZOδ ϑ( )+=

W x ϑ,( ) iu ϑ( )x[ ]exp ,=

u ϑ( ) 2π
λ

------ 2π
360
---------ϑ 

 sin=

P x n,( ) W x ϑ,( )q ϑ n,( )
ϑ
∑=

R x( ) 1 C x( )
CE x( )CE 31( )

--------------------------------------- ,–=
where C(x) = (x, n)  and CE(x) =

|P(x, n)|]2;

(10)

where C1(x) = (x, n) ; and

(11)

where R2(x) = 1 –  and C2(x) =

(x, n) .

The statistical characteristics defined by Eqs. (9)–
(11) were measured in the experiment.

Thus, we can compare these characteristics and
those obtained from the experiment and, therefrom,
estimate the similarity and differences between the
experimental and simulated images.

As the first step in creating the image of the scatter-
ing region, we took the image presented in [6]. The for-
mulas presented above were used to calculate the nec-
essary statistical characteristics and the instantaneous
response of the array, which were compared with those
obtained experimentally. The results were significantly
different, which revealed the mismatch between the
computer and desired images. The correlation between
the values of the function R(x) was noticeably lower
than the correlation between the values of the function
A(j) for the NR, because the angular spectrum of the
signal in the computer image was very wide (it covered
the whole angular sector in which the signals arrive at
the array). Variations in the medium parameters
accepted for calculating the computer image (attenua-
tion, waveguide depth, distance between the radiator
and the receiver, decay characteristics of the scattered
waves) did not bring the function R(x) to a better agree-
ment with A(j). Therefore, we changed the computer
image with the help of an external parameter that was
not addressed in [6].

As we noted above, the NR signal was subjected to
the narrow-band filtering before processing. This oper-
ation can eliminate or significantly reduce the scatter-
ing in the regions where the Doppler frequency shift
exceeds the passband of the filter. The relative distribu-
tion of the Doppler frequency shift over the scattering
surface is shown in Fig. 2. The frequency filtering lim-
its the size and changes the shape of the region from
which the scattered signals can arrive. The respective
changes concerned with the filtering of the Doppler fre-
quencies were introduced into the original computer

1
N
---- P

n∑ P 31 n,( )

1
N
---- [

n∑
R1 x( ) 1 C1 x( )

CE x( )CE x 1+( )
---------------------------------------------- ,–=

1
N
---- P

n∑ P x 1+ n,( )

K x( ) R2 x( )
R1 x( )
---------------,=

C2 x( )
CE x( )CE x 2+( )

----------------------------------------------

1
N
---- P

n∑ P x 2+ n,( )
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image. As a result, the shape of the region from which
the scattered signals may arrive changed. Here, we took
into account that the filter does not completely suppress
the signals outside its passband. A –25-dB portion of
the unfiltered signal was added to the filtered signal.
The suppression level was selected so as to provide the
best fit between the shapes of the instantaneous
responses in the NR and CR rows.

The results of the comparison between the parame-
ters of the NR and CR signals are presented separately
for different scatterer velocities along the x and y axes.
Figure 3 shows the correlation functions for the filter
that suppresses the Doppler frequencies beyond a given
portion of the maximal Doppler shift. For the sake of
comparison, other parameters were averaged along the
array and plotted in Fig. 4. Figure 5 shows the computer
images corresponding to the filter bandwidths for
which the comparison was made.

As is shown in Figs. 3 and 4, agreement between the
parameters of the NR and CR is achieved when the fil-
ter cutoff frequency equals 0.075 of the maximal Dop-
pler frequency shift. The computer image correspond-
ing to this bandwidth is plotted in Fig. 5 with a heavy
solid line. Images corresponding to other bandwidths
are plotted by dotted lines, their width increasing with
the bandwidth of the Doppler filter. These images illus-
trate the resolution of the method. For the Doppler filter
cutoff frequency of about 0.1 of the maximal Doppler
shift to coincide with the actual 0.2-Hz cutoff fre-
quency of the filter specified in [4], the wave velocity at
the surface must be about 5 m/s, which is a realistic
value.

Figures 6–8 compare the characteristics of the NR
and CR for the wind blowing along the y axis. They also
provide a number of CR output parameters, which
demonstrate an excellent agreement with the NR
parameters. However, the cutoff frequencies of the
Doppler filter are surely unfeasible, because they
require that the wave velocity be greater by an order of
magnitude. We note that, the shape of the surface image
is in good agreement with the one obtained at a differ-
ent direction of the scatterer velocity. This means that
the simulations determine not the physical parameters
of the experiment, but only the image of the region
from which the scattered signals arrive. The NR and CR
rows are formed in such a manner that this image does
not distinguish directions that differ by 180°. With
allowance for this property, we can consider that the
image in Fig. 5 looks like the image in Fig. 8 obtained
at a different direction of the scatterer motion.

The computer method that we consider allows one
to create images in different planes. Above, we created
an image in the plane of the input signals before the
array where the scattering occurs. Now, we focus on
another example and use the same method to create an
image that refers to the array output. The number of
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
points in this image equals the number of hydrophones
in the array. Its coordinates are the spatial frequencies.

We represent the computer image by the following
formula:

. (12)

This formula contains three parameters, which
should be selected so as to make the statistical charac-
teristics of the NR and CR as close as possible.

First of all, we should form the necessary statistical
characteristics of the CR. To this end, the sequence of
random numbers (4) should be written with the number
of values that are taken by the variable ν, which is equal
to the number of array elements (64). After that, the

F u( ) u 32–
D

-----------------– 
 exp PD ZOδ u 32–( )+ +=
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Fig. 2. Top view of the surface with the contour map of the
Doppler frequency shifts: the scatterer moves (a) across the
path (along the x-axis) and (b) along the path (along the
y-axis).
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Fig. 3. Functions A(j) (solid lines) and R(j) (lines marked by circles) for the following cutoff frequencies of the Doppler frequency
filter normalized by the maximal frequency shift: (a) 1, (b) 0.5, (c) 0.15, (d) 0.1, (e) 0.075, and (f) 0.05.
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Fig. 4. Parameters of the NR and CR versus the cutoff fre-
quency of the Doppler frequency filter: squared differ-
ences of the array-average values of B( j ) and R1( j ) (cir-
cles) and C( j ) and K( j ) (squares) divided by their prod-
ucts.
spectrum of this sequence with respect to variable ν
should be multiplied by the computer image (12)
(except for the last term, which is not random).

This series of values should be substituted into
Eqs. (9)–(11) to form the statistical characteristics of
the CR.

Next, we define the following relationships that
can be used to compare the characteristics of the NR
and CR:

(13)

where A = (j) – C(j))2, C = (j) + C(j))2,

, (14)

. (15)

W
A
C
----,=

A(
j∑ A(

j∑
W1 B j( )〈 〉 R1 j( )〈 〉–

B j( )〈 〉 R1 j( )〈 〉+
-------------------------------------------=

W2 C j( )〈 〉 K j( )〈 〉–
C j( )〈 〉 K j( )〈 〉+

----------------------------------------=
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The numbers W, W1, and W2 are considered as dis-
crepancies between the CR and NR characteristics. The
parameters of the computer image are selected so as to
minimize the sum of magnitudes of these discrepan-
cies.

0180
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Vk

240 300

210 330

30150

120 60

40

20

0

Fig. 5. Angular distribution of the scattered field intensity
for the Doppler frequency filter bandwidths indicated in
Fig. 3. The functions are plotted in decibels (with respect to
their maximal values) plus 55 dB to make them positive
everywhere.
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An appropriate mathematical procedure can be
employed for this purpose. For example, we proceeded
as follows. We calculated all three numbers W, W1, and
W2 in a certain domain of parameters D, PD, and ZO.
Then, for each pair of values of PD and ZO, the mini-
mal total discrepancy versus the parameter D was deter-
mined. The value of this minimum was represented as a
function of two variables PD and ZO. A contour map of
this surface is shown in Fig. 9. We seek the parameters
for which the surface attains the absolute minimum. In
Fig. 9, the point of the absolute minimum is clearly
seen. This was achieved because, when the discrepan-
cies were summarized, the parameters W, W1, and W2
were used with different weights. With smaller weights
of the last two parameters, the point of the absolute
minimum cannot be seen; when these weights are
higher, local minimums appear, which do not change
the coordinates of the absolute minimum. In the pres-
ence of the local minimums, the picture is not as clear,
if the isolines are not indicated.

The computer image corresponding to the angular
response of the array is displayed in Fig. 10. It also
shows the image obtained from the formula in which a
quadratic exponential function was used instead of the
linear one given by Eq. (12). In this case, the minimal
discrepancy is much greater.

Thus, we obtained an image of the angular array
response that was observed in the experiment. This
result is of interest in that it can be used to obtain all the
results of paper [4] using only one radiator without
employing a second one and without the intricate tech-
nique that was used for extracting the weak signal in the
experimental work. Indeed, the spectral level of the
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
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Fig. 6. Functions A(j) (solid lines) and R(j) (lines with circles) for the following cutoff frequencies of the Doppler frequency filter
normalized by the maximal possible frequency shift: (a) 1, (b) 0.1, (c) 0.05, and (d) 0.01.
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image covers the entire acoustic horizon thus showing
the noise level corresponding to the strong signal. The
minimal level of the signal that can be extracted in the
presence of the strong signal is determined from the
computer image obtained at the array with the help of
the usual statistical estimates. These calculations can be
performed for all angles and not only for those at which
the weak radiator is currently located.

Therefore, the constructed computer image, which
shows the angular distribution of the scattered signals,
gives a better insight into the physics of the phenomena
under study. The practical value of this method is that it

10

1

10–1

10110–110–2

Fig. 7. Parameters of the NR and CR versus the cutoff fre-
quency of the Doppler frequency filter: squared differences
of the array-average values of B(j) and R1(j) (circles) and
C(j) and K(j) (squares) divided by their products.
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0
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Fig. 9. Isolines of the minimum of the sum of discrepancies
(W + 0.1|W1| + 0.1|W2|) for the parameter D varying from 2
to 4.4. The parameter PD is plotted on abscissa in 0.04 +
0.005x units. The parameter ZO is plotted along the y axis in
7 + 0.5y units.
clearly shows the distribution of the interference pro-
duced by an intense signal in a waveguide with rough
moving boundaries.
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Abstract—The effect of internal wave solitons on the sound field generated by a point source in a shallow sea
is considered. In the framework of the theory of “horizontal rays and vertical modes,” the sound field pattern
governed by the aforementioned hydrodynamic effect is investigated. It is shown that solitons can induce time-
periodic focusing and defocusing of horizontal rays propagating at shallow angles to the internal wave front.
This may result in the formation of “dynamical” horizontal sound channels, which, in its turn, results in con-
siderable temporal fluctuations of the field along the acoustic track oriented along the internal wave front. For
the sound field calculations, an approach is developed on the basis of the parabolic approximation in the hori-
zontal plane and the mode representation in the vertical direction. The results obtained can be used for remote
monitoring of internal wave packets in a shallow sea. © 2000 MAIK “Nauka/Interperiodica”.
Internal waves represent a hydrodynamic phenome-
non that is widespread in an oceanic medium. They are
one of the main factors responsible for the temporal
fluctuations of acoustic signals that propagate in oce-
anic waveguides. That is why both experimental and
theoretical investigations of the effect of internal waves
on sound signals attract considerable interest. For a
deep sea, the structure and the effect of internal waves
on signals have been considered in the well-known
monograph [1]. Here, in the ray approximation, the
authors investigate in detail the fluctuations of the
amplitude and phase of acoustic signals propagating in
a deep sea with the canonical sound velocity profile that
is perturbed by the internal waves described by the Gar-
rett–Munk spectrum [2]. At the same time, it should be
noted that acoustic fluctuations induced by internal
waves in a shallow sea (at a shelf) essentially differ
from those in the deep ocean. This difference is caused
by a number of facts. First, in describing low-frequency
sound fields that can propagate in a shallow sea for long
distances (~ 10 km), one has to use the mode descrip-
tion of the field; second, the internal waves on the oce-
anic shelf essentially differ from those in a deep-water
oceanic medium and cannot be described on the basis
of the Garrett–Munk model. In particular, one of the
features of the internal waves in a shallow sea is that
their structure includes the packets (wave trains) of
intense short-period oscillations, which stand out due
to their large amplitudes against the background. By
now, there are ample experimental data testifying to the
permanent presence of such wave groups, which can be
considered as soliton packets, in shallow oceanic
regions [3].

It is precisely such internal waves packets and
acoustic effects caused by these packets that attract the
1063-7710/00/4606- $20.00 © 20684
growing interest of researchers working in shallow
water acoustics [5–10]. For example, Rubenstein and
Brill [5] describe the results of an experiment carried
out in July and August 1988 in the shelf zone near the
Washington coast. The authors investigated the propa-
gation of an acoustic signal of frequency 400 Hz along
an acoustic track with a sea depth of ≈140 m and a
length of 18.5 km. In the course of the experiment, the
researchers noticed that temporal intervals where con-
siderable fluctuations of sound intensity loss were
observed alternate with the intervals within which the
loss was almost invariable. It was also found that vari-
ations of the acoustic field pass over the horizontal train
of hydrophones with a speed of ~0.75–1.00 m/s. Such
a behavior of acoustic signals led the authors to the
assumption that the main factor governing their behav-
ior is the internal wave packets.

Zhou and Zhang [6] consider one of the possible
interpretations of the results of an experiment carried
out in the Yellow Sea. In the course of this experiment,
anomalous absorption was recorded in the vicinity of
one of the frequencies in the spectrum of a broadband
signal. This selective absorption was interpreted as a
result of the interaction of sound with the soliton pack-
ets. The calculation of possible selective absorption
with allowance for the statistical properties of the soli-
ton packets was carried out in our previous paper [7].
Apel et al. [8] obtained the theoretical expressions for
the rms times of signal propagation in both the ray and
mode description of the sound field in the presence of
the internal wave solitons. The theoretical estimates are
compared with the experimental results obtained in the
region of the polar front in the Barents Sea. The modes
and rays most sensitive to the effect of internal waves
are determined.
000 MAIK “Nauka/Interperiodica”
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Fig. 1. Waveguide model. On the right: the sound velocity profile, the frequency of buoyancy, and the four first acoustic modes. The
thermocline is shown by grey color at a depth of 20 m.
Borisov et al. [9] describe the results of an experi-
ment carried out on stationary tracks of different
lengths passing across the shelf of the Sea of Japan. In
the experiment, signals in the frequency range of the
order of several hundred hertz were used. The spectra
of the fluctuations of the acoustic signal parameters are
compared with the spectrum of the internal waves
recorded in the same region. Borisov et al. [10] present
the experimental data on the simultaneous observation
of the acoustic signals received on a 34-km track in a
coastal shelf and the sequence of the internal wave soli-
tons recorded by a distributed sensor positioned near
the hydrophone. Konyaev et al. [11], using the charac-
teristics of the internal waves measured in the Yellow
Sea and the Massachusetts Gulf as input data, carried
out numerical modeling of acoustic fluctuations caused
by a packet of the internal waves propagating across the
acoustic track.

Briefly listing the main features of the internal
waves at a shelf, we note that, according to experimen-
tal data (see, for example, [2–4]), the packets of internal
waves in the shelf zone of the ocean have the form of
trains ~1–3 km long, which are separated by calm
intervals ~10 km in length and are quasi-sinusoidal in
shape with a quasi-period of ~200–400 m and an
amplitude of ~5–10 m. The packets propagate toward
the beach with a speed of ~0.5–1.0 m/s. The packets are
charaterized by

(i) anisotropy in the horizontal plane (i.e., they have
an almost plane wave front with the radius of curvature
~10–20 km);

(ii) a quasi-sinusoidal shape in the direction of prop-
agation (i.e., the spatial spectrum is rather narrow);

(iii) synchronous vertical displacements in depth
(this testifies to the predominance of the first gravity
mode).

These properties cause a considerable horizontal
anisotropy of the sound velocity field in the presence of
internal waves. The degree of this anisotropy can be
estimated. For example, assuming that a jump in the
sound velocity is ~20 m/s across the 10-m-thick ther-
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
mocline (the vertical gradient is ~2 s–1), the above-
listed parameters of the soliton provide the same jump
across the soliton front at a distance of ~200 m, which
produces the horizontal gradient of the sound velocity
~0.1 s–1, this value being comparable with the mean
vertical gradient. Noting that this “transverse” gradient
occurs along the long wave front (up to 20 km) of the
soliton, we conclude that the effect of this anisotropy
can be quite subatantial. This paper is devoted to study-
ing the acoustic effects that can be caused by the inter-
nal wave solitons.

We represent a shallow-water oceanic medium as a
three-dimensional hydroacoustic waveguide in the
coordinate system X, Y, and Z (Fig. 1). The waveguide
is formed by a water layer with the density ρ(z) and the
squared refraction index n2(z) + µ(x, y, z, t), where n2(z)
corresponds to some mean equilibrium stratification of
the layer (the respective sound velocity profile is
denoted as c(z)) and µ(x, y, z, t) is its perturbation
caused by the internal wave packet. The water layer is
bounded in depth by the free surface at z = 0 and the
homogeneous absorbing halfspace—the bottom—at
z = H with the density ρ1 and the squared refractive

index (1 + iα), where a is determined by the absorb-
ing properties of the bottom.

According to [1], the expression for µ(r, z, t) is
determined by the parameters of the internal wave
packet:

. (1)

Here, δc is the sound velocity variation caused by
the displacement of the surface of constant density;

N(z) =  is the frequency of buoyancy deter-

mined by the stratification of the water layer density; g
is the gravitational acceleration; Q ≈ 2.4 s2/m is the con-
stant determined by the physical properties of water;
r = (x, y) is the radius-vector in the horizontal plane;

n1
2

µ r z t, ,( ) 2δc r z t, ,( )
c z( )

-------------------------– 2QN2 z( )ζ r z t, ,( )–= =

g
ρ
---dρ

dz
------ 

 
1/2



 

686

        

KATSNEL’SON, PERESELKOV

                   
ζ describes the vertical displacements of the water lay-
ers, which can be written as [2, 3]

, (2)

where u = (ux, uy) is the horizontal speed of the soliton
generally depending on the coordinates, which may
cause a distortion of the wave front, and Φ is the first
gravity mode normalized to its maximum value. The
function Φ is determined by the boundary problem

(3)

Here, ω is the eigenvalue that determines the frequency
of oscillations in the vertical plane.

According to the experimental data, the internal wave
packets propagate rather slowly (u ≈ 0.5–1.0 m/s). If the
acoustic track length (between the transmitter and the
receiver) does not exceed ~10–20 km, which is the dis-
tance travelled by the sound signal within ~10–20 s, the
packet is displaced by no more than ~10–20 m in the
course of its propagation. This displacement is at least
an order of magnitude less than the typical quasi-period
of the packet (the mean width of individual solitons in
a packet is ~200–400 m). Therefore, we will consider the
problem of sound propagation in the approximation of a
frozen medium, i.e., the temporal variable t will be con-
sidered as a parameter, and the factor exp(i2πft) will be
omitted ( f is the sound frequency).

For analyzing the sound field in the framework of
the above-described three-dimensional model of the
shallow sea, we use the known theory of “horizontal
rays and vertical modes” [13], which was used, in par-
ticular, for calculating the horizontal refraction by
internal waves [14] (see also [15]). According to this
theory, the sound field Ψ(r, z) generated at the point of
reception (r, z) by the source located at the point (r0 = 0,
z = z0) satisfies the equation

(4)

and the boundary conditions

(5)

We will seek the solution for Ψ in the form

. (6)

Here, Anm(x, y) is the amplitude and θnm(x, y) is the
phase increment of the mth acoustic mode ψm(x, y, z).
Note that, in the general case, several horizontal rays
corresponding to the given mode can arrive at the point
of reception. These rays have different paths, and,
therefore, they are characterized by different ampli-

ζ r z t, ,( ) Φ z( )ζS r ut–( )=

d2Φ dz2⁄ N2 z( ) ω2⁄ 1–( )σ2Φ+ 0,=

Φ 0( ) Φ H( ) 0.= =

∆Ψ k2n2 R( )Ψ+ 0=

Ψ r z,( )[ ] z 0= 0,=

Ψ r z,( ) Ψ1 r z,( )–[ ] z 0= 0,=

1
ρ
--- Ψ r z,( )∂

z∂
------------------- 1

ρ1
-----

Ψ1 r z,( )∂
z∂

---------------------–
z H=

0.=

Ψ r z,( ) Anm r( )ψm r z,( ) iθnm r( )[ ]exp
m
∑

n
∑=
tudes and phase increments. Therefore, the summation
in expression (1) is carried out over both the vertical
modes (index m) and the horizontal rays (index n).

Assume that the hydroacoustic parameters of the
medium vary rather slowly along the rays. This
assumption is justified, because we consider the situa-
tion when the internal waves responsible for the spatial
variability propagate across the acoustic track. In this
case, we can deem that the modes ψm(r, z) and the cor-
responding wave numbers ξm = qm + iγm/2 depend on
the horizontal coordinate r as on a parameter; then, they
are the solutions to the Sturm–Liouville problem

(7)

Here, k = , where c is the sound velocity at some

fixed depth in the water layer, and the dependence g(ξm)
is determined by the bottom parameters. In particular,
for a homogeneous absorbing bottom, this dependence
has the form

. (8)

The functions θnm(r) and Anm(r) are the phase incre-
ment and amplitude of the nth ray corresponding to the
mth mode and arriving at the point of reception. These
functions are determined by the eikonal equation and
the transport equation

(9)

(10)

where ∇ r = (∂/∂x, ∂/∂y). From the eikonal equation, we
can easily obtain differential equations determining the
trajectory rnm(s) for the nth horizontal ray that corre-
sponds to the mth mode in the horizontal plane

, (11)

where ds = , tnm is the unit vector tan-
gential to the ray, and ∇ ⊥  is the gradient in the direc-
tion normal to the ray. Having solved differential
equations (11) and determined the trajectories of rays
Snm arriving at the point of reception and corresponding

∂2ψm r z,( )

z2∂
------------------------ k2n2 r z,( ) ξm

2 r( )–[ ]ψm r z,( )+ 0,=
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to a given mode ψm, we can determine the eikonals and
amplitudes for these rays with the use of the integrals
over these trajectories:

(12)

As seen from Eq. (9), the real part of the horizontal
wave number qm(r) has the meaning of the wave num-
ber (proportional to the refractive index) for the hori-
zontal rays corresponding to the mth mode. In the
framework of our model of the shallow-water
waveguide, the spatial dependence qm(r) is determined
by the internal wave packet. We assume that the change
in the water layer stratification due to the packets of the
internal waves leads to fairly small changes in the hor-

izontal wave number of the mth mode qm(r) =  +

δqm(r), where  is the eigenvalue of the Sturm–Liou-
ville problem without internal waves. The value δqm(r)
can be found from perturbation theory [16]

(13)

Expressing µ(r, z) in terms of the vertical displace-
ments by using formulas (1, 2), we obtain

(14)

Expression (14) provides a correction that should be
introduced in the effective refractive index in the hori-
zontal plane because of the presence of the internal
wave solitons. It is seen that the dependence on the hor-
izontal coordinates is determined only by the form and
speed of the solitons. It is also seen that the expression
in the braces provides the dependence of the effective
refractive index on the mode number. This dependence
can be analyzed in the simplest cases. Let the ther-
mocline region be rather narrow: h < z < h + ht , where
ht ! H. The frequency of buoyancy is assumed to be
constant in this region, N = N0, and equal to zero outside
it. Because in a shallow sea the predominant contribu-
tion to the sound field is made by the lowest, i.e., rela-
tively smooth, eigenfunctions, we can assume that the
eigenfunction is invariant within the interval ht. With
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allowance for these simplifying assumptions for δqm,
we obtain

(15)

In order to estimate this quantity, we make further
simplifications. Assume that the sound velocity jump in
the thermocline is small, so that lower acoustic
waveguide modes are reflected from the surface and
can roughly be represented by the modes of the Pekeris

waveguide: ψm(z) ≈ sin z. Then, for the correc-

tion on the right-hand side of Eq. (9), which determines
the effect of the horizontal anisotropy, we obtain the
estimate

(16)

It is seen that the effective refractive index
increases with the mode number for lower modes and
oscillates for higher modes. In the general case, the
pattern is certainly more complicated; however, from
expression (14) we can conclude that a soliton mainly
affects the mode that has the maximal intersection with
the thermocline (the region where the frequency of
buoyancy is the highest).

Consider the sound field pattern caused by a typical
soliton. The specific feature of a shallow-water sound
channel is that, because of the bottom loss in the course
of the propagation over a long track (10–20 km), the
modal composition of the sound signal arriving at the
receiver is determined by a relatively small number of
propagating modes. Therefore, in analyzing the effect
of horizontal refraction, we will consider horizontal
rays for separate modes, mainly, for the lower modes.
First, we consider the case of a plane wave front of the
solitons, i.e., we assume that the function of the vertical
displacement depends only on the coordinate y; in addi-
tion, according to our assumption on the frozen
medium, we have ζ = ζS(y – ut) = ζS(y – y0), where the
parameter y0 determines the position of the source with
respect to the soliton packets. In this case, the effective
refractive index in expression (7) depends only on y,
and the ray patterns for the horizontal rays in the (x, y)
plane are plotted similarly to the rays in a plane layered
medium. For a brief analysis of such a situation, we
assume that the source is positioned in the (x, y) plane,
at the point (x = 0, y = 0), and the acoustic track coin-
cides with the x-axis. According to the statement of the
problem, we are interested in the ray pattern in a rela-
tively narrow sector of horizontal launch angles of rays

δqm r( )
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about the x-axis. If the position of the source is fixed,
while the plane wave front of the soliton moves in the y
direction, the refractive index varies in time and, there-
fore, the ray pattern in the horizontal plane also varies.
For further analysis, we specify the form of the soliton.
Assume that the soliton packet has the cosinusoidal
form within a segment of width Ly (this form is a fairly
good approximation for model calculations):

(17)

where the parameter Λ denotes the quasi-period of the
packet (the relation Ly ≈ 4–5Λ usually takes place) and
ζ0 is the amplitude of the soliton.

The character of the ray pattern in the horizontal
plane depends on the position of the soliton packets rel-
ative to the source. If the packet is outside the source,
the ray pattern in the horizontal plane corresponds to
the conventional cylindrical divergence of linear hori-
zontal rays. When the packet covers the source, the ray
pattern depends on the source position inside the
packet. Consider two limiting cases: the source is in the
area of the maximal or minimal values of the soliton
amplitude, ζS = 0 or ζ0. The first case corresponds to the
source position at a point with the minimal sound
velocity value (with respect to the nearest vicinity in the
y direction). In this case, the horizontal rays launched
from the source are deflected toward the x-axis because

ζS y y0–( )
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Fig. 2. Ray patterns in the horizontal plane for the case of a
plane front of soliton packets. The dependence of the ther-
mocline displacement on the transverse coordinate is shown
on the left.
of the refraction. In the second case, the source is at a
point with the maximal sound velocity value, the rays
launched from the source are deflected away from the
x-axis. Both cases are presented in Fig. 2, which shows
the results of the calculations for some model packet of
solitons (the parameters are indicated in the figure cap-
tion). It is seen that the first case corresponds to the pos-
sible waveguide propagation (for a considerable hori-
zontal refraction). The second case corresponds to the
antiwaveguide propagation.

For the first case, we estimate the sector of horizon-
tal launch angles of rays originating from the source
and trapped by the horizontal channel. Assuming that
the sound velocity variations at the channel boundary
δc are caused by the soliton concentrated in the narrow
thermocline, we obtain the estimate

which for the parameters N0 = 15 cph, ht/H ≈ 0.2, ζ0 ≈
5 m, and Λ ≈ 400 m yields χ ≈ 10°.

For such a noticeable horizontal refraction, the for-
mation of a waveguide in the horizontal plane is gener-
ally possible. In this case, we can obtain the corre-
sponding phase condition for rays multiply crossing the
x axis as the quantization condition. According to these
conditions, the number of such rays (waveguide

modes) can be estimated as M ≈ . For a fre-

quency of 300 Hz and the aforementioned parameters,
we have M ≈ 4. A more accurate estimate must take into
account the dependence of all the pattern parameters on
the mode number.

If the wave front of the soliton packet is not a plane,
the ray pattern in the horizontal plane slightly changes.
Consider, for example, the case when the wave fronts
are circles with large curvature radii, which corre-
sponds to the expression

(18)

where the packet width satisfies the condition Lr ! r (r is
the polar radius that is equal to the current curvature
radius of the wave front of the packet, and r0 is the
parameter determining the position of the soliton
packet). In this case, the longitudinal coordinate along
the track is proportional to the polar angle ϕ. Figure 3
shows the ray patterns corresponding to the first and
third vertical modes for the cases of the waveguide and
antiwaveguide formation in the horizontal plane. The
parameters used for the calculations are shown in the
figures. It is seen that, for the third mode, the refraction
is considerably greater than for the first mode. This fol-
lows from formula (14) and Fig. 1: one can see that the
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interaction between the soliton and the third mode is
stronger than that between the soliton and the first
mode. Moreover, we note that, although the degree of
focusing and defocusing depends on the mode number,
the presence of these effects does not depend on the
mode number. It means that the sound field fluctuations
(the effects of focusing and defocusing) caused by the
propagation of the soliton packets through the acoustic
track will take place for all acoustic modes synchro-
nously, which enhances these effects in the case of a
real multimode sound propagation.

We calculate the intensity field distribution in the hor-
izontal plane in the presence of internal waves. This cal-
culation can be performed with the ray theory described
above by calculating the number of arriving rays and
combining their amplitudes. However, it is more expedi-
ent to develop an approach based on the parabolic equa-
tion, which is largely free of the disadvantages of the
geometric acoustics approximation. The method
described below can be called the method of vertical
modes and a parabolic equation in the horizontal plane.
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
We seek the solution to Eq. (4) as the expansion in
the reference waveguide modes, ψm(r; z), which
depend on the coordinates r in the horizontal plane as
on the parameters:

(19)

where the functions Pm(r) satisfy the equation

(20)

We first assume that the wave front of intense inter-
nal waves is plane. In this case, we introduce the Car-
tesian coordinates in the horizontal plane and direct
the OX axis along the front of the internal waves and
the OY axis along the normal to this front. In expres-
sion (20), the Laplace operator has the form

. (21)

Ψ r z,( ) Pm r( )ψm r;  z ( ), 

m
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We seek the solution to Eq. (20) in the form

(22)

where Fm(x, y) is a slowly varying function of the x
coordinate. For the function Fm(x, y) in the approxima-

tion of forward scattering (∂Fm/∂x ! Fm), we
obtain the parabolic equation

(23)

where nq(x, y) = qm(x, y)/  plays the role of the
refractive index corresponding to the mth mode.

