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Temporal structure of the muon disk at large distances
from the axis of extensive air showers with Ey,=6
x 10'¢ eV
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Preliminary results are reported from an investigation of the temporal
structure of the muon disk in extensive air showdEaSs with pri-

mary energyE,=6x10' eV at distances 100—1500 m from the axis.
The investigation is performed at the Yakutsk array using the large
muon detector, which commenced operation in November 1995, with a
planned area 184 fmand a detection threshold,,~0.5-secd GeV.
ForE,>10'eV it is found that the thickness of the muon disk tends to
decrease. This requires substantial changes in our notions of the devel-
opment of EASs. ©1998 American Institute of Physics.
[S0021-364(98)00106-9

PACS numbers: 96.40.Pq, 95.85.Ry

Muons with threshold energf,~1.0-secf GeV have been investigated at the
Yakutsk array continually since 1974. A large amount of experimental data has been
accumulated over this period of time, making it possible to investigate in detail the spatial
distribution function(SDF) of muons in extensive air showefEASS with primary
energyE,~10'"—3x 10'° eV and zenith angle8<60° over a wide range of distancBs
from the EAS axis. In Refs. 1 and 2 it is shown that the form of the SDFEfpe (3
—5)x10' eV is different from that at lower energies. Specifically, it becomes much
steeper at distancdé®>400 m.

To determine the reasons for such a difference in the SDF and to perform further
investigations, a large muon detecttMD) consisting of 92 scintillation counters each
with an area of 2 fy arranged in six rows over an area of>X262 n?, was built at the
Yakutsk array’ The detector is located 180 m from the center of the installation. The
earthen shield gives a muon detection threshold of 0.5998eV. Each counter operates
independently and is equipped with a separate amplitude—time channel for measuring the
number of particles and the arrival time of the first particle with accuracy ®fns. Test
observations on the LMD have been conducted since November 1995. Work on extend-
ing the detector over the entire detection area is now being completed.

We report the results of an analysis of the data obtained up to the end of 1997 using
30 counters with a total area of 60°mThe experimental data that have now been
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FIG. 1. Average delaygt) in the arrival of muons with energ§,~0.5 secd GeV in showers withE,
=10'"-10'® eV and co¥ = 0.95 at different distances from the axis relative to the fastest muons in each
shower:O — muon densityp, <1 m 2, + — p,=4 m 2, ® — all densities.

accumulated not only confirm, to a high degree of accuracy, the results obtained in Ref.
3 in the energy range 16-10'8 eV but also make it possible to present preliminary data
on the structure of the muon disk f&>10' eV.

Figure 1 shows the average delay tigte in the arrival of muons in EASs with
Eo=10"-10%® eV and cos¥=0.95 at distanceR=100-1500 m relative to the very first
muons in each shower. The open circles correspond to showers with muon densities
p=1 m~?, the crosses correspondgdg=4 m~2, and the filled circles correspond to all
showers. One can see that whei8 muons strike each detector the relative delays are
very short and comparable to the accuracy of our time measurements. Evenis,with
<1 m 2 reflect the “looser” trailing edge.

The delay distributions all have an exponential form exigf). The parameters
for p,<1 m~2 are equal ta(t) to within the limits of the experimental error. On this
basis it is easy to obtain a relation for estimating the timeequired to detect a relative
fraction » of all muons:

T~—(t)In(1- ) ns. (1)

It follows from Fig. 1 and Eq(1) that 95% of all muons in EASs witE,<10'® eV at
distancedR=<1000 m arrive no later than 400 ns after the first-arriving muons.

Figure 2 showst) versusEg in showers with co® = 0.8 forR=630 m, while Fig.
3 shows the variation oft) at the same distance versus gein EASs withEy=10'"—
10 eV. All values were obtained without detector selection according to muon density.

The data presented in Figs. 1-3 satisfy the relation
(ty=ag+a,-log(E/10") + a,- (1—sech) + a5 log(R/600), 2)

whereag=95*2 ns,a;=7*+1ns,a,=110+4 ns, andaz=170=9 ns. Itis applicable in
showers withE,~6x 10°~10'® eV and9<45° at distance®~400— 1500 m.
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FIG. 2. (t) versusE, in showers with co® = 0.8 atR=630 m without detector selection according to muon
density.

Data analysis showed that rate of increase (j with increasing Eg,
a(t)ldlog(Eg)=a, is the same for events with differemt and R (within the range of
variation indicated above for these parameteFse increase ifft) is due to a displace-
ment of the deptlX,, of the maximum development of the shower toward the observation
level X (for Yakutsk X=1020 sec#), i.e., a decrease in the distange- X, up to the
maximum development of the shower. This is clearly seen in Figs. 4a and 4b, which
show the relative delayig, <ty due to the degradation of the geometric muon-collection
factor. For fixedE, the distanceX— X,, increases with the zenith angle, as result of
which the difference of the muon delays decreases.

The rate of displacement of the maximum of the shower-E#X,,/ Jlog(Ep) (ER —
elongation ratecan be estimated from EQ) as
ER~a; X 1020A,~65 g cm 2. (3)

Let us now examine the data f&,>10'® eV. According to Fig. 2 the measured
values of(t) are all less than the expected valgdashed lingobtained by extrapolating
the measured values from the regiBg<<10'® eV. In our view, two sections can be
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FIG. 3. (t) versus sed in showers withE,=10'"-10" eV atR=630 m without detector selection according
to muon density.
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FIG. 4. Formation of relative delays in different EAS development schemes.

distinguished within the limits of the measurement error: The first section Egth(1
—4)x 10" eV is a transitional section and the second section \Eigh-4x 10'8 eV

satisfies
(t)~62+a, - log(Eo/10") ns. (4)

At first glance it is difficult to understand this result from the physical point of view. If
one attempts to explain it by rapid recession of the shower maximum, i.e., by a decrease
in X,,, then the total number of electrons in these showers should decrease just as
rapidly, which according to Refs. 1 and 2 does not happen.

We note that foilEy>10'® eV many parameters of EASs show anomalié&>We
believe that these anomalies all appear for the same reason. The anomalies are due not to
the experimental procedure used at the Yakutsk array but rather to some new processes
occurring in the development of an EAS.

Analysis of the data examined above confirms the following picture of the develop-
ment of EASs, which we proposed earlier as one possibliltgr E,> 10 eV separate
multicore showers appear. The relative fraction of these showers gradually increases and
reaches 100% fdE,> (5—-6)x 10'8 eV. Despite the fact that the overall particle balance
and the dynamics of the longitudinal development of shower&Efor (5—6)x 108 eV
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FIG. 5. Relative fraction of muonsE(,~1.0 secé GeV) versus the total number of charged particles at
distancelR=300 m (@) andR=600 m (O) in showers with{cos#)=0.95 as a function of primary energy.

most likely do not change appreciably, a substantial rearrangement of their transverse
structure occurs. Figure 4c shows schematically how the thickness of the disk will change
in this case. Since one of the axes of the EAS lies closer to the detector by the amount of
its deflectionRy and makes the main contribution to the indications of the detector, the
relative delayg. will be less thant, andt,, though the shower maximum once again
approaches the observation level.

Let us estimatd®R. According to Egs(2) and(4), a constant shift by- 30 ns occurs
before and after our proposed change in the transverse structure of the EAS. From Fig. 1
we can see thaft)~62 ns correspond t®~430 m. Hence we easily fin;~630
—430=200 m.

We shall now present an additional experimental result which is not associated with
the LMD data but which confirms the hypothesis stated above. Figufidles circles
shows as a function d&, the relative fractiorp,, /ps of muons with threshold& ,~1.0
-secd GeV among the total number of delayed particles in an EAS {aitis §)=0.95 at
a distanceR=300 m from the axis. The open circles show the same datR£o800 m.
We employed the shower sample used in Refs. 1 and 2. One can see that in the entire
range of variation ofg, the ratiop ,(600)/ps(600) decreases slightly with increasing
primary energy without any appreciable deviations from a linear law. But the fraction
p,.(300)/ps(300) behaves differently: FdE,>(1-2)x 10'® eV it decreases more rap-
idly than it varied up to this point.

The reason can be easily understood with the aid of Fig. 6, which shows the SDFs
of charged particleffilled circles and muongopen circlesin an EAS withE,= 10 eV
and{cos#)=0.95. ForE,>10'® eV it should be expected on the basis of what we have
said above that all densities should gradually shift toward one of the closest axes of a
multicore showefroughly by~ 200 m). Such a displacement will be almost unnoticeable
at the periphery of the shower and will be large R 300 m, where the muon fraction
decreases rapidly.

In our view, the multicore nature of EASs with giant transverse momenta most
likely arises in the first nuclear-interaction event. As a result of this interaatien?, 3,
4 ... nucleons with energies E,/m emerge from the same point at a anglewith
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FIG. 6. Spatial distribution functions of charged particl@)(and muons Q) in showers with(Eg)=10'% eV
and(cos6)=0.95.

respect to the direction of motion of the primary particle and these nucleons then form
conventional EASs whose axes lie along a circle with radii .

The value offy can be estimated as follows. Assume that the first nuclear interaction
occurs at a depth-50 g-cm™2 and using the relation

P=1020 secf-exp(—H-cos 6/6.85g-cm 2 (5)

between the distance from the level of observatibikm) for Yakutsk and the pressure
P at this point(with cos§=0.91 for the showers studigdve findH~22 km. The angle
6y=tan 1(Ry/H)~0.6° corresponds to this altitude.

Further observations will enable us to determine the structure of the muon disk for
Eo>10' eV more accurately and report the results in subsequent publications. We also
plan to make a direct search for multicore showers on the basis of the data which we now
have, but this will be difficult to do at the Yakutsk installation with a 500—-1000 m
detector spacing. However, we now have an entire series of experimental facts that
cannot be explained on the basis of the standard ideas about the development of EASs at
extremely high energies. We offer as a possible hypothesis biaxial EASs and call upon
other investigators to participate in solving this question by looking at the primary el-
ementary nuclear-interaction event from new points of view.

The large muon detector was built as a prototype for the SHAL-1000 installation,
designed as part of the State Scientific and Technical High-Energy Physics Program. This
work was performed as part of the program of the Russian Ministry of Science supporting
the Yakutsk EAS arraycontrol No. 01-30, which is included in the “List of unique
scientific-research and experimental installations of national importance.”
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We derive the string representation of the Abelian Higgs theory in
which dyons are condensed. It happens that in such a representation the
topological interaction exists in the expectation value of the Wilson
loop. Due to this interaction the dynamics of the string spanned on the
Wilson loop is nontrivial. ©1998 American Institute of Physics.
[S0021-364(©8)00206-0

PACS numbers: 14.80.Mz, 14.80.Bn, 11.25.Db, 12.38.Bx, 03.65.Bz

The method of Abelian projectiohss one of the popular approaches to the confine-
ment problerf in non-Abelian gauge theories. Numerous computer simulations of the
lattice gluodynamics in the Abelian projectigsee, e.g., Refs.)¥how that the vacuum
of gluodynamics behaves as a dual superconddcttwe key role in the dual supercon-
ductor model of the quantum chromodynami€3CD) vacuum is played by Abelian
monopoles. In the Abelian projection quarks are electrically charged particles, and if
monopoles are condensed, the dual Abrikosov string carrying the electric flux is formed
between quark and antiquark. Because of a nonzero string tension the quarks are confined
by the linear potential.

The Abelian monopole currents in gluodynamics are correlatéth (antjinstan-
tons. For(anti-)self-dual fields the Abelian monopoles become Abelian dyokisre-
over, in the vacuum of lattice gluodynamics the local correlator of the topological charge
density and the product of the electric and magnetic currents is poSifikis. means that
the Abelian monopoles have electric charge. The sign of this electric charge coincides
with the sign of the product of the magnetic charge and the topological charge density.
Thus the infrared properties of QCD in the Abelian projection can be described by the
Abelian Higgs modelAHM) in which dyons are condensed. The electric charge of the
dyons fluctuate®.

Note that there exists a model of the QCD vac@imwhich thenon-Abeliandyons
are responsible for the confinement. The non-Abelian dyaessnstantonsgive rise to
the Abelian dyons in the Abelian projection.

Below we study the properties of the Abrikosov—Nielsen—Olgge¥iO) strings in
the Abelian model in which dyons are condensed. We consider Abelian dyons which
have a constant electric charge. This model can be a zeroth approximation for the realistic
effective model of the QCD vacuum in which the electric charge of the condensed dyons
fluctuates.

0021-3640/98/67(6)/5/$15.00 389 © 1998 American Institute of Physics
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We start with the following expression for the partition function in Euclidian
space—timé!

Zgyon= f DA, DB, DD exp{— f d*XLayorA,B, D) |, (1)

where the dyon Lagrangian is:
Layod A,B,®) = Lyaugd A,B)+ 1/2|(d,—ieA,—igB,) P>+ N (|®[* - 712 (2

The fieldB, is the magnetic gauge potential, which is dual to the electric gauge potential
A, , and® is the dyon field with the electric chargeand magnetic chargg. It was
shown in Ref. 9 that it is possible to write a Lagrangian in which both figidandB,

are regular:

LgaugdAB)= %[n-(&/\A)]ZJr 1/2[n-(3/\B)]2+ 'E[n-(aAA)]V[n.*(aAB)]V

‘ii[n-wAB)]”[n-*wAA)Jw

where[a- (b/\c)]"=a,(b*c”"—Db"cH), [a'*(b/\c)]VEaMe“V“ﬁ(bacﬁ) andn,, is an ar-
bitrary unit four-vectorn?=1.
The patrtition function1) can be represented as the partition function of the AHM.

The LagrangianCy,geis invariant under the linear transformation of the fiekignd B
(Ref. 9:

A
B

A!

o= ®

- sinv cosv || B/’

cosv —sin v)(A)
wherew is an arbitrary constant. Applying this transformation with the parameter

v=—arctan %, (4)

to Egs.(1) and(2) and integrating over the field’, we get the partition function of the
AHM:®

Zayor® Zar = f DB, DD exp{— f d*XLapn (B, D) |,
! 1 YA 1 TR 2 2 2\2

the Higgs field® has the magnetic chai§g= e+ g2
Consider the quantum average of the Wilson loop in the dyon th@ory

<Wec>dy°“:%ym f DA, DB, D® exp[ - f d4xcdyon(A,B,c1>)]vv§(A), (6)

WE(A)zexp[ieof d“ijA“}, j u(x)= ﬁgdiﬂﬁ4>(x—?<(7)),
C
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which creates the particle with the electric chasgeon the world trajectory C.

Applying the transformatio3), (4) to the quantum averadé) and integrating over
the fieldA| we get:

<Wg>dyon:<K&|e,qm)>AHM- (7

where the expectation value on the right-hand side of this equation is calculated in the
AHM with the Lagrangian(5). The operatoK is the product of the t'Hooft loof3 H
and the Wilson loopN/©:

K(ge.am(B)=HG.(BHWS (B'), de=€00/g, dm=eoe/g. ®)

The operatOIHSe is defined as follows:

1
C  —
Hg (B )—exp[—z J d*x

where the tensonwz (n-a) 7% [uN, satisfies the relatiomngv=jﬂ. The tensor
F,=0.GS, plays the role of the dual field strength tensesES ,=dej,, . In the string
representation of the AHR the operatoane creates the string spanned on the Idbp

this string carries the flug,.

2
- (6’[;1,81,)])2

’ 1 C
a[,u,By]_qe' EguvaﬁGaﬁ ) (9)

The productK® of the operatordd© and WE creates the dyon loop with electric
chargeg. and magnetic chargg,, on the world trajectonC in the AHM (5).

Now we discuss the string representation for the AKBYI*"'? At the center of the
ANO strings the fieldb = |®|e'? vanishes, Imb=Re ® =0, and the phasé is singular
on the two-dimensional surfaces which are world sheets of the ANO strings. The measure
of the integration over the field® can be rewritten as followsP® = const D|®|?Dé.
The integral [D# contains the integration over functions which are singular on two-
dimensional manifolds, and we subdividénto a regular part" and a singular paré®:
0= 0"+ 6% here6° is defined by:

I .0 05X, X) = 2TT€ 10 S o p(X,X),

~ -~ o~ ~ J
S p(X,X) = Ldzoeabaaxaabxﬁé(‘”[x— X(0)], da= pyry (10

where the vector functio}i# is the position of the string, is the collection of all closed
surfacesg=(o4,05) is the parametrization of the string surface; the mea®éean be
decomposed as follow26=Do" D6

For simplicity we consider below the London limit of the AHM {«). In this
limit the radial part of the fieldb is fixed everywhere except for the centers of the ANO
strings. All the expressions below can be generalized to the case of arhifrduig leads
to an additional functional integral over the radial par{®f.

