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Abstract—Many aspects of high-energy atomic processes can be described in terms of singularities of a many-
body Hamiltonian using the generalized asymptotic Fourier transform (AFT) theory. The study of matrix ele-
ments in different kinematic regimes is related to the study of singularities (points of nondifferentiability) of
the wave functions and the e–γ interaction. These singularities reflect the singularities of the many-body Hamil-
tonian. We illustrate the principles of the AFT approach in the simple example of photoabsorption by the elec-
tron bound in a potential with a Coulomb singularity. We exhibit two general results that are important for any
many-body system: (1) the quality of approximate results in different forms (“gages”) depends on the quality
of the description of the wave functions in the vicinity of singularities, and (2) due to the character of the Cou-
lomb singularity, photoabsorption cross sections converge slowly to their asymptotic form as the energy
increases. However, the slowly converging behavior of these cross sections is due to one common factor (the
Stobbe factor), which can be obtained analytically in terms of the characterization of the vicinity of the singu-
larity. The common Stobbe factor explains why ratios of cross sections converge more rapidly than the cross
sections themselves. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

High-energy atomic processes can be described in
terms of singularities of the many-body Hamiltonian.
The asymptotic Fourier transform (AFT) theory [1, 2]
can provide such a description. In this paper, we apply
the AFT approach to photoabsorption (at high but non-
relativistic energies) in a simple atomic system, the
electron in a potential with a Coulomb singularity. This
serves to illustrate general points that are important in a
variety of more complex systems. In particular, we
illustrate (1) dependence of the required wave function
quality on the form of interaction (gauge) utilized and
(2) extraction of a common factor (the Stobbe factor)
that contains all slow convergence of the matrix ele-
ments to their high-energy limit.

The study of single-photon ionization processes
resulting in single [3, 4] or multiple [5, 6] ionization of
an atom is of fundamental and practical importance.
New experimental possibilities, modern synchrotron
sources, and experimental methods [7] result in better
understanding of the electron correlation effects in
complex systems and in processes involving these sys-
tems [8–12]. Recently, we proposed a unified descrip-

¶This article was submitted by the authors in English.
1063-7761/03/9702- $24.00 © 20217
tion [1, 2] of the processes of high-energy1 ionization
by photoabsorption, based on the mathematically well-
founded AFT theory. The idea is based on the close
relation between high-energy photoabsorption matrix
elements and the AFT of functions with singularities
(by a singularity, we mean a point where a function is
not differentiable).

According to the AFT theory, the asymptotic Fou-
rier transform of a function with singularities is deter-
mined by the behavior of the function in the vicinity of
these singularities [13, 14]. Because photoabsorption at
high photon energies requires at least one large outgo-
ing electron momentum p, we can generally argue that
the analysis is equivalent to the analysis of the asymp-
totic forms of Fourier transforms (FT). A slow asymp-
totic decrease for large p, such as 1/pn for example, of
the FT of a well-localized function, results only from
singularities of that function. By studying singularity
structures of the wave functions, which follow from the
Schrödinger equation, one is then able to address vari-
ous, quite general, issues of the matrix element (such as
the interaction-form dependence of approximate matrix
elements and the nature of convergence with energy to

1 By high energy, we mean that the photon energy ω @ EB (where
EB is the binding energy of the state that is ionized), but still ω !
m (for a nonrelativistic description of electrons).
003 MAIK “Nauka/Interperiodica”
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high-energy forms) without needing full knowledge of
the many-body wave functions. The AFT approach has
been applied to double ionization [1] of He-like sys-
tems and single ionization of more complex atoms [2].

In this paper, we describe this approach to photoab-
sorption (and perhaps other related) processes at high
but nonrelativistic energies. We use the example of sin-
gle ionization within a central field independent parti-
cle approximation (IPA) model and assume that the IPA
potential near the nucleus is point-Coulomb. We use
this simple and familiar model in order to illustrate the
main points of our general approach in the context of a
relatively simple and familiar situation where most fea-
tures can clearly be seen. We view the idea of the AFT
approach as very general, and by presenting it in a rel-
atively simple situation, we would like to motivate its
application to other processes. The kinematic situations
that occur in high-energy photoabsorption can also
occur in other processes, e.g., in charged-particle scat-
tering. In such situations, the AFT approach connects
the matrix element of the process to the singularities of
the system involved in the process.

Another important motivation in considering the
simple system is to illustrate and emphasize two often
neglected points, which are general for any photoab-
sorption process and for which purpose an IPA model
is sufficient. The first point is concerned with how the
quality of approximate results depends on both the
quality of approximate wave functions used and the
form of interaction chosen. For example, a plane-wave
description of fast electrons is generally inadequate, as
discussed in [15–18]. The second point is that due to the
Coulomb singularity, any high-energy photoabsorption
cross section (for ionization of a system with an inter-
action having a Coulomb singularity) possesses the
Stobbe factor, which must be extracted in order to
obtain a fast convergence of the results. This is very
important for high-energy studies of photoabsorption.
For example, because absolute measurements at higher
energies are less accurate than at lower energies, the
high-energy results are often obtained from lower
energy results assuming some asymptotic behavior. It is
sometimes assumed [5, 19] that at some finite energy
(not taken sufficiently high), the cross sections for pho-
toabsorption follow the leading-order Born result. This
causes errors in cross sections reported.

We consider the adequacy of various forms of
matrix elements (length (L), velocity (V), or accelera-
tion (A) forms) in using approximate wave functions of
various qualities in the vicinity of a singularity. We
demonstrate that nonrelativistic IPA high-energy pho-
toabsorption is determined (up to corrections O(1/p2) ≈
O(1/ω), where p is the outgoing electron momentum)
by the initial state normalization and the point-Cou-
lomb singularity. This result is form-independent, but
whether the information about the singularity comes
from the interaction (as in the A-form) or from the ini-
tial and final state (as in the L- and V-forms), is form-
JOURNAL OF EXPERIMENTAL 
dependent. In such a way, we are able to identify neces-
sary conditions for all the three forms to give the correct
high-energy result in the IPA case. We also explicitly
obtain the order of magnitude of the error resulting
from the error in the description of the wave functions
in the vicinity of the singularity. We consider this at two
levels of accuracy (depending on the accuracy of the
description of the wave functions in the vicinity of the
singularity). We first consider the leading-order results
in 1/p that can be obtained by taking a simple descrip-
tion of the wave functions in the vicinity of the singu-
larity. To illustrate the source of the general Stobbe fac-
tor, we then use a description that completely includes
the strong e–N Coulomb interaction.

We begin in Section 2 with a general discussion of
the AFT of singular functions. We discuss the connec-
tion to the photoabsorption matrix element and differ-
ences (modifications of the asymptotic AFT) required
due to the presence of Coulomb functions. In Section 3,
we begin the discussion of the behavior of the photoef-
fect matrix element in an IPA potential. Here, we take
the simplest description of the wave functions, which
provides an illustration of the main ideas. In Section 4,
we consider the simplest case, photoabsorption by an
s-state in a purely Coulomb potential, neglecting retar-
dation in order to make a comparison with the well-
known results obtained in the Born expansion
approach. We illustrate our AFT approach there in more
detail. In Sections 5–7, we remove the constraints of the
simplest case, identifying the resulting additional fea-
tures. We show how the approach works for non-s-
states (Section 5) and for a general IPA potential with
a point-Coulomb singularity (Section 6). We discuss
relativistic and retardation contributions in Section 7.
Finally, in Section 8, we show how more accurate
results (together with a measure of their error) can be
obtained by fully including into the wave functions the
interactions that are strong in the vicinity of the singu-
larity (e–N). We also assess the importance of the con-
tributions arising from interactions that are weak in the
vicinity of the singularity (screening or, more gener-
ally, correlations). We discuss the convergence of the
results to asymptotic forms with increasing energy. We
explicitly obtain a common factor (the Stobbe factor)
arising from the e–N interaction that contains the entire
slowly converging behavior. This explains why ratios
of cross sections converge to asymptotic forms much
more rapidly than the cross sections themselves. In
Section 9, we summarize our conclusions.

2. GENERAL CONSIDERATIONS

In general, the final-state wave function in high-
energy photoionization of a many-electron atom is of
the form exp(ip · r1)Φp, λ , where p denotes the large
momentum of one ejected electron (there must be at
least one) r1 is its space coordinate, and λ denotes quan-
tum numbers of other electrons in the final state.
AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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Because the outgoing electron wave function is
described by a plane wave and incoming spherical
waves at large distances (with appropriate long-range
Coulomb logarithmic factors), these oscillations limit
the range in r1 that contributes to the matrix element
integral, which can be viewed as an FT in the electron
momentum p of slowly varying functions. (Because we
have assumed nonrelativistic energies, there are no
oscillations of any retardation factor in the interaction
in this range.) We discuss the remaining p-dependence
in the Coulomb wave function in this range below.
Because large ω necessarily implies large p, the study
of the photoabsorption matrix element at large energies
is equivalent to the study of the asymptotic form of
the FT.

The study of the asymptotic form of the FT arising
in our problems is based on the theory of generalized
functions [13]. By definition [14], a good function f is
an infinitely differentiable function of n variables such
that

(1)

for any l and m and any choice of the indices α1, α2, …,

αn (with α1 + α2 + … + αn = m), where R ≡ (  +  +

… + )1/2. (In the terminology of [14], these are called
χ functions.) The theorem [13, Theorem 2, p. 15] says
that the FT of a good function is a good function [13,
14]. This implies that asymptotically, the Fourier trans-
form g(p1, …, pn) of a good function decreases faster

than any power of p ≡ (  +  + … + )1/2. We call
this the AFT theorem. An example of such a function in
three dimensions is given f1(r) = exp(–r2). For large p,
the FT F1(p) ∝  exp(–p2/2) of this function decreases
exponentially, i.e., faster than any power of 1/p, in
accordance with the AFT theorem.

The functions that appear in our photoionization
matrix elements, even for the photoionization of a par-
ticle in a potential, are well localized (because the
bound state is localized), but are singular [20], i.e., non-
differentiable, at coalescence points. The wave func-
tions, which are eigenstates of a many-body Hamilto-
nian with Coulomb interactions, have singularities at
the singularities of the Hamiltonian, which are located
at points where the particles coalesce. We use the term
coalescence points for the locations of these singulari-
ties. In general, there are double coalescence points
where two particles meet2 or multiple coalescence

2 Finite nuclear size does not affect our conclusions in any way
because the distances probed at nonrelativistic energies are much,
larger than the size of the nucleus. A finite nuclear size cannot be
relevant for photoabsorption (when the total cross section is con-
sidered, for example) even at ultrarelativistic energies, see Sec-
tion 7.

Rl ∂f

∂x
α1∂x

α2…∂x
αn

-------------------------------------- 0, R ∞

x1
2 x2

2

xn
2

p1
2 p2

2 pn
2
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points where more than two particles coincide. The
properties of wave functions in the near vicinity of
these singularities, which are well understood for
bound states [20, 21], can be extracted from the
Schrödinger equation. They are known as coalescence
properties, and for s-states, they are often called Kato
cusp conditions. We use the term Kato cusp conditions
more generally, to denote exact behavior of the wave
functions at a two-particle singularity. (There must also
be singularities in the e–γ interaction operator, depend-
ing on the form taken.)

In the vicinity of a singularity, the functions whose
FT is calculated can be written in terms of simpler func-
tions fs (with s standing for “simple”) whose FT is
known and a remainder O whose FT is asymptotically
negligible. We call this the partitioning (fs + O) of func-
tions. According to the theory of generalized functions,
the FT of a generalized function with singularities is
approximated by the FT of these simpler functions fs ,
while the size of the FT of the remainder O gives a mea-
sure of the accuracy of the approximation. The point is
that by taking fs more accurately in the vicinity of the
singularity, we can in principle achieve arbitrary accu-
racy [14, Theorem 19, p. 52]. A simple example of such
a singular function is given as f2(r) = exp(–r). The FT
of this function is F2(p) ∝  (1 + p2)–2, which indeed
decreases as a power of p. By partitioning f2 in terms of
polynomials3 in r and using

(2)

(where we assume that p ≠ 0 and therefore do not
include δ-function terms), we reproduce the expansion
of F2(p) in powers of 1/p. If we were to use some other
partitionings, we would not obtain powers in 1/p, but
rather some other function of p, depending on the
nature of fs used. The point is that the asymptotic FTs
of such simpler functions approach the exact FT for
large p and the FT of the remainder vanishes faster, in
accordance with the theory of the FT of generalized
functions.

This is an illustration of the general idea. The func-
tions that appear in our matrix element can be written
in terms of simpler functions, which are required by the
Kato conditions to have the Coulomb behavior in the
vicinity of a two-particle singularity, as will be
explained below. In obtaining leading-order results, or
in simple cases that we consider for illustration, we use

3 Polynomial partitioning requires a convergence procedure; we
multiply each term in fs with exp(–εr) and let ε  0 after the
integration is performed. This is consistent with the definition of
the FT of generalized functions [14, p. 33].

εr ip r⋅+( )–[ ] rnexp r3d∫ε 0→
lim

=  
4π n 1+( )!

ip( )n 3+
--------------------------

0, even n 0,≥
1, odd n 0>



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polynomials in r (the interparticle distance) as our sim-
pler functions. These polynomials can be viewed as
expansions in r (which can exist in IPA potentials).
However, in more general situations (with more elec-
trons involved, e.g., as considered in [1]), we cannot
assume that singular functions are expandable in infi-
nite series in r in the vicinity of any singularity. In such
cases, we can still partition a singular function in the
vicinity of a singularity into a simple function (perhaps
a polynomial or the Coulomb function) and a remain-
der, which may not necessarily be expandable but
which vanishes faster than the simple function as r
approaches the singularity. In obtaining our full IPA
results in Section 8, partitioning in terms of Coulomb
functions is required (because all orders in the e–N
interaction are required). Such a choice is sufficient for
our purposes; it gives accurate results neglecting the
order mα2/p2 (we use the system of units " = c = 1) and
allows us to collect all Coulomb slowly converging
terms in powers of πa/p (when full Coulomb functions
are used), a = mZα, where Z is the nuclear charge and
m is the electron mass. If better accuracy is required,
one must go beyond functions with the Coulomb shape
in the vicinity of a singularity.

Expansion of wave functions around the origin
(which is the position of the e–N singularity) in terms
of polynomials has been used previously in both single
and double ionization by photoabsorption [16, 17, 22,
23] and in collisions [23]. Here, we illustrate generali-
zations of these approaches using the AFT theory [1, 2].
We can partition (e.g., use Coulomb functions, which
are much better functions than polynomials near the
singular point) around singular points that need not be
at the origin in general and consider all singularities on
the same footing. An important point of this approach
is that it clarifies which singularities must be consid-
ered for these partitionings (there are more than one
singularity in many-body wave functions and interac-
tions in general [1]). As shown in [1], the singularities
that must be considered are determined by the kinemat-
ics of outgoing electron momenta, identifying situa-
tions in which the number of the asymptotic FTs is min-
imized. Another important point of our approach is that
we start from exact matrix elements (with exact wave
functions) and extract and collect all contributions in
the leading power of 1/p, which determines the high-
energy behavior (and the leading corrections in some
cases). With our approach, we identify the dominant
terms and avoid losing any of them; we also avoid
uncontrolled introduction of spurious contributions. It
is illustrated in [1] how both these problems have arisen
in the use of approximate wave functions.

There is, however, a point of difference between our
asymptotic matrix element and the asymptotic FT.
Namely, after isolating the fast oscillating terms of the
plane wave, the function left in the integrand still
depends on the large momentum variable p (coming
from the final-state wave function) via the pr-depen-
JOURNAL OF EXPERIMENTAL 
dence (as, for example, in confluent hypergeometric
functions in the Coulomb case). It might therefore be
more appropriate to talk about a generalization of the
FT. We see in what follows that this additional p-depen-
dence is not a problem. The Coulomb modification of
the FT results, as we demonstrate in Section 8, is a
slowly converging factor, the Stobbe factor.

Accurate evaluation of the matrix element at high
energies requires knowledge of both the initial and
final-state electron wave functions at the singular point,
or at all singular points in general if one goes beyond
the IPA. However, how much of this knowledge is actu-
ally needed in a given calculation depends on the form
of the matrix element used for that calculation. As we
demonstrate in considering the leading-order result,
only the normalization of the initial wave function at
the e–N coalescence is required if the A-form is used.
With other forms (V and L), we generally need further
information about both the initial and final state. The
exception is for the s-state ionization in the V-form, for
which we need only the normalization and slope of the
initial state at the coalescence. In any case, this knowl-
edge gives us the leading contribution of the high-
energy matrix element, which is generally accurate to a
relative order of O(πmZα/p).

3. SINGULARITIES 
OF THE IPA MATRIX ELEMENT INTEGRAND

For a single electron in a potential, in the lowest
order of the electron–photon interaction, the matrix ele-
ment for photoionization by photoabsorption is given
by (in units " = c = 1)

(3)

where Ψi(r) = Rnl(r)  is the initial bound state nor-
malized to unit integrated probability density (the hat

denotes the unit vector), Ψp(r) = exp(ip · r)  is
the final electron continuum state normalized on the
momentum scale (to asymptotically approach a dis-
torted plane wave of the momentum p with an ampli-
tude of (2π)–3/2), and I(r) is the interaction operator,
given in the three commonly used forms (retaining
retardation to all orders) as

(4)

(5)

M Ψp
–( )* r( )I r( )Ψi r( ) r3 ,d∫=

Yl
m r̂( )

Φp
–( ) r( )

IV ieik r⋅
eeee ∇ ,⋅–=

IL im ω k2

2m
-------– 

  eeee reik r⋅⋅ eik r⋅
eeee r⋅( ) k ∇⋅( ),–=
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(6)

Here, eeee is the photon polarization and V(r) is the IPA
potential energy of the type V(r) = –(Zα/r)S(r), where
S(r) is a screening function, which we assume4 can
be described as a polynomial in r for small S(r) = (1 +
s1r + s2r2 + …); the potential therefore has only a Cou-
lomb divergence and is differentiable except at r = 0
The singularity of the potential energy results in singu-
larities in the wave functions Ψp and Ψi . These func-
tions are not differentiable at the origin. The e–γ inter-
action operator in the L- and V-forms is regular in this
sense, while in the A-form it is singular because it
involves the singular potential V(r), Eqs. (4)–(6). The
large-p behavior of the Fourier transform of a slowly
varying function of r is determined by its behavior near
the coalescence point (because pr ~ 1, large p corre-
sponds to small r) and only depends on the singular
parts of the function. We thus partition the functions

Ψi(r) and  around the coalescence point r = 0
(the only singular point here). The small-r behavior of
these slowly varying portions of the integrand deter-
mines the AFT.

The partitioning fs + O in terms of polynomials of
the initial (bound) state with quantum numbers (n, l, m)
in an IPA potential with the Coulomb singularity is

(7)

In the simple function fs (in which the terms are alter-
nately regular and singular, with the regular first term,

rl ), the first two terms are determined solely by
the Coulomb singularity of the potential and are there-
fore known independently of the screening, except for

the overall normalization factor  (which depends
on the choice of the IPA potential). Higher-order terms
in fs in Eq. (7) depend on the screening of the IPA
potential, which determines the λi coefficients. The fact
that the first two terms in the parenthesis in Eq. (7) are
determined by the Coulomb singularity is well known;
it is a special case of the general behavior of wave func-
tions at coalescence points of many-electron atoms [20,

4 Here, we assume a potential that can be expanded in integral
powers of r in the vicinity of a singularity. Using a potential that
is expandable in nonintegral powers of r (e.g., the Thomas–Fermi

potential VTF = –Zα/r + CTF + O( ), where CTF is a constant)
would lead to nonintegral powers of 1/p.

IA ω k2

2m
-------– 

 
1–

=

× ieik r⋅
eeee ∇⋅( )V r( )

1
m
----eik r⋅ k ∇⋅( ) eeee ∇⋅( )– .

r

Φp
–( ) r( )

Ψi r( ) Ni
IPArl=

× 1
a

l 1+
----------r λ2r2 λ3r3 O r4( )+ + +– Yl

m r̂( ).

Yl
m r̂( )

Ni
IPA
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21]. Namely, in the description of a bound-state many-
electron atom wave function around any coalescence
(which includes any electron-electron coalescence) in
terms of the relative coordinate of the two coalescing
particles, the first two terms are determined by the sin-
gularity of the corresponding part of the Coulomb
potential, up to an overall factor, and there is a remain-
der that vanishes more rapidly than linearly in the coor-
dinate. These two terms and the normalization constant
are all that we need from the initial-state wave function
(we also need information from the final state) in order
to determine the leading contribution in 1/p to high-
energy photoabsorption in any form.

In the final-state electron wave function, the situa-
tion is very similar, except that the normalization is not
affected by screening in the limit of high momenta.
According to [24–27], the wave function of a high-
energy continuum electron state of momentum p in the
vicinity of the Coulomb singularity of the IPA potential
is essentially of a Coulomb form. As shown in [27]
using the analytic perturbation theory, the corrections
to the Coulomb wave function due to screening in the
vicinity of the nucleus (r ! 1/a, where a = mZα char-
acterizes the unscreened nuclear charge) decrease with
the electron momentum as O(1/p2) relative to the Cou-
lomb functions. This means that in the vicinity of the
Coulomb singularity (r ! 1/a), the wave function rep-
resenting the outgoing electron of momentum p @ a
can be written, following [25, 27], as 

(8)

where cosϑ  =  · , the first term in the right-hand side
is the Coulomb term while the second term is the
remainder, which vanishes faster than 1/p (denoted by
1/p2 in O). The functional dependence of O is also
shown; the remainder contains all information on
screening, symbolized by the coefficients si character-
izing the small-distance behavior of the screened poten-
tial. According to the analytic perturbation theory [25,
27], an even more accurate continuum wave function of
the Coulomb shape is obtained in the region r ! 1/a by
shifting the electron momentum in Eq. (8) from p to pC ,
by an amount determined by the parameters of the
screened potential, and by replacing the normalization

 (if the momentum scale normalization is used) by

. However, although such a Coulomb func-

tion is more accurate, its error still decreases as 1/p2

with large momentum p. We therefore do not need it
here, but we use it in Section 8.

Ψp
–( ) r( ) N p

Ceip r⋅ F1 1 –i
a
p
--- 1 –ipr 1 ϑcos+( ), , 

 =

+ O
1

p2
-----; pr ϑ si,cos, 

  ,

p̂ r̂

N p
C

pc/ pN pC

C
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The result in Eq. (8) is important for our approach
because as we show below, it implies that the terms in
the partitioning of the final state around the coalescence
that contribute to the high-energy matrix element are
not affected by screening. We show this to the leading
order in 1/p, further simplifying fs in the partitioning of
Eq. (8). Because distances involved in the process are
r ~ 1/p and because we consider high energies for
which p @ mZα, while the wave functions are consid-
ered at fixed pr, the terms important for our discussion
here involve terms up to linear in the parameter mZα/p,
with further terms contributing to higher orders in 1/p.
We write

(9)

where O includes all contributions of the order a2/p2

and higher order contributions from the full Coulomb
function in Eq. (8) and

(10)

determines all contributions on the order of a/p to the
full Coulomb wave function for pr ~ 1. Here, Γ is a
counterclockwise-oriented closed contour encircling
the cut [0, 1]. By inserting Eqs. (9) and (7) in Eq. (3),
we obtain a series of integrals of functions that contain
powers of r, the g(–) function, and angular functions.
The function g(–)(iξ) is needed in calculating the lead-
ing contribution to the high-energy matrix element in
general. It contains the p-dependence through pr, which
may appear undesirable at first sight if we want to view
this high-energy matrix element as an FT. It follows
from explicit calculations, however, that there is no
additional p-dependence in an FT integral also involv-
ing g(–) function despite the p-dependence of the g(–)

function.
The factor exp(–εr) is introduced in order to achieve

a convergent integration of each term in the series; after
the integration is performed, the limit ε  0 is taken.
As noted in Section 2, this procedure is consistent with
the definition of the FT of generalized functions [13].
For the AFT theorem (and, we also assume, for the AFT
involving the g(–) function), we must understand the sin-
gularities of the integrand. The singularity properties of
the wave functions are immediately identifiable in these
series, which involve powers of r and angular functions
such as powers of  ·  = cosϑ  and spherical harmon-

Ψp
–( ) r( ) N p

Ceip r⋅ 1 i
a
p
---g –( ) i pr p r⋅+( )( )–=

+ O
1

p2
-----; pr ϑ si,cos, 

  ,

g –( ) iξ( )
1

2πi
-------- e iξ t– t 1–

t
---------- 

  td
t
----ln

Γ
∫°–=

=  e iξ t– 1–( ) td
t
----

0

1

∫

p̂ r̂
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ics. For example, r and cosϑ  are singular at the origin
(as functions of x, y, and z), but their product is not
(rcosϑ  = z), nor are their squares (we also note that

rl  is regular).

We see in what follows that the leading contribution
to the high-energy matrix element can be obtained in
any form using only the first two terms in fs of the
respective partitioning of the initial and final state in
Eqs. (7) and (9), while neglecting some of these first
two terms may lead to erroneous results in some forms.
Higher order terms in the expansion give higher order
contributions in 1/p, as is explained below and is dem-
onstrated using simple examples in Sections 4 and 5. To
the leading order in 1/p, the form-independent high-
energy matrix element for photoabsorption in an IPA
model is obtained from

(11)

where I(r) can take forms like Eqs. (4)–(6), which also
contain different powers of r and angular functions.

Expression (11) is a form-independent term that
gives the leading order in 1/p for large p. We see from
Eq. (11) that the only difference from the purely Cou-
lomb case is in the initial-state normalization, which
depends on the IPA potential. All other terms are deter-
mined by the Coulomb singularity. Therefore, in an IPA
model with a Coulomb singularity, information about
screening persists at high energies only in the initial-
state normalization. This behavior for high-energy pho-
toabsorption in an IPA potential is known [26], but it is
just one aspect of the persistence of the electron–elec-
tron interaction in high-energy photoabsorption, dis-
cussed within the AFT approach for two-electron atoms
in [2].

In a matrix-element form, in which the interaction
operator is regular (such as the V- and L-form, to be

denoted by  and ) rather than singular (as in the

A-form, ), the contribution from the term in the inte-
grand involving the first terms of the simple functions fs

of both the partitionings of Ψi and of Φ(–) vanishes for
any l (while in the A-form, this term makes the leading
nonvanishing contribution). The leading nonvanishing
contributions in such forms (L or V) involve the product
of the first term from Φ(–) (which is regular, to be
denoted as Rf) with the second term in Ψi (singular, Si)
and the product of the second term from Φ(–) (singular,
Sf) with the first term in Ψi (regular, Ri). These two con-
tributions are of the same order in 1/p. In summary, in
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the leading order in 1/p, we obtain the nonvanishing
contribution from

(12)

We explicitly evaluate Eq. (11) for an H-like poten-
tial in the next two sections, and we discuss our lead-
ing-order results further, comparing them with the
Born-approximation results in different forms. The two
approaches must of course agree. We note that the
results in Eqs. (11) and (12) reflect the importance of
the singularity region. This means that if one wants to
improve results, one needs to partition functions in
terms of functions that better describe the behavior in
the vicinity of the singularity. (This is only one of the
points of distinction from a perturbative approach, e.g.,
the Born expansion. The Born expansion gives the
same weight to all regions, while the AFT approach
tells us that the singularity region is important for high-
energy photoabsorption.) Partitioning of the wave func-
tions in terms of functions that are more accurate in the
vicinity of the singularity provides more accurate
results. The results in Section 8, for example, are
obtained using partitioning in terms of Coulomb func-
tions (which include the e–N interaction to all orders).

The integrals involved in evaluating Eq. (11) are
elementary and are of two types. The integrals that
involve the first term in the square brackets from the
final state and powers of r and products of spherical
harmonics from the e–γ interaction and the initial
state5 are given by

(13)

where

(14)

5 These products of spherical harmonics can be combined into

one .
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and PL(x) is the Legendre polynomial. The integrals of
the second type, involving g(–)(i(pr + p · r)) from the
final state and powers of r and products of spherical
harmonics from the e–γ interaction and the initial state,
are given by

(15)

where

(16)

In performing the radial integration in Eq. (15), we used
the integral form (the second form in Eq. (10)) of
g(−)(i(pr + p · r)). The integrations over x in Eqs. (14)
and (16) are elementary, and we evaluate them for spe-
cific L in Sections 4 and 5.

Expressions (13) and (15) show how higher powers
in r lead to higher powers in 1/p. We note that while J2
gives a nonzero result for any n and L (because g con-
tains both regular and irregular terms), J1 is zero for n

and L for which rn  is regular, in accordance with the
AFT theorem. Therefore, depending on the form used,
at least one of the two first terms in the fs functions of
electron states makes a contribution to the leading order
of the matrix element, while all further terms beyond
the first two give higher order contributions.

4. THE SIMPLEST CASE: 
GROUND STATE IONIZATION 

OF AN H-LIKE ATOM

We now discuss how the leading contribution to the
matrix element is obtained in three forms in Eqs. (4)–(6),
in the simple and familiar case of photoionization of the
ground state of an H-like atom with retardation
neglected.

When we neglect retardation and use the nuclear
Coulomb potential, the A-, V-, and L-forms of the
matrix element are obtained using

(17)
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for the interaction operators, where ω is the photon
energy and eeee is the photon polarization. The V- and
L-forms of the interaction operator are regular, but the
A-form is not, because it was obtained by taking the
gradient of the potential. We note that the A-form is
irregular at the origin both because it is divergent and
because its value near the origin depends on the direc-
tion of approach.

As we have seen, the large-p asymptotic behavior of
the FT of a slowly varying function of r is determined
by its behavior near the coalescence point; it only
depends on the singular parts of the function in the
small-r limit. We therefore begin by partitioning the

functions Ψi(r) and  around the coalescence
point r = 0 (the only singular point here). We write

(18)

If we proceed as described in the previous section,
we obtain the familiar high-energy expression, which is
usually obtained in the V-form by assuming that the
energetic outgoing electron can be regarded free and
can be represented by a plane wave [28–30]. However,
in our procedure, we must be more careful and must not
make such an assumption, which is incorrect in general
(e.g., for non-s-states or even for s-states in the
L-form).

Substituting Eqs. (18) and (17) in the matrix ele-
ment in Eq. (3), we obtain a series of integrals involving
powers of r and powers of cosϑ . (We choose the p
direction as the z axis in this integration, and only func-
tions of cosϑ  therefore appear). Applying eeee · ∇Ψ i = e ·

(–a + a2r + …), we obtain integrals of the two types
in Eqs. (14) and (16). The integral involving the first

term from fs of the partitioning of  and terms from
the partitioning of Ψi is [1]

(19)

We note that the zero result for odd n > –1 follows
from the AFT theorem because the integrand function
is not singular; for even n and for n = – 1, the integrand
function is singular. Integrals involving the term

g(−)(pr, cosϑ) in the partitioning of  are easily per-
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formed using the integral representation in Eq. (10).
We obtain [1]

(20)

where

for even n ≥ 0 and

for odd n > 0, D–2 = iπ – 2, and D–1 = –π2/2 – iπ – 2. In
both Eqs. (19) and (20), the p-dependence of the results
is seen by inspection, resulting from the nature of the
scaling in pr. Equation (19) shows that higher powers in
r lead to higher powers in 1/p, but nonvanishing contri-
butions come only from singular terms. We use this
behavior in identifying the leading contributions in 1/p
in our calculations. In the partitioning of the final-state
wave function in Eq. (18), the first term is of course reg-
ular, while the second term (g(–)) is singular. The same
is true for the initial state, not only for this s-state, but
for any state with angular momentum l for which the
first terms of fs in the partitioning around r = 0 are

We further note that in the case of an s-state, the con-
tributions from the first term of Ψ (which is then a con-
stant) vanish in the V-form because of the derivative in
the interaction operator eeee · ∇ . For non-s-states, there are
nonvanishing contributions from this first term (when
multiplied with g from Φ(–)), which must be taken into
account in order to obtain the correct high-energy
matrix element, which would be missing if a continuum
plane-wave had been assumed (neglecting the terms
in g).

Therefore, in the V-form for the s-state case, the
leading contribution involves only the first term in Φ
and the second term in the partitioning of the initial
state Ψ, justifying the usual calculation involving the
plane wave approximation for the final state. Using
Eq. (19), we obtain the familiar result for s-state ioniza-
tion neglecting retardation (dipole approximation),

(21)
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We now show that we obtain the same result using
the same procedure in the L-form. Here, the singularity
of the final state also contributes, however, and an
incorrect result is obtained if a plane wave is assumed
to provide an adequate description of the energetic elec-
tron. In terms of our approach, such an assumption
would imply taking the term in the integrand involving
the first term from the partitioning of Φ and the second
term from the partitioning of Ψ. This contribution is

(we have put ω = p2/2m), which is twice the correct
result in Eq. (21). However, as we have already
explained, we must include all terms contributing to the
same power in 1/p. We must therefore include the term
in the integrand that involves the second term g(–) from
Φ– and the first term from Ψi . This gives the contribu-
tion

The sum of the two terms gives the correct high-energy
limit, Eq. (21), showing that the L-form and the V-form
indeed agree.

Finally, we can calculate the photoeffect matrix ele-
ment in the A-form using the same procedures. As we
have already remarked, the electron–photon interaction
operator IA , Eq. (17), is singular at the origin in this
form, with a singularity arising from the singularity of
the potential. The leading contribution to the matrix
element in Eq. (3) in the A-form comes from the first
terms in the partitioning of Φ(–) and Ψi only (a term in
the integrand that did not contribute in the L- and
V-form due to its regularity, not only for the s-state
case, but for any l). All other terms contribute with
higher powers an 1/p. For the s-state, the result in the A-
form is easily evaluated with the help of Eq. (19) for
n = –2, again giving the same result, i.e., Eq. (21). (We
note that in the A-form, the next-to-leading term in 1/p
can also be obtained without referring to screening; it
involves g(–) or ar. We use this fact in Section 8 in dis-
cussing convergence toward the high-energy limit.)

5. BEYOND s-STATES

We now discuss non-s-states, staying within our
simple H-like model without retardation and building
on the general features already encountered in the
s-state case. We again utilize the AFT theorem, identi-
fying the singular part of the integrand function and
evaluating the dominant contributions via the partition-
ing of the bound state in Eq. (7) and the partitioning of
the final state in Eq. (9) around the electron–nucleus
coalescence. The required integrals are given in
Eqs. (13) and (14). Now, however, a plane wave does
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not adequately describe the fast outgoing electron,
except in the A-form, in which the electron–photon
interaction provides the needed singular behavior for
the integrand function.

The leading contribution in 1/p to the high-energy
photoabsorption matrix element M in Eq. (3), which in
the A-form is obtained by taking the leading, regular
terms in the partitioning of the initial and final electron
states, is

(22)

The remaining angular integration involves only ele-
mentary integrals (13). For l = 1, the case that we dis-
cuss below in other forms for illustration, Eq. (22) gives

(23)

(For simplicity, expression (22) is obtained with the z
axes taken in the direction of . Rotation to fixed coor-
dinates must be made in integrating over electron
angles.) We note that the part M0 of the matrix element
M is obtained in the A-form using plane waves. In other
forms, the calculation of M0 requires higher order (sin-
gular) terms from both the initial and final states in gen-
eral. We therefore do not call M0 the first (plane-wave)
Born approximation result, because it is the first Born
approximation only in the A-form and is a higher order
Born result in other forms in general.

While a plane wave is sufficient for an initial s-state
in the V-form, this is not true for l > 0, as we demon-
strate. With the V-form, it is convenient to express eeee ·
∇Ψ i as

(24)

where 〈1, ν; l, m|L, M〉  are the Clebsch–Gordan coeffi-
cients. For l > 0, the term with the lowest power in r in
the partitioning of the function in Eq. (24) around the
coalescence (r = 0) is regular and it comes from the sec-
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ond term of Eq. (24). Therefore, for the L-form, the
term g(–) from the final-state function Φ– also contrib-
utes to the lowest order. The exception, for the V-form,
is the s-state, as we saw in the previous section, because
the second term in Eq. (24) it is zero and the lowest
power in r is singular for l = 0.

For illustration, we consider the initial l = 1 case.
Inserting the expression in Eq. (24) for l = 1, using a lin-
ear polynomial in the partitioning around the coales-
cence R1 = Nir[1 – (a/2)r + O(r2)], including contribu-
tions from the g(–) term, and performing the integration
by choosing the direction of p as the z axis, we obtain
the matrix element in the V-form as

(25)

which coincides with the result obtained in the A-form,
Eq. (22). Assuming that a plane wave is an adequate
representation of the fast electron wave function and
therefore neglecting the contribution from the final
state singularity, one would obtain a nonzero result (in
the chosen frame, where p is directed along the z axes)
only for the angular momentum projection m = 0, and
even that result would be erroneous by the factor 2. The
contribution to the matrix element in Eq. (25) coming

from the g function part is –8πiaNi (eeee)/p4.

In both the V- and L-forms, the interaction of the
outgoing electron with the potential (the final-state
interaction) contributes for any l > 0. In contrast, in the
A-form, the transition operator is singular and only the
leading terms (the lowest powers in r) in both the initial
and final states are needed for any l to obtain the correct
leading contribution.

6. SCREENED POTENTIALS

We now demonstrate that the previous results are
sufficient to determine the asymptotic behavior of non-
retarded photoabsorption in a general central potential
to the leading order in 1/p. The entire previous discus-
sion, although given for a nuclear point-Coulomb
potential model, is in fact valid for a general IPA poten-
tial that has a singularity of the Coulomb potential at
the nucleus. Our discussion relied on the behavior of
wave functions and interactions at this singularity. For
the leading terms in the partitionings that we utilized,
these behaviors are the same for an IPA potential as
long as it is Coulomb at the singularity. To see the
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effects of the difference between an IPA potential (with
the Coulomb singularity) and a pure Coulomb poten-
tial, we consider a potential energy of the type V(r) =
−(Zα/r)S(r), where S(r) is a screening function that
behaves as S(r) = (1 + s1r + s2r2 + …) for small r, as
assumed in Section 3.

The interaction operators in the L- and V-forms are
independent of the potential. In the A-form, we obtain

(26)

The partitioning of  around the coalescence gives

(27)

We note that the term involving s2 in Eq. (27), which is
regular, contributes three more powers relative to the
first term. In contrast, the first term from wave func-
tions involving screening contribute two more powers
in 1/p.

We thus conclude that in the leading order, the same
expression for photoionization at high energies is
obtained in the IPA potential and in the Coulomb case
(in Section 8, we show that this is in fact true in the first

two orders). The normalization factors  are differ-
ent, however, and IPA predictions therefore differ from
the purely Coulomb-case prediction by these factors.

7. RETARDATION AND RELATIVITY

We now discuss the inclusion of retardation. This
changes the forms of the interaction operators. In the
V-form, the change is simple: the retarded interaction is
IV = –iexp(ik · r)eeee · ∇ , where k is the photon momen-
tum. In the L- and A-forms, obtained by applying com-
mutator relations to the V-form, the momentum k also
appears in factors multiplying exp(ik · r), as can be seen
from Eqs. (4)–(6). In evaluating the integrals, we need
to specify how to deal with the photon retardation oscil-
lating term exp(ik · r) in the e–γ interaction I(r). One
way, particularly if retardation to a certain order in k is
considered, is to expand exp(ik · r) in powers of k · r.
Another way of dealing with exp(ik · r) is to attach it to
the fast oscillating term exp(–ip · r) and consider the FT
in the ∆ = p – k, because p – k is large in the nonrela-
tivistic region whenever p is large, and our arguments
using the AFT theorem in the asymptotic region apply.
We note here that in the IPA single ionization from the
ground state, retardation effects make a contribution on
the relative order of (v /c)2 [31, 32], where v  is the
velocity of the outgoing electron, which is on the same
order as the relativistic contribution. This fact is used in
the case of a two-electron atom [1] to argue that retar-
dation effects make the same relative contribution in
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single ionization and in double ionization in the region,
where the shake-off mechanism is dominant, due to
factorization of the matrix element into a (retardation-
independent) correlation term and (generally, retarda-
tion-dependent) absorption term.

We however note that at relativistic energies, when
p ~ k, neither expansion in k nor the assumption that ∆
is large (in comparison to m) is generally valid. It is still
true in certain kinematic situations, but these are not
dominant for the photoabsorption processes at those
energies. Namely, at relativistic energies (and as ω 
∞), a region around the nucleus of the Compton wave-
length distances continues to contribute to photoab-
sorption, for arbitrarily high energies. This implies that
although it is a relatively small region, the final state
wave function in the whole region, not just at the point
of coalescence, is needed, and certain knowledge to all
orders in a is required [22]. Under the analyticity
assumption, the region is characterized by an expansion
around the origin, and expansion of the matrix element
as a series in a/∆ is still possible. The plane-wave
approximation is no longer valid in any form, but parti-
tioning in terms of Coulomb functions is fully justified.

8. CONVERGENCE OF THE CROSS SECTIONS 
TO THE HIGH-ENERGY LIMIT: 

THE STOBBE FACTOR

Here, we discuss the rate of convergence toward the
exact IPA high-energy limit for the cross sections that
we have obtained using the asymptotic behavior of
matrix element (11). The ratio of the first correction to
the leading contribution is on the order of 1/p, and it
gives a very slow convergence of the matrix elements
and cross sections. In fact, it converges as πa/p ~

π , where EK is the K-shell binding energy. We
note that a slowly converging factor (i.e., converging as
πa/p relative to the asymptotic constant value) exists in
the final-state normalization, which is

(28)

However, there are also other Coulomb terms with this
slow convergence (e.g., the first correction, which is
unaffected by screening). In fact, if partitioning of the
initial state was performed in terms of polynomials, a
similar slowly converging term would come from each
term of the polynomial. Because of this, and also
because of the possibility of large Z, we include the e−N
interaction completely in both the initial and final
states, by partitioning the wave functions in the vicinity
of the singularity in terms of Coulomb functions. For-
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mally, this means that we write the initial-state wave
function as

(29)

where λ2 ( ) is the coefficient multiplying the third
term in a polynomial partitioning of the IPA (Coulomb)

wave function (7),  is a normalized Coulomb
wave function with the same quantum numbers as

, and O[(  – λ2)rl + 2] represents the differ-
ence between the Coulomb and screened third term in
polynomial partitioning of the wave functions and all
higher order differences. The terms represented by O
are small, as we discuss below.

For the final state, we take the Coulomb part of
Eq. (8), but with a shifted energy and with the corrected
normalization [25, 27]. According to [25, 27], as
already mentioned, the exact IPA wave function is Cou-
lomb in the vicinity of the e−N singularity. A suffi-
ciently accurate function (containing the dominant
terms on the relative order of 1/p2) is obtained if the
shifted momentum pC is used instead of the true
momentum p. The momentum p characterizes the elec-
tron at large distances from the nucleus. If we want to
describe the screened wave function in the vicinity of
the nucleus by a Coulomb function, we must use,
according to [25, 27], the shifted momentum pC. In
addition, if the function is normalized on the momen-
tum scale, the normalization is affected and is given by

 = . The final state is therefore given by

(30)

where the shifted momentum pC is [25]

(31)

with  ( ) denoting the hydrogen-like (IPA) bind-
ing energy of the state that is ionized.

We arrive at the following approximation for the
IPA matrix element:

(32)
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From Eq. (32), it immediately follows that at high ener-
gies,

(33)

where dσC is the differential cross section obtained
from Coulomb H-like wave functions calculated at the
shifted momentum pC and O indicates how rapidly the
error decreases. (The momentum p from the phase
space cancels p from the factor pC/p, leaving only the
shifted momentum pC in the right-hand side of
Eq. (33).) The error in Eq. (33) is determined by the
errors in the wave functions. According to the results
in [25], the difference between screened and Coulomb
functions is very small when unnormalized functions
(with the same first coefficient in the expansion taken)
are compared; for potentials with a polynomial expan-
sion, this difference decreases as 1/p2 for small r.6 This
implies that dominant terms on the relative order of 1/p2

are collected. We illustrate the fast convergence of this
procedure for the cases involving low-Z atoms (He) and
outer shells of higher Z atoms (the L-state of Ne).

For Coulomb states, the integrals in Eq. (32) can be
evaluated analytically. As illustrative examples, we

6 We note that the use of a potential that cannot be expanded in
integral powers of r might not give a small correction that van-
ishes as 1/p2, as given in Eq. (33). For example, the Thomas–
Fermi potential (see footnote 4) leads to a correction that van-
ishes slower, i.e., as 1/p3/2. However, the Thomas–Fermi model
fails in the vicinity of the nucleus (which is the region determin-
ing high-energy photoabsorption), where it predicts too large an
electron density, see, e.g., B.G. Englert and J. Schwinger, Phys.
Rev. A 29, 2331 (1984).

dσIPA Ni
IPA

Ni
C

-----------
 
 
 

2

σC O
1

p2
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Table 1.  The total cross sections σK for photoabsorption
from the K-shell of He (Z = 2) obtained using Eq. (33) in com-

parison with the full IPA calculations ; exp(–aπ/p) is the
Stobbe factor

ω, keV
σ1s , b

Eq. (33)
, b

Ref. [33]
exp( )

1 396 402 0.542

1.5 107 109 0.596

2 41.7 43.2 0.633

3 10.9 11.2 0.682

4 4.20 4.23 0.715

5 1.99 2.03 0.739

6 1.08 1.10 0.757

8 0.408 0.411 0.784

σSc
K

σSc
K

–
aπ
p

------
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have the cross section per electron for the electron ion-
ization from the 1s, 2s, and 2p shells [15]

(34)

(35)

(36)

To illustrate the meaning of Eq. (33), we apply it to the
calculation of high-energy photoabsorption and com-
pare the result with those obtained within the full Fock-
Slater IPA calculations. Our comparison with relativis-
tic calculations is fully justified for low-Z atoms and for
s-shells of higher Z atoms, for which retardation and
relativistic contributions cancel to a high degree even at
higher energies. However, for our illustrative purposes,
we also show p-state results for Ne for relatively small
photon energies.

In Table 1, we show the total cross section for
K-shell ionization obtained from Eq. (33) for Z = 2

using (Ni/ )2 = 0.7358 (which indicates large screen-
ing) [33] and compare it with the results of the full IPA
calculations from [33]. As we see from Table 1, the
agreement between the high-energy result in Eq. (33)
and the full IPA calculations is already very good at
1 keV, despite the large screening; in the energy range
1–2 keV, the disagreement is around 1–2%. This is to be
compared with the lowest order result, which gives a
disagreement of about 50% in the same energy range,
as indicated in Table 1 by the value of the factor
exp(−aπ/p) (see the explanation for this factor below).

For the L-state of Ne, screening is even larger

(Ni/ )2 = 0.4386 for the 2s state and (Ni/ )2 =
0.2277 for 2p). In Table 2, we show the total cross sec-
tion for the 2s and 2p states of Ne and compare them

σ1s
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Table 2.  The total cross sections σ2s and σ2p for photoabsorption from the respective subshells 2s and 2p of Ne (Z = 10)

obtained using Eq. (33) in comparison with the full IPA calculations  and ; exp(–aπ/p) is the Stobbe factor

ω, keV
σ2s , b

Eq. (33)
, b

Ref. [33]

σ2p , b
Eq. (33)

, b

Ref. [33]
exp( )

1 11276 10600 5629 5416 0.039

2 1932 1895 492 495 0.090

4 289 290 37.4 38.9 0.174

8 38.5 39.1 2.51 2.65 0.286

10 19.7 20.0 1.030 1.092 0.325

15 5.67 5.77 0.1987 0.2144 0.398

20 2.309 2.353 0.0607 0.0669 0.449

30 0.637 0.651 0.0112 0.0128 0.519

50 0.122 0.125 0.00129 0.00159 0.600

σSc
2s σSc

2 p

σSc
2s σSc

2 p

–
aπ
p

------
with the full relativistic IPA calculations. For the 2s
state, Eq. (33) gives results that converge to the full IPA
result very quickly; the disagreement is around 6% at
1 keV and is less than 1% at 4 keV. Similarly, the results
in Eq. (33) for the 2p state converge rapidly to IPA
results in the same energy range. This very good agree-
ment between the results in Eq. (33) and the full IPA
results already at relatively small energies, even for Ne,
can be explained by the properties of IPA wave func-
tions hi the vicinity of the Coulomb e–N singularity.
Namely, at the photon energy region 1–2 keV, the dis-
tances involved (distances around the singularity at
which the momentum is transferred between the elec-
tron and the nucleus) are within the K-shell orbit for Ne,
and well within the K-shell orbit for He, where the
screening is small. Therefore, the shapes of the wave
functions at these distances are basically Coulomb.
This is a very important point that we use and general-
ize in our approach. The high-energy photoabsorption
is essentially of the Coulomb type. This means that the
high-energy behavior of cross sections (we here mean
the keV range, as in our examples) is determined by the
properties of functions near the singularity, which is of
the Coulomb type. The screening effects enter these
IPA examples, of course, but in a simple way as a con-
stant factor. By straightforward generalization of these
findings in high-energy many-body calculations, we
can significantly simplify calculations involving e–e
correlation, as shown in [1].

Another important point that we want to make in
this section, relevant for more complex systems [1, 34],
is the relatively fast convergence of the ratios of photo-
absorption cross sections to the results predicted by
lowest order results (the Born approximation results in
the A-form). We first note that the slowest converging
factor in our examples in Eqs. (34)–(36) is exp(–πa/p).
In partitioning wave functions around the coalescence,
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
we obtain this factor by collecting all Coulomb interac-
tion in the final state for each term in the partitioning of
the initial state. The factor is therefore present for any
state. The existence of a common slowly converging
factor provides fast converging ratios of the cross sec-
tions. Further, the ratios of the cross sections for ioniza-
tion from subshells of the same shell converge particu-
larly fast, as we illustrate using our examples for the
L-shell, Eqs. (35) and (36). In our examples, the ratio

(37)

is a nearly linear function of the photon energy ω in
the keV range. If we had used the lowest-order result in
1/p, we would obtain σ2s/σ2p ~ ω, which is very similar
to the exact result (in the keV range for Ne, for exam-
ple), although the first-order results for cross sections
differ by an order of magnitude from the exact results
in this energy range, as indicated roughly by the factor
exp(–πa/p) in Table 2.

9. CONCLUSIONS

We have illustrated the AFT nonrelativistic
approach to atomic processes by studying high-energy
photoionization (with incident photon energies ω ! m)
of an electron bound in a central potential. We have
demonstrated that in this case, high-energy ionization
by photoabsorption can be understood in terms of the
singularities of the Hamiltonian, which also illustrates
more general situations. Our discussion did not depend
on the choice of the form [length (L), velocity (V),
acceleration (A), etc.] of the photoionization matrix
element.

Because photoabsorption at high photon energies
requires at least one large outgoing electron momen-

σ2s

σ2 p

-------- ω a2

12m
---------- O

a2

ω
----- 

 + +∼
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tum, we have argued that the analysis is equivalent to
the analysis of the asymptotic form of the FT. Based on
the FT theory, we have shown that a slow asymptotic
decrease of the photoabsorption matrix element for a
large momentum p (such as 1/pn) is related to singular-
ities of the e–N potentials. We have demonstrated how
this large-momentum behavior can be obtained from
the behavior of wave functions and interactions around
singularities. With this approach, we can identify the
dominant terms and avoid omitting any of them.

We have applied our approach to study the high-
energy total cross section for ionization in a central
potential with the Coulomb e–N singularity. We have
demonstrated that the approach and the final results are
form- (gage-) independent. However, the dependence
of the final results on the quality of the initial and final
state wave functions in the vicinity of a singularity var-
ies with form (gage). We have found that the accelera-
tion form, which places the singularities of the Hamil-
tonian in the e–γ interaction, has the smallest require-
ment on the quality of wave functions at the singularity,
in the situations considered. We have shown that in the
A-form, the leading contribution to the photoabsorp-
tion matrix element is the lowest order Born result. In
the L- and V-forms, it is generally a higher order Born
result, with the exception of the V-form in the ground
state ionization, where it is also the lowest order Born
result. This means that in general (except in the
A-form), the fast electron cannot be represented by a
plane wave, even in the high-energy limit. For this lead-
ing contribution to the matrix element, the A-form
requires only the proper normalization of the initial
state at the e–N singularity. In contrast, the L- and
V-forms require knowledge of both the normalization
and slope of the wave functions at the singularities.

We have discussed slow convergence of the cross
sections to the high-energy limit, considering the ion-
ization of an electron in a screened potential. We have
demonstrated that by collecting all Coulomb terms in
the vicinity of the e–N singularity, we also collect the
dominant terms up to the relative order 1/p2 and provide
fast convergence of the cross sections. Although the
neglected terms in the matrix element are still of the rel-
ative order 1/p2, they are negligible. Thus, we have
demonstrated that the high-energy behavior of cross
sections (in the keV range, as in our examples) is deter-
mined by the properties of functions near the singular-
ity, which is of the Coulomb type. The screening effects
enter through normalization factors in the IPA cases.
We have also demonstrated that the only slowly con-
verging factor (the Stobbe factor exp(–πa/p), which
converges as 1/p, while all other terms converge faster)
is common for ionization from all states. The existence
of a common slowly converging factor provides fast
converging ratios of the cross sections.
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Abstract—Different theoretical approaches to the famous two-state Landau–Zener problem are briefly dis-
cussed. Apart from traditional methods of the adiabatic perturbation theory, the Born–Oppenheimer approxi-
mation with geometric phase effects, the two-level approach, and the momentum space representation, the
problem is treated semiclassically in the coordinate space. In the framework of the instanton approach, we
present a full and unified description of the 1D Landau–Zener problem of level crossing. The method enables
us to accurately treat all four transition points (appearing at two-level crossing), while the standard WKB
approach takes only two of them into account. The latter approximation is adequate for calculating the transition
probability or for studying scattering processes, but it does not work in finding the corresponding chemical reac-
tion rates, in which all four transition points can often be relevant in the typical range of parameters. Applica-
tions of the method and of the results may concern various systems in physics, chemistry, and biology. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The title of this paper might sound perplexing at first
sight. What else can be said about the Landau–Zener
(LZ) problem after the numerous descriptions in both
research and textbook literature? However, although
theoretical (and experimental) investigations of differ-
ent LZ systems began more than 70 years ago, it still
remains an active area of research. Various approaches
to the LZ problem that have appeared in the literature
(see, e.g., the list of publications [1–67], which is by no
means complete) are not fully consistent with each
other. We therefore think it important to discuss all
these approaches in a single paper. We study the 1D LZ
problem [1] of quantum mechanical transitions
between the levels of a two-level system at the avoided
level crossing. In the LZ theory, a quantum system is
placed in a slowly varying external field. Naturally, the
system then adiabatically follows the variation of an
initially prepared discrete state until its time-dependent
energy level crosses another level. Near the crossing
point, the adiabaticity condition is evidently violated
(because the semiclassical behavior is violated near
turning points). The slow variation of the perturbation
implies that the duration of the transition process is
very long, and therefore the change in the action during
this time is great. In this sense, the LZ problem is a

¶This article was submitted by the authors in English.
1063-7761/03/9702- $24.00 © 20232
semiclassical one (but with respect to time instead of a
coordinate in the standard semiclassical problems).

It is well known that the problem presents the most
basic model of nonadiabatic transitions that play a very
important role in many fields of physics, chemistry, and
biology. It is therefore not surprising that numerous
monographs and a great number of papers have been
devoted to this subject. In the literature, there are,
roughly speaking, three approaches to semiclassical
modeling of the LZ problem:

(i) the two-level system approach [2–8];
(ii) the adiabatic perturbation theory [9–21] (also

see review paper [6]);
(iii) the momentum space representation [22–25].
Because different approaches to the LZ problem

have been proposed, one of the immediate motivations
of the present paper is to develop a uniform and system-
atic procedure for handling this problem. We show that
the three methods listed above are equivalent for treat-
ing tunneling and overbarrier regions of parameters,
and none of them can be applied, to the intermediate
region of parameters where all four of the states
involved in the LZ system are relevant. To study this
region is our main objective in this paper. We also
address the so-called connection matrices. In the stan-
dard textbook treatment of the LZ problem, only transi-
tion probabilities are calculated and expressed in terms
003 MAIK “Nauka/Interperiodica”
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of the genuine two-level LZ formula successively
applied at each diabatic level intersection. Evidently,
such a procedure is an approximation to the general LZ
problem, which includes at least four energy levels
even in the simplest case. To solve many important
physical or chemical problems, one must find the 4 × 4
(not only 2 × 2) connection matrices relating these four
states.

While this paper is not intended as a comprehensive
review, we detail the key results of the standard WKB
and instanton approaches from our own research and
the literature within the context of different factors that
we feel are important in studying the LZ problem. Spe-
cifically, we focus in Section 2 on the Born–Oppenhe-
imer approximation, which is a benchmark in testing
semiclassical approximations. In Section 3, we lay the
foundation of treating the LZ problem, the adiabatic
perturbation theory. Section 4 is devoted to the general-
ization of the instanton method, which enables us to
investigate the LZ problem in the momentum space. We
show that for a potential that is linear in a 1D coordinate
under consideration, the WKB semiclassical wave
functions in the momentum space coincide with the
instanton wave functions. For the quadratically approx-
imated (parabolic) potentials, the instanton wave func-
tions are exact and have no singularities (unlike the
WKB wave functions; we recall that relations of the
same type hold for the WKB and instanton wave func-
tions in the coordinate space [26–29]).

We advocate the instanton approach in this paper,
but it is worth noting that many important results have
nevertheless been obtained in the framework of the
WKB approach [1–8]. For example, one very efficient
technique (the so-called propagator method) was pro-
posed and elaborated by Miller and collaborators [34–36]
(also see [26]). This approach uses semiclassic propa-
gators (of the Van Vleck–Gutzwiller type), with the
contribution coming from the contour around a com-
plex turning point automatically taken into account in
terms of the general WKB formalism. The accuracy of
the WKB method can be improved considerably [2, 5,
30, 31] (more recent references on the so-called
Laplace contour integration can also be found in [32])
by the appropriate choice of the integration path around
the turning point. This method appears to be quite accu-
rate for the tunneling and overbarrier regions, but
becomes inadequate in the intermediate energy region.
This has been overlooked in previous investigations
treating this region by a simple interpolation from the
tunneling region (with a monotonic decay of the transi-
tion probability) to the overbarrier region (with oscillat-
ing behavior).

In Section 5, we present all details of the LZ prob-
lem for two electronic states using the instanton
description of the LZ problem in the coordinate space.
The two basic second-order differential (Schrödinger)
equations that we consider are written in the so-called
diabatic state representation (i.e., in the basis of
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
“crossed” levels). Neglecting higher order spatial deriv-
atives, we find asymptotic solutions, and using the adi-
abatic–diabatic transformation, we match the solutions
in the intermediate region. The complete scattering
matrix for the LZ problem is derived in Section 6. In
Section 7, we derive the quantization rules for crossing
diabatic potentials and briefly discuss the application of
the results in some particular models of level crossings
that are relevant for the interpretation and description of
experimental data on the spectroscopy of nonrigid mol-
ecules, on inelastic atomic collisions [33], and nonradi-
ative transitions arising from “intersystem” crossings
of potential energy surfaces in the molecular spectros-
copy and chemical dynamics (see, e.g., [26] and refer-
ences therein). In Section 8, we draw our conclusions.

We consider only the 1D case in what follows. The
LZ problem for 1D potentials coupled to the thermal
bath of harmonic oscillators is shown to reduce to a cer-
tain renormalization of the Massey parameter, where
the longitudinal velocity entering the expression for
this parameter is decreased due to the coupling to trans-
verse oscillations (see [26] and references therein, and
also [66, 67] for more recent references). Of course, the
energy profile of any real system is characterized by a
multidimensional surface. However, it is often possible
to identify a reaction coordinate such that the energy
barrier between the initial and final states is minimized
along this specific direction, and the system can there-
fore be effectively treated as 1D. In certain systems, the
physical interpretation of the reaction coordinate is
immediate (e.g., the relative bond length in diatomic
molecules), but sometimes finding it is not an easy task
(if possible at all) because of the large number of pos-
sibilities involved. The latter (multidimensional) case
will be studied elsewhere. Unfortunately, the accuracy
of the WKB method near the top of the barrier is too
poor to make any numbers realistic, and this is one
more motivation to use a semiclassical formalism alter-
native to the WKB, namely, the extreme tunneling tra-
jectory or instanton technique.

2. BORN–OPPENHEIMER APPROXIMATION

It may be useful to illustrate the essential physics of
the LZ problem starting with a very well-known picture
corresponding to the Born–Oppenheimer approxima-
tion [1, 37]. It leads to the separation of nuclear and
electronic motions and is valid only because the elec-
trons are much lighter than the nuclei and therefore
move much faster. The small parameter of the Born–
Oppenheimer approximation is therefore given by

(2.1)

where me and m are electronic and nuclear masses,
respectively. On the other hand, the semiclassical

λ
me

m
------ 

 
1/4

 ! 1,=
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parameter is

(2.2)

where a is the characteristic length in the problem and
Ω ∝  m–1/2 is the characteristic nuclear vibration fre-
quency; therefore, γ ∝  λ–2. Important conclusions are
drawn from this simple fact. Indeed, the semiclassical
condition γ @ 1 can be satisfied by formally taking
"  0 or, equivalently, λ  0. This correspondence
allows us to apply either the Born–Oppenheimer or the
semiclassical approximation to the separation of scales
for nuclear and electronic motions on the same footing.

In the traditional Born–Oppenheimer approach,
solution Ψ to the full Schrödinger equation (including
the electronic Hamiltonian He depending on electronic
coordinates r and the nuclear Hamiltonian depending
on nuclear coordinates R) is given by an expansion over
the electronic Hamiltonian eigenfunctions φn ,

(2.3)

The electronic eigenvalues En depend on the nuclear
coordinates, and the expansion coefficients Φn(R) are
determined by the Born–Oppenheimer equations

(2.4)

where for m ≠ k,

(2.5)

and all the diagonal matrix elements Ann = 0.

From (2.4), we can find that in the electronic eigen-
state En , the nuclei move in the effective potential

(2.6)

and transitions between the electronic states n and m are
related to the nonadiabatic operator in the right-hand
side of (2.4). This simple observation allows us to
rewrite effective potential (2.6) as

(2.7)

From this seemingly trivial expression, we derive the
following important conclusions:

γ mΩa2

"
-------------- @ 1,=

Ψ Φn R( )φn r R,( ).
n

∑=

–
"

2

2m
-------∇ R

2 En R( )
"

2

2m
------- Ank Akn

k n≠
∑ E–+ + φn

=  –
"

2

2m
------- δnk∇ R iAnk–( ) δkm∇ R iAkm–( )φm,

k m n≠,
∑

Amk i φm ∇ Rφk〈 〉 ,=

Un R( ) En R( )
"

2

2m
------- Ank Akn,

k n≠
∑+=

Un R( ) En R( )=

–
"

2

2m
-------

φn ∇ RHe φm〈 〉 φm ∇ RHe φn〈 〉
En Em–( )2

---------------------------------------------------------------------.
m n≠
∑
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(i) corrections to En have the same order O(γ–2) as
the ratio of the nuclear kinetic energy to the potential;

(ii) off-diagonal matrix elements of the nonadiabatic
perturbation operator are also small (∝ O(γ–2)); this fact
is formulated as the so-called adiabatic theorem that
states that no transitions between unperturbed states
occur at adiabatic perturbations (λ  0).

Because the nonadiabatic effects are characterized
by the only small parameter, γ–1 (the semiclassical
parameter), they can be described in the framework of
semiclassical approaches (e.g., WKB or instanton
ones). But, we must bear in mind the main problem of
the Born–Oppenheimer method: the approximation
assumes that the electronic wave functions are real-val-
ued and form a complete basis, but it is impossible to
construct such a basis in the entire space, including
classically accessible and forbidden regions.

If the requirement of a real-valued basis is relaxed,
the diagonal matrix elements Ann ≠ 0 and the effective
adiabatic part of the Born–Oppenheimer Hamiltonian
takes the form

(2.8)

similarly to the Hamiltonian of a charged particle in the
magnetic field B ∝  |∇ R × Ann|. We can therefore change
the phases of the electronic and nuclear wave functions
as

(2.9)

by changing the “vector potential” appropriately,

(2.10)

Thus, we confront an important and, at times, mysteri-
ous concept of the geometric (or Berry) phase factor
that a quantum mechanical wave function acquires
upon a cyclic evolution [38–47]. Most characteristic of
the concept of the Berry phase is the existence of a con-
tinuous parameter space in which the state of the sys-
tem can travel along a closed path. In our case, the
phase is determined by a nonadiabatic interaction (for
more details related to the geometric phase for the
Born–Oppenheimer systems, see, e.g., review [48]).
This phenomenon (which originally manifested itself
as a certain extra phase shift appearing upon some
cyclic evolution of an external parameter) has been
generalized for the nonadiabatic, noncyclic, and non-
unitary cases [49, 50], although most of the Berry phase
applications concern systems undergoing adiabatic
evolution (see, e.g., review [51]). We also note that in
addition to the Berry phase, some higher order correc-
tions to the Born–Oppenheimer approximation also exist
(traditionally, and slightly misleadingly, called the geo-

Ĥn Un R( )
"

2

2m
------- ∇ R iAnn R( )–( )2,+=

φn φn iχn R( )( ),exp

Φn Φn iχn R( )–( )exp

Ann R( ) Ann R( ) ∇ Rχn R( ).+
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metric magnetism or deterministic friction, see [52]).
A practically useful application of the Berry phase con-
cept is the energy level displacements predicted in [53]
and observed by NMR [54].

The essential physics of these phenomena can be
illustrated as follows. There are two subsystems, fast
and slow. The fast subsystem acquires a Berry phase
because of the evolution of the slow subsystem. There
is a certain feedback effect of the geometric phase on
the slow subsystem. As a result, the latter is framed by
a gauge field affecting its evolution. The gauge field
produces additional (Lorentz-like and electric field–
like) forces that must be included into the classical
equation of motion. In the case of stochastic external
forces (e.g., from surrounding thermal fluctuation
media), the Berry phase produces some level broadening
for the fast subsystem. In the limit of low temperatures
and strong damping, the slow subsystem dynamics can
be described by equations of the Langevin type [55]. The
general message that we can learn from this fact is that
the geometric phases are sources of the dissipative pro-
cesses for LZ systems.

Thanks to its fundamental origin, this geometric
phase has attracted considerable theoretical and exper-
imental attention, but its experimentally observable
consequences have been scarce until now. Each oppor-
tunity to improve this situation is therefore worth try-
ing. In this respect, the Born–Oppenheimer geometric
phase provides a unique opportunity for observation of
the geometric phase because it must appear as a nona-
diabatic contribution to the standard Bohr–Sommerfeld
quantization rule

(2.11)

where  is the adiabatic action.

We note that care must be taken when |En(R) –
Em(R)| becomes small compared to the characteristic
nuclear oscillation energy "Ω. This means that the non-
adiabatic interaction energy cannot then be considered as
a small perturbation in adiabatic representation (2.4).
Fortunately, in the limit

we can start from the other limit with crossing weakly
coupled diabatic states and consider the adiabatic cou-
pling as a perturbation. To perform the procedure
explicitly, we then need the adiabatic–diabatic transfor-
mations

(2.12)

for the wave functions and

(2.13)

for the Hamiltonians, where (H, Φ) and  are the
adiabatic and diabatic representations, respectively; σy

is the corresponding Pauli matrix; and θ is the adia-

Sn
0 χn+ 2π",=

Sn
0

En R( ) Em R( )– "Ω,<

Φ̃ R( ) iθσy( )Φ R( )exp=

H̃ iθσy( )H iθσy–( )expexp=

H̃ Φ̃,( )
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batic–diabatic transformation parameter (the so-called
adiabatic angle).

To illustrate how this works, we consider two cou-
pled crossing effective electronic potentials U1(R) and
U2(R) (U12 is the coupling energy). The corresponding
adiabatic and diabatic Hamiltonians are

(2.14)

and

(2.15)

where σ1, 2, 3 are the Pauli matrices and the adiabatic
angle is chosen to eliminate the leading interaction term
between the adiabatic states,

(2.16)

The adiabatic–diabatic transformation can also be
brought to a more elegant form [16, 56]:

(2.17)

where  is the sought transformation matrix and the

matrix  ≡  was introduced above (see (2.5)). The
formal solution of Eq. (2.17) can be represented as a
contour integral:

(2.18)

where s0 and s are the initial and final points of the con-
tour. Solution (2.18) uniquely determines the transfor-

mation matrix  for a curl-free field ,

(2.19)

where the diagonal matrix  can be found from (2.17)
and is expressed in terms of the geometric phase factor
as

(2.20)

Relations (2.11) and (2.20) completely describe the
nonadiabatic transitions, the cornerstone of the LZ

H
"

2

2m
------- ∇ R( )2–

1
2
--- U1 U2+( )+=

+
1
2
--- U1 U2–( ) 2θ R( )( )cos U12 2θ R( )( )sin+ σ3

+
1
2
--- –

1
2
--- U1 U2–( ) 2θ R( )( ) U12 2θ R( )( )cos+sin σ1,

H̃
"

2

2m
------- ∇ R( )2–

1
2
--- U1 U2+( )+=

+
1
2
--- U1 U2–( )σ3U12σ1,

2θ R( )( )cos
U1 U2–

2U12
-------------------.=

∇ R i Â–( )T̂ 0,=

T̂

Â Ann

T̂ s( ) T̂ s0( ) Â s'( ) s'd

s0

s

∫–
 
 
 

,exp=

T̂ Â

T̂ t0( ) D̂T̂ 0( ),=

D̂

Dkn δkn iχk( ).exp=
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problem. In addition, (2.11) and (2.20) show that the
geometric Born–Oppenheimer phases occur from the
diabatic-potential crossing points and enter the quanti-
zation rules additively with contributions from the turn-
ing points. Therefore, our main conclusion in this sec-
tion is that nonadiabatic phenomena must (and can) be
included into the general scheme of the semiclassical
approach via the corresponding connection matrices [57]
(also see [29]) for the appropriate combinations of
crossing and turning points in the problem.

3. ADIABATIC PERTURBATION THEORY

It is almost common student’s wisdom nowadays
that any solution to the adiabatically time-dependent
Schrödinger equation can be represented as an expan-
sion over the complete set of stationary (time-indepen-
dent) eigenfunctions [1]. In the case under investigation
(two-level crossing for the electronic Hamiltonian
He(r, t)), this expansion is given by

(3.1)

where the wave functions φ1, 2 are stationary with
respect to nuclear motion. The time-dependent
Schrödinger equation can be exactly rewritten as two
first-order equations (with respect to time derivatives)
for c1 and c2,

(3.2)

where

(3.3)

are the matrix elements for the diabatic Hamiltonian.
The phase transformation

(3.4)

(see [6, 8, 10]) reduces (3.2) to the coupled first-order
equations

(3.5)

where

(3.6)

A slightly different phase transformation,

(3.7)

Ψ r t,( ) c1 t( )φ1 r( ) c2 t( )φ2 r( ),+=

i"
ċ1

ċ2 
 
  H̃11 H̃12

H̃21 H̃22 
 
  c1

c2 
 
 

,=

H̃kk' φk H̃ t( ) φk' , k k', 1 2,= =

ck t( ) ak t( )
i
"
--- H̃kk t( ) td∫– 

 exp=

i"ȧ1 H̃12a2 i Ω12 t( ) td∫ 
  ,exp=

i"ȧ2 H̃21a1 –i Ω12 t( ) td∫ 
  ,exp=

Ω12
1
"
--- H̃22 H̃11–( ).=

ck t( ) Φ̃k t( )
i

2"
------ H̃11 H̃22+( ) td∫ 

 exp=
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preserves the second-order Schrödinger-like form of

the equations for the diabatic functions ,

(3.8)

To clarify the mapping of this time-dependent perturba-
tion theory to the two-level crossing problem and the
Born–Oppenheimer approach described in Section 2,
we consider the two-state Born–Oppenheimer equa-
tions in the diabatic representation. From (2.15) for one
active space coordinate X, we have

(3.9)

and

(3.10)

If we can neglect the second-order derivatives

and replace the time derivative by vd/dX (where v  =

 is the velocity), the change of the variables

(3.11)

transforms the two Born–Oppenheimer equations (3.9)
and (3.10) into the two level-crossing equations (3.2)
for slow time-dependent perturbations. Obviously, we
recognize the standard semiclassical approach in this
procedure.

A mapping of the same kind can also be performed
for the adiabatic amplitudes C1, 2(t) that are related to
the diabatic amplitudes c1, 2(t) by the adiabatic–dia-
batic transformation matrix depending on the adiabatic
angle θ,

(3.12)

In the adiabatic basis, we have the set of the first-order
equations corresponding to (3.2),

(3.13)

Φ̃1 2,

"
2d2Φ̃1

t2d
------------

H̃11 H̃22–
2

----------------------- 
 

2
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+
i"
2
-----
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d
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–
"

2

2m
-------d2Φ̃1

dX2
------------ H̃11 E–( )Φ̃1+ H̃12Φ̃2=

–
"

2

2m
-------d2Φ̃2

dX2
------------ H̃22 E–( )Φ̃2+ H̃21Φ̃1.=

"
2

2m
-------d2Φ̃1 2,

dX2
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2E/m

Φ̃1 2, ik0X( )c1 2, , k0
2exp 2mE

"
2

-----------= =

C1 t( )

C2 t( ) 
 
  θcos θsin

θsin– θcos 
 
  c1 t( )

c2 t( ) 
 
 

.=

Ċ1

Ċ2 
 
  H11 iθ̇–

iθ̇ H22 
 
 
 

C1

C2 
 
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,=
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where the nonadiabatic coupling coefficient  can be
related to the off-diagonal operator A12 in (2.5) (or to
the geometric phase, see Section 2),

(3.14)

Transformation (3.11) allows us to reduce the
Born−Oppenheimer equations (for the nuclear wave
functions Φ1, 2 in the adiabatic representation) to (3.13)
if and only if the second-order derivatives are neglected
(in the spirit of the semiclassical approach) and only
∝ k0 terms are kept in the nonadiabatic matrix elements
(i.e., higher order contributions with respect to 1/k0 are
neglected). Expressions (3.12)–(3.14) do allow an entry
point into the adiabatic perturbation theory developed
by Landau [1] and Dykhne [10, 11] (also see [15, 16]).
We follow the same method closely.

We can go one step further and find the combination
of the two-level system amplitudes a1, 2 in (3.4) and (3.5),

(3.15)

satisfying the simple equation

(3.16)

which is identical to (3.8) and describes oscillations
around the crossing point in the adiabatic potential
(inverted adiabatic barrier). In the adiabatic perturba-
tion theory, the level-crossing problem is therefore for-
mally reduced to the well-known quantum mechanical
phenomenon, the overbarrier reflection. In the latter
problem, moreover, the reflection coefficient is equal
to 1, in full agreement with the adiabatic theorem.

Evidently, two adiabatic potentials have no real
crossing points in the 1D case, and the crossing is there-
fore possible only at complex values of X or t,

(3.17)

In the vicinity of these points, it follows from (3.6) that

(3.18)

and, therefore,

(3.19)

i.e., the crossing points are square root bifurcation
points for the function Ω12(t). Using (3.19), we depicted
the Stokes and anti-Stokes lines for Eq. (3.16) in Fig. 1.
The diagram shown in this figure is identical to that cor-

θ̇

iθ̇ A12 i φ1 φ̇2〈 〉 .≡=

Y t( ) Ω12
–1/2 i

2
--- Ω12 td∫– 

  a1exp=

+ iΩ12
–1/2 i

2
--- Ω12 td∫ 

  a2,exp

Ẏ̇ t( )
Ω12

2

4
--------Y+ 0,=

Ω12 τc( ) 0; U1 U2– iU12 t τc= .±= =

Ω12 t τc–( )1/2,∝

Ω12 t
2
3
--- t τc–( )3/2,≈d∫
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responding to the semiclassical overbarrier reflection
problem with the linear turning points under consider-
ation. In the leading approximation, the transition prob-
ability P12 is determined by integration over the contour
C(τc) going around the bifurcation point τc ,

(3.20)

In the simplest form of the LZ problem, the diabatic
potentials are assumed to be linear functions of t or X
(which is the same because t = X/v), see Fig. 2 for illus-
tration,

(3.21)

P12
2
"
--- H11 H22–( )dt

C τc( )

∫° 
 
 

.exp≈

U1 2( ) U# FX .±=

(a)

(b)

Fig. 1. Stokes (dashed) and anti-Stokes (solid) lines for a
pair of close linear turning points replaced by one second-
order turning point; (a) classically forbidden region,
(b) classically accessible region.
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Substituting (3.21) in the general expression for the
transition probability (3.20), we then find

(3.22)

where ν = /2"vF is the so-called Massey parameter
and

is the velocity.

Some comments about the validity range of the
approximation are in order. A question of primary
importance for the LZ problem is related to the semi-
classical nature of the phenomenon. To illustrate this,
we note that, for

Eq. (3.16) is the Weber equation for the real point X = 0
(the crossing point of diabatic potentials). Evidently,
this correspondence between two complex-conjugate
linear crossing points ±τc and one real crossing point
X = 0 for the Weber equation is the same as the corre-
spondence between two linear and one second-order
turning points in the standard semiclassical treatment
of the Schrödinger equation. We can therefore apply the
WKB or instanton methods to the LZ problem in the
same way as in any semiclassical problem. We now
compare the accuracy of the two approaches. If

 @ "Ω (where Ω is the characteristic frequency
of the adiabatic potentials), the WKB method works
quite well if two isolated linear turning points in this
problem are considered (this is the limit of k0a @ 1, cor-
responding to the adiabatic approximation). If this is
not the case, the diabatic representation must be used.

P12 2πν–( ),exp≈

U12
2

v
2 E U#–

m
----------------------=

Ω12
2 U12

2 v 2F2X2,+=

E U#–

12

3

4

E0

U# + U12

U# – U12

U#

E

Fig. 2. Adiabatic (3, 4) and diabatic (1, 2) potentials for the
LZ problem.
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4. INSTANTON METHOD
IN MOMENTUM SPACE

We do not explain the instanton method in detail
here and summarize only the most essential points
(see [26–29, 58, 59]). The recipe to find the instanton is
based on minimizing the classical action functional in
the space of paths connecting the minima in the upside-
down potential. It is well known [1] that the expansion
of an arbitrary wave function Ψ(x) in terms of the
momentum eigenfunctions is simply a Fourier integral,

(4.1)

The wave function in the momentum representation
Φ(p) can be written in the semiclassical form

(4.2)

where the action W(p) is determined by the classical
trajectory x0(p) in accordance with the definition

(4.3)

We use the dimensionless variables e = E/Ω0 for the
energy, V = U/γΩ0 for the potential, and X = x/a0 for the
coordinate, where E and U are the corresponding
dimensional values of the energy and of the potential,
a0 is the characteristic length of the problem (e.g., the
tunneling distance), and Ω0 is the characteristic fre-
quency (e.g., the oscillation frequency around the
potential minimum). The dimensionless momentum
can be defined as

(4.4)

where γ is the semiclassical parameter (we recall that

γ ≡ mΩ0 /", where m is the mass of the particle, and
we believe that γ @ 1).

Introducing the semiclassical form (4.2) of the
momentum-representation wave function in the stan-
dard one-particle 1D Schrödinger equation, we can
transform it to the form

(4.5)

In the momentum space,  is the potential energy oper-
ator, which can be expanded in a semiclassical series
with respect to 1/γ (or equivalently, with respect to ";
we set " = 1 in what follows, measuring energies in

Ψ x( )
1

2π"
---------- ipx

"
-------- 

  Φ p( )exp p.d

∞–

∞

∫=

Φ p( ) A p( ) iW p( )
"

--------------– 
  ,exp=

dW
dp
-------- x0 p( ).=

P
pa0

γ"
--------, =

a0
2

P2 2V̂ X0 i
1
γ
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Pd
d

+ 
  2
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---e–+ A P( ) 0.=
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units of frequency, except in some intermediate equa-
tions where the occurrences of " are necessary for
understanding). This expansion allows us to consider

 as a function V of two independent variables X0 and
d/dP, and we finally obtain

(4.6)

where the dots denote all higher order expansion terms.
In accordance with the general semiclassical rules,

we can easily find from (4.5) and (4.6) that the first- and
the second-order terms in γ–1 become identically zero if
the energy-dependent trajectory X0(P) is determined by
the equation

(4.7)

and if the so-called transport equation (TE)

(4.8)

is also satisfied. The solution of TE (4.8) can be found
explicitly as

(4.9)

It follows from (4.9) that semiclassical WKB wave
function (4.2) has singularities at all stationary points
of the potential V. These points are therefore turning
points in the momentum space. This illustrates funda-
mental difficulties of the WKB procedure, which con-
sist in matching the solutions that become singular on
caustic lines separating manifolds with real and imagi-
nary momenta in phase space.

To also illustrate the second drawback of the WKB
method, we consider the linear (V = FX) and harmonic
(V = X2/2) potentials. The trajectories X0(P) can be triv-
ially determined from (4.7). For the linear potential,
X0(P) is an inverted parabola with a maximum of X0m =
eF/γ at P = 0. The left and the right branches of the
parabola correspond to the opposite motion directions
in the classically accessible region X0 < X0m . For the lin-
ear potential, the semiclassical WKB wave function in
the momentum space,

(4.10)
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dX0
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,exp=
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is the Fourier transform of the coordinate-space Airy
function. For the harmonic potential, the corresponding
trajectories (4.7) are ellipses and the wave functions
have the same functional form in both spaces (momen-
tum and coordinate). It is worthwhile to note that
although the WKB functions are not exact, the corre-
sponding eigenvalues coincide with exact quantum
mechanical ones.

As we have shown recently [27–29], many impor-
tant semiclassical problems can be successfully ana-
lyzed by the instanton method. Bearing in mind
momentum space in this section, we recall the main
ideas of the instanton approach. The first step of the
approach, derived in [58, 59], is the so-called Wick
rotation of the phase space, corresponding to the trans-
formation to imaginary time t  –it. During the trans-
formation, both potential and kinetic energies change
their signs and the Lagrangian is replaced by the Hamil-
tonian in the classical equation of motion. In the
momentum space, the low-energy instanton wave func-
tions can be constructed using Wick rotation in the
momentum space (i.e., the transformation P  iP); in
addition, the term with energy e in (4.7) must be
removed from this equation and taken into account in
TE (4.8). In the instanton formalism, the trajectory
X0(P) describes zero-energy motion in the classically
forbidden region of the momentum space, where the
wave function has the form

(4.11)

and the additional prefactor Q(P) can be represented as

(4.12)

In the particular case of a linear potential (V(X) =
FX), the instanton and WKB functions have the same
form. For an arbitrary (nth-order) anharmonic poten-
tial, the Schrödinger equation in the momentum space
is reduced to the nth-order differential equation, but the
nth-order derivatives decrease proportionally to γ–n and
the corresponding terms can therefore be taken into
account perturbatively. A rigorous mathematical
method for performing this procedure (which we use in
this paper) has been developed by Fedoryuk [68–70].

To illustrate the instanton approach, we consider the
simplest form of the LZ problem illustrated in Fig. 3.
For linear potentials with arbitrary line slopes, we have
two second-order coupled equations, in the diabatic
state representation

(4.13)

Φ P( )
dV
dX0
--------- 

  –1/2

Q P( ) γW P( )–[ ] ,exp=

Q P( )ln e
Vd
X0d

--------- 
  1–

P.d∫=

Θ2
1d

X2d
-----------– γ2 α f 1X+( )Θ1 γ2νΘ2,= =

Θ2
2d

X2d
-----------– γ2 α f 2X+( )Θ2 γ2νΘ1,= =
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where Θ1, 2 are the eigenfunctions of the corresponding
states, and:

Equations (4.13) can be transformed into the momen-
tum space and can then be rewritten as a single second-
order equation:

(4.14)

where we introduced

(4.15)

where Φ1 is the Fourier transform of Θ1, k = P/γ ,
and q(k) is a fourth-order characteristic polynomial

(4.16)

depending on two parameters

(4.17)

The first parameter λ plays the role of the new semiclas-
sical parameter in the momentum representation, and
the second is the known Massey parameter (already
defined in (3.22)).

Fortunately, all roots of characteristic polynomial (4.16)
can be found analytically quite accurately in the physi-
cally most interesting region of parameters. To simplify
the expressions (while retaining the complete physical

Ω2 a2F2

mU12
-------------, F F1 F2 , γ a3Fm1/2

U12
1/2

-------------------,= = =

α 2
U0 E–

γΩ
----------------, f 1 2, 2

aF1 2,

γΩ
-------------, ν 2

U12

γΩ
--------.= = =

d Ψ2
1

dk2
------------ q k( )Ψ1 k( )+ 0,=

Ψ1 Φ1 i
γα3/2

2
------------ 1

f 1
----- 1

f 2
-----+ 

  k
k3

3
----+ 

  ,exp=

α

q k( ) λ2 1 k2+( )2
2λ ik 2ν–( )+=

λ 1
2
---γα3/2 1

f 1
----- 1

f 2
-----– 

  , ν γv 2

2 f 1 f 2–( ) α
---------------------------------.= =

(a) (b)

Fig. 3. Stokes (dashed) and anti-Stokes (solid) lines in the
vicinity of (a) conjugate bifurcation points ±iτc and (b) dia-
batic potentials crossing point X = 0.
JOURNAL OF EXPERIMENTAL
content), we present the results only in the simplest
case, where f1 = –f2 ≡ f (symmetric slopes of the diabatic
potentials). In the classically forbidden region U# – E >
0, α > 0, at λ @ 1 (equivalently, at α @ (f/γ)2/3), all four
roots of the polynomial are close to ±i,

(4.18)

In the classically accessible region (U# – E < 0, α < 0),
the roots are close to ±1 if λ @ 1 (or if −α @ (f/γ)2/3),

(4.19)

k1
±

i 1 1 ν+
2λ

------------± 
  ,  k2

± 1 ν–
2λ

------------ i.–±= =

k1
± 1

1 ν̃2+ ν̃+

4λ̃
----------------------------

 
 
 

1/2

i
1 ν̃2+ ν̃–

4λ̃
---------------------------

 
 
 

1/2

,±±=

k2
± –1

1 ν̃2+ ν̃+

4λ̃
----------------------------

 
 
 

1/2

+− i
1 ν̃2+ ν̃–

4λ̃
---------------------------

 
 
 

1/2

±=

Fig. 4. Stokes (dashed) and anti-Stokes (solid) lines for lin-
ear turning points corresponding to classically forbidden (a)
and accessible (b) energy regions of the LZ problem.

1
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(the tilde means that in the corresponding quantity, α
must be replaced with its modulus).

The roots of characteristic polynomial (4.16) in the
classically forbidden region (Eq. (4.18)) and in the clas-
sically accessible region (Eq. (4.19)) are formally
equivalent to the transition or turning points for the sys-
tem of two potential barriers or two potential wells,
respectively. We can therefore use all the WKB and
instanton results known in these cases (see, e.g., our
recent paper [29] and references therein for the details).
Because only asymptotic solutions and their connec-
tions via transition or turning points on the complex
plane are usually considered in the semiclassical analy-
sis, the famous Stokes phenomenon [30, 57] of asymp-
totic solutions plays an essential role, and the distribu-
tion of the transition points (which are nothing but the
zero points of the characteristic polynomial) and Stokes
and anti-Stokes lines determines the phenomenon. We
show all the lines emanating from linear turning points
in Fig. 2. In the case where the roots form a pair of close
linear turning points, each such pair can be replaced
with one second-order turning point. The correspond-
ing Stokes and anti-Stokes lines are depicted in Fig. 4.

In the classically forbidden region, the instanton
wave functions can be found using roots (4.18),

(4.20)

As |k|  ∞, the function  decreases proportionally

to |k|–2 and  is reduced to the Airy function [71, 72].
In the vicinity of the second-order turning points k = ±i,
the fourth-order characteristic polynomial is reduced to a
second-order one, and Eq. (4.14) is reduced to the Weber
equation with the known fundamental solutions [71]

as   0 and

as   0. The same procedure applied to the
classically accessible region leads to the solutions

Φ1
+ 1 ik–( )ν 1–

1 ik+( )ν 1+
--------------------------- iλ k

k3

3
----+ 

  ,exp=

Φ1
– 1 ik–( )–ν

1 ik+( )–ν----------------------- –iλ k
k3

3
----+ 

  .exp=

Φ1
+

Φ1
–

D ν– 2 λ k i+( )±( )

k i+

D–ν 1– 2 λ k i–( )±( )

k i–
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(4.21)

and it is also reduced to the fundamental solutions of
the Weber equation

as   0 and

as   0.
The same solutions can be obtained for the LZ prob-

lem in the two-level approximation using the instanton
method in the coordinate space. The reason for this is
quite transparent and is based on the fact that for linear
diabatic potentials, the limit k  ±∞ corresponds to
the limit x  ±∞, and the asymptotic behaviors of the
solutions are therefore the same in the momentum and
in the coordinate space.