For numerically solving Eq. (23), we used the con-
ventional scheme known as the Split Step Fourier
(SSF) algorithm [17, 18]

(24)

where FFT is the operator of the fast Fourier transform,

Tm(q) =  is the operator in the Fourier space q,

and Um(x, y) = [ (x, y) – 1] is the operator in the

space of the horizontal coordinates x, y.

To set the initial conditions for calculating by
scheme (6), we assumed that the source located at the
origin of coordinates x = 0, y = 0 generates a field that,
in the Fourier space q, is described by the expression

amexp(–q2/2 ), where the parameter am determines
the mode amplitude, which depends on the mode value

at the source depth, and the parameter ∆m = sinθmax

characterizes the angular range of the source radiation
taken into account in the calculation. The angle θ is
counted from the OX-axis.

Considering now a more realistic model of the inter-
nal wave packet, we assume that the packets have a
curved front rather than a plane front. In this case, it is
more convenient to use curvilinear coordinates (τ, η) in
the horizontal plane. The τ coordinate is counted along
the internal wave front, and the η coordinate is directed
normally to the front. In this case, the Laplace operator
in the horizontal plane takes the form

(25)
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where hτ and hη are the Lame coefficients correspond-
ing to the chosen curvilinear coordinates:

We seek the solution to Eq. (2) in the form

(26)

As a result, we obtain the equation for the function
Fm(η, τ) in the forward scattering approximation:

(27)

The numerical scheme for solving Eq. (27) differs
from that considered above only in that we need to
determine the Lame coefficients at every step:

(28)

where Tm(ξ) = (hτ /hη)2 +  is the

operator in the Fourier space q and Um(τ, η) = [  –

1] is the operator in the space of horizontal coordinates
τ and η.

Figure 3 shows the results of calculations by the
above-mentioned approach for the distribution of the
acoustic energy of the mth mode in the horizontal
plane

(29)

The two upper figures correspond to the first mode
of the sound field, and the two lower figures correspond
to the third mode. In our calculations, we assumed that
the sound channel stratification corresponds to that
shown in Fig. 1; the packet of the internal waves has the
sinusoidal form (18) with the parameters indicated in
the figure caption; the sound frequency is f = 250 Hz;
and the parameter θmax determining the field distribu-
tion at x = 0 equals θmax = π/18, which corresponds to
the inclusion of horizontal rays launched at angles not
exceeding 10° in both directions with respect to the tan-
gent to the internal wave front. The maximal value of
the ratio (29) is unity (at the source), and other values
are separated into five groups according to the degree of
blackening; the scale is shown in Fig. 3.

From Fig. 3, it follows that the effect of the horizon-
tal inhomogeneity on the third mode is much greater
than on the first mode, which agrees well with the pre-
ceding inference about the fraction of the vertical mode
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confined in the thermocline. These modal calculations
allow one to estimate the amplitude of the field fluctu-
ations caused by the soliton packets crossing the track.
We will briefly analyze the distribution of the field
intensity in the horizontal plane. For this purpose, we
use the curvilinear coordinate system (τ, η), where the
lines η = const coincide with the wave fronts of the soli-
ton packets (the values η = ±Λ/2 are shown by the dot-
ted lines in the part of Fig. 3 that corresponds to the ray
approximation). Let the source position be determined
by the coordinates τs = 0 and ηs = 0 and the receiver
position by the coordinates τr and ηr . In these coordi-
nates, the soliton form is given by the formula
0.5ζ0{cos[2π(η – η0)/Λ] + 1}, where the parameter η0
determines the position of the soliton packet at a given
time. For the first and third modes, Fig. 3 presents two
source positions relative to the soliton fronts: the source
is on the crest of the soliton (η0 = 0), which corresponds
to the antiwaveguide, and the source is in the hollow
between two crests of the soliton (η0 = Λ/2), which pro-
vides the possibility of the waveguide formation in the
horizontal plane. The patterns of the field intensity dis-
tribution for these two source positions obtained by the
parabolic equation (the eikonal equation) can be repre-
sented as two instantaneous patterns of the intensity
distribution (or the ray patterns) at some instants of
time for which the interval between them is determined
by the speed of the packet motion (for the speed u ~
1 m/s and Λ ~ 200 m, this interval is 200 s). In other
words, for fixed τr and ηr, we will observe temporal
intensity fluctuations. In particular, for τr ~ 4000 m and
ηr ~ 0, the intensity of both modes in Fig. 3 varies from
the maximal value (in the case of focusing) to almost
zero (for defocusing) within the aforementioned time
interval. For this model example, the level of fluctua-
tions is of the order of 6 dB. More precisely, the maxi-
mal fluctuations (whose level is determined by the spe-
cific conditions) will take place when |ηr – ηs | < Λ,
which means that the source and the receiver may fall
within one interval between two adjacent crests of the
soliton. When |ηr – ηs| > Λ, the level of the fluctuations
is lower, but they remain significant due to the redistri-
bution of the sound intensity in the horizontal plane. In
particular, for a distance of τr ~ 4000 m and ηr ~ Λ, the
level of fluctuations is ~3 dB for both modes. Thus, if
we speak about the possibility of an experimental detec-
tion of the sound field intensity fluctuations caused by
soliton packets, then, in order to record their maximal
allowable level, we must set the source and the receiver
so that they are crossed simultaneously by the same soli-
ton crests. The fact that these fluctuations are precisely
caused by the solitons is confirmed by the synchronism
of the fluctuations in the depth (all modes are focused
and defocused simultaneously) and by the temporal
scale of the fluctuations that is determined by the speed
and the quasi-period of the soliton packets: ~Λ/u.

One can expect that the mentioned features of the
received signals caused by the soliton packets in a shelf
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
area can serve as the basis for recording intense internal
waves crossing an acoustic track.
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Scale Invariance of the Intensity Anomaly Induced
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in an Arctic Waveguide
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Abstract—On the basis of the normal mode method and the theory of sound scattering by a stochastically
rough surface of an elastic layer, the specific features of the frequency dependence of the intensity anomaly
induced by the ice cover in the sound field generated by a tone source in an arctic waveguide are studied. The
anomaly is determined by the difference between the level (in dB) of the coherent component of the sound
intensity that occurs in the waveguide with the ice cover and the intensity level in a waveguide with an ice-free
surface. Using the WKB approach, it is shown that the intensity anomaly is invariant for all values of the fre-
quency, the mean ice thickness, and the rms amplitude and correlation radius characterizing the rough under-
surface of ice on the condition that the ratios of all the aforementioned geometric parameters to the sound wave-
length in water remain constant. This property is confirmed by precise calculations of the anomaly by the mode
program and explained by the specific features of the frequency dependence of attenuation coefficients and their
distribution in the numbers of normal modes. Possible practical applications of the revealed property of the
intensity anomaly are suggested. © 2000 MAIK “Nauka/Interperiodica”.
In the waters of the Arctic basin, the upper water
layer underlying the ice cover and reaching several
hundred meters in thickness is characterized by a con-
stant temperature close to the freezing point. As a
result, according to the known empirical equations, the
depth dependence of the sound velocity is mainly deter-
mined by the hydrostatic pressure, because the effects
of salinity prove to be of the second order of smallness.
This leads to the formation of a fully-developed subsur-
face sound channel with a positive gradient of the
sound velocity which almost linearly increases with
depth in the upper water layer.

It is well known that, because of the presence of this
channel in the waters of the Arctic basin, the sound
attenuation there is governed by the ice cover, which by
itself is a complex elastic system. The latter can be rep-
resented as an inhomogeneous absorbing elastic layer
that has rough boundaries and is characterized by
depth-dependent velocities of longitudinal and shear
waves and by attenuation due to the internal friction
between ice grains. The experimental data on the elastic
wave attenuation in the bulk of ice show [1] that the
attenuation of both longitudinal and shear waves is pro-
portional to the imaginary parts of the corresponding
complex wave numbers and linearly depends on fre-
quency in the frequency range from several dozen hertz
to 2 kHz; in addition, the attenuation of shear waves
exceeds that of longitudinal waves by approximately a
factor of six.
1063-7710/00/4606- $20.00 © 0692
In theoretical and numerical studies of sound prop-
agation under the ice cover, it is common practice to
use a simplified model of the ice cover in the form of a
set of homogeneous absorbing elastic layers. This
model serves as the basis for the development of refined
numerical models used for describing the sound scat-
tering from the ice surface and the sound propagation
under the ice cover with allowance for the spatial-sta-
tistical features of the ice undersurface [2–6].

The studies of the effects of various parameters of
the arctic waveguide on the frequency characteristics of
sound fields are of interest from the viewpoint of both
the design and operation of hydroacoustic systems with
optimal parameters and the development of methods
for acoustical monitoring of waters in the Arctic basin
[7]. The numerical modeling of these problems, which
includes multiple calculations of the space-frequency
characteristics of sound fields for the set of values of
the parameters to be estimated, encounters certain dif-
ficulties related to the increase in the computational
error at high frequencies, as well as to the long time
required for such calculations.

In this paper, for a typical model of the arctic sound
channel with the ice cover in the form of a homoge-
neous absorbing elastic layer with smooth boundaries,
we derive some simple laws that govern the behavior of
the frequency dependences of the waveguide character-
istics. The laws represent the “scale invariance”—the
property that allows one to increase the efficiency of
2000 MAIK “Nauka/Interperiodica”
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numerical modeling of both direct and inverse prob-
lems of underice sound propagation. According to [1],
the use of such a simplified model of the ice cover
instead of the more realistic multilayer model does not
noticeably affect the angular structure and the magni-
tude of the reflection coefficient for a plane harmonic
sound wave incident on the water–ice boundary within
the frequency range from several dozen hertz to 2 kHz
and for ice thickness up to ~3 m. Therefore, the effects
of the multilayer ice structure can be neglected in this
study. With the use of new results [5, 6] on sound reflec-
tion and scattering from an elastic layer with stochasti-
cally rough boundaries, the aforementioned laws are
generalized for the model of the arctic waveguide with
a rough undersurface of the ice cover. Finally, some
possible applications of the established laws are sug-
gested.

At first, we assume that the arctic waveguide is a
system consisting of an upper elastic layer with smooth
boundaries, a water layer, and a layered absorbing bot-
tom. If the water layer is excited by a concentrated har-
monic source with the coordinates (0, z0) and with a
cyclic frequency ω = 2πf, the sound pressure p
observed at an arbitrary point (r, z) is determined as a
sum of normal modes [8]:

(1)

where ρ0 is the water density; Q is the volume velocity
of the source; z0 and z are the transmission and recep-
tion depths, respectively; and r is the horizontal dis-
tance between the source and the receiver. The quanti-

ties wn(z) and λn =  (the square of the horizontal com-
plex wave number of the nth mode) involved in Eq. (1)
are the nth normalized eigenfunction and the nth eigen-
value, respectively, of the spectral boundary-value
problem

(2)

(3)

where ξ is the spectral parameter (the horizontal wave
number), H is the thickness of the water layer, c(z) is
the sound velocity in it, Gs is the input admittance of the
homogeneous absorbing ice layer covering the water
layer along the plane z = 0, and Gb is the input admit-
tance of the absorbing layered bottom (z ≥ H).

Recasting the matrix expressions given in [1], which
relate the displacement potentials of longitudinal and
shear waves to their normal derivatives at the upper and
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lower boundaries of the ice cover, we obtain an expres-
sion for the admittance Gs:

(4)

where

(5)

(6)

Here, α = , β = , kp = (ω/cp)(1 + iηp),
ks = (ω/cs)(1 + iηs), cp and cs are the velocities of the lon-
gitudinal and shear waves in the ice layer, ηp and ηs are
the loss coefficients for these waves, l is the ice cover
thickness, mi = ρi/ρ0 is the ratio of ice and water densi-

ties, and i = . We assume that a plane harmonic
wave is incident from the homogeneous water half-
space characterized by the sound velocity c0 = c(0) on
the water–ice boundary at a grazing angle χ and this
wave has the horizontal wave number ξ = k0cosχ,
where k = 2πf/c0 is the wave number in water near the
ice surface. Then, it is easy to verify that the expression
for the reflection coefficient Vs that corresponds to the
admittance Gs coincides with the formula obtained by
Brekhovskikh [9]. From Eqs. (4)–(6), it follows that the
reflection coefficient characterizing the sound reflec-
tion from the ice surface depends on the grazing angle
χ, the physical parameters of ice, and one scale param-
eter s = (kl) = 2πl/λ = s0 = const (k = 2πf/c0 is the wave
number, f is the frequency, and λ is the wavelength in
water) and does not explicitly depend on the fre-
quency f. This property of the reflection coefficient will
be used below in the analysis of the sound field intensity.

For definiteness, we consider the model of the bot-
tom in the form of a set of J homogeneous absorbing
water-saturated layers (with constant thicknesses hj,
longitudinal wave velocities cj, densities ρj , and loss
coefficients ηj , where j = 1, 2, …, J) lying on a liquid
or elastic absorbing halfspace (substrate), which is
characterized by the velocities cL and cT of longitudinal
and shear waves, the loss coefficients ηL and ηT for
these two types of elastic waves, and the density ρb. The
admittance Gb of such a bottom is determined by the
equality [10]

Gb = G0, (7)

in which the function G0(ξ2) is the zeroth term of the
recurrence sequence {Gj} of the input admittances at
the boundaries between the sediment layers:

(8)
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where aj = , kj = (ω/cj)(1 + iηj), j = 1, …, J –
1, J). The initial term of this sequence is the admittance
GJ of the bottom substrate. For the liquid and elastic
bottom models, this admittance is determined by the
expressions

(9)

(10)

respectively. Here, mb = ρb/ρJ is the ratio of the substrate
density to the density of the lowest sediment layer,

F(ξ2) is the Rayleigh function F(ξ2) = (2ξ2 – )2 –

4ξ2 , and kL = (ω/cL)(1 + iηL) and
kT = (ω/cT)(1 + iηT) are the complex wave numbers of
the longitudinal and shear waves in the substrate. From
Eqs. (7)–(10), it follows that the bottom reflection coef-
ficient Vb, which characterizes the reflection of a plane
wave incident on the boundary z = H at a grazing angle
χH from the side of the liquid halfspace [with the den-
sity ρ0 and the sound velocity cH = c(H)], depends on
the grazing angle, the acoustic parameters of the bot-
tom, and the dimensionless scale parameters sb, j =
kjhj = 2πhj f /cj , ( j = 1, 2, …, J) and does not explicitly
depend on frequency.

The normalized eigenfunctions wn of the boundary-
value problem given by Eqs. (2) and (3) can be calcu-

lated by dividing its arbitrary eigenfunction w( , z)
(determined within a constant factor) by the normaliz-
ing coefficient

(11)

where the function w(ξ2, z) is the solution to Eq. (2) that
satisfies the second boundary condition (3) at z = H.

Assuming that kr @ 1 and replacing  in Eq. (1) by
its asymptotic expression at large values of the argu-
ment, we obtain

(12)

This expression will be used below for analyzing the
frequency dependences of the sound field intensity. It is
convenient to represent the pressure
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where p1 is the sum of the sound pressures of the nor-
mal modes with the numbers n = 1, 2, …, N( f ), which
are characterized by the lowest attenuation and, at suf-
ficiently high frequencies, correspond to rays refracted
upwards and reflected from the ice surface without
interacting with the bottom, and p2 is the sum of the
remaining modes, i.e., modes with the numbers from
N( f ) + 1 to infinity, which correspond to rays multiply
reflected from the two absorbing boundaries of the
water layer. The mode of number N( f) corresponds to
the boundary ray whose grazing angle at the ice surface
is close or equal to the angle χN = arccos[c(0)/c(H)].
Therefore, we can assume that, at sufficiently long dis-
tances r from the source, the dominant contribution to
the sound field is made by the normal modes with the
numbers n = 1, 2, …, N(f). According to the high-fre-
quency asymptotic theory (the WKB approximation),
the attenuation coefficients for these normal modes, βn
(in dB/km), are determined by the expressions [11]

(14)

(15)

(16)

where Dn is the cycle length of a geometric ray with the
grazing angle χn at the water–ice boundary (this length
is equal to the distance between two successive reflec-
tions of the ray from the ice surface); ∆n is the horizon-
tal displacement of the bundle of rays due to the reflec-
tion from the ice surface; |Vs| and ϕs are the magnitude
and phase of the reflection coefficient at the water–ice
interface, respectively; and zt is the depth of the turning
point of the ray with the given grazing angle, this depth
being the unique root of the equation c0/c(z) – cosχn =
0. The grazing angle χn of the ray incident on the ice
cover and corresponding to the nth mode is determined
from the relation Reξn = kcosχn, where ξn is the hori-
zontal complex wave number of the mode. It should be
noted that, since the magnitude |Vs | and phase ϕs of the
reflection coefficient at the water–ice boundary explic-
itly depend on the grazing angle χn and the scale param-
eter s = kl and do not explicitly depend on the fre-
quency f, the attenuation coefficients βn of the normal
modes with the numbers n = 1, 2, …, N(f) also do not
explicitly depend on frequency and are only functions
of the parameter s and of the physical parameters of ice.

For the arctic waveguide, which is characterized by
the sound velocity linearly increasing with a depth c(z) =
c0 + gz (g > 0, g is the sound velocity the gradient), the
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cycle length of a ray with a small grazing angle χn is
equal to

(17)

and the magnitude of the reflection coefficient |Vs(χn)|
can approximately be represented in the form

(18)

where γ is the derivative of the magnitude of the reflec-
tion coefficient |Vs | with respect to the grazing angle χ
taken at the zero grazing angle. This quantity does not
depend on χn and is a function of the scale parameter
s = kl = 2πl /λ and the physical parameters of ice. Using
Eqs. (14)–(16) and taking into account the condition
∆n ! Dn, we obtain a fairly accurate expression for the
attenuation coefficients βn (in dB/km) of the normal
modes captured by the underice sound channel:

, (19)

where σ = (20log10e) × 103. From this expression, it
follows that the values of βn are equal for all mode
numbers n = 1, 2, …, N( f) and explicitly depend on the
scale parameter s = kl = 2πl/λ and the physical param-
eters of ice. Then, we note that, at sufficiently high fre-
quencies, the eigenfunctions wn for these modes are
exponentially small in a relatively large depth z interval
adjacent to the boundary z = H. Since Imξn ! Reξn, the
normalized eigenfunctions differ little from the corre-
sponding eigenfunctions of a waveguide with an ideal
nonabsorbing ice cover (ηp = 0, ηs = 0). The wave num-
bers ξn and the eigenfunctions wn of these modes almost

coincide with the corresponding characteristics,  and
, of a waveguide with a nonabsorbing ice cover

and an acoustically soft boundary z = H. Therefore,

we can set ξn =  + iβσ–1, n = 1, 2, …, N( f ). Thus,
for sufficiently high frequencies, the total sound pres-
sure p1(r, z, z0, ω) of the set of normal modes with the
numbers n = 1, 2, …, N(f) can be closely approximated
by the expressions

(20)

(21)

where the quantity β is determined by Eq. (10) and rep-
resents the acoustic attenuation coefficient (in dB/km)
related to the sound absorption in the bulk of the ice
cover, and p0 is the sound pressure in the waveguide
with a nonabsorbing ice cover.

Following the theory developed in [12–14], we will
obtain an approximate expression for . We replace

the eigenfunctions  and the wave numbers  in the

Dn 2χnc0/g=

Vs χn( ) χnγ–[ ] ,exp≈

βn σγ s( )g/c0 β const= = =

ξn

wn

ξn

p1 r z z0 ω, , ,( ) β s( )σ 1– r–[ ] p1,exp=

p1 r z z0 ω, , ,( ) ωρ0
Q

8iπr
---------------–=

× ξn
1/2–

wn z0 ξn
2,( )wn z ξn

2,( ) iξnr( ),exp
n 1=

∞

∑

p1

wn ξn
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sum involved in Eq. (21) by the corresponding WKB
expressions and transform it to a sum of Fourier inte-
grals with the use of the Poisson summation formula;
then, we perform calculations by the method of the sta-
tionary phase. As a result, we represent the sound pres-
sure p0 in the form of an infinite sum of fields of all pos-
sible rays that (i) leave the source in the upward and
downward directions at the angles (with respect to the
horizon) whose magnitudes are less than the angle of
departure of the boundary ray, (ii) are reflected only
from the surface of the nonabsorbing ice cover, and
(iii) arrive from above and from below to the observa-
tion point (r, z):

(22)

Here, As, j , Ts, j , and ϕs, j are the ray amplitude, the time
of signal arrival to the observation point over the jth ray
that experienced Ns, j reflections from the nonabsorbing
ice cover, and the phase of the reflection coefficient
with a unit magnitude for the reflection of the jth ray
from the nonabsorbing ice cover, respectively. The
expression for the amplitude of the jth ray has the form

(23)

where µs, j(z0) is the departure angle at which the jth ray
leaves the source (with respect to the horizon) and
µs, j(z) is the grazing angle of this ray at the point of
reception.

Similarly, following the theory [12–14] and using
the same transformations, the component p2, which is
equal to the sum of the normal modes with the numbers
n > N(f), can be represented in the form of the sum of
fields of all possible bundles of rays reflected from the
bottom and the lower ice surface:

(24)

where

(25)

Asb, j  and Tsb, j are the ray amplitude and the time of sig-
nal arrival to the observation point for the jth ray, µs, j
and µb, j are the grazing angles of the jth ray at the
points of reflection from the ice surface and from the

p1

ωρ0Q

8iπ
--------------–=

× As j, 2iπf Ts j, i Ns j, ϕ s j, Ns j,
π
2
---– 

 + .exp
j 1=

∑

As j, r
∂r

∂µs j, z0( )
--------------------- 

  µs j, z( )tan
1/2–

,=

p2

ωρ0Q

8iπ
--------------–=

× Asb j, 2iπf Tsb j, i Ns j, ϕ s j, Nb j, ϕb j,+( )+[ ] ,exp
j

∑

Asb j, Vs µs j, s,( )
Ns j,=

× Vb µb j, sb 1, sb J,, ,( )
Nb j, r

∂r
∂µsb j, z0( )
----------------------- 

  µsb j, z( )tan
1/2–

,
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bottom, µsb, j(z0) and µsb, j(z) are the grazing angles of
the jth ray at the transmission and reception depths, Ns, j
and Nb, j are the corresponding numbers of reflections
of the jth ray, and ϕs, j and ϕb, j are the phases of the
reflection coefficients for the ice-surface and bottom
reflections of the jth ray. From Eq. (24), it follows that
the absorption of elastic waves in the ice layer and in
the sediment layers may lead to fast attenuation of the
component p2 with increasing r, as compared to the
component p1.

Using Eqs. (20), (22), and (23) obtained above for p1
and Eqs. (24) and (25) obtained for p2, we select the
main characteristic of the sound field in the form of the
anomaly A(r, z, z0) of the sound field intensity and
determine this quantity as the relative intensity level in
decibels:

(26)

where I(r, z0, z) is the sound field intensity obtained as
a result of an incoherent summation of the intensities of
normal modes, and I0 is the sound field intensity in the
aforementioned sense in a waveguide without the ice
cover (l = 0). Using the method of the stationary phase
for calculating the sums of integrals of rapidly oscillat-
ing functions with the phase factors of types
exp{2πif[Ts, j + 1(r) – Ts, j(r)]} and exp{2πif[Tsb, j + 1(r) –
Tsb, j(r)]} over the interval of averaging, we arrive at the
following expression correct to the small terms O(ω–1/2):

(27)

where

(28)

are the amplitudes of rays in the waveguide in the
absence of the ice cover.

Consider now the consequences of Eq. (27) for the
anomaly A and those of Eqs. (25) and (28) for the
amplitudes Asb, j and .

In the special case of a waveguide with the bottom
in the form of a homogeneous liquid or elastic half-
space, when the reflection coefficient Vb is a function of
the grazing angle and does not depend on the fre-
quency, the anomaly A also does not explicitly depend
on the frequency and is a function of the scale parame-
ter s and the parameters r, z, and z0. This means that the
anomaly A is invariant for all frequencies f and ice
cover thicknesses l that satisfy the condition of con-

A 10 I r z z0, ,( )/I0 r z z0, ,( )[ ] ,10log=
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---r– 

  As j,
2
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10log=
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2

j 1=

∞

∑ / As j,
2 Asb j,

2

j 1=

∞

∑+
j 1=

∞

∑




,

Asb j, Vb µb j, sb 1, sb 2, …,sb J,, , ,( )
Nb j,=

× r
∂r

∂µsb j, z0( )
----------------------- 

  µsb j, z( )tan
1/2–

Asb j,
stancy for the scale parameter s = 2πfl /c0 = const or for
the product q = fl = const, and it is invariant at any dis-
tances r. In the case of a layered bottom with an arbi-
trary number of sediment layers, the anomaly A does
not explicitly depend on the frequency and remains
constant for all values of f, l, and the sediment layer
thickness hj (j = 1, 2, …, J), if two conditions are simul-
taneously satisfied: s = const and sb, j = kjhj =
s(hj/l)(c0/cj) = const (j = 1, 2, …, J). At sufficiently long
distances from the source, the anomaly A is approxi-
mately equal to

(29)

where the quantity β (in dB/km) is determined by
Eq. (19). From Eq. (29), it follows that, independently
of the model of the layered bottom, the anomaly A does
not explicitly depend on frequency and is invariant for
all values of f and l that satisfy the condition: s = const.

To test the scale invariance property of the sound
field intensity, which was revealed theoretically with
the use of the WKB approach, the dependences of the
anomaly A (in dB) on the horizontal distance r were
calculated for different pairs of values of the frequency
f and the ice cover thickness l that satisfied the condi-
tion s = const on the basis of the waveguide model typ-
ical of one of the shallow-water regions of the Arctic
basin. The results of these calculations are presented in
Fig. 1.

The depth dependence of the sound velocity in the
water layer, whose thickness was H = 204.47 m, was set
in the form of a linearly increasing function c(z) with a
positive hydrostatic gradient of 1.8 × 10–2 s–1 and with
c0 = c(0) = 1461.45 m/s and c(H) = 1465.15 m/s. The
ice cover was modeled as a homogeneous absorbing
elastic layer of density ρi = 0.9 g/cm3 with the follow-
ing typical parameters [1]: the longitudinal wave
velocity cp = 3832.7 m/s, the shear wave velocity cs =
1903.5 m/s, and the damping factors for longitudinal
and shear waves δp = 0.058 (dB/m)kHz–1 and δs =
0.348 (dB/m)kHz–1, which correspond to the loss coef-
ficients ηp = 4.068 × 10–3 and ηs = 1.212 × 10–2. For the
bottom of a shallow sea, the model was selected in the
form of a single homogeneous water-saturated sedi-
ment layer overlying an elastic halfspace with the fol-
lowing acoustic parameters: the sediment layer thick-
ness h1 = 40 m, the longitudinal wave velocity in the
sediment layer c1 = 1640 m/s, the sediment density ρ1 =
1.8 g/cm3, and the loss coefficient for longitudinal
waves in the sediment layer η1 = 0.005. The corre-
sponding parameters of the substrate were as follows:
the density ρb = 2.2 g/cm3, the longitudinal wave veloc-
ity cL = 2260 m/s, the shear wave velocity cT = 400 m/s,
and the loss coefficients for the longitudinal and shear
waves ηL = 0.001 and ηT = 0.005.

Figure 1 shows the dependences A(r) calculated for
the frequencies 300, 600, and 1000 Hz by the values of
the incoherent sums I0 and I for the normal modes, the
necessary number of which was 90, 180, and 260,

A β s( )r,–=
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Fig. 1. Dependences of the anomaly A on the horizontal distance r for the transmission and reception depths z0 = 10 m and z = 50 m,
respectively, and for different values of the ice thickness l and frequency f the solid lines correspond to: l = (a) 0.5, (b) 0.6, (c) 1.2,
and (d) 1.8 m; f = (a) 600 and (b), (c), (d) 1000 Hz; the dashed lines correspond to: l = (a), (b) 1, (c) 2, and (d) 3 m; f = (a) 300 and
(b), (c) and (d) 600 Hz.
respectively. The characteristics of modes were calcu-
lated by the mode program that was a modified version
of the program developed earlier [8] and took into
account Eq. (4) for the admittance Gs. As one can see
from Fig. 1, the curves A(r) for pair frequency values
virtually coincide, which confirms the property of the
anomaly that was determined in the WKB approxima-
tion. In Fig. 1a, the difference between the curves A(r)
obtained for the frequencies 300 and 600 Hz does not
exceed 1 dB, and, for the frequencies 600 and 1000 Hz,
the difference is of the order of 0.1 dB. These small dif-
ferences are explained by both the errors of the WKB
approximation and the weak effect of the frequency-
dependent two-layer model of the waveguide bottom.
The scale invariance of the anomaly A is explained by
the existence of a set of least attenuating normal modes
with equal attenuation coefficients βn, which are the
functions of the scale parameter s and the parameters of
the ice cover and do not explicitly depend on frequency.
This property is confirmed by the frequency depen-
dences of βn and the distributions of βn in the mode
numbers that were obtained using the mode program
and are presented in Figs. 2 and 3. As is seen from
Fig. 2, at the frequencies 300, 600, and 1000 Hz, the
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
groups of modes with the numbers n = 1–3, 1–7, and 1–
14, respectively, do have identical attenuation coeffi-
cients βn, while, at a lower frequency of 100 Hz, the
values of βn monotonically increase with the mode
number. According to Fig. 3, the modal attenuation
coefficients βn are nonmonotone functions of the fre-
quency f. The curves βn(f) exhibit a characteristic fea-
ture, which manifests itself in the fact that all these
curves asymptotically merge into one smooth curve
with increasing frequency, and this curve can be seen as
a lower thick line (envelope) in each of Figs. 3a–3d. At
sufficiently high frequencies, every point of this enve-
lope is truly characterized by the equality of the atten-
uation coefficients of normal modes for the lower mode
numbers.

