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Temporal structure of the muon disk at large distances
from the axis of extensive air showers with E0>6
31016 eV

A. V. Glushkov, V. B. Kosarev, I. T. Makarov, I. E. Sleptsov,
and S. A. Filippov
Institute of Cosmophysical Studies and Aeronomy, Yakutsk Science Center, Siberian
Branch of the Russian Academy of Sciences, 677891 Yakutsk, Russia

~Submitted 19 February 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 361–366~25 March 1998!

Preliminary results are reported from an investigation of the temporal
structure of the muon disk in extensive air showers~EASs! with pri-
mary energyE0>631016 eV at distances 100–1500 m from the axis.
The investigation is performed at the Yakutsk array using the large
muon detector, which commenced operation in November 1995, with a
planned area 184 m2 and a detection thresholdEm'0.5•secu GeV.
For E0.1018 eV it is found that the thickness of the muon disk tends to
decrease. This requires substantial changes in our notions of the devel-
opment of EASs. ©1998 American Institute of Physics.
@S0021-3640~98!00106-6#

PACS numbers: 96.40.Pq, 95.85.Ry

Muons with threshold energyEm'1.0•secu GeV have been investigated at th
Yakutsk array continually since 1974. A large amount of experimental data has
accumulated over this period of time, making it possible to investigate in detail the s
distribution function~SDF! of muons in extensive air showers~EASs! with primary
energyE0'10172331019 eV and zenith anglesu<60° over a wide range of distancesR
from the EAS axis. In Refs. 1 and 2 it is shown that the form of the SDF forE0>(3
25)31018 eV is different from that at lower energies. Specifically, it becomes m
steeper at distancesR.400 m.

To determine the reasons for such a difference in the SDF and to perform fu
investigations, a large muon detector~LMD ! consisting of 92 scintillation counters eac
with an area of 2 m2, arranged in six rows over an area of 26312 m2, was built at the
Yakutsk array.3 The detector is located 180 m from the center of the installation.
earthen shield gives a muon detection threshold of 0.5 secu GeV. Each counter operate
independently and is equipped with a separate amplitude–time channel for measur
number of particles and the arrival time of the first particle with accuracy of;6 ns. Test
observations on the LMD have been conducted since November 1995. Work on e
ing the detector over the entire detection area is now being completed.

We report the results of an analysis of the data obtained up to the end of 1997
30 counters with a total area of 60 m2. The experimental data that have now be
3830021-3640/98/67(6)/6/$15.00 © 1998 American Institute of Physics
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accumulated not only confirm, to a high degree of accuracy, the results obtained in
3 in the energy range 1017–1018 eV but also make it possible to present preliminary d
on the structure of the muon disk forE0.1018 eV.

Figure 1 shows the average delay time^t& in the arrival of muons in EASs with
E051017–1018 eV and cosu>0.95 at distancesR5100–1500 m relative to the very firs
muons in each shower. The open circles correspond to showers with muon de
rm<1 m22, the crosses correspond torm>4 m22, and the filled circles correspond to a
showers. One can see that when>8 muons strike each detector the relative delays
very short and comparable to the accuracy of our time measurements. Events wrm

<1 m22 reflect the ‘‘looser’’ trailing edge.

The delay distributions all have an exponential form exp(2t/l). The parametersl
for rm<1 m22 are equal tô t& to within the limits of the experimental error. On th
basis it is easy to obtain a relation for estimating the timeT required to detect a relative
fraction h of all muons:

T'2^t& ln~12h! ns. ~1!

It follows from Fig. 1 and Eq.~1! that 95% of all muons in EASs withE0<1018 eV at
distancesR<1000 m arrive no later than 400 ns after the first-arriving muons.

Figure 2 showŝt& versusE0 in showers with cosu > 0.8 forR5630 m, while Fig.
3 shows the variation of̂t& at the same distance versus secu in EASs withE051017–
1018 eV. All values were obtained without detector selection according to muon den

The data presented in Figs. 1–3 satisfy the relation

^t&5a01a1• log~E0/1018!1a2•~12secu!1a3• log~R/600!, ~2!

wherea059562 ns,a15761 ns,a2511064 ns, anda3517069 ns. It is applicable in
showers withE0'631016–1018 eV andu<45° at distancesR'40021500 m.

FIG. 1. Average delayŝt& in the arrival of muons with energyEm'0.5 secu GeV in showers withE0

51017–1018 eV and cosu > 0.95 at different distances from the axis relative to the fastest muons in
shower:s — muon densityrm<1 m22, 1 — rm>4 m22, d — all densities.
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Data analysis showed that rate of increase of^t& with increasing E0,
]^t&/] log(E0)5a1 is the same for events with differentu and R ~within the range of
variation indicated above for these parameters!. The increase in̂t& is due to a displace-
ment of the depthXm of the maximum development of the shower toward the observa
level X ~for YakutskX51020•secu), i.e., a decrease in the distanceX2Xm up to the
maximum development of the shower. This is clearly seen in Figs. 4a and 4b, w
show the relative delaysta,tb due to the degradation of the geometric muon-collect
factor. For fixedE0 the distanceX2Xm increases with the zenith angle, as result
which the difference of the muon delays decreases.

The rate of displacement of the maximum of the shower ER5]Xm /] log(E0) ~ER —
elongation rate! can be estimated from Eq.~2! as

ER'a131020/a2'65 g•cm22. ~3!

Let us now examine the data forE0.1018 eV. According to Fig. 2 the measure
values of̂ t& are all less than the expected values~dashed line! obtained by extrapolating
the measured values from the regionE0,1018 eV. In our view, two sections can b

FIG. 2. ^t& versusE0 in showers with cosu > 0.8 atR5630 m without detector selection according to mu
density.

FIG. 3. ^t& versus secu in showers withE051017–1018 eV at R5630 m without detector selection accordin
to muon density.
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distinguished within the limits of the measurement error: The first section withE0'(1
24)31018 eV is a transitional section and the second section withE0.431018 eV
satisfies

^t&'621a1• log~E0/1019! ns. ~4!

At first glance it is difficult to understand this result from the physical point of view
one attempts to explain it by rapid recession of the shower maximum, i.e., by a dec
in Xm , then the total number of electrons in these showers should decrease j
rapidly, which according to Refs. 1 and 2 does not happen.

We note that forE0.1018 eV many parameters of EASs show anomalies.1,2,4,5We
believe that these anomalies all appear for the same reason. The anomalies are du
the experimental procedure used at the Yakutsk array but rather to some new pro
occurring in the development of an EAS.

Analysis of the data examined above confirms the following picture of the deve
ment of EASs, which we proposed earlier as one possibility.1 For E0.1018 eV separate
multicore showers appear. The relative fraction of these showers gradually increas
reaches 100% forE0.(5 –6)31018 eV. Despite the fact that the overall particle balan
and the dynamics of the longitudinal development of showers forE0.(5 –6)31018 eV

FIG. 4. Formation of relative delays in different EAS development schemes.
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most likely do not change appreciably, a substantial rearrangement of their trans
structure occurs. Figure 4c shows schematically how the thickness of the disk will ch
in this case. Since one of the axes of the EAS lies closer to the detector by the amo
its deflectionRd and makes the main contribution to the indications of the detector
relative delaystc will be less thanta and tb , though the shower maximum once aga
approaches the observation level.

Let us estimateRd . According to Eqs.~2! and~4!, a constant shift by;30 ns occurs
before and after our proposed change in the transverse structure of the EAS. From
we can see that̂t&'62 ns correspond toR'430 m. Hence we easily findRd'630
24305200 m.

We shall now present an additional experimental result which is not associated
the LMD data but which confirms the hypothesis stated above. Figure 5~filled circles!
shows as a function ofE0 the relative fractionrm /rs of muons with thresholdEm'1.0
•secu GeV among the total number of delayed particles in an EAS with^cosu&50.95 at
a distanceR5300 m from the axis. The open circles show the same data forR5600 m.
We employed the shower sample used in Refs. 1 and 2. One can see that in the
range of variation ofE0 the ratio rm(600)/rs(600) decreases slightly with increasin
primary energy without any appreciable deviations from a linear law. But the frac
rm(300)/rs(300) behaves differently: ForE0.(1 –2)31018 eV it decreases more rap
idly than it varied up to this point.

The reason can be easily understood with the aid of Fig. 6, which shows the
of charged particles~filled circles! and muons~open circles! in an EAS withE051018 eV
and^cosu&50.95. ForE0.1018 eV it should be expected on the basis of what we ha
said above that all densities should gradually shift toward one of the closest axe
multicore shower~roughly by;200 m!. Such a displacement will be almost unnoticeab
at the periphery of the shower and will be large forR,300 m, where the muon fraction
decreases rapidly.

In our view, the multicore nature of EASs with giant transverse momenta m
likely arises in the first nuclear-interaction event. As a result of this interaction,m52, 3,
4 . . . nucleons with energies;E0 /m emerge from the same point at a angleud with

FIG. 5. Relative fraction of muons (Em'1.0 secu GeV! versus the total number of charged particles
distancesR5300 m (d) andR5600 m (s) in showers witĥ cosu&50.95 as a function of primary energy
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respect to the direction of motion of the primary particle and these nucleons then
conventional EASs whose axes lie along a circle with radius;Rd .

The value ofud can be estimated as follows. Assume that the first nuclear intera
occurs at a depth;50 g•cm22 and using the relation

P51020•secu•exp~2H•cosu/6.85!g•cm22 ~5!

between the distance from the level of observationH ~km! for Yakutsk and the pressur
P at this point~with cosu50.91 for the showers studied!, we findH'22 km. The angle
ud5tan21(Rd /H)'0.6° corresponds to this altitude.

Further observations will enable us to determine the structure of the muon dis
E0.1018 eV more accurately and report the results in subsequent publications. We
plan to make a direct search for multicore showers on the basis of the data which w
have, but this will be difficult to do at the Yakutsk installation with a 500–1000
detector spacing. However, we now have an entire series of experimental fact
cannot be explained on the basis of the standard ideas about the development of E
extremely high energies. We offer as a possible hypothesis biaxial EASs and call
other investigators to participate in solving this question by looking at the primary
ementary nuclear-interaction event from new points of view.

The large muon detector was built as a prototype for the SHAL-1000 installa
designed as part of the State Scientific and Technical High-Energy Physics Program
work was performed as part of the program of the Russian Ministry of Science suppo
the Yakutsk EAS array~control No. 01-30!, which is included in the ‘‘List of unique
scientific-research and experimental installations of national importance.’’

1A. V. Glushkov, I. T. Makarov, E. S. Nikiforovaet al., Yad. Fiz.58, 1265~1995! @Phys. At. Nucl.58, 1186
~1995!#.

2A. V. Glushkov, I. T. Makarov, E. S. Nikiforovaet al., Astropart. Phys.4, 1274~1995!.
3B. N. Afanasiev, S. A. Filipov, A. V. Glushkovet al., Proceedings of the 25th International Cosmic Ra
Conference (ICRC), Durban, South Africa, 28 July–8 August, 1997, Vol. 7, p. 261.

4A. V. Glushkov, M. I. Pravdin, and I. E. Sleptsov, Izv. Ross. Akad. Nauk, Ser. Fiz.61, 516 ~1997!.
5A. V. Glushkov, M. I. Pravdin, and I. Ye. Sleptsov,Proceedings of the 25th International Cosmic R
Conference (ICRC), Durban, South Africa, 28 July–8 August, 1997, Vol. 6, p. 233.

Translated by M. E. Alferieff

FIG. 6. Spatial distribution functions of charged particles (d) and muons (s) in showers witĥ E0&51018 eV
and^cosu&50.95.
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Dyon condensation and the Aharonov–Bohm effect

E. T. Akhmedov,a) M. N. Chernodub, and M. I. Polikarpov
Institute of Theoretical and Experimental Physics, 117259 Moscow, Russia

~Submitted 6 February 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 367–371~25 March 1998!

We derive the string representation of the Abelian Higgs theory in
which dyons are condensed. It happens that in such a representation the
topological interaction exists in the expectation value of the Wilson
loop. Due to this interaction the dynamics of the string spanned on the
Wilson loop is nontrivial. ©1998 American Institute of Physics.
@S0021-3640~98!00206-0#

PACS numbers: 14.80.Mz, 14.80.Bn, 11.25.Db, 12.38.Bx, 03.65.Bz

The method of Abelian projections1 is one of the popular approaches to the confin
ment problem2 in non-Abelian gauge theories. Numerous computer simulations of
lattice gluodynamics in the Abelian projection~see, e.g., Refs. 3! show that the vacuum
of gluodynamics behaves as a dual superconductor.4 The key role in the dual supercon
ductor model of the quantum chromodynamics~QCD! vacuum is played by Abelian
monopoles.1 In the Abelian projection quarks are electrically charged particles, an
monopoles are condensed, the dual Abrikosov string carrying the electric flux is fo
between quark and antiquark. Because of a nonzero string tension the quarks are c
by the linear potential.

The Abelian monopole currents in gluodynamics are correlated5 with ~anti!instan-
tons. For~anti-!self-dual fields the Abelian monopoles become Abelian dyons.6 More-
over, in the vacuum of lattice gluodynamics the local correlator of the topological ch
density and the product of the electric and magnetic currents is positive.7 This means that
the Abelian monopoles have electric charge. The sign of this electric charge coin
with the sign of the product of the magnetic charge and the topological charge de
Thus the infrared properties of QCD in the Abelian projection can be described b
Abelian Higgs model~AHM ! in which dyons are condensed. The electric charge of
dyons fluctuates.b!

Note that there exists a model of the QCD vacuum2 in which thenon-Abeliandyons
are responsible for the confinement. The non-Abelian dyons~as instantons! give rise to
the Abelian dyons in the Abelian projection.

Below we study the properties of the Abrikosov–Nielsen–Olesen~ANO! strings in
the Abelian model in which dyons are condensed. We consider Abelian dyons w
have a constant electric charge. This model can be a zeroth approximation for the re
effective model of the QCD vacuum in which the electric charge of the condensed d
fluctuates.
3890021-3640/98/67(6)/5/$15.00 © 1998 American Institute of Physics
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We start with the following expression for the partition function in Euclidi
space–time:c!

Zdyon5E DAmDBmDF expH 2E d4xLdyon~A,B,F!J , ~1!

where the dyon Lagrangian is:

Ldyon~A,B,F!5Lgauge~A,B!1 1/2 u~]m2 ieAm2 igBm!Fu21l~ uFu22h2!2. ~2!

The fieldBm is the magnetic gauge potential, which is dual to the electric gauge pote
Am , andF is the dyon field with the electric chargee and magnetic chargeg. It was
shown in Ref. 9 that it is possible to write a Lagrangian in which both fieldsAm andBm

are regular:

Lgauge~A,B!5
1

2
@n•~]`A!#21 1/2 @n•~]`B!#21

i

2
@n•~]`A!#n@n•* ~]`B!#n

2
i

2
@n•~]`B!#n@n•* ~]`A!#n,

where@a•(b`c)#n[am(bmcn2bncm), @a•* (b`c)#n[amemnab(bacb) andnm is an ar-
bitrary unit four-vector,n251.

The partition function~1! can be represented as the partition function of the AH
The LagrangianLgaugeis invariant under the linear transformation of the fieldsA andB
~Ref. 9!:

S A
BD→S A8

B8 D5S cosv2sin v
sin v cosv D S A

BD , ~3!

wherey is an arbitrary constant. Applying this transformation with the parameter

v52arctan
g

e
, ~4!

to Eqs.~1! and~2! and integrating over the fieldA8, we get the partition function of the
AHM:9

Zdyon}ZAHM5E DBm8DF expH 2E d4xLAHM~B8,F!J ,

LAHM~B8,F!5
1

4
~] [mBn]8 !21

1

2
u~]m2 i g̃Bm8 !Fu21l~ uFu22h2!2, ~5!

the Higgs fieldF has the magnetic charged! g̃5Ae21g2.

Consider the quantum average of the Wilson loop in the dyon theory~1!:

^We
C&dyon5

1

Zdyon
E DAmDBmDF expH 2E d4xLdyon~A,B,F!J We

C~A!, ~6!

We
C~A!5expH ie0E d4x jmAmJ , j m~x!5 R

C
dx̃md~4!~x2 x̃~t!!,
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which creates the particle with the electric chargee0 on the world trajectorye! C.

Applying the transformation~3!, ~4! to the quantum average~6! and integrating over
the fieldAm8 we get:

^We
C&dyon5^K ~qe ,qm!

C &AHM, ~7!

where the expectation value on the right-hand side of this equation is calculated
AHM with the Lagrangian~5!. The operatorK is the product of the t’Hooft loop10 HC

and the Wilson loopWC:

K ~qe ,qm!
C ~B8!5Hqe

C ~B8!Wqm

C ~B8!, qe5e0g/g̃ , qm5e0e/g̃ . ~8!

The operatorHqe

C is defined as follows:

Hqe

C ~B8!5expH 2
1

4 E d4xF S ] [mBn]8 2qe•
1

2
«mnabGab

C D 2

2~] [mBn]8 !2G J , ~9!

where the tensorGmn
C 5(n•])21 j [mnn] satisfies the relation]nGmn

C 5 j m . The tensor
Fmn

d 5qeGmn
C plays the role of the dual field strength tensor:]nFmn

d 5qej m . In the string
representation of the AHM11 the operatorHqe

C creates the string spanned on the loopC;

this string carries the fluxqe .

The productKC of the operatorsHC and WC creates the dyon loop with electri
chargeqe and magnetic chargeqm on the world trajectoryC in the AHM ~5!.