The entire analysis can be brought into a more com-
pact form by introducing the so-called connection
matrices. In the instanton approach, we consider
asymptotic solutions and their connections on the com-
plex coordinate plane. It is therefore important to know
the connection matrices. The needed connection matri-
ces can easily be found by matching solutions (4.20)
or (4.21) at the second-order turning points via the cor-
responding fundamental solutions of the Weber equa-
tion. This gives the connection matrices

(4.22)

where

and

Φ1
+ 1 k–( )i ν̃ 1–

1 k+( )i ν̃ 1+
-------------------------- iλ̃ k

k3

3
----– 

  ,exp=

Φ1
– 1 k+( )i ν̃

1 k–( )i ν̃
-------------------- –iλ̃ k

k3

3
----– 

  ,exp=

Di ν̃ 2 λ̃ k 1+( ) iπ
4
-----exp± 

 

k 1+

Di ν̃ 1– 2 λ̃ k 1–( ) iπ
4
-----exp± 

 

k 1–

M̂1 = 
πν( )cos–

2π 2χ–( )exp
Γ ν( )

-----------------------------------

Γ ν( ) 2χ( ) πν( )sin
2

exp

2π
------------------------------------------------------ πν( )cos

 
 
 
 
 
 
 

,

χ ν ν 1/2–( ) νln
2

------------------------------,–=
(4.23)M̂2

πν̃–( )exp–
2π πν̃–( ) 2χ̃–( )expexp

Γ iν̃–( )
------------------------------------------------------------

1

2π
----------2Γ iν̃–( ) πν̃

2
------– 

  2χ̃( )exp πν̃( )sinhexp –πν̃( )exp
 
 
 
 
 
 
 

,=
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where

As a note of caution at the end of this section, we
remind the reader that for the linear diabatic potentials,
we initially had two corresponding Schrödinger equa-
tions, each of which possesses two fundamental solu-
tions. Therefore, the full LZ problem is characterized
by four fundamental solutions that are asymptotic to the
left of a given turning point and four fundamental solu-
tions that are asymptotic to the right of the same turning
point. Generally speaking, the connection matrices
must therefore be 4 × 4 ones. But because of the sym-
metry of the potentials, these 4 × 4 matrices have two
2 × 2 block structures for the functions Φ1 and Φ2,
given in (4.22) and in (4.23).

5. LZ PROBLEM FOR TWO ELECTRON STATES 
(INSTANTON APPROACH
IN COORDINATE SPACE)

In Sections 2–4, we investigated the LZ problem in
the framework of the adiabatic perturbation theory, the
two-level approximation, and the momentum represen-
tation. All three methods are equivalent and semiclassi-
cal by their nature and are therefore applicable in the
tunneling and overbarrier energy regions; they become
inadequate within the intermediate region (on the order
of γ–2/3) near the level crossing point. The fact is that the
accuracy of these methods depends on the “renormal-
ized” (energy-dependent) semiclassical parameter λ in
(4.17), which can be small in the intermediate region
(λ ≤ 1 even for γ @ 1). To treat this region, we must use
the coordinate space presentation, because we need to
know the connection matrices for nonadiabatic transi-
tions. In the latter problem, the wave functions outside
the level crossing point are more convenient (and have
a more compact mathematical form) in the coordinate
space.

5.1. Tunneling and Overbarrier Regions 

For the smoothness of presentation, we first repro-
duce the results found in the previous sections for the
tunneling and overbarrier energy regions in the coordi-
nate space. In the diabatic representation, we can rewrite
two second-order LZ differential equations (4.13) as the
fourth-order linear differential equation with constant
coefficients at the derivatives

(5.1)

(where we consider the case with a symmetric slope
f1 = –f2 ≡ f for simplicity). In the mathematical formal-
ism elaborated by Fedoryuk [68–70], Eq. (5.1) is

χ̃ i
π
4
--- ν̃ 1 ν̃ln–( )+ 

 –
1
4
--- ν̃ .ln+=

Φ4
1d

dX4
----------- 2γ2α

d Φ2
1

dX2
-----------– 2γ2 f

Φ1d
Xd

---------–

+ γ4 α2 v 2– f 2X2–( )Φ1 0=
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reduced by a semiclassical substitution in a set of equa-
tions of the order γn. The characteristic polynomial for
(5.1) is given by

(5.2)

where λ = dW/dX by definition.

Solving the equation F(λ) = 0 perturbatively in
γ−1 ! 1, we find

(5.3)

where

(5.4)

and

(5.5)

Four asymptotic solutions of (5.1) can then be repre-
sented as

(5.6)

They describe the motion with an imaginary momen-
tum in the upper and lower adiabatic potentials

The subscripts in (5.6) correspond to the upper or lower
adiabatic levels, and the superscripts indicate the sign
of the action.

Before considering the connection matrices, we use
the substitution

(5.7)

and choose the κ value such that the first derivative
in (5.1) vanishes,

(5.8)

At α > 3(f/4γ)2/3, we can expand the roots of (5.8) in
terms of the parameter

(5.9)

F λ( ) λ4 2αγ2λ2– 2γ2 fλ–=

+ γ4 α2 v 2– f 2X2–( ),

λ j λ j
0 u j,+=

λ j
0 γ α v 2 f 2X2+±( )[ ]

1/2
±=

u j
γf
2
----- λ j

0( )2 αγ–[ ]
1–
.=

y j{ } Φ +
+ Φ+

– Φ–
+ Φ–

–, , ,{ }≡

=  v 2 f 2X2+( ) 1/4– λ j X'( ) X'd

0

X

∫ .exp

2ma2

"
2

------------- U± E–( ) γ2 α v 2 f 2X2+±( ).=

Φ1 κX( )φ,exp=

κ3 γ2ακ–
1
2
---γ2 f– 0.=

δ f
4γ
------α 3/2– 1

3 3
----------.<=
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We thus find

(5.10)

Under condition (5.9), the coefficients at the fourth and
at the third-order derivatives in (5.1) are small (propor-

tional to δ and , respectively) and the fourth-order
equation (5.1) can be rewritten as two second-order
Weber equations with the solutions

where

(5.11)

The leading terms of these solutions are the same as
those found in Section 4. But the Fedoryuk method
also gives higher order corrections in δ in tunneling
region (5.8).

In the overbarrier energy region where α < –3(f/4γ)2/3,
the roots of Eq. (5.8) are complex conjugate,

(5.12)

and

(5.13)

plays the role of a small parameter. Similarly to the case
with the tunneling region, the coefficients at higher
order derivatives are small and the function φ in (5.7)
therefore satisfies the Weber equation with the funda-
mental solutions

where

(5.14)

κ1 γ α 1 δ
2
---+ 

  ,=

κ2 γ α –1 δ
2
---+ 

  , κ3 γ αδ.= =

δ

D
p

1 2,( ) β 1 2,( )X( ),

p1 –1 δ
2
--- ν 1 3δ

2
------– 

  ,–+=

p2 δ
2
--- ν 1 3δ

2
------+ 

  ,–=

β 1 2,( )
γ2 f 2

α
---------- 

 
1/4

1
3δ
4

------± 
  .=

κ 1 2,( )

γ α
------------ δ̃

2
---– i 1 3δ̃

2

8
--------+ 

  ,±=

δ̃ f

4γ α 3/2
------------------=

D
p̃

1 2,( ) β̃ 1 2,( )X( ),

p̃1 –1 i
3δ̃
2

------ iν 1 3δ̃
4

------+ 
  ,+ +=

p̃2 i
3δ̃
2

------ iν 1 3δ̃
4

------– 
  ,+=

β̃1
iπ
4
----- γ2 f 2

α
---------- 

 
1/4

,exp=
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As was the case with tunneling region (5.11), the lead-
ing terms of expansion (5.14) coincide with the results
found in the previous sections, but (5.14) also allows us
to compute corrections to the leading terms.

We can now find the connection matrices. To do this
in the tunneling region, we must establish the corre-
spondence between solutions of fourth-order differen-
tial equation (5.1) and solutions for the states localized
in the left (L) and in the right (R) wells. In the case
where α @ f |X|, the action can be computed for diabatic
potentials starting from both wells (R and L),

(5.15)

where

is an imaginary momentum and  are the actions
computed from an arbitrary distant point in the L or R
wells, respectively, to the point X = 0. On the other
hand, in the adiabatic potentials

the corresponding actions can be represented as

(5.16)

Explicitly comparing the semiclassical wave functions
in both representations (adiabatic and diabatic ones), it
is easy to see that the adiabatic functions in the poten-
tial U– coincide with the diabatic functions for localized
L and R states at X < 0 and X > 0, respectively. The adi-
abatic functions for the upper potential U+ correspond
to the tails of the diabatic wave functions localized in
the opposite wells. In the level crossing region, the L/R
diabatic functions are therefore transformed into the
R/L functions and the interaction entangles the diabatic
states with the same sign of k0X. Thus, we have only
four nonzero amplitudes of the following transitions:

(5.17)

β̃2
i3π
4

--------– 
  γ2 f 2

α
---------- 

 
1/4

.exp=

γWL γW0
L k0X

β2

4
-----X2,+ +≈

γWR γW0
R k0X–

β2

4
-----X2,+≈

k0
2m U# E–( )

"
2

----------------------------- 
 

1/2

γ α≡=

W0
L R,

U± U# U12
2 f 2X2+ ,±=

γW± γW0
±– k0X

β2

4
-----X2 X .sgn±=

ΦL
+ ΦR

–〈 〉 Φ L
– ΦR

+〈 〉 Φ R
+ ΦL

–〈 〉 Φ R
– ΦL

+〈 〉 ., , ,
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Recalling that

(5.18)
γW± γ α v 2 f 2X2+±( )

1/2
xd∫=

≈ k0X
β2

4
-----X2 ν

2
--- 1 νln–( ),±±
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we conclude that quantum solutions (5.11), asymptoti-
cally valid in the vicinity of the level crossing point,
match increasing and decreasing solutions (5.6)
smoothly, which leads to the Landau description [1] of
the level crossing transitions depicted in Fig. 5.

Using expressions (4.22) and (4.23) relating the fun-
damental solutions of the Weber equation, we can find
the 4 × 4 connection matrix corresponding to (5.17),
(5.19)

ΦR
+

ΦR
–

ΦL
+

ΦL
– 

 
 
 
 
 
 
 

2π 2χ–( )exp
Γ ν( )

----------------------------------- 0 0 πν( )cos–

0
Γ ν( ) 2χ( ) πν( )sin

2
exp

2π
------------------------------------------------------ πν( )cos– 0

0 πν( )cos
2π 2χ–( )exp

Γ ν( )
----------------------------------- 0

πν( )cos 0 0
Γ ν( ) 2χ( ) πν( )sin

2
exp

2π
------------------------------------------------------

ΦL
–

ΦL
+

ΦR
–

ΦR
+ 

 
 
 
 
 
 
 

,=
(a)

(b)

–X1–δ –X* X*δ X1

U# + U12

U# + U12
*

U#

U# – U12

U# – U12
*

U# – U12
*  – "Ω/2

U# + U12

U# + U12
*

U#

U# – U12

U# – U12
*

U# – U12
*  – "Ω/2

–X1–δ–X* X* δ X1

Fig. 5. Relative placement of the adiabatic levels; (a) U12 >

, (b) U12 <  (  ≡ (3/2)("2F2/4m)1/3).U12
* U12

* U12
*

where

as above. The matrix in (5.19) has a 2 × 2 block struc-
ture, with each of the identical blocks connecting
increasing and decreasing diabatic solutions. However,
these diagonal blocks do not correspond to the L–R
transitions for the lower and upper adiabatic potentials
separately. Indeed, the 2 × 2 matrix corresponding to
these transitions is

(5.20)

In the diabatic limit (i.e., as ν  0) the diagonal
matrix elements are small (∝ν 1/2 and ν3/2, respectively),
and the off-diagonal elements tend to ±1, as it should be
because by definition, there are no transitions between
the diabatic potentials.

In the adiabatic limit ν @ 1, the diagonal matrix ele-
ments tend to 1, which implies that the decreasing L
solution transforms only into the increasing R solution,
and vice versa. Therefore, the connection matrix in the
tunneling region depends only on the Massey parame-
ter ν. We recall that the blocks of the 4 × 4 connection
matrix in (5.19) correspond to the two isolated second-

χ ν
2
---

1
2
--- ν 1

2
---– 

  νln–=

ΦR
+

ΦL
–

 
 
 
 

=  

2π 2χ–( )exp
Γ ν( )

----------------------------------- πν( )cos–

πν( )cos
Γ ν( ) 2χ( )exp πν( )sin

2

2π
------------------------------------------------------

ΦL
–

ΦR
+

 
 
 
 

.
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order turning points with the Stokes constant (see,
e.g., [29])

(5.21)T2
2π

Γ ν( )
---------- 2χ–( ).exp=
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The overbarrier region can be studied similarly.
Repeating the procedure described above for the tun-
neling region (with the evident replacements k0 
−ik0 and β2  iβ2), we obtain the 4 × 4 connection
matrix
(5.22)Û

=  

2π 2χ̃–( )exp
Γ iν–( )

----------------------------------- 0 0 πν–( )exp–

0
2Γ iν–( ) πν–( )exp 2χ̃( )exp πν( )sinh

2π
---------------------------------------------------------------------------------------- πν–( )exp– 0

0 πν–( )exp
2π 2χ̃–( )exp

Γ iν–( )
----------------------------------- 0

πν–( )exp 0 0
2Γ iν–( ) 2χ̃( )exp πν–( )exp πν( )sinh

2π
----------------------------------------------------------------------------------------

,

where

(5.23)

As already mentioned for the tunneling region, the
blocks in (5.22) correspond to the two isolated second-
order turning points with the Stokes constant [29]

(5.24)

Thus, we arrive at the important conclusion that the
main peculiarity of the LZ level crossing (in compari-
son with the standard, e.g., one-potential problems) is
that the second-order turning points characterizing the
diabatic level crossing for the LZ problem possesses

different Stokes constants T2 (Eq. (5.21)) and 
(Eq. (5.24)) in the tunneling and in the overbarrier
regions.

5.2. Intermediate Energy Region 

We can now reap the fruits of our effort in the previ-
ous subsection. We first note that Eqs. (5.11) and (5.14)
imply that as the energy approaches the top of the bar-

rier, the indices p(i) and  of the parabolic cylinder
functions increase and therefore deviate more and more
from the value prescribed by the Massey parameter ν.
Second, β(i) increases as |α| decreases, resulting in a
decrease in the values of |X| where the asymptotic
smooth matching of the solutions must be performed.
As δ  0, these |X| values are located deeply in the
classically forbidden region, where the potentials are

χ̃ i
2
--- π

4
--- ν 1 νln–( )+

1
4
--- πν νln+( ).+–=

T̃2
2π

Γ iν–( )
---------------- 2χ̃–( ).exp=

T̃2

p̃ i( )
close to the diabatic potentials; for δ ≥ 2 /3, these
coordinates |X| are on the order of the quantum zero-
point oscillation amplitudes and, therefore, the adia-
batic representation must be used to find the solution in
this region.

These two simple observations give us a conjecture
on how to treat the LZ problem in the intermediate
energy region. We must first find the energy “window”
for the intermediate region. It is convenient to choose

the adiabatic potential frequency Ω = F/  as the
energy scale such that the inequality |α| < 3| f/4γ|2/3

becomes

(5.25)

In other words, the characteristic interaction energy at
the boundaries of the intermediate region is indepen-
dent of U12. However, the positions of the linear turning

points |X*| corresponding to the energies U* ± 

depend on the ratio U12/ . These points are located
inside or outside the interval [–a0γ–1/2, a0γ–1/2] at

U12/  < 1 and at U12/  > 1, respectively, and the
matching conditions in the intermediate energy region
are therefore different in the two cases. In the former
case, the potentials can be reasonably approximated by
a parabola in the asymptotic matching region, and we
must therefore work with the Weber equations. In the
latter case, the matching is performed in the region
where the potentials are linear, and the equations are
therefore reduced to Airy equations.

We first investigate the case where U12/  > 1.
Using the Born–Oppenheimer approach described in

3

mU12

U∗ E–
3
2
---U12

1/3 Ω
2
---- 

 
2/3

U12* .≡≤

U12*

U12*

U12* U12*

U12*
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Section 2, we see that the Schrödinger equations for the
wave functions Ψ± are decoupled in the adiabatic repre-
sentation with an accuracy up to γ–2,

(5.26)

For |X| < v /f, Eqs. (5.26) is reduced to Weber equations
with the fundamental solutions

and

where

(5.27)

are independent of the Massey parameter ν. Two real
solutions of (5.26) correspond to the upper adiabatic
potential (classically forbidden region), and two com-
plex solutions correspond to the classically allowed
motion under the lower adiabatic potential.

The argument of the Weber functions is ∝ X , and
under the condition X < v /f, their asymptotic expan-
sions determine the interval where the matching is to be
performed,

(5.28)

This inequality can be satisfied only at U12/  > 1,
when the intermediate region is sufficiently broad in
comparison with Ω . The exponents q1 and q2 in
Eq. (5.27) are then large, and our aim is to find the
explicit asymptotic expansions of solutions in this case.
For this, we closely follow the method in [73] (also see
monograph [72]), which is in fact an expansion of the
fundamental Weber solutions in the small parameters
1/|qi |. This method leads to the asymptotic solution of
Eq. (5.26) at X > 0, given by

(5.29)

d Ψ±
2

dX2
------------ γ2 α v 2 f 2X2+±( )Ψ±+– 0.=

D–1/2 q1– 2γX±( )

D–1/2 iq2+
iπ
4
-----– 

  2γXexp± 
  ,

q1 γv α+
2

--------------, q2 γv α–
2

-------------= =

γ

γ–1/2 U12

Ω
-------- 

 
1/2

γ–1/2.>

U12*

Ψ+
– X( ) Y+

–1/2
X Y++( )

–q1 γXY+–( ),exp≈

Ψ–
– X( ) Y–

–1/2
X Y–+( )

iq2 iγXY–( ),exp≈
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where Y± = . Using the known relation
between the fundamental solutions of the Weber equa-
tion [71, 72],

we can find the other two solutions (complementary
to (5.29)) as

(5.30)

and

(5.31)

where we introduce the notation

Not surprisingly, solutions (5.29)–(5.31) can be repre-
sented as a linear combination of the semiclassical

solutions  in (5.6) with the coefficients

(5.32)

These energy-dependent angles θ(1, 2) coincide with the
adiabatic angles introduced above (see (2.12) and
(3.12)) at the level crossing point α = 0, and f |X | < v.
Both angles take only slightly different values over the
entire intermediate region |α| < v.

We can now find all the connection matrices for
these functions. Although the calculation is straightfor-
ward, it must be performed with caution (e.g., because
the X-dependent matrices have different functional
forms at positive and negative X). For X > 0, we obtain

v α X2+±

Dµ z( ) iπµ–( )Dµ z( )exp=

+
2π

Γ µ–( )
-------------- iπµ 1+

2
------------– 

  D–µ 1– iz( ),exp

Ψ+
+ X( ) Y+

–1/2 πq1( ) X Y++( )
–q1 γXY+–( )expsin–=

+ 2χ1–( ) 2π
Γ 1/2 q1+( )
--------------------------- X Y++( )

q1 γXY+( )expexp ,

Ψ–
+ X( ) Y+

–1/2 i πq2–( ) X Y–+( )
iq2 iγXY–( )-expexp–=

+ 2χ2–( ) 2π
Γ 1/2 iq2–( )
----------------------------- X Y–+( )

iq2 –iγXY–( )expexp ,

χ1
1
2
--- q1

1
2
---+ 

  q1

2
----- q1

1
2
---+ 

  ,ln–=

χ2
1
2
--- iq2

1
2
---– 

  iq2

2
------- –i

π
2
--- q2

i
2
---+ 

 ln+ .+–=

Φ±
±

2θ 1 2,( )( )cos
X

v α X2+±
------------------------------.=
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(5.33)

and for X < 0,

(5.34)

Ψ–
–

Ψ–
+

Ψ+
–

Ψ+
+ 

 
 
 
 
 
 
 

θ2cos 0 0 0

i πq2–( ) θ2cosexp–
2π 2χ2–( ) θ2cosexp

Γ 1/2 iq2–( )
---------------------------------------------------- 0 0

0 0 θ1sin 0

0 0 πq1( ) θ1sinsin–
2π 2χ1–( ) θ1sinexp

Γ 1/2 q1+( )
---------------------------------------------------

Φ–
+

Φ–
–

Φ+
–

Φ+
+ 

 
 
 
 
 
 
 

,=

Ψ–
–

Ψ–
+

Ψ+
–

Ψ+
+ 

 
 
 
 
 
 
  2π 2χ2–( ) θ2cosexp

Γ 1/2 iq2–( )
---------------------------------------------------- i πq2–( ) θ2cosexp– 0 0

0 θ2cos 0 0

0 0
θ1sin 2π 2χ1–( )exp

Γ 1/2 q1+( )
--------------------------------------------------- πq1( ) θ1sinsin–

0 0 0 θ1sin

Φ–
–

Φ–
+

Φ+
+

Φ+
– 

 
 
 
 
 
 
 

.=
The product of the matrix inverse to (5.33) and the matrix
in (5.34) determines the sought connection matrix relat-
ing the semiclassical solutions in the intermediate energy
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
region (cf. the connection matrices for the tunneling and
overbarrier energy regions in (5.20) and (5.22)). Per-
forming this simple algebra, we finally obtain
(5.35)Ucross

=  

2π 2χ2–( )exp
Γ 1/2 iq2–( )

------------------------------------- i πq2–( )exp 0 0

i πq2–( )exp–
2 2χ2( )Γ 1/2 iq2–( ) πq2( ) πq2–( )expcoshexp

2π
------------------------------------------------------------------------------------------------------------- 0 0

0 0
2π 2χ1–( )exp
Γ 1/2 q1+( )

------------------------------------- πq1( )sin

0 0 πq1( )sin–
πq1( )2 Γ 1/2 q1+( ) 2χ1( )expcos

2π
---------------------------------------------------------------------------

.

This matrix has a two 2 × 2 block structure, similarly to
the connection matrices (5.19) and (5.22) for the tun-
neling and overbarrier regions. However, unlike matri-
ces (5.19) and (5.22) describing the transitions between
the diabatic states, matrix (5.35) corresponds to transi-
tions between adiabatic states. Indeed, at a strong level
coupling (U12 > ), the eigenfunctions are close to
the adiabatic functions and only nonadiabatic perturba-
tions induce transitions. Therefore, the off-diagonal

U12*
matrix elements in (5.35), which have the meaning of
the probability that the diabatic state remains
unchanged after the transition, are zero. The block with
real-valued matrix elements corresponds to the mini-
mum of the upper adiabatic potential, i.e., to an isolated
second-order turning point where [29]

(5.36)q1

U∗ E– U12+
Ω

--------------------------------.=
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The complex-valued block is associated with the maxi-
mum of the lower adiabatic potential, and similarly
to (5.36), we can find the relation

(5.37)

for the turning point. For weak level coupling, namely,
at |U* – E | <  and U12 <  in the intermediate
energy region, the adiabatic potentials can be linearized
everywhere except a small neighborhood |X | < v /f 
0 of the level crossing point; i.e., they can be repre-
sented as α ± f |X |. Asymptotic solutions (5.6) are then
reduced to a linear combination of the functions

(5.38)

All the matrix elements required can now be calcu-
lated in the framework of the Landau perturbation the-
ory [1], which can be formulated in terms of the dimen-
sionless variables

iq2 i
U∗ E– U12+

Ω
--------------------------------–=

U12* U12*

Φ+
± f X( )–1/2 ξ+ Xsgn±( ),exp∝

Φ–
± f X( ) 1/2– ξ– Xsgn±( ),exp∝

ξ±
2

3 f
------ f X α±( )3/2.=

α̃ 3 2–4/3U∗ E–
U12

-----------------, ν̃× 3 2–4/3U12

U12*
--------×= =

0.5

–1.0
0

–0.5 0 0.5 1.0 1.5–1.5

1.0

1.5

I

III

III'

II

III'

U12/U12
*

(E – U#)/U12
*

Fig. 6. The E, U12 phase diagram: (I) tunneling region,
(II) overbarrier region. The two intermediate energy
regions III and III' are separated by the line ν* = 0.325.
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in order to avoid a divergence of the parameter ν as
α  0. The results of our analysis are shown in Fig. 6.
The tunneling and overbarrier regions are separated
from the intermediate energy region by the lines

 = . The intermediate region is also split
into two parts by the line ν = ν* = 0.325, where ν* is
the value of the Massey parameter ν at U12/  = 1 and

|U* – E | = . In the region ν < ν*, perturbation the-
ory is an adequate tool for the problem and the transi-
tion matrix elements are proportional to U12/ . At
ν > ν*, we can use connection matrix (5.35). To illus-
trate the accuracy of the approximations, we have com-
puted the matrix element M11. The results are shown in
Fig. 7. Our computations demonstrate a sufficiently
good precision, secured up to two stable digits. The
accuracy of the results on the boundaries between the
intermediate and overbarrier or tunneling regions is not
worse than 3–5% and can easily be improved using
interpolation approaches.

6. SCATTERING MATRIX

Phenomena of the LZ type can be considered as
(and applied to) scattering processes. The expressions
for the 4 × 4 connection matrices found in Section 5 can
be used to calculate the scattering operator (or matrix)

 that converts an incoming wave into an outgoing one.

We first consider the overbarrier region in the cross-
ing problem with two linear potentials. In this case, in
addition to the crossing point chosen as X = 0, there are
two linear (first-order) turning points X0 = ±|α|/f (each
turning point for each of the diabatic potentials denoted
by L and R). The scattering matrix that relates the
asymptotic solutions at X ! –X0 and X @ X0 is the prod-
uct of the 4 × 4 connection matrix (5.22) and the two
known semiclassical connection matrices [57] (also see
[29]) describing the wave function evolution from the
turning point –X0 to the crossing point 0, and from this
point to the turning point +X0, respectively. We thus
obtain a 2 × 2 matrix with the block matrix elements

(6.1)

U12* E– U12*

U12*

U12*

U12*

Ŝ

T11 Aif
i φ φ0–( )( )exp 0

0 i φ φ0–( )–( )exp
,=

T12 T21* 1 Aif
2–( ) iγW∗

2
-------------exp= =

× i –1/2

iγW∗–( )exp– i/2( ) iγW∗–( )exp
,
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where

is the LZ amplitude of the transition between the dia-
batic states, φ – φ0 =  (see (5.23)), and W* is the
action between the linear turning points.

The diagonal elements in (6.1), proportional to the
transition amplitude Aif , describe propagating waves
(i.e., solutions of the Schrödinger equation in the lower
adiabatic potential), and the oscillating blocks corre-
spond to solutions in the upper adiabatic potential. Off-
diagonal blocks, proportional to the probability that the
initial diabatic states remain unchanged, describe the
waves reflected from the linear turning points. The
reflection (R) and transmission (T) coefficients, of
interest in physical applications, can be found from
(6.1) by straightforward calculation,

(6.2)

The poles of the scattering matrix can also be easily
found from (6.1), and the corresponding resonance
condition is

(6.3)

The action is complex-valued at the resonance points,

(6.4)

The poles of the scattering matrix are in the lower half-
plane of complex E on the vertical lines corresponding
to the conventional Bohr–Sommerfeld quantization
rules ((γW* = π(n + 1/2)) for the upper adiabatic poten-
tial. In the diabatic limit (ν  0), the imaginary part
of the pole positions tends to infinity, and in the adia-
batic limit (ν  ∞), the poles move to the real axis.
Thus, we see that the eigenstates of the upper adiabatic
potential are always quasistationary. The resonance
widths are determined by the residues of the scattering
matrix elements at the poles and can be shown to be
monotonically decreasing functions of ν. In Fig. 8, we

T22 Aif=

× 2 γW∗ φ φ0–( )–( )cos γW∗ φ φ0–( )–( )sin–

γW∗ φ φ0–( )–( )sin 1/4( ) γW∗ φ φ0–( )–( )cos
,

Aif 1 πν–( )exp–( )1/2=

χ̃

R i 1 Aif
2–( )–=

× Aif
2 iγW∗ 2i φ φ0–( )–( ) iγW∗–( )exp+( )exp[ ] 1–

,

T 2Aif γW∗ φ φ0–( )–( )cos=

× Aif
2 iγW∗ 2i φ φ0–( )–( )exp iγW∗–( )exp+[ ] 1–

.

2 γW∗ φ φ0–( )–( )[ ]cos

=  1
1
2
--- 2πν–( )exp– 

  1 2πν–( )exp–( )–1/2.–

Re γW∗ φ φ0–( )–( ) n
1
2
---+ 

  π,=

Im γW∗ φ φ0–( )–( ) 1
2
--- 1 2πν–( )exp–( ).ln–=
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show the energy dependence of the transmission coef-
ficient T. In the diabatic limit, T  0, and it increases
as U12 increases. In the overbarrier region, there appear
resonances of widths Γn increasing with the energy
increase, because the Massey parameter then decreases
and Γn ∝  exp(–2πν).

1.0
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0.2
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3

(a)

M11
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(b)

M11

1.0 1.5

1.0

0.50 2.0

0.8

0.6

0.4

0.2

1''

2''

3''

(c)

|M11|

1.0 1.5
U12/U12

*

U12/U12
*

U12/U12
*

Fig. 7. Transition matrix element M11 as a function of

U12/ , computed at α = 0: (a) on the boundary between

tunneling and intermediate energy regions; (b) at E = U#;
and (c) on the boundary between the intermediate and over-
barrier regions; lines 1–3, 1'–3', 1''–3'' are computed for the
corresponding energy regions using (5.19), (5.25), and
(5.36), respectively.

U12
*
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We illustrate the energy dependence of the transmit-
ted wave phase in Fig. 9. In accordance with the general
scattering theory [1], there are π-jumps of the phase at
each quasidiscrete energy level of the upper adiabatic
potential. At U12/  < 1, the resonance widths are on
the order of the interlevel spacings. The amplitudes of
the decaying solutions (localized in the well formed by
the upper adiabatic potential) increase near the reso-

U12*
JOURNAL OF EXPERIMENTAL 
nances; this behavior is illustrated in Fig. 10. A prima-
rily important point is that the information about decay-
ing solutions contained in the 4 × 4 connection matrix
(e.g., (5.22)) is lost when we use 2 × 2 scattering
matrix (6.1).

The scattering matrix for the tunneling region can be
found by minor modifications of the expression already
derived. Instead of matrix (6.1), we thus obtain
(6.5)

where M11 and M22 are the corresponding matrix elements from (5.19).
We also compute the reflection and transmission coefficients

(6.6)

In the intermediate energy region, the only block matrix element T11 requires a special calculation taking into
account the contributions from the complex turning points,

(6.7)

T11
1/4( )M11 –γW∗( )exp M22 γW∗( )exp+ i 1/4( )M11 γW∗–( )exp M22 γW∗( )exp–( )

–i 1/4( )M11 γW∗–( )exp M22 γW∗( )exp–( ) 1/4( )M11 –γW∗( )exp M22 γW∗( )exp+
,=

T12 T21* πν( ) iγW∗
2

------------- i – 1/2( ) γW∗–( )exp

1– i/2( ) γW∗–( )exp
,expcos= =

T22
M11 0

0 M22

,=

R i γW∗( )exp
1
4
---M11

2 γW∗–( )exp– γW∗( )exp
1
4
---M11

2 γW∗–( )exp+
1–

–= ,

T M11 γW∗( )exp
1
4
---M11

2 γW∗–( )exp+
1–

.=

T11

2π πq2/2–( )exp
Γ 1/2 iq2–( )

------------------------------------------ i πq2–( )exp

i πq2–( )exp–
2Γ 1/2 iq2–( ) πq2/2–( ) πq2( )coshexp

2π
------------------------------------------------------------------------------------------

.=
The other matrix elements are the same as in (5.34).
Finally, we also find the reflection and the transmission
coefficients in the intermediate energy region

(6.8)

R
πq2–( )exp

1 2πq2–( )exp+
------------------------------------------- i φ π

2
---– 

 – ,exp=

T
1

1 2πq2–( )exp+
------------------------------------------- iφ–( ),exp=
where φ = .

7. QUANTIZATION RULES 
FOR CROSSING DIABATIC POTENTIALS

Although instanton trajectories are rather simple
objects and can relatively easily be found analytically,
calculations of the quantization rules within the instan-
ton approach are rather involved and require the knowl-
edge of the scattering matrix and all the connection matri-

Γ 1/2 iq2–( )[ ]arg
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ces calculated in the previous sections. In this section, we
apply these results to find the quantization rules for the
crossing diabatic potentials shown in Fig. 11. Depending
on the Massey parameter, the situations shown in the
figure exhaust all cases practically relevant for spectros-
copy of nonrigid molecules (symmetric or asymmetric
double-well and decaying potentials).

Within the instanton approach, the quantization rule
can be formulated as the vanishing condition for the

0.2
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0
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(c)
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0.8
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(b)
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0.8

1.0
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|T|2

(E – U#)/U12
*

Fig. 8. The T versus E dependence for (a) U12 = ,

(b) U12 = 0.5 , and (c) U12 = 0.25 ; stars mark the

boundaries of region III', thin lines for the overbarrier and
tunneling regions, and bold lines show the results for the
intermediate energy region.

U12
*

U12
* U12

*
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amplitudes of the solutions  and  that exponen-
tially increase at X > 0 and X < 0, respectively. Taking
into account that  (the actions in the corre-
sponding wells of the lower adiabatic potential) and
using connection matrix (5.19), we obtain the quantiza-
tion rule

(7.1)

where  is the action in the barrier formed in the
lower adiabatic potential and p ≡ U11 is the correspond-
ing matrix element of connection matrix (5.19).

Quantization condition (7.1) differs from the well-
known [1] quantization rule for the symmetric double-
well potential only by the factor 1/p varying from 0 to
1 in the diabatic and adiabatic limits. Therefore, the
tunneling splitting at finite values of the Massey param-
eter ν can be represented as the product

(7.2)

of the tunneling splitting  in the adiabatic potential
and the factor

(7.3)

ΦL
+ ΦR

+

WL* WR
*=

γWL*( )tan
2
p
--- γWB*( ),exp±=

WB*

∆n ∆n
0 p ν( )=

∆n
0

p ν( )
2π

Γ ν( )
----------γν 1/2– ν–( )exp=

–0.6
2 3 41

–0.3

0

0.3

0.6

(E – U#)/U12
*

1
π
--- Targ

Fig. 9. Transmitted wave phase as a function of E in the
overbarrier region at U12 = .U12

*
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associated with the transition amplitudes between the
diabatic potentials in the crossing region.

It is particularly instructive to consider (7.1) as the
standard [1] Bohr–Sommerfeld quantization rule, with

0
2 3 41

4

5

(E – U#)/U12
*

3

2

1

1

2

3

|CL
–|2

Fig. 10. Amplitudes of the decaying solutions  at X > 0

versus E for (1) U12 = , (2) U12 = 0.5 , and

(3) U12 = 0.25 .

ΦL
–

U12
* U12

*

U12
*

2U12

(a)

(b) (c)

Fig. 11. The diabatic level crossing phenomena: (a) cross-
ing region, (b) bound initial and decay final states, and
(c) bound initial and final states.
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both the geometrical ϕn and tunneling χn phases
included additively in the right-hand side. In the adia-
batic limit p(ν)  1, we find that ϕn  0 and (7.1)
reduces to the quantization of the symmetric double-
well potential. In the diabatic limit, ϕn = –χn and the
geometric phase compensates the tunneling one. The
physical argument leading to this compensation can
easily be rationalized as follows. At the reflection at the
crossing point X = 0, the trajectories in the classically
forbidden energy region are the same as those for the
tunneling region but with the phase shift π.

We now focus on quantization rules for the overbar-
rier energy region. Closely following the above analy-
sis for the tunneling region (replacing connection
matrix (5.19) by matrix (5.22) and making some other
self-evident replacements), after some tedious algebra,
we finally obtain the quantization rule

(7.4)

where W* is the action in the well formed by the upper
adiabatic potential and φ – φ0 =  is determined
from (5.23). Equation (7.4) implies that the eigenstates
are determined by the parameter

(7.5)

In the diabatic limit ν  0, and hence B  1/(2πν),
the main contribution to (7.4) is due to the second term
which leads to a splitting of degenerate levels in the dia-
batic potentials. Moreover, because

(7.6)

the splitting increases as the Massey parameter ν
increases; the splitting is an oscillating function of the
interaction U12.

In the adiabatic limit, as ν  ∞, φ – φ0  0, and,
therefore, B ≈ exp(–2πν) in accordance with (7.5), the
main contribution to (7.4) comes from the first term,
which determines the quantization rule for the upper
one-well potential and for the lower double-well poten-
tial in the overbarrier energy region. In this limit, the
parameter B plays the role of the tunneling transition
matrix element. For B smaller than the nearest level
spacings for the lower and upper potentials, we can find

1 2πν–( )exp–( ) 2γWL* φ φ0–( )+( )cos

× γW∗ φ φ0–( )–( )cos

+ 2πν–( ) γWL
* γW∗

2
-----------+ 

 cos
2

exp 0,=

χ̃

B
2πν–( )exp

1 2πν–( )exp–
------------------------------------.=

γ WL*
W∗
2

--------+ 
  π n

1
2
---+





=

± 2ν γ WL*
W∗
2

--------+ 
  φ– φ0+sin





,
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two sets of quantization rules from (7.4) that lead to two
sets of independent energy levels

(7.7)

Because the eigenstate energy level displacements
depend on U12, resonances can occur at certain values
of this parameter, where the independent quantization
rules in (7.7) are not correct any more. The widths of
these resonances are proportional to exp(–2πν) and are
therefore strongly diminished as the Massey parameter
ν increases. This behavior is easily understood, because
the wave functions of the excited states for the lower
potential are delocalized in the limit, and their ampli-
tudes in the localization regions for the low-energy
states of the upper potential are very small.

A more complicated problem is to derive the quan-
tization rule in the intermediate energy region. We must
use connection matrix (5.35) and take the contributions
from the imaginary turning points into account. Never-
theless, the quantization rule can finally be written in
the simple and compact form

(7.8)

where q2 = γ(v  – α)/2 is determined by (5.27).
It is useful to illustrate the essence of the general

result given above by simple (but nontrivial) examples.
We first consider two identical parabolic potentials with
their minima at X = ±1 and with a coupling that does not
depend on X. Because of the symmetry, solutions of the
Schrödinger equation in this case can be represented as
symmetric and antisymmetric combinations of the
localized functions

(7.9)

The functions are orthogonal, and, in addition, the two

sets of functions ( , ) and ( , ) (where the
respective subscripts 0 and e denote the ground and the
first excited states) correspond to the two possible types
of level crossings.

In Fig. 12, we schematically depict the dependence
of the positions of levels on the coupling U12. In the
energy region E ≤ U* + U12, where only discrete levels
of the lower adiabatic potentials exist, there are pairs of

the alternating parity levels ( , ) and ( , ).
The tunneling splittings increase monotonically,
because the Massey parameter ν increases, and the bar-
rier decreases with U12. The same level and parity clas-
sification remains correct for the energy region above
the barrier of the lower adiabatic potential, where the
spectrum becomes almost equidistant. However, in the
overbarrier region, the resonances occur between levels
of the same parity; the sequence of the odd and of the
even levels is broken, and level displacements are not

γW∗ π n1
1
2
---+ 

  , 2γWL* π n2
1
2
---+ 

  .= =

2γWL*( )cos πq2–( ),exp–=

Ψ± 1

2
------- ΦL ΦR±( ).=

Ψe
+ Ψ0

– Ψ0
+ Ψe

–

Ψe
+ Ψ0

– Ψ0
+ Ψe

–
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monotonic functions of U12. Some of the levels of dif-
ferent parities can pairwise cross. For the upper adia-
batic potential, the level sequence is opposite to that for
the lower adiabatic potential. We have checked the
results of our semiclassical approach and found a
remarkably good agreement with the numerical quan-
tum diagonalization.

The second instructive example involves the cross-
ing of one-well and linear diabatic potentials. This
leads to the lower adiabatic decay potential and to the
upper one-well adiabatic potential. The quantization
rules then correspond to the vanishing amplitudes for
the exponentially increasing solutions as X  –∞; in
addition, we must require that no waves propagate from
the region of infinite motion, i.e., the region X > 1/2.
Performing the same procedure as above, we find that
in the tunneling energy region, the eigenstates are the
roots of the equation

(7.10)

with the same notation as above.

γWL*( )tan i
4

p2 ν( )
------------ 2γWB*( ),exp–=

0.4
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Fig. 12. Level displacements versus U12 for two diabatic

crossing potentials (1 ± X)2/2. Dashed lines show the inter-
mediate energy region, dotted–dashed lines show displace-
ments for the top and for the bottom of the adiabatic poten-
tials. k, n, and n' are quantum numbers for the diabatic,
lower adiabatic, and upper adiabatic potentials.
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To proceed further, it is convenient to introduce a
complex action to describe quasistationary states,

(7.11)

where Ω = ∂WL/∂E is evidently independent of E. The
real and imaginary parts of the quantized eigenstates

γWL* π
En

Ω
----- i

Γn

2Ω
-------– 

  ,=

0.10

10–2
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Γn

Fig. 13. Γn vs. U12 for the quasistationary states at the dia-

batic potentials (1 ± X)2/2 and 1/2 – X crossing; (a) 1–4 are
the level energies 0.042, 0.125, 0.208, and 0.292 for the
lower adiabatic potential, (b) 1'–3' are the level energies
0.625, 0.708, and 0.792 for the upper adiabatic potential.
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determined from (7.11) are given by

(7.12)

This relation describes the nonadiabatic tunneling
decay of quasistationary states of the lower adiabatic
potential. Similarly to the case with the crossing of two
parabolic potentials (Eq. (7.2)), the tunneling and the
adiabatic factors here enter the decay rate multiplica-
tively. Because the decay rate is proportional to the
square of the tunneling matrix element, we have Γn ∝
p2(ν), as it should be.

In the overbarrier energy region, the quantization
rule is

(7.13)

and the actions depend on the energy E as

(7.14)

where Ω and Ω1 are E-dependent frequencies of the
diabatic and the upper adiabatic potentials.

In the diabatic limit, the decay rate is proportional to
the Massey parameter and is given by

(7.15)

In the opposite, adiabatic limit, the decay rate is

(7.16)

In both limits, the decay rate is an oscillating function
of U12. We illustrate the dependence Γ(U12) for the
crossing diabatic potentials U1 = (1 + X)2/2 and U2 =
1/2 – X in Fig. 13. We note that while the tunneling
decay rate of low-energy states increases monotoni-
cally with the Massey parameter ν, the decay rate of
highly excited states tends to zero in both (diabatic and
adiabatic) limits. There are certain characteristic values
of U12 at which the right-hand side of (7.15) or (7.16)
vanishes, and, therefore, Γn = 0.

The last, more general example that we consider in
this section describes two nonsymmetric potentials
crossing at X = 0,

(7.17)

In a certain sense, this is the generic case, and as the
parameter b entering potential (7.17) varies from 1 to
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∞, we recover the two particular examples considered
above and pass from two identical parabolic potentials
to the crossing of the one-well and linear diabatic
potentials. Potentials U2 of this type were recently
investigated by two of the authors (V.B. and E.K.) [64]
with the aim of studying the crossover behavior from
coherent to incoherent tunneling with the increase of
the parameter b; the larger b is, the larger the density of
the final states becomes. The criterion for coherent–
incoherent crossover behavior found in [64] is based on
comparison of the transition matrix elements and the
interlevel spacings in the final state. A similar criterion
should hold for the LZ level crossing problem, but the

1.0

(a)

0.8

0.6

0.4

0.2

0

P

1.0

(b)

0.8

0.6

0.4

0.2

0 100 200 300 400 500
t

Fig. 14. Survival probability for the localized n = 0 state;
(a) b = 1500, dashed lines U12 = 0.15, solid lines U12 = 0.21;
(b) b = 1500, dashed lines U12 = 0.28, solid lines U12 = 0.21.
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tunneling transition matrix elements must then be mul-
tiplied by the small adiabatic factor. Therefore, the
coherent–incoherent tunneling crossover region moves
to the denser density of final states, and the larger U12
is, the smaller the region for incoherent tunneling
becomes.

A totally different situation occurs for highly
excited states. In the diabatic limit, the transition matrix
element increases with the Massey parameter ν, and,
therefore, at a given b value, the system moves to more
incoherent behavior. In the adiabatic limit, the transi-
tion matrix element is exponentially small and coher-
ence of the interwell transitions should be restored.
However, because the matrix elements are oscillating
functions of U12 for the intermediate range of this cou-
pling, coherent–incoherent tunneling rates are also
nonmonotonically varying functions. These unusual
phenomena are illustrated in Fig. 14, where we show
time dependence of the survival probability P for the
initially prepared state n = 0 localized in the left well.

8. CONCLUSION

We have reconsidered a very basic subject, the LZ
problem. Currently, about 100 publications per year are
related to the LZ problem. Clearly, it is impossible to
give a complete analysis of the achievements in this
field. Our aim was therefore only to show some recent
trends and our new results, to help beginners and
experts find cross-references between the many physi-
cal phenomena related to the LZ problem. The problem
was first addressed long ago, and many results, already
classic, are now known from textbooks [1, 37].
Although exact quantum-mechanical calculations are
still prohibitively difficult, many important results have
been obtained in the framework of the WKB approach
[1–65]. The accuracy of the modified WKB methods
can be improved considerably; we note, e.g., [30],
where the standard WKB was extended by the inclusion
of a special type of trajectories in the complex phase
plane such that the semiclassical motion along these
trajectories is described by the Weber functions. This
method, ascending to Landau [1], is equivalent to the
appropriate choice of the integration path around the
turning point. It appears to be quite accurate for the tun-
neling and overbarrier regions, where the characteristic
fourth-order polynomial (see (4.16)) can be reduced to
a second-order polynomial (two pairs of roots are
nearly degenerate). However, even in this case, some
corrections have been found in [23–25] that cannot be
neglected. In the intermediate energy region, where all
four roots are noticeably different, the method becomes
invalid. In addition, the choice of these additional spe-
cial trajectories (which must be included to improve the
accuracy of the WKB method near the barrier top)
depends on a detailed form of the potential far from the
top, and, therefore, a nonuniversal procedure is to be
performed from the very beginning in each particular
case.
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We believe we are the first to explicitly address the
problem of the behavior in the intermediate energy
region. In all previous publications, this region was
considered as a very narrow and insignificant one, or at
most, the results were obtained by a simple interpola-
tion from the tunneling region (with a monotonic decay
of the transition probability) to the overbarrier region
(with oscillating behavior). The fact is that classical tra-
jectories can be separated into two classes, “localized”
and “delocalized,” in the following sense. If the energy
is sufficiently close to the minimum or maximum of the
potentials, the trajectories can be called confined,
because they are determined by the universal features
of the potentials in the vicinity of these extremal points.
Evidently, this is not the case in the intermediate energy
region. In this paper, we have found that contrary to the
common belief, the instanton trajectory is a rather sim-
ple object and can be explicitly computed even for the
intermediate energy region.

Within the framework of the instanton approach, we
present a full and unified description of the 1D LZ
problem, which can very often be quite a reasonable
approximation for real systems. Because different
approaches have been proposed to study the LZ prob-
lem, we develop a uniform and systematic procedure
for handling the problem. We reproduced all the known
results for tunneling and overbarrier regions and stud-
ied the intermediate energy region. Specifically, we
applied our approach to the Born–Oppenheimer
scheme, formulated the instanton method in the
momentum space, and presented all the details of the
LZ problem for two electronic states also using the
instanton description of the LZ problem in the coordi-
nate space. Neglecting higher order space derivatives,
we found asymptotic solutions; using the adiabatic–
diabatic transformation, we then matched the solutions
in the intermediate region. Based on these results, we
derived the complete scattering matrix for the LZ prob-
lem, the quantization rules for crossing diabatic poten-
tials. Our results can be applied to several models of
level crossings that are relevant in the interpretation and
description of experimental data on spectroscopy of
nonrigid molecules and on other systems undergoing
crossing and relaxation phenomena.

We also note that in spite of the sufficiently long his-
tory of the LZ phenomena, study of it is still in an accel-
erating stage, and a number of questions remain to be
clarified (we mention only several new features of the
phenomena that have recently attracted attention, such
as the LZ interferometry for qubits [74], LZ theory for
Bose–Einstein condensates [75], and multiparticle and
multilevel LZ problems [76–79]). Much of the excite-
ment arises from the possibility of discovering novel
physics beyond the semiclassical paradigms discussed
here. For example, we found in Sections 2 and 3 that the
wave functions of nuclei moving along periodic orbits
acquire geometric phases (the effect is analogous to the
Aharonov–Bohm effect [38], but is related not to exter-
nal magnetic fields, but to nonadiabatic interactions).
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The relation between the two phenomena, the geomet-
ric phases, and the periodic orbits can be established
using the Lagrangian (instead of Hamiltonian) formu-
lation of the problem, which enables one to take into
account explicitly the time dependence of the adiabatic
process under consideration, using propagator tech-
nique [34–36] (also see, e.g., [4, 43]). Proper handling
of these aspects is beyond the scope of our work, how-
ever. Further experimental and theoretical investiga-
tions are required for revealing the detailed micro-
scopic and macroscopic properties of different LZ sys-
tems.

In the fundamental problems of chemical dynamics
and molecular spectroscopy, transitions from the initial
to final states can be treated as a certain motion along
the potential energy surfaces of the system under con-
sideration. These surfaces are usually determined
within the Born–Oppenheimer approximation (see Sec-
tion 2). However, the approximation becomes inade-
quate for the excited vibrational states when their ener-
gies are on the order of the electronic interlevel energy
spacing or near the dissociation limit. In both cases,
nonadiabatic transitions should be taken into account
and most of the nonradiative processes occur owing to
this nonadiabaticity. Typical examples investigated
in [80] are the so-called predissociation, singlet–triplet
or singlet–singlet conversion, and vibrational relax-
ation phenomena.

Slow atomic collisions provide other examples of
nonadiabatic transitions between electronic states,
where the time dependence of the states is determined
by distance and by the relative velocity of the colliding
particles [33]. Some examples of nonadiabatic transi-
tions relevant in semiconductor physics can be found in
[81], those pertaining to nuclear or elementary particle
physics in [82], and those relevant in laser or nonlinear
optic physics in [83–86]. The latter topic is interesting
not only in its own right, but also as an illustration of
novel and fundamental quantum effects related to the
LZ model. The off-diagonal electronic state interac-
tions arise from the dipole forces in this case. For rela-
tively short laser pulses, this leads to the time-depen-
dent LZ problem for two electronic states, considered
in our paper in detail (also see the laser optic formula-
tion in [83–85]). The probability of finding the system
in the upper state after a single resonant passage can be
computed in the framework of the LZ model. This is
related to one important aspect of the LZ problem,
namely, dissipative and noisy environments. When
external actions (e.g., fields) driving LZ transitions are
reversed from large negative to large positive values,
the dissipation reduces tunneling and the system
remains in the ground state, or in other words, the ther-
mal excitation from the ground state to the excited state
suppresses such adiabatic transitions. However, for the
field swept from the resonance point, the tunneling
probability becomes larger in the presence of dissipa-
tion (see, e.g., [67]). The increasing precision of exper-
imental tests in the femtosecond laser pulse range
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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enables one to excite well-defined molecular states and
to study their time evolution using the second probing
laser beam [17].
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Abstract—The low-frequency electrical conductivity of strongly nonideal hydrogen, helium, and xenon plas-
mas was measured in the megabar range of pressures. The plasmas in question were generated by the method
of multiple shock compression in planar and cylindrical geometries, whereby it was possible to reduce effects
of irreversible heating and to implement a quasi-isentropic regime. As a result, plasma states at pressures in the
megabar range were realized, where the electron concentration could be as high as ne ≈ 2 × 1023 cm–3, which
may correspond to either a degenerate or a Boltzmann plasma characterized by a strong Coulomb (ΓD = 1–10)

and a strong interatomic (Γa = ra  ~ 1) interaction. A sharp increase (by three to five orders of magnitude) in
the electrical conductivity of a strongly nonideal plasma due to pressure-produced ionization was recorded, and
theoretical models were invoked to describe this increase. Experimental data available in this region and theo-
retical models proposed by various authors are analyzed. The possibility of a first-order “phase transition” in a
strongly nonideal plasma is indicated. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The behavior of plasma, which is the most wide-
spread state of matter in nature, under the conditions of
strong heating and compression is of considerable
interest from the general physical point of view; it is
also of practical interest for astrophysics, the physics of
giant planets, and promising applications in power
engineering [1–3]. Particular attention is being given to
the ionization composition of a plasma, since this pro-
vides a basis for calculating its thermodynamic, trans-
port, and optical properties.

It is well known that plasma can be obtained not
only via strong heating up to temperatures commensu-
rate with the ionization potential, kBT ~ I, but also via a
strong compression to a state in which the interparticle
spacing becomes commensurate with atomic sizes, ra ~

; the second way is referred to as cold ionization or
pressure-produced ionization. While thermal-ioniza-
tion processes have to date received quite adequate
study [1], investigation of pressure-produced ionization
is much more complicated since one deals here with a
cold (kBT ! I) compression of a plasma to pressures in

na
–1/3
1063-7761/03/9702- $24.00 © 20259
the megabar range and densities that considerably
exceed solid-state values. Under such conditions, the
interaction between particles becomes strong (nonide-
ality), the electron shells of atoms and molecules over-
lap, and the typical level of electrical conductivity is
commensurate with that in metals. Frequently, such a
regime is erroneously called metallization, even though
Landau and Zeldovich [4], Mott and Davis [5], and
Hensel and Frank [6] showed that a metal can be distin-
guished from a dielectric only by their electron spectra
at T = 0 but not by the level of the electrical conductiv-
ity itself. By way of example, we indicate that dilute
tokomak plasmas (ne ~ ni ~ 1014 cm–3, T ≈ 5–10 keV)
have an electrical conductivity close to that of pure cop-
per [7].

Implementing the isothermal expansion of low-boil-
ing metals at supercritical pressures [6, 8], one can con-
tinuously pass from a high-conducting metallic state to
low-conducting gaseous dielectric states and establish
that a metal–dielectric transition occurs in a narrow
range of densities that are close to (Cs, Rb, K) or some-
what greater (Hg) than the matter density at the critical
point. For the majority of other metals, which constitute
003 MAIK “Nauka/Interperiodica”
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Fig. 1. Phase diagram of hydrogen. The displayed experimental data were obtained in (1, 2) magnetic compression [29, 30], (3) Z
pinch [33], (4, 5) cylindrical compression [26, 27], (6) spherical compression [28]; (7, 8) single and multiple compression by means
of a light-gas gun [34, 35], (9) multiple shock compression [36], and (10, 11) shock compression by a laser [31, 32]. The estimates
for the critical point of the plasma phase transition in hydrogen were taken from the articles of (12) Beule et al. [37], (13) Robnic
and Kundt [38], (14) Saumon and Chabrier [23], (15) Haronska et al. [39], and (16) Mulenko et al. [24]. The calculated data corre-
spond to (17) compression at a diamond anvil [11], (18) the parameters of Jupiter’s atmosphere [40], and (19) the adiabatic curve
for the shock compression of hydrogen [34].
80% of the elements of the periodic table, critical tem-
peratures and pressures are extremely high and are
inaccessible to methods of static experiments. On the
basis of their recent experiment, DeSilva and Katsouros
[9], who were able to reach supercritical pressures via
a fast electric explosion of metallic conductors, pointed
out that solid-state metals loose their metallic conduc-
tivity upon a more significant expansion (by a factor of
5 to 7).

A method that employs the adiabatic expansion of
matter preliminarily compressed by strong shock
waves to pressures of the megabar range makes it pos-
sible to explore a wide region of the phase diagram of
metals, including the vicinity of the phase-transition
point [3, 10]. Measurements of thermodynamic (Cu,
Pb, Bi, Fe, U) and radiative (Bi) properties of some
metals according to this procedure permitted determin-
ing the equation of state, the coefficient of absorption,
and the parameters of the critical points for the metals
under study, but they did not confirm the hypothesis [4]
that there occur plasma phase transitions caused by the
dielectrization of metals in the supercritical region.

A considerable number of studies (see [11] and ref-
erences therein) motivated by searches for metallic
JOURNAL OF EXPERIMENTAL 
hydrogen [11–13] in connection with its possible high-
temperature superconductivity in a metastable medium
[14] have been devoted to the metallization (T = 0) of
dielectrics at high pressures. Estimates of the metalliza-
tion pressure P* that were obtained for various sub-
stances by methods of the band theory of solids fall
within the megabar {P*(H2) ≈ 3 Mbar [11–16],
P*(Xe) ≈ 1.5 Mbar [17]) and ultramegabar {P*(He) ≈
110 Mbar [18], P*(Ne) ≈ 1.34 Gbar [19]} ranges.
Although the static experimental technique of diamond
anvils presently enables one to obtain pressures as high
as about 5 Mbar [11], only in recent years has it become
possible to record the metallization of xenon at P* =
1.5 Mbar [20] in such experiments; at the same time,
hydrogen seems to remain a dielectric at P ≈ 3 Mbar [11].

By using the technique of strong shock waves to
ensure a compression and an irreversible heating of
matter, one can obtain much higher pressures (the
world record is about 4 Gbar [21]), the upper limit on
them being constrained only by the intensity of the
source of their generation and not by the strength of
diamond under static conditions. Concurrently, the vis-
cous dissipation of the kinetic energy of the flux in the
shock-wave front, along with compression, leads to a
considerable heating of matter, and this stimulates the
AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003



        

PRESSURE-PRODUCED IONIZATION OF NONIDEAL PLASMA 261

  
thermal (kBT ~ I) ionization of a plasma, whose kinetics
and thermodynamics have been studied in detail both
for an ideal and for a strongly nonideal case (see [1] and
[2, 3], respectively). In such experiments, the influence
of density effects on the ionization equilibrium is not
pronounced against the background of fully developed
thermal ionization and is described by various models
of ionization-potential reduction [1–3, 22]. It should be
noted that a number of theoretical models lose thermo-
dynamic stability upon extrapolation to the region of
strong nonideality and that this is attributed in [4, 6, 22–
25] to the occurrence of a first-order plasma phase-tran-
sition. Thermodynamic states realized to date in static
and dynamic experiments [26–36] are displayed in the
phase diagram of molecular hydrogen (H2) in Fig. 1.
Also given in the same figure are theoretical estimates
for plasma phase transitions, along with relevant criti-
cal points [23, 24, 37–39].

In order to separate density and thermal effects of
ionization, one must naturally try to suppress the effects
of irreversible heating (kBT ! I) by implementing a
quasi-isentropic compression. For this purpose, the
compression of the substance in this study was accom-
plished by means of a sequence of direct and reflected
shock waves that emerge upon their reverberation in
planar and cylindrical geometries. For the source of
generation, we employed explosive devices of end-face
and cylindrical throwing. By using processes of multi-
ple shock compression, it proves possible to implement
an order of magnitude reduced heating and an approxi-
mately tenfold increased compression of a plasma in
relation to what we have in a direct wave, as well as to
record, in experiments with H2, He, and Xe, a five
orders of magnitude increase in the plasma conductiv-
ity over a narrow density range peculiar to the regime
of cold ionization of a plasma.

2. GENERATION AND DIAGNOSTICS

A typical layout of experiments to implement mul-
tiple shock compression of condensed hydrogen and
inert gases in planar geometry is shown in Fig. 2 [36,
41, 42].

Shock waves were generated by the impact of a steel
impactor (2) 1–3 mm thick and 30–40 mm in diameter
accelerated by detonation products of a condensed high
explosive (hexogen) (1) to velocities of 3–8 km/s with
the aid of the gradient-cumulation effect [43]. Explo-
sive throwing devices developed for these experiments
ensured that, at the instant of impact against the bottom
of the experimental assembly, the diameter of the flat
part of the impactor was 15–30 mm. The absence of
melting and evaporation of a shock-worker material, as
well as the absence of mechanical fracture of the
impactor during dynamic acceleration, was tested in a
dedicated series of methodological experiments. The
transition of a shock wave from a metallic screen (3) of
thickness 1–1.5 mm to the substance under study (4)
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
having an initial thickness of 1 to 5 mm generated, in it,
the first shock wave of amplitude pressure P1 =
0.02−0.8 Mbar; upon being reflected from a transparent
sapphire window (5) 4–5 mm thick and 20 mm in diam-
eter, this wave excited a repeated-compression shock
wave. A further rereflection of shock waves between
screen 3 and window 5 led to multiple shock compres-
sion of the sample to maximum pressures of P ≈ 1–
2 Mbar, level of which was determined by the velocity
of the impinging impactor, its thickness, and the dimen-
sions of the substance being studied.

The initial states of the explored substances for a
further multiple compression were either in the gas
region of the phase diagram at pressure and tempera-
ture values of P0 = 5–35 MPa and T0 = 77.4–300 K,
respectively, or in its liquid region at P0 ≈ 0.1–1 MPa
and T ≈ 20.4–160 K. In the latter case, liquefaction was
performed from high-purity gases supplied to the
assembly through pipes (10). In liquefying hydrogen,
use was made of a two-contour system of cooling, the
external contour being filled with nitrogen, while, in
liquefying xenon, the internal contour of the cooling
system was filled with ethanol. The temperature in the
assembly was monitored by thermocouples and plati-
num resistance thermometers.

The process of multiple compression was observed
by means of fast optic–electronic convertors, as well as
by means of a five-channel fiber-optic-coupled pyro-

1
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3

4

57

9

8

6
10

Fig. 2. Layout of experiments aimed at implementing mul-
tiple shock compression of condensed hydrogen and inert
gases in planar geometry: (1) high-explosive charge,
(2) steel plate, (3) bottom of the experimental assembly;
(4) substance under study, (5) leucosapphire window,
(6) indium electrodes, (7) shunting resistance, (8) quartz–
quartz light guide, (9) coaxial electric cables, and (10) gas-
supplying pipes.
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meter with time resolution of 2–5 ns (8). Since the
shock-compressed sapphire of optic window 5 retained
transparency up to P ≈ 20 GPa and made it possible to
record the instants of reflection of shock waves from its
surface at still higher pressures and since its electric
insulating properties were at an acceptable level under
the conditions of compression up to pressures of about
2.2 Mbar [44], five to six reverberations of shock waves
could be detected by measuring the conductivity of the
compressed layer and optical radiation. Initial stages of
the compression process (up to 20 GPa) were recorded
in individual experiments with the aid of a VIZAR dif-
ferential laser interferometer [45]. In order to synchro-
nize the system for measuring the resistance of the
compressed layer with that for detecting optical radia-
tion, the light pulse from a laser diode that was con-
nected instead of the measuring cell was recorded
before each experimental run through a light guide and
through the convertor, along electric cables (9) of the
system for measuring resistance.

In the scheme chosen for the present experiments
(see [38, 41, 42]), the compression and irreversible
heating of the substance under study were implemented
by series of shock waves arising upon successive reflec-
tions from the sapphire window and the steel screen. A
hydrodynamic analysis of the process revealed that, fol-
lowing the propagation of the first two waves through
the compressed layer, a further compression proceeded
JOURNAL OF EXPERIMENTAL 
in a quasi-isentropic way. This made it possible to
advance to the region of higher densities (ρ/ρ0 ~
10−100) in relation to the case of single wave compres-
sion and to reduce the final temperature, whereby one
enhances interparticle-interaction effects, which are of
interest for the present investigation. The reverberation
of shock waves manifests itself as distinct steps in the
oscillograms of radiation and electrical conductivity
(Fig. 3).

The measured instants of shock-wave arrival at the
plasma-volume boundaries (t1 – t9) enable one to inde-
pendently determine, by using the laws of mass,
momentum, and energy conservation, the thermody-
namic shock-compression parameters P, ρ, and E [3].
Data obtained in this way for the caloric and thermal
equations of state of hydrogen, as well as of helium,
which was chosen as a reference substance, up to pres-
sures of 30–60 GPa are in accordance with the “chem-
ical” non-ideal-plasma model [2, 3, 22] and with the
solutions from the semiempirical equation of state of
hydrogen [27, 46]. At pressures in excess of 60 GPa,
however, no reliable information about the thermody-
namics of the substances being studied could be
obtained by means of the procedures used. In that case,
the thermodynamic parameters of multiple shock com-
pression at the final stage were calculated on the basis
one-dimensional hydrodynamic codes that employ the
AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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semiempirical equations of state from [27, 46] and [47]
for hydrogen and structural materials, respectively.

This set of gasdynamic and temperature measure-
ments was used to determine the thermodynamic
parameters of shock compression at its initial stages;
the results were also used as input data (along with the
velocity W of the impinging impactor) in testing one-
and two-dimensional gasdynamic codes according to
which the parameters in question were determined for
the case of higher pressures, densities, and tempera-
tures of multiply compressed matter—the semiempiri-
cal equations of state [27, 46], valid over a wide region,
were invoked in this determination. The errors in the P,
ρ, and T values found in this way are 5, 10, and 20%,
respectively.

The electrical conductivity of a shock-compressed
plasma was determined by a probe method. An electric
current was supplied to the shock-compressed plasma
under study by means of electrodes (6) that were
arranged orthogonally to the plane of the shock-wave
front. Further, the current propagated along the shock-
compressed sample and then arrived at the surface of
steel screen 3, whereupon it left the compressed region
through a grounding electrode. The arising electric sig-
nals transferred by high-frequency coaxial cables (9)
were recorded by multichannel digital oscilloscopes
whose transmission bandwidth was 500 MHz. Use was
made of two- or three-electrode schemes for recording
resistance. In the second case, whose circuit diagram is
given in Fig. 4, we were able to get rid of cophasal
noises and to record the instants of wave reflection not
only from the optic window but also from the screen.

The instants t1, t3, t5, t7, and t9 corresponded to wave
reflection from the window, and this was recorded with
the aid of an electric (lines 1, 2 in Fig. 3) and an optical
(lines 3, 4) in Fig. 3) procedure; the instants t2, t4, t6,
and t8 corresponded to wave reflection from the screen.
With the aim of eliminating breakdown and arc effects
in transmitting the transport current through a plasma,
its density was maintained at a level not exceeding
104 A/cm2. By varying this quantity within the range
103–104 A/cm2 in a dedicated series of measurements,
it was shown that the current–voltage characteristic of
the plasma is linear. Determination of the plasma elec-
trical conductivity on the basis of the plasma-gap resis-
tance measured in this way was performed by resorting
to numerical and electrostatic simulations of the corre-
sponding electrostatic problem. As a result, the accu-
racy in measuring the plasma electrical conductivity
was estimated at 20 to 50%.

The second series of measurements was performed
by employing shock compression under the conditions
of cylindrical geometry [48–50] (see Fig. 5).

A cylindrical charge of a high explosive (an alloy
formed by trotyl and hexogen in a ratio of 40 : 60), its
outer diameter being 30 cm, was initiated over the outer
surface at 640 points that generated, at the inner surface
of the charge, a highly symmetric detonation wave (the
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
difference in time of arrival was not greater than
100 ns). The arrival of this wave at the inner surface
caused the centripetal motion of the steel impactor at an
initial velocity of W ≈ 5 km/s. The deceleration of this
cylindrical impactor against the metallic surface of the
chamber filled with the gas under study at an initial
pressure of up to 70 MPa generated a converging shock
wave, whose intensity increased as it traveled to the
center, this increase being governed by the regularities
of geometric cumulation [51]. Thereafter, there
occurred successive reflections of the shock wave from
the center of symmetry and from the moving inner sur-
face of the chamber, and this gave rise to multiple shock
compression, which, as in the case of planar geometry,
proved to be close to isentropic compression.

At each instant of time, the profiles of thermody-
namic parameters of multiple compression were deter-
mined on the basis one- or two-dimensional gas-
dynamic calculations employing, for the high explo-
sive, the structural materials of the assembly, and target
plasmas, semiempirical equations of state that are valid
over a wide region. In some special experiments, the
process of cylindrical explosive compression was mon-
itored by measuring the velocity of the impactor by
electric-contact and fiber-light optical basis methods, as
well as by means of examination along the axis with

Channel 1 Channel 2Lsh Rsh

RL
Rx1 Rx2

RL
50 Ω 50 Ω

Fig. 4. Circuit diagram of the measurements.
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Fig. 5. Layout of cylindrical compression.
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two hard-radiation sources [52] emitting beams crossed
at an angle of 135°; this made it possible to follow the
dynamics of compression and to test the quality of gas-
dynamic calculations and yielded additional boundary
conditions for the codes used in those calculations. The
parameters found in this way for the shock-compressed
plasma in the device being considered had the follow-
ing values: for deuterium, the pressure was 1.25–
1.44 TPa at temperatures of 12500–14000 K and den-
sities of 2–2.4 g/cm3; for xenon, the pressure and den-
sity were 200 GPa and 13 g/cm3, respectively, the latter
value being nearly five times as great at the density of
solid Al.

The electrical conductivity was measured according
to the classic two-point circuit diagram [53] involving
a reference resistance connected in parallel with the
resistance of the sample under study. The resistance of
hydrogen was determined with the aid of two stainless-
steel electrodes 2 mm in diameter arranged on the axis
of the device with a gap length of h = 6.5 mm between
their end faces. This procedure of measurements
employed the discharge of a large-capacitance capaci-
tor through the resistance Rsh shunting the hydrogen

Vsh Vx

Fig. 6. Oscillogram of the experiment where the initial
hydrogen pressure was 70 MPa (the time-scale division here
is 1 µs).
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sample. The decrease in the compressed-hydrogen
resistance Rx led to a decrease in the total resistance,
with the result that the voltage across the measuring
electrodes changed, which was recorded by an oscillo-
scope. In these experiments, Rsh was 3 Ω. Figure 6 dis-
plays an oscillogram that was obtained in one of the
experiments at an initial hydrogen pressure of P0 =
70 MPa. The resistance estimated by using this oscillo-
gram is Rx ≈ 0.2 Ω.

In determining the electrical conductivity on the
basis of the measured resistance values, the actual
geometry of the current distribution between the elec-
trodes was taken into account, along with the geometry
of the electrodes at each specific instant of compression
and with the results obtained by calculating, according
to hydrodynamic codes, the profiles of the thermody-
namic parameters of hydrogen. The error in the electri-
cal-conductivity values found in this way was estimated
at 50%.

The characteristic plasma parameters obtained in
some experiments are quoted in Table 1.

3. EXPERIMENTAL RESULTS
FOR THE ELECTRICAL CONDUCTIVITY;

MODEL OF PRESSURE-PRODUCED 
IONIZATION

Experiments aimed at implementing multiple shock
compression of hydrogen and inert gases make it possi-
ble to obtain physical information about an as-yet-
unexplored part of the phase diagram, which is depicted
in Fig. 1 for hydrogen. One can see that the region of
pressures of up to 15 Mbar and temperatures of 3000 to
7000 K was reached by means of dynamic compres-
sion. Concurrently, densities are realized that are one
order of magnitude higher than those of solid hydrogen
and solid inert gases under normal conditions, in which
case the mean spacing between protons, n–1/3 ~ 1 Å, is
commensurate to the typical sizes of both molecules
(about 0.74 Å) and atoms in the ground state.

From the point of view of physics, this region is of
interest since this is the region of strong interaction
Table 1

Substance Initial state Final state P, GPa ρ, g/cm3 T, 103 K σ, (Ω cm)–1

Planar geometry

H2 P0 = 25.6 MPa, T0 = 77.4 K Maximum compression 227 0.94 5.3 1600

He P0 = 28 MPa, T0 = 77.4 K Maximum compression 126 1.37 15 1080

Xe P0 = 0.1 MPa, T0 = 160 K Maximum compression 126 10 25 500

Cylindrical compression

H2 P0 = 50 MPa, T0 = 293 K Maximum compression 1440 2.4 14 550

P0 = 70 MPa, T0 = 293 K Maximum compression 1250 2 12.5 1100
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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All these circumstances greatly complicate theoretical
description of strongly nonideal states [2, 3], hindering
the application of perturbation theory and of parameter-
free computer Monte Carlo and molecular-dynamics
methods in their classic formulation [54], which were
developed for Boltzmann statistics.

Our experimental results for the electrical conduc-
tivity of shock-compressed hydrogen and inert gases
are displayed in Figs. 7–11, along with the results
obtained on the basis of some theoretical models [1–3,
22, 37, 24, 55, 56] and the results of other measure-
ments [29, 30, 35, 36, 41, 42, 57–65].

Let us first point out some general features in the
behavior of the electrical conductivity of a strongly
nonideal plasma. The most prominent feature is that, at
final stages of compression, the electrical conductivity
of the plasma increases sharply (by three to five orders
of magnitude) in the process of compression in a nar-

EF

3π2ne( )2/3

2me

-----------------------, ET EF.∼=
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row range of “compressed” densities (ρ ≈ 0.3–1 g/cm3

for hydrogen, and ρ ~ 8–10 g/cm3 for xenon) at
megabar pressures, reaching values of about 102–
103 Ω–1 cm–1, which are characteristic of alkali metals.
Our measurements exhibit a pronounced threshold
effect in density and are therefore in a qualitative con-
tradiction with models of weakly nonideal plasma [1],
which predict a monotonic decrease in the plasma elec-
trical conductivity in response to its isothermal com-
pression [1].

Indeed, it is well known that, at low degrees of the
ionization of a plasma,

its electrical conductivity is determined by the scatter-
ing of electrons on neutral particles and is qualitatively
described by the Lorentz formula [3], according to
which the electrical conductivity is in direct proportion
to the concentration of free electrons; that is,

(3.1)

where  is the averaged cross section for electron
scattering by atoms:
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(1) [49], (2) [57], (3) [58], (4) [59], (5) [41], (6) [60], and
(7) [61]. Also plotted in this figure are the electron-degener-

acy line (ne  = 1), the line on which the parameter of Cou-

lomb nonideality takes the constant value of ΓD = 1, and the
line on which the electrical conductivity calculated by
Spitzer’s formula goes to infinity (σSpitzer = ∞). Solid lines 8
represent the electrical conductivity calculated on the basis of
the model formulated in the main body of the text.
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In turn, the composition of a plasma is described by
Saha’s ionization-equilibrium equation [2]

(3.2)

where Qa and Qi are the partition functions for atoms
and ions, respectively, I is the ionization potential, and
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Fig. 9. Electrical conductivity of helium as a function of
density: (1), (2), and (3) experimental data from [42], [57],
and [61], respectively; (4) electrical conductivity calculated
with the plasma composition corresponding to the model of
an ideal plasma; (5) results obtained with the plasma com-
position calculated on the basis of the Debye–Hückel model
[1]; (6) results obtained with the plasma composition calcu-
lated on the basis of the bounded-atom model [2, 22] featur-
ing a fixed radius of the helium atom (ra = 1.3a0); and
(7) results of the present study.
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sity: (1), (2), and (3) experimental data from [57], [62], and
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with the plasma composition corresponding to the model of
an ideal plasma; and (5) results of the present study.
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∆I is the reduction of the ionization potential due to
interparticle interaction (nonideality). Thus, one can
see that, at αi ! 1, it follows from Eqs. (3.1) and (3.2)
that, in the absence of interaction (∆I = 0, and Qi, Qa =
const), the electrical conductivity under the conditions
of isothermal compression is given by

which corresponds to the curves for an ideal plasma in
Figs. 7, 9, and 10.

Nonideality, which must be included under the
present conditions for determining the composition of a
plasma, is taken into account here by introducing a den-
sity-dependent quantity ∆I and less significant depen-
dences for Qi and Qa , whereby one arrives at a nonther-
mal growth of the degree of ionization and at an
increase in the plasma electrical conductivity upon iso-
thermal compression in accordance with Eq. (3.1). On
the curve representing the electrical conductivity as a
function of density at T = constant, there appears a min-
imum, its depth being greater for lower temperatures.
With increasing temperature, this minimum levels out
as soon as thermal-ionization effects (at kBT ~ I)
become more pronounced than effects associated with
pressure-produced ionization, which are significant at
kBT ! I.

As the density increases further at a given tempera-
ture, ionization processes described by relation (3.2)
are completed. Thereupon, one deals with a strongly
ionized (αi ~ 1) weakly nonideal plasma, where, instead
of Eq. (3.1), it is necessary to use the Spitzer approxi-
mation (which is valid in the case of a nondegenerate
plasma) [3]

(3.3)

or, in the case of Fermi statistics, the relation

(3.4)

where Λ is the Coulomb logarithm. This means that, at
high temperatures, the exponential dependence in (3.1)
and (3.2) gives way to a weaker [logarithmic in the case
of (3.3) or linear in the case of (3.4)] dependence on the
carrier concentration. In this case, we can take, for an
estimate of conductivity, the so-called Regel’–Ioffe
“minimal metal” conductivity, which is widely used in
the theory of simple metals and semiconductors; that is,

(3.5)

where RS is the radius of the Wigner–Seitz cell and vT

is the mean thermal velocity of electrons.
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We can see that the exponential growth of the num-
ber of carriers due to the reduction of the ionization
potential because of strong interparticle interaction in
plasmas of condensed densities is the main reason
behind the sharp increase in the measured electrical
conductivity.

It should be emphasized that, in exactly the same
way as the semiconductor thermal-excitation model
(see, for example, [66]) featuring an energy gap ∆(ρ)
that decreases with increasing density, the plasma pres-
sure-produced-ionization model that is based on
Eqs. (3.1) and (3.2), which is discussed here, leads to an
exponential variation of the electrical conductivity with
temperature:

This model was used in [35] to analyze experiments
with light-gas guns.

Thus, the data obtained here for the electrical con-
ductivity at kBT ! I provide a unique possibility for
adequately choosing thermodynamic models that
would describe the reduction of the ionization poten-
tial. For example, an analysis of the data in Figs. 7–11
reveals that the standard Debye–Hückel model (DHA
curve in Fig. 7 and curve 5 in Fig. 9) strongly overesti-
mates effects of Coulomb interaction, leading to pres-
sure-produced ionization at densities that are two
orders of magnitude lower than their experimental
counterparts.

Having performed the above qualitative analysis, we
will now perform quantitative calculations of physical
parameters that characterize a dense plasma and com-
pare the results obtained in this way with experimental
data.
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Fig. 11. Electrical conductivity of krypton as function of
density: (1) and (2) experimental data from [64] and [65],
respectively, and (3) results of the present study.
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4. THERMODYNAMICS
OF MEGABAR-RANGE PLASMAS

As a model intended for describing experiments
devoted to the shock and quasi-isentropic compression
of plasmas, we consider the bounded-atom model [67],
which explicitly takes into account the finiteness of the
phase space for the realization of the bound states of
atoms and ions and which was previously used in [2, 3,

ρ, g/cm3
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67] to describe the thermodynamics of shock-com-
pressed inert gases and cesium. As a matter of fact, this
model is a generalization of the Wigner–Seitz solid-
state model [1, 3] to the region of condensed-density
plasmas via the inclusion of thermal and density-ion-
ization effects. Within this model, atoms and ions are
treated as rigid spheres, whose thermodynamic func-
tions are constructed on the basis of molecular-dynam-
ics and Monte Carlo calculations, the contribution of
the bound electrons of these atoms and ions being
described in the quantum-mechanical Hartree–Fock
approximation. Figure 12 shows the energy spectrum of
a compressed hydrogen atom.

In the calculation of this spectrum, the radial com-
ponent of the wave function was required to satisfy the
boundary conditions

Within the solid-state model [68], this corresponds to
the upper and lower boundaries of the energy band
within which the relevant energy level of an isolated
(rc  ∞) atom occurs as the result of compression
(decrease in rc). In this approach, the width of the for-
bidden band, ∆E (energy gap), can be taken as the
energy difference between upper boundary of the
ground-state band (curve 1s) and the lower boundary of
the band built on the first excited stated (curve 2p); as
can be seen from Fig. 13, the energy gap, which
decreases with increasing density, is in accordance with
the experimental data reported in [44, 69] and obtained
from a direct treatment of data from experiments
devoted to multiple compression of hydrogen and deu-
terium. Versions of this model were successfully used
to describe the thermodynamics of metal plasmas in the
region of high and ultrahigh (up to 4 Gbar) pressures
[70–72].

The parameter region investigated in the experi-
ments being discussed is characterized by extremely
complicated and diversified processes that must be
reflected in the corresponding physical models. It
should be noted first of all that, in the course of com-
pression, the thermodynamic plasma composition may
change sharply, which is accompanied by the emer-
gence of strong interparticle interactions, including
Coulomb interaction (between electrons and ions),
polarization interaction (between charged and neutral
particles), and short-range interaction (between neutral
particles). Since the typical interparticle spacing in the
plasmas considered here is commensurate with charac-
teristic sizes of atoms and ions, the phase-space part
occupied by them becomes inaccessible to other parti-
cles; as a result, their kinetic energy grows, and so do
the corresponding contributions to the free energy of
such strongly compressed disordered structures. More-
over, the energy spectrum of bound states undergoes
changes in atomic and molecular systems subjected to

f nl r( ) r re= 0, ∂ f nl r( )
∂r

----------------
r rc=

0.= =
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a strong compression. Also, it is necessary to take into
account the change in statistics (from Boltzmann to
Fermi statistics) for continuous-spectrum electrons,
since, under the conditions being considered, the

degeneracy parameter ne  changes from 0.001 to 200.

In the present study, the following items of the full
thermodynamic approximation were used in calculat-
ing the thermodynamic parameters of plasmas in the
megabar range of pressures.

The free energy of a quasineutral mixture of elec-
trons, ions, atoms and molecules can be broken down
into the contribution of the ideal-gas component and
the term that takes into account interparticle interac-
tion; that is,

(4.1)

It is assumed that heavy particles (atoms, ions, mole-
cules) obey Boltzmann statistics, their contribution
having the standard form

, (4.2)

where Qj stands for the partition functions of atoms and
ions.

(A) Electron degeneracy. Electrons are treated as a
partly degenerate ideal Fermi gas:

(4.3)

(4.4)

Here, the electron density ne and the chemical potential
µe are related by the equation

(4.5)

The inclusion of electron-degeneracy effects is of para-
mount importance in the phase-diagram region dis-

cussed here, since the degeneracy parameter ne  can
be much greater than unity in this region.

(B) Coulomb interaction. We applied a version of
the pseudopotential-model for multiple ionization [73,
74]. The inclusion of the fact that, at short distances, the
interaction of free charges deviates from a Coulomb
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form is a key point of this model, and there arises, upon
explicitly taking this deviation into account, a notice-
able positive shift not only in the potential energy of
free charges but also in their mean kinetic energy. It
should be noted that the depth of the electron–ion
pseudopotential, (0), is related, in the model, to the
boundary separating, in the partition function (4.2), free
states of each electron–ion pair from bound states. The
electron–ion pseudopotential in the Glauberman–
Yukhnovskiœ form is given by (Fig. 14)

(4.6)

For potential (4.6), the parameters of correlation
functions were determined from conditions that are for-
mulated immediately below and which are quite gen-
eral and are valid at arbitrary values of the Coulomb
nonideality parameter

Specifically, these are
(i) the condition of local electroneutrality,

(4.7)

(ii) the condition of dipole screening,

(4.8)

(iii) the nonnegativity of correlation functions,

(4.9)

(iv) the relation between the screening-cloud ampli-
tude and the depth of the electron–ion pseudopotential,

(4.10)

At ΓD ! 1, corrections that are associated with the
interaction of charges and which were obtained from
the conditions in (4.6)–(4.10) are close to Debye cor-
rections, while at ΓD @ 1, they are smaller.

(C) Short-range repulsion. The contribution of the
short-range repulsion of molecules, atoms, and ions is
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described phenomenologically within the soft-sphere
approximation [75] generalized to the case of a multi-
component mixture; that is,

(4.11)

where 

is the Madelung constant for the potential V(r) =
ε(r/σ)−s.

We note that the corrections for short-range repul-
sion to the chemical potential,

, (4.12)

are different for particles having different radii, and this
determines the decrease in the ionization (dissociation)
energy with increasing matter density.

The above thermodynamic model provides a correct
asymptotic behavior at low plasma densities, where it
coincides with well-known theories of dilute plasma. In
the region of extremely high densities, the applicability
of this model was tested by comparing the results that
it yields with available experimental data on the ther-
modynamics of the plasmas of alkali metals [2], inert
gases [55–57], and shock-compressed strongly porous
metals [72, 74]. Considered individually below are
special features of the calculation for each element of
interest.

4.1. Hydrogen 

In the phase diagram of hydrogen (Fig. 1), the tran-
sition to the metallic state at low temperatures is shown
in accordance with the estimates given in [22] at a pres-
sure of about 300 GPa. The triple point at which the
metal phase coexists with condensed molecular hydro-
gen and a molecular liquid is predicted in [22] to occur
at P = 100 GPa and T = 1500 K. There are two critical
points (CPs) in the molecular-liquid phase. One of
these, CP1, and the curve along which a molecular gas-
eous hydrogen and a liquid coexist are well known to
lie in the low-temperature region. The position of the
second critical point (CP2), which is of greatest interest
to us, and the position of the coexistence curve (curve
(12) that is associated with a sharp change in the degree
of dissociation and ionization of hydrogen are not
known precisely. According to the estimates presented
in [22], T[CP2] = 16500 K, P[CP2] = 22.8 GPa, and
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ρ[CP2] = 0.13 g/cm3. Also shown in Fig. 1 are estimates
of other authors [23, 24, 37–39] for the coexistence
curve and for the critical point at which this plasma
phase transition occurs (curves 12–16).

It can be seen that the parameter region correspond-
ing to multiple shock compression in planar systems
[36] (region 9) and in experiments with light-gas guns
(LG) [34, 35] (curves 7, 8), as well as in cylindrical sys-
tems [26, 27] (curves 4, 5), partly overlap this rather
large region of the possible existence of a plasma phase
transition. The shock adiabatic curves of a single com-
pression of liquid hydrogen (deuterium) that were
obtained in experiments with high-power lasers [31,
32] (curves 10, 11), in a high-current Z pinch [33]
(curve 3), and in explosive spherical systems [28]
(star 6) also occur in the region of our interest, but they
lie at higher temperatures. Temperatures of about 700 K
were realized in experiments devoted to the isentropic
compression of hydrogen by strong magnetic fields in
explosive magnetic-compression systems [29, 30]
(boxes 1, 2). Pressures of up to 300 GPa were obtained
via the isothermal compression of hydrogen (T ≈
300 K) in diamond anvils (DA) [11] (curve 17). The
region where strong Coulomb interaction is operative
and the region where the degeneracy of the electron
component is significant lie above the curves ΓD = 1

and ne  = 1, respectively. Curve 19 characterizes the
behavior of the shock adiabatic curve for liquid hydro-
gen, while curve 18 represents parameters that are real-
ized in Jupiter’s atmosphere [40]. Figure 1 also displays
the regions of typical parameters achievable with the
aid of ordinary and explosive shock tubes (see [76] and
[77], respectively), in discharges, and in usual low-cur-
rent pinches [3].

As can be seen, the existence of a large “monomo-
lecular” region (ρ ≤ 0.3 g/cm3, –µH ≥ D(H2) ≈ 4.5 eV),
where the thermodynamics of hydrogen is almost com-
pletely determined by H2–H2 interaction, is a feature
characteristic of hydrogen. Within the soft-sphere
model [75], which is used in the present study, the
parameters of the H2–H2 interaction were chosen here
to be maximally close to those recommended within the
rigorous “nonempirical” atom–atom approximation
[78], the noncentrality of this interaction being disre-
garded. The calculations have revealed that the use of
the soft-core repulsion V(r) ∝  1/r6 makes it possible to
describe the molecular part of the T = 0 isotherm (“cold
curve”) and a considerable part of shock-wave experi-
ments, as well as the results of precise Monte Carlo cal-
culations of H2 + H2 thermodynamics [78].

The main problem of the chemical model in describ-
ing nonideality, including nonideality in the case of
dense hydrogen, is that of correctly specifying the
entire set of potentials that would simulate the interac-
tions between all members of the mixture being consid-
ered. This concerns the interactions involving both
charged and neutral particles—first of all, interactions
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in H2–H and H–H pairs. It is of importance that the
effective interaction of free atoms that appears in the
chemical model differs radically from the singlet
(attractive) and triplet (repulsive) branches of the total
potential of H–H interaction that are obtained from a
rigorous theory, since the contribution of H–H pairs
involved in the singlet-branch interaction has already
been taken into account in the discharge of intramolec-
ular motion. This is all the more justified for the effec-
tive interaction involving (free) charged particles,
since, in the chemical model, the contributions of free
and bound states must be consistent [see the approxi-
mation specified by Eqs. (4.6)–(4.10)]. At present, there
is a serious discrepancy between the results obtained
within different approaches for the form and parame-
ters of these potentials. Off the monomolecular region,
the most glaring contradictions are those in the param-
eters of the short-range repulsion in H–H and H–H2
pairs. We note that, according to the present calcula-
tions, the parameters of the effective potentials of H2–
A± interactions (where the symbol A± stands for all
charged components) are of no lesser importance. For
one of the versions, we would like to indicate the results
obtained within the nonempirical atom–atom approxi-
mation [78], which lead to relatively large “intrinsic
volumes” of the hydrogen atom. In terms of the soft-
sphere-model modification introduced in [75] and used
here, the results presented in [78] correspond almost
exactly to the “additive-volume” approximation,

For ρ ≤ ρ* ≈ 0.3 g/cm3, this choice leads to results that
agree, for T ≤ 10 kK, with the results of precise Monte
Carlo calculations [78] and, for T ≥ 10 kK, with the
nonanomalous part of the results obtained by means of
a quantum Monte Carlo method (PIMC [79]). At such
temperatures, the data are also in satisfactory agree-
ment with the results produced by other versions of ab
initio approaches, including the method of quantum
molecular dynamics (TBMD [80]) and the method of
wave packets (WPMD [81]).