Performing the transformations as in Refs. 12 and 11, we get the following string
theory for the quantum avera@é) of the Wilson loop:

1 _ .
W7 | [Dx]-a<x>~exp[— [ o d“y{q?j#(x)Dm(x—y)j,L(y)
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+ 771 [, 0Dm(X=Y) € rap(Z ap(Y) + NG (¥)) + 72 77(2 ()

+ NG, (X)Dn(X=Y) (2, (Y) + NG (Y)) +27Ti§]L(E,C)}, (11
where
&g _ e ege
N= o’ (= 52 - e2+gz, (12

D () is the scalar Yukawa propagatofy ¢ m?) D ,,(x) = 5**)(x), andm?= 2g%#? is the
mass of the dual gauge bosoB’j.

The measuréDiM] assumes both integration over all possible positions and sum-
mation over all topologies of the string’s world she&ts J(X) is the Jacobian of the

transformation from the field® to the string positioﬁ(ﬂ. The Jacobiard(x) was esti-
mated in Ref. 11 for string with spherical or disc topology.

The first three terms in the exponent in Efjl) describe the short-range interaction
and the self-interaction of the ANO strings and dyon—antidyon pair through the exchange
of the massive gauge boson. The consteiwhich appears in these terms has a physical
meaning. It is equal to the number of the elementary fluxes in the string which connects
the dyon-antidyon pair introduced by the operakorof Eq. (8). By definition, N/
=q./¥,, whereq, is equal to the total electric flux from the dyon aWg=27/g is the
flux carried by the elementary string in the AH(). Since this number of the elementary
fluxes V" must be an integer, we get the charge quantization eglps 27N, Ne Z (Ref.

9).

The last term in Eq(11),

(X=Y)g

x=yl*

is the linking number of the string world she®tand the trajector of the dyon. This
formula represents the long-range interaction which describeduhkfour-dimensional
analogué® of the dual Aharonov—Bohm effect: strings correspond to electric solenoids
which scatter the magnetic charges of Abelian dyons. This linking number term is im-
portant for the infrared properties of the theory, since it may induce an additional long-
range potential between quark and antiqu4rk. also leads to nontrivial commutation
relations between different operators in the thedry.

L(E!C) 2 d* [ d yeuvaﬁz,uv(x)]a(y)
41
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YNote that according to the Schwinger quantization rule the electric cteamdethe dyon is not fixed while
magnetic chargg is quantizedeyg e 27N, eq is an elementary electric charge of an external electric particle,
see Eq.(6).

9The theory withe=0 (monopoles are condengdths been investigated as an effective Abelian theory of QCD
in Refs. 8.
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dwe call B,, the dual gauge fieldthus @ carries magnetic charpeince we conside(5) as the Abelian
effective model of the QCD vacuum. Actually, after the transformat®rthis is a matter of convention.
9This average corresponds to the quark Wilson loop if we congijess an effective theory of QCD.
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A solution of the nonstationary Schitimger equation describing the
resonance interaction of electrons with a weak rf field is found for
asymmetric triple-barrier resonance-tunneling structures with thin, high
barriers, and an expression is obtained for the active weak-signal con-
ductivity of such structures. It is found that in a number of cases the
probability of quantum resonance transitions from an upper to a lower
level can increase sharply when the lower levels are shifted relative to
one another. ©1998 American Institute of Physics.
[S0021-364(98)00306-3

PACS numbers: 42.55.Px, 73.20.Dx

In Ref. 1 it was shown that in principle triple-barrier quantum-size semiconductor
structures can be used to convert electron energy into rf energy. In recent years, however,
investigations of electron transitions between the levels of such structures has become
especially urgent as result of the progress made in building THz-range unipolar quantum
cascade lase?s in which radiative transitions occur in each of serially coupled triple-
barrier heterostructures separated by superlattice sections which act as electron injector
and thermalizer. It is ordinarily assumed that the electrons incident on the strueees
Fig. 1) occupy the upper level of the first double-barrier structure, relax to the lower
level, and escape from the interaction region through a resonance level in the second
double-barrier structure. It should be noted that an absolute majority of theoretical results
and all experimental results concerning lasers operating on intersubband transitions have
been obtained for the successive tunneling regime, where electron in a quantum well
undergoes intense collisions wifmainly optica) phonons, destroying the coherence of
the electron wave function. The possibility of obtaining a population inversion on the
working levels and lasing in a quantum cascade laser can be explained by the character-
istic features of intra- and intersubband quantum transitions with the participation of
optical phononé.In such a regime the position of the levels in the second well for which
electrons escape as fast as possible from the lower working level is very important for
obtaining a population inversion on the levels in the first quantum well. Two variants
were investigated: )aThe levels are coincident and rapid escape is accomplished by
resonance tunnelifgnd b the lower level in the first quantum well is raised relative to
the lower level of the second well by an amount equal to the energy of an optical phonon
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FIG. 1. Schematic band diagram of the triple-barrier structure studied.

and rapid escape is accomplished by a nonradiative diagonal resonance transition of the
electrons’ Only the b version has been implemented experimentally.

In Ref. 2 it is estimated that the number of radiative transitions in a quantum cascade
laser with successive tunneling of electrons is of the order of4Q0 * times the total
number of intersubband transitions. This makes it necessary to pass very high currents
through the structure in order to obtain a negative rf conductivity sufficient for lasing. At
the same time, the idea of a laser with purely balligticherenk electron transport was
advanced some time addThe practical realization of this idea would open up funda-
mentally new possibilities both for investigating electronic processes accompanying reso-
nance tunneling® and for improving laser5? In the present letter we wish to show that
in a triple-barrier working structure of a quantum cascade laser with coherent electron
tunneling interference effects can be used to increase the intensity and quantum efficiency
of the transitions substantially. The optimal relative arrangement of the levels in neigh-
boring quantum wells turns out to be completely different from that used in successive-
tunneling structures.

Let us consider an asymmetric triple-barrier structure with tidiiKe) barriers to

which a uniform rf electric field varying in time a$ coswt=E(€“'+e '), £=2E, is
applied. For definiteness we shall assume that a monoenergetic electron flux is incident
from the left onto theKth resonance level in the first double-barrier structure, the fre-
quency of the rf field corresponds to transitions tolthie level of the same structufeee
Fig. 1), and one of the resonance levels in the second double-barrier structure lies near
the Lth level of the first structure. Then the nonstationary Sdimger equation is
in 2V RS H H(x,t 1
ih—=— — +H(X) g+ H(x

" g gz THOOUTHD Y, (1)

HX)=—-U(8(x)— 0(x—a))—U,0(x—a)+ad(X)y+ apd(x—a)+aysx—a—1),
H(x,t)=—qE-[x(8(x)— 8(x—a—1))+ad(x—a—1)](e“'+e Y.

Hereq andm* are the electron charge and masss ¢,b, ¢, andb are the height and
width of the first barrierg(x) is a unit step functiony andp are numerical coefficients,

U andU; are the offsets of the conduction-band bottom at the bar(sems Fig. 1, and

a and| are the distances between the barriers. The unperturbed electron wave function
o, normalized to one electron, is
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exgikox]+Dg exd —ikgx], x<0,
Ag sin(kx) + By cogkx), 0<x<a,

Yo(x)= Zy sin(ky(x—a))+W, cogk,(x—a)), a<x<a+l, @
Co exdik(x—a—1)], x>a+l,

where the energy of the electrons incident on the structueeaisd their wave numbers
are

ko=(2m* /8?12 k=(2m*(e+U)/h*)"%  ky=(2m*(e+Uy)/H%)M2
For sufficiently strong barriersyé& k)

~ipky sin(kyl) +ky cogkyl) 2i p%k, sin(kql)

~ . Bo~ , 3
O i p2k, sin(kyl)—ky cogks)° ip2kg sin(kyl)—ky cogkyl) ®

2m* o
ﬁ2

y
Ao~ EBO’ y=
In the weak-signal approximation the correctign to the ground-state wave
functior® is ¢ =y (x)e (@0t tq y (x)e (@0~ (yo=¢€/A). In our casey_ is (i
is smal)

D_ exp(kX), x<0,
A_ sin(k_x)+B_cogk_x)+¢_(X), 0<x<a,

y-(0= Z_ sink;_(x—a)]+W_cogk;_(x—a)]+x_(x), a<x<a+l, @
C_ exdik;_(x—a)]+P_exdik,(x—a)], x>a+l,

where

k=(2m* (ho—e€)Ih?)Y?  k_=(2m*(e+U—hw)/h?)?,

Ea
ko=(2m*(e+U;—hw)/h?)Y2, P_=+ l—w%(aﬂ),

and ¢_(x) and y_(x) are particular solutions of the equation

w0 (0=~ — LB 5)
(wo—w)_(X)= o a3 Xiho(X),
and in the present cagsee Ref. ®
_ qEx gE
(0, X-(0=+ o0+ — = (). (®)

The system of equations for the coefficiedts, B_, C_, D_, Z_, andW_ has the
following matrix form:
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1 0 -1 0 0 0
—Kk—Yy ke 0 0 0 0
0 sink_a) cogk_a) 0 -1 0
0 —k_codgk_a) k_sink_a) ki —py 0
0 0 0 sirtk;_a) cogk;_a) -1
0 0 0 —k;_ cogks_a) ki sin(k;_a) ik;_yy
D_ fq ¢-(0)
A_ f, —¢.(0)
B_ fs x-(a)—¢_(a)
X = = , , . (7)
Z_ fy pyx-(a)—x-(a)+ e’ (a)
W_ fs P_—x_(a+l)
C_ fg (yy—iky)P_+x"(a+1)

Forys>k_, k;_, by analogy with a double-barrier structfreye seek the condi-
tions for resonance transitions from the upper to the lower level when

|cosk_al~1, |cosk;_a|~1, |sink_aJ<1, |[sink,;_a|<L1. 8

For definiteness we shall study two levels with the same parity, and we seek the reso-
nance conditiongthe conditions under which the determindit assumes its minimum
value in the form

cosk_a=1, cosk;_a=~1,

ink - ink Ko (g+ Aé) 9)
sink_a~——- , sink;_a~——- —.

y ! y y
Substituting expression®) into the system of equation(@) it is easy to show that the
modulus of the determinant of this system becomes stitalbes not contain the large
parametery) when

AB
B+7

2

:1+p+7—7§(1+p), Aﬁ+A§7—:_K_ (10
pty—pyé (pty—pyé)?
The determinant itself then equals
A=— —ik*ki’ (12)
pty—pyé’

and we obtain for the coefficie® _ determining the probability of transitions to the
lower level
4qEy? p?Ko SirP(kql)
Co~—V 5 (p+y=—pvé), (12
m* w kl— Ip ko S|r(k1|)_kl COS(kll)
while the conductivity of the structure on which the monoenergetic electron flux with
densityn is incident is given by
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k_ p*k§ sir(kyl)
—80.— +y— 2, 13
78S A s (k) 12 co(ky) TP 13
where
89°m* a*n
~ [l (—1)K 14

is the conductivity of a symmetric double-barrier structure with the barrier strength equal
to a, where electrons with density move from theKth level to theLth level®

Two fundamental differences from the case of double-barrier structures are imme-
diately evident:

1) The resonance levels can lie both above and below the corresponding levels in a
well with infinite walls (always below in double-barrier structuyes

2) As expected, the probability of transitions from the upper to the lower level
(proportional tok,_|C_|?> and o) depends on the relative arrangement of the lower
levels. But, for the relative arrangement of the barriers determined by the condi€ipn
instead of decreasing when the levels are shifted relative to one aiatitgrcorrespond-
ingly, the parameterg and ¢ change the transition probability, on the contrary, in-
creases!

The increase in the transition probability can be very large. After all, for the condi-
tions of applicability of this calculation to be satisfied it is sufficient that<y/k,_ . In
real structures the conditidg|>1 can be easily satisfied. Thus, in a GaAs-based struc-
ture (the electron effective maga* ~0.067m,) with AlAs barriers (pg ~1.04 eVj of
thicknessb~ 20 A and interbarrier separati@w100 A,y for the first resonance level is
more than an order of magnitude greater thanand the conditior{8) holds even when
|£|~5, which in turn results in a more than order of magnitude higher transition prob-
ability than in caseg= B with identical barriers.

Thus, a new and quite unexpected effect appears in triple-barrier structures — when
the lower resonance levels in neighboring wells are shifted relative to one another, inter-
ference effects can sharply increase the probability of resonance transitions from an upper
to a lower level as compared with the transition probability which obtains when these
levels are coincident.

It should be noted, however, that the transition probability depends strongly on how
the shift of the levels relative to one another occurs. Thus-a¢p+ v)/py, |B|—x
while the transition probability decreases apprecigbfycourse, if the conditioni8) still
holds.

These effects can be qualitatively explained as follows. It is known that the reso-
nance conductivityr (probability of transitions between levelsf a double-barrier struc-
ture similar to that studied above but without the third barrigrQ) depends strongly on
the strength of the second barrt8in our notation it is given by

8p°k2k_

go—t O (15)
*(p%kotky)%ky

g~
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One can see that as the paramegtancreases, when the structure essentially becomes
simply a quantum well, the conductivity increases without bound. By analogy, our triple-
barrier structure can be regarded as a double-barrier structure in which the second
double-barrier structure plays the role of the second barrier. When the levels in two
neighboring wells are coincident, the transmittance of the second structure is maximum
(the strength of the second barrier in the double-barrier analog is minirmodiherefore

the probability of transitions between levels is also low. As the parangetaries(the
position of the third barrier or conduction-band bottom in the second well yaties
resonance level in the second well shifts relative to the level in the first well and its
transmittance drop&he strength of the second barrier in the double-barrier analog in-
creasep and therefore the probability of transitions between levels also increases. It is
interesting to note tha— (1+ p)/p as|é|—c, i.e., the resonance conditions are satis-
fied in the double-barrier structure.

For structural parameters such that (p+ y)/py resonance transitions occur at
energies which are substantially shifted from the resonance level in the double-barrier
structure (3| approaches infinity and not ¢p)/p), which, correspondingly, causes the
the probability of these transitions to decrease.

It should be noted that in the limiting case of purely coherent tunneling studied here
the proposed structure with sufficiently strong barriers is completely nontransmitting for
elastic(no energy changeelectron tunneling. For this reason, every electron transmitted
through the structure must emit a photon and therefore the quantum efficiency of the
process is close to one, and in addition, in contrast to the process studied in Ref. 6, for
any amplitude of the field. Of course, under real experimental conditions only some
electrons tunnel coherently, and the question of whether or not this part can be made
sufficiently large requires additional investigation. In any case, the construction of active
structures of quantum cascade lasers taking account of the effect described above will
make it possible not only to determine the relative fraction of electrons that tunnel
coherently but also to increase the quantum efficiency and correspondingly decrease the
threshold current of these devices.

This work was supported by the Russian Fund for Fundamental Research, Project
97-02-16652, and the Scientific Council as g@noject 97-109%of the program “Phys-
ics of Solid-State Nanostructures.”
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Experimental results concerning the interaction of a modulated electron
beam with a magnetoactive plasma in the whistler frequency range are
reported. It was shown experimentally that when a beam is injected into
the plasma, waves can be generated by two possible mechanisms: Cher-
enkov emission of whistlers by the modulated beam, and transition
radiation from the beam injection point. In the case of weak beam
currents (N,/Ny<<10"%) the Cherenkov resonance radiation is more
than an order of magnitude stronger than the transition radiation; the
Cherenkov emission efficiency decreases at high beam currents. The
transformation of the distribution function of the beam is investigated
for the case of weak beam currents. It is shown that in the case of the
Cherenkov interaction with whistlers the beam is retarded and the beam
distribution function becomes wider and acquires a plateau region.
© 1998 American Institute of Physids$0021-364(108)00406-X

PACS numbers: 52.40.Mj, 41.60.Bq

The possibility of using modulated electron beams as an emitter of whistler-range
waves has been discussed in recent years in application to active experiments ih space.
The theoretical works® concerning this problem focus mainly on the analysis of the
Cherenkov emission of electromagnetic waves in an infinite plasma and the first labora-
tory experimerft demonstrated the possibility of such emission of whistlers. In the
present work it was shown experimentally that besides Cherenkov radiation there exists
in the entire volume a nonresonance radiation from the point where the modulated beam
is injected into the plasméransition radiatioh

The experiments were performed on the apparatus shown schematically in Fig. 1.
The plasma source consisted of a heated oxide cathode and grid between which an
accelerating voltage pulse was applied with repetition frequency 5 Hz. The resulting

0021-3640/98/67(6)/5/$15.00 400 © 1998 American Institute of Physics
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FIG. 1. Diagram of the experimental arrangement.

accelerated-electron flux ionized the neutral (agon at pressure>610™ 4 Torr). As a

result, a 70 cm long and 50 cm in diameter quasi-one-dimensional plasma column was
produced in the vacuum chamber. The initial plasma demsitwas of the order of 16

cm 2 and then decreased with a characteristic time of 1(se® Fig. 3a below The
experiments were performed in the decomposing plasma regime. An electron temperature
T.~0.2 eV was established at the plasma decomposition stage. Two Helmholtz coils
(coil diameter 2 mm, coil separation1.5 m produced a uniform magnetic field. The
magnetic field was equal td,~45 Oe.

