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Abstract—Many aspects of high-energy atomic processes can be described in terms of singularities of a many-
body Hamiltonian using the generalized asymptotic Fourier transform (AFT) theory. The study of matrix ele-
ments in different kinematic regimes is related to the study of singularities (points of nondifferentiability) of
the wave functions and the e~y interaction. These singularities reflect the singul arities of the many-body Hamil-
tonian. Weillustrate the principles of the AFT approach in the simple example of photoabsorption by the elec-
tron bound in a potential with a Coulomb singularity. We exhibit two general results that are important for any
many-body system: (1) the quality of approximate results in different forms (“gages’) depends on the quality
of the description of the wave functionsin the vicinity of singularities, and (2) due to the character of the Cou-
lomb singularity, photoabsorption cross sections converge slowly to their asymptotic form as the energy
increases. However, the slowly converging behavior of these cross sections is due to one common factor (the
Stobbe factor), which can be obtained analytically in terms of the characterization of the vicinity of the singu-
larity. The common Stobbe factor explains why ratios of cross sections converge more rapidly than the cross
sections themselves. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

High-energy atomic processes can be described in
terms of singularities of the many-body Hamiltonian.
The asymptotic Fourier transform (AFT) theory [1, 2]
can provide such a description. In this paper, we apply
the AFT approach to photoabsorption (at high but non-
relativistic energies) in a simple atomic system, the
electron in apotential with a Coulomb singularity. This
servestoillustrate general pointsthat areimportantina
variety of more complex systems. In particular, we
illustrate (1) dependence of the required wave function
quality on the form of interaction (gauge) utilized and
(2) extraction of a common factor (the Stobbe factor)
that contains all slow convergence of the matrix ele-
ments to their high-energy limit.

The study of single-photon ionization processes
resulting in single[3, 4] or multiple[5, 6] ionization of
an atom is of fundamental and practical importance.
New experimental possibilities, modern synchrotron
sources, and experimental methods [7] result in better
understanding of the electron correlation effects in
complex systems and in processes involving these sys-
tems[8-12]. Recently, we proposed a unified descrip-

TThis article was submitted by the authors in English.

tion [1, 2] of the processes of high-energy! ionization
by photoabsorption, based on the mathematically well-
founded AFT theory. The idea is based on the close
relation between high-energy photoabsorption matrix
elements and the AFT of functions with singularities
(by a singularity, we mean a point where a function is
not differentiable).

According to the AFT theory, the asymptotic Fou-
rier transform of a function with singularities is deter-
mined by the behavior of the function in the vicinity of
these singularities [13, 14]. Because photoabsorption at
high photon energies requires at least one large outgo-
ing electron momentum p, we can generally argue that
the analysis is equivalent to the analysis of the asymp-
totic forms of Fourier transforms (FT). A slow asymp-
totic decrease for large p, such as 1/p" for example, of
the FT of a well-localized function, results only from
singularities of that function. By studying singularity
structures of the wave functions, which follow from the
Schrddinger equation, one is then able to address vari-
ous, quite general, issues of the matrix element (such as
theinteraction-form dependence of approximate matrix
elements and the nature of convergence with energy to

1 By high energy, we mean that the photon energy w > Eg (where
Eg isthe binding energy of the state that is ionized), but still w <
m (for a nonrel ativistic description of electrons).
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high-energy forms) without needing full knowledge of
the many-body wave functions. The AFT approach has
been applied to double ionization [1] of He-like sys-
tems and single ionization of more complex atoms[2].

In this paper, we describe this approach to photoab-
sorption (and perhaps other related) processes at high
but nonrel ativistic energies. We use the example of sin-
gle ionization within a central field independent parti-
cle approximation (IPA) model and assumethat the IPA
potential near the nucleus is point-Coulomb. We use
this simple and familiar model in order to illustrate the
main points of our general approach in the context of a
relatively ssimple and familiar situation where most fea-
tures can clearly be seen. We view the idea of the AFT
approach as very general, and by presenting itin arel-
atively simple situation, we would like to motivate its
application to other processes. The kinematic situations
that occur in high-energy photoabsorption can aso
occur in other processes, e.g., in charged-particle scat-
tering. In such situations, the AFT approach connects
the matrix element of the processto the singularities of
the system involved in the process.

Another important motivation in considering the
simple system is to illustrate and emphasize two often
neglected points, which are general for any photoab-
sorption process and for which purpose an IPA model
is sufficient. The first point is concerned with how the
guality of approximate results depends on both the
guality of approximate wave functions used and the
form of interaction chosen. For example, a plane-wave
description of fast electrons is generally inadequate, as
discussed in [15-18]. The second point isthat dueto the
Coulomb singularity, any high-energy photoabsorption
cross section (for ionization of a system with an inter-
action having a Coulomb singularity) possesses the
Stobbe factor, which must be extracted in order to
obtain a fast convergence of the results. This is very
important for high-energy studies of photoabsorption.
For example, because absolute measurements at higher
energies are less accurate than at lower energies, the
high-energy results are often obtained from lower
energy results assuming some asymptotic behavior. Itis
sometimes assumed [5, 19] that at some finite energy
(not taken sufficiently high), the cross sections for pho-
toabsorption follow the leading-order Born result. This
CaUSES errors in cross sections reported.

We consider the adequacy of various forms of
matrix elements (length (L), velocity (V), or accelera
tion (A) forms) in using approximate wave functions of
various qualities in the vicinity of a singularity. We
demonstrate that nonrelativistic IPA high-energy pho-
toabsorption is determined (up to corrections O(1/p?) =
O(Yw), where p is the outgoing electron momentum)
by the initial state normalization and the point-Cou-
lomb singularity. This result is form-independent, but
whether the information about the singularity comes
from the interaction (as in the A-form) or from the ini-
tial and fina state (asin the L- and V-forms), is form-
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dependent. In such away, we are able to identify neces-
sary conditionsfor al thethreeformsto givethe correct
high-energy result in the IPA case. We also explicitly
obtain the order of magnitude of the error resulting
from the error in the description of the wave functions
inthevicinity of the singularity. We consider thisat two
levels of accuracy (depending on the accuracy of the
description of the wave functions in the vicinity of the
singularity). We first consider the leading-order results
in 1/p that can be obtained by taking a simple descrip-
tion of the wave functions in the vicinity of the singu-
larity. To illustrate the source of the general Stobbe fac-
tor, we then use a description that completely includes
the strong e-N Coulomb interaction.

We begin in Section 2 with a general discussion of
the AFT of singular functions. We discuss the connec-
tion to the photoabsorption matrix element and differ-
ences (modifications of the asymptotic AFT) required
due to the presence of Coulomb functions. In Section 3,
we begin the discussion of the behavior of the photoef-
fect matrix element in an IPA potential. Here, we take
the simplest description of the wave functions, which
provides an illustration of the mainideas. In Section 4,
we consider the simplest case, photoabsorption by an
s-statein a purely Coulomb potential, neglecting retar-
dation in order to make a comparison with the well-
known results obtained in the Born expansion
approach. Weillustrate our AFT approach therein more
detail. In Sections 5—7, we removethe constraints of the
simplest case, identifying the resulting additional fea-
tures. We show how the approach works for non-s-
states (Section 5) and for a general |PA potential with
a point-Coulomb singularity (Section 6). We discuss
relativistic and retardation contributions in Section 7.
Finally, in Section 8, we show how more accurate
results (together with a measure of their error) can be
obtained by fully including into the wave functions the
interactions that are strong in the vicinity of the singu-
larity (e-N). We al so assess the importance of the con-
tributions arising from interactions that are weak in the
vicinity of the singularity (screening or, more gener-
aly, correlations). We discuss the convergence of the
results to asymptotic formswith increasing energy. We
explicitly obtain a common factor (the Stobbe factor)
arising from the e-N interaction that containsthe entire
slowly converging behavior. This explains why ratios
of cross sections converge to asymptotic forms much
more rapidly than the cross sections themselves. In
Section 9, we summarize our conclusions.

2. GENERAL CONSIDERATIONS

In generd, the final-state wave function in high-
energy photoionization of a many-electron atom is of
the form exp(ip - r)®, ,, where p denotes the large
momentum of one gjected electron (there must be at
least one) r, isits space coordinate, and A denotes quan-
tum numbers of other electrons in the final state.
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Because the outgoing electron wave function is
described by a plane wave and incoming spherica
waves at large distances (with appropriate long-range
Coulomb logarithmic factors), these oscillations limit
the range in r, that contributes to the matrix element
integral, which can be viewed as an FT in the electron
momentum p of slowly varying functions. (Because we
have assumed nonrelativistic energies, there are no
oscillations of any retardation factor in the interaction
in this range.) We discuss the remaining p-dependence
in the Coulomb wave function in this range below.
Because large w necessarily implies large p, the study
of the photoabsorption matrix element at large energies
is equivalent to the study of the asymptotic form of
the FT.

The study of the asymptotic form of the FT arising
in our problems is based on the theory of generalized
functions [13]. By definition [14], a good function f is
an infinitely differentiable function of n variables such
that

| of

R a o a
ox 'ox 2...ox "

for any | and mand any choice of theindicesa;, as, ...,
o, (Witho, + 0, + ... + 0, = m), where R= (¢ + X5 +

ot xﬁ )2, (In the terminology of [14], these are called

X functions.) The theorem [13, Theorem 2, p. 15] says
that the FT of a good function is a good function [13,
14]. Thisimplies that asymptotically, the Fourier trans-
form g(p,, ..., pPn) Of a good function decreases faster

than any power of p= (p2 + p5 + ... + p2)¥2. We call
thisthe AFT theorem. An example of such afunctionin
three dimensions is given f;(r) = exp(—?). For large p,
the FT Fy(p) O exp(—p?2) of this function decreases
exponentialy, i.e., faster than any power of 1/p, in
accordance with the AFT theorem.

The functions that appear in our photoionization
matrix elements, even for the photoionization of a par-
ticle in a potential, are well localized (because the
bound stateislocalized), but are singular [20], i.e., non-
differentiable, at coalescence points. The wave func-
tions, which are eigenstates of a many-body Hamilto-
nian with Coulomb interactions, have singularities at
the singularities of the Hamiltonian, which are located
at points where the particles coalesce. We use the term
coalescence points for the locations of these singulari-
ties. In general, there are double coalescence points
where two particles meet? or multiple coalescence

2 Finite nuclear size does not affect our conclusions in any way
because the distances probed at nonrel ativistic energies are much,
larger than the size of the nucleus. A finite nuclear size cannot be
relevant for photoabsorption (when the total cross section is con-
sidered, for example) even at ultrarelativistic energies, see Sec-
tion 7.
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points where more than two particles coincide. The
properties of wave functions in the near vicinity of
these singularities, which are well understood for
bound states [20, 21], can be extracted from the
Schrddinger equation. They are known as coalescence
properties, and for s-states, they are often called Kato
cusp conditions. We use the term Kato cusp conditions
more generaly, to denote exact behavior of the wave
functions at atwo-particle singularity. (There must also
be singularities in the e~y interaction operator, depend-
ing on the form taken.)

In the vicinity of a singularity, the functions whose
FT iscalculated can bewritten in terms of simpler func-
tions f, (with s standing for “simple’) whose FT is
known and a remainder O whose FT is asymptotically
negligible. We call thisthe partitioning (fs + O) of func-
tions. According to the theory of generalized functions,
the FT of a generalized function with singularities is
approximated by the FT of these simpler functions f,
whilethe size of the FT of theremainder O givesamea-
sure of the accuracy of the approximation. The point is
that by taking f, more accurately in the vicinity of the
singularity, we can in principle achieve arbitrary accu-
racy [14, Theorem 19, p. 52]. A simple example of such
asingular function is given as f,(r) = exp(—). The FT
of this function is F,(p) O (1 + p?~2, which indeed
decreases as a power of p. By partitioning f, in terms of
polynomials®in r and using

Iiqu’exp[—(sr +ip )] r"d’r

_ 4m(n+1)!0, even n=0, 2
(ip)""* oL, odd n>0

(where we assume that p # 0 and therefore do not
include &-function terms), we reproduce the expansion
of F,(p) in powers of 1/p. If we were to use some other
partitionings, we would not obtain powers in 1/p, but
rather some other function of p, depending on the
nature of f; used. The point is that the asymptotic FTs
of such simpler functions approach the exact FT for
large p and the FT of the remainder vanishes faster, in
accordance with the theory of the FT of generalized
functions.

Thisisanillustration of the general idea. The func-
tions that appear in our matrix element can be written
interms of simpler functions, which are required by the
Kato conditions to have the Coulomb behavior in the
vicinity of a two-particle singularity, as will be
explained below. In obtaining leading-order results, or
in simple cases that we consider for illustration, we use

3 Polynomial partitioning requires a convergence procedure; we
multiply each term in fg with exp(—€r) and let € — O after the
integration is performed. This is consistent with the definition of
the FT of generalized functions[14, p. 33].
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polynomialsinr (the interparticle distance) as our sim-
pler functions. These polynomials can be viewed as
expansions in r (which can exist in IPA potentials).
However, in more general situations (with more elec-
trons involved, e.g., as considered in [1]), we cannot
assume that singular functions are expandable in infi-
nite seriesin r in the vicinity of any singularity. In such
cases, we can still partition a singular function in the
vicinity of asingularity into asimple function (perhaps
a polynomial or the Coulomb function) and a remain-
der, which may not necessarily be expandable but
which vanishes faster than the simple function as r
approaches the singularity. In obtaining our full 1PA
results in Section 8, partitioning in terms of Coulomb
functions is required (because al orders in the e-N
interaction are required). Such a choice is sufficient for
our purposes; it gives accurate results neglecting the
order ma?/p? (we use the system of units# =c=1) and
allows us to collect all Coulomb slowly converging
termsin powers of Ta/p (when full Coulomb functions
are used), a = mZa, where Z is the nuclear charge and
m is the electron mass. If better accuracy is required,
one must go beyond functions with the Coulomb shape
in the vicinity of asingularity.

Expansion of wave functions around the origin
(which is the position of the e-N singularity) in terms
of polynomials has been used previously in both single
and double ionization by photoabsorption [16, 17, 22,
23] and in collisions [23]. Here, we illustrate generali-
zations of these approachesusing theAFT theory [1, 2].
We can partition (e.g., use Coulomb functions, which
are much better functions than polynomials near the
singular point) around singular points that need not be
at the originin general and consider all singularities on
the same footing. An important point of this approach
is that it clarifies which singularities must be consid-
ered for these partitionings (there are more than one
singularity in many-body wave functions and interac-
tionsin genera [1]). As shown in [1], the singularities
that must be considered are determined by the kinemat-
ics of outgoing electron momenta, identifying situa
tionsinwhich the number of the asymptotic FTsismin-
imized. Another important point of our approach isthat
we start from exact matrix elements (with exact wave
functions) and extract and collect all contributions in
the leading power of 1/p, which determines the high-
energy behavior (and the leading corrections in some
cases). With our approach, we identify the dominant
terms and avoid losing any of them; we also avoid
uncontrolled introduction of spurious contributions. It
isillustrated in [1] how both these problems have arisen
in the use of approximate wave functions.

Thereis, however, apoint of difference between our
asymptotic matrix element and the asymptotic FT.
Namely, after isolating the fast oscillating terms of the
plane wave, the function left in the integrand still
depends on the large momentum variable p (coming
from the final-state wave function) via the pr-depen-
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dence (as, for example, in confluent hypergeometric
functions in the Coulomb case). It might therefore be
more appropriate to talk about a generalization of the
FT. We seein what followsthat thisadditional p-depen-
dence is not a problem. The Coulomb modification of
the FT results, as we demonstrate in Section 8, is a
slowly converging factor, the Stobbe factor.

Accurate evaluation of the matrix element at high
energies requires knowledge of both the initia and
final-state electron wave functions at the singular point,
or a all singular points in genera if one goes beyond
the IPA. However, how much of thisknowledgeis actu-
aly needed in a given calculation depends on the form
of the matrix element used for that calculation. As we
demonstrate in considering the leading-order result,
only the normalization of the initial wave function at
the e-N coalescence is required if the A-form is used.
With other forms (V and L), we generally need further
information about both the initial and fina state. The
exception isfor the s-state ionization in the V-form, for
which we need only the normalization and slope of the
initial state at the coalescence. In any case, this knowl-
edge gives us the leading contribution of the high-
energy matrix element, which isgenerally accurateto a
relative order of O(tmZa/p).

3. SINGULARITIES
OF THE IPA MATRIX ELEMENT INTEGRAND

For a single electron in a potential, in the lowest
order of the electron—photon interaction, the matrix ele-
ment for photoionization by photoabsorption is given
by (inunitsf =c=1)

M = wa;)*(r)l(r)wi(r)d3r, A3)

where W.(r) = R,(r) Y|'(f) istheinitial bound state nor-
malized to unit integrated probability density (the hat
denotes the unit vector), W,(r) = exp(ip - r)CDf;)(r) is
the final electron continuum state normalized on the
momentum scale (to asymptotically approach a dis-
torted plane wave of the momentum p with an ampli-
tude of (2rm)—?), and I(r) is the interaction operator,
given in the three commonly used forms (retaining
retardation to all orders) as

I, = -ie*"e D, (%)

I, = img»—%e " —e*"(e)(k D), (5)
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k2 -1
5= 3

(6)
x [i &7 (e T)V(r) —%eim(k T (e m)}.

Here, € is the photon polarization and V(r) is the IPA
potential energy of the type V(r) = —«(Za/r)S(r), where
S(r) is a screening function, which we assume® can
be described as a polynomial inr for small S(r) = (1 +
sir +s,r? + ...); the potential therefore has only a Cou-
lomb divergence and is differentiable except at r = 0
The singularity of the potential energy resultsin singu-
larities in the wave functions W, and W;. These func-
tions are not differentiable at the origin. The e~y inter-
action operator in the L- and V-formsisregular in this
sense, while in the A-form it is singular because it
involves the singular potentia V(r), Egs. (4)—<6). The
large-p behavior of the Fourier transform of a slowly
varying function of r is determined by its behavior near
the coalescence point (because pr ~ 1, large p corre-
sponds to small r) and only depends on the singular
parts of the function. We thus partition the functions

Yi(r) and (D,(;)(r) around the coalescence point r =0
(the only singular point here). The small-r behavior of
these slowly varying portions of the integrand deter-
minesthe AFT.

The partitioning f, + O in terms of polynomials of

theinitial (bound) state with quantum numbers (n, I, m)
inan IPA potential with the Coulomb singularity is

Wi(r) = N
@)

x [1—%r W Wa O(r4)}Y|m(f).

In the simple function f (in which the terms are alter-
nately regular and singular, with the regular first term,

r'Y['(f)), the first two terms are determined solely by

the Coulomb singularity of the potential and are there-
fore known independently of the screening, except for

the overall normalization factor N!™* (which depends

on the choice of the IPA potential). Higher-order terms
in fg in Eq. (7) depend on the screening of the IPA
potential, which determines the A; coefficients. The fact
that the first two termsin the parenthesisin Eq. (7) are
determined by the Coulomb singularity is well known;
itisaspecia case of the general behavior of wavefunc-
tions at coal escence points of many-electron atoms[ 20,

4Here, we assume a potential that can be expanded in integral
powers of r in the vicinity of a singularity. Using a potential that
is expandable in nonintegral powers of r (e.g., the Thomas—Fermi
potential Vg = —Zalr + Cg + O(/r ), where Cyg is a constant)
would lead to nonintegral powers of 1/p.
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21]. Namely, in the description of a bound-state many-
electron atom wave function around any coalescence
(which includes any electron-electron coalescence) in
terms of the relative coordinate of the two coalescing
particles, the first two terms are determined by the sin-
gularity of the corresponding part of the Coulomb
potential, up to an overall factor, and there is aremain-
der that vanishes more rapidly than linearly in the coor-
dinate. These two terms and the normalization constant
areall that we need from the initial-state wave function
(we also need information from the final state) in order
to determine the leading contribution in 1/p to high-
energy photoabsorption in any form.

In the final-state electron wave function, the situa-
tion isvery similar, except that the normalization is not
affected by screening in the limit of high momenta.
According to [24-27], the wave function of a high-
energy continuum electron state of momentum p in the
vicinity of the Coulomb singularity of the |PA potential
is essentially of a Coulomb form. As shown in [27]
using the analytic perturbation theory, the corrections
to the Coulomb wave function due to screening in the
vicinity of the nucleus (r < 1l/a, where a = mZa char-
acterizes the unscreened nuclear charge) decrease with
the electron momentum as O(1/p?) relative to the Cou-
lomb functions. This means that in the vicinity of the
Coulomb singularity (r < 1/a), the wave function rep-
resenting the outgoing electron of momentum p > a
can be written, following [25, 27], as

lI—"(J—)(r) = Ngeipﬂ [lFlB—i %, 1,—ipr(1+ cosﬁ)%
" ®

b

wherecosd = f - [, thefirst termin theright-hand side
is the Coulomb term while the second term is the
remainder, which vanishes faster than 1/p (denoted by
1p? in O). The functional dependence of O is aso
shown; the remainder contains al information on
screening, symbolized by the coefficients 5 character-
izing the small-distance behavior of the screened poten-
tial. According to the analytic perturbation theory [25,
27], an even more accurate continuum wave function of
the Coulomb shape is obtained in theregionr < 1/a by
shifting the electron momentum in Eq. (8) from pto pc,
by an amount determined by the parameters of the
screened potential, and by replacing the normalization

Nj (if the momentum scale normalization is used) by

pr, cosd, SE}

P! pN(p:C. However, although such a Coulomb func-

tion is more accurate, its error still decreases as 1/p?
with large momentum p. We therefore do not need it
here, but we useit in Section 8.
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The result in Eqg. (8) is important for our approach
because as we show below, it implies that the termsin
the partitioning of thefinal state around the coalescence
that contribute to the high-energy matrix element are
not affected by screening. We show this to the leading
order in /p, further simplifying fs in the partitioning of
Eqg. (8). Because distances involved in the process are
r ~ 1/p and because we consider high energies for
which p > mZa, while the wave functions are consid-
ered at fixed pr, the terms important for our discussion
here involve terms up to linear in the parameter mZa/p,
with further terms contributing to higher ordersin 1/p.
We write

wi(r) = Nge‘pﬂ[l—i%g(‘)(i(pr +p 1))
9
+0 L. pr, cosﬁ,s%},

o

where O includes all contributions of the order a%/p?
and higher order contributions from the full Coulomb
function in Eq. (8) and

() — _!-_ —i&t U;].Dgl:
g (i§) = _2Trife Uls ik
T

1 (10)
_ —igt dt
= I(e -7

0

determines al contributions on the order of a/p to the
full Coulomb wave function for pr ~ 1. Here, I isa
counterclockwise-oriented closed contour encircling
the cut [0, 1]. By inserting Egs. (9) and (7) in Eqg. (3),
we obtain a series of integrals of functions that contain
powers of r, the g© function, and angular functions.
The function g(i€) is needed in calculating the lead-
ing contribution to the high-energy matrix element in
general. It containsthe p-dependence through pr, which
may appear undesirable at first sight if we want to view
this high-energy matrix element as an FT. It follows
from explicit calculations, however, that there is no
additional p-dependence in an FT integral also involv-
ing g© function despite the p-dependence of the gt
function.

The factor exp(—r) isintroduced in order to achieve
aconvergent integration of each termin the series; after
the integration is performed, the limit € — O istaken.
Asnoted in Section 2, this procedure is consistent with
the definition of the FT of generalized functions [13].
For the AFT theorem (and, we a so assume, for the AFT
involving the g© function), we must understand the sin-
gularities of theintegrand. The singularity properties of
thewavefunctionsareimmediately identifiablein these
series, which involve powers of r and angular functions

such aspowersof p - =cosd and spherical harmon-
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ics. For example, r and cosd are singular at the origin
(as functions of x, y, and 2), but their product is not
(rcosd = 2), nor are their sguares (we also note that

r'Y\" isregular).

We see in what follows that the leading contribution
to the high-energy matrix element can be obtained in
any form using only the first two terms in fg of the
respective partitioning of the initial and fina state in
Egs. (7) and (9), while neglecting some of these first
two terms may lead to erroneous results in some forms.
Higher order terms in the expansion give higher order
contributionsin 1/p, asis explained below and is dem-
onstrated using simple examplesin Sections4 and 5. To
the leading order in 1/p, the form-independent high-
energy matrix element for photoabsorption in an 1PA
model is obtained from

M = N:PANE*IimJexp(—ip [t —er)
€= (11)
o

x [1 + ii;g(‘)*(i(pr +p D))}I(r)r'[l—mr}YTd3r,

where I(r) can take formslike Egs. (4)—6), which aso
contain different powers of r and angular functions.

Expression (11) is a form-independent term that
gives the leading order in 1/p for large p. We see from
Eq. (11) that the only difference from the purely Cou-
lomb case is in the initia-state normalization, which
depends on the IPA potential. All other terms are deter-
mined by the Coulomb singularity. Therefore, inan IPA
model with a Coulomb singularity, information about
screening persists at high energies only in the initial-
state normalization. Thisbehavior for high-energy pho-
toabsorption in an |PA potential isknown [26], but it is
just one aspect of the persistence of the electron—€lec-
tron interaction in high-energy photoabsorption, dis-
cussed within the AFT approach for two-el ectron atoms
in[2].

In a matrix-element form, in which the interaction
operator is regular (such as the V- and L-form, to be

denoted by Iy and 17) rather than singular (as in the

A-form, 13), the contribution from the term in the inte-
grand involving thefirst terms of the simple functionsf,
of both the partitionings of W, and of ®© vanishes for
any | (while in the A-form, thisterm makes the leading
nonvanishing contribution). The leading nonvanishing
contributionsin suchforms(L or V) involvethe product
of the first term from ®© (which is regular, to be
denoted as R;) with the second term in W, (singular, S)
and the product of the second term from ®© (singular,
S) with thefirst termin W, (regular, R). These two con-
tributions are of the same order in 1/p. In summary, in
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the leading order in 1/p, we obtain the nonvanishing
contribution from

It

M = J'exp(—ip[f—sr)[Rf+Sf] I\Ff [R+ 9]
Ix

(12)

RIS +SiI R

HJ'eXp(—ipD’—SI’) Rf|53+sf|5Ri .

S
R¢laR

We explicitly evaluate Eq. (11) for an H-like poten-
tial in the next two sections, and we discuss our |ead-
ing-order results further, comparing them with the
Born-approximation resultsin different forms. The two
approaches must of course agree. We note that the
results in Egs. (11) and (12) reflect the importance of
the singularity region. This means that if one wants to
improve results, one needs to partition functions in
terms of functions that better describe the behavior in
the vicinity of the singularity. (Thisis only one of the
points of distinction from a perturbative approach, e.g.,
the Born expansion. The Born expansion gives the
same weight to al regions, while the AFT approach
tells usthat the singularity region isimportant for high-
energy photoabsorption.) Partitioning of the wave func-
tionsin terms of functionsthat are more accuratein the
vicinity of the singularity provides more accurate
results. The results in Section 8, for example, are
obtained using partitioning in terms of Coulomb func-
tions (which include the e-N interaction to all orders).

The integrals involved in evaluating Eg. (11) are
elementary and are of two types. The integrals that
involve the first term in the square brackets from the
final state and powers of r and products of spherical
harmonics from the e-y interaction and the initial
state® are given by

J, = IimJexp(—ip 0 —er)r"Y)()dr

_2m(n+ 2w (13)
(ip)n+3 YL(p) n+3»
where
" P, (x)dx ”

f = :[(x—is)k

5 These products of spherical harmonics can be combined into
one Y[" .
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and P, (X) isthe Legendre polynomial. The integrals of
the second type, involving gO(i(pr + p - r)) from the
final state and powers of r and products of spherical
harmonics from the e~y interaction and the initial state,
are given by

J, = IimJexp(—ip or —sr)g(_)*(i(pr +p 1))

(15)
AV AL URI RV
. n+3
(ip)
where
1 +1 n—j . \N+2—j
m=jwmm§ Gl (x-le) ~ -1
J 0% (n+2-j)(x—ig)
(16)

+in+|n(x—is)D
(X—iS)n+3 0

In performing theradial integrationin Eqg. (15), we used
the integral form (the second form in Eq. (10)) of
g(i(pr + p - r)). The integrations over x in Egs. (14)
and (16) are elementary, and we evaluate them for spe-
cificL in Sections 4 and 5.

Expressions (13) and (15) show how higher powers
inr lead to higher powersin 1/p. We note that while J,
gives a nonzero result for any n and L (because g con-
tains both regular and irregular terms), J, is zero for n

and L for which r”Y[’I isregular, in accordance with the

AFT theorem. Therefore, depending on the form used,
at least one of the two first terms in the f, functions of
electron states makes a contribution to the leading order
of the matrix element, while all further terms beyond
thefirst two give higher order contributions.

4. THE SIMPLEST CASE:
GROUND STATE IONIZATION
OF AN H-LIKE ATOM

We now discuss how the leading contribution to the
matrix element isobtained in threeformsin Egs. (4)—6),
inthe simple and familiar case of photoionization of the
ground state of an H-like atom with retardation
neglected.

When we neglect retardation and use the nuclear
Coulomb potential, the A-, V-, and L-forms of the
matrix element are obtained using

17)
I, = imwe [t
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for the interaction operators, where w is the photon
energy and € is the photon polarization. The V- and
L-forms of the interaction operator are regular, but the
A-form is not, because it was obtained by taking the
gradient of the potential. We note that the A-form is
irregular at the origin both because it is divergent and
because its value near the origin depends on the direc-
tion of approach.