Now, we proceed to the generalization of the results
for a more realistic model of the ice cover with a statis-
tically rough lower boundary. For such a model, the
most suitable characteristic of the sound field is the
coherent component of the sound pressure averaged
over the statistical ensemble of realizations of various
types of roughness [15], 〈p〉 . The corresponding anom-
aly of the coherent component of the sound field, 〈A〉 , is
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Fig. 2. Distributions of the attenuation coefficients of normal modes βn (in dB/km) in the numbers n for three values of the ice thick-
ness l = (*) 1, (s) 2, and (+) 3 m and four frequencies f = (a) 100, (b) 300, (c) 600, and (d) 1000 Hz.
determined by Eq. (26) in which the quantity I is
replaced by the quantity 〈I〉; the latter is equal to the
incoherent sum of the intensities of normal modes of a
waveguide with the statistical-mean plane ice–water
boundary characterized by the coherent reflection coef-
ficient 〈Vs〉  rather than by Vs. In this case, the corre-
sponding components 〈p1〉  and 〈p2〉  are determined by
Eqs. (20), (22), and (23) and Eqs. (24), (25) with the
quantity Vs being replaced by 〈Vs〉 . The quantity 〈Vs〉  is
determined as the statistical-mean amplitude of the
mirror-reflected wave that occurs when a plane wave of
a unit amplitude is incident on the ice surface from the
side of the water. If the value of 〈Vs〉  is known, the coef-

ficient , which characterizes the decrease in the inten-
sity 〈I 〉  with distance due to both the attenuation of elas-
tic waves in the bulk of the ice and the sound scattering
from the lower boundary of the ice cover, and the
anomaly 〈A〉  are determined by expressions similar to
Eqs. (19) and (29):

(30)

(31)

where  is the derivative of the quantity |〈Vs〉| with
respect to the grazing angle at the zero value of the latter.

For 〈Vs〉 , we can use the expressions derived in [5, 6]
for composite models of a rough lower boundary of the
ice cover with one or several types of roughness whose
amplitude distributions correspond to one or several

β̃

β̃ σγ̃g/c0,=

A〈 〉 β̃ s( )r,–=

γ̃

statistical laws. From these expressions, it follows that
the reflection coefficient 〈Vs〉  does not explicitly
depend on frequency and is a function of the parame-
ter s and the statistical parameters (kδi)2 = (sδi /l )2 and
(kδi)2(kai)–1/2 = s3/2(δi/l)2(ai/l)–1/2, where δi are the rms
roughness amplitudes with respect to the mean lower
boundary of the ice cover, ai are the spatial correlation
radii of the boundary roughness, l is the mean ice thick-
ness, and the subscript i = 1, 2, … indicates the type of
roughness of the composite model of the ice cover.

Thus, the intensity anomaly 〈A〉  and the quantity  also
are functions of the parameter s and of all statistical
scale parameters ζ i = δi /l and νi = ai /l, which are equal
to the ratios of the rms heights and correlation radii of
roughness, respectively, to the mean ice cover thick-
ness, and do not explicitly depend on frequency. Hence,
for the anomaly 〈A〉 , the scale invariance property
remains valid, which means that the value of 〈A〉
remains constant for all frequencies of the sound field
and for all values of the mean ice cover thickness, sed-
iment layer thickness, and rms heights and correlation
radii of roughness on the condition that the scale
parameters s, sb, j (j = 1, 2, …, J), ζi, and νi are constant.

Eqs. (19) and (29) for β and A(r), Eqs. (30) and

(31) for  and 〈A(r)〉 , and the described features of
their frequency dependences can be used in practice to
select the optimal frequencies of sound propagation in
the arctic waveguide on the basis of the conditions

β̃

β̃
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Fig. 3. Frequency dependences of the attenuation coefficients of normal modes with the numbers n = 1–20 for the values of the ice
thickness l = (a) 0.25, (b) 1, (c) 2, and (d) 3 m. The curves representing βn (in dB/km) follow from left to right in order of increasing
number n (from 1 to 20).

f, Hz
dβ/df = 0 or d /df = 0, as well as to solve various prob-
lems of the acoustical monitoring of the Arctic waters
(e.g., the reconstruction of the thermohaline structure
of the water medium and the reconstruction of the
parameters of the ice cover on the basis of acoustic
tomography). They can also be used to increase the
speed of operation of computer programs for solving
direct and inverse problems of sound propagation under
the ice cover, which can be achieved by replacing the
calculation of intensity at high frequencies by the faster
and more accurate equivalent calculations for lower
frequencies that satisfy the condition of constancy for
the scale parameter: s = l/λ = const.
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Abstract—It is shown that, in the Arctic-type deep-water waveguide, the first water mode can be used for
acoustic halynometry at frequencies of about 40 Hz and higher. For this task, the stochastic sound scattering by
the ice cover and the frequency dispersion of modes are the interfering factors. The data of numerical modeling
are presented for the levels of the regular and stochastic components of the pseudo-noise signal and for the
impulse response of the waveguide to narrow-band and broadband transmissions. To suppress the stochastically
scattered component of the sound field, one can use a horizontal extended array. However, choosing the exper-
imental site in a region with a mainly smooth ice cover may be more advantageous. It is shown that the fre-
quency band of the received signal can be broadened by introducing a frequency–time correction of the propa-
gation time of the first mode as a function of the sound frequency. © 2000 MAIK “Nauka/Interperiodica”.
In the framework of the Arctic ATOC Program [1, 2],
acoustic thermometry of Atlantic waters was imple-
mented in the deep-water Arctic region. Sabinin [3]
proposed using a similar technique for measuring the
time–space variability of salinity within the desalinated
water layer in the Arctic waveguide bounded by the ice
cover and the layer of the Atlantic waters. He substan-
tiated the scientific and practical-purpose value of such
an experiment. He also initiated the studies [4, 5] on the
preliminary mathematical validation of the experiment
on acoustic halynometry of the desalinated near-ice
water layer, which forms the near-ice waveguide. The
sound speed profile within this waveguide has a high
positive gradient that is sufficient to entirely capture the
first water normal wave at sound frequencies about
40 Hz and higher. The salinity variations in the near-ice
waveguide are supposed to be measured by estimating
the propagation time for the pulse that corresponds to
the first water mode. Similarly to the aforementioned
experiments [1], the pulse response of the waveguide is
to be formed by using a long pseudo-noise signal. The
carrier frequency f0 of the signal is modulated by a ran-
dom function of time F(t), whose parameters can be
reproduced with high precision. From the receiving
array, the signal of duration T passes to one input of the
correlator that includes a multiplier and an integrator.
The reference signal is fed to the second correlator
input; this signal is produced by a special-purpose
oscillator with the same central frequency f0, the fre-
quency band ∆f, and the modulating function F(t – τ).
Then, at the output of the integrator, we have a signal
that consists of deterministic and fluctuating compo-
nents, the envelope of the deterministic one reproduc-
1063-7710/00/4606- $20.00 © 20700
ing the shape of the pulse whose power frequency spec-
trum coincides with F(t) except for the time t being
replaced by the delay τ [4, 5]. The fluctuating compo-
nent (at the integrator output) has a variance that is by
a factor of 1/(4∆f T) lower than at the integrator input,
provided that the output signal of the array remains sta-
tistically stationary and ergodic within the time T. The
antenna array also receives other signals: ambient and
ship’s noise, etc. However, if they are statistically inde-
pendent of F(t), the interfering noise has no effect on
the deterministic component of the output voltage. The
latter fact is very important, because the effects to be
detected are weakly pronounced even on long Arctic
paths, and relatively low errors in estimating the mode
propagation time tm can lead to a high inaccuracy in the
measured variations of the water salinity. The errors in
tm can be caused by the frequency dispersion in the
near-ice waveguide, and, hence, the pulse must have a
narrow frequency band. On the other hand, in this case,
the duration and width of the pulse top will be large,
because they are proportional to 1/∆f. That is why we
propose to look for a modulating function that provides
a sharp pulse top. For example, one can use the maxi-
mal length sequence for the phase modulation of the
carrier signal, although other suitable functions may
exist.

The theory of the normal wave method can be found
in monograph [6]. The sound pressure is expanded into
waveguide eigenfunctions Φm(z) that correspond to the
longitudinal wave numbers ζm, where m is the mode
ordinal number and z is the vertical coordinate oriented
across the waveguide. In a horizontally stratified
waveguide, Φm(z) and ζm do not depend on the horizon-
000 MAIK “Nauka/Interperiodica”
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tal coordinate r. If the properties of the waveguide vary
with r, the functions Φm(z) and ζm can also be functions
of r. The dependence of Φm(z) on r leads to scattering
of the modes, i.e., to their interchange. Then, the sound
pressure can be calculated with the use of the method
of coupled modes, a version of which can be found in
papers [7, 8] for tonal and noise-type signals, respec-
tively.

Sound scattering can be both regular and stochastic,
depending on the nature of the inhomogeneities of the
water bulk and waveguide boundaries. Scattering by
the ice cover can be attributed to the stochastic type,
though this determination is somewhat conditional.
During the observation time for the sound field, the
shapes and sizes of the scatterers formed by the ice
cover remain nearly unchanged. In other words, one
deals with a single realization rather than with an
ensemble of realizations. If the ice profile is precisely
known, the sound pressure can be calculated with the
method of regular scattering. Most likely, this is what
must be done when the distance between the corre-
sponding points is comparable with the horizontal sizes
of the inhomogeneities. On long paths, the ice rough-
ness can be satisfactorily described by the histogram of
the ice draught and the statistical approach is prefera-
ble, because the roughness of the ice boundaries are
random in their shapes, sizes, and locations. If the mean
horizontal scale ρ of the ice roughness is much less than
the lengths of the Brillouin mode cycles that contribute
to the sound field and the roughness is statistically
homogeneous on ranges that are much longer than
these cycles (this property being an analog of stationary
conditions for time processes) and spatially ergodic [9],
one can replace the ensemble averaging by averaging
over the ice surface. In doing so, the surface area must
be much greater than the cycle lengths along the prop-
agation direction and than the transverse cross-section
of the scattering diagram. In the framework of the
model of multicomponent ice floes [10], from the his-
tograms one can find the mean thicknesses hj , the vari-

ances , and the coefficients εj that characterize the
representability of the jth ice type. We attribute the ice
fields to one type, if their distribution functions are
Gaussian. The resulting distribution function of the ice
draught is equal to the sum of the distribution functions
of the components composing the ice cover, with the
weighting factors εj. The mean ice thickness h is [11]

,

where N is the number of components. Being con-
structed from the same data of ice profiling as used for
the histogram, the correlation function of ice also
equals to the sum of the correlation functions of the

σ j
2

h ε jh j

j 1=

N

∑=
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ice-cover components, with the same weighting fac-
tors εj [10].

It is worth mentioning that stochastic sound scatter-
ing acts to equalize the mean energy fluxes in the
modes that form the stochastic component of the sound
field, as well as the propagation times of the modes. In
this process, the sound energy accumulates in the
power component of the stochastic sound field, the
fluctuating component being weakly pronounced,
because the signals are summed with random phase dif-
ferences that span the entire interval from 0 to 2π.

The algorithm for computing the sound pressure of
the coherent (statistically averaged over the roughness
of the ice boundaries) field is based on calculating the
following expression:

(1)

where r and z are the coordinates of the observation
point, t is time, G(ω) is the frequency spectrum of the
transmitted signal, ω = 2πf, and f is the sound fre-
quency. In a planar stratified waveguide, we have

where z0 is the source depth. For a horizontally irregu-
lar waveguide, Pm(c) are calculated according to the
scheme given in [7, 8].

To construct the impulse response for the noise-like
signal, G(ω) is considered to be equal to the power
spectrum of the function F(t), which is corrected for the
passband of the receiving filter (whose frequency
response is assumed to be rectangular) and is multi-
plied by the power W of the sound source. In practice,
for a broadband transmission, the sound field is calcu-
lated as a sum of narrow-band signals into which the
broadband one is broken within the frequency band ∆f.
For a tonal signal, the variance of the stochastic compo-
nent of the sound pressure is calculated according to
[12], with corrections for the regular sound scattering.
The variance of a broadband signal is also represented
as a sum of variances of narrow-band signals. In turn,
the variance of a stochastically scattered narrow-band
signal is calculated as the variance of a tonal signal

multiplied by the factor W∆ /∆f, where ∆  is the fre-
quency band of the narrow-band component. One can
do so, because the variance of the stochastic component
includes no interference part. Note that the procedure
of calculating the impulse response of a narrow-band
noise signal is nearly the same as for a deterministic
pulsed signal, if one replaces the modulating function
F(t) by its time correlation function B(τ), and the time t
by the time delay [4, 5]. In addition to our previous
computations [4, 5], we carried out the calculations for

p r z t, ,( )〈 〉

=  Re G ω( )Pm r( )Φm z( ) iωt–( )exp ω,d

0

∞

∫
m 1=

M

∑

Pm r( ) iπΦm z0( )H0
1( ) ζmr( ),=

f̃ f̃
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Fig. 1. Waveguide impulse response to the coherent noise field: f0 = 60 Hz, z = z0 = 60 m, r = 500 km, ∆f = (a) 3, (b) 10 without
correction, and (c) 10 Hz with correction for the waveguide dispersion of the first water mode.
the profiles of the velocity of sound for the path used in
the experiment of 1976. The ice cover was described by
the two-component model: a combination of a “smooth”
and a hummock ice. The histogram used was that
obtained in the central Arctic region. For smooth ice,
ε1 = 0.65. The mean thicknesses were specified as 2.6
and 6.6 m for the smooth and hummock ice types,
respectively. The following values were accepted for the
ice-water interface: σ1 = 1.6 m, σ2 = 3.3 m, ρ1 = 120 m,
and ρ2 = 44 m. The mean ice thickness h, as a whole,
was 4 m, and the corresponding value of the ice draught
σ was 2.91 m. The velocities of the longitudinal and
shear waves in ice were specified as 3500(1 + i0.04) and
1800(1 + i0.04), respectively. The ice density was cho-
sen to be 0.91 relative to the water density.

The sound source is at a depth of 60 m and emits the

power 10  = 190 dB, where  is normalized to the
1-Hz band and the distance r = 1 m (relative to 1 µPa).
The sound signal is received at a depth of 60 m. A cen-
tral signal frequency of 60 Hz is specified. At this fre-
quency, the first mode nearly does not reach the layer of
the Atlantic waters, and the frequency dependence of
the mode group velocity is weak. Figure 1a shows the
envelope of the correlation convolution of the noise sig-
nal with the reference signal for the band ∆f = 3 Hz, on
a path of 500 km in length. Within this frequency
band, the signal can be treated as a “narrow-band” sig-
nal. According to the plot, the modes of the near-ice
waveguide are separated from the others in time. The
pulses corresponding to the near-ice modes are located
at the end of the plot, because their group velocities are
lower than those of other modes.

Ŵlog Ŵ
Figure 1b shows a similar plot for ∆f = 10 Hz. The
broader frequency band of the signal leads to a shorter
duration of the mode pulse, but the entire duration of
the waveguide impulse response is retained. In Fig. 1b,
the terminal part of the impulse response is shown on a
stretched time scale. The frequency dispersion of the
waveguide broadens the mode pulse and distorts the
shape of its envelope. However, the frequency spectrum
of the signal can be corrected at the correlator input in
such a way that the group velocity vm of the first mode
will remain unchanged. As a result, the impulse
responses to modes of other numbers m can be
destroyed to a greater extent than is possible with only
the frequency dispersion, but these modes are of no
interest to us. The correction of the first water mode
allows one to increase the frequency band ∆f in which
the signal is analyzed. Hence, for the first water mode,
the pulse duration is minimized and the fluctuating
component is suppressed to a greater extent at the same
duration T of the realization. By doing so, one
decreases the error in measuring the propagation time
of the first water mode. To correct for the frequency
dependence of the group velocity of the desired mode,
one should know the law of the channel frequency dis-
persion. It can be calculated from the known sound
speed profile in the water column and the mean thick-
ness h of the ice cover. If h is much less than the sound
wavelength, the ice cover weakly affects the phase of
the reflected wave. Nevertheless, this effect may be
worth accounting for, because high sound attenuation
in the Arctic waveguide limits the acceptable length of
the propagation path for higher f0.
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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Figure 1b corresponds to ∆f = 10 Hz with no correc-
tion. Figure 1c is similar to Fig. 1b but calculated with
the correction of the signal with respect to the first
water mode. One can see that the sharpness of the mode
pulse is changed to the level corresponding to the nar-
row-band approximation for the frequency 10 Hz.

The impulse response of the waveguide is computed
for the coherent (regular) component of the sound pres-
sure. However, sound scattering by the ice cover creates
the stochastically scattered component of the sound
pressure, which has a zero mean value and a finite vari-
ance, the latter characterizing the mean intensity of the
stochastic component. Even for tonal transmission, this
component of the sound pressure has a random phase
and amplitude. If a pseudo-noise signal is transmitted,
the stochastic component correlates with the reference
signal, and, hence, it distorts the impulse response of
the waveguide (it is formed by mutual scattering of all
propagating modes). Since the scattered energy accu-
mulates, the variance of the stochastic component of
the sound pressure increases as the frequency f and dis-
tance increase and it can exceed the intensity of the
coherent component.

For the same propagation path as in Fig. 1, Fig. 2
shows the range dependence of the mean squared sound

pressure for ∆f = 3 Hz and the source power  within
the 1-Hz band, at 1 m from the acoustic center of the
transmitting array. The zero level of the sound pressure

is equal to 1 µPa, 10  = 190 dB. The coherent and
total sound fields are labeled by numbers 1 and 2,
respectively. The difference between the plots illus-
trates the variance of the stochastically scattered com-
ponent. At 60 Hz, this difference is not large, but corre-
sponds to the sound energy summed over all modes.
Figure 1 shows that the maximal level of the coherent
field in the first mode is much lower than the maximal
value of the total signal. Therefore, for the first water
mode, the actual ratio between the coherent and total
fields can differ from that shown in Fig. 2 (numbers 3
and 4 correspond to the coherent and total fields in this
mode). At a distance of 600 km, the coherent field of
the first mode is entirely masked by the stochastically
scattered one, so that the stochastic component is an
interfering noise in our case. The ratio of the mean
intensities of the coherent and stochastic components
does not depend on the source power, in contrast to the
ratio of intensities for the valid signal and the interfer-
ence produced by the medium and other sources. To
improve the intensity ratio of the valid (i.e., coherent)
signal and the interference (also including the stochas-
tically scattered component), one can use a horizontal
extended receiving array [13], which is compensated
for the phase front of the coherent field of the first water
mode with its longitudinal wave number used as that
for the array compensator. In this case, at the array out-

Ŵ

Ŵlog
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put, the ratio of the mean intensities of the coherent and
stochastically scattered fields increases in comparison
with the input ratio (i.e., in the medium). This increase
is proportional to the ratio of the array length and the
spatial correlation scale of the stochastic sound field
component along the wave front of the coherent field
[24]. Note that the presented calculations are per-
formed for the least favorable conditions of sound
propagation. The situation will be better if the experi-
ment is carried out in a region where the hummock
component of the ice cover does not exist or is weakly
pronounced and the variance of the roughness draught
is minimal.
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Abstract—A mechanism that accounts for the acoustic nonlinearity of cracks partially filled with a viscous liq-
uid is proposed. The mechanism is related to the nonlinear dependences of the capillary and viscous pressures
in liquid on the distance between the crack surfaces and on the rate of change of this distance. The nonlinear
equation of state is obtained for this type of cracks, and the parameters of this equation are determined. It is
shown that the presence of a viscous liquid can lead to a considerable increase in the acoustic nonlinearity of
such cracks, as compared to the cracks filled with an ideal liquid. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

One of the topical problems in acoustics is the
development of physical models and the construction
of the equations of state for highly nonlinear media.
The origin of a strong acoustic nonlinearity of a
medium is the presence of various microdefects (or
inhomogeneities) in its structure, and, therefore, such
media are called microinhomogeneous [1–4]. The
interest expressed by researchers in studying nonlinear
acoustic effects in these media is determined by the
prospects for the application of nonlinear methods in
diagnostics and nondestructive testing. The prospects
are related to the fact that the nonlinear properties of a
medium are more sensitive than the linear ones to the
presence of defects [3, 5].

This paper, which continues our previous studies
[5–7], presents a theoretical description of the acoustic
nonlinearity of cracks partially filled with a viscous liq-
uid. The nonlinearity is caused by the nonlinear depen-
dences of the capillary and viscous pressures in a liquid
on the distance between the crack surfaces and on the
rate of change of this distance. The defects of this type
are characteristic of rock masses in natural conditions
[8, 9].

CRACK MODEL AND ITS EQUILIBRIUM STATE

To construct the nonlinear equation of state of a
crack filled with a viscous liquid, we use the following
assumptions.

(1) A crack is a narrow cavity formed in a solid and
occupying an area bounded by a circle of radius R.

(2) The crack is partially filled with an incompress-
ible viscous liquid that connects the two crack surfaces
within a circle of radius R0 < R centered at the crack
center. The part of the crack volume that is free from
1063-7710/00/4606- $20.00 © 0705
liquid is filled with gas at a relatively low pressure, so
that the elasticity of the gas can be neglected.

(3) The distance between the crack surfaces varies
under a small varying stress σnn directed normally to
them; in the course of small oscillations of the crack,
the tangential velocity of the liquid at the crack surfaces
is zero because of the adhesion and no hysteresis of the
wetting angle is observed.

To obtain the equation of state of a crack with a vis-

cous liquid (i.e., the dependence σnn = σnn(d, ), where
2d is the variation in the distance between the crack sur-
faces), we consider (as in [5–7]) a plane-parallel circu-
lar cavity of radius R that is equivalent to a narrow ellip-
tic crack [10] with the distance between the surfaces
D ! R. The equation of state of such a cavity without
liquid has the form [6, 7]

σnn = Kd, (1)

where K = 3πE/8(1– )R is the effective elastic coeffi-
cient of the cavity, E and ν0 are Young’s modulus and
Poisson’s ratio of the solid without cracks, |d | < D, and
|σnn | < σ0 = πKD/2.

Now, we assume that this cavity is partially filled
with an incompressible viscous liquid of volume b, so
that it connects the two surfaces of the cavity within a
circle of radius R0 (Fig. 1). (Generally speaking, the
equilibrium states of cracks with a viscous liquid and
with an ideal liquid are similar; they differ only when
the liquids flow.) Because of the surface tension, the
pressure in the liquid will differ from the pressure of the
gas filling the rest of the cavity by the quantity [11–13]

(2)

ḋ

ν0
2

∆P 2α ϑ /Hcos=
2000 MAIK “Nauka/Interperiodica”
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and the equilibrium (or static) state of the cavity will be
determined by the following equation (the gas pressure
is neglected):

(3)

where α is the surface tension coefficient of the liquid,
ϑ  is the static (or equilibrium) wetting angle, µ =
b/πR2H = (R0/R)2 is the volume (or surface) concentra-
tion of the liquid in the cavity, 2d0 is the equilibrium
variation of the distance between the cavity surfaces
due to the capillary pressure in the liquid, H = D + 2d0
is the equilibrium distance between the cavity surfaces
in the presence of the liquid in the cavity, and H !
R0cosϑ .

From Eqs. (3), we obtain

(4)

i.e., the presence of liquid in the cavity changes the ini-
tial distance D between the cavity surfaces in such a
way that, for a nonwetting liquid (π/2 < ϑ  ≥ π), the cav-
ity widens, and, for a wetting liquid (ϑ  < π/2), the cav-
ity narrows. From these expressions, one can see that
the equilibrium state of the cavity is possible when the
condition 16αµ cosϑ/KD2 < 1 is fulfilled. However, we
note that, as the cavity narrows, the equilibrium dis-
tance between its surfaces cannot be less than H* =
b/πR2. At H = H*, the whole cavity will be filled with
liquid (µ = 1), and its further compression will be
impossible; simultaneously, the nonlinearity of the
crack will disappear. In this connection, in the follow-
ing consideration we assume that the conditions
(16αµ cosϑ /KD2) < 1, H > H*, and µ < 1 are valid.

For a narrow cavity (H ! a, where a = (2α/ρg)1/2 is
the capillary constant, ρ is the density of liquid, and g
is the acceleration of gravity), the profile of an unper-
turbed (i.e., static) meniscus is part of a circle of radius
Rm = H/2cosϑ [11–13] and, in the cylindrical coordi-
nates (Fig. 1), its shape will be determined by the
expression

(5)

πR2Kd0 2αb ϑ / D 2d0+( )2cos+ 0,=

or  Kd0 2αµ ϑ /Hcos+ 0,=

2d0 D 1 1 16αb ϑ /πR2HKD2cos–[ ]1/2
–( )/2,–=

H D 1 1 16αµ ϑ /KD2cos–[ ]1/2
+( )/2,=

Ur z H ϑ, ,( )
=  R0 H ϑtan( )/2 H/2 ϑcos( )2 z2–[ ]1/2

,–+

z

ϑ

R

H/2

H/2

rR0

Fig. 1. Schematic diagram of a crack in the form of a plane-
parallel narrow cavity partially filled with a liquid.
where ∂Ur (z = H/2, H, ϑ)/∂z = cotϑ .

NONLINEAR DYNAMICAL EQUATION
OF STATE FOR A CRACK

The fundamental difference in the nonlinear (i.e.,
dynamical) behavior of ideal and viscous liquids in a
narrow crack lies in the fact that oscillations of an ideal
liquid are accompanied by variations in its surface con-
centration (R0 ≠ const) with the wetting angle ϑ  being
constant and the meniscus having the shape of part of a
circle, whereas small oscillations of a viscous liquid are
characterized by a constant surface concentration (R0 =
const), a varying wetting angle, and a deviation of the
meniscus shape from the circular one.

When a crack with a viscous liquid experiences a
small varying stress σnn (that corresponds to small

oscillations of the meniscus), the distance  between
the crack surfaces will vary by a small quantity 2d ! H

(  = H + 2d), so that the equation

(6)

will be satisfied. Here, Pz is the z component of the
momentum of the liquid enclosed in the layer 0 ≤ z ≤

/2; P(r, , ) = P1( ) + P2(r, , ), where P1( )

and P2(r, , ) are the capillary and viscous pressures

in the liquid; and  is the rate of motion of the cavity
surface. (The condition of smallness for the displace-
ments d, which provides the absence of the liquid
motion along the crack surfaces and, hence, the absence
of the wetting angle hysteresis [13, 14], will be consid-
ered below.)

To determine the pressure P(r, , ), we solve the
problem on the oscillations of a viscous liquid in a cavity

when the distance  between the cavity surfaces varies
under a varying stress σnn. (The solution of a similar lin-
ear problem without taking into account the surface ten-
sion of the liquid can be found in [11].) In the cylindrical
coordinates with the origin at the cavity center, the
motion of the liquid is axially symmetric and, since the
cavity is narrow, the motion is mainly radial and satisfies
the conditions Vz ! Vr and ∂Vr/∂r ! ∂Vr/∂z, where Vz

and Vr are components of the liquid motion. Thus, at

small Reynolds numbers (Re = H/ν ! 1), the motion
of the liquid in the cavity will be described by the linear
equations of hydrodynamics [11]:

(7)

(8)

H̃

H̃

Ṗz πR2σnn πR2K d d0+( )–=

+ 2π P r H̃ ḋ, ,( )r rd

0

R0

∫

H̃ H̃ ḋ H̃ H̃ ḋ H̃

H̃ ḋ

ḋ

H̃ ḋ

H̃

ḋ

∂Vr/∂t 1/ρ( )∂P/∂r– ν∂2Vr/∂z2+ 0,= =

1/r( )∂ rVr( )/∂r ∂Vz/∂z+ 0=
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with the nonlinear boundary conditions

(9)

(10)

(11)

where ν is the kinematic viscosity of the liquid.
For acoustic disturbances in the frequency range

satisfying the condition ω ! ω* = ν/H 2, the motion of
the liquid in the cavity will be a steady one and the term

 in Eq. (7) can be neglected [11]. For the same rea-

son, we will neglect the inertial term  ~  in Eq. (6).
(For narrow cracks, the frequency ω* is sufficiently high.
For example, for cracks with water (ν = 10–2 cm2/s) at
H = 10–4 cm, we obtain ω* . 106 Hz.) Then, the solution
to Eqs. (7)–(11) has the form

(12)

(13)

(14)

where η = νρ is the dynamic viscosity of the liquid.
(When the surface tension is neglected (P1 = 0),
Eq. (14) coincides with the corresponding equation
obtained in [11].) From Eq. (14), it follows that the vis-
cous pressure in the liquid depends on the distance 
between the crack surfaces and the rate of change of

this distance : P2(r, , ) ~ η / . This is the cause
of the viscous nonlinearity of the crack.

To determine the capillary pressure P1( ), we
study the variations in the shape and area of the menis-
cus with varying the distance  between the surfaces.
As was mentioned, the oscillatory radial flow of the vis-
cous liquid in the crack will lead to oscillations of the

meniscus whose shape  = (z, , ) will be
determined by the equation

(15)

Here,  is the dynamical wetting angle; Ur (z, , ϑ) is
determined by Eq. (5) in which the constant quantity H

is replaced by the varying quantity ; and the pertur-
bation of the meniscus shape ξ(z, r . R0, d) is deter-
mined from the equation [11]

(16)
In this case, as in the equilibrium state (5), the condition

∂  (z = /2, , )/∂z =  will be fulfilled.

Vr z H̃/2±=( ) 0,=

Vz z H̃/2±=( ) ḋ ,±=

P r R0 H̃ ḋ, ,=( ) P1 H̃( ),=

V̇ r

Ṗz V̇ z

Vr z r ḋ, ,( ) 6rḋ

H̃
3

--------- z2 H̃
2
/4–( ),=

Vz z ḋ,( ) 4zḋ

H̃
3

--------- z2 3H̃
2
/4–( ),–=

P r H̃ ḋ, ,( ) 6η ḋ

H̃
3

---------- r2 R0
2–( ) P1 H̃( ),+=

H̃

ḋ H̃ ḋ ḋ H̃
3

H̃

H̃

Ũr Ũr H̃ ϑ̃

Ũr z H̃ ϑ̃, ,( ) Ur z H̃ ϑ, ,( ) ξ z r . R0 d, ,( ).+=

ϑ̃ H̃

H̃

∂ξ /∂t Vr∂ξ /∂r Vz∂ξ /∂z+( )+ Vr z r . R0 ḋ,,( ).=

Ũr H̃ H̃ ϑ̃ ϑ̃cot

Solving Eq. (16) by the perturbation method, we
determine the quantity ξ:

(17)

Differentiating Eq. (15) with respect to z at z =

/2, we obtain an equation for the dynamical wetting

angle :

(18)

from which

(19)

From this expression, it follows that, as the distance
between the crack surfaces varies, the dynamical wet-

ting angle  behaves in different ways depending on
the value of the static wetting angle ϑ ; namely, when
the cavity widens (d > 0), for 0 < ϑ  < π/2, the wetting

angle  decreases and, for π/2 < ϑ  < π, it increases, and

vice versa; for ϑ  = 0 and ϑ  = π, the wetting angle 

remains constant,  = ϑ ; and at ϑ  = π/2, the wetting

angle  varies so that  > 0 when the cavity wid-

ens and  < 0 when it narrows. From Eq. (19), we
obtain a limitation on the values of d at which the liquid
does not move along the crack surfaces and no hystere-
sis of the wetting angle is observed. Evidently, these
conditions will be fulfilled when the dynamical wetting

angle will satisfy the inequalities ϑ r ≤  ≤ ϑa [13, 14]
or (when (6R0|d |/H2)sin3ϑ  ! |cosϑ |)

(20)

where ϑa and ϑ r are the inflow and outflow wetting
angles.