The electron gun used to produce a density-modulated beam consisted of a triode
with a grid anode. The accelerating voltage was equal to 300 V and the beam current
could be varied from 1@A to 10 mA, which corresponds to densiy, from 16 cm™3
to 10° cm 3. The beam diameter was equal to 7 mm. The electron beam density was
modulated with an rf voltage applied to the grid of the electron gun. The modulation
frequency wasf ~100 MHz, which corresponded to the whistler frequency range; the
degree of modulation was of the order of 80%. The modulated beam was injected con-
tinually throughout the entire period of plasma decomposition. Only longitudinal beam
injection into the plasma was used in the experiments, i.e., the pitch angle was always
equal to zero.

The energy distribution function of the electron beam was investigated with a mul-
tigrid analyzer. Two electrostatically shielded frame antennas, each of which could be
moved in two directions — along the axis of the apparatus and in a radial direction —
were used to study the structure of the fields excited in the plasma volume.

Analysis of the conditions for Cherenkov emissior k| V,, shows that excitation of
the characteristic waves of the system with longitudinal wavelength2 /K is pos-
sible if the plasma density is less than a critical valder wpe>wpe™>wg
> J(wnewni)), determined from the conditiom? < wjey = kuzcz(wHe— )/ w, where
wp is the electron plasma frequenay,,. andwy; are, respectively, the electron and ion

gyrofrequencies)| andk| are, respectively, the wavelength and longitudinal wave num-
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FIG. 2. Interferometric measurements of waves in plag@teerenkov resonance conditions are not satisfied
a) 1 — surface wave of a modulated electron be2m;- emission from the beam absorption pojatsurface
wave of the beam is also visibh|e83 — wave emitted by the frame antenna under the same conditipds:b
wave emitted by the frame antenrig;3, and4 — emission from the beam injection point for different values
of the beam current. A surface wave of the beam can be see as the current increases.

ber of the propagating wave, ands the speed of light in vacuum. Outside the resonance
region of the plasma this wave is a surface wave and is localized near the beam at a
distance of the order af/ we.

The interferometric investigations performed attest to the fact that for plasma den-
sity above a critical value a traveling surface mode exists near the degnRa, curve
1), and a quasi-longitudinal whistler, which can be excited both near the point of injection
of the modulated beam into the plasma and near the point of absorption of the beam, is
also detectedFig. 2a, curve2; Fig. 2b, curved). The observed nonresonance radiation
near the beam injection point and the beam absorption point should be attributed to
transition-type radiation, while the effective emitter responsible for this emission should
be represented, to a first approximation, as an electric dipole with moment directed along
the axis of the apparatus.

The Cherenkov resonance radiation of the modulated electron Gegm3b was
reliably detected at low beam currentg<100 wA (Np/Ny<10 %). In this case the
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FIG. 3. a— Time dependence of the plasma denbity- amplitude of theH, component of the rf field in the
plasma(the maximum corresponds to Cherenkov resonance conditions being sati$fiedbeam current
equals 10QuA (N, /Ny=~10"5); ¢ — signal from the beam-particle analyzer for different values of the cutoff
voltage on the analyzing grid.

amplitude of the Cherenkov radiation was more than an order of magnitude greater than
the amplitude of the whistler transition radiation. As the beam current increased, the
efficiency of the Cherenkov emission decreased compared with that of whistler emission
from the injection and absorption points.

For plasma densitfNy~10'" cm™2 the longitudinal wavelength of the whistler
equals the spatial beam-modulation length\Z,/ wy. Under these conditions the frame
antenna excites an electromagnetic wave with the same longitudinal wavelength
E2’7TVB/(1)0.

Analysis of the energy distribution function of the electron beam shows that efficient
retardation of the beam was observed when the Cherenkov resonance conditions were
satisfied. The characteristic oscillograms of the beam current at the multigrid analyzer
with different cutoff voltages are displayed in Fig. 3c. One can see that a decrease of the
flux of electrons reaching the analyzer collector signifies retardation of the electron beam
as it interacts with the plasma. The beam distribution functions in resonance and non-
resonance situations are shown in Fig. 4a and 4b, respectively. The characteristic width of
the beam distribution function in the absence of resonance is of the order of 6 eV. When
the resonance conditions are satisfied, the beam is retarded on the average, its width
increases to 12 eV, and a plateau forms in the distribution function.

In summary, our experiments established that there exist two different mechanisms
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FIG. 4. Distribution function of the beartwith currentl,=100 uA (N, /Ny~10"%)): a — under Cherenkov
resonance conditionshe average energy of the beam particles is approximately 300 V, the width is 17 V, and
a plateau region is presgnb — off the Cherenkov resonan¢ie average energy of the beam particles is 306
V, and the width is 7 V.

leading to whistler generation when a modulated electron beam is injected into a plasma:
Cherenkov resonance radiatian=k|V,, and nonresonance transition radiation, which
exists in a wide range of plasma densities. As the beam current increlgéslq(
>10"%), the Cherenkov radiation efficiency decreases as a result of broadening of the
beam distribution function accompanying transition radiation of electromagnetic waves at
the beam injection point.
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Using a third-order structure function, an asymptotic expression is ob-
tained for the stationary energy spectrum in the dissipative region of
Burgers turbulence excited by a random external force. It is shown that
in contrast to the case of turbulence described by a homogeneous Burg-
ers equation, the spectrum contains a parameter characterizing energy
transfer into the small-scale region. ®98 American Institute of
Physics[S0021-364(®8)00506-4

PACS numbers: 47.2%i

An important example of stationary turbulence is Burgers turbuléBdg excited
by a random external force. Burgers turbulence is described by the inhomogeneous one-
dimensional Burgers equation

gu  du  d%u ot L
— +Uu—=p— +f(x
UG TV e T, @

wheref(x,t) is a Gaussian field with correlation function
F(x,O)f(x+r,t+s))=F(r)s(s).

In a comparatively recent numerical experinfetite spectrum in the dissipative
region of BT was investigated by solving Ed.). The spectrum obtained was compared
with the well-known(see, for example, Ref.) asymptotic expression for the BT spec-
trum in this region

2712 [{ 771/)
E(k)= exp — —kJ, (2)

whereL is the outer scaley is the kinematic viscosity, and is the velocity jump at the
shock wave. It was showrthat as the wave number in the dissipative region increases,
the numerical solution decreases more rapidly than the asymptotic expré®sion

We note that the latter formula was obtained from the homogeneous Burgers equa-
tion. The small-scale spectru(B) in this case is characterized by large-scale parameters
but does not contain any information about energy transfer along the spectrum. In con-
trast to the shape of the spectry@), in the present work an asymptotic expression is
obtained analytically for the stationary spectrum in the dissipative region of BT, de-

0021-3640/98/67(6)/4/$15.00 405 © 1998 American Institute of Physics
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scribed by Eq(1) containing a parameter characterizing energy transfer to small scales.
The presence of this parameter makes it possible to interpret the more rapid decrease of
the spectrum in the dissipative region.

From Eq.(1) follows a relation, similar to the Kanan—Howarth equation from the
theory of hydrodynamic turbulencd, for the correlation function of statistically homo-
geneous stationary turbulence:

19S4(r) _ 7*Sy(r)
or

6 or >— =~ ({(fOQux+r)) +{f(x+r)u(x))), (3)

where S,(r)=([u(x+r)—u(x)]". The right-hand side of Eq3) can be expressed in
terms of the correlation function of the external force using the Furutsu—Novikov
formula®

® [ Su[f]
<fu[f]>:fOcjw<f(X,t)f(X1,t1)><m>Xmdtl,
and the fact that

Su(x,t) 1

ST xp.Ddxdt 220X

As a result, we obtain after integrating E&)
J r
S3=6v—82—6f F(r")dr’, 4
ar 0

where the correlation function of the external force can be written in the>form
F(r)y=2e¢(r/L),

whereL is the outer scale of turbulence(r/L) is a dimensionless function such that in
the limit L—oe: ¢(r/L)— ¢(0)=1, e=v{(dul dr)?)=(fu) — the average rate of energy
dissipation, determining the statistical properties of the random external fforce

Expanding the functiomb(r/L) in a series and taking into account the evenness, we
obtain from Eq.(4) for r<L

—66521211r20r4 5

Se=bvylzer| -5 ) FOIL) ) ®)

Using the paramete®=((au/ar)3)/{(dul ar)?)%? — the asymmetry of the velocity field
in the limitr—0, we have

€ 3/2
53=—s(;) r3+0(r®). (6)
We find from Egs(5) and(6)
S (e 3/2 €
S=galy] o, @
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if the asymmetry can be taken as constant, a condition which can be satisfied for station-
ary turbulence excited by a random external force<¢5= v/((u?))?, whereé is the
characteristic scale of the shock wa¥e., in the present case — the dissipation scale

We note that the asymmetry of the velocity field corresponds to the presence of a non-
linear interaction between modes, which leads to the formation of inertial and dissipative
regions of the spectrurhln the absence of asymmetry the spectrum will consist of delta
functions and its derivatives in the sourbis follows from Eq.(5) for sufficiently large
scaleL and the relation betweeB, and the energy spectrum; see below

The structure functiors, is related with the correlation function according to the
formula S,=2[B(0)—B(r)], whence using Eq.7) we obtain in dimensionless form

R - 100 NP DUS o .
B(r)—wo)—l—sz—l—ﬁ (r —? +O(I’ ), (8)
where r=r/6, $,=S,/2u3, u3/2 is the average energy.=udle, 1la’=(S/24)
X (8%2€Y%v3%) + (116) (8/L)?, and B2=(1/2)(8?€3L?3p) .

The normalized energy spectrum in turn is related with the correlation function by
the formula

Lo 1 (= U
E(k)—z 7$€Xﬁ—lkr)B(r)dr. (9)

Here the functionB in the integrand is represented by the sign-alternating séges
Applying the transformatiomv=r?/(y+r?), r?=yw/(1—w), wherey is a constant, or

using a Padapproximatiofi it can be shown that the convergence radius of this series is
determined by the distance to the nearest singular point, which is located on the negative

real axisr?.

Since forr > 1(which corresponds to the inertial interyale havé SZ~C?, joining
the asymptotic expansioiisee, for example, Refs. 3 andimakes it possible to treat the
expansion ofS, in Eq. (8) as an inner expansion of the functio,=r2/(1
+2r2/a®)Y2. We note that joining of a higher-order the higher-order terms of the series

(8) are required. However, since for reat O(«a) the approximation obtained is a com-
pletely definite function and since we are interested only in the far dissipative region of
the spectrum, it can be assumed that refining the approximation will not appreciably
affect the form of the spectrum because the spectrum varies quite sharply in the direction
of high wave numbers.

Therefore, using the last expression &y, we obtain
. £2
B(N=1-— 15
P (1+2r%a?)"2
Confining attention to the dissipative region of the spectrum and neglecting the influence
of the source, we can write
. 1 ¢ (= exp—ikr) . %@
E(k)~ﬁ2—Tf KD g A
27 gk2 ) w(1+2r%a?)Y2 2327\

1
Ko(kq) + k_Kl(kl) , (10
1
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wherek,; = ak/+/2 andK , is a modified Bessel function of order Fork,;>1 we obtain
the desired asymptotic spectrum

.. aPBm (1 1
E(k)NT(@ﬂL@)eXH—kl), 11
or
\/;a3526( 1 1 )
E(k)~ —adki\2), 12
() 8v (aék/ﬁ)1’2+(a5k/ﬁ)3/2 X — okl \2) 12

wherea = 1/{/(S/24) (6?€% v + (1/6)(6/L)?, and § is the dissipation scale.

One can see from Eq12) that for fluctuations with sufficiently small-scale the ratio
of the argument in of the exponential in the spectri@r® to the argument of the expo-
nential in the asymptotic expressié®) is of the order of [V/S?v)Y4>1 (ordinarily,
S~0.5(Ref. 3). This indicates that, in the first place, the shape of the spectrum depends
fundamentally on the asymmetry and, in the second place, the spectrum drops off more
rapidly with increasingk and makes it possible to interpret the results of the numerical
experiment.

In summary, it can be concluded that in the dissipative region the shape of the
spectrum of homogeneous stationary Burgers turbulence with a random source is deter-
mined by the asymmetry parameter of the velocity field.
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Accurate method for determining tilt bias angles in thin
films of nematic liquid crystals
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We have developed a new method for measuring tilt bias angles in
spatially uniform and nonuniform thin films of nematic liquid crystals.
The method employs modulation ellipsometry, based on the use of an
exponentially decaying light wave to probe the boundary layer. Oscil-
lations of the director of the liquid crystal, which are induced by the
flexoelectric torque, are excited with an external periodic field. A peri-
odic variation of the ellipticity of the light wave reflected from the
interface is detected at both the first and second harmonics of the ex-
citing electric field. When these two Fourier components of the elec-
trooptic response are known, it is possible to calculate both the tilt bias
angle 6, of the director and the dynamic deviatid® of the tilt bias
angle. The angleg, and 68 measured by this method on the surface of
an electrod€ITO) and on the surface of a ferroelectric fil@ copoly-

mer of vinylidene fluoride and trifluoroethyleneoriented in a corona
discharge, were equal #,=5.1°, §6=0.5° andf,=89°, §0=0.06°,
respectively. ©1998 American Institute of Physics.
[S0021-364(98)00606-9

PACS numbers: 68.1%¢e, 61.30.Gd, 07.60.Fs

1. INTRODUCTION

The angle between the optic axis of a liquid cry$taC) and a boundary surfadélt
bias angle strongly influences the working parameters of liquid-crystal devices. For
example, the production of a tilt bias angle in nematic twist cells makes it possible to
avoid undesirable effects due to light scattering from inversion domain walls which form
during cell operatior.The production of a corresponding tilt bias angle makes it possible
to obtain a uniform deformation of the LC in the entire sample and thereby improve the
optical properties of the liquid-crystal célf For this reason, to optimize the working
characteristics of displays it is important to have an accurate method for measuring the
the tilt bias in a wide range of angles.

Some methods for measuring tilt bias are presented in Refs. 4—-10. Methods such as
interferometry® conoscopy, total internal reflectioff, magnetic null’ capacitive] and

0021-3640/98/67(6)/7/$15.00 409 © 1998 American Institute of Physics
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crystal rotatiori require cells with a uniform orientation of the liquid crystal. Since these
methods probe the entire volume of a liquid crystal, the resulting tilt bias angle is the
result of averaging over the entire thickness of the LC layer. The substantial limitations
due to the averaging over the entire volume of the LC are eliminated in methods based on
analysis of a light beam reflected from a thin near-surface layer of the liquid cty&tal.

In this case a LC layer with a thickness of the order of the wavelength of the light wave
is probed. However, for example, the method based on Brewster angle measutements
does not work at a metal—insulator interface and therefore it is not suitable for standard
LC cells. Ellipsometric analysis of Fresnel reflecfiorquires a very complicated fitting
procedure.

This letter presents a new version of modulation ellipsometry for measuring tilt bias
angles by means of excitation of oscillations of the director of a LC as a result of a linear
interaction of an ac electric field with the flexoelectric polarization of the medium.

2. FUNDAMENTALS OF THE THEORY OF THE METHOD

Several years ago we developed a method of modulation ellipsofhétged on
probing of a near-surface layer with an exponentially decaying optical wave arising in a
LC under conditions of total reflection of light from the interface between the LC and
heavy-flint glass.