Now we discuss the string representation for the AHM~5!.11,12 At the center of the
ANO strings the fieldF5uFueiu vanishes, ImF5Re F50, and the phaseu is singular
on the two-dimensional surfaces which are world sheets of the ANO strings. The me
of the integration over the fieldsF can be rewritten as follows:DF5const•DuFu2Du.
The integral*Du contains the integration over functions which are singular on tw
dimensional manifolds, and we subdivideu into a regular partu r and a singular partus:
u5u r1us; hereus is defined by:

] [m,]n]u
s~x,x̃!52pemnabSab~x,x̃!,

Sab~x,x̃!5E
S
d2seab]ax̃a]bx̃bd~4!@x2 x̃~s!#, ]a5

]

]sa
, ~10!

where the vector functionx̃m is the position of the string,S is the collection of all closed
surfaces,s5(s1 ,s2) is the parametrization of the string surface; the measureDu can be
decomposed as follows:Du5Du rDus.

For simplicity we consider below the London limit of the AHM (l→`). In this
limit the radial part of the fieldF is fixed everywhere except for the centers of the AN
strings. All the expressions below can be generalized to the case of arbitraryl; this leads
to an additional functional integral over the radial part ofuFu.

Performing the transformations as in Refs. 12 and 11, we get the following s
theory for the quantum average~6! of the Wilson loop:

^We
C&dyon5

1

Zstr
E @Dx̃#•J~ x̃!•expH 2E d4xE d4yFqm

2

2
j m~x!Dm~x2y! j m~y!
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1p i z• j m~x!Dm~x2y!]nemnab~Sab~y!1NGmn
C ~y!!1p2h2~Smn~x!

1NGmn
C ~x!!Dm~x2y!~Smn~y!1NGmn

C ~y!!G12p i zL~S,C!J , ~11!

where

N5
e0g

2p
, z5

e0e

g̃2
5

e0e

e21g2
, ~12!

Dm(x) is the scalar Yukawa propagator, (D1m2)Dm(x)5d (4)(x), andm252g̃2h2 is the
mass of the dual gauge boson (B8).

The measure@Dx̃m# assumes both integration over all possible positions and s
mation over all topologies of the string’s world sheetsS; J( x̃) is the Jacobian of the
transformation from the fieldus to the string positionx̃m . The JacobianJ( x̃) was esti-
mated in Ref. 11 for string with spherical or disc topology.

The first three terms in the exponent in Eq.~11! describe the short-range interactio
and the self-interaction of the ANO strings and dyon–antidyon pair through the exch
of the massive gauge boson. The constantN which appears in these terms has a physi
meaning. It is equal to the number of the elementary fluxes in the string which con
the dyon–antidyon pair introduced by the operatorK of Eq. ~8!. By definition, N
5qe /C0, whereqe is equal to the total electric flux from the dyon andC052p/g̃ is the
flux carried by the elementary string in the AHM~5!. Since this number of the elementa
fluxesN must be an integer, we get the charge quantization rule:e0gP2pN,NPZ ~Ref.
9!.

The last term in Eq.~11!,

L~S,C!5
1

4p2 E d4xE d4yemnabSmn~x! j a~y!
~x2y!b

ux2yu4

is the linking number of the string world sheetS and the trajectoryC of the dyon. This
formula represents the long-range interaction which describes thedual four-dimensional
analogue13 of the dual Aharonov–Bohm effect: strings correspond to electric solen
which scatter the magnetic charges of Abelian dyons. This linking number term is
portant for the infrared properties of the theory, since it may induce an additional
range potential between quark and antiquark.14 It also leads to nontrivial commutatio
relations between different operators in the theory.11

The authors are grateful to F. V. Gubarev, Yu. A. Simonov, T. Suzuki and A
Zaharov for helpful discussions. This work was supported by the grants INTAS-96
INTAS-RFBR-95-0681, RFBR-96-02-17230a and RFBR-96-15-96740.

a!e–mail: akhmedov@vxitep.itep.ru
b!Note that according to the Schwinger quantization rule the electric chargee of the dyon is not fixed while

magnetic chargeg is quantized:e0gP2pN, e0 is an elementary electric charge of an external electric parti
see Eq.~6!.

c!The theory withe50 ~monopoles are condensed! has been investigated as an effective Abelian theory of Q
in Refs. 8.
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d!We call Bm8 the dual gauge field~thus F carries magnetic charge! since we consider~5! as the Abelian
effective model of the QCD vacuum. Actually, after the transformation~3! this is a matter of convention.

e!This average corresponds to the quark Wilson loop if we consider~1! as an effective theory of QCD.
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Large interference-induced increase in the intensity of
quantum transitions in triple-barrier structures

E. I. Golant and A. B. Pashkovski 
State Research and Production Corporation ‘‘Istok,’’ 141120 Fryazino, Moscow Regio
Russia

~Submitted 23 December 1997; resubmitted 30 January 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 372–377~25 March 1998!

A solution of the nonstationary Schro¨dinger equation describing the
resonance interaction of electrons with a weak rf field is found for
asymmetric triple-barrier resonance-tunneling structures with thin, high
barriers, and an expression is obtained for the active weak-signal con-
ductivity of such structures. It is found that in a number of cases the
probability of quantum resonance transitions from an upper to a lower
level can increase sharply when the lower levels are shifted relative to
one another. ©1998 American Institute of Physics.
@S0021-3640~98!00306-5#

PACS numbers: 42.55.Px, 73.20.Dx

In Ref. 1 it was shown that in principle triple-barrier quantum-size semicondu
structures can be used to convert electron energy into rf energy. In recent years, ho
investigations of electron transitions between the levels of such structures has b
especially urgent as result of the progress made in building THz-range unipolar qua
cascade lasers2,3 in which radiative transitions occur in each of serially coupled trip
barrier heterostructures separated by superlattice sections which act as electron i
and thermalizer. It is ordinarily assumed that the electrons incident on the structure~see
Fig. 1! occupy the upper level of the first double-barrier structure, relax to the lo
level, and escape from the interaction region through a resonance level in the s
double-barrier structure. It should be noted that an absolute majority of theoretical r
and all experimental results concerning lasers operating on intersubband transition
been obtained for the successive tunneling regime, where electron in a quantum
undergoes intense collisions with~mainly optical! phonons, destroying the coherence
the electron wave function. The possibility of obtaining a population inversion on
working levels and lasing in a quantum cascade laser can be explained by the cha
istic features of intra- and intersubband quantum transitions with the participatio
optical phonons.4 In such a regime the position of the levels in the second well for wh
electrons escape as fast as possible from the lower working level is very importa
obtaining a population inversion on the levels in the first quantum well. Two vari
were investigated: a! The levels are coincident and rapid escape is accomplishe
resonance tunneling1 and b! the lower level in the first quantum well is raised relative
the lower level of the second well by an amount equal to the energy of an optical ph
3940021-3640/98/67(6)/6/$15.00 © 1998 American Institute of Physics
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and rapid escape is accomplished by a nonradiative diagonal resonance transition
electrons.3 Only the b version has been implemented experimentally.

In Ref. 2 it is estimated that the number of radiative transitions in a quantum cas
laser with successive tunneling of electrons is of the order of 1023–1024 times the total
number of intersubband transitions. This makes it necessary to pass very high cu
through the structure in order to obtain a negative rf conductivity sufficient for lasing
the same time, the idea of a laser with purely ballistic~coherent! electron transport was
advanced some time ago.4 The practical realization of this idea would open up fund
mentally new possibilities both for investigating electronic processes accompanying
nance tunneling5,6 and for improving lasers.7,8 In the present letter we wish to show th
in a triple-barrier working structure of a quantum cascade laser with coherent ele
tunneling interference effects can be used to increase the intensity and quantum effi
of the transitions substantially. The optimal relative arrangement of the levels in n
boring quantum wells turns out to be completely different from that used in succes
tunneling structures.

Let us consider an asymmetric triple-barrier structure with thin (d-like! barriers to
which a uniform rf electric field varying in time asE cosvt5E(eivt1e2ivt), E52E, is
applied. For definiteness we shall assume that a monoenergetic electron flux is in
from the left onto theKth resonance level in the first double-barrier structure, the
quency of the rf field corresponds to transitions to theLth level of the same structure~see
Fig. 1!, and one of the resonance levels in the second double-barrier structure lie
the Lth level of the first structure. Then the nonstationary Schro¨dinger equation is

i\
]c

]t
52

\2

2m*

]2c

]x2
1H~x!c1H~x,t !c, ~1!

H~x!52U~u~x!2u~x2a!!2U1u~x2a!1ad~x!c1ard~x2a!1agd~x2a2 l !,

H~x,t !52qE•@x~u~x!2u~x2a2 l !!1au~x2a2 l !#~eivt1e2 ivt!.

Hereq andm* are the electron charge and mass,a5wbb, wb andb are the height and
width of the first barrier,u(x) is a unit step function,g andr are numerical coefficients
U andU1 are the offsets of the conduction-band bottom at the barriers~see Fig. 1!, and
a and l are the distances between the barriers. The unperturbed electron wave fu
c0, normalized to one electron, is

FIG. 1. Schematic band diagram of the triple-barrier structure studied.
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c0~x!55
exp@ ik0x#1D0 exp@2 ik0x#, x,0,

A0 sin~kx!1B0 cos~kx!, 0,x,a,

Z0 sin~k1~x2a!!1W0 cos~k1~x2a!!, a,x,a1 l ,

C0 exp@ ik1~x2a2 l !#, x.a1 l ,

~2!

where the energy of the electrons incident on the structure ise and their wave numbers
are

k05~2m* e/\2!1/2, k5~2m* ~e1U !/\2!1/2, k15~2m* ~e1U1!/\2!1/2.

For sufficiently strong barriers (y@k)

D0'
ir2k0 sin~k1l !1k1 cos~k1l !

ir2k0 sin~k1l !2k1 cos~k1l !
, B0'

2ir2k0 sin~k1l !

ir2k0 sin~k1l !2k1 cos~k1l !
, ~3!

A0'
y

k
B0 , y5

2m* a

\2
.

In the weak-signal approximation the correctionc1 to the ground-state wave
function9 is c15c1(x)e2 i (v01v)t1c2(x)e2 i (v02v)t (v05e/\). In our casec2 is (c1

is small!

c2~x!55
D2 exp~kx!, x,0,

A2 sin~k2x!1B2cos~k2x!1w2~x!, 0,x,a,

Z2 sin@k12~x2a!#1W2cos@k12~x2a!#1x2~x!, a,x,a1 l ,

C2 exp@ ik12~x2a!#1P2exp@ ik1~x2a!#, x.a1 l ,

~4!

where

k5~2m* ~\v2e!/\2!1/2, k25~2m* ~e1U2\v!/\2!1/2,

k25~2m* ~e1U12\v!/\2!1/2, P251
qEa

\v
c0~a1 l !,

andw2(x) andx2(x) are particular solutions of the equation

\~v02v!c2~x!52
\2

2m*

]2c2

]x2
2qExc0~x!, ~5!

and in the present case~see Ref. 9!

w2~x!, x2~x!51
qEx

\v
c0~x!1

qE

m* v2
c08~x!. ~6!

The system of equations for the coefficientsA2 , B2 , C2 , D2 , Z2 , andW2 has the
following matrix form:
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S 1 0 21 0 0 0

2k2y k2 0 0 0 0

0 sin~k2a! cos~k2a! 0 21 0

0 2k2 cos~k2a! k2 sin~k2a! k12 2ry 0

0 0 0 sin~k12a! cos~k12a! 21

0 0 0 2k12 cos~k12a! k12 sin~k12a! ik12gy

D
3S D2

A2

B2

Z2

W2

C2

D 5S f 1

f 2

f 3

f 4

f 5

f 6

D 5S w2~0!

2w28 ~0!

x2~a!2w2~a!

ryx2~a!2x28 ~a!1w28 ~a!

P22x2~a1 l !

~gy2 ik1!P21x28 ~a1 l !

D . ~7!

For y@k2 , k12 , by analogy with a double-barrier structure,6 we seek the condi-
tions for resonance transitions from the upper to the lower level when

ucosk2au'1, ucosk12au'1, usin k2au!1, usin k12au!1. ~8!

For definiteness we shall study two levels with the same parity, and we seek the
nance conditions~the conditions under which the determinant~7! assumes its minimum
value! in the form

cosk2a'1, cosk12a'1,

sin k2a'2
k2

y
•S b1

Db

y D , sin k12a'2
k12

y
•S j1

Dj

y D . ~9!

Substituting expressions~9! into the system of equations~7! it is easy to show that the
modulus of the determinant of this system becomes small~it does not contain the large
parametery) when

b5
11r1g2gj~11r!

r1g2rgj
, Db1Dj

g2

~r1g2rgj!2
52k. ~10!

The determinant itself then equals

D52
ik2k12

2

r1g2rgj
, ~11!

and we obtain for the coefficientC2 determining the probability of transitions to th
lower level

C2'
4qEy2

m* v2k12

r2k0 sin2~k1l !

ir2k0 sin~k1l !2k1 cos~k1l !
~r1g2rgj!, ~12!

while the conductivity of the structure on which the monoenergetic electron flux w
densityn is incident is given by
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s58ss

k2

k12

r4k0
2 sin2~k1l !

r4k0
2 sin2~k1l !1k1

2 cos2~k1l !
~r1g2rgj!2, ~13!

where

ss'2
8q2m* a4n

pL\6v3
@12~21!K2L# ~14!

is the conductivity of a symmetric double-barrier structure with the barrier strength e
to a, where electrons with densityn move from theKth level to theLth level.9

Two fundamental differences from the case of double-barrier structures are im
diately evident:

1! The resonance levels can lie both above and below the corresponding leve
well with infinite walls ~always below in double-barrier structures!.

2! As expected, the probability of transitions from the upper to the lower le
~proportional tok12uC2u2 and s) depends on the relative arrangement of the low
levels. But, for the relative arrangement of the barriers determined by the condition~10!,
instead of decreasing when the levels are shifted relative to one another~and, correspond-
ingly, the parametersb and j change! the transition probability, on the contrary, in
creases!

The increase in the transition probability can be very large. After all, for the co
tions of applicability of this calculation to be satisfied it is sufficient thatuju!y/k12 . In
real structures the conditionuju@1 can be easily satisfied. Thus, in a GaAs-based st
ture ~the electron effective massm* '0.067m0) with AlAs barriers (wB '1.04 eV! of
thicknessb'20 Å and interbarrier separationa'100 Å, y for the first resonance level i
more than an order of magnitude greater thank2 and the condition~8! holds even when
uju'5, which in turn results in a more than order of magnitude higher transition p
ability than in casesj5b with identical barriers.

Thus, a new and quite unexpected effect appears in triple-barrier structures —
the lower resonance levels in neighboring wells are shifted relative to one another,
ference effects can sharply increase the probability of resonance transitions from an
to a lower level as compared with the transition probability which obtains when t
levels are coincident.

It should be noted, however, that the transition probability depends strongly on
the shift of the levels relative to one another occurs. Thus, asj→(r1g)/rg, ubu→`
while the transition probability decreases appreciably~of course, if the condition~8! still
holds!.

These effects can be qualitatively explained as follows. It is known that the r
nance conductivitys ~probability of transitions between levels! of a double-barrier struc-
ture similar to that studied above but without the third barrier (g50) depends strongly on
the strength of the second barrier.10 In our notation it is given by

s'ss

8r6k0
2k2

~r2k01k1!2k12

. ~15!
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One can see that as the parameterr increases, when the structure essentially beco
simply a quantum well, the conductivity increases without bound. By analogy, our tr
barrier structure can be regarded as a double-barrier structure in which the s
double-barrier structure plays the role of the second barrier. When the levels in
neighboring wells are coincident, the transmittance of the second structure is max
~the strength of the second barrier in the double-barrier analog is minimum! and therefore
the probability of transitions between levels is also low. As the parameterj varies~the
position of the third barrier or conduction-band bottom in the second well varies!, the
resonance level in the second well shifts relative to the level in the first well an
transmittance drops~the strength of the second barrier in the double-barrier analog
creases!, and therefore the probability of transitions between levels also increases
interesting to note thatb→(11r)/r as uju→`, i.e., the resonance conditions are sat
fied in the double-barrier structure.

For structural parameters such thatj→(r1g)/rg resonance transitions occur
energies which are substantially shifted from the resonance level in the double-b
structure (ubu approaches infinity and not (11r)/r), which, correspondingly, causes th
the probability of these transitions to decrease.

It should be noted that in the limiting case of purely coherent tunneling studied
the proposed structure with sufficiently strong barriers is completely nontransmittin
elastic~no energy change! electron tunneling. For this reason, every electron transmi
through the structure must emit a photon and therefore the quantum efficiency o
process is close to one, and in addition, in contrast to the process studied in Ref.
any amplitude of the field. Of course, under real experimental conditions only s
electrons tunnel coherently, and the question of whether or not this part can be
sufficiently large requires additional investigation. In any case, the construction of a
structures of quantum cascade lasers taking account of the effect described abo
make it possible not only to determine the relative fraction of electrons that tu
coherently but also to increase the quantum efficiency and correspondingly decrea
threshold current of these devices.

This work was supported by the Russian Fund for Fundamental Research, P
97-02-16652, and the Scientific Council as part~Project 97-1094! of the program ‘‘Phys-
ics of Solid-State Nanostructures.’’
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Interaction of a modulated electron beam with a
magnetoactive plasma
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~Submitted 6 February 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 378–382~25 March 1998!