The hysteresis of the wetting angle depends on
many factors (surface roughness, surface impurities,
presence of surfactants in the liquid, etc.), and the dif-
ference between the angles ϑa and ϑ r may exceed 10°
[13, 14], so that, for liquids with the wetting angles ϑ !
π/2 and ϑ  . π, inequalities (20) will be satisfied with a
large safety margin in d. Using Eqs. (5), (15), and (17),

ξ z r . R0 d, ,( ) 6R0 d/H( ) z/H( )2 1/4( )–( )=

+ 6R0 d/H( )2 z/H( )4 9 z/H( )2– 1/16( )+( )

+ 20R0 d/H( )3 z/H( )6
  –  81/20 ( ) z / H ( ) 

4 (

+ 33/16( ) z/H( )2 1/64( ) ).–

H̃

ϑ̃

ϑ̃cot ϑ 6R0d/H2,+cot=

ϑ̃cos ϑ 6R0d/H2( ) ϑ .sin
3

+cos=

ϑ̃

ϑ̃
ϑ̃

ϑ̃
ϑ̃ ϑ̃cos

ϑ̃cos

ϑ̃

ϑ ϑ a 6R0d/H2( ) ϑsin
2 ϑ ϑ r,–≤ ≤–



708 NAZAROV
we determine the area S( ) of the meniscus of the vis-
cous liquid in the crack:

(21)

Performing some calculations (for R0 @ H ,
R0(π/2 – ϑ) @ H, and R0cosϑ  @ H), from Eq. (21), cor-
rect to the third power of d, we obtain

(22)

where

F1(ϑ) = ((π/2 – ϑ) + (sin2ϑ  + sin4ϑ)/4
– (sin6ϑ)/12)/cos3ϑ ,

F2(ϑ) = cosϑ(7 – 10cos2ϑ  + (35/9)cos4ϑ).

The plots of the functions Fi = Fi(ϑ) (i = 1, 2) are pre-
sented in Fig. 2.

By the change in the meniscus area, we determine
the capillary pressure in the liquid correct to the terms
quadratic in d [11]:

(23)

Finally, from Eqs. (3), (6), (14), and (23), we obtain
the nonlinear (in the quadratic approximation in d)

H̃

S H̃( ) 4π Ũr z H̃ ϑ̃, ,( )
0

H̃ /2

∫=

× 1 ∂Ũr z H̃ ϑ̃, ,( )/∂z[ ]2
+( )

1/2
dz.

ϑtan

S H̃( ) 2πR0H π/2 ϑ–( )/ ϑcos=

+ 4πR0
2 ϑ /Hcos( )d

+ 9πR0
3/4H3( )F1 ϑ( )d2 216πR0

4/35H5( )F2 ϑ( )d3,–

P1 H̃( ) α /πR0
2( )∂S H̃( )

∂H̃
----------------–=

=  α 2 ϑ /Hcos 9R0/4H3( )F1 ϑ( )d+(–

– 324R0
2/35H5( )F2 ϑ( )d2 ).

1 2
2

1

10

5

0

–5

Fi(ϑ)

ϑ

Fig. 2. Plots of the functions Fi = Fi(ϑ) (i = 1, 2).
equation of state for a crack partially filled with a vis-
cous liquid:

(24)

where

K0 = K + (9αµR0/4H3)F1(ϑ) > 0,

(25)

The derived equation is nonlinear in the variation d of
the distance between the crack surfaces and in the rate

of change of this distance . In this equation, the terms
K0d and gd 2 describe the linear and nonlinear compo-
nents of the crack elasticity that is caused by the surface

tension of the liquid and the terms β  and γd  describe
the linear dissipation and the dissipative nonlinearity
related to the viscosity of liquid.

DISCUSSION AND CONCLUSIONS

It is of interest to compare the equation of state (24)
with the corresponding equation obtained in [6, 7] for a
crack with an ideal liquid. With the notation used
above, the latter equation will have the form of Eq. (24)
in which the coefficients K0 and g are determined by the
expressions

(26)

and the coefficients β and γ are equal to zero.
From Eqs. (25) and (26), one can see that the equa-

tion of state for a crack with an ideal liquid cannot be
derived from the equation of state for a crack with a vis-
cous liquid by setting η = 0 in the latter (despite the fact

that, in this case, the dissipative terms ~ η  vanish),
because, for these two kinds of liquids, the boundary
conditions at the crack surfaces are different. The dif-
ference in the boundary conditions leads to a difference
in the behavior of the meniscus in the ideal and viscous
liquids with varying distances between the crack sur-
faces and, hence, to differences in the linear and non-
linear elastic coefficients K0 and g of the crack. From
Eqs. (25) and (26), it follows that the ratio between the
values of the nonlinear elastic coefficient g for cracks
with a viscous and an ideal liquid is determined by the
expression

(27)

From this expression, it follows that, for wetting and
nonwetting liquids when R0/H @ 1, the ratio G can
reach considerable values; in addition (in the quasi-

σnn K0d gd2– βḋ γdḋ ,–+=

g 324αµR0
2/35H5( )F2 ϑ( ),=

β 3µη R0
2/H3, γ 18µη R0

2/H4.= =

ḋ

ḋ ḋ

K0 K 8αµ ϑ /H2cos–=

K0 0 at    18αµ ϑ /KD2 1<cos>( ),

g 24αµ ϑ /H3,cos–=

ḋ

G 27R0
2/70H2( )F2 ϑ( )/ ϑ .cos–=
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static case), the nonlinear parameter Γ of a solid con-
taining cracks with a viscous liquid will be determined
by the expression

Γ = GΓ0, (28)

where Γ0 is the nonlinear parameter of the same solid
containing cracks with an ideal liquid [6, 7]. Calcula-
tions show that, for a solid characterized by an isotro-
pic distribution of cracks partially filled with a viscous
liquid and by the parameters R = 5 × 10–1 cm, H =
1.6 × 10–5 cm, µ0 = 1/2, ν0 = 1/4, α = 73 g/s2, E = 5 ×
1011 g/cm s2, ϑ  = 0, and the crack concentration N0 =
10–5 cm–3, the nonlinear parameter is Γ . –2.5 × 106,
which exceeds the molecular nonlinear parameter of
homogeneous solids, liquids, and gases by more than
five orders of magnitude.

Now, let us compare the capillary nonlinearity and
the viscous nonlinearity of the crack, which are
described by the second and fourth terms in Eq. (24).
From Eqs. (25), it follows that, in the frequency range
of acoustic disturbances

(29)

the capillary nonlinearity dominates over the viscous
one.

The calculation shows that, for cracks with water
(ϑ  = 0, α = 73 g/s2, and η = 10–2 g/s cm) at H = 10–4 cm,
the frequency ω0 proves to be fairly high and is about
3.6 × 107 Hz.

Thus, the described mechanism of the acoustic non-
linearity of cracks partially filled with a viscous liquid
is related to the nonlinear dependence of the capillary
and viscous pressures in a liquid on the distance
between the crack surfaces, and this mechanism can
lead to a considerable increase in the acoustic nonlin-
earity of such cracks, as compared to cracks partially
filled with an ideal liquid. We also note that the same
mechanism of nonlinearity will manifest itself in other
contact-type microinhomogeneous media containing a
liquid and gas and, specifically, in water-saturated
porous and granular media.

ω ω0< g/γ 18α F2 ϑ( ) /35ηH ,= =
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
Equation (24) derived above will be used in the sub-
sequent studies to derive the nonlinear equation of state
for solids containing large numbers of cracks partially
filled with viscous liquids.
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Abstract—The properties of an acoustic system called by the author “a multichannel transmission line” (MTL)
are considered. Analytical expressions are derived for the following main acoustical characteristics of an MTL
consisting of an arbitrary number N of single lines: the input impedance, the resonance frequencies, the reflec-
tion and transmission factors for an MTL-insulator, and the reflection factor for an MTL-absorber. For these
quantities, numerical calculations are performed, and their frequency dependences are presented for different
parameters of the constituent lines in the cases N = 2 and 3. It is shown that the acoustical characteristics of
MTL-insulators and MTL-absorbers have considerable advantages over the characteristics of similar systems
designed on the basis of single lines. © 2000 MAIK “Nauka/Interperiodica”.
The problem of sound and vibration absorption and
insulation remains topical from both the theoretical and
the practical points of view. In recent years, the
progress in this field of acoustics has been character-
ized by the development of the so-called active meth-
ods [1–7]. However, the conventional methods of sound
and vibration control are also undergoing further
improvement and development (see, e.g., [8]).

An acoustic transmission line is a one-dimensional
extended system whose transverse dimensions are
small relative to the wavelength of the acoustic waves
propagating in it. Examples of such lines are thin pipes
with a liquid or without it, rods, thin narrow strips, etc.
The theory that makes it possible to calculate the acous-
tical characteristics of such transmission lines (even
with allowance for the dependence of their inertial and
elastic parameters on the longitudinal coordinate) was
developed many years ago [9, 10].

However, the solution of some practical problems
may require the use of complex acoustic systems that
provide high-quality acoustical characteristics. This
paper studies one such system, which will be called “a
multichannel transmission line” (MTL). This system
makes it possible to transform and, specifically, to
improve the acoustical characteristics typical of a con-
ventional transmission line.

One of the possible models of such an MTL is
shown in Fig. 1a. It consists of several parallel lines of
equal lengths l. The left ends of the lines are connected
with each other by a weightless, perfectly rigid plate, so
that the particle velocities at these ends are equal for all
lines. The same is true for the right ends. An example
of such an MTL can be a multichannel exhaust muffler
of an internal combustion engine [11].
1063-7710/00/4606- $20.00 © 20710
Each of the single lines forming the model is char-
acterized by a constant velocity and a wave impedance
zj = ρjcjSj , where ρj and Sj are the constant density and
cross-sectional area, respectively; 1 ≤ i ≤ N.

As the first acoustical characteristic to be calculated,
we select the input impedance of the MTL. We assume
that a harmonic force F = F0exp(–iωt), where ω is the
circular frequency, is applied to the left end (x = 0) of
the line (the factor exp(–iωt) will be omitted below).

ρjcjSj

F0 Z0

x = 0 x = l

j

j

x = 0 x = l

R0

D0

1

Fig. 1. Schematic diagram of a multichannel transmission
line (MTL).
000 MAIK “Nauka/Interperiodica”
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The right end of the line (x = l) is assumed to be loaded
by the impedance Z0. We set the particle velocity for the
jth line in the form

, (1)

where kj = ω/cj is the wave number and Aj and Bj are
unknown constants. The longitudinal force in the jth
line will be determined by the expression

, (2)

where Ej = ρj  is the elastic modulus of the jth line.

Based on the model shown in Fig. 1, we can set the
boundary conditions in the form

, (3a)

. (3b)

Here, u(0) and u(l) are the unknown particle velocities
that are common for all lines.

The boundary conditions (3a) and (3b) lead to the
following equations:

Aj = u(0), (4a)

, (4b)

, (4c)

(4d)

where ϕj = kjl is the phase shift in the jth line.
Substituting Eq. (4a) into Eqs. (4c) and (4d), we

determine the quantities Bj from Eq. (4c). Substituting
these quantities into Eqs. (4b) and (4d), we obtain a sys-
tem of two algebraic equations in two unknowns, u(0)
and u(l):

(5a)

(5b)

Here,

(6)

We note that the quantity Z2 is a sum of the impedances
of individual lines loaded by an infinite load.

u j x( ) A j k jxcos B j k jxsin+=

F j

E jS j

iω
----------du

dx
------ iz j A j k jxsin– B j k jxcos+( )–= =

c j
2

x 0: u j u 0( ), F j

j 1=

N

∑ F0–= = =

x l: u j u l( ), F j

j 1=

N

∑ Z0u l( )–= = =

i z jB j

j 1=

N

∑ F0–=

A j ϕ j B j ϕ jsin+cos u l( )=

i z j A j ϕ j B j ϕ jcos+sin–( )
j 1=

N

∑ Z0u l( ),–=

Z1u l( ) Z2u 0( )– F0,–=

Z2 Z0+( )u l( ) Z1u 0( )– 0.=

Z1 i
z j

ϕ jsin
-------------, Z2

j 1=

N

∑ i z j ϕ j.cot
j 1=

N

∑= =
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The solution to the system of Eqs. (5) has the form

where

. (7)

The quantity Z is the input impedance of the system,
and W is the transfer coefficient. For the particle veloc-
ity in an individual line of arbitrary number n (see
Eq. (1)), the solution can be represented in the form

One can easily verify that, at N = 1, expression (7)
for Z coincides with the known expression for the
impedance of a single acoustic line loaded by the
impedance Z0 [10].

In the case of a series connection of multichannel
lines, the total input impedance can be determined by
the recurrence relation

. (8)

The resonance frequencies of the system are deter-
mined by the equation Z = 0, which, in the absence of
the load (at Z0 = 0), has the form

. (9)

Taking into account the expressions for Z1 and Z2,
Eq. (9) can be reduced to two independent equations

(10)

(11)

The antiresonance frequencies of an unloaded system
are obtained from the condition Z  ∞:

. (12)

Let us consider the examples for the cases N = 2 and 3.
In the first case, we obtain the equations

, (13)

(14)

u 0( )
F0

2
-----, u l( ) Wu 0( ),= =

Z Z2

Z1
2

Z2 Z0+
-----------------, W–

Z1

Z2 Z0+
-----------------= =

un x( )
F0

Z knlsin
------------------ kn l x–( )sin W knxsin+[ ] .=

Z n( ) Z2
n( ) Z1

n( )( )2

Z2
n( ) Z n 1–( )+

-----------------------------–=

Z2
2 Z1

2– 0=

z j

ϕ j

2
-----tan

j 1=

N

∑ 0,=

z j

ϕ j

2
-----cot

j 1=

N

∑ 0.=

z j ϕ jcot
j 1=

N

∑ 0=

ϕ1

2
----- x2

ϕ2

2
-----tan+tan 0=

ϕ1

2
----- x2

ϕ2

2
-----cot+cot 0,=
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where x2 = z2/z1. One can readily see that Eqs. (13) and
(14) for the resonance frequencies can be represented
in the form

, (13')

. (14')

Hence, Eqs. (13) and (14) describe the same family of

frequencies with the substitution of  for x2. This
family is shown in Fig. 2 in the form of the dependence
ϕ2(ϕ1) for x2 = 3; the quantities ϕ1 and ϕ2 are presented
in π units. Curve 1 corresponds to Eqs. (13) and (13'),

ϕ1

2
----- x2

1– ϕ2

2
-----cot+cot 0=

ϕ1

2
----- x2

1– ϕ2

2
-----tan+tan 0=

x2
1–

ϕ2/π

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0 1.81.61.41.21.00.6 0.80.40.2 2.0
ϕ1/π

2.0

1

2

3

4

5

ϕ2/π
4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0 1.81.61.41.21.00.6 0.80.40.2 2.0
ϕ1/π

4

5

Fig. 2. Resonance frequencies of an MTL for N = 2.

Fig. 3. Resonance frequencies of an MTL for N = 3: the
solid curves correspond to Eq. (16) and the dot-and-dash
curves correspond to Eq. (17).
and curve 2 corresponds to Eqs. (14) and (14'). The
straight line 3 corresponds to the case x2 = 1. All these
curves describe the functional relationships between ϕ1
and ϕ2. To determine the specific values of the reso-
nance frequencies, it is necessary to set the ratio
between the sound velocities in the acoustic lines: a =
c1/c2. Then, the intersection of the straight line ϕ2 = aϕ1
(Fig. 2) with the calculated curves will yield these fre-
quencies. Figure 2 shows two such straight lines (the
dashed ones) for a = 2 (curve 4) and a = 0.5 (curve 5);
one can see that the system of two acoustic lines has
two resonance frequencies (for each value of a).

The periodicity of the functions involved in Eqs. (13)
and (14) leads to an infinite number of resonance fre-
quencies:

(15)

where ϕj are the solutions to Eqs. (13) and (14).

It should be noted that the antiresonance frequen-
cies will be lower than the resonance ones by a factor
of two (as in the case of a single acoustic line), because
Eqs. (11) and (12) differ only by the arguments.

For N = 3, Eqs. (10) and (11) can be written in the
form

(16)

(17)

Here, xj = zj/z1 and a3 = c1/c3. As an example, Fig. 3 pre-
sents the solutions to Eqs. (16) and (17) for x2 = 1, x3 =
3, and a3 = 1.5. The dashed lines correspond to the val-
ues a = 0.5 and 2. From this figure, one can see that the
number of resonance frequencies is noticeably greater
than in the previous case.

Now, let us consider acoustical characteristics of the
MTL such as the sound and vibration insulation and the
sound and vibration absorption. The model selected for
the calculations is shown in Fig. 1b. The left and right
ends of the MTL are connected with a single acoustic
transmission line whose parameters will be labeled by
j = 0. (Structurally, it may pass through the multichan-
nel line by forming one of its channels.) A harmonic
wave of unit amplitude

propagates along this line. This wave gives rise to a
wave reflected from the system,

and a wave transmitted through it,

,

ϕ j 2nπ ϕ j,+=

ϕ1

2
----- x2

ϕ2

2
----- x3 a3

ϕ1

2
----- 

 tan+tan+tan 0,=

ϕ1

2
-----cot x2

ϕ2

2
-----cot x3 a3

ϕ1

2
----- 

 cot+ + 0.=

u0 ik0x( )exp=

u01 R ik0x–( ),exp=

u02 D ik0 x l–( )( )exp=
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where R and D are the reflection and transmission fac-
tors, respectively. In place of the system of Eqs. (4), one
can easily obtain another system:

,

,

,

in the unknown quantities Aj , Bj , R, and D. This system
can be reduced to a system of two equations

,

,

where  = . The latter system yields the expres-

sions

,

.

Recasting these expressions with the use of the sub-
stitutions

where  = , we derive

(18)

It can be easily verified that, at N = 1, Eqs. (18) pass
into the corresponding expressions for a single acoustic
transmission line [10]; in addition, in the general case,
the energy flux conservation law is obeyed (in the
absence of acoustic losses): |R |2 + |D |2 = 1.

If the lines forming the MTL are characterized by
acoustic losses, which can be described by the complex

A j 1 R+=

i z jB j

j 1=

N

∑ z0 1 R–( )=

A j ϕ j B j ϕ jsin+cos D=

i z j A j ϕ j B j ϕ jcos+sin–( )
j 1=

N

∑ z0D=

Z1
0D Z2

0 1+( )R+ Z2
0 1–=

Z2
0 1+( )D Z1

0R+ Z1
0=

Z1 2,
0 Z1 2,

z0
---------

R
Z1

02 Z2
02– 1+

Z1
02 Z2

0 1+( )2
–

-----------------------------------=

D
2Z1

0

Z1
02 Z2

0 1+( )2
–

-----------------------------------–=

∆+ Z1
0 Z2

0+ i z j
0 ϕ j

2
-----,cot

j 1=

N

∑= =

∆– Z1
0 Z2

0– i z j
0 ϕ j

2
-----,tan

j 1=

N

∑= =

z j
0 z j

z0
----

R
∆+∆– 1+

∆+ 1+( ) ∆– 1–( )
----------------------------------------,=

D
2Z1

0

∆+ 1+( ) ∆– 1–( )
----------------------------------------–

∆+ ∆–+

∆+ 1+( ) ∆– 1–( )
----------------------------------------.= =
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wave numbers  = kj(1 + iαj) and complex wave

impedances  = /(1 + iαj), where αj is the damping
factor, the MTL can be used as an absorber positioned
at the end of the initial acoustic transmission line (j = 0,
α0 = 0). In this case, with the use of Eq. (7) at Z0 = 0,
the reflection from such an absorber can be character-
ized by the reflection factor

(19)

Let us consider in more detail Eqs. (18) for the
reflection and transmission factors; we will character-
ize these quantities by their magnitudes R0 and D0. It
should be noted that the equalities ∆+ = ∆– = 0 coincide
with Eqs. (10) and (11) and determine the resonance
frequencies of the system. We also note that the quanti-
ties ∆+ and ∆– may become infinite when at least one of
their components becomes infinite. If we take these
quantities as the “nodal” ones, the points of the total
transparency (R0 = 0, D0 = 1) and total opacity (R0 = 1,
D0 = 0) of the system can be represented by the table.

It is essential that the indicated values of R0 and D0
are obtained only with a pair combination of the values
of ∆+ and ∆–.

Let us illustrate these general results for an MTL
consisting of two single lines with equal wave imped-

ances  = . In this case, the resonance frequencies
determined by Eqs. (13) and (14) coincide (x2 = 1).
(Specifically, this is illustrated by the straight line 3 in
Fig. 2.) After some transformations, these equations
can be represented in the form

(20)

which yields the relationship ϕ1 + ϕ2 = 2πn. Here, we
can set n = 1 by virtue of the periodicity of the func-
tions. If we assume that, as before, we have ϕ2 = aϕ1
(where a = c1/c2), the resonance value of ϕ1 will be
determined by the expression

. (21)

At a = 1, the MTL turns into a single line and the value
ϕ1 = π corresponds to the total transparency of the line.
At a ≠ 1, Eq. (21) yields the value of ϕ1 corresponding

k j

z j
0 z j

0

R
Z0 1–

Z0 1+
---------------

∆+∆– Z2
0+

∆+∆– Z2
0–

------------------------
2∆+∆– ∆+ ∆––( )+

2∆+∆– ∆+ ∆––( )–
--------------------------------------------.= = =

z1
0 z2

0

ϕ1 ϕ2+
2

-----------------sin

ϕ1

2
-----

ϕ2

2
-----coscos

------------------------------ 0,

ϕ1 ϕ2+
2

-----------------sin

ϕ1

2
-----

ϕ2

2
-----sinsin

---------------------------- 0,= =

ϕ1
2π

1 a+
------------=

Table

R = 1, D = 0 R = 0, D = 1

∆+ 0 ±i ∞ –∆– 0 ±i ∞
∆– 0 ±i ∞ –∆+ ±i ∞ 0
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to the total opacity of the line. Hence, at a ≈ 1, the type
of transparency for both a single line and an MTL
changes to the opposite at practically the same fre-
quency. If a @ 1, the frequency corresponding to the
total opacity can be made rather low.

Based on Eqs. (20), we obtain that the condition ∆+ =
∆– = ∞ leads to two independent systems of equations:

.

Their solutions are ϕ1 = 2π at a = 0.5 and ϕ1 = π at a = 2.
This means that, at the given values of a, the transpar-

ϕ1 2π, ϕ2 π and ϕ1 π, ϕ2 2π= = = =

R0
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23222
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Fig. 4. Magnitude of the reflection factor of an MTL-insula-
tor for different values of a = c1/c2: a = (1) 1, (2) 2, and

(3) 0.5. Other parameters are a1 = 1 and  =  = 1.z1
0

z2
0

Fig. 5. Same as in Fig. 4, but for different values of the wave

impedance:  = (1) 0.5 and (3) 2. Other parameters are

a1 = 1,  = 1, and a = 2.
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ency frequencies for a single line become the opacity
frequencies for the MTL.

The condition ∆+ = –∆– leads to one more solution:

(22)

which yields a frequency value two times less than that
obtained from Eq. (21).

Thus, there exists a set of frequencies corresponding
to the total opacity of the MTL.

Examples of calculations by Eqs. (18) and (19) are
illustrated in Figs. 4–6. Figure 4 shows the quantity R0

as the function of ϕ1/2π for the case  = 1 and a1 =
c1/c0 = 1; i.e., the parameters of the line j = 1 coincide
with the parameters of the initial line j = 0. (Since, in this
example, the losses are assumed to be absent, the values
of D0 are not presented, because this quantity is
uniquely related to R0 through the conservation law.)

The parameters of the line j = 2 are as follows:  = 1
and a = 1 (curve 1), 2 (curve 2), and 0.5 (curve 3).
Curve 1 corresponds to a two-channel line that forms
an extension of the initial line, but has a wave imped-
ance that is twice as large. In this case, the reflection
factor is known to reach its maximal values at the fre-
quencies corresponding to odd numbers of wavelength
quarters and to be zero for even numbers of wavelength
quarters (i.e., for integral numbers of half-wave-
lengths). Curve 2 corresponds to the case when the odd
number of wavelength quarters in the line j = 2 coin-
cides with the odd number of half-wavelengths in the
line j = 1, and, at these frequencies, the zero values of
R0 pass into the maximal ones. Thus, the bandwidth of
frequencies corresponding to large values of R0 consid-
erably increases. For example, the values R0 > 0.7 occur
in a two-octave frequency band and the zero values are
observed only for integral numbers of wavelengths.
Curve 3 corresponds to the case with doubled intervals
between the zero values, i.e., the intervals equal to even
numbers of wavelengths. In this case, the values R0 >
0.7 are also retained in a two-octave frequency band.

Figure 5 illustrates the effect of the wave impedance

 at a = 2 (the parameters of the line j = 1 are the same

as before). Curve 1 corresponds to the value  = 0.5,

and curve 2 corresponds to  = 2. Together with
curve 2 from Fig. 4, they illustrate the effect of the
wave impedance. Specifically, curve 3 shows that a

large value of  may lead to values of R0 practically
equal to unity in a wide frequency band (the ratio
between the upper and lower frequencies is 1.5).

In designing wide-band sound and vibration absorb-
ers on the basis of an MTL, it is necessary to take into

account that the sum of the wave impedances  + 
must be close to unity to provide a small value of R0 at

ϕ1
π

1 a+
------------,=

z1
0

z0
2

z2
0

z2
0

z2
0

z2
0

z1
0 z2

0
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high frequencies. Therefore, in the examples consid-

ered below, we take  =  = 0.5; in addition, as
before, we take a1 = 1 and α1 = 0. Figure 6 presents the
frequency characteristics of R0 for different damping
factors α2 and different relative velocities a2. One can
see that the lower frequency of the frequency range cor-
responding to efficient absorption smoothly decreases
with a decreasing velocity and with increasing damping
factor in the line j = 2; simultaneously, the “stabiliza-
tion” of the values of R0 with varying frequency occurs
much earlier.

The theoretical and computational results presented
above show that, even on the basis of an MTL consist-
ing of only two lines, it is possible to obtain MTL-insu-
lators and MTL-absorbers that have much better acous-
tical characteristics than the corresponding acoustical
systems constructed on the basis of single acoustic
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Fig. 6. Magnitude of the reflection factor of an MTL-absorber
for different values of a2 = c2/c0 and α2: α2 = 0.2 and a2 =
(1) 1, (2) 0.5, and (3) 0.25; a2 = 0.25 and α2 = (4) 0.1 and

(5) 0.4. Other parameters are a1 = 1,  =  = 0.5, and

α1 = 0.
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0

z2
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lines. From the results presented above, one can expect
that, by varying the parameters of the line j = 2, as well
as by increasing the total number of lines in the MTL,
it is possible to achieve further improvement of the
acoustical characteristics of the systems. Such prob-
lems are beyond the scope of this paper, but, in princi-
ple, they can be solved, specifically, with the use of the
optimization techniques.
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Abstract—Diffraction of a plane sound wave by the open end of an impedance-wall waveguide connected to
an opening in an impedance screen is considered. The plane wave is incident on the waveguide from a free half-
space. Two versions of the problem are considered: for a semi-infinite waveguide and for a finite-length
waveguide with a specified bottom impedance; the impedances of the walls, screen, and waveguide bottom can
be different. The finite-length waveguide can be treated as an open cavity in the impedance screen. For the cav-
ity of zero length, the problem is reduced to the diffraction by an impedance insert in the impedance screen. The
solution in the external region determines the scattered field; the solution in the internal region allows one to deter-
mine the directional pattern of an array of receivers located in the cavity. The problem is solved using the integral
Helmholtz equation with a specially selected Green’s function that provides the fulfillment of the boundary con-
ditions. Formally, the problem is reduced to an infinite system of algebraic equations. The computational results
obtained for bistatic and monostatic scattering patterns are presented. © 2000 MAIK “Nauka/Interperiodica”.
We consider the diffraction of a plane sound wave
by the open end of an impedance-wall waveguide with
a flange in the form of an impedance screen (see Fig. 1).
We consider two versions of this problem: for a semi-
infinite waveguide (Fig. 1a) and for a finite-length
waveguide with a specified bottom impedance (Fig. 1b);
the impedances of the walls, screen, and waveguide
bottom can be different. The finite-length waveguide
1063-7710/00/4606- $20.00 © 20716
can be considered as an open cavity in the impedance
screen. For the cavity of zero length, the problem is
reduced to the diffraction by an impedance insert in the
impedance screen. The solution in the external region
determines the scattered field, and the solution in the
internal region allows one to determine the directional
pattern of an array of receivers located in the cavity.
The solution of the formulated problem is of interest in
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Fig. 1. Coordinate systems (a) for a semi-infinite waveguide with impedance walls and impedance flanges and (b) for a cavity with
an impedance bottom in the impedance screen.
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many fields of acoustics. It provides the possibility of
determining characteristics such as the sound scattering
patterns of impedance pipes with impedance flanges,
the sound energy penetrating into a waveguide whose
inlet is insonified by sound waves, and the directional
patterns of arrays of sound receivers located inside a
waveguide or an open cavity.