Aswe have seen, the large-p asymptotic behavior of
the FT of a dowly varying function of r is determined
by its behavior near the coalescence point; it only
depends on the singular parts of the function in the
small-r limit. We therefore begin by partitioning the

functions W,(r) and (DE,_)(r) around the coalescence
point r = 0 (the only singular point here). We write

Wi(r) = Nj(1—ar +...),

18
@) = NgH -i2g i(pr+p ) +.. 5 >

If we proceed as described in the previous section,
we obtain the familiar high-energy expression, whichis
usually obtained in the V-form by assuming that the
energetic outgoing electron can be regarded free and
can be represented by a plane wave [28-30]. However,
in our procedure, we must be more careful and must not
make such an assumption, which isincorrect in general
(e.g., for non-s-states or even for s-states in the
L-form).

Substituting Egs. (18) and (17) in the matrix ele-
ment in Eq. (3), we obtain aseries of integralsinvolving
powers of r and powers of cosd. (We choose the p
direction asthe zaxisin thisintegration, and only func-
tions of cosd therefore appear). Applyinge - @ ;=€ -
f (—-a+a% + ...), we obtain integrals of the two types
in Egs. (14) and (16). The integral involving the first
term from f of the partitioning of db(p_) and terms from
the partitioning of W, is[1]

J'exp[—(s +ip )] r"e Fd’r
_2n(n+2)eP
e
2/(n+1), even n=-2,

n = [0, odd n>-1,

e

We note that the zero result for odd n > -1 follows
from the AFT theorem because the integrand function
isnot singular; for even nand for n=-1, theintegrand
function is singular. Integrals involving the term

g(pr, cos®) in the partitioning of ®” are easily per-

ns

(19)
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formed using the integral representation in Eq. (10).
We obtain [1]

[expl~(e+ip 1] g7 (i(pr +p F))r"e (P d’r

_ 2me[p
(ip)"** "

(20)

where
D, =2(n+2)!(1-im)/(n+1)
for evenn>0and
(n—1)/2

_ 2k +2
Dy = n—2k

k=0

foroddn>0,D_=im—-2,and D_; =—1?/2—imt—2. In
both Egs. (19) and (20), the p-dependence of the results
is seen by inspection, resulting from the nature of the
scaling in pr. Equation (19) showsthat higher powersin
r lead to higher powersin 1/p, but nonvanishing contri-
butions come only from singular terms. We use this
behavior in identifying the leading contributionsin 1/p
in our calculations. In the partitioning of the final-state
wavefunctionin Eq. (18), thefirst termisof coursereg-
ular, while the second term (g©) is singular. The same
is true for the initial state, not only for this s-state, but
for any state with angular momentum | for which the
first terms of f in the partitioning around r =0 are

W, Or'Y(L—ar/(l +1) +...).

Wefurther notethat in the case of an s-state, the con-
tributions from the first term of W (which isthen acon-
stant) vanish in the V-form because of the derivative in
theinteraction operator € - [J. For non-s-stetes, thereare
nonvanishing contributions from this first term (when
multiplied with g from ®©)), which must be taken into
account in order to obtain the correct high-energy
matrix element, which would be missing if acontinuum
plane-wave had been assumed (neglecting the terms
ing).

Therefore, in the V-form for the s-state case, the
leading contribution involves only the first term in ®
and the second term in the partitioning of the initial
state W, justifying the usual calculation involving the
plane wave approximation for the fina state. Using
Eq. (19), we obtain the familiar result for s-state ioniza-
tion neglecting retardation (dipole approximation),

M = AL, = 2P, 1)
p

3

p
where A = 4TaN; N .
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We now show that we obtain the same result using
the same procedure in the L-form. Here, the singularity
of the final state also contributes, however, and an
incorrect result is obtained if a plane wave is assumed
to provide an adequate description of the energetic el ec-
tron. In terms of our approach, such an assumption
would imply taking the term in the integrand involving
the first term from the partitioning of ® and the second
term from the partitioning of Y. This contribution is

€E£’(:2 = 4A€Eb
p’

(we have put w = p%2m), which is twice the correct
result in Eg. (21). However, as we have aready
explained, we must include all terms contributing to the
same power in 1/p. We must therefore include the term
in the integrand that involves the second term g© from
@~ and the first term from W,. This gives the contribu-
tion

_%e_lzsb Dl = _ZAE_E:P

p p

The sum of the two terms gives the correct high-energy
limit, Eq. (21), showing that the L-form and the V-form
indeed agree.

Finally, we can calcul ate the photoeffect matrix ele-
ment in the A-form using the same procedures. As we
have already remarked, the electron—photon interaction
operator 1,, Eqg. (17), is singular at the origin in this
form, with a singularity arising from the singularity of
the potential. The leading contribution to the matrix
element in Eg. (3) in the A-form comes from the first
terms in the partitioning of ®© and W, only (atermin
the integrand that did not contribute in the L- and
V-form due to its regularity, not only for the s-state
case, but for any I). All other terms contribute with
higher powersan 1/p. For the s-state, theresult in the A-
form is easily evaluated with the help of Eq. (19) for
n = -2, again giving the same result, i.e., Eq. (21). (We
note that in the A-form, the next-to-leading term in 1/p
can also be obtained without referring to screening; it
involves g© or ar. We use this fact in Section 8 in dis-
cussing convergence toward the high-energy limit.)

5. BEYOND s-STATES

We now discuss non-s-states, staying within our
simple H-like model without retardation and building
on the genera features already encountered in the
s-state case. We again utilize the AFT theorem, identi-
fying the singular part of the integrand function and
evaluating the dominant contributions via the partition-
ing of the bound state in Eqg. (7) and the partitioning of
the final state in Eq. (9) around the electron—nucleus
coalescence. The required integrals are given in
Egs. (13) and (14). Now, however, a plane wave does
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not adequately describe the fast outgoing e ectron,
except in the A-form, in which the electron—photon
interaction provides the needed singular behavior for
the integrand function.

The leading contribution in 1/p to the high-energy
photoabsorption matrix element M in Eq. (3), which in
the A-form is obtained by taking the leading, regular
terms in the partitioning of the initial and final electron
states, is

VLT —2imZaN?l! 4t

. YER)YT(F)
xS Y (e)[dQ————1——.
% ' ()I (cosd —ig) "t

The remaining angular integration involves only ele-
mentary integrals (13). For | = 1, the case that we dis-
cussbelow in other formsfor illustration, Eq. (22) gives

(22)

M(l),m _ (_1)1 m8T[|a.

1(e). (23)

(For simplicity, expression (22) is obtained with the z
axestaken in the direction of p . Rotation to fixed coor-
dinates must be made in integrating over electron
angles.) We note that the part M, of the matrix element
M is obtained in the A-form using plane waves. In other
forms, the calculation of M, requires higher order (sin-
gular) termsfrom both theinitial and final statesin gen-
eral. We therefore do not call M, the first (plane-wave)
Born approximation result, because it is the first Born
approximation only in the A-form and is a higher order
Born result in other formsin general.

While aplane wave is sufficient for aninitial s-state
in the V-form, thisis not true for | > 0, as we demon-
strate. With the V-form, it is convenient to express € -
W as

e MRMY'()] = f;” RAC)

v=-1

XD oTT 3E1]. v; ,m|l +1, m+vDY|+1(r)QE RI
24
I (24)

T DLva|I

1, m+ VY (F)

md 1+, O
xuﬁ+ rDR'%

where 1, v; |, m|L, MOare the Clebsch—Gordan coeffi-
cients. For | > 0O, the term with the lowest power inr in
the partitioning of the function in Eq. (24) around the
coalescence (r = 0) isregular and it comes from the sec-
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ond term of Eq. (24). Therefore, for the L-form, the
term g© from the final-state function @~ also contrib-
utes to the lowest order. The exception, for the V-form,
isthe s-state, aswe saw in the previous section, because
the second term in Eq. (24) it is zero and the lowest
power inr issingular for | = 0.

For illustration, we consider the initial | = 1 case.
Inserting theexpressionin Eq. (24) for | =1, using alin-
ear polynomial in the partitioning around the coaes-
cence R, = Nir[1 — (&/2)r + O(r?)], including contribu-
tions from the g© term, and performing the integration
by choosing the direction of p as the z axis, we obtain
the matrix element in the V-form as

My = iaNiNEYT(e)J'exp(—ip [t —er)

x [;_ml)[BPz(cosS)r + gr
| () 3 (29
—F—)g (ipr(1+ cosﬁ))}d r

- (—1)1‘m8—gLaNi NEY](e),

which coincides with the result obtained in the A-form,
Eqg. (22). Assuming that a plane wave is an adequate
representation of the fast electron wave function and
therefore neglecting the contribution from the final
state singularity, one would obtain a nonzero result (in
the chosen frame, where p is directed along the z axes)
only for the angular momentum projection m = 0, and
even that result would be erroneous by the factor 2. The
contribution to the matrix element in Eg. (25) coming

from the g function part is—8riaN, N(,;‘le“ (e)/p*.

In both the V- and L-forms, the interaction of the
outgoing electron with the potential (the final-state
interaction) contributes for any | > 0. In contrast, in the
A-form, the transition operator is singular and only the
leading terms (the lowest powersinr) in both the initial
and final states are needed for any | to obtain the correct
leading contribution.

6. SCREENED POTENTIALS

We now demonstrate that the previous results are
sufficient to determine the asymptotic behavior of non-
retarded photoabsorption in a general central potential
to the leading order in 1/p. The entire previous discus-
sion, athough given for a nuclear point-Coulomb
potential model, isin fact valid for ageneral 1PA poten-
tial that has a singularity of the Coulomb potential at
the nucleus. Our discussion relied on the behavior of
wave functions and interactions at this singularity. For
the leading terms in the partitionings that we utilized,
these behaviors are the same for an IPA potentia as
long as it is Coulomb at the singularity. To see the
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effects of the difference between an IPA potential (with
the Coulomb singularity) and a pure Coulomb poten-
tial, we consider a potential energy of the type V(r) =
—(Za/r)4r), where Sr) is a screening function that
behaves as S(r) = (1 + s;r + s,r2 + ...) for smal r, as
assumed in Section 3.

The interaction operators in the L- and V-forms are
independent of the potential. In the A-form, we obtain

lIPA
A

= —(lo[V(r),e M) = (loe [OV().  (20)

The partitioning of 1" around the coalescence gives

|IPA _ iZoe [Tl
A w qz

We note that theterm involving s, in Eq. (27), whichis
regular, contributes three more powers relative to the
first term. In contrast, the first term from wave func-
tions involving screening contribute two more powers
in 1/p.

We thus conclude that in the leading order, the same
expression for photoionization at high energies is
obtained in the IPA potential and in the Coulomb case
(in Section 8, we show that thisisin fact truein thefirst

two orders). The normalization factors N; " are differ-
ent, however, and IPA predictions therefore differ from

the purely Coulomb-case prediction by these factors.

—S,— 25,1 + E (27)

7. RETARDATION AND RELATIVITY

We now discuss the inclusion of retardation. This
changes the forms of the interaction operators. In the
V-form, the changeissimple: theretarded interactionis
Iy, = —exp(ik - r)e - O, where k is the photon momen-
tum. In the L- and A-forms, obtained by applying com-
mutator relations to the V-form, the momentum k also
appearsin factorsmultiplying exp(ik - r), ascan be seen
from Egs. (4)—(6). In evaluating the integrals, we need
to specify how to deal with the photon retardation oscil-
lating term exp(ik - r) in the e~y interaction I(r). One
way, particularly if retardation to a certain order ink is
considered, is to expand exp(ik - r) in powersof k - r.
Another way of dealing with exp(ik - r) isto attach it to
thefast oscillating term exp(—ip - r) and consider the FT
inthe A = p —k, because p —k islarge in the nonrela-
tivistic region whenever p is large, and our arguments
using the AFT theorem in the asymptotic region apply.
We note here that in the IPA single ionization from the
ground state, retardation effects make a contribution on
the relative order of (v/c)? [31, 32], where v is the
velocity of the outgoing electron, which is on the same
order astherelativistic contribution. Thisfactisusedin
the case of atwo-€electron atom [1] to argue that retar-
dation effects make the same relative contribution in
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singleionization and in double ionization in the region,
where the shake-off mechanism is dominant, due to
factorization of the matrix element into a (retardation-
independent) correlation term and (generaly, retarda
tion-dependent) absorption term.

We however note that at relativistic energies, when
p ~ Kk, neither expansion in k nor the assumption that A
islarge (in comparisonto m) isgenerally valid. Itisstill
true in certain kinematic situations, but these are not
dominant for the photoabsorption processes at those
energies. Namely, at relativistic energies (and asw —
), aregion around the nucleus of the Compton wave-
length distances continues to contribute to photoab-
sorption, for arbitrarily high energies. Thisimpliesthat
although it is a relatively small region, the final state
wave function in the whole region, not just at the point
of coalescence, is needed, and certain knowledge to all
orders in a is required [22]. Under the analyticity
assumption, theregionis characterized by an expansion
around the origin, and expansion of the matrix element
as a series in a/A is dill possible. The plane-wave
approximation isno longer valid in any form, but parti-
tioning in terms of Coulomb functionsisfully justified.

8. CONVERGENCE OF THE CROSS SECTIONS
TO THE HIGH-ENERGY LIMIT:
THE STOBBE FACTOR

Here, we discuss the rate of convergence toward the
exact IPA high-energy limit for the cross sections that
we have obtained using the asymptotic behavior of
matrix element (11). The ratio of the first correction to
the leading contribution is on the order of 1/p, and it
gives a very slow convergence of the matrix elements
and cross sections. In fact, it converges as Ta/p ~

1. /Ex/w, where Ei is the K-shell binding energy. We

note that aslowly converging factor (i.e., converging as
TR/p relative to the asymptotic constant value) existsin
the final-state normalization, which is

C
Np

3,Zr%*uu""ﬂ"a’2p (28)

(2m)

However, there are aso other Coulomb terms with this
slow convergence (e.g., the first correction, which is
unaffected by screening). In fact, if partitioning of the
initial state was performed in terms of polynomials, a
similar slowly converging term would come from each
term of the polynomial. Because of this, and aso
because of the possihility of large Z, weincludethe e-N
interaction completely in both the initia and final
states, by partitioning the wave functionsin the vicinity
of the singularity in terms of Coulomb functions. For-
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mally, this means that we write the initial-state wave
function as

WPy = M) +orag -
i NC i 2 2 ’

(29)

where A, ()\g) is the coefficient multiplying the third
terminapolynomial partitioning of the IPA (Coulomb)

wave function (7), LIJiC(r) is a normalized Coulomb
wave function with the same quantum numbers as
WPAr), and O[(AS — A)r'*2] represents the differ-
ence between the Coulomb and screened third term in
polynomial partitioning of the wave functions and all

higher order differences. The terms represented by O
are small, as we discuss below.

For the fina state, we take the Coulomb part of
Eqg. (8), but with a shifted energy and with the corrected
normalization [25, 27]. According to [25, 27], as
already mentioned, the exact | PA wave functionis Cou-
lomb in the vicinity of the e-N singularity. A suffi-
ciently accurate function (containing the dominant
terms on the relative order of 1/p®) is obtained if the
shifted momentum p. is used instead of the true
momentum p. The momentum p characterizesthe elec-
tron at large distances from the nucleus. If we want to
describe the screened wave function in the vicinity of
the nucleus by a Coulomb function, we must use,
according to [25, 27], the shifted momentum pc. In
addition, if the function is normalized on the momen-
tum scale, the normalization is affected and is given by

'PA A/pC/pN . Thefinal stateistherefore given by

_ 1
L%W):J_w”m+oig, (30)
where the shifted momentum pc is[25]
p2 C 1PA
%—En-l Eq -[ES . (31)

IPA

with EB (Eg ) denoting the hydrogen-like (IPA) bind-
ing energy of the state that isionized.

We arrive at the following approximation for the
IPA matrix element:

IPA

M = NNi_C ﬁff SOOI WM

N!F
C

2003

(32)
+odid -

[bZD

+on

EbED
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Table 1. The total cross sections oy for photoabsorption
from the K-shell of He (Z = 2) obtained using Eq. (33) in com-

parison with the full 1PA calculations ogc; exp(—arvp) isthe

Stobbe factor
o keV 01 D 0%, b exp(-22)

Eq. (33) Ref. [33] P
1 396 402 0.542
15 107 109 0.596
2 41.7 432 0.633
3 10.9 11.2 0.682
4 4.20 4.23 0.715
5 1.99 2.03 0.739
6 1.08 1.10 0.757
8 0.408 0.411 0.784

From Eq. (32), itimmediately followsthat at high ener-
gies,

IPA—?
do'™ = BN do°+ oo (33)
ONE O Ly

where do€ is the differential cross section obtained
from Coulomb H-like wave functions calculated at the
shifted momentum p and O indicates how rapidly the
error decreases. (The momentum p from the phase
space cancels p from the factor p./p, leaving only the
shifted momentum p. in the right-hand side of
Eq. (33).) The error in Eq. (33) is determined by the
errors in the wave functions. According to the results
in [25], the difference between screened and Coulomb
functions is very small when unnormalized functions
(with the same first coefficient in the expansion taken)
are compared; for potentials with a polynomial expan-
sion, this difference decreases as 1/p? for small r.6 This

impliesthat dominant terms on therel ative order of 1/p?
are collected. We illustrate the fast convergence of this
procedure for the casesinvolving low-Z atoms (He) and
outer shells of higher Z atoms (the L-state of Ne).

For Coulomb states, theintegralsin Eq. (32) can be
evaluated analytically. As illustrative examples, we

6 We note that the use of a potential that cannot be expanded in
integral powers of r might not give a small correction that van-
ishes as ]./p2, as given in Eq. (33). For example, the Thomas—
Fermi potential (see footnote 4) leads to a correction that van-
ishes dower, i.e., as 1/p3/2. However, the Thomas—Fermi model
fails in the vicinity of the nucleus (which is the region determin-
ing high-energy photoabsorption), where it predicts too large an
electron density, see, e.g., B.G. Englert and J. Schwinger, Phys.
Rev. A 29, 2331 (1984).
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have the cross section per electron for the electron ion-
ization from the 1s, 2s, and 2p shells[15]

c 32ma’ap a[ a pj}
oo, = —22 2P onS| expSht—4arctant
T ey P T
oo B-eet ]
pUl p
o = 4ma’ap(p’ +ad)

3m'w’[p’ + (a2)]” P

X exp[ %1 4arctan2am} (35)
miCS 0 Tfaj}
ex o~ ex :
[ POp0~ ®P0 0
7 2 2
0(2:,) _ naap[p +(11/12)a]2n§
3m'e’[p’+(a/2)7" P
xexp[ G- 4arctan2nj} (36)

T%a] 0 T
[eXprD_eXp pD}

To illustrate the meaning of Eqg. (33), we apply it to the
calculation of high-energy photoabsorption and com-
pare the result with those obtained within the full Fock-
Slater IPA calculations. Our comparison with relativis-
tic calculationsisfully justified for low-Z atomsand for
s-shells of higher Z atoms, for which retardation and
relativistic contributions cancel to ahigh degree even at
higher energies. However, for our illustrative purposes,
we also show p-state results for Ne for relatively small
photon energies.

In Table 1, we show the total cross section for
K-shell ionization obtained from Eg. (33) for Z = 2
using (Ni/ N )? = 0.7358 (which indicates |arge screen-
ing) [33] and compare it with the results of the full IPA
calculations from [33]. As we see from Table 1, the
agreement between the high-energy result in Eq. (33)
and the full 1PA calculations is aready very good at
1 keV, despite the large screening; in the energy range
1-2 keV, the disagreement isaround 1-2%. Thisisto be
compared with the lowest order result, which gives a
disagreement of about 50% in the same energy range,
as indicated in Table 1 by the value of the factor
exp(—arvp) (see the explanation for this factor below).

For the L-state of Ne, screening is even larger
(N/NZ)? = 0.4386 for the 2s state and (N/N°)? =

0.2277 for 2p). In Table 2, we show the total cross sec-
tion for the 2s and 2p states of Ne and compare them

No. 2 2003



UNDERSTANDING ATOMIC PROCESSES IN TERMS OF COULOMB SINGULARITIES

229

Table 2. The total cross sections 0,5 and 0y, for photoabsorption from the respective subshells 2s and 2p of Ne (Z = 10)

obtained using Eqg. (33) in comparison with the full 1PA calculations oéi and oéﬁ’ ; exp(—arvp) is the Stobbe factor

Op, b o= b Oy, b o b am

@ kev Eq. (33) Rers.c[ss] Eq. (39) Rers.c[ss] o)
1 11276 10600 5629 5416 0.039
2 1932 1895 492 495 0.090
4 289 290 37.4 38.9 0.174
8 385 39.1 251 2.65 0.286
10 19.7 20.0 1.030 1.092 0.325
15 5.67 5.77 0.1987 0.2144 0.398
20 2,309 2353 0.0607 0.0669 0.449
30 0.637 0.651 0.0112 0.0128 0519
50 0.122 0.125 0.00129 0.00159 0.600

with the full relativistic IPA calculations. For the 2s
state, Eq. (33) givesresultsthat convergeto thefull IPA
result very quickly; the disagreement is around 6% at
1 keV andislessthan 1% at 4 keV. Similarly, theresults
in Eq. (33) for the 2p state converge rapidly to IPA
resultsin the same energy range. Thisvery good agree-
ment between the results in Eq. (33) and the full 1PA
results already at relatively small energies, even for Ne,
can be explained by the properties of 1PA wave func-
tions hi the vicinity of the Coulomb e-N singularity.
Namely, at the photon energy region 1-2 keV, the dis-
tances involved (distances around the singularity at
which the momentum is transferred between the elec-
tron and the nucleus) are within the K-shell orbit for Ne,
and well within the K-shell orbit for He, where the
screening is small. Therefore, the shapes of the wave
functions at these distances are basicaly Coulomb.
Thisis avery important point that we use and general-
ize in our approach. The high-energy photoabsorption
is essentially of the Coulomb type. This means that the
high-energy behavior of cross sections (we here mean
the keV range, asin our examples) is determined by the
properties of functions near the singularity, which is of
the Coulomb type. The screening effects enter these
IPA examples, of course, but in asimple way as a con-
stant factor. By straightforward generalization of these
findings in high-energy many-body calculations, we
can significantly simplify calculations involving e—e
correlation, as shown in [1].

Another important point that we want to make in
this section, relevant for more complex systems[1, 34],
isthe relatively fast convergence of the ratios of photo-
absorption cross sections to the results predicted by
lowest order results (the Born approximation results in
the A-form). We first note that the slowest converging
factor in our examplesin Egs. (34)—(36) is exp(—&a/p).
In partitioning wave functions around the coal escence,

we obtain this factor by collecting all Coulomb interac-
tioninthefinal state for each term in the partitioning of
the initial state. The factor is therefore present for any
state. The existence of a common slowly converging
factor provides fast converging ratios of the cross sec-
tions. Further, theratios of the cross sectionsfor ioniza-
tion from subshells of the same shell converge particu-
larly fast, as we illustrate using our examples for the
L-shell, Egs. (35) and (36). In our examples, the ratio

O a2 |:ﬁ2|:|
—<s + =+ |
oy 00t Tom T O 37

is a nearly linear function of the photon energy w in
the keV range. If we had used the lowest-order result in
1/p, we would obtain 0,40,, ~ w, which isvery similar
to the exact result (in the keV range for Ne, for exam-
ple), athough the first-order results for cross sections
differ by an order of magnitude from the exact results
in this energy range, as indicated roughly by the factor
exp(—ta/p) in Table 2.

9. CONCLUSIONS

We have illustrated the AFT nonrelativistic
approach to atomic processes by studying high-energy
photoionization (with incident photon energies w < m)
of an electron bound in a central potential. We have
demonstrated that in this case, high-energy ionization
by photoabsorption can be understood in terms of the
singularities of the Hamiltonian, which also illustrates
more general situations. Our discussion did not depend
on the choice of the form [length (L), velocity (V),
acceleration (A), etc.] of the photoionization matrix
element.

Because photoabsorption at high photon energies
requires at least one large outgoing electron momen-
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tum, we have argued that the analysis is equivalent to
the analysis of the asymptotic form of the FT. Based on
the FT theory, we have shown that a dow asymptotic
decrease of the photoabsorption matrix element for a
large momentum p (such as 1/p") isrelated to singular-
ities of the e-N potentials. We have demonstrated how
this large-momentum behavior can be obtained from
the behavior of wave functions and interactions around
singularities. With this approach, we can identify the
dominant terms and avoid omitting any of them.

We have applied our approach to study the high-
energy total cross section for ionization in a centra
potential with the Coulomb e-N singularity. We have
demonstrated that the approach and the final results are
form- (gage-) independent. However, the dependence
of the final results on the quality of the initial and final
state wave functions in the vicinity of asingularity var-
ies with form (gage). We have found that the accelera-
tion form, which places the singularities of the Hamil-
tonian in the ey interaction, has the smallest require-
ment on the quality of wave functions at the singularity,
in the situations considered. We have shown that in the
A-form, the leading contribution to the photoabsorp-
tion matrix element is the lowest order Born result. In
the L- and V-forms, it is generally a higher order Born
result, with the exception of the V-form in the ground
state ionization, where it is also the lowest order Born
result. This means that in general (except in the
A-form), the fast electron cannot be represented by a
plane wave, even in the high-energy limit. For thislead-
ing contribution to the matrix element, the A-form
requires only the proper normalization of the initial
state at the e-N singularity. In contrast, the L- and
V-forms require knowledge of both the normalization
and slope of the wave functions at the singularities.

We have discussed slow convergence of the cross
sections to the high-energy limit, considering the ion-
ization of an electron in a screened potential. We have
demonstrated that by collecting all Coulomb terms in
the vicinity of the e-N singularity, we aso collect the
dominant terms up to therel ative order 1/p? and provide
fast convergence of the cross sections. Although the
neglected termsin the matrix element are still of therel-
ative order 1/p?, they are negligible. Thus, we have
demonstrated that the high-energy behavior of cross
sections (in the keV range, asin our examples) is deter-
mined by the properties of functions near the singular-
ity, which is of the Coulomb type. The screening effects
enter through normalization factors in the |PA cases.
We have also demonstrated that the only slowly con-
verging factor (the Stobbe factor exp(—r&a/p), which
converges as 1/p, while all other terms converge faster)
iscommon for ionization from al states. The existence
of a common slowly converging factor provides fast
converging ratios of the cross sections.
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Abstract—Different theoretical approaches to the famous two-state Landau—Zener problem are briefly dis-
cussed. Apart from traditional methods of the adiabatic perturbation theory, the Born—Oppenheimer approxi-
mation with geometric phase effects, the two-level approach, and the momentum space representation, the
problem is treated semiclassically in the coordinate space. In the framework of the instanton approach, we
present a full and unified description of the 1D Landau—Zener problem of level crossing. The method enables
us to accurately treat al four transition points (appearing at two-level crossing), while the standard WKB
approach takes only two of them into account. Thelatter approximation is adequate for calculating the transition
probability or for studying scattering processes, but it does not work in finding the corresponding chemical reac-
tion rates, in which al four transition points can often be relevant in the typical range of parameters. Applica
tions of the method and of the results may concern various systems in physics, chemistry, and biology. © 2003

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Thetitle of this paper might sound perplexing at first
sight. What else can be said about the Landau—Zener
(LZ) problem after the numerous descriptions in both
research and textbook literature? However, although
theoretical (and experimental) investigations of differ-
ent LZ systems began more than 70 years ago, it still
remains an active area of research. Various approaches
to the LZ problem that have appeared in the literature
(see, e.g., thelist of publications[1-67], whichisby no
means complete) are not fully consistent with each
other. We therefore think it important to discuss al
these approachesin asingle paper. We study the 1D LZ
problem [1] of quantum mechanical transitions
between the levels of atwo-level system at the avoided
level crossing. In the LZ theory, a quantum system is
placed in aslowly varying external field. Naturally, the
system then adiabatically follows the variation of an
initially prepared discrete state until its time-dependent
energy level crosses another level. Near the crossing
point, the adiabaticity condition is evidently violated
(because the semiclassical behavior is violated near
turning points). The slow variation of the perturbation
implies that the duration of the transition process is
very long, and therefore the change in the action during
this time is great. In this sense, the LZ problem is a

TThis article was submitted by the authors in English.

semiclassical one (but with respect to timeinstead of a
coordinate in the standard semiclassical problems).

It iswell known that the problem presents the most
basic model of nonadiabatic transitions that play avery
important rolein many fields of physics, chemistry, and
biology. It is therefore not surprising that numerous
monographs and a great number of papers have been
devoted to this subject. In the literature, there are,
roughly speaking, three approaches to semiclassical
modeling of the LZ problem:

(i) the two-level system approach [2-8];

(i) the adiabatic perturbation theory [9-21] (adlso
see review paper [6]);

(iii) the momentum space representation [22—-25].

Because different approaches to the LZ problem
have been proposed, one of the immediate motivations
of the present paper isto develop auniform and system-
atic procedure for handling this problem. We show that
the three methods listed above are equivaent for treat-
ing tunneling and overbarrier regions of parameters,
and none of them can be applied, to the intermediate
region of parameters where al four of the states
involved in the LZ system are relevant. To study this
region is our main objective in this paper. We aso
address the so-called connection matrices. In the stan-
dard textbook treatment of the LZ problem, only transi-
tion probabilities are calculated and expressed in terms

1063-7761/03/9702-0232%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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of the genuine two-level LZ formula successively
applied at each diabatic level intersection. Evidently,
such aprocedure is an approximation to the general LZ
problem, which includes at least four energy levels
even in the simplest case. To solve many important
physical or chemical problems, one must find the 4 x 4
(not only 2 x 2) connection matrices relating these four
states.