Experimental results concerning the interaction of a modulated electron
beam with a magnetoactive plasma in the whistler frequency range are
reported. It was shown experimentally that when a beam is injected into
the plasma, waves can be generated by two possible mechanisms: Cher-
enkov emission of whistlers by the modulated beam, and transition
radiation from the beam injection point. In the case of weak beam
currents (Nb /N0!1024) the Cherenkov resonance radiation is more
than an order of magnitude stronger than the transition radiation; the
Cherenkov emission efficiency decreases at high beam currents. The
transformation of the distribution function of the beam is investigated
for the case of weak beam currents. It is shown that in the case of the
Cherenkov interaction with whistlers the beam is retarded and the beam
distribution function becomes wider and acquires a plateau region.
© 1998 American Institute of Physics.@S0021-3640~98!00406-X#

PACS numbers: 52.40.Mj, 41.60.Bq

The possibility of using modulated electron beams as an emitter of whistler-r
waves has been discussed in recent years in application to active experiments in1

The theoretical works2,3 concerning this problem focus mainly on the analysis of
Cherenkov emission of electromagnetic waves in an infinite plasma and the first la
tory experiment4 demonstrated the possibility of such emission of whistlers. In
present work it was shown experimentally that besides Cherenkov radiation there
in the entire volume a nonresonance radiation from the point where the modulated
is injected into the plasma~transition radiation!.

The experiments were performed on the apparatus shown schematically in F
The plasma source consisted of a heated oxide cathode and grid between wh
accelerating voltage pulse was applied with repetition frequency 5 Hz. The resu
4000021-3640/98/67(6)/5/$15.00 © 1998 American Institute of Physics
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accelerated-electron flux ionized the neutral gas~argon at pressure 531024 Torr!. As a
result, a 70 cm long and 50 cm in diameter quasi-one-dimensional plasma colum
produced in the vacuum chamber. The initial plasma densityNe was of the order of 1012

cm23 and then decreased with a characteristic time of 1 ms~see Fig. 3a below!. The
experiments were performed in the decomposing plasma regime. An electron tempe
Tc'0.2 eV was established at the plasma decomposition stage. Two Helmholtz
~coil diameter 2 mm, coil separation21.5 m! produced a uniform magnetic field. Th
magnetic field was equal toH0'45 Oe.

The electron gun used to produce a density-modulated beam consisted of a
with a grid anode. The accelerating voltage was equal to 300 V and the beam c
could be varied from 10mA to 10 mA, which corresponds to densityNb from 106 cm23

to 108 cm23. The beam diameter was equal to 7 mm. The electron beam density
modulated with an rf voltage applied to the grid of the electron gun. The modula
frequency wasf ;100 MHz, which corresponded to the whistler frequency range;
degree of modulation was of the order of 80%. The modulated beam was injected
tinually throughout the entire period of plasma decomposition. Only longitudinal b
injection into the plasma was used in the experiments, i.e., the pitch angle was a
equal to zero.

The energy distribution function of the electron beam was investigated with a
tigrid analyzer. Two electrostatically shielded frame antennas, each of which cou
moved in two directions — along the axis of the apparatus and in a radial directio
were used to study the structure of the fields excited in the plasma volume.

Analysis of the conditions for Cherenkov emissionv5kiVb shows that excitation of
the characteristic waves of the system with longitudinal wavelengthl i52p/ki is pos-
sible if the plasma density is less than a critical value~for vpe@vHe.v0

.A(vHevHi)), determined from the conditionvpe
2 ,vpekp

2 5ki
2c2(vHe2v)/v, where

vpe is the electron plasma frequency,vHe andvHi are, respectively, the electron and io
gyrofrequencies,l i andki are, respectively, the wavelength and longitudinal wave nu

FIG. 1. Diagram of the experimental arrangement.
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ber of the propagating wave, andc is the speed of light in vacuum. Outside the resona
region of the plasma this wave is a surface wave and is localized near the beam
distance of the order ofc/vpe .

The interferometric investigations performed attest to the fact that for plasma
sity above a critical value a traveling surface mode exists near the beam~Fig. 2a, curve
1!, and a quasi-longitudinal whistler, which can be excited both near the point of inje
of the modulated beam into the plasma and near the point of absorption of the be
also detected~Fig. 2a, curve2; Fig. 2b, curve4!. The observed nonresonance radiati
near the beam injection point and the beam absorption point should be attribut
transition-type radiation, while the effective emitter responsible for this emission sh
be represented, to a first approximation, as an electric dipole with moment directed
the axis of the apparatus.

The Cherenkov resonance radiation of the modulated electron beam~Fig. 3b! was
reliably detected at low beam currentsJ0,100 mA (Nb /N0,1024). In this case the

FIG. 2. Interferometric measurements of waves in plasma~Cherenkov resonance conditions are not satisfie!:
a! 1 — surface wave of a modulated electron beam,2 — emission from the beam absorption point~a surface
wave of the beam is also visible!, 3 — wave emitted by the frame antenna under the same conditions; b! 4 —
wave emitted by the frame antenna;2, 3, and4 — emission from the beam injection point for different value
of the beam current. A surface wave of the beam can be see as the current increases.
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amplitude of the Cherenkov radiation was more than an order of magnitude greate
the amplitude of the whistler transition radiation. As the beam current increased
efficiency of the Cherenkov emission decreased compared with that of whistler em
from the injection and absorption points.

For plasma densityN0'1011 cm23 the longitudinal wavelength of the whistle
equals the spatial beam-modulation length 2pVb /v0. Under these conditions the fram
antenna excites an electromagnetic wave with the same longitudinal wavelengl i
>2pVB /v0.

Analysis of the energy distribution function of the electron beam shows that effic
retardation of the beam was observed when the Cherenkov resonance condition
satisfied. The characteristic oscillograms of the beam current at the multigrid ana
with different cutoff voltages are displayed in Fig. 3c. One can see that a decrease
flux of electrons reaching the analyzer collector signifies retardation of the electron
as it interacts with the plasma. The beam distribution functions in resonance and
resonance situations are shown in Fig. 4a and 4b, respectively. The characteristic w
the beam distribution function in the absence of resonance is of the order of 6 eV.
the resonance conditions are satisfied, the beam is retarded on the average, its
increases to 12 eV, and a plateau forms in the distribution function.

In summary, our experiments established that there exist two different mecha

FIG. 3. a — Time dependence of the plasma density; b — amplitude of theHr component of the rf field in the
plasma~the maximum corresponds to Cherenkov resonance conditions being satisfied!. The beam current
equals 100mA (Nb /N0'1025); c — signal from the beam-particle analyzer for different values of the cu
voltage on the analyzing grid.
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leading to whistler generation when a modulated electron beam is injected into a pl
Cherenkov resonance radiationv05kiVb and nonresonance transition radiation, whi
exists in a wide range of plasma densities. As the beam current increases (Nb /N0

.1024), the Cherenkov radiation efficiency decreases as a result of broadening
beam distribution function accompanying transition radiation of electromagnetic wav
the beam injection point.

a!e-mail: kstr@appl.sci-nnov.ru
b!e-mail: catherine.krafft@lpgp.u-psud.fr

1V. N. Oraevski and Y. Y. Rouzin,Project APEX. Scientific Aims Modelling and Technics,Science, Moscow,
1992.
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4C. Krafft, P. Thevenet, G. Matthieussentet al., Phys. Rev. Lett.2, 649 ~1994!.

Translated by M. E. Alferieff

FIG. 4. Distribution function of the beam~with currentI b5100 mA (Nb /N0'1025)!: a — under Cherenkov
resonance conditions~the average energy of the beam particles is approximately 300 V, the width is 17 V
a plateau region is present!; b — off the Cherenkov resonance~the average energy of the beam particles is 3
V, and the width is 7 V!.
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Short-wavelength asymptotic behavior of the Burgers
turbulence spectrum

S. L. Shalimov
Joint Institute of Earth Physics, 123810 Moscow, Russia

~Submitted 15 December 1997; resubmitted 13 February 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 383–386~25 March 1998!

Using a third-order structure function, an asymptotic expression is ob-
tained for the stationary energy spectrum in the dissipative region of
Burgers turbulence excited by a random external force. It is shown that
in contrast to the case of turbulence described by a homogeneous Burg-
ers equation, the spectrum contains a parameter characterizing energy
transfer into the small-scale region. ©1998 American Institute of
Physics.@S0021-3640~98!00506-4#

PACS numbers: 47.27.2i

An important example of stationary turbulence is Burgers turbulence~BT! excited
by a random external force. Burgers turbulence is described by the inhomogeneou
dimensional Burgers equation

]u

]t
1u

]u

]x
5n

]2u

]x2
1 f ~x,t !, ~1!

where f (x,t) is a Gaussian field with correlation function

^ f ~x,t ! f ~x1r ,t1s!&5F~r !d~s!.

In a comparatively recent numerical experiment1 the spectrum in the dissipativ
region of BT was investigated by solving Eq.~1!. The spectrum obtained was compar
with the well-known~see, for example, Ref. 2! asymptotic expression for the BT spe
trum in this region

E~k!5
2pn2

L
expS 2

pn

V
kD , ~2!

whereL is the outer scale,n is the kinematic viscosity, andV is the velocity jump at the
shock wave. It was shown1 that as the wave number in the dissipative region increa
the numerical solution decreases more rapidly than the asymptotic expression~2!.

We note that the latter formula was obtained from the homogeneous Burgers
tion. The small-scale spectrum~2! in this case is characterized by large-scale parame
but does not contain any information about energy transfer along the spectrum. In
trast to the shape of the spectrum~2!, in the present work an asymptotic expression
obtained analytically for the stationary spectrum in the dissipative region of BT,
4050021-3640/98/67(6)/4/$15.00 © 1998 American Institute of Physics



ales.
ase of

-

ikov

in
y

we

406 JETP Lett., Vol. 67, No. 6, 25 March 1998 S. L. Shalimov
scribed by Eq.~1! containing a parameter characterizing energy transfer to small sc
The presence of this parameter makes it possible to interpret the more rapid decre
the spectrum in the dissipative region.

From Eq.~1! follows a relation, similar to the Ka´rmán–Howarth equation from the
theory of hydrodynamic turbulence,3,4 for the correlation function of statistically homo
geneous stationary turbulence:

1

6

]S3~r !

]r
2n

]2S2~r !

]r 2
52~^ f ~x!u~x1r !&1^ f ~x1r !u~x!&!, ~3!

whereSn(r )5^@u(x1r )2u(x)#n&. The right-hand side of Eq.~3! can be expressed in
terms of the correlation function of the external force using the Furutsu–Nov
formula5

^ f u@ f #&5E
2`

` E
2`

`

^ f ~x,t ! f ~x1 ,t1!&K du@ f #

d f ~x1 ,t1!dx1dt1
L dx1dt1 ,

and the fact that

du~x,t !

d f ~x1 ,t !dx1dt
5

1

2
d~x12x!.

As a result, we obtain after integrating Eq.~3!

S356n
]S2

]r
26E

0

r

F~r 8!dr8, ~4!

where the correlation function of the external force can be written in the form5

F~r !52ef~r /L !,

whereL is the outer scale of turbulence,f(r /L) is a dimensionless function such that
the limit L→`: f(r /L)→f(0)51, e[n^(]u/]r )2&5^ f u& — the average rate of energ
dissipation, determining the statistical properties of the random external forcef .

Expanding the functionf(r /L) in a series and taking into account the evenness,
obtain from Eq.~4! for r !L

S356n
]S2

]r
212er S 12

1

3S r

L D 2

1OS r

L D 4D . ~5!

Using the parameterS5^(]u/]r )3&/^(]u/]r )2&3/2 — the asymmetry of the velocity field
in the limit r→0, we have

S352SS e

n D 3/2

r 31O~r 5!. ~6!

We find from Eqs.~5! and ~6!

S252
S

24nS e

n D 3/2

r 42
e

6nL2
r 41S e

n D r 21O~r 6!, ~7!
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if the asymmetry can be taken as constant, a condition which can be satisfied for s
ary turbulence excited by a random external force ifr !d5n/^(u2)&1/2, whered is the
characteristic scale of the shock wave~i.e., in the present case — the dissipation scal!.2

We note that the asymmetry of the velocity field corresponds to the presence of a
linear interaction between modes, which leads to the formation of inertial and dissip
regions of the spectrum.3 In the absence of asymmetry the spectrum will consist of d
functions and its derivatives in the source~this follows from Eq.~5! for sufficiently large
scaleL and the relation betweenS2 and the energy spectrum; see below!.

The structure functionS2 is related with the correlation function according to t
formula S252@B(0)2B(r )#, whence using Eq.~7! we obtain in dimensionless form

B̂~ r̂ !5
B~r !

B~0!
512Ŝ2512b2S r̂ 22

r̂ 4

a2D 1O~ r̂ 6!, ~8!

where r̂ 5r /d, Ŝ2[S2/2u0
2 , u0

2/2 is the average energy,L5u0
3/e, 1/a25(S/24)

3(d2e1/2/n3/2)1(1/6)(d/L)2, andb25(1/2)(d2e1/3/L2/3n) .

The normalized energy spectrum in turn is related with the correlation functio
the formula

Ê~ k̂!5
1

2pE2`

`

exp~2 i k̂ r̂ !B̂~ r̂ !dr̂. ~9!

Here the functionB̂ in the integrand is represented by the sign-alternating series~8!.
Applying the transformationw5 r̂ 2/(g1 r̂ 2), r̂ 25gw/(12w), whereg is a constant, or
using a Pade´ approximation6 it can be shown that the convergence radius of this serie
determined by the distance to the nearest singular point, which is located on the ne
real axisr̂ 2.

Since forr̂ .1~which corresponds to the inertial interval! we have2 Ŝ2;Cr̂, joining
the asymptotic expansions~see, for example, Refs. 3 and 7! makes it possible to treat th
expansion of Ŝ2 in Eq. ~8! as an inner expansion of the functionŜ25 r̂ 2/(1
12r̂ 2/a2)1/2. We note that joining of a higher-order the higher-order terms of the se
~8! are required. However, since for realr̂ 5O(a) the approximation obtained is a com
pletely definite function and since we are interested only in the far dissipative regio
the spectrum, it can be assumed that refining the approximation will not apprec
affect the form of the spectrum because the spectrum varies quite sharply in the dir
of high wave numbers.

Therefore, using the last expression forŜ2 , we obtain

B̂~ r̂ !512b2
r̂ 2

~112r̂ 2/a2!1/2
.

Confining attention to the dissipative region of the spectrum and neglecting the influ
of the source, we can write

Ê~ k̂!;b2
1

2p

]2

] k̂2 E2`

` exp~2 i k̂ r̂ !

~112r̂ 2/a2!1/2
dr̂5

a3b2

23/2p
S K0~k1!1

1

k1
K1~k1! D , ~10!
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wherek15a k̂/A2 andKn is a modified Bessel function of ordern. For k1@1 we obtain
the desired asymptotic spectrum

Ê~ k̂!;
a3b2Ap

4 S 1

k1
1/2

1
1

k1
3/2D exp~2k1!, ~11!

or

E~k!;
Apa3d2e

8n S 1

~adk/A2!1/2
1

1

~adk/A2!3/2D exp~2adk/A2!, ~12!

wherea51/A(S/24)(d2e1/2/n3/2)1(1/6)(d/L)2, andd is the dissipation scale.

One can see from Eq.~12! that for fluctuations with sufficiently small-scale the rat
of the argument in of the exponential in the spectrum~12! to the argument of the expo
nential in the asymptotic expression~2! is of the order of (LV/S2n)1/4.1 ~ordinarily,
S;0.5 ~Ref. 3!!. This indicates that, in the first place, the shape of the spectrum dep
fundamentally on the asymmetry and, in the second place, the spectrum drops off
rapidly with increasingk and makes it possible to interpret the results of the numer
experiment.1

In summary, it can be concluded that in the dissipative region the shape o
spectrum of homogeneous stationary Burgers turbulence with a random source is
mined by the asymmetry parameter of the velocity field.

1S. S. Girimaji and Ye. Zhou, Phys. Lett. A202, 279 ~1995!.
2P. G. Saffman, inTopics in Nonlinear Physics, Lectures on Homogeneous Turbulence,edited by N. J.
Zabusky, Springer, Berlin, 1968.

3A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics, Vol. 2, MIT Press, Cambridge, Mass., 197
@Russian original, Gidrometeoizdat, St. Petersburg, 1996#.

4L. D. Landau and E. M. Lifshitz,Fluid Mechanics, Pergamon Press, New York@Russian original, Nauka,
Moscow, 1986#.

5E. A. Novikov, Zh. Éksp. Teor. Fiz.47, 1919~1964! @Sov. Phys. JETP20, 1290~1965!#.
6G. A. Baker and P. Graves-Morris,PadéApproximants,Addison-Wesley, New York, 1981.
7L. Sirovich, L. Smith, and V. Yakhot, Phys. Rev. Lett.72, 344 ~1994!.
8J. D. Cole,Perturbation Methods in Applied Mathematics,Blaisdell, London, 1968.

Translated by M. E. Alferieff
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Accurate method for determining tilt bias angles in thin
films of nematic liquid crystals

S. V. Yablonski , A. S. Mikha lov, S. P. Palto, S. G. Yudin,
and S. V. Yakovlev
Institute of Crystallography, Russian Academy of Sciences, 117333 Moscow, Russian

G. Durand
Laboratoire de Physique des Solides, Universite´ Paris-Sud, 91405 Orsay, France

~Submitted 20 October 1997; resubmitted 4 March 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 387–392~25 March 1998!