Refractive-index modulation near the surface of a homeoplanar cell changes the
ellipticity of the reflected beam and the corresponding phase sHtifitween the extraor-
dinary (p) and ordinary §) waves

o=0,— 0, (1)
where
N+/NZ sir2e—n? JINZ sirg—n?
op=2tan ! oS e aS=2tan*1N—o,
eNo COS ¢ cos ¢

ng, Ne, andN are, respectively, the refractive indices of the liquid crystal and prism,
¢> ¢, is the angle of incidencéig. 1), and ¢, is the angle of total internal reflection.
For a uniform orientation of the directm(cosé, sin 6, 0) the effective refractive index

is determined agq4= \n5 COSH+n: sirfd, 0= 6y+ 66, whered0= 56, sin wt the sinu-
soidal inclination from the static tilt bias angl®, is produced by acoustic excitation.
Fourier analysis of the experimentally measured time dependence of the phasd t3hift
makes it possible to calculate the tilt bias an@jeand the amplitudéé,, of the director
oscillations as follows:

26(t)=o0(t)=AANgg, 2

where §(t) is the variable part of the azimuthal andkg. 1),

2_ 2 2_ 2

ANop—0s) ng—nNg nNg—nNg

A=—L = . ANgg=——— 6% or ANgr=——" 62
INegt 2ng 2ng

Neff=No Ne

in accordance with whethed, is close to theX axis (6= 6y+ 66, sin wt=0) or theY
axis (= m/2— 6y,— 60,, sin wt=0). Therefore, assuming, to be small, we have
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FIG. 1. Scheme for measuring the tilt bias angleby modulation ellipsometry.
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For the amplitudes of the corresponding Fourier components of the electrooptic response
measured at the fundamental and doubled frequencies of the modulating field we have

ne_no

25(t)=o(t)=A

cos Zut) . 3

2 2 AU
U(w)= A 0050 (m) (4)
- ng—ng L[ AU
UQRw)=—A ang (56, (E) 5

whereAU is the change produced in the voltage at the photodetector output by a rotation
of the analyzer by the angke. Therefore we have for the tilt bias angle

o o y U(w) ©
" VAmZ—ndn;t " JU(2w)AU’

The last equation is the basic equation for tilt bias angle measurements and for estimating
the accuracy of the method.

The key ingredient in our approach to measuring tilt bias angles is excitation of the
sinusoidal oscillations of the director by means of the linear flexoelectric interaction of
the nematic LC with an external electric field. To accomplish this the dielectric contri-
bution to the torquéwhich is due to the quadratic eff¢ehust be eliminated by using a
compensated nematic LC with zero dielectric anisotropy. We have already found an
expression for the deflection angs® for the case of zero dielectric anisotrdpy?

(e;+e3)E, sin 26,

T 2K[L T (141) Yo 7/2K + 21 new]

whereq=(—1+i)(wn/2K)Y2 L=K/W is the extrapolation length determined by the
surface interaction energly, e; andes are flexoelectric constants, is a combination of

expli wt)exp(iqz), (7)
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the transverse and longitudinal elastic modylis the effective viscosityapproximately
equal to the rotational viscosjtyand 7, is the surface viscosity. We employ a sinusoidal
field E=E,, exp(wt), while the initial orientation of the director corresponds to the range
0<y=/2.

The order of magnitude of the amplitude of the flexoelectric deformation at the
surface can be estimated from Ed@). Substituting into Eq(7) the actual valueg=3
x 10" 4 dyn'?, E,;=30 cgs esuK=10"° dyn, L=0.1 um, andz=0, we obtain

56=0,/10. 8

3. EXPERIMENTAL ASPECTS OF MODULATION ELLIPSOMETRY

A diagram of the experiment is displayed in Fig. 1. The main component is the
liquid-crystal cell, consisting of a high index pristhl€ 1.803) and a glass plate, which
are coated with ITO electrodes. The cell is placed on an optical bench, while the induced
angular oscillations of the director of the LC at the prism surface are detected by the
ellipsometry method.

The principle of optical modulation ellipsometry, which we are employing, is illus-
trated at the bottom of Fig. 1 with the aid of a diagram of successive transformations of
the polarization of the light wave.

4. RESULTS AND DISCUSSION

All measurements were performed for a compensated mixthiee<0.02). The tilt
bias angle was produced by unidirectional rubbihg. planar-oriented LC cell consisted
of a prism and a glass plate with an antiparallel direction of rubbing. In this case, pure
ITO electrodes were rubbed in. In a homeoplanar cell both ITO substrates were coated
with thin films of a ferroelectric copolymer vinylidene fluoride and trifluoroethyléhe
molar ratio of vinylidene fluoride and trifluoroethylene was equal to 70:&fler which
only the film on the surface of the prism was rubbed in one direction and polarized with
a corona discharge with a potential difference-d kV between the tungsten needle and
the substrate at temperature 100 °C. The tilt bias angle was always measured at room
temperature one day after the cell was filled.

To make the correct choice of the magnitude of the modulating field the amplitudes
of the first and second harmonics of the electrooptic response were measured as a func-
tion of the applied ac voltage. The results are presented in Fig. 2. The linearity of the
functionsU (V) and U, (V) agrees with Eqg4) and(5) in the interval from 3 to 10
V, determining the possible values of the external modulating voltage. The characteristic
features in the electrooptic response that can be seen in the plots at voltages above 10 V
reflect the field-induced instability in the LC.

The Fourier spectra of the electrooptic response witl® & modulating voltage are
shown in Fig. 3. From these spectra we have for the desired Fourier compaHe®8
Hz)=5.6x10"% V, U(996 Hz)=1.27x10 ° V and U(742 Hz)=8.04<10 * V,

U (1484 Hz)=1.25x 10 ° V. We measured the Fourier harmonics for different frequen-
cies of the modulating voltage only to show that the result of the measurements does not
depend on the modulation frequency in the band determined by the LC and in our case
equalling 1500 Hz. From Eq$4)—(6) for the measured amplitudes of the Fourier com-
ponents, takingiy=1.55,n.=1.77 (Ref. 14, N=1.803, andp=380°, we obtain tilt bias
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FIG. 2. First(a) and secondb) harmonics of the electrooptic response as a function of the applied ac voltage.

angles and deflections of the tilt bias anglg=5.1°+0.2°, §6=0.5°+0.05° and§,
=89°+0.2°, §0=0.06°*0.01°for planar and homeoplanar cells, respectively. Estimates
of the same angles by the method of total internal reflectidR) give the valuesd,

=6° andf,=89.5°. Rough TIR measurements were also necessary in order to make the
correct choice of one of the approximations in EB). (two variants are possiblei.

=nNg Or Negg=N,) that is necessary to determine the derivattveThe approximation
employed(Egs. (2)—(6)) is quite accurate for angleg,<10° and 80% §,<90°. It is

easy to see from Ed6) that in the limit of small and large angles the accuracy of the
method is determined by the accuracy of the measurements of the amplitude of the
second harmonic, which can be estimated from the Fourier spectra and equals approxi-
mately 5%. There are not fundamental obstacles for measurements at intermediate angles;
it is only necessary to make an additional analysis of the initial equétioand the data
processing procedure is more complicated. It is also important to estimate the errors due
to the dielectric interaction. From the balance of volume and surface torques we have

80g~¢ E?lAmyw, 9)
KV 0s=Ké&0s/L, (10)

where the indice8 ands refer, respectively, to the volume and surface contributiegs,
is the dielectric anisotropy, angis the rotational viscosity. Taking into consideration the
first spatial Fourier component of the director distribution, we have

K(m/d)e E2/4mym=K6s/L (11)
or
8504~ ¢,E2Ll4ywd. (12
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FIG. 3. Fourier spectra of the electrooptic response fpinelined spatially uniform orientation =8 V, f
=498 Hz, U(w)=5.6Xx10"* V, U(20)=1.27x10"° V, and B hybrid orientation:U=8 V, f=742 Hz,
U(w)=8.04X10"%V, U(2w)=1.25x10° 5V .

From Eq.(7) we obtain the deflection of the angle due to the flexoelectric torque
50i~eEUK. (13

It is obvious that the ratio of these angles should be much smaller than the ratio of the
amplitudes of the second and first harmonics of the electrooptic response:

805 e.EK _U(2w) 1

5_6’f%4y(1)de< U(w) 40 (14
and therefore
£,<ywdell0EK. (15

After substituting the corresponding valugs=1 P, 0=27x1000 Hz,E=20 cgs esu,
d=103 cm,K=10 ° dyn, ande=3x10"* dyn'?, we obtain

|e 4| <10. (16)

For the excitation frequencies employed the penetration depth of the elastic wave is
approximately ten times smaller than the penetration depth of the light. This increases the
electrooptic response associated with the volume oscillations of the director and and the
obvious replacement of the inequality6) by

leal<1, (17
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which is in good agreement with the value of the dielectric anisotropy for our compen-
sated mixture.

It follows from Eg. (15) that with the appropriate choice of the cell thickness the
limitations imposed by the inequalitt5) can be eliminated and the tilt bias angle can be
measured for any NLC.

It should be noted that the method is highly sensitive to small tilt bias angles for
uniform and homeotropic orientations. Since the Fourier harmonics of the electrooptic
response at the fundamental frequency equal, in accordance witkdEgad(7), zero at
0p,=0° and#y,=90°, in this case we have a null method.

In conclusion, we have proposed a new method for measuring tilt bias angles in
NLCs. The method has a number of advantageshigh accuracy, determined by the
signal/noise ratio for the second harmonic of the electrooptic respohsmn&tant ge-
ometry of the measurement scheme, which makes it easier to study the evolution of the
tilt bias angle as a result of changes in temperature, effects due to the command surface,
and others; and,)Jossibility of studying nonuniformly ordered samples.

This work was supported by COPERNICUIE15-CT96-0744, INTAS 95-IN-RU-
128, INTAS 93-1700ext, and Russian Fund for Fundamental Reséabh2-0354
Grants.

1A. Stieb, G. Baur, and G. Meier, and Ber. Bunsenges, Phys. CRg&n899 (1974).

2G. Baur, F. Windscheid, and D. W. Berreman, Appl. Pt8;s101(1975.

3M. Shadt, H. Seiberle, and A. Schuster, Nat@8d, 212 (1996.

4R. Simon and D. M. Nicholas, J. Phys. D: Appl. Ph¢s, 1423(1985.

SE. Guyon, P. Pieranski, and M. Boix, Lett. Appl. Eng. Ski19 (1973.

6Y. Levy, D. Riviere, and C. Imbert, Opt. Commu6, 225 (1978.

"T. J. Scheffer and J. Nehring J. Appl. Phy§, 1783(1977.

8R. Chiarelli, S. Faetti, and L. Fronzoni, Opt. Commus, 9 (1983.

9J. P. Nicholson, J. Physiquts, 131(1987.

10 M. Blinov, D. B. Subachyus, and S. V. Yablonskii, J. Phys1]459 (1991).

1L, M. Blinov, G. Durand, and S. V. Yablonskii, J. Phys.2] 1287(1992.

123, V. Yablonskii, M. Rajteri, C. Oldano, and G. Durand, Proc. Soc. Photo-Opt. Intrum(SRif) 2731, 87
(1985.

13p. Chatelain, Bull. Soc. Fr. Miner&6, 105 (1943.

Translated by M. E. Alferieff



JETP LETTERS VOLUME 67, NUMBER 6 25 MARCH 1998

Interfacial electronic states in semiconductor
heterostructures
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It is shown that electronic states of a new type, with energy in the band
gap can exist at a heterointerface. The interfacial states may be associ-
ated with Tamm surface states in the materials forming the heteroint-
erface, but they can appear even if there are no surface states in the
initial materials. In the plane of the heterojunction, the energy spectrum
of interfacial states forms a two-dimensional band. 1€@98 American
Institute of Physicg.S0021-364(18)00706-3

PACS numbers: 73.20.At, 73.40.Lq

Seventy years after Tamm in 193@monstrated the existence of surface states of
a special type near the surface of a crystal, Jarseggested that similar states could
exist near an interface between two different materials. As far as we know, the next
mention of possible interfacial states similar to Tamm levels was made in >1.082.
interface, like a surface, is a strong perturbation because of the discontinuity of the
parameters of the material. The energy of such localized states can lie in both allowed
and forbidden bands of the bulk dispersion relation. In the latter case, states localized at
an interface will manifest as donor or acceptor impurities. The unusual behavior of
charge carriers in InAs/AISb heterostructures could be due to such $tate&efs. 4 and
5 it was shown that localized staté®oundary states) can indeed exist at an interface,
but the energy of the boundary states always lies in the continuous spe@truithe
region of the offset of the band edges of the adjoining materidlspresent only one
type of very specific interfacial states with energy in the band gap has been described —
states which arise in an inverted confaas a result of local vanishing of the band gap at
the contact point. These results were obtained in the continuous limit on the basis of the
standard envelope method. A more consistent approach for describing strong perturba-
tions localized on scales comparable to the interatomic separation is one based on the
tight-binding approximation. In the present letter we obtain on the basis of the latter
approach the conditions for the existence of interfacial states with energy in the band gap.
It is shown that in the general case there are two types of localized interfacial states.
States of the first type are genetically related with the surface states occurring in the
materials forming the interface. Localized interfacial states of the second type arise even
if the materials of the heteropair have no surface states, and they are entirely due to the
specific structure of the interface. As a specific example we consider states arising at an
interface between two cubic semiconductors with diamond or zinc blende structure.

0021-3640/98/67(6)/6/$15.00 416 © 1998 American Institute of Physics
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1. Consider an atomically smooth interface between two crystals. Let the axis of
growth be thez axis. To the extent that the system is uniform in a plane perpendicular to
the growth axis, the problem is effectively one-dimensional. We shall enumerate the unit
cells by integers, numbersn<0 referring to the left-hand crystal and numbaes1 to
the right-hand crystal. We shall write out the Satirger equation in the tight-binding
basis. For definiteness, let the dimension of the basis corresponding to one unit cell equal
M. That is, each unit cell containd orbitals and therefore the wave functidh, in this
basis is a vector of dimensidi. The Schrdinger equation in the tight-binding approxi-
mation (in the sense that only hops between neighboring cells are taken into acisount

hWw!+T Wl +T ¥ _=E¥|, n=<-1, (1)

hW +T, W, +T, ¥ _=EV¥], n=2 2

n

In Egs.(1) and(2) h; (j=1,r) is the Hamiltonian of a unit cell, whil&; is a matrix of
the hopping integrals between the states of neighboring cells. We note that for a three-
dimensional system the matricegand T; depend on the transverse wave vector.

The equations for the edgé@nterfacia) cells with numbersn=0 andn=1 differ
from Egs.(1) and(2) to the extent that right- and leftward hops are nonequivalent:

hWh+ TP, + T, ¥ =EW, 3
h W +T, P+ TSWo=EV], (4

whereTg is the hopping matrix between states of the interfacial cells. The equd8bns
and (4) can be rewritten in a more compact form. We shall determine formally the
function\If'1 satisfying the equation for the left-hand half sp&teat a site withn=1 and

the functionW, satisfying the equation for the right-hand half sp&2pat a site with
n=0. Adding to the right- and left-hand sides of E¢).and(4) the quantitiesT, ¥} and

T, W{, respectively, we obtain the relations

TV =TV}, (5)
TEWo=T; Vg (6)

We note that a similar procedure was used in Ref. 7 to obtain the boundary conditions for
a single-orbital one-dimensional chain. The relati@@sand (6) are actually the bound-

ary conditions for Egs(1) and (2), determining the wave functions in the right- and
left-hand half spaces. In the absence of interfacial hoppirg=0) Egs.(1) and(5) and

Egs.(2) and (6), respectively, determine the eigenfunctions of the noninteracting right-
and left-hand semi-infinite crystals. It is well known that, besides delocalized itinerant
states, surface Tamm states localized near the boundary can appear among the eigenfunc-
tions of a semibounded crystal. The existence of hops between the right- and left-hand
half spaces Ts#0) has two effects: In the first place, a tunneling coupling appears
between surface states which are genetically related with the right- and left-hand crystals
and, in the second place, new localized states associated with the presence of the interface
itself and not reducing to the Tamm levels of isolated crystals can appear.

2. We shall demonstrate the above-indicated possibilities for the example of an
interface between two cubic crystals with diamond or zinc blende structure. The most
common group-1V semiconductors and Ill-V compounds possess such a structure. Let
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the growth axisz of the structurefor definiteness, AB,'/A!"B)) lie in the (001) direc-

tion. We shall investigate the possibility of the appearance of localized states formed
from valence-band states with zero momentum perpendicular to the axis of giowth:
=0. These states correspond to the axisf the three-dimensional Brillouin zone and
project onto thel' point of the two-dimensional Brillouin zone. We shall neglect the
spin-orbit interaction. This greatly simplifies the calculations but does not change at all
the qualitative results.

The valence-band spectrum on the(001) axis consists of two bands. The upper
twofold degeneraténeglecting spin band is formed from atomic orbita|X) and|Y).
The second band corresponds to the mixture of the sAjesnd|S). Let us consider the
localized states formed from the atomic stdté¢s and|Y), independent on tha axis of
the states in the second band. In this case each unit cell of the right- and left-hand half
spaces contains four orbitals{g), |Yg), |Xa), |Ya). We shall show that this system is
equivalent to contact between two Peierls chains with alternating bonds and site energies.