Figure 15 displays the entire body of currently avail-
able experimental data on single shock compression of
liquid hydrogen.

Pressures of up to 25 GPa (point 1 in Fig. 15) were
achieved in a direct shock wave generated in experi-
ments with light-gas guns [34]. Investigations aimed at
generating shock waves with the aid of high-power
lasers [31, 32] (points 2, 3) made it possible to obtain
pressures of up to 300 GPa and to discover an anoma-
lously high compressibility of deuterium at a pressure
of P > 40 GPa. However, more recent results that
emerged from the Z-pinch experiment reported in [33]
(points 4) and from the experiment of Belov et al. [28]
(points 5) with explosive spherical systems did not con-
firm the existence of this anomaly up to P ≈ 70 GPa.

d H2( )[ ] 3 2 d H( )[ ] 3.≈
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The shock adiabatic curves calculated by using the
SESAME equation of state [82] (curve 6) do not predict
this anomaly in the behavior of shock compressibility,
nor does it arise in calculations with semiempirical
equations of state [27]. The emergence of this anomaly
is not expected either if use is made of ab initio
approaches, such as the quantum Monte Carlo method
[79] (curve 7) and the molecular dynamics method
[80]. For deuterium, Ross [83] presented an interpola-
tion equation of state (curve 10) that qualitatively
describes experimental results obtained with the aid of
lasers.

The approach considered in the present study also
does not reproduce this abrupt change in the behavior
of the shock adiabatic curve for deuterium (toward
unexpectedly high degrees of compressibility, σmax ≡

(a) (b)

++

+–
ε ε⇔

ΦCoul

Φie
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Fig. 14. Glauberman–Yukhnovskiœ electron–ion pseudopo-
tential: (a) bound states and (b) continuous spectrum.
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Fig. 15. Shock adiabatic curve for deuterium: (1), (2), (3),
(4), and (5) experimental data from [34], [31], [32], [33],
and [28], respectively; (6), (7), (8), (9), and (10) results of
the calculations from [82], [79], [22], [37], and [83], respec-
tively; and (11, 12) results of the present study.
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ρmax/ρ0 ≈ 6.5 versus the expected value of σmax ≈ 4) in
the region P ≈ 0.5–2 Mbar (curve 11), nor does it lead
to anomalies for ρ ≥ 1 g/cm3 that are typical of phase
transitions.

The thermodynamics of compressed hydrogen (deu-
terium) assumes quite a different form if one describes
H–H (D–D) interactions by means of the H–H potential
introduced in [84] and extensively used in approximate
calculations, adopting standard composition rules for
H–H2 interaction. In terms of the soft-sphere-model
modification employed in the present study, this corre-
sponds to a much smaller ratio of the intrinsic volumes
of H and H2:

For ρ ≥ 0.3 mol/cm3, this choice of the intrinsic size of
an atom immediately leads to “pressure-produced dis-
sociation,” which is accompanied by a dip in the shock
adiabatic curve for deuterium (curve 12).

4.2. Inert Gases 

The phase diagram of xenon is shown in Fig. 16. In
experiments devoted to measuring the electrical con-
ductivity of xenon under the conditions of multiple
shock-wave loads, its density, pressure, and tempera-
tures took values of up to 9.5 g/cm3, 120 GPa, and
(5−20) × 103 K, respectively, the electron concentration
ranging up to 3 × 1022 cm–3 at a degree of ionization less

d H( )
d H2( )
-------------- 0.4

2v H( )
v H2( )
--------------- 0.13.≈≈
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than or equal to 0.5. In the region of maximum param-

eter values, the plasma was degenerate (ne  ~ 50) and
strongly nonideal both with respect to Coulomb (ΓD ~
10) and with respect to interatomic (Γa ~ 1) interaction.

In Fig. 16, the phase boundaries of xenon states are
depicted according to [22]. The metallization of xenon
under the conditions of static compression at diamond
anvils was experimentally observed in [60, 88, 89] at
densities of about 12.3 g/cm3 and pressures in the range
130–150 GPa, this being in agreement with the results
of the calculations previously performed in [17]. In
accordance with the estimates presented in [22], the
phase boundary associated with a metal–dielectric tran-
sition intersects the line of xenon melting at the triple
point (Tp2) corresponding to P ≈ 50 GPa and T ≈
6000 K and terminates at critical point C2 in the plasma
region at P ≈ 10 GPa and T ≈ 10000 K. At high temper-
atures, the phase transition is accompanied by a sharp
change in the concentration of free electrons in a nar-
row range of plasma densities, and this is shown in
Fig. 16 by the curves corresponding to constant values
of the degree of xenon-plasma ionization. A vast body
of experimental data obtained from shock-wave exper-
iments in measuring the equation of state for a xenon
plasma [3, 49, 67, 85, 86, 90, 91], its optical properties
[3, 49, 90, 87], and its electrical conductivity [3, 41, 49,
57–59] furnishes no indications of some of the unusual
features in the behavior of xenon in this region of its
parameters. The experimental observation of a sharp
increase in the electrical conductivity in [41] corre-
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sponds to densities of ρ ≈ 8–10 g/cm3 and pressures of
about 100 GPa.

For shock-compressed plasmas of liquefied inert
gases, the radii of the atoms involved were determined
by fitting, to the cold curve (T = 0 K) for densities of the
experimental range (see Table 2), the results of the cal-
culations within the model specified by Eqs. (4.11)
and (4.12).

The relationships between the radii of the atoms
involved and of their ions of different ionization multi-
plicities were determined from a calculation of the rel-
evant electron structure in the bounded-atom approxi-
mation by the Hartree–Fock method as implemented
within the procedure used previously in [74].

We note that, upon a formal interpolation of the
melting curve to the parameter region of our interest,
some of the experimental points appear to be in the
solid phase.

The applicability of the thermodynamic model con-
sidered above was tested by comparing the results
derived on its basis with experimental data on the shock
compression of liquid xenon that were obtained with
light-gas guns [85, 86, 90] and in explosive experi-
ments [49] (see Fig. 17). Figure 17 also displays the
results of experiments devoted to multiple shock com-
pression [41]. It can be seen that, by and large, the
model reproduces experimental results satisfactorily.
The discrepancy manifesting itself at low temperatures
and pressures may be attributed to an insufficiently
accurate approximation of xenon states in the liquid
phase. The use of this model makes it possible to obtain
a fairly good description of the shock adiabatic curves
for liquid argon and krypton as well (see Figs. 18, 19).
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Fig. 17. Shock adiabatic curve for xenon. The experimental
data were borrowed from (1) [85], (2) [86], (3) [49],
(4) [90], and (5) [41]. The displayed theoretical results cor-
respond to the calculations performed (6) in [49] and (7) in
the present study (on the shock adiabate for P = 86.8 GPa,
the characteristic parameters are T = 29100 K, ΓD = 11.9,

ne  = 2.19, ne = 2.63 × 1022 cm–3). The dashed curve rep-

resents the “cold” curve from [49].
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Here, the displayed experimental data were borrowed
from [64, 92].

It should be noted that good agreement could also be
reached for the measured values of the brightness tem-
perature and the speed of sound in these substances.

The situation around a thermodynamic description
of helium states proves to be more complicated since
available experimental data are much scantier and since
the helium phase diagram, which is shown in Fig. 20
[22], is quite unusual. The metallization of helium at
low temperatures is expected to occur at extremely high
pressures of P ≈ 1.1 TPa. However, plasma phase tran-
sitions associated with a sharp change in the ionization
composition of helium must take place at much lower
pressures. Indeed, the estimates presented in [22] reveal
that, with increasing temperature, the melting of solid
helium will be accompanied by its direct transition,
first, into a singly ionized plasma state (triple point Tp3)
and then into a doubly ionized state (triple point Tp4).
The plasma-phase-transition curves terminate at the
critical points C1 and C2, the parameters of the first
point (P ≈ 660 GPa, T ≈ 35000 K) lying very closely to

Table 2

s εSS, eV ratom Q

He 12 0.01354 2.82a0 1

Ar 12 0.0125 3.2a0 1

Kr 12 0.0171 3.54a0 1

Xe 10.5 0.0221 3.83a0 1
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Fig. 18. Shock adiabatic curve for argon. The displayed
experimental data (points) were borrowed from [92]. The
solid curve was calculated in the present study (on the shock
adiabate for P = 54.6 GPa, the characteristic parameters are

T = 17900 K, ΓD = 8.8, ne  = 0.66, ne = 3.78 × 1021 cm–3).

The dashed curve represents the “cold” curve.
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Fig. 19. Shock adiabatic curve for krypton. The displayed
experimental data (points) were borrowed from [64]. The
solid curve was calculated in the present study (on the shock
adiabate for P = 65.8 GPa, the characteristic parameters are

T = 20100 K, ΓD = 8.06, ne  = 0.66, ne = 4.53 × 1021 cm–3).

The dashed curve represents the “cold” curve.
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Fig. 20. Phase diagram of helium. The triple points for sin-
gle and double ionization are denoted by Tp3 and Tp4,
respectively. The critical points of plasma phase transitions
for single and double ionization are C1 and C2, respectively.
The shaded region represents helium states realized in
experiments devoted to multiple shock compression [42].
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the experimentally accessible region. In Fig. 20, the
closed circles and the closed box represent the parame-
ters of helium that were realized in the experiment of
Nellis et al. [93] in, respectively, the incident and the
reflected shock wave. The shaded region corresponds to
helium states realized in experiments devoted to multi-
ple shock compression [42]. It should be emphasized
that the thermodynamic model satisfactorily describes
the data of Nellis et al. [93] on the shock compression
of helium in the incident and in the reflected shock
wave.

5. ELECTRICAL CONDUCTIVITY
OF NONIDEAL PLASMAS

In order to describe the electrical conductivity over
a broad range of parameters where electrons may obey
either Boltzmann or Fermi statistics, expressions (3.1)–
(3.4) were combined into an interpolation expression
within the τ approximation [94]; that is,

(5.1)

where f0 is the electron distribution; τ is the relaxation
time,

Qea and Qei are the transport cross sections for, respec-
tively, electron–atom and electron–ion scattering; and
γj is a correction for electron–electron scattering. For
the case where the change in statistics occurs, this cor-
rection was interpolated as [22]

with TF being the Fermi temperature and  is a correc-
tion for the Boltzmann plasma.

In the Born approximation, the cross section for
electron scattering on a Coulomb potential is given by

(5.2)

σ
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where

(5.3)

is the Debye screening radius with allowance for elec-
tron degeneracy and

is the minimum impact parameter.

In the case of Boltzmann statistics, the expression
for Λj reduces to the ordinary Coulomb logarithm Λj =
lnχj in the limit of a weakly nonideal plasma (χj @ 1).
For a strongly nonideal plasma (χj ~ 1), it proves to be
finite, not leading to an nonphysical divergence in the
expression for the electrical conductivity, and this gives
sufficient grounds to use it in tentative calculations.

Expression (5.1) for the electrical conductivity takes
into account the fact that, in the region of high compres-
sions, free electrons are partly or fully degenerate. In
this case, the Boltzmann distribution of electrons is
replaced by the Fermi–Dirac distribution, the radius of
screening being calculated with allowance for electron
degeneracy [formula (5.3)]. As a result, the approxima-
tion specified by Eq. (5.1) yields Spitzer’s asymptotic
behavior for a fully ionized Boltzmann plasma. For a
full degeneracy of electrons, γ = 1 and the electrical
conductivity tends to expression (3.4), while for a
partly ionized plasma, the estimate in (3.1) is valid.

The effect of pressure-produced ionization is the
most pronounced in the case of hydrogen (see Fig. 7).
In this figure, our data on the quasi-isentropic compres-
sion of liquid and gaseous hydrogen in (points 1) planar
and (points 2) cylindrical geometries are contrasted
against the results of its compression by means of a
light-gas gun (points 5) [35], as well as against the
results of explosive cylindrical compression by means
of an axial magnetic field (points 3 and 4 from [29] and
[30], respectively). In view of a light molecular weight,
the multiple shock compression of hydrogen is accom-
panied by a relatively weak heating of this substance—
even at maximum pressures of 1 to 10 Mbar, the char-
acteristic values of its temperature do not exceed T =
104 K and this favors the “cold”-ionization” regime
(kBT ! I). For hydrogen compressed to densities of ρ ≈
0.01–1.2 g/cm3 and heated to T ~ 104 K at pressures
below 15 Mbar, a wide spectrum of plasma states char-
acterized by a fully developed ionization, α = 1, and a
high electron concentration of ne ≈ 2 × 1023 cm–3 were
realized in experiments. At maximum compressions,

the plasma in question is degenerate, ne  ≈ 200, and is
strongly nonideal both with respect to Coulomb (ΓD ≈
10) and to interatomic (Γa ≈ 1) interaction.
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It is interesting to note that an extrapolation of the
simplest plasma models to this region of strong nonide-
ality leads to the thermodynamic instability of Debye–
Hückel models (Coulomb collapse)—arrow DC in
Fig. 7—and to the divergence of Spitzer’s formula—
arrow SC. The first of these approximations is depicted
by the DHA curve in Fig. 7 and predicts pressure-pro-
duced ionization at a density value that is approxi-
mately two orders of magnitude lower than its experi-
mental counterpart.

The shock compression of matter leads to the over-
lap of the wave functions for neighboring atoms and,
hence, to the percolation conductivity mechanism [55],
which is described in terms of the density-dependent
reduction of the ionization potential (curve P),

A decrease in the ionization potential with increas-
ing density is also predicted by the Mott model [5],
which was used in [22] to construct a semiempirical
wide-range model of ionization equilibrium and trans-
port properties (curve M in Fig. 7) of compressed and
hot matter; that is,

Here, the parameters a, R, and ∆ were chosen is such a
way as to reproduce experimental data on pressure-pro-
duced ionization of alkali metals. It can be seen that the
proposed approximations provide a good qualitative
description of experimental results.

By using the ring (Debye) approximation in a grand
canonical ensemble of statistical mechanics (LDH) to
describe Coulomb nonideality, one can reduce the dis-
crepancy between the theoretical and experimental
results down to one order of magnitude. The remaining
discrepancy can be removed by introducing the hard-
sphere model to describe the short-range repulsion of
atoms and ions (curve HS) and by taking into account
the compression-induced change in the energy spec-
trum of atoms and ions within a simplified version of
the model considered at the beginning of Section 4
(curve CA). An attempt at taking into account the jump-
like character of the electrical conductivity in nonideal
plasmas was made Redmer et al. [56]. The results of
their calculations are represented by curve R in Fig. 7.
The QMC curve corresponds to the calculation of the
electrical conductivity by the quantum Monte Carlo
method in [24].

Figures 8–11 display the results obtained by study-
ing the electrical conductivity of shock-compressed Xe,
Ar, Kr, and He. In just the same way as in the case of
hydrogen, one observes here, at “low” temperatures
(kBT ! I), the pressure-produced-ionization effect

∆I
kBT
--------- e2 4πn

ζ
--------- 

 
1/3

.=

∆I
kBT
--------- I 1 –2

R a I( )–
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occurring at higher plasma densities of ρ ≈ 1–10 g/cm3.
For many-electron atoms, it is also natural to expect
that, as compression is increased further, the first ion-
ization induced by pressure will be followed by the next
steps of multiple ionization with the emergence of sub-
sequent additional boundaries of phase transitions cor-
responding to the second and still higher steps of ion-
ization (see Fig. 20). Unfortunately, experimental
investigation of these regimes of multiple ionization is
presently beyond the capabilities of the explosive
experimental equipment that we have at our disposal.

Along with the results of multiple (“cold”) compres-
sion, Figs. 8–11 exhibit data obtained previously
in [57–59] by measuring the electrical conductivity of
singly and doubly compressed plasmas. Almost one
order of magnitude higher temperatures are realized in
experiments with inert gases than in those with hydro-
gen, the effects of thermal ionization becoming domi-
nant in the former. The role of these effects becomes
more pronounced with the increasing molecular weight
of the substances being studied, and this is especially
spectacular for xenon (see Fig. 8). It can be seen that,
upon thermal ionization [T ≈ (2–10) × 104 K], a high
level of the electrical conductivity [about 103 (Ω cm)–1]
is achieved even at low densities of ρ < 1 g/cm3; on the
other hand, only at extremely high compressions up to
densities of ρ ~ 10 g/cm3 is the same level of electrical
conductivity ensured in cold (T ~ 104 K) matter under
conditions of pressure-produced ionization. It can also
be seen that, with increasing molecular weight of sub-
stances, the jump in the electrical conductivity due to
pressure-produced ionization decreases, falling down
to only two orders of magnitude in xenon. It is worthy
of note that the values of the electrical conductivity of
xenon plasma that were measured in multiple-shock-
compression experiments are close to those obtained
under static conditions of diamond anvils (the cross in
Fig. 8).

It is important to note that some of the models dis-
cussed here lose thermodynamic stability in the region
of the experiments in question. With some qualifica-
tions, this may be considered as an indication of a
plasma first-order phase transition leading to the strati-
fication of a strongly nonideal plasma into phases char-
acterized by different degrees of ionization and com-
pressibility [1–4]. A sharp increase in the electrical
conductivity of a dense plasma in our experiments sug-
gests the occurrence of such a phase transition.

6. CONCLUSIONS

Thus, we believe that it is necessary to conduct
experiments aimed at directly measuring the concentra-
tion of free electrons in the region of the possible phase
transition. The first studies devoted to such measure-
ments in plasmas have already been performed by the
authors.
JOURNAL OF EXPERIMENTAL 
The chemical model used to describe the equation of
state for plasmas in the region of ultrahigh densities
yields satisfactory results in this region, which is not
traditional for the model in question; nonetheless, the
model calls for further refinements associated with tak-
ing into account the rearrangement of the internal struc-
ture of plasma particles under the conditions of
ultradense plasma states.
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Abstract—The paper presents systematic experimental and theoretical studies of thermal expansion for rare-
earth metal scheelites RLiF4 (R = Tb–Ho, Tm, and Lu). Pronounced thermal expansion anomalies were
observed. The magnetoelastic contributions were determined taking into account corrections for changes in the
phonon contribution in the RLiF4 series according to the Debye thermal expansion model. The calculated mul-
tipole moments of various orders for various rare-earth metal ions were compared to analyze the applicability
of the quadrupole approximation to totally symmetric modes in the scheelite structure. For some ions (Ho and
Tm), the magnetoelastic contributions to thermal expansion could not be described by the temperature depen-
dences of their quadrupole moments, that is, multipole moments made considerable contributions. The totally
symmetric magnetoelastic coefficients for the scheelite structure were determined from the experimental data
on magnetoelastic contributions. These coefficients were compared with those for the zircon structure. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Magnetoelastic interaction in rare-earth metal com-
pounds, which is strong compared with transition metal
compounds with open d shells, plays an important role
in the formation of their magnetic characteristics and is
responsible for various magnetoelastic effects, for
instance, for structural phase transitions of a Jahn–
Teller nature [1]. One of the simplest spontaneous
effects is the magnetoelastic contribution to thermal
expansion, which is not accompanied by a descent in
crystal symmetry and is described by totally symmetric
magnetoelastic modes. Magnetoelastic effects are
related to additional lattice deformations caused by
changes in the magnetic state of ions and can also man-
ifest themselves in the absence of a magnetic field, for
instance, in the form of spontaneous magnetostriction
accompanying crystal magnetic ordering or as a defor-
mation caused by magnetoelastic coupling between the
anisotropic 4f shell electron cloud and the lattice.
Changes in the anisotropy of electron cloud distribu-
tions during cooling caused by a decrease in the popu-
lation of excited levels are responsible for magnetoelas-
tic anomalies of lattice parameters.

In the quadrupole approximation, the magnetoelas-
tic effects depend on magnetoelastic coefficients,
which are a characteristic of the whole series of rare-
earth metal compounds, on the one hand, and on the
response function of the rare-earth metal ion deter-
mined by its electronic structure, on the other. The main
problem in studying magnetoelastic phenomena is to
determine magnetoelastic coefficients. The currently
1063-7761/03/9702- $24.00 © 20279
available theoretical calculations of magnetoelastic
coefficients performed, for instance, according to the
model of exchange charges [2], contain many unknown
parameters, which vary in fairly broad ranges within
the framework of the model. The calculations of first
principles require knowledge of many structural and
electronic parameters of the compound under study. In
addition, such calculations cannot be consistently com-
pared with experiment to substantiate the correctness of
the selected model and calculation results. For this rea-
son, calculated magnetoelastic coefficients can only be
considered estimates. Currently, the approach based on
treatment of magnetoelastic coefficients as phenome-
nological parameters and their determination from
comparison with experiment has gained broader accep-
tance.

In this work, we studied the magnetoelastic contri-
bution to thermal expansion of rare-earth metal
scheelites. Our goal was to explore totally symmetric
magnetoelastic modes in the structure of scheelite and
analyze the applicability of the quadrupole approxima-
tion to their description. In [3, 4], similar studies were
performed for rare-earth metal vanadates and phos-
phates with zircon structures. The crystal field parame-
ters for rare-earth metal zircons and scheelites are sub-
stantially different. The same rare-earth metal ions
therefore have different spectra and, accordingly,
behave quite differently in these tetragonal structures.
For this reason, systematic studies of magnetoelastic
interactions for a series of rare-earth metal scheelites
and their comparison with those in rare-earth metal zir-
003 MAIK “Nauka/Interperiodica”
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cons taking into account the differences in the crystal
fields and structure parameters is of obvious interest.

2. SAMPLES AND PROCEDURE
FOR MEASUREMENTS

Thermal expansion of RLiF4 scheelites (R = Tb–Ho,
Tm, and Lu) was studied on a Gegerflex diffractometer
with a CF-107 (Oxford Instruments) flow helium cry-
ostat. Compound single crystals were grown by the
Bridgman technique. Plates with an area of 1 × 4 mm2

and thickness of 0.5–1 mm were cut from these crystals
normally to the a and c axes. Temperature measure-
ments of the a and c parameters were performed based
on the (600) (CoKβ radiation, 2θ ~ 130°–140°) and
(0012) (FeKβ radiation, 2θ ~ 150°–160°) reflections.
The relative accuracy of measurements was δa/a ≈ δc/c ≈

 ≈ 10–5 (∆θ ≈ 0.003°).

3. RESULTS

3.1. Thermal Expansion of RLiF4
(R = Tb–Ho, Tm, Lu)

We performed measurements for RLiF4 crystals
with R = Tb, Dy, Ho, and Tm. According to the calcu-
lations, the magnetoelastic contribution to thermal
expansion of these crystals should be largest in magni-
tude. Consider the special features of thermal expan-
sion of rare-earth metal scheelites for the example of
TbLiF4. Figure 1 shows the experimental temperature
dependences of the a and c parameters [∆a/a =
a(T)/a0 – 1, ∆c/c = c(T)/c0 – 1, a0 = a(290 K), c0 =
c(290 K), curves 1 and 2] and volume ∆V/V = V(T)/V0 –

1, V0 = , curve 3] for the tetragonal unit cell of
TbLiF4. The normalization that we use rules out the
systematic measurement error related to crystal align-
ment. Similar dependences for LuLiF4 are shown by
solid lines in the same figure (curves 1', 2', 3'). These
dependences are used to determine the phonon contri-
bution to the thermal expansion of RLiF4. The isomor-
phous LuLiF4 compound does not contain magnetic
ions, and its temperature dependences of ∆c/c and ∆a/a
have the usual Debye form; these values equal 16 × 10−3

and 18 × 10–3, respectively, at T = 20 K.
The ∆a/a curve for the Tb scheelite goes below the

corresponding curve for the Lu compound at all tem-
peratures, and the temperature dependence of ∆a/a dif-
fers from the Debye dependence, which is character-
ized by saturation below 100–80 K. The ∆a/a curve for
TbLiF4 has a singularity at T ~ 80 K corresponding to a
local minimum of the thermal expansion coefficient
αa = (1/a)da/dT (Fig. 2).

The temperature dependence of ∆c/c for the Tb
scheelite has a nonmonotonic character and contains a
minimum in the region of 120 K. The thermal expan-
sion coefficient along the tetragonal axis, αc =

θ∆θcot

a0
2c0
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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(1/c)dc/dT, changes sign at T ~ 120 K and has an extre-
mum at about 80 K, which coincides with the αa coef-
ficient minimum (Fig. 2). The magnetoelastic contribu-
tion along both TbLiF4 axes is insignificant above
200 K but sharply increases at lower temperatures. In
the TbLiF4 crystal, the magnetoelastic contribution is
positive for the c parameter and negative for a. This
increases the thermal expansion anisotropy along and
normally to the tetragonal axis. The anomalies of the
∆a/a and ∆c/c curves for TbLiF4 cause the volume
anomaly ∆V/V = ∆c/c + 2∆a/a ~ 5 × 10–3. The magne-
toelastic contribution to the volume deformation deter-
mined with respect to the Lu compound is, however,
insignificant, about 5 × 10–4 (cf. curves 3 and 3' in
Fig. 1).

The structure of TbLiF4 remains tetragonal in the
whole temperature range of our experiments. Only the
degree of tetragonality determined by the difference
∆c/c – ∆a/a (curve 4) changes as temperature
decreases. Note that, for the Lu compound, thermal
expansions along and normally to the tetragonal axis
are comparable in magnitude and the degree of tetrago-
nality changes insignificantly as temperature varies
(curve 4'). Temperature-induced changes in the degree

0 100 200 300
T, K
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–2

–1

0
∆a/a, 10–3

1

4
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2

Fig. 3. Relative temperature-induced changes in the ∆a/a =
a(T)/a0 – 1 parameter for the tetragonal unit cells of rare-
earth metal scheelites [a0 = a(290 K)]: (1) TbLiF4 (a0 =
5.197 Å), (2) DyLiF4 (a0 = 5.186 Å), (3) TmLiF4 (a0 =
5.148 Å), and (4) LuLiF4 (a0 = 5.126 Å); each subsequent

curve is shifted along the y axis by –4 × 10–4 from the pre-
vious one.
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of tetragonality of the Tb scheelite are more substantial.
The representation of the thermal expansion in terms of
the totally symmetric deformations ∆εα1/εα1 ~ ∆V/V
and ∆εα2/εα2 ~ (∆c/c – ∆a/a) is useful because the mag-
netoelastic contributions of these deformations give
direct information about the value and sign of the cor-
responding magnetoelastic coefficients (see below). In
the Tb scheelite as distinguished from rare-earth metal
vanadates [3], both magnetoelastic contributions are
negative, and the contribution to the volume deforma-
tion is substantially smaller in magnitude. This is
explained by the ratio between the magnetoelastic con-
tributions along the c and a axes in zircon and scheelite
structures.

Similar lattice parameter anomalies are observed for
the DyLiF4, HoLiF4, and TmLiF4 scheelites (Figs. 3, 4).
These anomalies can be quantitatively estimated from
the difference between the ∆a/a and ∆c/c values for a
given scheelite and for LuLiF4. The magnetoelastic
contributions in the scheelites are negative at all tem-
peratures for the a parameter but positive for the c
parameter, at least at not very low temperatures. Fig-
ures 3 and 4 show that the magnetoelastic contribution
is maximum for the Tb scheelite and decreases in the

0 100 200 300
T, K
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0
∆c/c, 10–3
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1

Fig. 4. Relative temperature-induced changes in the ∆c/c =
c(T)/c0 – 1 parameter for the tetragonal unit cells of rare-
earth metal scheelites [c0 = c(290 K)]: (1) TbLiF4 (c0 =
10.87 Å), (2) DyLiF4 (c0 = 10.81 Å), (3) TmLiF4 (c0 =
10.65 Å), and (4) LuLiF4 (c0 = 10.55 Å); each subsequent

curve is shifted along the y axis by –4 × 10–4 from the pre-
vious one.
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Dy and Tm compounds. The thermal expansion of
DyLiF4 along both axes is larger than that of LuLiF4 at
T > 100 K, which is, in our view, evidence of different
phonon contributions in the Dy and Lu scheelites. In
addition, |∆a/a | > |∆c/c | for DyLiF4 at high tempera-
tures, but this ratio changes at T < 50 K because the
magnetoelastic contributions to the a and c parameters
change sign.

The special features of the thermal expansion of
RLiF4 are similar to those observed for rare-earth metal
phosphates [4] and vanadates [3]. They are caused by
magnetoelastic interaction between the aspherical 4f
shell cloud of the rare-earth metal ion and the lattice. At
high temperatures, at which all multiplet levels are
equally populated, the electron shell is spherically sym-
metric. Electron cloud asphericity, which is character-
ized by quadrupole and multipole moments, changes as
temperature lowers because excited level populations
then gradually decrease (become frozen). As a result,
magnetoelastic coupling causes the appearance of addi-
tional magnetoelastic anomalies of lattice parameters.

Systematic experimental data on the magnetoelastic
contribution to the thermal expansion of rare-earth
metal scheelites or an analysis of the phenomenon are
lacking in the literature. We can only cite [5], where the
temperature dependences of the a and c parameters

–1.8
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Fig. 5. Relative temperature-induced changes in the
(1−4) ∆a/a and (5) ∆c/c parameters, experimental (LuLiF4,
symbols) and calculated for the tetragonal scheelite unit
cell; calculations by (1) with the parameters (1) TD = 790 K

and a0 = 18.8 × 10–6, (2) TD = 710 K and a0 = 16.8 × 10–6,

(3, 4) TD = 740, 840 K and a0 = 18.8 × 10–6, and (5) TD =

600 K and a0 = 13.0 × 10–6.
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were obtained for HoLiF4 and TmLiF4; these depen-
dences were analyzed in the multipole approximation
using the magnetoelastic coefficients calculated by the
model of exchange charges. This approach cannot be
used to correctly compare magnetoelastic effects in
various structures, and, as mentioned, the calculated
magnetoelastic coefficients can only be considered esti-
mates. For this reason, we will analyze totally symmet-
ric magnetoelastic modes using the approach applied
in [3] to rare-earth metal zircons.

3.2. Thermal Expansion of the Scheelite Lattice 
(LuLiF4)

To separate the purely magnetoelastic contribution
to thermal expansion, we must correctly estimate the
phonon contribution. X-ray measurements of LuLiF4
allow the phonon contributions ∆aph/a and ∆cph/c to be
determined for the other RLiF4. It is only necessary to
introduce corrections for their variation along the series
of rare-earth metal ions. The correction for phonon con-
tribution changes, which amounts to 10–15% of the
contribution value, can, in our view, be introduced
using fairly rough models, for instance, the Debye
model of solids.

According to the Debye model, thermal expansion,
for instance, along axis a, is described by the universal
function of heat capacity at a constant volume Cv(t),

, (1)

where t = T/TD is the reduced temperature and TD and
α0 are two independent coefficients.

The experimental data obtained for LuLiF4 and the
∆aph/a and ∆cph/c curves calculated by (1) with various
TD and α0 parameter values are shown in Fig. 5. The
thermal expansion of LuLiF4 along axis a is seen to be
fairly well described by the Debye formula with the
coefficients TD = 790 K and α0 = 18.8 × 10–6 (curve 1).
A comparison of curves 1 and 2 (TD = 710 K and α0 =
16.8 × 10–6) shows that, generally, a coupled pair of the
coefficients can only be determined within the accuracy
of our measurements; that is, we can simultaneously
somewhat decrease or increase both TD and α0, the
agreement remaining satisfactory to within experimen-
tal errors. To determine the Debye temperature more
accurately, we must perform precision measurements at
temperatures below 150 K. Calculations show that
changes in the Debye temperature within ±50 K cause
very substantial changes in the photon contribution
compared with the magnetoelastic contribution (com-
pare curve 1 with 3 and 4; α0 = 18.8 × 10–6 and TD = 740
and 840 K). The thermal expansion along tetragonal
axis c is approximated by the Debye dependence with
TD = 600 K and α0 = 13.0 × 10–6 (curve 5). Note that we

∆aph/a α0TD Cv t( )/3R[ ] td

0

t

∫=
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further use the Debye model only as a simple and con-
venient form for describing the thermal expansion of
the RLiF4 lattice and introducing corrections for
changes in the phonon contribution; the calculated TD

and α0 values are neither used nor discussed in what
follows.

4. THEORETICAL CONSIDERATION

4.1. Magnetoelastic Contribution 
to Thermal Expansion of Tetragonal Compounds

The rare-earth ion contribution to thermal expansion
in the absence or presence of a magnetic field is calcu-
lated using a Hamiltonian including the crystal field
Hamiltonian HCF , the Zeeman term HZ , and the one-
particle magnetoelastic Hamiltonian HME . It is suffi-
cient to calculate thermodynamic properties for the
ground multiplet, and the crystal field Hamiltonian will
therefore be written in terms of equivalent operators

 in the form

(2)

where αJ, βJ , and γJ are the Stevens parameters and the

number of crystal field parameters  for the scheelite
tetragonal structure (local symmetry S4) is seven. As
distinguished from the structure of zircon (local sym-
metry D2d), the HCF Hamiltonian contains two addi-

tional terms with off-diagonal imaginary operators 

and . Accurate to coefficient i, the matrix elements
of these operators coincide with the elements of the cor-

responding Stevens operators  and  [6].

The Zeeman interaction between rare-earth metal
ions and magnetic field H is described by the Hamilto-
nian

(3)

where gJ is the Lande factor, J is the rare-earth ion
angular momentum operator, and µB is the Bohr mag-
neton.

Magnetoelastic effects are most often calculated
using the quadrupole approximation. In the magne-
toelastic Hamiltonian, we will only explicitly write the
invariants that transform under the totally symmetric
representation, which are essential to the totally sym-
metric modes that we wish to calculate,

(4)

On
m

HCF α J B2
0O2

0 βJ B4
0O4

0 B4
4O4

4 B4
4– Ω4

4+ +( )+=

+ γJ B6
0O6

0 B6
4O6

4 B6
4– O6

4+ +( ),

Bn
m

Ω4
4

Ω6
4

O4
4 O6

4

HZ gJµBJH,–=

HME α JO2
0 B20

α1εα1 B20
α2εα2+( ),–=
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where  and  are the quadrupole magnetoelastic
coefficients. The symmetrized deformations, isotropic
εα1 and tetragonal εα2, are expressed via the Cartesian
components of the deformation tensor as follows:

(5)

The totally symmetric magnetoelastic modes are
found as usual, from the condition of free energy F =
EE – kBTlnZ minimum. In the partition function

,

it is sufficient to calculate the Ei energy levels for the
rare-earth metal ion based on the crystal field Hamilto-
nian HCF and the Zeeman term HZ in the presence of a
magnetic field. The elastic energy of a tetragonal crys-
tal is calculated only taking into account totally sym-
metric deformations determined via the symmetrized
components of the deformation tensor [7],

(6)

where  are the symmetrized elastic constants of the
lattice that do not take into account magnetic interac-
tions. Their relation to the Cij Cartesian components is
given, e.g., in [8].

The totally symmetric magnetoelastic anomalies of
a tetragonal lattice are described in the quadrupole
approximation as [8, 9]

(7)

(8)

where

The quadrupole moment  =  (the

observed  operator value) is zero for cubic crystals,

whose x, y, and z axes are equivalent (  =  =

 = 〈J(J + 1)/3〉), and becomes nonzero when the z
axis is a distinguished direction, for instance, in tetra-
gonal crystals. It follows that the quadrupole moment
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Table 1.  Crystal field parameters of rare-earth metal scheelites determined in the formalism of tensor ( ) or equivalent

( ) operators; the  and  parameters are nonzero in the crystallographic system of coordinates; the crystal field
parameter sets used in the calculations are labeled by asterisks

RLiF4 Method , cm–1 , cm–1 , cm–1 , cm–1 , cm–1 , cm–1 , cm–1 Refs.

PrLiF4 ( )* 489 –1043 –42 1242 1213 – 23 [10]

NdLiF4 441 –906 –26 1114 1072 – 21 [10]

NdLiF4 ( )* 532 –934 –76 –1161 –916 244 534 [11]

TbLiF4 474 –433 64 1080 744 – 286 [12]

TbLiF4 ( )* 237 –54 4 –854 – 477 –739 –291 [13]

DyLiF4 207 –69.5 –0.6 –776.5 –536 –581 –285 ext.

DyLiF4 ( )* 202 –66 1.5 –756 –340 –654 –272 opt.

HoLiF4 379 –626 –52 831 608 – – [14]

HoLiF4 ( )* 189.3 –78.3 –3.3 –657 –322 –568 –253 [15]

ErLiF4 377 –642 –71 861 625 – – [14]

ErLiF4 ( )* 190 –80 –2.3 –771 –363 –667 –222 [16]

TmLiF4 368 –717 –65 919 619 – – [17]

TmLiF4 ( )* 184 –90 –4.06 –727 –328 –628 –284 [18]

YbLiF4 ( )* 185 –76 0 –618 –288 –534 –177 [13]
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describes the degree of electron cloud asphericity and
its changes induced by temperature variations or by
applying an external magnetic field determine magne-
toelastic anomalies of thermal expansion.

Analysis and description of magnetoelastic effects
in the multipole approximation are considerably more
complex. For a rare-earth ion in a site with tetragonal
environment symmetry, the one-particle magnetoelas-
tic Hamiltonian linear in deformation tensor compo-
nents εµ (harmonic approximation) contains 26 invari-
ants in the multipole approximation [3]. Usually, mag-
netoelastic effects are described at the level of the
quadrupole approximation, which reduces the number
of terms in the Hamiltonian to five. However, it is not
obvious that the simplest quadrupole approximation is
sufficient for correctly describing the totality of magne-
toelastic effects in systems with strong magnetoelastic
interactions.
JOURNAL OF EXPERIMENTAL 
To summarize, totally symmetric magnetoelastic
modes are determined in the multipole approximation
by temperature-induced variations in all multipole
moments of rare-earth ions Qnm , which can be calcu-
lated numerically from known crystal field parameters.
The contributions of multipole moments to totally sym-
metric magnetoelastic modes are described by equa-
tions similar to (7) and (8), which contain multipole
moments Qnm and multipole magnetoelastic coeffi-

cients  and .

4.2. The Multipole Moments of Rare-Earth Metal Ions 
in Scheelites and Criteria of the Applicability 

of the Quadrupole Approximation

For most of the RLiF4 scheelites formed by rare-
earth metals R, crystal field parameters can be consid-
ered as reliably established from detailed optical stud-

Bnm
α1 Bnm

α2
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ies [10–18]. The available data on the crystal fields of
these compounds are summarized in Table 1, in which
the method of measurements and the basis for which
the corresponding parameters were determined are also
indicated. The crystal field parameters used in our cal-
culations are labeled by asterisks. For some compounds
of the family (DyLiF4 and YbLiF4), only crystal field
parameters calculated by the model of exchange
charges are available; these parameters were not given
reliable experimental substantiation. In certain
instances, we were able to select between alternative
sets of crystal field parameters for these compounds
based on our experimental data. Note that optical
experiments are often described in rotated coordinate
systems for which exact rotation angles are not known.
This impedes the use of the obtained crystal field
parameters for describing magnetoelastic effects.

Numerical calculations show that fourth- or sixth-
order multipole moments of RLiF4 are comparable to
(TbLiF4 and DyLiF4) or even substantially larger than
(HoLiF4 and TmLiF4) the quadrupole moments. The
temperature dependences of three diagonal multipole
moments ∆Q20, ∆Q40, and ∆Q60 for several ions (Pr,
Tb–Ho, and Tm) are shown in Figs. 6 and 7. The Q44

0.3

0

–0.3

–0.6

0 100 200 300

∆Q20

∆Q40

∆Q60

Dy

T, K

Tb

–0.05

0

0.05

0.10

0.15
∆Q20, k1∆Q40, k2∆Q60 ∆Q20, k1∆Q40, k2∆Q60

Pr

Fig. 6. Calculated temperature dependences of the ∆Q20,
k1∆Q40, and k2∆Q60 multipole moments of rate-earth metal
scheelites PrLiF4 (k1 = 1 and k2 = 0.15), TbLiF4 (k1 = –0.82
and k2 = 2.9), and DyLiF4 (k1 = –0.7 and k2 = 0.4).
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and Q64 off-diagonal moments (and the Ω44 and Ω64
moments proportional to them) and their temperature
variations are, as a rule, small for rare-earth metal ions
in scheelites; we will not discuss them in this work. For
convenience of comparison, scaled dependences of
multipole moments k1∆Q40 and k2∆Q60 are given. The
magnitude and sign of the k1 and k2 scale factors were
selected such that changes in Q20, Q40, and Q60 in the
temperature range 10–300 K were comparable in mag-
nitude. The smaller the k1 and k2 factors in magnitude,
the more substantial the expected contribution of the
fourth- and sixth-order multipole moments, respec-
tively, to thermal expansion. Note that the Q20 and Q60
moments are, as a rule, negative, and Q40, positive,
because second- and sixth-order crystal field parame-
ters are positive, and fourth-order parameters, negative.
The criteria of quadrupole approximation applicability
can be formulated differently for two different groups
of ions. 

If the temperature dependences of all moments are
similar, as, for instance, for TbLiF4, we can use the
“effective” quadrupole approximation, in which the
effective magnetoelastic coefficient is some combina-
tion of quadrupole and multipole magnetoelastic coef-
ficients. It is then difficult to use experimental data for
drawing conclusions about the contributions of multi-
pole moments of different orders to totally symmetric
magnetoelastic modes.

∆Q20, k1∆Q40, k2∆Q60

∆Q20

∆Q40

∆Q60

–0.1

0 100 200 300
T, K

0

0.1 0

–0.05

–0.10

∆Q20, k1∆Q40, k2∆Q60

Ho

Tm

Fig. 7. Calculated temperature dependences of the ∆Q20,
k1∆Q40, and k2∆Q60 multipole moments of rate-earth metal
scheelites HoLiF4 (k1 = –0.45 and k2 = –0.045) and TmLiF4
(k1 = –1 and k2 = 0.15).
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However, if the temperature dependences of Qi0
multipole moments are essentially different, as for Tm
and Ho, a comparison with experimental data allows us
to identify the multipole moment that makes the major
contribution to thermal expansion and to estimate the
actual magnetoelastic coefficients. If the contribution
of fourth- and sixth-order multipole moments to the
magnetoelastic anomalies of thermal expansion is sig-
nificant, the temperature dependences of ∆ame/a and
∆cme/c should contain singularities corresponding to
these moments. Calculations of the temperature depen-
dences of the multipole moments of rare-earth metal
ions and a comparison of these dependences with those
determined experimentally make it possible to estimate
the contributions to thermal expansion of different mul-
tipole moments regardless of the deficiency of informa-
tion about magnetoelastic coefficients of various
orders.

An analysis of the experimental data on TmLiF4 and
HoLiF4 shows that a noticeable contribution is made by
the sixth-order multipole moments of the correspond-
ing ions. Indeed, for TmLiF4, changes in the Q60 sixth-
order multipole moments are almost an order of magni-
tude (k2 = 0.15) larger than changes in the quadrupole
moment, and the temperature dependences of these two
moments are different. The temperature dependence of
the |∆Q20 | quadrupole moment has a maximum at 80 K,
and the moment begins to decrease at lower tempera-
tures, which is at variance with the thermal expansion
anomalies of TmLiF4. The ∆Q60 moment changes
monotonically, and the rate of its growth is maximum
at about 50 K, where a thermal expansion anomaly is
observed. The ∆cme/c and ∆ame/a magnetoelastic contri-
butions are proportional to the ∆Q60 multipole moment

in TmLiF4, which means that the  and  sixth-
order magnetoelastic coefficients are not too small

B60
α1 B60

α2

Table 2.  Coefficients A1 = 3(∆cme/c)/∆Q20 and A2 = 3(∆ame/a)/∆Q20

and quadrupole magnetoelastic coefficients Bα1 and Bα2 for
rare-earth metal scheelites; (∆cme/c), (∆ame/a), and ∆Q20 are
the magnetoelastic contributions to thermal expansion along
axes c and a and the quadrupole moment change in the tem-
perature range 10–290 K, respectively

RLiF4 A1, 10–2 A2, 10–2
Bα1, 

103 K/(formula
unit)

Bα2, 
103 K/(formula

unit)

TbLiF4
a) –0.645 0.366 0.03 –1.37

TbLiF4
b) –0.642 0.353 –0.03 –1.35

DyLiF b) –0.75 0.375 –0.2 –1.54

TbVO4
a) 0.75 –1.02 –5.40 5.13

a) For the interval 10–290 K;
b) for the interval 10–160 K.
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compared with the corresponding quadrupole magne-
toelastic coefficients. Calculations according to the
model of exchange charges give similar ratios between
the magnetoelastic coefficients of various orders [19].
A similar behavior of multipole moments is observed
for the Ho ion in the scheelite structure (k1 = –0.45 and
k2 = –0.045, Fig. 7).

As the crystal field was reliably determined for
TmLiF4, and corrections to the phonon contribution
compared with LuLiF4 have no noticeable influence on
the character of the temperature dependences of ∆cme/c
and ∆ame/a, the reasoning given above and the conclu-
sions drawn from it should be considered valid. Magne-
toelastic coefficients change not very substantially
along the series of rare-earth metal ions within the
structure type under consideration. We can therefore
expect that other rare-earth metal ions should be char-
acterized by similar ratios between the magnetoelastic
coefficients of various orders. To summarize, our anal-
ysis of the experimental data on the thermal expansion
of RLiF4 leads us to conclude that the contributions of
the fourth- and sixth-order multipole moments to
totally symmetric magnetoelastic modes in the series of
scheelites formed by rare-earth metals can exceed the
contributions of their quadrupole moments; that is, the
quadrupole approximation is not quite valid for these
compounds.

5. THE MAGNETOELASTIC CONTRIBUTION 
TO THE THERMAL EXPANSION OF RLiF4

(R = Tb–Ho, Tm)

We used the experimental data on TbLiF4 com-
pound, for which the effective quadrupole approxima-
tion is valid, to determine its quadrupole magnetoelas-
tic coefficients. The magnetoelastic contribution in
TbLiF4 was found taking into account corrections for
phonon contribution variations. For this purpose, we
used an optimization procedure in which the TD and α0
Debye model parameters were varied within ±20%
from their values for LuLiF4. The optimization was
performed to make the resulting magnetoelastic contri-
bution proportional to the quadrupole moment and
reduce the largest difference (observed at low tempera-
tures) between the phonon thermal expansion values
along axes c and a in TbLiF4 and LuLiF4 below some
set value, namely, δ(∆c/c)0 ~ δ(∆a/a)0 ~ 1 × 10–4.

The optimization gave the proportionality factors
between the magnetoelastic contributions and quadru-
pole moments for the Tb and Dy scheelites, ∆cme/c =
A1∆Q20/3 and ∆ame/a = A2∆Q20/3 [see (7), (8)]. The A1
and A2 values are listed in Table 2. The magnetoelastic
contributions along axes c and a and the calculated qua-
drupole moments for these scheelites are shown in
Fig. 8. To make comparison convenient, the magne-
toelastic contribution along a and the quadrupole
moment are given with the corresponding factors,
AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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A∆ame/a and A1∆Q20 (A = A1/A2 ~ –1 and A1 ~ 10–2, see
Table 2). As has been mentioned, there is no crystal
field data on DyLiF4. The extrapolated (intermediate
between the crystal fields of the neighboring Tb and Ho
ions) crystal field did not give an acceptable description
of the magnetoelastic contribution. We therefore per-
formed additional optimization of the extrapolated
crystal field of DyLiF4 using data on the g-factors and
splittings of the lower Dy3+ levels. This improved
agreement with experiment. Of course, in the absence
of spectroscopic information about DyLiF4, complete
crystal field optimization cannot be performed and a
unique reliable set of parameters cannot be obtained.

6. DISCUSSION

When the effective quadrupole approximation is
valid, the contribution of rare-earth metal ions to ther-

mal expansion is determined by the  = Bα1 and

 = Bα2 quadrupole magnetoelastic coefficients and
temperature-induced quadrupole moment changes
∆Q20 = Q20(T) – Q20(290 K) [see (7), (8)]. Consider
some special features of the temperature dependences
of ∆Q20 quadrupole moments in the series of rare-earth
metal scheelites (Fig. 9). The largest ∆Q20 change in the
temperature range 10–290 K was observed for TbLiF4.
Calculations show (see Fig. 9) that, below 50 K, the
quadrupole moment of the Dy scheelite and the deriva-
tive of the quadrupole moment of the Tm scheelite
change their signs.

For the other scheelites, quadrupole moment
changes are insignificant, as is shown in the inset in
Fig. 9. Although ∆Q20(T) is small for the Ho and Er
scheelites, it has sharp anomalies at about 30–50 K,
where the phonon contribution is almost constant.
These low-temperature anomalies can be studied by
more sensitive methods, for instance, with the use of
strain gauges. In HoLiF4 and TmLiF4 (curves 3, 5), qua-
drupole moment changes in the temperature range
10−290 K are small and should not cause observable
magnetoelastic effects. Other multipole moments of
these ions, however, experience substantial changes as
temperature varies. It is likely that the behavior of these
moments determines the magnetoelastic contributions
to thermal expansion.

The anomalies of the ∆Q20(T) dependences are
interesting to relate to the special features of the spectra
and wave functions of rare-earth metal ions in the
scheelite structure. An analysis shows that the sharp
change in ∆Q20(T) at T ~ 90 K observed for the Tb
scheelite is related to a decrease in the population of
two lower singlets, which form a quasi-doublet and
make the major contribution. This contribution
decreases as the population of the next excited level sit-
uated at a distance of E3 ~ 180 K grows. A different sit-
uation is observed for the Dy scheelite. The contribu-

B20
α1

B20
α2
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tion of the lower doublet is very small, whereas the con-
tributions of the three higher doublets situated at T = 5,
62, and 88 K are comparable in magnitude and gradu-
ally decrease as the populations of these levels decrease

12

8

4

0 100 200 300
T, K

∆cme/c

A∆ame/a

A1Q20

∆
c m

e/
c,

 A
∆

a m
e/

a,
 A

1Q
20

, 1
0–4

1

2

Fig. 8. Magnetoelastic contributions ∆cme/c and A∆ame/a
and quadrupole moments A1∆Q20 for (1) TbLiF4 and
(2) DyLiF4, experimental and calculated in the quadrupole
approximation; the A = A1/A2 and A1 parameter values for
the specified rare-earth metal ions are listed in Table 2
(A ~ –1 and A1 ~ 10–2).
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with a decrease in temperature. This explains the
change in sign of ∆Q20(T) at low temperatures. Also
note that the quadrupole and multipole moments of
DyLiF4 are very sensitive to crystal field parameters, as
can be seen from a comparison of curves 2 and 2' for the
extrapolated and optimized crystal fields (Fig. 9).

The experimental magnetoelastic contribution to the
thermal expansion of the Tb and Dy scheelites corre-
lates with changes in the calculated quadrupole
moments ∆Q20. This leads us to conclude that, in a first
approximation, their quadrupole magnetoelastic coeffi-
cients Bα1 and Bα2 are not too different. We used the C11,
C12, C13, and C33 elasticity constants of YLiF4 [20] to
calculate the symmetrized elasticity constants in (7)

and (8). This gave [in 105 K/(formula unit) units]  =

13.0,  = 5.03, and  = 0.7. The hierarchy of the
elasticity constants for the scheelite structure is the
same as for zircons, but their values are on average two
times smaller. Next, we determined the Bα1 and Bα2

magnetoelastic quadrupole coefficients (Table 2) from
the A1 and A2 proportionality coefficients and the sym-
metrized elasticity constants. For comparison, Table 2
contains similar data on TbVO4. At the specified rela-

tive elasticity constants  ~  ! , the sign
and magnitude of the Bα2 coefficient are determined by

the magnetoelastic mode (∆εα2/εα2)me/∆Q20 ≈ Bα2/
[the change in the degree of tetragonality, Eq. (8)], and
the Bα1 coefficient, which is comparable in magnitude,
by the magnetoelastic mode (∆εα1/εα1)me/∆Q20 ≈
Bα1/  [the change in volume, Eq. (7)].

Note that the signs of the magnetoelastic coeffi-
cients for the scheelites are opposite to those obtained
for the vanadates and phosphates with zircon struc-
tures, and their magnitudes are different [3, 4]. For the
scheelites, the Bα1 coefficient is substantially smaller
than Bα2; that is, the magnetoelastic contribution to vol-
ume deformation is insignificant compared with the
magnetoelastic contribution to changes in the degree of
tetragonality. The Bα1 magnetoelastic coefficient is
determined as the difference of two large values, and

small changes in A1 and A2 or the , , and 
elasticity constants can therefore change not only the
magnitude but also the sign of this coefficient (see
Table 2). This causes large errors in its determination,
and we only obtain estimates of Bα1 compared with Bα2.
The largest magnetoelastic coefficient Bα2 for the
scheelite structure is approximately four times smaller
than that for zircons. It follows that the magnetoelastic
anomalies of thermal expansion of rare-earth metal
scheelites should be two times smaller than those of
rare-earth metal zircons, changes in their quadrupole
moments being comparable.
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α2 C0
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The experimental data on the scheelite structure are
evidence of the existence of substantial multipole con-
tributions to spontaneous magnetoelastic effects such
as magnetoelastic thermal expansion anomalies. Sys-
tematic studies of rare-earth metal ion compounds with
other structures show that the quadrupole approxima-
tion is quite acceptable and sufficient for describing
various magnetoelastic effects in them. A wide range of
magnetoelastic effects (thermal expansion anomalies,
Young’s modulus, the ∆E effect, and magnetostriction)
in tetragonal phosphates RPO4 [9] and vanadates RVO4
[3] with zircon structures and paramagnetic aluminate–
garnets and gallate–garnets containing rare-earth metal
ions from Tb to Yb with orthorhombic local symmetry
[21] can be described by the quadrupole approxima-
tion. The necessity of using the multipole approxima-
tion in similar situations for the scheelites formed by
rare-earth metal ions is a new and interesting result for
the theory of magnetoelasticity.

7. CONCLUSIONS

In this work, we performed theoretical and experi-
mental studies of the thermal expansion of RLiF4
scheelites formed by rare-earth metal ions. We
observed substantial thermal expansion anomalies for
scheelites with Tb–Ho and Tm ions and determined the
∆cme/c and ∆ame/a magnetoelastic contributions to ther-
mal expansion taking into account corrections for
changes in the phonon contribution along the series of
rare-earth metal ions according the Debye model of
thermal expansion. The experimental ∆cme/c and ∆ame/a
values were used to calculate the Bα1 and Bα2 totally
symmetric quadrupole coefficients, which were sub-
stantially different in magnitude. A comparison with
rare-earth metal vanadates RVO4 showed that the Bα1

and Bα2 magnetoelastic coefficients and ∆Q20 quadru-
pole moment changes had opposite signs for the two
series of tetragonal structures, whereas the ∆cme/c and
∆ame/a magnetoelastic contributions to thermal expan-
sion determined by the products of these factors were of
the same sign. Different ∆Q20 quadrupole moment

signs are caused by different signs of the  second-
order parameter for the scheelites and vanadates
formed by rare-earth metal ions.

Independent experimental data on magnetoelastic
coefficients and their hierarchy in different structures
are necessary for testing various models in the theory of
magnetoelasticity. In particular, calculations of the
magnetoelastic coefficients for the scheelite structure
by the model of exchange charges [2] can be compared
with experiment to reveal their interrelation with the
structural parameters of the crystals, ion charges, dipole
moments, etc.

The conditions of the applicability of the quadru-
pole approximation to describe the totally symmetric
magnetoelastic modes were considered based on a

B2
0
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comparison of the calculated quadrupole and dipole
moments of various rare-earth metal ions in the
scheelite structure and the experimental magnetoelastic
contributions to thermal expansion. It was shown that
multipole moments could make a considerable contri-
bution for some ions and the magnetoelastic thermal
expansion anomalies of scheelites with rare-earth metal
ions could not be described solely by the temperature
dependences of their quadrupole moments. The conclu-
sion was drawn that the fourth- and sixth-order multi-
pole magnetoelastic coefficients were comparable with
the quadrupole magnetoelastic coefficients. Substantial
multipole contributions and the necessity of going
beyond the quadrupole approximation with the
scheelites containing rare-earth metal ions are of cer-
tain interest for the theory of magnetoelasticity. For this
reason, other spontaneous and induced magnetoelastic
effects in these scheelites for which multipole contribu-
tions may be of significance appear worthy of theoreti-
cal and experimental investigation.
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Abstract—Harper equations are derived for a px, py electronic system. Analysis is carried out for extreme
points of the quasi-continuous spectrum in the cases when the number of magnetic flux quanta through a unit
cell is a rational number and calculations are made for square and triangular lattices as well as for a honeycomb
lattice with two nonequivalent atoms. The possibility of application of the results for explaining the fractional
Hall effect is considered. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Equations determining the energy spectrum of the
system under the action of a magnetic field form a sys-
tem of difference equations and are known as Harper
equations [1]. In the problem considered here, there are
two limits, viz., the energy spectrum consisting of dis-
crete strongly degenerate Landau levels in the absence
of a periodic potential and the energy bands associated
with Bloch waves emerging due to translational lattice
symmetry in zero magnetic field.

The problem of electrons in a lattice with periods a1,
a2, and a3, which move in a magnetic field H || a3, is
characterized by the natural parameter ζ = (H )/Φ0

equal to the ratio of the magnetic flux through an area
element constructed on vectors a1, a2 to the flux quan-
tum Φ0 = "c/|e |. If this parameter is rational, i.e., ζ =
p/q, we have a magnetic superlattice constructed on
vectors qa1, qa2. This simplifies calculations signifi-
cantly. In the simplest case of a square lattice with a sin-
gle atom in the unit cell with rational number ζ =
eHa2/"c, the energy spectrum was calculated by Hofs-
tadter [2] and is known as the Hofstadter butterfly. In
the case of a weak magnetic potential, the Landau lev-
els split into subbands [3], while degeneracy is partially
removed in a strong field [4].

In the Hofstadter case mentioned above, the
Schrödinger equation in the strong coupling approxi-
mation leads to Harper equations

(1)

where Ψn is the wave function at the nth site, ϕ = apy/"
is the phase associated with the electron quasimomen-
tum, a is the lattice constant, and E is the energy in units
of the jump integral to the nearest neighbors.

Sa1a2

Ψn 1+ 2Ψn 2πnζ ϕ–( )cos Ψn 1–+ + EΨn,=
1063-7761/03/9702- $24.00 © 20290
All possible self-energies of the Harper equations
lie in the range |E | ≤ 4 and the parameter can be con-
fined to the region 0 < |ζ| < 1. In fact, it is sufficient to
consider the range 0 < |ζ| < 1/2 since the Harper equa-
tion is invariant to the substitution ζ  1 – ζ. It should
also be noted that Eqs. (1) permit the substitution
E  –E.

The numerical method proposed by Hofstadter was
based on the fact that Harper equation (1) can be writ-
ten in the form

(2)

with the transition matrix

(3)

Transition matrices Tn have determinants equal to unity.
In the case when ζ = p/q, Eqs. (2) are periodic in n with

period q. Consequently, matrix  =  has
eigenvalues whose absolute value is smaller than unity.

Since det  = 1, this requirement is equivalent to the

condition Tr( ) = 2cosθ, which leads to the entire
excitation spectrum.

It is interesting to note that the Hofstadter solution
could be modeled experimentally [5] using the analogy
between the equations describing the propagation of
microwaves through a scattering matrix and the Harper
equations for an electron. The passage of a microwave
through a (100) matrix of scattering elements inserted

Ψn 1+

Ψn 
 
 

T̂n
Ψn

Ψn 1– 
 
 

=

T̂n
E 2 2πnζ ϕ–( )cos– 1–

1 0 
 
 

.=

Â Tnn 1=
q∏

Â

Â
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in a waveguide was studied in [5], where the bands
reproducing the Hofstadter butterfly were determined.

The experimental realization of a butterfly with typ-
ical lattice parameters of 0.1 nm requires magnetic
fields on the order of 105 T, which is beyond the techni-
cally accessible limit. The only way to solve this prob-
lem is to use artificial superstructures. The first indica-
tions of magnetically split subbands are in fact con-
tained in [6–9].

The quantum Hall effect is studied on structures
consisting of atoms with an unfilled p shell. For this
reason, we will study a two-dimensional system of px

and py electrons in a square lattice or in a honeycomb
lattice. The s electrons in a triangular lattice or in a hon-
eycomb lattice are equally interesting since the proper-
ties of such electrons in the 2D case are equivalent to
the properties of pz electrons placed in the same lattices.

Theoretical investigations of the quantum Hall
effect have been confined so far to analysis of a 2D sys-
tem of Landau levels taking into account a weak Cou-
lomb interaction in perturbation theory. The only
exceptions were paper [9] and a recent publication [10].
In [9] a group-theoretical analysis is carried out for the
electronic structure of a 2D electron gas in an external
magnetic field, while the conditions for the emergence
of the fractional Hall effect are studied in [10] in the
framework of self-consistent perturbation theory. Sev-
eral series of fractional relations are derived in the con-
cluding part of this paper.

2. HARPER EQUATIONS 
FOR THE p-ELECTRON SYSTEM

Let us consider equations for the creation operators
in the Heisenberg representation:

(4)

Here,  is the annihilation operator for an electron
belonging to a cell with coordinate r and located in a
degenerate state with number k.

In the semiclassical approximation, we have

(5)

The atomic wave function written in this way diag-
onalizes the atomic Hamiltonian for r = s:

(6)

i"
∂âk r, t( )

∂t
----------------- Ĥ âk r, t( ),[ ]– Ĥn s,

k r,
ân s, t( ).

n s,
∑= =

âk r, t( )

Ĥn s,
k r, Ψk* R r–( )ĥ R( )Ψn R s–( ) R,d∫=

Ψ± R( ) ie
c"
------ A r( ) rd

R

∫–
 
 
 

x iy±( )ρ R
rB

----- 
  .exp=

Hk r,
k r, diag µBH µBH–,( ).=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
If r ≠ s, it is convenient to replace R  R + (r +
s)/2 and then integrate over the product ρ(R + (r –
s)/2)ρ(R – (r + s)/2) of radial functions.

In the remaining factors, we can disregard R as
compared to (r – s). This gives

(7)

Here, ψ is the angle of rotation of the unit cell vectors.
In our case, ψ = π/2.

We write Eqs. (4) for a square lattice in explicit form

(8)

Here,  and  are the annihilation operators for
the x and y electrons with momentum p and a is the unit
cell size. The scalar jump integral is assumed to be
equal to unity, which corresponds to the hole represen-
tation. To pass to the electron representation, it is suffi-
cient to carry out the substitution E  –E; px,, py are
generalized quasimomenta determined by the vector
potential. In the Landau gauge A = (0, Hx, 0), we have
the general formula for a square lattice,

(9)

where ky is the integral of motion determined from the
cyclic condition in y. Since the representation of equa-
tions of motion in terms of the differential operator  is
unsuitable for numerical computations, it is expedient
to return to the equations of motion in the form of dif-
ference equations (in variable x) for a given aky = ϕ,
0 < ϕ < 2π.

It is convenient to introduce the cell number along
the x axis, x = an, and to eliminate the time dependence
with the help of transitions to states with a preset
energy E. As a result, we obtain the following system of
difference equations:

(10)

Hn s,
k r, ie

c"
------ A r( ) rd

s

r

∫ 
 
 

ρk* R r s–
2

----------– 
  ĥ R( )∫exp=

× ρn R
r s–

2
----------dR+ 

  –1/4 2iψ( )/4exp–

2iψ–( )/4exp– 1/4– 
 
 

.

i
∂âp t( )

∂t
-------------- 2 pxa( )cos pya( )cos+[ ] âp t( )=

+ 2 pxa( )cos pya( )cos–[ ] b̂p t( ) µBHâp t( ),+

i
∂b̂p t( )

∂t
-------------- 2 pxa( )cos pya( )cos–[ ] âp t( )=

+ 2 pxa( )cos pya( )cos+[ ] b̂p t( ) µBHâp t( ).–

âp t( ) b̂p t( )

px k̂x, py ky
eHx̂

c
----------, x̂– i

px∂
∂

,= = =

x̂

Eân ϕ, ân 1– ϕ, ân 1+ ϕ,+[ ] 2ân ϕ, ϕ ζ n–( )cos+=

+ b̂n 1– ϕ, b̂n 1+ ϕ,+[ ] 2b̂n ϕ, ϕ ζ n–( )cos µBHân ϕ, ,+–

Eb̂n ϕ, b̂n 1– ϕ, b̂n 1+ ϕ,+[ ] 2ân ϕ, ϕ ζ n–( )cos–=

+ ân 1– ϕ, ân 1+ ϕ,+[ ] 2b̂n ϕ, ϕ ζ n–( )cos µBHb̂n ϕ, .––
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These equations generalize the Harper equations for a
plane system of p electrons in a square lattice. It is
important to note that there are two dimensionless
parameters in the problem, i.e.,

(11)

In experiment, each of these parameters is small, but
their ratio depends to a considerable extent on the jump
integral. For a small value of the jump integral, effec-
tive mass m* @ m, i.e., ζ ! u, which means that the
Zeeman splitting is larger than the spacing between the
Landau levels.

Equations (10) are difference equations in variable
n, while variable ϕ is a parameter on which the
unknown functions depend without any shift. For this
reason, we can omit the dependence on ϕ. In view of
the linearity of the equations under study, we will
henceforth omit the operator symbols.

In order to transform Eqs. (10) to the same form (2)
as for s electrons, we pass to new variables

which gives

(12)

As a result, we obtain equations suitable for computa-
tions:

(13)

We write these equations in the matrix form proposed
by Hofstadter [2],

u µBH , ζ eHa2

c"
------------,

u
ζ
--- "

2

2ma2
-------------

m∗
m
-------.= = = =

xn
+ an bn; xn

–+ an bn,–= =

Exn
+ 2 xn 1–

+ xn 1+
++[ ] µ BHxn

–,+=

Exn
– 4xn

– ϕ ζ n–( )cos µBHxn
+.+=

Exn
+ 2 xn 1–

+ xn 1+
++[ ]

µB
2 H2xn

+

E 4 ϕ ζ n–( )cos–
------------------------------------------.+=

R̂n 1+ Γ̂nR̂n,=
JOURNAL OF EXPERIMENTAL 
where

(14)

in which e = E/2, rn = ϕ – ζn,

(15)

If H = 0, we have two independent solutions:

(16)

For ζ = 2πk, we also obtain two spectral branches:

(17)

We denote by  the product of an arbitrary number m

of matrices . It can be noted that the determinant of
any of these matrices is equal to unity so that either both
eigenvalues of matrix Q are modulo equal to unity, or
one eigenvalue is modulo greater than unity, while the
other eigenvalue is modulo smaller than unity. The con-
dition of boundedness of the wave function for all n
imposes the following condition on the eigenvalues of
matrix Q: both eigenvalues must be modulo equal to
unity. In other words, we have

(18)

where θ is the second dimensionless quasimomentum.
Proceeding from this relation, we find four spectral
branches for ζ = π:

Γ̂n
E W e ϕ ζ n–,( )– 1–

1 0 
 
 

,=

∆2 µB
2 H2

4
-------------, W e rn,( )

∆2

e 2 rncos–
-------------------------,= =

R̂n
xn

+

xn 1–
+

 
 
 
 

, R̂n 1+
xn 1+

+

xn
+

 
 
 
 

.= =

e 2 ϕ , ecos 2 θ.cos= =

e± ϕcos θcos+( ) θcos ϕcos–( )2 ∆2+ .±=

Q̂m

Γ̂n

TrQ̂m e( ) 2 θ,cos=
e θ ϕ,( ) 2 ∆2 θ 2ϕcos 2∆2 2 2ϕ θcos+cos+[ ] θcos 2ϕcos–[ ] 2+±+cos+ + .±=
In order to estimate the form of the energy spectrum
qualitatively, we calculated the eigenvalues for rational
values of parameter

(19)

where n1 and n2 are integers such that 1 ≤ n2 ≤ 36 and
1 ≤ n1 < n2 (see Fig. 1).

3. ENERGY SPECTRUM 
IN A TRIANGULAR LATTICE

For a triangular lattice, the energy spectrum for H =
0 has the form

λ ζ
2π
------, ζ 2π

n1

n2
-----,= =
(20)

where the jump integral is assumed to be equal to unity
as before, and quasimomenta have the form

We direct the magnetic field along the z axis and use a
symmetric gauge; i.e., we write the magnetic potential
in the form

e k( )

=  2 k+a( )cos k–a( )cos –k+a k–a+( )cos+ +[ ] ,

k+

kx 3ky+
2

-----------------------, k–

–kx 3ky+
2

--------------------------.= =

Ax
yH
2

-------, Ay–
xH
2

-------, Az 0.= = =
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Fig. 1. Electronic spectra of p electrons in a square lattice.
As a result, we obtain the Hamiltonian

(21)

Operator exp{a∂/∂r} is the operator for the function
argument shift by a.

In order to reduce the equations to the Harper form,
we pass to a nonorthogonal system of coordinates,

assuming that ex and e+ = ex/2 + ey/2 are unit vectors;
in this case, lattice sites have integral coordinates
(nx, n+), and the transition to the new system of coordi-
nate is described by the formulas

(22a)

or

(22b)

Ĥ/2
a
2
---

x∂
∂ 3a

2
----------

y∂
∂

i
eaH
4"c
---------- –y 3x+( )+ +exp=

+
a
2
---

x∂
∂ 3a

2
----------

y∂
∂

– i
eaH
4"c
---------- +y 3x+( )–exp

+ –
a
2
---

x∂
∂ 3a

2
----------

y∂
∂

i
eaH
4"c
---------- y 3x+( )+ +exp

+ –
a
2
---

x∂
∂ 3a

2
----------

y∂
∂

i
eaH
4"c
---------- –y 3x+( )––exp

+ a
x∂

∂
i
eaH
2c"
----------y–exp –a

x∂
∂

i
eaH
2c"
----------y+ .exp+

3

x x0
1
2
---y+, y+

3
2

-------y+= =

x0 x
1

3
-------y, y+–

2

3
-------y.= =
XPERIMENTAL AND THEORETICAL PHY
In this case, operators

are written in the form

(23)

We denote by ζ = eH a2/4c"; then the Hamiltonian
in the new variables can be written in the following
symmetric form:

(24)

It should be noted that operator exp{a∂/∂r} is the oper-
ator of the function argument shift by a; consequently,

1
2
---

x∂
∂± 3

2
-------

y∂
∂

+

1
2
---

x∂
∂ 3

2
-------

y∂
∂

+
y+∂
∂

,=

–
1
2
---

x∂
∂ 3

2
-------

y∂
∂

+
x0∂
∂

y+∂
∂

.+–=

3

Ĥ
2
---- a

y+∂
∂

iζ
x0

a
-----+exp –a

y+∂
∂

iζ
x0

a
-----–exp+=

+ a
x0∂
∂

a
y+∂
∂

iζ
y+ x0+( )

a
---------------------+ +–exp

+ a
x0∂
∂

a
y+∂
∂

– iζ
y+ x0+( )

a
---------------------–exp

+ a
x0∂
∂

iζ
y+

a
-----+–exp a

x0∂
∂

iζ
y+

a
-----– .exp+
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the result of action of Hamiltonian (24) corresponds to
the Harper equations:

(25)

The solution for their solvability is the finiteness of the
wave function for r  ∞. It should be noted that the

parameter ζ = |e |Ha2 /"c of the problem is equal to
the ratio of the magnetic flux through a unit cell to the
flux quantum. Lattice sites have integral arguments.
Consequently, Eq. (25) can be written in the form

(26)

We will seek the solution to this equation in the form

(27)

Function W(nx, ny) satisfies the equation

(28)

It should be noted that the coefficients in Eq. (28)
are functions of only the sum nx + ny .

EΨ Ψ x0 y+ a+,( )
iζ x0

a
----------exp=

+ Ψ x0 y+ a–,( )
iζ x0

a
----------– 

 exp

+ –
iζ x0 y++( )

a
-------------------------- 

  Ψ x0 a+ y+ a–,( )exp

+
iζ x0 y++( )

a
-------------------------- 

  Ψ x0 a– y+ a+,( )exp

+ –iζ y+( )Ψ x0 a+ y+,( )exp iζ y+( )Ψ x0 a– y+,( ).exp+

3

EΨ nx ny,( ) Ψ nx ny 1+,( ) iζnx( )exp=

+ Ψ nx ny 1–,( ) iζnx–( )exp

+ iζ nx ny+( )–( )Ψ nx 1+ ny 1–,( )exp

+ iζ nx ny+( )[ ]exp Ψ nx 1– ny 1+,( )
+ iζny–( )Ψ nx 1+ ny,( )exp

+ iζny( )Ψ nx 1– ny,( ).exp

Ψ nx ny,( )
ζ i nx

2 ny
2–( )

2
--------------------------– 

  W nx ny,( ).exp=

W nx ny,( )E iζ nx ny+( )( )W nx ny 1+,( )
iζ
2
----expexp=

+ iζ nx ny+( )–( )W nx ny 1–,( )
iζ
2
----expexp

+ 2iζ nx ny+( )–( )W nx 1+ ny 1–,( )exp

+ 2iζ nx ny+( )( )W nx 1– ny 1+,( )exp

+ iζ nx ny+( )–( ) iζ
2
----– 

  W nx 1+ ny,( )expexp

+ iζ nx ny+( )( ) iζ
2
----– 

  W nx 1– ny,( ).expexp
JOURNAL OF EXPERIMENTAL
This allows us to pass to the variables N = nx + ny ,
M = nx – ny and seek the solution in the form

(29)

Then Eqs. (28) lead to a chain of linear difference equa-
tions

(30)

where rN = Nζ – ϕ. To carry out numerical computa-
tions, it is convenient to write Eq. (30) in form (14),

where

(31)

(32)

The physical condition imposed on the wave function is
its boundedness for all values of N.

We assume that matrix  is periodic in N with
period m; i.e.,

(33)

This means that parameter κ = ζ/2π is a rational num-
ber: κ = i/m (see Fig. 2).

We denote by  the product of an arbitrary number

k of matrices . It can be noted that the determinant
of any of these matrices is equal to unity so that either
both eigenvalues of matrix Q are modulo equal to unity,
or one eigenvalue is modulo greater than unity, while
the other eigenvalue is modulo smaller than unity. The
condition of boundedness of the wave function for all n
imposes the following condition on the magnitude of
eigenvalues of matrix Q: both eigenvalues must be

W N M,( ) eiϕMSN .=

SN E 2 2rN( )cos–[ ]

=  2SN 1+ rN
ζ
2
---+ 

  2SN 1– rN
ζ
2
---– 

  ,cos+cos

ĜN 1+ ϒ̂NĜN ,=

ϒ̂N
U e rN ζ, ,( ) V rN ζ,( )

1 0 
 
 

,=

ĜN
SN

SN 1– 
 
 

, ĜN 1+
SN 1+

SN 
 
 

,= =

e
E
2
---, U e rN ζ, ,( )

e 2rNcos–
rN ζ /2+( )cos

---------------------------------,= =

V β ζ,( )
rN ζ /2–( )cos
rN ζ /2+( )cos

---------------------------------, rN– Nζ ϕ .–= =

Â N( )

2π N m+( )κ 2πNκ 2πi.+=

Q̂k

ϒ̂N
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modulo equal to unity. Thus, we again arrive at
Eq. (18).

Let us write the solution to this equation in the sim-
plest cases of integral values of parameter 2π/ζ. For ζ =
π, we have

(34a)

For ζ = 2π/3, we have the following cubic equation for
determining the spectrum:

(34b)

For ζ = π/2, we have four spectral branches:

(34c)

4. ENERGY SPECTRUM 
FOR A HONEYCOMB LATTICE

We study phenomena associated with the quantum
Hall effect dealing with a 2D gas formed at the interface
between two binary compounds of the GaAs and
AlxGa1 – xAs type, each of which has an unfilled p shell.
In the ideal case, a 2D honeycomb lattice of alternating
cations and anions is formed at the interface (see
Fig. 3). The average occupancies na and nb for p elec-
trons, e.g., for Ga (A) and As (B), satisfy the electro-
neutrality condition na + nb = 4, which determines the
value of the chemical potential µ = –(ea + eb)/2. Here
and below, we denote by ea and eb the one-particle ener-
gies of corresponding electrons. The difference r = ea –
eb is determined by electrostatic properties of this hetero-
junction and is regarded as a given energy parameter.

4.1. px, py Electrons 

We assume that jumps occur between neighboring
atoms each of which has a wave function proportional
to x or y, while the pz shell remains unfilled.

In order to study the magnetic properties associated
with orbital splitting, we must choose two complex
conjugate wave functions x ± iy, characterized by dif-
ferent energies in a given magnetic field ±H (the mag-
netic field is measured in energy units).

The matrix of the integrals of transition between the
nearest ions is proportional to the overlap integral,
which is set equal to unity.

In the nearest neighbor approximation, the inverse
one-particle Green function can be written in the form

e θ ϕ,( )± 2ϕcos 2
θ
2
---.sin±=

e
3 9

4
---e

3
4
---

1
2
--- 3ϕcos θ 1

4
--- 6ϕcos–cos+ + + 0.=

e θ ϕ,( ) 1 2ϕcos
2 θ

2
--- 2ϕcoscos±+ .±=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
of the matrix

(35)G 1– E( )

E ea
+– 0 α β

0 E ea
–– γ δ

α∗ γ∗ E eb
+– 0

β∗ δ∗ 0 E eb
–– 

 
 
 
 
 
 
 

.=

3

2

1

0

–3

–2

–1

1.0

1.0

0.5

0.80.2 Ha2

8 3Φ0

-----------------

E/2|t|

Fig. 2. Energy spectrum of s electrons in a triangular lattice.
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Fig. 3. Unit cell of a honeycomb lattice.
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Here, the following notation is introduced:

(36)

In this case, the matrix elements are calculated from
atomic wave functions corresponding to the unit orbital
angular momentum and differing in the sign of its com-
ponent.

Thus, the equation for determining the electron
energy spectrum in zero magnetic field has the form

(37)

where  = E – ,  = E – . The effect
of magnetic field on the orbital motion of electrons
between unit cells is determined by the gradient trans-
formation of the phase:

(38)

Subsequent transformations are reduced to the expres-
sion of the exponents of the differentiation operators in
formulas (36) for quantities νk in terms of finite shifts
along the unit vectors of a unit cell. All these transfor-
mations are given in the Appendix.

As a result, we obtain a system of difference equa-
tions with real coefficients (see formulas (A.7)):

ea
± r

2
--- µ– H , eb

±± r
2
---– µ– H ,±= =

α δ 1 ν1* ν2*,+ += =

β 1 ν1* 2iψ–( )exp ν2* –2iψ( ),exp+ +=

γ 1 ν1* 2iψ–( )exp ν2* 2iψ( ),exp+ +=

νk iq rk⋅( ),exp=

ψ π
3
---, r1

3
2

------- 1
2
---, 

  , r2
3

2
------- 1

2
---–, 

  .= = =

E+
a x1 α x3 βx4+ + 0,=

E–
ax2 γx3 δx4+ + 0,=

E+
b x3 α∗ x1 γ∗ x2+ + 0,=

E–
bx4 β∗ x1 δ∗ x2+ + 0,=

E±
a

ea H+− E±
b

eb H+−

q p̂ i"
r∂

∂
–

e
c
--A, A+ 0 Hx 0, ,( ).= =

E+
a x1 n 1+( ) Sn 1+ 34( ) 2x3 n( ) θncos+ +

+ 2x4 n( ) θn
+cos 0,=

E–
ax2 n 1+( ) Sn 1+ 34( ) 2x4 n( ) θncos+ +
JOURNAL OF EXPERIMENTAL A
(39)

Here, the notation

(40)

has been introduced, where ϕ is an arbitrary phase hav-
ing the meaning of conserved quasimomentum.

In order to transform system (39) to the form used
by Hofstadter, we solve it in x1, 2(1 + n) and x3, 4(n) for
the given Sn(12) and S1 + n(34):

(41)

We solve the obtained system of equations for x1, 2(1 + n)
and x3, 4(n), after which we find x3(n) + x4(n) = Sn(34)

+ 2x3 n( ) θn
–cos 0,=

E+
b x3 n( ) Sn 12( ) 2x1 n 1+( ) θncos+ +

+ 2x2 n 1+( ) θn
–cos 0,=

E–
bx4 n( ) Sn 12( ) 2x2 n 1+( ) θncos+ +

+ 2x1 n 1+( ) θn
+cos 0.=

θn
eH
4c
------- n

1
2
---+ 

  ϕ
2
---, θn

±+ θn
2π
3

------,±= =

Sn 12( ) x1 n( ) x2 n( ),+=

Sn 34( ) x3 n( ) x4 n( )+=

x1 1 n+( )
2
3
---E+

b x3 n( ) θn
2
3
---E–

bx4 n( ) θn
–cos+cos–=

+
2
3
---Sn 12( ) θn

–cos θncos–[ ] ,

x2 1 n+( )
2
3
---E–

bx4 n( ) θn
2
3
---E+

b x3 n( ) θn
+cos+cos–=

+
2
3
---Sn 12( ) θn

+cos θncos–[ ] ,

x3 n( )
2
3
---E+

a x1 n 1+( ) θn
2
3
---E–

ax2 n 1+( ) θn
+cos+cos–=

+
2
3
---Sn 1+ 34( ) θn

+cos θncos–[ ] ,

x4 n( )
2
3
---E+

a x1 n 1+( ) θn
– 2

3
---E–

ax2 n 1+( ) θncos–cos=

+
2
3
---Sn 1+ 34( ) θn

–cos θncos–[ ] .
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and, hence, the relation between the given Sn + 1(34) and
Sn(34), Sn(12):

(42)

Here, we have introduced the following notation:

(43)

(44)

The determinant of system (41) has the form

(45)

Thus, we obtain a system of two recurrence equations,

(46)

where

It can easily be verified that the determinant of 2D

matrix  is equal to unity.

Direct computations show that the following rela-
tion holds:

(47)

S 1 n+( ) 12( ) S n( ) 12( )
Un θn( )
∆n θn( )
--------------- S 1 n+( ) 34( )

W12 θn( )
∆n θn( )

------------------,+=

S 1 n+( ) 34( ) –S n( ) 12( )
W34 θn( )
Un θn( )
------------------ S n( ) 34( )

∆n θn( )
Un θn( )
---------------.+=

Un θn( ) 2 θn
2
9
--- E+

a E+
b E–

aE–
b+( ) θncos[+cos–=

+ E+
a E–

b θn
–cos E–

aE+
b θn

+
cos+ ] ,

W12 θn( )
4
9
--- E+

b θn θn
+cos–cos( )2[=

– E–
b θn θn

–cos–cos( )2 ] 1
9
---E+

b E–
b E+

a E–
a+( ),–

W34 θn( )
4
9
--- E+

a θn θn
–cos–cos( )2[=

+ E–
a θn θn

+cos–cos( )2 ] 1
9
---E+

a E–
a E+

b E–
b+( ).–

∆n θn( ) 1
4
9
--- E+

a E+
b E–

aE–
b+( ) θ2

ncos[–=

+ E+
a E–

b θn
–cos

2
E–

aE+
b θn

+cos
2

+ ] 1
9
---E+

a E–
aE+

b E–
b.+

Sn 1+ 12( )

Sn 1+ 34( ) 
 
 

R̂
Sn 12( )
Sn 34( ) 

 
 

,=

R̂

Un
2 θn( ) W12 θn( )W34 θn( )–

∆n θn( )Un θn( )
-----------------------------------------------------------

W12 θn( )
Un θn( )
------------------

W34 θn( )
Un θn( )
------------------–

∆n θn( )
Un θn( )
---------------

 
 
 
 
 
 
 

.=

R̂

Un
2 θn( ) W12 θn( )W34 θn( )– ∆n θn( )Vn θn( );=
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here, we have

(48)

It can be concluded from here that matrix  has the
form

(49)

The obtained system has coefficients periodically
depending on the number of flux quanta passing
through a unit cell. The equation for determining the
excitation spectrum has the canonical form (18).

In the limiting case when the intrinsic orbital angu-

lar momentum can be disregarded, we have  = Ea, b

and

(50)

where

(51)

We can now carry out the scale transformation

S(n)(12) = s(n)(12) , S(n)(34) = s(n)(34) . As a

result, the elements of matrix  become functions of
the product EaEb only:

(52)

where

(53)

Thus, in this limit, it is sufficient to analyze the disper-
sion equations in this limit in two variables F = EaEb

and θ with the help of the general relation (18). In this

Vn θn( ) 4 θncos
2 1

9
--- Ea

+ Ea
–+( ) Eb

+ Eb
–+( ).–=

R̂

R̂
Vn θn( )/Un θn( ) W12 θn( )/Un θn( )

W34 θn( )/Un θn( )– ∆n θn( )/Un θn( ) 
 
 

.=

E±
a b,

Un θn( ) un θ( ) 2 θn –1
1
9
---EaEb+ ,cos=

Vn θn( ) v n θ( ) 4 θncos
2 4

9
---EaEb,–=

W12 θn( ) w12 θn( ) Ebwn θn( ),=

W34 θn( ) w34 θn( ) Eawn θn( ),=

wn θn( )
2
3
--- 1 2 θncos

2
+[ ] 1

3
---EbEa–

 
 
 

.=

Eb Eb

R̂

R̂
v n θn( )/un θn( )

EaEbwn θn( )
un θn( )

--------------------------------

EaEbwn θn( )
un θn( )

--------------------------------–
ϒn θn( )
un θn( )
---------------

 
 
 
 
 
 
 

,=

ϒn θn( ) 1
4
9
---EaEb

3
2
--- θncos

2
+

1
9
--- EaEb( )2.+–=
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case, the energy of the system is expressed in terms of
F and energy shift through the formulas E =

±  + µ.

4.2. pz and s Electrons in a Honeycomb Lattice 

We assume that jumps occur between neighboring
atoms, each of which has a wave function independent
of coordinates x and y.

For this reason, the equations for real amplitudes
have the form (see Eqs. 39)

(54)

This immediately leads to the system of recurrence
relations of type (49),

(55)

where

It can easily be verified that the 2D transformation
matrix corresponding to system (55) has a determinant
equal to unity.

Our task is simplified significantly if we introduce

the scale transformation x1 = y1 , x3 = y3 . As a

result, matrix  depends only on products EaEb:

(56)

Therefore, we can analyze the dispersion equations in
two variables F = EaEb and θ using the general rela-
tion (18). In this case, the energy of the system can be
expressed in terms of F, and the shift, with the help of

the formula E = ±  + µ.

r2 F+

Eax1 n 1+( ) x3 n 1+( ) 2x3 n( ) θncos+ + 0,=

Ebx3 n( ) x1 n( ) 2x1 n 1+( ) θncos+ + 0.=

x1 n 1+( )
x3 n 1+( ) 

 
 

P̂
x1 n( )

x3 n( ) 
 
 

,=

P̂

1
2 θncos
-----------------–

Eb

2 θncos
-----------------–

Ea

2 θncos
-----------------

EaEb 4 θncos
2

–
2 θncos

-------------------------------------
 
 
 
 
 
 
 

.=

Eb Ea

P̂

P̂

1
2 θncos
-----------------–

EaEb

2 θncos
-----------------–

EaEb

2 θncos
-----------------

EaEb 4 θncos
2

–
2 θncos

-------------------------------------
 
 
 
 
 
 
 

.=

r2 F+
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By way of an example, we can write the excitation
spectrum for eH/c" = π:

The density of states of s and p electrons in the honey-
comb lattice for m* ! m are shown in Fig. 4; it can be
seen that the graphs are identical.

5. SUSCEPTIBILITY IN THE LIMIT
OF WEAK FIELDS

It can be seen from Figs. 1, 2, and 4 that the excita-
tion spectrum in the limit H  0 becomes continuous,
but it cannot be calculated. For this reason, we consider
the limiting case using conventional perturbation theory.