We have developed a new method for measuring tilt bias angles in
spatially uniform and nonuniform thin films of nematic liquid crystals.
The method employs modulation ellipsometry, based on the use of an
exponentially decaying light wave to probe the boundary layer. Oscil-
lations of the director of the liquid crystal, which are induced by the
flexoelectric torque, are excited with an external periodic field. A peri-
odic variation of the ellipticity of the light wave reflected from the
interface is detected at both the first and second harmonics of the ex-
citing electric field. When these two Fourier components of the elec-
trooptic response are known, it is possible to calculate both the tilt bias
angleu0 of the director and the dynamic deviationdu of the tilt bias
angle. The anglesu0 anddu measured by this method on the surface of
an electrode~ITO! and on the surface of a ferroelectric film~a copoly-
mer of vinylidene fluoride and trifluoroethylene!, oriented in a corona
discharge, were equal tou055.1°,du50.5° andu0589°, du50.06°,
respectively. ©1998 American Institute of Physics.
@S0021-3640~98!00606-9#

PACS numbers: 68.15.1e, 61.30.Gd, 07.60.Fs

1. INTRODUCTION

The angle between the optic axis of a liquid crystal~LC! and a boundary surface~tilt
bias angle! strongly influences the working parameters of liquid-crystal devices.
example, the production of a tilt bias angle in nematic twist cells makes it possib
avoid undesirable effects due to light scattering from inversion domain walls which
during cell operation.1 The production of a corresponding tilt bias angle makes it poss
to obtain a uniform deformation of the LC in the entire sample and thereby improve
optical properties of the liquid-crystal cell.2,3 For this reason, to optimize the workin
characteristics of displays it is important to have an accurate method for measurin
the tilt bias in a wide range of angles.

Some methods for measuring tilt bias are presented in Refs. 4–10. Methods s
interferometry,4 conoscopy,5 total internal reflection,6 magnetic null,7 capacitive,7 and
4090021-3640/98/67(6)/7/$15.00 © 1998 American Institute of Physics
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crystal rotation7 require cells with a uniform orientation of the liquid crystal. Since the
methods probe the entire volume of a liquid crystal, the resulting tilt bias angle is
result of averaging over the entire thickness of the LC layer. The substantial limita
due to the averaging over the entire volume of the LC are eliminated in methods bas
analysis of a light beam reflected from a thin near-surface layer of the liquid crysta8–10

In this case a LC layer with a thickness of the order of the wavelength of the light w
is probed. However, for example, the method based on Brewster angle measure8

does not work at a metal–insulator interface and therefore it is not suitable for sta
LC cells. Ellipsometric analysis of Fresnel reflection9 requires a very complicated fitting
procedure.

This letter presents a new version of modulation ellipsometry for measuring tilt
angles by means of excitation of oscillations of the director of a LC as a result of a l
interaction of an ac electric field with the flexoelectric polarization of the medium.

2. FUNDAMENTALS OF THE THEORY OF THE METHOD

Several years ago we developed a method of modulation ellipsometry10 based on
probing of a near-surface layer with an exponentially decaying optical wave arising
LC under conditions of total reflection of light from the interface between the LC
heavy-flint glass.

Refractive-index modulation near the surface of a homeoplanar cell change
ellipticity of the reflected beam and the corresponding phase shifts between the extraor
dinary (p) and ordinary (s) waves

s5sp2ss, ~1!

where

sp52 tan21
NAN2 sin2w2neff

2

nen0 cosw
, ss52 tan21

AN2 sin2w2n0
2

N cosw
,

n0 , ne , and N are, respectively, the refractive indices of the liquid crystal and pri
w.w I is the angle of incidence~Fig. 1!, andw I is the angle of total internal reflection
For a uniform orientation of the directorn(cosu, sinu, 0) the effective refractive index
is determined asneff5An0

2 cos2u1ne
2 sin2u, u5u01du, wheredu5dum sinvt the sinu-

soidal inclination from the static tilt bias angleu0, is produced by acoustic excitation
Fourier analysis of the experimentally measured time dependence of the phase shis(t)
makes it possible to calculate the tilt bias angleu0 and the amplitudedum of the director
oscillations as follows:

2d~ t !5s~ t !5ADneff , ~2!

whered(t) is the variable part of the azimuthal angle~Fig. 1!,

A5
]~sp2ss!

]neff
U

neff5n0 ,ne

, Dneff5
ne

22n0
2

2n0
u2 or Dneff5

ne
22n0

2

2ne
u2

in accordance with whetheru0 is close to theX axis (u5u01dum sinvt>0) or theY
axis (u5p/22u02dum sinvt>0). Therefore, assumingu0 to be small, we have
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2d~ t !5s~ t !5A
ne

22n0
2

n0
S 2u0

21dm
2

4
1u0dm sin vt2

~dum!2

4
cos 2vt D . ~3!

For the amplitudes of the corresponding Fourier components of the electrooptic res
measured at the fundamental and doubled frequencies of the modulating field we

U~v!5A
ne

22n0
2

n0
u0dumS DU

2a D , ~4!

U~2v!52A
ne

22n0
2

4n0
~dum!2S DU

2a D , ~5!

whereDU is the change produced in the voltage at the photodetector output by a ro
of the analyzer by the anglea. Therefore we have for the tilt bias angle

u05A a

A~ne
22n0

2!n0
21

x
U~v!

AU~2v!DU
. ~6!

The last equation is the basic equation for tilt bias angle measurements and for estim
the accuracy of the method.

The key ingredient in our approach to measuring tilt bias angles is excitation o
sinusoidal oscillations of the director by means of the linear flexoelectric interactio
the nematic LC with an external electric field. To accomplish this the dielectric co
bution to the torque~which is due to the quadratic effect! must be eliminated by using
compensated nematic LC with zero dielectric anisotropy. We have already foun
expression for the deflection angledu for the case of zero dielectric anisotropy11,12

du5
~e11e3!Em sin 2u0

2K@L211~11 i !Avh/2K12ihsv#
exp~ ivt !exp~ iqz!, ~7!

whereq5(211 i )(vh/2K)1/2, L5K/W is the extrapolation length determined by th
surface interaction energyW, e1 ande3 are flexoelectric constants,K is a combination of

FIG. 1. Scheme for measuring the tilt bias angleu0 by modulation ellipsometry.
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the transverse and longitudinal elastic moduli,h is the effective viscosity~approximately
equal to the rotational viscosity!, andhs is the surface viscosity. We employ a sinusoid
field E5Em exp(ivt), while the initial orientation of the director corresponds to the ran
0<u0<p/2.

The order of magnitude of the amplitude of the flexoelectric deformation at
surface can be estimated from Eq.~7!. Substituting into Eq.~7! the actual valuese53
31024 dyn1/2, Em530 cgs esu,K51026 dyn, L50.1 mm, andz50, we obtain

du>u0/10. ~8!

3. EXPERIMENTAL ASPECTS OF MODULATION ELLIPSOMETRY

A diagram of the experiment is displayed in Fig. 1. The main component is
liquid-crystal cell, consisting of a high index prism (N51.803) and a glass plate, whic
are coated with ITO electrodes. The cell is placed on an optical bench, while the ind
angular oscillations of the director of the LC at the prism surface are detected b
ellipsometry method.

The principle of optical modulation ellipsometry, which we are employing, is ill
trated at the bottom of Fig. 1 with the aid of a diagram of successive transformatio
the polarization of the light wave.

4. RESULTS AND DISCUSSION

All measurements were performed for a compensated mixture (D«'0.02). The tilt
bias angle was produced by unidirectional rubbing.13 A planar-oriented LC cell consiste
of a prism and a glass plate with an antiparallel direction of rubbing. In this case,
ITO electrodes were rubbed in. In a homeoplanar cell both ITO substrates were c
with thin films of a ferroelectric copolymer vinylidene fluoride and trifluoroethylene~the
molar ratio of vinylidene fluoride and trifluoroethylene was equal to 70:30!, after which
only the film on the surface of the prism was rubbed in one direction and polarized
a corona discharge with a potential difference of29 kV between the tungsten needle a
the substrate at temperature 100 °C. The tilt bias angle was always measured a
temperature one day after the cell was filled.

To make the correct choice of the magnitude of the modulating field the amplit
of the first and second harmonics of the electrooptic response were measured as
tion of the applied ac voltage. The results are presented in Fig. 2. The linearity o
functionsUv(V) andAU2v(V) agrees with Eqs.~4! and~5! in the interval from 3 to 10
V, determining the possible values of the external modulating voltage. The characte
features in the electrooptic response that can be seen in the plots at voltages abov
reflect the field-induced instability in the LC.

The Fourier spectra of the electrooptic response with an 8 V modulating voltage are
shown in Fig. 3. From these spectra we have for the desired Fourier componentsU(498
Hz)55.631024 V, U(996 Hz)51.2731025 V and U(742 Hz)58.0431024 V,
U(1484 Hz)51.2531025 V. We measured the Fourier harmonics for different frequ
cies of the modulating voltage only to show that the result of the measurements do
depend on the modulation frequency in the band determined by the LC and in ou
equalling 1500 Hz. From Eqs.~4!–~6! for the measured amplitudes of the Fourier co
ponents, takingn051.55,ne51.77 ~Ref. 14!, N51.803, andw580°, we obtain tilt bias
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angles and deflections of the tilt bias angleu055.1°60.2°, du50.5°60.05° andu0

589°60.2°, du50.06°60.01°for planar and homeoplanar cells, respectively. Estim
of the same angles by the method of total internal reflection~TIR! give the valuesu0

56° andu0589.5°. Rough TIR measurements were also necessary in order to mak
correct choice of one of the approximations in Eq.~2! ~two variants are possible:neff

5n0 or neff5ne) that is necessary to determine the derivativeA. The approximation
employed~Eqs. ~2!–~6!! is quite accurate for anglesu0<10° and 80°<u0<90°. It is
easy to see from Eq.~6! that in the limit of small and large angles the accuracy of
method is determined by the accuracy of the measurements of the amplitude
second harmonic, which can be estimated from the Fourier spectra and equals ap
mately 5%. There are not fundamental obstacles for measurements at intermediate
it is only necessary to make an additional analysis of the initial equation~1! and the data
processing procedure is more complicated. It is also important to estimate the erro
to the dielectric interaction. From the balance of volume and surface torques we h

duB'«aE2/4pgv, ~9!

K¹us5Kdus /L, ~10!

where the indicesB ands refer, respectively, to the volume and surface contributions«a

is the dielectric anisotropy, andg is the rotational viscosity. Taking into consideration t
first spatial Fourier component of the director distribution, we have

K~p/d!«aE2/4pgv5Kdus /L ~11!

or

dus'«aE2L/4gvd. ~12!

FIG. 2. First~a! and second~b! harmonics of the electrooptic response as a function of the applied ac vol
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From Eq.~7! we obtain the deflection of the angle due to the flexoelectric torque

du f'eEL/K. ~13!

It is obvious that the ratio of these angles should be much smaller than the ratio
amplitudes of the second and first harmonics of the electrooptic response:

dus

du f
'

«aEK

4gvde
!

U~2v!

U~v!
5

1

40
~14!

and therefore

«a!gvde/10EK. ~15!

After substituting the corresponding valuesg51 P, v52px1000 Hz,E520 cgs esu,
d51023 cm, K51026 dyn, ande5331024 dyn1/2, we obtain

u«au!10. ~16!

For the excitation frequencies employed the penetration depth of the elastic wa
approximately ten times smaller than the penetration depth of the light. This increas
electrooptic response associated with the volume oscillations of the director and a
obvious replacement of the inequality~16! by

u«au!1, ~17!

FIG. 3. Fourier spectra of the electrooptic response for: a! inclined spatially uniform orientation:U58 V, f
5498 Hz, U(v)55.631024 V, U(2v)51.2731025 V, and b! hybrid orientation:U58 V, f 5742 Hz,
U(v)58.0431024 V, U(2v)51.2531025 V .
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which is in good agreement with the value of the dielectric anisotropy for our com
sated mixture.

It follows from Eq. ~15! that with the appropriate choice of the cell thickness
limitations imposed by the inequality~15! can be eliminated and the tilt bias angle can
measured for any NLC.

It should be noted that the method is highly sensitive to small tilt bias angles
uniform and homeotropic orientations. Since the Fourier harmonics of the electro
response at the fundamental frequency equal, in accordance with Eqs.~4! and~7!, zero at
u050° andu0590°, in this case we have a null method.

In conclusion, we have proposed a new method for measuring tilt bias angl
NLCs. The method has a number of advantages: 1! high accuracy, determined by th
signal/noise ratio for the second harmonic of the electrooptic response; 2! constant ge-
ometry of the measurement scheme, which makes it easier to study the evolution
tilt bias angle as a result of changes in temperature, effects due to the command s
and others; and, 3! possibility of studying nonuniformly ordered samples.

This work was supported by COPERNICUS~IC15-CT96-0744!, INTAS 95-IN-RU-
128, INTAS 93-1700ext, and Russian Fund for Fundamental Research~95-02-0354!
Grants.
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Interfacial electronic states in semiconductor
heterostructures

A. A. Gorbatsevich and I. V. Tokatly
Moscow Institute of Electronics, 103498 Zelenograd, Moscow Region, Russia

~Submitted 3 December 1997; resubmitted 5 February 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 393–398~25 March 1998!

It is shown that electronic states of a new type, with energy in the band
gap can exist at a heterointerface. The interfacial states may be associ-
ated with Tamm surface states in the materials forming the heteroint-
erface, but they can appear even if there are no surface states in the
initial materials. In the plane of the heterojunction, the energy spectrum
of interfacial states forms a two-dimensional band. ©1998 American
Institute of Physics.@S0021-3640~98!00706-3#

PACS numbers: 73.20.At, 73.40.Lq

Seventy years after Tamm in 19321 demonstrated the existence of surface state
a special type near the surface of a crystal, James2 suggested that similar states cou
exist near an interface between two different materials. As far as we know, the
mention of possible interfacial states similar to Tamm levels was made in 1992.3 An
interface, like a surface, is a strong perturbation because of the discontinuity o
parameters of the material. The energy of such localized states can lie in both al
and forbidden bands of the bulk dispersion relation. In the latter case, states locali
an interface will manifest as donor or acceptor impurities. The unusual behavi
charge carriers in InAs/AlSb heterostructures could be due to such states.3 In Refs. 4 and
5 it was shown that localized states~‘‘boundary states’’! can indeed exist at an interfac
but the energy of the boundary states always lies in the continuous spectrum~in the
region of the offset of the band edges of the adjoining materials!. At present only one
type of very specific interfacial states with energy in the band gap has been describ
states which arise in an inverted contact6 as a result of local vanishing of the band gap
the contact point. These results were obtained in the continuous limit on the basis
standard envelope method. A more consistent approach for describing strong pe
tions localized on scales comparable to the interatomic separation is one based
tight-binding approximation. In the present letter we obtain on the basis of the
approach the conditions for the existence of interfacial states with energy in the ban
It is shown that in the general case there are two types of localized interfacial s
States of the first type are genetically related with the surface states occurring
materials forming the interface. Localized interfacial states of the second type arise
if the materials of the heteropair have no surface states, and they are entirely due
specific structure of the interface. As a specific example we consider states arising
interface between two cubic semiconductors with diamond or zinc blende structure
4160021-3640/98/67(6)/6/$15.00 © 1998 American Institute of Physics
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1. Consider an atomically smooth interface between two crystals. Let the ax
growth be thez axis. To the extent that the system is uniform in a plane perpendicul
the growth axis, the problem is effectively one-dimensional. We shall enumerate th
cells by integersn, numbersn<0 referring to the left-hand crystal and numbersn>1 to
the right-hand crystal. We shall write out the Schro¨dinger equation in the tight-binding
basis. For definiteness, let the dimension of the basis corresponding to one unit cel
M . That is, each unit cell containsM orbitals and therefore the wave functionCn in this
basis is a vector of dimensionM . The Schro¨dinger equation in the tight-binding approx
mation~in the sense that only hops between neighboring cells are taken into accou! is

hlCn
l 1TlCn11

l 1Tl
1Cn21

l 5ECn
l , n<21, ~1!

hrCn
r 1TrCn11

r 1Tr
1Cn21

r 5ECn
r , n>2. ~2!

In Eqs.~1! and ~2! hj ( j 5 l ,r ) is the Hamiltonian of a unit cell, whileTj is a matrix of
the hopping integrals between the states of neighboring cells. We note that for a
dimensional system the matriceshj andTj depend on the transverse wave vector.

The equations for the edge~interfacial! cells with numbersn50 andn51 differ
from Eqs.~1! and ~2! to the extent that right- and leftward hops are nonequivalent:

hlC0
l 1TSC1

r 1Tl
1C21

l 5EC0
l , ~3!

hrC1
r 1TrC2

r 1TS
1C0

r 5EC1
r , ~4!

whereTS is the hopping matrix between states of the interfacial cells. The equation~3!
and ~4! can be rewritten in a more compact form. We shall determine formally
functionC1

l satisfying the equation for the left-hand half space~1! at a site withn51 and
the functionC0

r satisfying the equation for the right-hand half space~2! at a site with
n50. Adding to the right- and left-hand sides of Eqs.~3! and~4! the quantitiesTlC1

l and
Tr

1C0
r , respectively, we obtain the relations

TSC1
r 5TlC1

l , ~5!

TS
1C0

l 5Tr
1C0

r . ~6!

We note that a similar procedure was used in Ref. 7 to obtain the boundary conditio
a single-orbital one-dimensional chain. The relations~5! and ~6! are actually the bound
ary conditions for Eqs.~1! and ~2!, determining the wave functions in the right- an
left-hand half spaces. In the absence of interfacial hopping (TS50) Eqs.~1! and~5! and
Eqs. ~2! and ~6!, respectively, determine the eigenfunctions of the noninteracting ri
and left-hand semi-infinite crystals. It is well known that, besides delocalized itine
states, surface Tamm states localized near the boundary can appear among the eig
tions of a semibounded crystal. The existence of hops between the right- and left
half spaces (TSÞ0) has two effects: In the first place, a tunneling coupling appe
between surface states which are genetically related with the right- and left-hand cr
and, in the second place, new localized states associated with the presence of the in
itself and not reducing to the Tamm levels of isolated crystals can appear.