While this paper is not intended as a comprehensive
review, we detail the key results of the standard WKB
and instanton approaches from our own research and
the literature within the context of different factors that
wefeel areimportant in studying the LZ problem. Spe-
cificaly, we focus in Section 2 on the Born—Oppenhe-
imer approximation, which is a benchmark in testing
semiclassical approximations. In Section 3, we lay the
foundation of treating the LZ problem, the adiabatic
perturbation theory. Section 4 is devoted to the general -
ization of the instanton method, which enables us to
investigate the LZ problem in the momentum space. We
show that for apotential that islinear ina 1D coordinate
under consideration, the WKB semiclassical wave
functions in the momentum space coincide with the
instanton wave functions. For the quadratically approx-
imated (parabolic) potentials, the instanton wave func-
tions are exact and have no singularities (unlike the
WKB wave functions; we recall that relations of the
same type hold for the WKB and instanton wave func-
tions in the coordinate space [26-29]).

We advocate the instanton approach in this paper,
but it is worth noting that many important results have
nevertheless been obtained in the framework of the
WKB approach [1-8]. For example, one very efficient
technique (the so-called propagator method) was pro-
posed and elaborated by Miller and collaborators[34-36]
(also see [26]). This approach uses semiclassic propa
gators (of the Van Vleck—Gutzwiller type), with the
contribution coming from the contour around a com-
plex turning point automatically taken into account in
terms of the general WKB formalism. The accuracy of
the WKB method can be improved considerably [2, 5,
30, 31] (more recent references on the so-called
Laplace contour integration can also be found in [32])
by the appropriate choice of theintegration path around
the turning point. This method appearsto be quite accu-
rate for the tunneling and overbarrier regions, but
becomes inadequate in the intermediate energy region.
This has been overlooked in previous investigations
treating this region by a simple interpolation from the
tunneling region (with amonotonic decay of the transi-
tion probability) to the overbarrier region (with oscillat-
ing behavior).

In Section 5, we present all details of the LZ prob-
lem for two electronic states using the instanton
description of the LZ problem in the coordinate space.
The two basic second-order differential (Schrodinger)
equations that we consider are written in the so-called
diabatic state representation (i.e, in the basis of
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“crossed” levels). Neglecting higher order spatial deriv-
atives, we find asymptotic solutions, and using the adi-
abati c—diabatic transformation, we match the solutions
in the intermediate region. The complete scattering
matrix for the LZ problem is derived in Section 6. In
Section 7, we derive the quantization rules for crossing
diabatic potentialsand briefly discuss the application of
the results in some particular models of level crossings
that arerelevant for the interpretation and description of
experimental data on the spectroscopy of nonrigid mol-
ecules, on inelastic atomic collisions[33], and nonradi-
ative transitions arising from “intersystem” crossings
of potential energy surfacesin the molecular spectros-
copy and chemical dynamics (see, e.g., [26] and refer-
ences therein). In Section 8, we draw our conclusions.

We consider only the 1D case in what follows. The
LZ problem for 1D potentials coupled to the thermal
bath of harmonic oscillatorsis shown to reduceto acer-
tain renormalization of the Massey parameter, where
the longitudinal velocity entering the expression for
this parameter is decreased due to the coupling to trans-
verse oscillations (see [26] and references therein, and
also [66, 67] for more recent references). Of course, the
energy profile of any real system is characterized by a
multidimensional surface. However, it is often possible
to identify a reaction coordinate such that the energy
barrier between theinitial and final statesis minimized
along this specific direction, and the system can there-
fore be effectively treated as 1D. In certain systems, the
physical interpretation of the reaction coordinate is
immediate (e.g., the relative bond length in diatomic
molecules), but sometimesfinding it is not an easy task
(if possible at all) because of the large number of pos-
sibilities involved. The latter (multidimensional) case
will be studied elsewhere. Unfortunately, the accuracy
of the WKB method near the top of the barrier is too
poor to make any numbers realistic, and this is one
more motivation to use asemiclassical formalism alter-
native to the WKB, namely, the extreme tunneling tra-
jectory or instanton technique.

2. BORN-OPPENHEIMER APPROXIMATION

It may be useful toillustrate the essential physics of
the LZ problem starting with avery well-known picture
corresponding to the Born—Oppenheimer approxima:
tion [1, 37]. It leads to the separation of nuclear and
electronic motions and is valid only because the elec-
trons are much lighter than the nuclel and therefore
move much faster. The small parameter of the Born—
Oppenheimer approximation is therefore given by

_ g™
A= O] <1, (2.1

where m, and m are electronic and nuclear masses,
respectively. On the other hand, the semiclassical
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parameter is

mQa’

y h > l!
where a is the characteristic length in the problem and
Q O nT2 is the characteristic nuclear vibration fre-
quency; therefore, y [ A=2. Important conclusions are
drawn from this simple fact. Indeed, the semiclassical
condition y > 1 can be satisfied by formally taking
h — O or, equivalently, A — 0. This correspondence
allows usto apply either the Born-Oppenheimer or the
semiclassical approximation to the separation of scales
for nuclear and electronic motions on the same footing.

In the traditional Born-Oppenheimer approach,
solution W to the full Schrédinger equation (including
the electronic Hamiltonian H, depending on electronic
coordinates r and the nuclear Hamiltonian depending
on nuclear coordinates R) is given by an expansion over
the electronic Hamiltonian eigenfunctions @,,

Y = 3 o,(Re,,R).

(2.2)

(2.3)

The electronic eigenvalues E, depend on the nuclear
coordinates, and the expansion coefficients ®(R) are
determined by the Born—Oppenheimer equations

72 o #?
_'Z'r_nDR + En(R) + é—rﬁz AnkAkn -E ®n
Kz (2.4)
h’ : .
= _Ern Z (6nk|:|R =1 Ank)(ékmDR —I Akm)(pma
k,m#n
where for m# Kk,
Amk =i |:(lpmlmR(pkl:'r (25)

and all the diagonal matrix elements A, = 0.

From (2.4), we can find that in the electronic eigen-
state E,,, the nuclei move in the effective potential

_ e
Un(R) - En(R) + é—rﬁz AnkAkm

k#n

and transitions between the el ectronic statesnand mare
related to the nonadiabatic operator in the right-hand
side of (2.4). This simple observation allows us to
rewrite effective potential (2.6) as

(2.6)

Un(R) = EA(R)

1 « 00 OrHd @ 0@ | OrHd @]
ZmZ (En_Em)2 .

m#n

(2.7)

From this seemingly trivial expression, we derive the
following important conclusions:
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(i) corrections to E, have the same order O(y?) as
the ratio of the nuclear kinetic energy to the potential;

(i) off-diagonal matrix elements of the nonadiabatic
perturbation operator are also small (JO(y?)); thisfact
is formulated as the so-called adiabatic theorem that
states that no transitions between unperturbed states
occur at adiabatic perturbations (A — 0).

Because the nonadiabatic effects are characterized
by the only small parameter, y* (the semiclassical
parameter), they can be described in the framework of
semiclassical approaches (e.g., WKB or instanton
ones). But, we must bear in mind the main problem of
the Born-Oppenheimer method: the approximation
assumes that the el ectronic wave functions are real-val -
ued and form a complete basis, but it isimpossible to
construct such a basis in the entire space, including
classically accessible and forbidden regions.

If the requirement of areal-valued basis is relaxed,
the diagonal matrix elements A, # 0 and the effective
adiabatic part of the Born—Oppenheimer Hamiltonian
takes the form

2

fo = UR+ 2= (0e-iAWR), 29

similarly to the Hamiltonian of acharged particleinthe
magnetic field B O | U % A,,|. We can therefore change
the phases of the el ectronic and nuclear wave functions
as

0 — ¢exp(iXn(R),

. (2.9)
®,— q)nexp(_l)(n(R))
by changing the “vector potential” appropriately,
Ann(R) - Ann(R) + DRXn(R) (210)

Thus, we confront an important and, at times, mysteri-
ous concept of the geometric (or Berry) phase factor
that a quantum mechanical wave function acquires
upon acyclic evolution [38-47]. Most characteristic of
the concept of the Berry phase isthe existence of acon-
tinuous parameter space in which the state of the sys-
tem can travel along a closed path. In our case, the
phase is determined by a nonadiabatic interaction (for
more details related to the geometric phase for the
Born—Oppenheimer systems, see, e.g., review [48]).
This phenomenon (which originally manifested itself
as a certain extra phase shift appearing upon some
cyclic evolution of an external parameter) has been
generalized for the nonadiabatic, noncyclic, and non-
unitary cases[49, 50], although most of the Berry phase
applications concern systems undergoing adiabatic
evolution (see, e.g., review [51]). We aso note that in
addition to the Berry phase, some higher order correc-
tionsto the Born—Oppenheimer approximation also exist
(traditionally, and dightly misleadingly, called the geo-
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metric magnetism or deterministic friction, see [52]).
A practically useful application of the Berry phase con-
cept isthe energy level displacements predicted in [53]
and observed by NMR [54].

The essentia physics of these phenomena can be
illustrated as follows. There are two subsystems, fast
and slow. The fast subsystem acquires a Berry phase
because of the evolution of the slow subsystem. There
is a certain feedback effect of the geometric phase on
the slow subsystem. As aresult, the latter is framed by
a gauge field affecting its evolution. The gauge field
produces additional (Lorentz-like and electric field—
like) forces that must be included into the classical
equation of motion. In the case of stochastic externa
forces (e.g., from surrounding thermal fluctuation
media), the Berry phase produces some level broadening
for the fast subsystem. In the limit of low temperatures
and strong damping, the dow subsystem dynamics can
be described by equations of the Langevin type[55]. The
general message that we can learn from thisfact is that
the geometric phases are sources of the dissipative pro-
cessesfor LZ systems.

Thanks to its fundamental origin, this geometric
phase has attracted considerable theoretical and exper-
imental attention, but its experimentally observable
consequences have been scarce until now. Each oppor-
tunity to improve this situation is therefore worth try-
ing. In this respect, the Born—Oppenheimer geometric
phase provides a unique opportunity for observation of
the geometric phase because it must appear as a nona-
diabatic contribution to the standard Bohr—Sommerfeld
guantization rule

S+ Xn = 2T,

where S is the adiabatic action.

We note that care must be taken when |E(R) —
E.(R)| becomes small compared to the characteristic
nuclear oscillation energy #Q. This means that the non-
adiabatic interaction energy cannot then be considered as
a small perturbation in adiabatic representation (2.4).
Fortunately, in the limit

|Ex(R) —Ex(R)| <2Q,

we can start from the other limit with crossing weakly
coupled diabatic states and consider the adiabatic cou-
pling as a perturbation. To perform the procedure
explicitly, we then need the adiabati c—diabatic transfor-
mations

(2.12)

®(R) = exp(i60,)D(R) (2.12)
for the wave functions and
H = exp(io,)Hexp(-i6a,) (2.13)

for the Hamiltonians, where (H, ®) and (I:|, &)) arethe
adiabatic and diabatic representations, respectively; g,
is the corresponding Pauli matrix; and 0 is the adia-
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batic—diabatic transformation parameter (the so-called
adiabatic angle).

To illustrate how this works, we consider two cou-
pled crossing effective eectronic potentials U,(R) and
U,(R) (U,, isthe coupling energy). The corresponding
adiabatic and diabatic Hamiltonians are

TR
H = —5=(0g)" +5(Us+Uy)
2m 2 2 (2.14)
#[5(U; = Uy)cos(28(R)) + Uy,sin(26(R) |o;

+ %[_%(ul_ U,)sin(26(R)) + Ulzcos(ze(R))}Gl,
and

~ h2 2 1
H = _%(DR) +§(U1+U2)
L (2.15)
+§(U1—U2)03U1201,

where 0, , 5 are the Pauli matrices and the adiabatic

angleischosento eiminatetheleading interactionterm
between the adiabatic states,

— U 1™ UZ

cos(26(R)) = 20,

The adiabatic—diabatic transformation can also be
brought to a more elegant form [16, 56]:

(Og—iA)T = 0,

(2.16)

(2.17)

where T is the sought transformation matrix and the

matrix A = A, was introduced above (see (2.5)). The

formal solution of Eg. (2.17) can be represented as a
contour integral:

S

T(s) = 'f(so)exp%—IA(S)ds%, (2.18)
ol 0

where s, and saretheinitial and final points of the con-
tour. Solution (2.18) uniquely determines the transfor-

mation matrix T for acurl-freefield A,

T(ty) = DT(0), (2.19)

where the diagonal matrix D can be found from (2.17)
and is expressed in terms of the geometric phase factor
as

Din = Oxn&Xp(iXy)- (2.20)

Relations (2.11) and (2.20) completely describe the
nonadiabatic transitions, the cornerstone of the LZ
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problem. In addition, (2.11) and (2.20) show that the
geometric Born—Oppenheimer phases occur from the
diabatic-potential crossing points and enter the quanti-
zation rules additively with contributionsfrom the turn-
ing points. Therefore, our main conclusion in this sec-
tion is that nonadiabatic phenomena must (and can) be
included into the general scheme of the semiclassical
approach viathe corresponding connection matrices[57]
(also see [29]) for the appropriate combinations of
crossing and turning points in the problem.

3. ADIABATIC PERTURBATION THEORY

It is amost common student’s wisdom nowadays
that any solution to the adiabatically time-dependent
Schrodinger equation can be represented as an expan-
sion over the complete set of stationary (time-indepen-
dent) eigenfunctions[1]. Inthe case under investigation
(two-level crossing for the electronic Hamiltonian
H(r, 1)), thisexpansion is given by

W, 1) = c(®@u(r) + (D) @u(r), (3.1

where the wave functions ¢, , are stationary with
respect to nuclear motion. The time-dependent
Schrodinger equation can be exactly rewritten as two
first-order equations (with respect to time derivatives)
for ¢, and c,,

De.0 Og.. &.00c O
ing o = gHn HegrGg, 3.2)
06,0 O, fi,00c,0

where

Hue = (@lH®I@), kK =1,2 (3.3)
are the matrix elements for the diabatic Hamiltonian.
The phase transformation

olt) = a(epd [P (34)

(see[6, 8, 10]) reduces (3.2) to the coupled first-order
equations

ihd, = Hia,expH J’le(t)d%,

- (3.5
iha, = HaaexpHH J'le(t)d%,
where
Qy, = %(sz—ﬂn). (3.6)
A dlightly different phase transformation,
— & Ol e C ~
cdt) = ety exprpy [(Hu + Hz)dg  (37)
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preserves the second-order Schrodinger-like form of
the equations for the diabatic functions @, 2,

25 S o2 L
42d q;l_[g_'ll_HZZa + HoFla
dt 2
_ (3.8)
+%%(F|11—|:|22)i|631 = 0.

To clarify the mapping of thistime-dependent perturba-
tion theory to the two-level crossing problem and the
Born—-Oppenheimer approach described in Section 2,
we consider the two-state Born—Oppenheimer equa-
tionsin the diabatic representation. From (2.15) for one
active space coordinate X, we have

ﬁ_zdzd“)l

—2de2 + (|:|11—E)631 = |:|12&32 (39)
and
2 125 - - - -
_Zﬁ_mc(ij;)zz-'-(sz_E)cDZ = Hy®P,. (310)

If we can neglect the second-order derivatives

72y,
2m gx?

and replace the time derivative by vd/dX (where v =
~2E/m isthe velocity), the change of the variables

®12 = exp(ikeX)Cypr K2 = Z;;E

(3.11)

transforms the two Born—-Oppenheimer equations (3.9)
and (3.10) into the two level-crossing equations (3.2)
for slow time-dependent perturbations. Obviously, we
recognize the standard semiclassical approach in this
procedure.

A mapping of the same kind can aso be performed
for the adiabatic amplitudes C, ,(t) that are related to
the diabatic amplitudes c; ,(t) by the adiabatic—dia-
batic transformation matrix depending on the adiabatic
angle 6,

Ocl O ing 00 ¢ () O
nCg = goost snbpag

(3.12)
OC,(H)O O-sinB cosb O c,(t) O

In the adiabatic basis, we have the set of the first-order
equations corresponding to (3.2),

) 0 O

D(:1D_D|'|11—|9DD(31D

e e
C2 D|9H22|:| 2
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where the nonadiabatic coupling coefficient 6 can be
related to the off-diagonal operator A, in (2.5) (or to
the geometric phase, see Section 2),

i0 = Ap=ilp|el (3.14)

Transformation (3.11) alows us to reduce the
Born—-Oppenheimer equations (for the nuclear wave
functions ®, , in the adiabatic representation) to (3.13)
if and only if the second-order derivatives are neglected
(in the spirit of the semiclassical approach) and only
Ok, terms are kept in the nonadiabatic matrix elements
(i.e., higher order contributions with respect to 1k, are
neglected). Expressions (3.12)—3.14) do allow an entry
point into the adiabatic perturbation theory developed
by Landau [1] and Dykhne[10, 11] (also see[15, 16]).
We follow the same method closely.

We can go one step further and find the combination
of thetwo-level system amplitudesa; ,in(3.4) and (3.5),

~ i
Y(t) = Qljzj 2 exp %_QIQ l2d%al

_ (3.15)
+ | ngzexp %J’led%az,
satisfying the simple equation
. 02
Y(t) + THY =0, (3.16)

which is identical to (3.8) and describes oscillations
around the crossing point in the adiabatic potential
(inverted adiabatic barrier). In the adiabatic perturba-
tion theory, the level-crossing problem is therefore for-
mally reduced to the well-known quantum mechanical
phenomenon, the overbarrier reflection. In the latter
problem, moreover, the reflection coefficient is equal
to 1, in full agreement with the adiabatic theorem.

Evidently, two adiabatic potentials have no real
crossing pointsinthe 1D case, and the crossing isthere-
fore possible only at complex values of X or t,

QlZ(TC) = 0, Ul_UZ = i-iU12|t:TC' (317)

In the vicinity of these points, it follows from (3.6) that
Q,,0(t-1)", (3.18)

and, therefore,

[Qudt= %(t _1)*, (3.19)

i.e, the crossing points are square root bifurcation
pointsfor the function Q,,(t). Using (3.19), we depicted
the Stokes and anti-Stokeslinesfor Eg. (3.16) inFig. 1.
Thediagram showninthisfigureisidentical to that cor-
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Fig. 1. Stokes (dashed) and anti-Stokes (solid) lines for a
pair of close linear turning points replaced by one second-
order turning point; (a) classicaly forbidden region,
(b) classically accessible region.

responding to the semiclassical overbarrier reflection
problem with the linear turning points under consider-
ation. In the leading approximation, the transition prob-
ability P,, isdetermined by integration over the contour
C(t,) going around the bifurcation point t.,

(2 O
Pp= eXth‘ f (Hy - sz)le- (3.20)

Cto)

In the simplest form of the LZ problem, the diabatic
potentials are assumed to be linear functions of t or X
(which isthe same becauset = X/v), seeFig. 2 for illus-
tration,

Uy = UP£FX. (3.21)
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Fig. 2. Adiabatic (3, 4) and diabatic (1, 2) potentials for the
LZ problem.

Substituting (3.21) in the genera expression for the
transition probability (3.20), we then find

P, = exp(-2mv), (3.22)

wherev = Ufz 2R vF isthe so-called Massey parameter
and

2|E— U]
m

isthe velocity.

Some comments about the validity range of the
approximation are in order. A gquestion of primary
importance for the LZ problem is related to the semi-
classical nature of the phenomenon. To illustrate this,
we note that, for

QF, = UL+ V2F?X,

Eqg. (3.16) isthe Weber equation for thereal point X=0
(the crossing point of diabatic potentials). Evidently,
this correspondence between two complex-conjugate
linear crossing points 1, and one real crossing point
X =0 for the Weber equation is the same as the corre-
spondence between two linear and one second-order
turning points in the standard semiclassical treatment
of the Schrodinger equation. We can therefore apply the
WKB or instanton methods to the LZ problem in the
same way as in any semiclassical problem. We now
compare the accuracy of the two approaches. If

|E - U#| > 7Q (where Q isthe characteristic frequency
of the adiabatic potentials), the WKB method works
quite well if two isolated linear turning points in this
problem are considered (thisisthelimit of kya> 1, cor-
responding to the adiabatic approximation). If this is
not the case, the diabatic representation must be used.
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4. INSTANTON METHOD
IN MOMENTUM SPACE

We do not explain the instanton method in detall
here and summarize only the most essential points
(see[26-29, 58, 59]). Therecipeto find theinstantonis
based on minimizing the classical action functional in
the space of paths connecting the minimain the upside-
down potential. It iswell known [1] that the expansion
of an arbitrary wave function W(x) in terms of the
momentum eigenfunctionsis simply a Fourier integral,

YO = 5= Iexpgg)%b(p)dp. (4.1)

The wave function in the momentum representation
d(p) can be written in the semiclassical form

o(p) = Ap)expF P

4.2
where the action W(p) is determined by the classical
trajectory Xq(p) in accordance with the definition

dw
dp

We use the dimensionless variables e = E/Q, for the
energy, V = U/lyQ, for the potential, and X = x/a, for the
coordinate, where E and U are the corresponding
dimensional values of the energy and of the potential,
a, is the characteristic length of the problem (e.g., the
tunneling distance), and Q, is the characteristic fre-
guency (e.g., the oscillation frequency around the
potential minimum). The dimensionless momentum
can be defined as

= Xo(P). (4.3)

Pag
yh'

where y is the semiclassical parameter (we recall that

y =mQ,a5 /%, where m is the mass of the particle, and
we believe that y > 1).

Introducing the semiclassical form (4.2) of the
momentum-representation wave function in the stan-

dard one-particle 1D Schrédinger equation, we can
transform it to the form

[P + 205K, +|1£g% 2 }Aaa = 0.

P = (4.4)

(4.5)

In the momentum space, V isthe potential energy oper-
ator, which can be expanded in a semiclassical series
with respect to 1/y (or equivalently, with respect to #;
we set 7 = 1 in what follows, measuring energies in
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units of frequency, except in some intermediate equa-
tions where the occurrences of # are necessary for
understanding). This expansion allows us to consider

V asafunction V of two independent variables X, and
d/dP, and we finally obtain

VEKo+ e = V(X

iddv d | 1d*vdX i d?V d
" yixodP " 2gxE dPp EVD[dXSdPZ (4-6)

aey

1 d*X dXf
2qx30dP AP 3gp?n  24gx0ap0 |*
0 0
where the dots denote all higher order expansion terms.
In accordance with the general semiclassical rules,
we can easily find from (4.5) and (4.6) that thefirst- and
the second-order termsin y* becomeidentically zero if
the energy-dependent trajectory X,(P) is determined by
the equation

P?+2V(X,) = 2y5 (4.7)
and if the so-called transport equation (TE)
2 2
dvVdA 1dvd'w (4.8)

%P 2gx2 gp?

is also satisfied. The solution of TE (4.8) can be found
explicitly as

_ Dd_VD_l/z
axd

It follows from (4.9) that semiclassical WKB wave
function (4.2) has singularities at all stationary points
of the potential V. These points are therefore turning
points in the momentum space. This illustrates funda-
mental difficulties of the WKB procedure, which con-
sist in matching the solutions that become singular on
caustic lines separating manifolds with real and imagi-
nary momentain phase space.

To also illustrate the second drawback of the WKB
method, we consider the linear (V = FX) and harmonic
(V = X?/2) potentials. The trajectories X,(P) can betriv-
ialy determined from (4.7). For the linear potential,
Xo(P) isan inverted parabolawith amaximum of X, =
eFly at P = 0. The left and the right branches of the
parabola correspond to the opposite motion directions
inthe classically accessibleregion X, < Xq,. For thelin-
ear potential, the semiclassical WKB wave function in
the momentum space,

A (4.9

_1 O P}
®(P) = —Fexpg—E%P—VE%, (4.10)

=
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is the Fourier transform of the coordinate-space Airy
function. For the harmonic potential, the corresponding
trajectories (4.7) are elipses and the wave functions
have the same functional form in both spaces (momen-
tum and coordinate). It is worthwhile to note that
athough the WKB functions are not exact, the corre-
sponding eigenvalues coincide with exact quantum
mechanical ones.

As we have shown recently [27-29], many impor-
tant semiclassical problems can be successfully ana-
lyzed by the instanton method. Bearing in mind
momentum space in this section, we recall the main
ideas of the instanton approach. The first step of the
approach, derived in [58, 59], is the so-called Wick
rotation of the phase space, corresponding to the trans-
formation to imaginary timet — —it. During thetrans-
formation, both potential and kinetic energies change
their signsand the Lagrangian isreplaced by the Hamil-
tonian in the classical equation of motion. In the
momentum space, the low-energy instanton wave func-
tions can be constructed using Wick rotation in the
momentum space (i.e., the transformation P — iP); in
addition, the term with energy € in (4.7) must be
removed from this equation and taken into account in
TE (4.8). In the instanton formalism, the trajectory
Xo(P) describes zero-energy motion in the classically
forbidden region of the momentum space, where the
wave function has the form

(4.12)

and the additional prefactor Q(P) can be represented as

INQ(P) = « IDd—VD_ldP. (4.12)

Lax H

In the particular case of a linear potential (V(X) =
FX), the instanton and WKB functions have the same
form. For an arbitrary (nth-order) anharmonic poten-
tial, the Schrodinger equation in the momentum space
isreduced to the nth-order differential equation, but the
nth-order derivatives decrease proportionally to y= and
the corresponding terms can therefore be taken into
account perturbatively. A rigorous mathematical
method for performing this procedure (which we usein
this paper) has been devel oped by Fedoryuk [68—70].

Toillustrate the instanton approach, we consider the
simplest form of the LZ problem illustrated in Fig. 3.
For linear potentialswith arbitrary line slopes, we have
two second-order coupled equations, in the diabatic
state representation

do
‘&21 = y*(a + £,X)0, = yvO,,

o (4.13)
—&5 = y¥(a + f,X)0, = yvey,
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Fig. 3. Stokes (dashed) and anti-Stokes (solid) lines in the
vicinity of (a) conjugate bifurcation points +it; and (b) dia-
batic potentials crossing point X = 0.

where ©, , are the eigenfunctions of the corresponding
states, and:

22 3 1/2
2 _ akF T a’Fm
= ’ F = F F ) = ’
muU, ilFd. ¥ VES
_ UO—E _ aFlyz U12
a = 2 yQ ’ 1,2 — 2 yQ ) - yQ

Equations (4.13) can be transformed into the momen-
tum space and can then be rewritten as a single second-
order eguation:

d’y,

k2

+qk)W.(k) = 0O, (4.14)

where we introduced

3/2 3
_ yo ol 1og KO
W, = CDlexp[l >0t fﬁgﬁ SD}’ (4.15)

where @, is the Fourier transform of ©,, k = Ply./a,
and q(k) is afourth-order characteristic polynomial

qk) = A3(1+K2)* + 2\ (ik—2v) (4.16)
depending on two parameters
_1 320l 10 _ yv?
A= syaem—m v —1—— (417
UETT Y At

Thefirst parameter A playstherole of the new semiclas-
sical parameter in the momentum representation, and
the second is the known Massey parameter (already
defined in (3.22)).

Fortunately, all rootsof characteritic polynomid (4.16)
can be found analytically quite accurately in the physi-
cally most interesting region of parameters. To simplify
the expressions (while retaining the complete physical
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Fig. 4. Stokes (dashed) and anti-Stokes (solid) linesfor lin-
ear turning points corresponding to classically forbidden (a)
and accessible (b) energy regions of the LZ problem.

content), we present the results only in the simplest
case, wheref, =—f, =f (symmetric slopes of the diabatic
potentials). In the classically forbidden region U# —E >
0,a>0,a A > 1 (equivaently, at a > (f/y)?3), al four
roots of the polynomial are close to =i,

£ . 1+vg = _ 1-v .
ki =g+ /TD’ K=+ /W-u. (4.18)

In the classically accessible region (U*—E <0, a < 0),
therootsarecloseto £1if A > 1 (or if —a > (fly)?3),

= 12 = 2
. 1+v°+vd LWLtV —d

ki =1+ = + :
a 4A O O 4a 0
(4.19)
i, ~D112 i o GDUZ
k§=—1$%LD1+Y Y ii%/i—DN_
O 4A 0 O 4Aa O
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(the tilde means that in the corresponding quantity, o
must be replaced with its modulus).

The roots of characteristic polynomial (4.16) in the
classically forbidden region (Eg. (4.18)) and intheclas-
sicaly accessible region (EQ. (4.19)) are formally
equivalent to the transition or turning pointsfor the sys-
tem of two potential barriers or two potential wells,
respectively. We can therefore use al the WKB and
instanton results known in these cases (see, e.g., our
recent paper [29] and referencestherein for the details).
Because only asymptotic solutions and their connec-
tions via transition or turning points on the complex
plane are usually considered in the semiclassical analy-
sis, the famous Stokes phenomenon [30, 57] of asymp-
totic solutions plays an essential role, and the distribu-
tion of the transition points (which are nothing but the
zero points of the characteristic polynomial) and Stokes
and anti-Stokes lines determines the phenomenon. We
show all the lines emanating from linear turning points
inFig. 2. Inthe casewheretherootsform apair of close
linear turning points, each such pair can be replaced
with one second-order turning point. The correspond-
ing Stokes and anti-Stokes lines are depicted in Fig. 4.

In the classically forbidden region, the instanton
wave functions can be found using roots (4.18),

e (1-ik)Tt K

i (1+ik)“*1exp[')‘B<+ SD} (4.20)
- _(1-ik” . 'SE

? T @+ik)” p[_IAH“gD]

As|k| —» o, thefunction ®; decreases proportionally

to |k[? and @] isreduced to the Airy function [71, 72].