Rawlins [1] considered the sound scattering by the
open end of an unflanged waveguide with impedance
walls by using the Wiener–Hopf method and obtained
a solution in a closed, but rather cumbersome form.
Shenderov [2] and Norris and Sheng [3] considered the
scattering of sound waves by the open end of a
waveguide with rigid walls and rigid flanges. Shen-
derov [4] presented the solution to the problem on the
sound radiation from a waveguide with rigid flanges.
Below, we consider a more complicated problem for a
waveguide whose walls and flanges are impedance sur-
faces.

To obtain a solution for a plane incident wave, we
first consider a linear source perpendicular to the xy
plane, and, then, we proceed to the case of the distance
to the source tending to infinity to obtain the solution
for the plane wave diffraction.

In the bottom halfspace, the sound field can be rep-
resented using the Helmholtz integral

(1)

Here, r0 and r1 are the radius vectors of the source and
the observation point M(x1, y1), respectively; r is the
radius vector of the point lying in the screen plane at
y = 0; Q is the productivity of the source; G is the two-
dimensional Green’s function of the Helmholtz equa-
tion; ρc is the wave resistance of the medium; and k =
ω/c. The time dependence is assumed to have the form
exp(–iωt). The differentiation is carried out along the
normal directed inside the region under consideration,
i.e., downwards, as shown in Fig. 1. The derivation of
expression (1) is given in Appendix 1.

Note that the first term on the right-hand side of for-
mula (1) corresponds not to the field of the source in the
free space, but to the field obtained with the same
Green’s function as in the integrand.

At the screen surface, i.e., for |x | > d/2 and y = 0, the
following boundary condition should be satisfied:

(2)

where Zp is the impedance of the screen.
The sound pressure p(r) involved in the integrand is

unknown. When the observation point tends to the
plane y = 0, expression (1) turns to an integral equation
in p(r). To carry out the integration over a finite-length

p r1 r0,( ) ikρcQG r1 r0,( )–=

+ p r( )
G r1 r,( )∂

n∂
--------------------- p r( )∂

n∂
-------------G r1 r,( )– x.d

∞–

∞

∫

p y 0=

Z p

ikρc
----------- p∂

y∂
------

y 0=

Z p

ikρc
----------- p∂

n∂
------

y 0=

,–= =
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interval, it is worthwhile to specify the Green’s func-
tion so as to make the integral be equal to zero within
the segments |x | > d/2. For this purpose, it is sufficient
to chose the two-dimensional Green’s function as the
field of a linear source located perpendicularly to the
plane of Fig. 1, in the presence of the impedance plane.
This Green’s function must satisfy the boundary condi-
tion coincident with that for the sound pressure in the
halfspace, i.e., the condition

(3)

We will construct this Green’s function starting from
the free-space Green’s function in the form of an
expansion in plane waves:

(4a)

With the substitution x1 – x0 = Rsinϕ, |y1 – y0| = Rcosϕ
and u = sinθ (see Fig. 2), we obtain

(4b)

where Γ is the Sommerfeld contour (–π/2 + i∞, π/2 –
i∞) in the complex plane θ. The substitution assumes
that the point (x0, y0) lies below the point (x1, y1), i.e.,
ϕ < π/2. Every plane wave involved in the integrands of
expressions (4a) and (4b) is reflected from the surface
of the screen. The corresponding reflection coefficient
has the form

(5)

where wp = Zp/ρc. The desired Green’s function is
obtained by combining the incident and reflected waves
in the integrand:

(6)

where the second term in the integrand assumes that
ϕ' > π/2, as is shown in Fig. 2. Going back to the initial
variables, we obtain

(7)

G y 0=

Z p

ikρc
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y∂
-------

y 0=

Z p

ikρc
----------- G∂

n∂
-------

y 0=

.–= =

G0 r0 r1,( )
i
4
---H0

1( ) k r0 r1–( )=

=  
i

4π
------ iku x1 x0–( ) ik 1 u2– y1 y0–+[ ]exp

xd

1 u2–
------------------.

∞–

∞

∫

G0 r0 r1,( )
i

4π
------ ikR θ ϕ–( )cos( )exp θ,d

Γ
∫=

Ap θcos( )
wp θcos 1–
wp θcos 1+
----------------------------,=

G r0 r1,( )
i

4π
------ ikR θ ϕ–( )cos( )exp[

Γ
∫=

+ Ap θcos( ) ikR' θ ϕ'–( )cos( )exp ]dθ,

G r0 r1,( )
i

4π
------ iku x1 x0–( )( )exp

∞–

∞

∫=

× ikγ y0 y1–( )( )exp Ap γ( ) ikγ y0 y1+( )–( )exp+[ ]du
γ

------,
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where γ = Ã  and

(8)

We assume that a plane sound wave is incident on
the system. Then, the first term on the right-hand side
of expression (1) can be simplified. Since, in the case
under study, we have kR0 @ 1, the integral (6) can be
evaluated by the saddle-point method. In the case of the
deformation of the integration contour, the latter can
intersect the position of the pole of the function
Ap(cosθ); however, the residue at this pole can be omit-
ted, because it determines the surface wave that expo-
nentially decays with an increasing total distance y0 +
y1. As a result, we obtain

(9)

Note that this representation can be used only in the
first term of the right-hand side of expression (1) but
not in the integrand where both points r and r1 can
simultaneously appear at the surface y = 0.

We normalize the first term on the right-hand side of
expression (1) by the sound pressure in the incident
wave at the origin of the coordinates, i.e., by

(10)

1 u2–

Ap 1 u2–( )
wp 1 u2– 1–

wp 1 u2– 1+
----------------------------------.=

G r0 r1,( )
i
4
--- 2

πkR0
------------ ikR0 iπ 4⁄–( )exp

× ikx1 θ0sin( ) iky1 θ0cos( )exp[exp

+ Ap θ0cos( ) iky1 θ0cos–( )exp ] .

p0 ikρcQ
i
4
--- 2

πkR0
------------ ikR0 iπ 4⁄–( ).exp–=

R

x

y

R'

ϕ

ϕ '

r1(x1, y1)

r0(x0, y0)

Fig. 2. For the definition of the Green’s function.
Then, this term can be represented in the form of the
incident wave and the wave reflected from the infinite
screen without opening:

(11)

In the integrand in expression (1), we use the exact
Green’s function (7) in which we replace the position of
the source r0 by the position of the integration point r.
For this purpose, we replace (x0, y0) by (x, y), calculate
the normal derivative (taking into account that ∂G/∂n =
–∂G/∂y), and then set y = 0.

We represent the integral as the sum of the integrals
over the screen surface and the opening, i.e., in the form

dx + dx. The boundary condi-

tions (2) and (3) are satisfied at the screen surface. Sub-
stituting these conditions into the first integral, we
obtain that this integral vanishes and only the integral
over the opening remains in the solution. As a result, we
obtain the sound field at the observation point (x1, y1):

(12)

(13)

(14)

(15)

Thus, we represented the sound field in the bottom
halfspace in the form of the sum of the incident wave pi,
the wave reflected from the infinite impedance plane pr ,
and the scattered field ps. The distribution of the sound
pressure and its normal derivative over the opening
plane still remain unknown.

Now, we consider the field in the waveguide p2. The
boundary conditions at the waveguide walls and at its
bottom can be written in the form

(16)

where the following notation is used: w1 = Z1/ρc, w2 =
Z2/ρc, wb = Zb/ρc, u1 = w1/(–ikd), and u2 = w2/(–ikd). In
the waveguide, the general solution to the Helmholtz
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equation satisfying these boundary conditions is repre-
sentable as the sum of normal waves [5]:

(17)

(18)

where An are the unknown coefficients; ψn(x) are the
eigenfunctions satisfying the two first boundary condi-
tions (16); and

(19)

is the bottom reflection coefficient for the normal wave,
i.e., the wave incident on the bottom at an incidence
angle θn satisfying the condition cosθn = γn, where γn =

 and βn are the eigenvalues. In expres-
sion (17), we artificially introduced the parameter q to
obtain a unique expression for both the semi-infinite
waveguide (q = 0) and the finite-length waveguide (q =
1). Indeed, for lossless media, the expression for the
finite-length waveguide provides no way of obtaining
an expression for the semi-infinite waveguide as a par-
ticular case corresponding to either h = ∞ or a zero
reflection coefficient at the bottom. Note that, accord-
ing to formula (19), one can chose wb so as to obtain a
zero reflection coefficient for only one normal wave,
but not for the whole set of normal waves. This situa-
tion is similar to that with the sound wave being
reflected from an impedance plane; in this case, there is
no way of simultaneously obtaining a zero reflection
coefficient for all angles of incidence by the choice of
some impedance value.

The eigenvalues βn are the roots of the equation [5]

(20)

The functions ψn(x) satisfy the condition of orthogo-
nality

(21)

(22)

Note that no sign of complex conjugation appears in the
integrand of expression (21) despite the fact that the
eigenfunctions can be complex. This result was first
mentioned by Andreev [6] and, later, by Morse and
Ingard [7].

p2 Anψn x( ) ikγny( )exp[
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∑=
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--- ψm x( )ψn x( ) xd
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Hn for n m,=
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Hn 1 u2 βn
2u2
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2u2
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Below, we will use the integrals that appear in the
expansion of the plane wave in the eigenfunctions of
the waveguide:

(23)

For kdg = ±βn, the last term has an ambiguous point of
type 0/0. In this case,

Assume that the observation point (x1, y1) tends to
the plane y1 = 0 within the opening. The continuity con-
ditions

must be satisfied on this segment. We substitute these
conditions in the integrand involved in formulas (12)–
(15), use representation (17), multiply both sides of the
equation by ψm(x), integrate over the opening, and take
into account the orthogonality relationships (21). As a
result, we obtain an infinite system of equations in the
coefficients An:

(24a)

(25)

(26)

(27)

(28)

Note that, in deriving this system, we ensure the
continuity of the field in the opening by equating the
sound pressure involved in the left- and right-hand
members of expression (1) and the series (17) deter-
mining the field in the waveguide. In doing so, we
used the normal derivatives of the field only on the
right-hand side of expression (1). Despite this fact,
system of Eqs. (24a) ensures the continuity of not only
the sound pressure, but of the normal derivative as well.
The corresponding proof is given in Appendix 2.

The coefficients Unm decrease with increasing n and
increase with increasing m. As a result, the off-diagonal

dn g( )
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Fig. 3. Two-point scattering patterns for different numbers of terms retained in the series for α0 = 30°, wp = –i6.0, and w1 = w2 =
– i100; kd = (a) 10.0, (b) 20.0. The values of the parameter nmax are indicated near the curves.
terms can exceed the diagonal ones. To minimize this
possibility, it is expedient to introduce the normaliza-
tion  = An . Then, system (24a) will take the

form

(24b)

where  = Ã Unm and  = Bn .

Let us determine the far field of scattering. With this
goal in mind, we substitute expansion (17) into expres-
sion (15) and use formula (23). After integrating over x,
we obtain

Then, we change the variable u = sinθ and introduce the
polar coordinates x1 = R0sinθ1, y1 = –R0cosθ1 (y1 < 0),
and θ1 = α1 – π/2. As a result, we obtain the integral
along the contour Γ

In the far zone, i.e., for kR0 @ 1, the saddle-point
method is appropriate to evaluate the last integral. As
the contour is deformed to the saddle-point contour, it
can intersect the pole of the integrand at the point where
the denominator in expression (5a) vanishes. The cor-
responding residue determines the surface wave that
may be generated near the impedance plane. In the far

An' Hn
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n 1=
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∫ ikR0 θ θ1–( )cos( )dn θsin–( )exp

Γ
∫=

× θ 1 Ap θcos( )–( ) γn 1 Ap θcos( )+( )+cos–[ ]dθ.
field, this component disappears. As a result, we obtain
the scattered field in the form

(29)

where g(α0, α1) is the two-point (or bistatic) scattering
pattern determined by the expressions

(30)

(31)

We used the reduction method to solve the system of
Eqs. (24b). The eigenvalues βn were calculated accord-
ing to the procedure described in [5]. The computation
of integrals Imn was the most time-consuming proce-
dure. We used the symmetry property Imn = Inm to
decrease the computation time. The integral was
reduced to a semi-infinite interval, which was further
subdivided into the segments (0, 1) and (1, ∞). For sym-
metric waveguides, we additionally took into account
that Imn = 0 if m and n are of different evenness. The cal-
culation error of the eigenvalues βn and integrals Imn
was 10–5.

The computations were performed with a PC (66 MHz
operating frequency). The computation time for the
scattering pattern was between 2 and 3 s for a specified
value of kd within kd < 5. For kd = 10, this time was
between 5 and 7 s and increased to 20–30 s for kd = 20.

Figure 3 shows the two-point scattering patterns cal-
culated for different orders of system truncation nmax.
They show that the solution converges for nmax ≅
E(kd/2), where E is the integer part of the number. For
small values of kd, we used at least four terms. For arbi-

ps 2 πkR0( )⁄ ikR0 iπ 4⁄–( )g α0 α1,( ),exp≈

g α0 α1,( )
kd
2

------ Andn α1cos( )ξn α1( ),
n 1=

∞

∑=

ξn α1( ) α1

γnwp 1– qn γnwp 1+( )–
wp α1sin 1+

--------------------------------------------------------.sin=
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trary values of kd, we used the expression nmax =

E( ), where n1 = 0.3–0.5.

The computation time of integrals Imn essentially
depends on wp . For wp with a small real part and a pos-
itive imaginary part, the denominator may approach
zero near certain u, which results in a narrow peak in
the integrand. This situation corresponds to the genera-
tion of weakly decaying surface waves near the screen.
In this case, the computation time can be somewhat
longer.

Note that expressions (24)–(28) are inappropriate
for a perfectly soft acoustic screen, i.e., for wp = 0. In
this case, both the left- and the right-hand sides of the
system (24a) vanish simultaneously. The right-hand

n1kd( )2 3kd 16+ +[ ]

–2

–6
–2

Imwp

20log gmax  [dB]

–4 0 2 4

–4

0

2

4

6

8

10

kd = 10

kd = 3

Fig. 4. Maxima of the two-point scattering patterns as
functions of Imwp for Rewp = 0.05. α0 = 30° and w1 =
w2 = – i5.0.
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side vanishes because Ap = –1. To show that the left-
hand side also vanishes, one should use expressions
(A2.6) and (A2.7) of Appendix 2. These expressions
show that the off-diagonal matrix terms vanish because
δmn = 0 for m ≠ n, and the diagonal terms vanish because
Imn = Jmn = 2πHn/(kd), as follows from formula (A2.7)
for wp = 0 and m = n. Then, the diagonal coefficients 1 +
Unn also vanish. Despite this fact, the calculations appear
quite efficient even for relatively small values of wp, e.g.,
for wp = 0.05 + i0.05. This is illustrated in Fig. 4, which
shows the maxima of the two-point scattering patterns as
functions of the imaginary part of the screen impedance
for Rewp = 0.05. The small zigzags of this curve near the
point Imwp = 0 are the consequence of increasing calcu-
lation errors for a screen whose properties approach
those of a perfectly soft acoustic screen.

For openings of a small wave size (Fig. 5), the main
lobe of the two-point scattering pattern is directed
almost along the normal to the opening. The amplitude
of the scattered wave essentially depends on the coeffi-
cient of sound reflection from the screen. For a per-
fectly absorbing acoustic screen (curves 5), the ampli-
tude of the scattered wave sharply decreases. The
value wp = 1 ensures a zero reflection coefficient only
for waves incident on the screen along the normal.
The corresponding deep gap is seen in the scattering
patterns near α1 = 90°. For a given absolute value of
the reflection coefficient, the curves for the screen
with a normalized impedance wp > 1 lie everywhere
above the curves for the screen with a normalized
impedance wp < 1.

For openings of a large wave size (Fig. 6), the main
lobe of the two-point scattering pattern is oriented
approximately in the specular direction relative to the
incident wave. In this case, the screens characterized by
reflection coefficients that are equal in magnitude but
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Fig. 5. Two-point scattering patterns for various sound reflection coefficients of the screen for α0 = 30°, w1 = w2 = – i100.0, and
kd = (a) 1.0 and (b) 3.0. Different curves correspond to the following parameters: (1) wp = 19.0, Ap = 0.9; (2) wp = 0.0526, Ap = –0.9;
(3) wp = 3.0, Ap = 0.5; (4) wp = 0.333, Ap = –0.5; and (5) wp = 1.0, Ap = 0. Here, Ap is the reflection coefficient for the normal inci-
dence, i.e., for α0 = 90°.
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Fig. 6. Two-point scattering patterns for various sound reflection coefficients of the screen for α0 = 30°, w1 = w2 = –i100.0, and kd =
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Fig. 7. Scattering patterns for different imaginary parts of the screen impedance for α0 = 30°, w1 = w2 = –i5.0, Rewp = 0.05, and
kd = (a, b) 3.0 and (c, d) 10.0. The values of Imwp are shown near the curves.
different in sign produce the main lobes with almost
equal maxima. Asymptotically, these maxima are given
by the formula

(32)

Figure 7 shows the two-point scattering patterns for
several imaginary parts of the screen impedance under
the condition that the real parts of these impedances are
small. For kd = 10, the variations in the imaginary part

gmax Ap α0( ) α0( )cos kd 2⁄ , kd @ 1.≈
of the impedance produce little effect and are seen only
in regions far from the direction of the specular reflec-
tion.

Variations in the impedance of the waveguide walls
(Fig. 8) have a profound effect on the scattered field for
smaller kd and little effect on the shape of the main lobe
of the pattern for greater kd (Figs. 8c, 8d).

Figure 9 shows the oscillating behavior of the
amplitude of the backscattered wave as a function of
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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the wave size of the opening (also called the form-func-
tion). For grazing angles of incidence, narrow peaks
occur in the curves, as in the case of the similar curves
(see [2]) for acoustically hard surfaces. To explain the
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Fig. 10. Frequency characteristics of the backscattered wave
amplitude (the form-function) for waveguides of a small
wave width with various wall impedances; α0 = α1 = 30°
wp = 6.0, and Rew = 0. The values of Imw are shown near
the curves.
behavior of these curves, we turn to the approximate
expression (19) of paper [2]:

(33)

The minima of the directional pattern exist for kdcosα0 =
πn, n = 1, 2, …, i.e., for kd satisfying the condition kd =
πn/cosα0. In all our curves, the positions of the minima
comply with this condition.

Narrow peaks can be explained by the variations in
the number of oscillating modes propagating in the
waveguide. The number of these modes is finite and
depends on the wave width kd. The condition kd = πm
corresponds to the generation of the mode with the
number m. In this case, the resonance conditions occur
in the waveguide and the amplitude of the newly gener-
ated wave may appear very large. For a frequency
exactly coincident with the resonance frequency, the
oscillations occur strictly in the direction of the x-axis
and the component of the oscillating particle velocity
vy is equal to zero. For this reason, exactly at the reso-
nance frequency, the newly generated mode does not
affect the scattered field. However, for kd slightly dif-
ferent from the resonance value, the amplitude of the
mode with number n remains large and the component

g α0( )
kd
2

------
kd α0cos( )sin

kd α0cos
----------------------------------, kd @ 1, A α0( ) = 1.=
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of the particle velocity vy becomes nonzero. As a result,
the scattered field increases sharply.

For waveguides of a smaller wave width (Fig. 10),
the amplitude of the backscattered wave strongly
depends on the impedance of the waveguide walls. The
scattering intensity is much higher for waveguides with
acoustically soft walls than for those with acoustically
hard walls. With an increasing wave width, this differ-
ence decreases. In this respect, the situation is similar
to the diffraction by any impedance obstacle.

Figure 11 shows the backscattered amplitude as a
function of the angle of incidence. All graphs show
pairs of curves corresponding to the screen impedances
that differ in the sign of the imaginary part: positive for
elastic screens and negative for inertial screens. For
large wave widths (Figs. 11c, 11d), the backscattered
amplitudes almost coincide for both types of screens,
while, for small wave widths (Figs. 11a, 11b), the scat-
tering amplitude for elastic screens appears to be
noticeably less than for inertial screens. The explana-
tion is that some portion of the energy is carried away
with the surface wave generated in the elastic screens.

The backscattered amplitude essentially depends on
the sound reflection coefficient of the screen. For wp = 1
(which corresponds to the zero reflection coefficient for
the case of normal incidence), the backscattering
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
appears to be minimal (Fig. 12). Thus, a decrease in the
reflection coefficient of the screen results in a decrease
in not only the specular component of the wave, but
also in the scattered component of the field. Note that,
for an oblique incidence, the level of the scattered field
strongly depends on the sign of the reflection coeffi-
cient. For example, a comparison of the curves calcu-
lated for wp = 19.0 and wp = 0.0526 (which, for the nor-
mal incidence, corresponds to the reflection coeffi-
cients 0.9 and –0.9, respectively) shows that, for a
grazing incident wave, the level of the scattered wave in
the second case is much lower than in the first case.
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APPENDIX 1

DERIVATION OF EQUATION (1)

Let a point sound source with a productivity Q be
located at a point r0 (see Fig. A1). It is necessary to
determine the field that the source generates at a point
r1 in the presence of a reflecting surface S. The sound
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field at an arbitrary point r is determined from the
Helmholtz equation

(A1.1)

We place an auxiliary point source at the point r1 and
represent the field of this source in the form of the
Green’s function satisfying the equation

(A1.2)

Then, we multiply Eq. (A1.1) by G(r1, r0) and
Eq. (A1.2) by p(r, r0), subtract the second equation
from the first one, and integrate over the whole volume
V excluding the region bounded by the surface S. As a
result, we obtain the relationship

(A1.3)

Here, the index r marking the elementary volume dVr
(and the elementary area dSr below) means the integra-
tion with respect to the coordinates of the point r.
According to the Green’s theorem, the volume integral
can be transformed into the integral over the bounding
surface. One can assume that the volume V is bounded
by the surface S closed by a sphere of a large radius.
The integral over this sphere decreases to zero with an
increasing sphere radius due to the radiation condition.
As a result, we obtain

(A1.4)

∆ p r r0,( ) k2 p r r0,( )+ δ r r0–( ) ikρcQ–( ).–=

∆G r1 r,( ) k2G r1 r,( )+ δ r1 r–( ).–=

∆ p r r0,( )G r1 r,( ) p r r0,( )∆G r1 r,( )–( ) Vrd∫
V
∫∫

=  ikρcQ δ r r0–( )G r1 r,( ) Vrd∫
V
∫∫

+ δ r1 r–( ) p r r0,( ) Vrd∫
V
∫∫

=  ikρcQG r1 r0,( ) p r1 r0,( ).+

p r1 r0,( ) ikρcQG r1 r0,( )–=

+ p r( )
G r1 r,( )∂

n∂
--------------------- p r( )∂

n∂
-------------G r1 r,( )– 

  Sr.d

S

∫∫

Here, we omitted one of the arguments of the function
p(r, r0) in the integrand. For the two-dimensional case,
this equation will hold, if we replace the surface inte-
gral by the line integral and use the two-dimensional
Green’s function. Assuming that the integration is per-
formed along the x-axis, we obtain the desired expres-
sion (1).

Note that, until now, we did not require that the
Green’s function satisfy any boundary conditions at the
surface. Consider now an inhomogeneous surface S
composed of two segments Sa and S–Sa with different
properties. Let the sound pressure and the normal com-
ponent of the particle velocity be related by the equa-
tion p = Zvn = Z/(iωρ)∂p/∂n on the segment S–Sa. Let
the Green’s function satisfying the homogeneous
boundary condition corresponding to the impedance of
the segment S–Sa be known (i.e., the function satisfying
the condition G = Z/(iωρ)∂G/∂n). We subdivide the
integral over the surface S into two integrals over the
above segments and take into account the boundary
conditions for the sound pressure and the Green’s func-
tion in the second integral. Then, the integral over the
segment S–Sa vanishes, and only the integral over the
segment Sa (A1.4) will remain. We used this feature to
reduce the integral with infinite limits to the integral
over the opening.

APPENDIX 2

PROOF OF THE SOUND FIELD CONTINUITY
IN THE OPENING

In deriving the system of Eqs. (24b), we assumed
that the sound pressure is continuous over the opening
and equated expressions (12) and (17). In so doing, we
used the sound pressure and its normal derivative in the
waveguide to substitute them into the integrand of for-
mula (15). It turns out that this procedure automatically
ensures the continuity of the normal component of the
oscillating particle velocity rather than the sound pres-
sure alone. To prove this statement, let us differentiate
expressions (12)–(15) with respect to y1 and expression
(17) with respect to y and equate them at the point y1 =
y = 0. Then, we use the orthogonality relationship (21)
as we used it in the derivation of system (24b). As a
result, we obtain the system of equations

(A2.1)

(A2.2)

(A2.3)

(A2.4)

An AmVnm

m 1=

∞

∑+ Fn, n 1 2 3…,, ,= =

Fn

α0dn α0cos( )sin
Hn 1 qn–( )

-------------------------------------- 1 Ap α0sin( )–[ ] ,=

Vnm

kd γmwp 1– qm γmwp 1+( )–[ ]
2πHn 1 qn–( )

-----------------------------------------------------------------------Jmn,–=

Jmn

dn u( )dm u–( ) 1 u2–

wp 1 u2– 1+
----------------------------------------------- u.d

∞–

∞

∫=

r

r1

r0

n
S

Sa

V

Fig. A1. For the derivation of equation (1).
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We represent the last integral in the form Jmn = (Lmn –
Imn)/wp , where

(A2.5)

and Imn is determined by expression (28). Taking into
account relationship (23), we can write

The integral with respect u is proportional to the delta-
function, namely to (2π/k)δ(x – x'). Now, we can inte-
grate over x', which results in the integral coincident
with that defined in the condition of orthogonality of
eigenfunctions (21)

(A2.6)

where δnm is the Kronecker delta, δnm = 1 for m = n,

Lmn dm u–( )dn u( ) ud

∞–

∞

∫=

Lmn
1

d2
----- ψn x( )ψm x'( )

d 2⁄–

d 2⁄

∫
d 2⁄–

d 2⁄

∫=

× ik x x'–( )u[ ]exp ud xd x'.d

∞–

∞

∫

Lmn
2π
kd2
-------- ψn x( )ψm x( ) xd

d 2⁄–

d 2⁄

∫ 2π
kd
------Hnδnm,= =
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and δnm = 0 for m ≠ n. As a result, we obtain

(A2.7)

Substituting this expression into (A2.3) and rearrang-
ing relationships (A2.2)–(A2.4), we obtain a system of
equations that coincides with system (24a)–(28). Thus,
we obtain the same system of equations with any of the
continuity conditions in the opening: the continuity of
the sound pressure or the continuity of the normal com-
ponent of the particle velocity.
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Abstract—The beam equation for a sound beam in a diffusive medium, called the Khokhlov–Zabolotskaya–
Kuznetsov (KZK) equation, has a class of solutions, which are power series in the transverse variable with the
terms given by a solution of a generalized Burgers’ equation. A free parameter in this generalized Burgers’
equation can be chosen so that the equation describes an N-wave which does not decay. If the beam source has
the form of a spherical cap, then a beam with a preserved shock can be prepared. This is done by satisfying an
inequality containing the spherical radius, the N-wave pulse duration, the N-wave pulse amplitude, and the
sound velocity in the fluid. © 2000 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Most of the analytical work in nonlinear acoustics
deals with sound waves in an infinite space. These
waves are mathematically described by Burgers’ equa-
tion (for plane waves) and by generalized Burgers’
equations (for waves in other geometries). Accounts of
analytical results achieved in this field are given, for
example, by Rudenko and Soluyan [1], Crighton and
Scott [2], and the present author [3, 4]. The generally
adopted mathematical model of a limited beam is the
Khokhlov–Zabolotskaya–Kuznetsov (KZK) equation
[5, 6]. Formally it is obtained from Burgers’ equation
by deriving it with respect to time and by adding terms
with second derivatives in the directions transverse to
the beam propagation direction. Solutions of the KZK
equation by numerical methods, mainly for periodic
waveforms, have been published [7–10]. In addition,
periodic waveforms short pulses, especially N-waves,
are of both theoretical and practical interest. The solu-
tion method for the KZK equation developed in this paper
is applied to N-waves, but it seems possible to apply it
also to periodic waves, especially sawtooth waves.

In the present investigation it is shown that the KZK
equation has a class of solutions that can be found by
solving a generalized Burgers’ equation. From the solu-
tion of this generalized Burgers’ equation the coeffi-
cients are constructed of a series expansion in a trans-
verse variable of a solution of the KZK equation. Such
an expansion has been attempted for the KZ equation
(the beam equation without dissipation) [11]. The solu-
tion found by Sionoid [12] for a case in which the KZK
equation can be transformed into a generalized Burg-
ers’ equation is a special case among the solutions in
the class presented in the present paper.

In order to obtain a solution of the KZK equation of
the kind studied in this paper, special boundary condi-

1 This article was submitted by the author in English.
1063-7710/00/4606- $20.00 © 20728
tions must be satisfied. An example of practical interest
is given of boundary conditions giving solutions of the
appropriate class. It is shown that an N-wave initiated
on a concave spherical cap will retain its shock struc-
ture during its whole propagation if the cap curvature
radius is appropriately adapted to the shock duration
and the shock amplitude. In the present case the cap
curvature radius is much greater than the cap aperture
radius, so that shock decay may occur before focusing.
The special type of solutions of the KZK equation pre-
sented in this paper may be of practical interest in
designing an apparatus for creating shockwaves
intended to have some effect on objects hit.

THE BEAM EQUATION

The beam is assumed to be cylindrically symmetri-
cal. The KZK equation will be considered in the nor-
malized form (see, e.g., [10], Section 4.2):

(1)

Here the dimensionless variables are introduced
according to the formulas

(2)

where v0 is a characteristic fluid velocity, ω–1 is a char-
acteristic pulse duration and a is the beam radius, all at
the beam source, x is a coordinate along the beam axis,

ρ =  is a transverse coordinate, τ = t – 
with c0 equal to the sound velocity of the undisturbed
fluid, and β = (γ + 1)/2 with γ equal to the ratio of heat
capacities.

With b equal to the effective viscosity of the
medium and ρ0 equal to the density of the undisturbed

∂
∂θ
------ ∂V

∂X
------- V

∂V
∂θ
-------– e

∂2V

∂θ2
---------– 

  N
4
---- ∂2V

∂R2
---------

1
R
---∂V

∂R
-------+ 

  .=

V
v
v 0
------, θ ωτ, X X0–

βωv 0
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ρ
a
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fluid, the two dimensionless constants e and N are
given as

(3)

(4)

where the shock generation length xsh, the absorption
length xabs, and the diffraction length xdif are given as

(5)

No assumption is made about the magnitude of N. The
parameter e, on the other hand, is assumed to be consid-
erably less than unity.