2. We shall demonstrate the above-indicated possibilities for the example o
interface between two cubic crystals with diamond or zinc blende structure. The
common group-IV semiconductors and III–V compounds possess such a structur
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the growth axisz of the structure~for definiteness, Al
IIIBl

V/Ar
IIIBr

V) lie in the ~001! direc-
tion. We shall investigate the possibility of the appearance of localized states fo
from valence-band states with zero momentum perpendicular to the axis of growtk'

50. These states correspond to the axisD of the three-dimensional Brillouin zone an
project onto theG point of the two-dimensional Brillouin zone. We shall neglect t
spin-orbit interaction. This greatly simplifies the calculations but does not change
the qualitative results.

The valence-band spectrum on theD (001) axis consists of two bands. The upp
twofold degenerate~neglecting spin! band is formed from atomic orbitalsuX& and uY&.
The second band corresponds to the mixture of the statesuZ& anduS&. Let us consider the
localized states formed from the atomic statesuX& anduY&, independent on theD axis of
the states in the second band. In this case each unit cell of the right- and left-han
spaces contains four orbitals:uXB&, uYB&, uXA&, uYA&. We shall show that this system
equivalent to contact between two Peierls chains with alternating bonds and site en

The intracell Hamiltonianhj ( j 5 l , r ) and hopping matricesTa (a5 l ,r ,S) appear-
ing in Eqs.~1! and~2! and the boundary conditions~5! and~6! can be represented in th
form8

hj5F EB
j txx

j 2sxtxy
j

txx
j 2sxtxy

j EA
j G , Ta5F0 txx

a 1sxtxy
a

0 0
G , ~7!

whereEB
j andEA

j are the energies of thep states of the B and A atoms in thej th half
space andtxx

a and txy
a are, respectively, the hopping integrals between the orbitals of

same and different kinds on the B and A atoms. The nondiagonal 232 block matrices~7!
can be diagonalized by a unitary transformation with the matrix

U5
1

A2
Fsx1sz 0

0 sx1sz
G .

This transformation corresponds to a transition from the basisuX&, uY& to the basis
functions

uD3&5
1

A2
~ uX&1uY&), uD4&5

1

A2
~ uX&2uY&),

corresponding to the representationsD3 andD4. The transformed matriceshj8 andTa8 are
block diagonal:

hj85UhjU
15F EB

j txx
j 2sztxy

j

txx
j 2sztxy

j EA
j G , Ta85UTaU15F0 txx

a 1sztxy
a

0 0
G . ~8!

We shall write explicitly the system of equations for the components of the bisp
(Cn

j )T5(un
j ,vn

j ):

~EB
j 2E!un

j 1~ txx
j 2sztxy

j !vn
j 1~ txx

j 1sztxy
j !vn11

j 50,

~EA
j 2E!vn

j 1~ txx
j 2sztxy

j !un
j 1~ txx

j 1sztxy
j !un21

j 50. ~9!
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The four equations~9! decompose into two uncoupled systems of two equations des
ing states with symmetryD3 andD4 and distinguished by the sign oftxy

j . Each system of
equations indicated above describes a Peierls chain of atoms, duplicate with resp
both bonds and site energies. The spectrum of delocalized itinerant states in tj th
crystal is

E6
j ~k!5~EA

j 1EB
j !/26A~EA

j 2EB
j !2/414~ txx

j !2 cos2k14~ txy
j !2 sin2k/2.

The lower~bonding! p bandE2
j (k) corresponds to a twofold degenerate valence band

addition,E2
j (0)5Ev

j is the valence band top located at theG point. The antibondingp
bandE1

j (k) lies above the conduction band corresponding at theG point to an antibond-
ing S level.

We shall seek the localized interfacial solutions for each representationD3 andD4 in
the form

Cn
r 5AS ur

v re
qr
D e22nqr; Cn

l 5BS ul

v le
2ql

D e2nql. ~10!

For definiteness let us assume that a plane ofBl-type atoms emerges at the surface of t
left-hand crystal (j 5 l ) and a plane ofAr-type atoms emerges at the surface of t
right-hand crystal (l 5r ). Substituting the wave functions~10! into the boundary condi-
tions ~5! and~6! and using Eqs.~8! and~9! we obtain the following dispersion relation
for the energies of the interfacial states:

F6~E!5g6 , ~11!

where

F6~E!5
~EA

r 2E!~EB
l 2E!

~ t6
r e2qr2t7

r !~ t6
l e2ql2t7

l !
, g65

~ t6
S !2

t6
r t6

l
~12!

and t6
a 5txy

a 6txx
a . The upper and lower signs in Eqs.~11! and ~12! correspond to the

statesD3 andD4, respectively. The decay parametersqj are related with the energyE by
the relation

sinh qj5A~E2E2
j !~E1

j 2E!/4t1
j t2

j . ~13!

It follows from Eqs.~13! and~12! that localized solutions of the type~10! exist only if the
energy lies in the common forbidden bandE2

max,E,E1
min , where

E1
min5min$E1

l ~0!,E1
r ~0!%, E2

max5max$E2
l ~0!,E2

r ~0!%.

We note that the energyE2
max corresponds to the real valence-band edge, while the l

E1
min lies above the physical conduction-band bottomEc . Therefore solutions of Eq.~11!

with energiesEc,E,E1
min fall in the region of allowed states.

Let us analyze the possible solutions of Eq.~11!. The qualitative form of the func-
tions F6(E) for the casetxy.0 is displayed in Fig. 1. The functionF1(E) vanishes at
the pointsEA

l and EB
r . Therefore if there is no interfacial hopping (tS50), D3-type

surface states with energiesEA
l andEB

r exist at the boundaries of the left- and right-ha
crystals, respectively. AstS increases, the interfacial levels move apart and vanish~not
necessarily simultaneously! when the surface hopping integral reaches certain crit



ially
es

the

rriers.
of the
e of

lume

e
c-
ear-
n the
eter

strong
in the
band

states.
etero-
tes will
nance
s. As

420 JETP Lett., Vol. 67, No. 6, 25 March 1998 A. A. Gorbatsevich and I. V. Tokatly
values. This behavior corresponds to tunneling splitting of the Tamm levels init
present at the free surfaces. Type-D4 solutions are an example of strictly interfacial stat
arising when there are no Tamm levels in semibounded crystals~no zeros of the function
F2(E)). Such states appear only iftS exceeds a certain critical value. For example,
condition for the appearance of a level near the valence-band edge is

~ t2
S !2.t2

r t2
l F2~E2

max!.

In this case the interface is a perturbing potential which localizes the charge ca
Localized states arise with a finite value of this one-dimensional potential because
asymmetry of the right- and left-hand crystals. The condition for the appearanc
interfacial states greatly simplifies if the surface hopping integral equals the vo
hopping integral in the right- or left-hand half spaces. For example, letTS5Tr . Then the
localized solutions of the typeD3 or D4 arise if

b612Ab61
V~DEp

r 2V!

t6
r t7

r
.1, b5

t1
r t2

l

t2
r t1

l
,

where V is the valence-band offset, whileDEp
r is the energy difference between th

bonding and antibondingp levels at theG point. The latter formula demonstrates expli
itly the influence of the asymmetry of the potential relief on the possibility of the app
ance of localized states. Specifically, if the valence-band offset equals zero, the
interfacial solutions of one or another type arise with an arbitrary value of the param
bÞ1.

3. The results obtained above show that a semiconductor heterojunction is a
perturbation that can result in the formation of localized states whose energies lie
band gap. The spectrum of interfacial states in the plane of the heterojunction is of a
character and in this respect the new interfacial states are similar to Tamm surface
However, cases when interfacial states appear even if the materials forming the h
junction do not themselves possess Tamm surface states are possible. The new sta
be manifested experimentally as characteristic features of the tunneling-reso
current-voltage characteristics and kinetics of generation-recombination processe

FIG. 1. Qualitative behavior of the functionsF1(E) andF2(E) for the casetxy
j .0. The solid line shows the

function F1(E), while the dashed line shows the functionF2(E).
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noted in Ref. 3, the existence of donor-type interfacial states can explain the un
combination of high electron mobility and high electron density in quantum well
undoped InAs/AlSb heterostructures. We note that the numerical solution of Eq.~11! for
a InAs/AlSb system~values of the tight-binding parameters were taken from Ref.!
shows that interfacial states indeed arise in a wide range of reasonable values
interfacial hopping integrals.

The results of this work were obtained in their most general form in the ti
binding approximation, taking into account perturbations localized on the scale of a
cell. It was shown that the Hamiltonian describing the states of the degenerate va
band of cubic semiconductors reduces to the Hamiltonian of a Peierls chain. It is
known that in the case of weak duplication such a system is described adequately
method of envelopes using a two-band Dirac-type Hamiltonian. Physically, it is obv
that the results obtained in the present work should also be reproduced in such
proach. In this case the main problem is to determine the correct boundary cond
The extension of the methods for describing interfacial states to the continuous lim
the microscopic derivation of the boundary conditions for the envelope functions w
examined in a separate work.

This work was supported by the Russian Fund for Fundamental Research an
Interdisciplinary Science and Technology Program ‘‘Physics of Solid-State Nanos
tures.’’
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Model of isostructural dynamical phase transition in
anharmonic crystal with possible relevance to SrTiO 3

V. G. Vaks
Kurchatov Institute Russian Science Center, 123182 Moscow, Russia

~Submitted 6 February 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 399–404~25 March 1998!

A new type of phase transition is discussed which corresponds to a
pairing of phonons of different lattice modes due to their anharmonic
attraction in a crystal. It is shown that the main features of the isostruc-
tural phase transition observed in SrTiO3 at T.37 K can be explained
qualitatively by the phonon pairing phenomenon. ©1998 American
Institute of Physics.@S0021-3640~98!00806-8#

PACS numbers: 64.60.Ht, 64.70.Kb

The physical properties of the low-temperature phase of SrTiO3 ~STO! have recently
received much attention. Phase-transition-like anomalies in the temperature depen
of a number of structural and elastic characteristics of STO have been observe
temperatureT5Tq.37 K ~Refs. 1–6!. The anomalies are rather weak, having the fo
of more or less smeared kinks, and no change in the crystal symmetry is seenT
5Tq . There are a number of speculations about the nature of this phase transition
low-temperature phase~sometimes called ‘‘the Mu¨ller state,’’ after K. A. Müller, who
discovered this phase transition and called attention to it~see reviews4–6!. These specu-
lations include invoking a new kind of Bose condensation,5 some cooperative changes
the structure of dynamical polar clusters,4 etc., but any clear physical model for this pha
transition seems to be lacking as yet.

In the present work we suggest such a model. We adopt the qualitative argume
Courtens4 that the transition has a dynamical nature and is related to strong anharm
interactions between the low-lying ‘‘soft’’ phonons that govern the dynamics of STO
the low temperatures under consideration. We suppose that this transition correspo
a ‘‘pairing’’ of these phonons which in a number of formal aspects is analogous to
pairing of electrons in the standard BCS theory of superconductivity. Physically,
phonon pairing corresponds to a spontaneous breaking of the lattice symmetry for
phonon modes, which results in the relevant reconstruction of their energy spectru
alteration of the character of their motion. We show that not only the isostructural p
transition but also some peculiar features of the low-temperature dynamics of STO~Refs.
2–4! seem to be naturally explained by this model.

To illustrate the main features of the phonon pairing we consider first a simpl
model of only two interacting phonon branches, 1 and 2, with the following Hamilton
4220021-3640/98/67(6)/7/$15.00 © 1998 American Institute of Physics
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H5
1

2 (
k

(
a51

2

~ ẋk
aẋ2k

a 1vkah
2 xk

ax2k
a !1

1

4 (
ki

(
a,b51

2

Vk1k2k3k4

aabb xk1

a xk2

a xk3

b xk4

b . ~1!

Herek or k i is the phonon wave vector, and the sum over fourk i in the last term obeys
the quasimomentum conservation condition;xk

a andẋk
a are the phonon normal coordina

and momentum, which obey the canonical commutation relations

@xk
a ,xq

b#5@ ẋk
a ,ẋq

b#50, @ ẋk
a ,xq

b#52 i\dabdk1q . ~2!

The quantityvkah
2 is the square of theka phonon frequency found in the harmon

approximation. For the soft-mode crystals under consideration this quantity in
intervals ofk can be negative.7 Then the system is stabilized with anharmonic inter
tions that in our model are described by the last term of~1!. The anharmonic potential
V1111 and V2222 are supposed to be mainly positive, which ensures the lattice sta
with respect to large values ofxa, while the intermode potentialV1122 is supposed to be
mainly negative, which corresponds to an ‘‘attraction’’ of different modes.

To investigate the phonon pairing qualitatively, we will treat the anharmonic in
actions in~1! in the simplest mean-field~or Hartree–Fock, or ‘‘self-consistent phonon’!
approximation. This is a standard approach in treatments of anharmonic~in particular, of
soft-mode! crystals, and in many problems it can be justified even quantitatively.7 Within
this approximation, each operator productxk

axq
b in the last term of~1! is written as the

sum of its averagehab5^xk
axq

b&5dk1qhk
ab and the fluctuationjab5xk

axq
b2hab, and the

interaction of fluctuationsj is neglected.7 Then the terms with the ‘‘diagonal’’ average
haa can be included in the values of the renormalized~and thus temperature-dependen!
squared frequencies in~1!, which is a conventional procedure, for example, in the p
turbative treatments of soft modes.7 However, the off-diagonal, ‘‘anomalous’’ average
hk

125^xk
(1)x2k

(2)& are absent in any perturbative treatment, and their spontaneous ris
certain temperatureTp corresponds to the phonon-pairing phase transition.

Denoting for brevity hk
aa5hk

a , hk
125hk , Vk,2k,q,2q

aabb 5Ukq
ab , and Vk,q,2k,2q

1122

52Vkq , we can write the resulting Hamiltonian as

H5
1

2 (
k

~ ẋk
aẋ2k

a 1ṽka
2 xk

ax2k
a 22Dkxk

~1!x2k
~2! !2

1

2 (
kq

Ukq
abhk

ahq
b1

1

2 (
kq

Vkqhkhq .

~3!

The repeating indicesa or b here and below imply summation overa or b from 1 to 2,
while the quantitiesṽka

2 andDk are related to the averageshk
a andhk as

ṽka
2 5vkah

2 1(
q

Ukq
abhq

b , ~4!

Dk5(
q

Vkqhq . ~5!

The Hamiltonian~3! can be diagonalized with the unitary transformation

xk
~1!5uk

~1! cosuk1uk
~2! sin uk , xk

~2!52uk
~1! sin uk1uk

~2! cosuk , ~6!



g
m

ition,

the
he

e

ns
ide

424 JETP Lett., Vol. 67, No. 6, 25 March 1998 V. G. Vaks
and similarly forẋk
a and u̇k

a , whereuk
a and u̇k

a are the new canonical variables obeyin
the commutation relations analogous to~2!. The diagonalized Hamiltonian has the for

H5
1

2 (
k

~ u̇k
au̇2k

a 1Vka
2 uk

au2k
a !2

1

2 (
kq

Ukq
abhk

ahq
b1

1

2 (
kq

Vkqhkhq , ~7!

where the new frequenciesVka are related to the original onesṽka as

Vk1,2
2 5

1

2
$ṽk1

2 1ṽk2
2 6@~ṽk1

2 2ṽk2
2 !214Dk

2#1/2% ~8!

and the parameteruk in ~6! is determined by the equation: tan 2uk52Dk /(ṽk1
2 2ṽk2

2 ).

The quantityDk can be considered as the order parameter of the phase trans
and the self-consistency condition~5! for it yields the following equation:

Dk5(
q

Vkqw~q,Dq
2!Dq , ~9!

where the functionw(q,Dq
2) is

w~q,Dq
2!5

f q22 f q1

Vq1
2 2Vq2

2
with f qa5

\

2Vqa
coth

\Vqa

2T
. ~10!

One can also obtain Eq.~9! by minimizing the phonon free energy corresponding to
Hamiltonian ~7! with respect to quantitieshk treated as variational parameters. T
explicit form of Eq. ~4! for ṽka

2 is obtained with the expressions forhk
a resulting from

Eqs.~6!–~8!:

hk
1,25~ f q11 f q2!6

ṽk1
2 2ṽk2

2

Vq1
2 2Vq2

2 ~ f q12 f q2!. ~11!

Near the phase transition pointTp the Dq values are small. Writing in Eq.~9! the
functionw(q,Dq

2) at smallDq aswq2Dq
2cq with wq5w(q,0), we obtain forT close toTp

(
q

VkqwqDq2Dk5(
q

VkqcqDq
3 . ~12!

According to the definition~10!, the functionwq is positive. Below we show that for th
soft-mode crystals under consideration the functioncq is normally positive, too. Positive
values ofcq correspond to a second-order phase transition, while negativecq would lead
to a first-order transition, i.e., to an instability with respect to small values ofDq .

The solution of Eq.~12! can be conveniently written in terms of the eigenfunctio
xnk and eigenvaluesln of the linear integral equation corresponding to the left-hand s
of ~12!:

(
q

Vkqwqxnq5lnxnk . ~13!

As the potentialVkq is symmetric in the variablesk andq, i.e., Vkq5Vqk , the functions
xnq can be orthonormalized with weightwq ~see, e.g., Ref. 8!. At the transition pointTp
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the highest eigenvaluel0 in ~13! reaches unity, and the pairing region corresponds
valuesl0.1. Using in Eq.~12! the usual perturbation expansionDk5(ncnxnk with
cnÞ0!c0 and neglecting higher powers of (l021), we obtain

Dk5~l021!1/2Ax0k ~14!

where the constantA is ((qcqx0q
4 )21/2. NearTp the factor (l021) is proportional to the

differenceTp2T ~having in mind STO, we suppose the pairing to occur atT,Tp).
Therefore, the order parameter has the usual Landau-type temperature dependeDk
;(Tp2T)1/2, which is natural for the mean-field approximation used. However,
observable phonon characteristics such as their spectra~8! include only even powers o
Dk . Therefore, the temperature anomaliesd f nearTp should usually have the form o
kinks or weaker singularities:d f ;(Tp2T)u(Tp2T), (Tp2T)2u(Tp2T), etc., while the
specific heat atT5Tp should exhibit the jump that is characteristic of mean-field theo

To illustrate the form of the functionswq andcq in ~12! we consider the case whe
the transition temperatureTp exceeds the values of\ṽka/2 for significant phonons
~which seems to be the case for STO, see below!. Then f qa in ~10! becomesT/Vqa

2 , and
Eq. ~4! is simplified:

ṽka
2 5vkah

2 1T(
q

Ukq
ab 1

ṽqb
2 S 12

Dq
2

ṽq1
2 ṽq2

2 D 21

. ~15!