In order to calculate the orbital susceptibility, we
will use the Fourier expansion of the vector potential
satisfying the transverse gauge [11]

(57)

Then we determine the first current correction for a
given shape ξp of the Fermi surface calculated for zero
field:

(58)

Here, Gω(p) = (iω – ξp)–1 is the thermodynamic Green
function and v s is the symmetrized velocity operator in
the direction of the x axis:

(59)

In order to find the orbital susceptibility in a uniform
magnetic field, we must expand the integrand into a
power series in wave vector q. Integrating the second
term by parts, we note that the first sum is cancelled out
for q = 0. The first nonvanishing term turns out to be

proportional to  and the corresponding coefficient

of Ax  is precisely the orbital magnetic susceptibility
χ [11]:

(60)

e ϕ ω,( )

=  r2 3 2 ϕ 4 ω/2( )sin ϕ /2( )sin±cos–+ µ.–±

divA 0, A q( ) Ax qy( ) 0 0, ,( ).= =

jx〈 〉 2Te2–=

× v s
2Gω p q

2
---+ 

  Gω p q
2
---– 

  ξ xx'' Gω p( )+
ω p,
∑ Ax q( ).

v s
1
2
---

px∂
∂ ξ p q

2
---+ 

 
px∂
∂ ξ p q

2
---– 

 + ,=

q 0 qy 0, ,( ), ξ xx''
px

2

2

∂
∂ ξ p( ).= =

qy
2

qy
2

χ T( )
e2

6
----

∂v x

∂ px

---------
∂v y

∂ py

---------
∂v y

∂px

---------
∂v x

∂ py

---------–


∑=

+
3
2
--- v x

∂2v x

∂py
2

----------- v y

∂2v y

∂ px
2

-----------+




nF' ξp( ).
AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003



JO

ENERGY SPECTRUM OF p ELECTRONS IN A PLANE CRYSTAL LATTICE 299
2

4

1.00.80.60.40.20

6

8

10
EaEb p-electrons

2

4

1.00.80.60.40.20

6

8

10
EaEb

s-electrons

Ha2

8 3Φ0

----------------- Ha2

8 3Φ0

-----------------

Fig. 4. Energy spectra of p and s electrons in a honeycomb lattice for m* ! m.
Here, vα = ∂ξ/∂pα are the velocity components and
summation over momenta is carried out within the first
Brillouin zone.

For a low concentration of particles, integration is
carried out in the vicinity of the minimal or maximal
value of the energy surface; the value of the curvature
tensor

(61)

is positive and can be reduced to the product of recipro-
cal masses. Consequently, in all cases of cubic, triangu-
lar, and square lattices, relation (60) is reduced to the
Landau diamagnetism formula.

∂v x

∂ px

---------
∂v y

∂ py

---------
∂v y

∂ px

---------
∂v x

∂ py

---------–
∂2ξ
∂ px

2
-------- ∂2ξ

∂ py
2

-------- ∂2ξ
∂ px∂ py

----------------- 
 

2

–=
URNAL OF EXPERIMENTAL AND THEORETICAL PHY
At the points of Van Hove singularity, the velocity
components vanish and the curvature tensor (61) is
found to be negative. For this reason, for the Fermi
energy intersecting the Van Hove singular points, the
susceptibility is positive and turns to infinity at zero
temperature.

For a finite temperature, we have χ ≈ ln(1/T) for 2D
lattices and χ ≈ ln2(1/T) for bcc lattices.

6. DISCUSSION: INTERMEDIATE FIELDS

For a finite value of magnetic field, when the num-
ber of flux quanta through a unit cell is a partial fraction
N/K, the size of the unit cell increases by a factor of K,
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which corresponds to a proportional K-fold decrease in
the size of the first Brillouin zone and to the transforma-
tion of Brillouin zone into the Bravais–Zak subband
(see detailed article by Zak [9]).

A. Let us first consider the case when N = 1.
For square and triangular lattices of s electrons,

Eqs. (18) give exactly K solutions for each given K,
each solution being dependent on two quasimomenta θ
and ϕ.

In the case of a square lattice of px, py electrons, for
each K we obtain 2K solutions from Eqs. (15). As the
magnetic field increases, the division into bands per-
taining to the upper and lower orbital doublets becomes
ever clearer. However, for a small effective mass (m* !
m), a considerable overlapping of subbands belonging
to different components of the intrinsic orbital angular
momentum takes place.

In the case of a honeycomb lattice with two atoms in
a cell and for pz electrons, the division into the upper
and lower subgroups of states is well pronounced; each
subgroup contains K subbands arising as solutions to
the corresponding system of equations (55).

In the general case of px, py electrons in a honey-
comb lattice, the arrangement of levels is again deter-
mined by Harper-type equations (49). In this case, there
are two independent parameters, viz., orbital splitting
proportional to the magnetic field and the splitting asso-
ciated with the electrostatic potential difference at the
site where different atoms are located. It follows from
Eqs. (49) that, for a given number m, there exist 4K
states each of which depends on two quasimomenta.

B. N ≠ 1.
It was shown by Dzyaloshinski (10) that number N

determines the degeneracy of each quantum state calcu-
lated for a given K. This circumstance makes it possible
to explain qualitatively the reasons for the emergence
of the fractional Hall effect. The values of Coulomb
matrix elements calculated from Wannier-type wave
functions turn out to be much larger than the width of
an individual magnetic subband. For this reason, it is
natural to assume that the corresponding Hubbard
energy is infinitely large.

In this approximation, the filling of the lower mag-
netic subband occurs through the so-called end factors
equal to the sum of the mean occupation numbers of the
initial and final states, f = n0 + n1.

Let us consider for the sake of simplicity the filling
of the lower subband of s electrons, which corresponds
to transitions from an empty state to an N-fold degener-
ate one-particle state. In this case, the equation of state
can be expressed in terms of the product of the degen-
eracy by the end factor [12]:

(62)n Nf nF f e1 q( ) µ–( ),
q

∑ f n0 n1.+= =
JOURNAL OF EXPERIMENTAL 
Here, n is the average number of particles per unit cell,
n0 and n1 are average occupation numbers of empty and
one-particle states, and e1(q) are solutions of the Harper
equations for an empty square or triangular lattice,
which correspond to the lower level depending on the
2D quasimomentum q. In the limiting case of an infi-
nitely large Hubbard energy, quantities n0 and n1 can be
expressed in terms of degeneracy N and the average
number n of electrons with the help of the normaliza-
tion condition and the definition of n1 in terms of degen-
eracy,

(63)

It is also convenient to replace the sum over quasimo-
menta by integrals with respect to the angles corre-
sponding to the first magnetic subband. As a result, we
obtain the explicit form of the equation of state:

(64)

It is convenient to write this equation in terms of den-
sity of states. For T = 0, we have

(65)

The values of the emerging energy gaps are determined
by the corresponding Coulomb matrix elements. How-
ever, the arrangement of these gaps on the energy scale
coincides with the energy positions of Van Hove singu-
larities within each allowed magnetic subbands. For a
given finite field, the position of each correlation gap is
determined by the condition of passage of the Fermi
surface through one or several equivalent Van Hove
points.

The position of each point in this case can be deter-
mined from an analysis of the corresponding equation
of motion (12), (31), (46), or (49).

We can prove that the Harper equations for a square
lattice determine the only Van Hove surface, for which
we obtain fractional values of S = S1 = 1/2 for T = 0.

For a triangular lattice, the Harper equations give
only two Van Hove surfaces for which we have S = S1 =
1/4 or S = S2 = 3/4 for T = 0.

At the points of Van Hove singularities, the density
of states becomes infinitely large. Accordingly, the sus-

n0 Nn1+ 1, n1
n
N
----.= =

n N f n( ) nF f n( )e1 α β,( ) µ–[ ] αd βd

2π( )2
-------------,

0

2π

∫
0

2π

∫=

f h( ) 1 n
N 1–

N
-------------.–=

n
NS

1 S N 1–( )+
------------------------------, S ρ1 E( ) E,d

µ/ f

∫= =

ρ1 E( ) δ E e1 α β,( )–[ ] α βdd

2π( )2
-------------.

0

2π

∫
0

2π

∫=
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ceptibility and conductivity at these points also turn to
infinity at these points at T = 0. However, these singu-
larities disappear even for a slight increase in tempe-
rature.

Thus, for T = 0, we obtain series of critical singular-
ities. For a square lattice, we have

. (66)

For a triangular lattice, we must distinguish between
the cases of even and odd number of levels, i.e.,
between the cases with even and odd number K.

For an even K, pair overlapping takes place; i.e., we
can see M = K/2 narrow subbands in the limit of large
K = 2M. It follows hence that the degeneracy of each
level is doubled in this case; i.e., the number N in the
equation of state (65) assumes only even values.

In the case of an odd K, the number of subbands
coincides with the number K itself. Therefore, the
degeneracy of each state coincides with the number N,
which runs through the entire series of integral values.

Thus, in the case of a triangular lattice, we have two
series of critical values:

(67)

In the case of even values of K, the numbers N are even:
N = 2, 4, 6, … . In the case of odd values of K, N can be
any integer: N = 1, 2, 3, 4, 5, 6, ….

In the case of square and honeycomb lattices, we
can also obtain various series of critical values for p
electrons, which correspond to the Van Hove-type
Fermi surfaces; this case should be considered sepa-
rately.

APPENDIX

Transition to Harper Equations 

In order to single out the effect of the displacement
operators

(A.1)

we can use the general formula, which is valid under

the condition that [ , ] is not an operator:

(A.2)

nc1
N

1 N+
------------- or

2
3
--- 3

4
--- 4

5
---, …, ,=

nc1
N

3 N+
------------- or nc2

3N
1 3N+
-----------------.= =

i
3

2"
------- p̂x± 

  Ψ x y,( )exp Ψ x
3

2
-------+− y, 

  ,=

i
1

2"
------ p̂x± 

  Ψ x y,( )exp Ψ x y
1
2
---+−, 

  ,=

Â B̂

Â B̂+( )exp Â B̂
1
2
--- Â B̂,[ ]– 

  .expexpexp=
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This leads to the following four relations:

(A.3a)

Here and below, we use the relations written in accor-

dance with Fig. 3 (x = n1 /2, y = n2 – n1/2):

(A.3b)

(A.3c)

ν1*Ψ x y,( ) i 3eH
8c

-----------------
ieH 3n1

4c
----------------------+–

 
 
 

exp=

× Ψ 3
2

------- n1 1–( ) 1
2
--- n2 1+( ), 

 

× –
i 3eH

8c
-----------------

ieH 3n1

4c
----------------------+

 
 
 

Ψ r a2–( )exp

=  
ieH 3 n1 1/2–( )

4c
----------------------------------------

 
 
 

ψ n1 1– n2,( ).exp

3

ν2*Ψ x y,( )

=  
i
"
--- 3

2
-------i"

x∂
∂ 1

2
---i"

y∂
∂

––
e
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------Hx+ 

 – 
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3
2

-------i"
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∂ e
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  Ψ x y
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2
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=  ieHx2

2c 3
--------------– 

  ieH x 3/2–( )2

2c 3
--------------------------------------

 
 
 

Ψ x
3

2
------- y

1
2
---–,– 

 expexp

=  
i 3eH

8c
----------------- 

 exp ieHx
2c

------------– 
  Ψ x

3
2

-------– y
1
2
---–, 

 exp

=  
i 3eH

8c
----------------- 

  ieHx
2c

------------– 
  Ψ r a1–( )expexp

=  
ieH 3 n1 1/2–( )

4c
----------------------------------------– 

  ψ n1 1– n2 1–,( ),exp

ν1Ψ x y,( )

=  
i
"
--- 3

2
-------i"

x∂
∂ 1

2
---i"

y∂
∂ e

2c
------Hx–+– 

 
 
  Ψ x y,( )exp

=  
i
"
--- 3

2
-------i"

x∂
∂ e

2c
------Hx–– 

 
 
  Ψ x y

1
2
---–, 

 exp

=  
ieHx2

2c 3
-------------- 

  ieH x 3/2+( )2

2c 3
--------------------------------------–

 
 
 

Ψ x
3

2
------- y

1
2
---–,+ 

 expexp

=  i 3eH
8c

-----------------– 
  ieHx

2c
------------– 

  Ψ x
3

2
-------+ y

1
2
---–, 

 expexp
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(A.3d)

In this way, we can transform Eqs. (37) to a system of
difference equations:

(A.4a)

(A.4b)

=  
ieH 3 n1 1/2+( )

4c
-----------------------------------------– 

  ψ n1 1+ n2,( ),exp

ν2Ψ x y,( )

=  
i
"
--- 3

2
-------i"

x∂
∂ 1

2
---i"

y∂
∂ e

2c
------Hx+–– 

 
 
  Ψ x y,( )exp

=  
i
"
--- –

3
2

-------i"
x∂

∂ e
2c
------Hx+ 

 
 
  Ψ x y

1
2
---+, 

 exp

=  ieHx2

2c 3
--------------– 

  ieH x 3/2+( )2

2c 3
--------------------------------------

 
 
 

Ψ x
3

2
-------+ y

1
2
---+, 

 expexp

=  
i 3eH

8c
----------------- 

  ieHx
2c

------------ 
  Ψ x

3
2

-------+ y
1
2
---+, 

 expexp

=  
i 3eH

8c
----------------- 

  ieHx
2c

------------ 
  Ψ r a1–( )expexp

=  
ieH 3 n1 1/2+( )

4c
----------------------------------------- 

  ψ n1 1+ n2 1+,( ).exp

E+
a x1 n1 n2,( ) x3 n1 n2,( )+

+ i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

  x3 n1 1– n2,( )expexp

+
i 3eH

8c
----------------- 

  –
ieH 3n1

4c
---------------------- 

  x3 n1 1– n2 1–,( )expexp

+ x4 n1 n2,( ) 2iϕ( )exp+

× i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

  x4 n1 1– n2,( )expexp

+ 2iϕ–( )exp
i 3eH

8c
----------------- 

  ieH 3n1

4c
----------------------– 

 expexp

× x4 n1 1– n2 1–,( ) 0,=

E–
ax2 n1 n2,( ) x3 n1n2( ) 2iϕ–( )exp+ +

× i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

  x3 n1 1– n2,( )expexp

+ 2iϕ( ) i 3eH
8c

----------------- 
  ieH 3n1

4c
----------------------– 

 expexpexp

× x3 n1 1– n2 1–,( ) x4 n1 n2,( )+
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(A.4c)

(A.4d)

In all these equations, we carry out the substitution

(A.5)

+ i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

  x4 n1 1– n2,( )expexp

+
i 3eH

8c
----------------- 

  ieH 3n1

4c
----------------------– 

 expexp

× x4 n1 1– n2 1–,( ) 0,=

E+
b x3 n1 n2,( ) x2 n1 n2,( ) 2iϕ( )exp+ +

× i 3eH
8c

----------------- 
  ieH 3n1

4c
----------------------– 

  x2 n1 1+ n2,( )expexp

+ 2iϕ–( ) i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

 expexpexp

× x2 n1 1+ n2 1+,( ) x1 n1 n2,( )+

+
i 3eH

8c
----------------- 

  ieH 3n1

4c
----------------------– 

  x1 n1 1+ n2,( )expexp

+ i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

 expexp

× x1 n1 1+ n2 1+,( ) 0,=

E–
bx4 n1 n2,( ) x2 n1 n2,( )+

+
i 3eH

8c
----------------- 

  ieH 3n1

4c
----------------------– 

  x2 n1 1+ n2,( )expexp

+ i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

 expexp x2 n1 1+ n2 1+,( )

+ x1 n1 n2,( ) 2iϕ–( )exp+

× i 3eH
8c

----------------- 
  ieH 3n1

4c
----------------------– 

  x1 n1 1+ n2,( )expexp

+ 2iϕ( )exp i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

 expexp

× x1 n1 1+ n2 1+,( ) 0.=

xk n1 n2,( ) iαn2 iαn1/2–( )xk n1 n2,( ).exp
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As a result, we obtain a system of difference equations
that do not contain a dependence on the second argu-
ment:

(A.6a)

(A.6b)

E+
a x1 n1( ) x3 n1( ) i 3eH

8c
-----------------– 

 exp+ +

×
ieH 3n1

4c
---------------------- 

  iα
2
----- 

  x3 n1 1–( )
i 3eH

8c
----------------- 

 exp+expexp

×
ieH 3n1

4c
----------------------– 

 exp iα
2
-----– 

  x3 n1 1–( )exp x4 n1( )+

+ 2iϕ( )exp i 3eH
8c

-----------------– 
 exp

×
ieH 3n1

4c
---------------------- 

  iα
2
----- 

  x4 n1 1–( )expexp

+ 2iϕ–( )exp
i 3eH

8c
----------------- 

 exp –
ieH 3n1

4c
---------------------- 

 exp

× iα
2
-----– 

  x4 n1 1–( )exp 0,=

E–
ax2 n1( ) x4 n1( ) i 3eH

8c
-----------------– 

 exp+ +

×
ieH 3n1

4c
---------------------- 

  iα
2
----- 

  x4 n1 1–( ) i 3eH
8c

----------------- 
 exp+expexp

× –
ieH 3n1

4c
---------------------- 

  iα
2
-----– 

  x4 n1 1–( )expexp x3 n1( )+

+ 2iϕ–( ) i 3eH
8c

-----------------– 
 expexp

×
ieH 3n1

4c
---------------------- 

  iα
2
----- 

  x3 n1 1–( )expexp

+ 2iϕ( )exp
i 3eH

8c
----------------- 

  –
ieH 3n1

4c
---------------------- 

 expexp

× iα
2
-----– 

 exp x3 n1 1–( ) 0,=

E+
b x3 n1( ) x1 n1( )

i 3eH
8c

----------------- 
 exp+ +

× –
ieH 3n1

4c
---------------------- 

  iα
2
----- 

  x1 n1 1+( )expexp
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(A.6c)

(A.6d)

We can write the equations derived above in the
form used by Hofstadter. For this purpose, we carry out
substitution n1  n in Eqs. (A.6) and pass to real
coefficients:

(A.7)

+ i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

  iα
2
-----– 

  x1 n1 1+( )expexpexp

+ x2 n1( ) 2iϕ( ) i 3eH
8c

----------------- 
 expexp+

× –
ieH 3n1

4c
---------------------- 

  iα
2
----- 

  x2 n1 1+( )expexp

+ 2iϕ–( )exp i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

 expexp

× iα
2
-----– 

  x2 n1 1+( )exp 0,=

E–
bx4 n1( ) x2 n1( )

i 3eH
8c

----------------- 
 exp+ +

× –
ieH 3n1

4c
---------------------- 

  –
iα
2
----- 

  x2 n1 1+( )expexp

+ i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

  iα
2
----- 

  x2 n1 1+( )expexpexp

+ x1 n1( ) –2iϕ( ) i 3eH
8c

----------------- 
 expexp+

× –
ieH 3n1

4c
---------------------- 

  –
iα
2
----- 

  x1 n1 1+( )expexp

+ 2iϕ( )exp i 3eH
8c

-----------------– 
  ieH 3n1

4c
---------------------- 

 expexp

× iα
2
----- 

  x1 n1 1+( )exp 0.=

E+
a x1 n 1+( ) x3 n 1+( ) x4 n 1+( )+ +

+ 2x3 n( ) θn 2x4 n( ) θn
+

cos+cos 0,=

E–
bx2 n 1+( ) x3 n 1+( ) x4 n 1+( )+ +

+ 2x4 n( ) θn 2x3 n( ) θn
–

cos+cos 0,=

E+
a x3 n( ) x1 n( ) x2 n( )+ +

+ 2x1 n 1+( ) θn 2x2 n 1+( ) θn
–

cos+cos 0,=

E–
bx4 n( ) x1 n( ) x2 n( )+ +

+ 2x2 n 1+( ) θn 2x1 n 1+( ) θn
+

cos+cos 0.=
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Abstract—Dynamic effects caused by the magnetoelectric and antiferroelectric interactions in tetragonal anti-
ferromagnets are studied. The analysis is based on the example of trirutiles that are a series of antiferromagnets
with different exchange structures and orientation states. We are mainly dealing with the excitation by an alter-
nating electric field E(t) of spin waves typical of these magnets (antiferroelectric resonance) and the nuclear
magnetoelectric resonance connected with these interactions. In the first case, special emphasis is placed on
specific magnons (antimagnons), where only the antiferromagnetism vectors L take part in oscillations,
whereas the total ferromagnetism vector M remains unchanged. The nuclear magnetoelectric resonance can be
generated by oscillations of both L and M caused by field E(t). In this way, the field contributes to the hyperfine
field, which acts on the nuclear spins. It is shown that the magnetic and antiferroelectric interactions in the
dynamics can manifest themselves both at high (usually, exchange) frequencies ωE (antiferroelectric resonance)
and at rather low nuclear frequencies of ωn ! ωE. Particular cases of magnetic structures (phases) are considered
where field E(t) can excite not only antimagnons, but also quasiantiferromagnons that have lower eigenfrequen-
cies than those of quasimagnons (relativistic and semirelativistic). © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In certain magnetically ordered materials (mag-
nets), magnetoelectric and/or antiferroelectric interac-
tions of magnetic moments (sublattice magnetizations)
with electric field E occur. These interactions are con-
nected with the presence of terms of the form

(1)

in thermodynamic potential Φ (its density in the homo-
geneous case) in the case of the magnetoelectric inter-
action and

(2)

in the case of the antiferromagnetic interaction. In for-
mulas (1) and (2), M is the total magnetization vector
and L and L1, 2 are the antiferromagnetism vectors. In
centrosymmetric crystals whose space group contains

an inversion , invariants of form (1) exist in the case

where vector L is centroantisymmetric. Hence, L =

−L, since M is a centrosymmetric vector ( M = M)
and E is a centroantisymmetric vector. Invariants of
form (2) exist if one of the antiferromagnetic vectors
(say, L1) is centrosymmetric and the other one (L2) is
centroantisymmetric.

MiL jEk

L1iL2 jEk

1

1

1

1063-7761/03/9702- $24.00 © 20305
In statics, a term of form (1) generates a known
magnetoelectric effect, namely, the magnetization of
the antiferromagnet by an external electric field E =
E0 = const [1] and, due to contribution (2), field E0 can
generate magnetic orientational (or even structural)
phase transitions. The influence of constant electric
field E0 on the antiferromagnetic resonance frequency
for trirutiles and Cr2O3 in a two-sublattice approxima-
tion is considered in [1]. This allows us to apply a
model where L2 = const [1], and it is assumed that the
magnetic susceptibility parallel to vector L is nonzero
(χ|| ≠ 0). However, in this case, the antiferroelectric
interaction caused by the presence of four sublattices is
not taken into account.

In dynamics, the magnetoelectric and antiferroelec-
tric interactions exhibit themselves in a significantly
greater variety of phenomena, in particular, for alternat-
ing fields E(t) and multisublattice (n > 2) magnets.
First, these interactions are associated with the possibil-
ity of excitation by an alternating electric field E(t) of
magnons of different types (including such that cannot
be excited by magnetic field H(t)), since only an anti-
ferromagnetism vector (or vectors) takes part in mag-
non oscillations and oscillations of the total local fer-
romagnetism vector M are absent. The existence of
such magnons was predicted for the first time in [2–6].
In these papers, antiferromagnetic crystals with at least
003 MAIK “Nauka/Interperiodica”
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four sublattices (rhombohedral α-Fe2O3 and Cr2O3,
rhombic orthoferrites, and hexagonal CsMnF3) are con-
sidered. The authors of [2–6] called such magnons elec-
trically active. It is typical of all these antiferromagnets
that magnetic ions present in these materials are in non-
centrosymmertical positions; hence, the symmetry cen-

ter element  existing in these antiferromagnets per-
mutes such ions with each other. Unfortunately, the
society of magnetologists paid very little attention to
these fundamental studies that opened a new interesting
field in spin dynamics. Only in 2001 did one of the
authors of [7] draw attention to the existence of purely
antiferromagnetic magnons excited by field E(t) in a
two-sublattice ferromagnet. He emphasized the possi-
bility of the existence of electrically active magnons
and named them antimagnons. A ferromagnet (not an
antiferromagnet as in [2–6]) is considered in [7], and it
is the ferromagnetic structure with two magnetic ions in
a noncentrosymmetric position, but linked through a
symmetry center, that is the simplest system in which
antimagnons exist. The authors of papers [8–11] devel-
oped this area of research. They considered the totality
of phenomena determined by the dynamic manifesta-
tion of the magnetoelectric and antiferroelectric inter-
actions in multilattice ferro-, antiferro-, and ferrimag-
nets. As well as in all papers cited above, eigenfre-
quency ωL of antimagnons possesses an exchange
nature, and the antimagnons can be excited not only by
field E(t), but also by magnetic field H(t) (at the same
frequency) if a constant electric field E = E0 = const is
applied to the sample. Moreover, some magnetoelectric
and antiferroelectric phenomena in the low frequency
region, where, in particular, ω ≈ ωn ! ωE (ωn is the
NMR frequency), were predicted. In other words, the
nuclear magnetoelectric resonance generated by field
E(t) at frequency ωn was predicted [12]. Leskovets et
al. [13] investigated the high-frequency properties of an
antiferromagnetic KNiPO4 crystal, which has no sym-
metry center, in constant and alternating fields H and E.

In this paper, the phenomena mentioned above are
considered in tetragonal antiferromagnets with the
trirutile structure (they have not been investigated
in [2–6]) from the points of view of both antimagnons
and nuclear magnetoelectric resonance. Much attention
has also been also given to the study of magnetic struc-
tures (phases) existing in trirutiles, in which field E(t)
is excited by other (different from antimagnon) spin
waves (quasiantiferromagnons). Being relativistic and
semirelativistic, these structures have rather low eigen-
frequencies.

We chose trirutiles as a concrete object for the inves-
tigation, because these materials represent a rather
large class of centrosymmetric antiferromagnetic com-
pounds with various exchange structures and orienta-
tion states [1]. The results allow us to discuss the known
ones and to recommend new ones. Note that some
results for tetragonal crystals are presented in [12, 14].

1

JOURNAL OF EXPERIMENTAL
2. CRYSTAL AND MAGNETIC STRUCTURES:
THERMODYNAMIC POTENTIAL

The following antiferromagnetic compounds are
tetragonal crystals with the trirutile structure: Fe2TeO6
(TN = 219 K), Cr2TeO6 (TN = 105 K), Cr2WO6 (TN =
69 K), V2WO6 (TN = 370 K), etc. [1]. The magnetic
atoms in these crystals are in the fourfold position

4e{mm} of the group P42/mnm ( ): 1(0, 0, z), 2(0, 0,
1 – z), 3(1/2, 1/2, 1/2 + z), 4(1/2, 1/2, 1/2 – z). In the
braces, the island (local) symmetry of the position is
indicated. The four magnetic sublattices with magneti-
zations Mν (ν = 1, 2, 3, 4) are associated with four (one
ferromagnetic and three antiferromagnetic) base vec-
tors:

(3)

The first two vectors are centrosymmetric, and the other
vectors are centroantisymmetric.

We take the elements , 21x , and 42z as generators of
the group. Then, we write the transformation table for
the components of the base vectors. We take into
account not only rotations (and reflections), but also
permutations of magnetic ions under the action of these
elements [1, 14]. (Since 21x = 42z × 2d , we can use for
this purpose a table similar to Table 4.4 from [1], which
determines the transformation rules for M and Lξ (3)

(ξ = a, b, c) with respect to elements , 42z , and 2d of
the group P42/mnm.)

First, we compose such a table for the rhombic
group Pnmm, which is a subgroup of the true tetragonal

group P42/mnm since  = 2z. The first column of the
table enumerates phases Γn of group Pnmm in terms of
components of vectors M and L. The numbers +1 or −1
in the third column show whether the corresponding
functions in the second column change sign under the

action of elements , 21x , and 2z , which are generators
of group Pnmm. The magnetic point groups, with
respect to which the functions (in the second column)
determining the corresponding phases for group Pnmm
are invariant, are written in the fourth column. Here,
g' = g × 1' (where g is an element of the point group and
1' is the time reversion operation). In the last column,
the results of the transformation under the action of ele-
ment 42z , which complements group Pnmm with
respect to P42/mnm, are presented.

From the viewpoint of the rhombic group, each row
of the table corresponds to a certain magnetic structure
(phase), in which only the components presented in this
row are nonzero in the ground state. After adding the 42z

D4h
14

M M1 M2 M3 M4,+ + +=

La M1 M2 M3– M4,–+=

Lb M1 M2– M3 M4,–+=

Lc M1 M2– M3– M4.+=

1

1

4z
2

1
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axis, these phases can be united into one phase, which
includes the components associated with this axis. (For
example, phases Γ4 and Γ5 can compose the phase Γ4 +

Γ5, in which  || [110], Lc = 0 or  || [110],  = 0
[1]. Here and below, the superscripted zero denotes the
ground state.) However, these phases can exist sepa-
rately. This is determined by the concrete type of the
magnetic anisotropy energy and by the magnitude and
direction of the magnetic field. Considering only the
phases typical of the rhombic symmetry, we come, due
to the presence of the 42z axis, to certain relations
between the constants of the thermodynamic potential
and the equality of the corresponding magnon frequen-
cies for the two phases connected by this axis.

Using the table, we write an invariant expression for
the thermodynamic potential density Φ including the
magnetoelectric and antiferroelectric interactions, as
well as the Zeeman energy in a magnetic field. In the
bilinear approximation in vectors (3), we have

(4)

Here,

(5)

is the magnetic energy, AM and Aξ (ξ = a, b, c) are
exchange constants; the other constants are relativistic.
Then,

(6)

defines the magnetoelectric interaction,

(7)

defines the antiferroelectric interaction, and M0 is the
magnitude of the sublattice magnetization vector. Note
that, for particular magnetic structures, only some
terms remain in general expressions (6) and (7).

Lb
0 Lc

0 Lb
0

Φ Φmag ΦME ΦAFE.+ +=

Φmag
1
2
---AMM2 1

2
--- AξLξ

2

ξ
∑+=

+
1
2
---KM Mx

2 My
2+( ) 1

2
--- Kξ Lξx

2 Lξy
2+( )

ξ
∑+

+ r LbxLcy LbyLcx+( ) p MxLay MyLax+( ) M H⋅–+

4M0ΦME s1 MxEx MyEy+( )Lbz–=

– s2 MxLbx MyLby+( )Ez s3Mz ExLbx EyLby+( )–

– s4MzEzLbz d1 MxEy MyEx+( )Lcz–

– d2 MxLcy MyLcx+( )Ez d3Mz ExLcy EyLcx+( )–

4M0ΦAFE f 1Laz ExLby EyLbx+( )–=

– f 2Laz ExLcx EyLcy+( ) f 3 LaxEy LayEx+( )Lbz–

– f 4 LaxEx LayEy+( )Lcz f 5LazLczEz–
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We consider the equimodule model  =  that
corresponds to the conditions

(8)

as well as to the Landau–Lifshitz equations. For four
sublattices, these equations have the form [14]

(9)

Here, γ is the magnitude of the magnetomechanical
ratio.

Note that, in this approach, the oscillations of the
spin system are considered independently of the lattice
vibrations excited by field E(t), as well as oscillations
of polarization P connected with these vibrations.
Actually, we make the assumption (which is justified in

Mv
2 M0

2

M2 Lξ
2

ξ
∑+ 4M0( )2,=

M La Lb Lc⋅+⋅ 0,=

M Lb La Lc⋅+⋅ 0,=

M Lc La Lb⋅+⋅ 0,=

Ṁ = γ M
∂Φ
∂M
--------× La

∂Φ
∂La

---------× Lb
∂Φ
∂Lb

---------× Lc
∂Φ
∂Lc

---------×+ + + 
  ,

L̇a = γ M
∂Φ
∂La

---------× La
∂Φ
∂M
--------× Lb

∂Φ
∂Lc

---------× Lc
∂Φ
∂Lb

---------×+ + + 
  ,

L̇b = γ M
∂Φ
∂Lb

---------× La
∂Φ
∂Lc

---------× Lb
∂Φ
∂M
--------× Lc

∂Φ
∂La

---------×+ + + 
  ,

L̇c = γ M
∂Φ
∂Lc

---------× La
∂Φ
∂Lb

---------× Lb
∂Φ
∂La

---------× Lc
∂Φ
∂M
--------×+ + + 

  .

Transformation of vectors M, Lξ (ξ = a, b, c), and E under
the action of the symmetry elements of the Pnmm and
P42/mnm groups

Γi M, L, E 21x2z
Magnetic 

group 42z

Γ1 Mx, Lay +1 + 1 –1 2x My, Lax

Γ2 My, Lax +1 – 1 –1 –Mx, –Lay

Γ3 Mz +1 – 1 +1 4z Mz

Γ4 Lbx, Lcy, Ey –1 – 1 –1 ' Lby, Lcx, –Ex

Γ5 Lby, Lcx, Ex –1 + 1 –1 '2x –Lbx, –Lcy, Ey

Γ6 Laz +1 + 1 +1 2x –Laz

Γ7 Lbz –1 + 1 +1 '2x Lbz

Γ8 Lcz, Ez –1 – 1 +1 ' –Lcz, Ez

1

1 2z'

1 2x' 2z'

12x'

1 2x' 2z'

1 2z'

1 4z'

1 4z'

1 2x' 4z'
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most cases) that the eigenfrequencies of the latter oscil-
lations are high as compared with spin frequencies
interesting for us. This allows us to immediately write
thermodynamic potential (4) in terms of electric field
E(t) assuming that P follows E in an equilibrium way.
The situation can be more complicated for the case of
nonuniform spin waves if we take into account the
interaction of these waves with acoustic vibrations of
the lattice.

3. SPIN-WAVE REPRESENTATIONS
(VIBRATIONAL MODES)

Passing to vibrational modes and their eigenfre-
quencies, we note that we use here the concept of spin-
wave representations [1, 15–17] that allows us to divide
the vibrational variables into independent groups
before writing the equations of motion. According to
the algorithm formulated in [1, 15] for a rhombic crys-
tal, the variables from two rows Γm and Γm' of the table
for which the products of the numbers (+1 or –1) give
the numbers of row Γn are related to the same spin-wave
representation of phase Γn under consideration. Sche-
matically, we write Γm · Γm' = Γn. It can occur that
m = m'.

Unfortunately, we cannot hitherto formulate an
equally simple general rule for determining the spin-
wave representations for tetragonal crystals as has been
done for rhombic crystals. Here, the general techniques
of the corepresentation theory of space groups devel-
oped in [16, 17] could be applied. However, the spin-
wave representations obtained for an appropriate rhom-
bic group give us sufficient information for obtaining
the representations for the tetragonal case using some
additional considerations connected with the symmetry
and the particular form of the thermodynamic potential.
This should be done separately for each magnetic struc-
ture considered. This way is simpler and more popular
than the use of the general theory [16, 17]. Below, we
demonstrate this assertion using concrete examples.
The magnetic groups presented in the table allow us to
justify the choice of the spin-wave representations by
verifying the invariance of the corresponding equations
of motion. (We should keep in mind that the elements
of the magnetic group act only on the dynamic (oscilla-
tion) variables.)

4. EASY-AXIS STRUCTURE. PHASE Γ7( )

(MAGNETIC GROUP '2x4z)

We studied earlier this antiferromagnetic phase with

centroantisymmetric primitive vector  || z (  =
4M0) characteristic of the Fe2TeO6 compound [14].
Now, we present the results in more detail.

Lbz
0

1

Lb
0 Lbz

0
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According to the table, there are two transverse qua-
siantiferromagnetic representations for this phase,
namely,

(10)

and

(11)

which are the same as in the rhombic case, but remain
independent when the 42z axis is taken into account.
However, phases Γ15 and Γ24 are equivalent from the
viewpoint of symmetry: namely, one of them can be
obtained from the other via rotation of the 42z axis.
Therefore, it is sufficient to solve the formulated prob-
lem for one of these phases. Let it be Γ15 (10).

From potential Φ specified by expressions (5)–(7),
we separate the quadratic form Φ2 in appropriate vari-
ables (10) (taking into account equimodule model (8)):

(12)

Here, in addition to magnetoelectric (s1) and antiferro-
electric (f3) interactions, we take into account the Zee-
man interaction in the alternating field H || x. According
to (10), this field (just as field E || x) must excite mode

Γ15.1 In formula (12), we use the notation  = Aκ –
Ab + Kκ , where Aκ > 0, Ab < 0, Kb > 0, Kκ < 0, and κ =
M, a, c.

Taking into account formula (12), from the corre-
sponding Landau–Lifshitz equations (9), we obtain the
following system (for Ex , Hx ∝  exp(–iωt)):

(13)

where ω0 = 4γM0.
For p = r = 0, the first and the second pairs of

Eqs. (13) split into two independent pairs. Moreover,
the second pair with variables Lay and Lcx excited by

1 The constant magnetic field H0 should be taken into account (as it
has been done in the two-sublattice approximation in [1]). How-
ever, in our case, this results in a significant complication of the
problem and is hardly justified. The matter is that the considered

phase Γ7( ) does not contain vector M that is generated by

field H0. However, this is another phase and, in general, one
should seek other modes instead of (10) and (11).

Γ15 Mx Lay Lby Lcx, , ,( )

Γ24 My Lax Lbx Lcy, , ,( ),

Φ2
1
2
--- ÃMMx

2 ÃaLay
2 ÃcLcx

2 KbLby
2+ + +( )=

+ pMxLay rLbyLcx+

– s1Mx f 3Lay+( )Ex t( ) MxHx t( ).–

Ãκ

Lbz
0

iωMx ω0 KbLby rLcx+( ),=

iωLby ω0 ÃMMx pLay s1Ex– Hx–+( ),–=

iωLay ω0 ÃcLcx rLby+( ),–=

iωLcx ω0 ÃaLay pMx f 3Ex–+( ),=
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field Ex produces an exchange, purely antiferromag-
netic mode (by definition, antimagnonic). However, in
this case, we are more interested in the other pair of
equations (13) with variables Mx and Lby . For this pair,
we can also take into account the relativistic terms with
p ≠ 0 and r ≠ 0. However, we should bear in mind that
the corresponding variables Lay and Lcx follow Mx and
Lby in a quasiequilibrium way. Therefore, the first vari-
ables can be expressed via the second variables by mini-
mizing Φ2 (12) in Lay and Lcx (∂Φ2/∂Lay = ∂Φ2/∂Lcx = 0).
This means that we should set ω = 0 in the second pair
of equations (13). We obtain

(14)

Substituting Eqs. (14) in the first pair of equations (13),
we find a solution for the quasiantiferromagnetic mode

(15)

where χ0 = 1/  and α0 = /  are the static mag-
netic and magnetoelectric susceptibilities, respectively,
with the resonance frequency

(16)

and

is the relativistic renormalization of constants.
As for the exchange mode arising due to the second

pair of equations (13), the influence of terms with p and
r on the mode frequency ωE is insignificant, because for

, (17)

quantities Mx and Lby remain almost in equilibrium, i.e.,
close to zero. The optical mode is actually antimag-
nonic (the antimagnon is electically active):

(18)

This mode is excited by field E || x. Moreover, in con-
trast to quasiantiferromagnetic mode (15) caused by the

Lay
p

Ãa

------Mx–
f 3

Ãa

------Ex, Lcx+
r

Ãc

-----Lby.–= =

Mx α0Ex χ0Hx+( )
ωAF

2

ωAF
2 ω2–

---------------------,=

Lby
iω

ω0Kb*
--------------Mx,=

AM* s1* AM*

ωAF ω0 AM* Kb*,=

AM* ÃM
p2

Ãa

------, Kb*– Kb
r2

Ãc

-----,–= =

s1* s1
f 3 p

Ãa

---------–=

ωE ω0 Ãa Ãc @ ωAF=

Lay

iω0 Ãc

ω
--------------Lcx

f 3

Ãa

------
ωE

2

ωE
2 ω2–

------------------Ex.= =
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magnetoelectric and Zeeman interactions, this mode is
caused by the antiferroelectric interaction.

Thus, spin-wave representation Γ15 (10) produces
two modes, namely, an electrically active antimagnonic
mode with variables (18) and frequency ωE (17) and a
quasiantiferromagnetic mode, which is simultaneously
magnetically and electrically active with resonance fre-
quency ωAF (16).

The corresponding results for spin representation
Γ24 (11) can be obtained from (12)–(18) via the substi-
tution x  y and ω  –ω.

The antiferromagnetic resonance should be observ-
able at the antinode of field Hx(t), and the electrically
active (antiferroelectric) resonance should be observ-
able at the antinode of field Ex(t); we can assume that
|Hx| ≈ |Ex| (in the CGS system). Therefore, according to
relations (15), the magnetization ratio for these two res-
onances is determined via the ratio of the static magne-
toelectric and magnetic susceptibilities:

(19)

These susceptibilities in some antiferromagnets can be
comparable in magnitude. Then, one can hope that,
along with the antiferromagnetic resonance, the antifer-
roelectric resonance can be observed in such antiferro-
magnets. It is important that, unlike the exchange anti-
magnonic resonance, frequency ωAF can lie in the
microwave region. Nevertheless, for tetragonal antifer-
romagnets, the antiferroelectric resonance should be
experimentally sought in Fe2TeO6 and in rare-earth
phosphates and vanadates (compounds of the TbPO4
and GdVO4 types) [1].

5. EASY-PLANE STATE
5.1. Centroantisymmetric Phases Γ4( , ) 

and Γ5( , )

The easy-plane trirutiles Cr2TeO6, Cr2WO6, and
V2WO6 belong to centroantisymmetric structures with

vectors  and  in the ground state. In the rhombic

case, they include antiferromagnetic phases Γ4( ,

) and Γ5( , ). In a tetragonal crystal, these
phase are energetically equivalent (one of them can be
obtained from the other by the action of element 42z).
Hence, they can be united into one phase Γ4 + Γ5 with

magnetic group .

Hitherto, the experiment gives no information on the

orientation of  and  in the basal plane (see the dis-
cussion in [1], Section 7.2). However, the study of ther-
modynamic potential Φmag (5) for the tetragonal phase
Γ4 + Γ5, to which, generally speaking, biquadratic

     

Mx
E

Mx
H

--------
α0

χ0
-----.≈

Lbx
0 Lcy

0

Lby
0 Lcx

0

Lb
0 Lc

0

Lbx
0

Lcy
0 Lby

0 Lcx
0

1'2z'

Lb
0 Lc

0
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anisotropic terms of type , etc., should be
added, shows (at least for the equimodule model) that
the minimum of Φmag corresponds to the same phases

Γ4( , ) and Γ5( , ) as in the rhombic case

and the diagonal phases with  || [110],  = 0 or

 || [110],  = 0 [1]. The table gives four modes for
each of the first two phases, namely, these are antimag-
nonic mode Γ46(Laz, ∆Lbx, ∆Lcy) and quasiantiferromag-
netic modes Γ35(Mz, Lby, Lcx), Γ18(Mx, Lay, Lcz), and

Γ27(My, Lax, Lbz) in phase Γ4( , ); and analogous
modes Γ56(Laz, ∆Lby, ∆Lcx), Γ34(Mz, Lbx, Lcy),

Γ28(My, Lax, Lcz), and Γ17(Mx, Lay, Lbz) in phase Γ5( ,

). Here, ∆ denotes vibrational variables.

The aforesaid assertions can be verified on the basis
of the invariance condition for the equations of motion

with respect to magnetic groups  and  for
Γ4 and Γ5, respectively.

Here, two cases can occur, where the primitive base

vectors are (1)  (  @ ) and (2)  (  @ ).
Case (1) corresponds to Cr2TeO6; case (2), to Cr2WO6
and V2WO6 (see Table 7.1 in [1]). In the ground state,
the noncollinearity is caused by the relativistic interac-
tion (the term with r in (5)). Due to this interaction, the

magnetic structure with vectors  and  should have
the form of a plane cross extended in the direction of
the primitive base vector (see Fig. 6.21 in [1]).

5.2. Magnetic Structure with Vector  (Cr2TeO6) 

1. Weakly collinear phase Γ4( , ). Consider

a magnetic structure with primitive base vector  || x

(  ≈ 4M0) corresponding to compound Cr2TeO6.
This orientation state is associated with weakly noncol-

linear phase Γ4( , ), where  @ . The
requirement of the energy minimum for ground state

 of phase Γ4 implies that

(20)

where  = Ac – Ab + Kc – Kb; Ab, Kb < 0, and Ac, Kc > 0.

Using relations (8) and (20), as well as the condition

of energy minimum ∂ /∂  = 0, in thermody-
namic potential Φ (4), we separate quadratic form Φ2 in
the spin-wave variables (transversal with respect to

Lbx
2 Lby

2

Lbx
0 Lcy

0 Lby
0 Lcx

0

Lb
0 Lc

0

Lc
0 Lb

0

Lbx
0 Lcy

0

Lby
0

Lcx
0

1'2x' 2z' 1'2x2z'

Lb
0 Lb

0 Lc
0 Lc

0 Lc
0 Lb

0

Lb
0 Lc

0

Lb
0

Lbx
0 Lcy

0

Lb
0

Lbx
0

Lbx
0 Lcy

0 Lbx
0 Lcy

0

Φmag
0

λ
Lcy

0

Lbx
0

------- r

Ãc

-----  ! 1,–≈≡

Ãc

Φmag
0 Lbx

0
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 || x) corresponding to the above-listed modes of
phase Γ4. As a result, we have

(21)

where  = Aκ – Ab + Kκ – Kb and Aκ, Kκ > 0 (κ = M, a,
c). In writing relation (21), we did not take into account
an insignificant renormalization (of order λr and λp) of
exchange constants Aκ and anisotropy Kκ due to the rel-
ativistic interactions with r and p in formula (5).

First, consider the antimagnonic mode Γ46(Laz, ∆Lbx,
∆Lcy). By virtue of relation (21), it can be excited by

electric field E(t) ||  || y due to the antiferroelectric
interaction (the term containing f1 in formula (21)).
Taking into account formula (21) and the relation
E(t) ∝  exp(–iωt), we can obtain for this mode from the
Landau–Lifshitz equation (9)

(22)

Here, βzy is the component of the antiferroelectric sus-
ceptibility tensor and ωLb is the frequency of the anti-
magnonic resonance, which is defined as

(23)

where ω0 = γ  ≈ 4γM0. Here, in contrast with [14],
we take into account the relativistic interactions. One
can see from formulas (22) and (23) that, taking these
interactions into account, essentially we change noth-
ing; we only add some minor corrections to exchange
frequency ωLb (23). However, we shall show below that
these interactions play an important role for quasianti-
ferromagnetic modes Γ35(Mz, Lby, Lcx) and Γ27(My, Lax,
Lbz). Now, we determine the heat loss Q connected with
the excitation of antimagnons by electric field E(t) =

Lb
0

Φ2
1
2
--- ÃMMy

2 1
2
--- ÃM KM–( )Mz

2 1
2
--- ÃaLay

2+ +=

+
1
2
--- Ãa Ka–( )Laz

2 2
r2

Ãc

-----Lby
2 1

2
---KbLbz

2–+

+
1
2
--- Ãc∆Lcy

2 1
2
--- Ãc Kc–( )Lcz

2+

+ λs2LayEz s3MzEx– f 1LazEy,–

Ãκ

Lc
0

Laz βzyEy

f 1

Ãa Ka–
------------------

ωLb
2

ωLb
2 ω2–

--------------------Ey,= =

∆Lcy
iω

ω0 Ãc

------------Laz, ∆Lbx–
r

Ãc

-----∆Lcy.= =

ωLb
2 ω0

2 Ãc Ãc Ka–( ),=

Lbx
0
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E0 exp(–iωt). Representing the antiferroelectric inter-
action for mode Γ46 in the form

(24)

we see that [12]

(25)

where the bar above the symbols denotes the averaging
over time t @ 2π/ω. Here, Py is the component of the
effective polarization vector connected with oscilla-
tions of Laz (22) (the last term in formula (21)). Intro-
ducing the dissipation (for instance, according to
Bloch, by using the substitution ω  ω + iΓ) and
taking into account relations (22), we obtain from for-
mula (25) that

(26)

where  is the imaginary part of the susceptibility and

βzy =  + i  (we do not write the obvious formula

for ).

Passing to quasiantiferromagnetic mode Γ35(Mz, Lby,
Lcx), we find from Eqs. (9) and (21) that

(27)

where αzx is the component of the magnetoelectric sus-
ceptibility tensor and

(28)

is the eigenfrequency of oscillations determined by the
relativistic interaction (the term containing r in for-
mula (5)) and dependent on the ratio of exchange con-
stants. The presence of the low-frequency mode Γ35 is
connected with the noncollinearity of the ground state

(an admixture of vector ). Note, however, that the
biquadratic anisotropy described by invariant I =

qb  + qc  in the expression for Φmag can
also contribute to the magnitude of frequency ωrb (28).
Taking into account this anisotropy, we should renor-
malize constant r in formula (28):

(29)

ΦAFE PyEy, Py– f 1Laz,= =

Q PyĖy,–=

Q
1
2
---ω f 1βzy'' E0y

2,=

βzy''

βzy' βzy''

βzy''

Mz α zxEx

s3

ÃM KM–
---------------------

ωrb
2

ωrb
2 ω2–

--------------------Ex,= =

Lby
iωÃc

4ω0r2
--------------Mz, Lcx–

r

Ãc

-----Lby,= =

ωrb 2ω0r ÃM KM–( )/ Ãc=

Lc
0

Lbx
2 Lby

2 Lcx
2 Lcy

2

r r∗ r2 8qbM0
2 Ãc+ .=
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For mode Γ18(Mx, Lay, Lcz), the solutions to the Lan-
dau–Lifshitz equations (9) have the form 

(30)

The excitation of this mode is caused by the magneto-
electric interaction connected in relations (21) with lon-
gitudinal oscillations Mx = –λLay; therefore, susceptibil-
ity βyz containing parameter λ ! 1 (14) is small. In this
case, the eigenfrequency

(31)

of oscillations is, in contrast to eigenfrequency (28), an
exchange frequency. This is connected with the fact that
the transverse oscillations of mode Γ18(Mx, Lay, Lcz) are
associated in relations (21) with the exchange energy

with coefficients  and  – Kc , and the energy of
transverse oscillations for mode Γ35(Mz, Lby, Lcx) con-

tains both the exchange part (with coefficient  – KM)

and the relativistic part (with coefficient 2r2/ ); there-
fore, its eigenfrequency is relativistic.

One can see from relations (21) that quasiantiferro-
magnetic mode Γ27(My, Lax, Lbz) with eigenfrequency

(32)

(semiexchange, semirelativistic) is not excited by elec-
tric field E(t), because the magnetoelectric and antifer-
roelectric interactions are absent for this mode.

Note that the results obtained here for phase Γ4( ,

) (where  @ ) can be extended to vibrational

modes of phase Γ5( , ) (where  @ ) by
using the substitution x  y, ω  –ω.

2. Collinear phase with vector  || [110]. Con-
sider united phase Γ4 + Γ5, in which the primitive vector

 (or ) is directed along the diagonal of the base
square [110]. It is possible that it is this phase that is
realized in the easy-plane trirutiles mentioned above. It
has been noted that the experiment does not allow one
to make an unambiguous choice [1]. Moreover, this
state is collinear, since, by virtue of conditions (8), we

Lay βyzEz λ
s2

Ãa

------
ωE

2

ωE
2 ω2–

------------------Ez,–= =

Lcz
iω

ω0 Ãc Kc–( )
-----------------------------Lay, Mx

r

Ãc

-----Lay.= =

ωE ω0 Ãa Ãc Kc–( )=

Ãa Ãc

ÃM

Ãc

ωAF ω0 ÃM Kb=

Lbx
0

Lcy
0 Lbx

0 Lcy
0

Lby
0 Lcx

0 Lby
0 Lcx

0

     

Lb
0

Lb
0 Lc

0
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have only two possibilities in the equimodule model,
namely,

(33a)

or

(33b)

In diagonal phases (33), the tetragonal axis 42z mixes up
representations Γ18(Mx, Lay, Lcz) and Γ27(My, Lax, Lbz) (or
Γ28 and Γ17), as well as Γ35(Mz, ∆Lby, ∆Lcx) and Γ46(Laz,
∆Lbx, ∆Lcy) (or Γ34 and Γ56). As a result, the united
quasiferromagnetic and quasiantiferromagnetic modes
are formed with the representations

(34)

and

(35)

respectively. The first of these modes is not excited by
an electric field (therefore, we do not consider it). The
second mode is excited by field E(t) ⊥  z.

Suppose that  || [110] and  = 0. Then, taking
into account conditions (8) corresponding to the equi-
module model, we obtain from relation (4) the follow-
ing quadratic form Φ2 for quasiantiferromagnetic mode
Γ35 + Γ46:

(36)

where

It is convenient to represent the solutions to the Lan-
dau–Lifshitz equations (9) obtained taking into account
relation (36) in a rotated coordinate system with the

axes x' ||  || [110], y' || [ 10], and z' || z || 42z . Consid-

ering that, in this coordinate system, we have  =

−Lbx ,  = –Lcx , and  = (Ex + Ey)/ , we
find that quasiantiferromagnetic mode Γ35 + 46 has an

Lb
0 || 110[ ] , Lc

0 0=

Lc
0 || 110[ ] , Lb

0 0.=

Γ18 Γ27+ Γ18 27+ Mx My Lax Lay Lbz Lcz, , , , ,( )≡

Γ35 Γ46+

≡ Γ35 46+ Mz Laz ∆Lbx ∆Lby ∆Lcx ∆Lcy, , , , ,( ),

Lb
0 Lc

0

Φ2
1
2
--- ÃM KM–( )Mz

2 1
2
--- Ãa Ka–( )Laz

2+=

+ ÃcLcx
2 4r∆LbxLcx rMzLaz––

–
2

2
------- s3Mz f 1Laz+( ) Ex Ey+( ),

Ãκ Aκ Ab– Kκ Kb, κ–+ M a c,, ,= =

Aκ Kκ 0, Ab Kb 0.<,>,

Lb
0 1

Lby'

2 Lcy' 2 Ex' 2
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exchange frequency ωLb (23). Near the resonance, ω =
ωLb , we approximately obtain

(37)

and ∆  =  = 0. Here, we assume that

and use the notation

Formulas (37) imply that the quasiantiferromag-
netic mode under consideration is transverse (relative
to  || [110]) and is excited by electric field E(t) ||

 || [110]. The magnetoelectric and antiferroelectric
susceptibilities corresponding to this mode have a pole
at antimagnonic frequency ωLb (23), but they are not
antimagnons.

5.3. Magnetic Structure 

with Vector  (Cr2WO6 and V2WO6) 

1. Weakly collinear phase G5( , ). Now, let

vector  || x (  ≈ 4M0) be the primitive base vector.

This orientation state corresponds to phase Γ5( ,

). In this case we have 

(38)

and quadratic form Φ2 written for transverse oscilla-

tions (with respect to  || x) has the form

(39)
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ωLb
2 ω2–

--------------------Ex' , Lcy'
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iω0s3

ω
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Ω1
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2 ω2–

--------------------+
 
 
 
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Mz 2
r

Ãc
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ωLb
2

 @ Ω2
2 2ω0

2r
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f 1
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2 ω0

2r
f 1
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0
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0
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0
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0
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0 Lc

0
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ε
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Ãb

------  ! 1–≈=

Lc
0
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1
2
--- ÃMMy

2 1
2
--- ÃM KM–( )Mz

2 1
2
--- ÃaLay

2+ +=

+
1
2
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2 1
2
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+
1
2
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2 2r2

Ãb
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2
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Now, we have  = Aκ – Ac + Kκ – Kc, κ = M, a, b
(Ac, Kc < 0, Aκ, Kκ > 0).

In this phase, mode Γ17(Mx, Lay, Lbz), as well as mode

Γ27(My, Lax, Lbz) of phase Γ4( , ) considered
above, is not excited by field E(t). Antimagnonic mode
Γ56(Laz, ∆Lby, ∆Lcx) with exchange frequency

(40)

is excited by electric field E(t) || x, and quasiantiferro-
magnetic mode Γ34(Mz, Lbx, Lcy) with relativistic fre-
quency

(41)

is excited by field E(t) || y. Mode variables Laz, ∆Lby,
∆Lcx and Mz, Lbx, Lcy can be defined by formulas (22)
and (27), respectively, applying to them the substitu-
tions

βzy  βzx, αzx  αzy,

Ex  Ey, f1  f2, s3  d3,

as well as the change of indices b  c. The heat loss
due to the excitation of antimagnonic mode Γ56(Laz,
∆Lby, ∆Lcx) can be determined by formula (26) by using
the substitutions f1  f2 and y  x. The renormal-
ization of constant r  r* arising when taking into

account biquadratic term qc  in expression (5)
for Φmag can be determined from formula (29) with the
help of the change of indices b  c.

For mode Γ28(My, Lax, Lcz), using relation (39) in the
Landau–Lifshitz equations (9), we obtain

(42)

Here, eigenfrequency

(43)

unlike frequency ωE (31) of mode Γ18(Mx, Lay, Lcz), is a
semiexchange, semirelativistic frequency. This is con-
nected with the fact that modes Γ18(Mx, Lay, Lcz) and
Γ28(My, Lax, Lcz) are nonequivalent here because they
relate to different magnetic structures with base vectors

 and , respectively. Hence, the energies and
eigenfrequencies of these modes are also different.

Ãκ

Lbx
0 Lcy

0

ωLc ω0 Ãb Ãa Ka–( )=

ωrc 2ω0r ÃM KM–( )/ Ãb=

     

     

Lcx
2 Lcy

2

     

My α yzEz

d2

ÃM

-------
ωAF

2

ωAF
2 ω2–

---------------------Ez,= =

Lcz
iω

ω0 Kc

---------------My, Lax
r

Ãb

------My.= =

ωAF ω0 ÃM Kc ,=

Lb
0 Lc

0
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The results presented here relate to phase 
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 . These results also remain valid

for phase 
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  after substitut-
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2. Collinear phase with  
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 = 0 by virtue of conditions (8), then electric field
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 [110] again excites quasiantiferromagnetic mode
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 (35). It can be described by formulas (37) after
the change of indices 

 

b
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 and constants 
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 in these formulas.

6. EXCITATION 
OF NUCLEAR MAGNETIC RESONANCE

BY ELECTRIC FIELD

The effects of excitation of antimagnons and qua-
siantiferromagnons by electric field 

 

E

 

(

 

t

 

) considered
above are determined by magnetoelectric and antiferro-
electric interactions. The antimagnon frequency is in
the optical (exchange) region, and the quasiantiferro-
magnon frequency can be rather low (a relativistic fre-
quency in the microwave region).

In the region of lower (radio) frequencies, these
interactions can be manifested in the effect of excitation
of the NMR by electric field 

 

E

 

(

 

t

 

), where a quasiequilib-
rium relation between 

 

E

 

(

 

t

 

) and 

 

L

 

(

 

t

 

) can exist [12].

In the absence of an external magnetic field, the
NMR frequency

(44)

is determined by the constant part of the hyperfine field

(45)

of the electron subsystem. Here, 

 

γ

 

n

 

 is the nuclear gyro-
magnetic ratio, 

 

F

 

 is the hyperfine interaction constant,
and 

 

M

 

ν0 is the magnetization of the νth sublattice in the
ground state.

First, consider the NMR excitation by electric field
E(t) || y in magnetic structures with primitive base vec-

tor  || x (Cr2TeO6) corresponding to phase Γ4( ,

). We shall consider only the exchange approxima-
tion and frequencies

(46)

that are lower than antimagnon frequency ωLb (23). In
this case, oscillations of Laz generated, in accordance

Lby
0

Lcx
0 Lcx

0 Lby
0

Lbx
0 Lcy

0 Lcy
0 Lbx

0

Lc
0

Lc
0

Lb
0

ωn γnHnν=

Hnν FMν0=

Lb
0 Lbx

0

Lcy
0

ω ωn ! ωLb≈
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with Eqs. (22), by field Ey(t) follow this field in the
quasiequilibrium way:

(47)

where Aa > 0, Ab < 0.

The effective magnetic fields on nuclei, which are
generated by magnetization Mν of sublattices, consist
of the constant component Hnν (45) and the alternating
component hν determined by oscillations ∆Mν, which

are connected with Laz . Since  ≠ 0 and M0 =  = 0

in the ground state and  = 0 in the exchange approx-
imation accepted here, by virtue of formulas (3), we
have M10 = M30 = M0 and M20 = M40 = –M0. Hence, con-

stant fields Hnν in direction  || x are equal to

(48)

Definition (3) implies that Laz is associated with
oscillations of magnetization ∆M1z = ∆M2z = Laz/4,
∆M3z = ∆M4z = –Laz/4, which correspond to fields

(49)

Now, we determine the nuclear magnetization mν =
mν0 + ∆mν for every sublattice from the equation of
motion [12]

(50)

where mn0 = χn0Hnν and ∆mν are the constant and
dynamic components of mν and χn0 is the static nuclear
susceptibility. Taking into account relations (48) and
(49), we find from formula (50) that

(51)

(52)

Here, mνy = ∆mνy , mνz = ∆mνz , and

(53)

Laz

f 1

Aa Ab–
------------------Ey,=

Lb
0 La

0

Lc
0

Lb
0

Hn1 Hn3 FM0, Hn2 Hn4 FM0.–= = = =

h1z h2z h3z– h4z–= = =

=  
1
4
---FLaz

1
4
---

F f 1

Aa Ab–
------------------Ey hz t( ).≡=
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dt
---------- γn mν0 hν× ∆mν Hnν×+( ),=

m1y m4y m2y– m3y–
iωωnχn0hz

ωn
2 ω2–

-------------------------,= = = =

m1z m2z m3z– m4z–= = =
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ωn

2χn0hz

ωn
2 ω2–

------------------- χn ω( )hz.=

χn ω( ) χn0

ωn
2

ωn
2 ω2–

------------------=
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is the susceptibility determining the magnetization
component which is in phase with field hν .

Relations (51) and (52) imply that the total nuclear
magnetization generated by electric field Ey(t) is equal
to zero,

(54)

Nevertheless, the resonance in field Ey(t) at the NMR
frequency (44) exists. This can be found if we introduce
the dissipation by the substitution ω  ω + iΓn and
calculate the heat loss (absorbed energy) [12].

The total energy absorption for all sublattices is
defined by the expression

(55)

Taking into account relations (52), this equality implies
that

(56)

where  is the imaginary part of χn(ω), which is
equal [12] to

(57)

If the primitive base vector is  || y (  = 0), then
quantity hz defined by expression (49) should be
replaced in formula (56) by

(58)

where Aa > 0 and Ac < 0.

The above discussion relates to phase Γ4( , ).
The nuclear magnetoelectric resonance in the equiva-

lent phase Γ5( , ) can be excited by electric field
E(t) || x, which is also connected with Laz via a
quasiequilibrium relation of form (47). In this case,
alternating magnetic field hz determining the energy
absorption Q (56) can be calculated by formulas (49)

for  || y,  = 0 or (58) for  || x,  = 0 by replac-
ing Ey with Ex in these formulas.

Now, consider the NMR excitation in the diagonal

phase with  || [110] (  = 0) for E(t) ⊥  z. We again

m mν

ν
∑ 0.= =

Q Qν

ν
∑ mνzḣz.

ν
∑–= =

Q 2ωχn'' ω( ) hz
2,=
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χn'' ω( ) χn0

2ωΓnωn
2
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2 ω2–( )2

2ωΓn( )2+
----------------------------------------------------.=
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-----------------Ey,=
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0 Lc
0 Lb

0

Lb
0 Lc

0
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consider only the exchange approximation and low fre-
quencies

(59)

In this case, oscillations of quantities Mz and Laz con-
nected with field E(t) in a quasiequilibrium way arise.
Minimizing Φ2 (36) in Mz and Laz and passing to the

primed coordinate system (x' || [110], y' || [ 10], z' || z ||
42z), we obtain

(60)

These oscillations are associated with effective mag-
netic fields

(61)

and constant fields

(62)

are directed along  || [110] || x'. Taking into account
relations (61) and (62), from the equations of motion (50),
we obtain

(63)

which gives

(64)

Thus, in this case, in contrast to relation (54), the
total nuclear magnetization mz arises, which is caused
by oscillations of Mz due to the magnetoelectric inter-
action.

The heat loss for all sublattices is again determined
by formula (56), in which we should set

(65)

ω ωn ! ωrb ! ωLb.≈

1

Mz

s3

AM Ab–
-------------------Ex' , Laz

f 1

Aa Ab–
------------------Ex' .= =

h1z h2z
F
4
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h3z h4z
F
4
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2 hz

M 2
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L 2
,+=
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where

(66)

are effective magnetic fields generated by oscillations
of Mz and Laz .

The above formulas (60)–(66) are also valid for the

antiferromagnetic structure with  || [110] (  = 0)
after substituting Ab  Ac , s3  d3, f1  f2 in these
formulas. Thus, there exists a resonance energy absorp-
tion at the NMR frequency ωn (44). The intensity of this
resonance is determined by alternating field hz(t), the
order of magnitude of which can be estimated from the
relation [12]

where the magnetoelectric susceptibility is α ≈ 10–5–
10–2 (in CGS units) and the hyperfine interaction con-
stant is F ≈ 102–103. In magnets with αF ≈ 1, quantity
hz(t) can be sufficient for observing the NMR in electric
field Ei(t), i = x, y.

7. CONCLUSIONS

In the group of tetragonal trirutiles, i.e., four-sublat-
tice antiferromagnets, magnetic ions occupy a noncen-
trosymmertical position due to the presence of both
magnetoelectric and antiferroelectric interactions.
Moreover, they have two types of exchange magnetic

structures with centroantisymmetric base vectors 

and  (see Table 7.1 in [1]) with different orientation
states, namely, easy-axis and easy-plane, collinear and
weakly collinear. As a whole, this makes them rather
rich objects for the development of spin dynamics con-
sidered in this paper and is connected with the very
wide manifestation of these interactions. It turns out
that not only purely antiferromagnetic magnons (elec-
troactive antimagnons) with exchange eigenfrequen-
cies (in the pure form, they are described by formulas
(23) and (40)) can exist, but also semirelativistic qua-
siantiferromagnetic magnons excited by both fields
E(t) and H(t) (formulas (16) and (43)) or, as in ordinary
antiferromagnets, only by field H(t) by virtue of the
absence of the corresponding magnetoelectric and anti-
ferroelectric interactions for them. These are modes Γ17
and Γ27 (see, e.g., frequency (32) for the latter mode).
There are also electrically and magnetically active
purely relativistic magnons (28) and (41). It seems that
they have the lowest frequencies among all magnons
excited by field E(t). Lastly, the exchange magnons
corresponding to formulas (18) are electrically active
antimagnons only in a certain approximation.

hz
M 1

4
---FMz

1
4
---

Fs3

AM Ab–
-------------------Ex' ,= =

hz
L 1

4
---FLaz

1
4
---

F f 1
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------------------Ex'= =

Lc
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0

hz t( ) αF( )Ei t( ), i≈ x y,,=

Lb
0

Lc
0
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Physical phenomena connected with a large number
of magnon types excited by both magnetic and electric
fields can play a practical role. It seems possible that,
by analyzing the results presented, we can clarify or
solve the disputable question about the magnetic struc-
ture and orientation state of the trirutiles under investi-
gation in addition to the data obtained from neutron dif-
fractometry and the static magnetoelectric effect [1].

If the primitive base vector (  or ) is directed along
the 〈100〉 edges of the base square, the problem can be

solved for  and  by comparing modes Γ18(Mx, Lay,
Lcz) and Γ28(My, Lax, Lcz) for Γ28(My, Lax, Lcz) with E || z
in both the cases. The observation of the first mode with
exchange frequency (31), but with a very low intensity
(or nonobservation due to such an intensity) would cor-

respond to the easy-plane structure with vector , and
the existence of quasiantiferromagnetic mode Γ28 with
semirelativistic frequency (43) would support the struc-

ture with principal base vector .

At the same time, the question whether base vectors

 and  are directed along an edge or a diagonal of
the base square (in the latter case, one of them is equal
to zero, since the structure is collinear [1]) can also be
answered in the case of field E || 〈100〉 . In this case, if
the quasiantiferromagnetic mode with relativistic fre-

quency ωrb (28) (or ωrc (41)) is excited, vector  (or

), as well as E, is directed along an edge. If the qua-
siantiferromagnetic mode with exchange frequency ωLb

(23) (or ωLc (40)) is excited, then vector  (or ) is
directed along a diagonal.

Similarly, an experiment can help to determine the
NMR magnetic structure: if the principal base vector

 (or ) is directed along the edge 〈100〉 , the total
nuclear magnetization generated by field E(t) || y (or
E(t) || x) is equal to zero (i.e., m =  = 0),

whereas, for  or  directed along a diagonal in the

coordinate system with field  || [110], the total com-
ponent is 

and the total component mz =  = 4χn(ω)  is
nonzero.

Thus, the results presented in this paper indicate that
experimental investigations of antiferromagnetic, anti-
ferroelectric, and nuclear magnetoelectric resonances
in trirutiles are necessary.
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Abstract—Small-size semiconductor ring interferometers operating in the Coulomb blockade regime have
been experimentally and theoretically studied. The conductance as a function of the gate voltage exhibits nar-
row quasiperiodic peaks, which are further split into doublets. Based on the experimental structural data, a
three-dimensional electrostatic potential, the energy spectrum, and the single-electron transport in the interfer-
ometer were modeled. The electron system can be divided into two triangular quantum dots connected by sin-
gle-mode microcontacts to each other and to the reservoirs. A model of quantum dot charging in this system is
proposed that explains the appearance of doublets in the conductance–gate voltage characteristics. © 2003
MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Many of the effects manifested in mesoscopic elec-
tron transport [1–3] are explained in terms of the quan-
tum interference [4–6] or the Coulomb blockade [7–10].
These phenomena, observed under conditions of coher-
ent transport or under the opposite conditions of
sequential tunneling, are usually studied in special sub-
micron devices. In particular, the Coulomb blockade
was studied in much detail for a single closed quantum
dot [11–14] representing an electron pool separated by
tunneling barriers from the reservoirs containing a two-
dimensional electron gas (2DEG). In contrast, the inter-
ference regime is observed in open systems featuring a
strong coupling between a nanodevice and the conduct-
ing channels. An example is offered by a ballistic semi-
conductor ring interferometer [15–20] representing a
quantum ring connected to the reservoirs by short quan-
tum wires.

Recently, devices appeared featuring both the inter-
ference and charging phenomena [21–25]. The conduc-
tance of combined devices representing quantum dots
incorporated into the arms of a ballistic interferometer
[21–23] exhibited both the Aharonov–Bohm (AB)
oscillations [4, 6], related to the interference via two
paths, and the peaks caused by the gate voltage varia-
tions, related to the Coulomb blockade [10, 11] of the
tunneling via the quantum dot. Thus, it was experimen-
tally established that processes of the sequential tunnel-
ing and relaxation, leading to quantum dot charging,
may coexist with the coherent ring transport.
1063-7761/03/9702- $24.00 © 20317
New experiments [24, 25] showed that small-size
megaohm quantum rings may exhibit both periodic
Coulomb oscillations and AB oscillations even with-
out quantum dots incorporated. Despite the close
dimensions of the device used in the experiments
cited, the electron transport regimes in the two cases
were different. In the experiments of Holleitner et al.
[25], the ring was separated from the 2DEG reservoirs
by potential barriers controlled by the finger gates
occurring in the same plane. When the barriers were
sufficiently high, the ring exhibited single-electron
charging as a whole, whereas the motion of electrons in
the ring remained free. In this case, the source of the
Coulomb oscillations is obvious and there is no prob-
lem of coexistence between the ring interference and
the Coulomb blockade.

Our experiments [24] were performed with an inter-
ferometer containing a wide in-plane split gate control-
ling the electron transmission in both finger and ring
channels. The results were interpreted assuming that
only two regions of high electron density at the ring
entrance and exit are charged rather than the whole
ring. The possibility of the existence of such regions,
called triangular quantum dots, follows from the elec-
trostatic considerations [20]. It was suggested [24] that
the triangular quantum dots are spaced by tunneling
barriers from each other and from the reservoirs and are
charged by the Coulomb blockade mechanism [10].
However, no clear evidence was found in favor of that
hypothesis.
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This study continues investigations initiated previ-
ously [20, 24]. In addition to detecting periodic peaks
in the conductance as a function of the gate voltage, we
observed a doublet splitting of these peaks evidencing
a Coulomb interaction between the triangular quantum
dots. Earlier, it was demonstrated theoretically [26, 27]
and established experimentally [28] that the Coulomb
blockade in a sequence of two quantum dots is essen-
tially different from that in a single quantum dot. In the
former case, the peak distribution is less regular and the
existence of a mutual capacitance leads to the appear-
ance of doublets instead of the periodic peaks observed
in the latter case. Recently, such doublets were observed
in parallel-connected quantum dots incorporated into the
arms of an AB interferometer [23]. In this study, we have
modeled a three-dimensional electrostatic potential, a
single- electron transport, and the quantum transfer in a
ring interferometer. Based on the results, it is possible
to conclude that a small-size large-resistance interfer-
ometer exhibits an analogous effect of the charge inter-
action between triangular quantum dots. Thus, we have
confirmed for the first time that two triangular quantum
dots influence the conductance of the interferometer.

The aforementioned hypothesis concerning the tun-
neling insulation of triangular quantum dots [24] is at
variance with both experiment and model calculations.
The results of modeling showed that the presence of
tunneling barriers in the ring arms suppresses the AB
effect. The hypothesis also contradicts the strong influ-
ence of the mesoscopic state of the ring on the critical
temperature for observation of the Coulomb oscilla-
tions. A more realistic pattern corresponds to the quan-
tum dots connected by single-mode quantum wires to
each other and to the reservoirs. By modeling the two-
dimensional electron transport, it is possible to under-
stand how this can system trap electrons and possess a
large resistance. Following the investigations [29–35],
we have elucidated the reasons of single-electron
charging of the quantum dots beyond the tunneling
regime. Based on a modified variant of the orthodox
theory of the Coulomb blockade, we explain the meso-
scopic character of renormalization of the Coulomb
energy.

An initial information for the modeling is based on
the structural data, including the images of the surface
of device structures obtained by scanning electron
microscopy (SEM) or by atomic force microscopy
(AFM). The AFM images substantially supplement the
SEM data by explaining “narrowness” of the channels
connecting reservoirs and triangular quantum dots.
Reliability of the modeling results and conclusions is
checked by comparison of the calculated and measured
values such as the initial 2DEG density, the character-
istic resistance of the interferometer, the Coulomb
oscillation period, the peak splitting, and the critical
temperature for observing Coulomb blockade effects.
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2. EXPERIMENT

2.1. Structural Data and the Aharonov–Bohm Effect 

The sample devices were based on the
GaAs/AlGaAs heterojunctions fabricated by molecular
beam epitaxy techniques. The main special feature of
the heterostructures studied was the small thickness
(3 nm) of the spacer between the 2DEG and a bulk
doped AlGaAs layer. For this reason, the 2DEG had a
large density of ns = 1.45 × 1012 cm–2 (upon illumina-
tion) and a relatively small mobility of µ = 3.4 ×
104 cm2/(V s) (at T = 4.2 K).

The interferometer geometry was formed by reac-
tive ion sputtering, with a lateral profile determined by
the electron-beam lithography at a 100 nm resolution.
The device surface patterns (studied on the control sam-
ples only) exhibited significant variations. An example
is offered by Fig. 1a, schematically representing an
SEM image of one of the control samples, where
shaded regions represent the etched paths 1 and 2. The
bright regions on the left and right correspond to the
reservoirs, those at the top and bottom represent the
2DEG regions of the in-plane split gate, and a ring is
formed around the etched site 3 (antidot) at the center.

The SEM images reproduce well the lateral dimen-
sions, but hide the in-depth variations, which also sig-
nificantly influence the shape of the electrostatic poten-
tial. Figures 1b and 1c show an AFM image and the cor-
responding profile of the surface of a different sample.
As can be seen, there are etched bands above the quan-
tum wires that appeared as a result of unintentional
exposure of the resist between close lithographic
paths 1 and 2. These bands can either increase the
device resistance or even completely insulate the ring
from the reservoirs. These bands essentially increase
the electrostatic barriers separating the ring from the
reservoirs in the same manner as do the in-plane finger
gates in a device studied in [25]. In addition, Figs. 1b
and 1c reveal a rise of 10–15 nm in the surface relief
near the etched channels, which is evidence of a dam-
aged layer formed as a result of the reactive ion sputter-
ing. This layer brings the charged semiconductor sur-
face closer to the interferometer channels, thus effec-
tively narrowing the channels.

For investigating the transport properties, we have
selected a series of samples with a resistance of R ~
105–106 Ω in a range of the bias voltage variation
within several tenths of volt on the in-plane split gate.
The same values were characteristic of quantum wires
with a length of about 500 nm. The resistance was mea-
sured in a two-point-probe scheme (with potential con-
tacts at a large distance from the sample) using a lock-
in amplifier, for an ac signal in the frequency range
from 7 to 800 Hz. The current was selected so that the
drain–source voltage would not exceed kBT/e (to pro-
vide for the linear regime), where kB is the Boltzmann
constant, T is the absolute temperature, and e is the
electron charge.
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As noted above, the structural variations of the
obtained samples were large, so that only a part of the
devices were suited for the investigation. Indeed, if the
ring was broken, the main interference effect—the AB
oscillations—could not be studied. Nevertheless, we
observed the AB effect in two samples possessing a
high resistance (see Fig. 2 in this paper and [2,
Fig. 24]). The AB effect was much more seldom in
weak magnetic fields than in strong ones. However, the
AB oscillation period was constant over a broad range
of variation of the resistance (2 × 104–2 × 106 Ω),
magnetic field strength (0–4 T), and temperature (0.1–
4.2 K), which is evidence of the same origin of the
observed phenomena. The oscillations in the conduc-
tance G with respect to the magnetic inductance B were
identified using the relation πr2∆B = φ0, where ∆B is the
oscillation period, r = 130 and 210 nm are the effective
radii of the rings in sample nos. 1 and 2, and φ0 = hc/e
is the magnetic flux quantum. The relation between ∆B
and φ0 is indicated by the correlated phase rotations of
the magnetic-field-induced oscillations, whereby min-
ima on one curve correspond to maxima on the other
curve (Fig. 2). A twofold decrease in the AB oscillation
period observed for B > 10 T is explained by the appear-
ance of hc/2e oscillations [24].

2.2. Coulomb Oscillations 

The curves of the conductance G versus gate voltage
Vg for B = 0 exhibit small-scale oscillations on the
background of large-scale peaks (Figs. 3 and 4). The
gate-voltage-controlled oscillations are of interest,
since no such oscillations were observed for the control
quantum wires. Oscillations with a period of 6 mV
were observed in a broad range of temperatures and
resistances (Figs. 3a–3c). The periodic character of
these oscillations agrees with predictions of the Cou-
lomb blockage theory for the structures with a single
Coulomb island [10, 11]. The Coulomb character of the
small-scale oscillations is indicated by the fact that the
hill-to-valley conductance ratio near the gate voltage
threshold grows when the temperature is decreased to
1.3 K (Fig. 3b and 3c), and by the appearance of clearly
pronounced Coulomb blockade plateaus between nar-
row Coulomb peaks at a still lower temperature of
0.1 K (Figs. 4a and 4b). In sample no. 2, the oscillations
are less periodic than in sample no. 1, but the character-
istic period of 5–6 mV is still observed. Coincidence of
the oscillations periods is evidence of the same charac-
teristic size of the Coulomb island in both samples,
despite different radii of the rings.

For sample no. 2, the main effect consists in the
splitting or pairing of the Coulomb peaks (Fig. 4). In
this respect, the period of 6 mV refers to the average
distance between neighboring pairs. In fact, the pattern
of oscillations is more complicated than simple repeti-
tion of the equidistant doublets. Both the splitting mag-
nitude and the peak shape change with the gate voltage.
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When the splitting is maximum, we may speak of a
doubling of the Coulomb oscillation frequency
(Fig. 4c). The conductance of sample no. 2 was mea-
sured only at T = 0.1 K, but the doubling and splitting
of the G(B) peaks at T = 1.3 K was also observed for
sample no. 1 (see Fig. 3d and the inset in Fig. 3c). The
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Fig. 1. Ring interferometer structures: (a) a diagram of
etched regions 1–3 determining the device pattern (SEM
data); (b) AFM image of a different control sample; (c) etch-
ing depth zetch versus coordinate x profile corresponding to
the central cross section of the structure imaged in (b),
revealing a deep minimum at the center (antidot) and side
minima corresponding to the additional etching bands at the
entrance and exit of the ring.
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Fig. 2. Low-temperature magnetic field dependences of the conductance G(B) for samples nos. 1 (a) and 2 (b) in the region of small
fields. The two curves correspond to different mesoscopic states of the samples. Oscillations with the period ∆B are observed on the
background of mesoscopic fluctuations of the conductance.
results of theoretical and experimental investigations of
the Coulomb blockade in double quantum dots [23, 26–
28], suggest that the observed doublet splitting of the
Coulomb peaks is related to the single-electron charg-
ing of the two quantum dots at the entrance and exit of
the ring.

The Coulomb nature of the small-scale gate-volt-
age-induced oscillations is confirmed by some addi-
tional measurements. In contrast to oscillations of the
hopping conductivity in closed systems [36] and the
gate-voltage-controlled interference oscillations in the
open interferometer [19], the positions of the conduc-
tance peaks observed in our experiments were almost
independent of the magnetic field (Fig. 5). In a moder-
ate magnetic field of B ≈ 1 T, the Coulomb peaks are
subject to small shifts and their splitting is more pro-
nounced as compared to that in a zero field (Fig. 5b). In
addition, the system exhibits random switching of the
phase of oscillations in response to sharp changes in the
constant polarization charge q0 of the Coulomb island
(to within several tenths of the elementary charge) [24].
This behavior is typical of single-electron transistors.

In concluding the presentation of the experimental
part of this study, it should be emphasized that the mea-
surements were performed in the linear regime, which
does not provide for an exhausting verification of the
Coulomb nature of the observed effects (requiring non-
linear current–voltage characteristics to be measured at
various gate voltages in the low-temperature limit). In
this sense, we have directly measured neither the Cou-
lomb gap, nor the Coulomb energy EC, nor the full
capacitance CΣ of the Coulomb island. Such measure-
ments have been recently performed for an interferom-
eter (with dimensions close to those of the device stud-
ied in our experiments) characterized by periodic Cou-
lomb peaks without doublets. The energy of the single-
electron charging of a ring Coulomb island was 0.2 meV
JOURNAL OF EXPERIMENTAL 
[25]. In another experiment, each of the two quantum
dots incorporated into the arms of an interferometer had
an energy of EC ~ 1.7 meV [23].

Maintaining the linear regime, we measured a criti-
cal temperature (Tc ≈ 8 K) at which the small-scale peri-
odic oscillations disappear, which yields an estimate of
EC ≈ kBTc ≈ 0.7 meV. Actually, the small-scale oscilla-
tions are not always registered even at 4.2 K and are
observed in a narrower interval of gate voltages than
that for the lower temperatures. For example, oscilla-
tions in the left-hand part of Fig. 3a are smoothened and
retained as the temperature increases from 4.2 to 6 K
(Tc ≈ 8 K). In contrast, the right-hand part of this figure
exhibits almost no such oscillations even at 4.2 K (so
that Tc ≈ 4 K). An analogous difference of Tc in the
other mesoscopic state of sample no. 1 leads to a strong
decrease in amplitude of the Coulomb oscillations at
Vg > –310 mV at T = 1.3 K (Figs. 3b and 3c). These
observations indicate that the critical temperature
depends on the mesoscopic state of samples and the
electron density (both these values being controlled by
the gate voltage) and they vary in the course of thermal
cycling and under illumination. At the same time,
according to the Coulomb blockade theory, the critical
temperature in the tunneling regime must depend only
on the electric capacitance of the island (CΣ ≈ const),
that is, kBTc ≈ EC = e2/2CΣ [10]. Therefore, the observed
variation of the critical temperature contradicts the
assumption on the tunneling insulation of the Coulomb
island. Moreover, the background conductance is
weakly sensitive to the temperature (Fig. 3a). Thus, the
background current does not require thermal activation,
which is evidence of the absence of low wide tunneling
barriers in the system. The agreement between these
estimates and conclusions, on the one hand, and the
electrostatic behavior of the device under consider-
ation, on the other hand, was verified as described
below.
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3. MODEL CALCULATIONS
AND DISCUSSION OF RESULTS

3.1. Electrostatic Description 

Figure 6 shows the results of modeling of the elec-
trostatic potential and charge density in a ring interfer-
ometer. Note that the exact etching pattern of the exper-
imentally studied devices was unknown and the calcu-
lations were performed using microscopic data
obtained for the control structures. The base pattern
was analogous to that depicted in Fig. 1a. Taking into
account peculiarities of this nanostructure, we have
solved the complete electrostatic problem as described
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Fig. 3. Plots of the conductance G versus gate voltage Vg for
sample no. 1 showing small-scale oscillations with a period
of 6 meV on the background of large-scale peaks: (a) the
effect of temperature; note a decrease in the critical temper-
ature for Vg > 90 mV (the arrow indicates the threshold gate
voltage; for the sake of clarity, the curves are shifted upward
along the ordinate axis); (b–d) the examples of oscillations
in various mesoscopic states of the sample at T = 1.3 K; the
inset in (c) shows oscillations near the threshold; (d) dou-
bling of the oscillation period and the appearance of dou-
blets (indicated by the asterisks).
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in [20, 35, 37, 38]. The numerical solution of the three-
dimensional (3D) Poisson equation was obtained with
allowance of the following features: (i) base hetero-
structure parameters (layer thicknesses, doping levels,
and permittivities); (ii) random impurity distribution in
the doped layer; (iii) two-level etching depth and the
influence of a damaged layer covering the etched
regions; and (iv) electron density distribution within the
framework of the Thomas–Fermi model with a 2D den-
sity of states. The boundary conditions in equilibrium
and under illumination assumed the existence of a com-
mon Fermi level EF fixed at the surface, deep centers,
and, the substrate. Under the nonequilibrium condi-
tions, we used the frozen charge condition, whereby the
charge density on the surface and in the doped layer
was independent of the voltages applied to the electron
system. The latter condition allowed the device capac-
ity relative to the gate electrode to be determined.
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the same mesoscopic state; (c) doubling of the frequency of
oscillations in sequential measurements (1, 2) for another
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Fig. 6. A calculated map of the electron density n2D versus coordinates x, y in the 2DEG plane (n2Dmax = 12 × 1011 cm–2). Triangular
quantum dots 1 and 2 connected by narrow channels form a ring interferometer. The 2DEG regions above and below the ring serve
as the in-plane split gate.
As can be seen from Fig. 6, the shape of the etched
bands is such that almost the entire area of the electron
system of the ring interferometer, except the central
antidot, is occupied by triangular lakes. These lakes are
connected to each other and to the reservoirs via narrow
channels possessing a much smaller area. The distance
between ring arms is close to the effective diameter
(~260 nm) found for sample no. 1 from the AB oscilla-
tion period. The dimensions of triangular quantum dots
are close to the ring radius, which makes this device
configuration different from that of large ballistic inter-
ferometers studied previously [19, 20].
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The electron lake area is low-sensitive with respect
to details of the internal geometry of the interferometer.
For this reason, the capacitance characteristics of the
control samples, despite the aforementioned technolog-
ical variations, must be close to those of real devices.
The solution to the 3D electrostatic problem yields the
total gate capacitance

 F.

Thus, a change in the total interferometer charge by
one electron requires a gate voltage increment of
3.65 mV (or 7.3 mV for one-half of the interferometer).

Cg1 Cg2+ 4.4 0.2±( ) 10 17–×=
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These values coincide with small and large periods of
the small-scale conductance oscillations to within 20%,
which coincides with the scale of fluctuations in the
oscillation period observed in experiment. This coinci-
dence is retained upon variation in the shape of narrow-
ings and the electron density within broad limits. These
results confirm the single-electron character of the
small-scale oscillations and indicate that a possible rea-
son for the oscillations with a period of 5–7 mV
observed up to a temperature of 8 K is charging of one
of the triangular quantum dots, rather than of the whole
ring. Note that the agreement between theory and
experiment in determining the gate capacitance is
remarkably good, taking into account that the electro-
static calculations were based only on the restricted
geometric data.

For determining the total capacitance of the interfer-
ometer and quantum dots, we calculated the capaci-
tance of the electron system of the device with respect
to the reservoirs. This was done by introducing a small
difference between the Fermi level of the device and
that of the reservoirs. An analogous approach was used
for determining the capacitance between quantum dots.
Note that this procedure is less precise than that of
determining the gate capacitance, since the quantum
dots are less insulated from each other and the reser-
voirs. However, in the case of narrow channels, the
error is relatively small because the field lines between
wide parts of the electron system pass predominantly
outside the channels and the 2DEG plane. We have
checked that a change in the channel width slightly
influences the resulting capacitance. From the stand-
point of electrostatics, there is little difference even
between the cases of closed and open channels.

The value of the interferometer capacitance with
respect to the reservoirs is virtually the same as that rel-
ative to the gates. The capacitances of one triangular
quantum dot with respect to another (Cdd), the adjacent
reservoir (Cdr1), and each half of the in-plane split gate
(Cdg1, Cdg2) were also found to be close:

It is interesting to note that both capacitance and the
size (100 nm) of our triangular quantum dot coincided
with the analogous values determined from the data of
transport spectroscopy for small quantum dots incorpo-
rated into the ring arms [23]. According to the results of
calculations, the number of electrons per quantum dot
in our system was 80–100, while that found in [23] was
as small as 14–16. This difference is consistent with the
ratio of densities of the initial 2DEG in the two cases.