In the vicinity of the second-order turning points k = #i,
thefourth-order characteristic polynomial isreducedto a
second-order one, and Eq. (4.14) isreduced to the Weber
equation with the known fundamental solutions[71]

D_,(+2/A(k +1))
as|k+i| — Oand
D_,_1(x2J/A(k=i))

as |[k—i| — 0. The same procedure applied to the
classically accessible region leads to the solutions

241
(1 k)IV 1
o] = A
R [' B( } w2
_ (1+k)|v o~ k3|:J

and it is also reduced to the fundamental solutions of
the Weber equation

D-~D+2ﬁ(k+ 1)expi—TD
iv 4[]
as|lk+1 — Oand
D2 A(k-1)exp ]

aslk—1 — 0.

The same sol utions can be obtained for the LZ prob-
lem in the two-level approximation using the instanton
method in the coordinate space. The reason for thisis
quite transparent and is based on the fact that for linear
diabatic potentials, the limit k —= oo corresponds to
the limit X — *co0, and the asymptotic behaviors of the
solutions are therefore the same in the momentum and
in the coordinate space.

The entire analysis can be brought into amore com-
pact form by introducing the so-called connection
matrices. In the instanton approach, we consider
asymptotic solutions and their connections on the com-
plex coordinate plane. It istherefore important to know
the connection matrices. The needed connection matri-
ces can easily be found by matching solutions (4.20)
or (4.21) at the second-order turning points viathe cor-
responding fundamental solutions of the Weber equa-
tion. This gives the connection matrices

O — O
O —COS(T[V) ZT[eXp(_ZX)D
~ 4 rv) 0
" Brep@osrom) u
r(v)exp(2x)sin (v
O cos(mv) [J(4.22)
0 A2 0
where
_ ., _(v=1/2)Inv
X =V 2 ’
and

U ~ ~.
0 _exp(_TY) J/2mexp(=TY) exp(=2X) O

- _ O P r(=iv) 0

M, = % ) E’ (4.23)

1 -
[]—— F(—lv)exp exp(2x)smh(nv) exp(=Tv) 0
021 a 2 20 0
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where

~ _ I, ~ ~ 1, ~
X |Dl+v(1 Inv)%+4lnv.

As a note of caution at the end of this section, we
remind the reader that for the linear diabatic potentials,
we initially had two corresponding Schrédinger equa-
tions, each of which possesses two fundamental solu-
tions. Therefore, the full LZ problem is characterized
by four fundamental solutionsthat are asymptotic to the
left of agiven turning point and four fundamental solu-
tionsthat are asymptotic to theright of the same turning
point. Generally speaking, the connection matrices
must therefore be 4 x 4 ones. But because of the sym-
metry of the potentials, these 4 x 4 matrices have two
2 x 2 block structures for the functions @, and @,
givenin (4.22) and in (4.23).

5. LZ PROBLEM FOR TWO ELECTRON STATES
(INSTANTON APPROACH
IN COORDINATE SPACE)

In Sections 2—4, we investigated the LZ problem in
the framework of the adiabatic perturbation theory, the
two-level approximation, and the momentum represen-
tation. All three methods are equivalent and semiclassi-
cal by their nature and are therefore applicable in the
tunneling and overbarrier energy regions; they become
inadequate within the intermediate region (on the order
of y23) near thelevel crossing point. Thefact isthat the
accuracy of these methods depends on the “renormal-
ized” (energy-dependent) semiclassical parameter A in
(4.17), which can be small in the intermediate region
(A £ levenfory> 1). Totreat thisregion, we must use
the coordinate space presentation, because we need to
know the connection matrices for nonadiabatic transi-
tions. In the latter problem, the wave functions outside
the level crossing point are more convenient (and have
a more compact mathematical form) in the coordinate
space.

5.1. Tunneling and Overbarrier Regions

For the smoothness of presentation, we first repro-
duce the results found in the previous sections for the
tunneling and overbarrier energy regions in the coordi-
nate space. In the diabatic representation, we can rewrite
two second-order LZ differential equations (4.13) asthe
fourth-order linear differential equation with constant
coefficients at the derivatives

2 dq)l

d'o, _ , do,
a5 TR
+yia®=vi - f°X*)®, = 0

(where we consider the case with a symmetric slope
f, = -, =f for simplicity). In the mathematical formal-
ism elaborated by Fedoryuk [68-70], Eg. (5.1) is

(5.1)
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reduced by asemiclassical substitutionin a set of equa-
tions of the order y". The characteristic polynomial for
(5.1) isgiven by
FQ\) = A =2ay’A%—2y*fA
+y4(a2_ V2— f2x2)’
where A = dW/dX by definition.

Solving the equation F(A) = O perturbatively in
y1<1, wefind

(5.2)

A= A+, (5.3)
where
A% = sly(azxSvi+ 12X (5.4)
and
b, = Z100 -ay ™. (55)

Four asymptotic solutions of (5.1) can then be repre-
sented as

{y} ={0, o7, 0, 0}

X 5.6
= (v2+ f2X2)_y4exp[J’)\j(X')dX}. 0
0

They describe the motion with an imaginary momen-
tum in the upper and lower adiabatic potentials

2
2ma (U =E) = y*(a £ Jv°+ £°X7).

ﬁZ

The subscriptsin (5.6) correspond to the upper or lower
adiabatic levels, and the superscripts indicate the sign
of the action.

Before considering the connection matrices, we use
the substitution

@, = exp(kX)o, 5.7

and choose the Kk value such that the first derivative
in (5.1) vanishes,
K®—y’aK — %yzf = 0. (5.8)

At a > 3(f/4y)?3, we can expand the roots of (5.8) in
terms of the parameter

f o2 1
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We thusfind

1= VA/a%l"'a]
(5.10)
Ks = YA/03.

Under condition (5.9), the coefficients at the fourth and
at the third-order derivativesin (5.1) are small (propor-

tional to 6 and ﬁS, respectively) and the fourth-order
equation (5.1) can be rewritten as two second-order
Weber equations with the solutions

Dp<1,2>(B(1, 2)X)a

P

where
P __1+__V%L 2D’

2 _ 0 30

2¢2 14
_ i 3
Bua = 0g 0 A 70

The leading terms of these solutions are the same as
those found in Section 4. But the Fedoryuk method
also gives higher order corrections in & in tunneling
region (5.8).

Inthe overbarrier energy region wherea < -3(f/4y)?3,
the roots of Eq. (5.8) are complex conjugate,

(5.11)

K2 _ 5+- 30[]
= — =i+ === (5.12)
y [ 2 %L g
and
o f
o = (5.13)
4y|al*?

playstherole of asmall parameter. Similarly to the case
with the tunneling region, the coefficients at higher
order derivatives are small and the function @ in (5.7)
therefore satisfies the Weber equation with the funda-
mental solutions

Dﬁ<1.2>(B(1, Z)X)’

where

~1

p = —1+|—+|v%l 4D’

~2
p = +IV%L 4D,
(5.14)
s mg/f
b= eof G
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2 = DTDD/
Pz = P HrD -

Aswas the case with tunneling region (5.11), the lead-
ing terms of expansion (5.14) coincide with the results
found in the previous sections, but (5.14) also alowsus
to compute corrections to the leading terms.

We can now find the connection matrices. To do this
in the tunneling region, we must establish the corre-
spondence between solutions of fourth-order differen-
tial equation (5.1) and solutions for the states localized
in the left (L) and in the right (R) wells. In the case
wherea > f|X|, the action can be computed for diabatic
potentials starting from both wells (R and L),

2
YW = yW5 + kX + Bzxz,
(5.15)

2
YW= yWE =k X + %xz,
where

mU#_E 1/2
k0= g (ﬁz )% Ey/\/a

is an imaginary momentum and Wy © are the actions

computed from an arbitrary distant point inthe L or R
wells, respectively, to the point X = 0. On the other
hand, in the adiabatic potentials

Fa JUS + £2X5

the corresponding actions can be represented as

u =u

2
YW —yW; = kOXiBZXzsan. (5.16)

Explicitly comparing the semiclassical wave functions
in both representations (adiabatic and diabatic ones), it
is easy to see that the adiabatic functions in the poten-
tial U~ coincide with the diabatic functionsfor localized
L and Rstatesat X <0 and X > 0, respectively. The adi-
abatic functions for the upper potential U* correspond
to the tails of the diabatic wave functions localized in
the opposite wells. In the level crossing region, the L/R
diabatic functions are therefore transformed into the
R/L functions and the interaction entangles the diabatic
states with the same sign of kyX. Thus, we have only
four nonzero amplitudes of the following transitions:

(o] @g|e0 @g|od  (5.17)
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Recalling that

yW* = yJ'(O(iA/v2+ fzxz)mdx
2

5 . (5.18)
= kX + szi 5(1=Inv),
J/2mexp(=2x) 0
rev)
[l o | )
0%rO C(v)exp(2x)sin”(1tv)
o, 0O 0
O%r0 - J2m
[l . 0
E EE 0 cos(TTv)
o® 0O
cos(Ttv) 0

Fig. 5. Relative placement of the adiabatic levels; (a) U1, >
Ul,, (b) Upo < UT, (U3, = (32)(H2F24m)Y3).
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we conclude that quantum solutions (5.11), asymptoti-
cally valid in the vicinity of the level crossing point,
match increasing and decreasing solutions (5.6)
smoothly, which leads to the Landau description [1] of
the level crossing transitions depicted in Fig. 5.

Using expressions (4.22) and (4.23) relating the fun-
damental solutions of the Weber equation, we can find
the 4 x 4 connection matrix corresponding to (5.17),

0 —cos(Ttv)
I
0%.0
—cos(Ttv) 0 O .~ O
H7tH (519
J/2Texp(=2x) 0 0Pkl
r(V) o .0
.2 O®rl
o [Wep@ysn’(m)
o
where
- Vv_1g,_1n
X 5 2%} 2]Inv

as above. The matrix in (5.19) hasa 2 x 2 block struc-
ture, with each of the identical blocks connecting
increasing and decreasing diabatic solutions. However,
these diagona blocks do not correspond to the L-R
transitions for the lower and upper adiabatic potentials
separately. Indeed, the 2 x 2 matrix corresponding to
these transitionsis

o .0

o

O®.0

(5.20)
A 21exp(=2x)
e —cos(Tv o, -0
rev) () 0®.0
) exp(2x)sin’ ()| B ok =
cos(TTv) PLeX 0®r0
A2TT

In the diabatic limit (i.e.,, asv — 0) the diagonal
matrix elementsare small (N Y2 and v¥2, respectively),
and the off-diagonal elementstendto+1, asit should be
because by definition, there are no transitions between
the diabatic potentials.

Intheadiabatic limitv > 1, the diagonal matrix ele-
ments tend to 1, which implies that the decreasing L
solution transforms only into the increasing R solution,
and vice versa. Therefore, the connection matrix in the
tunneling region depends only on the Massey parame-
ter v. We recall that the blocks of the 4 x 4 connection
matrix in (5.19) correspond to the two isolated second-
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order turning points with the Stokes constant (see,
eg., [29])

T, = F%T exp(—2X). (5.21)

U

+/2Ttexp(=2X) 0
Fiv)
0 2T (—iv) exp(—Ttv) exp(2X) sinh(Ttv)
- NEa
0 exp(=Ttv)

exp(-tv) 0

where
X = _12[§+ v(l- Inv)} +%1(T[V+ Inv). (5.23)

As aready mentioned for the tunneling region, the
blocksin (5.22) correspond to the two isolated second-
order turning points with the Stokes constant [29]

-T_Z = r,\(/_ZT\-)[)eXp(_Z)’Z)

(5.24)

Thus, we arrive at the important conclusion that the
main peculiarity of the LZ level crossing (in compari-
son with the standard, e.g., one-potential problems) is
that the second-order turning points characterizing the
diabatic level crossing for the LZ problem possesses

different Stokes constants T, (Eq. (5.21)) and T2
(Eg. (5.24)) in the tunneling and in the overbarrier
regions.

5.2. Intermediate Energy Region

We can now reap the fruits of our effort in the previ-
ous subsection. Wefirst note that Egs. (5.11) and (5.14)
imply that as the energy approaches the top of the bar-

rier, the indices p® and p®" of the parabolic cylinder
functionsincrease and therefore deviate more and more
from the value prescribed by the Massey parameter v.
Second, B increases as || decreases, resulting in a
decrease in the values of |X| where the asymptotic
smooth matching of the solutions must be performed.
Asd — 0, these |X| values are located deeply in the
classically forbidden region, where the potentials are
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The overbarrier region can be studied similarly.
Repeating the procedure described above for the tun-
neling region (with the evident replacements k, —
-iky, and B? — %), we obtain the 4 x 4 connection
matrix

(522)
0 —exp(=Tv)
—exp(—Ttv) 0
+/2Texp(=2X) 0 |
F(=iv)
0 2T (—iv) exp(2X) exp(—Ttv) sinh(Ttv)
o |

close to the diabatic potentias; for & > 2./3/3, these
coordinates [X| are on the order of the quantum zero-
point oscillation amplitudes and, therefore, the adia-
batic representation must be used to find the solution in
this region.

These two simple observations give us a conjecture
on how to treat the LZ problem in the intermediate
energy region. We must first find the energy “window”
for the intermediate region. It is convenient to choose

the adiabatic potential frequency Q = F/,/mU,, asthe

energy scale such that the inequality |a| < 3|f/4yp?
becomes

3, 1™
UD-E<SU% 555
In other words, the characteristic interaction energy at

the boundaries of the intermediate region is indepen-
dent of U,,. However, the positions of thelinear turning

points [X*| corresponding to the energies U* + U7,
depend on the ratio U,,/ U7, . These points are located
inside or outside the interval [—agy Y2 ay??] at
U,/U3, < landat U,/UT, > 1, respectively, and the
matching conditions in the intermediate energy region
are therefore different in the two cases. In the former
case, the potentials can be reasonably approximated by
a parabola in the asymptotic matching region, and we
must therefore work with the Weber equations. In the
latter case, the matching is performed in the region
where the potentials are linear, and the equations are
therefore reduced to Airy equations.

We first investigate the case where U;,/UT, > 1.
Using the Born—Oppenheimer approach described in

—_ *
= U12.

(5.25)
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Section 2, we see that the Schrodinger equationsfor the
wave functions W, are decoupled in the adiabatic repre-

sentation with an accuracy up to y=2,

+ Vi + F2X)W, = 0.

(5.26)

For |X| < v/f, Egs. (5.26) is reduced to Weber equations
with the fundamental solutions

D—1/2—q1(i’\/2_yx)

and

D'Tﬂﬂ)%

D—IJ2+ |q2

where

v +d

G =Y G =V (5.27)

are independent of the Massey parameter v. Two real
solutions of (5.26) correspond to the upper adiabatic
potential (classically forbidden region), and two com-
plex solutions correspond to the classically alowed
motion under the lower adiabatic potential.

The argument of the Weber functionsis 0X./y , and
under the condition X < v/f, their asymptotic expan-
sions determinetheinterval where the matchingisto be
performed,

-1/2 dJ 121]

Y mgn >y (5.28)

This inequality can be satisfied only at U,,/U3, > 1,
when the intermediate region is sufficiently broad in
comparison with Q. The exponents g, and ¢, in
Eq. (5.27) are then large, and our aim is to find the
explicit asymptotic expansions of solutionsin this case.
For this, we closely follow the method in [73] (also see
monograph [72]), which isin fact an expansion of the
fundamental Weber solutions in the small parameters
1/]g;|. This method leads to the asymptotic solution of
Eqg. (5.26) at X > 0, given by

-1/2 =0y .
WiX) =Y, (X +Y,) “exp(-yXY,), (5.29)

W) = Y2 (X + Y) ®exp(iyXY.),

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

BENDERSKII et al.

where Y, = Jv ta+ X2, Using the known relation
between the fundamental solutions of the Weber equa-
tion[71, 72],

Dy(2 = exp(-imWD,(3)

IO RS o

r( )expD_IT[ 2 —u—l(iz)’

we can find the other two solutions (complementary
to (5.29)) as

Wi(X) = [ sin(maL) (X + Y,) " exp(—yXY,)

(5.30)
+ exp(—2x1)F(—ﬂJ2—2_Pa3(x + Y+)Q1exp(vXY+)},

and

Wi(X) = [—l exp(=Tig,) (X + Y_) “exp(iyXY.)

(5.31)
+ exp(- 2x2)%(x +Y) Pexp(-iyxY)) |,

where we introduce the notation

X1 = %%1"‘ %—%IHE}1+ 0

+@[—i—+ln81| }

Not surprisingly, solutions (5.29)—(5.31) can be repre-
sented as a linear combination of the semiclassical

solutions @3 in (5.6) with the coefficients

X2 = —ZEQZ

X

A/VJ_rO(+X2.

These energy-dependent angles 8, , coincide with the
adiabatic angles introduced above (see (2.12) and
(3.12)) at the level crossing point a = 0, and f|X| < v.
Both anglestake only dlightly different values over the
entire intermediate region |a| < v.

cos(28(, ;) = (5.32)

We can now find all the connection matrices for
these functions. Although the calculation is straightfor-
ward, it must be performed with caution (e.g., because
the X-dependent matrices have different functional
forms at positive and negative X). For X > 0, we obtain
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I cos0, 0
St J2Ttexp(=2x,) cosf
- . Tiexp(—2x,) coso,
ELIJiE ) —i exp(—Tq,) cosB, F2-iay)
o _0-
Ov. 0 0 0
o .o
gw.O 0 0
and for X <0,
J2mexp(=2x,)cosh, .
u,,-d 2 2 _ —
qY g F(U2-iq) i exp(—mq,) cosb,
ijE _ 0 cos8,
o _0-
W,
578 0 0
aow.o
i 0 0

The product of the matrix inverseto (5.33) and the matrix
in (5.34) determines the sought connection matrix relat-
ing the semiclassical solutionsin theintermediate energy

U Cross

247

0 0 _D -
0% g
0 0 Dq)_D
H -5 (633
sin@ 0 -
1 O®, 0
. - J2mexp(=2x,)sing,| § o
—sin(Tq,)sing, FU2+q)
O.-0
0 0 Eq)‘g
0 0 0o’ 0 (5.34)
5inG, J2Ttexp(~2X) Joig
1 — 1 . . +
—sin(Tq,)sind
r(12+aq,) (1) 1 ECDIE
0 sing,

region (cf. the connection matrices for the tunneling and
overbarrier energy regions in (5.20) and (5.22)). Per-
forming this smple agebra, we finaly obtain

] (5.35)
% I exp(-Tg;) 0 0

) i exp(—m) 26><p(2x2)r(1/2—i%iosh(nqz)exp(—nqz) 0 0

I 0 Gl sn(ng,)
_ 0 0 —sin(Tqy) COSZ(”ql)F(Jsz_:fT ql)eXp(le)_

Thismatrix hasatwo 2 x 2 block structure, similarly to
the connection matrices (5.19) and (5.22) for the tun-
neling and overbarrier regions. However, unlike matri-
ces (5.19) and (5.22) describing the transitions between
the diabatic states, matrix (5.35) corresponds to transi-
tions between adiabatic states. Indeed, at a strong level

coupling (U, > U7,), the eigenfunctions are close to

the adiabatic functions and only nonadiabatic perturba-
tions induce transitions. Therefore, the off-diagonal
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matrix elements in (5.35), which have the meaning of
the probability that the diabatic state remains
unchanged after the transition, are zero. The block with
real-valued matrix elements corresponds to the mini-
mum of the upper adiabatic potential, i.e., to anisolated
second-order turning point where [29]

— UD-E+U,,
4= —g—=. (5.36)
No.2 2003
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U/Urs
1.5 T T

1.0 III

0.5

ar ar

|
05 0 05 10 15
(E-UHU7,

0
-1.5

-1.0

Fig. 6. The E, Uy, phase diagram: (I) tunneling region,
(I1) overbarrier region. The two intermediate energy
regions |11 and I11" are separated by the linev* = 0.325.

The complex-valued block is associated with the maxi-
mum of the lower adiabatic potential, and similarly
to (5.36), we can find the relation

UO-E+Uy

ig, = —i 0 (5.37)

for the turning point. For weak level coupling, namely,
at |U* — E| < U}, and Uy, < U3, in the intermediate
energy region, the adiabatic potentials can be linearized
everywhere except asmall neighborhood | X| < v/f —
0 of the level crossing point; i.e., they can be repre-
sented as a * f|X|. Asymptotic solutions (5.6) are then
reduced to alinear combination of the functions

@ 0 (f1X]) ™ exp(£E, sgnX),

®* 0 (f|X))*exp(&_sgnX), (5.38)

_ 2 32
£ = o= (fX £ )™,

All the matrix elements required can now be calcu-
lated in the framework of the Landau perturbation the-
ory [1], which can be formulated in terms of the dimen-
sionless variables

& = 3X2-4/3UD—E 5= 3X2—4J3U_12
U12 ’ ,1k2
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in order to avoid a divergence of the parameter v as
o — 0. Theresultsof our analysisareshowninFig. 6.
The tunneling and overbarrier regions are separated
from the intermediate energy region by the lines

|U%,—E| = U%,. The intermediate region is also split
into two parts by the linev = v* = 0.325, where v* is
the value of the Massey parameter v at U;,/ U7, =1 and

|U* —E| = U3,. Intheregion v < v*, perturbation the-
ory is an adequate tool for the problem and the transi-
tion matrix elements are proportional to U;,/U7,. At

Vv > v*, we can use connection matrix (5.35). To illus-
trate the accuracy of the approximations, we have com-
puted the matrix element M,,. Theresultsare shown in
Fig. 7. Our computations demonstrate a sufficiently
good precision, secured up to two stable digits. The
accuracy of the results on the boundaries between the
intermediate and overbarrier or tunneling regionsis not
worse than 3-5% and can easily be improved using
interpolation approaches.

6. SCATTERING MATRIX

Phenomena of the LZ type can be considered as
(and applied to) scattering processes. The expressions
for the 4 x 4 connection matricesfound in Section 5 can
be used to calculate the scattering operator (or matrix)

S that converts an incoming waveinto an outgoing one.

Wefirst consider the overbarrier region in the cross-
ing problem with two linear potentials. In this case, in
addition to the crossing point chosen as X = 0, there are
two linear (first-order) turning points X, = +|a|/f (each
turning point for each of the diabatic potential s denoted
by L and R). The scattering matrix that relates the
asymptotic solutionsat X < —X; and X > X, isthe prod-
uct of the 4 x 4 connection matrix (5.22) and the two
known semiclassical connection matrices[57] (also see
[29]) describing the wave function evolution from the
turning point —X, to the crossing point 0, and from this
point to the turning point +X,, respectively. We thus
obtain a2 x 2 matrix with the block matrix elements

= Ai{exp(i(cp— @ o |
0 exp(—i (- @))
Ty = T = (1- A exp La-
y { i -1/2 } 6.1)
—exp(—iyWD) (i/2) exp(—iywd)
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Ty = Ag

. |2c0s(YWU—-(9—@)) —sin(yWU-(9- @))

sSn(yWO—(¢— @)) (1/4)cos(yWl— (@ @))|
where

Ay = (1—exp(-1tv)) 2

is the LZ amplitude of the transition between the dia-
batic states, ¢ — @ = X (see (5.23)), and W* is the
action between the linear turning points.

The diagonal elementsin (6.1), proportional to the
transition amplitude A;, describe propagating waves
(i.e., solutions of the Schrodinger equation in the lower
adiabatic potential), and the oscillating blocks corre-
spond to solutionsin the upper adiabatic potential. Off-
diagonal blocks, proportional to the probability that the
initial diabatic states remain unchanged, describe the
waves reflected from the linear turning points. The
reflection (R) and transmission (T) coefficients, of
interest in physical applications, can be found from
(6.1) by straightforward calculation,

= —i(1-A%)
x [ A exp((iyWO-2i(@— @) + exp(-iywD)] ™,
T = 2Acos(yWO- (9- @) 62

x [ A% exp(iyWO-2i (9 — @)) + exp(-iywD)] .

The poles of the scattering matrix can aso be easily
found from (6.1), and the corresponding resonance
conditionis

cos[2(yWH—(¢— @))]
=0 %exp(—va)E(l — exp(=2mv)) 2,

The action is complex-valued at the resonance points,

(6.3)

Re(yWil- (9 @)) = th+33n
(6.4)

Im(yWO- (9 @)) = —3In(1- exp(-2mv)).

The poles of the scattering matrix arein the lower half-
plane of complex E on the vertical lines corresponding
to the conventional Bohr—Sommerfeld quantization
rules (yYW* = 1i(n + 1/2)) for the upper adiabatic poten-
tia. In the diabatic limit (v — 0), the imaginary part
of the pole positions tends to infinity, and in the adia-
batic limit (v — ), the poles move to the real axis.
Thus, we see that the eigenstates of the upper adiabatic
potential are always quasistationary. The resonance
widths are determined by the residues of the scattering
matrix elements at the poles and can be shown to be
monotonically decreasing functions of v. In Fig. 8, we
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Fig. 7. Transition matrix element M1, as a function of
U/ U’iz , computed at a = 0: (@) on the boundary between
tunneling and intermediate energy regions; (b) a E = Ut
and (c) on the boundary between the intermediate and over-
barrier regions; lines 1-3, 1'-3', 1"-3" are computed for the
corresponding energy regions using (5.19), (5.25), and
(5.36), respectively.

show the energy dependence of the transmission coef-
ficient T. In the diabatic limit, T — 0, and it increases
as Uy, increases. In the overbarrier region, there appear
resonances of widths I',, increasing with the energy
increase, because the Massey parameter then decreases
and I, O exp(-2mv).
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Weillustrate the energy dependence of the transmit-
ted wave phasein Fig. 9. In accordance with the general
scattering theory [1], there are T-jumps of the phase at
each quasidiscrete energy level of the upper adiabatic

potential. At U,,/U7, < 1, the resonance widths are on

the order of the interlevel spacings. The amplitudes of
the decaying solutions (localized in the well formed by
the upper adiabatic potential) increase near the reso-

T, = (U4)Myyexp(=yWB) + M,exp(yWD)

BENDERSKII et al.

nances, this behavior isillustrated in Fig. 10. A prima-
rily important point isthat the information about decay-
ing solutions contained in the 4 x 4 connection matrix
(e.g., (5.22)) is lost when we use 2 x 2 scattering
matrix (6.1).

The scattering matrix for the tunneling region can be
found by minor modifications of the expression already
derived. Instead of matrix (6.1), we thus obtain

—i ((V4)My; exp(-yWE) — My exp(yWD))  (1/4)My; exp(—yWD) + My exp(yWD)

i((1/4)Mﬂexp(—vwEb—Mzzexp(vWEb)],

ivwd| i — -
T, = T4 = cos(mv)exp YVE| | ~(V2)exp(-yWD)| (6.5)
—1 (i/2)exp(-yWD)
Ty = Mu O ,
where My; and M,, are the corresponding matrix elements from (5.19).
We also compute the reflection and transmission coefficients
. 1 .. 1,,2 -
R=- [exp(vwib - ZMneXP(—vwiﬂ[eXD(vwib + ZMneXp(—vwﬁﬂ :
(6.6)

1
T = My exp(yWO) + ZMiiexp(-yWD) |

-1

In the intermediate energy region, the only block matrix element T,; requires a special calculation taking into
account the contributions from the complex turning points,

2T1exXp (= T0,/2)
F(U2—iq,)

Ty =

2r (12—

i exp(—Tiq,)
. (6.7)
10,) exp(—Tiq,/2) cosh (1)

—i exp(-Tqy)

The other matrix elements are the same as in (5.34).
Finally, we also find the reflection and the transmission

coefficients in the intermediate energy region
N1+ exp(=2ma,)

exp| -ifp- 7],

T = exp(-ig),

J1+ exp(-21mg,)

exp(-Tiq,)

R =
(6.9)
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J2m

where@= arg['(1/2—-iq,)] .

7. QUANTIZATION RULES
FOR CROSSING DIABATIC POTENTIALS

Although instanton trgjectories are rather simple
objects and can relatively easily be found analytically,
calculations of the quantization rules within the instan-
ton approach are rather involved and require the knowl-
edge of the scattering matrix and all the connection matri-
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P
1.0

0.8

1N

0.6

2 3 4
(E-UHU,

-2

Fig. 8. The T versus E dependence for (a) Uy, = UJ,,
(b) Ujp = 0.5U7,, and (c) Uy, = 0.25U7%,; stars mark the

boundaries of region 11", thin lines for the overbarrier and
tunneling regions, and bold lines show the results for the
intermediate energy region.

ces calculated in the previous sections. In this section, we
apply these results to find the quantization rules for the
crossing diabatic potentials shown in Fig. 11. Depending
on the Massey parameter, the situations shown in the
figure exhaust all cases practicaly relevant for spectros-
copy of nonrigid molecules (symmetric or asymmetric
double-well and decaying potentials).

Within the instanton approach, the quantization rule
can be formulated as the vanishing condition for the
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Fig. 9. Transmitted wave phase as a function of E in the
overbarrier region at Ugp = U7, .

amplitudes of the solutions ®; and ®r that exponen-
tialy increase at X > 0 and X < 0, respectively. Taking
into account that W} = W (the actions in the corre-

sponding wells of the lower adiabatic potential) and
using connection matrix (5.19), we obtain the quantiza-
tionrule

tan(yW}) = i%exp(vw;), (7.)

where W§ is the action in the barrier formed in the

lower adiabatic potential and p = U, isthe correspond-
ing matrix element of connection matrix (5.19).