Let us write the small-D expansion ofṽka
2 asvka

2 1Dk
2zka wherevka corresponds

to the absence of pairing. Then the functionswq andcq in ~12! are

wq5
T

vq1
2 vq2

2
, cq5

T

vq1
2 vq2

2 S zq1

vq1
2

1
zq2

vq2
2

2
1

vq1
2 vq2

2 D , ~16!

while quantitieszka are determined by the linear equations

zka1T (
q

S Dq

Dk
D 2

Ukq
ab zqb

vqb
4

5T (
q

S Dq

Dk
D 2

Ukq
ab 1

vqb
2 vq1

2 vq2
2

. ~17!

For soft-mode crystals the sums overq in Eqs.~12! and~17! converge in the region
of small wave vectors, where the harmonic valuesvkah

2 in ~15! are negative. Therefore
for thesek andT.Tp the sum overq in Eq. ~15! exceedsvka

2 , even though the main
contribution to this sum is made by the thermally averaged phonons with ‘‘avera
frequenciesv̄a(T) rather than by small-q phonons with smaller frequenciesvq;v0. As
the similar sums in Eq.~17! converge at smallq and thus include additional large facto
;v̄a /v0a , one can see that the sum of two first terms in the brackets of Eq.~16! should,
generally, exceed the third one, and thus the functioncq in ~12! should be positive.

Let us now discuss the physical factors that can promote the phonon pairing. L
suppose for simplicity that thek andq dependence of the potentialVkq in Eqs.~9! and
~13! is insignificant, so that this potential can be approximated by its averaged
V05^Vkq&. Then the integral equations~9!, ~13! become algebraic equations, andD does
not depend onk. Supposing again that the temperatureT exceeds the values\vqa/2 for
significant phonons, we obtain the following equation for the transition temperatuT
5Tp :
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V0T(
q

1

vq1
2 vq2

2
51. ~18!

Equation~18! illustrates two necessary conditions for the emergence of phonon pa
~i! the effective intermode interaction should correspond to a sufficiently strong a
tion, which in our model corresponds to positive and sufficiently large values ofV0, and
~ii ! the phonon pairing on decreasingT can occur only in a soft-mode crystal in which th
phonon frequenciesvka are both sufficiently small and sufficiently rapidly decreasi
with decreasingT within significant intervals of the wave vectorsk.

In a discussion of possible phonon pairing in STO one should consider tha
families of soft modes are present in this crystal at smallk. They correspond to two kinds
of order parameter: the ferroelectric one represented by the polarizationP, and the
‘‘structural’’ one represented by the angleF describing the staggered rotation of oxyg
octahedra in the perovskite structure.5,9 At Ta5105 K the structural phase transition fro
the cubic to the tetragonal phase occurs with the rise of the order parameterF5Fz . The
ferroelectric transition does not occur down toT50 ~though it can be induced by a sma
applied stress or by doping with a small amount of impurities!, but the dielectric constan
e(T) rises at lowT to very high valuese(0);105 ~Refs. 5 and 9!. Accordingly, there are
several soft modes in the small-k region: the ferroelectric transverse optical branches
particular, those polarized along thez axis ~which will be called for brevityPz branches!
and along thex or y axis (Px or Py branches!, as well as the structural soft mode
describing the rotation of the octahedra, both around thez axis (Fz branches! and around
thex or y axis (Fx or Fy branches!. The frequencies of all these modes are rather sm
and have an appreciable temperature dependence down to quite lowT. For example, at
k50 andT54.2 K the values of\v(Pz), \v(Px), \v(Fz), and\v(Fx), according to
the data of Ref. 9, are 27, 13, 65 and 21 K, respectively, while betweenT558 K and 22
K the value of\v(Pz) varies from 47 to 32 K.2 Therefore, the above-mentioned cond
tion ~ii ! can be satisfied in STO.

To get an idea of the anharmonic interactions betweenPi andF j modes we can use
Uwe and Sakudo’s estimates9 of the nonlinear terms in the free energy of STO. As w
discussed in Ref. 7, these terms correspond to theki→0 limit of the appropriate anhar
monic interactions. Uwe and Sakudo9 wrote these terms for the cubic phase as

F int52(
i jkl

t i jkl
x Pi PjFkF l . ~19!

On account of the cubic symmetry there are only three different parameterst i jkl
x in ~19!:

txxxx
x 5t11

x , txxyy
x 5t12

x , andtxyxy
x 5t44

x . As the degree of tetragonality of STO atT,Ta is
actually quite small, Eq.~19! can be used for estimates of anharmonic interactions at
T. Uwe and Sakudo9 found: t11

x .27.4, t12
x .9.6, andut11

x u.5–9, in 1015 cgs. Therefore,
the above-mentioned condition~i! can be satisfied for interactions of thosePi and F j

modes which are normal to each other, such asPz andFx or Fy modes fork in the xy
plane, orPx and Fy modes fork in the yz plane. Let us also note that on account
fluctuation effects~neglected in the above-described mean-field treatment and in
and Sakudo’s estimates9! the effective interactionstx in ~19! can actually rise appreciabl
with decreasingT, as can the dielectric constante(T), which is the case, for example, i
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BaTiO3, which is a structural analog of STO~see Ref. 10 or Ch. 8 of Ref. 7!. Such a
‘‘fluctuational’’ rise of the effective interactionstx can be one more factor promoting th
phonon pairing transition in STO on decreasingT.

The presence of several softPi and F j branches can imply that to describe th
phonon pairing in STO one should employ not the above-described two-mode mode
more complex three- or four-mode pairing models. To this end we have considere
three-mode pairing model. Then the unitary transformation analogous to~6! includes
three parameters, which can be taken as the Euler angles describing a three-dime
rotation ~see, e.g., Ref. 11!. The resulting relations analogous to Eqs.~5!–~12! become
more cumbersome, but all of the qualitative conclusions, including those about the
acter of the phase transition and the anomalies nearTp , remain the same as those for th
two-mode model.

The phonon pairing can explain some anomalies that have been observed
dynamics of STO atT&Tq by Courtenset al.2–4 In particular, the apparent ‘‘mixing’’ of
the Pz- andFx-type modes at smallk5(kx ,ky,0) stressed by those authors should b
direct consequence of the above-discussed (Pz ,Fx) pairing at thesek. The other
anomaly, the presence at suchk of an additional, ‘‘anomalous’’ acoustic-like branchA,
does not seem to be quite clear yet. However, this branch may be related to ‘‘crit
soft collective excitations under the phonon pairing, analogous to those discussed
number of other phase transitions~see e.g., Ref. 12!. Strong interactions between th
acoustic modes (U modes! and the softPi andF j modes can also be important for th
existence of theA-branch. The relations between the frequencies ofU, Pi , andF j modes
at thesek can be approximately resonance-like,vk

U.uvk1q
P 2vq

Fu, in significant intervals
of q ~Refs. 2–4!. It can promote the emergence of extra resonance-like excitations d
the anharmonic interactions. Under the phonon pairing~6! these interactions should ris
appreciably as additional three-phonon couplings of theUPF type emerge, which a
higherT are forbidden by the lattice symmetry. These effects can also persist atT*Tp

due to fluctuational pretransition phenomena~neglected in the above-described mea
field treatment!.

To summarize, the phonon pairing can be a new type of phase transitions
anharmonic crystal, and the main features of the low-temperature isostructural
transition in STO can be explained qualitatively by phonon pairing.

I am much indebted to A. I. Larkin for calling my attention to the problem of t
phase transition in STO and for his valuable remarks, and to B. I. Shklovsky fo
hospitality at the Theoretical Physics Institute, University of Minnesota, where this w
was started.

1K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B84, 277 ~1991!.
2E. Courtens, G. Coddens, B. Hennionet al., Phys. Scr.T49, 430 ~1993!.
3E. Courtens, B. Hehlen, G. Coddens, and B. Hennion, Physica B219–220, 577 ~1996!.
4E. Courtens, Ferroelectrics183, 25 ~1996!.
5K. A. Müller, Ferroelectrics183, 11 ~1996!.
6E. V. Balashova, V. V. Lemanov, R. Kunzeet al., Ferroelectrics183, 75 ~1996!.
7V. G. Vaks,Introduction to the Microscopic Theory of Ferroelectrics, Nauka, Moscow, 1973, Ch. 7.
8V. I. Smirnov,Course of Advanced Mathematics, Vol. 4, Fizmatgiz, Moscow, 1958.
9H. Uwe and T. Sakudo, Phys. Rev. B13, 271 ~1976!.
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12V. G. Vaks, V. M. Galitski�, and A. I. Larkin, Zh. Éksp. Teor. Fiz.51 1592~1966! @Sov. Phys. JETP24, 1071
~1967!#.

Published in English in the original Russian journal. Edited by Steve Torstveit.



sia

most

ties of
le to or
dinary
omain.

andau

e

uch
agnetic
s
e-

the

ced to

JETP LETTERS VOLUME 67, NUMBER 6 25 MARCH 1998
The excitonic spectrum of germanium in a high magnetic
field

Yu. P. Kravchenko and M. A. Liberman
Department of Physics, Uppsala University, S–751 21, Uppsala, Sweden; P. Kapitsa
Institute for Physical Problems, Russian Academy of Sciences, 117334 Moscow, Rus

~Submitted 28 October 1997; resubmitted 12 Februry 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 405–409~25 March 1998!

In recently reported experiments with uniaxially deformed germanium
in a magnetic field@V. B. Timofeev and A. V. Chernenko, JETP Lett.
61, 617 ~1995!#, it was found that applying a magnetic field of suffi-
ciently high intensity results in the appearance of a new line in the
optical spectrum of the excitons. In the present paper a mechanism is
proposed which can provide an explanation for this experimentally ob-
served spectral feature. The new spectral line may be attributed to the
formation of strongly bound biexcitonic molecules in the quantum state
3Pu . © 1998 American Institute of Physics.
@S0021-3640~98!00906-2#

PACS numbers: 71.35.Cc, 71.35.Ji, 78.40.Fy

Studies of the behavior of matter in high magnetic fields constitute one of the
interesting and rapidly developing areas in atomic and molecular physics.1–4 Interest in
this area is motivated by the radical changes in the electronic structure and proper
matter that occur when the paramagnetic energies of electrons become comparab
greater than the typical energies of atomic and molecular bonds. In the case of or
atoms and molecules corresponding magnetic fields belong to the astrophysical d
Indeed, the typical atomic binding energy may be estimated as 1 hartree5 mee

4/\2

527.2 eV, while the paramagnetic energy of the electron is the distance between L
levels, equal to\vH5\eH/mec, wherevH is the cyclotron frequency andH is the
magnetic field intensity~we shall use cgs units!. By equating these two expressions, w
immediately find that the critical field strength for a ‘‘high’’ magnetic field isH0

5me
2e3c/\352.350523109 G. Although far beyond reach by laboratory standards, s

magnetic field strengths are nevertheless quite usual on the astrophysical scale. M
fields in the vicinity of magnetic stars reach 0.1H0, while magnetic fields on the surface
of neutron stars and pulsars can exceedH0 by three orders of magnitude. For conv
nience, we shall measure the magnetic field in atomic units asg5H/H0.

This scale of magnetic fields profoundly changes, however, if one turns to
behavior of hydrogenlike excitons in semiconductors. First, the electron massme changes
to the reduced mass of an electron–hole pairm5memh /(me1mh). Second, the binding
energy of excitons is reduced by a factor of«2, where« is the dielectric constant of the
semiconductor. As a consequence, the critical intensity of the magnetic field is redu
4290021-3640/98/67(6)/5/$15.00 © 1998 American Institute of Physics
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H0* 5m2e3c/«2\3. This quantity is about several tesla for Ge and Si and may be as s
as 0.2 T for InSb. Such a low value of the critical field implies that the structure
excitons in semiconductors must experience significant changes already in labo
magnetic fields.

Such changes have indeed been observed in many laboratory experiments. O
of the experimental inquiry concentrates on the excited levels of excitons in semico
tors with relatively high values of the critical magnetic field. A typical such a materia
Cu2O, with a critical magnetic fieldH0* ;800 T, which demonstrates the ‘‘chaotic
behavior of excited excitonic levels in laboratory magnetic fields of the order of 1022H0*
~Ref. 5!. Another line of research is the study of excitons in semiconductors with cri
magnetic fields comparable to or lower than the highest magnetic fields attainable
laboratory. A representative example is uniaxially deformed germanium, which is e
cially interesting because this material allows one to investigate the influence o
magnetic field not only on separate excitons but on excitonic molecules as well.6

Recent experiments with Ge in magnetic fields up to 14 T have revealed
interesting features of the excitonic spectrum.7 The authors of Ref. 7 studied the optic
spectra of excitons in uniaxially deformed germanium placed in a magnetic field.
critical magnetic field strength for Ge wasH0* 52.9 T. In the absence of magnetic fie
the excitonic spectrum consisted of two lines: the line of excitons and the accompa
line of biexcitonic molecules. Application of the magnetic field resulted in a decrea
intensity of the biexcitonic line and its final disappearance at' 1.5 T, which corresponds
to an effective magnetic fieldg'0.5 a.u. When the applied magnetic field reached 4
(g'1.4 a.u.!, a new spectral line appeared. It was located on the ‘‘red’’ side of the
of free excitons and was labeled as the ‘‘X’’ line. This line was associated with
appearance of another bound state, whose energy is lower by one electron–hole pa
the energy of an isolated exciton.

The authors of Ref. 7 proposed two possible mechanisms explaining the obs
spectrum. The first explanation, which they doubted, was based on the assumpt
increased stability of the electron–hole liquid in a magnetic field.

An alternative explanation was the formation of a new biexcitonic molecular s
Although this possibility seemed promising, further progress in that direction was
dered by the lack of information about the behavior of excitonic~and hydrogen! mol-
ecules in high magnetic fields. Indeed, even such a basic question as the symmetry
ground state of H2 in magnetic field was the subject of a prolonged dispute. Howe
recent calculations of the electronic structure of the hydrogen molecule in high mag
fields reveal more detailed information about the electronic states of H2 and allow us to
offer a possible explanation of the nature of the new spectral line described in Re

We suggest that the explanation of the observed phenomenon lies in the appe
of metastable excitons in the quantum state3Pu . In what follows, we shall consider th
electronic structure of the hydrogen molecule and make use of the fact that the hyd
data can be scaled to describe the behavior of hydrogenlike excitons. The anal
based on the Hartree–Fock calculations reported in Ref. 8. The molecular axis is di
along the magnetic field and the nuclei are assumed to be infinitely heavy. It was
in Ref. 8 that as the magnetic field increases, the ground state experiences two sym
transitions. The first transition occurs atg'0.18 a.u., when the ground state chang
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from the strongly bound singlet state1Sg
1 to the weakly interacting triplet state3Su

1 . The
second transition happens atg'14 a.u. and involves a change from3Su

1 to the strongly
bound triplet state3Pu . What is important for the present analysis, however, is the
that, starting fromg'1.2–1.4 a.u., the strongly bound state3Pu may be ametastable
state of the molecule. Therefore, starting from these intensities of the effective mag
field, one can expect the formation of metastable biexcitons, which, we believe, pr
an explanation for the ‘‘X’’ line observed by Timofeev and Chernenko.7

Let us consider how these ground state transitions occur. Fig. 1a shows the po
curves1Sg

1 , 3Su
1 , and3Pu of the hydrogen molecule in the absence of magnetic fi

The internuclear distanceR is measured in the units of the Bohr radiusa05\2/mee
2

55.331029 cm, and the zero of energy corresponds to the situation where all par
are at infinite separation from each other in their lowest Landau states, with their
antiparallel to the magnetic field. The dashed curves show the total energy with a
ance for the electron correlation, and the solid curves correspond to the Hartree
approximation. While the correlation energy is significant for the singlet state1Sg

1 , its
value for triplet states is much smaller due to the smaller overlap of electronic orbita
should be noted that the correlation energy remains approximately the same even

FIG. 1. Potential curves of the electronic states1Sg
1, 3Su

1 , and3Pu (L521) of the hydrogen molecule in a
high parallel magnetic fieldg: ~a! g50.0, ~b! g50.2, ~c! g50.5, ~d! g51.0, ~e! g51.2, and~f! g52.0 a.u.
Dotted lines show energies of the corresponding states at infinite nuclear separation. For the triplet sta3Su

1

and3Puthe total electronic spin is antiparallel to the magnetic field; the other two components of the tripl
not shown.
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presence of magnetic fields up tog&1 a.u. This can be confirmed by comparing o
Hartree–Fock results with detailed configuration-interaction calculations ofS states of
H2 in magnetic field, which were recently reported in Ref. 9.

Figure 1b shows the potential curves of the same three quantum states in the
ence of the parallel magnetic fieldg50.2 a.u. We see that the symmetry of the grou
state has changed. The singlet state1Sg

1 , which is the ground state atg50, has been
slightly shifted upwards, while the weakly interacting triplet state3Su

1 has been shifted
lower due to the increase in the binding energy of isolated hydrogen atoms. As a r
the minimum of the potential curve of1Sg

1 now liesabovethe energy of3Su
1 at R@1,

and the latter state represents the true ground state of the system. However, the hy
still can form tightly bound molecules in the state1Sg

1 , but such molecules will be
metastable. As for the state3Pu , it lies above the potential curves of both1Sg

1 and3Su
1

and is therefore unstable.