3.2. The Coulomb Energy and Subband Spectrum

In the closed regime, a triangular quantum dot of the
interferometer would possess a Coulomb energy of

CdΣ Cdr1 Cdr2 Cdd Cdg1 Cdg2+ + + +=

=  6.3 1.0±( ) 10 17–  F.×
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EC ≈ 1.3 meV. However, judging from the measured
maximum temperature at which the single-electron
oscillations with a 6-mV period were observed, kBTc ≈
0.7 meV. The critical temperature Tc further decreases
by half outside a certain interval with respect to the gate
voltage in the threshold region (Figs. 3a and 3b). The
difference between the calculated values of EC and kBTc
cannot be fully attributed to the technological varia-
tions and calculation uncertainties. The agreement of
theory and experiment with respect to capacitances was
observed for various semiconductor nanostructures
[35, 38]. For example, the results obtained for a quan-
tum dot with controlled transitions from the open to
closed regime [33] showed that the capacitance calcu-
lated for the closed regime agrees with the measured
Coulomb energy, whereas the critical temperature in
the open regime is much lower than that estimated from
the electrostatic description [35]. The above discrep-
ancy is of a basic nature: the absence of the tunneling
insulation of a quantum dot leads to a strong decrease
(renormalization) of the single-electron charging
energy  as compared to e2/2CΣ [29–32, 34, 35],
while the charging effect can be retained. An example
is offered by a “semiopen” quantum dot in which one
input is a tunneling junction and the other, a single-
mode microcontact with a transmission coefficient
close to unity [30–32]. Before publication of the theo-
retical results [30], the nonlocal character of the resis-
tance was not taken into account in the Coulomb block-
ade theory and it was commonly accepted that the
microcontact resistance h/2e2 excludes charging of the
quantum dot [10–13, 29]. However, the effects pre-
dicted in [30] concerning the charging of a semiopen
quantum dot and a decrease in the Coulomb energy
were confirmed in experiment [31, 32].

As was noted above, an increase in the electron den-
sity in our interferometer resulted in that the electron
oscillations disappeared at lower temperatures. At the
same time, the background conductance and the total
electrostatic capacitance did not change significantly.
This observation is most probably explained by the fact
that the interferometer is not a closed device. This
assumption arises by analogy with that adopted in [30–
32] and does not contradict the results obtained by
modeling the potential and the energy spectrum of our
device.

Figure 6 gives a qualitative notion about continuous
electron system of the interferometer, in which the
channel width is sensitive to variations in the techno-
logical parameters. The main reason for a small channel
width are the depleted regions (about 40 nm wide), but
this contribution is insufficient (at a 2DEG density of
1012 cm–2) for driving the model interferometer out of
the ballistic regime. For this reason, we have calculated
the potential taking into account the information pro-
vided by AFM (Figs. 1b and 1c). First, allowance for
the 25-nm-deep etching bands between the reservoirs
and the ring made the width of the entrance channel

EC*
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closer to that of the ring. Second, the presence of dam-
aged layers produced by the reactive ion sputtering was
taken into account by shifting the vertical insulator–
semiconductor junctions 20 nm away from the etching
surface (as compared to Fig. 1a). We have checked that
further narrowing (by 10 nm) of the gaps between the
etching regions breaks the quantum wires and creates
nontransparent barriers.

As can be seen from Fig. 6, a shift of the antidot
from the center and deviation from the circular shape
lead to a certain asymmetry of the ring. In addition, the
pattern clearly shows the result of a random distribution
of charged impurities in the doped layer above a thin
(3 nm) AlGaAs spacer (this is a fluctuational potential,
the role of which increases in the narrow channels as a
result of reduced screening [37]). The electron density
in narrow parts of the ring is much smaller than that in
the triangular quantum dots and depends on the charged
state of impurities, which also makes our device differ-
ent from the system studied in [25].

Figure 7 shows the transverse quantization levels En

(with respect to y) as functions of the x coordinate. The
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Fig. 7. The energy spectrum of one-dimensional subbands
of the interferometer studied: (a) the quantization levels
En(x) (n = 1 to 6 bottom to top) of the electron motion with
respect to the y axis indicated in Fig. 6; the local minima En
xd1 and xd2 correspond to triangular quantum dots and the
local maxima En , to the channels; (b) effect of the gate volt-
age on the positions of subbands; solid curves E1, 2(x) cor-
respond to Vg = 0 and dashed curves, to Vg = 0.2 V applied
to one half of the in-plane split gate.
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positions of levels were determined by solving a one-
dimensional Schrödinger equation with the potential

where U is the electrostatic potential determined for the
system depicted in Fig. 6, z0 is the coordinate of the het-
erojunction of the GaAlAs/GaAs spacer, and Ez0 is the
lower level in the one-dimensional potential well with
respect to z. The variable y was restricted to an interval
that did not include the split gate regions. Since the
device cross section contains two potential wells, the
energy levels En in the ring are combined in pairs, but
diverge significantly (on the order of 10 meV) in the
entrance channels. As can be seen, electrons fill only
one lowest subband in the narrowest sites of the input
quantum wires (the other subbands occur above the
Fermi level EF = 0). In the ring, electrons fill only two
lowest subbands corresponding to localization of the
wave functions ψ1, 2(y) in different arms. At the same
time, about ten subbands fall below the Fermi level in
the triangular quantum dots. These high subbands form
almost nontransparent barriers in the channels. Thus,
the quantum dots contain many levels in the vicinity of
EF, which belong to the “closed” subbands and are
characterized by large lifetimes [34, 35, 39].

Note that a change in the gate voltage within a typi-
cal experimental range of 0.2 V leads to a small shift of
the subbands as compared to the intersubband distances
in the quantum wires (Fig. 7b). A shift on the same
order of magnitude may be caused by a change in the
random distribution of charged impurities. Because of
technological scatter, the barrier height variation within
several millielectronvolts seems to be unavoidable.
However, the distances between subbands in the barri-
ers are sufficiently large (10 meV) and stable to provide
that the quantum wires would remain single-mode.
Thus, the pattern of subbands shows that the electron
system of the interferometer separates into two quan-
tum dots connected via single-mode channels to each
other and to the reservoirs. These features distinguish
the device under consideration from more homoge-
neous rings of the closed [25] and ballistic [20] interfe-
rometers.

3.3. Electron Transmission

In this section, it will be shown that, even with the
single-mode microcontacts of the interferometer open,
the total conductance of the device remains low
because of multiple reflections of an electron in a four-
barrier potential of complicated geometry. For the same
reason, the electron lifetime on the levels of closed sub-
bands can be quite large, which is important for quan-
tum dot charging. In calculating the device transmis-
sion function, we use a model of the coherent multi-
mode transmission. This model, not taking into account
the charging effects, cannot be formally used for

Vi y( ) U xi y z0, ,( ) Ez0 xi y,( ),+=
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describing the conductance oscillations. However, it is
still possible, based on the pattern of resonances in the
transmission coefficient, to determine the average dis-
tance between quasilevels in the quantum dots and in
the ring, to assess the influence of the device geometry
on the conductance, and to evaluate the role of the non-
local character of the resistance.

The multimode transmission coefficient T was
determined by solving a two-dimensional Schrödinger
equation [20, 38] with the effective potential

corresponding to the electron density distribution
depicted in Fig. 6 and the spectrum of one-dimensional
subbands ion Fig. 7a.

Figure 8 presents the electron transmission coeffi-
cient as a function of the incident electron energy for
the whole device and separate parts, including the chan-
nels connecting the ring to the reservoirs and the quan-
tum dots. The minima of the subbands corresponding to
the left and right quantum dots are denoted by xd1 and
xd2, respectively (Fig. 7a). The values of xmin and xmax
correspond to the left and right boundaries of the inter-
val for which the electrostatic potential and the trans-
verse subbands have been calculated. In this case, the
interval xmin < x < xd1 corresponds to the left microcon-
tact; xmin < x < xd2, to the left quantum dot (Fig. 8,
curve 1); xd2 < x < xmax, to the right microcontact; and
xd1 < x < xmax, to the right quantum dot (curve 2). In cal-
culating the transmission of the interferometer parts,
the potential outside the given x interval was continued
by the boundary values.

The calculation was performed for 20 subbands
(adding additional higher subbands does not influence
the results). The calculated transmission curves for the
right and left entrance channels are presented in Fig. 8a.
As can be seen, the transmission function exhibits
quantization and the levels for opening of the left and
right microcontacts correspond to different energies.
For E ≈ EF = 0, the transmission of the left microcontact
(L) is close to unity, while that of the right channel (R),
to 1/2. The difference between transmissions of the
quantum dots is determined by microcontacts at the
entrance and exit of the microinterferometer. For this
reason, the right quantum dot is less transparent with
respect to the energy than the left quantum dot (Fig. 8b
and 8c). The situation remains qualitatively the same
when a voltage of +0.2 V is applied to one-half of the
in-plane split gate, but the thresholds for the opening of
the microcontacts shift by approximately 2 meV toward
lower energies, which corresponds to a decrease in the
potential barrier height in Fig. 7b.

The results of modeling of the transmission of the
whole interferometer and the individual quantum dots
(Fig. 8b) give the pattern of resonance scattering on the
quasilevels, that is, information on the energy spec-

V eff x y,( ) U x y z0, ,( ) Ez0 x y,( ),+=
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trum. For the interferometer under consideration, the
number of resonances (30) and the characteristic
energy range (from –6 meV to 0) agrees to a good accu-
racy with the number of quasiclassical states in this
interval (34.5) determined from the electrostatic
description. The difference can be explained by the
nonrigorous character of the quasiclassical approach,
nonuniform level distribution, and the conditional char-
acter of the interface between electron systems of the
interferometer and the reservoirs. The density of single-
particle states in the interferometer and in the quantum
dots can be estimated as 10 and 5 per meV (that is, the
average distance between levels is smaller than the
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Fig. 8. The electron transmission coefficient of the interfer-
ometer versus the incident particle energy: (a) left (L) and
right (R) entrance channels; (b, c) triangle quantum dots
(1, 2) and the whole device (3); (c) the result of averaging
upon thermal smearing of the Fermi distribution for T =
1.3 K; for the sake of clarity, the curves in (b, c) are shifted
upward along the ordinate axis.
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Coulomb energy. Since the critical temperature for
observation of the small-scale gate-voltage-controlled
Coulomb oscillations exceeds this distance, the oscilla-
tions cannot be explained in terms of the resonance
transmission through these levels. On the other hand, a
small distance between the single-particle levels is a
necessary condition for treating the quantum dots as
structureless Coulomb islands.

The interference in the quantum dots gives rise to
both narrow (0.01–0.1 meV) and wide (0.5 meV) reso-
nances. The pattern of small-width resonances in
Fig. 8b is evidence of a large electron lifetime 10–1–
10−10 s on the quasilevels, that is, of a weak mixing
between the localized states of the closed subbands and
the decay states. Averaging of the transmission coeffi-
cient with respect to the incident particle energy with
allowance of the thermal smearing of the Fermi distribu-
tion leads to complete leveling of the narrow resonances
already at T = 1.3 K. The characteristic distance between
wide resonances is on the order of 1–3 meV. Such reso-
nances are retained even upon averaging (Fig. 8c) and
contribute to the observed large-scale mesoscopic oscil-
lations in the conductance (see Figs. 2 and 3).

As can be seen from Fig. 8c, the less transparent
right quantum dot determines the low conductance of
the whole device, including the main features of the
averaged transmission. The averaged transmission of
the whole device is smaller than that of the individual
quantum dots: 〈T(E)〉  ! 1. In this situation, the Land-
auer formula for the ballistic conductance

shows that G ! e2/h and the quantization of the micro-
contact transmission (Fig. 8a) is not manifested in the
conductance of the interferometer (Fig. 8b, curve R).
Therefore, a low conductance of the device as such is
not indicative of the tunneling regime. Note that the
character of the quantum scattering on the quantum dot
quasilevels (Fig. 8b) changes only slightly when the
microcontact is open, whereby the transmission coeffi-
cient becomes higher than 1/2 (Fig. 8a). Therefore, the
rate of electron exchange between localized states of
the quantum dot and the environment is determined by
interference in the whole system rather than by the
transmission of individual microcontacts. In our opin-
ion, this is the main reason for electron localization at
the quantum dot, related to the nonlocal character of the
resistance and leading to the Coulomb blockade
regime. Additional insulation of the quantum dots can
be provided by any factors leading to the breakage of
quantization of the microcontacts transmission. Such
factors were apparently present in our experiments,
since the conductance of the control quantum wires
remained low in a broad range of the gate voltage vari-
ation, while the calculated microcontact transmission
shows evidence of quantization (Fig. 8a).

G
2e2

h
-------- T EF( )〈 〉=
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Analysis of the system transmission reveals an
effect that is significantly dependent on the state of the
quantum wires connecting the quantum dots. A com-
parison of Figs. 7a and 8b shows that, as long as the
motion in one of the arms is forbidden in the classical
sense (E < E2(x = 580 nm) = –2.6 meV), each resonance
of the interferometers corresponds to a transmission
peak for one of the quantum dots and vise versa. How-
ever, when the motion in both arms is allowed in the
classical sense, the frequency of transmission reso-
nances for the interferometer is greater than that for the
quantum dots. A difference in the number of resonances
refers to the states of the ring motion not manifested in
the transmission of individual quantum dots. The ring
motion arises as a result of the interference in a system
of four single-mode microcontacts. Analogous narrow
resonances with the levels of a ring motion are known
for a large open interferometer, where these resonance
are also more frequent than wide resonances with the
levels of small-size triangular quantum dots [20]. A
shift of the ring levels in a magnetic field causes the AB
effect. In our case, the ring is small (r ≈ 130 nm) and the
characteristic distance between resonances of the ring
motion is 0.6 meV. This distance allows the AB oscilla-
tions to be observed at temperatures of up to 4.2 K.

One may expect that a transition from the classically
allowed ring motion to tunneling will suppress the AB
effect. This assumption can be verified for a simple
model of the interferometer as a point junction of one-
dimensional wires [6, 40], using the calculated subband
position (E1(x) in the quantum wires and E1, 2(x) in the
ring) as the one-dimensional potential. Then, the wave
function of the electron motion along the wires is deter-
mined by numerically solving the Schrödinger equation
with the well-known matching conditions at the junc-
tion [40]. For B = 0, this model gives the same average
distance between resonances of the ring motion as that
obtained by the multimode calculation. The sensitivity
of the interferometer transmission with respect to the
magnetic field virtually vanishes when the particle
energy decreases 1–2 meV below the maximum of the
potential E2 in the ring. The tunneling barrier width is
small (below 100 nm) and the arm with the potential E1
remains open (as in Fig. 7). This conclusion retains
validity when the quantum wire length and the shape of
the one-dimensional potential are varied within realis-
tic limits. For this reason, we do not accept the notion
of wide tunneling barriers in the samples exhibiting AB
oscillations.

To summarize the results of experiments and model
calculations, we can ascertain that observation of the
AB effect in rings with a resistance of 105–106 Ω
implies that electrons fill all channels without large
(*100 nm) breaks. In addition, a weak temperature sen-
sitivity of the background conductance points to the
absence of low wide tunneling barriers in the interfer-
ometer. Finally, variations in the critical temperature
and a discrepancy between the electrostatic description
ND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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and the Coulomb energy exclude the tunneling insula-
tion of triangular quantum dots. At the same time,
observation of the Coulomb blockade excludes a multi-
mode character of the connecting quantum wires. The
interferometer most probably operates in a semiopen
regime, whereby one microcontact at the entrance or
exit determines a large resistance of the device, while
the other single-mode channels kept electron at least in
one of the triangular quantum dots (the right one in
Fig. 7). Opening of the microcontacts leads to addi-
tional renormalization of the Coulomb energy, but the
Coulomb oscillations at low temperatures are still
retained.

3.4. Single-Electron Transport 

Strictly speaking, adequate description of the charg-
ing process in semiopen systems requires the develop-
ment of new approaches [30]. However, such theories
are now available only for devices of the simplest
geometry. For this reason, we have numerically mod-
eled the single-electron transport in a ring interferome-
ter using the orthodox theory of the Coulomb blockade
[10]. The question as to whether the orthodox theory is
applicable to a system with open microcontacts is a
subject of discussion, since this model ignores the
interference and replaces real barriers by tunneling
junctions characterized by electrostatic capacitances
and large localized resistances. It is assumed that the
charge inside the tunneling junctions is frozen so as to
determine the constant polarization charge q0 of the
Coulomb islands. In our case, these conditions are not
obeyed, but the main factor—the Coulomb blockade of
the system of localized states of the quantum dots—
remains valid.

Below we extend the notion of the charging of such
systems, developed recently [34, 35] for a quasi-one-
dimensional quantum dot, to a ring interferometer. In
the case of the interferometer, there are no obvious rea-
sons (such as the absence of intermode mixing in a
quasi-one-dimensional quantum dot) for electron local-
ization in closed subbands. However, the necessary
localization is provided by the multiple reflections of an
electron in a system of four single-mode microcontacts
and by the unidentified factors responsible for the large
resistance of the control samples of quantum wires.

The localized states of the triangular quantum dots
form two islands charged by the mechanism of the Cou-
lomb blockade. The isolation of these Coulomb islands
can be described by introducing effective tunneling
junctions with the resistances R > h/e2, which account
for the weak interaction between the localized states
and the moving electron. The characteristic charging
time (RC) in this case is determined by an effective
capacitance which will be evaluated below. The central
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
role in this estimation is played by a simple modifica-
tion of the Coulomb blockade theory, which is used to
describe occupation of the lower subband in the micro-
contacts. The charge of ballistic electrons, concentrated
in the single-mode channels, forms the variable polar-
ization charges q01 and q02. These charges are deter-
mined by the self-consistent potential of the quantum
wires and depend on the gate voltage and the with-
drawal voltage Vw on the quantum wire [34, 35].

A linear expansion of the function q0(Vw, Vg) in the
vicinity of the characteristic values Vw = 0, Vg = Vg0
yields a simple formula,

This phenomenological relation closes the system of
equations of the orthodox Coulomb blockade theory, in
which q0 is considered as a free parameter. Since the
relations between charges and voltages in the electro-
statics of conductors are linear, substituting the variable
quantity q0 leads to the usual case of q0 = const, but with
modified values of capacitances. For example, with a
zero voltage on the island, the number of electrons n in
this island can be expressed through the total and gate
capacitances as

Then, formulas of the orthodox theory yield a renor-
malized Coulomb energy,

where the additive Cw to the total capacitance summa-
rizes the corresponding corrections to all contributions
due to the effective tunneling junctions.

A comparison of theory and experiment shows that
the correction to the gate capacitance is small, whereas
the additives to other capacitances are large. Indeed,
when Vg changes by 200 mV, the barrier heights Ub in
the quantum wires vary only by ∆Ub ≈ 2 meV. Denoting
the distance between the delocalized states by ∆Ed , we
can estimate the change in the charge of the system of
delocalized states as (2e/∆Ed)(Ub/e∆Vg)e∆Vg, where 2e
is the maximum charge on a delocalized state. This
yields

Cwg [aF] ≈ 3.2/∆Ed [meV].

As can be seen from Fig. 8c, ∆Ed > 1 meV and, hence,
Cwg is about ten times smaller than the gate capacitance
Cg of the quantum dot. In turn, CwVw can be estimated
as (2e/∆Ed)(eVw/2), where eVw/2 is a change in the bar-
rier height in the quantum wire upon application of the

q0 const CwVw– Cwg∆Vg.+=

ne CΣVw CgVg– q0–=

=  CΣ Cw+( )Vw Cg Cwg+( )Vg—const.–

EC* e2/2 CΣ Cw+( ),=
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voltage Vw relative to the environment. From this we
obtain

Cw [aF] ≈ 160/∆Ed [meV],

which is a large correction to CΣ. For realistic values of
∆Ed ~ 1–3 meV, the Coulomb energy decreases by a
factor of 4–2 as compared to the case of the tunneling
insulation of a triangular quantum dot. In practice, the
density of the localized states is determined is deter-
mined by the shape of the electrostatic potential and the
value of ∆Ed sharply changes upon overloading, illumi-
nation, or a change in the gate voltage. This leads to dif-
ferent renormalization of the Coulomb energy and to
variation of the critical temperature for observing the
Coulomb oscillations.
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Fig. 9. The results of modeling of the single-electron charg-
ing of quantum dots in a ring interferometer: (a) equivalent
scheme (C3R3 and C4R4 junctions describe the coupling of
quantum dots 1 and 2 to the far reservoirs); (b, c) plots of the
current I(Vg) calculated for the parameters C1g = 25 aF,
C2g = 27 aF, Cdd = 30 aF, C1 = C2 = 50 aF, C3 = C4 = 10 aF,
Rdd = 3 MΩ, R1 = 0.1 MΩ, R2 = 0.4 MΩ, R3 = 0.2 MΩ, R4 =
0.8 MΩ, V = 0.25mV; (b) the pattern of doublet splitting of
the Coulomb peaks and variation of the splitting magnitude
for q01 = q02 = 0 (for the sake of clarity, the curve for T =
0.1 K is shifted downward); (c) A change in the phase of the
variation of the Coulomb peak splitting in response to a
change in q01 by e/2.
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Below we will take into account the renormalization
of the Coulomb energy by increasing the effective
capacitance between the quantum dots and between
each dot and the reservoirs by a factor of 1.5–3 as com-
pared to the electrostatic value. This increase corre-
sponds to the experimental threshold temperature of
8 K and allows the charging time to be estimated as
RC > 10–12 s, which agrees with the lifetime (10–11 s) of
the localized states. The resistances of effective tunnel-
ing transitions are assumed to be constant, although
real values exhibit mesoscopic fluctuations with respect
to the gate voltage. Here, we model only the current
charging the capacitances and ignore the ballistic cur-
rent that increases the background conductance and
levels the single-electron features [34, 35]. In the case
of low temperatures and the Coulomb blockade, the
system may also feature an inelastic cotunneling cur-
rent that does not influence the charge of the quantum
dots [41]. Therefore, our model overstates the sharp-
ness and reproducibility of the shape of the Coulomb
blockade features as compared to those observed in
experiment. Within the framework of this simple Cou-
lomb blockade model, we attempt to reconstruct the
most important features of the gate-voltage-controlled
oscillations observed in two samples with different
characteristic temperatures. Of special importance is
the case of sample no. 2, in which splitting of the Cou-
lomb peaks is clearly observed at T = 0.1 K. It would be
of interest to trace the transition from this case to the
smoothened periodic oscillations observed for sample
no. 1 at T = 4.2 K without changing the parameters of
the equivalent scheme.

For this purpose, we have modeled a system of two
interacting Coulomb islands, representing triangular
quantum dots (Fig. 9a). A pair of parallel interdot
microcontacts in our model was replaced by a single
tunneling junction. Figures 9b and 9c present the
results of calculations for T = 0.1 K. The current was
calculated by the Monte Carlo method, which is a stan-
dard approach to a system with several Coulomb
islands [42, 43]. Since an electron from a localized state
in the quantum dot can pass to the far reservoir without
influencing the charge of the intermediate quantum dot,
we introduced the additional shunting junctions (C3R3,
C4R4 in Fig. 9a) into the effective scheme. This possi-
bility can be provided by three mechanisms, including
the inelastic and elastic cotunneling [41, 43] and the
passage without loss of the phase coherence. A sym-
metric system describes splitting of the conductance
peaks even with neglect of the effective tunneling junc-
tions shunting the intermediate quantum dots [26, 27].
However, it was established that, for the real system
parameters and low temperatures (T = 0.1 K), the result
is unstable with respect to violation of the equality of
gate capacitances and residual polarization charges, q01
and q02, of the two quantum dots. For example, a 10%
difference in the gate capacitances leaves the system
practically blocked: the charging current becomes
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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small to provide for the observation of most Coulomb
peaks because of a large-period amplitude modulation
[26, 27]. This prediction of the theory contradicts our
experiment, but introduction of the shunting junctions
improves the situation. The resistances of all junctions,
selected within 105–106 Ω, could be varied without sig-
nificantly influencing the pattern of peak splitting. The
capacitances of the quantum dots (except for the gate
and total values) could be also taken rather arbitrarily.

Let the gate capacitances of the quantum dots differ
by 10%. As can be seen from Fig. 9b, the main effects
predicted by the calculation (the presence of doublets
and the variable peak spacing) are qualitatively similar
to the experimental features (see Fig. 4). At the same
time, the calculated peaks are more pronounced, homo-
geneous, and regular in repetition. It is interesting to
note that the magnitude of splitting in the calculation
continuously varies within 1–3 mV. Previously, the
changes in this value were explained by variations of
the interdot capacitance or coupling [26–28]. In our
case, the reason is different because neither capacitance
nor coupling depends on the gate voltage. Nevertheless,
as the gate voltage increases, an initially small splitting
exhibits an increase and then decreases again. The anal-
ogous, although not as regular, pattern was observed in
our experiments (see Fig. 4c). The explanation of the
behavior observed in Fig. 9b consists in taking into
account the coupling of quantum dots to the far reser-
voirs. Excluding the interaction between the two quan-
tum dots, we obtain two system of peaks with different
periods, which exhibit several coincidences. If the
quantum dots interact, the peaks cannot approach each
other and a minimum splitting (1.5 mV) can be consid-
ered as analogous to the anti-cross-section of levels. In
the case of identical gate capacitances, the splitting is
constant, but its magnitude strongly depends on the
polarization charges. The splitting is minimum in the
case of equal residual polarization charges of the two
quantum dots, q01 = q02, and it is maximum (3 mV) in
case when q01 = q02 ± e/2; that is, the positions of the
two systems of equidistant peaks are arbitrary to within
the difference of the free parameters q01 – q02. The max-
imum difference of the gate capacitances of the two
quantum dots provides for a coupling of the systems of
equidistant peaks to within the phase of oscillations in
the splitting magnitude (which depends on q01 – q02, see
Figs. 9b and 9c). In the calculation, the residual polar-
ization charges of the quantum dots (more precisely,
corrections to the gate capacitances Cwg related to the
filling of quantum wires) were independent of the gate
voltage, which is an idealization as compared to the sit-
uation depicted in Fig. 4.

The results of modeling show that, when the temper-
ature increases to 1.3 K, the minimum splitting is diffi-
cult to determine because the peaks exhibit merging.
However, it is still possible to observe alternation of the
regions featuring oscillations with the main and double
frequency and the transition doublets, as is shown in
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Fig. 3d for sample no. 1. The calculation performed
using this model for T = 4.2 K explains the oscillations
with a period of 6 mV observed in Fig. 3a and demon-
strates the absence of oscillations at a double frequency.
We have established that the oscillations are manifested
to the same extent as in the model of one island with a
total capacitance equal to that of the triangular quantum
dot. At T = 8 K, the oscillations completely disappear.
If the capacitance of the effective tunneling junctions is
doubled, the oscillations disappear at T = 4 K, while the
low-temperature splitting of the peaks is retained. This
numerical verification confirms the hypothesis of the
Coulomb (single-electron charging) interaction
between the quantum dots. Thus, the main properties of
the Coulomb oscillations are explained by the charging
of either one or two triangular quantum dots in the ring
interferometer.

4. CONCLUSIONS

We have studied a semiconductor ring interferome-
ter with a small ring radius (r ≈ 0.1 µm) and a large
resistance (R @ h/e2). The conductance of such devices
shows manifestations of both the quantum interference
and the Coulomb blockade. It was found that the Cou-
lomb peaks exhibit splitting into doublets in the region
of very low temperatures.

The results of structural investigations using scan-
ning electron microscopy and atomic force microscopy
provided initial data for the numerical modeling of
electrostatics, energy spectrum, and single-electron
transport in the device under consideration. It was
established that the interferometers represent a system
of two triangular quantum dots connected via single-
mode microcontacts. The main properties of the exper-
imentally observed gate-voltage-controlled oscillations
of the conductance are explained by charging of the
quantum dots: the main measured oscillation period
(about 6 mV) corresponds to adding a single electron to
one quantum dot, while the doublet splitting of the
Coulomb peaks (about 1.5 mV) reflects a Coulomb
interaction between two charged quantum dots.

We have demonstrated that systems of localized
states of the quantum dots are retained on the back-
ground of the continuous spectrum of the open lower
subband of the microcontacts. A modified orthodox
Coulomb blockade model describes the discrete charg-
ing in such systems and renormalization of the Cou-
lomb energy with allowance of the continuous filling of
the delocalized electron states. Thus, we have consid-
ered for the first time a ring interferometer in which the
overbarrier transmission coexists with the single-elec-
tron charging of triangular quantum dots.
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Abstract—A microscopic theory of superconductivity is considered in the framework of the Hubbard p–d
model for the CuO2 plane. The Dyson equation is derived in the nonintersecting diagram approximation using
the projection technique for the matrix Green function of the Hubbard operator. The solution of the equation
for the superconducting gap shows that interband transitions for Hubbard subbands lead to antiferromagnetic
exchange pairing as in the t–J model, while intraband transitions additionally lead to spin-fluctuation pairing of
the d-wave type. The calculated dependences of the superconducting transition temperature on the hole concen-
tration and of the gap on the wave vector are in qualitative agreement with experiments. © 2003 MAIK
“Nauka/Interperiodica”.
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1. INTRODUCTION

The spin-fluctuation mechanism of high-tempera-
ture superconductivity in copper-oxide compounds
(cuprates), which is determined by the high intensity of
the antiferromagnetic exchange interaction, is attract-
ing considerable attention of researchers at present (see
reviews [1, 2]). Anderson [3] was the first to point out a
special role of strong electronic correlations in cuprates
and the antiferromagnetic exchange interaction associ-
ated with these correlations; he also proposed the
exchange pairing mechanism in the framework of the
t−J model. Subsequent investigations of superconduc-
tivity based on the t–J model were carried out mainly in
the mean field approximation (MFA) (see [4, 5] and the
literature cited therein).1 In the low-electron-density
limit, superconducting pairing in the T matrix approxi-
mation was analyzed in [7]. Corrections to the MFA
were considered with the help of the diagrammatic
technique for the t–J model [8] and using the equations
of motion method for Green functions [9]. In the latter
publication, where a self-consistently numerical solu-
tion of the Dyson equation was obtained in the approx-
imation of nonintersecting diagrams for the mass oper-
ator, a non-Fermi-liquid behavior was revealed in the
normal phase, while in the superconducting phase the
spin-fluctuation d wave pairing was obtained in addi-
tion to the exchange interaction in the MFA.

Numerical methods were also used by many authors
for investigating the t–J model and the Hubbard model
for finite-size clusters (see reviews [2, 10]); however,

1 We will not discuss the spinon–holon theories, which are not sub-
stantiated sufficiently in our opinion [6].
1063-7761/03/9702- $24.00 © 20331
the results of these studies are contradictory. For exam-
ple, a stable d-wave pairing in the t–J model was
detected in [11], while the authors of [12] did not
observe any long-range superconducting correlations in
the initial Hubbard model.

In this connection, it is expedient to investigate the
Hubbard model taking into account self-energy correc-
tions without reducing the Hubbard model to the t–J
model. In the latter model, time-dependent interband
transitions are eliminated with the help of the Schrief-
fer–Wolf transformation, leading to instantaneous
exchange interaction in Hubbard subbands. This trans-
formation is essentially analogous to the reduction of
the electron–phonon model with retarded interaction to
the reduced Bardeen–Cooper–Schrieffer (BCS) model
with instantaneous interaction in a limited region of
electron energies. Consequently, in order to confirm the
results obtained in the framework of the t–J model, it is
important to estimate the retardation effect for inter-
band transitions in the initial Hubbard model.

In this study, we develop a microscopic theory of
superconductivity in the framework of the p–d model
[13] for the CuO2 plane in the limit of strong correla-
tions. We use the Hubbard operator technique in the
method of thermodynamic Green functions, which
leads to the Dyson equation [14] that is solved in the
approximation of nonintersecting diagrams for the
mass operator. In this way, we can for the first time
leave the limits of the MFA, which was formerly used
for analyzing equations for the superconducting gap
(see [15–19]).

It should be noted that the dynamic mean field the-
ory, which has been widely used for calculating the
003 MAIK “Nauka/Interperiodica”
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electronic structure in systems with strong correlation,
cannot be applied directly for an analysis of the d-wave
type superconductivity. In this case, a generalization of
the theory is required; such a generalization was pro-
posed in [20, 21], where the mass operator was calcu-
lated in the cluster approximation at four representative
k points of the Brillouin zone. Using our method, we
obtain an equation of the Migdal–Eliashberg type tak-
ing into account the total k dependence of the mass
operator. An analysis of the obtained equations shows
that retardation effects are insignificant for interband
transitions, which leads to antiferromagnetic exchange
pairing of mobile charge carriers in the entire subband
both in the MFA and in the t–J model, while intraband
transitions determine spin-fluctuation pairing in an
energy range of the order of exchange energy J.

The derivation of the Dyson equation for the effec-
tive Hubbard model is carried out in Section 2. The
mean field approximation is considered in Section 3.
The equation for the gap, taking into account the spin-
fluctuation pairing, is derived in Section 4; the solution
of this equation is discussed in Section 5.

2. DYSON EQUATION

Let us consider the p–d model for the CuO2 plane in
the limit of strong Coulomb correlations at copper
sites [13]:

(1)

where operators  and  describe the production of
single-hole states of the d or p type in the ith cell of a
square lattice for the CuO2 plane with energies ed and
ep = ed + ∆pd , respectively. In view of the large value of
Coulomb energy at copper sites (Ud ≈ 8 eV) as com-
pared to ∆pd ≈ 3 eV, we take into account only singly

occupied 3d states:  = (1 – ). Hybridization
of the p states of oxygen in the Wannier representation
and the 3d states of copper is described by parameters
Vij = 2tpdνij , where coefficients ν0 = νjj ≈ 0.96, ν1 =

 ≈ –0.14, and ν2 =  ≈ –0.02 [22].
Since hybridization V0 ≈ 2tpd ≈ ∆pd in a cell is much
stronger than hybridization between the nearest (pro-
portional toν1), second (proportional to ν2), and next
neighbors, V0 @ |Vi ≠ j |, we must first diagonolize one-
and two-particle states in a cell, introduce the Hubbard
operators of transition between these states, and then
calculate the matrix elements of the transition between
different cells. As a result of application of such cluster
perturbation theory, we obtain the following effective
Hubbard model, in which the lower Hubbard subband

H edd̃iσ
+

d̃iσ epciσ
+ ciσ+{ }

i σ,
∑=

+ Vij d̃iσ
+

c jσ H.c.+{ } ,
i j σ, ,
∑

d̃iσ
+

ciσ
+

d̃iσ
+

diσ
+ ni σ–,

d

ν j j ax/y±, ν j j ax ay±±,
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describes one-hole states of the Cu of the d type, while
the upper Hubbard subband describes two-hole singlet
states of the p–d type [22]:

(2)

where we have introduced the Hubbard operators

 = |in〉〈 im | for the four states n, m = |0〉, 〈σ|; |2〉 =
|↑↓〉 , σ = ±1/2; and  = –σ. The Hubbard operators

obey the multiplication rules (  = δmk ) and

satisfy the completeness condition (  +  +

 +  = 1), which shows that only one quantum
state |in〉 can be occupied at any site i. In Hamiltonian (2),
we have introduced energies E1 =  – µ and E2 = 2E1 +

∆, where  is the renormalized energy of a d hole, µ is
the chemical potential, and ∆ ≈ ∆pd is the renormalized
energy difference for the Hubbard subband, which
plays the role of the Coulomb energy U in the standard
Hubbard model. The parameters of interband transi-
tions for subbands α, β = 1, 2 are defined by the relation

 = KαβVij , where Kαβ ≤ 1 (see [22]) so that the effec-
tive subband width W = 8teff ≈ tpd ≈ ∆/2 and Hamiltonian
(2) correspond to the Hubbard model in the strong cor-
relation limit. It should be noted that we carry out here
the transformation for a simple version of the p–d
model (1) containing the minimal number of para-
meters (tpd and ∆pd). The application of the cluster per-
turbation theory to a more general p–d model [13]
including the Coulomb interaction Ud and Up at copper
and oxygen sites, the p–d interaction Upd, as well as the
p–p hybridization tpp, leads to an equally effective Hub-
bard model (2), but with renormalized parameters (see
[23−25]).

In order to analyze the quasiparticle spectrum and
superconductivity in model (2), we compose the equa-
tion for a one-particle matrix Green function [26],

(3)

where we have introduced the anticommutator Green

function of four-component Nambu operators  and

 = ( ). Green function (3) can be
conveniently written in the form of a 2 × 2 supermatrix
consisting of 2 × 2 matrices for two subbands for the

H E1 Xi
σσ

i σ,
∑ E2 Xi

22

i

∑ tij
11Xi

σ0 X j
0σ{

i j σ,≠
∑+ +=

+ tij
22Xi

2σX j
σ2 2σtij

12 Xi
2σX j

0σ H.c.+( ) } ,+

Xi
nm

σ
Xi

nmXi
kl Xi

nl

Xi
00 Xi

σσ

Xi
σσ Xi

22

ẽd

ẽd

ti j≠
αβ

G̃ijσ t t '–( ) X̂iσ t( ) X̂ jσ
†

t '( )〈 〉〈 〉=

=  
ωd

2π
-------e iω t t '–( )– 1

N
---- eiq i j–( )⋅ G̃σ q ω,( ),

q

∑
∞–

+∞

∫

X̂iσ

X̂iσ
†

Xi
2σXi

σ0Xi
σ2Xi

0σ
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normal, (ω), and anomalous, (ω), compo-
nents:

(4)

Let us construct the equation for Green function (3),
applying a projection method of the Mori type, which
makes it possible to avoid uncontrollable uncoupling
for higher order Green functions. This method is
described in detail in our previous publications [9, 14];
for this reason, we will describe here only the results of
computations. Successive differentiation of Green
function (3) with respect to time t and t' followed by
separation of linear parts in the obtained equations of
motion using a projection method allows us to write the
equation for the Fourier component of this function in
the form of the Dyson equation:

(5)

In the generalized mean field approximation, the zero-
order Green function has the form

(6)

where  is a 4 × 4 unit matrix. Assuming that the sys-

tem is in the paramagnetic state (  = ) and

anomalous means in the  =  matrix are
equal to zero in the case of d-wave pairing,

we obtain the following representation for this matrix:

Here, τ0 is a unit matrix, and correlation functions χ2 =

〈  + 〉  = n/2 and χ1 = 〈  + 〉  = 1 – χ2

depend only on the average number of holes n:

(7)

The one-particle excitation spectrum in Green func-
tion (6) is defined by the matrix

(8)

The mass operator in Dyson equation (5) is determined
by the proper part of the many-particle Green function

Ĝijσ F̂ijσ

Ĝijσ ω( ) Ĝijσ ω( ) F̂ijσ ω( )

F̂ijσ
† ω( ) Ĝijσ –ω( )– 

 
 
 

.=

G̃σ q ω,( )( ) 1–
G̃σ

0
q ω,( )( )

1–
Σ̃σ q ω,( ).–=

G̃σ
0

q ω,( ) ωĨ Ẽσ q( )–( ) 1– χ̃ ,=

Ĩ

Xi
σσ〈 〉 Xi

σσ〈 〉

χ̃ X̂iσ X̂iσ
†,{ }〈 〉

Xi
02〈 〉 Xi

0↓ Xi
↓ 2〈 〉 ci↓ ci↑〈 〉 0,= = =

χ̃ τ0
χ2 0

0 χ1 
 
 

.×=

Xi
22 Xi

σσ Xi
00 Xi

σσ

n Ni〈 〉 Xi
σσ〈 〉

σ
∑ 2 Xi

22〈 〉 .+= =

Ẽijσ X̂iσ H,[ ] X̂ jσ
†,{ }〈 〉 χ̃ 1– .=
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of “irreducible operators”  = [ , H] –

:

(9)

Equations (6), (5), and (9) give exact representation
for one-particle Green function (3). However, the eval-
uation of this functions requires the use of some
approximations for the many-particle Green function in
mass operator (9), describing the contribution from
inelastic processes of scattering of one-particle Fermi-
like excitations from spin and charge fluctuations in the
system.

3. MEAN FIELD APPROXIMATION

Let us first consider the electronic spectrum in the
mean field approximation, which can be described by
Green function (6) with matrix (8) of one-particle exci-
tations:

(10)

Here, matrices  and  determine the normal and
anomalous components of the complete matrix, respec-
tively. The one-particle excitation spectrum in the nor-
mal state was investigated in detail in [22]. Here, we
will consider only the results of calculations. Diagonal-
ization of matrix  in the q representation leads to the
following expression for the one-particle excitation
spectrum in the normal phase:

(11)

Here, the excitation spectra for the subbands of singlet
and one-hole states in the absence of hybridization are
defined by the equations

and their interaction is described by the function

In these equations, coefficients aαβ determine renormal-
ization of the chemical potential and the effective

Ẑiσ
ir( )

X̂iσ

Ẽilσ X̂lσl∑
Σ̃σ q ω,( ) χ̃ 1– Ẑqσ

ir( )
Ẑqσ

ir( )†
〈 〉〈 〉 ω

prop( )
χ̃ 1– .=

Ẽijσ
ω̂ij ∆̂ijσ

∆̂ijσ
† ω̂ji– 

 
 
 

.=

ω̂ij ∆̂ijσ

ω̂ij

Ω2 1, q( ) 1
2
--- ω2 q( ) ω1 q( )+[ ]=

± 1
2
--- ω2 q( ) ω1 q( )–[ ] 2 4 W21 2

+{ }
1/2

.

ω2 q( ) E1 ∆ a22 t̃
22 q( ),+ + +=

ω1 q( ) E1 a11 t̃
11 q( ),+ +=

W21 q( ) a21 t̃
21 q( )+

χ1

χ2
-----W12 q( ).= =
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parameters of jump (q) can be written in the form

(12)

where the renormalization of parameters  of jumps
between lattice sites is determined by coefficients
Kαβ(q). Explicit expressions for coefficients aαβ and

 are given in Appendix 1. If we take into account
only the jumps between the nearest and second neigh-
bors, coefficient ν(q) has the form

(13)

where γ(q) = (cosqx + cosqy)/2 and γ'(q) = cosqx cosqy .
It was proved in [22] that, in the case of half-filling

(n = 1), the system is in the dielectric state with a for-
bidden gap width on the order of ∆; in the case of p-type
doping (n = 1 + δ > 1), the Fermi level falls into the
upper Hubbard subband of singlet states. In this case,
the dispersion of one-particle excitations and the
weight of Hubbard subbands are determined by doping
to a considerable extent. For a low hole concentration,
jumps between nearest neighbors are suppressed due to
strong antiferromagnetic correlations and the spectrum
is determined by jumps between second neighbors with
dispersion γ'(q) in formula (13). For a high concentra-
tion of holes (n ≥ 1, 2), antiferromagnetic correlations
become insignificant and the spectrum is mainly deter-
mined by jumps between nearest neighbors with dis-
persion γ(q) in formula (13).

Let us consider the anomalous component  of
matrix (10), which determines the superconducting
gap. For two subbands, this 2 × 2 matrix has the form

(14)

One-site correlation functions  for d-wave pairing
are equal to zero (see Appendix 1), while components
for sites i ≠ j are determined by the correlation func-
tions

(15)

Assuming the rule for multiplying Hubbard operators,
we can write anomalous means in these equations in the
form

t̃
αβ

t̃
αβ q( )

t pd

N
------ ν k( )Kαβ k q–( ),

k

∑=

tij
αβ

Kij
αβ

ν q( ) 2 ν0 je
iq j⋅–

j 0≠
∑ 8ν1γ q( ) 8ν2γ' q( ),+= =

∆̂ijσ

∆̂ijσ δij
bσ

22 bσ
21

bσ
12 bσ

11
 
 
 
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1 δij–( ) ∆ijσ
22 ∆ijσ

21

∆ijσ
12 ∆ijσ
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 
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.+=

bσ
αβ

χ2∆ijσ
22 2σtij

21 Xi
02N j〈 〉– χ1∆ijσ

11 ,–= =

χ2∆ijσ
21  = 

1
2
--- tij

22 Xi
02N j〈 〉 tij

11 N j Xi
02〈 〉+( ) χ1∆ijσ

12 .–=

Xi
02N j〈 〉 Xi

0↓ Xi
↓ 2N j〈 〉 ci↓ ci↑ N j〈 〉 ,= =
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as in [17–19]. Thus, pairing in the MFA is described by
the anomalous correlation function for a pair of parti-
cles at the same site, but in different Hubbard subbands,

 = , and the number of particle operator Nj .

In order to derive an equation for the superconduct-
ing gap, we must calculate the correlation function

. In [17, 19], this was done using the method
of equations of motion for Green functions (Roth
method), in which one-particle operators at the same
side corresponded to different times as, for example, in
function 〈ci↓(t)|ci↑(t ')Nj(t ')〉 . This uncoupling procedure
for operators at the same site is ambiguous and leads to
several solutions determined by the method of uncou-
pling (this was discovered in [17, 19]). In [18], this
method was not used; however, the solution of a self-
consistent system of equations also led to ambiguous
results.

Here, we calculate the anomalous correlation func-

tion  without resorting to any uncoupling. For
this purpose, we consider the equation for the corre-
sponding Green function of the initial operators

Differentiating the Green function with respect to tine
t, we obtain for its Fourier component the equation

where we have omitted on the right-hand side the con-
tributions corresponding to intraband transitions since
these transitions lead to only a small correction to the
pair production energy at a site:

Using the spectral representation, we obtain the follow-
ing expression for the correlation function with i ≠ j:

Depending on the position of the chemical potential in
the upper (singlet) or lower (single-hole) subband, the
main contribution to the integral on the right-hand side

Xi
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E2 ∆ @ tij
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12

m i σ,≠
∑

∞–
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× 1
π
---Im

1
ω2 E2– iε+
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0σXm
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.
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of this equation comes from the corresponding many-
particle Green function. In both cases, the contribution
from the pole at ω = E2 is exponentially small (on the
order of exp(–∆/T) ! 1).

Let us now consider the case of p-type doping
(n > 1), when the Fermi level lies in the upper subband,
µ ≈ ∆, and one-site energies E2 ≈ E1 ≈ –∆. In this case,
the contribution from the lower subband, which is pro-
portional to

makes an exponentially small contribution on the order
of exp(–2∆/T) ! 1. As a result, we obtain the following
estimate for the anomalous correlation function:

(16)

Here, we evaluated the integral disregarding the retar-
dation effects, i.e., omitting the frequency dependence
in the denominator 1/(ω – E2) since the excitation
energy |E2 | ≈ ∆ is much higher than the characteristic
excitation energies in the singlet subband on the order

of . Thus, direct evaluation of the anomalous corre-
lation function shows that retardation effects can be
neglected in the case of the exchange interaction asso-
ciated with an interband transition.

Using the two-site approximation in formula (16),
m = j, which is normally employed in the derivation of
the t–J model, we obtain the representation

where the relation  = 2  is taken into account.
In this approximation, for a gap in the singlet subband,
we obtain, in accordance with Eq. (14), the expression

(17)

corresponding to the conventional expression for the
gap in the t–J model with exchange interaction Jij =

4( )2/∆.

Thus, sequentially applying the Hubbard operator
technique, we have proved that the anomalous correla-
tion function of the type 〈ci↓ci↑Nj 〉  in the MFA for the
Hubbard model are connected unambiguously with
anomalous means for a pair of electrons (holes) at
neighboring sites and that pairing is ensured by the
standard exchange interaction as in the t–J model (see,
for example, [4, 9]). Consequently, the statement made
in [19] concerning a special role of interstitial excita-
tions in the compound operator method, which is based

1
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1– ,=

tij
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on application of uncoupling for Hubbard operators at
the same site,

proved to be erroneous. In addition, direct computation
of the anomalous correlation function in the Hubbard
model shows that retardation effects in exchange pair-
ing associated with interband transitions can be disre-
garded; this makes it possible to substantiate the results
obtained in the t–J model for instantaneous exchange
interaction. A more general formula (16) derived by us
can also be used for a more consistent analysis of the
exchange-type pairing in the Hubbard model if three-
site terms are taken into account.

4. EQUATION 
FOR THE SUPERCONDUCTING GAP

Let us consider the mass operator (9), which can be
written in the form of a supermatrix like Green function
(4):

(18)

where matrices  and  denote the normal and anom-
alous component of the total matrix (see formula (38)
in Appendix 2). In accordance with relation (9), these
matrices are defined in terms of many-particle Green
functions describing the inelastic scattering of one-par-
ticle Fermi-like excitations X1(t) at spin and charge
fluctuations; in the general form, these fluctuations are
represented by Bose-type operators B1' (t ) (see formu-
las (35)–(37) in Appendix 1). Here, we will calculate
the mass operator in the approximation of nonintersect-
ing diagrams, corresponding to the self-consistent Born
approximation. This approximation can be described
by noncorrelated propagation of Fermi-like and Bose-
like excitations and corresponds to the skeleton loop
diagram in the diagrammatic language. Consequently,
in this approximation, the time-dependent pair correla-
tion function of operators X1(t) and B1'(t) for sites
(1 ≠ 1', 2 ≠ 2') can be written in the form of the product
of correlation functions:

Using the spectral theorems for Green functions, we
can write the many-particle Green function in the form

(19)

Xi
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0↓ Xi
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=  ci↓ ci↑ N j〈 〉 ci↓ t( ) ci↑ t '( )N j t '( )〈 〉 ,→
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ω1 ω2dd
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where N(ω1, ω2) = (1/2)[  +

]. In this approximation, we obtain a self-
consistent system of equations for mass operator (18)
and for one-particle Green function (4). In order to
solve this system, we must also specify the spectral
density of boson excitations, which is determined by
the retarded commutator Green function .

In the lowest order in interband hybridization, we
can introduce independent Green functions for the sub-
band of singlet and one-hole states. For definiteness, we
will consider the case of p-type doping (n > 1), when
the Fermi level lies in the upper subband (µ ≈ ∆). Tak-
ing into account the relations obtained in the MFA for
the one-particle excitation spectrum (11) in the normal
phase and (17) for the gap, we obtain the Green func-
tions for the singlet band in the form of a 2 × 2 matrix:

(20)

where τ0, τ3, and τ1 are the Pauli matrices. In accor-

dance with relation (19), the normal ( (q, ω)) and

anomalous ( (q, ω)) components of the mass opera-
tor for the singlet subband have the form

(21)

(22)

The kernel of the integral equation has the same form
as in the Eliashberg theory:

(23)
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where the spectral density of boson excitations is deter-
mined by the corresponding dynamic susceptibilities
for charge and spin fluctuations:

(24)

Analogous expressions can also be obtained for the
Green function for the one-hole Hubbard subband

(k, ω) (see Appendix 2).

Similar computations carried out in [9] in the t–J
model for a single subband show that the complete
solution of the self-consistent system of equations for
mass operators (21) and (22) and Green functions (20)
for two subbands involves considerable computational
difficulties. For this reason, we will estimate the type of
the superconducting transition, confining ourselves to
the weak coupling approximation for the mass operator.
In this approximation, the kernel of integral equation
(23) for excitation energies (ω, ω1) close to the Fermi
energy can be approximated by the function

(25)

where |ω, ω1 | ≤ ωs ! W and ωs is the characteristic
energy of bosons responsible for pairing. In this
approximation, the effective interaction is determined
by the static susceptibility:

(26)

The weak coupling approximation (25) can be used for
estimating the contributions to mass operator (21), (22)

due to the Green functions (k, ω1) and (k, ω1)
of the singlet subband, in which the excitation energy
ω1 is small. The contributions to the mass operator from

the Green functions (k, ω1) and (k, ω1) of the
one-hole subband for excitation energies ω1 ≈ ∆ much
larger than the singlet subband width turn out to be neg-
ligibly small (on the order of (teff /∆)2) and can be
neglected.

Using the approximations adopted for the mass
operator of the Green function, we arrive at the equa-

χsc
±( ) q( ω ), χc q ω,( ) χc q ω,( )±=

=  Sq S q–〈 〉〈 〉 ω
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=  t pd
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tion for the superconducting gap in a singlet subband of
the BCS type:

(27)

where the superconducting gap is given by (q) =

(q) + (q, ω ≈ 0)/χ2. The energy of quasiparticle
excitations in the superconducting phase has the stan-

dard form %2(q) = (q) + | (q)|2]1/2, where we have
introduced the renormalized energy ε2(q) ≈ Ω2(q) +

(q, ω = ε2(q))/χ2 of one-particle excitations, mea-
sured from the Fermi energy: ε2(qF) = 0. In Eq. (27),
integration with respect to k for the exchange interac-
tion is carried out over the entire singlet subband, while
integration with respect to energy in the second term
proportional to λ(–)(k, q – k) is carried out near the
Fermi energy in a layer having a thickness on the order
of ±ωs .

A similar equation can also be obtained in the case
of n-type doping (n = 1 + δ ≤ 1), when the chemical
potential lies in the one-hole band (µ ≈ 0). In this case,
using the weak coupling approximation for the mass
operators and the Green function for the one-hole sub-

band, we arrive at the equation for gap (q) similar
to Eq. (27).

5. RESULTS AND DISCUSSION

In order to solve Eq. (27) for the gap, we must use
model (26) for static susceptibility. It is sufficient to
consider the contribution from spin fluctuations only,
the excitation energy of which is much smaller than the
energy of charge fluctuations: ωs ≈ J ! ωc ≈ W. In this
case, interaction (27) can be written in the form

λs(k, q – k) = |ν(k)|2χs(q – k), where we can use for
static spin susceptibility χs(q – k) the model proposed
in [27] on the basis of numerical calculations:

(28)

This model is determined by two parameters, viz., the
correlation length ξ and the characteristic energy
ωs ≤ J of antiferromagnetic spin fluctuations. Suscep-
tibility (28) has a peak for q = Q = (π, π), i.e., for the
antiferromagnetic wave vector for which 1 + γ(Q) = 0.
In this case, the value of susceptibility is determined by
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coefficient χ0(ξ), whose value can be found from the
normalization condition for spin S = 1/2 at a site:

This equations leads to

where

For large values of χ, we have χ0(ξ) ∝ ξ 2/lnξ.
Let us first consider an analytic estimate for the

superconducting transition temperature Tc , solving
Eq. (27) for the d-wave pairing with a gap in the form

Multiplying both sides of this equation by η(q) and
integrating with respect to q, we obtain the following
equation for Tc:

(29)

Here, while integrating the spin-fluctuation contribu-
tion, we have taken into account the fact that the spin
susceptibility χs(q – k) in Eq. (27) has a peak at q – k =
Q = (π, π); this enables us to obtain the estimate

and to introduce the effective spin-fluctuation interac-
tion constant

Passing to integration with respect to energy, we can
write Eq. (29) in the form

(30)
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where θ(x) = 1 for x < 1 and θ(x) = 0 for x > 1. Integra-
tion with respect to energy is carried out over the renor-

malized width  of the singlet subband with the
weighted density of states

for the exchange interaction and

for the spin-fluctuation interaction. Both densities of
state are normalized to unity:

W̃

Nd e( ) 1
N
---- η2 k( )δ e ε2 k( )–( )

k

∑=

Nsf e( ) 1
N
---- η2 k( ) 4γ k( )( )2δ e ε2 k( )–( )

k

∑=

eNd sf, e( )d
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+∞

∫ 1.=
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Fig. 1. Tc(δ) value (in units of teff) taking into account the
spin-fluctuation contribution (solid curve), exchange inter-
action (dashed curve), and both contributions (dotted
curve).
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It should be noted that the main contribution to the den-
sity of states for a two-dimensional lattice comes from
regions in the vicinity of the Van Hove singularities,
|k | = (0, π), (π, 0). While the exchange interaction
makes a large contribution (η2(k) = 4) in these regions,
the contribution of the spin-fluctuation interaction is
suppressed (γ2(k) = 0). Consequently, the effective cou-
pling constant Vex = JNd(0) for the exchange interaction
can be larger than the spin-fluctuation constant Vsf =

λsNsf(0) even for λs ≈ /ωs > J. Considering, in addi-
tion, that the range of spin-fluctuation pairing ωs is
much smaller than the region in which the exchange

interaction  operates, we conclude that the exchange
interaction ensures higher superconducting transition
temperatures.

Standard estimates in the logarithmic approxima-

tion for Tc ! ωs ! µ give  ≈ exp(–1/Vex)

for exchange pairing and  ≈ ωsexp(–1/Vsf) for spin-

fluctuation pairing. It should be noted that both  and

 vanish for n  0 due to the tendency to zero of
effective interactions Vex and Vsf proportional to the
density of states Nd, sf(e); this is in accordance with the
results obtained in [7]. When both contributions are
taken into account, it is convenient to write the expres-
sion for Tc in the form

(31)

introducing the effective coupling constant  for the
spin-fluctuation interaction; this constant increases
considerably when the exchange contribution is taken
into account. Indeed, assuming here for estimates that

µ = /2 ≈ 0.35 eV, ωs ≈ J ≈ 0.13 eV, and Vsf ≈ Vex = 0.2,

we obtain  ≈ 0.2 + 0.25 = 0.45 and Tc ≈ 160 K, while

the spin-fluctuation contribution alone gives  ≈
ωsexp(–1/Vsf) ≈ 10 K. Similar estimates can be
obtained for the case of n-type doping n ≤ 1. In the case
of the standard Hubbard model with equal parameters
of jumps between sites, we obtain identical Tc(δ)
dependences on the carrier concentration δ in view of
electron–hole symmetry. In the effective p–d model (2),
this symmetry is absent and the Tc(δ) dependence for
the subband of singlet states considered above will dif-
fer from that obtained for the subband of one-hole
states in the case of n-type doping.

These estimates were confirmed by the numerical
solution of Eq. (27) for the gap using direct summation
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in the k space. We sought solutions of the d-wave type
only, for which the superconducting gap satisfies the

condition (qx , qy) = – (qy , qx). Under this condi-

tion, the identity  = (1/N)  = 0
following from the algebra of Hubbard operators is sat-
isfied automatically. The determination of the super-
conducting transition temperature Tc(δ) in linearized
equation (27) was reduced to the search for maximal
eigenvalues of the discrete Fredholm integral equation,
and the k dependence of the gap was determined by the
corresponding eigenfunction of this equation. For the
parameters of the p–d model, we chose the following
values: ∆pd = 2tpd = 3 eV. teff ≈ K222ν1tpd ≈ 0.14tpd ≈
0.2 eV. For the exchange interaction, we assumed the
standard value J = 0.4teff from the t–J model. The
parameters in the model of spin susceptibility (28) were
such that the antiferromagnetic correlation length for
its characteristic value ξ = 3 and the energy ωs =
0.15 eV of spin correlations were assumed to be inde-
pendent of the hole concentration.

Figure 1 shows the results of numerical solution for
the superconducting transition temperature Tc (in units
of teff ≈ 0.2 eV) as a function of the hole concentration
δ = n – 1 in the singlet subband. The spin-fluctuation
interaction gives a value of the superconducting transi-
tion temperature equal approximately to one-third of
the value corresponding to the inclusion of both contri-
butions. A decrease in correlation length ξ leads to a
considerable reduction of the spin-fluctuation contribu-

tion to Tc . The maximal temperature  ≈ 0.12teff ≈
270 K is attained for optimal doping δopt ≈ 0.13. It is
well known that the weak coupling approximation (25)
leads to elevated values of Tc: the complete inclusion of
contributions due to the mass operator lowers Tc signif-
icantly (see, for example, the calculations made in [9}
in the t–J model). As δ  0, Tc also tends to zero
according to our calculations, although the possibility
of the emergence of antiferromagnetic instability and a
pseudogap in the quasiparticle spectrum accompanying
this instability [28] must be taken into consideration in
this case. The pseudogap also suppresses Tc . Taking
into account additionally a decrease in the correlation
length ξ with increasing hole concentration, we obtain
much lower values of Tc for large δ. On the whole, the
Tc(δ) dependence is in qualitative agreement with
experiment and with the results of simulation for the

t−J model [11]. Figure 2 shows the dependence (k)
of the superconducting gap on the wave vector k in the
first quarter of the Brillouin zone (0 ≤ kx , ky ≤ 1 in units
of π/a) for δ = 0.13 for three temperatures: T = 0 (a),
T = 0.5Tc (b), and T = 0.9Tc (c). The numbers and sym-
bols on isolines indicate the gap width and sign (+ or −).
The Fermi surface is shown by circles. Calculations
reproduce the d-wave symmetry of the gap, but with a
much more complicated dependence than in the simple

∆̃σ
22 ∆̃σ

22

Xi
σ2 Xi

σ2〈 〉 Xk
σ2X k–

σ2〈 〉k∑

Tc
max

∆̃
22
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model in the form (q) = (cosqx – cosqy). The
inclusion of the spin-fluctuation contribution alone
gives maximal values of the gap outside the Fermi sur-
face, which lies in the vicinity of the antiferromagnetic
Brillouin zone in the case of optimal doping (see
Fig. 2): |kx | + |ky | = π. This is due to the weakness of the
spin-fluctuation interaction in the vicinity of the anti-
ferromagnetic Brillouin zone, where γ2(k) = 0 in accor-
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Fig. 2. Dependence of gap width (k) on wave vector k
in the first quarter of the Brillouin zone (0 ≤ kx , ky ≤ 1 in
units of π/a) for δ = 0.13 at three temperatures: T = 0 (a), T =
0.5Tc (b), and T = 0.9Tc (c). The numbers and symbols indi-
cate the gap width and sign (+ or –). The Fermi surface is
shown by circles.
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dance with the remark made by Schrieffer [29] during
the discussion of phenomenological models of spin-
fluctuation pairing. Consequently, the inclusion of the
exchange contribution is significant for attaining high
values of Tc in the case of a “large” Fermi surface.

In conclusion, we describe the main results of our
calculations in the framework of the p–d Hubbard
model (2). The exchange interaction associated with
interband jumps is the most important for supercon-
ducting pairing of the d-wave type. Retardation effects
for this mechanism are insignificant; consequently, it
can be approximated by the instantaneous exchange
interaction as in the t–J model. Pairing of electrons
(holes) in this mechanism is precisely caused by the
decrease in the electron kinetic energy in the presence
of strong correlations (exclusion of double filling of
quantum states) due to interband jumps in a lattice with
a short-range antiferromagnetic order. It was noted by
Anderson [30] that there is no such mechanism in phe-
nomenological spin-fermion models disregarding
strong correlations. The spin-fluctuation pairing associ-
ated with scattering from spin fluctuations makes a
decisive contribution to the increase in the supercon-
ducting transition temperature, but is manifested effec-
tively only for a high intensity of spin fluctuations. The
obtained results are confirmed by calculations made in
the framework of the t–J model [9]. However, the more
complicated nature of superconducting correlations in
the Hubbard model in the MFA as compared to the t–J
model (cf. formulas (16) and (17)) requires the inclu-
sion of dynamic processes associated with high-energy
interband jump. This apparently explains the discrep-
ancy in the results obtained in numerical calculations
for the t–J model [11] and for the Hubbard model [12],
which take into account only a limited number of
excited states.

The calculations made here involve certain approxi-
mations. In order to refine the obtained results, a self-
consistent computation should be made for Green func-
tion (4) and for mass operator (18), as was done in [9]
for the t–J model. It is also necessary to derive expres-
sion (24) for the dynamic spin susceptibility without
resorting to the weak coupling approximation (25). Such
computations will be carried out in future.
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APPENDIX 1

In order to calculate the one-particle excitation
matrix (8), we must consider the equations of motion
for the Hubbard operators:

(32)

(33)

(34)

Here, operators  describe spin and charge fluctua-
tions:

(35)

(36)

(37)

After carrying out required commutations, we obtain
the one-particle excitation matrix in form (10) with the
components

Renormalization of the jump parameters is determined
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∑
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by the correlation functions

where the static correlation function for particles and

spins has the form  = (1/4)〈NiNj 〉 + 〈SiSj 〉 . One-site
anomalous correlation functions in Eq. (14) are defined
as

APPENDIX 2

While calculating mass operator (9), we used the
following functions for irreducible operators describing
scattering of one-particle excitations from spin and
charge fluctuations (taking into account equations of

motion (32)–(34)):  =  –

,  =  –

. Here, δ  =  – .

As a result, the mass operator in representation (18)
assumes the form

(38)

Computation of these functions in the approximation of
nonintersecting diagrams leads to the following expres-

χ2Kij
22 K22χ ij

cs K11 Xi
02X j

20〈 〉 ,–=

χ1Kij
11 K11 χ ij

cs 1 n–+( ) K22 Xi
02X j

20〈 〉 ,–=

χ2Kij
21 2σK12 χ ij

cs 1
2
---n– Xi

02X j
20〈 〉– 

  ,=

χ ij
cs

χ2bσ
22 Vim K22 Xi

σ2Xm
σ2〈 〉 Xi

σ2 Xm
σ2〈 〉–( ){

m i≠
∑=

– 2σK12 Xi
σ2Xm

0σ〈 〉 Xi
σ2Xm

0σ〈 〉+( ) } ,

χ1bσ
11 – Vim K11 Xi

0σXm
0σ〈 〉 Xi

0σXm
0σ〈 〉–( ){

m i≠
∑=

– 2σK12 Xi
0σXm

σ2〈 〉 Xi
0σXm

σ2〈 〉+( ) } ,

χ2bσ
21 Vim K22 Xi

0σXm
σ2〈 〉 Xi

0σXm
σ2〈 〉+( ){

m i≠
∑=

– 2σK12 Xi
0σXm

0σ〈 〉 Xi
0σXm

0σ〈 〉–( ) } .

Zi σ 2, ,
ir( ) til

22δBiσσ'
22 Xl

σ'2(
l i σ',≠∑

2σtil
21δBiσσ'

21 Xl
0σ' ) Zi 0 σ, ,

ir( ) til
11δBiσσ'

11 Xl
0σ'(

l i σ',≠∑
2σtil

12δBiσσ'
12 Xl

σ'2 ) Biσσ'
αβ Biσσ'

αβ Biσσ'
αβ〈 〉

M̂ijσ ω( )
Zi

σ2( ) ir( )

Zi
0σ( ) ir( ) 

 
 

Z j
2σ( ) ir( )

Z j
σ0( ) ir( )( )

ω

,=

Φ̂ijσ ω( )
Zi

σ2( ) ir( )

Zi
0σ( ) ir( ) 

 
 

Z j
σ2( ) ir( )

Z j
0σ( ) ir( )( )

ω

.=
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sion for the mass operator matrix:

where the coefficients for the Green functions are
defined by the matrices

The explicit form of the mass operator for the singlet
band in the diagonal approximation is given in
Eqs. (21) and (22).
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Abstract—The problem of resonant tunneling through a double-barrier nanostructure in a strong alternating
electric field is solved completely. To this end, a perturbation method is proposed. Electron wavefunctions and
a nonlinear response are obtained in analytical form over wide ranges of field frequencies and amplitudes, using
the perturbation method and the semiclassical approximation. The semiclassical expression for the current
allows for contributions of all orders with respect to the field, i.e., electron transitions with the emission and
absorption of any number of photons. This enables one to find the limits of resonant current and output power.
The case of "ω @ Γ is considered, where " is the rationalized Planck constant, ω is the field frequency, and Γ
is the resonance level width. It is established that the maximum resonant current is approximately as high as
half the resonant constant current. For the quantum regime of oscillation, the output power can be
106−107 W/cm2 at ω = 1013 s–1 and the output power rises with ω, in contrast to the well-known classical
regime, where the power decreases rapidly. © 2003 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Quantum interference of electrons forms the basis
of many fundamental phenomena. One of these phe-
nomena is resonant tunneling, i.e., the zero-reflection
transport of electrons with the energy ε through a dou-
ble-barrier structure when ε is equal to the resonance
energy εR; if ε differs from εR by an amount larger than
the width Γ of the resonance energy level, then the
reflection grows and the current decreases sharply.

The current was first calculated by Esaki and
Tsu [1]. Later, Chang et al. [2] did this for a more real-
istic structure, viz., the resonant-tunneling diode
(RTD). Experimentally, they observed a resonant
dependence of current I0 on voltage V and demon-
strated the existence of negative differential conduc-
tance. These results highlighted the potential of the
RTD as an amplifier or oscillator [3, 4]. From a theoret-
ical viewpoint, the findings raised the problem on reso-
nant tunneling in an applied alternating field and an ac
response to the field [5–14].

When an alternating electric field Ecos(ωt) is
applied, the tunneling is accompanied by the absorption
and emission of photons "ω. Radiative transitions
occur between the states with quasienergies ε + n"ω,
where n = 0, ±1, ±2, …. It is reasonable to expect that
the intensity of transitions will greatly increase if one of
the quasienergy levels coincides with the resonance
energy εR: ε – εR = n"ω. Spatiotemporal resonance will
thus arise, especially when ω = δ @ Γ; from here on, we
set " = 1. If the resonance condition ε – εR ≡ δ = ω is
observed, the in-phase current Ic(x, t) = Ic(x)cos(ωt)
must be strongest. The resonant increase in the alternat-
1063-7761/03/9702- $24.00 © 20343
ing current for ω = δ @ Γ was revealed theoretically
in [9].

In early theoretical investigations, the nonresonant
regime was considered, i.e., the case δ < Γ, with the
structure biased into the region of negative differential
conductance in the current–voltage characteristic (δ is
set by adjusting the bias voltage); examples of this are
numerical and analytical studies [5–8] and references
therein. In addition, the focus of research was mostly on
the collector current Ic(a), where a is the width of the
quantum well (QW) [5, 6, 14]. It has been found that
with ω > Γ the ac amplitude rapidly decreases with
increasing ω and the current can even change its sign.
Accordingly, it has been concluded that the cutoff fre-
quency of the RTD is approximately equal to Γ (see,
e.g., [8]).

However, the last conclusion is inconsistent with the
above physical model. In fact, this conclusion goes
against experiments such as those of Sollner et al. [3]
and Brown et al. [4], who detected resonance in an RTD
in a 2.5-THz laser field and observed oscillations at fre-
quencies of up to 712 GHz. Also note that analytical
studies tend to follow semiphenomenological
approaches that do not yield any explicit solution to the
Schrödinger equation [5] or treat the problem by tun-
neling Hamiltonian [6] or similar methods.

In this connection, it should be pointed out that the
system of electrons which perform resonant tunneling
and interact with an alternating field is extremely sensi-
tive to the energy of electrons injected from the collec-
tor and to the boundary conditions. Therefore, an
attempt was made to solve the problem in a rigorous
003 MAIK “Nauka/Interperiodica”
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quantum-mechanical formulation for a very simple
model of the RTD [9, 10]. Explicit formulas for the cur-
rent in the presence of a weak alternating field were
derived by finding exact analytical solutions to the
Schrödinger equation subject to open-system boundary
conditions. It has been shown that (i) the current ampli-
tude Ic(x) inside the QW (0 ≤ x < a and the so-called
reduced current Ic (see Eq. (31)) exhibit a resonance
peak at ω = δ and (ii) the two currents retain their signs
over the whole frequency range of interest. The reso-
nance arises if the electron energy (and hence the bias
voltage) satisfies the condition δ > Γ. This regime was
termed the quantum regime [9]. Thus, the model of res-
onant tunneling in an alternating field appears to be
physically consistent. It essentially implies that the
RTD can oscillate at frequencies much higher than Γ if
operated in the quantum regime, since Ic determines
field amplification.

By contrast, the collector current Ic(a) (the current
outside the QW) has been found to exhibit no resonance
and to change its sign at ω ≥ Γ [9, 10]. It was this cur-
rent that was calculated in previous studies, such as [5,
6, 8]. Most experimental and theoretical investigations
dealt with the classical regime with a maximum abso-
lute value of differential conductance, in which case
Ic(x) is maximum at ω = 0 and decreases as rapidly as
~1/ω4 with increasing ω when ω @ Γ [9, 10].

In the above-mentioned works, wave functions and
currents were calculated in a linear approximation. The
aim of the present study is to derive analytical formulas
for wave functions and currents in the RTD in a strong
field over a wide frequency range. The inclusion of cur-
rent nonlinearity is required to calculate the output
intensity of an oscillating RTD. An approach will be
proposed that makes it possible to find nonlinear cor-
rections of any order to the wave function and current.
This approach will be used to find a current propor-
tional to the third power of the ac field.

The central result of this study is a semiclassical for-
mula of the ac response in the quantum regime for
fields in a wide frequency range and with magnitudes

α2 α1

εR ε – "ω

ε – 2"ω

ε – 3"ω

ε + "ω

ε + 2"ω

ε = εR + δ
q2 δ

"ω

"ω

"ω

"ω

"ω

0 a x

Figure.
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eEa up to a level much higher than ω @ Γ, where e is
the electron charge and E is the field amplitude. The
expressions include terms of any order in the field
amplitude, thus taking into account electron transitions
with the emission and absorption of any number of pho-
tons. The formalism enables one to find the limits of
resonant current and output intensity. In particular, it
will be shown that the current at the resonant frequency
ω = δ @ Γ attains a very high value of about half the
constant resonance current I0 at δ = 0 if the field satis-
fies the condition eEa = 2.8ω.

The maximum output intensity in the limit ω ! Γ
for the classical and the quantum regime will be esti-
mated. This will also be done in the limit ω @ Γ. In par-
ticular, it will be demonstrated that for ω = 1013 s–1, the
output power can reach values as high as 106−107 W/cm2

if the RTD is operated in the quantum regime. For the
well-known classical regime, the output intensity will
be shown to sharply decrease with increasing fre-
quency, in agreement with experimental results [4].

This paper is organized as follows. Section 2 gives
basic equations, boundary conditions, and expressions
for currents in terms of wave functions. Section 3 deals
with the linear approximation. Sections 4 and 5 present
the perturbative calculations of nonlinear corrections to
wave functions and current amplitudes, respectively. In
Section 6, the behavior of a nonlinear response is ana-
lyzed. In Section 7, the wave function is determined. In
Section 8, the nonlinear ac response to a strong field is
calculated. The general formulas are used in Section 9
to show that resonant tunneling exists over a wide range
of fields. The limiting values of field and output powers
are estimated in Section 10.

2. FORMULATION OF THE PROBLEM

Let us explore coherent tunneling within the model
used in the earlier study [9]. To simplify the presenta-
tion, we consider a one-dimensional QW (or quantum
dot) with potential barriers in the form of the delta func-
tion, located at x = 0 and x = a (see figure). A stationary
electron flux proportional to q2 comes to the QW from
x = –∞, with ε ≈ εR. Inside the QW, there is an applied
electric field E(t) of angular frequency ω with the
potential

(1)

The electron wave function obeys the Schrödinger
equation

(2)

U x t,( ) 2U x( ) ωt( ),cos=

U x( )
xU , 0 x a,< <
Ua, x a, U> eE/2.–=




=

i
∂Ψ
∂t

-------- ∂2Ψ
∂x2
----------–=

+ α δ x( ) δ x a–( )+[ ]Ψ U x t,( )Ψ,+
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where " = 2m = 1. We seek a steady-state solution of
Eq. (2) in the form [9]

(3)

Partial wave functions ψn(x) refer to electrons of quasi-
energies ε + nω and satisfy the infinite system of equa-
tions

(4)

If the field is weak in the sense that Ua/Γ ! 1,
series (3) can be truncated when solving system (4). In
a linear approximation with respect to the field Ua,

three wave functions will suffice:  and . In this
context, one can calculate the constant current I0, the
polarization in-phase current Ic(x, t), and the reactive
current Is(x, t),

(5)

in the linear approximation.

In calculating the nonlinear ac response, we will
focus on third-order corrections with respect to the
field. Accordingly, we will be interested in the wave

functions  ≡  and  ≡ , which vary as

(Ua)2, and the wave functions  ≡ , which vary
as (Ua)3. The partial wave functions obey the equations

(6)

(7)

(8)

(9)

As in [9], we set the boundary conditions

Ψ x t,( ) ψn x( )
n

∑ it ε nω+( )–[ ] ,exp=

n 0 1 2 … .,±,±,=

ψn'' pn
2ψn+ U x( ) ψn 1+ ψn 1–+( ),=

ψn''
d2ψn

dx2
-----------,≡

pn
2 p2 nω, ε+ p2.= =

ψ0
0( ) ψ 1±

1( )

Ic x t,( ) Ic x( ) ωt( ), Is x t,( )cos Is x( ) ωt( ),sin= =

ψ±2 ψ̃ 2± ψ0
2( ) ψ̃0

ψ 1±
3 ψ̃ 1±

ψ0
'' 0( ) p2ψ0

0( )+ 0,=

ψ±1
'' 1( )

p 1±
2 ψ 1( )

1( )+ U x( )ψ0
0( ),=

ψ̃0'' p2ψ̃0+ U x( ) ψ+1
1( ) ψ–1

1( )+[ ] ,=

ψ̃ 2±'' p 2±
2 ψ̃ 2±+ U x( )ψ 1±

1( ),=

ψ̃ 1±'' p 1±
2 ψ̃ 1±+ U x( ) ψ̃0 ψ̃ 2±+[ ] .=

ψ0
0( ) 0( ) 1 β–( )

ψ0
' 0( )

0( )
ip

-----------------+ q,=
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
(10)

(11)

These conditions describe the incoming and the outgo-
ing flux of electrons, their reflection from the barriers,
and departure to region x > a.

Currents I0 and Ic(x) can be expressed in terms of the
partial wave functions as

(12)

(13)

where

(14)

(15)

(16)

(17)

Here, I0 is the direct current,  is the linear current,
I101 and I102 are the nonlinear currents that correspond
to transitions between energy levels ε0 and ε0 ± ω, and
I2 is the nonlinear current that corresponds to transi-
tions between energy levels ε0 ± ω and ε0 ± 2ω.

3. FIRST APPROXIMATION

Wave functions  and current amplitudes Ic(x)
and Is(x) linear in field were found in [9]. The expres-
sions for the currents were presented in simple and
clear form by introducing the small parameters ω/εR
and Γ/εR, which fit naturally into the context of the
RTD.

ψ0
0( ) a( ) 1 β–( )

ψ0
' 0( )

a( )
ip

-----------------– 0, β α
ip
-----,= =

ψn
1( ) 0( ) 1 βn–( )

ψn
' 1( )

0( )
i pn

-----------------+ 0,=

ψn
1( ) a( ) 1 βn–( )

ψn
' 1( )

a( )
i pn

-----------------– 0,=

ψ̃n 0( ) 1 βn–( ) ψ̃n' 0( )
i pn

-------------+ 0,=

ψ̃n a( ) 1 βn–( ) ψ̃n' a( )
i pn

-------------– 0, βn
α

i pn

-------.= =

I0 ie ψ0*ψ0' ψ0 ψ0*( )'–[ ] ,–=

Ic x( ) I1
1( ) x( ) I 1–

1( ) x( )+( ) I101 x( ) I 101– x( )+( )+=

+ I102 x( ) I–102 x( )+( ) I2 x( ) I 2– x( )+( ),+

In
1( ) ie ψ0*ψn

' 1( ) ψ0' ψn
1( )*+( )  –  c.c. [ ] ,–=

I 101± ie ψ0
0( )*ψ̃ 1±' ψ̃ 1±* ψ0

' 0( )
+( )  –  c.c. [ ] ,–=

I 102± ie ψ̃0*ψ 1±
' 1( ) ψ 1±

1( )ψ̃0'+( )  –  c.c. [ ] ,–=

I 2± ie ψ 1±
1( )*ψ̃ 2±' ψ̃ 2±* ψ 1±

' 1( )
+( ) – c.c.[ ] .–=

In
1( )

ψn
1( )
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In this section we will derive the main results of
study [9] in a simpler way, which eliminate terms
diverging for ω  0 The new approach also enables
one to find nonlinear corrections of any order.

Equations (6)–(9) subject to boundary conditions (10)
and (11) have the solution

(18)

(19)

(20)

It has been shown [9] that the quantities

(21)

can be decomposed into two terms,

(22)

where the terms  and  are responsible for diver-
gence at ω  0. These quantities can be written in the
form

(23)

(24)

ψ0
0( ) x( ) A px–( )exp B ipx–( )exp+=

≡ γ0 px( )cos iδ0 px( ),sin+

∆0A q 2 β–( ) 2ipa–( ), ∆0Bexp qβ,= =

∆0
4
Γ
--- iδ Γ–( ), δ≈ ε εR, Γ–

4 p3

α2a
---------,= =

ψn
1( ) An i pnx( )exp Bn i pnx–( )exp+=

–
Ux
ωn

-------ψ0
2U

ω2
-------ψ0' ,–

∆nAn qn 2 βn–( ) 2i pna–( )exp βnq̃n,+=

∆nBn βnqn 2 βn–( )q̃n, ωn+ nω,–= =

∆n
4
Γ
---= i δ nω+( ) Γ–[ ] ,

qn
2Uip

ωn
2

------------- A 2 βn–( ) βnB+[ ] ,=

q̃n
2Uip

ωn
2

------------- i p pn–( )a[ ]exp–=

× βnA 2 βn–( )B 2i pna–( )exp+[ ] .

γn An Bn, δn+ An Bn–= =

γn γn
1( ) γn

2( ), δn+ δn
1( ) δn

2( ),+= =

γn
1( ) δn

1( )

γn
1( ) 2Uip

ωn
2

-------------δ0, δn
1( ) 2Uip

ωn
2

-------------γ0,= =

γn
2( ) UαAa2

p2∆n
-----------------–

4iUa
Γ∆0∆n

---------------,–= =

δn
2 βn 1–( )γn

2( ).=
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Using the expressions for  and , we obtained
in [9] the following expressions:

(25)

(26)

(27)

From here on, except for Section 10, we assume that
Q = 1.

It is difficult to compensate for divergent terms in
the current, especially for nonlinear corrections. Never-

theless, it was shown [10] that  can be represented
in a much simpler form by compensating for terms that
diverge for ω  0. Specifically, we use decomposi-
tion (22) and expand functions cos(pnx) and sin(pnx)

appearing with  and  into a series in ω/p2 ! 1;
as a result, we change from Eqs. (19) to

(28)

Substituting Eqs. (28) and (18) into relation (14), we
arrive at (27) in a much simpler way.

Equation (27) indicates that in the high-frequency
limit, the current amplitude varies linearly with x since
ω/εR is small. It should be emphasized that currents
Ic(0), Ic(a), and the reduced current Ic that determines
amplification in the RTD exhibit essentially different
frequency dependences:

(29)

(30)

(31)

ψ0
0( ) ψn

1( )

I0
Γ2Q

Γ2 δ2+
-----------------,=

In
1( ) x( ) ep Kn

1( ) c.c.+( ) p pn–( )x[ ]cos{=

– i Fn
1( ) c.c–( ) p pn–( )x[ ]sin } ,

Kn
1( ) δ0*γn γ0*δn, Fn+ δ0*δn γ0*γn,+= =

Ic
1( ) x( )

UaΓ2δQ

δ2 Γ2+( ) Γ2 δ ω+( )2+[ ] Γ 2 δ ω–( )2+[ ]
------------------------------------------------------------------------------------------------≈

× δ2 ω2 Γ2+ +( ) ω22x
a

------– , Q q2 p.=

ψn
1( )

γn
1( ) δn

1( )

ψn
1( ) γn

2( ) pnx( )cos iδn
2( ) pnx( ).sin+=

Ic 0( ) Ic
δ2 Γ2 ω2+ +

δ2 Γ2+
-----------------------------,=

Ic a( ) Ic
δ2 Γ2 ω2–+

δ2 Γ2+
-----------------------------,=

Ic
1
a
--- Ic x( ) xd

0

a

∫=

=  
UaΓ2δ

Γ2 δ ω+( )2+[ ] Γ 2 δ ω–( )2+[ ]
--------------------------------------------------------------------------.
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Expressions (29)–(31) contain the same resonant
denominators; distinct numerators reflect the competi-
tion among the contributions of radiative transitions
between electron states (see [10] for details). In partic-
ular, the numerator for collector current Ic(a) decreases
sharply at resonance, ω = δ; more importantly, Ic(a)

changes its sign at ω >  and exhibits no peak
(resonance) at ω ≈ δ. This behavior can be attributed to
the absence of constructive interference outside the
QW. Recall that only collector current Ic(a) was calcu-
lated in [5, 6, 8]. Those results suggested that the cutoff
frequency is approximately equal to Γ [8].

It follows from Eqs. (27) and (31) that current Ic(x)
inside the QW and, in particular, reduced current Ic ≡
Ic(a/2) (determining the amplification and generation of
the ac field in the RTD) retain their signs over the whole
frequency range and have two peaks, which are located
at ω = 0 and ω2 = δ2 + Γ2. The former is related to the
classical regime and the latter to the quantum regime. It
is the quantum regime that corresponds to resonant tun-
neling in an alternating field.

Thus, it is essential to properly take into account the
coordinate dependence reflecting the interference in the
alternating field. The existence of the dependence fol-
lows from the continuity equation

(32)

Using relations (28) and (18), it is easy to show that the
model exactly obeys Eq. (32):

(33)

4. NONLINEAR CORRECTIONS 
TO THE WAVE FUNCTION

A convenient method for obtaining nonlinear cor-

rections can be constructed by decomposing  into
a sum of two terms with renormalized coefficients.
First, let us determine . Equation (8) and boundary
conditions (11) have the same form as their counter-

parts for  with  replaced by  on the right-
hand side. The solution to Eq. (8) is

(34)

δ2 Γ2+

Ic 0( ) Ic a( )–
t∂

∂ ψ 2 x.d

0

a

∫=

Ic
1( ) 0( ) Ic

1( ) a( )–
2ω2

δ2 Γ2+
-----------------Ic

1( ).=

ψn
1( )

ψ̃2

ψn
1( ) ψ0

0( ) ψ1
1( )

ψ̃2 A2 i p2x( )exp B2 i p2x–( )exp+=

+
Ux
ω21
--------ψ1

1( ) 2U

ω21
2

--------ψ1
' 1( )

,–

ω21 p1
2 p2

2– –ω,= =
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where coefficients A2 and B2 satisfy the system of equa-
tions

(35)

These equations could be obtained from those for 

and  by the substitutions p  p1, A  A1, and
B  B1 on the right-hand side. Accordingly, we can
carry out the separation and compensation of the
diverging expression for γ2 and δ2 as in Section 3, which
yields

(36)

(37)

Finally, we substitute the expressions for A1 and 

into the formula for  to obtain

(38)

In a similar way, we derive

(39)

(40)

For  the problem can be formally reduced to the
above if we seek a solution in the form of the sum

where  and  correspond to  and ,

A2 2 β2–( ) β2B2– q2=
2Ui p1

ω21
2

--------------- A1 2 β2–( ) β2B1+[ ] ,≡

–A2β2 2 β2–( )B2 2i p2a–( )exp+ q̃2=

≡
2Ui p1

ω21
2

--------------- A1β2 2 β2–( )B1 2i p1a–( )exp+[ ]–

× i p1 p2–( )a[ ] .exp

A1
1( )

B1
1( )

ψ̃2 γ̃2 p2x( )cos iδ̃2 p2x( ),sin+=

δ̃2 γ̃2 β2 1–( ), γ̃2
Uα A1a2

p1
2∆2

--------------------,–= =

A1

β1

2
-----γ1

2( ).=

γ1
2( )

γ̃2

γ̃2 8
Ua
Γ

------- 
 

2 1
∆0∆1∆2
------------------.=

ψ̃ 2– γ 2– p 2– x( )cos iδ 2– p 2– x( ),sin+=

δ̃ 2– γ̃ 2– β 2– 1–( ),=

γ̃ 2– 8
Ua
Γ

------- 
 

2 1
∆0∆ 1– ∆ 2–
----------------------.=

ψ̃0

ψ̃0 ψ̃01 ψ̃0–1,+=

ψ̃01 ψ̃0–1 ψ+1
1( ) ψ 1–

1( )
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respectively. We thus arrive at

(41)

(42)

For  and , we follow the same approach to
obtain

(43)

(44)

(45)

(46)

Conceptually, it is not difficult to find corrections of any
order. It is important to note that any such correction is
finite for ω  0.

5. THIRD-ORDER NONLINEAR RESPONSE

We will seek contributions to  separately so as
to clarify the physical meaning of each contribution
(another reason is that the expressions will be rather awk-
ward). We start with current I2(x). Substituting the
expression for  into formula (17), we represent I2(x) as

(47)

which is similar to linear current Eq. (26). From here on
we use the notation

Using Eqs. (37) and (38), we obtain the current

(48)

ψ̃0 γ0 px( )cos iδ px( ),sin+=

δ̃0 γ̃0 β 1–( ),=

γ̃0 8
Ua
Γ

------- 
 

2 1

∆0
2

----- 1
∆1
----- 1

∆ 1–
-------+ 

  .=

ψ̃1 ψ̃ 1–

ψ̃1 γ̃1 p1x( )cos iδ̃1 p1x( ),sin+=

δ̃1 γ̃1 β 1–( ),=

γ̃1 16i
Ua
Γ

------- 
 

3 1
∆0∆1
----------- 1

∆0∆1
----------- 1

∆0∆ 1–
-------------- 1

∆1∆2
-----------+ + 

  ,=

ψ̃ 1– γ̃ 1– p 1– x( )cos iδ̃ 1– p 1– x( ),sin+=

δ̃ 1– γ̃ 1– β 1– 1–( ),=

γ̃ 1– 16i
Ua
Γ

------- 
 

3 1
∆0∆ 1–
--------------=

× 1
∆0∆1
----------- 1

∆0∆ 1–
-------------- 1

∆ 1– ∆ 2–
----------------+ + 

  .