The intracell Hamiltoniarh; (j=1, r) and hopping matrice$, (a=1,r,S) appear-
ing in Egs.(1) and(2) and the boundary conditior{§) and(6) can be represented in the
form®

E{B ti(x_ 0'xt£<y
h] = =

: )

! a

0 ty,+ (Txtffy
0 0

it j
tex a'xtxy Ex

whereE{3 and EL are the energies of the states of the B and A atoms in théh half
space andy, andty, are, respectively, the hopping integrals between the orbitals of the
same and different kinds on the B and A atoms. The nondiagox&l Block matriceg7)

can be diagonalized by a unitary transformation with the matrix

1
V2
This transformation corresponds to a transition from the bpsjs |Y) to the basis
functions

oyt o, 0

U:

0 oyt oy,

|A3>=%<|x>+|v>>, |A4>=%(|x>—|v>>,

corresponding to the representatigdngandA 4. The transformed matriceh'i' andT, are
block diagonal:

j it
Eg b Uztxy
j
EA

0 ty,toty

h/=Uhu*= v
0 0

, T/=UT, U= 8

i i
(S Uztxy

We shall write explicitly the system of equations for the components of the bispinor
(T} "= (up,vp):

(E'é— E)uL-i— (tLX— a'zti(y)v;]+ (tix-i- aztiy)vjﬁ“: 0,

(EA—E)ol+ (th— o thul + (th+ o tl ul ;=0 ©)
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The four equation$9) decompose into two uncoupled systems of two equations describ-
ing states with symmetr; andA 4 and distinguished by the sign tig‘y. Each system of
equations indicated above describes a Peierls chain of atoms, duplicate with respect to
both bonds and site energies. The spectrum of delocalized itinerant states jith the
crystal is

EL (k)= (E\+EL)/2x (E)— EL)%/4+A(t),)? cosk+4(t),)? sirtk/2.

The lower(bonding p bandE’ (k) corresponds to a twofold degenerate valence band. In
addition, E (0)= EJ is the valence band top located at tHepoint. The antibondingp
bandEL(k) lies above the conduction band corresponding af thp®int to an antibond-
ing S level.

We shall seek the localized interfacial solutions for each representajiandA 4 in
the form

wi=al " Jerzmay il |erna (10
n UreCIr ! n vle_QI )

For definiteness let us assume that a planB, df/pe atoms emerges at the surface of the

left-hand crystal [=1) and a plane ofA,-type atoms emerges at the surface of the

right-hand crystal I(=r). Substituting the wave functiond0) into the boundary condi-

tions (5) and(6) and using Eqs(8) and(9) we obtain the following dispersion relations

for the energies of the interfacial states:

Fr(E):')’r: (11)
where
(EA—E)(Eg —E) (t%)?
F.(E)= , 4= 12
R T S S (42

andts =t} =t},. The upper and lower signs in Egd1) and (12) correspond to the
statesA; andA 4, respectively. The decay parametgysare related with the enerdy by
the relation

sinhg;=(E—E" )(E, —E)/at, t! . (13

It follows from Eqgs.(13) and(12) that localized solutions of the tyg&0) exist only if the
energy lies in the common forbidden baBI*<E<E™", where

ET"=min{E\, (0),E',(0)}, ET™<maxE'(0),E"(0)}.

We note that the energy™ corresponds to the real valence-band edge, while the level
ET" lies above the physical conduction-band bottém Therefore solutions of Eq11)
with energiesE . <E<ET" fall in the region of allowed states.

Let us analyze the possible solutions of Etfl). The qualitative form of the func-
tionsF . (E) for the case[xy>0 is displayed in Fig. 1. The functiof, (E) vanishes at
the pomtsEA and Eg. Therefore if there is no interfacial hopplngs(:O) As-type
surface states with energig$, andEj exist at the boundaries of the left- and right-hand
crystals, respectively. A8 increases, the interfacial levels move apart and vafnsh
necessarily simultaneouslyvhen the surface hopping integral reaches certain critical
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FIG. 1. Qualitative behavior of the functioffs, (E) andF _(E) for the casetﬁ(y>0. The solid line shows the
function F . (E), while the dashed line shows the functibn (E).

values. This behavior corresponds to tunneling splitting of the Tamm levels initially
present at the free surfaces. Tyfsig-solutions are an example of strictly interfacial states
arising when there are no Tamm levels in semibounded crystalgeros of the function
F_(E)). Such states appear onlytif exceeds a certain critical value. For example, the
condition for the appearance of a level near the valence-band edge is

(t5)2>t"t' F_(E™).
In this case the interface is a perturbing potential which localizes the charge carriers.
Localized states arise with a finite value of this one-dimensional potential because of the
asymmetry of the right- and left-hand crystals. The condition for the appearance of
interfacial states greatly simplifies if the surface hopping integral equals the volume

hopping integral in the right- or left-hand half spaces. For exampld,detT, . Then the
localized solutions of the typA; or A, arise if

V(AEL-V) thth
+1 1 p __*

—\/pt—=L"">1, g= ,
P P thth p t"t!,

whereV is the valence-band offset, WhiLﬁEL is the energy difference between the
bonding and antibonding levels at thd” point. The latter formula demonstrates explic-

itly the influence of the asymmetry of the potential relief on the possibility of the appear-
ance of localized states. Specifically, if the valence-band offset equals zero, then the
interfacial solutions of one or another type arise with an arbitrary value of the parameter
B+1.

3. The results obtained above show that a semiconductor heterojunction is a strong
perturbation that can result in the formation of localized states whose energies lie in the
band gap. The spectrum of interfacial states in the plane of the heterojunction is of a band
character and in this respect the new interfacial states are similar to Tamm surface states.
However, cases when interfacial states appear even if the materials forming the hetero-
junction do not themselves possess Tamm surface states are possible. The new states will
be manifested experimentally as characteristic features of the tunneling-resonance
current-voltage characteristics and kinetics of generation-recombination processes. As
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noted in Ref. 3, the existence of donor-type interfacial states can explain the unusual
combination of high electron mobility and high electron density in quantum wells in
undoped InAs/AISb heterostructures. We note that the numerical solution ¢t Bdor

a InAs/AISb system(values of the tight-binding parameters were taken from Rgf. 8
shows that interfacial states indeed arise in a wide range of reasonable values of the
interfacial hopping integrals.

The results of this work were obtained in their most general form in the tight-
binding approximation, taking into account perturbations localized on the scale of a unit
cell. It was shown that the Hamiltonian describing the states of the degenerate valence
band of cubic semiconductors reduces to the Hamiltonian of a Peierls chain. It is well
known that in the case of weak duplication such a system is described adequately by the
method of envelopes using a two-band Dirac-type Hamiltonian. Physically, it is obvious
that the results obtained in the present work should also be reproduced in such an ap-
proach. In this case the main problem is to determine the correct boundary conditions.
The extension of the methods for describing interfacial states to the continuous limit and
the microscopic derivation of the boundary conditions for the envelope functions will be
examined in a separate work.

This work was supported by the Russian Fund for Fundamental Research and the
Interdisciplinary Science and Technology Program “Physics of Solid-State Nanostruc-
tures.”

11, Tamm, Phys. Z. Sowjetunioh, 733(1932.

2H. M. James, Phys. Re76, 1611(1949.

3H. Kroemer, C. Nguen, and B. Brar, J. Vac. Sci. TechnollB1769(1992.

4R. A. Suris, Fiz. Tekh. Poluprovod®0, 2008(1986 [Sov. Phys. Semicon@0, 1259(1986].
50. E Racheyv, Fiz. Tekh. Poluprovodi23, 1226(1989 [Sov. Phys. Semicon®3, 766 (1989].
6B. A. Volkov and O. A. Pankratov, JETP Le#2, 178(1985.

7Q-G. Zhu and H. Kroemer, Phys. Rev.H, 3519(1983.

8P. Vogl, H. P. Hjalmarson, and J. D. Dow, Phys. Chem. Scli4|s365 (1983.

Translated by M. E. Alferieff



JETP LETTERS VOLUME 67, NUMBER 6 25 MARCH 1998

Model of isostructural dynamical phase transition in
anharmonic crystal with possible relevance to SrTiO 3

V. G. Vaks
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

(Submitted 6 February 1998
Pis’'ma Zh. Kksp. Teor. Fiz67, No. 6, 399-40425 March 1998

A new type of phase transition is discussed which corresponds to a
pairing of phonons of different lattice modes due to their anharmonic
attraction in a crystal. It is shown that the main features of the isostruc-
tural phase transition observed in SrEi& T=37 K can be explained
qualitatively by the phonon pairing phenomenon. 1®98 American
Institute of Physics.S0021-364(108)00806-9

PACS numbers: 64.60.Ht, 64.70.Kb

The physical properties of the low-temperature phase of SrT8DO) have recently
received much attention. Phase-transition-like anomalies in the temperature dependences
of a number of structural and elastic characteristics of STO have been observed at a
temperaturel =T,=37 K (Refs. 1-6. The anomalies are rather weak, having the form
of more or less smeared kinks, and no change in the crystal symmetry is s@en at
=T4. There are a number of speculations about the nature of this phase transition and its
low-temperature phas@ometimes called “the Mier state,” after K. A. Muler, who
discovered this phase transition and called attention tsei¢ review& ). These specu-
lations include invoking a new kind of Bose condensafisome cooperative changes in
the structure of dynamical polar clustérstc., but any clear physical model for this phase
transition seems to be lacking as yet.

In the present work we suggest such a model. We adopt the qualitative arguments of
Courtend that the transition has a dynamical nature and is related to strong anharmonic
interactions between the low-lying “soft” phonons that govern the dynamics of STO at
the low temperatures under consideration. We suppose that this transition corresponds to
a “pairing” of these phonons which in a number of formal aspects is analogous to the
pairing of electrons in the standard BCS theory of superconductivity. Physically, such
phonon pairing corresponds to a spontaneous breaking of the lattice symmetry for some
phonon modes, which results in the relevant reconstruction of their energy spectrum and
alteration of the character of their motion. We show that not only the isostructural phase
transition but also some peculiar features of the low-temperature dynamics off&f©
2—-4) seem to be naturally explained by this model.

To illustrate the main features of the phonon pairing we consider first a simplified
model of only two interacting phonon branches, 1 and 2, with the following Hamiltonian:

0021-3640/98/67(6)/7/$15.00 422 © 1998 American Institute of Physics
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2

1 .. 1
P a,a 2 a,a - aafBp B B
5 zk: ;::l (XX E F Of Xk X% ) + 7 Ek:, a,ﬁ2=1 Vk1k2k3k4xklxkzx Xfe (1)

Herek or k; is the phonon wave vector, and the sum over fiouin the last term obeys

the quasimomentum conservation conditigfiandx{ are the phonon normal coordinate
and momentum, which obey the canonical commutation relations

[x xG1=[x XG1=0,  [X¢ XG1= —ih 8,58+ q. @

The quantitywﬁwh is the square of thé&ka phonon frequency found in the harmonic
approximation. For the soft-mode crystals under consideration this quantity in some
intervals ofk can be negativé.Then the system is stabilized with anharmonic interac-
tions that in our model are described by the last ternflef The anharmonic potentials
VI and V2222 are supposed to be mainly positive, which ensures the lattice stability
with respect to large values &, while the intermode potential*'??is supposed to be
mainly negative, which corresponds to an "“attraction” of different modes.

To investigate the phonon pairing qualitatively, we will treat the anharmonic inter-
actions in(1) in the simplest mean-fieltbr Hartree—Fock, or “self-consistent phongn”
approximation. This is a standard approach in treatments of anhariiompiarticular, of
soft-mode crystals, and in many problems it can be justified even quantitatilithin
this approximation, each operator produ@xﬂ in the last term of(1) is written as the
sum of its averagey*#= (xixt) = Sy qni” and the fluctuatio®# = x¢xf — »*#, and the
interaction of fluctuationg is neglected Then the terms with the “dlagonal” averages
7** can be included in the values of the renormalizadd thus temperature-dependent
squared frequencies if1), which is a conventional procedure, for example, in the per-
turbative treatments of soft modésiowever, the off-diagonal, “anomalous” averages
7= (x{Px?)) are absent in any perturbative treatment, and their spontaneous rise at a
certain temperaturé, corresponds to the phonon-pairing phase transition.

1122

Denoting for brevity 7= 75, 7t>=ny, Vk ,kq q qu, and Viig<y —q

=—V,q, We can write the resulting Hamiltonian as

2 (XX F O XX — 284X ) —

I\)II—\

1

a,B a -
kE kq ”’7k77q+2 ;q Vg kg -
©)

The repeating indicea or 8 here and below imply summation overor 8 from 1 to 2,
while the quantities?uﬁa andA, are related to the averageg and 7, as

Ofy= wkah+2 Uplnh, (4)

AF%WM- (5)

The Hamiltonian(3) can be diagonalized with the unitary transformation

xP=u cos b +u® sin 6, xZ=-ul sin G +u® cos by, (6)
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and similarly forx? andug, whereu? andug are the new canonical variables obeying
the commutation relations analogous(®. The diagonalized Hamiltonian has the form

1 .o 1
H=35 2 (uﬁuikmiauﬁuik)— 2 Uidning+ 5 2 Viamana, Y]
where the new frequencid3,, are related to the original ones,,, as
1. ~ ~ ~
Qﬁl,zzi{wiﬁ' 0y *[(0f; — wiy)?+ 447113 (8)
and the parametet, in (6) is determined by the equation: tam,2=2A, /(w3 — wZ,).

The quantityA, can be considered as the order parameter of the phase transition,
and the self-consistency conditi@b) for it yields the following equation:

Ak=§ Vige(a,A2)A,, 9)
where the functionp(q,A%) is

qa

fefa  in £ =" coth

#(a q)_Q ~02, W Tae=20,, O 2T

One can also obtain EQ9) by minimizing the phonon free energy corresponding to the

Hamiltonian (7) with respect to quantities), treated as variational parameters. The
explicit form of Eq.(4) for Z)ﬁa is obtained with the expressions fagf resulting from

Egs.(6)—(8):

(10

’"'2 "'2
Wy~

(fq1+fq2)— (fql q2)- (11)

QZ
Near the phase transition pomi;3 the A, values are small. Writing in Eq9) the
function go(q,Az) atsmallA, aseq— zij W|th ¢q= ¢(0,0), we obtain folT close toT,

% vquanq—Ak:% Viqhgh?. (12)

According to the definitior{10), the functione is positive. Below we show that for the
soft-mode crystals under consideration the functigris normally positive, too. Positive
values ofis, correspond to a second-order phase transition, while negagiveould lead
to a first-order transition, i.e., to an instability with respect to small valuesof

The solution of Eq(12) can be conveniently written in terms of the eigenfunctions
Xnk @and eigenvalues,, of the linear integral equation corresponding to the left-hand side
of (12):

Eq: qu‘Panq:Aank . (13

As the potentiaV,, is symmetric in the variablels andgq, i.e., Viq= Vg, the functions
Xnq Can be orthonormalized with weight, (see, e.g., Ref.)8At the transition point ,
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the highest eigenvaluk, in (13) reaches unity, and the pairing region corresponds to
valuesho>1. Using in Eq.(12) the usual perturbation expansidn =X ,C,xn With
Ch=0<<Co and neglecting higher powers af{— 1), we obtain

A=\~ 1) Axok (14)

where the constat is (qu//qxgq)*lf% NearT, the factor ;— 1) is proportional to the
difference T,—T (having in mind STO, we suppose the pairing to occulTatTp).
Therefore, the order parameter has the usual Landau-type temperature depefdence
~(Tp—T)1’2, which is natural for the mean-field approximation used. However, the
observable phonon characteristics such as their sp&jtiaclude only even powers of
Ay. Therefore, the temperature anomaliésnearT, should usually have the form of
kinks or weaker singularitiesif ~(T,—T) 0(T,—T), (T -T)? 6(T,—T), etc., while the
specific heat al =T, should exh|b|t the jump that is charactenstlc of mean-field theory.