Quantization condition (7.1) differs from the well-
known [1] quantization rule for the symmetric double-
well potential only by the factor 1/p varying from O to
1 in the diabatic and adiabatic limits. Therefore, the
tunneling splitting at finite values of the Massey param-
eter v can be represented as the product

A, = Ap(v) (7.2

of the tunneling splitting A in the adiabatic potential
and the factor

@ v-1/2

p(v) =
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Fig. 10. Amplitudes of the decaying solutions ®, at X >0
versus E for (1) Uy, = UJ,, (2) Uy, = 05U7,, and
(3) Uy =0.25U%,.
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Fig. 11. The diabatic level crossing phenomena: (a) cross-
ing region, (b) bound initial and decay final states, and
(c) bound initial and final states.

associated with the transition amplitudes between the
diabatic potentialsin the crossing region.

It is particularly instructive to consider (7.1) as the
standard [1] Bohr—Sommerfeld quantization rule, with
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both the geometrical ¢, and tunneling X, phases
included additively in the right-hand side. In the adia-
batic limit p(v) — 1, we find that ¢,, — 0 and (7.1)
reduces to the quantization of the symmetric double-
well potential. In the diabatic limit, ¢, = —x,, and the
geometric phase compensates the tunneling one. The
physical argument leading to this compensation can
easily berationalized asfollows. At thereflection at the
crossing point X = 0, the trgjectories in the classically
forbidden energy region are the same as those for the
tunneling region but with the phase shift 1t

We now focus on quantization rules for the overbar-
rier energy region. Closely following the above analy-
sis for the tunneling region (replacing connection
matrix (5.19) by matrix (5.22) and making some other
self-evident replacements), after some tedious a gebra,
we finally obtain the quantization rule

(1-exp(-2mv)) cos(2yW + (¢— @))

x cos(YWH-(@— @)) (7.4)

+ exp(=2v) cos’ S/Wf + \%% =0,

where W* isthe action in the well formed by the upper
adiabatic potential and @ — @, = X is determined
from (5.23). Equation (7.4) impliesthat the eigenstates
are determined by the parameter

exp(=21v)

B = 1-exp(-2mv)’

(7.5)

Inthediabatic limitv — 0, and hence B — 1/(21v),
the main contribution to (7.4) is due to the second term
which leadsto asplitting of degeneratelevelsinthedia-
batic potentials. Moreover, because

y%N*+ —T[[n+%

+2vsm[ %N* + —

the splitting increases as the Massey parameter v
increases; the splitting is an oscillating function of the
interaction U,,.

Inthe adiabatic limit, asv —» o, @— @, — 0, and,
therefore, B = exp(—21v) in accordance with (7.5), the
main contribution to (7.4) comes from the first term,
which determines the quantization rule for the upper
one-well potential and for the lower double-well poten-
tial in the overbarrier energy region. In this limit, the
parameter B plays the role of the tunneling transition
matrix element. For B smaller than the nearest level
spacingsfor the lower and upper potential's, we can find

(7.6)
0
—+ (Po} 0
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two sets of quantization rulesfrom (7.4) that |ead to two
sets of independent energy levels

ywl = T[B‘I1+1£, 2yW; = T[Bw2+:—l£. (7.7)

Because the eigenstate energy level displacements
depend on U,,, resonances can occur at certain values
of this parameter, where the independent quantization
rulesin (7.7) are not correct any more. The widths of
these resonances are proportional to exp(—2mv) and are
therefore strongly diminished as the Massey parameter
v increases. Thisbehavior iseasily understood, because
the wave functions of the excited states for the lower
potential are delocalized in the limit, and their ampli-
tudes in the locdization regions for the low-energy
states of the upper potential are very small.

A more complicated problem is to derive the quan-
tization rulein the intermediate energy region. We must
use connection matrix (5.35) and take the contributions
from the imaginary turning points into account. Never-
theless, the quantization rule can finally be written in
the simple and compact form

cos(2yW;y) = —exp(-Tqy),

where g, = y(v — a)/2 is determined by (5.27).

It is useful to illustrate the essence of the general
result given above by simple (but nontrivial) examples.
Wefirst consider two identical parabolic potentialswith
their minimaat X = +1 and with acoupling that does not
depend on X. Because of the symmetry, solutions of the
Schrodinger equation in this case can be represented as
symmetric and antisymmetric combinations of the
localized functions

(7.8)

W* = %2((1%i Pg). (7.9)

The functions are orthogonal, and, in addition, the two

sets of functions (W, , W;) and (W5, W) (where the

respective subscripts 0 and e denote the ground and the
first excited states) correspond to the two possible types
of level crossings.

In Fig. 12, we schematically depict the dependence
of the positions of levels on the coupling U,,. In the
energy region E< U* + U,,, where only discretelevels
of the lower adiabatic potentials exist, there are pairs of
the alternating parity levels (W, , W) and (W, Ws).
The tunneling splittings increase  monotonically,
because the Massey parameter v increases, and the bar-
rier decreases with U,,. The same level and parity clas-
sification remains correct for the energy region above
the barrier of the lower adiabatic potential, where the
spectrum becomes almost equidistant. However, in the
overbarrier region, the resonances occur between levels
of the same parity; the sequence of the odd and of the
even levelsis broken, and level displacements are not
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Fig. 12. Level displacements versus U4, for two diabatic

crossing potentials (1 + X)%/2. Dashed lines show the inter-
mediate energy region, dotted—dashed lines show displace-
ments for the top and for the bottom of the adiabatic poten-
tials. k, n, and n' are quantum numbers for the diabatic,
lower adiabatic, and upper adiabatic potentials.

monotonic functions of U;,. Some of the levels of dif-
ferent parities can pairwise cross. For the upper adia-
batic potential, the level sequenceisoppositeto that for
the lower adiabatic potential. We have checked the
results of our semiclassical approach and found a
remarkably good agreement with the numerical quan-
tum diagonalization.

The second instructive example involves the cross-
ing of one-well and linear diabatic potentials. This
leads to the lower adiabatic decay potential and to the
upper one-well adiabatic potential. The quantization
rules then correspond to the vanishing amplitudes for
the exponentially increasing solutions as X —» —oo; in
addition, we must require that no waves propagate from
the region of infinite motion, i.e., the region X > 1/2.
Performing the same procedure as above, we find that
in the tunneling energy region, the eigenstates are the
roots of the equation

4

tan(yWy) = i
an(yWy) lpz(v)

exp(2yWs), (7.10)

with the same notation as above.
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Fig. 13. T', vs. Uy, for the quasistationary states at the dia-

batic potentials (1 + X)%/2 and 1/2 — X crossing; (8) 1-4 are
the level energies 0.042, 0.125, 0.208, and 0.292 for the
lower adiabatic potential, (b) 1'-3' are the level energies
0.625, 0.708, and 0.792 for the upper adiabatic potential.

To proceed further, it is convenient to introduce a
complex action to describe quasistationary states,

yw = niEr a0

o 550 (7.12)

where Q = 0W,/0E is evidently independent of E. The
real and imaginary parts of the quantized eigenstates
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determined from (7.11) are given by

- o1
E, = QE”Q]’
(7.12)
o= P(V)5eexp(-2yWE).

This relation describes the nonadiabatic tunneling
decay of quasistationary states of the lower adiabatic
potential. Similarly to the case with the crossing of two
parabolic potentias (Eq. (7.2)), the tunneling and the
adiabatic factors here enter the decay rate multiplica-
tively. Because the decay rate is proportional to the
square of the tunneling matrix element, we have I, [
p?(v), asit should be.

In the overbarrier energy region, the quantization
ruleis

(1— exp(=2mv)exp[—i (YW} + 0— @)]
x cos(yWH— @+ @) + exp(-2mv)

(7.13)
0 1yWo yWi _
X eXpr— DCOSH/VVE 50 =0
and the actions depend on the energy E as
- nE _ Y9V Ep
YW = 15, YW = g a; +QlD, (7.14)

where Q and Q; are E-dependent frequencies of the
diabatic and the upper adiabatic potentials.

In the diabatic limit, the decay rateis proportional to
the Massey parameter and is given by

Fnznvcosz(yw—qﬁ @)- (7.15)

In the opposite, adiabatic limit, the decay rateis

M= exp(=2mv)[1-sin(2yW! + - @)]. (7.16)

In both limits, the decay rate is an oscillating function
of Uy,. We illustrate the dependence I'(U,,) for the
crossing diabatic potentials U; = (1 + X)%/2 and U, =
12 - X in Fig. 13. We note that while the tunneling
decay rate of low-energy states increases monotoni-
cally with the Massey parameter v, the decay rate of
highly excited states tends to zero in both (diabatic and
adiabatic) limits. There are certain characteristic values
of Uy, a which the right-hand side of (7.15) or (7.16)
vanishes, and, therefore, I',, = 0.

The last, more general example that we consider in
this section describes two nonsymmetric potentias
crossing at X =0,

1
2

In a certain sense, this is the generic case, and as the
parameter b entering potential (7.17) varies from 1 to

U, = S(1+X)2% U, = %(xz—szm). (7.17)
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Fig. 14. Surviva probability for the localized n = 0 state;
(a) b=1500, dashed linesU,=0.15, solid linesU;, =0.21;
(b) b=1500, dashed linesU4, =0.28, solid linesU,=0.21.

oo, We recover the two particular examples considered
above and pass from two identical parabolic potentials
to the crossing of the one-well and linear diabatic
potentials. Potentials U, of this type were recently
investigated by two of the authors (V.B. and E.K.) [64]
with the aim of studying the crossover behavior from
coherent to incoherent tunneling with the increase of
the parameter b; thelarger b is, the larger the density of
the final states becomes. The criterion for coherent—
incoherent crossover behavior found in [64] isbased on
comparison of the transition matrix elements and the
interlevel spacingsin thefinal state. A similar criterion
should hold for the LZ level crossing problem, but the
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tunneling transition matrix elements must then be mul-
tiplied by the small adiabatic factor. Therefore, the
coherent—incoherent tunneling crossover region moves
to the denser density of final states, and the larger U,
is, the smaller the region for incoherent tunneling
becomes.

A totally different situation occurs for highly
excited states. In the diabatic limit, the transition matrix
element increases with the Massey parameter v, and,
therefore, at a given b value, the system movesto more
incoherent behavior. In the adiabatic limit, the transi-
tion matrix element is exponentially small and coher-
ence of the interwell transitions should be restored.
However, because the matrix elements are oscillating
functions of U, for the intermediate range of this cou-
pling, coherent—incoherent tunneling rates are also
nonmonotonically varying functions. These unusual
phenomena are illustrated in Fig. 14, where we show
time dependence of the survival probability P for the
initially prepared state n = 0 localized in the left well.

8. CONCLUSION

We have reconsidered a very basic subject, the LZ
problem. Currently, about 100 publications per year are
related to the LZ prablem. Clearly, it is impossible to
give a complete analysis of the achievements in this
field. Our aim was therefore only to show some recent
trends and our new results, to help beginners and
experts find cross-references between the many physi-
cal phenomenarelated to the LZ problem. The problem
was first addressed long ago, and many results, already
classic, are now known from textbooks [1, 37].
Although exact quantum-mechanica calculations are
still prohibitively difficult, many important results have
been obtained in the framework of the WKB approach
[1-65]. The accuracy of the modified WKB methods
can be improved considerably; we note, e.g., [30],
wherethe standard WK B was extended by theinclusion
of a special type of trgjectories in the complex phase
plane such that the semiclassica motion along these
trajectories is described by the Weber functions. This
method, ascending to Landau [1], is equivalent to the
appropriate choice of the integration path around the
turning point. It appearsto be quite accurate for the tun-
neling and overbarrier regions, where the characteristic
fourth-order polynomial (see (4.16)) can be reduced to
a second-order polynomia (two pairs of roots are
nearly degenerate). However, even in this case, some
corrections have been found in [23-25] that cannot be
neglected. In the intermediate energy region, where al
four roots are noticeably different, the method becomes
invalid. In addition, the choice of these additional spe-
cial tragjectories (which must beincluded to improvethe
accuracy of the WKB method near the barrier top)
depends on a detailed form of the potential far from the
top, and, therefore, a nonuniversal procedure is to be
performed from the very beginning in each particular
case.
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We believe we are the first to explicitly address the
problem of the behavior in the intermediate energy
region. In al previous publications, this region was
considered as avery narrow and insignificant one, or at
most, the results were obtained by a simple interpola
tion from the tunneling region (with amonotonic decay
of the transition probability) to the overbarrier region
(with oscillating behavior). Thefact isthat classical tra-
jectories can be separated into two classes, “localized”
and “delocalized,” in the following sense. If the energy
issufficiently close to the minimum or maximum of the
potentials, the tragjectories can be caled confined,
because they are determined by the universal features
of the potentialsin the vicinity of these extremal points.
Evidently, thisisnot the casein the intermediate energy
region. In this paper, we have found that contrary to the
common belief, the instanton trajectory is arather sim-
ple object and can be explicitly computed even for the
intermediate energy region.

Within the framework of the instanton approach, we
present a full and unified description of the 1D LZ
problem, which can very often be quite a reasonable
approximation for real systems. Because different
approaches have been proposed to study the LZ prob-
lem, we develop a uniform and systematic procedure
for handling the problem. We reproduced all the known
results for tunneling and overbarrier regions and stud-
ied the intermediate energy region. Specifically, we
applied our approach to the Born—Oppenheimer
scheme, formulated the instanton method in the
momentum space, and presented all the details of the
LZ problem for two electronic states also using the
instanton description of the LZ problem in the coordi-
nate space. Neglecting higher order space derivatives,
we found asymptotic solutions; using the adiabatic—
diabatic transformation, we then matched the solutions
in the intermediate region. Based on these results, we
derived the compl ete scattering matrix for the LZ prob-
lem, the quantization rules for crossing diabatic poten-
tials. Our results can be applied to several models of
level crossingsthat arerelevant in the interpretation and
description of experimental data on spectroscopy of
nonrigid molecules and on other systems undergoing
crossing and relaxation phenomena

We also note that in spite of the sufficiently long his-
tory of the LZ phenomena, study of it isstill inan accel-
erating stage, and a number of gquestions remain to be
clarified (we mention only several new features of the
phenomena that have recently attracted attention, such
asthe LZ interferometry for qubits [74], LZ theory for
Bose-Einstein condensates [ 75], and multiparticle and
multilevel LZ problems [76-79]). Much of the excite-
ment arises from the possibility of discovering novel
physics beyond the semiclassical paradigms discussed
here. For example, we found in Sections 2 and 3 that the
wave functions of nuclei moving along periodic orbits
acquire geometric phases (the effect is analogous to the
Aharonov—Bohm effect [38], but is related not to exter-
nal magnetic fields, but to nonadiabatic interactions).
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The relation between the two phenomena, the geomet-
ric phases, and the periodic orbits can be established
using the Lagrangian (instead of Hamiltonian) formu-
lation of the problem, which enables one to take into
account explicitly the time dependence of the adiabatic
process under consideration, using propagator tech-
nique [34-36] (also see, e.q., [4, 43]). Proper handling
of these aspectsis beyond the scope of our work, how-
ever. Further experimental and theoretical investiga-
tions are required for revealing the detailed micro-
scopic and macroscopic properties of different LZ sys-
tems.

In the fundamental problems of chemical dynamics
and molecular spectroscopy, transitions from the initial
to final states can be treated as a certain motion along
the potential energy surfaces of the system under con-
Sideration. These surfaces are usually determined
within the Born—Oppenheimer approximation (see Sec-
tion 2). However, the approximation becomes inade-
quate for the excited vibrational states when their ener-
gies are on the order of the electronic interlevel energy
spacing or near the dissociation limit. In both cases,
nonadiabatic transitions should be taken into account
and most of the nonradiative processes occur owing to
this nonadiabaticity. Typical examples investigated
in [80] are the so-called predissociation, singlet—triplet
or singlet—singlet conversion, and vibrational relax-
ation phenomena.

Slow atomic collisions provide other examples of
nonadiabatic transitions between electronic states,
where the time dependence of the states is determined
by distance and by the relative velocity of the colliding
particles [33]. Some examples of nonadiabatic transi-
tions relevant in semiconductor physics can befoundin
[81], those pertaining to nuclear or elementary particle
physicsin [82], and those relevant in laser or nonlinear
optic physics in [83-86]. The latter topic is interesting
not only in its own right, but also as an illustration of
novel and fundamental quantum effects related to the
LZ model. The off-diagonal electronic state interac-
tions arise from the dipole forces in this case. For rela-
tively short laser pulses, this leads to the time-depen-
dent LZ problem for two electronic states, considered
in our paper in detail (also see the laser optic formula:
tion in [83-85]). The probability of finding the system
in the upper state after a single resonant passage can be
computed in the framework of the LZ model. Thisis
related to one important aspect of the LZ problem,
namely, dissipative and noisy environments. When
external actions (e.g., fields) driving LZ transitions are
reversed from large negative to large positive values,
the dissipation reduces tunneling and the system
remainsin the ground state, or in other words, the ther-
mal excitation from the ground state to the excited state
suppresses such adiabatic transitions. However, for the
field swept from the resonance point, the tunneling
probability becomes larger in the presence of dissipa
tion (see, e.g., [67]). The increasing precision of exper-
imental tests in the femtosecond laser pulse range

No. 2 2003



INSTANTON VERSUS TRADITIONAL WKB

enables one to excite well-defined molecular states and
to study their time evolution using the second probing
laser beam [17].
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Abstract—The low-frequency electrical conductivity of strongly nonideal hydrogen, helium, and xenon plas-
mas was measured in the megabar range of pressures. The plasmas in question were generated by the method
of multiple shock compression in planar and cylindrical geometries, whereby it was possible to reduce effects
of irreversible heating and to implement a quasi-isentropic regime. As aresult, plasma states at pressuresin the
megabar range were realized, where the electron concentration could be as high as n, = 2 x 10?3 cm3, which
may correspond to either adegenerate or aBoltzmann plasma characterized by a strong Coulomb (I'y = 1-10)

and astrong interatomic (M, =r, n ~ 1) interaction. A sharp increase (by three to five orders of magnitude) in

the el ectrical conductivity of astrongly nonideal plasma due to pressure-produced ionization was recorded, and
theoretical models were invoked to describe this increase. Experimental data available in this region and theo-
retical models proposed by various authors are analyzed. The possibility of afirst-order “ phase transition” ina

strongly nonideal plasmaisindicated. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

The behavior of plasma, which is the most wide-
spread state of matter in nature, under the conditions of
strong heating and compression is of considerable
interest from the general physical point of view; it is
also of practical interest for astrophysics, the physics of
giant planets, and promising applications in power
engineering [1-3]. Particular attention is being given to
the ionization composition of a plasma, since this pro-
vides a basis for calculating its thermodynamic, trans-
port, and optical properties.

It is well known that plasma can be obtained not
only via strong heating up to temperatures commensu-
rate with the ionization potentia, ksT ~ I, but dso viaa
strong compression to a state in which the interparticle
spacing becomes commensurate with atomic sizes, r, ~

Y%+ the second way isreferred to as cold ionization or

pressure-produced ionization. While thermal-ioniza-
tion processes have to date received quite adegquate
study [1], investigation of pressure-produced ionization
is much more complicated since one deals here with a
cold (kgT < I) compression of a plasmato pressuresin

the megabar range and densities that considerably
exceed solid-state values. Under such conditions, the
interaction between particles becomes strong (nonide-
ality), the electron shells of atoms and molecules over-
lap, and the typical level of electrical conductivity is
commensurate with that in metals. Frequently, such a
regimeiserroneously called metalization, even though
Landau and Zeldovich [4], Mott and Davis [5], and
Hensel and Frank [6] showed that ametal can be distin-
guished from a dielectric only by their electron spectra
at T =0 but not by the level of the electrical conductiv-
ity itself. By way of example, we indicate that dilute
tokomak plasmas (n, ~ n, ~ 10* cm3, T = 5-10 keV)
have an electrical conductivity close to that of pure cop-

per [7].

Implementing theisothermal expansion of low-boil-
ing metals at supercritical pressures[6, 8], one can con-
tinuously pass from a high-conducting metallic state to
low-conducting gaseous dielectric states and establish
that a metal—dielectric transition occurs in a narrow
range of densitiesthat are closeto (Cs, Rb, K) or some-
what greater (Hg) than the matter density at the critical
point. For the majority of other metal's, which constitute

1063-7761/03/9702-0259%$24.00 © 2003 MAIK “Nauka/Interperiodica’



260

FORTOV et al.

P, GPa
T LI T g T T T
103 - Jupiter ~ @ Ultraviolet las 3
? Mew Magnetic ! Condensed high raviote a%irﬁ _ ‘4;
0 T F s S <G -\, s /]
g Diamond //é
C anvil ]
10 E . <SS - 7O T = -11:7.(3 =1 2
2 Solid state ock adiab X 1’/5
1 E \ \ Mp=1 I,' E
E Static \ J 3
T compression Plasma phase transition 3
—1 P
10 E L -~ - /7 ... 12 Explosively driven
F / -=- 13 shock tubes
102 v —_
E -- 16 Calculation
- { Liquid state — 7
1073k . - 18
E P, Experiment 19
- ¢! o7
E ] . 3
10-5E &5 il §
g % 6 :
10—6 [ 4 | Ll i
0.01 1 10 50
T,10°K

Fig. 1. Phase diagram of hydrogen. The displayed experimental
pinch [33], (4, 5) cylindrical compression [26, 27], (6) spherical
of alight-gas gun [34, 35], (9) multiple shock compression [36]
for the critical point of the plasma phase transition in hydrogen
and Kundt [38], (14) Saumon and Chabrier [23], (15) Haronska

data were obtained in (1, 2) magnetic compression [29, 30], (3) Z
compression [28]; (7, 8) single and multiple compression by means
, and (10, 11) shock compression by alaser [31, 32]. The estimates
were taken from the articles of (12) Beule et al. [37], (13) Robnic
et al. [39], and (16) Mulenko et al. [24]. The calculated data corre-

spond to (17) compression at a diamond anvil [11], (18) the parameters of Jupiter's atmosphere [40], and (19) the adiabatic curve

for the shock compression of hydrogen [34].

80% of the elements of the periodic table, critical tem-
peratures and pressures are extremely high and are
inaccessible to methods of static experiments. On the
basis of their recent experiment, DeSilvaand K atsouros
[9], who were able to reach supercritical pressures via
afast electric explosion of metallic conductors, pointed
out that solid-state metals loose their metallic conduc-
tivity upon a more significant expansion (by afactor of
5t07).

A method that employs the adiabatic expansion of
matter preliminarily compressed by strong shock
waves to pressures of the megabar range makes it pos-
sible to explore a wide region of the phase diagram of
metals, including the vicinity of the phase-transition
point [3, 10]. Measurements of thermodynamic (Cu,
Pb, Bi, Fe, U) and radiative (Bi) properties of some
metals according to this procedure permitted determin-
ing the equation of state, the coefficient of absorption,
and the parameters of the critical points for the metals
under study, but they did not confirm the hypothesis[4]
that there occur plasma phase transitions caused by the
dielectrization of metalsin the supercritical region.

A considerable number of studies (see[11] and ref-
erences therein) motivated by searches for metallic

JOURNAL OF EXPERIMENTA

hydrogen [11-13] in connection with its possible high-
temperature superconductivity in a metastable medium
[14] have been devoted to the metallization (T = 0) of
dielectricsat high pressures. Estimates of the metalliza-
tion pressure P* that were obtained for various sub-
stances by methods of the band theory of solids fall
within the megabar {P*(H,) = 3 Mbar [11-16],
P*(Xe) = 1.5 Mbar [17]) and ultramegabar { P* (He) =
110 Mbar [18], P*(Ne) = 1.34 Gbar [19]} ranges.
Although the static experimental technique of diamond
anvils presently enables one to obtain pressures as high
asabout 5 Mbar [11], only in recent years hasit become
possible to record the metallization of xenon at P* =
1.5 Mbar [20] in such experiments; at the same time,
hydrogen seemstoremain adielectricat P= 3 Mbar [11].

By using the technique of strong shock waves to
ensure a compression and an irreversible heating of
matter, one can obtain much higher pressures (the
world record is about 4 Gbar [21]), the upper limit on
them being constrained only by the intensity of the
source of their generation and not by the strength of
diamond under static conditions. Concurrently, the vis-
cous dissipation of the kinetic energy of the flux in the
shock-wave front, along with compression, leads to a
considerable heating of matter, and this stimulates the

L AND THEORETICAL PHYSICS Vol. 97
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thermal (kgT ~ I) ionization of aplasma, whose kinetics
and thermodynamics have been studied in detail both
for anideal and for astrongly nonideal case (see [1] and
[2, 3], respectively). In such experiments, the influence
of density effects on the ionization equilibrium is not
pronounced against the background of fully developed
thermal ionization and is described by various models
of ionization-potential reduction [1-3, 22]. It should be
noted that a number of theoretical models |ose thermo-
dynamic stability upon extrapolation to the region of
strong nonideality and that thisisattributed in[4, 6, 22—
25] to the occurrence of afirst-order plasmaphase-tran-
sition. Thermodynamic states realized to date in static
and dynamic experiments [26-36] are displayed in the
phase diagram of molecular hydrogen (H,) in Fig. 1.
Also given in the same figure are theoretical estimates
for plasma phase transitions, along with relevant criti-
cal points[23, 24, 37-39].

In order to separate density and thermal effects of
ionization, one must naturally try to suppressthe effects
of irreversible heating (ksT < 1) by implementing a
guasi-isentropic compression. For this purpose, the
compression of the substance in this study was accom-
plished by means of a sequence of direct and reflected
shock waves that emerge upon their reverberation in
planar and cylindrical geometries. For the source of
generation, we employed explosive devices of end-face
and cylindrical throwing. By using processes of multi-
ple shock compression, it proves possible to implement
an order of magnitude reduced heating and an approxi-
mately tenfold increased compression of a plasma in
relation to what we have in a direct wave, aswell asto
record, in experiments with H,, He, and Xe, a five
orders of magnitude increase in the plasma conductiv-
ity over a narrow density range peculiar to the regime
of cold ionization of a plasma.

2. GENERATION AND DIAGNOSTICS

A typical layout of experiments to implement mul-
tiple shock compression of condensed hydrogen and
inert gases in planar geometry is shown in Fig. 2 [36,
41, 42].

Shock waveswere generated by theimpact of asteel
impactor (2) 1-3 mm thick and 3040 mm in diameter
accelerated by detonation products of a condensed high
explosive (hexogen) (1) to velocities of 3-8 km/s with
the aid of the gradient-cumulation effect [43]. Explo-
sive throwing devices devel oped for these experiments
ensured that, at the instant of impact against the bottom
of the experimental assembly, the diameter of the flat
part of the impactor was 15-30 mm. The absence of
melting and evaporation of a shock-worker material, as
well as the absence of mechanical fracture of the
impactor during dynamic acceleration, was tested in a
dedicated series of methodological experiments. The
transition of a shock wave from ametallic screen (3) of
thickness 1-1.5 mm to the substance under study (4)
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Fig. 2. Layout of experiments aimed at implementing mul-
tiple shock compression of condensed hydrogen and inert
gases in planar geometry: (1) high-explosive charge,
(2) steel plate, (3) bottom of the experimental assembly;
(4) substance under study, (5) leucosapphire window,
(6) indium electrodes, (7) shunting resistance, (8) quartz—
quartz light guide, (9) coaxial electric cables, and (10) gas-
supplying pipes.

having aninitial thicknessof 1to 5 mm generated, init,
the first shock wave of amplitude pressure P; =
0.02-0.8 Mbar; upon being reflected from atransparent
sapphirewindow (5) 4-5 mm thick and 20 mmin diam-
eter, this wave excited a repeated-compression shock
wave. A further rereflection of shock waves between
screen 3 and window 5 led to multiple shock compres-
sion of the sample to maximum pressures of P = 1—
2 Mbar, level of which was determined by the velocity
of theimpinging impactor, itsthickness, and the dimen-
sions of the substance being studied.

The initial states of the explored substances for a
further multiple compression were either in the gas
region of the phase diagram at pressure and tempera-
ture values of P, = 5-35 MPa and T, = 77.4-300 K,
respectively, or in its liquid region at P, = 0.1-1 MPa
and T = 20.4-160 K. In thelatter case, liquefaction was
performed from high-purity gases supplied to the
assembly through pipes (10). In liquefying hydrogen,
use was made of a two-contour system of cooling, the
external contour being filled with nitrogen, while, in
liquefying xenon, the internal contour of the cooling
system was filled with ethanol. The temperature in the
assembly was monitored by thermocouples and plati-
num resistance thermometers.

The process of multiple compression was observed

by means of fast optic—€electronic convertors, aswell as
by means of a five-channd fiber-optic-coupled pyro-
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Fig. 3. Typical oscillogram of the experiment: (1, 2) voltage at the “ positive” and the “ negative” electrode and (3, 4) brightness tem-
peratures of two channels for recording optical radiation (in this representation, the fourth temperature axis is linear in the range

3000-7000 K).

meter with time resolution of 2-5 ns (8). Since the
shock-compressed sapphire of optic window 5 retained
transparency up to P = 20 GPa and made it possible to
record the instants of reflection of shock wavesfromits
surface at still higher pressures and since its electric
insulating properties were at an acceptable level under
the conditions of compression up to pressures of about
2.2 Mbar [44], fiveto six reverberations of shock waves
could be detected by measuring the conductivity of the
compressed layer and optical radiation. Initial stages of
the compression process (up to 20 GPa) were recorded
inindividual experiments with the aid of aVIZAR dif-
ferential laser interferometer [45]. In order to synchro-
nize the system for measuring the resistance of the
compressed layer with that for detecting optical radia-
tion, the light pulse from a laser diode that was con-
nected instead of the measuring cell was recorded
before each experimental run through alight guide and
through the convertor, along electric cables (9) of the
system for measuring resistance.