SERIES SOLUTION OF THE BEAM EQUATION

The KZK equation (1) has been solved numerically
for different boundary conditions by many authors [7–9].
The analytical attempt [13] to expand the solution of
(1) in powers of the transverse variable R is rewritten

(6)

The solution, studied by P.N. Sionoid [12], of the form

(7)

where V0(X, θ) fulfils the generalized Burgers’ equation

(8)

is an example of such an expansion, since V0(X, θ –
r2/2X) can be expanded in a Taylor series

(9)

Now we will find a larger class than that given in
Eq. (7) of solutions of the KZK equation (1). The new
solutions are found from an expansion in r2 with the
coefficients given by a generalized Burgers’ equation
similar to Eq. (8). The sought generalization of (9) is

e
bω

2βc0v 0ρ0
------------------------

xsh

xabs
--------,= =

N
2c0

3

βa2ω2v 0

---------------------
xsh

xdif
-------,= =

xsh

c0
2

βωv 0
--------------, xabs

2c0
3ρ0

bω2
-------------, xdif

ωa2

2c0
---------.= = =

R2 N
2
----r2.=

V X θ r2, ,( ) V0 X θ r2

2X
-------–, 

  ,=

V0X

V0

X
------ V0V0θ eV0θθ––+ 0=

V0 X θ r2

2X
-------–, 

  V0 X θ,( ) r2

2X
-------V0θ X θ,( )–=

+
1
2
--- r4

4X2
---------V0θθ X θ,( ) … .+

V X θ r2, ,( ) V0 X θ,( ) k
r2

2X
-------V0θ X θ,( )+=

+
1
2!
-----k k 1–( )

2
------------------- r4

4X2
---------V0θθ X θ,( )
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(10)

The expansion (10) is similar to the expansion given by
Rudenko [11], in which the power series is in the vari-
able R = ρ/a.

The generalized Burgers’ equation satisfied by
V0(X, θ) is

(11)

The number k is arbitrary. Terms of the order r2n + 2 in
the series (10) are calculated from terms of the order r2n

using the fact that terms of the order r2n + 2 in V0 at the
right-hand side of Eq. (1) are compensated by terms of
at most the order r2n in V0 at the left-hand side of
Eq. (1). The special case k = –1, leading to the expan-
sion (9), is that treated by Sionoid [12].

For the special cases k = –1, k = –1/2, and k = 0, the
generalized Burgers’ equation (11) describes spherical,
cylindrical, and plane waves, respectively [2]. It should
be mentioned that Eq. (11) in this case has a formal
meaning and has nothing to do with physical spherical,
cylindrical, or plane waves. This means that the case
k < 0, which does not occur for travelling waves in a
homogeneous medium, is meaningful in this case,
where the solving of the KZK equation can be reduced
to solving a generalized Burgers’ equation.

For k ≠ –1 Eq. (11) will be transformed. Using the
substitutions

(12)

in Eq. (11), we obtain

(13)

+
1
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1

k 1+
------------Xk 1+= =

Wξ WWθ e k 1+( )ξ{ }
k

k 1+
------------–
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For arbitrary k ≠ –1 the wave equation (13) formally
describes plane waves propagating in a medium with a
variable viscosity.

Of special interest are cases with k > 0. In these
cases the dissipative term in the wave equation (13)
decreases as the distance traveled by the wave
increases. This means that the decay of a shockwave is
slower than for k ≤ 0, in which case it is well known that
the shockwave decays if the distance traveled is suffi-
ciently long [2]. It is interesting to know how to prepare
a beam with a shockwave that does not decay. This can
be achieved by a solution of the form of Eq. (10) with a
k value greater than zero. Especially interesting is the
case k = 1, because of the vanishing of the r4 term in the
series (10). This means that the first two terms of the
series give a very good approximation of the solution in
the center of the beam.

A GENERALIZED BURGERS’ EQUATION
WITH A PRESERVED SHOCK SOLUTION

For k = 1 the following equation is obtained from
Eq. (13):

(14)

Generalized Burgers’ equations of the type

(15)

are treated by Crighton and Scott [2]. They show that
the N-wave boundary condition

(16)

leads to the “outer” solution

(17)

An “inner” solution to (15) in the neighborhood of θ =

 is found by asymptotic matching [2]. For G(ξ) =
(2ξ)–1/2 this solution is

(18)

where

(19)

The solution (18), (19) is valid until the second term in
the asymptotic series (18) is of the same order of mag-

Wξ WWθ
e

2ξ
----------Wθθ–+ 0.=

Wξ WWθ eG ξ( )Wθθ–+ 0=

W 1 θ,( ) θ, θ= 1,<
W 1 θ,( ) 0, θ 1>=

W e( ) ξ θ,( ) θ
ξ
--- o e

n( ), θ ξ ,<+=

W e( ) ξ θ,( ) 0, θ ξ .>=

ξ

Wi ξ θ*,( )

=  
1

2 ξ
---------- 1

θ* 2 1 ξ
1
2
---

– 
 –

2 2
---------------------------------------tanh–

 
 
 
 
 

eW1
i …,+ +

θ*
θ ξ–

e
----------------.=
nitude as the first one. This second term is calculated by
Crighton and Scott [2]. From their result it can be seen

that the term ε  in (18) is of the same order of mag-
nitude as the first term for ξ = O(e–2). In order to obtain
a solution of Eq. (14) valid for ξ = O(e–2), we make the
new scaling

(20)

The new scalings of θ and W follow from Eqs. (14) and
(20):

(21)

The new generalized Burgers’ equation is obtained
from Eq. (14) and Eqs. (20), (21):

(22)

It is easily seen from Eqs. (20), (21) that the outer solu-
tion of Eq. (22) is identical with the outer solution (17)
of Eq. (14). The inner solution of Eq. (22) is written in
the same variables as Eq. (18):

(23)

From Eq. (23) we see that for  = O  we have still

a shock solution whose discontinuity is ξ–1/2. The shock
center in the solution (18) is at

(24)

and the shock center in the solution (23) is at

(25)

Because ξ = O(e–2) in Eq. (25), it follows that the

shock has not moved farther from the location θ = 
in Eq. (25) than it has already moved in Eq. (24). This
is in contrast with the situation for plane waves in a
homogeneous medium. In the latter case the distance of
the shock center from the location θ = ξ increases to the

same order of magnitude as the N-wave length 2 .
From Eqs. (18) and (23) we also conclude that the coef-

ficient e/  of the second derivative term in Eq. (14)
has exactly the necessary decreasing behavior with ξ
for giving the nongrowing shockwidth 2 e. In fact,
the nonlinear term is important during the whole prop-
agation of the wave. This can be seen if we investigate
the consequences of neglecting it. Neglecting the non-
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ξ I e
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linear term in Eq. (14) gives a linear equation, whose
“dipole” solution is

(26)

where C is a constant. However, the expression (26) put
into Eq. (14) makes the nonlinear term greater than the
two linear terms for great ξ values. Thus neglecting of
the nonlinear term in Eq. (14) is inconsistent for all ξ
values.

The solution (23) is no longer valid for ξ = O(e–4),
and a new rescaling is made similar to that made in
Eqs. (20), (21). For every new rescaling, the small
parameter (e, e2, e4, …) is squared and the shock ampli-
tude decreases in the same way (e, e2, e4, …).

A BOUNDARY CONDITION GIVING
A PRESERVED N-WAVE SHOCK SOLUTION 

OF THE KZK EQUATION

Now it will be shown how a boundary condition for
the KZK equation (1) should be prepared in order to
give a preserved shock solution. This shock solution
will be found by a solution of Eq. (14) used in the
expansion (10) with an appropriate value of k. The orig-
inal N-wave is generated on a spherical concave cap
[13], whose surface has the equation

(27)

The cap surface is that part of this spherical surface
which fulfils the inequality

(28)

Assuming that the spherical radius d of the cap is much
greater its intersection radius, 

(29)

the cap equation is approximated:

(30)

Following Ystad and Berntsen [9] we formulate a
boundary condition on the plane x = 0 equivalent to the
boundary condition on the curved cap surface. The
phase ωt at the point (x, y, z) on the curved surface cor-
responds to the phase

(31)

at the plane x = 0. We assume a boundary condition in
which the wave phase is constant on the cap surface and
the wave amplitude depends only on the distance

W C
θ

ξ
3
4
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----- 2θ2

8ξ
1
2
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------------–
 
 
 
 

,exp=

x d–( )2 y2 z2+ + d2.=
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d  @ a,

x
y2 z2+

2d
---------------.≈
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ω
c0
----x+ ωt

ω
c0
----y2 z2+

2d
---------------+=
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from the beam axis. By using Eq. (31), the equivalent
boundary condition at x = 0 thus becomes

(32)

where ρ =  is used. Putting

(33)

the boundary condition (32) is expressed by dimension-
less variables for small r2 using Eqs. (2) and (4)–(6):

(34)

From the boundary condition (34) a series solution
of the form of Eq. (10) shall follow. Because the θ
dependence of the N-wave is linear at the boundary
according to Eq. (16), at the boundary X = X0 the series
solution (10) becomes

(35)

Because of the vanishing of the higher θ-derivative of
V0 only two terms remain in (35).

Comparing Eqs. (34) and (35) we find that G(r2)
must be constant where it is not equal to zero. Other-
wise the r4 term in Eq. (34) does not vanish. Using
the fact that ξ = 1 corresponds to X + X0, we find from
Eq. (12)

(36)

Because the absolute maximum of W is 1 at the
boundary ξ = 1, as is seen from Eqs. (16) and (17), then
because of Eq. (12) we find that the maximum of V0 at

the boundary X = X0 is (k + 1 .
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The phase-dependent function F in the equivalent
boundary condition (32) now has to be an N-wave:

(37)

which corresponds to the choice

(38)

Because the maximum of V0 is (k + 1  and the abso-
lute maximum of F is 1, then Eq. (34) can be written

(39)

A comparison between Eqs. (35) and (39) now gives

, (40)

. (41)

In the first equality in Eq. (41), formula (5) is used. Put-
ting

(42)

where 2T is the duration of the original N-wave, and
using Eqs. (2) and (4)–(6), the boundary condition
expressed in Eq. (37) can be written by using physical
variables, introducing the N-wave amplitude u0

(43)

where

(44)

In Eq. (43) the function F is given by Eq. (37). Inserting
Eq. (44) into Eq. (41), we find

(45)
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The result (45) is the main result of this investigation.
As follows from the previous section of this paper, the
lowest k value for which the shock width does not grow
during the propagation of the N-wave is k = 1. The ine-
quality which has to be fulfilled for an N-wave created
on a spherical cap with radius d of duration 2T and
amplitude u0 thus is

(46)

if the shock does not decay during the propagation of
the wave.

DISCUSSION

The appropriate boundary condition leading to a
solution of the class given in Eq. (10) is found by put-
ting X = X0 in Eq. (10). Then a solution to the KZK
equation can be found for all values of (X, θ, r2) if the
number k and the function V0(X0, θ) are chosen. It is
possible to give boundary conditions which cannot be
satisfied by appropriate choices of k and V0(X0, θ). It is
interesting, however, that boundary conditions which
imply a linear time dependence are easy to satisfy by
Eq. (10) because of the vanishing of higher θ-deriva-
tives. At the same time, these boundary conditions must
imply discontinuous jumps in the θ-dependence and a
discontinuous jump in the r-dependence in order to give
a vanishing waveform for θ  ∞ and for r  ∞.
After the choice of k and V0(X0, θ), the analytical
method described in this paper gives V0(X0, θ). In order
to give the vanishing r2-dependence for great r2 values,
several terms in the series (10) must be calculated; the
greater r2, the more terms. The series is not uniformly
convergent, so it cannot be approximated by a finite
number of terms for all r2. However, in the center of the
beam, which means small r2 values, the solution can
always be approximated by a few terms in the series (10).
The case k = 1 is especially interesting because of the
vanishing of the third term in the series. This vanishing
means that an approximation with only the two first
terms in Eq. (10) has a wider range of validity than is
otherwise expected. Since the case k = 1 is at the same
time the theoretical limit case for the preservation of
the shock structure, it would be interesting to make
experiments with N-waves fulfilling relation (46) with
an equal sign. In fact the main result of the paper is rela-
tion (46) together with the solution (10), (11) of the
KZK equation. Further investigations of the KZK equa-
tion by analytical methods could deal with periodic
sawtooth boundary conditions, which seem as easy to
satisfy by the series (10) as N-wave boundary condi-
tions. It is also desirable to represent the r2-depen-
dence of the solution in a better way by analytical
methods.

d
2c0

2T
βu0

------------,≤
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The problems of sound scattering by cylindrical
bodies were considered by Dubus et al. [1] and Klauson
et al. [2], and the scattering of nonlinearly interacting
plane acoustic waves by a cylinder was studied by
Abbasov and Zagraœ [3]. In the latter study, it was
assumed that interacting plane waves are incident on an
acoustically stiff cylinder normally to the z axis. The
cylinder is infinitely long, and its axis coincides with
the z axis of the cylindrical coordinate system. The
wave scattering by the cylinder of radius a gives rise to
the propagation of scattered waves with cylindrical
wave fronts in the surrounding medium. In a cylindrical
layer enveloping the cylinder and bounded by the cylin-
drical surface of radius d, the incident plane waves
interact with the scattered high-frequency cylindrical
waves. Outside this layer, the nonlinear interaction
gives rise to the propagation of waves belonging to the
secondary wave field: the sum-frequency and differ-
ence-frequency waves and the second harmonics of the
initial waves. We also assume that the initial waves die
out outside the region where the nonlinear interaction
takes place, i.e., the secondary field is formed exclu-
sively by the initial waves interacting within the given
region. The observation point is selected outside the
interaction region. In the cited paper [3], we used the
method of successive approximations [4] to obtain the
solutions to the inhomogeneous wave equation for the
difference-frequency waves in the first and second
approximations.

In this paper, I consider the secondary field of the
sum-frequency wave. Although the expressions for the
difference-frequency and sum-frequency waves are
similar, in the latter case, the scattering is geometric in
nature (ka @ 1), while the case of the difference-fre-
quency wave corresponds to the Rayleigh (ka ! 1) and
the resonance (ka ≈ 1) scattering. Hence, the scattering
field of the sum-frequency wave should have some dis-
tinctive features.

In the second-order approximation, the solution for
the sound pressure of the sum-frequency wave has a
1063-7710/00/4606- $20.00 © 20734
form similar to that for the difference-frequency wave
and consists of four spatial components:

where the component (r, ϕ) of the total sound pres-
sure of the sum-frequency wave is formed by the inter-
acting incident plane waves of frequencies ω1 and ω2,

(r, ϕ) and (r, ϕ) are the combination compo-
nents formed by the incident plane waves and the scat-

tered cylindrical waves, and the term (r, ϕ) repre-
sents the contribution of the interacting scattered cylin-
drical waves of frequencies ω1 and ω2.

To reveal the distinctive features of the acoustic
field of the sum-frequency wave, we consider the final
asymptotic expressions for the spatial components of
the total sound pressure. The asymptotic expression

for the first component (r, ϕ) is analogous to
Eq. (10) from our previous paper [3] with the substi-
tution of the frequency (ω1 + ω2) and the wave number
k+ for Ω and k–.

Figure 1a shows the scattering diagram for the com-

ponent (r, ϕ) of the total sound pressure of the sum-
frequency wave. This diagram has its main maxima in
the forward and backward directions ϕ = 0° and 180°.
The shape of the diagram is determined by the behavior
of the function 1/(cosϕ ± 1), and the exponential factors
manifest themselves in the lateral directions.

The asymptotic expressions for the second and third
components of the total sound pressure of the sum-fre-

quency wave, (r, ϕ) and (r, ϕ), are described by
Eq. (13) from [3]. Analyzing the latter equation, one
can see that the shape of the scattering diagrams of
these components is determined by the function
1/cosϕ. The corresponding scattering diagram is shown
in Fig. 1b. The main maxima occur in the directions
ϕ = ±90° and 180°, and the field formed by the back-
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Fig. 1. Scattering diagrams of the spatial components

(a) (R, ϕ), (b) (r, ϕ) and (r, ϕ), and (c) (r, ϕ)

of the total sound pressure of the sum-frequency wave for
f1 = 976 kHz, f2 = 1000 kHz, F+ = 1976 kHz, k1, 2a ≈ 40,
k+a = 83, a = 0.01 m, and d = 0.22 m.
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ward scattering is characterized by a relatively insignif-
icant level. Unlike the case of the difference-frequency
wave, the scattering diagram for these components has
a maximum in the forward direction.

The fourth component (r, ϕ) of the total sound
pressure of the sum-frequency wave is described by
Eq. (14) from [3]. The corresponding scattering dia-
gram is shown in Fig. 1c. The shape of the diagram is
determined by the function 1/cos2ϕ, which yields two
main maxima in the lateral directions ϕ = ±90°.

Figure 2 presents the scattering diagrams for the total

sound pressure of the sum-frequency wave (r, ϕ).
From these diagrams, one can see that the main max-
ima occur in the directions ϕ = 0°, ±90°, and 180°,
which correspond to the minimal phase differences
between the initial high-frequency waves interacting in
the cylindrical layer of the medium around the scat-
terer. An increase in the size of the cylindrical scatterer
leads to insignificant changes in the scattering diagram,
and an increase in the thickness of the cylindrical layer
surrounding the scatterer leads to narrowing of the
main maxima because of the increase in the reradiating
volume. From the analysis of all spatial components, it
follows that the incident plane waves form the scatter-
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2( )

P+
2( )

0.5

1.0

1.0

1.01.0

0.5

0.50.5

–90°

+90°

0° 180°

1

2

|P+
(2)| × const 

Fig. 2. Scattering diagram of the total sound pressure of the

sum-frequency wave (r, ϕ) for f2 = 1000 kHz; a = 0.01 m;

k1, 2a ≈ 40; f1 = (1) 976 and (2) 880 kHz; F+ = (1) 1976 and
(2) 1880 kHz; k+a = (1) 83 and (2) 79; and d = (1, solid line)
0.22, (1, dashed line) 0.43, (2, solid line) 0.20, and (2, dashed
line) 0.40 m.
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ing field in the forward and backward directions and the
scattered cylindrical waves form the lateral fields.
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The characteristics of radiating parametric arrays
are adequately described by the Khokhlov–Zabo-
lotskaya–Kuznetsov (KZK) equation [1] derived from
a nonlinear wave equation. The KZK equation takes
into account the parameters of nonlinear interaction of
waves and allows one to determine the acoustic field of
the difference frequency at any point of space. In
papers [2, 3] it is shown that the calculation of the
transverse distributions of the field of a parametric
array by the formulas derived from the KZK equation
agrees well with the results of experimental studies in
the chosen frequency band. Although the restrictions
used in deriving the equation do not fundamentally
affect the results, they somewhat narrow the range of
validity of its solution.

Since the acoustic field of difference-frequency
waves is formed by the structure of the acoustic field of
pump waves, the directional pattern (DP) of a paramet-
ric array (PA) is determined by the directivity of the
pump array and the length of the region of nonlinear
interaction. The most intense generation of difference-
frequency waves occurs in the near zone of the pump
array. A reduction of the length of the interaction region
noticeably affects the directional pattern by making it
wider [1, 4]. For a sufficiently narrow directional pat-
tern, i.e., for large wave dimensions of the pump array,
a situation may arise when the length of the near zone
is greater than the length of the zone of interaction,
which usually is determined by the length of the zone
of wave attenuation. The accuracy achieved in calculat-
ing the directional patterns of such parametric arrays by
the existing methods is very low.

In this paper, on the basis of the analysis of nonlin-
ear wave interaction and the antenna theory, we derive
an expression for calculating the directional pattern of
parametric radiators; we also present the results of cal-
culations by different methods and perform the com-
parison of the computational results. 

To determine the directional pattern of a radiating
parametric array, we represent it as a three-dimensional
array consisting of sources continuously distributed in
the volume and formed at every point of the space as a
result of the nonlinear interaction of pump waves. The
volume occupied by the sources is determined by the
1063-7710/00/4606- $20.00 © 0737
volume of the pump wave interaction. The geometric
form of the volume of interaction is sufficiently com-
plex, but it can be described by the diffraction of pump
waves and their attenuation. 

From the point of view of antenna theory, the direc-
tional pattern of a three-dimensional array can be cal-
culated by using the main theorems for the antenna
directivity [5]. Thus, a three-dimensional array of sec-
ondary sources can be considered as a linear end-fire
array, the length of which is limited by the decay of the
pump waves due to their attenuation and diffraction
[1, 4], with allowance for the increase in the cross sec-
tion of the region of secondary sources due to the dif-
fraction of pump waves along this linear array. We note
that, near the pump transducer, the density of sources of
secondary waves is maximal, because, with the dis-
tance from the transducer surface, the intensity of pump
waves decreases as a result of both attenuation and dif-
fraction. 

Figure 1 shows the geometry of the arrangement of
secondary sources in the volume of interaction. We
consider the directional pattern of the parametric array
in the y–z plane. Assuming that the transducer is circu-
lar, we expect that the DP will be axially symmetric;
therefore, in our calculations, a plane circular array will
be replaced by an array in the form of a line segment,
according to the shift theorem of the antenna theory [5]. 

The DP of an end-fire array limited by the attenua-
tion in the far-field zone is given by the expression

(1)

where k = 2π/λ is the wave number of the pump waves;
λ = c/f0 is the wavelength of the pump waves; f0 = (f1 +
f2)/2; lz is the length of the end-fire array, which is equal
to the length of the region of interaction of the pump
waves f1 and f2; lz = 1/α; α is the coefficient of attenua-
tion of the pump waves in the medium; c is the velocity
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of wave propagation in the medium; and a(z) is the
amplitude distribution.

Using the multiplication theorem of the directivity
theory, we obtain the expression for the DP of the array
in the y–z plane: 

(2)

where K is the wave number of the difference-fre-
quency wave and r is the radius of the radiating array. 

The second integral in Eq. (2) determines the contri-
bution of the transverse aperture of the array to the for-
mation of the DP. The limits of integration should
change with the propagation of the pump waves,
because r(z) represents the radius of the pump wave
beam at a distance z from the surface of the pump trans-
ducer. This dimension changes due to the pump wave
diffraction according to the law [1] 

R θ( )

a z( )e ikz θ( )cos 1–( )– z a y( )e iKy θ( )sin– yd

r z( )–

r z( )

∫d

0

lz

∫

a y( )a z( ) y zdd

r z( )–

r z( )

∫
0

lz

∫
-------------------------------------------------------------------------------------------------,=

r1 z( ) r 1
z
ld

--- 
  2

+ ,=

y

x

z

lz
ld

0

r

θ
ϕ

M

–r

Fig. 1. Geometry of a three-dimensional parametric array.
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Fig. 2. Width of the directional pattern at 0.7 of its maxi-
mum as a function of the relative size of the interaction
region for (1) the parametric array and (2) the pump array.
where ld is the length of the pump wave diffraction
zone.

The coefficients of the amplitude distribution, a(z)
and a(y), can be determined as follows. The length of
the region of interaction is determined by the wave
attenuation. Thus, within the length of the attenuation
zone lz determined by the coefficient of attenuation α,
the level of the generated difference-frequency wave
decreases nearly by a factor of 9, and the process of the
generation of these waves can be considered as termi-
nated. Therefore, the amplitude distribution a(z) can be
defined as 

On the other hand, the diffraction reduces the wave
amplitude along the beam by the law 

Thus, assuming that the amplitude distribution across
beam is uniform, we obtain the expression for calculat-
ing the DP in the form 

(3)

Using Eq. (3), we calculate the change in the width of
the directional pattern of the parametric array as a func-
tion of the ratio of the characteristic dimensions of the
interaction region, lz/ld. Figure 2 shows the dependence
of the width of the DP on lz/ld calculated by Eq. (3)
(curve 1). Since, in many experimental investigations
carried out by the authors, the width of the directional
pattern of the pump array was close to the width of the
directivity pattern of the parametric radiation, in the
same figure we present curve 2, which illustrates the
dependence of the width of the DP of the pump array
on the same parameters.

The analysis of these dependences shows that, for
large ratios lz/ld, the width of the DP of the parametric
array is determined only by the length of the region of
interaction of the pump waves, lz, and is close to the
width of the directional pattern of the pump array. 

For the values lz < ld, the DP of the parametric array
broadens and it can become much wider than the direc-
tional pattern of the pump radiator. 

Thus, when designing radiating parametric arrays
with narrow directional patterns, it is necessary to keep
in mind that the efforts to make a narrow DP through
increasing the size of the pump transducer may lead to
the situation when the length of the diffraction zone
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exceeds the length of the attenuation zone, and the
expected decrease in the width of the DP of the para-
metric array will not be achieved.
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In papers [1, 2], experimental data on sound prere-
verberation in the deep ocean are presented and a sim-
ple ray model of surface prereverberation is suggested.
The kinematic characteristics, such as prereverberation
times and their dependence on grazing angles and the
number of ray reflections from the rough sea surface,
were estimated. The calculated characteristics fit well
the experimental data. However, the time dependence
of the intensity of the surface prereverberation was not
studied. Below, this problem is solved in the ray
approximation; i.e., the reradiation of high-frequency
sound incident on the rough ocean surface is considered
as specular reflection from plane surface segments with
different slope angles.

In the framework of the ray theory, a convenient
measure of the surface prereverberation intensity (SPI)
is the ratio of the intensity of scattered sound, which
causes surface prereverberation, to the intensity of
sound specularly reflected from a plane surface seg-
ment. In this paper, a simple method is suggested to
estimate this quantity for the case of high-frequency
sound prereverberation in a subsurface oceanic sound
channel. The method is based on the idea that the graz-
ing angles of sound waves scattered by the rough sea
surface are statistically distributed, which is related to
the statistical distribution of the slope angles of the sur-
face waves. In a rather good approximation, we can
assume that the slope angles of the wind waves are dis-
tributed according to the normal law and described by
the one-dimensional Gaussian probability density

(1)

where δ is the slope angle of wind waves and δ0 is the
rms slope angle. The value δ0 (in radians) can be calcu-
lated from the frequency spectrum S(Ω) of isotropic
wind waves:
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where Ωk is the cut-off frequency of the spectrum. For
estimating δ0, we take the Pierson–Neumann frequency
spectrum that is expressed by the formula

where C = 2.4 m2/s5, g = 9.81 m/s2, and v is the wind
speed in m/s. Then, for δ0, we obtain

(2)

where Ω0 =  is the frequency corresponding to the

maximum of the spectrum and Φ(z) = dt is

the probability integral.

The maximum of the scattering pattern for high-fre-
quency sound corresponds to the direction of the spec-
ular reflection, and, therefore, the greater the deviation
of the grazing angle of a scattered wave is from the
specular direction, the smaller the intensity of this wave
is. Therefore, in the scattering process, the main role
belongs to sloping surface waves with frequencies
that are relatively close to that of the spectral maxi-
mum. For example, for a wind speed of 10 m/s, from
formula (2), we obtain δ0 = 0.87° for Ωk = Ω0 and δ0 =
3.4° for Ωk = 2Ω0.

The method of the SPI calculation is demonstrated
by an example of single reflection of sound from the
rough sea surface in the surface oceanic channel in
which the sound velocity varies with depth z as c =
c0(1 + az). Let a point sound source and a receiver be
located near the surface at a distance r from each other.
In the case of a plane surface, a ray will be reflected
from the surface at the distance r/2 from the source and
arrive at the receiver. However, for a rough surface, it is
easy to find other surface segments from which the
reflection also contributes to the intensity of the
received signal. The slope of these segments should be
nonzero and be greater, the farther the segment from the
specular point is.
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In a stratified medium, the sound intensity corre-
sponding to a given ray is determined as follows (see,
e.g., [3])

where W is the acoustic power generated by the source,
χ1 and χ2 are the ray grazing angles at the source and at
the point of reception, respectively, and r is the horizon-
tal distance between the source and the receiver.

Taking into account that the sound source is located
near a statistically rough surface and the sound wave,
after its refraction in the water layer, is reflected from a
plane surface segment with the slope angle δ, we obtain
the following expression for the sound intensity propa-
gating along the ray:

Here, P(δ) is the probability density of the rough surface
slopes, r = r1 + r2 = 2(  + )/a, and r1 and r2

are the ray cycle lengths before and after reflection from
the surface. The grazing angle of a ray reflected from an
inclined surface segment is χ2 = χ1 + 2δ.

For a ray reflected from a segment with zero slope,
the sound intensity is

where χ0 is the ray grazing angle at the source and the
receiver.

Now, the relative intensity of the prereverberation
signal can be calculated by the formula

(3)

The relation between the grazing angles χ1, χ2, and
the slope angle δ of the surface segment can be found
by using two equalities: χ2 – χ1 = 2δ and 2(  +

) = ar. Using the smallness of these angles, we
obtain the approximate values χ1 ≈ χ0 – δ and χ2 ≈ χ0 +
δ. Expanding all factors on the right-hand side of for-
mula (3), except for P(δ), in powers of δ and χ0 and
retaining only the first-order terms, we arrive at the
expression

(4)

Note that this result can also be obtained if, instead
of the probability density of slopes of the rough sea sur-
face in formula (3), we use the scattering coefficient
calculated in a high-frequency approximation, this
coefficient also being determined only by the statistics
of the slopes.
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The prereverberation time, i.e., the difference in the
propagation times of a signal over specular and prere-
verberation rays, is determined by the formula from [4],
which in our case takes the form

(5)

Thus, the parameter δ relates the time to the prere-
verberation intensity; i.e., the time dependence of the
relative intensity of the prereverberation is determined

by formula (4), where δ = .

The limiting angle of the slope of a surface segment,
which restricts the prereverberation time, is the angle

δm corresponding to the grazing angle χ2 = χm ≈ .
The segments with slope angles δ > δm reflect the rays
so that the latter suffer reflection from the bottom. In
calculating the SPI, these rays can be neglected because
of their strong attenuation in the bottom.

We calculate now the dependence of the SPI on the
prereverberation time for the following values of the
parameters: c0 = 1.45 km/s, a = 1.1 × 10–2 1/km, H =
5 km, r = 100 km, and δ0 = 1°. In this case, the maximal
grazing angle is χm = 18.6°, which corresponds to the
maximal slope angle δm = 3.3°; the corresponding max-
imal prereverberation time is ∆tm = 115 ms. The figure
shows the dependence of the ratio I/I0 calculated by for-
mulas (4) and (5) on the parameter ∆t. The comparison
between this plot and the experimental dependence of
the sound pressure on the prereverberation time [1]
allows one to explain the increase in the intensity of the
prereverberation signal.