To illustrate the form of the functiong, and ¢, in (12) we consider the case when
the transition temperaturé, exceeds the values dfwkalz for significant phonons

(which seems to be the case for STO, see bgldwenf, in (10) becomesT/Qéa, and
Eq. (4) is simplified:
1 Az \ 7t
w2, = wkah+T2 Ups = (1—% (15)
Wqp Wq1Wq2

Let us write the smallA expansion ofwka akaa-i- Akgka wherewy, corresponds
to the absence of pairing. Then the functiansand y in (12) are

T T (ig L 1 .
=3 5+ Yo~ AP L (16)
while quantities{,, are determined by the linear equations
2
1
+T2< “ﬁgqﬁ TE( ) e 17)
WqpPq1®q2

For soft-mode crystals the sums owein Egs.(12) and(17) converge in the region
of small wave vectors, where the harmonic valuégh in (15) are negative. Therefore,
for thesek and T=T, the sum oveq in Eq. (15 exceedsuﬁu, even though the main
contribution to this sum is made by the thermally averaged phonons with “average”
frequenciesw,(T) rather than by smalr phonons with smaller frequencieg,~ w,. As
the similar sums in Eq.17) converge at smalj and thus include additional large factors
~w,/wy,, One can see that the sum of two first terms in the brackets dfilBpshould,
generally, exceed the third one, and thus the funciigrin (12) should be positive.

Let us now discuss the physical factors that can promote the phonon pairing. Let us
suppose for simplicity that thie andq dependence of the potent], in Egs.(9) and
(13) is insignificant, so that this potential can be approximated by its averaged value
Vo=(Viq)- Then the integral equatiori8), (13) become algebraic equations, ahdioes
not depend ork. Supposing again that the temperatiirexceeds the valudsw,,/2 for
significant phonons, we obtain the following equation for the transition temperature
=T,:
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1
VoTY 5 =1. (18

Equation(18) illustrates two necessary conditions for the emergence of phonon pairing:
(i) the effective intermode interaction should correspond to a sufficiently strong attrac-
tion, which in our model corresponds to positive and sufficiently large valudg,odind

(i) the phonon pairing on decreasifigcan occur only in a soft-mode crystal in which the
phonon frequencies,, are both sufficiently small and sufficiently rapidly decreasing
with decreasingl’ within significant intervals of the wave vectoks

In a discussion of possible phonon pairing in STO one should consider that two
families of soft modes are present in this crystal at sikallhey correspond to two kinds
of order parameter: the ferroelectric one represented by the polarizati@nd the
“structural” one represented by the angledescribing the staggered rotation of oxygen
octahedra in the perovskite structdreAt T,= 105 K the structural phase transition from
the cubic to the tetragonal phase occurs with the rise of the order parabretdér,. The
ferroelectric transition does not occur downTte 0 (though it can be induced by a small
applied stress or by doping with a small amount of impurjtiesit the dielectric constant
€(T) rises at lowT to very high values(0)~ 10° (Refs. 5 and 9 Accordingly, there are
several soft modes in the sméllregion: the ferroelectric transverse optical branches, in
particular, those polarized along thexis (which will be called for brevityP, branchep
and along thex or y axis (P or P, brancheg as well as the structural soft modes
describing the rotation of the octahedra, both aroundztheis (¥, branchesand around
thex ory axis (@, or ®, branches The frequencies of all these modes are rather small
and have an appreciable temperature dependence down to quite IBer example, at
k=0 andT=4.2 K the values ot w(P,), iw(P,), hw(P,), andiw(P,), according to
the data of Ref. 9, are 27, 13, 65 and 21 K, respectively, while betWeesB K and 22
K the value offw(P,) varies from 47 to 32 K. Therefore, the above-mentioned condi-
tion (i) can be satisfied in STO.

To get an idea of the anharmonic interactions betweeand®; modes we can use
Uwe and Sakudo’s estimatesf the nonlinear terms in the free energy of STO. As was
discussed in Ref. 7, these terms correspond tktheO limit of the appropriate anhar-
monic interactions. Uwe and SakUdarote these terms for the cubic phase as

Fm-% 1 PiP; @D . (19

On account of the cubic symmetry there are only three different paramﬁgalie (19:

Bovo t11r Lexyy= 112, @andtyy, =t3,. As the degree of tetragonality of STO BT, is
actually quite small, Eq.19) can be used for estimates of anharmonic interactions at any
T. Uwe and Sakudbfound: t},= —7.4,t5,~=9.6, and|t};] =5-9, in 13° cgs. Therefore,

the above-mentioned conditigii) can be satisfied for interactions of thoBe and ®;
modes which are normal to each other, suctiPaand®, or ®, modes fork in the xy
plane, orP, and ®, modes fork in the yz plane. Let us also note that on account of
fluctuation effects(neglected in the above-described mean-field treatment and in Uwe
and Sakudo’s estimat®she effective interactions’ in (19) can actually rise appreciably
with decreasind’, as can the dielectric consta¢(tT), which is the case, for example, in
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BaTiO;, which is a structural analog of ST®ee Ref. 10 or Ch. 8 of Ref).7Such a
“fluctuational” rise of the effective interactions’ can be one more factor promoting the
phonon pairing transition in STO on decreasihg

The presence of several sd® and ®; branches can imply that to describe the
phonon pairing in STO one should employ not the above-described two-mode model, but
more complex three- or four-mode pairing models. To this end we have considered the
three-mode pairing model. Then the unitary transformation analogous) tmcludes
three parameters, which can be taken as the Euler angles describing a three-dimensional
rotation (see, e.g., Ref. 21 The resulting relations analogous to E¢S—(12) become
more cumbersome, but all of the qualitative conclusions, including those about the char-
acter of the phase transition and the anomalies Migaremain the same as those for the
two-mode model.

The phonon pairing can explain some anomalies that have been observed in the
dynamics of STO alT=<T, by Courtenset al2~*In particular, the apparent “mixing” of
the P,- and®,-type modes at smak= (k,ky,0) stressed by those authors should be a
direct consequence of the above-discussd,®,) pairing at thesek. The other
anomaly, the presence at suctof an additional, “anomalous” acoustic-like branéf)
does not seem to be quite clear yet. However, this branch may be related to “critical”
soft collective excitations under the phonon pairing, analogous to those discussed for a
number of other phase transitiofsee e.g., Ref. 12 Strong interactions between the
acoustic modesl{ modes and the softP; and®; modes can also be important for the
existence of thé\-branch. The relations between the frequencidd d?;, and®; modes
at thesek can be approximately resonance-lil&éﬁz|wf+q— wg’|, in significant intervals
of q (Refs. 2—4. It can promote the emergence of extra resonance-like excitations due to
the anharmonic interactions. Under the phonon paitG)ghese interactions should rise
appreciably as additional three-phonon couplings of tHed type emerge, which at
higherT are forbidden by the lattice symmetry. These effects can also persist &},
due to fluctuational pretransition phenomeimeglected in the above-described mean-
field treatment

To summarize, the phonon pairing can be a new type of phase transitions in an
anharmonic crystal, and the main features of the low-temperature isostructural phase
transition in STO can be explained qualitatively by phonon pairing.

I am much indebted to A. I. Larkin for calling my attention to the problem of this
phase transition in STO and for his valuable remarks, and to B. |. Shklovsky for his
hospitality at the Theoretical Physics Institute, University of Minnesota, where this work
was started.

1K. A. Mliller, W. Berlinger, and E. Tosatti, Z. Phys. &, 277 (1991).

2E. Courtens, G. Coddens, B. Hennienal, Phys. ScrT49, 430(1993.

3E. Courtens, B. Hehlen, G. Coddens, and B. Hennion, Physiza%®220, 577 (1996.

4E. Courtens, Ferroelectrid83 25 (1996.

5K. A. Mliller, Ferroelectrics183 11 (1996.

SE. V. Balashova, V. V. Lemanov, R. Kunzt al, Ferroelectrics183 75 (1996.

V. G. Vaks, Introduction to the Microscopic Theory of Ferroelectrid¢éauka, Moscow, 1973, Ch. 7.
8V. 1. Smirnov, Course of Advanced Mathematiagol. 4, Fizmatgiz, Moscow, 1958.

9H. Uwe and T. Sakudo, Phys. Rev.1B, 271(1976.

0y, G. Vaks, zZh. Ksp. Teor. Fiz58, 296 (1970 [Sov. Phys. JETRB1, 161(1970].



428 JETP Lett., Vol. 67, No. 6, 25 March 1998 V. G. Vaks

L. D. Landau and E. M. LifshitzMechanics 1st ed., Pergamon Press, Oxford, 19&ssian original,
Fizmatgiz, Moscow, 1958, § 35 i

12y, G. Vaks, V. M. Galitski, and A. I. Larkin, Zh. ksp. Teor. Fiz511592(1966 [Sov. Phys. JETR4, 1071
(1967)].

Published in English in the original Russian journal. Edited by Steve Torstveit.



JETP LETTERS VOLUME 67, NUMBER 6 25 MARCH 1998

The excitonic spectrum of germanium in a high magnetic
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In recently reported experiments with uniaxially deformed germanium
in a magnetic fieldV. B. Timofeev and A. V. Chernenko, JETP Lett.
61, 617 (1995], it was found that applying a magnetic field of suffi-
ciently high intensity results in the appearance of a new line in the
optical spectrum of the excitons. In the present paper a mechanism is
proposed which can provide an explanation for this experimentally ob-
served spectral feature. The new spectral line may be attributed to the
formation of strongly bound biexcitonic molecules in the quantum state
%[1,. © 1998 American Institute of Physics.

[S0021-364(98)00906-3

PACS numbers: 71.35.Cc, 71.35.Ji, 78.40.Fy

Studies of the behavior of matter in high magnetic fields constitute one of the most
interesting and rapidly developing areas in atomic and molecular phySitsterest in
this area is motivated by the radical changes in the electronic structure and properties of
matter that occur when the paramagnetic energies of electrons become comparable to or
greater than the typical energies of atomic and molecular bonds. In the case of ordinary
atoms and molecules corresponding magnetic fields belong to the astrophysical domain.
Indeed, the typical atomic binding energy may be estimated as 1 hartrege?/#?
=27.2 eV, while the paramagnetic energy of the electron is the distance between Landau
levels, equal tofh wy=heH/m.c, where wy is the cyclotron frequency anH is the
magnetic field intensitywe shall use cgs unitsBy equating these two expressions, we
immediately find that the critical field strength for a “high” magnetic field Hi,
=mZe3c/h3=2.35052< 10° G. Although far beyond reach by laboratory standards, such
magnetic field strengths are nevertheless quite usual on the astrophysical scale. Magnetic
fields in the vicinity of magnetic stars reach i}, while magnetic fields on the surfaces
of neutron stars and pulsars can excéggdby three orders of magnitude. For conve-
nience, we shall measure the magnetic field in atomic unitg=akl/H,.

This scale of magnetic fields profoundly changes, however, if one turns to the
behavior of hydrogenlike excitons in semiconductors. First, the electronmmadsanges
to the reduced mass of an electron—hole pa# m.m;,/(m.+my). Second, the binding
energy of excitons is reduced by a factorsdf wheree is the dielectric constant of the
semiconductor. As a consequence, the critical intensity of the magnetic field is reduced to

0021-3640/98/67(6)/5/$15.00 429 © 1998 American Institute of Physics
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H} =m2e3c/s243. This quantity is about several tesla for Ge and Si and may be as small
as 0.2 T for InSh. Such a low value of the critical field implies that the structure of
excitons in semiconductors must experience significant changes already in laboratory
magnetic fields.

Such changes have indeed been observed in many laboratory experiments. One line
of the experimental inquiry concentrates on the excited levels of excitons in semiconduc-
tors with relatively high values of the critical magnetic field. A typical such a material is
Cw,0O, with a critical magnetic fieldH§~800 T, which demonstrates the ‘“chaotic”
behavior of excited excitonic levels in laboratory magnetic fields of the order ofH})

(Ref. 5. Another line of research is the study of excitons in semiconductors with critical
magnetic fields comparable to or lower than the highest magnetic fields attainable in the
laboratory. A representative example is uniaxially deformed germanium, which is espe-
cially interesting because this material allows one to investigate the influence of the
magnetic field not only on separate excitons but on excitonic molecules a8 well.

Recent experiments with Ge in magnetic fields up to 14 T have revealed new
interesting features of the excitonic spectr(ifhe authors of Ref. 7 studied the optical
spectra of excitons in uniaxially deformed germanium placed in a magnetic field. The
critical magnetic field strength for Ge wak; =2.9 T. In the absence of magnetic field
the excitonic spectrum consisted of two lines: the line of excitons and the accompanying
line of biexcitonic molecules. Application of the magnetic field resulted in a decrease in
intensity of the biexcitonic line and its final disappearance dt.5 T, which corresponds
to an effective magnetic fiel¢~0.5 a.u. When the applied magnetic field reached 4 T
(vy=1.4 a.u), a new spectral line appeared. It was located on the “red” side of the line
of free excitons and was labeled as the “X” line. This line was associated with the
appearance of another bound state, whose energy is lower by one electron—hole pair than
the energy of an isolated exciton.

The authors of Ref. 7 proposed two possible mechanisms explaining the observed
spectrum. The first explanation, which they doubted, was based on the assumption of
increased stability of the electron—hole liquid in a magnetic field.

An alternative explanation was the formation of a new biexcitonic molecular state.
Although this possibility seemed promising, further progress in that direction was hin-
dered by the lack of information about the behavior of excitqaicd hydrogehmol-
ecules in high magnetic fields. Indeed, even such a basic question as the symmetry of the
ground state of K in magnetic field was the subject of a prolonged dispute. However,
recent calculations of the electronic structure of the hydrogen molecule in high magnetic
fields reveal more detailed information about the electronic states @i allow us to
offer a possible explanation of the nature of the new spectral line described in Ref. 7.

We suggest that the explanation of the observed phenomenon lies in the appearance
of metastable excitons in the quantum stiilg, . In what follows, we shall consider the
electronic structure of the hydrogen molecule and make use of the fact that the hydrogen
data can be scaled to describe the behavior of hydrogenlike excitons. The analysis is
based on the Hartree—Fock calculations reported in Ref. 8. The molecular axis is directed
along the magnetic field and the nuclei are assumed to be infinitely heavy. It was found
in Ref. 8 that as the magnetic field increases, the ground state experiences two symmetry
transitions. The first transition occurs at=0.18 a.u., when the ground state changes
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FIG. 1. Potential curves of the electronic sta’tEg, 33F, and®M, (A=—1) of the hydrogen molecule in a

high parallel magnetic field: (a) y=0.0, (b) y=0.2,(c) y=0.5,(d) y=1.0,(e) y=1.2, and(f) y=2.0 a.u.
Dotted lines show energies of the corresponding states at infinite nuclear separation. For the tripR States
and®IT the total electronic spin is antiparallel to the magnetic field; the other two components of the triplet are
not shown.

from the strongly bound singlet stal® ; to the weakly interacting triplet staf& | . The
second transition happens gt 14 a.u. and involves a change frais, to the strongly
bound triplet statéIl,. What is important for the present analysis, however, is the fact
that, starting fromy~1.2—-1.4 a.u., the strongly bound stdié, may be ametastable

state of the molecule. Therefore, starting from these intensities of the effective magnetic
field, one can expect the formation of metastable biexcitons, which, we believe, provide
an explanation for the “X” line observed by Timofeev and Chernehko.

Let us consider how these ground state transitions occur. Fig. 1a shows the potential
curves'S, 33 7', and®ll, of the hydrogen molecule in the absence of magnetic field.
The internuclear distancR is measured in the units of the Bohr radiag=7%2/m.e’
=5.3x10"° cm, and the zero of energy corresponds to the situation where all particles
are at infinite separation from each other in their lowest Landau states, with their spins
antiparallel to the magnetic field. The dashed curves show the total energy with allow-
ance for the electron correlation, and the solid curves correspond to the Hartree—Fock
approximation. While the correlation energy is significant for the singlet é%ge, its
value for triplet states is much smaller due to the smaller overlap of electronic orbitals. It
should be noted that the correlation energy remains approximately the same even in the
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presence of magnetic fields up o<1 a.u. This can be confirmed by comparing our
Hartree—Fock results with detailed configuration-interaction calculatior’s sffates of
H, in magnetic field, which were recently reported in Ref. 9.

Figure 1b shows the potential curves of the same three quantum states in the pres-
ence of the parallel magnetic fielg=0.2 a.u. We see that the symmetry of the ground
state has changed. The singlet st’ai(;f, which is the ground state at=0, has been
slightly shifted upwards, while the weakly interacting triplet st¥¢| has been shifted
lower due to the increase in the binding energy of isolated hydrogen atoms. As a result,
the minimum of the potential curve 6Eg now liesabovethe energy of2 | atR>1,
and the latter state represents the true ground state of the system. However, the hydrogen
still can form tightly bound molecules in the stat®_ , but such molecules will be
metastable. As for the statél,, it lies above the potential curves of bdtﬁ; and®3
and is therefore unstable.