In the scheme chosen for the present experiments
(see [38, 41, 42]), the compression and irreversible
heating of the substance under study were implemented
by series of shock waves arising upon successive reflec-
tions from the sapphire window and the steel screen. A
hydrodynamic analysis of the processreveal ed that, fol-
lowing the propagation of the first two waves through
the compressed layer, a further compression proceeded

JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97

in a quasi-isentropic way. This made it possible to
advance to the region of higher densities (p/p, ~
10-100) inrelation to the case of single wave compres-
sion and to reduce the final temperature, whereby one
enhances interparticle-interaction effects, which are of
interest for the present investigation. The reverberation
of shock waves manifests itself as distinct stepsin the
oscillograms of radiation and electrical conductivity

(Fig. 3).

The measured instants of shock-wave arrival at the
plasma-volume boundaries (t; —tg) enable one to inde-
pendently determine, by using the laws of mass,
momentum, and energy conservation, the thermody-
namic shock-compression parameters P, p, and E [3].
Data abtained in this way for the caloric and thermal
equations of state of hydrogen, as well as of helium,
which was chosen as areference substance, up to pres-
sures of 30—60 GPa are in accordance with the “ chem-
ical” non-ideal-plasma model [2, 3, 22] and with the
solutions from the semiempirical equation of state of
hydrogen [27, 46]. At pressures in excess of 60 GPa,
however, no reliable information about the thermody-
namics of the substances being studied could be
obtained by means of the procedures used. In that case,
the thermodynamic parameters of multiple shock com-
pression at the final stage were calculated on the basis
one-dimensional hydrodynamic codes that employ the
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semiempirical equations of state from [27, 46] and [47]
for hydrogen and structural materials, respectively.

This set of gasdynamic and temperature measure-
ments was used to determine the thermodynamic
parameters of shock compression at its initial stages,
the results were also used as input data (al ong with the
velocity W of the impinging impactor) in testing one-
and two-dimensional gasdynamic codes according to
which the parameters in question were determined for
the case of higher pressures, densities, and tempera-
tures of multiply compressed matter—the semiempiri-
cal equations of state [27, 46], valid over awide region,
were invoked in this determination. The errorsin the P,
p, and T values found in this way are 5, 10, and 20%,
respectively.

The electrical conductivity of a shock-compressed
plasma was determined by a probe method. An electric
current was supplied to the shock-compressed plasma
under study by means of electrodes (6) that were
arranged orthogonally to the plane of the shock-wave
front. Further, the current propagated along the shock-
compressed sample and then arrived at the surface of
steel screen 3, whereupon it left the compressed region
through agrounding electrode. The arising electric sig-
nals transferred by high-frequency coaxial cables (9)
were recorded by multichannel digital oscilloscopes
whose transmission bandwidth was 500 MHz. Use was
made of two- or three-electrode schemes for recording
resistance. In the second case, whose circuit diagramis
given in Fig. 4, we were able to get rid of cophasa
noises and to record the instants of wave reflection not
only from the optic window but also from the screen.

Theinstantst,, t3, ts, t;, and ty corresponded to wave
reflection from the window, and this was recorded with
the aid of an electric (lines 1, 2 in Fig. 3) and an optical
(lines 3, 4) in Fig. 3) procedure; the instants t,, t,, tg,
and tg corresponded to wave reflection from the screen.
With the aim of eliminating breakdown and arc effects
in transmitting the transport current through a plasma,
its density was maintained at a level not exceeding
10* Alcm?. By varying this quantity within the range
10%-10* A/cm? in a dedicated series of measurements,
it was shown that the current—voltage characteristic of
the plasmaiis linear. Determination of the plasma elec-
trical conductivity on the basis of the plasma-gap resis-
tance measured in thisway was performed by resorting
to numerical and electrostatic simulations of the corre-
sponding electrostatic problem. As a result, the accu-
racy in measuring the plasma electrical conductivity
was estimated at 20 to 50%.

The second series of measurements was performed
by employing shock compression under the conditions
of cylindrical geometry [48-50] (see Fig. 5).

A cylindrical charge of a high explosive (an alloy
formed by trotyl and hexogen in aratio of 40 : 60), its
outer diameter being 30 cm, wasinitiated over the outer
surface at 640 pointsthat generated, at the inner surface
of the charge, ahighly symmetric detonation wave (the
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Fig. 5. Layout of cylindrical compression.

difference in time of arrival was not greater than
100 ns). The arrival of this wave at the inner surface
caused the centripetal motion of the steel impactor at an
initial velocity of W= 5 km/s. The deceleration of this
cylindrical impactor against the metallic surface of the
chamber filled with the gas under study at an initial
pressure of up to 70 MPa generated a converging shock
wave, whose intensity increased as it traveled to the
center, thisincrease being governed by the regularities
of geometric cumulation [51]. Thereafter, there
occurred successive reflections of the shock wave from
the center of symmetry and from the moving inner sur-
face of the chamber, and this gave rise to multiple shock
compression, which, asin the case of planar geometry,
proved to be close to isentropic compression.

At each instant of time, the profiles of thermody-
namic parameters of multiple compression were deter-
mined on the basis one- or two-dimensional gas
dynamic calculations employing, for the high explo-
sive, the structural materials of the assembly, and target
plasmas, semiempirical equations of state that are valid
over a wide region. In some special experiments, the
process of cylindrical explosive compression was mon-
itored by measuring the velocity of the impactor by
€l ectric-contact and fiber-light optical basis methods, as
well as by means of examination along the axis with
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Fig. 6. Oscillogram of the experiment where the initial
hydrogen pressure was 70 M Pa (thetime-scaledivision here
is1ps).

two hard-radiation sources [52] emitting beams crossed
at an angle of 135°; this made it possible to follow the
dynamics of compression and to test the quality of gas-
dynamic calculations and yielded additional boundary
conditionsfor the codes used in those calculations. The
parametersfound in thisway for the shock-compressed
plasma in the device being considered had the follow-
ing values: for deuterium, the pressure was 1.25—
1.44 TPa at temperatures of 12500-14000 K and den-
sities of 2-2.4 g/cm3; for xenon, the pressure and den-
sity were 200 GPaand 13 g/cm?, respectively, the latter
value being nearly five times as great at the density of
solid Al.

The electrical conductivity was measured according
to the classic two-point circuit diagram [53] involving
a reference resistance connected in paralel with the
resistance of the sample under study. The resistance of
hydrogen was determined with the aid of two stainless-
steel electrodes 2 mm in diameter arranged on the axis
of the device with agap length of h = 6.5 mm between
their end faces. This procedure of measurements
employed the discharge of a large-capacitance capaci-
tor through the resistance Ry, shunting the hydrogen

FORTOV et al.

sample. The decrease in the compressed-hydrogen
resistance R, led to a decrease in the total resistance,
with the result that the voltage across the measuring
el ectrodes changed, which was recorded by an oscillo-
scope. In these experiments, Ry, was 3 Q. Figure 6 dis-
plays an oscillogram that was obtained in one of the
experiments at an initial hydrogen pressure of Py =
70 MPa. Theresistance estimated by using this oscillo-
gramisR,=0.2 Q.

In determining the electrical conductivity on the
basis of the measured resistance values, the actud
geometry of the current distribution between the elec-
trodes was taken into account, along with the geometry
of the electrodes at each specific instant of compression
and with the results obtained by calculating, according
to hydrodynamic codes, the profiles of the thermody-
namic parameters of hydrogen. The error in the electri-
cal-conductivity valuesfound in thisway was estimated
at 50%.

The characteristic plasma parameters obtained in
some experiments are quoted in Table 1.

3. EXPERIMENTAL RESULTS
FOR THE ELECTRICAL CONDUCTIVITY;
MODEL OF PRESSURE-PRODUCED
IONIZATION

Experiments aimed at implementing multiple shock
compression of hydrogen and inert gases make it possi-
ble to obtain physical information about an as-yet-
unexplored part of the phase diagram, which is depicted
in Fig. 1 for hydrogen. One can see that the region of
pressures of up to 15 Mbar and temperatures of 3000 to
7000 K was reached by means of dynamic compres-
sion. Concurrently, densities are realized that are one
order of magnitude higher than those of solid hydrogen
and solid inert gases under normal conditions, in which
case the mean spacing between protons, n3 ~ 1 A is
commensurate to the typical sizes of both molecules
(about 0.74 A) and atoms in the ground state.

From the point of view of physics, this region is of
interest since this is the region of strong interaction

Table 1
Substance Initial state Final state P, GPa p, g/lcm® T, 103K |0, (Qcm)?
Planar geometry
H, Po=25.6 MPa, Ty = 77.4 K | Maximum compression 227 0.94 53 1600
He Po=28 MPa, Tp=77.4K | Maximum compression 126 1.37 15 1080
Xe Py=0.1MPa T;=160K | Maximum compression 126 10 25 500
Cylindrical compression
H, Po =50 MPa, Tp =293 K M aximum compression 1440 24 14 550
Pg=70MPa, Tp =293 K Maximum compression 1250 12.5 1100
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS Vol. 97 No.2 2003
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Fig. 7. Electrical conductivity of hydrogen as a function of density. The experimental data of the present study were obtained for
(1) planar systems and (2) cylindrical systems. The remaining data were borrowed from (3) [29] and (4) [30] (magnetic compres-

sion) and from (5) [35] (experiments with light-gas guns).

concerning both interatomic (intermolecular) interac-
tion (M, = ran;”3 ~ 1—that is, r,, which is the molecu-
lar or the atomic size, is commensurate with the inter-
particle spacing n;m) and, the latter implying that the
mean interaction energy of charged particles,

0 D1/2
E. = €lrp, Ip = Blnezzzizni/kAT[] :
0 4 0

ismuch greater than the mean kinetic energy of thermal
motion, E; (I'; = EJ/E; ~ 10). The situation is addition-
ally complicated by the fact that the type of statistics
changes upon compressi on—electrons become degen-

erate, n.X> = 200 [X, = (2Ti¥mksT) 2 isthe thermal de
Brogliewavelength], with theresult that E; ~ ks T asthe

scale of the kinetic energy of particles gives way to the
Fermi energy,
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All these circumstances greatly complicate theoretical
description of strongly nonideal states[2, 3], hindering
the application of perturbation theory and of parameter-
free computer Monte Carlo and molecular-dynamics
methods in their classic formulation [54], which were
developed for Boltzmann statistics.

Our experimental results for the electrical conduc-
tivity of shock-compressed hydrogen and inert gases
are displayed in Figs. 7-11, along with the results
obtained on the basis of some theoretical models [1-3,
22, 37, 24, 55, 56] and the results of other measure-
ments [29, 30, 35, 36, 41, 42, 57-65].

Let us first point out some general features in the
behavior of the eectrical conductivity of a strongly
nonideal plasma. The most prominent feature isthat, at
final stages of compression, the electrical conductivity
of the plasma increases sharply (by three to five orders
of magnitude) in the process of compression in a nar-
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Fig. 8. Electrical conductivity of xenon asafunction of den-
sity. The displayed experimental data were borrowed from
(1) [49], (2 [57], (3) [58], (4 [59], (5) [41], (6) [60], and
(7) [61]. Also plotted in thisfigure are the €l ectron-degener-
acy line (nexi =1), theline on which the parameter of Cou-

lomb nonideality takesthe constant value of ' = 1, and the
line on which the electrical conductivity calculated by
Spitzer's formulagoes to infinity (Ogitzer = ). Solid lines 8
represent the electrical conductivity calculated on the basis of
the model formulated in the main body of the text.

row range of “compressed” densities (p = 0.3-1 g/lcm?®
for hydrogen, and p ~ 8-10 g/cm® for xenon) at
megabar pressures, reaching values of about 10°—
10° Q1 cm?, which are characteristic of alkali metals.
Our measurements exhibit a pronounced threshold
effect in density and are therefore in a qualitative con-
tradiction with models of weakly nonideal plasma|[1],
which predict amonotonic decrease in the plasma elec-
trical conductivity in response to its isothermal com-
pression [1].

Indeed, it iswell known that, at low degrees of the
ionization of aplasma,
ne

a; = <1,
n, +ng

its electrical conductivity is determined by the scatter-
ing of electrons on neutral particles and is qualitatively
described by the Lorentz formula [3], according to
which the electrical conductivity isin direct proportion
to the concentration of free electrons; that is,

_2J2 &€ n. 1
3mmy? (ke T) Y Natea(T)”

(3.1)

ea

where g, is the averaged cross section for electron
scattering by atoms:
1 _ 1 0 Ep dE
= exp— :
G2(T) (kBT)ZI P ke T 0ea(E)
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Fig. 9. Electrical conductivity of helium as a function of
density: (1), (2), and (3) experimental data from [42], [57],
and [61], respectively; (4) electrical conductivity calculated
with the plasma composition corresponding to the model of
an ideal plasma; (5) results obtained with the plasma com-
position calculated on the basis of the Debye—Hiickel model
[1]; (6) results obtained with the plasma composition cal cu-
lated on the basis of the bounded-atom model [2, 22] featur-
ing a fixed radius of the helium atom (r, = 1.3ap); and

(7) results of the present study.

In turn, the composition of a plasma is described by
Saha's ionization-equilibrium equation [2]

neni _ &x%e |:
e

I —Al(ng, Ny, T)
"o J

- (3.2)

where Q, and Q; are the partition functions for atoms
and ions, respectively, | isthe ionization potential, and

0, Qlem™!
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10% w2 X
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Fig. 10. Electrical conductivity of argon as function of den-
sity: (1), (2), and (3) experimental datafrom [57], [62], and
[63], respectively; (4) eectrical conductivity calculated
with the plasma composition corresponding to the model of
an ideal plasma; and (5) results of the present study.
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Al is the reduction of the ionization potential due to
interparticle interaction (nonideality). Thus, one can
seethat, at a; < 1, it follows from Egs. (3.1) and (3.2)
that, in the absence of interaction (Al =0, and Q;, Q, =
const), the electrical conductivity under the conditions
of isothermal compression is given by

o UOo0d Up,

which corresponds to the curves for an ideal plasmain
Figs. 7,9, and 10.

Nonideality, which must be included under the
present conditionsfor determining the composition of a
plasma, istaken into account here by introducing aden-
sity-dependent quantity Al and less significant depen-
dencesfor Q, and Q,, whereby one arrives at anonther-
mal growth of the degree of ionization and at an
increase in the plasma electrical conductivity upon iso-
thermal compression in accordance with Eqg. (3.1). On
the curve representing the electrical conductivity as a
function of density at T = constant, there appearsamin-
imum, its depth being greater for lower temperatures.
With increasing temperature, this minimum levels out
as soon as thermal-ionization effects (at kgT ~ 1)
become more pronounced than effects associated with
pressure-produced ionization, which are significant at
KeT < 1.

As the density increases further at a given tempera-
ture, ionization processes described by relation (3.2)
are completed. Thereupon, one deals with a strongly
ionized (a; ~ 1) weakly nonideal plasma, where, instead
of Eg. (3.1), it is necessary to use the Spitzer approxi-
mation (which is valid in the case of a nondegenerate
plasma) [3]

_ 4«/§(kBT)312 1
O¢ = v(Z)F—Zezme A (3.3)
or, in the case of Fermi statistics, the relation
ne
ol A (3.4

where A is the Coulomb logarithm. This means that, at
high temperatures, the exponential dependencein (3.1)
and (3.2) givesway to aweaker [logarithmic inthe case
of (3.3) or linear in the case of (3.4)] dependence on the
carrier concentration. In this case, we can take, for an
estimate of conductivity, the so-called Regel’loffe
“minimal metal” conductivity, which iswidely used in
thetheory of simple metalsand semiconductors; that is,

r]e RS

o0 (3.5)

Vr

where Rg is the radius of the Wigner—Seitz cell and v+
is the mean thermal velocity of electrons.
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Fig. 11. Electrica conductivity of krypton as function of
density: (1) and (2) experimental data from [64] and [65],
respectively, and (3) results of the present study.

We can see that the exponential growth of the num-
ber of carriers due to the reduction of the ionization
potential because of strong interparticle interaction in
plasmas of condensed densities is the main reason
behind the sharp increase in the measured electrical
conductivity.

It should be emphasized that, in exactly the same
way as the semiconductor thermal-excitation model
(see, for example, [66]) featuring an energy gap A(p)
that decreases with increasing density, the plasma pres-
sure-produced-ionization model that is based on
Egs. (3.1) and (3.2), whichisdiscussed here, leadsto an
exponential variation of the electrical conductivity with
temperature:

o Doyexp(-A(p)/kgT).

This model was used in [35] to analyze experiments
with light-gas guns.

Thus, the data obtained here for the electrical con-
ductivity at kgT < | provide a unique possibility for
adequately choosing thermodynamic models that
would describe the reduction of the ionization poten-
tial. For example, an analysis of the datain Figs. 7-11
reveals that the standard Debye-Hiickel model (DHA
curvein Fig. 7 and curve 5in Fig. 9) strongly overesti-
mates effects of Coulomb interaction, leading to pres-
sure-produced ionization at densities that are two
orders of magnitude lower than their experimental
counterparts.

Having performed the above qualitative analysis, we
will now perform quantitative calculations of physical
parameters that characterize a dense plasma and com-
pare the results obtained in this way with experimental
data.
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4. THERMODYNAMICS
OF MEGABAR-RANGE PLASMAS

As a model intended for describing experiments
devoted to the shock and quasi-isentropic compression
of plasmas, we consider the bounded-atom model [67],
which explicitly takes into account the finiteness of the
phase space for the realization of the bound states of
atoms and ions and which was previously used in [2, 3,

P, g/cm?

0.6 0.07 0.01 0.005 0.002
T T

1 lsﬁ 1
0O 2 4 6 8

| 1 | | 1
10 12 14 16 18 20
T Qg
Fig. 12. Energy spectrum of the hydrogen atom for (thick
curves) f(ro) = 0 and (thin curves) f,(r) =0.
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Fig. 13. Bandgap of deuterium.
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67] to describe the thermodynamics of shock-com-
pressed inert gases and cesium. As amatter of fact, this
model is a generalization of the Wigner—Seitz solid-
state model [1, 3] to the region of condensed-density
plasmas via the inclusion of thermal and density-ion-
ization effects. Within this model, atoms and ions are
treated as rigid spheres, whose thermodynamic func-
tions are constructed on the basis of molecular-dynam-
ics and Monte Carlo calculations, the contribution of
the bound electrons of these atoms and ions being
described in the quantum-mechanical Hartree—Fock
approximation. Figure 12 showsthe energy spectrum of
a compressed hydrogen atom.

In the calculation of this spectrum, the radial com-
ponent of the wave function was required to satisfy the
boundary conditions

fu),-, =0, L@ =0

or |r= re
Within the solid-state model [68], this corresponds to
the upper and lower boundaries of the energy band
within which the relevant energy level of an isolated
(ro — o) atom occurs as the result of compression
(decrease in r.). In this approach, the width of the for-
bidden band, AE (energy gap), can be taken as the
energy difference between upper boundary of the
ground-state band (curve 1s) and the lower boundary of
the band built on the first excited stated (curve 2p); as
can be seen from Fig. 13, the energy gap, which
decreaseswith increasing density, isin accordance with
the experimental data reported in [44, 69] and obtained
from a direct treatment of data from experiments
devoted to multiple compression of hydrogen and deu-
terium. Versions of this model were successfully used
to describe the thermodynamics of metal plasmasin the
region of high and ultrahigh (up to 4 Gbar) pressures
[70-72].

The parameter region investigated in the experi-
ments being discussed is characterized by extremely
complicated and diversified processes that must be
reflected in the corresponding physical models. It
should be noted first of al that, in the course of com-
pression, the thermodynamic plasma composition may
change sharply, which is accompanied by the emer-
gence of strong interparticle interactions, including
Coulomb interaction (between electrons and ions),
polarization interaction (between charged and neutral
particles), and short-range interaction (between neutral
particles). Since the typical interparticle spacing in the
plasmas considered here is commensurate with charac-
teristic sizes of atoms and ions, the phase-space part
occupied by them becomes inaccessible to other parti-
cles; as aresult, their kinetic energy grows, and so do
the corresponding contributions to the free energy of
such strongly compressed disordered structures. More-
over, the energy spectrum of bound states undergoes
changes in atomic and molecular systems subjected to
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a strong compression. Also, it is necessary to take into
account the change in statistics (from Boltzmann to
Fermi statistics) for continuous-spectrum electrons,
since, under the conditions being considered, the

degeneracy parameter nexi’ changesfrom 0.001 to 200.

In the present study, the following items of the full
thermodynamic approximation were used in calculat-
ing the thermodynamic parameters of plasmas in the
megabar range of pressures.

The free energy of a quasineutral mixture of elec-
trons, ions, atoms and molecules can be broken down
into the contribution of the ideal-gas component and
the term that takes into account interparticle interac-
tion; that is,

F=F+Fo+Fligee . (4.2)
It is assumed that heavy particles (atoms, ions, mole-
cules) obey Boltzmann statistics, their contribution
having the standard form

3
FO = ZNjkBTHn%—%, (4.2)
- i
J

where Q; stands for the partition functions of atoms and
ions.

(A) Electron degener acy. Electrons are treated as a
partly degenerate ideal Fermi gas:

Fo = 2Vkg T 2K
2 4.3
x| (ke T) L aae/ksT) = Slaato/ksT) |

Pe  _ 2lap(ke/ksT)
NKeT  3lyp(He/KT)

(4.4

Here, the electron density n, and the chemical potential
U, are related by the equation

neXs = 20721 (ke T),
(X)) = m_ y'dy (4-5)
‘ .! 1+exp(y—t)’

Theinclusion of electron-degeneracy effectsisof para
mount importance in the phase-diagram region dis-
cussed here, since the degeneracy parameter nexi can
be much greater than unity in this region.

(B) Coulomb interaction. We applied a version of
the pseudopotential-model for multiple ionization [73,

74]. Theinclusion of thefact that, at short distances, the
interaction of free charges deviates from a Coulomb
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formisakey point of this model, and there arises, upon
explicitly taking this deviation into account, a notice-
able positive shift not only in the potential energy of
free charges but aso in their mean kinetic energy. It
should be noted that the depth of the electron-ion

pseudopotential, @ (0), isrelated, in the model, to the
boundary separating, in the partition function (4.2), free
states of each electron—-on pair from bound states. The

electron-ion pseudopotential in the Glauberman—
Yukhnovskii form is given by (Fig. 14)

2
o) = 22(1-6""), 6.20,nT),
(4.6)

Z.Z.€
Dya(r) = “r" ,

a=i,e.

For potential (4.6), the parameters of correlation
functions were determined from conditionsthat are for-
mulated immediately below and which are quite gen-
eral and are valid at arbitrary values of the Coulomb
nonideality parameter

My = [4T[(e2/kBT)Znuz§]_ﬂ2.

Specificaly, these are
(i) the condition of local electroneutrality,

[l Ll
Imei[Fei(r) -1] + z n;Z;[Fi(r) —1]gdr = =Z;; (4.7)

O j 0

(ii) the condition of dipole screening,

[EelFa) =1+ 3 0,2 [F,0) -1
a j (4.9)

r 2
x EL—DE dr = -3Z;

(iii) the nonnegativity of correlation functions,

Fi(r) 2 0; (4.9)
(iv) the relation between the screening-cloud ampli-
tude and the depth of the electron—on pseudopotential,

Fei(0) =1+ W,(0) =Bd5(0), F;(0)=0. (4.10)

At 'y < 1, corrections that are associated with the
interaction of charges and which were obtained from
the conditions in (4.6)—(4.10) are close to Debye cor-

rections, while at ' > 1, they are smaller.

(C) Short-rangerepulsion. The contribution of the
short-range repulsion of molecules, atoms, and ionsis
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described phenomenologically within the soft-sphere
approximation [75] generalized to the case of a multi-
component mixture; that is,

% = Cy™3(esd/ksT) +164Qy5’9(sss/kBT)”3,
5 (4.11)
1/3

3Y./2 amd  no nir;
szf, y = e 1% rcz{h |

2

where

C.=6+ 2?63? = 1.043(s—4)"® exp[0.156(4 - 5)]

is the Madelung constant for the potential V(r) =
g(rlo)™s.

We note that the corrections for short-range repul-
sion to the chemical potential,

(4.12)

Aljss _ AFss , APsor))
keT ~ NkgT nkBT[rJ’

aredifferent for particles having different radii, and this
determines the decrease in the ionization (dissociation)
energy with increasing matter density.

The above thermodynamic model provides acorrect
asymptotic behavior at low plasma densities, where it
coincideswith well-known theories of dilute plasma. In
the region of extremely high densities, the applicability
of this model was tested by comparing the results that
it yields with available experimental data on the ther-
modynamics of the plasmas of akali metals [2], inert
gases [55-57], and shock-compressed strongly porous
metals [72, 74]. Considered individually below are
special features of the calculation for each element of
interest.

4.1. Hydrogen

In the phase diagram of hydrogen (Fig. 1), the tran-
sition to the metallic state at low temperaturesis shown
in accordance with the estimates given in [22] at apres-
sure of about 300 GPa. The triple point at which the
metal phase coexists with condensed molecular hydro-
gen and amolecular liquid is predicted in [22] to occur
at P =100 GPaand T = 1500 K. There are two critical
points (CPs) in the molecular-liquid phase. One of
these, CP,, and the curve along which amolecular gas-
eous hydrogen and a liquid coexist are well known to
lie in the low-temperature region. The position of the
second critical point (CP,), whichis of greatest interest
to us, and the position of the coexistence curve (curve
(12) that is associated with asharp change in the degree
of dissociation and ionization of hydrogen are not
known precisely. According to the estimates presented
in [22], T[CP,] = 16500 K, P[CP,] = 22.8 GPa, and
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p[CP,] =0.13 g/lcm?. Also shownin Fig. 1 are estimates
of other authors [23, 24, 37-39] for the coexistence
curve and for the critical point at which this plasma
phase transition occurs (curves 12—16).

It can be seen that the parameter region correspond-
ing to multiple shock compression in planar systems
[36] (region 9) and in experiments with light-gas guns
(LG) [34, 35] (curves7, 8), aswell asincylindrical sys-
tems [26, 27] (curves 4, 5), partly overlap this rather
large region of the possible existence of aplasma phase
transition. The shock adiabatic curves of a single com-
pression of liquid hydrogen (deuterium) that were
obtained in experiments with high-power lasers [31,
32] (curves 10, 11), in a high-current Z pinch [33]
(curve 3), and in explosive spherical systems [28]
(star 6) also occur in the region of our interest, but they
lieat higher temperatures. Temperatures of about 700 K
were realized in experiments devoted to the isentropic
compression of hydrogen by strong magnetic fields in
explosive magnetic-compression systems [29, 30]
(boxes 1, 2). Pressures of up to 300 GPa were obtained
via the isothermal compression of hydrogen (T =
300 K) in diamond anvils (DA) [11] (curve 17). The
region where strong Coulomb interaction is operative
and the region where the degeneracy of the electron
component is significant lie above the curves ', = 1

and nexg =1, respectively. Curve 19 characterizes the

behavior of the shock adiabatic curve for liquid hydro-
gen, while curve 18 represents parametersthat are real -
ized in Jupiter’satmosphere[40]. Figure 1 aso displays
the regions of typical parameters achievable with the
aid of ordinary and explosive shock tubes (see [76] and
[77], respectively), in discharges, and in usual low-cur-
rent pinches [3].

As can be seen, the existence of alarge “monomo-
lecular” region (p < 0.3 g/lcm?, -4, = D(H,) = 4.5eV),
where the thermodynamics of hydrogen is almost com-
pletely determined by H,—H, interaction, is a feature
characteristic of hydrogen. Within the soft-sphere
model [75], which is used in the present study, the
parameters of the H,—H, interaction were chosen here
to be maximally close to those recommended within the
rigorous “nonempirical” atom—atom approximation
[78], the noncentrality of this interaction being disre-
garded. The calculations have revealed that the use of
the soft-core repulsion V(r) O 1/r® makes it possible to
describe the molecular part of the T = 0 isotherm (“cold
curve”) and a considerable part of shock-wave experi-
ments, aswell asthe results of precise Monte Carlo cal-
culations of H, + H, thermodynamics[78].

The main prablem of the chemical model in describ-
ing nonideality, including nonideality in the case of
dense hydrogen, is that of correctly specifying the
entire set of potentials that would simulate the interac-
tions between all members of the mixture being consid-
ered. This concerns the interactions involving both
charged and neutral particles—first of al, interactions
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in H—H and H-H pairs. It is of importance that the
effective interaction of free atoms that appears in the
chemical model differs radically from the singlet
(attractive) and triplet (repulsive) branches of the total
potential of H—H interaction that are obtained from a
rigorous theory, since the contribution of H-H pairs
involved in the singlet-branch interaction has aready
been taken into account in the discharge of intramolec-
ular mation. Thisis all the more justified for the effec-
tive interaction involving (free) charged particles,
since, in the chemical model, the contributions of free
and bound states must be consistent [see the approxi-
mation specified by Egs. (4.6)—4.10)]. At present, there
is a serious discrepancy between the results obtained
within different approaches for the form and parame-
ters of these potentials. Off the monomolecular region,
the most glaring contradictions are those in the param-
eters of the short-range repulsion in H-H and H-H,
pairs. We note that, according to the present calcula
tions, the parameters of the effective potentials of H,—

A* interactions (where the symbol A* stands for all
charged components) are of no lesser importance. For
oneof the versions, wewould liketo indicate the results
obtained within the nonempirical atom—atom approxi-
mation [78], which lead to relatively large “intrinsic
volumes® of the hydrogen atom. In terms of the soft-
sphere-model modification introduced in [75] and used
here, the results presented in [78] correspond amost
exactly to the “additive-volume” approximation,

[d(H)]° = 2[d(H)]°.