The simple ray method suggested here for calculat-
ing the intensity distribution over the scattered rays can
find applications not only for the case of surface prere-
verberation, but for other problems where the sound
scattering from a rough sea surface is involved.
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Vibrations of a thin bounded plate excited by har-
monically modulated laser radiation may be relevant to
remote laser optoacoustic diagnostics of materials,
especially under the conditions when conventional con-
tact methods of acoustic diagnostics are inapplicable
(e.g., at high temperatures or in an aggressive environ-
ment). Investigations of the mechanisms of the interac-
tion between laser radiation and a substance are also
frequently conducted using target samples in the form
of bounded plates. The characteristic features of their
vibrations can provide useful information on the phys-
ical processes in the plates [1, 2].

Let a laser beam harmonically modulated in inten-
sity be incident vertically upon the surface of a thin
bounded plate. We consider flexural oscillations of the
thin plate. For the plate displacements w(r), we can
write the equation [3]

(1)

In the case of harmonic oscillations, the equation takes
on the form

, (2)

where 

,

g is the flexural rigidity, ms – ρh is the plate mass per
unit area, F(r) is the function characterizing the exter-
nal dynamic force due to the effect of laser radiation
incident on the plate, k4 = [3ω2ρ(1 – ν2)]/Eh2, ω is the
circular frequency of modulation of the laser radiation
intensity, ρ is the density, ν is Poisson’s ratio, E is
Young’s modulus, and h is the plate thickness.

We write the solution to Eq. (2) in the form

(3)
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where G(r0/r) is the Green’s function that represents
the solution to the equation

(4)

and obeys the boundary conditions or the conditions of
fixation at the plate edge.

Using a standard procedure for solving Eq. (4), we
obtain [4]

(5)

where Ψmn(r) are the normalized eigenfunctions of
plate vibrations, which satisfy the equation

(6)

the boundary conditions, and the normalization condi-
tions

where δmnkl is the Kronecker delta.
Let us write an expression for the function F(r)

characterizing the external force acting on the plate. We
consider the thermoelastic (thermooptical) mechanism
of the laser excitation of plate vibrations.

We assume that the plate is opaque to laser radia-
tion, and the latter is absorbed in a thin surface layer
whose thickness is much less than the plate thickness.
In this case, for F(r), we obtain the expression [5]

(7)

where J0 is the intensity; f(r) is the function character-
izing the distribution of the laser radiation intensity
over the plate surface; α is the coefficient of cubic ther-
mal expansion; Cp is the specific heat of the plate mate-
rial; µ is the absorption coefficient characterizing the
absorption of laser radiation in the plate material; m is
the modulation coefficient characterizing the intensity

∆2 k4–( )G r0/r( ) δ r0 r–( )–=

G r0/r( )
Ψmn r0( )Ψmn r( )

kmn
4 k4–

-------------------------------------,
m n,
∑=

∆2 kmn
4–( )Ψmn r( ) 0,=

Ψmn r( )Ψkl r( ) s r( )d
S
∫ δmnkl,=

F r( ) Eαµm
Cp

----------------J0 f r( ) iωt–( ),exp–=
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modulation laser radiation, 0 ≤ m ≤ 1; and exp(–iωt) is
the time factor, which is omitted everywhere in our cal-
culations.

In most cases, the samples used for laser optoacous-
tic diagnostics and for studying the interaction of laser
radiation with a substance have the form of rectangular
or circular plates, and the distribution of the radiation
intensity in the laser beam has a Gaussian form [1, 2].

Let us consider vibrations of a circular plate. We can
write down the following expression for the intensity of
laser radiation:

(8)

where a0 is the radius of the laser beam.
Only axially symmetric vibrations are excited in the

plate. Let us first assume that the plate edges are fixed,
though, in the experiment, they may be free or fixed
with a joint (supported). The selection of the boundary
conditions does not restrict the generality of our con-
sideration and conclusions. The normalized eigenfunc-
tions for the vibrations of a fixed circular plate in the
case of axially symmetric vibrations have the form [4]

(9)

where Λn = 2{[J0(πβn)]2 + [ (πβn)]2}, (u) =

J0(u), β1 = 1.015, β2 = 2.007, β3 = 3.000, and βn 

n when n  ∞.
Using Eqs. (3) and (5)–(9), we obtain an expression

for the plate displacements:

f r( ) r2

a0
2

-----–
 
 
 

,exp=

Ψn r( ) 1

a πΛn

----------------- J0

πβnr
a

----------- 
  J0 πβn( )

I πβn( )
-------------------I

πβnr
a
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∂
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-----------------------------------J0=
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Fig. 1. Temperature dependence of the normalized funda-
mental resonance frequency ∆f/f0 of a silicon oxide ceramic
plate [2].
(10)

Performing the integration, we obtain

(11)

Now, let us consider Eq. (11). First of all, one can
see that, when the modulation frequency of laser radia-
tion ω coincides with some frequency of natural oscil-
lations of the plate ωn, the resonance of oscillations is
observed and the plate performs intense vibrations cor-
responding to the resonance of a normal mode. Indeed,
the condition for the resonance follows from the equal-

ity k4 –  = (k2 + )(k2 – ) = 0. From the condition

k2 –  = 0, it follows that ω = ωn, where, for ωn, the
following expression corresponding to the functions
Ψn(r) is valid [see Eq. (9)] [4]:

(12)

Now let us turn our attention to the possibility of
using the results obtained above for, e.g., remote laser
optoacoustic diagnostics of materials.

Figure 1 demonstrates the experimental temperature
dependence of the fundamental eigenfrequency of
vibrations of a circular ceramic plate [2]. The experi-
ments were conducted using a remote laser excitation
and sensing for the plate oscillations. If we assume that
the parameters of the plate h, a, and ρ do not depend on
temperature in the experimental conditions, then, the
given dependence characterizes the temperature varia-
tions of the Young’s modulus of the ceramic plate [see
Eq. (12)]. The hysteresis of the temperature depen-
dence of the eigenfrequency of plate vibrations attracts
one’s attention. Such a hysteresis can be explained if
we take into consideration the specific features of the
internal structure of ceramic materials. Ceramics are
often considered as consisting of a matrix (host mate-
rial) and strengthening particles, i.e., grains of some
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other material [6, 7]. As the temperature changes, inter-
nal thermal strains arise in the ceramics:

, (13)

where αm and αf are the coefficients of thermal expan-
sion of the materials of the matrix and the grains and ∆T
is the temperature variation. Internal strains are accom-
panied by internal stresses, which leads to changes in the
material rigidity, i.e., in Young’s modulus.

ε±
T αm α f–( )∆T=
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0

0.75

1.50

2.25

3.00

3.75

4.50

5.25

6.00

6.75

7.50
E, %

d = 8 µm

d = 4.5 µm

d = 3.5 µm

d = 1.3 µm

Ab

Mb

T, °C

Fig. 2. Temperature dependence of the thermal expansion ε
(in percent) of the Ce–TZP ceramics. The parameter is the
size of strengthening grains d. The arrows indicate the direc-
tion of the temperature cycle [7].
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The temperature dependence of the thermal expan-
sion of Ce–TZP ceramics is shown in Fig. 2 as an illus-
tration. The parameter is the size of grains d [7]. Accord-
ing to Hannin and Swain [7], the temperature hysteresis
of thermal expansion is connected with the concentration
of local stresses at the boundary of grains (particles) in
the matrix (in ceramics) under the effect of temperature.

Measurements of the amplitude of plate vibrations
at resonance frequencies and the shift of the eigenfre-
quency of vibrations can also provide an opportunity to
estimate the value and the temperature variations of the
Gruneisen parameter Γ(T) of the plate material:

(14)

where C2(T) = E(T)/ρ.
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The interest in the problem of phase conjugation of
ultrasound has noticeably increased in the last few
years, which is caused by the recent progress in the
experimental techniques used for the generation of
phase-conjugate acoustic beams [1–3]. Multichannel
electronic systems of time inversion on the basis of
matrix electroacoustic transducers [1] and distributed
parametric systems of phase conjugation on the basis of
piezoelectric and magnetoacoustic ceramics [2, 3] have
acquired practical importance. One of the advantages
of magnetoacoustic systems of phase conjugation is the
practical opportunity to realize the overthreshold con-
ditions of giant amplification of a conjugate ultrasonic
wave [4]. A parametric amplifier of sound in the over-
threshold mode of operation is a source of coherent
stimulated radiation of phase-conjugate phonon pairs.

High quality of reproduction of the wave field of
quasi-plane and focused beams in solids and liquids,
compensation of phase distortions of waves, self-focus-
ing of conjugate beams to regular and random objects,
and other effects typical of phase conjugation have
been demonstrated in numerous experiments on the
overthreshold phase conjugation [2, 5].

The giant amplification facilitates the development
of nonlinear phenomena in the process of the propaga-
tion of conjugate waves, including the formation of
shock wave fronts [6]. Conjugate acoustic beams of
high intensity may find application in high-intensity
ultrasonic technologies, engineering, and medicine. In
this connection, the analysis of the factors determining
the fundamentally attainable intensity levels in the case
of the parametric phase conjugation is of interest. Many
researchers studied the contributions of various nonlin-
ear mechanisms to the limitation of amplitude in over-
threshold amplification of a phase-conjugate wave [7, 8].
Comparison of the theoretical and experimental results
on the amplification dynamics in magnetic ceramics [7]
provided an opportunity to single out the inverse effect
of the generated waves on pumping (the so-called
pumping depletion) as the main mechanism.
1063-7710/00/4606- $20.00 © 20746
The propose of this study is the calculation of the
limiting radiation power in the case of the acoustic
phase conjugation in a system consisting of an electro-
magnetic pumping source and a parametrically active
magnetic medium. The relation between the limiting
output acoustic power and the main parameters of the
active medium, the pumping source, and their electro-
magnetic matching circuits is determined.

Let us consider a magnetoacoustically-active medium
with the matrix of elasticity moduli Cik; lm (H) depend-
ing on the magnetic field strength H. The parametric
interaction of acoustic waves is accompanied by non-
linear oscillations of magnetization in the medium,
which are described by the expression

, (1)

where uik is the elastic deformation tensor and µ0 is the
magnetic permeability of a vacuum. Without essential
limitation of generality, we consider the interaction of
a pair of quasi-plane waves of finite aperture with the
amplitudes A and B and frequency ωk propagating
toward each other. In this case, the quasi-homogeneous
part of the magnetization oscillations with the pumping
frequency 2ωk is described by the next relationship fol-
lowing from expression (1):

(2)

where ν is the wave velocity, ρ is the density of the
medium, and k is the wave number.

In conformity with the common experimental con-
ditions of parallel pumping [4, 5], we assume that the
active medium is placed into an inductance coil with
the axis x parallel to the bias field. The amplitude of the
alternating voltage of frequency 2ωk induced by sound
in the coil can be represented with the help of expres-
sion (2) in the form

(3)

m
1

2µ0
-------- ∂/∂H( )Cik ; lm H( )uikulm–=

m 2iρν ∂ν/∂H( )k2AB 2iωkt( ) c.c.,+exp–=

U 2iωkL 1 iQ 1––( )J p=

+ 4W /l( )ωkρν ∂ν/∂H( )k2 VAB,d∫
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where L, Q, W, l, and V are the inductance, quality fac-
tor, number of coils, length, and volume of the coil,
respectively, and Jp is the pumping current in the coil in
the presence of parametrically coupled waves.

If the parameters of the pumping source are preset
(i.e., in the case of a fixed rated voltage U0 and a com-
plex internal resistance Z0), the current Jp and the volt-
age U vary as the functions of the level of the intensity
of the amplified waves. Using equality (3), the law of
the pumping current variation can be represented in the
form

(4)

where µ is the magnetic permeability of the medium
and ζ is the parameter of matching of the pumping
source with the active element. The latter quantity is
equal to

(5)

where

(6)

and Z1 and Z2 are the impedances of the series (with
respect to the coil) and parallel branches of the match-
ing circuit, respectively. In the case of a negligibly
small inverse effect of the generated sound on pumping
(in particular, at the initial stage of the amplification

process), the rated current  in the coil is equal to

(7)

The slowly varying amplitudes of the parametrically
coupled waves are described by a known set of equa-
tions [9]

(8)

where hp is the pumping parameter proportional to the
current in the coil:

(9)

In the process of the amplification, the pumping cur-

rent decreases from its rated value  down to the crit-
ical value Jc corresponding to the threshold of absolute
parametric instability. In this case, the magnitude of the
pumping parameter becomes equal to |hp | = νπ/2l and
the amplitudes of waves attain their stationary level.
The output acoustic power Pa radiated by a conjugate
wave in the stationary mode and the integral in expres-
sion (4) are connected by a relationship following from
system (8) (at ∂/∂t = 0):

(10)

J p J p
0 1/SWµ0µ( )ρ ∂ν2/∂H( )k2ζ VAB,d∫–=

ζ 2ωkL Z0 Z2+( )/∆,=

∆ 2iωkL Z1+( ) Z0 Z2+( ) Z0Z2+=

J p
0

J p
0 U0Z2/∆.=

∂/∂t ν∂/∂x+( )A hpB*,=

∂/∂t ν∂/∂x–( )B* hp*A,=

hp ωk
W
l

----- 1
ν
---

H∂
∂ν

 
  J p.=

J p
0

Pa 4ρνk2hp* VAB.d∫=
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Using equalities (4), (9), and (10), it is possible to
express the radiation power through the characteristic
values of the pumping current

(11)

The phase shift between the rated and stationary
currents that occurs in the process of the sound ampli-
tude growth is determined by the phase ϕ of the com-
plex parameter of matching ζ. Taking into account the
condition of a steady state |Jp | = Jc, it is possible to rep-
resent the output power in the final form

(12)

Expression (12) relates the output power radiated by
a conjugate wave to the electric parameters of the
pumping circuit and to the properties of the active
medium. In addition, according to expression (9), the
sensitivity of the sound velocity to variations in the
magnetic field strength determines the critical current
Jc  and the complex magnetic permeability determines
the inductance and the quality factor of the pumping
coil.

The parameter of electric matching affects both the
dynamics of the parametric amplification and the
attainable level of the acoustic power.

For definiteness, we consider a pumping source
with an active internal resistance (Z0 = R0) connected
with the pumping coil through a capacitive matching
circuit (Z1, 2 = –i/2ωkC1, 2). It is possible to demonstrate
that the optimal detuning of the series LC1-link with
respect to the resonance at the frequency 2ωk corre-

sponds to the maximal current  = U0ζ/2ωkη, where
η = 1 + (2R0ωkC2)2, and, in this case, the matching
parameter turns out to be real (ϕ = 0): ζ1 = Q–1 +
R0/2ωkLη. The phase of the pumping current at a real ζ
does not change in the process of amplification, and the
parametric interaction renormalizes the current ampli-
tude only. The output power in the case under consider-
ation is equal to

(13)

where

(14)

It follows from expression (13) that, in the case of
fixed parameters of the pumping source and matching
circuits, the maximal power is radiated at the optimal
parametric coupling corresponding to the supercritical

conditions β ≡ /Jc = 2. The quantity  is
expressed by the formula

(15)

Pa 2ωkL/ζ( ) J p
0 J p* J p

2–( ).=

Pa 2ωkL/ ζ( )=

× Jc J p
0 2

Jc
2 ϕsin

2
–( )

1/2
Jc ϕcos–[ ] .

J p
0

Pa R0η
1– 2ωkLQ 1–+( )Jc J p

0 Jc–( ),=

J p
0 U0 / R0η

1– 2ωkLQ 1–+( )η1/2.=

J p
0 Pa

max

Pa
max PeR0/2 R0 2ωkLηQ 1–+( ),=
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where Pe = /2R0 is the electric power, which can be
given out by this source in a matched resistive load.

Thus, under the optimal conditions, the power of
radiation into a conjugate wave does not exceed 0.5Pe
and tends to this limiting value in the case of a high
enough quality of the pumping circuit Q @ 2ωkLη/R0.

Expression (13) allows us to estimate the radiated
power from the data of electric measurements. For
example, in the case of typical values of the parameters

(  = 20 A, R0 = 3 Ω , 2ωkL = 120 Ω , Q = 100, β = 2,
and η ≅  1), it constitutes Pa ≅  360 W, which agrees well
with the experimental data on the intensity of radiation
into a solid medium [4]. If a phase-conjugate wave is
radiated into a liquid [6], the measured intensity is con-
siderably lower because of the reflection loss at the
magnet–liquid interface. An additional factor reducing
the output power can be the competition of the signal
and noise modes within the range of parametric ampli-
fication [7]. This factor manifests itself most strongly in
the case of relatively low levels of the wave intensity at
the active medium input, which is typical of the exper-
iments on phase conjugation of sound in liquids.

In closing, we note that the results obtained above
by calculating the radiation power in the case of the
parametric phase conjugation in a magnet demonstrate
a potentially high efficiency of the ultrasonic wave con-
version in the overthreshold mode of amplification.
With the attainable levels of the pumping power and the
optimal matching of the generator with the active
medium, the intensity of the phase-conjugate waves
can reach tens of watts per square centimeter, which is

U0
2

J p
0

of interest from the point of view of various applica-
tions in technology and medicine.
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Abstract—The technique, experimental conditions, and main results of comprehensive studies of sound fields
in the northwestern region of the Pacific Ocean are presented. The experiments are carried out on paths up to
2100 km in length. The power–frequency, space–time, and correlation characteristics of the sound fields are
studied in sonic and infrasonic frequency bands for long- and extra-long-range propagation with the use of cw
and explosion-generated sound signals. Effects of the bottom relief and the spatial distribution of the speed of
sound on the frequency characteristics of the sound field are investigated. The role of front zones in the forma-
tion of sound fields received at the coastal shelf and in the open ocean is revealed. The loss coefficients are esti-
mated. The space–time stability of the sound field components is studied, and the possibility is shown for the
coherent components to be conserved and resolved in frequency at distances up to 2100 km. The phase veloc-
ities of these components are determined. The total broadening of the frequency spectra is considered. The cor-
relation characteristics of the total field are obtained for horizontally separated receivers in sonic and infrasonic
frequency bands. © 2000 MAIK “Nauka/Interperiodica”.
In accordance with the main tasks of fundamental
studies of the World Ocean, in 1980, Andreev Acoustics
Institute of the Russian Academy of Sciences (RAS),
jointly with the Institute of Applied Physics of RAS and
the Navy Hydrographic Service of the USSR, carried
out comprehensive studies of the acoustic-oceano-
graphic characteristics in the northwestern region of the
Pacific Ocean. The Morfizpribor Central Research
Institute, the Kiev Research and Development Bureau,
the Pacific Institute of Oceanology of the Far-East Sci-
entific Center of the RAS, the General Physics Institute
of the RAS, and other organizations and teams also par-
ticipated in these works. The studies were performed in
summertime, near the southern end of the Kamchatka
peninsula, on paths up to 2100 km long. The author of
this paper, as the principal investigator of these studies,
developed the working program. He determined the
content of the ship-borne equipment and the set of
instruments used in the studies, the locations for the
main receiving and transmitting systems along with
their operational modes, and the sequence of individual
stages of the complex program.

The program of the studies implied that experimen-
tal data should cover a wide scope of key parameters of
the sound fields in sonic and infrasonic frequency
bands, for long and extra-long ranges of sound propa-
gation along paths with a complex bottom relief, in
intricate acoustic-hydrographic environments.
1063-7710/00/4606- $20.00 © 20749
IMPLEMENTATION OF THE EXPERIMENTS

Because of the variety of hydrophysical processes
and spatial distributions of oceanographic parameters,
the northwestern Pacific seems to be one of the most
complex regions of the ocean. This complexity is pri-
marily caused by the existence of hydrological fronts
that are generated by the interaction of the subtropical
waters of Kuroshio and the subarctic waters of the cold
Oyashio current. With these phenomena accompanied
by an equally complex bottom relief, the studies were
planned to be performed for a broad band of sonic and
infrasonic frequencies, with large separations of the
sources and receivers in distance and depth. The pro-
gram was intended to collect information on the sound
field structure and its decay laws, the coefficients of
spatial attenuation, the bottom reflectivity, the time-fre-
quency stability of the field components, and the corre-
lation functions of the total field. Studies of the effect
of the front zones on the power–frequency field charac-
teristics were considered as highly urgent. Studies of
hydrological and hydrographic parameters of the near-
Kamchatka region were included in a separate subpro-
gram. The acoustic experiments were carried out for the
frequency band 5 Hz to 3 kHz with the use of explo-
sions as the sound sources and at frequencies of 100,
230, 380, and 1000 Hz with cw sources that were
highly stable in frequency. The monochromatic trans-
mitting systems and explosive sound sources were car-
000 MAIK “Nauka/Interperiodica”
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ried by the Baikal research vessel. The signals were
received by various receiving systems that were spa-
tially separated by up to 10–25 km, mainly in the shelf
zone of the region. In addition, the cw signals were
received in an open ocean, in the vicinity of the front
zones, 1200–1400 km offshore. Seven research vessels
of the Navy Hydrographic Service of the Far-East
region participated in the studies, along with the coastal
receiving stations, all reception points having a com-
mon communication system. Managing the experi-
ments, performing the basic measurements, coordinat-
ing the modes of operation of transmitters and receivers
located both in open ocean and in the shelf zone—these
were the tasks performed by the author of this paper
from the coastal control station in accordance with the
unified program.

Some results of these studies were reported at sci-
entific seminars and sessions of the Russian Acousti-
cal Society and can be found in several publications
(e.g., [1]).

EXPERIMENTAL CONDITIONS

The acoustic experiments were accompanied by
detailed hydrologic and geologic measurements in the
region. From June 16 to September 4, two quasi-syn-
chronous hydrological surveys were carried out. These
measurements followed the specially developed scheme
of the stations. A fragment of this scheme is presented
in Fig. 1. As straight-line segments, the acoustic paths
are also shown on the map. The first path is oriented
along the arc of the big circle at 120° (path 1), the second
one at 150° (path 2). The stations were located at arc
and radial sections, 50 to 1500 km in length. The path
lengths reached 2100 km. The range of azimuth angles
was 80°.

Hydrological measurements were carried out
before, simultaneously with, and after the acoustic
experiments. Points of the measurements were sepa-
rated by about 20 nautical miles at the sections that
were 50 nm apart from each other. In the regions with
high vertical gradients and on the propagation paths,
these separations were 5–10 miles. As a result, the fron-
tal zones were located and characterized prior to the
acoustic experiments. In parallel, the sea floor was sur-
veyed in the entire region and along the propagation
paths. At several points, geologic parameters of the
upper sediment layer were measured, and the available
data were generalized in view of the measured parame-
ters. In the hydrological measurements, four research
vessels took part: Bashkiriya, Nevel’skoœ, F. Litke, and
Taœga. The vessels operated mostly independently,
according to individual subprograms. A number of self-
contained deep-water buoys were arranged in the
region for long-term operation. At separate points,
measurements taken over several days and multiset
measurements were carried out. The buoy stations and
multiset ones are shown by triangles and rectangles on
the map with indications of the observation duration
(in days). In total, 15 sections were made that covered
233 points of hydrological measurements. At each
point, the measurements were carried out twice, with an
interval of 1.5–2 months. The data on the hydrological-
acoustical characterization of the region, along with the
results of full data processing to yield the hydrological,
physical, and partially chemical parameters of the
waters, are summarized in 18 separate volumes. This
work was done by the Hydrographic Service of the Far-
East Region.

For the Kamchatka coastal region, a characteristic
feature of the thermal structure of waters is the pres-
ence of cold waters (with temperatures lower than 1°C)
at depths of 50–100 m and waters with positive temper-
atures (up to 3–4°ë) at depths of 300–400 m. The tem-
perature monotonically decreases with depth and
reaches +1.5°ë near the bottom, at the depth of 5000 m.
Four main fronts can be distinguished in the region:

Kamchatka front, the Oyashio Current (50–150 km
offshore);

Oyashio front, the Oyashio Countercurrent (800–
850 km);

North Polar front (1200–1300 km);
Kuroshio front (1400 km along path 2 and 2000–

2100 km along path 1).
The three former fronts weakly affect the main

properties of the profile of the speed of sound. These
fronts are associated with waters of the polar and mod-
erate latitudes. Here, at ranges up to 2000 km along
path 1 and up to 1380 km along path 2, the axis of the
sound channel lies at depths from 80 to 150 m. The
most significant changes occur on path 2 at the deep-
water Kuroshio front. Here, the depth of the channel
axis sharply increases from 100–150 to 1000 m as the
distance changes by less than 10 km. The axis value of
the speed of sound increases up to 1480 m/s, which is
higher than near the coast (1450 m/s) by 25–30 m/s. At
the depths of 50–100 m, the difference in the sound
speeds reaches 50 m/s or more. Figure 2 shows the most
typical speed of sound profiles along path 2 and the
isospeed curves at ranges up to 1500 km, including the
front zone (1400 km), for the upper layers of the chan-
nel. In Fig. 2b, characters 1–40 indicate the numbers of
the hydrological stations on the path; crosses display
the positions of the channel axis. In Fig. 2a, a signifi-
cant inversion is pronounced in the regular range
dependence of the speed of sound profiles. Thus, at dis-
tances of 850–1265 km and depths of 100–1000 m, the
speed of sound exhibits only a weak depth dependence
and varies from 1473 to 1477 m/s, with a minimum at
400–500 m (curve 3). At the same time, at distances of
1290–1375 km, the minimal speed of sound decreases
by 8–10 m/s, and a channel is formed with a sharp min-
imum of 1468 m/s at the depths 100–200 m. The speed
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000



        

COMPREHENSIVE STUDIES OF SOUND FIELDS IN THE KURIL-KAMCHATKA REGION 751

                                 
Fig. 1. Region of experimentation, propagation paths, and layout of the hydrophysical stations. Circles show the positions of the
hydrological stations. Portions of solid lines show the sections of oceanographic surveys, triangles show the triple self-contained
buoy systems, and squares represent multiset hydrological stations. Numbers in and near triangles and squares indicate the observa-
tion durations (in days).
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of sound profile acquires parameters that are close to
those of the coastal zone (curves 1, 2). At the other side
of the front zone, the speed profiles become similar to
those of tropical latitudes. The inversion-type changes
in the speed of sound field can be also observed in other
regions [2].

The acoustic experiments themselves were carried
out from July 17 to August 15, with a fully developed
underwater sound channel. Two paths were selected
that were most typical for the region (Fig. 1). The first
one was oriented at 120°, perpendicularly to the iso-
baths. It passed mainly through the cold polar waters,
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
and the path parameters weakly changed with distance
up to 2000 km. At distances of 800–1000 km, the path
crossed the Emperor Mounts. The second path oriented
at 150° exhibited more pronounced changes in the
profiles of the speed of sound and a sharp frontal zone
at the distance 1400 m (Fig. 2). Starting from 150 km,
the ocean depth was within 5000–5500 m along the
path. Along path 1, the front zone and the beginning
of a tropical-like environment were observed at the
distances of 2000–2100 km. There were favorable
meteorological conditions during the experimenta-
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Fig 2. (a) Selected profiles of the speed of sound on path 2 at the distances (1) 100, (2) 850, (3) 1380, (4) 1412, (5) 2000, and
(6) 3000 km and (b) the field of the speed of sound up to the Kuroshio front zone for upper layers of the waveguide; the field is
represented by the isospeed curves.
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tion: the wind speed was not higher than 10–12 m/s,
the sea state was Beaufort 3–4.

RECEIVING AND TRANSMITTING SYSTEMS: 
EXPERIMENTAL TECHNIQUE

In the experiments with the cw sound signals, the
transmitters were continuously towed and all the fre-
quencies were emitted simultaneously by different
transducers. The four transmitters were mounted on a
single frame, which was deployed from the vessel’s
stern. A depth-measuring device was also mounted on
the frame. With the towing speed of 5–6 k, the trans-
mission depth varied from 60 to 70 m. On both paths,
the distances of towing reached 300 km, with short
stops at the distances 50, 100, 200, and 300 km for per-
forming other experiments. At longer ranges, the cw
transmission was carried out on separate parts of the
paths, 50–150 km in length, at the distances 400–450,
600–650, 900–1000, 1200–1250, 1330–1500, 1500–
1600, 1800–1850, and 1950–2100 km. Quartz-stabi-
lized oscillators were used to feed the power amplifiers,
along with associated manipulating devices. The
devices allowed one to choose different power levels
and types of the signal, with a given ratio of its duration
to the repetition rate. A transmission mode was chosen
that was close to a continuous one: the signal duration
was 480 s, the pause duration was 20 s. All four trans-
mitters were controlled from a single controller that
continuously monitored the transmission mode and
depth. A reference hydrophone was mounted on the
frame for calibrating the whole circuit. Thus, the power
of each transmitter could be measured and maintained
at the desired level. The aforementioned technique was
common for both paths. With the cw signals, the mea-
surements were carried out at linear tacks, when the
transmitting vessel went offshore, towards the open
ocean; the explosive charges were dropped from the
vessel at reverse tacks. The explosions were performed
at the vessel’s speeds of 10–12 k, in the form of series.
Each series consisted of six explosions. The explosions
were separated by an interval of 3 min. The depths of
explosions were 50, 100, and 300 m. The mass of the
charge was about 200 g, the detonators were of the
KZM type. In total, 600 explosions were performed on
both paths. With the explosions, the length of path 2
was 1600 km.

For signal reception and recording, different devices
were used for the frequency band at hand. The depths
of the shelf-positioned receivers were 100 to 200 m,
depending of their distance from the coast; they were
separated by 10–25 km in space. The low-frequency
(from several hertz) radio-acoustic buoys were bottom-
moored (100 m), with the frontal separations up to 15 km.
Their signals were recorded by the Astronom receiving
vessel. The vertical receiving array (with the hydro-
phone depths 20, 40, 60, 80, and 100 m) was deployed
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
from the Antares research vessel. Both receiving ves-
sels were anchored at a distance of 15 km from each
other. Only cw signals were received in the open ocean,
near the front zones. For this purpose, drifting vessels
were used: Taœga on path 1 and F. Litke on path 2. They
were positioned 1200–1400 km offshore, at points with
5000–5600-m sea depths. At these points, the signals
were received at depths of 80–100 m when the trans-
mitting vessel approached the receiving ones from the
shelf, passed them (at the distances 400–450 m), and
moved away from them up to the end points of the
paths. The signals were recorded with the use of multi-
channel magnetic tape-recorders and level recorders.
The distances between the sources and receivers were
determined by means of satellite navigation systems
and monitored by measuring the propagation times of
the sound signals.