Ic
3( ) x( )

ψ̃2

I2 x( ) ep K̃ c.c+( ) p1 p2–( )x[ ]cos{=

– i F̃2 c.c.–( ) p1 p2–( )x[ ]sin } ,

K̃2 δ1*γ̃2 γ1*δ̃2, F̃2+ δ1*δ̃2 γ1*γ̃2.+= =

I2 x( ) Φ2 ω( ) δ 2ω+( ) ωx
a
---– , I–2 x( ) I2 x ω–,( ),= =

Φ2 ω( )

=  Ua( )3Γ2

8 δ2 Γ2+( ) Γ2 δ ω+( )2+[ ] Γ 2 δ 2ω+( )2+[ ]
-------------------------------------------------------------------------------------------------------– ,
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so that reduced current I2 and collector current I2(a) are
expressed as

(49)

(50)

In a similar manner, we represent the other contribu-
tions:

(51)

(52)

(53)

(54)

(55)

(56)

Accordingly, the reduced and collector currents I101 and
I101(a) are given by

(57)

(58)

We see from Eq. (56) that the sum I102 + I–102 is indepen-
dent of x. The formulas presented in this section
describe a third-order nonlinear ac response of the RTD
in the entire frequency range of interest and for any
coordinate 0 ≤ x ≤ a.

6. ANALYSIS OF THE BEHAVIOR
OF THE NONLINEAR RESPONSE

Let us analyze the results obtained in the entire fre-
quency interval. Initially, we examine the response in
the limit ω ! Γ, in which case the current is indepen-

I2 ω( ) Φ2 ω( ) δ 3
2
---ω+ 

  ,=

I2 a ω,( ) Φ2 ω( ) δ ω+( ).=

I101 x( )
Ua( )3Γ2

8 δ2 Γ2+( )
-------------------------Π ω( ) δ ωx

a
---+ 

  ,=

I 101– ω( ) I101 –ω( ),=

Π ω( ) Π1 ω( ) Π2 ω( ) Π3 ω( ),+ +=

Π1 ω( )
3δ2 Γ2– ω2 4δω+ +

δ2 Γ2+( ) Γ2 δ ω+( )2+[ ] 2
-------------------------------------------------------------,=

Π2 ω( ) Π2 ω–( )=

=  
3δ2 Γ2– ω2–

δ2 Γ2+( ) Γ2 δ ω+( )2+[ ] Γ 2 δ ω–( )2+[ ]
------------------------------------------------------------------------------------------------,

Π3 ω( )
3δ2 Γ2– 5ω2 8δω+ +

Γ2 δ ω+( )2+[ ] 2 Γ2 δ 2ω+( )2+[ ]
--------------------------------------------------------------------------------,=

I102 ω( ) I–102 ω( )+

=  
Ua( )3Γ2δ

2 δ2 Γ2+( ) Γ2 δ ω+( )2+[ ] Γ 2 δ ω–( )2+[ ]
----------------------------------------------------------------------------------------------------.–

I101
Ua( )3Γ2Π ω( ) δ ω/2+( )

8 δ2 Γ2+( )
---------------------------------------------------------,=

I101 a( )
Ua( )3Γ2Π ω( ) δ ω+( )

8 δ2 Γ2+( )
----------------------------------------------------.=
AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003



RESONANT TUNNELING AND A NONLINEAR RESPONSE IN RF FIELDS 349
dent of x. Adding up the current components given
by (51), (56), and (48), we find

(59)

or, due to Eq. (27),

(60)

Notice that the nonlinear correction essentially changes
its sign at δ = Γ. If δ < Γ, the second right-hand sum-
mand is positive (Ua < 0) and amplification of Ic
decreases with increasing field magnitude. If δ > Γ, the
amplification of Ic grows with the field. Equation (60)
was first derived in [11] by another method (see below).
It agrees with the numerical results presented in [12].

Let us now proceed to the other limiting case, ω @
Γ. We start with the classical regime, when δ corre-
sponds to the maximal value of the negative differential
conductance. A fairly lengthy calculation yields the fol-
lowing expression for reduced current:

(61)

More interesting is the behavior of the reduced cur-
rent in the high-frequency quantum regime with the
quasi-resonance condition ω ≈ δ @ Γ. It follows
from (48), (51), and (56) that

(62)

Two features of Eq. (62) are worth noting. First, unlike
in formula (61) for the classical regime, the linear term
varies as 1/ω and not as 1/ω4; this indicates consider-
able amplification even for ω @ Γ. Second, with
increasing ω, the nonlinear term decreases (as ~1/ω2).

As regards the collector current amplitude (see
Eq. (30)), it changes its sign near the resonant fre-
quency, so it is sensitive to the choice of δ. If δ = ω, then
Eqs. (48), (51), and (56) imply that

(63)

For δ = , we have

(64)

Ic
3( ) 3δ Ua( )3Γ2 Γ2 δ2–( )

2 δ2 Γ2+( )4
-------------------------------------------------–≈

Ic
δUaΓ2

δ2 Γ2+( )2
------------------------ 1 3 Ua( )2 Γ2 δ2–( )

2 δ2 Γ2+( )2
---------------------------------------– .=

Ic
UaΓ2δ

ω4
----------------- 1 15

U
4ω
------- 

 
2

– , δ Γ ! ω.∼=

Ic
Ua
4ω
------- 1

U
4ω
------- 

 
2

– , δ ω.≈≈

Ic a( )
UaΓ2

4ω3
------------- 1 Ua( )2

6ω2
--------------– .≈

ω2 Γ2+

Ic a( )
UaΓ2

2ω3
------------- 3

1
3
--- Ua

ω
------- 

 
2

– .≈
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It is seen that the collector current, as well as the
reduced current, decreases as rapidly as ~1/ω3 with
increasing ω (cf. Eq. (61)).

7. WAVE FUNCTIONS 
IN A STRONG FIELD

The method proposed in Section 4 enables one to
derive the wave-function of any order for a wide fre-
quency range and to a desired accuracy. On the other
hand, the method requires the summation of a series if
the RTD operates in a strong field, Ua @ Γ. In the case
when Ua @ ω and Ua @ Γ, the wave functions can be
found in the semiclassical approximation. Indeed, the
applicability conditions in this case are given by the
inequalities

(65)

which are always satisfied for RTDs. The semiclassical
approximation was employed in [13, 14], where the
wave function was calculated only in the collector
region x ≥ a. However, the wave function and current
Ic(x) were not determined in the most interesting region
0 ≤ x ≤ a. Moreover, the authors of [13, 14] used the
QW model with semiclassical barriers, in which
numerical computations are extremely cumbersome
only for large numbers n of resonance levels.

With our model the potential barriers are in the form
of the delta function (see Section 2), the tunneling prob-
lem is exactly solvable for a zero applied field, and the
semiclassical approximation is used for an alternating
field only. The strategy enables one to set boundary
conditions in a simpler and rigorous manner for any n.
It provides an exactly solvable equation of tunneling.
The problem on resonant tunneling in an electromag-
netic field can thus be solved completely in the case ω <
εR and Ua < εR.

For a strong applied field, we seek steady-state solu-
tions Ψ1(x, t), Ψ2(x, t), and Ψ3(x, t) of the Schrödinger
equation (2) in three respective regions: (i) x ≤ 0, (ii) 0 ≤
x ≤ a, and (iii) a ≤ x. The boundary conditions are

(66)

(67)

These conditions represent the continuity of wave func-
tions and the discontinuity of their derivatives at x = 0
and x = a. Expand the wave function for region (ii) as

(68)

ω ! εR, Ua ! εR,

Ψ1 0 t,( ) Ψ2 0 t,( ),=

∂Ψ2 0 t,( )
∂x

---------------------
∂Ψ1 0 t,( )

∂x
---------------------– αΨ1 0 t,( ),=

Ψ3 a t,( ) Ψ2 a t,( ),=

∂Ψ3 a t,( )
∂x

---------------------
∂Ψ2 a t,( )

∂x
---------------------– αΨ3 a t,( ).=

Ψ2 x t,( ) –iεt ipx iSp x t,( )+ +{ }exp=

+ –iεt ipx– iS– p x t,( )+{ } .exp
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The right-hand terms refer to electrons moving in the
forward and the reverse direction, respectively, inside
the QW. Semiclassically, we neglect the second-order
derivatives of S±p(x, t) to obtain the well-known equa-
tions [15]

(69)

(70)

The solution to Eq. (69) can be written as

(71)

(72)

where  is a solution of the inhomogeneous equation
and Sp(x/2p – t) is the solution of the homogeneous
equation subjected to the boundary conditions (67) and
(66). To find S–p , one should replace p with –p in (71)
and (72).

Choosing the origin at point x = a and introducing
the tunneling functions fp(z) and f–p( ), we can write
wave function (68) in the form

(73)

where

(74)

(75)

(76)

∂Sp x t,( )
∂x

--------------------– 2 p
∂Sp

∂t
-------- W x( ) ωt( ),cos+=

W x( ) 2U x( ),=

–
∂S p– x t,( )

∂x
---------------------- 2 p

∂S p–

∂t
----------– W x( ) ωt( ).cos+=

Sp x t,( ) Sp
U x t,( ) Sp

x
2 p
------ t– 

  ,+=

Sp
U x t,( ) iω t

x
2 p
------– 

 
 
 
 

exp=

× x'
W x'( )

4 p
------------- iωx'

xp
---------- 

 expd

x

∫– c.c.,+

Sp
U

z̃

Ψ2 x t,( ) –iεt ipx iSp
U x t,( )+ +{ } f p z( )exp=

+ –iεt ipx– iSp
U x t,( )+{ } f p– z̃( ),exp

Sp
U x t,( )

1
4 p
------–=

× iωz( )exp W x'( ) x' iω x' a–( )
2 p

------------------------–expd

a

x

∫ c.c.+
 
 
 

,

S– p
U x t,( )

1
4 p
------=

× iωz̃( )exp W x'( ) x'
iω x' a–( )

2 p
------------------------expd

a

x

∫ c.c.+
 
 
 

,

z
x a–
2 p

----------- t, z̃– x a–
2 p

----------- t.––= =
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We seek the wave functions in regions (i) and (iii) in the
form

(77)

(78)

In Eq. (77), the first right-hand summand represents the
incoming electron flow from x = –∞ and the second one
describes the reflection characterized by function f1( ).
Function Ψ3 characterizes the electron flow in direction
x = +∞ with tunneling function f(z). Boundary condi-
tions (67) imply that, for x = a,

(79)

(80)

Eliminating function f1( ) by means of boundary con-
ditions (66) at x = 0 and using expressions (79) and
(80), we arrive at the equation for f(z) with displaced
arguments:

(81)

Introducing the new function

(82)

we obtain the equation for F(z),

(83)

where

(84)

(85)

Ψ1 x t,( ) q –iεt ipx+( )exp=

+ –iεt ipx–( ) f 1 z̃( ),exp

Ψ3 x t,( ) –iεt ipx+( ) f z( ).exp=

z̃

f p t–( )
1
2
--- 1 α

ip
-----– 

  f t–( ),=

f p– t–( )
1
2
--- α

ip
----- ipa( ) f t–( ).exp=

z̃

2 α
ip
-----– 

  2

iSp
U –

a
2 p
------ t– 

 exp

× f –t
a

2 p
------– 

  α
ip
----- 

 
2

–

× 2ipa iS p–
a

2 p
------ t– 

 + f
a

2 p
------ t– 

 exp 1.=

F z( ) f z T–( ), T
a

2 p
------,= =

2 α
ip
-----– 

  2

F z( )

–
α
ip
----- 

 
2

F z 2T+( ) 2ipa( )A z( )exp Y z( ),=

A z( ) i S p– z T+( ) Sp z T–( )–[ ]{ } ,exp=

Y z( ) iSp z T–( )–{ } ,exp=
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with

(86)

Equation (83) can be solved exactly. Following the
approach used in [13, 14], we seek a solution to
Eq. (83) in the form

(87)

where Φ0(z) satisfies the equation

(88)

To calculate expansion coefficients ck , we substitute
F(z) from Eq. (87) into (83) and perform the weighted
integration with respect to z using the weight function
exp(ikzω):

(89)

(90)

If α/p @ 1, then resonance determinants ∆k have the
form (19). The function Φ0(z) is sought in the form

(91)

Condition (88) allows us to determine coefficients bm ,
after which (91) becomes

(92)

In view of definition (84) for A(z), we obtain the exact

Sp
1

4 p
------=

× iωz( )exp W x'( ) x' iω x' a–( )
2 p

------------------------–expd

0

a

∫ c.c.+
 
 
 

.

F z( ) ckΦk z( ),
k ∞–=

∞

∑=

Φk ikzω–( )exp Φ0 z( ),=

Φ0 z( ) Φ0 z 2T+( )= A z( ).

ck

Yk

∆k

-----, Yk
ω
2π
------ Y z( ) ikωz( ) zdexp

Φ0 z( )
------------------------------------------,

0

2π/ω

∫= =

∆k 2 α
ip
-----– 

  2 α
ip
----- 

 
2

2ipa 2ikωT–( ).exp–=

Φ0 z( ) i bm iωzm( )exp
m ∞–=

∞

∑ .exp=

Φ0 z( ) inωz( ) ω
2π
------exp

n ∞–=

∞

∑




exp=

× imωz'( ) A z'( ) z'dlnexp
1 2inωT( )exp–

-----------------------------------------------------

0

2π/ω

∫ 



.
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formula

(93)

It is important to note that |Φ0(z)|2 = 1. The frequencies
of interest satisfy the condition ωT ≈ ω/εR ! 1, so that
Eq. (93) can be reduced to

(94)

Finally, we substitute expression (93) into Eq. (89) to
obtain the Fourier component Yk,

(95)

where Jk are the Bessel functions; formula (95) is accu-
rate to the second order in ωT. We thus obtain F(z) in
the form of the series

(96)

or, in the integral representation,

(97)

Notice that Eq. (97) is similar to the expression for f(z)
derived by Sokolovski [14] in the case x ≥ a, although
the two formulas use different values of Γ, δ, and 
because they are based on different models.

8. NONLINEAR RESPONSE 
OF AN RESONANT-TUNNELING DIODE 

IN A STRONG ALTERNATING FIELD

For 0 ≤ x ≤ a, we take wave function (73) to calcu-
late the current in the semiclassical approximation:

(98)

Φ0 z( )
i

2 p
------ W x( ) xd

0

a

∫–




exp=

× ωx
2 p
------- iωz( )exp

1 2iωT( )exp–
------------------------------------ c.c.+cos





.

Φ0 z( ) i
W
ω
----- ωz( )sin ,exp≈

W
1
a
--- W x( ) xd

0

a

∫ Ua.= =

Yk Jk
W
ω
----- 

  ,≈

F z( ) Φ0 z( )
ikωz–( )Jk

W
ω
----- 

 exp

∆k ω( )
----------------------------------------------

k ∞–=

∞

∑=

F z( ) Φ0 z( ) Γ iδ+( )z[ ]exp=

× z' Γ iδ+( )z'
iW
ω

------- ωz( )sin+ .expd

∞–

z–

∫

W

I x t,( ) 4 f p z( ) 2 f p– z̃( ) 2–[ ] ,=
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small terms ω/εR and Ua/εR being omitted. Substituting
fp and f–p from Eqs. (79) and (80) into (98), we express
the current in terms of tunneling functions f(z) and f( ):

(99)

The first right-hand term varies with x insignificantly,
since the coordinate correction in f(z) is proportional to
the small quantity

The second term, though proportional to ω(x – a)/2p as
well, includes the large factor (α/p)2 due to constructive
interference of electrons in the QW. It is this term that
ensures effective resonant tunneling (quantum regime)
and is responsible for the coordinate dependence of the
current.

Since  = 1, it is convenient (bearing in mind

that  = 1) to use the expression

(100)

where

(101)

In Eq. (100), we omitted the correction to z proportional
to T on the grounds that T is a small correction to the
first right-hand term of Eq. (99) and is cancelled out in
the difference appearing in the second term.

Since we are interested in the current proportional to
cos(ωt), it is convenient to separate it from the very out-
set using the Fourier transform

(102)

z̃

I x t,( ) f z( ) 2 α2

4 p2
-------- f z( ) 2 f z̃( ) 2–[ ] .+=

ωx a–
2 p
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εR
-----.≈

f x( ) 2

Φ0 z( ) 2

f z( ) 2 Γ2 τ1 Γ iδ–( )τ1–[ ]expd
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∞
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× τ2 Γ iδ+( )τ2–[ ]expd

0

∞

∫
× iA ωz( )sin iB ωz( )cos+[ ] ,exp

A
W
ω
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B
W
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Ic x( )
ω
π
---- ωt( )I xt( )cos t.d
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Since

(103)

we arrive at the following expression for current:

(104)

The second summand in this expression plays a key
role, originating from the bracketed difference of
Eq. (99). Introducing the new variable t = τ2 – τ1 and
integrating with respect to τ1, we obtain the final
expression for current within the QW (0 ≤ x ≤ a):

(105)

The expression for reduced current assumes a simpler
form:

(106)

Expressions (105) and (106) are valid in a wide range
of frequencies ω < εR and field amplitudes Ua < εR and
give a complete solution to the problem of resonant tun-
neling in an alternating field. A framework is thus pro-
vided for modeling oscillations in the RTD, within
which one could calculate the limits of current and out-
put intensity. Also note that Eqs. (105) and (106) take
into account the contributions of all orders with respect

ω
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to field, i.e., electron transitions involving absorption
and emission of any number of photons. Moreover,
Eqs. (105) and (106) imply all the results of earlier ana-
lytical studies [9–11, 14], the formulas of Sections 2
and 6, and the numerical results obtained in [12].

Equation (105) can be generalized to the case of
potential barriers differing in α [10]. Let α1 and α2
characterize the barriers at x = a and x = 0, respectively.
Then we must modify the formulas by replacing Γ with
Γj if the former appears at the (1 – x/a) term; otherwise,
Γ is to be replaced with Γ12. The new quantities are
defined as

Note that the coordinate dependence remains linear for
any field due to the fact that x is multiplied by the small
parameter ω/εR.

Let us now calculate the constant current flowing
through the RTD,

,

for a high field. Due to Eq. (103), integration with
respect to τ2 yields

(107)

Notice that Eq. (107) becomes Eq. (25) if U = 0.
Finally, we find the reactive current:

(108)

9. RESONANT TUNNELING
IN A STRONG ALTERNATING FIELD

We start with limiting cases and compare the results
with what was derived in preceding sections. Consider
a linear approximation with respect to field. Expanding

Γ j
4 p3

aα j
2

---------, Γ12
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2
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the Bessel function J1(x) ≈ x/2 and calculating the inte-
grals appearing in Eqs. (105) and (106), we arrive at
Eqs. (27) and (31), respectively. Clearly, it is the second
summand in Eq. (105) that is responsible for resonant
tunneling in the field and for the quantum regime. This
term vanishes at x = a.

Let us find the current in the low-frequency limit
ω ! Γ. It follows from (105) or (106) that

as derived in our earlier study [11]. Following [11], we
represent Ic as

(109)

As   0, the current tends to zero, the first two
expansion terms constituting the right-hand side of
Eq. (60). In the opposite limiting case Ua @ Γ, the cur-
rent decreases in magnitude but remains negative:

(110)

Thus, there should be a peak. It is easy to show that Ic

attains its peak value for a ≈ 1.3Γ and is equal to

(111)

so that the peak value is one-third of the constant reso-
nance current I0 (see (25)).

Let us compare formulas (105) and (106) with the
results of Section 6 over the whole frequency range.
Taking the expansion of the Bessel function up to third-
order terms,

we again arrive at Eqs. (61) and (62) for classical and
quantum regimes. In the next approximation, the

Ic W( ) 2Γ te Γ t– J1 Wt( ) δt( ),sind
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∞
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collector current has the form

(112)

A comparison of Eq. (112) with Eqs. (50), (56), and
(58) obtained by perturbation theory shows that there is
agreement between them in all the limiting cases. Spe-
cifically, Eq. (112) is identical to Eq. (60), (63), or (64)

for ω ! Γ, δ = ω, or δ = , respectively. Thus,
the two approaches yield identical results.

Let us now analyze currents in the case of strong
fields:  @ Γ and  @ ω. Resonant tunneling in a
strong alternating field is one of the most interesting.
Consider the quantum regime with ω = δ @ Γ. In Eq.
(106), we change to integration over the interval 0 ≤ t ≤
π/ω to eventually obtain an approximation for reduced
current accurate to the second order in Γ/ω:

(113)

This is one of the major results of the study. It is seen
that with β  0 the current decreases and the first two
terms of the expansion in β are the same as the corre-
sponding right-hand terms of Eq. (62), which was
derived by perturbation theory. As β increases (Ua @
ω), the current exhibits a succession of peaks decreas-
ing in height with zero-level valleys in between. It is

important to note that dependence  is the same as
the Fraunhofer diffraction pattern from a circular aper-
ture [16]. This fact indicates the coherent character of
resonant tunneling. Also note that the peaks and valleys
are reached when the momentum eE/ω gained by an
electron in the field is a multiple of "/p.

Let us determine the alternating field amplitude at
which the current amplitude attains its first maximum.
Solving the equation

(114)
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we find that z0 ≈ 1.4 and U0a/ω = 2.8, so that the current
maximum is

(115)

Thus, the reduced alternating current attains a value
comparable to the constant current at resonance, I0(δ =
0) = 1 (see (25)). The reduced current amplitude is
much higher than that for the classical regime (see rela-
tion (120)) and the collector current; in fact, it is some-
what larger than the maximum for ω @ Γ as given by
(111). Thus, constructive interference makes it possible
to achieve large power gains and output intensities at
superhigh frequencies ω @ Γ.

We now examine the quantum regime (ω = δ @ Γ)
in terms of constant current. Let us compare constant
current I0(β) in a strong field with I0 for a zero field.
Formula (107) provides this approximation accurate to
the second order in Γ/ω:

(116)

For β = β0, I0(β0) ≈ 0.29. Notice that this value is much
larger than I0 = Γ2/ω2 for β = 0 and δ = ω @ Γ (see
Eq. (25)). Physically, the growth in current I0(β) is due
to the resonant radiative transitions of electrons due to
the alternating field. To see this, note that Eqs. (113)
and (116) imply

Here, the right-hand term is proportional to the total
number of electrons that have performed radiative tran-
sitions. The above relation can be used for the experi-
mental verification of the oscillatory behavior predicted

for , since constant currents are easier to measure.

Let us proceed to the classical (nonresonant) regime
with ω @ Γ, ω @ δ, and δ ~ Γ. In this case, Eq. (106)
can be brought to the form

(117)

For high frequencies ∆ ! 1, we have

(118)

With β  0 (weak fields), it is easy to see that
Eq. (118) exactly coincides with Eq. (61). With an arbi-
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trary β, the integral in (118) cannot be evaluated easily,
but can be approximated as follows. Comparing the
integrands in formulas (113) and (118), we notice that

they include analogous terms: z  and ϕ(1 – ϕ2),
respectively. The point is that both of them vanish for
z = 0 and z = 1 and have approximately equal respective
maxima. Accordingly, we can change from Eq. (118) to

(119)

Approximation (119) was verified to within 10% by
numerical integration of Eq. (118). Thus, the reduced
current in the classical regime differs from that in the
quantum regime (see Eq. (113)) by a factor of
O((Γ/ω)3). The maximum of the former current is

(120)

Let us explore the dependence of collector current
Ic(a) on β and ω for δ = ω @ Γ. We change to integration
over the interval 0 < t < π/ω to eventually obtain

(121)

It follows that Ic(a) tends to zero as β  0; the first
two terms of the expansion in β are identical to the
respective right-hand terms of Eq. (63). In the opposite

limit β @ 1, the current decreases as :

(122)

Compared with Eqs. (113), the maximum of Ic(a) dif-
fers by an O((Γ/ω)2) factor.

Thus, the reduced current, as well as the current Ic(x)
inside the QW, shows resonant behavior not only in
weak fields (see Eq. (31)) but also in strong ones. The
resonance nature of collector current at ω = δ is sup-
pressed in fields of any magnitude.

10. OUTPUT POWER LIMITS 
FOR RESONANT-TUNNELING DIODE

The above expressions for current enable one to
construct a theory of oscillation of the RTD. A steady-
state field amplitude can be calculated by substituting
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an expression for the reduced current amplitude into the
field equation

(123)

where τ0 is the time constant that characterizes resona-
tor loss and χ is the dielectric constant [9]. We will
focus on the limits of fields and output intensities. If
ω ! Γ, we substitute expression (110) to obtain for
Ua @ Γ

(124)

where Q is the pumping current and

is the threshold current. Equation (124) gives the limit-
ing field

(125)

which is bounded only by the maximum allowable
pumping current and the resonance width Γ.

For the quantum regime with ω @ Γ, it follows
from (123) and (113) that the field obeys the equation

(126)

It is seen that the field magnitude is limited only by the
maximum admissible pumping current. For the first
minimum of function J1(β/2), where β/2 = 4, we have

(127)

Thus, if the RTD oscillates at ω @ Γ in the quantum
regime, it produces a maximum field magnitude much
higher than that in the low-frequency regime ω ! Γ and
δ ≈ Γ:

It turns out that output power of RTD in the quantum
regime varies as ω2 and can be as high as 106–107 W/cm2

at ω = 1013 s–1.
For comparison, let us estimate the output power

used in the classical regime with δ ≈ Γ and ω @ Γ.
Using approximation (119), we see that, for a given Q,
the output power is about (Γ/ω)3 times lower than in the
quantum regime. Accordingly, the output power should
decrease as ω–2 with increasing ω; presumably, this
behavior was observed in the experiment of Brown
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et al. [4]. Thus, the RTD operated in the quantum
regime appears to have great potential as an oscillator
with superhigh frequencies ω @ Γ.

11. CONCLUSIONS

Electrons experience no reflection in passing
through a symmetric double-barrier structure if ε = εR,
the current reaching its maximum possible value:
I0(εR) = 1. Reflection from the structure is suppressed
by destructive interference. The large electron density
inside the structure is due to constructive interference,
the QW width being a multiple of the de Broglie wave-
length.

Two questions have long been pursued (see, for
example, [8] and the literature cited therein): (i) Is res-
onant tunneling possible in an alternating field?
(ii) What is the maximum ac response that can be
achieved by varying the frequency and amplitude of the
field and the parameters of the structure? This study
provides answers to these questions in sufficient detail.
It has been established that resonant tunneling of elec-
trons with energy ε = εR + ω also occurs at ω @ Γ. In

this case, the reduced current amplitude  is as large
as about 0.41I0(εR) when the optimal field amplitude is
Ua = 2.8ω. The field frequency is bounded from above
only by energy εR of resonance level and may consider-
ably exceed the resonance level width Γ.

If the field is strong enough, Ua @ ω, then the cur-
rent oscillates with the field, the maxima being reached
when the momentum eE/ω gained by an electron in the
field is a multiple of the number of the de Broglie half-
waves "/p contained in the QW width. Moreover, the

curve current describing current  as a function of
Ua/ω exactly follows the Fraunhofer diffraction pattern
from a circular aperture. This exact similarity indicates
that electrons absorbing and emitting photons experi-
ence interference. The possibility of attaining high
alternating currents suggests that the RTD could pro-
duce strong oscillations if operated in the resonant tun-
neling regime. Calculations show that in the so-called
quantum regime, when the energy (voltage) is chosen
outside the region of negative differential conductance,
the output power varies as ω2; the former was found to
be 106–107 W/cm2 at ω = 1013 s–1.

In contrast, the classical regime (δ < Γ, negative dif-
ferential conductance region) is characterized by output
intensity rapidly decreasing with increasing ω and by
the current amplitude differing from that in the resonant
regime by a factor of O((Γ/ω)3). It should be empha-
sized that as far as we know the focus of research,
whether theoretical or experimental, has been on the
classical regime.

Written in explicit and simple form, expressions (105)
and (106) for currents contain all the results of earlier
analytical studies [9–11, 14], the perturbation formulas

Ic
R

Ic
R
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of Sections 2 and 6, and the numerical results obtained
in [12]. Moreover, the expressions (105) are applicable
for very strong fields Ua @ ω, which appears to be
unexplored numerically by independent researchers.
We are also unaware of independent studies in which
explicit analytical formulas are derived for alternating
currents in the QW for the case of a strong field; the
results obtained in [14] are probably the most relevant
in this respect, but alternating currents were not deter-
mined. Liou and Roblin [16] numerically calculated the
currents through an RTD in a strong field in the classi-
cal (nonresonant) regime; their findings are in qualita-
tive agreement with our results.

Concerning the linear theory for weak fields Ua ! Γ
(see Section 1), a detailed comparison with other theo-
retical investigations has been made in our previous
studies [9, 10]. The main point is formulated below.

In our opinion, the predictions that resonant tunnel-
ing is impossible at ω @ Γ, that the cutoff frequency is
about Γ, etc., which were made, for example, in [5, 6],
stem from the fact that the problem was solved by using
methods that were not quite adequate. The authors fol-
lowed approximate approaches that do not yield an
exact solution to the Schrödinger equation [5] or treated
the problem by tunneling Hamiltonian [6] or similar
semiphenomenological methods. However, it is essen-
tial to correctly include interference and the competi-
tion of radiative transitions between different spatial
states [10]. The approximate approaches cannot allow
for these processes.

A final remark is in order. Although our study was
made within a very simple model, we hope that the
results are also valid, at least qualitatively, in more real-
istic contexts. The reason for this is the fundamental
character of phenomena determining resonant tunnel-
ing. Indeed, a generalization of the model on the basis
of numerical methods to the cases of realistic barriers,
an electrostatic field, etc. demonstrates coincidence of
results for the same level width Γ.
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Abstract—An analysis of experimental data on the change in the electronic structure and the position of the
chemical potential depending on the doping level in superconducting tungsten bronze NaxWO3 and cuprates
La2 – xSrxCuO4 and Nd2 – xCexCuO4 demonstrates the importance of the general problem of superconductivity
in the impurity bands of doped nondegenerate insulators. The theory of superconductivity in the impurity bands
of doped nondegenerate insulators is formulated. The approach to a description of a doped insulator is substan-
tiated on the basis of Holstein–Anderson (Fröhlich–Anderson) model with electron correlations at impurity
sites distributed at random in the initial lattice. An insulator–metal transition observed in the normal phase is
caused by attenuation of spin fluctuations in the doped system upon an increase in the doping level and/or tem-
perature. This transition is characterized by the presence of narrow allowed bands in the initial insulator. In con-
trast to the BCS theory, the equation for the superconducting gap does not arise in the description of such a
peculiar superconductivity. Instead, a nontrivial solution to the equation for singlet bosons localized at lattice
sites must exist for a superconducting transition. The formation of such bosons is a precursor to the emergence
of charged extended bosons in the doped system. In the general case, both singlet and triplet pairing channels
are possible in the superconducting state. The spin-triplet channel exists only in the case of a finite spectral den-
sity of spin fluctuations in a doped compound. In this case, single-particle Green functions are nondiagonal in
the spin index. The results of analysis of the phonon mechanism of superconductivity with a spin-singlet pairing
channel are considered. The superconductor–metal transition in a doped compound, which is induced by
changes in the temperature and/or the doping level, as well as the isotopic effect, is studied using numerical
methods. The results are compared with the available data for HTSC materials. © 2003 MAIK “Nauka/Inter-
periodica”.
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1. INTRODUCTION

The development of the theory of superconductivity
in metals has stimulated to a considerable extent the
search for and construction of the theory of supercon-
4.00 © 2003 MAIK “Nauka/Interperiodica”
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ductivity in doped semiconductors (insulators) [1, 2].
These studies were based on the possibility of degener-
acy for an insulator with a high doping level [1]. How-
ever, the superconducting transition temperature Tc pre-
dicted by the BCS theory for degenerate insulators is
relatively low. This is due to the fact that such materials
are characterized by low electron concentrations and
densities of electron states at the Fermi level as com-
pared to metals. In addition, the attenuation of quasi-
particles in the vicinity of the Fermi surface can be
quite strong for high doping levels.

It should be noted that the term “degenerate semi-
conductors” is applied to superconductors for which
the Fermi level either lies in the conduction band or the
valence band, or it is in the immediate vicinity of the
edges of these bands at distances on the order of kBT
[2−4]. If these conditions are not observed for the posi-
tion of the Fermi level, a doped semiconductor (insula-
tor) is called nondegenerate. However, the Fermi gas
can be degenerate in doped nondegenerate semicon-
ductors for which the Fermi level lies in impurity
bands. In a degenerate electron system, the mean dis-
tance between particles, which decreases upon an
increase in the doping level, must be on the order of (or
smaller than) the mean de Broglie wavelength, which
can increase with decreasing temperature T.

The first object of investigation of superconductivity
in doped superconductors was apparently compound
SrTiO3 [5]. It was found that the value of Tc in stron-
tium titanate depends on the charge carrier concentra-
tion. The highest value of Tc = 0.43 K was attained by
doping this compound with niobium [6]. After this,
superconductivity in doped SnTe and GeTe was discov-
ered [7]. At present, at least two more families of doped
insulators (in addition to metals) are known to exhibit
superconducting properties. A transition metal element
and oxygen are parts of these compounds. The first
family of oxide systems, which is known as tungsten
bronze, includes doped compounds MxWO3, where M
stands for elements of groups I, II, and III in the Men-
deleev periodic table and 0 < x < 1. The second family
includes doped layered cuprates with CuO2 planes as a
common structural element.

Many of the known models of superconductivity in
doped tungsten bronzes and cuprates have the same
foundation as in the theory of superconductivity in met-
als. It is based on the assumption that doping leads to
the emergence of charge carriers, which are not con-
nected with impurity ions and can migrate freely in the
material. This leads to metallization of the material as a
result of its doping. For example, the valence electron
of sodium in NaxWO3 is not connected to the Na+ ion
and can freely migrate to the conduction band of WO3.
Accordingly, the most used approach for describing
superconductivity in tungsten bronzes was based on the
model of superconductivity in degenerate semiconduc-
tors (insulators) with a degenerate Fermi system. In the
case of cuprates, it is usually assumed that doping leads
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
to the emergence of charge carriers which migrate
freely to cuprate layers; as a result, the number of
charge carriers per unit cell of the CuO2 lattice changes.
In this case, theoretical results on the change in the
electron structure upon variable filling of the CuO2 lat-
tice immediately lead to the conclusion that doping
must lead to metallization of either the upper Hubbard
band in the case of n-type doping, or of the first filled
band of the initial insulator in the case of p-type doping.

However, the superconducting transition scenario
must match the experimental data on the change in the
electron structure and the position of the chemical
potential depending on the doping level in supercon-
ducting tungsten bronzes and cuprates. These results
are of fundamental importance for choosing an appro-
priate model for describing superconductivity in doped
insulators since it becomes possible to determine
directly the part of the band structure of a doped insu-
lator in which a superconducting band appears. We will
briefly review in the Introduction the available experi-
mental results for tungsten bronzes and cuprates. These
results indicate that at least NaxWO3, La2 – xSrxCuO4,
and Nd2 − xCexCuO4 are not degenerate insulators in the
doping regions corresponding to the emergence of
superconductivity in these compounds. It should be
emphasized that, in the case of cuprates, this conclusion
is equivalent to the statement that, upon doping, the
chemical potential does not leave the region of the insu-
lator gap in the initial (x = 0) electron-correlated mate-
rial.

1.1. Superconducting Tungsten Bronzes 

A WO3 crystal is a insulator with a gap of 2.77 eV
[8]. Doped MxWO3 compounds, where M = Na, K, Rb,
Cs, Ca, Sr, Ba, In, and Tl, are crystallized in several dif-
ferent symmetries depending on the doping level, the
radius, and the valence of the interstitial ion [9, 10]. The
structural element in these materials is the octahedron
WO6 and impurity atoms occupy interstitial positions in
the lattice. The interest in these doped oxide systems
[11–16] is due to the facts that these systems (i) pass
from the insulator to the metallic state for certain values
of the doping index x and (ii) are superconducting in the
tetragonal and hexagonal phases.

Superconductivity was first observed in the tetrago-
nal phase I of Na0.30WO3 with the superconducting
transition temperature Tc ≈ 0.5 K [11]. Subsequent stud-
ies showed that the value of Tc in this phase (existing for
0.2 < x < 0.5) increases almost exponentially with
decreasing doping level, attaining the value Tc ≈ 3 K at
the boundary of the structural transition at x = 0.2 [17].
It is important to note that the insulator–metal transition
is also realized in this phase for xDM = 0.25 [18]. For
x < 0.2, there is a structural transition to the tetragonal
phase II in which superconductivity in NaxWO3 was not
observed. This structural transition and the difference
in tetragonal phases was discussed in [17].
SICS      Vol. 97      No. 2      2003
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Later, a superconducting transition were detected in
the hexagonal phase formed as a result of certain order-
ing of WO6 octahedra, in other tungsten bronzes
MxWO3 doped with elements M = K, Rb, Cs, Ca, Sr,
Ba, In, and Tl with a superconducting transition tem-
perature in the range from 1 to 7 K [11–13, 15].

Numerous experiments were made to study the
properties in the normal (insulator and metallic) and
superconducting states of these compounds. However,
the theoretical basis for the observed phenomena was
quite contradictory. Mott [19] proposed a model
according to which sodium in NaxWO3 is ionized and
gives away a 3s electron to the conduction band of WO3
formed by hybridized 5d(t2g) orbitals of W and 2p orbit-
als of O. The insulator–metal transition was explained
by a strong scattering of quasiparticles in the conduc-
tion band and their Anderson localization in the field of
disordered charge distribution, associated with Na+

ions. The emergence of the superconducting transition
in doped materials was essentially based on the theory
of superconductivity in degenerate superconductors in
accordance with the phonon-mediated mechanism [2].

Among all elements denoted by M and exhibiting
the superconducting state in the MxWO3 compound, the
most detailed experimental studies of the variation of
the electron structure and the position of the chemical
potential depending on the doping level were carried
out for NaxWO3 and NaxTayW1 – yO3 [18, 20]. Photo-
electron spectroscopic data revealed [18] that the impu-
rity band in the insulator gap of the initial material
appears as a result of doping in the insulator state of
these compounds. These impurity states exhibit the pin-
ning of the Fermi level in the insulator as well as in the
metallic state in the vicinity of the insulator–metal tran-
sition. As the doping level rises, this impurity band
starts overlaping the conduction band. The disagree-
ment between the photoelectron spectroscopic data for
NaxWO3 and the model of a doped degenerate semicon-
ductor was also discussed in [20].

The possibility of the formation of a superconduct-
ing phase in a surface layer of Na0.05WO3 at a tempera-
ture approximately equal to 90 K was demonstrated in
[21]. It was found [22] that at low temperatures (T <
90 K), the temperature dependence of spin–lattice
relaxation in Na0.05WO3 is qualitatively the same as the
dependence predicted by the BCS theory for a gap of
∆ = 160 K. The photoelectron spectrum of filled states
in a doped material is also given in [21]. A broad peak
of the spectral density at an energy exceeding the upper
edge of the valence band by approximately 1.5 eV was
reported. Apparently, it is these states in the insulator
gap that must determine the physics of the observed
phenomena.

Thus, the above results indicate that NaxWO3 is not
a degenerate insulator in the doping region correspond-
ing to the superconducting state on the phase diagram
for this compound. The emergence of superconductiv-
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ity in doped NaxWO3 is associated with the formation
of impurity bands in the insulator gap in the initial WO3

crystal. Consequently, a correct model of the supercon-
ducting state in MxWO3 must lead to the emergence of
a superconducting gap in these impurity bands. Since
an insulator–metal transition also takes place in the
case of doping, these impurity bands must be formed by
both extended and localized states.

We are not aware of detailed studies on the rear-
rangement of the electron structure induced by doping
for other superconducting MxWO3 tungsten bronzes,
where M = K, Rb, Cs, Ca, Sr, Ba, In, and Tl. Probably,
valence electrons for some of these elements are
weakly coupled with the corresponding impurity ions
and can freely migrate to the allowed bands of the ini-
tial insulator, leading to its degeneracy. However, this
mechanism apparently cannot be universal for all the
elements. At any rate, this doping mechanism is absent
in the case of sodium.

1.2. Superconducting Doped Cuprates 

The discovery of high-temperature superconductiv-
ity in doped cuprates immediately gave rise to a theory
[23] two of three concepts of which are used most fre-
quently even in contemporary theoretical models.
These two concepts can be formulated as follows [24,
25]: (i) high-temperature superconductivity is deter-
mined by processes occurring in CuO2 layers; (ii) dop-
ing supplies charge carriers which migrate freely in
these layers, changing the number of charge carriers per
unit cell of the CuO2 lattice. These processes can be
described with the help of Hubbard-model Hamilto-
nians for a strongly correlated electron system in the
lattice [24, 25]. The second concept, which essentially
determines the doping mechanism in HTSC materials,
leads to the scenario of phase transitions controlled by
variable filling of cuprate planes.

Initial cuprates are in the antiferromagnetic insula-
tor state. In the case of doping, the antiferromagnetic
ordering disappears soon (e.g., for x ≈ 0.02 for
La2 − xSrxCuO4). As the value of x increases further, a
smooth transition to the state of a poor metal with a
high value of Tc takes place. In the  Hubbard

model used for describing CuO2 planes, the Mott–Hub-
bard insulator state is formed in the case of half-filling
(in the absence of doping) and the chemical potential
lies in the insulator gap whose emergence is associated
with electron correlations on  orbitals of copper.

In the d–p model, a comprehensive idea is given for
3  and 2pσ orbitals of cuprate planes and it is pos-

sible to describe the initial insulator state in which the
chemical potential also lies in the insulator gap. Since
this model takes into account the hybridization of
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3  and 2pσ orbitals in addition to their electron

correlations, this insulator state is characterized by a
charge transfer gap.

If we assume that charge carriers introduced in the
material by doping are free, migrate to CuO2 layers, and
change the filling per unit cell in these planes, then we
see there are common features among the predictions of
the models of strongly correlated electrons concerning
the change in the density of single-particle states and
the chemical potential depending on the doping level.
The predicted features can be formulated as follows
[24–30]. In the case of half-filling, a insulator gap
appears in the density of single-particle states. Even for
low levels of p-type doping, the chemical potential is
abruptly displaced from the initial position in the gap to
the edge of the lower Hubbard band (or of the upper
filled band in the p–d model; see Fig. 53 in [24] and
Fig. 22 in [25]). A further increase in the doping level x
leads to a further displacement of the chemical poten-
tial to the region of the lower Hubbard band so that
∂µ/∂x < 0. This jump of potential µ(x) through the ini-
tial insulator gap is accompanied by a considerable
reconstruction of the density of states in the lower and
upper Hubbard bands: the gap in single-particle states
disappears, and the density of states forms a single
broad band. However, the states arising in the region of
the initial insulator gap are unfilled in the case of p-type
doping and chemical potential µ is not pinned by these
states. In the case of n-type doping, potential µ jumps
through the initial insulator gap to the edge of the upper
Hubbard band. The subsequent dynamics of µ(x) in the
region of this band is obvious (∂µ/∂x > 0 and the states
in the region of the initial gap are filled completely).

The dynamics of the variation of the single-particle
density of states in cuprate planes and of the position of
µ upon a change in x has determined the most fre-
quently used trend in the construction of the theory of
high-Tc superconductivity. It is based on the assumption
that in the case of p-type doping, chemical potential µ
lies in the region of the initially filled band of the initial
insulator state; in other words, p-type doping leads to
metallization of this band of single-particle states in
cuprate planes in the case of their variable filling. A
review of the main models developed in this field for
explaining the superconducting properties of cuprates
is given in [31]. These models differ substantially in the
type of interactions in cuprate planes, which are intro-
duced for the electron subsystem taking into account
the singularities of the Fermi surface and which may
lead to Cooper pairing.

However, the approach to the HTSC problem
described above does not agree with the known results
on the variation of the single-particle density of states
and the position of the chemical potential upon an
increase in the doping level in cuprates. For example,
soon after the discovery of high-temperature supercon-
ductivity, the electron structure of the superconductor
La1.8Sr0.2CuO4 obtained from the electron photoemis-
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sion spectra (PES) and inverse photoemission spectra
(IPES) clearly demonstrated the pinning of chemical
potential by electron states in the insulator gap (see
Fig. 1 in [32]). An analysis of experimental papers on
photoelectron spectroscopy of doped cuprates pub-
lished before 1990 leads to the conclusion [33] that (i) a
density of states emerges in the insulator gap upon a
transition from the insulator to conducting phase, and
the Fermi level is in the bulk of the gap, its position
depending only slightly on the doping level; (ii) the
level filling function in the vicinity of potential µ is a
clearly manifested Fermi distribution; and (iii) the
results obtained from the energy–momentum relation
show that the states in the gap are inherent in the host
material. It was noted later in review [24] that the
experimentally observed behavior of the chemical
potential in cuprates as a function of the doping level
cannot be explained from the point of view of the theo-
retical models based on the two concepts of the Ander-
son theory for a strongly correlated electron system in
CuO2 planes with variable filling [see p. 815 in [24]).
Analysis of the existing photoelectron spectroscopic
data led to the conclusion [24] that potential µ changes
weakly with the doping level x, remaining in the energy
range corresponding to the position of the insulator gap
of the initial cuprates in the normal and superconduct-
ing states. Doping leads to the emergence of single-par-
ticle states in the region of this gap where the chemical
potential pinning takes place [34–38]. It is these states
that determine the physics of phase transitions in doped
cuprates.

Since the phase diagram depending on the doping
level of HTSC materials includes insulator–supercon-
ductor–metal transitions, the spectral density arising in
the initial insulator gap as a result of doping must be
determined by the contribution from the bands of local-
ized as well as extended states; i.e., the Fermi system
can be a two-component system. In the initial insulator
gap, these bands can be referred to as impurity bands. It
should be noted that a variable-range hopping-type
conduction typical of doped insulators is observed in
the impurity bands of localized states in the insulator
phase of La2 – xSrxCuO4 (x ≤ 0.05) [39, 40]. In addition,
the existence of superconductivity and localization also
follows from the results of analysis of the Hall effect
and conductivity [41] as well as thermal conductivity
[42] in doped cuprates for various doping levels x and
various temperatures.

It is important to establish the relation between these
two types of charge carriers in the gap. This was done
in [43] using the results on optical conductivity of
La2 − xSrxCuO4. The total number of charge carriers in
the gap states contributing to photoconduction was
determined from the sum rule, while the contribution
from free charge carriers was estimated from the Drude
peak. As a result, approximate dependences of the total
number of charge carriers and free charge carriers on x
were obtained (see Fig. 11 in [43]). It was found that the
SICS      Vol. 97      No. 2      2003
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number of free charge carriers in the gap states emerg-
ing as a result of doping is by almost an order of mag-
nitude smaller than the total number of charge carriers.
It becomes clear that the localization effects play the
basic role (see [44]) and the approximation of a one-
component Fermi system is insufficient in this case.

In spite of reliable data on the coexistence of local-
ization and superconductivity, the experimentally
obtained dependences are analyzed for doped cuprates
in a large number of publications only on the basis of
models for a one-component Fermi system including
only extended electron states. For example, the singu-
larities of Fermi contours as functions of the doping
levels are constructed and analyzed on the basis of the
one-component model from the results of ARPES [34,
44–48]. If we take into account the coexistence of the
bands of localized and extended states in the vicinity of
the Fermi surface, the pattern of the Fermi contours and
their modification as a result of doping will change con-
siderably. To our knowledge, contributions from local-
ized and extended states to the photoelectron spectra
have not been separated, although the emergence of
localized states in the spectra in the vicinity of the
Fermi surface was noted in [35].

One of the problems widely discussed in recent
years concerns the condensation energy of the super-
conducting state of cuprates and the possibility of “vio-
lation” of the optical sum rule [49–53], which reflects
the integral relation between real parts of dynamic fre-
quency-dependent conductivities in the normal and
superconducting states [54]. Naturally, this sum rule
and its variation upon a transition to the superconduct-
ing state should be analyzed after a correct model for
doped cuprates has been established and the conductiv-
ity as a function of the doping level, as well as the fre-
quency and temperature dependence of conductivity,
has been calculated. However, this problem, as well as
the problem of the origin of high-Tc superconductivity,
has not been solved as yet. It was shown for the model
of a one-component Fermi system with a strong elec-
tron–phonon coupling that the violation of the optical
sum rule can be attributed to the temperature depen-
dence of the relaxation rate determining the conductiv-
ity in the normal state [55]. For a Fermi system with
overlapping bands of localized and extended states,
which will be described below, the conductivity has not
been calculated. In this model, the characteristic den-
sity of localized states is considerably higher than the
density of extended states in the vicinity of the Fermi
surface and the conductance of such a system cannot be
presented as the sum of the contributions from charge
carriers of two types. It is known, however, that the fre-
quency-dependent conductivity due to localized states
may be proportional to temperature [56] (precisely this
type of conductivity dependence was used in [55]).

The theoretical approaches to HTSC systems can
also be divided into two groups differing in the spatial
charge distribution in cuprate planes. Stripe models
JOURNAL OF EXPERIMENTAL 
(see [57] and the literature cited therein) based on the
assumption on spatial nonuniformity of the charge car-
rier distribution in CuO2 planes with variable filling
were initially proposed for describing the fine structure
of the neutron magnetic scattering spectra for doped
cuprates [58, 59]. This made it possible to easily
explain the observed splitting of the initial Bragg peak
for a wave vector Q = {±π/a, ±π/a} (a is the distance
between the nearest copper atoms in the plane) into four
peaks for |Q| ± δ, where δ = x (see [57]). Another pos-
sibility of describing the observed fine structure of the
neutron peak was demonstrated in the model of a one-
component Fermi system (only extended states) with a
uniform spatial distribution of charge carriers in
cuprate planes, which is essentially anisotropic in the
space of wave vectors [60, 61]. The basic concept of
this model consists in the existence of generalized Van
Hove singularities located in the vicinity of wave vec-
tors {±π/a, 0} and {0, ±π/a} in the spectra of HTSC
systems. An analysis of the spin susceptibility whose
imaginary part is proportional to the neutron magnetic
scattering cross section has made it possible to explain
the fine structure of the neutron peak without using the
assumption on stripes. The possibility of the existence
of Van Hove singularities in the electron density fol-
lows from an analysis of the ARPES photoelectron
spectra for HTSC materials (see [60, 61]).

Without refuting the approach developed in [60, 61],
we would only like to single out the region of the elec-
tron structure in which possible singularities in the den-
sity may be significant for the HTSC problem. In accor-
dance with the above analysis of experimental data, this
region lies in the initial insulator gap of cuprates.

The dependence of the chemical potential shift in
La2 – xSrxCuO4 (p-type doping) and Nd2 – xCexCuO4
(n-type doping) was studied experimentally in [62, 63]
using X-ray electron spectroscopy (XPS). It was found
that the chemical potential of La2 – xSrxCuO4 is indepen-
dent of x up to the optimal doping level x ≤ 0.15. A fur-
ther increase in the doping level x shifts the chemical
potential µ towards the first filled band (∂µ/∂x < 0). The
total shift of potential µ from x = 0 to x = 0.3 amounted
to only 230 meV, which is much smaller than the insu-
lator gap width (see Fig. 3 in [63]). The same figure
shows the result for the shift of µ in Nd2 – xCexCuO4 (n-
type doping). The chemical potential was shifted
towards the first unfilled band (∂µ/∂x > 0), and the total
shift of µ upon a change from x = 0 to x = 0.3 amounted
to only 220 meV. The obtained values of the chemical
potential shift in these materials, which are smaller than
the initial insulator gap width (≈2.0 eV for La2CuO4
and ≈1.5 eV for Nd2CuO4) show that the chemical
potential in these materials lies in the initial insulator
gap in the normal (insulator and metallic) as well as in
the superconducting state.

It should be noted, however, that various methods of
photoelectron spectroscopy lead to a result of funda-
mental importance, according to which the shift of µ is
AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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small as compared to the initial gap, although the µ(x)
dependences may differ considerably. For example, the
variations in the electron structure as a result of doping
of La2 – xSrxCuO4 were studied in [64] using angular-
resolution photoelectron spectroscopy (ARPES). The
shift of µ(x) was determined from the position of the
step on the low-temperature spectra for different values
of x. It was found that the total shift of potential µ upon
a change from x = 0 to x = 0.3 in the case of p-type dop-
ing amounted to approximately 100 meV, but potential
µ was shifted towards the first unfilled band (∂µ/∂x > 0).
The behavior of µ(x) contradicts the X-ray electron
spectroscopic (XPS) data [63]. This may be due to the
fact that the correct inclusion of the shift of the inner
levels is important in X-ray electron spectroscopy, and
the energy resolution in this method is much worse than
in the ARPES method in which, however, the surface
states of the material may give a significant contribu-
tion to the photoelectron spectra. Nevertheless, it is
important that both methods give the shifts of µ(x)
which are small as compared to the insulator gap in the
entire doping region.

Thus, the results presented above indicate that the
chemical potential remains in the region of the initial
insulator gap at least for La2 – xSrxCuO4 (p-type doping)
and Nd2 – xCexCuO4 (n-type doping). The chemical
potential shift due to doping is small as compared to the
gap. The superconducting gap appears in the impurity
bands, which must be formed by extended as well as
localized states. In other words, the Fermi system is a
two-component system and the concentration of free
charge carriers in the vicinity of the chemical potential
is an order of magnitude lower than the concentration
of localized charge carriers.

1.3. The Problem of Superconductivity
in Doped Nondegenerate Insulators 

We described the contradictions between the sce-
nario of phase transitions controlled by variable filling
of the unit cell of a insulator and experimental data on
the change in the band structure and the position of the
chemical potential depending on the doping level in
superconducting tungsten bronze NaxWO3 and cuprates
La2 – xSrxCuO4 and Nd2 – xCexCuO4. The main reason
for these contradictions is the mechanism of doping in
the theory of phase transitions controlled by variable
filling. This doping mechanism can be reduced to the
assumption that the charge carriers introduced by an
impurity are not bound to impurity ions and can migrate
freely in the material.

The rejection of this assumption necessitates an
analysis of the general problem of superconductivity of
nondegenerate doped insulators. Apparently, HTSC
materials are characterized by high densities of single-
particle states at the Fermi energy and by relatively low
concentrations of charge carriers. Both these positions
hold for rather narrow impurity bands with a high den-
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sity of states. The bands for localized and extended
states must coexist in the vicinity of the Fermi surface.
Such a situation can be realized in the impurity bands
of doped insulators.

In this review, we consider the theory of insulator–
metal and superconductor–metal phase transitions in
doped nondegenerate insulators. The model of a doped
compound used by us is substantiated in Section 2. This
model includes the Holstein–Anderson (Fröhlich–
Anderson) Hamiltonian with electron correlations at
impurity sites distributed at random in the initial lattice.
We consider a certain ensemble of initially localized
impurity levels, which interact with the phonon field
and are hybridized with the initial band states of the
insulator. A closed system of equations for the normal
and superconducting states in a doped insulator is
derived in Section 3 using the method of temperature
Green functions. The results of numerical analysis of
the insulator–metal transition in the impurity bands of
a doped compound, which is induced by changes in
temperature and/or the doping level, are given in Sec-
tion 4. The effect of the insulator band width on the
insulator–metal transition is analyzed. It is shown that
the allowed energy bands of the initial insulator must be
quite narrow for the insulator–metal transition in ques-
tion. The key moment for the superconducting transi-
tion is the formation of local zero-spin bosons at impu-
rity sites with zero spin, which are precursors of the
emergence of extended charged bosons in the doped
system. In the general case, both the singlet and the
triplet pairing channel are possible in the superconduct-
ing state. An analysis of the triplet pairing channel is
given in Section 5. The spin-triplet channel exists only
if the parameter representing spin fluctuations in a
doped insulator is finite. The phonon-mediated mecha-
nism of superconductivity with a spin-singlet pairing
channel is considered in Section 6. The results of
numerical investigation of the superconductor–metal
transition in a doped compound, which is induced by
variations of temperature and/or the doping level, and
the isotopic effect are described.

It is well known that so far final conclusions con-
cerning the nature of high-Tc superconductivity have
not been drawn [31]. For this reason, along with a
detailed analysis of superconductivity mechanisms in
CuO2 planes with variable filling, various possibilities
of the formation of the superconducting state should be
investigated. We primarily mean here the well-known
studies aimed at the search for superconductivity in
semiconductors [2]. However, it is appropriate to ana-
lyze the state of the art of the general problem of super-
conductivity in the impurity bands of doped semicon-
ductors taking into account the role of hybridization in
a doped system and Coulomb correlations at impurity
orbitals. Such an analysis can be useful in the search for
new superconducting compounds (not necessarily on
the basis of 2D conductivity in planes). Many of ques-
tions touched upon in this review require more detailed
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treatment and refining, which is typical of all theoreti-
cal approaches that have been developed at present. In
this respect, the theory of peculiar superconductivity in
doped nondegenerate insulators presented in this
review is one of possible theories and is proposed as
such for future discussion.

2. MODEL OF A DOPED INSULATOR

For the superconducting doped nondegenerate insu-
lators considered above, the fermion system must be a
two-component system. Since the chemical potential
lies in the region of the initial insulator gap of the
undoped material both in the normal (insulator and
metallic) and in the superconducting state, the bands of
extended and localized states must be formed in this
gap upon doping. The origin of the latter states in the
case of doped cuprates was considered in the literature
[24, 25, 43] and was associated with apical and/or inter-
stitial O atoms as, for example, in La2CuO4 + δ [43, 65–
69] or with doping impurity atoms, e.g., Sr2+, in the
case of substitution of La3+ in La2 – xSrxCuO4 [39, 68,
70–73]. It should be noted that the initial multicompo-
nent cuprates are apparently self-doped compounds
with a deviation from stoichiometry on the order of
10% [74].

Since it can expected that the electron–phonon
interaction is strong in cuprates, the dynamic properties
of small-radius polarons were studied in polaron mod-
els with a large number of lattice sites using various
analytical and numerical approaches [75–81]. In the
most used polaron model, tunnel bonds between sites in
a certain periodic lattice are considered as well as the
electron–phonon interaction of the Holstein (local
mode) or Fröhlich type, leading to “shaking” of elec-
trons at a lattice site [80]. In this case, the initial band
states of the insulator are not taken into account. One
possible objection to this model is that, for values of
model parameters admissible for cuprates, the bands of
extended states are so narrow (large effective masses of
fermions on the order of 100me) that dynamic fluctua-
tions destroy these bands [79].

The necessary condition for the emergence of the
superconducting state is the formation of extended
charged bosons. The formation of on-site boson–fer-
mion mixed states could be a sort of a precursor to such
a superconducting state [82, 83]. If we consider a cer-
tain ensemble of such impurity sites distributed at ran-
dom in the lattice of a insulator and take into account
the jumps of particles over the ensemble of lattice sites,
single-particle transitions over the sites will lead to the
formation of extended fermion states [84] (insulator–
metal transition occurring upon the attainment of a cer-
tain threshold doping level; see Section 4), while two-
particle transitions of initially localized charged bosons
over lattice-site states may lead to the formation of
extended charged bosons [85]. We believe that in such
an approach to the study of superconductivity in doped
JOURNAL OF EXPERIMENTAL 
nondegenerate insulators, it is important to take into
account the hybridization between initially localized
single-particle impurity states and the band states of the
insulator. This interaction leads to jumps of particles
over the ensemble of impurity sites even in the second
order in the matrix element of hybridization. First, in
contrast to the tunnel (or hopping) mechanism, the
exponential smallness associated with overlapping of
the wave functions at neighboring sites does not arise.
Second, the available ARPES data show that the sym-
metry of the wave functions of extended single-particle
states in the vicinity of the Fermi surface in doped
HTSC materials is close to the symmetry of the wave
functions of the initial cuprates in the vicinity of the
insulator gap [33, 34]. Hybridization between the initial
localized impurity-site states and the band states of the
insulator makes it possible to easily explain the symme-
try of the wave functions of extended states in narrow
impurity bands.

The chemical composition of cuprate planes does
not change upon doping as, for example, in
La2 − xSrxCuO4. The hybridization of 3d-Cu and 2p-O
mainly determines the initial band structure in the
vicinity of the insulator gap. For x = 0.02, the magnetic
ordering in this compound disappears and a further
increase in x leads to insulator–superconductor–metal
transitions in the paramagnetic phase of a doped insu-
lator.

Upon the introduction of a substitutional impurity,
for example, in La2 – xSrxCuO4, La3+ atoms in LaO lay-
ers are randomly replaced by Sr2+ atoms. Both valence
electrons of Sr are spent for the formation of valence
bonds; consequently, the formation of singly filled
impurity orbital of the acceptor type can be expected.
The cuprate layer CuO2 in this compound is between two
intermediate layers with composition La1 – x/2Srx/2O. The
centers of impurity orbitals lie outside the CuO2 plane.
The interaction of impurity orbitals with the band states
of the CuO2 plane leads to hybridization between these
states. For the sake of simplicity, we confine our analy-
sis to the one-band approximation for the density of
states in the CuO2 plane. Taking into account the strong
anisotropy of the physical parameters of cuprates, we
will disregard the charge transfer along the c (z) axis,
which, however, leads to the formation of a bond
between different structural cells in La2 – xSrxCuO4.

The structure of Nd2CuO4 is similar to that of
La2CuO4 except for the positions of O atoms outside
CuO2 planes. In the case of n-type doping, the substitu-
tion of Ce4+ atoms for Nd3+ atoms must lead to the for-
mation of a singly charged donor level in
Nd2 − xCexCuO4. In the case of La2CuO4 + y , excess oxy-
gen atoms can occupy interstitial positions in the vicin-
ity of CuO2 planes. In this case, all the valence electrons
of O atoms can participate in the formation of impurity
bands.
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In tungsten bronzes, 5d and 2p orbitals determine
the initial band structure near the insulator gap and an
impurity of alkali metals which gives s states occupies
interstitial states in the tetragonal or hexagonal phase.
In the case of an alkaline impurity in MxWO3, doping
may lead to the formation of an ensemble of singly
filled impurity orbitals.

Using the Anderson–Haldane model for describing
a doped semiconductor [75, 84–86], we can write the
Hamiltonian of the model in question in the form

(2.1)

Here, the number-of-particles operator nkσ = 
corresponds to the initial valence band of a insulator
with the dispersion relation εk (we are using the one-
band approximation for the insulator); k is the wave
vector; σ = ↑ , ↓  is the spin index; the number-of-parti-

cles operator njσ =  corresponds to the ensemble
of sites distributed at random in the initial lattice of the
insulator; ε0 is the initial energy of a localized electron
state at a site; j is the site number; U is the electron cor-
relation energy in the site; Vkj is the hybridization
matrix element; ξjλ represents the electron–phonon

interaction;  is the phonon production operator; and

φλ = bλ + . In the Fröhlich model, λ should be
replaced by the phonon wave vector q, while in the Hol-
stein model of the local mode, we have λ = j.

Solutions for Hamiltonian (2.1) depend on the initial
filling of a site 2A = . We consider the
case of one electron per impurity orbital: 2A = 1. The
total number of impurity sites Ns =  can be pre-
sented in the form Ns = xNt , where Nt is the total number
of states in the initial band of the insulator and x will be
treated as the doping level. While studying supercon-
ductivity, we will use the Holstein model for the elec-
tron–phonon interaction. The result will be qualita-
tively the same as in the case of the Fröhlich model.

3. SYSTEM OF EQUATIONS 
FOR THE SUPERCONDUCTING STATE

In the following analysis, we will use the thermody-
namic variables with a given total number of fermions
in the doped system. This condition makes it possible
to determine the chemical potential µ. In the standard

H εknkσ

k σ,
∑ ε0n jσ Un jσn j σ–,

j

∑+
j σ,
∑+=

+ Vkjakσ
+ a jσ H.c.+{ }

j k σ, ,
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+ "Ωλξ jλn jσφλ "Ωλ bλ
+bλ

1
2
---+ 

  .
λ
∑+

j σ λ, ,
∑

akσ
+ akσ

a jσ
+ a jσ

bλ
+

bλ
+

j n j ↑, n j ↓,+ j〈 〉

j∑
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representation, the Matsubara Green functions are
defined as

where ν = j, k and 〈…〉  indicates the Gibbs averaging.

In the Anderson–Haldane model (2.1), using the
Fourier transformation, we obtain the first pair of equa-
tions in the superconducting state:

(3.1)

(3.2)

Here, ν = j1, k1, ωn = (2n + 1)πT, and

(3.3)

(3.4)

In the superconducting state, we have obtained the
second pair of equations in the two approximations
which were also used in the Eliashberg theory [87]. For
example, formula (2.1) leads to the following equation
for the normal Green function:

(3.5)

For two-particle Green functions, the mean-field
approximation and the initial electron–phonon vortex
in irreducible self-energy parts are used in Eq. (3.5)
(see, for example, [87]). Proceeding in the same man-
ner for the anomalous Matsubara Green function and
carrying out the Fourier transformation, we obtain the
second pair of equations for the superconducting state:

gσσ1
ν ν1; τ τ 1–,( ) T τ ãνσ τ( )ãν1σ τ1( ){ }〈 〉 ,–=
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(3.6)

and

(3.7)

Here, the following notation has been used:

(3.8)
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and

(3.9)

The system of equations (3.1), (3.2), (3.6), and (3.7)
taking into account definitions (3.3), (3.4), (3.8), and
(3.9) forms a closed system of equations for the super-
conducting state of a doped compound. While solving
this system of equations, averaging should be carried
out over a random distribution {Rj} of the ensemble of
impurity sites in the initial lattice [84, 88]. For extended
fermion and boson states (as well as for localized
states), this system can be reduced to two subsystems of
eight equations with eight unknown Green functions.
While determining the chemical potential µ, one should
match the solution to these subsystems. In addition, the
solution to the total system depends self-consistently
on three types of parameters determined by Green func-
tions for localized fermion and boson states. The first of
these parameters is the site filling

(3.10)

In the general case, Aσ ≠ A–σ and the solution to this sys-
tem corresponds to the magnetic phase of the doped
compound. This phase will acquire a magnetic moment
in view of the difference in the density distribution both
for localized and for extended states, as well as in their
filling in the two spin subspaces [89].

We will confine our analysis to the paramagnetic
state alone, for which Aσ = A–σ = A. The spectral expan-
sion of the Green function has the form

(3.11)

where (ε) ≥ 0 is the real-valued density of single-
particle localized states per impurity atom, which has
the normalization

(3.12)

Using Eqs. (3.10) and (3.11) and applying the sum
rule in ωn [87], we obtain

(3.13)

f σσ
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------------- 
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--------------------------------------.d
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The next parameter is the spin-fluctuation parame-
ter λ:

(3.14)

This parameter appears when we leave the (self-consis-
tent) Hartree–Fock approximation [86] for the electron-
correlated system. This parameter is connected with the
nondiagonal form of the Green functions in the spin
variable. Using the representation

(3.15)

where the real-valued density of spin fluctuations has
the property

(3.16)

we obtain

(3.17)

The last important parameter is determined by the
quantity β whose squared modulus gives the probabil-
ity of a localized boson with zero spin located at the jth
site:

(3.18)

In contrast to parameters A and λ, which exist both for
the normal and for the superconducting state, parameter
β determines the possibility for the emergence of super-
conductivity in a doped compound. Using the represen-
tation

(3.19)

where the real-valued boson spectral density has the
property

(3.20)

we obtain

(3.21)

For the paramagnetic superconducting state, we
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introduce the self-energy parts

(3.22)

(3.23)

(3.24)

(3.25)

Taking into account relations (3.10) and (3.22), we
can reduce definitions (3.8) and (3.9) to the form

(3.26)

and

(3.27)

The system of equations for extended states in the
paramagnetic phase is reduced to the form

(3.28)

(3.29)

(3.30)
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(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

The system of equations for localized states in the
paramagnetic phase assumes the form
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(3.37)
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(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Thus, eight equations (3.28)–(3.35) for extended
fermion and boson states and eight equations (3.36)–
(3.43) for localized states taking into account the self-
energy parts (3.22)–(3.25) introduced above; defini-
tions (3.3), (3.4), (3.26), and (3.27), as well as condi-
tions (3.13), (3.17), and (3.21) for matched parameters
A, λ, and β, respectively; and chemical potential µ
determined from the condition of conservation of the
total number of fermions (1 + x)Nt completely deter-
mine the superconducting state in model (2.1) of the
nondegenerate doped insulator analyzed here. In con-
trast to the theory of superconductivity in metals, these
equations do not include the equation for the supercon-
ducting gap. Nevertheless, it will be shown below that
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



∫ + λU Σ+
f–( ) f ↓↑

+( ) j j1,( ) ∆tg↑↑ j j1,( )–




,

f ↑↑
+( ) k j; ωn,( )

=  f 0( ) k k,( ) V j1k f ↑↑
+( ) j1 j; ωn,( ).

j1

∑–
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this gap appears in the density of single-particle states
in the superconducting state.

If Eq. (3.21) has only the trivial solution β = 0, it can
easily be seen that the state of the doped material is nor-
mal. In this state, which is defined by parameters µ, A,
and λ, the electron structure is determined only by sin-
gle-particle normal Green functions for localized and
extended electron states. These normal Green functions
have poles in the region of the initial band as well as in
the region of the initial insulator gap, where impurity
bands of localized as well as extended states are
formed. It was noted above that the formation of impu-
rity bands of extended single-particle states is associ-
ated with hybridization leading to one-electron transi-
tions initial impurity site  band state  another
site  band state, and so on. 

The emergence of the superconducting state is
determined by the existence of only a nontrivial solu-
tion β ≠ 0 to Eq. (3.21) for the anomalous singlet func-

tion (j, j). Such a solution indicates the formation
of localized bosons with zero spin. In addition to these
bosons, localized bosons with spin 1 must also be
present in accordance with Eqs. (3.34)–(3.41). It is this

parameter β which specifies Green functions (k, k1)
for extended charged bosons with zero spin and

(k, k1) for extended charged bosons with spin 1
(see Eqs. (3.26)–(3.33)). As a result, the superconduct-
ing state in the general case is characterized by pairing
of quasiparticles both in the singlet and in triplet chan-
nels.

Thus, this theory of superconductivity in doped
insulators does not contain a BCS-type equation for the
energy gap. Instead, the key equation for the supercon-
ducting state is Eq. (3.21) describing the formation of
localized bosons with zero spin in the doped system.
Such bosons can be regarded as precursors for the
emergence of superconductivity in the system since
hybridization-induced two-quasiparticle transitions
over the impurity ensemble (a localized boson at an
impurity site  pair of coupled quasiparticles (–k, k)
in the impurity band of extended states  localized
boson at another impurity site, etc.) may lead to the for-
mation of a superconducting condensate.

The symmetry of a doped system does not include
spatial inversion. For this reason, the superconducting
state is mixed in the general case. This means that both
singlet and triplet pairing channels for quasiparticles
may be opened. In Section 5, we will demonstrate the
relation between the spin-triplet channel and spin fluc-
tuations in a doped system; i.e., the formation of a trip-
let channel is always associated with a purely electronic
mechanism of the emergence of the superconducting
state.

Spin fluctuations represented by parameter λ atten-
uate upon an increase in the doping level x and/or tem-
perature (Section 4). If λ = 0, the superconducting state

f ↓↑
+( )

f ↓↑
+( )

f ↑↑
+( )
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can arise due to a purely phonon mechanism (Section 6).
It will be shown below that in this model superconduct-
ing bosons appear with a center of mass at rest only.
This is a result of averaging over the ensemble of impu-
rity atoms distributed at random over the initial lattice.
However, we will first analyze the phase diagram of the
normal state depending on the doping level and temper-
ature.

4. INSULATOR–METAL TRANSITION

In addition to the doped tungsten bronzes and
cuprates considered in the Introduction, two families of
transition metal oxides R1 – xAxTiO3 and R1 – xAxVO3
(R = La, Nd, Pr, Y; and A is a bivalent alkali-earth ele-
ment Ca, Sr, or Ba) are known, in which no supercon-
ducting transition has been detected, but the insulator–
metal transition takes place upon doping. At both limits
of doping levels (x = 0 and x = 1), these stoichiometric
compounds are insulators [90]. The initial insulator
state of compounds RTiO3 and RVO3 is determined by
strong electron correlations (Mott–Hubbard insula-
tors). The substitution of a bivalent alkali-earth element
for a trivalent rare-earth element (p-type doping) leads
to an insulator–metal transition [90–94]. This transition
occurs for x ≈ 0.05 in La1 – xSrxTiO3, x ≈ 0.35 in
Y1 − xCaxTiO3, and x ≈ 0.2 in La1 – xSrxVO3.

In the other limit, x = 1, these two families of transi-
tion metal oxides ATiO3 and AVO3 also belong to insu-
lators and the substitution of rare-earth element R3+ for
alkali-earth element A2+ (n-type doping) also leads to
an insulator–metal transition [95, 96]. This transition
for compounds RxBa1 – xTiO3 with R = Y, La, Nd occurs
for x ≈ 0.2–0.3, while this transition in LaxSr1 – xTiO3
occurs in x ≈ 0.08.

In a recent review [25], compounds R1 – xAxTiO3 and
R1 – xAxVO3 were classified as electron-correlated sys-
tems with a phase transition controlled by variable fill-
ing of the band structure. The band structure was deter-
mined on the basis of the Hubbard model taking into
account 3d1 orbitals of Ti3+ and 2p orbitals of oxygen.
It was assumed that doping changes orbital fillings; i.e.,
the theoretical analysis in [25] was based on the two
concepts of the Anderson theory discussed in the Intro-
duction.

It should be noted that photoelectron spectroscopic
methods were used for obtaining data on the variation
of the band structure and the position of the chemical
potential in compounds R1 – xAxTiO3 and R1 – xAxVO3
upon doping [90–94]. The results presented in these
publications clearly indicate the formation of electron
states in the region of the initial insulator gap. The for-
mation of gap states was observed upon doping with
rare-earth elements R of the initial band insulator ATiO3
[95] as well as upon doping of the Mott insulator RTiO3
with alkali-earth elements A [96]. It was concluded [96]
that the change in the spectral density observed in the
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vicinity of the chemical potential in the region of the
initial insulator gap contradicts the results of the Hub-
bard model. The scenario of the reconstruction of the
density of states in the Hubbard model was discussed in
the Introduction.

Naturally, various types of insulator–metal transi-
tions may take place in the impurity states (in particu-
lar, the Mott transition associated with overlapping of
atomic orbitals upon an increase in the doping level).
The possibility of the Mott transition in doped oxides of
transition metals was discussed in [97]. For this mech-
anism, the effective Bohr radius aeff of the impurity
orbital is essential. The effective radius of doped
cuprates in the insulator state was estimated in [39, 71,
97−101] as aeff = 4–8 Å. At the lower boundary of this
estimate corresponding to small-radius polarons or
deep impurity levels with aeff on the order of the atomic
spacing, the Mott criterion may be violated.

We will consider below the results for the insulator–
metal phase transition predicted in model (2.1). This
transition is due to the formation of a pseudogap in the
spectrum of single-particle states in a doped compound
and is induced by a strong rearrangement of the impu-
rity bands of localized and extended states upon a
change in temperature and/or doping level.

4.1. Normal Green Functions 

For the paramagnetic normal state, the system of
equations (3.28)–(3.35) for extended states can be
reduced to the form

(4.1)

(4.2)

Similarly, for localized states in the normal phase,
we obtain from the system of equations (3.36)–(3.43)

(4.3)

(4.4)

The matrix element of hybridization has the form

(4.5)

gσσ1
k k1,( ) g 0( ) k k,( )=

× δkk1
δσσ1

Vkjgσσ1
j k1,( )

j

∑+
 
 
 

,

gσσ1
j k,( ) g 0( ) l l,( )=

× V jk1
gσσ1

k1 k,( )
k1

∑ λU Σ–
f–( )g σ σ1,– j k,( )–

 
 
 

.

gσσ1
j j1,( ) g 0( ) l l,( )=

× δj j1
δσσ1

V jkgσσ1
k j1,( ) λU Σ–

f–( )g σ σ1,– j j1,( )–
k

∑+
 
 
 

,

gσσ1
k j,( ) g 0( ) k k,( ) Vk j1

gσσ1
j1 j,( ).

j1

∑=

Vkj Vkl ik R j⋅( ),exp=
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where Rj is the radius vector of the jth impurity center.
We will solve Eqs. (4.1), (4.2) and (4.3), (4.4) by

using the following approach. We write Eq. (4.4) for
localized states in the form

(4.6)

Substituting into this equation the matrix element
, which is nondiagonal in j and is defined by

Eq. (4.3), and using Eq. (4.6) for –σσ1 spin matrix ele-
ments of Green functions, we obtain

(4.7)

Carrying out summation over j1 in the last term on
the right-hand side of this equation, we must perform
averaging over a random distribution of impurity centers.
Using the configuration averaging technique [84, 88], we
obtain

and

The evaluation of the last term on the right-hand
side of Eq. (4.7) gives a power series in x starting with
x2. In some cases, we have taken into account the first
term of this series and found that the densities of states
change insignificantly on the whole in the case of low
doping levels, but in the energy ranges where the values
of imaginary parts of the self-energy components
(3.22) and (3.23) (or (4.11); see below) are small, the
inclusion of this contribution led to negative values of
the density of states. Assuming that the relative doping
levels are such that x2 ! 1, we will disregard the terms
containing double sums.

Equation (4.7) forms the a system of two equations
for the spin matrix elements of the Green functions
g↑↑ (k, j) and g↓↑ (k, j). This system can be solved easily.
As a result, the Green functions can be expressed in
terms of j-diagonal functions g↑↑ (j, j) and g↓↑ (j, j). Sub-
stituting these expressions into Eq. (4.3), we obtain a

g 0( ) 1–

k k,( )gσσ1
k j,( )

=  Vkjgσσ1
j j,( ) Vk j1

gσσ1
j1 j,( ).

j1 j≠
∑+

gσσ1
j1 j,( )

g 0( ) 1–

k k,( ) xNtVkl
2 g 0( ) l l,( )–( )gσσ1

k j,( )

+ λU Σ–
f–( )g 0( ) l l,( )g 0( ) 1–

k k,( )g σ σ1,– k j,( )

=  Vkj gσσ1
j j,( ) λU Σ–

f–( )g 0( ) l l,( )g σ σ1,– j j,( )+( )

+ g 0( ) l l,( ) Vk j1
V j1k1

gσσ1
k1 j,( ).

k1 k≠
∑

j1 j≠
∑

Vk j1
V j1k1

j1 j≠ k1 k≠,
∑

av

x δ k1 k–( )
k1 k≠
∑∝ 0=

Vk j1
V j1k1

g k1 j; ωn,( )
j1 j≠ k1 k≠,

∑
av

x2.∝
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system of two equations for the Green functions g↑↑ (j, j)
and g↓↑ (j, j). The solution to this system determines the
density of localized states and the spectral density of
their spin fluctuations. We used a similar approach for
solving the system of equations (3.28)–(3.35) for
extended states.

Omitting simple but cumbersome computations, we
write the final expressions for the sought Green func-
tions determining the normal state of a doped insulator.
For localized states, we obtain

(4.8)

where

(4.9)

(4.10)

(4.11)

For extended states, we obtain

(4.12)

where

(4.13)

4.2. Numerical Analysis 
of the Insulator–Metal Transition 

We choose for our computations the model of the
symmetric valence band with a density k states per spin

(4.14)

gσσ1
j j; ωn,( )

1
2
---=

× gloc ωn; A λ–( ) 1–( )
σ σ1–

gloc ωn; A λ+( )+( ),

gloc
1– ωn; A λ±( ) h ωn; A λ±( )=

–
Vkl

2

g 0( ) 1–

k k,( ) xNtVkl
2 h 1– ωn; A λ±( )–

----------------------------------------------------------------------------------,
k

∑

h ωn; A λ±( ) iωn ε0– U A λ±( )–=

– Σ– ωn; A λ±( ),

Σ– ωn; A λ±( ) T ξ"Ω( )2–=

× d0 ωn ωn1
–( )gloc ωn1

; A λ±( ).
n1

∑

gσσ1
k k; ωn,( )

1
2
--- gext k; ωn; A λ–( )(=

+ 1–( )
σ σ1–

gext k; ωn; A λ+( ) ),

gext
1– k; ωn; A λ±( ) g 0( ) 1–

k k; ωn,( )=

–
xNtVkl

2

h ωn; A λ±( ) Vkl
2 g 0( ) k k; ωn,( )

k

∑–
-------------------------------------------------------------------------------------.

ρ 0( ) ε( )

Nt

πDb
2

---------- Db
2 ε2–[ ] 1/2

, ε Db,≤

0, ε Db.>





=
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Here, 2Db is the valence band width and Nt is the total
number of states in the band.

The analytic continuation of the Matsubara Green
functions to the upper part of the complex plane ω
makes it possible to obtain the Fourier components of
the retarded time Green functions at finite tempera-
tures. The latter make it possible to determine the spec-
tral densities

(4.15)

(4.16)

Functions (4.15) determine the density of localized
states per spin per impurity atom,

, (4.17)

and the corresponding spectral density of spin fluctua-
tions,

(4.18)

In addition, the self-energy parts (4.11) continued ana-
lytically from a discrete set of points to the entire upper
half-plane ω are also determined by functions (4.15):

(4.19)

Here, N = 1/(exp(Ω/T) – 1), and the positive constant γ
was regarded as finite in the calculations so that γ ! Ω .
The finite value of γ can describe the attenuation of
phonons.

Substituting Eq. (4.17) into (3.13), we obtain the
following integral equation for A:

(4.20)

Equations (3.17) and (4.18) lead to the integral
equation for λ:

(4.21)

ρloc ω; A λ±( )

=  
1
π
---Imgloc ωn; A λ±( ) iωn ω i0+→ ,–

ρext k ω; A, λ±( )

=  
1
π
---Imgext k; ωn; A λ±( ) iωn ω i0+→ .–

ρloc
f ω( )

1
2
--- ρloc ω; A λ–( ) ρloc ω; A λ+( )+( )=

ρloc
sf ω( )

1
2
--- ρloc ω; A λ–( ) ρloc ω; A λ+( )–( ).=

Σ– ωn; A λ±( ) ξΩ( )2 ρloc x A λ±,( ) xd

∞–

∞

∫=

× n µ x–( ) N+
ω x– Ω– iγ+
---------------------------------- n x µ–( ) N+

ω x– Ω iγ+ +
-----------------------------------+ .

A
1
2
--- ω

ρloc ω; A λ–( ) ρloc ω; A λ+( )+

ω µ–
T

------------- 
 exp 1+

-------------------------------------------------------------------------.d

∞–

∞

∫=

λ 1
2
--- ω

ρloc ω; A λ–( ) ρloc ω; A λ+( )–

ω µ–
T

------------- 
 exp 1+

------------------------------------------------------------------------.d

∞–

∞

∫=
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Functions (4.16) determine the density of extended
states,

(4.22)

and the corresponding spectral density of spin fluctua-
tions,

(4.23)

From the condition of conservation of the total num-
ber of fermions, we obtain the following equation for
chemical potential µ in a doped compound:

(4.24)

Since spectral density (4.16) possesses the property

we can obtain Nt = 2 . Taking into account

this property, we can reduce Eq. (4.24) for the chemical
potential to the form

(4.25)

The expression on the right-hand side of this equation
gives A. For this reason, we always have A > 1/2.

The poles of the retarded Green function may lie in
the region of the initial band or in the gap both for local-
ized and for extended states. We will describe below the
densities of states normalized to the concentration of
impurity atoms. For example, extended states will be
characterized by the following density per spin per
impurity atom:

(4.26)

In order to demonstrate clearly the effect of doping on
the density of extended states in the valence band, we

ρext
f ω( )

=  
1
2
--- ρext k; ω; A λ–( ) ρext k; ω; A λ+( )+( ),

k

∑

ρext
sf ω( )

=  
1
2
--- ρext k; ω; A λ–( ) ρext k; ω; A λ+( )–( ).

k

∑

1 x+
2

------------Nt xNt A
ρext

f ω( ) ωd

ω µ–
T

------------- 
 exp 1+

--------------------------------------.

∞–

∞

∫+=

ωρext k; ω; A λ±( )d∫ 1,=

ρext
f ω( ) ωd∫

1
2
---

1
xNt

--------
ρext

f ω( ) ωd

µ ω–
T

------------- 
 exp 1+

--------------------------------------

∞–

∞

∫+

=  
ρloc

f ω( ) ωd

ω µ–
T

------------- 
 exp 1+

--------------------------------------.

∞–

∞

∫

1
xNt

--------ρext
f ω( ).
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introduce the change in the density of states in this
spectral region:

(4.27)

In the expressions obtained for Green functions, we
use the substitution

where Vk has the dimensions of energy. In our calcula-
tions, we assume that Vk is independent of k.

The expression for the electron energy per impurity
atom has the form

Thus, six constants Db, ε0, Vk, U, Ω , and ξΩ with
dimensions of energy determine model (2.1) com-
pletely. The solution to this equation for the normal
paramagnetic state depends on the three self-consistent
parameters A, λ, and µ. These parameters can be deter-
mined from three integral equations (4.20), (4.21), and
(4.25). Two of these equations, (4.20) and (4.21), con-
tain two spectral densities ρloc(ω; A ± λ), and Eq. (4.25)
also contains ρext(k; ω; A ± λ). Functions ρloc(ω; A ± λ)
can be determined from the integral equation (4.15)
taking into account Eqs. (4.9), (4.10), and the definition
of self-energy parts (4.11) or (4.19). Functions ρext(k;
ω; A ± λ) can be determined from the solution to
Eq. (4.16) taking into account definitions (4.13), (4.10),
and (4.11). The latter quantities, (4.11), are determined
in turn by the values of ρloc(ω; A ± λ).

We solved the obtained system of equations at finite
temperatures using the iteration procedure. The error in
the total number of states did not exceed 10–3 per impu-
rity atom. Iterations were carried out until the absolute
variation of self-consistent parameters for the last two
iterations became smaller than 10–5. The accuracy of
calculations became lower upon an increase in the dop-
ing level x. For a given value of x, an optimal accuracy
existed for a certain temperature. The computation
error increased upon a deviation from this temperature.

4.3. Insulator State 

The reason for the emergence of a insulator state in
a doped compound at low doping levels and tempera-
tures is associated with spin fluctuations represented by
parameter λ in the obtained solution (4.8)–(4.13). Solid
curves in Fig. 1 represent the electronic structure of the
normal state of a doped compound with x = 0.03 at tem-
perature T = 40 K. In our calculations, we used the ini-
tial band of the insulator in form (4.14) with a half-

∆ρext
f ω( )

1
xNt

-------- ρext
f ω( ) ρ 0( ) ω( )–( ).=

Vkl Vk Nt
–1/2,=

Eel T x,( )

=  2
ω ρext

f ω( ) ρloc
f ω( )+( ) ωd

ω µ–
T

------------- 
 exp 1+

------------------------------------------------------- U A2 λ2–( ).–

∞–

∞

∫
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Fig. 1. Electronic structure of the spin-fluctuation insulator state for x = 0.03 and T = 40 K (solid curves): the spectral densities of
(a) localized and (b) extended states. The dashed curve shows the electronic structure in the region of the initial insulator gap in the
state of a poor metal, obtained for λ = 0. Parameters: Db = 1.5 eV, ε0 = Db – 0.2 eV, Vk = 1.2 eV, U = 0.6 eV, ξ = 5, "Ω = 20 meV,
and γ = 0.2"Ω .
width Db = 1.5 eV, while the initial impurity level in this
band was 0.2 eV lower than its upper boundary at
1.5 eV. It was found that λ = 0.352 and A = 0.598.

The  dependence (solid curve in Fig. 1a)
shows the density of localized states; accordingly,

 (solid curve in Fig. 1b) shows the single-parti-
cle density of extended states per spin per impurity
atom both in the region of the initial valence band and
in the region of the initial insulator gap. It can be seen
that the structure has many peaks in the density of states

 and  in the vicinity of chemical poten-
tial µ, which are due to multiphonon processes. The
position of µ shown by the arrow in Fig. 1 is higher than

ρloc
f ω( )

ρext
f ω( )

ρloc
f ω( ) ρext

f ω( )
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the upper edge of the initial valence band of the insula-
tor by approximately 0.5 eV.

It can be seen in Fig. 1 that a insulator gap in which
the chemical potential is located appears in the impurity
bands in localized and extended states. We will call this
gap a pseudogap ∆p . In accordance with numerical cal-
culations, the gap width for localized and extended
states may be different. For the parameters used in the
calculations and for x = 0.03 at T = 40 K, the width of
the pseudogap is approximately the same for both types
of charge carriers. Since the density of localized states
is considerably higher than the density of extended
states in the vicinity of the chemical potential, we will
determine the pseudogap from the position of the peaks
SICS      Vol. 97      No. 2      2003



374 AGAFONOV, MANYKIN
–8
1.6

ρloc
sf , eV–1 spin–1

ω, eV

8

2.0

4

0

–4

1.8 2.2 2.4

µ(a)

–2
1.6

ρext
sf , eV–1 spin–1

2

2.0

1

0

–1

1.8 2.2 2.4

(b)

ω, eV

Fig. 2. Densities of spin fluctuations for (a) localized and (b) extended states in the vicinity of the chemical potential in the insulator
state for x = 0.03 and T = 40 K (Fig. 1). The parameters are the same as in Fig. 1.
in the densities of localized states. It is equal to ∆p =
146 meV (see Fig. 1).