For p < p* = 0.3 g/lcm?, this choice leads to results that
agree, for T < 10 kK, with the results of precise Monte
Carlo calculations [78] and, for T = 10 kK, with the
nonanomal ous part of the results obtained by means of
a quantum Monte Carlo method (PIMC [79]). At such
temperatures, the data are also in satisfactory agree-
ment with the results produced by other versions of ab
initio approaches, including the method of quantum
molecular dynamics (TBMD [80]) and the method of
wave packets (WPMD [81]).

Figure 15 displaysthe entire body of currently avail-
able experimental data on single shock compression of
liquid hydrogen.

Pressures of up to 25 GPa (point 1 in Fig. 15) were
achieved in a direct shock wave generated in experi-
ments with light-gas guns [34]. Investigations aimed at
generating shock waves with the aid of high-power
lasers [31, 32] (points 2, 3) made it possible to obtain
pressures of up to 300 GPa and to discover an anoma:
lously high compressibility of deuterium at a pressure
of P > 40 GPa. However, more recent results that
emerged from the Z-pinch experiment reported in [33]
(points 4) and from the experiment of Belov et al. [28]
(points 5) with explosive spherical systemsdid not con-
firm the existence of thisanomaly up to P = 70 GPa.
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(a)

Fig. 14. Glauberman-Yukhnovskii electron—-on pseudopo-
tential: (a) bound states and (b) continuous spectrum.
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Fig. 15. Shock adiabatic curve for deuterium: (1), (2), (3),
(4), and (5) experimental data from [34], [31], [32], [33],
and [28], respectively; (6), (7), (8), (9), and (10) results of
the calculationsfrom [82], [79], [22], [37], and [83], respec-
tively; and (11, 12) results of the present study.

The shock adiabatic curves calculated by using the
SESAME equation of state [82] (curve 6) do not predict
this anomaly in the behavior of shock compressibility,
nor does it arise in calculations with semiempirical
equations of state [27]. The emergence of this anomaly
is not expected either if use is made of ab initio
approaches, such as the quantum Monte Carlo method
[79] (curve 7) and the molecular dynamics method
[80]. For deuterium, Ross [83] presented an interpola-
tion equation of state (curve 10) that qualitatively
describes experimental results obtained with the aid of
lasers.

The approach considered in the present study aso
does not reproduce this abrupt change in the behavior
of the shock adiabatic curve for deuterium (toward
unexpectedly high degrees of compressibility, O, =
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Fig. 16. Phase diagram of xenon. The displayed experimental data were obtained by measuring (i) the equation of state of xenon
with the aid of (1) the shock compression of gasesin [67], (2) the shock compression of liquidsin [49, 85, 86], and (3) quasi-isen-
tropic compressionin[49]; (ii) the electrical conductivity in (4) [57, 58], (5) [59], and (6) [41]; and (iii) (7) optical propertiesin[87].

Pmax/Po = 6.5 versus the expected value of 0, = 4) in
the region P = 0.5-2 Mbar (curve 11), nor does it lead
to anomalies for p = 1 g/cm? that are typical of phase
transitions.

The thermodynamics of compressed hydrogen (deu-
terium) assumes quite a different form if one describes
H-H (D-D) interactions by means of the H—H potential
introduced in [84] and extensively used in approximate
calculations, adopting standard composition rules for
H-H, interaction. In terms of the soft-sphere-model
modification employed in the present study, this corre-
sponds to a much smaller ratio of the intrinsic volumes
of H and H.:

d(H) .

2v(H)
) =04 — oy =018

0.4
v(H,)

For p = 0.3 mol/cm?3, this choice of the intrinsic size of

an atom immediately leads to “ pressure-produced dis-

sociation,” which is accompanied by a dip in the shock

adiabatic curve for deuterium (curve 12).

4.2. Inert Gases

The phase diagram of xenon is shown in Fig. 16. In
experiments devoted to measuring the electrical con-
ductivity of xenon under the conditions of multiple
shock-wave loads, its density, pressure, and tempera-
tures took values of up to 9.5 g/cm?®, 120 GPa, and
(5-20) x 10° K, respectively, the electron concentration
ranging up to 3 x 10% cm3 at adegree of ionization less
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than or equal to 0.5. In the region of maximum param-

eter values, the plasma was degenerate (nexg ~50) and
strongly nonideal both with respect to Coulomb (I ~
10) and with respect to interatomic (", ~ 1) interaction.

In Fig. 16, the phase boundaries of xenon states are
depicted according to [22]. The metallization of xenon
under the conditions of static compression at diamond
anvils was experimentally observed in [60, 88, 89] at
densities of about 12.3 g/cm? and pressuresin the range
130-150 GPa, this being in agreement with the results
of the calculations previously performed in [17]. In
accordance with the estimates presented in [22], the
phase boundary associated with ametal—dielectric tran-
sition intersects the line of xenon melting at the triple
point (Tp,) corresponding to P = 50 GPa and T =
6000 K and terminates at critical point C, in the plasma
region at P = 10 GPaand T = 10000 K. At high temper-
atures, the phase transition is accompanied by a sharp
change in the concentration of free electrons in a nar-
row range of plasma densities, and this is shown in
Fig. 16 by the curves corresponding to constant values
of the degree of xenon-plasma ionization. A vast body
of experimental data obtained from shock-wave exper-
iments in measuring the equation of state for a xenon
plasma[3, 49, 67, 85, 86, 90, 91], its optical properties
[3, 49, 90, 87], and its electrical conductivity [3, 41, 49,
57-59] furnishes no indications of some of the unusual
features in the behavior of xenon in this region of its
parameters. The experimental observation of a sharp
increase in the electrical conductivity in [41] corre-
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P, GPa
140
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40P = 2.96 g/cm?
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P, g/cm?

Fig. 17. Shock adiabatic curve for xenon. The experimental
data were borrowed from (1) [85], (2) [86], (3) [49],
(4) [90], and (5) [41]. The displayed theoretical results cor-
respond to the calculations performed (6) in [49] and (7) in
the present study (on the shock adiabate for P = 86.8 GPa,
the characteristic parameters are T = 29100 K, I'p = 11.9,

NeXo = 2.19, ng = 2.63 x 1022 cmi™3). The dashed curve rep-
resents the “cold” curve from [49].

sponds to densities of p = 8-10 g/cm? and pressures of
about 100 GPa.

For shock-compressed plasmas of liquefied inert
gases, the radii of the atoms involved were determined
by fitting, to the cold curve (T = 0K) for densities of the
experimental range (see Table 2), the results of the cal-
culations within the model specified by Egs. (4.11)
and (4.12).

The relationships between the radii of the atoms
involved and of their ions of different ionization multi-
plicities were determined from a calculation of the rel-
evant electron structure in the bounded-atom approxi-
mation by the Hartree-Fock method as implemented
within the procedure used previously in [74].

We note that, upon a formal interpolation of the
melting curve to the parameter region of our interest,
some of the experimental points appear to be in the
solid phase.

The applicability of the thermodynamic model con-
sidered above was tested by comparing the results
derived on its basiswith experimental dataon the shock
compression of liquid xenon that were obtained with
light-gas guns [85, 86, 90] and in explosive experi-
ments [49] (see Fig. 17). Figure 17 also displays the
results of experiments devoted to multiple shock com-
pression [41]. It can be seen that, by and large, the
model reproduces experimental results satisfactorily.
The discrepancy manifesting itself at low temperatures
and pressures may be attributed to an insufficiently
accurate approximation of xenon states in the liquid
phase. The use of thismodel makesit possible to obtain
afairly good description of the shock adiabatic curves
for liquid argon and krypton as well (see Figs. 18, 19).
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Fig. 18. Shock adiabatic curve for argon. The displayed
experimental data (points) were borrowed from [92]. The
solid curve was cal culated in the present study (on the shock
adiabate for P = 54.6 GPa, the characteristic parameters are
T=17900K, [p = 88, NeX> = 0.66, e = 3.78 x 102 cm).
The dashed curve represents the “cold” curve.

Here, the displayed experimental data were borrowed
from [64, 92].

It should be noted that good agreement could also be
reached for the measured values of the brightness tem-
perature and the speed of sound in these substances.

The situation around a thermodynamic description
of helium states proves to be more complicated since
available experimental data are much scantier and since
the helium phase diagram, which is shown in Fig. 20
[22], is quite unusual. The metallization of helium at
low temperaturesis expected to occur at extremely high
pressures of P = 1.1 TPa. However, plasma phase tran-
sitions associated with a sharp change in the ionization
composition of helium must take place at much lower
pressures. Indeed, the estimates presented in [22] revedl
that, with increasing temperature, the melting of solid
helium will be accompanied by its direct transition,
first, into asingly ionized plasmastate (triple point Tp;)
and then into a doubly ionized state (triple point Tp,).
The plasma-phase-transition curves terminate at the
critical points C; and C,, the parameters of the first
point (P = 660 GPa, T = 35000 K) lying very closely to

Table 2
S €sss ev I stom Q
He 12 0.01354 | 2.82a, 1
Ar 12 0.0125 3.2a, 1
Kr 12 0.0171 3.54a, 1
Xe 105 0.0221 3.83a, 1
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Fig. 19. Shock adiabatic curve for krypton. The displayed
experimental data (points) were borrowed from [64]. The
solid curve was cal culated in the present study (on the shock
adiabate for P = 65.8 GPa, the characteristic parameters are
T=20100K, I'p = 8.06, NeX_ = 0.66, e = 4.53 x 1021 cmr).
The dashed curve represents the “cold” curve.
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Fig. 20. Phase diagram of helium. The triple points for sin-
gle and double ionization are denoted by Tps and Tpy,
respectively. The critical points of plasma phase transitions
for single and double ionization are C; and C,, respectively.
The shaded region represents helium states realized in
experiments devoted to multiple shock compression [42].

FORTOV et al.

the experimentally accessible region. In Fig. 20, the
closed circles and the closed box represent the parame-
ters of helium that were realized in the experiment of
Nellis et al. [93] in, respectively, the incident and the
reflected shock wave. The shaded region correspondsto
helium states realized in experiments devoted to multi-
ple shock compression [42]. It should be emphasized
that the thermodynamic model satisfactorily describes
the data of Nellis et al. [93] on the shock compression
of helium in the incident and in the reflected shock
wave.

5. ELECTRICAL CONDUCTIVITY
OF NONIDEAL PLASMAS

In order to describe the electrical conductivity over
abroad range of parameters where electrons may obey
either Boltzmann or Fermi statistics, expressions (3.1)—
(3.4) were combined into an interpolation expression
within the T approximation [94]; that is,

4e (kBT)
3fm X2

where f, is the electron distribution; T is the relaxation
time,

f 92 ds, (5.1)

T_l(s) = /\/%[Z anerj(E) + naQea(s)i|!
j

Q. and Qg are the transport cross sections for, respec-
tively, electron—atom and electron—ion scattering; and
y; is a correction for electron—electron scattering. For
the case where the change in statistics occurs, this cor-
rection was interpolated as [22]

T
Vi =Y - ) —=—=

fEeT
with T being the Fermi temperature and ij isacorrec-

tion for the Boltzmann plasma.

In the Born approximation, the cross section for
€l ectron scattering on a Coulomb potential is given by

2__ 4
Z:Te
— ]
Qei - 82 /\i’

X, Zbx;
1+X (1+x)2|
i (1+X) (5.2)

In(1 Xi) -

Zank
sznk + n
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where

Faj = [4T[—ZZ n + 2[@ *D }

is the Debye screening radius with allowance for elec-
tron degeneracy and

1/2

(5.3)

= max{ Z,€’/4¢, X

I’minj

is the minimum impact parameter.

In the case of Boltzmann statigtics, the expression
for A\; reduces to the ordinary Coulomb logarithm A; =
Inx; in the limit of a weakly nonideal plasma (x; > 1).
For a strongly nonidea plasma (x; ~ 1), it provesto be
finite, not leading to an nonphysical divergence in the
expression for the electrical conductivity, and this gives
sufficient grounds to use it in tentative calculations.

Expression (5.1) for the electrical conductivity takes
into account the fact that, in the region of high compres-
sions, free electrons are partly or fully degenerate. In
this case, the Boltzmann distribution of electrons is
replaced by the Fermi—Dirac distribution, the radius of
screening being calculated with allowance for e ectron
degeneracy [formula(5.3)]. Asaresult, the approxima-
tion specified by Eq. (5.1) yields Spitzer's asymptotic
behavior for a fully ionized Boltzmann plasma. For a
full degeneracy of electrons, y = 1 and the electrical
conductivity tends to expression (3.4), while for a
partly ionized plasma, the estimatein (3.1) isvalid.

The effect of pressure-produced ionization is the
most pronounced in the case of hydrogen (see Fig. 7).
In thisfigure, our data on the quasi-isentropic compres-
sion of liquid and gaseous hydrogen in (points 1) planar
and (points 2) cylindrical geometries are contrasted
againgt the results of its compression by means of a
light-gas gun (points 5) [35], as well as against the
results of explosive cylindrical compression by means
of an axial magnetic field (points 3 and 4 from [29] and
[30], respectively). In view of alight molecular weight,
the multiple shock compression of hydrogen is accom-
panied by arelatively weak heating of this substance—
even at maximum pressures of 1 to 10 Mbar, the char-
acteristic values of its temperature do not exceed T =
10* K and this favors the “cold”-ionization” regime
(kgT < 1). For hydrogen compressed to densities of p =
0.01-1.2 g/cm?® and heated to T ~ 10* K at pressures
below 15 Mbar, awide spectrum of plasma states char-
acterized by afully developed ionization, a = 1, and a
high electron concentration of n, = 2 x 10?3 cm= were
realized in experiments. At maximum compressions,

the plasmain question is degenerate, nx> = 200, and is
strongly nonideal both with respect to Coulomb (' =
10) and to interatomic (I, = 1) interaction.
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It is interesting to note that an extrapolation of the
simplest plasmamodelsto thisregion of strong nonide-
ality leads to the thermodynamic instability of Debye-
Hickel models (Coulomb collapse)—arrow DC in
Fig. 7—and to the divergence of Spitzer's formula—
arrow SC. Thefirst of these approximationsis depicted
by the DHA curvein Fig. 7 and predicts pressure-pro-
duced ionization at a density value that is approxi-
mately two orders of magnitude lower than its experi-
mental counterpart.

The shock compression of matter leads to the over-
lap of the wave functions for neighboring atoms and,
hence, to the percolation conductivity mechanism [55],
which is described in terms of the density-dependent
reduction of the ionization potential (curve P),

Al _ orfm”
ke T e 0O

A decrease in the ionization potential with increas-
ing density is also predicted by the Mott model [5],
which was used in [22] to construct a semiempirical
wide-range model of ionization equilibrium and trans-
port properties (curve M in Fig. 7) of compressed and
hot matter; that is,

= = —IInE"TL exp —ZRA(?)(I)D]

Here, the parameters a, R, and A were chosen issuch a
way asto reproduce experimental data on pressure-pro-
duced ionization of alkali metals. It can be seen that the
proposed approximations provide a good qualitative
description of experimenta results.

By using thering (Debye) approximation in agrand
canonical ensemble of statistical mechanics (LDH) to
describe Coulomb nonideality, one can reduce the dis-
crepancy between the theoretical and experimental
results down to one order of magnitude. The remaining
discrepancy can be removed by introducing the hard-
sphere model to describe the short-range repulsion of
atoms and ions (curve HS) and by taking into account
the compression-induced change in the energy spec-
trum of atoms and ions within a simplified version of
the model considered at the beginning of Section 4
(curve CA). An attempt at taking into account the jump-
like character of the electrical conductivity in nonideal
plasmas was made Redmer et al. [56]. The results of
their calculations are represented by curve Rin Fig. 7.
The QMC curve corresponds to the calculation of the
electrical conductivity by the quantum Monte Carlo
method in [24].

Figures 8-11 display the results obtained by study-
ing theelectrical conductivity of shock-compressed Xe,
Ar, Kr, and He. In just the same way as in the case of
hydrogen, one observes here, at “low” temperatures
(kgT < 1), the pressure-produced-ionization effect
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occurring at higher plasmadensities of p = 1-10 g/cmd.
For many-electron atoms, it is also natural to expect
that, as compression is increased further, the first ion-
ization induced by pressurewill befollowed by the next
steps of multiple ionization with the emergence of sub-
sequent additional boundaries of phase transitions cor-
responding to the second and still higher steps of ion-
ization (see Fig. 20). Unfortunately, experimental
investigation of these regimes of multiple ionization is
presently beyond the capabilities of the explosive
experimental equipment that we have at our disposal.

Along with theresults of multiple (“cold”) compres-
sion, Figs. 8-11 exhibit data obtained previously
in [57-59] by measuring the electrical conductivity of
singly and doubly compressed plasmas. Almost one
order of magnitude higher temperatures are realized in
experiments with inert gases than in those with hydro-
gen, the effects of thermal ionization becoming domi-
nant in the former. The role of these effects becomes
more pronounced with the increasing molecul ar weight
of the substances being studied, and this is especially
spectacular for xenon (see Fig. 8). It can be seen that,
upon thermal ionization [T = (2-10) x 10* K], a high
level of the electrical conductivity [about 10° (Q cm)~]
is achieved even at low densities of p < 1 g/lcm?®; on the
other hand, only at extremely high compressions up to
densities of p ~ 10 g/cm?® is the same level of electrical
conductivity ensured in cold (T ~ 10* K) matter under
conditions of pressure-produced ionization. It can also
be seen that, with increasing molecular weight of sub-
stances, the jump in the electrical conductivity due to
pressure-produced ionization decreases, falling down
to only two orders of magnitude in xenon. It is worthy
of note that the values of the electrical conductivity of
xenon plasma that were measured in multiple-shock-
compression experiments are close to those obtained
under static conditions of diamond anvils (the crossin
Fig. 8).

It is important to note that some of the models dis-
cussed here lose thermodynamic stability in the region
of the experiments in question. With some qualifica-
tions, this may be considered as an indication of a
plasma first-order phase transition leading to the strati-
fication of astrongly nonideal plasmainto phases char-
acterized by different degrees of ionization and com-
pressibility [1-4]. A sharp increase in the electrical
conductivity of adense plasmain our experiments sug-
gests the occurrence of such a phase transition.

6. CONCLUSIONS

Thus, we believe that it is necessary to conduct
experiments aimed at directly measuring the concentra-
tion of free electronsin the region of the possible phase
transition. The first studies devoted to such measure-
ments in plasmas have already been performed by the
authors.
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The chemical model used to describe the equation of
state for plasmas in the region of ultrahigh densities
yields satisfactory results in this region, which is not
traditional for the model in question; nonetheless, the
model callsfor further refinements associated with tak-
ing into account the rearrangement of theinternal struc-
ture of plasma particles under the conditions of
ultradense plasma states.
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Abstract—The paper presents systematic experimental and theoretical studies of thermal expansion for rare-
earth metal scheelites RLiF, (R = Tb—Ho, Tm, and Lu). Pronounced thermal expansion anomalies were
observed. The magnetoel astic contributions were determined taking into account corrections for changesin the
phonon contribution in the RLiF, series according to the Debye thermal expansion model. The cal culated mul-
tipole moments of various orders for various rare-earth metal ions were compared to analyze the applicability
of the quadrupol e approximation to totally symmetric modes in the scheelite structure. For someions (Ho and
Tm), the magnetoel astic contributions to thermal expansion could not be described by the temperature depen-
dences of their quadrupole moments, that is, multipole moments made considerable contributions. The totally
symmetric magnetoel astic coefficients for the scheelite structure were determined from the experimental data
on magnetoel astic contributions. These coefficients were compared with those for the zircon structure. © 2003

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Magnetoel astic interaction in rare-earth metal com-
pounds, which is strong compared with transition metal
compounds with open d shells, plays an important role
in the formation of their magnetic characteristicsand is
responsible for various magnetoelastic effects, for
instance, for structural phase transitions of a Jahn—
Teller nature [1]. One of the simplest spontaneous
effects is the magnetoelastic contribution to thermal
expansion, which is not accompanied by a descent in
crystal symmetry and is described by totally symmetric
magnetoelastic modes. Magnetoelastic effects are
related to additional lattice deformations caused by
changesin the magnetic state of ions and can aso man-
ifest themselves in the absence of a magnetic field, for
instance, in the form of spontaneous magnetostriction
accompanying crystal magnetic ordering or as a defor-
mation caused by magnetoel astic coupling between the
anisotropic 4f shell electron cloud and the lattice.
Changes in the anisotropy of electron cloud distribu-
tions during cooling caused by a decrease in the popu-
lation of excited levels are responsible for magnetoel as-
tic anomalies of |attice parameters.

In the quadrupol e approximation, the magnetoel as-
tic effects depend on magnetoelastic coefficients,
which are a characteristic of the whole series of rare-
earth metal compounds, on the one hand, and on the
response function of the rare-earth metal ion deter-
mined by its electronic structure, on the other. Themain
problem in studying magnetoelastic phenomena is to
determine magnetoelastic coefficients. The currently

available theoretical calculations of magnetoelastic
coefficients performed, for instance, according to the
model of exchange charges[2], contain many unknown
parameters, which vary in fairly broad ranges within
the framework of the model. The calculations of first
principles require knowledge of many structural and
electronic parameters of the compound under study. In
addition, such calculations cannot be consistently com-
pared with experiment to substantiate the correctness of
the selected model and calculation results. For this rea-
son, calculated magnetoel astic coefficients can only be
considered estimates. Currently, the approach based on
treatment of magnetoelastic coefficients as phenome-
nological parameters and their determination from
comparison with experiment has gained broader accep-
tance.

In this work, we studied the magnetoel astic contri-
bution to thermal expansion of rare-earth metal
scheelites. Our goal was to explore totally symmetric
magnetoel astic modes in the structure of scheelite and
analyze the applicability of the quadrupole approxima-
tion to their description. In [3, 4], similar studies were
performed for rare-earth metal vanadates and phos-
phates with zircon structures. The crystal field parame-
tersfor rare-earth metal zircons and scheslites are sub-
stantialy different. The same rare-earth metal ions
therefore have different spectra and, accordingly,
behave quite differently in these tetragonal structures.
For this reason, systematic studies of magnetoelastic
interactions for a series of rare-earth metal schedlites
and their comparison with those in rare-earth metal zir-

1063-7761/03/9702-0279%$24.00 © 2003 MAIK “Nauka/Interperiodica’
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Fig. 1. Relative temperature-induced changes in the
(1) Aa/a and (2) Ac/c parameters, (3) volume AV/V, and
(4) degree of tetragonality (Ac/c —Aa/a) for the TbLiF, unit
cell; for comparison, similar dependences of (1) Aa/a,
(2) Aclc, (3) AVIV, and (4) (Ac/c — Aa/a) are shown for
LuLiFy.
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Fig. 2. Therma expansion coefficients (1) normally
(Va)da/dT and (2) aong (1/c)dc/dT to the tetragonal axis of
TbLiF,; for comparison, similar dependences of

(1) (1/a)da/dT and (2') (1/c)dc/dT are shown for LuLiF,.

cons taking into account the differences in the crystal
fields and structure parameters is of obvious interest.

2. SAMPLES AND PROCEDURE
FOR MEASUREMENTS

Thermal expansion of RLiF, scheelites (R =Tb-Ho,
Tm, and Lu) was studied on a Gegerflex diffractometer
with a CF-107 (Oxford Instruments) flow helium cry-
ostat. Compound single crystals were grown by the
Bridgman technique. Plates with an area of 1 x 4 mm?
and thickness of 0.5-1 mm were cut from these crystals
normally to the a and ¢ axes. Temperature measure-
ments of the a and ¢ parameters were performed based
on the (600) (CoKg radiation, 26 ~ 130°-140°) and
(0012) (FeKg radiation, 26 ~ 150°-160°) reflections.
The relative accuracy of measurements was da/a= dc/c =
cotfAB = 107° (A6 = 0.003°).

3. RESULTS

3.1. Thermal Expansion of RLiF,
(R= Tb—Ho, Tm, Lu)

We performed measurements for RLiF, crystals
with R = Th, Dy, Ho, and Tm. According to the calcu-
lations, the magnetoelastic contribution to thermal
expansion of these crystals should be largest in magni-
tude. Consider the special features of thermal expan-
sion of rare-earth metal scheelites for the example of
TbLiF,. Figure 1 shows the experimental temperature
dependences of the a and ¢ parameters [Aa/a =
a(Mlag— 1, Aclc = ¢(T)lcy — 1, ag = a(290 K), ¢, =
¢(290 K), curves 1 and 2] and volume AV/V =V(T)/Vy —

1,V = af)co, curve 3] for the tetragonal unit cell of
TbLiF,. The normalization that we use rules out the
systematic measurement error related to crystal align-
ment. Similar dependences for LuLiF, are shown by
solid lines in the same figure (curves 1', 2, 3). These
dependences are used to determine the phonon contri-
bution to the thermal expansion of RLiF,. The isomor-
phous LuLiF, compound does not contain magnetic
ions, and its temperature dependences of Ac/c and Aa/a
havethe usual Debyeform; thesevaluesequal 16 x 1072
and 18 x 1073, respectively, at T= 20 K.

The Aa/a curve for the Tb scheelite goes below the
corresponding curve for the Lu compound at al tem-
peratures, and the temperature dependence of Aa/a dif-
fers from the Debye dependence, which is character-
ized by saturation below 100-80 K. The Aa/a curve for
TbLiF, hasasingularity at T ~ 80 K corresponding to a
local minimum of the therma expansion coefficient
o, = (Va)da/dT (Fig. 2).

The temperature dependence of Ac/c for the Th
scheelite has a nonmonotonic character and contains a
minimum in the region of 120 K. The thermal expan-
sion coefficient along the tetragona axis, o, =
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Fig. 3. Relative temperature-induced changesin the Aa/a =
a(T)/ag — 1 parameter for the tetragonal unit cells of rare-

earth metal scheelites [ag = a(290 K)]: (1) TbLiF, (ag =
5.197 A), (2) DyLiF, (ag = 5.186 A), (3) TmLiF, (ag =
5.148 A), and (4) LuLiF, (ap = 5.126 A); each subsequent

curve is shifted along the'y axis by —4 x 10~ from the pre-
vious one.

(Yc)dc/dT, changessignat T ~ 120 K and has an extre-
mum at about 80 K, which coincides with the a, coef-
ficient minimum (Fig. 2). The magnetoel astic contribu-
tion along both TbLiF, axes is insignificant above
200 K but sharply increases at lower temperatures. In
the TbLiF, crystal, the magnetoelastic contribution is
positive for the ¢ parameter and negative for a. This
increases the thermal expansion anisotropy along and
normally to the tetragonal axis. The anomalies of the
Aa/a and Ac/c curves for TbLiF, cause the volume
anomaly AV/V = Ac/c + 2Aa/a ~ 5 x 1073, The magne-
toelastic contribution to the volume deformation deter-
mined with respect to the Lu compound is, however,
insignificant, about 5 x 10 (cf. curves 3 and 3' in
Fig. 1).

The structure of TbLiF, remains tetragonal in the
whole temperature range of our experiments. Only the
degree of tetragonality determined by the difference
Ac/lc — Aala (curve 4) changes as temperature
decreases. Note that, for the Lu compound, thermal
expansions along and normally to the tetragonal axis
are comparable in magnitude and the degree of tetrago-
nality changes insignificantly as temperature varies
(curve 4'). Temperature-induced changes in the degree
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Fig. 4. Relative temperature-induced changes in the Ac/c =
c(T)/cg — 1 parameter for the tetragonal unit cells of rare-

earth metal scheelites [cqy = ¢(290 K)]: (1) TbLiF4 (cg =
10.87 A), (2) DyLiF, (cy = 10.81 A), (3) TmLiF, (o =
10.65 A), and (4) LuLiF, (¢ = 10.55 A); each subsequent

curve is shifted along the y axis by —4 x 10~ from the pre-
vious one.

of tetragonality of the Th scheelite are more substantial .
The representation of the thermal expansion in terms of
the totally symmetric deformations Ag®Y/e®t ~ AV/V
and Ae®?/e9? ~ (Ac/c — Aa/a) is useful because the mag-
netoelastic contributions of these deformations give
direct information about the value and sign of the cor-
responding magnetoelastic coefficients (see below). In
the Th scheelite as distinguished from rare-earth metal
vanadates [3], both magnetoelastic contributions are
negative, and the contribution to the volume deforma-
tion is substantially smaller in magnitude. This is
explained by the ratio between the magnetoel astic con-
tributions along the c and a axes in zircon and scheelite
structures.

Similar lattice parameter anomalies are observed for
the DyLiF,, HoLiF,, and TmLiF, schedlites (Figs. 3, 4).
These anomalies can be quantitatively estimated from
the difference between the Aa/a and Ac/c values for a
given scheelite and for LuLiF,. The magnetoelastic
contributions in the scheelites are negative at al tem-
peratures for the a parameter but positive for the ¢
parameter, at least at not very low temperatures. Fig-
ures 3 and 4 show that the magnetoel astic contribution
is maximum for the Tb scheelite and decreases in the

No. 2 2003



282

T,K
0 50 100 150
T T T T T T »-0
-14
« |
=~
g 1-0.5
3 -1.6
s {1 7
§ :
2
~1.8 -—1.0<gl
s
13
4-1.5
1 1 1 1 1 -2.0
0 100 200 300
T,K

Fig. 5. Relative temperature-induced changes in the
(1-4) Aa/a and (5) Ac/c parameters, experimental (LULiF,,
symbols) and calculated for the tetragonal scheelite unit
cell; calculations by (1) with the parameters (1) Tp = 790 K
and ag = 18.8 x 1075, (2) Tp = 710K and ay = 16.8 x 10°5,
(3,4) Tp = 740, 840K and ag = 18.8 x 1075, and (5) Tp =
600 K and ag = 13.0 x 10°°

Dy and Tm compounds. The therma expansion of
DyLiF, along both axesislarger than that of LuLiF, at
T> 100 K, which is, in our view, evidence of different
phonon contributions in the Dy and Lu scheelites. In
addition, |Aa/a| > |Ac/c| for DyLiF, at high tempera-
tures, but this ratio changes at T < 50 K because the
magnetoelastic contributions to the a and ¢ parameters
change sign.