MAIN RESULTS OF THE STUDIES

The cw-signal studies of the sound field structure
showed that, for weakly changing hydrological proper-
ties of the path, the decay law is practically monotone,
with a pronounced exponential dependence that is asso-
ciated with the frequency. However different rates of
the decay were observed at different parts of the paths.
Thus, at the distances of 200 to 280 km on path 2, the
level decay was 1–2 dB at the frequency of 380 Hz,
while it reached 10–12 dB as the distance changed from
280 to 400 km. Parts of the paths were found where, for
a distance change of 20 km, a nearly monotone (with
the same interference maximums and minimums)
increase in the level was observed up to 10–12 dB rela-
tive to its initial value. With the use of the narrow-band
analysis, a consistent reception of the 1000-Hz signals
took place up to the distance 1200 km, with the 8–10-dB
excess over the noise level. At 1000 Hz, the total loss in
the signal level, including absorption in water, losses
at the boundaries (rough ocean surface, shallow-water
shelf zone), and inhomogeneities of the channel, was
30–32 dB/Mm on path 1 and 40–45 dB/Mm on path 2.
At the frequencies 100, 230, and 380 Hz, the signals
were reliably received up to 2100 km on both paths,
with a signal-to-noise ratio of 10–20 dB (for path 1). At
these frequencies, the losses in the front zone are 10–
12 dB (for the distances of 2000–2100 km of path 1).
The additional losses, i.e., those measured relative to
the cylindrical decay law and the predicted absorp-
tion as given by the formula α = 0.036f 3/2 dB/km, are
3–7 dB/Mm for a 2000-km path. On path 2, at the front
zone, the decay and total losses of the 100-, 230-, and
380-Hz signals are close to those on path 1. Some dif-
ferences can be found only in the envelope structures
and local level variations. These differences seem to be
caused by the unlikeness of the bottom reliefs on the
two paths, especially on the continental slope and the
coastal shelf. On path 1, the length of the shelf zone (up
to the depths 250–300 m) was 3–4 km, while it
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increased up to 10–12 km on path 2. The steepness of
the continental slope was 10° to 17° on the paths.

Naturally, the most pronounced differences in the
decay laws occur at the front zone. At the frequencies
100, 230, and 380 Hz, the passage over the front zone
is followed by a level decrease of 12–16 dB, which is
weakly dependent on the frequency. Figure 3a shows a
fragment of the signal level record obtained at the fre-
quency 100 Hz when the sound source was crossing the
front zone. This signal was received at the shelf zone.
The plots present the signal levels averaged over 480 s.
The points are connected by a continuous curve. At the
frequencies 230 and 380 Hz, the decay laws and the
mean losses associated with front crossing are similar.
For higher frequencies, a more complex shape of the
level envelopes can be observed, though without any
pronounced frequency dependence. For the sake of
comparison, Fig. 3b presents the changes in the sound
field level at the front zone, which were obtained with the
explosive sound sources. The depths of explosions were
50, 100, and 300 m. The reception was carried out within
the 1/3-octave frequency band around 250 Hz. A strong
dependence of the level decay on the source depth can be
noticed: up to 20 dB. Just as on path 1, the 1000-Hz sig-
nals were not detected on the noise background near the
front zone at the distances 1350–1400 km, although the
signal-to-noise ratio was 10–12 dB at the distances
1000–1200 km on both paths.
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Fig. 3. Experimental sound field levels for (a) cw and
(b) explosive signals on path 2 in the vicinity of the front
zone; reception in the coastal wedge; distances 1200–
1600 km. Depth of the cw source 70 m and frequency
100 Hz. Explosion depths: (dots) 50, (crosses) 100, and (tri-
angles) 300 m. Frequency: 250 Hz, 1/3-octave band. Recep-
tion depth in both experiments: 200 m.
The front-zone losses can be associated both with
variations profiles of the speed of sound at the source
and receiver depths and with changes in the “energy
capacity” of the sound channel behind the front zone.
Here, the energy capacity means the angular width of
the sound beam captured by the waveguide at high fre-
quencies of the spectrum. Generally, the channel capac-
ity is frequency dependent: as the frequency decreases,
it decreases down to zero at the critical frequency of the
refraction components of the entire waveguide. In this
case, at each frequency, the energy capacity of the
channel is determined by the angular aperture of the
sound beam that is bounded by the boundary ray and
the ray determined by the dispersion relation at the given
frequency. For the region at hand, the difference in the
speeds of sound at the channel axis reaches 23–30 m/s.
At the same time, the ocean depth remains constant, as
well as the near-bottom speed of sound. In ray-theory
terms, these phenomena lead to a decrease in the chan-
nel capacity by +10°–11° and, as a consequence, to a
decrease in the integral level of the sound field, because
a large part of the water rays changes into bottom-sur-
face-reflected ones, the latter rays suffering high losses
in the bottom sediments.

Another important feature of the sound field propa-
gating along the paths should be mentioned. It is con-
cerned with the changes in the envelope of the signal
amplitude in the course of propagation. The experimen-
tal records exhibited a regular nature of the changes in
the amplitude envelopes, which are frequency depen-
dent at the distances up to 1500–2100 km. This regular-
ity indicates a high stability of the phase fronts and
coherent components of the sound field in the observed
field structures at the long ranges studied. At the dis-
tances up to 2000 km, the spatial interference period
(with the modulation depth up to 30 dB) was on aver-
age equal to 100–150 m at the frequency 1000 Hz and
350–600, 400–1000, and 500–1000 m at the frequen-
cies 400, 230, and 100 Hz, respectively. Note that, if the
phases of the field components were lost, the regularity
of the frequency dependences of the spatial interfer-
ence periods would be violated and the envelopes of the
total signals would exhibit the characteristics of a sta-
tistically homogeneous field with a chaotic amplitude
distribution.

Figure 4 shows the calculated sound field structure
and the level decay as a function of range on path 2, for
the low-frequency portion of the spectrum. A computer
code developed by Avilov [3, 4] on the basis of the
wide-angle parabolic equation was used. Here, the dis-
tances are one to 2200 km, the frequency equals 16 Hz,
and the source depth is 70 m. The reception at the
coastal shelf, at a depth of 200 m, is implied. The shelf
zone is 12 km long. The following environment charac-
teristics are specified for the computations: 40 profiles
of the speed of sound along the path; the measured bot-
tom relief and the known parameters of the sediments
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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Fig. 4. Calculated sound field levels for the monochromatic source; reception in the coastal wedge. Computations in view of the
bottom relief, changing sound speed profiles (40 measured profiles are used), and geological properties of the sea floor. Source
depth: 70 m. Receiver depth: 200 m. Frequency: 16 Hz. Front zone distance: 1400 m. (1) Spherical decay law; (2) cylindrical decay
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in view of the losses; and the halfspace model for the
sea floor. Curve 1 represents the spherical spread, and
curve 2 corresponds to the cylindrical one, with the
transition distance r0 = 10 km. The obtained results
show that, even at this low frequency, the front zone
significantly influences the power characteristics of the
sound field. In addition, according to the decay law, the
computational model agrees well with the observed
dependence of the sound level on the changes in the
profile of the speed of sound along the path.

Figure 5 illustrates the studies of the sound field
structure in the vicinity of the open-ocean front zone.
These data are obtained for the transmitting vessel
passing from the area of total insonification to the zone-
structured one. The receiving vessel was positioned
1340 km offshore, at a distance of 60 km from the front
zone. After passing the receivers (with the minimum
distance 450 m), the transmitting vessel went along the
initial course toward the front zone, and then, after
crossing it, toward the end point of the path. The figure
presents the sound field decays at the frequencies 100,
230, 380, and 1000 Hz, for the distances 0.5 to 200 km.
The dotted curve at the top indicates the sound field lev-
els calculated in the ray approximation. In the compu-
tations, the bottom was assumed to be fully absorptive.
According to the data obtained at all frequencies, start-
ing from 10–15 km up to the front zone and at longer
ranges up to 200 km, the level decay is closer to the
spherical law (with a positive anomaly of 8–18 dB)
than to the cylindrical one, the latter being expected in
the case of a homogeneous sound channel along the
path. The experimental values of the level, along with its
range dependence, agree well with the computations.
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
The positive propagation anomaly reaches 12–18 dB in
the convergence zones. As a result of two- and threefold
reflections from the bottom and surface in the second
and third shadow zones, the sound field decays more
rapidly than the spherical curve and changes from –(2–7)
to –25 dB. A strong frequency dependence of the bot-
tom reflection coefficient can be noticed. The highest
losses are observed at the frequency 1000 Hz. Accord-
ing to the calculations, if the effective bottom and sur-
face reflection coefficients are close to 0.8–0.9 at 100 Hz,
they will decrease down to 0.25–0.38 at 1000 Hz. As
follows from the absolute values of the level and the
trend of the general decay, the anomaly in the secondary
zones is close to that corresponding to the totally insoni-
fied fraction of the path and the sound level follows the
spherical law with a constant positive anomaly.

As we mentioned above, the studies with the explo-
sive sound sources were carried out at the reverse tacks
on both paths, when the transmitting vessel went ashore
from an open ocean. The signals were received by all
coastal systems at distances from 2100 km on path 1
and from 1600 km on path 2. In the case of a broadband
reception at 2100 km, the signal level exceeded the
noise one by 10–20 dB. With a narrow-band analysis at
individual frequencies, the signal-to-noise ratio reached
25–30 dB. At the distance 2100 km, the change from 50
to 300 m in the explosion depths leads to an increase of
5 dB in the broadband signal level. The total duration of
the signals is 10 s. At the front zone on path 2, the
broadband level decay ranges from 5–10 to 15–20 dB
for the explosion depths of 50 to 300 m. As measured
in the 1/3-octave band, the maximum level difference in
the front zone is 12–35 dB, which is somewhat higher
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Fig. 5. Range decays of the sound field level near the open-ocean front zone on path 2, at distances of 1340–1500 km. The data are
obtained for the transmitting system moving away from the receiver. The transmission depth is 70 m, and the reception depth is 80 m.
Frequencies: (1) 100, (2) 230, (3) 380, and (4) 1000 Hz. The upper plot shows the values computed with the ray code for a perfectly
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than with the cw transmission. This effect is well pro-
nounced in Fig. 3.

To finish with analyzing the power characteristics of
the sound field, it is worth mentioning that, in experi-
mentation with explosions (and with the use of a bot-
tom-moored low-frequency antenna array), there were
permanently observed (and recorded by the level
recorders and infrasonic magnetic tape-recorders)
rather intense low-frequency signals from underground
earthquakes.

In these studies, the studies of the spatial and tem-
poral stability of the sound fields were carried out with
the use of a highly stabilized transmission from a mov-
ing source. For the first time, data were obtained on the
frequency splitting of the field components in the pres-
ence of continuous signals, at extra-long ranges in a
spatially inhomogeneous waveguide. The signals used
in these studies were those recorded at distances of
1000–2100 km, with the frequencies 230 and 380 Hz
and durations 300 and 1050 s, the latter values corre-
sponding to path intervals of 750 and 2625 m. The fre-
quency resolutions of the analysis were 0.003 and
0.00095 Hz. Figure 6 shows an example of the fre-
quency splitting in the field components. These data
were obtained at the distance of 1000 km at the fre-
quency 380 Hz. The abscissa of the plot is the fre-
quency band ∆f (the scale is linear). On the ordinate
axis, the amplitudes of the components (quartets) are
presented for the received signal (relative units, linear
scale). The frequency resolution is 0.00095 Hz. (It is
worth mentioning that, to split the quartets themselves
with the experiment layout at hand, the resolution must
be higher by an order of magnitude.) The total spread
of the frequency spectrum (for the split components) is
50 mHz at this frequency and 30 mHz at the frequency
230 Hz–30 mHz. These values weakly change as the
distance increases up to 2100 km. The record contains
up to 8–9 well resolved maximums corresponding to
individual groups (quartets) of the arrivals with phase
velocities changing within 1460–1540 m/s. It is impos-
sible to split the near-axis quartets, because they have
lost their coherence and have low relative time delays.
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
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With these experimental conditions and depths of the
source and receiver, within the limited band of the char-
acteristic angles, an analysis band of ∆f = 0.00095 Hz
is sufficient for the field components to be reliably split
at all studied distances. With the analysis band ∆f =
0.003 Hz, the detection of individual components
becomes much more difficult. The obtained results con-
firm the high efficiency of the method used and, above
all, the high space–time stability of the phase properties
of the sound field and the conservation of the coherence
of the field components (for a certain band of the char-
acteristic angles) at the frequencies at hand (in summer-
time conditions), even in a waveguide that is inhomo-
geneous along the path.

To study the frequency and space–time stability of
the sound field for the total signal, the correlation char-
acteristics of the explosive, cw, and noise signals were
calculated with the signal reception within the coastal
wedge. Here, the signals used were received by indi-
vidual receivers spaced by several dozen meters to
10–15 km in the horizontal plane. The ranges up to
1000 km were studied. The frequencies used were 20–
1000 Hz. The obtained correlation coefficients vary
from 0.35 to 0.96 for different frequencies, distances,
and signal types.

To explain the experimental data theoretically (on
the formation of the sound fields at sonic and infrasonic
frequency bands at the coastal shelf, the continental
slope, and in an open ocean with varying hydrological
and geological parameters along the path), different
waveguide models were used that were closest to the
actual propagation conditions, along with different
mathematical methods and computer software. These
are the wave computer code by Avilov [3, 4] for inho-
mogeneous waveguides (based on the method of the
wide-angle parabolic equation); the wave computer
code by Polyanskiœ [5] (the method of parabolic equa-
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
tion correction); the wave codes by Vagin and Mal’tsev
[6], Kudryashov [7], and Shilin (the normal mode
method) for stratified waveguides; and the codes by Bul-
dyrev and Yavor [8, 9] (the asymptotic approximation
for the normal mode method). Also used were different
modifications of ray codes (by Vagin, Shilin, and oth-
ers) that are applicable to stratified and inhomogeneous
waveguides and allow for the bottom relief, changes in
the hydrological and geological parameters of the path,
and surface waves.

The comprehensive studies of the sound fields,
which were carried out in the northwestern region of
the Pacific Ocean in 1980, contributed to our knowl-
edge of the field structure in sonic and infrasonic fre-
quency bands on paths of up to 2100 km in length. The
influence of front zones on the frequency characteris-
tics of the sound field was studied. Additional losses
associated with the inhomogeneities of the waveguide
were estimated for very long paths. Space–time and
space–frequency stabilities were investigated for the
field components and correlation characteristics of the
total signal. A large body of data was collected on the
hydrophysical properties of the region that is compli-
cated but interesting from the scientific point of view
and important for practical applications.
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VIII Brekhovskikh Workshop on Ocean Acoustics
May 29–31, 2000, the VIII Brekhovskikh Workshop
on Ocean Acoustics was held. The workshop was com-
bined with the X Session of the Russian Acoustical
Society. The participants of the event were acousticians
from Moscow, Nizhni Novgorod, Taganrog, Voronezh,
Vladivostok, and Georgia. More than 50 papers were
presented. The Workshop program covered nearly all
topics of present-day ocean acoustics. The papers can
be schematically broken up into five groups: sound
propagation in the ocean (theory and experiment),
acoustic tomography and ocean monitoring, underwa-
ter sound scattering and reflection, generalization of the
experimental data over the World Ocean, and tech-
niques and instruments for full-scale studies in the
ocean. In a brief review, we cannot consider all papers
presented at the workshop and, therefore, we mention
only some representatives of each group.

1. Sound propagation in the ocean. The papers on
Arctic acoustics are a matter of interest. Underwater
acoustic studies in the Arctic Ocean were initiated by
the Acoustics Institute during the existence of the
USSR, and these studies were rather comprehensive.
Later, they were continued at the General Physics Insti-
tute and the Institute of Oceanology of the Russian
Academy of Sciences. The underwater sound fields
were studied experimentally and theoretically for both
deep- and shallow-water arctic regions and for different
frequencies. The mode structure of the sound field, its
space–time variability in depth and range, and sound
scattering and attenuation caused by the interaction
with the ice cover were investigated. The experimental
data on underwater ambient noise were obtained, and
the sound fields on long paths (up to 2600 km) were
modeled. The results of these works were highly appre-
ciated by the international scientific community. Two
factors are most important for sound propagation in the
Arctic Ocean: the ice cover and the monotone increase
in the sound speed as a function of depth, both factors
complicating the sound field structure. In the paper pre-
sented by V.M. Kudryashov and F.I. Kryazhev, on the
basis of computer modeling, the spatial variability of
the coherence parameter of the sound field due to sound
scattering by the rough undersurface of the ice cover
was analyzed for both uniform and irregular arctic
waveguides. The effect of the ice cover was also con-
sidered by V.D. Krupin who reported on the depen-
dence of the propagation anomaly on the ice cover
thickness for tonal sound signals in shallow-water arc-
tic regions for the frequency band 0.1–1.0 kHz.

The ocean sound field is influenced by large-scale
disturbances in the medium parameters. The effects of
intense internal waves on the sound field were consid-
1063-7710/00/4606- $20.00 © 20759
ered by A.N. Serebryanyœ and A.I. Belov. In this paper,
the influence of the internal solitons on sound propaga-
tion is numerically modeled for a shallow-water path.
The paper also presents a brief review of intense inter-
nal waves in a shelf region. In the calculations, the
authors used the data on the soliton-like internal waves,
which were obtained in the coastal region of the Pacific
Ocean, near the Kamchatka peninsula. The soliton-like
internal waves give rise to a specific structure of the
sound speed field in the ocean. In the paper by
B.G. Katsnel’son and S.A. Pereselkin, with the use of
the model known as “horizontal rays and vertical
modes,” the formation of dynamical horizontal sound
channels is established for a shallow sea where solitons
exist. Because of these channels, time-periodic focusing
and defocusing occur for the rays that propagate at small
angles to the front of internal waves. A.N. Rutenko
reported on the experimental and theoretical studies
that reveal the effect of short-period internal waves on
the interference and mode structures of the sound field
on a fixed path in the shelf zone of the Sea of Japan, for
both winter and autumn water stratifications. A strong
effect of the internal waves on the frequency interference
structure of the sound field and on the energy distribution
between the lower seven modes is revealed. In the paper
by L.V. Bondar’, L.N. Bugaev, and A.N. Rutenko, the
data of in-sea experiments are presented on the changes
in the low-frequency sound field, which are caused by
the surface tide and tide-associated disturbances in the
water bulk in the shelf zone. The measurements were
carried out on fixed paths up to 260 km in length, ori-
ented both along and across isobaths. The experimental-
ists managed to distinguish between the effects of inter-
nal and surface tides.

A number of papers were devoted to new theoretical
methods for calculating the ocean sound fields. K.V. Avi-
lov developed pseudo-differential parabolic equations
to describe the propagation of seismoacoustic waves in a
two-dimensionally inhomogeneous ocean with a rigid
bottom and presented numerical solutions for these
equations. The algorithm for calculating the total sound
field for the waves propagating both forward and back-
wards was presented. The problem of the lateral wave
excitation by a parametric sound source in a shallow
sea was studied by S.A. Egorychev, D.A. Zakharov,
V.V. Kurin, L.M. Kustov, and N.V. Pronchatov-Rubtsov.

Several researchers reported on in-sea measure-
ments of various characteristics of the underwater
sound field: the mode content and the dispersion charac-
teristics in shallow- and deep-water oceanic waveguides
on paths of different lengths (V.A. Lazarev, A.D. Soko-
lov, and G.A. Sharonov); the cross-correlation of pulsed
000 MAIK “Nauka/Interperiodica”
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broadband signals with a linear frequency modulation in
the second shadow zone in the Central Atlantic
(K.I. Malyshev); the angular structure of the sound field
in the deep ocean (V.A. Baranov); and the spatial and
temporal variability in the coastal wedge (A.V. Kulakov).

An important problem of underwater acoustics is
the analysis and interpretation of the experimental data.
R.A. Vadov proposed a computer method to separate
two signals that are close in their arrival times when the
signals propagate to a distant receiver over paths that
differ by a single contact with the caustic. The method
proved to be highly efficient in analyzing the experi-
mental data obtained earlier.

2. Acoustic tomography of the ocean and ocean
monitoring. In recent years, studies of the acoustic
tomography of the ocean and ocean monitoring were
carried out very actively in many countries, including
Russia. The well-known work by Munk and Wunsh
(1979) was the starting point. Various ray and mode
tomography techniques were proposed. In the paper
presented by A.N. Gavrilov at the joint session of the
Workshop and the Russian Acoustical Society, the state
of the art and future prospects for acoustic ocean ther-
mometry were analyzed. Already accomplished, cur-
rent, and future experiments on acoustic tomography in
the Pacific, Arctic, Indian, and Atlantic Oceans were
considered. V.V. Goncharov developed a new approach
to the acoustic tomography of currents, which is based
on matching the unreciprocity of the sound field. By
numerical simulations, the possibility for linearizing
the proposed procedure is demonstrated, this approach
significantly accelerating the calculations. The effect of
an inaccuracy in the a priori data on the reconstruction
of the mean temperature of the water layer is analyzed
in the paper by A.L. Virovlyanskiœ, A.Yu. Kazarov,
L.Ya. Lyubavin, and A.A. Stromkov. It is shown that,
by omitting a number of the empirical orthogonal func-
tions, which are used to parametrize the inhomogene-
ities, one comes to significant errors. In a number of
papers, specific tomography problems were consid-
ered. D.L. Aleœnik, V.V. Goncharov, and Yu.A. Chepu-
rin presented the data on the dynamical acoustic
tomography of the interthermocline lens observed in
1994 in the studies carried out on the scientific research
vessel Akademik Sergeœ Vavilov in the North Sea.
Owing to the detailed hydrological measurements and
the large number of acoustic stations, the differential
tomography was implemented in well-established
environment. The reconstruction results agree well
with the measured parameters of the lens. The paper
by E.F. Orlov was focused on studying the hydrophys-
ical parameters of oceanic waveguides by observing the
interference structure of the low-frequency sound fields
of broadband sources. A.V. Furduev presented two new
methods for acoustically monitoring the medium vari-
ability. In the pulse-difference method, the difference
of two time–power sequences of a multiray signal indi-
cates the changes in the medium along the propagation
path. In the regenerative method, the monitored
medium serves as part of the measuring device, namely,
the feedback loop in the self-sustained oscillator,
whose frequency deviation carries information on the
medium variability. Both methods were tested to dem-
onstrate their high sensitivity.

3. Underwater sound scattering. For decades,
underwater sound scattering has been the subject of
numerous theoretical and experimental studies. To
date, the physical mechanisms of this phenomenon are
well established, and the intensity levels of scattering
are reliably estimated for different oceanic environ-
ments. Theoretical and computer models were devel-
oped that relate the acoustic effects to the associated
medium parameters: the spectrum of surface waves, the
structure and relief of the sea floor, and the characteris-
tics of volume inhomogeneities of a hydrophysical and
biological nature.

These models allow one to use the experimentally
recorded scattered signals for solving the inverse prob-
lems, i.e., for estimating the medium parameters from
these signals. Evidently, the reliability and accuracy of
solving the inverse problems is higher, if the associated
models are tested in an independent way, simulta-
neously or in advance. In this connection, the paper by
A.I. Belov should be mentioned: the author proposes to
determine the physical properties of the bottom sedi-
ments in a shallow sea by measuring the bottom reflec-
tion coefficient. The results are compared with the data
obtained by calculation in another way, namely, from
independently measured values of the sediment density
and porosity. The same subject is touched upon in the
paper by V.N. Fokin and M.S. Fokina. By theoretically
analyzing the frequency dependences of the reflection
coefficient and losses caused by sound reflection from
the shallow-sea bottom, the authors propose a tech-
nique for estimating the physical parameters of the bot-
tom represented by a sediment layer and an underlying
elastic halfspace. The same authors developed a theory
of resonant sound reflection from an elastic layer over-
lying an elastic halfspace.

D.E. Leœkin theoretically treated the feasibility of
detecting the coherently scattered waves in the ocean
with random inhomogeneities of the refraction index. It
was shown that such waves can be detected for the
direction of their forward propagation, even if there is
no a priori information on the parameters of the inho-
mogeneities. This allows one to use the coherently scat-
tered waves for measuring the time trend of the mean
temperature on the propagation path. New experimen-
tal data on volume sound scattering in ocean waters (the
Pacific Ocean, subtropical regions) were presented by
A.V. Akulichev, V.A. Bulanov, and P.N. Popov. The
data analysis showed that, at frequencies of several
hundreds of hertz, the frequency dependence of the vol-
ume scattering coefficient in the subsurface water layer
can be explained by the fractal structure of the scatter-
ing inhomogeneities.

In addition to solving the inverse problems, the
models of underwater sound scattering allow one to
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000



        

VIII BREKHOVSKIKH WORKSHOP ON OCEAN ACOUSTICS 761

           
interpret and quantitatively estimate complex physical
phenomena, such as ocean reverberation and prerever-
beration. In the paper by E.A. Kopyl and Yu.P. Lysanov,
some parameters were theoretically estimated and numer-
ically computed for prereverberation caused by scattering
of low-frequency sound by the rough ocean surface. The
amplification effect was established for volume sound
scattering in the presence of caustics in the subsurface
water layer (V.S. Gostev and R.F. Shvachko). O.P. Galkin,
R.Yu. Popov, Yu.V. Semenov, and E.V. Simakina pre-
sented experimental data on reverberation in the Pacific
Ocean, near the continental slope of the Kamchatka
peninsula. An interesting explanation was proposed for
the broadened spectra of the bottom reverberation,
which were observed with a fixed sound source and
receiver; the degree of coherence was estimated for the
reverberation signals.

4. Generalization of the in-sea experimental data
over the World Ocean. The small number of new
experiments on underwater sound scattering, as well as
on other subjects of ocean acoustics, is governed by the
sharp decrease in the number of scientific ocean expe-
ditions carried out in Russia in recent years. This seems
to stimulate many works on the generalization and clas-
sification of archive experimental data collected earlier
and concerned with different branches of ocean acous-
tics, which, for some reason, were not published before.

As a first step in this direction, computer databases
are usually created in order to collect, store, and subse-
quently use various experimental data that are in the
possession of many researchers. A solution to this prob-
lem was proposed by L.F. Bondar’, B.A. Kosyrev, and
T.V. Saltanova who reported on developing a database
that covers a wide variety of underwater acoustic appli-
cations with the use of modern software. These research-
ers are now filling the database. Computer databases are
also being developed for specific branches of underwater
acoustics. For example, N.N. Galybin, L.L. Tarasov, and
V.Ya. Tolkachev in their paper considered the structure
of a database intended for the experimental information
on acoustics of the deep scattering layers (DSL) in the
ocean; they also presented some results on using the
information already stored. The data are reported on the
regional classification of the Atlantic Ocean in values
of the total column strength, which is the main acoustic
parameter of DSL. The classification is based on the
statistical processing of a large body of experimental
data and covers the frequency band 3–20 kHz. With the
use of this database, new information was obtained on
the depth structure of DSL for different ocean regions,
and on the effects of some hydrological inhomogene-
ities on the DSL structure (I.B. Andreeva, N.N. Galy-
bin, and L.L. Tarasov). Another paper devoted to the
analysis of a large body of experimental data was that
presented by R.A. Vadov. This paper considered sound
absorption and attenuation in ocean regions that differ in
their hydrological properties. For the analysis, a special-
purpose database developed by the author was used. The
paper presented by A.V. Furduev stands somewhat apart
ACOUSTICAL PHYSICS      Vol. 46      No. 6      2000
from those mentioned above. In this paper, a generalized
description is given for the phenomena that cause fluctu-
ations of underwater ambient noise in different fre-
quency bands of the fluctuations, from 0.001 Hz to sev-
eral hertz. These phenomena include the variations in the
meteorological environment and in the propagation con-
ditions within the noise-forming ocean region.

5. Techniques and instruments for in-sea mea-
surements. A number of papers described the use of
parametric acoustic devices in full-scale experiments in
the ocean. In this connection, we should mention the
review by V.A. Voronin, S.P. Tarasov, and V.I. Timo-
shenko. The authors work in the organization that is the
most advanced in Russia in the development of such
instruments. This paper described the features of the
devices as applied to studies of random inhomogene-
ities in the ocean water column and in the bottom struc-
ture. Methods were proposed for developing paramet-
ric antenna arrays, and information on the already
designed parametric sonars was presented. Examples
of using these devices in oceanic scientific experiments
aimed at studying the fine structure of waters, fish
shoals, upper layers of the sea floor, etc., were
described. In addition to this review, a number of
papers were presented on particular problems of
improving the performance and characteristics of vari-
ous parametric devices (e.g., papers by I.B. Starchenko
and S.A. Borisov).

In several papers, acquisition and processing sys-
tems were described for various hydrophysical data
such as the parameters of currents, the sound speed, and
the electrical conductivity of water and its other char-
acteristics. In particular, to monitor the position of
biological objects within a shallow-sea coastal area,
S.A. Bakhirev, L.F. Bondar’, and V.B. Ignat’ev pro-
posed the development of a system that consists of
underwater parametric arrays and a number of self-con-
tained acoustic and hydrophysical sensors that transmit
radio signals to a coastal radar.

Several papers analyze the performance of acoustic
devices that are to be applied to remote acoustic studies of
the sea-floor structure (e.g., the paper by I.B. Zheleznyœ,
D.B. Ostrovskiœ, and S.A. Smirnov) or acoustic properties
of the bottom (A.V. Nosov and G.A. Postnov).

The papers presented at each of the first six work-
shops (1980–1990) were published by the NAUKA
publishing house and were edited by Academician
Brekhovskikh: Ocean Acoustics: State of the Art
(1982); Problems of Ocean Acoustics (1984); Acoustic
Waves in the Ocean (1987); Acoustics of the Oceanic
Medium (1989); Acoustics in the Ocean (1992); and
Oceanic Acoustics (1993). Proceedings of the VII
(1998) and VIII (2000) workshops were published by
the GEOS publishing company (Moscow).

I. B. Andreeva and Yu. P. Lysanov

Translated by E. Kopyl
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