The density of extended states in the initial band of
the insulator varies significantly. The inset to Fig. 1b

shows the variation  of this density. In the

vicinity of the upper edge of the band,  < 0; con-
sequently, the density of extended states is much lower
than the initial density ρ(0)(ω). In the vicinity of the

lower edge of the band,  > 0, and the density of
extended states in this region is higher than the initial
density. The change in the total number of extended
states in the region of the initial band turns out to be
negative. For the result represented in Fig. 1, this
change is equal to –0.215 states. A band of localized
states, which is shown in Fig. 1a with a 20 magnifica-
tion, also appears in this region. The total number of
these states to the initial boundary of the valence band
Db is 0.243.

The decrease in the total number of extended states
in the region of the initial valence band is due to the fact
that a part of these states splits from the initial band and
forms two impurity bands of extended states in the
region of the initial insulator gap (see Fig. 1b). The total
number of these states in the entire gap is 0.215 states
per spin per impurity atom. These two bands are deter-
mined by the spectral densities ρext(k; ω; A + λ) (4.16)
taking into account formulas (4.13) and (4.10), (4.11).
For x = 0.03 and T = 40 K in the vicinity of the chemical
potential, these two bands are separated by the
pseudogap. The gap in the spectrum of the impurity
bands of localized states appears for the same reason.

∆ρext
f ω( )

∆ρext
f

∆ρext
f
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This spectral density is determined by the values of
ρloc(ω; A ± λ) (4.15) taking into account formulas (4.9)
and (4.10). The total number of these states in the
entire gap is equal to 0.757 states per spin per impu-
rity atom. As a result, a pseudogap appears in the den-
sities of single-particle states and the normal state is
insulator.

In the region of the initial valence band, the corre-
sponding pair of spectral densities always overlap con-
siderably and will not be considered separately here.

In order to demonstrate clearly the role of spin fluc-
tuations in the formation of the insulator state, we also
show in Fig. 1 (dashed curves) the densities of states
calculated for λ = 0. In this case, there is no pseudogap
in the spectral densities of states, and the compound is
in the state of a poor metal, for which the band for local-
ized and extended states coexist on the Fermi surface,
the total number of localized fermions being several
times larger than the number of extended fermions. The
chemical potential in this state lies at the highest peaks
on the densities of localized and extended states; it can
clearly be seen that the position of µ for the insulator
state is lower.

In the state of a poor metal, the electron energy Eel =
0.953 eV per impurity atom, while the insulator state is
characterized by Eel = 0,932 eV per impurity atom.
Consequently, spin fluctuations responsible for the
emergence of a insulator gap lower the electron energy.
For this reason, from the two states, the insulator state
induced by spin fluctuations is realized. Figure 2 shows

the densities  and  for localized and extended
states in the vicinity of the chemical potential (the

ρloc
sf ρext

sf
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Fig. 3. Temperature variation of the electronic structure in the vicinity of the chemical potential near the insulator–metal transition.
Solid curves show the densities of (a) localized and (b) extended states in the vicinity of the pseudogap at T = 80 K. Dashed curves
represent the electronic structure of the metallic state at T = 150 K. The parameters and doping level x are the same as in Fig. 1.
region of the initial valence band also has a finite spec-
tral density of these states, but it is not shown in the fig-
ure). The values of spectral densities of spin fluctua-
tions averaged over the entire energy interval where
their values are specified are equal to zero (see
Eq. (3.16)). The set of values of λ in the integral equa-
tion (4.21), taking into account (4.18), is mainly deter-

mined by the positive part of  represented in Fig. 2,
while the contribution to λ from the negative part of this
spectral density is suppressed by the Fermi distribution
function.

4.4. Temperature-Induced Insulator–Metal Transition 

For a fixed doping level, an increase in temperature
leads to a decrease in parameter λ and the pseudogap,
and a smooth increase in the density of extended states
in the pseudogap region. Such a behavior of the spectral
density leads to a temperature-induced insulator–metal
transition.

For x = 0.03 and for the parameters considered
above, the gap in the density of extended states is pre-
served up to T ≈ 70 K. The charge transfer phenomena
are characterized by a certain activation energy. At high
temperatures, this density is finite in the entire
pseudogap region in which the chemical potential is
located and we can expect a transition to metal-type
conductivity. However, transport phenomena still differ
considerably from those observed in metals since in
this case the bands of localized and extended states
coexist on the Fermi surface.

Solid curves in Fig. 3 represent the densities of
localized (Fig. 3a) and extended (Fig. 3b) states in the

ρloc
sf
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vicinity of the pseudogap at T = 80 K and at the same
doping level x = 0.03. Here, λ = 0.350 and A = 0.597. In
the pseudogap region, the density of extended states
becomes finite. However, in the vicinity of µ (see
Fig. 3), this density is approximately one-third of the
density of localized states. The value of ∆p is 134 meV,
which is 12 meV lower than the gap width at T = 40 K.

With increasing temperature, parameter λ
decreases, and two bands of localized states become
closer and overlap. A similar behavior is also observed
for the two bands of extended states. The dashed curves
in Fig. 3 show the electronic structure of the metallic
state at T = 150 K. It was found that λ = 0.345 and A =
0.596. Chemical potential µ in this state is 27 meV
higher than that indicated in Fig. 3 for T = 80 K. The
densities of states become smoother, but we can still
speak of pseudogap ∆p = 94 meV, which is manifested
in singularities of photoelectron spectra.

The change in the electronic structure of the metallic
state of a doped compound upon a further increase in
temperature is depicted in Fig. 4. Here, the densities of
localized states (curves 1 in Fig. 4a) and extended states
(curves 2 in Fig. 4a) are shown by solid curves for T =
180 K and by dashed curves for T = 250 K. It was found
that at T = 180 K, the spin-fluctuation parameter is λ =
0.329 and the corresponding densities of spin fluctua-
tions are shown by solid curves 1 and 2 in Fig. 4b. It is
important to note that although the pseudogap vanishes
at temperatures above 180 K (see Fig. 4), spin fluctua-
tions are preserved in the metallic phase up to much
higher temperatures. This is clearly demonstrated by
dashed curves 1 and 2 in Fig. 4b, which represent the
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Fig. 4. (a) Electronic structure and (b) spectral density of spin fluctuations in the state of a poor metal at T = 180 K (solid curves)
and 250 K (dashed curves). Localized states are represented by curves 1, and extended states, by curves 2. The parameters and dop-
ing level x are the same as in Fig. 1.
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Fig. 5. Temperature dependences of (a) the spin-fluctuation parameter, (b) the pseudogap, and (c) the chemical potential. The param-
eters and doping level x are the same as in Fig. 1.
spectral densities of spin fluctuations at T = 250 K. For
this state, λ = 0.091.

Thus, the temperature-induced insulator–metal tran-
sition has the following features. At low doping levels
and temperatures, the doped compound is in the insula-
tor state induced by spin fluctuations. This state is char-
acterized by a pseudogap in the densities of localized
and extended states. The chemical potential lies in the
JOURNAL OF EXPERIMENTAL
pseudogap. The charge transfer in this compound
exhibit an activation dependence, the activation energy
being a function of T.

As the temperature increases, spin fluctuations
attenuate (Fig. 5a), the pseudogap decreases (Fig. 5b)
and the density of both localized and extended states
increases in the pseudogap region (see Figs. 1–4). This
determines a smooth continuous transition to the state
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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Fig. 6. Variation of electronic structure in the vicinity of the chemical potential for the doping-induced insulator–metal transition.
Solid curves indicate the densities of (a) localized and (b) extended states near the pseudogap for x = 0.05. Dashed curves represent
the electronic structure of the metallic state for x = 0.1. The parameters and the temperature are the same as in Fig. 1.
with a metal-type conductivity. First, even in the metal-
lic phase, the dip in the vicinity of µ in the densities of
localized and extended states disappears. The photo-
electron spectroscopic data in this case can be inter-
preted as pseudogap collapse (see Fig. 5b). Then spin
fluctuations in the doped compound attenuate (see
Fig. 5a). The chemical potential increases with T, its
shift being 60 meV upon a change in temperature from
40 to 250 K (Fig. 5c).

However, this metallic state is peculiar for at least
two reasons. First, the bands of localized and extended
states coexist on the Fermi surface, the density of local-
ized states being much higher than the density of
extended states. For this reason, such a state of a poor
metal may exhibit anomalous transport properties as
compared to those of ordinary metals. Second, single-
particle Green functions in this state are nondiagonal in
the spin subspace. The presence of spin fluctuations
may lead to singularities in the behavior of the spin sus-
ceptibility of the doped compound.

4.5. Doping-Induced Insulator–Metal Transition 

Here, we consider the results of calculations on the
change in the electronic structure in the vicinity of the
chemical potential depending on the doping level x at a
fixed temperature T = 40 K. For x = 0.03, the doped
compound is in the insulator state (see Figs. 1 and 2).
As the doping level increases, parameter λ and the
pseudogap decrease, while the density of extended
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
states increases smoothly in the pseudogap region. This
leads to a doping-induced insulator–metal transition.

Solid curves in Figs. 6a and 6b illustrate the elec-
tronic structure of the normal state of a doped com-
pound for x = 0.05. Parameter λ = 0.317 decreases sig-
nificantly, while the value of A = 0.605 is higher than
the value corresponding to x = 0.03. In the pseudogap
region, the density of extended states is finite, but it is
smaller than the density of localized states at the chem-
ical potential level. The pseudogap ∆p determined from
the position of the peaks in the densities of states is
found to be equal to 129 meV.

As the value of x increases, two bands of localized
states and two bands of extended states are shifted to
the right and converge pairwise. The overlapping of the
two pairs of bands increases in this case. As a result, the
values of λ and ∆p decrease and the density of states in
the pseudogap increases. The dashed curves in Fig. 6
show the electronic structure of the metallic state for
x = 0.1. It was found that λ = 0.231 and A = 0.616.
Chemical potential µ in the same state is 41 meV higher
than that corresponding to x = 0.05 in Fig. 6. Appar-
ently, the dip in the density of states with its character-
istic width of ∆p = 90 meV shown in Fig. 6 for x = 0.1
can still be manifested in the photoelectron spectra.

At high doping levels, the pseudogap in the densities
of states disappears soon. Spin fluctuations are pre-
served in the metallic phase up to much higher values
of x. For x = 0.15, a pseudogap ∆p = 32 meV is observed
for localized states, but does not appear in the spectral
function for extended states. However, spin fluctuations
are present for both types of states and λ = 0.148.
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Fig. 7. Dependence of (a) the pseudogap width, (b) the spin-fluctuation parameter, (c) the chemical potential, and (d) the electron
energy per impurity atom on the doping level at a constant temperature of T = 40 K. The parameters are the same as in Fig. 1.
Thus, an increase in the doping level at a fixed tem-
perature leads to a smooth insulator–metal transition. In
this case, the pseudogap in the densities of states in the
vicinity of the chemical potential is the first to disap-
pear (Fig. 7a). Then spin fluctuations attenuate for large
x (Fig. 7b). Accordingly, λ  0 and the doped com-
pound passes to the state of a poor paramagnetic metal,
in which the bands of localized and extended states
coexist on the Fermi surface, the density of localized
states considerably exceeding the density of extended
states (see Fig. 6). The chemical potential increases
with T, its shift upon a change in the doping level from
0.03 to 0.21 amounting to 155 meV (Fig. 7c). We can
also plot the dependence of the electron energy Eel per
impurity atom on x (Fig. 7d). Although the value of Eel
JOURNAL OF EXPERIMENTAL
decreases with increasing doping level, the product Eel
increases with x.

4.6. Effect of the Allowed Bandwidth of an Insulator
on the Insulator–Metal Transition 

It is important to note that a peculiarity of the insu-
lator–metal transition is that the allowed bands of the
initial insulator must be quite narrow. Figure 8 shows
the results of calculations of the electronic structures
for two insulator states of doped compounds in which
only the width 2Db of the initial allowed band varies,
the remaining model parameters being the same as in
Fig. 1. As the bandwidth increases the structure of the
impurity bands in the vicinity of the chemical potential
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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shifts to the left, towards the initial band; it is important
to note that in this case the pseudogap increases. The
pseudogap is present in the spectra of both localized
and extended states.

With increasing Db , parameter A decreases,
approaching its lower boundary of 1/2, while parameter
λ increases, tending to 1/2, which is its upper boundary.
For example, for the valence band halfwidth Db = 4 eV
of the valence band, we have A = 0.542, λ = 0.464, and
∆p ≈ 270 meV, while the valence band halfwidth for
Db = 1.5 eV is equal to ∆p = 146 meV (see Fig. 1). It is
worth noting that the spectral density of extended states
is small as compared to the density of localized states
(Fig. 8).

For Db = 1.5 eV, the insulator–metal transition
occurs in the vicinity of the doping level x = 0.05 (see
Fig. 6). It was found that, as the allowed bandwidth
increases, this transition occurs for larger values of x.
For example, for Db = 4 eV, T = 40 K, and x = 0.12, a

clearly manifested pseudogap  ≈ 100 meV appears
in the density of extended states; however, the density
of localized states within the pseudogap is finite.
Accordingly, the insulator–metal transition will occur
for x > 0.12.

Thus, for the insulator–metal transition studied
here, the allowed bands of the initial insulator must be
quite narrow. In insulators with sp bands, the predicted
transition can hardly be observed since these bands are
broad as a rule. Narrower bands can be expected in
insulators with the pd hybridization. This is due to the
fact that the wave functions of d electrons are coupled

∆p
ext
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with the atomic potential more rigidly. For this reason,
the initial insulator must contain an element from tran-
sition metals as a component. This element must take
part in the formation of the band structure of the insu-
lator in the vicinity of the insulator gap. It should be
noted that, in accordance with photoelectron spectro-
scopic data, the typical width of the main peak of the
valence band of cuprate is 2Db ≈ 3 eV [34].

In model (2.1), the electron–phonon interaction
affects the width of impurity bands. The smaller the
parameter of this interaction, the narrower the bands.
Accordingly (other conditions being equal), the
pseudogap is wider and the spin fluctuations leading to
the dielectrization of the compound are stronger. It can
be stated that the electron–phonon interaction tends to
suppress spin fluctuations in a doped compound and
transform it to the state of a poor metal.

It can be predicted intuitively that a decrease in tem-
perature may lead to a transition to the superconducting
state from the normal state in which the pseudogap can
be finite. However, the density of extended states in the
pseudogap region must be quite high. It was shown
above that the pseudogap or a deep valley in the density
of states in the vicinity of the chemical potential
appears when spin fluctuations in the doped compound
are strong. These spin fluctuations determine parameter
λ, which can vary within the limits 0 ≤ λ ≤ 1/2. When
the value of λ is closer to the right limit of this interval,
it can be stated that spin fluctuations in the doped com-
pound are strong.

Proceeding analogously to with the approach used
for obtaining the Green functions for the normal state,
SICS      Vol. 97      No. 2      2003
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we can easily obtain solutions to the eight equations
(3.28)–(3.35) for extended fermion and boson states
and the eight equations (3.36)–(3.43) for localized
states. On account of self-energy components (3.22)–
(3.25) introduced above, this solution depends on four
matched parameters A (3.13), λ (3.17), β (3.21), and
chemical potential µ. This solution will not be given
here since, first, it is very cumbersome and, second, we
failed to obtain a numerical solution to this system with
these mutually consistent parameters.

In model (2.1) with the electron–phonon interac-
tion, the possibility of a superconducting transition in
the vicinity of the insulator–metal transition was not
investigated. Nevertheless, in the general case we can
analyze the role of spin fluctuations in the supercon-
ducting state.

5. ANALYSIS
OF THE TRIPLET PAIRING CHANNEL
IN THE SUPERCONDUCTING STATE

Let us consider the case when λ = 0 and single-par-
ticle Green functions are diagonal in the spin index so
that g–σ, σ(ν, ν1) = 0. In accordance with Eq. (3.23),

 = 0. Then we obtain from Eq. (3.31)

(5.1)

Taking this expression into account, we obtain from
Eqs. (3.34) and (3.35)

(5.2)

In the case considered here, Eqs. (3.32) and (3.33)
can be reduced to the form

(5.3)

and

(5.4)

Using relations (5.1) and (5.2) for anomalous Green
functions, we obtain from Eqs. (5.3) and (5.4)

(5.5)
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 

∆t 0.=
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Proceeding in a similar way, we can easily obtain
from Eqs. (3.38), (3.40)–(3.43) the analogous expres-
sion

(5.6)

Since the first two cofactors on the left-hand sides of
Eqs. (5.5) and (5.6) differ from zero, the only solution
to these equations has the form

∆t = 0. (5.7)

Taking into account the definition of the self-energy
part (3.25) of ∆t, we arrive at the conclusion that the

anomalous Green function  for triplet bosons is
equal to zero.

Thus, in the general case, both singlet and triplet
pairing channels are possible in the superconducting
state. A spin-triplet channel is realized only if the
parameter representing spin fluctuations in a doped
insulator is finite, λ ≠ 0 (3.17). It is only in this case that
single-particle Green functions are nondiagonal in the
spin index.

A purely electronic mechanism that takes into
account both the singlet and the triplet pairing channels
in the superconducting state of a doped nondegenerate
insulator was studied in [85] for model (2.1), but with-
out taking into account the electron–phonon interac-
tion. In the remaining part of this review, we will ana-
lyze the phonon mechanism of superconductivity in
model (2.1) for a doped insulator. The analysis will be
carried out for the paramagnetic phase under the
assumptions that spin fluctuations can be neglected (see
Section 4).

6. PHONON-MEDIATED MECHANISM 
OF SUPERCONDUCTIVITY

In the case considered here, normal single-particle
Green functions are diagonal in the spin index and only
a spin-singlet pairing channel is realized. Henceforth,
spin indices will be omitted. The system of equations
for extended states has the form

(6.1)

(6.2)

g↑↑ j j1,( ) 1
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--------------------–
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 
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× V jk1
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,
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(6.3)

(6.4)

Similarly, for localized states we have

(6.5)

(6.6)

(6.7)

(6.8)

For solving Eqs. (6.1)–(6.4) and (6.5)–(6.8), we will
use the following approach. Substituting the nondiago-
nal Green function g(j1, j ≠ j1) defined by expression (6.5)
into the right-hand side of Eq. (6.6) and using Eqs. (6.7)
and (6.8), we obtain

(6.9)
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Here, we have

(6.10)

(6.11)

The second equation connecting the nondiagonal
functions g(k, j; ωn) and f (+)(–k, j; ωn) with diagonal
functions g(j, j) and f (+)(j, j) can easily be obtained from
Eq. (6.8) by substituting f (+)(j1, j ≠ j1) (6.7) into it and
using Eqs. (6.5) and (6.6):

(6.12)

Here, we have

(6.13)

(6.14)

Using Eqs. (6.1)–(6.4), we can obtain two more sim-
ilar equations connecting the nondiagonal Green func-
tions g(j, k; ωn) and f (+)(j, k; ωn) with the required func-
tions g(k, k) and f (+)(–k, k). These equations contain
similar terms with double sums, which are analogous to
the last terms on the right-hand sides of Eqs. (6.9)
and (6.12).

For low doping levels (x2 ! 1), such terms with dou-
ble sums can be disregarded (see Section 4.1).

Solving Eqs. (6.9) and (6.12), we obtain functions
g(k, j; ωn) and f (+)(–k, j; ωn) expressed in terms of diag-
onal functions g(j, j) and f (+)(j, j). Substituting these
expressions into Eqs. (6.5) and (6.7), we obtain a sys-
tem of two equations for g(j, j) and f (+)(j, j). Omitting
simple but cumbersome calculations, we can present
the solution to this system for localized fermions and
bosons in the form
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Here, we have used the following notation:

(6.17)

(6.18)

(6.19)

Proceeding in a similar way, we obtain from Eqs. (6.1)–(6.4) the following expressions for extended fermions
and bosons:
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Here, we have used the notation

(6.22)

(6.23)

(6.24)

(6.25)

(6.26)

6.1. Numerical Analysis 
of the Superconductor–Metal Transition 

Here, we also use expression (4.14) for the initial
density of states in the valence band of a insulator.

The analytic continuation of the Matsubara Green
functions to the upper part of the complex plane ω
makes it possible to obtain the Fourier components of
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the retarded temporal Green function at finite tempera-
tures. This allows us to determine the spectral densities

(6.27)

(6.28)

(6.29)

(6.30)

(δ is a positive infinitesimal).
Expression (6.29) enables us to determine the den-

sity of single-particle extended states:

(6.31)

The equation for µ has the same form as Eq. (4.25),

but  is now defined by Eq. (6.31), while 
is defined by formula (6.27).

We are also interested in the energy distribution of
superconducting bosons. The momentum distribution
of extended charged bosons has the form

(6.32)
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Taking into account relation (6.30), we can reduce
expression (6.32) to the form

(6.33)

This expression leads to the total number of bosons
per unit volume:

(6.34)

where the boson distribution over energy eigenvalues εk
of the initial insulator has the form

If we use the above property of spectral density (6.31),

,

the energy distribution for bosons can be written
in the form

(6.35)

This energy distribution for extended bosons can be
determined both in the valence band region and in the
insulator gap of the initial insulator. Consequently, the
total concentration of bosons can be conveniently writ-
ten in the form

Parameter β determined by the spectral density of
the boson state at an impurity site makes it possible to
determine the concentration of local charged bosons,
which has the form

Analytic continuation of the self-energy parts (3.22)
and (3.24) from a discrete set of points to the entire
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upper half-plane ω has the form

(6.36)

(6.37)

(6.38)

In the results described below, the density of both
localized and extended states is normalized to the con-
centration (4.26) of substitutional atoms. In the region
of the initial valence band, we consider for the sake of
visualization the change in the density of extended
states per substitutional atom (4.27). In our calcula-

tions, the value of Vk = Vkl  was regarded as inde-
pendent of k.

The expression for the electron energy per impurity
atom has the form

(6.39)

The temperature dependence of the electron energy
Eel(T, x) allowed us to determine the electronic heat
capacity per impurity atom:

(6.40)

It should be noted that in the atomic limit, when
Vkl  0, it follows from Eqs. (6.10) and (6.21) that
f (+)(–k, k; ωn)  0 and g(k, k; ωn)  g(0)(k, k; ωn).
In addition, it follows from Eqs. (6.15) and (6.16) that
g(j, j; ωn) and f (+)(j, j; ωn) are transformed, respectively,
into expressions (39) and (41) from [83], which
describe one-site boson–polaron mixed states.

The solution to Hamiltonian (2.1) for the supercon-
ducting state depends on three self-consistent parame-
ters A, µ, and β and, accordingly, there are only two
self-consistent parameters for the normal state since
β = 0. We solved the obtained system of equations for
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Fig. 9. The state of a poor paramagnetic metal at x = 0.15 and T = 45 K: (a) localized states and (b) extended states. Parameters:
Db = 1.5 eV, ε0 = Db – 0.2 eV, Vk = 1.3 eV, U = 0.5 eV, ξ = 6, "Ω = 30 meV, and γ = 0.1"Ω .
finite temperatures by using an iterative procedure. For
doping levels x ≈ 0.15, the error in the total number of
states did not exceed 5 × 10–4 per impurity atom. Itera-
tions were carried out until the absolute variation of
self-consistent parameters for the last two iterations
became smaller than 10–5. For a given value of x, there
existed an optimal accuracy at a certain temperature. A
deviation from this temperature deteriorated the accu-
racy of computations.

6.2. The State of a Poor Paramagnetic Metal 

Figure 9 shows the electron structure of the normal
state of a doped compound at x = 0.15, calculated under

the assumption that β = 0 at T = 45 K. The ρloc
f ω( )
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dependence (Fig. 9a) shows the density of localized

states, while  (Fig. 9b) shows the single-particle
density of extended states both in the region of the ini-
tial valence band and in the region of the initial insula-
tor gap. It is worth noting that single-particle densities

of states  and  have a multipeak structure
due to many-phonon processes in the vicinity of chem-
ical potential µ lying deeply in the initial insulator gap.

The density of extended states in the initial insulator
band varies significantly. The inset to Fig. 9b shows the

density variation ∆ . In the vicinity of the upper

edge of the band, ∆  < 0 and, accordingly, the den-
sity of extended states is much lower than the initial

ρext
f ω( )

ρloc
f ω( ) ρext

f ω( )

ρext
f ω( )

ρext
f

AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003



SUPERCONDUCTIVITY IN DOPED NONDEGENERATE INSULATORS 385
density ρ(0)(ω). In the vicinity of the lower edge of the

band, ∆  > 0, and the density of extended states is
higher than the initial density in this region. The change
in the total number of extended states in the region of
the initial band is negative. For the result represented in
Fig. 9, this variation is equal to –0.1874 states per spin
per impurity atom. The band of localized states shown
in Fig. 9a also appears in this region.

The decrease in the total number of extended states
in the region of the initial band is associated with the
fact that a part of these states split from the initial band
and form impurity bands of extended states in the
region of the insulator gap (see Fig. 9b). The total num-
ber of these states in the entire gap is 0.1874.

The parameters calculated for the normal state rep-
resented here are as follows: A = 0.6202, µ = 2.1620 eV,
and the electron energy of the state is Eel = 0.7472 eV
per impurity atom. It can easily be seen from Fig. 9 that
this electronic structure corresponds to the state of a
poor metal. At the energy of the chemical potential,
bands of both localized and extended states coexist. For
the energy equal to µ, the density of localized states is
almost an order of magnitude higher than the density of
extended states. It is important to note that this band of
extended states is quite narrow, its effective width being
on the order of 0.5 eV. It is characterized by a relatively
low total number of states, equal to 0.1874. At the same
time, this band, which is filled approximately by half,
has a high density of states. It can be seen from Fig. 9b
that the maximal density of extended states in this band
is approximately equal to the maximal density of states
in the initial valence band of the insulator.

6.3. Superconducting State 

It was noted above that the normal state is character-
ized by an electron energy Eel = 0.7472 eV per impurity
atom. For the same parameters of calculations, the
superconducting state possesses a lower energy; it was
found that Eel = 0.7461 eV per impurity atom in this
state. We have determined the probability amplitude
β = 2.635 × 10–2 for the boson state filling at a site, the
decrease in the chemical potential ∆µ = –0.36 meV in
the superconducting state, and the increase in the sin-
gle-particle site filling ∆A = 0.52 × 10–3 as compared to
the normal state.

Figure 10 shows the densities of single-particle
localized (a) and extended (b) states in the region of the
initial insulator gap (ω > 1.5 eV) in the superconducting
state of a doped compound at x = 0.15 and T = 45 K (it
will be shown below that the superconducting transi-
tion temperature Tc > 45 K). Here, the changes in the
densities of single-particle states in the region of the
initial valence band are not indicated. In the supercon-
ducting state, energy gaps in the densities of single-par-
ticle extended (solid curve in Fig. 10d) and localized
states (solid curve in Fig. 10c) appear in the vicinity of

ρext
f
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the chemical potential. In order to visualize the rear-
rangement of single-particle spectra upon a supercon-
ducting transition more clearly, the spectral densities in
the state of a poor metal are also shown in Figs. 10d and
10c (dashed curves). The latter correspond to the results
represented in Fig. 9. It can be seen that the position
and width of the gap are the same for both types of
charge carriers. The obtained value of the gap width is
∆s = 24.36 meV.

It should be noted that the density of single-particle
states in the vicinity of the superconducting gap
decreases abruptly, but remains finite both for localized
and for extended states. Among other things, this leads
to a singularity on the temperature dependence of the
electron heat capacity, which will be discussed below.
It was found that the density of single-particle states in
the superconducting gap decreases with temperature.

The spectral density  of the localized boson
state at a site for this superconducting state is shown in
Fig. 11. This spectral density is finite both in the region
of the initial valence band (|ω| ≤ 1.5 eV) and in the
region of the initial insulator gap. The substitution of

 into Eq. (3.21) gives the probability amplitude
β = 2.635 × 10–2 of filling of the boson state at a lattice

site. It should be noted that the substitution  

–  reverses the sign of β, but does not affect the
density of single-particle states shown in Fig. 10.

Figure 12 shows the energy distribution of extended
charged bosons (solid curves) per impurity atom. It can
be seen that the energy distribution of bosons is very
broad and is defined both in the region of the initial
valence band (|ω| ≤ 1.5 eV) and in the region of the ini-
tial insulator gap. The position of the chemical potential
is also shown in Fig. 12. This distribution differs quali-
tatively from the distribution of the superconducting
condensate in the BCS theory. The total concentration
of extended bosons defined in the region of the initial

band is  = 8.843 × 10–5 per impurity atom, while
the corresponding total concentration of extended

bosons in the region of the initial gap is  =
7.525 × 10–6 per impurity atom. Accordingly, the total

concentration of extended bosons is  = 0.96 ×
10−4xNt . For the results presented in Figs. 10–12, x =
0.15. The concentration of localized charged bosons is

 = 2β2xNt , where β = 2.635 × 10–2 (see above). It
can hence be concluded that the concentration of impu-
rity-site (localized) charge bosons in the superconduct-
ing state is an order of magnitude higher than the con-
centration of extended charged bosons.

Such a broad energy distribution of extended
charged bosons (see Fig. 12) can be explained as fol-
lows. The electron–phonon interaction plays a signifi-
cant role in the emergence of localized bosons with
zero spin at impurity sites. As soon as these localized
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Fig. 10. Densities of single-particle (a) localized and (b) extended states in the vicinity of the initial insulator gap (ω > 1.5 eV) in
the superconducting state of a doped compound at x = 0.15 and temperature T = 45 K. Figures 10c and 10d show the rearrangements
of single-particle spectra in the vicinity of the superconducting gap upon a transition from the poor metal state (dashed curves) to
the superconducting state (solid curves). Parameters are the same as in Fig. 9.
bosons appear in the system, a channel of two-particle
transitions over the lattice-site ensemble is formed: a
localized boson at the jth site  –k, k pair in the
bands of extended states  a boson at the j1th site,
and so on. The existence of this channel is due to
hybridization in model (2.1) and leads to the movement
of charged bosons over the impurity sites or, in other
words, to the delocalization of bosons and the forma-
tion of extended charged bosons. Single-particle transi-
tions induced by hybridization mainly determine the
widths of impurity bands for fermion states. These
widths correlate with the width of the energy distribu-
tion of extended bosons. This becomes clear if we take
into account the fact that hybridization also plays a sig-
nificant role in the formation of such bosons.
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Thus, we have obtained a superconducting state in a
nondegenerate doped insulator. The conventional equa-
tion for the superconducting gap is not required for a
superconducting transition as in the BCS theory.
Instead of this equation, the leading role is played by
the equation determining the formation of localized
bosons with zero spin, while the main parameter is the
value of β determined by the spectral density of the
localized boson state (see Fig. 11). Although the theory
does not contain equations for the superconducting gap,
this gap appears in the spectrum of single-particle states
of extended states. However, the density of single-par-
ticle states in the gap can be finite (see Fig. 10). Below,
we will consider the thermodynamics of the supercon-
ducting state.
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6.4. Temperature-Induced 
Superconductor–Metal Transition 

For a fixed doping level, the spectral density of a
localized boson attenuates upon an increase in temper-
ature. Accordingly, parameter β and the superconduct-
ing gap decrease, while the density of single-particle
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
states increases smoothly in the gap region. Such a
behavior of spectral densities predetermines the tem-
perature-induced superconductor–metal transition.

The spectral densities of the localized boson state
for three different temperatures are shown in Fig. 13.
The attenuation of the spectral density upon an increase
SICS      Vol. 97      No. 2      2003
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Fig. 13. Spectral densities of the localized boson state for three different temperatures: the solid, dashed, and dot-and-dash curves
correspond to T = 50, 54, and 55 K, respectively. The parameters are the same as in Fig. 9.
in T reduces the value of β. For example, β(T = 50 K) =
2.146 × 10–2, β(T = 54 K) = 1.328 × 10–2, and β(T =
55 K) = 7.78 × 10–3. It will be shown below that the lat-
ter temperature is close to the superconducting transi-
tion temperature Tc ≈ 55.4 K. It should be noted that the
chemical potential practically does not change upon
heating and the value of µ or all the three spectral den-
sities is 2.1616 eV.

Figure 14 shows the single-particle densities of
localized and extended states in the superconducting
states at the same temperatures as in Fig. 13. The spec-
trum of localized states (Fig. 14a) at T = 50 K displays
two clearly manifested peaks in the vicinity of the
chemical potential with a dip between the peaks in the
density of states. The position of these two peaks corre-
lates with the position of the superconducting gap in the
density of extended states at the same temperature
(Fig. 14b). The gap width is ∆s  = 19.8 meV. In the
region of this gap, the densities of both extended and
localized states are finite. As the temperature increases,
the densities of single-particle increase and the super-
conducting gap decreases in the vicinity of the chemi-
cal potential. At T = 54 K, we have ∆s = 12.93 meV. At
a higher temperature of T = 55 K, the gap in the density
of localized states disappears, but the gap in the density
of extended states is still preserved. The gap width
determined from the position of two peaks in the den-

sity of states in the vicinity of µ; i.e.,  = 9.14 meV.
Figure 14 also shows the density of states in the normal
metallic state at T = 55.5 K immediately after the super-
conductor–metal transition. The electronic structure of
the normal state shown in the figure clearly demon-
strates the tendency of how the densities of single-par-

∆s
ext
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ticle states in the superconducting state vary near the
transition to the normal state.

Figure 15 shows the energy distributions for
extended charged bosons in the superconducting states
at the same three temperature values as in Figs. 13 and
14. These distributions are defined both in the initial
band of the insulator and in the initial insulator gap. The
figure also shows the distributions for extended charged
bosons over energy eigenvalues εk of the initial insula-
tor (dashed curves). As the temperature increases, the
density of superconducting bosons decreases, but the
distributions remain broad. The concentration of
extended bosons decreases accordingly. Similarly, a
decrease in the probability of a localized boson state
being filled leads to a decrease in the concentration of
localized bosons.

Figure 16 shows the temperature dependence of
parameter β and the gap width ∆s in the spectra of sin-
gle-particle states, which are determined from the posi-
tions of two peaks in the densities of states in the vicin-
ity of µ. In the vicinity of the superconducting transi-
tion temperature Tc ≈ 55.4 K, both these values are
successfully approximated by the characteristic depen-
dences. For example, for β(T), we obtained

(6.41)

where β0 ≈ 0.0915. For the superconducting gap width,
we have

(6.42)

where ∆0 ≈ 107.56 meV.

β β0 1 T /Tc– ,=

∆s ∆0 1 T /Tc– ,=
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It should be noted that although the ∆s(T) depen-
dence shown in Fig. 16 is in qualitative agreement with
the result predicted by the BCS theory, there are two
differences between them. First, at zero temperature,
the ratio ∆s(T = 0)/Tc considerably exceeds the value of
3.53 predicted by the BCS theory. In accordance with
Fig. 16, this ratio is larger than ∆s(T = 42 K)/Tc ≈ 5.75.
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Second, the ratio of ∆0 (see Eq. (6.42)) to Tc in the vicin-
ity of Tc considerably exceeds the value of 6.12 pre-
dicted by the BCS theory. For the result presented here,
this ratio is 22.53.

Extended bosons have an energy distribution both in
the region of the initial insulator gap and in the region
of the initial valence band (see Figs. 12 and 15). The
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centration  of localized bosons (curve 1) and the total concentration  of extended bosons (curve 2). The parameters

are the same as in Fig. 9 and Nt = 0.1 Å–3.
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Fig. 16 Temperature dependences β(T) of the probability amplitude of filling of a localized boson state and of the gap ∆s in the
spectra of single-particle states, determined from the position of two peaks in the densities in the vicinity of µ. Dashed curves
approximate these dependences according to Eqs. (8.41) and (8.42), in which the constants were determined from the data corre-
sponding to the last three points for each dependence. The parameters are the same as in Fig. 9.
temperature dependences of their concentrations are

shown in Fig. 17a. The number of bosons  in
the initial insulator gap (curve 2 in Fig. 17a) is many

times smaller than their number  in the initial
band (curve 1 in Fig. 17a). The ratio of these concentra-
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Next b,
b0 T( )
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tions for different values of temperature is found to be
constant to a high degree of accuracy and equal to

/  ≈ 0.0847.

The temperature dependences of the total concentra-

tion  of extended bosons (curve 2) and the con-

Next g,
b0 T( ) Next b,

b0 T( )

Next
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Fig. 18. Temperature dependence (a) of the electron energy for the superconductor–metal transition and (b) of the electron heat
capacity. The parameters are the same as in Fig. 9.
centration  of localized bosons (curve 1) are
presented in Fig. 17b. Both values vanish at the super-
conducting transition temperature Tc ≈ 55.4 K. The
number of extended bosons is many times smaller than
the number of localized bosons. The ratio of these con-
centrations is found to be constant to a high degree of

accuracy and equal to /  = 0.072.

The accuracy of calculations of the electron energy
up to a temperature of T ≈ 54.5 K was quite high
(≈10−5 eV), while the typical variation of energy was
≈10–4 eV upon an increase in temperature by 1 K. As Tc

was approached, a prolonged relaxation of calculation
parameters was observed in the use of the iterative pro-
cedure. This deteriorated the accuracy of calculations,
although the rate of variation of energy with temperature
was considerably higher than the above-mentioned
value. The typical variation of energy beyond the transi-
tion to the metallic state was approximately equal to 3 ×
10–5 eV upon an increase in temperature by 1 K, and the
accuracy of its determination was slightly worse than
the above value. The temperature dependence of the
electron energy upon the superconductor–metal transi-
tion is shown in Fig. 18a. The kink in this dependence
in the vicinity of the transition is worth noting. The
temperature dependence of the electron heat capacity is
shown in Fig. 18b. The clearly manifested heat capacity
jump is due to the superconducting transition occurring
when the temperature decreases below Tc . The transi-
tion width amounts approximately to 1 K.

In accordance with Fig. 18b, the heat capacity jump
∆Cel is approximately equal to 0.25 × 10–3 eV K–1 per
impurity atom. In units of the Boltzmann constant kB ,
this jump is equal to

(6.43)

per impurity atom.

N loc
b0 T( )

Next
b0 T( ) N loc

b0 T( )

∆Cel 2.9kB=
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In the BCS theory, the heat capacity jump per charge
carrier is given by

(6.44)

Relation (6.43) shows that the heat capacity jump per
free charge carrier in the theory of unusual superconduc-
tivity in doped insulators is very large as compared to the
typical value (6.44) in the BCS theory. It is well known
that the heat capacity jump for doped HSC materials is
large (on the order of several J mol–1 K–1) [102–105].
When recalculated per charge carrier introduced in the
material by doping, the observed value of the heat
capacity jump is in accordance with the estimate
obtained on the basis of the above relation (6.43).

The following remarks can be made in conclusion.
Physical properties in the normal metallic state are
determined by the Fermi surface and by the density of
states. Consequently, for the results described above
both for the normal and the superconducting phases, we

can find the concentration  of localized states and

 of extended states of fermions. As a result, we
obtain the following relations between concentrations
of various types of charge carriers in the superconduct-
ing state of a nondegenerate doped insulator:

 @  @  @ .

These relations clearly demonstrate the peculiar nature
of the superconducting state in a doped compound.

6.5. Doping-Induced 
Superconductor–Metal Transition 

The Green function for localized fermions (6.15)
and bosons (6.16) contain complex functions Si , i = 1,

∆Cel 7kBTc/µ.=
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Fig. 19. Variation of single-particle spectra of impurity bands in the vicinity of the chemical potential upon an increase in x at T =
45 K: (a) localized states and (b) extended states. Solid curves correspond to x = 0.18 and dashed curves, to x = 0.2. The parameters
(except x) are the same as in Fig. 9.
3 (6.17)–(6.19). The imaginary parts of functions Si

determining the attenuation of these localized particles
depend on the doping level x. Similarly, in the Green
function for extended fermions (6.20) and bosons (6.21)
contain complex functions Di (i = 1, 3) (6.22)–(6.24).
These functions also depend on the doping level x and
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2.4
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0

µ(0.18)
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Fig. 20. Spectral densities of the localized boson state in the
vicinity of the chemical potential for x = 0.18 (solid curves)
and x = 0.2 (dashed curves). The parameters (except x) are
the same as in Fig. 9.
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make a contribution to the attenuation of these extended
particles. This leads to a qualitative change in the
ground state of the doped compound upon a change in
the doping level. We will consider the results of calcu-
lating the change in the superconducting state as a func-
tion of x for a fixed temperature and discuss the transi-
tion of the doped compound to the normal state upon an
increase in the value of x.

Figure 10–12 show the spectral densities in super-
conducting states at T = 45 K for the doping level x =
0.15. As the doping level increases, parameter β char-
acterizing localized bosons decreases. Figure 19 illus-
trates the change in the single-particle spectra of impu-
rity bands in the vicinity of the chemical potential upon
an increase in x at T = 45 K. For x = 0.18, the gaps in
the densities of localized (solid curve in Fig. 19a) and
extended states (solid curve in Fig. 19b) are slightly dif-

ferent, their width being  = 22.8 meV and  =
19.7 meV, respectively. The density of states in the gap
is finite, and the value of β = 0.0201. An increase in x
shifts the distribution to the right; the chemical poten-
tial increases, while the value of β decreases. For x =
0.2, we have β = 0.0134. The gap in the density of local-
ized states disappears rapidly, but for x = 0.2 it can still

be determined (see the dashed curve in Fig. 19a):  =
20.5 meV. The density of extended states in the gap

region (  = 15.1 meV) has increased (see the dashed
curve in Fig. 19b) as compared to the density for x =
0.18.

Figure 20 shows the attenuation of the spectral den-
sity of a localized boson state with increasing x. This

∆s
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Fig. 21. Energy distributions of extended charged bosons in superconducting states for x = 0.18 (solid curves) and x = 0.2 (dashed
curves). The parameters are the same as in Fig. 20.
leads to a decrease in β. It was found that parameter β
and, accordingly, the concentration of localized bosons
vanish for x = 0.228. Figure 21 shows the energy distri-
butions of extended charged bosons in superconducting
states for x = 0.18 (solid curves) and x = 0.2 (dashed
curves). The temperature is the same (T = 45 K). These
distributions remain broad but decrease with increasing
x. It was found that the concentration of extended
bosons also decreases, vanishing for x = 0.228. Conse-
quently, at this doping level, a superconductor–metal
transitions takes place at T = 45 K.

Thus, we have established that there exists an upper
limit for the doping levels at which a superconducting
state may arise in a doped compound at a fixed temper-
ature. In addition, the lower limit for x must also exist.
This is associated with the role of spin fluctuations
leading to dielectrization of the ground state at low dop-
ing levels (see Section 4). The results obtained by us
earlier [85] also lead to the conclusion that an insula-
tor–superconductor transition occurs for low values of
x. However, we analyzed a purely electronic mecha-
nism of phase transitions in a doped compound, disre-
garding the electron–phonon interaction.

Unfortunately, we failed to numerically analyze the
solution to the general system of equations (3.28)–(3.35)
and (3.36)–(3.43) (although this solution can be
obtained quite easily) taking into account both the spin
fluctuations leading to the formation of a triplet pairing
channel (see Section 5 and [85]) and the electron–
phonon interaction. The latter may lead to singularities
in phase transitions for low values of x. In particular, the
insulator–superconductor transition can apparently be
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
realized via an intermediate phase of a poor metal state
with strong spin fluctuations (see Section 4.5).

6.6. Doping Dependence
of the Superconducting Transition Temperature 

for Large Doping Levels 

The effect of doping level x on the superconducting
state at a fixed temperature established above leads to
the conclusion that the superconducting transition tem-
perature must also be a function of x. In this section, we
will study this dependence for large doping levels.

0
0.15

Tc, K
60

0.20

40

20

0.25 0.30
x

Fig. 22. Dependence of the superconducting transition tem-
perature on the doping level for x ≥ 0.15. The parameters
(except x) are the same as in Fig. 9.
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Fig. 23. Photoelectron spectra for superconducting (solid curves) and normal (dashed curves) states for two doping levels x = 0.15
and 0.24. For x = 0.15, temperature T = 45 K for the solid curve and T = 80 K for the dashed curve. For x = 0.24, temperature T =
25 K for the solid curve and T = 90 K for the dashed curve. The parameters are the same as in Fig. 9.
Figure 22 shows the Tc(x) dependence for x ≥ 0.15.
It can be seen that the value of Tc decreases with
increasing x. However, in the normal phase, the densi-
ties of localized and extended states normalized to unit
volume increase with the doping level and, hence, we
can expect that the conductivity of a doped compound
will increase. In spite of this, however, superconductiv-
ity is not observed in a more conducting metallic state.

It should be noted that, for values of x > 0.25, the
accuracy of calculations and the convergence of the
iterative procedure become worse. For low doping lev-
els (as compared to those represented in Fig. 22), it is
meaningless to carry out calculations since spin fluctu-
ations in the system in the ground state may be signifi-
cant. However, the effect of spin fluctuations is dual.
On the one hand, these fluctuations lead to the emer-
gence of a channel for the formation of triplet bosons in
the superconducting state. On the other hand, these
fluctuations suppress superconductivity, causing the
emergence of a insulator pseudogap in the densities of
single-particle states.

6.7. Electron Photoemission Spectra 

One of the most distinct feature of the electron
angular-resolution photoemission spectra (ARPES) is
the so-called peak–dip–hump structure inherent in
superconducting cuprates [45–47, 106–109]. The
dependence of the photoemission line profile on the
wave vector, temperature, and doping level was studied
comprehensively. The theoretical interpretations of the
observed line profile are contradictory. We will con-
sider the photoemission spectra integrated over the
JOURNAL OF EXPERIMENTAL 
wave vector as function of the temperature and doping
level within the theory of superconductivity in doped
nondegenerate insulators described above.

The observed photocurrent is determined by the sin-
gle-particle density of localized and extended states.
We assume that the process cross section for both types
of charge carriers is the same. The typical total instru-
mental resolution including the analyzer and the mono-
chromator is on the order of 30–45 meV [46, 106–109].
Consequently, the photocurrent can be written in the
form

(6.45)

where δ is determined by the instrumental resolution. In
our calculations, we assumed that δ = 23 meV. The
energy was measured from the chemical potential level
in the superconducting state.

Figure 23 shows the photoelectron spectra for super-
conducting (solid curves)) and normal (dashed curves)
states for two doping levels x = 0.15 and 0.24. It should
be noted above all that the convolution of single-parti-
cle densities of states with the Gaussian distribution
function of the instrumental resolution leads to a con-
siderably smoothing of photoelectron spectra. This
becomes clear if we compare the spectra recorded for
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x = 0.15 (Fig. 23) with the densities of states shown in
Figs. 9 and 10 for the same doping level. For x = 0.15,
the transition from the normal (T = 80 K) to the super-
conducting state (T = 45 K) is accompanied by a change
in the photoelectron spectrum so that the line profile
acquires a peak–dip–hump structure. For a worse
instrumental resolution (higher value of δ), the dip in
the spectrum decreases. A different situation is
observed for the higher doping level x = 0.24. No struc-
ture of this type appears in the line profile upon a tran-
sition from the normal (T = 90 K) to the superconduct-
ing state (T = 25 K), but a rearrangement of the single-
particle density of states can clearly be seen.

Thus, the singularity in the electron photoemission
spectra associated with the peak–dip–hump profile of
the line can be attributed to the rearrangement of the
bands of localized and extended states coexisting in the
vicinity of the Fermi surface without using additional
assumptions such as, the existence of local Cooper
pairs or the emergence of new branches of collective
excitations in HTSC materials.

6.8. Isotopic Effect 

The possibility of the phonon mechanism of super-
conductivity is often substantiated by the observation
of isotopic effect. When an atom of mass M1 is replaced
by its isotope of mass M2, the expected change in the
frequency of modes associated mainly with the motion
of the atom is given by the approximate relation

Ω1/Ω2 = . In the BCS theory, the dependence
of Tc on the ion mass appears in view of the relationship
between the Debye temperature and M. The predicted
dependence has the form TcMα = const, where α ≤ 1/2
depends on the band structure of the metal, including
regions far from the Fermi surface (both above and
below it) and on the electron–electron interaction. Nat-
urally, we are speaking of complete substitution of an
isotope.

At present, a large body of experimental data have
been obtained that indicate that the electron–phonon
interaction in HTSC materials is strong (see the Intro-
duction). However, the data on the isotopic shift of the
superconducting transition temperature in cuprates are
contradictory. For example, it was reported in [110–
112] that the substitution of 18O for 16O in cuprates
leads to a small isotopic shift in Tc , which is character-
ized by the value of α ≈ 0.03. On the other hand, an iso-
topic shift in Tc , which is comparable to the prediction
of the BCS theory or even a considerably larger shift
with α ≈ 1, was observed in [113–118] as a result of
such a substitution. The concept of isotopic shift in Tc

of HTSC cuprates has also been formulated in [113,
119, 120]. In the underdoped region, i.e., for a doping
level lower than the optimal value, for which the value
of Tc is maximal for a given compound, the substitution
of 18O for 16O leads to an isotopic shift in Tc , which is

M2/M1
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larger than or comparable to the result predicted by the
BCS theory. In the overdoped region with large values
of x, this shift is smaller.

However, some doping regions for various cuprates
may be unattainable in experiments. This may lead to
singularities in the observed behavior of α(x) and to
some discrepancies in the statements concerning the
magnitude of the isotopic shift. On the phase diagram
of La2 – xSrxCuO4, there exists a critical doping level x ≈
0.05 for which a superconducting transition takes
place. As the value of x increases, the value of Tc

becomes higher, attaining its maximum for the optimal
value of x ≈ 0.15. Then the value of Tc decreases in the
overdoped region and becomes equal to zero for x ≈ 0.3.
This Tc(x) curve has the same form typical of doped
cuprates. A similar phase diagram was obtained for
compounds HgBa2CuO4 + x [121, 122] and
Bi2Sr2CuO6 + x [123], for which both doping regions
and, hence, both limiting points of x for which super-
conductivity exists are attainable in experiment. In
other cuprates Bi2Sr2CaCu2O8 + x [123] and
YBa2Cu3O7 – x [124], only the regions up to the optimal
doping level are experimentally attainable.

In the solution (6.15)–(6.26) obtained for the super-
conducting state, a dependence of Tc on the phonon
energy "Ω and, hence, on the ion mass appears due to
the dependence of self-energy parts (6.36)–(6.38) on
Ω . The definitions of these self-energy parts contain

only the spectral density  of a localized fermion

for Eqs. (6.36)–(6.37) and the spectral density 
of a localized singlet boson for Eq. (6.38).

In La2 – xSrxCuO4, the cuprate layer is between two
intermediate layers having the composition La1 – x/2Srx/2O.
The charge carriers introduced in the system during
doping are initially localized. Proceeding from the
value of the effective Bohr radius, the region of local-
ization of a charge carrier may include positions of the
Sr ion and four O ions closest to it. Analysis of the
effect of isotope 18O being substituted for oxygen 16O
on the effective frequency of modes associated mainly
with the motion of O and Sr atoms is, strictly speaking,
a separate problem. Here, we describe the results on the
expected maximal isotopic shift of Tc for the phonon
mechanism of formation of the superconducting state
in doped nondegenerate insulators. To analyze this shift
in the solution obtained in Section 6, we carry out the

substitution Ω  Ω  for the phonon frequency
without changing the remaining parameters.

For the parameters represented in Fig. 9 and for x =
0.15, the superconducting transition temperature is
approximately equal to 55.4 K. This value of Tc was
obtained for the phonon energy "Ω = 30 meV. The cor-
responding results of investigation of the superconduct-
ing state and the superconductor–metal transition upon
a change in x and T are shown in Figs. 10–18. The value

ρloc
f ω( )

ρloc
b0 ω( )

16/18
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of Tc decreases with decreasing phonon energy. Curve 1
in Fig. 24 describes the temperature dependence β(T) of
the probability amplitude of filling of a localized boson
state for the same parameters, including x, except "Ω =

30  meV ≈ 28.28 meV. In order to describe the
isotopic effect more clearly, we also show the β(T)

16/18

0.01

40 44

β

T, K

0.03

48

0.02

0
52 56 60

2

1

Fig. 24. Temperature dependences β(T) of the probability
amplitude of filling of a localized boson state for x = 0.15;

curve 1 corresponds to Ω = 30  meV, curve 2 corre-
sponds to the dependence depicted in Fig. 16.

16/18
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dependence for Ω = 30 meV (curve 2 in Fig. 24, which
corresponds to the dependence shown in Fig. 16). It
was found that the change in the phonon frequency for
the same remaining parameters represented in Fig. 9
lowers the superconducting transition temperature to a
value equal to Tc ≈ 52.07 K. Consequently, α = 0.526
for x = 0.15, which is close to the results obtained in the
BCS theory.

It should be noted that, in accordance with Fig. 24,
the quantity of β(T) tends to a constant value at low
temperatures. This value also depends on the phonon
frequency. For example, for T = 42 K, we have β =
0.02808 for "Ω = 30 meV. The substitution Ω 

Ω  reduces the value of β to 0.02412 at the same
temperature. In this case, for parameter α1 appearing in

the dependence  = const, we obtain α1 = 1.29.

A change in the phonon frequency for the same
remaining parameters considerably changes the elec-
tronic structure of the superconducting state. Figure 25a
shows the densities of single-particle localized (curve 1)
and extended (curve 2) states in the vicinity of the
chemical potential in the superconducting state at a
temperature of T = 52 K, which is very close to the
superconducting transition temperature Tc ≈ 52.07 K.
Here, we used the changed phonon frequency. It should
be noted that an insignificant dip is still present in the
density of extended states (see the inset to Fig. 25a).
The spectral density of localized bosons in the vicinity
of µ is also shown in Fig. 25b. This density gives a
small value of parameter β = 0.0021.
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Fig. 25. (a) Densities of single-particle localized (curve 1) and extended (curve 2) states in the vicinity of the chemical potential in
the superconducting state at temperature T = 52 K; the inset shows the singularity in the density of extended states. (b) Spectral
density of localized bosons near µ. The parameters (except the phonon energy "Ω) are the same as in Fig. 9.
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Fig. 26. Temperature dependences of the concentration of extended bosons (curve 1 in (a)) and localized bosons (curve 1 in (b)) in

the superconducting state obtained for x = 0.15 and "Ω = 30  meV. Curves 2 show the corresponding dependences for
"Ω = 30 meV. The remaining parameters are the same as in Fig. 9.
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The isotopic effect is also manifested in the temper-
ature dependence of the concentration of extended
bosons (curve 1 in Fig. 26a) and localized bosons
(curve 1 in Fig. 26b). These curves were obtained for a
changed boson frequency. The critical temperature at
which these boson concentrations vanish is equal to
Tc ≈ 52.07 K. In order to demonstrate the isotopic effect
clearly, we also show in Fig. 26 the dependences of
boson concentrations for "Ω = 30 meV with Tc ≈ 55.4 K
(curves 2 in Figs. 26a and 26b correspond to the depen-
dences shown in Fig. 17). It can be seen that a decrease
in the phonon energy decreases the boson concentra-
tion. It should be noted that curve 1 in Fig. 26a repre-
sents the total concentration of extended bosons, while

the ratio of the number of bosons  in the initial

insulator gap to the number of boson  in the
region of the initial valence band is constant and equal

to /  = 0.0823. The number of
extended bosons is many times smaller than the number
of localized bosons. The ratio of these concentration is
constant to a high degree of accuracy and is equal to

/  = 6.95 × 10–2. Both these ratios are
slightly smaller than those obtained for "Ω = 30 meV.

It should be noted that, in accordance with Fig. 26,
the boson concentrations display a tendency to satura-
tion at low temperatures. These limiting values of con-
centrations also depend on the phonon frequency. We
can estimate this influence of the isotopic effect from

the relation Nb0  = const, using the results obtained
for the lowest temperature T = 42 K. For example, α2 =
2.58 for localized bosons and α2 = 2.32 for extended
bosons.
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Let us now study the isotopic effect for a high dop-
ing level. For x = 0.24 and phonon energy "Ω =
30 meV, temperature Tc = 29.24 K (see Fig. 22), and the
temperature dependence β(T) of the probability ampli-
tude of filling of a localized boson state is represented
by curve 1 in Fig. 27. The replacement of the phonon

frequency by "Ω = 30  ≈ 28.28 meV without
changing the remaining parameters considerably
reduces the temperature region in which β(T) ≠ 0 and
reduces the superconducting transition temperature to
Tc ≈ 25.72 K (curve 2 in Fig. 27). The data obtained for
the isotopic shift of Tc show that α = 1.08 for x = 0.24,
which is much higher than the limiting value predicted
by the BCS theory.

The influence of the isotopic effect on the tempera-
ture dependences of concentrations of localized bosons
for x = 0.24 is illustrated in Fig. 28, where curve 1 was
obtained for the phonon energy "Ω = 30 meV, while

curve 2 was obtained for "Ω = 30  meV ≈
28.28 meV. In the vicinity of Tc , these dependences are
linear. It can be seen that a decrease in the phonon
energy leads to a sharp decrease in the concentration of
localized bosons. The ratio of these concentrations for
the two dependences presented here is approximately
equal to 16.59 for T = 25 K. An equally large difference
in the concentrations is also observed for extended
bosons since it was found that the ratio of the total con-

centration  of extended bosons to the concentra-

tion  of localized bosons is almost constant and
equal approximately to 0.377 for x = 0.24 for both val-
ues of the phonon energy.
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Thus, the possibility of the isotopic effect having a
strong influence on the boson concentration in the
superconducting state at temperatures differing consid-
erably from Tc can be predicted.

0.7

24 26

Nloc
b0 , 1018 cm–3

T, K

1.4

28
0

30

1

2

Fig. 28. The influence of the isotopic effect on the tempera-
ture dependences of concentrations of localized bosons for
x = 0.24. Curve 1 was obtained for the phonon energy "Ω =
30 meV and curve 2, for "Ω = 30  meV ≈ 28.28 meV.
The remaining parameters are the same as in Fig. 27.

16/18

0.002

24 26

β
0.006

28
0

30
T, K

0.004

1

2

Fig. 27. Temperature dependences β(T) of the probability
amplitude of filling of the localized boson state for x = 0.24;
curve 1 was obtained for the phonon energy "Ω = 30 meV;

curve 2 was obtained for "Ω = 30  meV. The super-
conducting transition temperature for curve 1 corresponds
to Tc in Fig. 22 for x = 0.24.
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7. CONCLUSIONS

Analysis of available experimental data on the
change in the electronic structure and the position of the
chemical potential upon a change in the doping level in
superconducting tungsten bronze NaxWO3 and cuprates
La2 – xSrxCuO4 and Nd2 – xCexCuO4 stimulated the study
of the general problem of superconductivity in impurity
bands of doped insulators. The emergence of supercon-
ductivity in the above-mentioned three doped com-
pounds is associated with the formation of impurity
bands in the insulator gap of initial crystals, while the
Fermi system has two components. The concentration
of free charge carriers in the vicinity of the chemical
potential for these cuprates is almost an order of mag-
nitude lower than the concentration of localized charge
carriers.

A theory of insulator–metal and superconductor–
metal phase transition in doped nondegenerate insula-
tor has been constructed. In the normal phase, a insula-
tor state can be induced by spin fluctuations in the
doped system at low doping levels and temperatures.
Insulator pseudogaps ∆p are formed in the spectral den-
sities of impurity bands for localized and extended
states. The gap width is determined both by the doping
level and by the temperature. Spin fluctuations attenu-
ate in the doped system, and, accordingly, ∆p  0
upon an increase in the doping level and/or tempera-
ture. However, the density of extended states in the
pseudogap, which is smaller than the density of local-
ized states, increases smoothly even for final values of
the pseudogap width. This leads to the scenario of a
smooth insulator–metal transition upon an increase in
the temperature or the doping level. For example, the
characteristic temperature at which the semiconductor-
type dependence of conductivity changes to the metal-
lic type decreases smoothly with an increase in the dop-
ing level. This metallic state is peculiar for at least two
reasons. First, regions of localized and extended states
coexist on the Fermi surface, the density of localized
states being much higher than the density of extended
states. For this reason we can expect that such a poor
metal will display anomalous transport properties as
compared to conventional metals. Second, single-parti-
cle Green functions in this state are nondiagonal in the
spin subspace. The presence of spin fluctuations may
lead to singularities in the behavior of the spin suscep-
tibility of a doped compound. Analysis of the effect of
the insulator band width on the insulator–metal transi-
tion proved that the necessary condition for this transi-
tion is the existence of narrow allowed bands for the
initial insulator.

The superconducting phase in a doped nondegener-
ate compound exhibits rather peculiar properties as
compared to the predictions of the BCS theory. The
mechanism of a superconducting transition in a doped
nondegenerate insulator is associated with the forma-
tion of mixed boson–fermion states localized at impu-
rity sites. In contrast to the BCS theory, the theory of
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003
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this unusual superconductivity does not contain an
equation for the superconducting gap. Instead of this
equation, a nontrivial solution to the equation for local
singlet bosons at impurity sites plays the key role for
the emergence of superconductivity. The formation of
such bosons is a precursor for the emergence of
extended charged bosons in the doped system.
Although the theory does not contain an equation for
the superconducting gap, this gap appears in the spec-
trum of single-particle states of extended states. How-
ever, the density of single-particle states in the gap may
be finite. The obtained relations between the concentra-

tions  of localized fermions,  of extended fer-

mions,  of localized bosons, and  of extended
bosons clearly indicate the peculiar nature of the super-

conducting state  @  @  @ .

The energy distribution for extended bosons differs
qualitatively from the energy distribution of the super-
conducting condensate in the BCS theory. As a matter
of fact, the electron–phonon interaction plays a signifi-
cant role in the formation of zero-spin bosons localized
at impurity sites. As soon as such localized bosons
appear in the system, a channel of two-particle transi-
tion over the impurity-site ensemble is formed: a boson
localized at the jth site  –kk pair in the regions of
extended states  a boson at the j1th site, and so on.
This channel is due to hybridization in model (2.1) and
leads to the motion of charged bosons over the impurity
sites or, in other words, to delocalization of bosons and
the formation of extended charged bosons. Single-par-
ticle transitions induced by hybridization mainly deter-
mine the widths of the impurity bands for fermion
states. These bandwidths correlate with the width of the
energy distribution of extended bosons since hybridiza-
tion also plays a significant role in the formation of
such bosons. Typically, the number of extended bosons
in the region of the initial band, away from the chemical
potential, is more than an order of magnitude larger
than the number of bosons in the gap region in the
vicinity of the chemical potential. In the general case,
both the singlet and the triplet pairing channels are pos-
sible in the superconducting state. The spin-triplet
channel is realized only if the spectral density of spin
fluctuations in the doped compound is finite. In this
case, single-particle Green functions are nondiagonal
in the spin index, which may lead to singularities in the
spin susceptibility of the compound. For the phonon
mechanism of superconductivity with a spin-singlet
pairing channel, a superconductor–metal transition
induced by variations of temperature and/or doping
level in a doped compound is predicted as well as a
strong isotopic effect as compared to the limiting value
predicted by the BCS theory for weak and strong elec-
tron–phonon interactions. Such transitions are
observed in doped HTSC materials. The obtained tem-
perature width of the superconducting transition (≈1 K)
and the heat capacity jump per charge carrier (≈kB) are

N loc
f Next

f

N loc
b0 Next

b0

N loc
f Next

f N loc
b0 Next

b0
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also typical of cuprates. As regards the isotopic shift of
Tc , which is large according to predictions (α ≈ 1), the
available information on the value of this shift in
cuprates is contradictory.

The observation of superconductivity (with any
value of Tc) in other doped nondegenerate insulators
would be a good verification of the theory. The optimal
composition of these compounds must contain three
components for interstitial impurities and four compo-
nents for substitutional impurities (an additional com-
ponent is required for an element replaced by an impu-
rity). A insulator must possess a large capacity for the
impurity being introduced (≈10 at.% without precipita-
tion of impurity phases). The remaining two compo-
nents must satisfy the following requirements. On
account of the required small width of allowed bands,
the initial insulator must contain an element from tran-
sition or rare-earth metals. The atomic (d or f) orbitals
of this element must participate in the formation of the
band structure of the insulator in the vicinity of the
insulator gap. An important parameter of the theory is
the electron–phonon interaction. For this reason, the
last component must be a light electronegative element
enhancing the ionic bonds in the initial material.
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Abstract—Edge-selective sum rules are proposed for a variety of X-ray dichroisms related to natural or non-
reciprocal optical activity. Four spherical operators are identified that mix orbitals of different parities in what
is assumed to be the ground state. The orbital anapole moment W(1) is primarily responsible for the magne-
tochiral dichroism; the time-even rank-2 tensor N(2) = [L, W](2) for natural circular dichroism; the time-odd
rank-2 tensor W(2) = [L, n](2) for nonreciprocal magnetic linear dichroisms. At higher orders, the time-odd rank-
3 tensor G(3) = [L, L, W](3) can also contribute to all nonreciprocal dichroisms. The physical content of these
operators is analyzed. For every magnetoelectric group, one can predict which dichroic effect can be measured
with either a single crystal or a powdered sample. Experimental spectra are produced to illustrate the value of
the sum rules and the practical conditions of their application. Regarding nonreciprocal activity, one should be
cautious about discussing magnetic symmetry because the deep core hole can couple the true ground state with
low-lying excited states. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Systems with broken inversion symmetry play a fas-
cinating role not only in physics but also in chemistry
and in life sciences, where molecular recognition pro-
cesses are very often controlled by chirality. In 1958,
Zel’dovich [1] introduced the concept of the anapole to
describe parity-violating interactions. For nearly
40 years, atomic and nuclear physicists were angling
for nuclear anapoles [2, 3] until the anapole moment of
133Cs was finally measured in 1997 [4]. In solid-state
physics, the concept of the anapole has attracted much
less attention even though there is a long established lit-
erature dealing with toroidal multiple moments [5–8].
It was realized recently that X-ray optical activity
(XOA) can offer unique experimental access to orbital
anapole moments and to a whole family of related oper-
ators. It is the aim of the present paper to analyze the
physical content of these operators, especially for mag-
netoelectric solids in which parity (I) and time-reversal
(Θ) symmetries are broken, while the structure remains
invariant under the product IΘ [9].
003 MAIK “Nauka/Interperiodica”
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Unlike magnetooptical effects such as Faraday rota-
tion or magnetic circular dichroism, which refer prima-
rily to electric dipole (E1E1) transitions, optical activ-
ity is associated with transition probabilities that mix
multipole moments of opposite parities (e.g., E1M1 or
E1E2). The Curie principle thus states that optical
activity can be observed only in parity nonconserving
systems. We recall that properties related to optical
activity can be either even (“natural”) or odd (“nonre-
ciprocal”) with respect to the time-reversal operator Θ.
We have discussed elsewhere [10] how to transpose the
theories of optical activity currently used at optical
wavelengths into the X-ray spectral range. Following
Buckingham [11] and Barron [12], we found it most
convenient to describe XOA by introducing a complex
gyration tensor

.

In core level spectroscopes, magnetic dipole transitions
(M1) are very weak [13], and it seems perfectly legiti-
mate to neglect the E1M1 terms. Under such condi-
tions, this Cartesian gyration tensor is dominated by the
electric dipole (E1α)–electric quadrupole (E2βγ) inter-
ference terms,

(1)

The imaginary part (ζ'') is antisymmetric with
respect to interchange of the α, β subscripts and is
responsible for natural XOA; the real part (ζ') is sym-
metric and contributes to nonreciprocal effects [12].

Every Stokes component Sj is associated with a
well-identified dichroism related to XOA [14–19]:

1. The X-ray magnetochiral dichroism (XMχD),

2. The nonreciprocal X-ray magnetic linear dichro-
ism (XMLD),

3. The nonreciprocal, Jones X-ray magnetic linear
dichroism (XMLD),

4. The X-ray natural circular dichroism (XNCD),

In several cases, XNCD spectra were successfully
reproduced using ab initio calculations in the general
framework of the multiple scattered wave theory [16,
20]. To the best of our knowledge, however, no suitable

ζαβγ ζαβγ' iζαβγ''–=

ζαβγ' Im E1α E2βγ{ } Im E1βE2αγ{ } ,+=

ζαβγ'' Re E1α E2βγ{ } Re E1βE2αγ{ } .–=

XMχD S0( ) ζββγ' ζααγ'+[ ] .∝

XMLD S1( ) ζββγ' ζααγ'–[ ] .∝

XMLD S2( ) 2ζαβγ' .∝

XNCD S3( ) 2ζαβγ'' .∝
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code for simulation of the nonreciprocal XOA is pres-
ently available. This is why in this paper we focus on
the exploitation of edge-selective sum rules, which may
give access to the expectation values of a series of
effective operators that mix orbitals of opposite parities
in what is assumed to be the true multielectronic ground
state |ψg〉 . In the next section, we recast the XOA sum
rules in their general framework. In Section 3, we ana-
lyze the physical content of the four effective operators
that were identified as responsible for XOA. An impor-
tant result in this section is the possibility of predicting
which dichroism can be observed experimentally for a
given magnetic class. In Section 4, referring to several
specific examples, we develop some considerations on
what can be learned regarding the magnetoelectric
symmetry and how the XOA operators can be accessed
in practice.

Throughout this paper, we retain the same terminol-
ogy (i.e., scalar, vector, deviator, septor, …) for the
decomposition of Cartesian or spherical tensors into
their irreducible representations [21, 22]. We systemat-
ically use normal fonts for Cartesian tensors and bold-
face fonts for spherical tensors. Irreducible tensors of
an even rank that have odd parity or irreducible tensors
of an odd rank with even parity are commonly called
pseudotensors. For clarity, we prefer to call irreducible
tensors of an odd rank and odd parity polar tensors
rather than true tensors. Polar vectors that are odd under
time reversal are called toroidal for reasons explained
in Section 3; pseudovectors that are even under time
reversal are called antitoroidal by analogy.

2. EDGE-SELECTIVE E1E2 SUM RULES

2.1. Parity-Mixing Operators

Optical sum rules are commonly used in atomic
physics [23]. In 1992, Thole et al. [24] established a
useful sum rule for X-ray magnetic circular dichroism
(XMCD): it states that the integrated dichroic signal is
proportional to (〈Lz〉 , i.e., to the ground state expecta-
tion value of the angular momentum operator acting on
the electronic shell that accepts the excited photoelec-
tron. For XMCD spectra, one is mostly concerned with
electric dipole (El) transitions satisfying the selection
l = lc ± 1, where lc characterizes the angular momentum
in the initial core state and l is the angular momentum
in the final excited state. In 1998, using a similar
approach, Natoli et al. [20] already established the sum
rule

(2)

for X-ray natural circular dichroism (XNCD), where
σE1E2 denotes the X-ray absorption cross section due to
the E1E2 interference terms in a finite energy range ∆E
that must include, whenever this is relevant, the two
partners (j+, j–) of the spin-orbit split edge. In the right-

ΣE1E2

σE1E2 E( )

E2
--------------------- E ψg N 2( ) l l',( ) ψg∝d

∆E

∫=
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hand side, l still refers to the final angular momentum
of the electric dipole (E1) transition and l' refers to the
electric quadrupole transition (E2) satisfying the selec-
tion rule l' = lc ± 0.2, excluding l' = lc = 0. Obviously, l
and l' have opposite parities and the operator N(2)(l, l')
probes the mixing of atomic orbitals of the correspond-
ing parities. The problem with Eq. (2) was that the
rank-2 spherical tensor N(2) was given no clear physical
meaning in [20]. We also found it desirable to extend
this sum rule to all E1E2 dichroisms.

Regarding Eq. (2), there is still a serious limitation
that was underlined by Di Matteo and Natoli in the
comprehensive review article [25]. Due to the core hole
perturbation, |ψg〉  is merely a virtual or pseudo ground
state of the system. Intuitively, one may fear that the
core hole does affect orbitals of opposite parities differ-
ently. If we expand |ψg〉  in terms of stationary states
(|Ψn〉), the quantity obtained is actually given by

(3)

where O(q) is the pertinent parity-mixing effective oper-
ator. At present, there is no proof that the sum over all
configurations cancels the effects of the core hole and
restores the property of a true ground state, as this is
implicitly assumed for the popular XMCD sum rules.
Contrary to [25], we are not even certain that the cross
terms (n ≠ n') can be neglected a priori: typically, in the
case of XMCD where O(1) = Lz, the matrix elements in
the right-hand side of Eq. (3) are precisely those that
contribute to the Van Vleck paramagnetism and are usu-
ally nonzero. We consider this difficulty again in Sec-
tion 4.

2.2. Spherical Polarization Tensors

The electric dipole (E1) and electric quadrupole

(E2) transition operators are  · r and  · rk · r, respec-
tively. We recall that for the left circularly polarized

light with a wave vector k,  = (i – ij)/ , where i and
j are unit vectors such that

It is therefore natural to describe the angular depen-
dence of the interference between the E1 and E2 transi-

tions by coupling  first with  (as spherical tensors)

and then with * to obtain

The coupling of spherical tensors is described in stan-

dard textbooks (e.g., [26]). However, the tensors 

ψg O q( ) ψg αn*αn' Ψn O q( ) Ψn' ,
n n',
∑=

ê ê

ê 2

i j× k/k k̂.= =

ê k̂

ê

Tβ
b( )

ê∗ , ê, k̂[ ]
2( )

[ ] β
b( )

.=

Tβ
b( )
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do not have a well-defined behavior under time reversal
and are destined to decompose into their time-reversal

even (θ = 1) and time-reversal odd (θ = –1) parts .
The E1E2 absorption cross section (σE1E2) and sum
rules (ΣE1E2) are therefore written as

where  and  are rank-b spherical tensors.

To investigate the time-reversal symmetry of ,
we write it in terms of

(see [27] and Table 1). Here,  is a rank-a
spherical tensor. As proved in the next section, the time-

reversal properties of  can readily be deduced
from the fact that the action of the time-reversal opera-

tor Θ on  and k is Θ  = ∗  and Θk = –k. The action

of Θ on  is therefore given by

We note that complex conjugation has a different
action,

We now consider the possible values of a and b sat-
isfying the triangle conditions 0 ≤ a ≤ 2 and |a – 1| ≤ b ≤
a + 1.

1. For a = 0 i.e., ∗  ·  = 1, it immediately follows

that b = 1 and σE1E2 ∝  σ(1, –1) or ΣE1E2 ∝  Σ(1, –1). This
is obviously the case of XMχD.

2. For a = 1, i.e.,  ∝  i , the result is still
rather simple if we assume that the electromagnetic
wave remains transverse inside the sample, i.e., if the

condition  · k = 0 is satisfied; then, the only choice for
b is 2. This is typically the case of XNCD, and it was
previously established that the spherical tensors s(2, +1)

and S(2, +1) are rank-2 pseudodeviators [20].
3. Finally, if a = 2, the problem becomes more com-

plicated because values of b = 1, 2, 3 are possible,
which implies that the tensor property σ(b, –1) can be a

Tβ
b θ,( )

σE1E2 1–( )βTβ
b θ,( )s β–

b θ,( ),
θ 1±=

∑
β b–=

b

∑
b 1=

3

∑=

ΣE1E2 1–( )βTβ
b θ,( )S β–

b θ,( ),
θ 1±=

∑
β b–=

b

∑
b 1=

3

∑=

s β–
b θ,( ) S β–

b θ,( )

Tβ
b θ,( )

Xβ
a b,( )

ê∗ , ê[ ]
a( )

, k̂[ ] β
b( )

=

ê∗ , ê[ ]
a( )

Xβ
a b,( )

ê ê ê

Xβ
a b,( )

ΘXβ
a b,( ) 1–( )a 1+ Xβ

a b,( ).=

Xβ
a b,( )∗ 1–( )a 1 b β–+ + X β–

a b,( )
.=

ê ê

k̂ k̂

ê∗ , ê[ ]
1( )

k̂

ê
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Table 1.  Polarization tensors of XOA

T(1, +1) ≡ 0 (transversality condition)

a = 0 XMχD (S0)

a = 2 XNCD (S3)

a = 2 XMLD (S1, S2)

T(3, +1) ≡ 0

a = 2 XMχD (S0)

a = 2 XMLD (S1, S2)

T0
1 –1,( ) k̂( ) –

1
2
--- 3

5
--- k̂=

T0
2 +1,( )

ê k̂,( ) 3
2

-------= ê*, ê[ ]
1( )

, k̂[ ] 0
2( )

T 2±
2 –1,( )

ê k̂,( ) 1
2
---= ê*, ê[ ]

2( )
, k̂[ ] 2±

2( )

T0
3 –1,( )

ê k̂,( ) ê*, ê[ ]
2( )

, k̂[ ] 0
3( )

=

T 2±
3 –1,( )

ê k̂,( ) ê*, ê[ ]
2( )

, k̂[ ] 2±
3( )

=

vector, a deviator, or a septor. The option {a = 2; b = 1}
again yields the same vector contribution to XMχD; the
options {a = 2; b = 2, 3} can be shown to contribute to
nonreciprocal XMLD.

This discussion and the relation between  and

 show that the nonzero tensors are T(1, –1), T(2, +1),
T(2, –1), and T(3, –1). These tensors transform as 

under time-reversal symmetry and as

under complex conjugation. We note that all tensors
s(b, θ) and S(b, θ) are time-reversal odd with the unique
exception of XNCD {a = 1; b =2}.

At this stage, within the limits of validity of Eqs. (2),
several important results already follow without heavy
calculations: because the effective vector operator of
XMχD is odd under I and Θ, it can only be a toroidal
vector; the effective operator of XNCD must be a time-
even pseudodeviator; the effective operators of XMLD
(S1, S2) must combine a pseudodeviator and a polar sep-
tor, which must again be odd with respect to both I and
Θ. These results are summarized in Table 1.

2.3. Symmetry Groups in XOA

In magnetic samples, the time-reversal operator 0
plays a key role and the point and space groups have to
be replaced by magnetic point and space groups [29].
The representation theory of magnetic groups is diffi-
cult because Θ is antilinear and representations are
replaced by corepresentations [30]. Theorems involv-
ing characters are no longer valid for corepresentations
because the equivalence between corepresentations D

Tβ
b θ,( )

Xβ
a b,( )

ΘTβ
b θ,( ) θTβ

b θ,( )=

Tβ
b θ,( )∗ θ 1–( )b β– T β–

b θ,( )=
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and D' is not determined by the existence of a matrix A
such that D' = ADA–1 [30]. Nevertheless, we show that
these complications can be circumvented for the repre-
sentations of symmetries involved in XOA.

2.3.1. Transformation properties. The X-ray
absorption cross section σ including electric dipole and
quadrupole transitions is proportional to

We now successively transform a physical state with
the parity I, time-reversal Θ, rotation R, and translation

TR operations and consider how σ( , k) is modified.
To investigate the transformation of the absorption

cross section under parity, we first consider the one-
electron spineless case. The action of the parity opera-
tor (I) on the system transforms the wavefunctions as
(Iψf)(r) = ψf(–r) and (Iψg)(r) = ψg(–r), and the matrix
elements become

The same result holds generally for a many-body sys-
tem with spin. Moreover,

σ ê k,( ) ψg〈 | ê∗ r⋅ i
2
--- ê∗ rk r⋅ ⋅– ψ f| 〉

f

∑∝

× ψ f〈 | ê r⋅ i
2
--- ê rk r ψg| 〉δ E f Eg– "ω–( ).⋅ ⋅+

ê

Iψ f〈 | ê r⋅ Iψg| 〉 rψ f
* r–( )ê rψg r–( )⋅d∫=

=  r'ψ f
* r'( )êd r'–( )ψg r'( )⋅∫ ψ f〈 | ê–( ) r ψg| 〉 .⋅=

Iψ f〈 | ê r⋅ i
2
--- ê rk r Iψg| 〉⋅ ⋅+

=  ψ f〈 | I ê r
i
2
--- ê rk r⋅ ⋅+⋅ 

  I ψg| 〉

=  ψ f〈 | ê–( ) r⋅ i
2
--- ê–( ) r k–( ) r ψg| 〉 .⋅ ⋅+
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Therefore, if σ( , k; I) denotes the absorption cross
section of the system transformed by parity, and if par-
ity is a symmetry of the system (such that the energies
of Iψf and Iψg coincide with the respective energies of

ψf and ψg), we obtain σ( , k; I) = σ(– , –k).

For time-reversal symmetry (Θ), we start from the
basic equation

(see [30, 31]). Hence,

On the other hand, the antilinearity of the time-reversal
operator yields

and therefore,

Similarly,

Finally, if σ( , k; Θ) denotes the absorption cross sec-
tion of the time-reversed system and if the system is

invariant under Θ, we obtain σ( , k; Θ) = σ( *, –k). 

Next we consider a transformation by the rotation R.
Starting again with the one-electron spinless case, we
have

ê

ê ê

Θφ Θψ〈 〉 φ ψ〈 〉 ∗ ψ φ〈 〉= =

Θψg Θ ê r⋅ i
2
--- ê rk r⋅ ⋅+ 

  ψ f

=  ψg〈 | ê r⋅ i
2
--- ê rk r⋅ ⋅ ψ f| 〉∗+

=  ψ f〈 | ê∗ r⋅ i
2
--- ê∗ rk r⋅ ⋅ ψg| 〉 .–

Θ ê r⋅ i
2
--- ê rk r⋅ ⋅+ 

  ψ f

=  ê∗ r⋅ i
2
--- ê∗ rk r⋅ ⋅– 

  Θψ f| 〉 ,

Θψg〈 | ê∗ r⋅ i
2
--- ê∗ rk r⋅ ⋅ Θψ f| 〉–

=  ψ f〈 | ê∗ r⋅ i
2
--- ê∗ rk r⋅ ⋅ ψg| 〉 .–

Θψ f〈 | ê r⋅ i
2
--- ê rk r⋅ ⋅ Θψg| 〉+

=  ψg〈 | ê r⋅ i
2
--- ê rk r⋅ ⋅ ψ f| 〉 .+

ê

ê ê

Rψ f〈 | ê r⋅ Rψg| 〉 rψ f
* Rr( )ê r⋅ ψg Rr( )d∫=

=  r'ψ f
* r'( )ê R 1– r'( )ψg r'( )⋅d∫ ψ f〈 | Rê( ) r ψg| 〉 .⋅=
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More generally, for a many-body system with spin, if

σ( , k; R) denotes the absorption cross section of the
system transformed by the rotation R, we find that

The last transformation that we need is translation.
In X-ray absorption spectroscopy, the dipole and qua-
drupole approximations are valid because the core
states are localized and the origin of coordinates can be
taken at the absorbing atom. If the system is translated,
the origin is no longer the absorbing atom, the dipole
and quadrupole approximations are not valid, and we
must use the full absorption cross section [32]

where

and s is the spin operator. The operator X is not modi-
fied by translation. Thus, the translation TR acting on
the system by TRψf(r) = ψf(r + R) and TRψg(r) =

ψg(r + R) transforms  into

Therefore, if TR is a symmetry of the system, we obtain

that σ( , k; TR) = σ( , k) and the absorption cross sec-
tion is independent of translations of the system.

At this stage, we have shown that a transformation
of the physical system can be replaced by a simulta-
neous transformation of the polarization and wave vec-
tors. We analyze next the consequences of this result for
the angular and polarization dependence of σE1E2.

2.3.2. Symmetry groups and E1E2 absorption. As
discussed in Section 2.2, the E1E2 absorption cross
section can be written as

(4)

In a reference frame where the wave vector is
directed along z axis, the polarization vector is

ê

σ ê k; R,( ) σ Rê Rk,( ).=

σ ê k,( ) = 
4π2

"α
m2ω

---------------- ψ f〈 |eik r⋅ X ψg| 〉 2δ E f Eg– "ω–( ),
f

∑

X "ê ∇ g/2( )s k ê×( )⋅–⋅=

ψ f〈 |eik r⋅ X ψg| 〉

TRψ f〈 |eik r⋅ X TRψg| 〉 e ik R⋅– ψ f〈 |eik r⋅ X ψg| 〉 .=

ê ê

σE1E2 1–( )β Tβ
b θ,( )σ β–

b θ,( ).
θ 1±=

∑
β b–=

b

∑
b 1=

3

∑=

ê
ψ χcoscos i ψ χsinsin+

ψ χ i ψ χsincos–cossin

0 
 
 
 
 

,=
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which represents an elliptically polarized wave for
which the ellipse axes are at an angle of ψ with the ref-
erence frame axes, and the circular polarization rate is
sin2χ. We recall that

In this frame, the nonzero tensor components are

In particular,  = 0.

We proved that the action of Θ on the system can be

replaced by its action on , which was found to be

This result is nontrivial because the action of the time-
reversal operator Θ on a spherical tensor is usually
described by

(see [30, 33]) or

(see [31]). Here, the result is different because the time-
reversal operator does not act directly on the spherical
tensor. Its action on the system is translated into a sim-
pler action on the polarization and wave vectors.

More generally, any symmetry operation S acting on
the system can be written as

where p = 1 or p = 0 if S contains or does not contain
the inversion, t = 1 or t = 0 if S contains or does not con-
tain the time-reversal symmetry, R denotes a rotation, and
TR denotes a translation. From the identity σ(e, k; I) =
σ(–e, –k), we see that the action of the parity operator
on the system reverses the E1E2 absorption cross sec-
tion (i.e., σE1E2(I) = –σE1E2). Therefore, the action of a

S1/S0 2χ 2ψ, S2/S0coscos 2χ 2ψ,sincos= =

S3/S0 2χ .sin=

T0
1 1–,( ) 1

2
--- 3

5
---,–=

T0
2 +1,( ) 1

2
--- 2χ ,sin=

T 2±
2 1–,( ) 1

2 6
----------e 2iψ± 2χ ,cos±=

T0
3 1–,( ) 1

10
----------,–=

T 2±
3 1–,( ) 1

2 3
----------e 2iψ± 2χ .cos=

T 3±
3 1–,( )

Tβ
b θ,( )

ΘTβ
b θ,( ) θTβ

b θ,( ).=

Tm
j( ) 1–( ) j m– T m–

j( )

ΘTm
j( ) 1–( )mT m–

j( )=

S I pΘtRTR,=
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general symmetry operation S on the system transforms
σE1E2 into

(5)

where  is the Wigner rotation matrix. This
result justifies the use of the character method, which
was employed by Tenenbaum in [34] and which we use
in Section 3.

For a magnetic group GM containing gm elements,
the form of the absorption cross section is obtained by
taking the average over the elements of the group,

(6)

where

2.4. Effective Operators of XOA

2.4.1. Spherical basis. The E1E2 sum rules were
calculated by Carra and collaborators using the power-
ful method of group generators [27, 35–37]. A key
achievement was to show that all operators S(b, θ) can be
built from the triad of mutually orthogonal vector oper-
ators:

1. n = r/r, which is a time-reversal even polar vector
typically associated with the electric dipole moment;

2. the orbital angular momentum L, which is a time-
reversal odd axial vector;

3. the toroidal vector W = [(n × L) – (L × n)]/2,
which is odd with respect to both I and Θ.

Because W can be rewritten as the commutator, W =
i[n, L2]/2, we show in Section 3 that it is proportional to
the orbital anapole moment defined in [2].

Important results have been established.
1. The XMχD sum rule involves the ground state

expectation value of the toroidal vector W(1, –1) pro-
jected along the direction of the wave vector k.

2. The XNCD sum rule must yield the expectation
value of the Θ-even pseudodeviator N(2, +1) = [L, W](2),
which is obtained for a = 1; b = 2.

3. For a = b = 2, the effective operator must be a
Θ-odd pseudodeviator, which was identified with
W(2, −1) = [L, n](2). Its ground state expectation value
appears in the nonreciprocal XMLD sum rule.

σE1E2 S( ) 1–( )β

β b–=

b

∑
b 1=

3

∑=

× 1–( )pθtDβ'β
b( ) R( )Tβ'

b θ,( )σ β–
b θ,( ),

θ 1±=

∑

Dβ'β
b( ) R( )

σE1E2〈 〉 1–( )β Tβ
b θ,( )〈 〉σ β–

b θ,( ),
θ 1±=

∑
β b–=

b

∑
b 1=

3

∑=

Tβ
b θ,( )〈 〉 1

gm

----- 1–( )pθtDβ'β
b( ) R( )Tβ

b θ,( ).
S GM∈
∑=
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4. For a = 2 and b = 3, the effective operator is the
Θ-odd septor G(3, –1) = [[L, L](2), W](3). Its ground state
expectation value is involved in the XMχD sum rule
and in the nonreciprocal XMLD sum rule.