If we now increase the field tog50.5 a.u., we encounter further changes. Figure
shows that the potential curve of the singlet state1Sg

1 has shifted even higher, and1Sg
1

is now an unstable state. This is manifested by the disappearance of the biexciton
at g'0.5 a.u., observed in Ref. 7. The potential curve of the state3Pu is still above that
of the state3Su

1 . The hydrogen cannot form strongly bound molecules, and the gro
state3Su

1 of the molecule is represented by two separated atoms. The molecule is b
very weakly, if at all, and the hydrogen now acts like a gas of weakly interacting at
which may exhibit such phenomena as Bose condensation and superfluidity.2

This situation remains essentially the same in a magnetic fieldg51 a.u., as shown
in Fig. 1d. However, the potential well of the triplet state3Pu has deepened, and it
minimum now lies only slightly above the curve of the state3Su

1 . When we increase the
magnetic field tog51.2 a.u., the potential minimum of3Pu crosses the energy curve o
3Su

1 ~Fig. 1d!. This means that if the field increases even further, the hydrogen can
to form strongly bound metastable molecules in the state3Pu . Figure 1f shows that in a
magnetic fieldg52.0 a.u. the potential minimum of3Pu lies below the potential curve o
the weakly interacting state3Su

1 , which is a typical picture of a metastable state.

Therefore, the quantum state3Pu is an excellent candidate for the biexcitonic sta
which can be responsible for the appearance of the ‘‘X’’ line observed in Ref. 7.
most convincing argument in the support of this claim is that the strength of the mag
field at which the ‘‘X’’ line was first observed~4 T! corresponds to an effective magnet
field g'1.4 a.u. The calculations presented show that the state3Pu becomes metastabl
starting fromg*1.2 a.u. It is unlikely that such a perfect agreement between the
values is accidental. However, in order to verify this claim one needs to perform si
experiments with other semiconductors having different values of the critical mag
field.

Let us follow the further evolution of the states3Su
1 and3Pu . Figure 2 shows their

potential curves in the magnetic fieldg510 a.u. andg530 a.u. We see that atg510 a.u.
the true ground state of the molecule is still the weakly interacting state3Su

1 . At g
530 a.u. the potential minimum of the state3Pu lies below the minimum of3Su

1 , and
the ground state of the system is the strongly bound3Pu . Calculations show that this
second transition of the ground state symmetry occurs atg'14 a.u.8

Let us summarize our conclusions. We have proposed a possible theoretical
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nation of the nature of the new excitonic line, observed experimentally in Ref. 7.
cording to our calculations, this new ‘‘X’’ line can be explained by the formation
metastable biexcitonic molecules in the quantum state3Pu . The calculated strength o
the magnetic field at which such metastable molecules can exist, is in excellent agre
with the experimental results of Ref. 7. If the proposed mechanism is correct, it sh
work for other semiconductors with hydrogenlike excitons and manifest itself at the
effective magnetic field strengthg'1.4 a.u. If such an effect is in fact observed
experiments with other types of semiconductors, it may open up alternative possib
for controlling the optical spectrum of semiconductors by an applied magnetic
Since certain kinds of semiconductors have very low values of the critical magnetic
this mechanism may have potential technological applications.

This work was supported in part by the Swedish National Research Council~NFR!,
Contract No. F-AA/FU 10297-307, and in part by the Swedish Royal Academy of
ences.
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FIG. 2. Potential curves of the triplet states3Su
1 and3Pu (L521) of the hydrogen molecule in the magnet

field: ~a! g510.0 a.u.,~b! g530.0 a.u. All designations are as in Fig. 1.
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Aharonov–Bohm effect for electrons on a liquid-helium
surface
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A method for obtaining finite electronic systems on a liquid-helium
surface is proposed. If a thin film of liquid helium lies above a bottom
capacitor plate made in the form of metal rings connected with one
another, then electrons will accumulate in potential troughs near these
rings. The purity of the helium surface, i.e., the absence of impurities
and pinning centers on it, affords an excellent opportunity for investi-
gating the Aharonov–Bohm effect in an ideal ring of a Wigner crystal
and a Luttinger liquid ©1998 American Institute of Physics.
@S0021-3640~98!01006-8#

PACS numbers: 67.701n, 72.15.Rn

1. The Aharonov–Bohm~AB! effect1 in ring-shaped solid-state electronic systems
suppressed by impurities and pinning centers in the case of an electronic Wigner cr2

It is of interest to investigate experimentally an ideal ‘‘pure’’ electronic ring, since
for such an object that the well-developed theory of the AB effect applies.2,3 In this letter
we propose a method for the experimental investigation of electronic rings on a li
helium surface experimentally. The purity of the helium surface, i.e., the absen
impurities on it, in principle permits observing AB oscillations in an ideal ring of
electronic Wigner crystal and an electronic Luttinger liquid by varying the electron
sity. In other words, it is possible to distinguish electron-electron interaction effects

There exists a well-developed experimental method for obtaining two-dimens
electronic systems on a liquid-helium surface.4 A thin helium film on a smooth substrat
is placed in a capacitor, and an electron source is switched on above the helium s
The electrons are pressed to the helium surface by electrostatic image forces and
electric field. An electron densityne'1011 cm2 has been obtained on a thin helium film
and the quantum melting of an electronic Wigner crystal has been observed.5 For low
electron densitiesne'108 cm2 an anomalous increase~by four orders of magnitude! in
4340021-3640/98/67(6)/6/$15.00 © 1998 American Institute of Physics
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the mobility of a Wigner crystal on a He3 film as the temperature is lowered toT'0.2
31023 K has been observed.6 One-dimensional electronic systems have been inve
gated for helium films on diffraction gratings.7,8

2. Ring-shaped electronic systems can be obtained if the bottom plate of the c
tor is made in the form of metal rings connected with one another by bridges~see Fig. 1!.
Such a metal structure can be deposited both on the substrate directly above the
film and on the back side of the substrate. This makes it possible to vary the dis
between the metal ring and the helium surface over wide limits by varying the thick
of the substrate and the film of liquid. If the distance between the metal rings is m
greater than their radiusR0, it is sufficient to take account of the effect of only one rin
which produces a potentialV(z,r) which is attractive for an electrons:

V~z,r!52e2E n~r1!dr1

~z21~r2r1!2!1/2
. ~1!

Herez andr are, respectively, the distances of the electron from the plane and cen
the ring, n(r) is the surface charge density of the metal ring, ande is the effective
electron charge, which depends on the ratio of the dielectric constants of the helium
and the substrate beneath the film and the ratio of the thicknesses of the film an
strate.

The widthD of a thin ring is much less thanR0, and we obtain from Eq.~1!

V~z,r!52
eQ

p E
0

p dw

~z21~r2R0!214rR0 sin2~w/2!!1/2
, ~2!

whereQ is the total effective charge of the metal ring. In terms of the dimension
variablesx5r/R0 andy5z/R0, the functionV(x,y) is given by the expression

V~x,y!5
eQ

R0
I ~x,y!,

I ~z,y!52
1

pE0

p dw

~y21~x21!214x sin2~w/2!!1/2
. ~3!

For y,1/A2 the potentialV(x,y) has a minimum atxÞ0. This is the case of a potentia
trough ~ring! for electrons on the helium surface. However, ify.1/A2, then the mini-

FIG. 1. Side view. The dark rectangles are transverse cross sections of the metal ring.R0 is the radius of the
ring, z andr are coordinates of the electrone, d0 is the thickness of the helium film, andd1 is the thickness of
the substrate.
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mum ofV(x,y) occurs atx50, i.e., forr50 ~2!. This is the case of a potential well fo
electrons on the surface of the liquid. The expansion ofI (x,y) for smallx and anyy has
the form

I ~x,y!52
1

A11y2F11x2
~1/22y2!

~11y2!2
1

3

8
x4

~y423y213/8!

~11y2!4 G . ~4!

For the casey!1, i.e.,z!R0, replacing sin(w/2) in Eq. ~3! by w/2, we have to logarith-
mic accuracy

I >2
1

2p
ln

4p2

y21~x21!2
. ~5!

Since electrons do not penetrate into the liquid helium,4 thez coordinate of an electron is
restricted by the conditionz.z0, wherez05d0, if the metal ring is located on top of th
substrate, directly beneath the helium film of thicknessd0. However, if the ring lies
beneath a substrate of thicknessd1, then z05d01d1. The difference ofz from z0 is
small, since the electrons are pressed to the liquid-helium surface by electrostatic
forces. The main effect for a thin helium film is attraction to the substrate, whic
equivalent to switching on a strong electric field.4 The potentialV(z,r) can be expanded
in powers of two parameters:z85z2z0 andr2r0, wherer0 is the value at which the the
minimum of V with respect tor occurs forz5z0. For example, in the case of a larg
effective potential ring (z0!R0) we obtain from Eqs.~2! and ~5!

V5V~z0 ,R0!1
eQ

2pR0
F ~r2r0!2

z0
2

1
2z8

z0
G . ~6!

In this caser05R0. The term;z8 in Eq. ~6! intensifies the pressing field of the ele
trostatic images of the helium and the substrate beneath it, while the total potential
on an electron for smallz8 andr2r0, minus a constant of no importance for us, has
form

V~r,z8!5
Mv0

2

2
~r2r0!21v~z8!, ~7!

whereM is the electron mass.

The radiusr0 of the effective potential trough for an electron lies in the range
,r0,R0 asz0 varies over the interval 0,z0,R0 /A2, while the characteristic frequenc
v0 in Eq. ~7! is proportional to the chargeQ ~2! of the metal ring. The characteristi
frequency depends on the voltage across the capacitor plates. So, depending on t
of the radiusR0 of the metal ring and the distance of the ring from the helium surfacez0,
it is possible to produce an effective oscillator potential~4!, ~7! for an electron, with a
minimum as a function ofr for arbitrarily smallr0.

3. The wave functionF of an electron for the potential~7! in a magnetic fieldH
directed along thez axis has the form

F5w~z!C~r!, ~8!
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where the dependence ofw on z is of no importance for us, andC(r) is the solution of
the Schro¨dinger equation with the HamiltonianĤ:9

Ĥ5
1

2M S p̂2
e

c
AD 2

1
Mv0

2

2
~r2r0!2, ~9!

p̂ is the electron momentum operator, andA is the vector potential. In the Fock gauge10

Aw5Hr/2 andAz5Ar50, we make the substitution

C5eimw
x~r!

Ar

and obtain from Eq.~9! an equation for the functionx(r):

\2

2M
x91~Em2Ṽ~r!!x50. ~10!

The energyEm depends on the magnetic quantum numberm, while the effective potential
Ṽ(r) has the form

Ṽ~r!5
Mv0

2

2
~r2r0!21VH~r!,

VH~r!5
m221/4

r2

\2

2M
1

MvH
2

8
r21

\vHm

2
, ~11!

wherevH5eH/MC is the cyclotron frequency.

So, to determine the electron spectrumEH it is necessary to solve Eq.~10! for x

with the potentialṼ(r) ~11! and the boundary conditionsx(0)5x(`)50. We shall
show that for large orbital numbersm@1 Eq. ~10! can be solved analytically. Indeed
replacingm221/4 in Eq.~11! by m2, we obtain an expression forVH ~11!:

VH5
MvH

2

2 S r

2
1

\m

rMvH
D 2

. ~12!

The potentialVH has a minimum as a function ofr at r 5rm and its expansion aroun
r5rm has the form

VH5
\vH

2
~m1umu!1

MvH
2

2
~r2rm!2, rm

2 5
2\umu
MvH

. ~13!

It follows from Eqs. ~11! and ~13! that the effective potentialṼ is the sum of two
oscillator potentials with minima at the pointsr0 and rm . Since we are interested i
solutions forx ~10! that are concentrated nearr5r0, the boundary conditionx(0)50 is
unimportant: The electron wave function atr50 is exponentially small as it is. For thi
reason, by shifting the variabler in Eq. ~10! the effective potentialṼ(r) can be put into
the form

Ṽ~r1!5
\vH~m1umu!

2
1

M

2

vH
2 v0

2

vH
2 1v0

2 ~r02rm!21
M

2
~vH

2 1v0
2!~r12 r̃0!2, ~14!
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r̃05
v0

2r01vH
2 rm

vH
2 1v0

2
.

The equation~10! with the potential~14! has the spectrum9,10 Em
n :

Em
n 5

\vH~m1umu!
2

1~n11/2!\~vH
2 1v0

2!1/21
M

2

vH
2 v0

2

vH
2 1v0

2 ~r02rm!2, ~15!

whererm is determined in Eq.~13! and n is an integer. Since we have assumed t
r0'rm , in Eq. ~15! r02rm can be replaced byr0

22rm
2 /2r0 to the same degree o

accuracy, and the last term in Eq.~15! can be written in the form

\2

r0
22M*

S umu2
F

F0
D 2

, ~16!

whereM* is the electron effective mass,F is the magnetic flux through the electron
ring, andF0 is the elementary flux:

M* 5M
vH

2 1v0
2

v0
2

, F5pr0
2H, F05

2p\C

e
. ~17!

We shall now examine limiting cases. In a weak magnetic fieldv0 @vH , in Eq.
~16! M* can be replaced byM , and we obtain from Eq.~15!

Em
n 5~n11/2!v01

\2

2Mr0
2S m1

F

F0
D 2

. ~18!

In this case the term proportional toumu in Eq. ~15! equals zero. In a high magnetic fie
vH@v0, and we have from Eq.~15!

Em
n 5\vHS m1umu11

2
1nD1

\2

2M* r0
2S umu2

F

F0
D 2

. ~19!

The second term in Eq.~19! is important only for negativem, so that taking it into
account lifts the infinite degeneracy ofEm

n with respect tom for m,0. The AB effect is
ordinarily studied in the weak-field limit, when expression~18! is applicable and the
dependence of the spectrumEm

n on the magnetic fieldH enters only via the magnetic flu
F. For a thin helium film of thicknessd on a substrate with dielectric constant« the
Coulomb interactionV(r ) of the electrons at large distancesr is weakened11

V~r !5e2F1

r
2

d

@r 21~2d!2#1/2G , d5
«21

«11
. ~20!

In a high magnetic field, on account of the increase in the electron effective masM*
~17!, ~19! the Coulomb interaction of the electrons becomes substantial, and a
transition from the Luttinger liquid to a Wigner crystal can be observed in an electr
ring on a liquid-helium surface.

We thank Yu. N. Ovchinnikov for a discussion of this work.
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Diluted generalized random energy model

D. B. Saakian
Yerevan Physics Institute, 375036 Yerevan, Armenia; LCTA, Joint Institute for Nuclea
Research, 141980 Dubna, Moscow Region, Russia

~Submitted 13 February 1998!
Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 415–419~25 March 1998!

A layered random spin model, equivalent to the generalized random
energy model~GREM!, is introduced. In analogy with diluted spin
systems, a diluted GREM~DGREM! is constructed. It can be applied to
calculate approximately the thermodynamic properties of spin glass
models in low dimensions. For the Edwards–Anderson model it gives
the correct critical dimension and 5% accuracy for the ground state
energy in two dimensions. ©1998 American Institute of Physics.
@S0021-3640~98!01106-2#

PACS numbers: 75.10.Nr, 05.501q

Derrida’s random energy model~REM!1 was introduced as an archetype spin gla2

model. In recent years it is becoming more and more popular. It has been applied in
fields of physics, biology, and even in information theory Refs. 3 and 4. The genera
tion of the REM~called the generalized random energy model, GREM! was introduced in
Ref. 5. It has been used for approximate solution of other spin glass systems.6,7 Unfor-
tunately, the accuracy in describing other spin glass systems was not much better th
the REM. In this work we introduce a diluted spin model which thermodynamic
resembles the GREM~in the case of large coordination number it is exactly equivalen
the GREM!, then construct some new model of energy configurations — DGREM
some cases of practical importance our spin model is thermodynamically exactly eq
lent to the DGREM.

Even the simpler diluted REM~DREM!8,9 has proven to be a good approximatio
for models in low dimensions (d51,2,3). This important fact was observed in Ref. 1
where by information-theoretic arguments~mathematically leading to a DREM! a perco-
lation threshold was found.

In the DREM one hasN Ising spins interacting with each other in thez ~randomly
chosen from all the possibleCN

p 5N!/ p!(N2p)!) p-plets of Ising spins and quenche
random couplingst i 1 ,•••,i p

having values61.

The Hamiltonian reads

H52 (
~1< i 1 ,•••, i p<N!51

z

t i 1 ,•••,i p
s i 1

•••s i p
. ~1!

At high temperatures the system is in the paramagnetic phase and
4400021-3640/98/67(6)/5/$15.00 © 1998 American Institute of Physics
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F

N
52dT ln coshb2T ln 2, ~2!

whereb51/T. Below the critical temperatureTc51/bc the system freezes in a spin-gla
phase with internal energyU/N52d tanhbc and vanishing entropyS50. Here tanhbc

5f(d) involves a functionf (x) defined by the implicit equation

1

2
~11 f !ln~11 f !1

1

2
~12 f !ln~12 f !] 5

ln 2

x
. ~3!

For the ground state energy of the Edwards–Anderson~EA! model on a hypercubic
lattice in d dimensions (z5Nd)

2
E

N
5 f ~d!d. ~4!

In two dimensions Eq.~4! givesE'21.5599, which is close to the result11 of a Monte
Carlo simulation for the case of random61 couplings:E/N521.401560.0008. This
estimate by formula~3! was done by Derrida in his original work,1 long before the
introduction of the DREM in Ref. 8.