If we now increase the field tg=0.5 a.u., we encounter further changes. Figure 1c
shows that the potential curve of the singlet stat¢ has shifted even higher, and ;
is now an unstable state. This is manifested by the disappearance of the biexcitonic line
at y~0.5 a.u., observed in Ref. 7. The potential curve of the Sdtgis still above that
of the state’> | . The hydrogen cannot form strongly bound molecules, and the ground
state32f} of the molecule is represented by two separated atoms. The molecule is bound
very weakly, if at all, and the hydrogen now acts like a gas of weakly interacting atoms,
which may exhibit such phenomena as Bose condensation and superfluidity.

This situation remains essentially the same in a magnetic field a.u., as shown

in Fig. 1d. However, the potential well of the triplet statd, has deepened, and its
minimum now lies only slightly above the curve of the st3¥g . When we increase the
magnetic field toy=1.2 a.u., the potential minimum 6f1, crosses the energy curve of
33 0 (Fig. 1d. This means that if the field increases even further, the hydrogen can start
to form strongly bound metastable molecules in the stHig. Figure 1f shows that in a
magnetic fieldy= 2.0 a.u. the potential minimum &f1,, lies below the potential curve of

the weakly interacting stat&. ", which is a typical picture of a metastable state.

Therefore, the quantum statH , is an excellent candidate for the biexcitonic state,
which can be responsible for the appearance of the “X” line observed in Ref. 7. The
most convincing argument in the support of this claim is that the strength of the magnetic
field at which the “X” line was first observe® T) corresponds to an effective magnetic
field y~1.4 a.u. The calculations presented show that the 3fhjebecomes metastable
starting fromy=1.2 a.u. It is unlikely that such a perfect agreement between the two
values is accidental. However, in order to verify this claim one needs to perform similar
experiments with other semiconductors having different values of the critical magnetic
field.

Let us follow the further evolution of the statés | and®Il, . Figure 2 shows their
potential curves in the magnetic fiejd= 10 a.u. andy=30 a.u. We see that =10 a.u.
the true ground state of the molecule is still the weakly interacting Stfe. At y
=30 a.u. the potential minimum of the stétd,, lies below the minimum of%,", and
the ground state of the system is the strongly botHg. Calculations show that this
second transition of the ground state symmetry occurg~at4 a.u®

Let us summarize our conclusions. We have proposed a possible theoretical expla-



JETP Lett., Vol. 67, No. 6, 25 March 1998 Yu. P. Kravchenko and M. A. Liberman 433

-28

-30
-32
-34

Y ST A

E (hartree)
ERAARRARNRAL

73 I P Y DU I

)

-40 -

il

W AL LA

E (hartree)}

PO SO Y HT S0 W WO W [ S Y T S R ST ST S

0.0 0.5 1.0 15 20

FIG. 2. Potential curves of the triplet staf& and®II, (A=—1) of the hydrogen molecule in the magnetic
field: (@) y=10.0 a.u.(b) y=30.0 a.u. All designations are as in Fig. 1.

nation of the nature of the new excitonic line, observed experimentally in Ref. 7. Ac-
cording to our calculations, this new “X" line can be explained by the formation of
metastable biexcitonic molecules in the quantum sthtg. The calculated strength of

the magnetic field at which such metastable molecules can exist, is in excellent agreement
with the experimental results of Ref. 7. If the proposed mechanism is correct, it should
work for other semiconductors with hydrogenlike excitons and manifest itself at the same
effective magnetic field strengtlh=1.4 a.u. If such an effect is in fact observed in
experiments with other types of semiconductors, it may open up alternative possibilities
for controlling the optical spectrum of semiconductors by an applied magnetic field.
Since certain kinds of semiconductors have very low values of the critical magnetic field,
this mechanism may have potential technological applications.
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A method for obtaining finite electronic systems on a liquid-helium
surface is proposed. If a thin film of liquid helium lies above a bottom
capacitor plate made in the form of metal rings connected with one
another, then electrons will accumulate in potential troughs near these
rings. The purity of the helium surface, i.e., the absence of impurities
and pinning centers on it, affords an excellent opportunity for investi-
gating the Aharonov—Bohm effect in an ideal ring of a Wigner crystal
and a Luttinger liqguid ©1998 American Institute of Physics.
[S0021-364(98)01006-9

PACS numbers: 67.70n, 72.15.Rn

1. The Aharonov—BohniAB) effect in ring-shaped solid-state electronic systems is
suppressed by impurities and pinning centers in the case of an electronic WignerZrystal.
It is of interest to investigate experimentally an ideal “pure” electronic ring, since it is
for such an object that the well-developed theory of the AB effect appfids this letter
we propose a method for the experimental investigation of electronic rings on a liquid-
helium surface experimentally. The purity of the helium surface, i.e., the absence of
impurities on it, in principle permits observing AB oscillations in an ideal ring of an
electronic Wigner crystal and an electronic Luttinger liquid by varying the electron den-
sity. In other words, it is possible to distinguish electron-electron interaction effects.

There exists a well-developed experimental method for obtaining two-dimensional
electronic systems on a liquid-helium surf4c&.thin helium film on a smooth substrate
is placed in a capacitor, and an electron source is switched on above the helium surface.
The electrons are pressed to the helium surface by electrostatic image forces and by the
electric field. An electron density,~ 10'! cn? has been obtained on a thin helium film,
and the quantum melting of an electronic Wigner crystal has been obseR@dlow
electron densities,~10° cn? an anomalous increagby four orders of magnituden

0021-3640/98/67(6)/6/$15.00 434 © 1998 American Institute of Physics
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FIG. 1. Side view. The dark rectangles are transverse cross sections of the metRyisghe radius of the
ring, z andp are coordinates of the electrend, is the thickness of the helium film, aml is the thickness of
the substrate.

the mobility of a Wigner crystal on a Hdilm as the temperature is lowered To=0.2
x 1072 K has been observédOne-dimensional electronic systems have been investi-
gated for helium films on diffraction grating$.

2. Ring-shaped electronic systems can be obtained if the bottom plate of the capaci-
tor is made in the form of metal rings connected with one another by bridgesFig. 1
Such a metal structure can be deposited both on the substrate directly above the helium
film and on the back side of the substrate. This makes it possible to vary the distance
between the metal ring and the helium surface over wide limits by varying the thickness
of the substrate and the film of liquid. If the distance between the metal rings is much
greater than their radiuRy, it is sufficient to take account of the effect of only one ring,
which produces a potentidd(z,p) which is attractive for an electrons:

N(p1)dpy
(Z2+(p—pp)A"?
Herez andp are, respectively, the distances of the electron from the plane and center of
the ring, n(p) is the surface charge density of the metal ring, & the effective
electron charge, which depends on the ratio of the dielectric constants of the helium film

and the substrate beneath the film and the ratio of the thicknesses of the film and sub-
strate.

V(z,p)= —ezf 1

The widthA of a thin ring is much less thaR,, and we obtain from Eq.1)

Vizp)=— 2 ad @
z,p)=—— :

P o (24 (p—Ro) 2+ 4pR, Sin?(@/2)) 2
whereQ is the total effective charge of the metal ring. In terms of the dimensionless
variablesx=p/Ry andy=2z/R,, the functionV(x,y) is given by the expression

V(x,y)=;—(jl(x,y),

ay=-—=[ i ®
Zy)=—— .

y mJo (y?+ (x—1)2+4x sirt(¢/2))*?

Fory<1/2 the potentiaM(x,y) has a minimum ax+0. This is the case of a potential
trough (ring) for electrons on the helium surface. Howeveryif 1/y/2, then the mini-
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mum of V(x,y) occurs atx=0, i.e., forp=0 (2). This is the case of a potential well for
electrons on the surface of the liquid. The expansioh(®fy) for smallx and anyy has
the form

1 | (1/2—-y?) 3  (y*—3y2+3/9)
[(X,y)=— 1+x2 +=x* 4
O T T e BT 1y @

For the casg/<1, i.e.,z<R,, replacing sing/2) in Eq.(3) by ¢/2, we have to logarith-
mic accuracy

1 472
e |
27 y24 (x—1)2

®

Since electrons do not penetrate into the liquid helfuire z coordinate of an electron is
restricted by the condition>z,, wherez,=d,, if the metal ring is located on top of the
substrate, directly beneath the helium film of thickndgs However, if the ring lies
beneath a substrate of thicknedg thenzo=dy+d;. The difference ofz from z, is

small, since the electrons are pressed to the liquid-helium surface by electrostatic image
forces. The main effect for a thin helium film is attraction to the substrate, which is
equivalent to switching on a strong electric fiéldihe potentiaV(z,p) can be expanded

in powers of two parameters: =z—z, andp— po, Wherep, is the value at which the the
minimum of V with respect top occurs forz=z,. For example, in the case of a large
effective potential ring £,<R;) we obtain from Eqgs(2) and (5)

V=V R eQ
=V(zo, O)+FRO

(p=po)® 27

2
z5 2

: (6)

In this casepy=R,. The term~2z' in Eq. (6) intensifies the pressing field of the elec-
trostatic images of the helium and the substrate beneath it, while the total potential acting
on an electron for sma#l’ andp— pg, minus a constant of no importance for us, has the
form

Mw% )
V(PyZ'):T(P—Po) +v(2'), (7

whereM is the electron mass.

The radiusp, of the effective potential trough for an electron lies in the range 0
<po<R, asz, varies over the interval€z,<R,/+/2, while the characteristic frequency
wq in Eq. (7) is proportional to the charg® (2) of the metal ring. The characteristic
frequency depends on the voltage across the capacitor plates. So, depending on the ratio
of the radiusR, of the metal ring and the distance of the ring from the helium surdgce
it is possible to produce an effective oscillator poten¢®l (7) for an electron, with a
minimum as a function op for arbitrarily smallp.

3. The wave functiond of an electron for the potentidl) in a magnetic fielcH
directed along the axis has the form

D=p(2)¥(p), 8
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where the dependence gfon z is of no importance for us, arf (p) is the solution of
the Schrdinger equation with the Hamiltoniatf :°

2 Mw% 5
= (p—po)* 9

Y

b= {p-Sa
P™ ¢
f) is the electron momentum operator, ahds the vector potential. In the Fock gadfe
Ap=Hp/2 andA,=A,=0, we make the substitution
oime x(p)

p

and obtain from Eq(9) an equation for the functiog(p):
2

2mX

\P:

"+ (Em=V(p))x=0. (10
The energyE,, depends on the magnetic quantum nunmbewhile the effective potential
V(p) has the form

- ng ,
V(p)= 5 (p—po)+Vu(p),

m?-1/4 4% Mof , hoym
Vh(p)= 2 ot g Pt (11)

wherewy=eH/MC is the cyclotron frequency.

So, to determine the electron spectrlip it is necessary to solve E@10) for y
with the potentialV(p) (11) and the boundary conditiong(0)= y(*)=0. We shall
show that for large orbital numbere>1 Eq. (10) can be solved analytically. Indeed,
replacingm?— 1/4 in Eq.(11) by m?, we obtain an expression fafy (11):

M wa/g N Aim |2
H 2 12" pMoy
The potentiaV, has a minimum as a function pfat p =p,, and its expansion around
p=pm has the form

(12

v foy N N M w? 5 2_2ﬁ|m| 13
H_T(m |m|) 2 (p pm) ’ pm_ MwH . ( )

It follows from Egs.(11) and (13) that the effective potentia‘T/ is the sum of two
oscillator potentials with minima at the poingg and p,,,. Since we are interested in
solutions fory (10) that are concentrated neas p,, the boundary conditio(0)=0 is
unimportant: The electron wave function@t 0 is exponentially small as it is. For this

reason, by shifting the variablein Eq. (10) the effective potentiaV/(p) can be put into
the form

- hog(m+|m) M ool M ~
Vip) =5+ 5 = —5(po—pm)+ 5 (@i +w)(pr=po)* (14
Wy wo
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2 2
~ _ @oPot whpm
PO 2w
The equatior(10) with the potentiak14) has the spectrutt® E]:

I

fiwy(m+|m M
n:H(—||)+(n+1/2)ﬁ(wf.+w§)1’2+——Z(Po_pm)z‘ (19
W

" 2 2 wﬁ—i—
where p,, is determined in Eq(13) andn is an integer. Since we have assumed that
po=~pm, in Eq. (15) po—pm can be replaced by3—p2/2p, to the same degree of

accuracy, and the last term in Ed.5) can be written in the form

e ma 19
— m _— s
pE2M* g

whereM* is the electron effective mas®, is the magnetic flux through the electronic
ring, and®, is the elementary flux:

. wa-l—wg ) 27hC
M*=M 2 O=mpgH, Pp=
0

17

We shall now examine limiting cases. In a weak magnetic fiejd>w, in Eq.
(16) M* can be replaced by, and we obtain from Eq.15)

h? ®\2
Ep=(n+1/2 +—(m+—) : 18
m ( )(,Uo 2Mp(2) (I)O ( )
In this case the term proportional pm| in Eg. (15) equals zero. In a high magnetic field

wy> wg, and we have from Eq15)
n? | |2
|m ) (19

oMl @

m+|m|+1
2

Enm:h(,()H +n|+

The second term in Eq.19) is important only for negativen, so that taking it into
account lifts the infinite degeneracy Bf, with respect tan for m<0. The AB effect is
ordinarily studied in the weak-field limit, when expressiti8) is applicable and the
dependence of the spectriif}, on the magnetic fielth enters only via the magnetic flux
®. For a thin helium film of thicknesd on a substrate with dielectric constantthe
Coulomb interactionV(r) of the electrons at large distancess weakenett

1 o

r [r2+(2d)2]1/2

e—1
' T e+l

V(r)=¢? (20

In a high magnetic field, on account of the increase in the electron effective Miass
(17), (19) the Coulomb interaction of the electrons becomes substantial, and a phase
transition from the Luttinger liquid to a Wigner crystal can be observed in an electronic
ring on a liquid-helium surface.

We thank Yu. N. Ovchinnikov for a discussion of this work.
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Diluted generalized random energy model
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A layered random spin model, equivalent to the generalized random
energy model(GREM), is introduced. In analogy with diluted spin
systems, a diluted GREMDGREM) is constructed. It can be applied to
calculate approximately the thermodynamic properties of spin glass
models in low dimensions. For the Edwards—Anderson model it gives
the correct critical dimension and 5% accuracy for the ground state
energy in two dimensions. €998 American Institute of Physics.
[S0021-364(98)01106-3

PACS numbers: 75.10.Nr, 05.5@

Derrida’s random energy modéREM)* was introduced as an archetype spin dlass
model. In recent years it is becoming more and more popular. It has been applied in many
fields of physics, biology, and even in information theory Refs. 3 and 4. The generaliza-
tion of the REM(called the generalized random energy model, GREfsls introduced in
Ref. 5. It has been used for approximate solution of other spin glass syfedmsor-
tunately, the accuracy in describing other spin glass systems was not much better than for
the REM. In this work we introduce a diluted spin model which thermodynamically
resembles the GREMN the case of large coordination number it is exactly equivalent to
the GREM), then construct some new model of energy configurations — DGREM. In
some cases of practical importance our spin model is thermodynamically exactly equiva-
lent to the DGREM.

Even the simpler diluted REMDREM)®® has proven to be a good approximation
for models in low dimensions (€1,2,3). This important fact was observed in Ref. 10,
where by information-theoretic argumerttsathematically leading to a DREM: perco-
lation threshold was found.

In the DREM one ha$\ Ising spins interacting with each other in th€randomly
chosen from all the possibleR=N!/p!(N—p)!) p-plets of Ising spins and quenched
random coupling&il,,,.,ip having valuest 1.

The Hamiltonian reads

H=-— 2 Ti

. . sl
(1<iy, - <ip=N)=1 1 P

i O'il"'O'ip. (1)

At high temperatures the system is in the paramagnetic phase and

0021-3640/98/67(6)/5/$15.00 440 © 1998 American Institute of Physics
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F
N:—dTIncoshﬁ—Tan, 2

whereB=1/T. Below the critical temperaturé.= 1/8, the system freezes in a spin-glass
phase with internal energy/N= —dtanhg. and vanishing entrop$=0. Here tantg;
=f(d) involves a functiorf(x) defined by the implicit equation

1 1 2
5(L+DIN(L+H)+ 5(1-Hin(1-H)]=—~. 3)

For the ground state energy of the Edwards—Andet&#Y) model on a hypercubic
lattice in d dimensionsz= Nd)

E_
-5 =fod. )

In two dimensions Eq(4) givesE~ —1.5599, which is close to the restiof a Monte
Carlo simulation for the case of randoml couplings:E/N= —1.4015+0.0008. This
estimate by formula3) was done by Derrida in his original worklong before the
introduction of the DREM in Ref. 8.