As long as the definition of the polarization tensors

 given in the previous section is applicable, we
can use the following generic formulations of the XOA
sum rules, to be called the Carra–Jerez–Marri equations
hereafter [37]:

for XNCD (S3),

(7)

for XMχD (S0),

(8)

and for XMLD (S1, S2),

(9)

In these equations,  and  denote the radial
dipole and quadrupole integrals that are classically
defined as

Tβ
b θ,( )

ΣE1E2
8π2α–
3"c

---------------- 2χ 2lc 1+( ) Rl
1( )Rl'

2( )

l l',
∑sin=

× a 2 +1,( ) lc l l', ,( ) 3
2
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ΣE1E2
2π2α–
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1( )Rl'
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∑=

× 2
5
---a 1 1–,( ) lc l l', ,( ) W0
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



–
16
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



,
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16π2α 2χcos
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ieiβψ

3β
----------- Wβ

2 1–,( ) l l',( )〈 〉

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

β 2±=

∑

+
eiβψ

3
---------b 3 1–,( ) lc l l', ,( ) Γβ
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
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1( ) Rl'
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∫=
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where the core state and photoelectron radial wave
functions are φc(r) and ϕl, l' , respectively; φc(r) is typi-
cally localized in a muffin-tin sphere of radius ρMT . The
expressions for the numerical factors a(2, +1), a(2, –1),
a(1, −1), b(3, −1) are given in Table 2.

2.4.2. Cartesian basis. For linear dichroism experi-
ments, it is more appropriate to express Eq. (9) in terms
of Hermitian Cartesian effective operators. This can
easily be done using the relations (see, e.g., [22, 38])

where {X, Y, Z} are Cartesian coordinates in the refer-
ence frame used to define the polarization tensors in
Section 2.3.2. Hence, the two effective operators
defined in Eq. (9) can now be rewritten as

(10)

(11)

Since

it becomes obvious that within the defined reference

frame, [  – ] is the effective operator
responsible for the Jones dichroism XMLD (S2) and

[  + ] is the effective operator of
XMLD (S1). It can be seen that the septor terms

[  + ] and [  – ] also
contribute to XMLD (S2) and XMLD (S1), respectively.

Typically, the contributions of [  – ] and

[  – ] are in quadrature with respect to
the angular dependence 2ψ.

Identical conclusions can be reached by directly
decomposing the rank-3 gyration tensor ζαβγ into rota-
tional invariants following procedures reviewed in [22].
Such a decomposition yields one scalar ζ(0), three vec-

tors , two deviators , and one septor .
Because the E1E2 interference terms have no scalar
part, it follows that (ζ(0)) = 0. Regarding the vector com-

W±2
2 1–,( ) 1

2
--- W XX

2 1–,( ) WYY
2 1–,( )–[ ] 1

2
--- W XY

2 –1,( ) WYX
2 –1,( )+[ ] ,±=

G 2±
2 –1,( ) 3

2
------- Γ XXZ

3 1–,( ) ΓYYZ
3 1–,( )–[ ] 3

2
------- Γ XYZ

3 1–,( ) ΓYXZ
3 1–,( )+[ ] ,±=

i e2iψ W+2
2 1–,( )〈 〉 e–2iψ W–2

2 1–,( )〈 〉–[ ]

=  2ψ WYY
2 1–,( )〈 〉 W XX

2 1–,( )〈 〉–[ ]sin

– 2ψ W XY
2 1–,( )〈 〉 WYX

2 1–,( )〈 〉+[ ] ,cos

e2iψ G+2
3 1–,( )〈 〉 e–2iψ G–2

3 1–,( )〈 〉–[ ]

=  2ψ ΓXYZ
3 1–,( )〈 〉 Γ YXZ

2 1–,( )〈 〉+[ ]sin

– 2ψ ΓYYZ
3 1–,( )〈 〉 Γ XXZ

3 1–,( )〈 〉–[ ] .cos

S1/S0 2χ 2ψ, S2/S0coscos 2χ 2ψ,sincos= =

WYY
2 1–,( ) W XX

2 1–,( )

W XY
2 1–,( )〈 〉 WYX

2 1–,( )〈 〉

Γ XYZ
3 1–,( )〈 〉 ΓYXZ

3 1–,( )〈 〉 ΓYYZ
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WYY
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Table 2.  Numerical factors

a 1 –1,( ) lc l l ', ,( )
lc l 1+ +( ) lc l 2l '–+( ) lc 2l ' l– 1++( )

lc l+( ) lc l 2+ +( ) l l ' 1+ +( )2
---------------------------------------------------------------------------------------------=

a 2 +1,( ) lc l l ', ,( )
2 2l 1+( ) 2l ' 1+( ) 6 3lc lc 1+( ) 2l l 1+( )– l ' l ' 1+( )–+[ ]

l l ' 1+ +( ) lc 3l ' 2l+–( ) lc 3l ' 2l 1+–+( ) lc l+( )2 lc l 2+ +( )2
---------------------------------------------------------------------------------------------------------------------------------------------------=

a 2 –1,( ) lc l l ', ,( )
l ' l–( ) 2l 1+( ) 2l ' 1+( ) 6 3lc lc 1+( ) 2l l 1+( ) l ' l ' 1+( )––+[ ]

2 lc 3l ' 2l+–( ) lc 3l ' 2l 1+–+( ) lc l+( )2 lc l 2+ +( )2
-----------------------------------------------------------------------------------------------------------------------------------------------------=

b 3 –1,( ) lc l l ', ,( ) 2 2l 1+( ) 2l ' 1+( )
l l ' 1+ +( ) lc 3l ' 2l+–( ) lc 3l ' 2l– 1+ +( ) lc l+( )2 lc l 2+ +( )2

---------------------------------------------------------------------------------------------------------------------------------------------------=
ponents, it follows from Section 2.2 that only the vector

part collinear with kγ is involved, i.e.,  = δαβ .

Therefore,  must be identified with the expectation

value of the anapole component  = .

Two pseudodeviators can be generated by a sym-
metric contraction of  [22]:

Given the symmetry properties of the gyration tensor,

we can check that [ ]1 = 0; therefore

In Section 3, we address the inverse problem: assuming
that we know some physical realization of a rank-2 irre-

ducible tensor , we can generate its embedded
form in the rank-3 tensor space [22],

Keeping in mind that  must be symmetric and

 must be antisymmetric under the transposition of
the α, β subscripts, we finally find after proper symme-
trization that

ζγ
1( )' ζαβγ'

ζγ
1( )

Ωγ
1 1–,( )〈 〉 W0

1 1–,( )〈 〉

ζαβγ'

ζαβ' 2( )[ ] 1
1
2
--- eα ijζ jiβ' eβijζ jiα'+[ ] ,–=

ζαβ' 2( )[ ] 2
1
2
--- e jiβζα ij' e jiαζβij'+[ ] .–=

ζαβ' 2( )

ζαβ' 2( )[ ] 2 Wαβ
2 1–,( )〈 〉 .∝

Wαβ
2 1–,( )〈 〉

ζαβγ' 2( )
2eαβδ Wδγ

2 1–,( )〈 〉 eδβγ Wαδ
2 1–,( )〈 〉 ,+∝

ζαβγ'' 2( )
2eαβδ Nδγ

2 +1,( )〈 〉 eδβγ Nαδ
2 +1,( )〈 〉 .+∝

ζαβγ' 2( )

ζαβγ'' 2( )
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for XMLD (S1),

for XMLD (S2),

and for XNCD (S3),

On the other hand, the septor  must be the
natural irreducible representation of the rank-3 tensor

. It expected to contribute to both XMLD (S1) and
XMLD (S2) because

The two approaches are indeed equivalent.

3. PHYSICAL IMPLICATIONS

3.1. Orbital Magnetoelectric Operators

3.1.1. Spin and orbital anapoles. As was first
pointed out by Zel’dovich [1], a toroidal solenoid gen-
erates not only an annular magnetic field Ha(r), but also
the so-called toroidal current ja(r) along the torus axis
z [1–3, 39]. The anapole moment A is defined as the
root-mean-square (rms) radius of ja(r). As emphasized
long ago in [5], one should not confuse the anapole
moment with the toroidal dipole moment Mtd in the the-
ory of classical electrodynamics [7]. Khriplovich [2]

ζββγ' 2( ) ζααγ' 2( )
–[ ] Wαβ

2 1–,( )〈 〉 Wβα
2 1–,( )〈 〉+[ ] ;∝

ζαβγ' 2( ) ζβαγ' 2( )
+[ ] Wαα

2 1–,( )〈 〉 Wββ
2 1–,( )〈 〉–[ ] ,∝

ζαβγ'' 2( ) ζβαγ'' 2( )
–[ ] Nγγ

2 +1,( )〈 〉 .∝

Γαβγ
3 1–,( )

ζαβγ'

ζββγ' 3( ) ζααγ' 3( )
–[ ] Γ ββγ

3 1–,( ) Γααγ
3 1–,( )–[ ] ,∝

ζαβγ' 3( ) ζβαγ' 3( )
+[ ] Γ αβγ

3 1–,( ) Γβαγ
3 1–,( )+[ ] .∝
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and others [40] have nevertheless proved that in a sta-
tionary state, where ja(r) is time-independent, the two
moments become equivalent up to a factor of 4π, i.e.,

We use this equivalence in Section 4 because the cur-
rent literature on magnetoelectric solids mostly refers
to toroidal dipole moment.

In solid-state physics, annular magnetic fields can
be associated with either spin or orbital currents. The
magnetoelectric character of a spin anapole [42] is
schematically illustrated in Fig. 1. In the presence of a
magnetic field H, the energy of each spin carrier (elec-
tron) depends on its location on the annular orbit to
which the electrons are constrained: their distribution is
no longer uniform; consequently, an electric polariza-
tion P is generated in the direction that is mutually
orthogonal to H or ja(r). The case of an orbital anapole
was also envisaged by Ginzburg, Gorbatsevich,
Kopaev, and their collaborators [8] many years ago, but
in a different theoretical perspective.

Following [2] or [43], we can decompose the total
anapole moment into its spin and orbital components,

(12)

(13)

where it can be checked that the operator –i[L2, r] is
both Hermitian and Θ-odd [43]. We immediately obtain

At this stage, we must recall Lloyd’s theorem, which
states that for (diamagnetic) systems that have an even

A 4πMtd.=

Aspin
1 1–,( )〈 〉 2πµB Si ri×〈 〉 ,

i

∑=

Aorb
1 1–,( )〈 〉 i

2πµB

3
------------- Li

2 ri,[ ]〈 〉
i

∑–=

=  
2πµB

3
------------- W 1 1–,( )〈 〉 ,

Mtd
orb µB W〈 〉

6
----------------.=

ja

z

HP

y
x

Ha = Si

e1

e2

Fig. 1. Magnetoelectric character of a spin anapole: in an
external magnetic field H, the electron distribution is no
longer uniform and induces an electric polarization orthog-
onal to H.
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number of electrons and integral spin, the expectation
value of Hermitian Θ-odd operators vanishes [43].

3.1.2. Operators conserved by IQ. We now con-
sider the perturbation of a system that is in a remanent
magnetoelectric state, when one electron is annihilated
in a core state and one electron {n, L, S} is created in a
virtual ground state. By analogy with [44], we expand
the energy U(n, L, S) into a MacLaurin series [27].
Using a Cartesian basis, we obtain

(14)

We need to retain only the magnetoelectric interference
terms that are invariant in the product IΘ and contribute
to the nonreciprocal XOA. In the case of K-shell ioniza-
tion, the spin does not play any role and can be
neglected. Starting with m = 2, we obtain a rank-2 Car-
tesian tensor [aαβ]orb that is the ground state expectation
value of the orbital part of the one-electron magneto-
electric tensor associated with the dyad [L ⊗  n]. Indeed,
we can decompose [aαβ]orb into its irreducible represen-
tations, which include a pseudoscalar (i.e., the trace),
the dual vector of the antisymmetric part, and the trace-
less pseudodeviator of the totally symmetric part. It is
then straightforward to show that the integrated XMχD
signal, via the expectation value of the orbital anapole
moment, is proportional to the dual vector of [aαβ]orb,

We note that this is a direct transposition of the result
established a long time ago by Ascher [39] and by Gor-
batsevich et al. [41, 42], who pointed out that for a tor-
oidal magnetoelectric solid, the total anapole moment
(〈Atotal〉) is proportional to the dual vector of the rank-2
magnetoelectric tensor [aαβ], i.e.,

We also show that at the m = 2 order, ΣXMLD(S1) and
ΣXMLD(S2) can similarly be related to the irreducible

zero-trace symmetric pseudodeviator  because
we have seen that

This implies that XMLD (S1) and the Jones dichroism
XMLD (S2) are also first-order magnetoelectric effects,
but of orbital nature. Typically, XMLD (S2) can be

U n L S, ,( ) U 0 0 0, ,( )=

+
1

m!
------ nα∂nα

Lβ∂Lβ
Sβ∂Sβ

+ +[ ] mU 0 0 0, ,( )
 
 
 

.
m

∑

ΣXMχD S0( ) Ωγ
1 1–,( )〈 〉 1

2
---eαβγ aαβ[ ] orb.∝ ∝

Aγ〈 〉 1
2
---eαβγ aαβ[ ] .∝

aαβ[ ] orb
2( )

Wαβ
2 1–,( )〈 〉 Wβα

2 1–,( )〈 〉+[ ] aαβ aβα+[ ] orb,∝

Wαα
2 1–,( )〈 〉 Wββ

2 1–,( )〈 〉–[ ] aαα aββ–[ ] orb.∝
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detected in magnetoelectric solids characterized by a
magnetoelectric tensor that has nonzero diagonal
terms. More precisely, this dichroism should be
observed whenever the diagonal terms are not equal in
the plane (0, 0, k). The dichroism XMLD (S1) is
expected to be detectable only when the magnetoelec-
tric tensor has symmetric off-diagonal terms, a situa-
tion which is less frequent.

At the K-edge, there is no hope of accessing the spin
part of the one-electron magnetoelectric tensor [S ⊗  n],
which can also be decomposed into the spin anapole

 and the pseudodeviator . A priori, noth-
ing can be said about the relative sign and magnitude of
the spin and orbital parts of the total magnetoelectric
tensor. At most, it may be supposed that for transition
metal oxides, the spin part [aαβ]spin should be much
larger than the orbital part [aαβ]orb. To date, magneto-
electric susceptibility measurements were largely dom-
inated by the spin contribution, and to the best of our
knowledge, there is not a single example where the
orbital part has been extracted. What makes X-ray
absorption spectroscopy attractive is indeed its capabil-
ity to selectively probe the orbital contributions to the
magnetoelectric tensor.

At the m = 4 order, additional magnetoelectric inter-
ference terms can be identified that are odd with respect
to parity I and time-reversal Θ but remain invariant
under the product IΘ. Such terms can only be obtained
from the two rank-4 Cartesian tensors

We recall that the rank-4 tensor [L ⊗  n ⊗  L ⊗  n], which
contributes to the so-called biquadratic susceptibility
[45], is obviously parity-even and therefore cannot con-
tribute to XOA. As far as XOA is concerned, we must
only retain irreducible tensors of rank ≤3 that are linear
with respect to n. We are then left with (at most) three
independent Cartesian septors obtained by decompos-
ing [bβγδe]orb into irreducible representations. The latter
are related to the six dual rank-3 tensors generated by
antisymmetric contraction [22], i.e.,

with τ varying from 1 to 6. Three independent tensors
are easily identified,

Aspin
1 1–,( ) Aspin

2 1–,( )

bβγδe[ ] orb L L L n⊗ ⊗ ⊗[ ] ,=

cβγδe[ ] orb L n n n⊗ ⊗ ⊗[ ] .=

tτ αβγ eαδe bβγδe[ ] orb,∝

Γ1 αβγ L L Ω⊗ ⊗[ ] αβγ QLL
2 +1,( ) Ω 1 1–,( )⊗[ ] αβγ,= =

Γ2 αβγ ΠLL L n⊗ ⊗[ ] αβγ ΠLL
1 +1,( ) W 2 1–,( )⊗[ ] αβγ,= =

Γ3 αβγ L ΠLL n⊗ ⊗[ ] αβγ,=
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where

can be viewed as an example of an antitoroidal vector
operator that is not Hermitian. As a consequence, only
the expectation value of the first septor operator is real
and can contribute to XOA. At this stage, it becomes
more convenient to return to the representation in the
spherical basis. We first observe that for the septor

to exist, it is sufficient but not necessary that 〈W〉  and

〈QLL〉  ≠ 0 individually. We note that the tensor ,
which is Θ- and I-even, has the same symmetry and
angular dependence as the charge quadrupole operator,
although the matrix elements are different. Interest-

ingly,  was recently shown [46, 47] to be also the
effective operator responsible for the reciprocal XMLD
of magnetooptical origin [48].

At this stage, it can be anticipated that in analyzing
XMχD spectra, we could experience serious difficulties

in disentangling the contributions of  and

, especially if these two operators appearing in
Eq. (8) are both allowed by symmetry. In principle, the
higher order septor term can be expected to be smaller.
As discussed in Section 3.3.2 below, comparison of the
XMχD spectra recorded with a single crystal or a pow-
der can be very helpful in verifying the validity of this
assumption. We assume that we can perform XMLD
(S2) experiments with a single crystal; Eqs. (9)–(11)

show that the effective operators [  – ]

and have [  – ] the same angular depen-
dence (2ψ) when the crystal is rotated around the direc-
tion of the incident X-ray beam, but we already pointed
out that the two contributions are in quadrature. This
implies that the higher order septor must induce only a
small phase shift with respect to the dominant XMLD
(S2) signal. The same conclusion must obviously be
true for nonreciprocal XMLD (S1) experiments. Again,
the comparison of nonreciprocal XMLD spectra
recorded with a single crystal or a powdered sample
could be most helpful in evaluating the importance of
the septor term. This option is also considered in Sec-
tion 3.3.2.

In Table 3, we have summarized the effective XOA
operators that are irreducible representations of a given
magnetoelectric point group. Table 3 is a spinoff of the
work by Tenenbaum [34] who listed the number of
independent components of the spherical tensors up to
rank 4 for 90 magnetic point groups. We recall, how-
ever, that this application was justified in Section 2.3.2.
For each magnetoelectric class, we indicated the num-
ber of independent, nonzero components of the anapole

ΠLL
1 +1,( )[ ] γ L L×[ ] γ iLγ= =

G0
3 1–,( )〈 〉 QLL

2 +1,( ), W 1 1–,( )〈 〉=

QLL
2 +1,( )

QLL
2 +1,( )

G0
3 1–,( )

W0
1 1–,( )

WYY
2 1–,( ) W XX

2 1–,( )

ΓYYZ
2 1–,( ) Γ XXZ

2 1–,( )
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Table 3.  X-ray optically active magnetoelectric group Gmag[χΩ , χW, χΓ]

Anapole W(1) ≠ 0 W(1) = 0

Deviator W(2) = 0 W(2) ≠ 0 W(2) ≠ 0

Septor G(3) ≠ 0 G(3) = 0 G(3) ≠ 0

AFM AFE 222[0, 2, 1]

4/m'm'm'[0, 1, 0] m'm'm'[0, 2, 1]

[1, 0, 2] [3, 5, 7]; mmm'[1, 1, 2] 422[0, 1, 0] 4'/m'[0, 2, 2]

4/m'mm[1, 0, 1] 2/m'[1, 3, 3]; 2'/m[2, 2, 4] [0, 1, 0] 4'/m'mm'[0, 1, 1]

[1, 0, 1] [1, 1, 3] [0, 1, 0] 4'mm'[0, 1, 1]

6/m'mm[1, 0, 1] [1, 1, 1]; 4/m'[1, 1, 1] 622[0, 1, 0] [0, 1, 1]

[1, 0, 1] [1, 1, 1]; 6/m'[1, 1, 1] [0, 1, 0] [0, 1, 1]

[0, 1, 0] 32[0, 1, 1]

[0, 1, 1]

AFM FE 3m[1, 0, 2] mm2[1, 1, 2]

4mm[1, 0, 1]; 6mm[1, 0, 1] (2mm)*[1, 1, 2] 4'[0, 2, 2]

(m2m)*[1, 1, 2]

FM AFE 32'[1, 0, 2] [0, 2, 2]

42'2'[1, 0, 1]; 62'2'[1, 0, 1]

FM FE 3[1, 1, 3] 4m'm'[0, 1, 0] m'm'2[0, 2, 1]

4[1, 1, 1]; 6[1, 1, 1] 6m'm'[0, 1, 0] 3m'[0, 1, 1]

Weak FM AFE 22'2'[1, 1, 2]

(2'22')*[1, 1, 2]; (2'2'2)*[1, 1, 2]

Weak FM FE 1[3, 5, 7]; 2[1, 3, 3]; 2'[2, 2, 4]

m[2, 2, 4]; m'[1, 3, 3]

m'm2'[1, 1, 2]; mm'2'[1, 1, 2]

* Nonstandard groups.

3'm 1'

4'2m '

4'2'm 3' 4'm '2

4' 42m

6'2'm 6' 6'2m ' 42'm '

4'm '2

3'm '

4

(χΩ ≤ 3), of the pseudodeviator W(2, –1)(χW ≤ 5), and of
the pseudoseptor Γ(3, –1)(χΓ ≤ 7). We have identified
34 “toroidal point groups” (but only 31 classes) [6, 39]
that admit the anapole as an irreducible representation
and we found that all of them also admit G(3) as an irre-
ducible representation. We have also found 22 “nontor-
oidal groups” that admit the pseudodeviator W(2, –1) as
an irreducible representation and may exhibit nonrecip-
rocal XMLD; interestingly, 13 of them still admit the
pseudoseptor G(3, –1) as an irreducible representation.
Not listed in Table 3 are the magnetic classes that are
not magnetoelectric but still admit G(3) as irreducible
representations,

6'; ; 6'/m; 6'22'; 6'mm'; m2; 6'/mmm'

23; m'3; m'3m; 4'32; 3m.

6 6

4
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For nonreciprocal XOA to be detectable, it is imper-
ative that the orbital magnetoelectric group must
belong to the groups listed in Table 3. This is not suffi-
cient, unfortunately, because Table 3 does not tell us

whether the specific representations  and

 are allowed. This is where Eq. (6) has to be
used. In the specific case of the Jones dichroism, one
can alternatively exploit the fact that the Cartesian ten-

sors  must have the same form as the magneto-
electric tensors in [49] or [50]: using Eq. (10), it is then
a trivial exercise to identify which magnetoelectric
groups give a nonreciprocal dichroism XMLD (S2).

3.1.3. Operators not conserved by IQ. The so-
called higher order magnetoelectric effects, or the
induced magnetoelectric effects in paramagnetic sys-
tems [51], are commonly associated with rank-3 sus-
ceptibility tensors referring to HαHβEγ or EαEβHγ [52].

W 2±( )
2 1–,( )

G 0 2±,( )
3 1–,( )

Wαβ
2 1–,( )
 AND THEORETICAL PHYSICS      Vol. 97      No. 2      2003



X-RAY OPTICAL ACTIVITY: APPLICATIONS OF SUM RULES 413
The corresponding tensors are therefore odd with
respect to IΘ and can be identified with cross terms in
the MacLaurin expansion of the energy U at the inter-
mediate order (m = 3). As pointed out in [52], these
additional terms must be taken into consideration for
magnetic groups that are compatible with either piezo-

magnetism or piezoelectricity. Neither group m' of
Cr2O3 nor groups 2/m' and 2'/m to be considered in Sec-
tion 4 for (V1 – xCrx)2O3 belong to these classes, but we
nevertheless feel it useful to look at the relevant effec-
tive operators listed in Table 4.

Because we are primarily interested in the σE1E2
X-ray absorption cross section, we first consider the
case of the odd-parity HHE susceptibilities. The Her-
mitian operators listed in the first column of Table 4 can
be seen as describing magnetic field-induced magneto-
electric properties. It immediately appears, however,
that the first three operators in the first column are the
effective operators for natural optical activity, as dis-
cussed in more detail in Section 3.2. Of particular
importance is the scalar term, which is a parity-violat-
ing energy of orbital origin but is fully consistent with
the formulation in [I]. For example, in a population of
resolved chiral species in a disordered fluid phase, each
enantiomer must bear an orbital anapole moment with
a well-defined sign in the molecular coordinate system,
but because the orientation of molecules is random in a
disordered fluid phase, there is obviously no magne-
tochiral dichroism that can be detected. In the presence
of a strong external field H, the magnetoelectric energy
of the system becomes

where

Neglecting the field-induced anapole moment ∆ΩH in
the first approximation, we expect the system to mini-
mize its magnetoelectric energy with an anisotropic
angular distribution of the anapole preferably oriented
along the direction of the external magnetic field H. As
a consequence, one may anticipate that a (weak) para-
magnetochiral dichroism (XMχD) might be found.
Baranova and Zel’dovich [53] and others [54, 55] pre-
dicted a long time ago that such a dichroism should be
detectable at optical wavelengths, where the contribu-
tion of the E1M1 interference terms is dominant; but
the theory of optical magnetochiral dichroism (OMχD)
is more complicated because the Zeeman effect and the
contribution of the spin anapole must also be taken into
account. The first OMχD spectra were reported rather
recently in solutions of paramagnetic chiral compounds
[56, 57] and even in diamagnetic systems [58, 59]. Nev-
ertheless, no XMχD could unfortunately be detected as

3'

L W⋅[ ] H L0 W0⋅[ ] χ orbH W0⋅[ ]+=

+ L0 ∆WH⋅[ ] … ,+

L L0 χorbH.+=
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yet on chiral paramagnetic solutions. On the other
hand, the problem of detecting XMχD spectra using
powdered samples of magnetic chiral complexes is dif-
ferent because the orientations of the crystallites are
frozen and another way to define the quantization axis
must be found. In this case, it is desirable to combine
the electric and magnetic fields in a geometry depend-
ing on the magnetic group of the sample. Further work
is in progress at the ESRF in order to explore this pos-
sibility, which is reminiscent of the induced magneto-
electric effect detected in the paramagnetic phase of
NiSO4 · 4H2O [60].

For completeness, we have also listed the effective
operators related to the parity-even EEH susceptibili-
ties in column 2 of Table 4. These operators can be seen
as describing the magnetoelectric properties induced by
the electric field. The first term is the free energy violat-
ing the time-reversal symmetry. It should be kept in
mind that the corresponding systems having even parity
are, strictly speaking, no longer relevant to optical
activity. In the X-ray range, they could nevertheless
contribute to the σE2E2 or σE1E3 absorption cross sec-
tions, which are unfortunately significantly smaller
than σE1E2.

3.2. Natural X-ray Optical Activity

According to [27], the effective operator

associated with natural XOA is the Θ-even direct prod-
uct of two Θ-odd operators that are both related to
orbital magnetism. This suggests viewing the natural
XOA either as a “degenerate” case of orbital magne-
tism or as a particular case of the “induced orbital mag-
netoelectric effect.” We also note that 〈N(2, +1)〉  may well
be nonzero even when either (〈L〉) or 〈W(1, –1)〉  is zero.
This can be easily illustrated with the case of diamag-
netic chiral compounds: Lloyd’s theorem implies that
〈W(1, –1)〉  must vanish, whereas 〈[L, W](2, +1)〉 , which is
Hermitian but Θ-even, can remain perfectly finite.

There is another case that deserves special attention:
if the expectation value of the orbital anapole moment

N 2 +1,( ) L, W[ ] 2( )=

Table 4.  Operators for induced magnetoelectric susceptibilities

I = –1, Θ = +1(HHE)
E1E2 compatible

I = +1, Θ = –1(EEH)
E2E2 + E1E3 compatible

Piezo-electric Piezo-magnetic

[L · W](0) [n · W](0)

[L × W – W × L](1) [n × W – W × n](1)

[L, W](2) [n, W](2)

[L, W(2)](3) [n, W(2)](3)
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is nonzero along the direction of the wave vector k, then
the system must exhibit a magnetochiral dichroism
(XMχD) in addition to the natural circular dichroism
(XNCD). Moreover, one would expect the external
magnetic field not only to create a magnetization vector
M, but also to stabilize one isomer with respect to its
enantiomer as a consequence of the parity-violating
free energy [W · M]; this effect has been proved exper-
imentally using OMχD [57]. This experiment may shed
new light on a long-lasting debate regarding the exist-
ence of chirality in prebiotic chemistry [61–63],
because it suggests that the action of a strong magnetic
field can suffice to resolve optical enantiomers. This
would revitalize the old view of Pasteur [64] that an
intrinsic dissymmetric force is inherent to the physical
world. We recall that Pasteur in his remarkable intuition
tried hard for many years to show that chirality and
magnetism are connected [64], but he could not prove
this within the knowledge of his time.

As already illustrated with the first column of Table 4,
the dyad [L, W] can be decomposed into three irreduc-
ible representations: the pseudoscalar

the dual polar vector

and the pseudodeviator N(2), which was shown to play a
key role in XOA. A priori, the scalar part N(0) could
only be associated with the E1M1 interference terms
that dominate optical activity at optical wavelengths but
can be neglected in the X-ray range as proved in the
next subsection. One may wonder, however, whether
any specific XOA effect may be related to the vector
term N(1). An interesting indication can be found in the
early works [65] and [66], where it was suggested that

N 0( ) L W⋅[ ] 0,=

N 1( ) L W× W L×–[ ] 1( ),=

Table 5.  Rotational invariants of natural optical activity

Natural OA Irreducible parts of L ⊗ W

Crystal classes Pseudoscalar Polar vector Pseudo-
deviator

1; 2; 3; 4; 6 1 1 1

622; 32; 422; 1 0 1

222

m; mm2 0 1 1

; 0 0 1

6mm; 3m; 0 1 0

4mm

432; 23 1 0 0

4 42m
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a new type of optical activity can be measured in the
reflectivity mode for several crystal classes. More
recently [67], it was pointed out that these mysterious
classes are precisely associated with the irreducible
vector part of the optical activity tensor. In Table 5, fol-
lowing [67], we have listed the crystal classes that can
contribute to a scalar-, vector-, or tensor-type XOA
according to symmetry. However, we must identify
where the theory developed in Section 2.2 is to be mod-
ified in order to become compatible with the eventual
detection of the vector part of natural optical activity in
the X-ray regime. The solution to this puzzling problem
was more or less given out in [68], where it was pointed
out that in all crystal classes exhibiting vector optical
activity, the electromagnetic wave propagating inside
the crystal is not transversally polarized but has a so-
called skew polarization with an axial component. It
should be realized, however, that the absorption cross
section σE1E2 of such a very weak axial component is a
second-order dichroism, whose detection would be a
considerable challenge for experimentalists. Recently,
we nevertheless succeeded in detecting the vector type
of natural optical activity of a diamagnetic zinc oxide
(ZnO) single crystal, in a geometry optimized for X-ray
resonant scattering [69].

Induced natural optical activity can also be pre-
dicted to occur as a consequence of the m = 4 terms in
Eq. (14). The two rank-3 operators

can induce natural optical activity. We have already
emphasized that G(3, –1) is odd with respect to I and Θ,
whereas D(3, +1) is even with respect to both I and Θ.
Typically, ∆(3, +1) originates in the m = 4 biquadratic
magnetoelectric susceptibility and appears as the oper-
ator responsible for electrogyration in centrosymmetric
solids; under high magnetic fields, G(3, –1) can induce
XNCD signals in noncentrosymmetric magnetic sys-
tems, possibly in powdered samples. It seems that the
latter operator could be responsible for the so-called
quadratic Faraday effect of optically active systems. We
recall that there are magnetic groups that are not mag-
netoelectric but nevertheless admit G(3, –1) as irreducible
representations. Nevertheless, the m = 4 terms in
Eq. (14) are expected to be rather small; as of yet, we
have failed to prove that electrogyration can be mea-
sured in the X-ray spectral range.

3.3. Rotational Isotropy

3.3.1. XNCD spectra. It was obvious from the
beginning that the X-ray natural circular dichroism
(XNCD) can hardly be detectable in powders or solu-
tions because the rank-3 tensor E1E2 has no scalar part.
This is not surprising because the spherical harmonics

G 3 1–,( ) L, L[ ] , W[ ] 3 1–,( ),=

D 3 +1,( ) n, L[ ] , W[ ] 3 +1,( )=
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associated with the electric dipole (l = 1) and electric
quadrupole (l = 2) are orthogonal in a sample that is ori-
entationally isotropic. For the sake of illustration, we
have reproduced in Fig. 2a the cobalt K-edge X-ray
absorption near edge (XANES) and the XNCD spectra
of two resolved enantiomers of the chiral “propeller-
like” complex

1± = 2[Co(en)3Cl3] · NaCl · 6H2O.

In these compounds, the ligand field has the D3 point
group symmetry. As already reported elsewhere [18],
the XNCD spectra of the two enantiomers have oppo-
site signs. In Fig. 2b, we have compared the XNCD
spectra recorded with either a single crystal or a pellet
of a powdered sample of the same enantiomer. With the
powdered sample, the strong XNCD signature assigned
to the E1E2 interference terms totally vanishes. How-
ever, a very weak signal that has the opposite sign is left
in the preedge range (the normalized amplitude is
approximately 2.5 × 10–4). It is impossible to transform
the XNCD spectrum of a given enantiomer into the
spectrum of its mirror image by a simple rotation. This
implies that the very weak signal observed in the pow-
dered sample cannot be explained by any residual ori-
entational order in the powder. It is therefore our inter-
pretation that this weak signal should be of a different
nature and can be associated with small E1M1 pseudo-
scalar interference terms.

Regarding the photoexcitation of deep core states, a
monoelectronic M1M1 transition is forbidden for two
independent reasons: (i) the angular momentum opera-
tor L has a zero eigenvalue for a spherically symmetric
1s core state (e.g., in the case of K-edge photoioniza-
tion); (ii) in a central-field atomic model, one-electron
radial wave functions with the same l and different
energies are orthogonal, and the magnetic dipole tran-
sition matrix element therefore vanishes. In a many-
body picture, the second argument no longer applies
because different potentials must be used to describe
initial and final one-electron states [13], but argument
(i) is still a problem. It is our interpretation that E1M1
transitions can nevertheless be allowed in the case of a
multielectron excitation process. This interpretation is
supported by the derivation [37] of a two-particle E1M1
sum rule via the same procedure as that described in
Section 2.3. The calculated effective operator was iden-
tified as a two-particle orbital pseudoscalar N(0) = L ·
W . Typically, one X-ray photon would cause the simul-
taneous photoexcitation of two electrons, one in the
deep K-shell and the other in the valence band. That the
effective operator vanishes (N(0) ≡ 0) for a single parti-
cle follows from the definition,

The experimental and theoretical results thus suggest
that (difficult) XNCD experiments on powdered sam-

N 0( ) L L n×( ) n L×( )–[ ] /2.⋅=
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ples could possibly give access to the effective opera-
tors of parity-mixing many-body processes, of which
very little is presently known.

When no single crystal is available, there is still the
possibility of recovering a well-detectable XNCDE1E2
signal: the idea is to artificially break the orientational
isotropy of space, e.g., by investigating liquid crystal
phases aligned in a high magnetic field or chiral ferro-
magnets below their Curie temperature [70]. As an
example, we report the XNCD spectra of another ste-
reogenic organometallic complex,

dissolved in an aligned liquid crystal. In this tetra-coor-
dinated iron complex, the absorbing atom (Fe) is
clearly in a chiral ligand field because all the four
ligands are different (the point group C1): L1 is the
cyclopentadienyl ligand (η5 – C5H5), L2 is an iodine
atom (–I), L3 is a carbonyl group (–CO), and L4 is a
chiral tertiary phosphine (–PPh2R) with R = (–NMe–
C*HMePh). The stereoselective synthesis of the corre-

2± L1( ) L2( )FeII L3( ) L4( )[ ] ,=
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Fig. 2. Co K-edge XNCD spectra of the resolved enan-
tiomers of the chiral complex 1± = 2[Co*(en)3Cl3] · NaCl ·
6H2O. a—XNCD spectra recorded with single crystals of
(+) and (–) enantiomers. A polarization-averaged XANES
spectrum was added for comparison. b—XNCD spectra of
the (–) enantiomer as a single crystal or as a powdered pel-
let. Note the very weak inverted signal obtained with the
powdered pellet.
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sponding diastereoisomers was first described in [71]
and was reproduced for us at the University of Dijon
(France). Because no large-size single crystals could be
grown, the enantiomers were dissolved in a liquid crys-
tal that was known to exhibit a strong diamagnetic
anisotropy (Merck: MLC-6204; Tc = 66°C) and each
chiral sample was aligned in a 5 T magnetic field
directed along the wave vector k of the incident X-ray
beam. We recall that the exploitation of mesophase-ori-
ented solutes has become a very popular technique in
NMR and ESR since the pioneering work of Saupe in
1963 [72, 73]. In Fig. 3, we have reproduced the Fe
K-edge XANES and XNCD spectra of the two enantio-
meric solutions. The two XNCD spectra have clearly
opposite signs, as expected. The price that we had to
pay was clearly a dramatic loss of sensitivity, not only
because the solubility of the chiral complexes was very
poor, but also because the (unknown) order parameter
of the solute itself inside the liquid crystal phase was
probably rather low. We note that ab initio simulations
of the experimental XNCD spectra turned out to be
impossible unfortunately due to the lack of information
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Fig. 3. Fe K-edge XNCD spectra of the two resolved enanti-
omers of the chiral complex 2± = (η5 – C5H5)Fe*(–I)(–CO)
[–PPh2(–NMe–C*HMePh)] dissolved in a liquid crystal
phase (Merck ZLI 4814). All spectra were recorded in the
fluorescence detection mode using a high magnetic field
(5 T) to align the liquid crystal and the solute. a—Polar-
ization-averaged XANES spectra of each (±) enantiomer.
b—XNCD spectra of the two (±) enantiomers.
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regarding the preferential orientational order of the sol-
ute in the oriented liquid crystal.

3.3.2. Nonreciprocal XMcD and XMLD spectra.
Magnetochiral dichroism (XMχD) spectra of Cr2O3

were successively recorded using either a single crystal
or a powdered sample [14]. As illustrated by Fig. 4, the
most significant difference between the two spectra is a
reduction of the signal, by approximately 6 : 1 in the
experiment carried out with the powdered sample. It
also appears that the normalized intensity of the mag-
netochiral dichroism spectrum measured with the sin-
gle crystal exceeds the intensity of the XNCD spectra
reproduced in Fig. 2; this might well be consistent with
our remark that the magnetoelectric susceptibilities
[aαβ]orb appear in the lowest order term m = 2 of the
series expansion of the energy U(L, n), whereas the
effective operators for XNCD contribute to the m = 3
susceptibilities.

The primary aim of this section is to show that the
proven capability to record XMχD spectra using pow-
dered samples is fully consistent with the proposed sum
rule analysis and also consistent with our interpretation
that the leading term in Eq. (3) should be the contribu-
tion of the projection of the orbital anapole moment

 along the direction of the wave vector k. Since the
pioneering works of Astrov [74, 75], it has been well
documented that the key step in measurement of mag-
netoelectric susceptibility is the creation of a remanent
state characterized by a strong polarization of the mag-
netoelectric domains. This is rather well understood for
Cr2O3, which has only two magnetoelectric domains
(±) that can be exchanged by reversing the time and are
illustrated with Fig. 5. If n(+) and n(–) denote the number
densities of the two types of domains, we are directly
concerned in our experiment with the magnetoelectric
polarization ratio

We found it most convenient to adapt the model pro-
posed in [76] to describe the nucleation of magneto-
electric domains by annealing.

We start from a crystal that is described by the ten-

sors  in the crystalline axes. In a powder, the
crystalline axes of a given crystallite i are rotated with
respect to the reference frame of the experiment, with
the rotation described by the Euler angles φi , θi , and ψi .
We assume that the electric and magnetic fields are par-
allel to the z axis of the reference frame of the experi-
ment and that the magnetoelectric tensor of the crystal
is diagonal (with αxx = αyy) in the reference frame of the

W0
1( )

ρME

n +( ) n –( )–
n +( ) n –( )+
----------------------.=

Tβ
b θ,( )〈 〉 X
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crystal. The magnetocrystalline energy of the crystallite
is therefore proportional to (see [77])

for a domain of the magnetoelectric type and to
−UME(θi) for domains of other types. At a temperature
of TN, the polarization ratio is given by

(15)

The XOA experiments refer to tensors 
that are not only parity-odd but also change sign for
domains of different types. For a crystallite i, the ten-
sors in the reference frame of the experiment become

To obtain the tensor components  of the pow-
der, we calculate the average of the last expression over
φi, θi, and ψi . The average over φi and ψi gives β' = 0 and
β = 0. From

(where Pb is a Legendre polynomial), we find that

where

with

We note that the integral is restricted by symmetry to
the range 0 to 1. In this context, the macroscopic mag-
netoelectric susceptibility J2 = (2I2 + I0)/3 measured
with a powdered sample must be given by [76]

In Table 6, we have regrouped the calculated values
of the integrals Ib (≤3) for typical values of the parame-
ters α and β2. Because the efficiency of the magneto-
electric annealing procedure carried out with the single

UME θi( ) –E α H⋅ ⋅=

=  –EH α zz θicos
2 α xx θisin

2
+( )

n +( ) n –( )–
n +( ) n –( )+
---------------------- ρME θi( )

UME θi( )
kT N

------------------- 
  .tanh= =

Tβ
b θ,( )〈 〉 X

Dβ'β
b( ) φi θi ψi, ,( ) Tβ

b θ,( )〈 〉 X UME θi( )/kT N( ).tanh
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∑
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D00
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crystal is unknown, the values listed in Table 6 are sys-
tematically normalized with a constant scaling factor
slightly less than unity, the α0 ≈ 0.995 if α0 = 3. Follow-
ing [76], we have assumed in the first two examples
that, at least near the Néel temperature TN , β2 ≈ 0, and
we compared the integrals obtained with α0 = 3 and
α = 1. In the last simulation, which seems to be a rea-
sonable approximation of our experimental conditions,
we selected α = 1 and β2 = 0.15. In all cases, I3 is quite
small (≤0.05); it even reverses its sign when the magne-
toelectric polarization of a well-oriented crystallite is
assumed to be as effective as in the case of a single crys-
tal (α0 = 3). We also note that the experimental value
J2 ≈ 0.3 reported in [75] is very close to the asymptotic
value that should be measured when the annealing pro-
cess is as effective in the powder as in the single crystal.
In practice, unless very careful annealing procedures
are used (e.g., heating the powder at 1300°C in an inert
atmosphere), the local electric field in the powder can
be dramatically reduced due to the hygroscopic charac-
ter of the powder, while the conductivity increases, as
pointed out in [77]. As a result, we expect a certainly
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Fig. 4. Cr K-edge XMχD spectra of Cr2O3 recorded with
either a single crystal (c || k) or a powdered sample. The dif-
ferential absorption spectra refer to the 180° domains grown
under the condition of time-reversality after magnetoelec-
tric annealing. The upper trace reproduces a high-energy
resolution (deconvoluted) XANES spectrum.
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Fig. 5. Schematic representation of the two 180° antiferromagnetic domains grown by magnetoelectric annealing with antiparallel
(left panel) and parallel (right panel) electric (E) and magnetic (H) fields.
lower efficiency of our annealing, as reflected by the
α ≈ 0.76 for α = 1.

An important result of this calculation is that

 should make only a very small contribution in
the powdered sample; because the two XMχD spectra
displayed in Fig. 4 exhibit only minor differences, we
are therefore led to the important conclusion that the
application of the sum rule to the XMχD spectrum
recorded with the single crystal should yield a reason-
able estimate of the orbital anapole moment.

A further question is whether nonreciprocal XMLD
spectra can also be recorded using powdered samples.
The answer strongly depends on how the magnetoelec-

G0
3 1–,( )〈 〉
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tric annealing procedure is conducted. We can assume,
for instance, that the same type of annealing is again
performed with a powdered sample of Cr2O3, but in a
different geometry, E || H ⊥  k. In other terms, we have
set a different direction of quantification for the magne-
toelectric domains in the laboratory coordinates
{X, Y, Z}, whereas the free energy in the crystallite
coordinates {x, y, z} remains unchanged. Hence,

W XX
2 1–,( )〈 〉 WYY

2 1–,( )〈 〉 azz axx–( )x2 axx+[ ] orb

0

1

∫∝–

× α 1 β2+( )x2 β2–[ ]{ } dx.tanh
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Table 6.  Rotational average integrals for powdered samples

Parameters I0 I1 I2 I3 J2

α0 = 3.0, α = 3.0, β2 = 0.0 0.565 0.387 0.150 –0.008 0.289

α0 = 3.0, α = 1.0, β2 = 0.0 0.296 0.218 0.109 0.026 0.172

α0 = 3.0, α = 1.0, β2 = 0.15 0.202 0.184 0.131 0.051 0.155
We thus expect a nonreciprocal XMLD (S2) signal to be
measurable in the powdered sample: it should now be
proportional to J2, under the assumption that

(azz – axx)orb ≠ 0.

It would be interesting to compare such a nonreciprocal
XMLD spectrum with a test experiment carried out
with a single crystal in a geometry satisfying the condi-
tion c ⊥  k, with the magnetoelectric annealing still per-
formed with E || H || c. A comparison of this type would
yield valuable information regarding the importance of
the septor term in XMLD experiments.

In powdered samples, as suggested in [78], anneal-
ing could be carried out in electric and magnetic fields
arbitrarily oriented with respect to each other. In the
crystallite coordinates {x, y, z}, the relevant magneto-
electric free energy must be replaced by

Because the term proportional to sinφi has zero aver-
age in the calculation of the modified integral J2 , we
can anticipate that the cost of this is a further reduction
of the annealing efficiency proportional to cosβ0,
where β0 denotes the angle between the electric and
magnetic fields. This result was not really unexpected.
It is, however, restricted to magnetoelectric solids that
have a diagonal magnetoelectric tensor with a|| @ –a⊥ .
We will consider the general case of the magnetoelec-
tric annealing of powdered samples depending on the
magnetoelectric symmetry of the crystallites else-
where [79].

4. APPLICATIONS 
OF X-RAY OPTICAL ACTIVITY

4.1. Magnetoelectric Symmetry

4.1.1. Chromium sesquioxide Cr2O3. The detec-
tion of rather intense XMχD spectra in the magneto-
electric phase of Cr2O3 (eskolaite) is somewhat puz-
zling because the universally cited magnetic group of

Cr2O3, i.e., m' does not admit the anapole as an irre-

ducible representation,  = 0. According to Table 3,

UME EH azz θicos
2

axx θisin
2

+( ) β0cos[–∝
+ azz axx–( ) θi θi φi β0sinsincossin ] .

3'

W0
1( )
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the septor  must have only a single nonzero com-
ponent, but the table itself does not tell us whether this
component is for β = 0. This is precisely where the
method developed in Section 2.3 can help us. For the

magnetic group m', we obtain

The other components of T(3, –1) are zero, including the
one for β = 0. Moreover, we note that when the wave
vector is directed along the z axis of the reference frame

(which is also the c axis of the crystal), then  =
0. In other terms, T(3, –1) cannot be detected in this
geometry. In conclusion, there is no optical activity of

any type compatible with the group m' in the geome-
try of the experiment.

It must also be kept in mind that whatever the true
magnetic group of Cr2O3 may ultimately be, a compo-

nent , if any, should make only a very weak con-
tribution to the spectrum recorded in the powdered
sample. It was argued in the previous section that the
spectrum recorded with the single crystal should yield
a reasonable estimate of some orbital anapole moment.
In all cases, this would imply a reduction of the mag-
netic symmetry in what we have previously called a
pseudoground state. At this stage, we are left with inter-
pretations of two types, which we now consider succes-
sively.

1. The observed reduction of the ground state mag-
netic symmetry of Cr2O3 is related to experimental con-
ditions favoring some metamagnetic phase.

Some ambiguity may possibly stem from the fact
that the XMχD spectra were recorded in the presence of
a rather modest magnetic field (0.5 T) directed along
the c axis. We recall that this magnetic field was
required only to grow single antiferromagnetic
domains, no magnetic field being needed a priori to
record the XMχD spectra. It has been argued that the

Gβ
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3'

Tβ
1 1–,( )〈 〉 0,=
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axial magnetic field can modify magnetic symmetry of
the sample and that metamagnetic domains of 3m' sym-
metry can (eventually) contaminate the measurements.
This is, however, contradicted by the fact that the sam-
ple did not exhibit any measurable XMCD spectrum at
the Cr K-edge. Moreover, a quick inspection of Table 3
immediately shows that the group 3m' again admits
only the septor, but not the anapole, as an irreducible
representation.

It has been known for decades that the magnetic
group of Cr2O3 changes beyond the critical spin-flop
transition [80, 81]. Recent investigations initiated in
[82–84] have confirmed that when a strong magnetic
field (up to 20 T) is applied along the c axis, a toroidal
order can be detected that is associated with the spin-
flop magnetic group 2'/m. Because the critical spin-flop
field at 100 K is 5.8 T [85], it is very unlikely that spin-
flop domains could develop in a field of 0.5 T. Recent
crystal topography experiments carried out with the
powerful method of polarized second-harmonic gener-
ation have proved that no spin-flop domain can be
detected below the critical spin-flop field [85].
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Fig. 6. Cr K-edge XLD spectra of Cr2O3 with and without
magnetoelectric annealing using a 3 T magnetic field. The
crystal and the geometry of the experiment were the same
as for recording XMχD spectra (c || k). The upper trace
reproduces a XANES spectrum (raw data) for comparison.
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There are further experimental data that also concur
in ruling out any contribution of spin-flop domains.
Unpublished X-ray linear dichroism spectra, e.g., XLD
(S1) spectra, were recorded in the presence of a higher
magnetic field (3 T) following a magnetoelectric
annealing procedure carried out with a strong electric
field (1 kV/cm) in the geometry E || H || c || k. Under
such experimental conditions, one would expect the
hypothetical spin-flop domains to have a stronger
weight, with the practical consequence that reciprocal
or nonreciprocal XLD signals should become detect-
able. As illustrated in Fig. 6, we found no conclusive
evidence of such a dichroism. For comparison, we have
included in Fig. 6 a natural XLD spectrum recorded in
the absence of any magnetic field: the goal was to check
carefully whether the (possibly) imperfect alignment of
the c axis with the wave vector k can generate any arti-
factual dichroism. This is clearly not the case. These
negative experiments support our view that it is very
unlikely that spin-flop domains can contribute to the
XMχD experiment performed with a much weaker
magnetic field (0.5 T). It is also noteworthy that all
diagonal terms of the magnetoelectric tensor are
expected to vanish in the 2'/m spin-flop phase [50]: no
effective magnetoelectric annealing can then occur in
the geometry of our XMχD experiment and the separa-
tion of domains of opposite time-reversality becomes
impossible.

2. There is a reduction of the magnetic symmetry
due to some partially unquenched angular momentum
that has a different quantization axis than the spins.

There is nothing sacrilegious in envisaging that the
orbital part of the magnetoelectric tensor [aαβ]orb
(which has so far never been measured) can reveal a
symmetry reduction with respect to the point group

m ⊗ Θ , which admits m' as a subgroup. We recall
that this subgroup corresponds to the highest magnetic
symmetry compatible with the chemical cell (measured
above TN) and with the antiferromagnetic spin configu-
ration. As pointed out in [86], the angular momentum
unquenched by covalent bonding, with a different
quantization axis than the spins, must be a widespread
phenomenon in antiferromagnetic solids.

In our case, there can be no anapole component W0
along the c axis without a (small) orbital moment L and
an orthogonal electric dipole in directions perpendicu-
lar to c at the Cr sites. We can therefore expect a (small)
canting of the total magnetic moment. We here reopen
a fairly old debate that started when Foner [87] reported
that the parallel magnetic susceptibility of Cr2O3 does
not drop to zero below 4 K. This led to the active search
for a canted structure of the magnetic moments until
Silverstein and Jacobs found that Van Vleck suscepti-
bility calculations can explain the residual contribution
of χ|| [88]. We recall that the Van Vleck susceptibility
takes into account localized orbital moments consistent

3 3'
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with a Zeeman perturbation restricted to the first and
second order,

(16)

where N is the Avogadro number. In the particular case
where the ground state is orbitally nondegenerate, the
first term vanishes. This was assumed by Silverstein
and Jacobs, who considered a Cr ion in a cubic crystal
field with a weak trigonal field. The Van Vleck suscep-
tibility can then only result from the temperature-inde-
pendent second term, which couples the ground state to
higher crystal field levels. Parallel susceptibility mea-
surements refer to the component Lz , but the weak trig-
onal field splitting of the corundum structure yields an
even higher coupling for Lx, y, resulting in stronger Van
Vleck contributions to χ⊥  [89]. The angular momentum
alone cannot yield the orbital anapole moment; we also
need electric dipoles. Recently, Muto et al. [90] tried to
simulate magnetoelectric spectra at optical wave-
lengths and pointed out that an antisymmetric twist
field with trigonal symmetry must be introduced in the
microscopic model in order to mix odd-parity orbitals
in the stationary states of the system. This antisymmet-
ric twist is clearly essential to produce a nonzero local
orbital anapole moment. At this stage, it is tempting to
conclude that the symmetry reduction is caused by a
substantial admixture of low-lying crystal field levels in
the virtual ground state. We do not even require an
external field to induce the Zeeman second-order per-
turbation; the strong exchange field responsible for the
antiferromagnetic order and the spin-orbit coupling
could play the same role. We recall that the strong local
perturbation caused by the deep core hole can obvi-
ously also cause such a substantial coupling as pre-
dicted in Section 2.1 (see Eq. (3)).

It remains to be proved experimentally, however,
that there is no unquenched angular momentum in the
ground state of Cr2O3; one should also reinvestigate
whether some small ordered canting of the magnetic
moments associated with angular momentum can
occur. Careful neutron diffraction studies [91] failed to
detect any large, ordered canting of the magnetic
moments, but the authors admitted openly that neutron
diffraction cannot disprove models with canting angles
less than three degrees. This implies that with a mea-
sured spin moment of 2.48µB at each Cr site, orthogonal
orbital moments as large as 0.13µB may not be seen.
This leaves ample space for some orbital magnetism
involving only the ground state wave functions. The
authors of [92] suspected that the covalent character in
the Cr–O bonds might involve “a small spin transfer
from the Cr (3d) orbitals to the O (2p) shell,” but they
noted that the transferred moment is too small to be
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detected by neutron diffraction. This problem was
recently reconsidered in [93] via spherical neutron
polarimetry, and it was confirmed that a reduction of
〈Sz〉  from 2.98µB to 2.48µB is definitely too large to be
explained solely by the Heisenberg “zero-point devia-
tion” (8%) deduced from neutron inelastic scattering
measurements in [92]. Using a simple model based on
a covalent overlap of the metal 3d(t2g) orbitals with the
oxygen 2p orbitals, Brown et al. [93] pointed out that
the symmetry constraints preclude a net magnetization
of the oxygen atoms, and the only effect of covalent
mixing is therefore the lowering of the measured
moment 〈Sz〉  on the Cr sites; no change of the accepted

m' magnetic group is required. This is only true if the
spin-orbit coupling can be neglected as discussed
below.

More sophisticated unrestricted Hartree–Fock cal-
culations [94, 95] revealed that covalency effects are
particularly important in chromium sesquioxide and
can explain the well-known differences in the magnetic
structures of Cr2O3 and Fe2O3. Contrary to the model in
[93], Dovesi et al. [94] found a large splitting between

the spin-up ( ) and spin-down ( ) states and
observed that the covalent electron transfer involves the
substantial contribution of the Cr 3d(eg) orbitals in the
ground state. This result suggests that there should be a
significant contribution of the first term of the orbital
susceptibility χorb expressed by Eq. (16). In the general
framework of band structure calculations, the orbital
part of susceptibility must also include terms, such as
those predicted in [96], that have the same source as the
temperature-independent Van Vleck susceptibility in
localized ions.

A quick inspection of our XMχD spectra convinced
us that the E1E2 dichroic signal is the most intense for
mixed-parity excited states that can be identified as

{p(O) + } and {p(O) + } above the Fermi level in
the unrestricted Hartree–Fock calculations in [94]. As a
consequence of the crystal field symmetry, there cannot
be any net spin moment delocalized on the oxygen
atoms. However, the calculations produce clear evi-
dence of a local polarization of each oxygen atom: the
part of the electron cloud facing Cr1 (α) is β polarized,
while that facing Cr2 (β) is α polarized, the maximum
polarization occurring along the directions of the chem-
ical bonds. Regarding orbital moments possibly associ-
ated with the covalent bonding, one should keep in
mind that the spin-orbit coupling is expected to lower
the crystal field symmetry, especially in the plane per-
pendicular to the c axis. Thus, the calculation in [94]
strongly suggests that a small orbital magnetic moment
perpendicular to c can occur at every chromium site.
This is also fully consistent with the observation in [86]
that highly aspherical spin densities with zero spatial
average are most often associated with nonzero angular
momentum distributions.

3'

t2g
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β
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α eg
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Dovesi et al. [94, 95] reiterated the claim that the
magnetic symmetry of the antiferromagnetic phase of
Cr2O3 is reduced to R3c (class 3m), which is a subgroup

of R c. It is not clear from their paper how this claim
was justified. It seems that the only magnetic constraint
imposed on the calculation was that the difference
between the numbers of majority-spin and minority-
spin electrons per unit cell nα – nβ was set to zero, while
the program was expected to retain only solutions for
which two consecutive Cr atoms have α- and β-type net
atomic spin densities. Indeed, the group 3m would ide-
ally explain our XOA experiments:

1. the magnetic crystal class 3m (space group R3c)
admits the anapole as an irreducible representation,
which is consistent with the observation of the XMχD
spectra;

2. the crystal class 3m does not admit the pseudode-
viator W(2, –1) as an irreducible representation, which is
consistent with the absence of detectable XMLD
(S1, S2) spectra [14];

3. the crystal class 3m admits the septor Γ(3, –1) as an
irreducible representation—using the procedure
described in Section 2.3, we were able to check that

 ≠ 0. From the experiment carried out with the
powdered sample, we expect only a small contribution
of this septor term to the XMχD spectra. On the other

hand, it is easy to check that  = 0.

Unfortunately, the magnetoelectric group 3m is def-
initely incompatible with all published magnetoelectric
susceptibility measurements, including the magneto-
electric annealing procedure that we used, because it is
easy to verify that the generic magnetoelectric tensor of
this group has no diagonal term [50].

The point raised by Dovesi et al. that a structural
change could occur below TN would be consistent with
the observation reported by several authors long ago
that the lattice parameters change quite significantly
below TN [97]. Unfortunately, very high quality crystal
structure data are required to refine the true magnetic
space group. If we trust the interpretation that our
XMχD spectra imply a reduction of magnetic symme-
try below TN , then we must seek a magnetoelectric
group consistent with both XOA and the well-estab-
lished magnetoelectric susceptibility measurements.
The only magnetic groups that can reconcile these two

experiments are  and 3: this is because their generic
magnetoelectric tensors simultaneously have the same

diagonal terms as the group m' and the same off-diag-
onal terms as the group 3m [50].

We note that only group  is suitable for an antifer-
romagnetic solid, whereas group 3 would imply that the
system is ferromagnetic, which is not the case. Simi-
larly, a very important observation [39] is that the exist-
ence of a magnetoelectric toroidal group requires that

3

G0
3 1–,( )〈 〉

G 2±
3 1–,( )〈 〉

3'

3'
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in the high-temperature paramagnetic phase, the com-
pound must belong to one of the eight ordinary groups:

mmm, 4/mmm, m, m2, 6/mmm, m3, 3m, m3m.

Therefore, as far as the corundum point group m is
concerned, the only antiferromagnetic toroidal sub-

groups that deserve attention are , 3m, and m,

which are all subgroups of m'. We note that only 
has a magnetoelectric tensor with diagonal elements.
This was the basic argument that led us to propose this
group as the true magnetic group describing the spin
and orbital magnetoelectric effects in Cr2O3 [14].

According to Table 3, magnetic group  must admit

irreducible representations of the type . Using

Eq. (6), we find that  = 0 in our experimental
configuration (H || E || c || k). This is fully consistent
with the fact that we failed to detect any nonreciprocal
XMLD signal in this geometry. As discussed in Sec-
tion 3.3.2, a nonreciprocal dichroism XMLD (S2)
might, however, be detected if the wave vector k is set
perpendicular to the c axis, the annealing being still
performed with H || E || c. Unfortunately, no experi-
ment has yet been performed in this geometry.

4.1.2. Vanadium sesquioxides (V1 – xCrx)2O3. The
magnetic structure of chromium-doped vanadium ses-
quioxides (V1 – xCrx)2O3 in the so-called antiferromag-
netic “insulating” low-temperature phase is another
controversial subject. It dates back to 1980, when Word
et al. [98] reported a careful neutron diffraction study
on pure vanadium sesquioxide (karelianite). They con-
firmed that in the monoclinic antiferromagnetic insulat-
ing phase, the crystal has a distorted I2/a symmetry and
that the vanadium atoms carry a magnetic moment
approximately given by 1.2µB , tilted away from the
trigonal c axis by 71° and perpendicular to the a axis.
However, the observation of a forbidden reflection for
l = 6h + 3 [99] led them to envisage that the magnetic
group might not be 2/m ⊗ Θ  as is usually accepted, but
rather a low-symmetry group 2 [98]. They tentatively
explained this symmetry reduction by a small magnetic
contribution of the oxygen lattice [99]. This puzzling
observation was nevertheless considered a “minor
issue” even though it was admitted by Moon himself
[100] and by von Laar and Yethiraj [101] that a reduc-
tion of the magnetic symmetry could be perfectly envis-
aged. Moon explicitly mentioned in his paper that
orbital moments could result in a reduction of sym-
metry.

The neutron diffraction study in [98] is pertinent
here because class 2 is magnetoelectric; according to
Table 3, it simultaneously admits W(1, –1), W(2, –1), and
G(3, –1) as irreducible representations, and the measure-
ment of nonreciprocal XMLD (S1, S2) spectra must
then be allowed by symmetry. Using a crystal of chro-
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mium-doped vanadium sesquioxide, i.e., (V1 – xCrx)2O3
with x = 0.028, we observed in the monoclinic low-tem-
perature phase what is still believed to be the first exam-
ple of a nonreciprocal X-ray magnetic linear dichroism
[15]. The crystal borrowed from Paolasini was initially
assumed to have been cleaved perpendicularly to the
hexagonal c axis, but it was realized recently that it was
slightly miscut. Thus, the nonreciprocal XMLD (S1)
spectra reproduced in Fig. 7 were recorded after a mag-
netoelectric annealing process conducted in the geom-
etry E || H || k with c tilted away from k by approxi-
mately 10°. Because the signal was found to change its
sign when the annealing was performed with parallel or
antiparallel electric or magnetic fields and to vanish
above the Néel temperature TN = 181 K, we feel that
there is very little doubt left regarding the nonreciprocal
character of this signal. We emphasize that the orienta-
tions of the crystallographic axes a and b were unfortu-
nately unknown in this experiment: this makes it
impossible to clarify whether the nonreciprocal dichro-
ism that was measured is to be interpreted as the Jones
dichroism XMLD (S2) associated with the effective

operator [  – ] or as a true dichroism of the
type XMLD (S1) associated with symmetric off-diago-

nal terms [  + ]. We note that we refer
here to the crystal axes and not to the laboratory frame.
Clearly, future experiments of this type would call for a
detailed (systematic) analysis of the angular depen-
dence of the signal with respect to 2ψ, even though one
can anticipate that such experiments should be very
demanding in terms of beam time allocation. Moreover,
because no experiment has yet been performed with a
powdered sample, no indications are available as to
whether the septor terms make any significant contri-
bution.

We note that the nonreciprocal XMLD signal mea-
sured in (V1 – xCrx)2O3 and the nonreciprocal XMχD
signal of Cr2O3 are of approximately the same order of
magnitude, the nonreciprocal XMLD signal being per-
haps slightly less intense. We insist that several reasons
make it impossible to interpret the spectra reproduced
in Fig. 7 as classical magnetooptical (reciprocal)
XMLD spectra [48]: (i) a nonreciprocal dichroism
changes its sign when the magnetic field is reversed,
while this is not the case for the magnetooptical XMLD
spectra; (ii) in the experiment illustrated with Fig. 7, the
magnetic field was oriented along the direction of the
wavevector k, whereas the magnetic field is typically
set perpendicular to k in magneto-optical experiments;
(iii) the intensity of our nonreciprocal XMLD signal
exceeds (by one order of magnitude at least) the highest
intensity that one would expect for a reciprocal, Θ-even
XMLD signal. Everyone who has tried to measure a
reciprocal XMLD signal at a K-edge would agree with
us that this is always a very challenging experiment.

As pointed out in [15], a careful examination of the
spectra reproduced in Fig. 7 reveals that there is unam-

Wbb
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Wab
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biguously a weak dichroism contribution that does not
change its sign when the magnetic field is reversed. Our
interpretation is that this residual reciprocal signal can
result either from the (small) monoclinic distortion
and/or from the fact that the crystal was slightly miscut.

As in the case of Cr2O3, the dichroism intensity
seems to be most intense for the final states of mixed
parity 3d(eg) + O(p). Dovesi et al. [95] also performed
unrestricted Hartree–Fock calculations on V2O3, but
their calculations were unfortunately conducted with
the high-temperature corundum structure of V2O3 and
still with the previous magnetic group R3c. It would be
desirable to reproduce such calculations with the dis-
torted monoclinic structure I2/a that is widely accepted
for the low-temperature anti-ferromagnetic phase.

In a recent theoretical study of V2O3, Di Matteo
et al. [102] have identified two magnetoelectric sub-
groups of 2/m ⊗ Θ  that can be compatible with the
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Fig. 7. V K-edge nonreciprocal XMLD spectra of
(V1 − xCrx)2O3 recorded in the monoclinic antiferromag-
netic insulating phase below TN after magnetoelectric
annealing performed with either parallel (+) or antiparallel
(–) electric and magnetic fields in the geometry (c || k || E ||
H). The differential absorption spectra refer to the domains
grown under the condition of time-reversality after magne-
toelectric annealing. The upper trace reproduces a high-
energy resolution (deconvoluted) XANES spectrum.
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X-ray diffraction data in [103]: 2/m' and 2'/m. From the
tensor tables in [50], it immediately follows that the
generic magnetoelectric tensor of the group 2'/m has no
diagonal terms and cannot give any dichroism of the
type XMLD (S2). Moreover, because [acc] = 0, no mag-
netoelectric annealing is possible in our experimental
configuration. In contrast, [acc] ≠ 0 for the group 2/m',
which looks like the ideal choice for nonreciprocal
XOA experiments in our experimental configuration
because this magnetic group admits the anapole as an
irreducible representation along the c axis, while

and

;

it is also easy to verify that

and

.

As in the case of Cr2O3, there are several indications
suggesting that orbital magnetism should also exist in
V2O3. We would like to draw attention to the experi-
mental fact that the parallel magnetic susceptibility
does not drop to zero at low temperatures for V2O3 and
Cr2O3 [104, 105]. This was again interpreted as the sig-
nature of a temperature-independent Van Vleck orbital
magnetism. Very recently, Tanaka developed an inter-
esting model [106] according to which each vanadium
ion with S = 1 also has an orbital magnetic moment
approximately given by 0.7µB; it was even suggested in
[106] that these orbital moments can be slightly tilted
away from the plane of the antiferromagnetic spin lat-
tice, with the practical consequence that the 2/m ⊗ Θ
symmetry is broken, thus making the low-temperature
phase magnetoelectric. This would be consistent with
the observation of a nonreciprocal XMLD spectrum if
we additionally admit that there is locally some ordered
electric dipole. Precisely this was recently considered
in [27], where it was suggested that some cooperative
Jahn–Teller distortion occurring at the monoclinic
phase transition would also tilt the electric moments.
We note that the development of an antiferroelectric
order is compatible with the magnetoelectric group
2/m' and can possibly explain the highly destructive
character of the phase transition for single crystals of
any size. Indeed, as discussed in the previous subsec-
tion, there is still the risk that due to the core hole per-
turbation, the cross terms in Eq. (3) allow probing some
pseudoground state of artificially reduced symmetry
because mixes the true ground state with low crystal
field levels.
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Recently, Di Matteo and Jansen [107] reported that
they failed to measure any magnetoelectric suscepti-
bility using the same single crystal as the one used in
our nonreciprocal XMLD experiment, and they imme-
diately questioned our interpretation. They also
doubted the efficiency of the annealing process in our
experiment by alleging that the conductivity of the
(V1 − xCrx)2O3 crystal would exceed the conductivity
losses of Cr2O3 by 15 orders of magnitude. According
to our own tests, this figure is erroneously excessive.
At the Néel temperature TN, the conductivity of
(V1 − xCrx)2O3 crystal (approximately 3 × 103 Ω cm
[108]) was estimated to be five orders of magnitude
higher than the measured conductivity (0.3 GΩ cm) of
our Cr2O3 crystal. Under such conditions, the calcu-
lated dielectric relaxation time τR ≈ 0.36 ms (to be com-
pared with τR & 36 s for Cr2O3) still seems compatible
with the fast microscopic dynamics of the magnetoelec-
tric annealing process, as long as one accepts a low
leakage current (<10 µA)) at the polarizing electrodes
in order to evacuate the accumulated charges.1 It seems
to us that the static magnetic field method apparently
used in [107] to measure the magnetoelectric suscepti-
bility of this chromium-doped vanadium sesquioxide
crystal is totally inappropriate for systems that have
rather large conductivity losses as explained in classical
textbooks on magnetoelectric media [51]; this is pre-
cisely why pulse methods or methods exploiting mag-
netic fields modulated at a very high frequency were
developed by several groups in the late 1960s, in partic-
ular by Al’shin and Astrov, who used an alternating
magnetic field at a frequency of 4 MHz. Thus, due to
the conductivity losses of the crystal, the failure of the
experiments reported in [107] is not unexpected, but the
inadequacy of the experimental method does not allow
them to draw any conclusion regarding the questioned
magnetoelectric nature of this (V1 – xCrx)2O3 crystal in
the low-temperature monoclinic phase.

Anyhow, comparison of XOA experiments with
magnetoelectric susceptibility measurements is not
straightforward, as is illustrated by the following differ-
ences.

1. Nonreciprocal XOA probes only the orbital part
of some average, spineless, one-electron magnetoelec-
tric tensor. In contrast, macroscopic magnetoelectric
susceptibility measurements have been discussed up to
now essentially by considering, in the first place, how
the spins are supposed to be ordered in a given low-
temperature phase. Nothing is really known, however,
regarding the relative contributions of the spin and
orbital currents in such a magnetoelectric solid, and it
is not even clear whether magnetoelectric susceptibility
measurements would be sensitive enough to detect the
contribution of orbital currents. One can easily imagine

1 F. de Bergevin drew our attention to this important point. This led
us to check the reality of the low leakage current which we had
neglected in our reports.
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a situation where some terms of the magnetoelectric
tensor have a purely orbital origin or a vanishingly
small spin contribution: in this case, the standard mag-
netoelectric susceptibility measurement can possibly
fail and lead to erroneous conclusions. One may also
envisage the converse case of magnetoelectric solids,
where the orbital part of the magnetoelectric tensor is
partially quenched: there might exist geometries under
which no XOA can be detected, even though the stan-
dard magnetoelectric susceptibility measurements
allow one to expect a signal.

2. Nonreciprocal XOA yields local, element-selec-
tive information that cannot be obtained by conven-
tional magnetoelectric susceptibility measurements.
This could be turned to formidable advantage if several
absorption edges can be probed selectively. This advan-
tage has a counterpart, however: the perturbation
induced by the deep core hole might jeopardize the pos-
sibility of drawing firm conclusions regarding the mag-
netic symmetry of the true ground state as a conse-
quence of Eq. (3).

3. Macroscopic magnetoelectric susceptibility mea-
surements require the use of intense electric or mag-
netic fields. In contrast, nonreciprocal XOA experi-
ments per se do not require any electric or magnetic
field and are inherently insensible to the conductivity
losses of the sample. In the experiment discussed in this
section, a magnetoelectric annealing process was used
only to create remanent magnetoelectric states of oppo-
site time-reversality. Other types of annealing could
possibly produce the same result; for example, galva-
nomagnetic annealing or simply the magnetic anneal-
ing could suffice under proper symmetry conditions.
Figure 1 is a typical example where the action of the
magnetic field on a spin anapole induces a local electric
polarization and can induce the nucleation of an antifer-
roelectric order, without applying any electric field. The
existence of an orbital anapole could possibly play the
same role.

4.2. Effective Operators 
and Cross Densities of States 

4.2.1. Applications of the XOA sum rules. In this
subsection, we wish to report on our first attempts to
use Carra–Jerez–Marri equations (7)–(9) in order to
derive the expectation values of the relevant E1E2
effective operators. It is instructive to first compare
some practical details concerning the XOA sum rules
and the XMCD sum rules in the soft X-ray range [24,
110].

1. Renormalizing the XOA dichroism spectra
against the XANES spectra cannot exempt us from cal-

culating the two radial integrals  numerically. We
found that this can be most conveniently done with the
so-called FDMNES code [111], because we could eas-
ily check that these integrals are nearly constant over
the energy range selected for the integration.

Rl
1 2,( )
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
2. The XOA sum rules do not introduce any renor-
malization with respect to the number of holes in the
band that accepts the photoelectron, as this is typically
the case with the XMCD sum rules.

3. In establishing the sum rules, we implicitly con-
sidered transitions between atomic multiplets of pure
configurations, with lc , l, and l' being well-identified
quantum numbers. This may restrict Eqs. (7)–(9) to
E1E2 transitions towards partially filled, localized
bands of finite width,

There is some ambiguity regarding the definition of
Ecutoff , however. It is rather unclear whether one should
set the cutoff energy at the inflection point of the edge
spectrum or beyond the most intense signatures of the
dichroism spectra, i.e., slightly above the absorption
edge. In order to warrant the numerical stability of the
calculations, we were led to systematically set Ecutoff
above the edge, but this is rather questionable when
strong shape resonances of chiral-EXAFS signatures
contribute to the experimental spectra.

4. In our opinion, the most serious difficulty is still
of an experimental nature and concerns the extreme
sensitivity of the sum rules to baseline distortions that
may be caused by instabilities of the X-ray beam or by
radiation damage to the sample. These problems can
hardly be avoided over long data-acquisition times.
Error bars therefore strongly depend on the amplitude
of the measured dichroism.

In Table 7, we have regrouped the expectation val-
ues of the effective operators that were extracted from
our nonreciprocal XOA experiments using Eqs. (8) and
(9). Two calculations were carried out systematically.
In the first calculation, we assumed that the contribu-

tion of the septor  can be neglected; in the sec-
ond, we assumed that the whole dichroism is entirely
due to this septor term. As discussed in the previous
sections, the second assumption is highly improbable
regarding the measured XMχD spectra of Cr2O3; this is
why the corresponding result is only quoted in paren-
theses. For the nonreciprocal XMLD experiments, the
situation is more ambiguous due to the lack of informa-
tion regarding the exact orientation of the crystal.
Under the present conditions, the only option is to refer
to the laboratory frame, and therefore the relevant

effective operator is to be written as [  + ].
By analogy with the previous case, one may suppose
that the contribution of the septor terms must be negli-
gible.

It appears clearly from Table 7 that the expectation
value of the anapole moment is rather small for Cr2O3.
Since we missed any pertinent reference for compari-
son, we tried to convert the calculated orbital anapole

∆E Ecutoff EFermi.–=

Γ0 2±,
3 1–,( )

W XY
2 1–,( ) WYX

2 1–,( )
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Table 7.  Expectation values of the nonreciprocal XOA operators

Compound Cr K-edge Cr2O3 V K-edge V2O3 [H+] V K-edge V2O3 [H–]

Effective operator Ωz

atom. units 0.03 (–0.03) –0.84 (–0.48) +0.90 (+0.52)

R(1) rad. integral –8.21 × 10–5 –8.21 × 10–5 –9.47 × 10–5 –9.47 × 10–5 –9.47 × 10–5 –9.47 × 10–5

R(2) rad. integral –7.62 × 10–6 –7.62 × 10–6 –1.03 × 10–5 –1.03 × 10–5 –1.03 × 10–5 –1.03 × 10–5

Γ z
3( ) W XY

2( ) WYX
2( )+ ΓYYZ

3( ) Γ XXZ
3( )

– W XY
2( ) WYX

2( )+ ΓYYZ
3( ) Γ XXZ

3( )
–

moment into an average toroidal dipole moment per
unit cell using the relation

where N is here the number of Cr atoms per unit cell
and a0 is the Bohr radius. It then becomes immediately

obvious that  is several orders of magnitude
smaller than the spin toroidal dipole moment

that was reported recently for the magnetoelectric crys-
tal Ga2 – xFeO3 [109]. If this comparison makes sense, it
would leave virtually no hope for extracting the orbital
part of the magnetoelectric tensor [aαβ]orb from magne-
toelectric susceptibility measurements, because such
measurements are not sufficiently accurate at present.

Interestingly, the values quoted for [  +

] in the antiferromagnetic insulating phase of
the (V1 – xCrx)2O3 crystal are one order of magnitude
larger. As expected, the sign is reversed for magneto-
electric domains of opposite time-reversality. We recall
that in our nonreciprocal XMLD experiments, we

essentially measure a linear combination of [  –

] and [  + ], whereas in XMχD

experiments, one would measure [  – ].
Thus, the preliminary result quoted in Table 7 for

[  + ] ≈ ±0.8 a.u.

looks rather consistent with the model proposed in
[106], where a rather large ground state orbital moment
is predicted for V2O3, while this is certainly not true for
Cr2O3.

To illustrate the case of the XNCD sum rules, we
selected the cobalt K-edge XNCD spectra of the two
enantiomeric complexes

1(±) = 2[Co(en)3Cl3] · NCl · 6H2O

Mtd
orb N W0〈 〉

6
----------------- 0.02µBa0,= =

Mtd
orb

Mtd
spin 45µBa0=

W XY
2 1–,( )〈 〉

WYX
2 1–,( )〈 〉

Wbb
2 1–,( )

Waa
2 1–,( ) Wab

2 1–,( ) Wba
2 1–,( )

Wab
2 1–,( ) Wba

2 1–,( )

W XY
2 1–,( ) WYX

2 1–,( )
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(see [18]), which were introduced in Section 3.2.1. In
Table 8, we also included additional results taken from
our XNCD spectra database:

1. the titanium K-edge XNCD spectra of two non-
enantiomorphous crystals of potassium titanic phos-
phate, i.e., 3 = KTiOPO4 (space group Pna21, class
mm2)—these crystals were cut normal to the conju-

gated [120] and [1 0] directions;
2. the iodine L1-edge XNCD spectrum of lithium

iodate, i.e., 4 = LiIO3 (space group P63, class 6);
3. the tellurium L1-edge XNCD spectrum of paratel-

lurite, i.e., 5 = TeO2 (space group P41212, class 422).
As confirmed by Table 8, the pseudodeviators

of the enantiomers 1(+) and 1(–) have nearly the same
absolute value but opposite signs as anticipated from
symmetry. In fact, the complex 1(±) turned out to be the
most favorable example due to its very strong preedge
XNCD signal. For potassium titanic phosphate crystals,
one would expect 〈N(2, +1)〉  to exhibit inverted signs in
the case of XNCD spectra recorded with the wave vec-

tor parallel to the [120] and [1 0] directions. In prac-
tice, the situation is much less favorable because there
are two inequivalent Ti sites in the unit cell and we
found them to contribute to dichroisms of opposite
signs [112]. The XNCD signal measured at the Ti
K-edge is therefore very weak and the poor signal-to-
noise ratio makes it more difficult to exploit the sum
rule quantitatively. Nevertheless, the calculated values
of 〈N(2, +1)〉  have the expected opposite signs and their
low magnitudes are consistent with the average of the
effective operator over the two inequivalent Ti sites.

4.2.2. Cross densities of states. The requirement
that the final states are localized is a severe restriction,
especially in the so-called “chiral-EXAFS” regime,
which we have explored in the case of TeO2 [19]. One
may thus question whether Eq. (7) is suitable for ana-
lyzing the iodine L1-edge XNCD spectrum of α-LiIO3,
because in this particular example, the most intense sig-
natures are clearly located in the continuum [16], i.e.,
well beyond the intense 2s  5p white line. In the
continuum of states, we are convinced that it may be a

2

N 2 +1,( )〈 〉 L, W[ ] 2( )〈 〉=

2
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Fig. 8. Comparison of the experimental iodine L1-XNCD spectrum of LilO3 with the calculated p–d cross density of states and the
simulated XNCD spectrum.
better strategy in the context of XOA to transpose the
so-called “differential” formulation of the sum rule,
which is now commonly used to analyze the K-edge
X-ray magnetic circular dichroism (XMCD) spectra in
the so-called “Magnetic-EXAFS” regime [113–115].
Such a differential reformulation of Eq. (2) is given by

(17)

where N(2, +1) can be identified with [L, Ω](2) and γ(l, l ')
is a numerical factor. In this monoelectronic approach,
we can define cross densities of states (X-DOS)

∆σ E( )
E2

---------------- 4π2α
"c

------------ 2π
45
------

S3

S0
-----

Ed
d

Y2
β∗ Rl

1( )Rl'
2( )γ l l',( )

β
∑





≈

---× ψ f Nβ
2 +1,( ) l l',( ) ψ f





,
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〈N(2, +1)(E)〉  that are related to the retarded one-electron
Green function G+(E) by

(18)

It follows from this definition that these cross densities
of states refer to the effective operator of XNCD, i.e.,

According to Eq. (17), experimentally measured
XNCD spectra must be directly proportional to the
X-DOSs. This is confirmed by Fig. 8, where experi-
mental and simulated iodine L1-edge XNCD spectra of
α-LiIO3 are compared with the (p–d) X-DOS calcu-
lated with an LMTO code [116]. The agreement looks

N 2 +1,( ) E( )〈 〉 1
π
---–=

× Tr N 2 +1,( ) l l',( )ImG+ E( ){ } .

N 2( ) L, W[ ] 2( ).=
Table 8.  Expectation values of the XNCD operators

Compound
Absorption edge

Coen3[+]
Co K-edge

Coen3[–]
Co K-edge

KTiOPO4 [120]
Ti K-edge

KTiOPO4 [1 0]
Ti K-edge

LiIO3
I L1-edge

TeO2
Te L1-edge

Effective operator 〈[L, W]2〉 〈 [L, W]2〉 〈 [L, W]2〉 〈 [L, W]2〉 〈 [L, W]2〉 〈 [L, W]2〉

atom. units +0.424 –0.409 +0.016 –0.011 +0.50 +0.77

R(1) rad. integral –5.31 × 10–5 –5.31 × 10–5 –1.15 × 10–4 –1.15 × 10–4 2.33 × 10–5 2.53 × 10–5

R(2) rad. integral –3.96 × 10–6 –3.96 × 10–6 –1.27 × 10–5 –1.27 × 10–5 –2.16 × 10–6 –2.57 × 10–6

2
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very encouraging and clearly stimulates our attempt to
extend Eqs. (17), (18) to nonreciprocal optical activity.

We finally note that although the definition of cross
densities of states makes no reference to the ground
state properties (Ψg), this does not mean that the deep
core hole has no influence on their calculation.

5. CONCLUSIONS

In conclusion, X-ray optical activity appears as a
new, element-specific spectroscopy to study orbital
magnetism in parity nonconserving solids. As far as the
proposed E1E2 sum rules may give us access to the true
ground state expectation values of magnetoelectric
orbital operators, nonreciprocal XOA might reveal hid-
den space–time symmetry properties in magnetoelec-
tric crystals, because XOA probes only the weak orbital
part of a monoelectronic magnetoelectric tensor,
whereas it is extremely difficult to disentangle the
orbital part from the spin part in classical magnetoelec-
tric susceptibility measurements. For instance, XOA
can reveal a reduction of the magnetic symmetry when-
ever the partially unquenched angular momentum has a
quantization axis different from the one of the spins. We
note, however, that the E1E2 sum rules can yield the
expectation values of the pertinent parity-mixing oper-
ators only for a pseudo ground state. Due to the strong
perturbation caused by the deep core hole, we cannot
exclude the contribution of cross terms involving the
ground state and low-lying excited states, as is the case
with the temperature-independent Van Vleck paramag-
netism. In this context, we note that the contribution of
Van Vleck paramagnetism to XMCD has been
observed very recently at the same ESRF beam line in
a paramagnetic insulator (EuF3) and a paramagnetic
metal (Pd) [117].

In this paper, we have clarified which time-reversal-
odd effective operator should be responsible for the
magnetochiral dichroism XMχD (S0) and the nonrecip-
rocal linear dichroisms XMLD (S1, S2). The compari-
son of the nonreciprocal dichroism spectra recorded
with single crystals or powdered samples has been
shown to be particularly helpful in evaluating the rela-
tive importance of the higher-order septor 〈Γ (3, –1)〉
terms with respect to the contributions of the orbital
anapole 〈W(1, –1)〉  or the pseudodeviator 〈W(2, –1)〉 . In the
specific case of Cr2O3, there is very little doubt left that
the observed magnetochiral dichroism is related to the
orbital anapole operator. On the other hand, the orbital
toroidal moment (Mtd) derived from the sum rule was
found to be several orders of magnitude smaller than
the spin Mtd determined independently for a typical
magnetoelectric crystal from diffraction data; this
result seems to confirm that it would be very difficult to
access the orbital part of the magnetoelectric tensor
using conventional magnetoelectric susceptibility mea-
surements.
JOURNAL OF EXPERIMENTAL 
Potential applications of natural XOA in inorganic
or bioinorganic chemistry are still heavily impeded by
the prerequisite that one should first obtain large-size
single crystals of resolved enantiomers in order to be
able to record accurate XNCD spectra. We have shown
that this difficulty can be circumvented if, for instance,
the chiral species is soluble in a liquid crystal phase that
can be aligned in a magnetic field. We are still seeking
further alternative approaches. The time-even
pseudodeviator

could be used to study and quantify ligand-induced
asymmetry effects that are suspected to play an impor-
tant role in asymmetric synthesis. More work is under-
way in order to extend the calculation of cross density
of states and make systematic numerical simulations of
them possible.
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drawing their attention to the formulation of the orbital
anapole given in [2] and for many stimulating discus-
sions. They wish to thank C. Moise and D. Perly (Lab-
oratoire de Synthèse & Electrosynthèse Organométal-
liques, Université de Bourgogne, Dijon), who carried
out the synthesis and purification of the chiral com-
pound 2. One of us (Ch. B.) is grateful to S. Di Matteo
and C.R. Natoli for communicating a preprint before
publication. This work was supported in part by INTAS
(grant no. 01-822) and IPGP (grant no. 1921).

APPENDIX

The E1E2 absorption cross section was given in

Eq. (4) as a product of spherical tensors  describ-

ing the X-rays and  describing the sample. Here,
we give the relation between the sample spherical ten-

sors  and the sample Cartesian tensor

(A.1)

where Almn and  are real. With this relation, the
tables given in [49] can be used to determine the form
of the sample spherical tensors as a function of the
magnetic point group. From the definition of the sam-
ple Cartesian tensor, it is clear that Almn = Alnm . This
property must therefore be added when using the tables
in [49]. The sample Cartesian tensor is parity-odd. To
investigate its transformation under time-reversal sym-

N 2 +1,( )〈 〉 L, W[ ] 2( )〈 〉=

Tβ
b θ,( )

σβ
b θ,( )

σβ
b θ,( )

Almn iAlmn'+

=  4π2α"ωki ψg rl ψ f〈 〉 ψ f rmrn ψg〈 〉
f

∑
× δ E f Eg– "ω–( ),

Almn'
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metry, we replace |ψf〉  and |ψg〉  with |Θψf〉  and |Θψg〉  in
Eq. (A.1), which gives

Therefore, Almn is time-reversal odd and  is time-
reversal even. The relation between spherical and Car-
tesian tensors is given by the following formulas:

(A.2)

(A.3)

(A.4)

Finally,

Θ Almn iAlmn'+( ) Almn iAlmn'+( )∗ .–=

Almn'

σ 1±
1 1–,( ) 1

30
---------- 2Axxx 3iAxxy Axyy–±(±=

– Axzz iAyxx+− 3Ayxy 2iAyyy iAyzz+−±+

+ 3Azxz 3iAzyz ),±

σ0
1 1–,( ) 1

15
---------- 3Axxz 3Ayyz Azxx–+(–=

– Azyy 2Azzz );+

σ 2±
2 1–,( ) 1

6
-------+− Axxz iAxyz iAyxz±±(=

– Ayyz Azxx 2iAzxy Azyy ),++−–

σ 1±
2 1–,( ) 1

6
------- iAxxy± Axyy Axzz iAyxx+−+–(=

+ Ayxy iAyzz Azxz iAzyz ),+−–±

σ0
2 1–,( ) i Ayxz Axyz–( );=

σ 3±
3 1–,( ) 1

2 2
---------- Axxx 2iAxxy Axyy iAyxx±–±(+−=

– 2Ayxy iAyyy ),+−

σ 2±
3 1–,( ) 1

2 3
---------- 2Axxz 2iAxyz 2iAyxz±±(=

– 2Ayyz Azxx 2iAzxy Azyy ),–±+

σ 1±
3 1–,( ) 1

2 30
------------- 3Axxx 2iAxxy Axyy+±(±=

– 4Axzz iAyxx 2Ayxy 3iAyyy 4iAyzz+−±+±
– 8Azxz 8iZzyz+− ),

σ0
3 1–,( ) 1

10
---------- 2Axxz 2Ayyz Azxx Azyy 2Azzz–+ + +( ).–=

σ 2±
2 +1,( ) 1

6
------- iAxxz'+− Axyz' Ayxz'+ +(=

± iAyyz' iAzxx' 2Azxy' iAzyy'+−–± ),
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