Let us now construct a spin model which has properties like the GREM. It is
important to have a spin representation for the GREM~for example — in order to
construct the temporal dynamics!.

We consider a stacked system consisting ofM planes with spins i
k ordered along a

‘‘vertical’’ axis. In plane ~layer! k there areNk spins. So spins in the layer 1,k,M
interact with spins from the layersk61, the first layer interacts with the spins of th
second layer, and spins from layerM interact with each other. We have the Hamiltoni

H52 (
~1< i 1 ,•••, i p<NM !

zM

t i 1 ,•••,i p
s i 1

M
•••s i p

M

2 (
k51

M21

(
~1< i 1 ,•••, i p/2<Nk21,1< j 1•••, j p/2<Nk!

zk

t i 1 ,•••,i p
s i 1

k21
•••s i p/2

k21s j 1

k
•••s j p/2

k . ~5!

Let us now introduce some~equivalent! GREM like model. We consider someM level
hierarchic tree. At the first level there are 21

N branches. At the second level every o
branch fractures to 2N2 new ones, and so on. At the levelM there are 2N branches, where
N5( i 51,M

M 5Ni energy configurations of our system are located on the ends of theM th
level branches. On every branch of leveli there are located 2Ni random variablese i

a with
the distribution

r0~e i
a ,zi !5

1

2p i E2 i`

i`

dkexp@2ke i
a1zi ln coshk#. ~6!

This is a distribution for a sum ofzk random61 variables. Sozk resembles the numbe
of couplings in our diluted spin models.M branches are connected with any ener
configuration. We define configuration energy as a sum~along the path on the tree
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connected with chosen energy configuration! of theseM variablese i
a . We see the usua

picture of the GREM, where random variables are distributed according to~6! instead of
a normal partition.

We can consider the case of largeM with a smooth distribution ofzk andNk . In this
case we can introduce the continuous variablev5k/M between 0 and 1, labeling th
levels of the planes, and define the distributions

zk[dz5zdv, Nk[dN5n8~v !dv dv5
1

M
, ~7!

wheren(v) is a given function~the entropy in bits!. The variablev (0,v,1) param-
etrizes the level of the hierarchical tree, andz is a parameter~for our spin systemz is the
total number of couplings and the parameterv labels the levels of the planes!.

Of course, our functionn(v) should be monotonic. The total number of ener
configurations is 2n(0), andn(0)5N. We have that 2N energy levelsE of our hierarchic
model are distributed by partitionr(E)5r0(E,z). If two configurations~in our GREM-
like model! meet at a level of hierarchyv, they havezv common random variables. Th
energy difference between two configurations is related toz(12v) noncommon random
variables. Therefore the distribution function of two energiesE1 , E2 reads

r2~E12E2!5r0~~E12E2!,2z~12v !!exp~ ln 2n~v !!. ~8!

At high temperatures our system is in the paramagnetic phase. The free energy is
by Eq. ~2!. When we decrease the temperature, two situations are possible: first,dz/dN
[z/n8(v) decreases monotonically withv; second, it has a local maximum.

In the first case the system has no sharp phase transition but freezes gradually.
temperatureT51/b all levels with 0<v<v f(T) are frozen; they are in the spin glas
phase. The levels withv f,v<1 are in the paramagnetic phase;v f is defined as the
solutionv f5v of the equation

tanhb5 f S z

n8~v !
D . ~9!

With this relationship betweenb andv we can later use functionsv(b) andb(v). For
every finiteb the value ofv(b) lies between zero and unity. WhenT→`, v(b)→0, and
whenT→0, v(b)→v0.0. So even in this limit some fraction of the spins stay in th
paramagnetic phase. Let us point out that this partial freezing only is possible i
diluted GREM, and not in the original GREM. For the free energy we obtain~there is no
factor of N in it!:

2bF5z~12v~b!!ln coshb1n~v~b!!ln1zbE
0

v~b!

dv1f S z

n8~v1!
D . ~10!

The first two terms on the right-hand side describe the paramagnetic fraction o
energy (n(v(b))ln 2 is just the entropy!, while the last one describes the fraction of sp
frozen in a glassy configuration~it resembles Eq.~3! with z/ f 8(v1) instead of d!. In the
second case~when the functionn8(v) is not monotonic! the system has a sharp first ord
phase transition at a finite temperatureT2. Below T2 freezing occurs abruptly for al
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levelsv,v2, wherev2[v(b2) is defined by the equationn8(v2)5N2n(v2). We have
used the fact thatn(0)5N. The transition temperatureT251/b2 follows from tanh(b2)
5f(z/n8(v2)). For temperaturesT,T2 the free energy reads

2
bF

N
5z~12v~b!!ln coshb1n~v~b!!ln 2

1zv~b2!b f S z

n8~v2!
D 1zbE

v2

v~b!

dv1f S z

n8~v1!
D . ~11!

To construct the spin Hamiltonian by means of a chain of subsystems for this
is still an open problem. Let us now consider a possible approximation to the Edwa
Anderson model, following the ideas presented in Ref. 6. In the d-dimensional cas
2N energy levelsE are distributed according to the law

r~e!5r0~e,Nd! ~12!

with r0 defined in Eq.~6!. Comparing with~6! one immediately notices that this i
exactly equivalent to a DGREM with the choiceE5e, z5Nd. Let us now consider the
distribution ofe12e2. Following the arguments presented in Ref. 6, we find that

z5Nd, n~v !5
Ns~2vdN!

ln 2
. ~13!

We see that the variablev corresponds to the energy per bond in the ferromagn
model. We recall from the definition of temperature thatds/dE51/t[b. At given b̃1 we
can define the correspondingv1 as the negative of the energy per bond for the ferrom
netic model at temperature 1/b̃1:

v152
E~ b̃1!

Nd
. ~14!

We obtain for the free energy

2
bF

Nd
5~12v~b!!ln coshb1s~v~b!!1bE

0

v~b!

dv1f S ln 2

b̃
D . ~15!

Integrating by parts in the last term, we get

2
bF

Nd
5~12v~b!!ln coshb1s~v~b!!2bE

0

b̃
db̃1

2v1~ b̃1!

ln
11y

12y

1v~b!by~ b̃ !, ~16!

wherey as a function ofb̃1 is defined by the equation

y5 f S ln 2

b̃1
D , ~17!
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the functionv(b) is defined by~9!,~13!, andv1(b̃1) is the negative of the energy pe
bond in the ferromagnetic model at temperatureb̃1. In Eq. ~16! the value ofb̃ is related
to the givenb via the equation tanh(b)5f(ln 2/b̃). In the limit of zero temperature this
reduces to

2
bF

N
5dF12

2

dE0

ln 2 db̃1E~ b̃1!

ln 11y~ b̃1!/12y~ b̃1!
G . ~18!

Here E(b̃)5uUu is the negative of the energy in the ferromagnetic model,y(b̃) is
defined by Eq.~17!, and the functionf (x) is defined by Eq.~3!. A calculation of the
ground state energy for the two-dimensional EA model using~18! gives E521.4763.
For the case of other models one can use numerical data for the ferromagnetic sy

This simple approximation to the ground state energy of disordered systems s
be efficient at low dimensions.
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Is the Casimir effect relevant to sonoluminescence?

V. V. Nesterenko and I. G. Pirozhenko
Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
141980 Dubna, Moscow Region, Russia
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Pis’ma Zh. Éksp. Teor. Fiz.67, No. 6, 420–424~25 March 1998!

The Casimir energy of a solid ball~or cavity in an infinite medium! is
calculated by a direct frequency summation using contour integration.
The dispersion is taken into account, and the divergences are removed
by making use of the zeta function technique. The Casimir energy of a
dielectric ball~or cavity! turns out to be positive and increasing as the
radius of the ball decreases. The latter eliminates completely the pos-
sibility of explaining, via the Casimir effect, the sonoluminescence for
bubbles in a liquid. Besides, the Casimir energy of the air bubbles in
water proves to be immensely smaller than the amount of the energy
emitted in a sonoluminescent flash. The dispersive effect is shown to be
unimportant for the final result. ©1998 American Institute of Physics.
@S0021-3640~98!01206-7#

PACS numbers: 78.60.Mq, 47.55.Dz

1. Sonoluminescence, which has been observed for more than half a century1 has
not yet found a satisfactory explanation. It is known that this phenomenon represen
emission of visual light by spherical bubbles of air or other gas injected into water
subjected to an intense acoustic wave in such a way that the radius of the bubbles c
periodically. In the last years of his life, Schwinger proposed2 that the basis of sonolu
minescence lies in the Casimir effect. When the size of the bubbles changes, so do
zero point energy of the vacuum electromagnetic field~the Casimir energy! of a cavity in
a dielectric medium. According to Schwinger, it is these changes of the electromag
energy that are emitted as visible light in sonoluminescent flashes. In Schwinger’
culations the Casimir energy for the configuration in hand proves to be of the same
as the energy of the photons in an individual flash (;10 MeV!. Other authors have
obtained results both consistent with Schwinger’s calculation3 and differing from it by 10
orders or magnitude.4,5 This disagreement is basically due to different methods used
removing the divergences in the problem under consideration.

In the present note the calculation of the Casimir energy of a dielectric ball plac
an infinite dielectric medium~or a cavity in such a medium! is carried out under follow-
ing conditions. In the first place a realistic description of the dielectric properties o
media is used which takes dispersion into account.a! On the other hand, the simplest an
most reliable method for removing the divergences, the zeta function technique,
plied. Till now these conditions have not been combined in studies of the proble
question.
4450021-3640/98/67(6)/5/$15.00 © 1998 American Institute of Physics
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2. In calculating the Casimir energy we shall use the mode-by-mode summati
the eigenfrequencies of the vacuum electromagnetic oscillations by applying co
integration in the complex frequency plane.6,5 Consider a ball of a material which i
characterized by a permittivity«1 and permeabilitym1. The ball is assumed to be place
in an infinite medium with permittivity«2 and permeabilitym2. For this configuration the
frequencies of the transverse electric~TE! and transverse magnetic~TM! modes are
determined by the equations7

D l
TE~av![A«1m2s̃l8~k1a!ẽl~k2a!2A«2m1s̃l~k1a!ẽl8~k2a!50, ~1!

D l
TM~av![A«2m1s̃l8~k1a!ẽl~k2a!2A«1m2s̃l~k1a!ẽl8~k2a!50, ~2!

wheres̃l(x)5Apx/2 Jl 11/2(x) andẽl(x)5Apx/2 Hl 11/2
(1) (x) are the Riccati–Bessel func

tions,ki5A« im iv,i 51, 2 are the wave numbers inside and outside the ball, respecti
a prime stands for differentiation with respect to the argument (k1a or k2a) of the
Riccati–Bessel functions.

As usual, we define the Casimir energy by the formula

E5
1

2 (
s

~vs2v̄s!, ~3!

wherevs are the roots of Eqs.~1! and ~2! and v̄s are the same roots under conditio
a→`. Heres is a collective index that stands for a complete set of indices specifying
roots of Eqs. ~1! and ~2!: s5$ l ,m,n% l 51,2, . . . ;m52( l 11),2 l , . . . ,l 11,
n51,2, . . . . Theroots of Eqs.~1! and ~2! do not depend on the azimuthal quantu
numberm. Therefore the corresponding sum gives a multiplier (2l 11). Further we use
the argument principle from complex analysis to represent the sum overn in terms of a
contour integral. As a result, Eq.~3! can be rewritten as follows:

E5(
l 51

`

El , El5
l 11/2

2p i R
C
dz z

d

dz
ln

D l
TE~az!D l

TM~az!

D l
TE~`!D l

TM~`!
, ~4!

where the contourC passes counterclockwise around the roots of the frequency equa
~1! and ~2! in the right-hand half plane. This contour can be deformed into a segm
(2 iL,iL) of the imaginary axis and a semicircle of radiusL with L→`. In this limit
the contribution of the semicircle to the integral~4! vanishes, with the result5

El5
l 11/2

pa E
0

`

dy lnH 4e22~q12q2!

~A«1m21A«2m1!2
@A«1«2m1m2~~sl8~q1!el~q2!!2

1~sl~q1!el8~q2!!2!2~«1m21«2m1!sl~q1!sl8~q2!el~q2!el8~q2!#J , ~5!

where qi5A« im i y,i 51, 2 andsl(z), el(z) are the modified Riccati–Bessel function
sl(z)5(pz/2)1/2I n(z), el(z)5(2z/p)1/2Kn(z), n5 l 11/2.

Further we will content ourselves with an examination of the case when both
media are nonmagneticm15m251 and have permittivities«1 and «2 that differ only
slightly. In view of this we can putq15q2 in Eq. ~5!, and elsewhere keeping«1 and«2

exactly. It gives
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El5
l 11/2

pa E
0

`

dy ln$12j2@~sl~y!el~y!!8#2%, j25S A«12A«2

A«11A«2
D 2

. ~6!

Now we are going to take into account the effect of dispersion, considering the para
j2 in Eq. ~6! to be a function ofy5av/ i . Justification of the mode-by-mode summatio
method in applying to dispersive and absorptive media has been considered in Ref.
definiteness we put«1511d, «251, d!1; then j2.d2/16. We substitute ford the
expression

d~y!5d0 /@11~y/ny0!2#, n5 l 11/2, ~7!

whered0 is a static value ofd(y) and the parametery0 is determined by a ‘‘plasma’’
frequencyv0: y05av0. The function describing dispersion in Eq.~7! is a standard one
@the one-absorption-frequency Sellmeir dispersion relation# except for its dependence o
l . We have introduced this dependence in order to be able to use the zeta fu
technique below. This complication does not contradict the main goal pursued by
this function, namely, that it should roughly simulate the behavior ofd(y) at largey. It
is known9 that general theoretical principles lead to the following properties of the fu
tion «(v) in the upper half of thev plane. On the imaginary axisv5 iy , y.0 the
function «( iy) acquires real values, and with increasingy it steadily decreases from th
static value 11d0.0 ~for dielectrics! to 1. Obviously formula~7! meets these require
ments.

Substituting~7! into ~6! and making use of the uniform asymptotic expansion for
modified Bessel functions10 as l→`, one obtains

El .
l→`

2
3

64aS d0

4 D 2

f ~av0!1O~n22!, ~8!

where

f ~z!5
z

~11z!4S z314 z21
16

3
z1

4

3D . ~9!

As z increases, the functionf (z) monotonically rises, approaching 1:f (0.01)50.013,
f (0.1)50.130, f (1)50.729, f (10)50.994.

We carry out the summation of the partial energies~6! with the help of the zeta
function technique,11 taking into account asymptotic behavior~8!

E5(
l 51

`

El5(
l 51

` FEl1
3

64a S d0

4 D 2

f ~av0!2
3

64a S d0

4 D 2

f ~av0!G
5(

l 51

`

Ēl2
3

64a S d0

4 D 2

f ~av0!(
l 51

`

~ l 11/2!0 ~10!

5(
l 51

`

Ēl2
3

64a S d0

4 D 2

f ~av0!@z~0,1/2!21#.

HereĒl5El1(3/64a)(d0/4)2f (av0) is the renormalized partial Casimir energy,z(s,q)
is the Hurwitz zeta function. Asz(0,1/2)50, we get for the Casimir energy~10!
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E5(
l 51

`

Ēl1
3

64aS d0

4 D 2

f ~av0!. ~11!

As in the calculations without allowance for dispersion effects,5 here we can conten
ourselves with the last term on the right in~11!. This provides us with an accuracy of
few percent.12 Thus the Casimir energy of a dielectric ball is

E.
3

64aS d0

4 D 2

f ~av0!, ~12!

the effect of dispersion reducing to the introduction of a positive coefficientf (av0)
,1. Hence, a change in the sign of the energy or a considerable increase in its mag
due to the dispersion effect13 is out of the question.

Let us estimate the value off (av0). The parameterv0 can be determined by
demanding that at this frequency the photons do not ‘‘feel’’ the interface between
media. This condition will be certainly met when the wavelength of the photon is
than the interatomic distance in the media,d;1028 cm. This is actually the condition o
applicability of the macroscopic description of dielectric media.9 Sonoluminescence is
observed for air bubbles in water1 with a bubble radiusa;1024 cm. Hence it follows
that av0.a/d5105 and f (105)50.999 . . . . Thus allowance for dispersion in calcula
ing the Casimir energy of a dielectric ball~or of a spherical cavity in a dielectric slab! has
practically no effect on the final result.

Certainly the real picture of dispersion in the whole frequency range 0,v,` for
any dielectric, including water, is exceedingly complicated and cannot be described
simple equation~7! with single a parameterv0. It is known that absorption of electro
magnetic waves in water and, as a consequence, their dispersion take place alread
radio frequency band. Putting in this casel;104 cm, we obtainav0;1 and f (1)
50.729 . . . Hence one can infer that the effective value ofav0 should be less than 105.
In order for a more precise evaluation of this parameter to be done a more de
consideration of the dispersion mechanism is needed. Obviously this may lead o
diminution of the absolute value of the Casimir energy. However this issue is beyon
scope of the present paper, for the main conclusion~see below! does not depend on thi
point.

It is worth noting two peculiarities of the final formula~12!. As the radius of a
bubble decreases, its Casimir energy increases. This behavior is completely oppo
what would be needed to explain sonoluminescence~it is known that the emission of ligh
takes place at the end of the collapse of bubbles in a liquid!. Besides, this energy is
immensely smaller than the amount of energy emitted in a separate sonoluminesce
(;10 MeV!. Actually, taking a51024 cm andd053/4 ~water!, we arrive at a value
E.531023 eV.

Thus the results of this paper unambiguously demonstrate that the Casimir eff
irrelevant to sonoluminescence.

This work was accomplished with financial support of Russian Fund for Fundam
tal Research~Grant 97-01-00745!.
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a!There is a point of view14,13that dispersion effects may substantially affect the final result when calculating
Casimir energy.
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