Let us now construct a spin model which has properties like the GREM. It is very
important to have a spin representation for the GREM example — in order to
construct the temporal dynamjcs

We consider a stacked system consistingvioplanes with Spim'ik ordered along a
“vertical” axis. In plane (layen k there areN, spins. So spins in the layer<ik<M
interact with spins from the layels= 1, the first layer interacts with the spins of the
second layer, and spins from laydr interact with each other. We have the Hamiltonian

M
H=— > Tig, i ol oM
(1<iy,- - <ip=Npy) Pt P
M-1 Zk
-> > T oKL gk gk gk (5)

K=1 (1=iy, <ipp=Ng_pd=ig-<jp=Ny) 1 lp Tl Tpz 7l Yor2”
Let us now introduce som@quivalent GREM like model. We consider sonid level
hierarchic tree. At the first level there ar§' Branches. At the second level every old
branch fractures to"2 new ones, and so on. At the lewdl there are ¥ branches, where
Nin'\’LLM: N; energy configurations of our system are located on the ends dfithe
level branches. On every branch of levehere are located™ random variableg* with
the distribution

joo

1
po(ei",zi)=2—7ﬂf ~ dkexd —ke{*+z Incoshk]. (6)
e

This is a distribution for a sum of, random=1 variables. S, resembles the number
of couplings in our diluted spin model$4 branches are connected with any energy
configuration. We define configuration energy as a datong the path on the tree,
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connected with chosen energy configuratiohtheseM variablese . We see the usual
picture of the GREM, where random variables are distributed accordif®) tostead of
a normal partition.

We can consider the case of lafgewith a smooth distribution of, andN, . In this
case we can introduce the continuous variabtek/M between 0 and 1, labeling the
levels of the planes, and define the distributions

1
z,=dz=zdv, N=dN=n'(v)dv dv=m, @)
wheren(v) is a given functionthe entropy in bits The variablev (0<v<1) param-
etrizes the level of the hierarchical tree, anid a paramete(for our spin systenz is the
total number of couplings and the paramatdabels the levels of the planes

Of course, our functiom(v) should be monotonic. The total number of energy
configurations is %%, andn(0)=N. We have that ? energy levels€ of our hierarchic
model are distributed by partition(E) = po(E,z). If two configurations(in our GREM-
like mode) meet at a level of hierarchy, they havezv common random variables. The
energy difference between two configurations is relater{1o-v) noncommon random
variables. Therefore the distribution function of two enerdigs E, reads

p2(E1—E2)=po((E1—Ep),22(1—v))exp(In2n(v)). )

At high temperatures our system is in the paramagnetic phase. The free energy is given
by Eqg.(2). When we decrease the temperature, two situations are possibled i\
=z/n’(v) decreases monotonically withh second, it has a local maximum.

In the first case the system has no sharp phase transition but freezes gradually. At the
temperaturel =1/8 all levels with O<v=<uv¢(T) are frozen; they are in the spin glass
phase. The levels with;<v=<1 are in the paramagnetic phass;is defined as the
solutionv=v of the equation

tanhﬂzf( z ) (9)
n'(v)

With this relationship betweep andv we can later use functions(8) and B(v). For
every finiteB the value ofv (B) lies between zero and unity. Wh@nr-«, v(8)—0, and
whenT—0, v(B)—vy>0. So even in this limit some fraction of the spins stay in their
paramagnetic phase. Let us point out that this partial freezing only is possible in the
diluted GREM, and not in the original GREM. For the free energy we olitaire is no
factor of N in it):

_ﬁFzz(l—v(ﬂ))lncoshﬂ+n(u(,B))In+z,8fv(B)dvlf( z ) (10

0 n'(vy)

The first two terms on the right-hand side describe the paramagnetic fraction of free
energy 6(v(B))In2 is just the entropy while the last one describes the fraction of spins
frozen in a glassy configuratidiit resembles Eq(3) with z/f’(v) instead of dl. In the
second casévhen the functiom’(v) is not monotonitthe system has a sharp first order
phase transition at a finite temperature. Below T, freezing occurs abruptly for all
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levelsv <v,, wherev,=v(,) is defined by the equation’ (v,)=N-n(v,). We have
used the fact that(0)=N. The transition temperaturg,= 1/83, follows from tanhf3,)
=f(zIn’(v,)). For temperature$<T, the free energy reads

__'Gl\'l::z(l—v(ﬁ))lncoshBJrn(v(ﬂ))'nZ
(5 f( z , fv(md f( ) 11
v(B2)B B v '
2 n'(vy) vy ! n'(vy)

To construct the spin Hamiltonian by means of a chain of subsystems for this case
is still an open problem. Let us now consider a possible approximation to the Edwards—
Anderson model, following the ideas presented in Ref. 6. In the d-dimensional case our
2N energy levelsE are distributed according to the law

p(€)=po(€,Nd) (12

with py defined in Eq.(6). Comparing with(6) one immediately notices that this is
exactly equivalent to a DGREM with the choiée= €, z=Nd. Let us now consider the
distribution of e, — €,. Following the arguments presented in Ref. 6, we find that

Ns(—vdN)
z=Nd, n(v)= 2

(13)
We see that the variable corresponds to the energy per bond in the ferromagnetic

model. We recall from the definition of temperature ttiatd E= 1/7= 3. At given 3, we
can define the corresponding as the negative of the energy per bond for the ferromag-

netic model at temperaturey:

We obtain for the free energy
BF v(B) In2
A= (1 v(B)Incoshg-+s(v(8)+ | dvlf(?) a5
Integrating by parts in the last term, we get
—ﬁ—z=(1—v(ﬂ))lncosfﬂ+8(v(ﬁ))—Bfokdﬁlz;vi(f;) +u(B)BY(B). (19
"oy

wherey as a function of; is defined by the equation

5
y %, '
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the functionv () is defined by(9),(13), andv,(B;) is the negative of the energy per
bond in the ferromagnetic model at temperat@se In Eq. (16) the value ofg is related

to the giveng via the equation tani®=f(In 2/8). In the limit of zero temperature this
reduces to

2 fm dB1E(B1) (18)

dJo In1+y(B)/1-y(By ]
Here E(73)=|U| is the negative of the energy in the ferromagnetic mogiéB) is
defined by Eq.(17), and the functionf(x) is defined by Eq(3). A calculation of the

ground state energy for the two-dimensional EA model ugit®) gives E= —1.4763.
For the case of other models one can use numerical data for the ferromagnetic system.

This simple approximation to the ground state energy of disordered systems should
be efficient at low dimensions.

I would like to thank B. Derrida, P. Rujan, and Th. Nieuwenhuizen for a critical
discussion. This work was supported by German Ministry of Science and Technology
Grant 211-5231.
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Is the Casimir effect relevant to sonoluminescence?
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The Casimir energy of a solid balbr cavity in an infinite mediumis
calculated by a direct frequency summation using contour integration.
The dispersion is taken into account, and the divergences are removed
by making use of the zeta function technique. The Casimir energy of a
dielectric ball(or cavity) turns out to be positive and increasing as the
radius of the ball decreases. The latter eliminates completely the pos-
sibility of explaining, via the Casimir effect, the sonoluminescence for
bubbles in a liquid. Besides, the Casimir energy of the air bubbles in
water proves to be immensely smaller than the amount of the energy
emitted in a sonoluminescent flash. The dispersive effect is shown to be
unimportant for the final result. €998 American Institute of Physics.
[S0021-364(98)01206-1

PACS numbers: 78.60.Mq, 47.55.Dz

1. Sonoluminescence, which has been observed for more than half a ckhasy,
not yet found a satisfactory explanation. It is known that this phenomenon represents the
emission of visual light by spherical bubbles of air or other gas injected into water and
subjected to an intense acoustic wave in such a way that the radius of the bubbles changes
periodically. In the last years of his life, Schwinger propdstbt the basis of sonolu-
minescence lies in the Casimir effect. When the size of the bubbles changes, so does the
zero point energy of the vacuum electromagnetic figieé Casimir energyof a cavity in
a dielectric medium. According to Schwinger, it is these changes of the electromagnetic
energy that are emitted as visible light in sonoluminescent flashes. In Schwinger’'s cal-
culations the Casimir energy for the configuration in hand proves to be of the same order
as the energy of the photons in an individual flash1Q MeV). Other authors have
obtained results both consistent with Schwinger’s calculdtonl differing from it by 10
orders or magnitud&?® This disagreement is basically due to different methods used for
removing the divergences in the problem under consideration.

In the present note the calculation of the Casimir energy of a dielectric ball placed in
an infinite dielectric mediunfor a cavity in such a mediums carried out under follow-
ing conditions. In the first place a realistic description of the dielectric properties of the
media is used which takes dispersion into accu@n the other hand, the simplest and
most reliable method for removing the divergences, the zeta function technique, is ap-
plied. Till now these conditions have not been combined in studies of the problem in
question.

0021-3640/98/67(6)/5/$15.00 445 © 1998 American Institute of Physics
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2. In calculating the Casimir energy we shall use the mode-by-mode summation of
the eigenfrequencies of the vacuum electromagnetic oscillations by applying contour
integration in the complex frequency plate Consider a ball of a material which is
characterized by a permittivity; and permeabilityx,. The ball is assumed to be placed
in an infinite medium with permittivity, and permeability,. For this configuration the
frequencies of the transverse elect(ltE) and transverse magneti@M) modes are
determined by the equatiohs

Al(aw)= e u,8] (kia)€ (ka) — Ve 1S (kia)el (kpa) =0, 1)
A™M(aw)= Ve, u15 (kia)e(kpa) — Ve 11,5 (kja)€ (kpa) =0, v

wheres;(x) = Vymx/2 J,, 1(x) ande (x) = Vmx/2 HY, (x) are the Riccati—Bessel func-
tions,k;=Jeju;w,i=1, 2 are the wave numbers inside and outside the ball, respectively;
a prime stands for differentiation with respect to the arguména (or k,a) of the
Riccati—Bessel functions.

As usual, we define the Casimir energy by the formula
1 _
E=5 2 (w5~ w), )
S

where wg are the roots of Eqq.l) and (2) and wg are the same roots under condition
a—, Heres is a collective index that stands for a complete set of indices specifying the
roots of Egs. (1) and (2): s={l,mn}=12,...m=—(+1),—1I,...|+1,
n=1,2,.... Theroots of Egs.(1) and (2) do not depend on the azimuthal quantum
numberm. Therefore the corresponding sum gives a multiplier#2). Further we use

the argument principle from complex analysis to represent the sumnoweterms of a
contour integral. As a result, EQ3) can be rewritten as follows:

E=> E, E
=

where the contou€ passes counterclockwise around the roots of the frequency equations
(1) and(2) in the right-hand half plane. This contour can be deformed into a segment
(—iA,iA) of the imaginary axis and a semicircle of radiliswith A—c. In this limit

the contribution of the semicircle to the integfd) vanishes, with the resdlt

| +1/2 (= 4e 20 %) )
E =—f dy In N S/ (dy)e
= "ra o y (Verriat 82#1)2[ e1€20112((S) (d1)€(92))

| +1/2 d Al%azAM(az)
350 ' ' @

= - z—In———,
2i dz AITE(OO)AITM(oo)

+(s1(01)€ (02)?) = (e1m2+ £201)S1(A1)S] (A2)€1(A2) € (A2)] |, (5)

whereqg;=Je;uiy,i=1, 2 ands|(z), e(z) are the modified Riccati—Bessel functions:
s1(2)=(7z/2)Y (2), e(2)= (22 m) YK (2), v=I+1/2.

Further we will content ourselves with an examination of the case when both the
media are nonmagnetiz,;=u,=1 and have permittivitieg,; and e, that differ only
slightly. In view of this we can pugj; =g, in Eq. (5), and elsewhere keeping ande,
exactly. It gives
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Vo1 e,
Ver+ Ve,

Now we are going to take into account the effect of dispersion, considering the parameter
£2in Eq. (6) to be a function ofy=aw/i. Justification of the mode-by-mode summation
method in applying to dispersive and absorptive media has been considered in Ref. 8. For
definiteness we put,;=1+ 4, e,=1, 6<1; then &= 5%/16. We substitute fol the
expression

8(y)=8ol[1+ (ylvyo)?], v=I+1/2, (7

where é; is a static value of5(y) and the parametey, is determined by a “plasma”
frequencywg: yYo=awqy. The function describing dispersion in EJ) is a standard one

[the one-absorption-frequency Sellmeir dispersion reldtixeept for its dependence on

I. We have introduced this dependence in order to be able to use the zeta function
technigue below. This complication does not contradict the main goal pursued by using
this function, namely, that it should roughly simulate the behaviof(ef) at largey. It

is knowr? that general theoretical principles lead to the following properties of the func-
tion e(w) in the upper half of thew plane. On the imaginary axie=iy, y>0 the
functione(iy) acquires real values, and with increasing steadily decreases from the
static value B §,>0 (for dielectricg to 1. Obviously formula7) meets these require-
ments.

2

. (6)

| +1/2 (=
— fo dy In{1-&(si(y)el(y)) 14, §2=(

E|:

Substituting(7) into (6) and making use of the uniform asymptotic expansion for the
modified Bessel functiof as|— o, one obtains

_ _i(@
Il:oo 64a\ 4

where

2
f(awg) +O(v™2), (8)

22+4722+ 1—62+ :
3 3

: (€)

f(2)=—

Z =
(1+2)%

As z increases, the functioh(z) monotonically rises, approaching 1€0.01)=0.013,

f(0.1)=0.130,f(1)=0.729,f(10)=0.994.

We carry out the summation of the partial energi&swith the help of the zeta
function techniqué? taking into account asymptotic behavi@

_SE-S ( 0|2 3 (50 2
E_I:j_ E|—|:1 E|+% Z f(awo)—% Z f(awo)
< = 3 ()’ .
_21 '_%(Z f(awo)z‘,l(lﬂ/z)o (10)

2
f(awg)[£(0,1/2)—1].

L — 3 [6

-3 Bl

HereE,z E,+ (3/64a) (8,/4)*f (awy) is the renormalized partial Casimir enerdys,q)
is the Hurwitz zeta function. Ag(0,1/2)=0, we get for the Casimir energdi0)
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2

% f(awy). (11)

o — 3
EIIZI E|+%(Z

As in the calculations without allowance for dispersion eff@ckere we can content
ourselves with the last term on the right(l). This provides us with an accuracy of a
few percent? Thus the Casimir energy of a dielectric ball is

f(awq), (12

the effect of dispersion reducing to the introduction of a positive coefficiéato,)
< 1. Hence, a change in the sign of the energy or a considerable increase in its magnitude
due to the dispersion effeétis out of the question.

Let us estimate the value df(awg). The parameterw, can be determined by
demanding that at this frequency the photons do not “feel” the interface between two
media. This condition will be certainly met when the wavelength of the photon is less
than the interatomic distance in the media; 10" cm. This is actually the condition of
applicability of the macroscopic description of dielectric medBonoluminescence is
observed for air bubbles in watewith a bubble radiusi~10"% cm. Hence it follows
thatawg=a/d=10° and f(10°)=0.99 . . . . Thus allowance for dispersion in calculat-
ing the Casimir energy of a dielectric bédlr of a spherical cavity in a dielectric slabas
practically no effect on the final result.

Certainly the real picture of dispersion in the whole frequency range» & for
any dielectric, including water, is exceedingly complicated and cannot be described by a
simple equation(7) with single a parametes,. It is known that absorption of electro-
magnetic waves in water and, as a consequence, their dispersion take place already in the
radio frequency band. Putting in this case-10° cm, we obtainaw,~1 and f(1)
=0.72 ... Hence one can infer that the effective valueaaf, should be less than &0
In order for a more precise evaluation of this parameter to be done a more detailed
consideration of the dispersion mechanism is needed. Obviously this may lead only to
diminution of the absolute value of the Casimir energy. However this issue is beyond the
scope of the present paper, for the main conclugsa® below does not depend on this
point.

It is worth noting two peculiarities of the final formulkd?2). As the radius of a
bubble decreases, its Casimir energy increases. This behavior is completely opposite to
what would be needed to explain sonoluminesceiiée known that the emission of light
takes place at the end of the collapse of bubbles in a ljqudsides, this energy is
immensely smaller than the amount of energy emitted in a separate sonoluminescent flash
(~10 MeV). Actually, takinga=10"* cm and 5,=3/4 (watep, we arrive at a value
E=5x103eV

Thus the results of this paper unambiguously demonstrate that the Casimir effect is
irrelevant to sonoluminescence.

This work was accomplished with financial support of Russian Fund for Fundamen-
tal ResearciiGrant 97-01-00745
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3There is a point of view**that dispersion effects may substantially affect the final result when calculating the
Casimir energy.
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