The special features of the thermal expansion of
RLiF, are similar to those observed for rare-earth metal
phosphates [4] and vanadates [3]. They are caused by
magnetoelastic interaction between the aspherical 4f
shell cloud of the rare-earth metal ion and the lattice. At
high temperatures, at which all multiplet levels are
equally populated, the el ectron shell is spherically sym-
metric. Electron cloud asphericity, which is character-
ized by quadrupole and multipole moments, changes as
temperature lowers because excited level populations
then gradually decrease (become frozen). As a result,
magnetoel astic coupling causes the appearance of addi-
tional magnetoel astic anomalies of |attice parameters.

Systematic experimental data on the magnetoelastic
contribution to the therma expansion of rare-earth
metal scheelites or an analysis of the phenomenon are
lacking in the literature. We can only cite[5], wherethe
temperature dependences of the a and ¢ parameters
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were obtained for HoLiF, and TmLiF,; these depen-
dences were analyzed in the multipole approximation
using the magnetoel astic coefficients calculated by the
model of exchange charges. This approach cannot be
used to correctly compare magnetoelastic effects in
various structures, and, as mentioned, the calculated
magnetoel asti ¢ coefficients can only be considered esti-
mates. For this reason, we will analyze totally symmet-
ric magnetoelastic modes using the approach applied
in [3] to rare-earth metal zircons.

3.2. Thermal Expansion of the Scheelite Lattice
(LuLiF,)

To separate the purely magnetoelastic contribution
to thermal expansion, we must correctly estimate the
phonon contribution. X-ray measurements of LuLiF,
allow the phonon contributions Aa,,/a and Ac,,/c to be
determined for the other RLiF,. It is only necessary to
introduce correctionsfor their variation along the series
of rare-earth metal ions. The correction for phonon con-
tribution changes, which amounts to 10-15% of the
contribution value, can, in our view, be introduced
using fairly rough models, for instance, the Debye
model of solids.

According to the Debye model, thermal expansion,
for instance, along axis a, is described by the universal
function of heat capacity at a constant volume C,(t),

t

Dag/a = aqTof[C,(/3R )
0

where t = T/T, is the reduced temperature and T, and
0, are two independent coefficients.

The experimental data obtained for LuLiF, and the
Aay/a and Ac,/c curves calculated by (1) with various
Tp and a, parameter values are shown in Fig. 5. The
thermal expansion of LuLiF, along axisa is seen to be
fairly well described by the Debye formula with the
coefficients T, = 790 K and o, = 18.8 x 10 (curve 1).
A comparison of curves1 and 2 (T, = 710K and ag =
16.8 x 10°°) shows that, generally, a coupled pair of the
coefficients can only be determined within the accuracy
of our measurements; that is, we can simultaneously
somewhat decrease or increase both Ty and oy, the
agreement remaining satisfactory to within experimen-
tal errors. To determine the Debye temperature more
accurately, we must perform precision measurements at
temperatures below 150 K. Calculations show that
changes in the Debye temperature within +50 K cause
very substantial changes in the photon contribution
compared with the magnetoelastic contribution (com-
parecurve 1 with3and 4; a,=18.8 x 10%and T, = 740
and 840 K). The thermal expansion along tetragonal
axis c is approximated by the Debye dependence with
Tp =600K and oy =13.0 x 1075 (curve 5). Notethat we
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further use the Debye model only as a simple and con-
venient form for describing the thermal expansion of
the RLiF, lattice and introducing corrections for
changes in the phonon contribution; the calculated Ty
and a, values are neither used nor discussed in what
follows.

4. THEORETICAL CONSIDERATION

4.1. Magnetoelastic Contribution
to Thermal Expansion of Tetragonal Compounds

Therare-earth ion contribution to thermal expansion
in the absence or presence of a magnetic field is calcu-
lated using a Hamiltonian including the crystal field
Hamiltonian Hce, the Zeeman term H,, and the one-
particle magnetoelastic Hamiltonian Hye. It is suffi-
cient to calculate thermodynamic properties for the
ground multiplet, and the crystal field Hamiltonian will
therefore be written in terms of equivalent operators

O, intheform

Her = a,B303 + By(B30; + B4O; + B, Q%)

)
+Y,(B3O; + B¢Og + By Og),

where a;, 5, and y; are the Stevens parameters and the

number of crystal field parameters B;, for the scheelite
tetragonal structure (local symmetry S,) is seven. As

distinguished from the structure of zircon (local sym-
metry D,y), the Hee Hamiltonian contains two addi-

tional terms with off-diagonal imaginary operators Qi

and Qj . Accurate to coefficient i, the matrix elements
of these operators coincide with the el ements of the cor-

responding Stevens operators O, and O [6].

The Zeeman interaction between rare-earth metd
ions and magnetic field H is described by the Hamilto-
nian

H; = —g;ugJH, (3)

where g; is the Lande factor, J is the rare-earth ion
angular momentum operator, and g is the Bohr mag-
neton.

Magnetoelastic effects are most often calculated
using the quadrupole approximation. In the magne-
toelastic Hamiltonian, we will only explicitly write the
invariants that transform under the totally symmetric
representation, which are essentia to the totally sym-
metric modes that we wish to calcul ate,

Hye = —a,05(B5e™" + Bye®?), (4)
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where B3, and BY are the quadrupole magnetoelastic
coefficients. The symmetrized deformations, isotropic

€%! and tetragonal €92, are expressed via the Cartesian
components of the deformation tensor as follows:

sul = ’\/m(exx + 8yy + szz)’
"% = J2I3[e,,— (e +£,)/2).

The totally symmetric magnetoelastic modes are
found as usual, from the condition of free energy F =
Eg — ks TINZ minimum. In the partition function

©)

Z= Zexp(—Ei/kBT),

it is sufficient to calculate the E; energy levels for the
rare-earth metal ion based on the crystal field Hamilto-
nian Hge and the Zeeman term H; in the presence of a
magnetic field. The elastic energy of atetragonal crys-
tal is calculated only taking into account totally sym-
metric deformations determined via the symmetrized
components of the deformation tensor [7],

EE - %C81(5G1)2+C8128a1€u2+%CSZ(SGZ)Z, (6)

where C}) are the symmetrized elastic constants of the
lattice that do not take into account magnetic interac-
tions. Their relation to the C; Cartesian components is
given, e.g.,in[§].

The totally symmetric magnetoel astic anomalies of
a tetragonal lattice are described in the quadrupole
approximation as[8, 9]

e’ _ ByCo —B%Co
O.0i0 ~ ~ainaz al2 5 Q(T, H), (7)
& me Co Co =(Co )
e _ BoCo -BxCo”
0020 ~ ~ainaz al2 5 Q(T, H), (8)
& me Co Co —(Co )
where

1 . E;
Qu(T, H) = o, (0= 01,3 D|02||[9xpg—-k;%.
The quadrupole moment [COYT= [BJ? — J(J + 1)1 (the
observed Og operator value) is zero for cubic crystals,
whose x, y, and z axes are equivalent (00 = 70 =

D20 = [(J + 1)/30), and becomes nonzero when the z

axis is a distinguished direction, for instance, in tetra-
gonal crystals. It follows that the quadrupole moment
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Table 1. Crysta field parameters of rare-earth metal scheelites determined in the formalism of tensor (CE) or equivalent

(O operators; the 814 and Bg4 parameters are nonzero in
parameter sets used in the calculations are labeled by asterisks

the crystallographic system of coordinates; the crystal field

RLiF, | Method | BY,cm® | BS, cmt | BY,em | B, cmt | BS, cmt | By, cm| Bg',cm™| Refs.
PILiF, | (C9) | 489 | -1043 —42 1242 1213 - 23 [10]
NdLiF, CE 441 —906 -26 1114 1072 - 21 [10]
NdLiF, | (Co)y* 532 -934 -76 ~1161 ~916 244 534 [11]
TbLiF, CE 474 —433 64 1080 744 - 286 [12]
TbLiF, | (OM)* | 237 54 4 854 —477 | -739 —201 [13]
DyLiF, Onm 207 —69.5 -0.6 —776.5 -536 —581 —285 ext.
DyLiF, (O)* 202 —66 15 —756 —340 -654 -272 opt.
HoLiF, | c¢ 379 —626 52 831 608 - - [14]
HoLiF, (O)* 189.3 —78.3 -33 —657 -322 —568 —253 [15]
ErLiF, CE 377 —642 —71 861 625 - - [14]
ErLiF, ( Onm )* 190 -80 -2.3 =771 -363 —667 -222 [16]
TmLiF, (o 368 —717 —65 919 619 - - [17]
TmLiF, (Onm )* 184 -90 —-4.06 —727 -328 —628 —284 [18]
YbLiF, | (O | 185 76 0 618 88 _534 _177 [13]

describes the degree of electron cloud asphericity and
its changes induced by temperature variations or by
applying an external magnetic field determine magne-
toelastic anomalies of thermal expansion.

Analysis and description of magnetoelastic effects
in the multipole approximation are considerably more
complex. For arare-earth ion in a site with tetragonal
environment symmetry, the one-particle magnetoelas-
tic Hamiltonian linear in deformation tensor compo-
nents e* (harmonic approximation) contains 26 invari-
ants in the multipole approximation [3]. Usually, mag-
netoelastic effects are described at the level of the
guadrupole approximation, which reduces the number
of terms in the Hamiltonian to five. However, it is not
obvious that the simplest quadrupole approximation is
sufficient for correctly describing thetotality of magne-
toelastic effects in systems with strong magnetoelastic
interactions.
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To summarize, totally symmetric magnetoelastic
modes are determined in the multipole approximation
by temperature-induced variations in al multipole
moments of rare-earth ions Q,,,,, which can be calcu-
lated numerically from known crystal field parameters.
The contributions of multipole momentsto totally sym-
metric magnetoelastic modes are described by equa
tions similar to (7) and (8), which contain multipole
moments Q,,, and multipole magnetoelastic coeffi-

: al a2
cients B, and B,,.

4.2. The Multipole Moments of Rare-Earth Metal lons
in Scheelites and Criteria of the Applicability
of the Quadrupole Approximation

For most of the RLiF, scheelites formed by rare-

earth metals R, crystal field parameters can be consid-
ered as reliably established from detailed optical stud-
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Fig. 6. Calculated temperature dependences of the AQo,

k1AQyg, and koAQgg multipole moments of rate-earth metal

scheelites PrLiF, (kq = 1and k, = 0.15), TbLiF, (k; = -0.82

and k2 = 29), and DyL|F4 (kl =-0.7 and k2 = 04)

ies [10-18]. The available data on the crystal fields of
these compounds are summarized in Table 1, in which
the method of measurements and the basis for which
the corresponding parameters were determined are al'so
indicated. The crystal field parameters used in our cal-
culations are label ed by asterisks. For some compounds
of the family (DyLiF, and YbLiF,), only crystal field
parameters calculated by the model of exchange
charges are available; these parameters were not given
reliable experimental substantiation. In certain
instances, we were able to select between alternative
sets of crystal field parameters for these compounds
based on our experimental data. Note that optical
experiments are often described in rotated coordinate
systems for which exact rotation angles are not known.
This impedes the use of the obtained crystal field
parameters for describing magnetoel astic effects.

Numerical calculations show that fourth- or sixth-
order multipole moments of RLiF, are comparable to
(TbLiF, and DyLiF,) or even substantially larger than
(HoLiF, and TmLiF,) the quadrupole moments. The
temperature dependences of three diagonal multipole
moments AQ,y, AQ,g, and AQg, for severa ions (Pr,
Th—Ho, and Tm) are shown in Figs. 6 and 7. The Qg
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Fig. 7. Calculated temperature dependences of the AQog,
k1AQ40, and koAQgo multipole moments of rate-earth metal
scheelitesHoLiF, (k; =—0.45 and ky, =—0.045) and TmLiF,
(k; ==1 and ky = 0.15).

and Qg off-diagonal moments (and the Q,, and Qg,
moments proportional to them) and their temperature
variations are, as arule, small for rare-earth metal ions
in scheelites; we will not discuss them in thiswork. For
convenience of comparison, scaled dependences of
multipole moments k,AQ,, and k,AQg, are given. The
magnitude and sign of the k; and k, scale factors were
selected such that changes in Q,g, Q49, and Qg in the
temperature range 10-300 K were comparable in mag-
nitude. The smaller the k; and k, factors in magnitude,
the more substantial the expected contribution of the
fourth- and sixth-order multipole moments, respec-
tively, to thermal expansion. Note that the Q,, and Qg
moments are, as a rule, negative, and Q,g, positive,
because second- and sixth-order crystal field parame-
tersare positive, and fourth-order parameters, negative.
The criteria of quadrupole approximation applicability
can be formulated differently for two different groups
of ions.

If the temperature dependences of all moments are
similar, as, for instance, for TbLiF,, we can use the
“effective” quadrupole approximation, in which the
effective magnetoelastic coefficient is some combina-
tion of quadrupole and multipole magnetoel astic coef-
ficients. It is then difficult to use experimental data for
drawing conclusions about the contributions of multi-
pole moments of different orders to totally symmetric
magnetoel astic modes.
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Table2. CoefficientsA; = 3(AG/O)/AQy and Ay = 3(Aa,/a)/AQy
and quadrupole magnetoel astic coefficients B and B2 for
rare-earth metal scheelites; (Acy,o/C), (Aaye/a), and AQ,, are
the magnetoel astic contributions to thermal expansion along
axes ¢ and a and the quadrupole moment change in the tem-
perature range 10-290 K, respectively

Bal BGZ
RLiF, |A;, 1072 |A,, 1072 |10%K/(formulal 10° K/(formula

unit) unit)
TbLiF,|-0.645 | 0.366 0.03 -1.37
TbLiF,®|-0.642 | 0.353 -0.03 -1.35
DyLiF?|-0.75 0.375 -0.2 -154
Tbvo®| 0.75 |-1.02 -5.40 5.13

8 For the interval 10-290 K ;
b) for the interval 10-160 K.

However, if the temperature dependences of Qi
multipole moments are essentially different, asfor Tm
and Ho, a comparison with experimental data allows us
to identify the multipole moment that makes the major
contribution to thermal expansion and to estimate the
actual magnetoelastic coefficients. If the contribution
of fourth- and sixth-order multipole moments to the
magnetoelastic anomalies of thermal expansion is sig-
nificant, the temperature dependences of Aa,/a and
Ac,Jc should contain singularities corresponding to
these moments. Calculations of the temperature depen-
dences of the multipole moments of rare-earth metal
ions and a comparison of these dependences with those
determined experimentally make it possibleto estimate
the contributionsto thermal expansion of different mul-
tipole moments regardl ess of the deficiency of informa-
tion about magnetoelastic coefficients of various
orders.

An analysisof the experimental dataon TmLiF, and
HoLiF, showsthat anoticeabl e contribution is made by
the sixth-order multipole moments of the correspond-
ing ions. Indeed, for TmLiF,, changes in the Qg, Sixth-
order multipole moments are almost an order of magni-
tude (k, = 0.15) larger than changes in the quadrupole
moment, and the temperature dependences of these two
moments are different. The temperature dependence of
the |AQ,| quadrupole moment hasamaximum at 80 K,
and the moment begins to decrease at lower tempera-
tures, which is at variance with the thermal expansion
anomalies of TmLiF,. The AQz moment changes
monotonically, and the rate of its growth is maximum
at about 50 K, where a thermal expansion anomaly is
observed. The Ac,,/c and Aa,/Ja magnetoel astic contri-
butions are proportional to the AQg, multipole moment

in TmLiF,, which means that the B and Bg sixth-
order magnetoelastic coefficients are not too small
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compared with the corresponding quadrupole magne-
toelagtic coefficients. Calculations according to the
model of exchange charges give similar ratios between
the magnetoel astic coefficients of various orders [19].
A similar behavior of multipole moments is observed
for the Ho ion in the scheelite structure (k; = —0.45 and
k, = —0.045, Fig. 7).

As the crystal field was reliably determined for
TmLiF,, and corrections to the phonon contribution
compared with LuLiF, have no noticeable influence on
the character of the temperature dependences of Ac,,,/C
and Aa,,/a, the reasoning given above and the conclu-
sionsdrawn from it should be considered valid. Magne-
toelastic coefficients change not very substantially
along the series of rare-earth metal ions within the
structure type under consideration. We can therefore
expect that other rare-earth metal ions should be char-
acterized by similar ratios between the magnetoelastic
coefficients of various orders. To summarize, our anal-
ysis of the experimental data on the thermal expansion
of RLiF, leads us to conclude that the contributions of
the fourth- and sixth-order multipole moments to
totally symmetric magnetoel astic modesin the series of
scheelites formed by rare-earth metals can exceed the
contributions of their quadrupole moments; that is, the
guadrupole approximation is not quite valid for these
compounds.

5. THE MAGNETOELASTIC CONTRIBUTION
TO THE THERMAL EXPANSION OF RLiF,
(R = Tb-Ho, Tm)

We used the experimental data on TbLiF, com-
pound, for which the effective quadrupole approxima-
tion is valid, to determine its quadrupol e magnetoel as-
tic coefficients. The magnetoelastic contribution in
TbLiF, was found taking into account corrections for
phonon contribution variations. For this purpose, we
used an optimization procedure in which the T and a,
Debye model parameters were varied within £20%
from their values for LuLiF,. The optimization was
performed to make the resulting magnetoel astic contri-
bution proportional to the quadrupole moment and
reduce the largest difference (observed at low tempera-
tures) between the phonon thermal expansion values
aong axesc and ain TbLiF, and LuLiF, below some

set value, namely, &(Ac/c), ~ 8(Aa/a), ~ 1 x 104,

The optimization gave the proportionality factors
between the magnetoelastic contributions and quadru-
pole moments for the Th and Dy scheelites, Ac,/C =
AAQ,y/3 and AaJa = AAQ,y/3 [see (7), (8)]. The A,
and A, values are listed in Table 2. The magnetoel astic
contributions along axes ¢ and a and the cal cul ated qua-
drupole moments for these scheelites are shown in
Fig. 8. To make comparison convenient, the magne-
toelastic contribution aong a and the quadrupole
moment are given with the corresponding factors,
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AAame/a and AlAQZO (A = A1/A2 -~ —l and Al -~ 10_2, see
Table 2). As has been mentioned, there is no crystal
field data on DyLiF,. The extrapolated (intermediate
between the crystal fields of the neighboring Th and Ho
ions) crystal field did not give an acceptabl e description
of the magnetoelastic contribution. We therefore per-
formed additional optimization of the extrapolated
crystal field of DyLiF, using data on the g-factors and
splittings of the lower Dy®* levels. This improved
agreement with experiment. Of coursg, in the absence
of spectroscopic information about DyLiF,, complete
crystal field optimization cannot be performed and a
unique reliable set of parameters cannot be obtained.

6. DISCUSSION

When the effective quadrupole approximation is
valid, the contribution of rare-earth metal ions to ther-

mal expansion is determined by the Bgol = B*! and

ng = B guadrupole magnetoel astic coefficients and

temperature-induced quadrupole moment changes
AQz = Qu(T) — Qx(290 K) [see (7), (8)]. Consider
some specia features of the temperature dependences
of AQ,, quadrupole momentsin the series of rare-earth
metal schedlites (Fig. 9). Thelargest AQ,, changein the
temperature range 10290 K was observed for TbLiF,.
Calculations show (see Fig. 9) that, below 50 K, the
guadrupole moment of the Dy scheelite and the deriva-
tive of the quadrupole moment of the Tm scheelite
change their signs.

For the other scheelites, quadrupole moment
changes are insignificant, as is shown in the inset in
Fig. 9. Although AQ,(T) is small for the Ho and Er
schedlites, it has sharp anomalies at about 30-50 K,
where the phonon contribution is almost constant.
These low-temperature anomalies can be studied by
more sensitive methods, for instance, with the use of
strain gauges. InHoLiF, and TmLiF, (curves 3, 5), qua-
drupole moment changes in the temperature range
10-290 K are small and should not cause observable
magnetoelastic effects. Other multipole moments of
these ions, however, experience substantial changes as
temperature varies. Itislikely that the behavior of these
moments determines the magnetoelastic contributions
to thermal expansion.

The anomalies of the AQ,(T) dependences are
interesting to relate to the special features of the spectra
and wave functions of rare-earth metal ions in the
scheelite structure. An analysis shows that the sharp
change in AQx(T) a T ~ 90 K observed for the Th
scheelite is related to a decrease in the population of
two lower singlets, which form a quasi-doublet and
make the major contribution. This contribution
decreases as the popul ation of the next excited level sit-
uated at adistance of E; ~ 180 K grows. A different sit-
uation is observed for the Dy scheelite. The contribu-
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Fig. 8. Magnetoelastic contributions Ac/Cc and AlaJ/a
and quadrupole moments AjAQ,y for (1) TbLiF, and
(2) DyLiF,, experimental and calculated in the quadrupole
approximation; the A = A¢/A, and A; parameter values for
the specified rare-earth metal ions are listed in Table 2
(A~-1and A, ~1079).
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Fig. 9. Calculated quadrupole moments Q,q for RLiFy:
(1) TbLiF,, (2, 2) DyLiF,, and (5) TmLiF,; given in the
inset are calculated quadrupole moments Q,q drawn on an
enlarged scale for (3) HoLiF,, (4) ErLiF,, and (6) YbLiF,.

tion of thelower doubl et isvery small, whereasthe con-
tributions of the three higher doublets situated at T = 5,
62, and 88 K are comparable in magnitude and gradu-
ally decrease asthe populations of these level s decrease
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with a decrease in temperature. This explains the
change in sign of AQ,(T) at low temperatures. Also
note that the quadrupole and multipole moments of
DyLiF, are very sensitive to crystal field parameters, as
can be seen from acomparison of curves2 and 2' for the
extrapolated and optimized crystal fields (Fig. 9).

The experimental magnetoel astic contribution to the
thermal expansion of the Tb and Dy scheelites corre-
lates with changes in the calculated quadrupole
moments AQ,,. Thisleads usto conclude that, in afirst
approximation, their quadrupol e magnetoel astic coeffi-
cients B! and B®? are not too different. We used the C;,
Cio Ci3, and C4; easticity constants of YLiF, [20] to
calculate the symmetrized elasticity constants in (7)

and (8). Thisgave[in 10° K/(formulaunit) units] Cgl =

13.0, C3? =5.03, and C3** = 0.7. The hierarchy of the
elagticity constants for the scheelite structure is the
same asfor zircons, but their values are on average two
times smaller. Next, we determined the B! and B*?
magnetoelastic quadrupole coefficients (Table 2) from
the A, and A, proportionality coefficients and the sym-
metrized elasticity constants. For comparison, Table 2
contains similar data on TbVO,. At the specified rela-

tive elasticity constants C3* ~ C3% < C3*, the sign

and magnitude of the B*? coefficient are determined by

the magnetoelastic mode (Ae%%/e%2),,JAQ,, = B%2/CS?
[the change in the degree of tetragondlity, Eg. (8)], and
the B** coefficient, which is comparable in magnitude,
by the magnetoelastic mode (Ae®Ye™), JAQ,, =

BY/C3" [the change in volume, Eq. (7)].

Note that the signs of the magnetoelastic coeffi-
cients for the scheelites are opposite to those obtained
for the vanadates and phosphates with zircon struc-
tures, and their magnitudes are different [3, 4]. For the
scheelites, the B** coefficient is substantially smaller
than B®?; that is, the magnetoel astic contribution to vol-
ume deformation is insignificant compared with the
magnetoel astic contribution to changesin the degree of
tetragonality. The B magnetoelastic coefficient is
determined as the difference of two large values, and

small changesin A, and A, or the C3*, C3%, and C3*

elasticity constants can therefore change not only the
magnitude but also the sign of this coefficient (see
Table 2). This causes large errors in its determination,
and we only obtain estimates of B** compared with B2,
The largest magnetoelastic coefficient B®? for the
scheelite structure is approximately four times smaller
than that for zircons. It follows that the magnetoel astic
anomalies of thermal expansion of rare-earth metal
scheelites should be two times smaller than those of
rare-earth metal zircons, changes in their quadrupole
moments being comparable.
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The experimental data on the scheelite structure are
evidence of the existence of substantial multipole con-
tributions to spontaneous magnetoelastic effects such
as magnetoelastic thermal expansion anomalies. Sys-
tematic studies of rare-earth metal ion compounds with
other structures show that the quadrupole approxima-
tion is quite acceptable and sufficient for describing
various magnetoel astic effectsin them. A wide range of
magnetoelastic effects (thermal expansion anomalies,
Young's modulus, the AE effect, and magnetostriction)
in tetragonal phosphates RPO, [9] and vanadates RvO,
[3] with zircon structures and paramagnetic al uminate—
garnets and gallate—garnets containing rare-earth metal
ions from Tb to Y b with orthorhombic local symmetry
[21] can be described by the quadrupole approxima:
tion. The necessity of using the multipole approxima-
tion in similar situations for the scheelites formed by
rare-earth metal ionsis anew and interesting result for
the theory of magnetoel asticity.

7. CONCLUSIONS

In this work, we performed theoretical and experi-
mental studies of the thermal expansion of RLiF,
scheelites formed by rare-earth metal ions. We
observed substantial thermal expansion anomalies for
scheeliteswith Tbh—Ho and Tm ions and determined the
Ac,,/c and Aa,/a magnetoel astic contributions to ther-
mal expansion taking into account corrections for
changes in the phonon contribution along the series of
rare-earth metal ions according the Debye model of
thermal expansion. The experimental Ac,/c and Aa,,/a

values were used to calculate the B*! and B*? totally
symmetric quadrupole coefficients, which were sub-
stantiadly different in magnitude. A comparison with
rare-earth metal vanadates RVO, showed that the B!
and B*2 magnetoelastic coefficients and AQ,, quadru-
pole moment changes had opposite signs for the two
series of tetragonal structures, whereas the Ac,/c and
Aa,Ja magnetoel astic contributions to thermal expan-
sion determined by the products of these factorswere of
the same sign. Different AQ,, quadrupole moment

signs are caused by different signs of the Bg second-

order parameter for the scheelites and vanadates
formed by rare-earth metal ions.

Independent experimental data on magnetoel astic
coefficients and their hierarchy in different structures
are necessary for testing various modelsin the theory of
magnetoelagticity. In particular, calculations of the
magnetoelastic coefficients for the schedlite structure
by the model of exchange charges[2] can be compared
with experiment to reveal their interrelation with the
structural parameters of the crystals, ion charges, dipole
moments, etc.

The conditions of the applicability of the quadru-
pole approximation to describe the totally symmetric
magnetoelastic modes were considered based on a
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comparison of the calculated quadrupole and dipole
moments of various rare-earth metal ions in the
scheelite structure and the experimental magnetoel astic
contributions to thermal expansion. It was shown that
multipole moments could make a considerable contri-
bution for some ions and the magnetoelastic thermal
expansion anomalies of scheeliteswith rare-earth metal
ions could not be described solely by the temperature
dependences of their quadrupole moments. The conclu-
sion was drawn that the fourth- and sixth-order multi-
pole magnetoel astic coefficients were comparable with
the quadrupol e magnetoel astic coefficients. Substantial
multipole contributions and the necessity of going
beyond the quadrupole approximation with the
scheelites containing rare-earth metal ions are of cer-
taininterest for the theory of magnetoel asticity. For this
reason, other spontaneous and induced magnetoel astic
effectsin these scheelites for which multipole contribu-
tions may be of significance appear worthy of theoreti-
cal and experimental investigation.
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Abstract—Harper equations are derived for a p, p, electronic system. Analysis is carried out for extreme
points of the quasi-continuous spectrum in the cases when the number of magnetic flux quanta through a unit
cell isarational number and cal culations are made for square and triangular lattices aswell asfor a honeycomb
lattice with two nonequivalent atoms. The possibility of application of the results for explaining the fractional
Hall effect is considered. © 2003 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Equations determining the energy spectrum of the
system under the action of amagnetic field form asys-
tem of difference equations and are known as Harper
equations[1]. In the problem considered here, there are
two limits, viz., the energy spectrum consisting of dis-
crete strongly degenerate Landau levels in the absence
of a periodic potential and the energy bands associated
with Bloch waves emerging due to trandational lattice
symmetry in zero magnetic field.

The problem of electronsin alattice with periodsa,,
a,, and ag, which move in a magnetic field H || ag, is
characterized by the natural parameter { = (HS, ,,)/®,
equal to the ratio of the magnetic flux through an area
element constructed on vectors a;, a, to the flux quan-
tum @, = Ac/|e|. If this parameter is rationdl, i.e., { =
p/g, we have a magnetic superlattice constructed on
vectors ga;, ga,. This simplifies calculations signifi-
cantly. Inthe simplest case of asquare latticewith asin-
gle atom in the unit cell with rational number ¢ =
eHa?/7ic, the energy spectrum was calculated by Hofs-
tadter [2] and is known as the Hofstadter butterfly. In
the case of aweak magnetic potential, the Landau lev-
elssplit into subbands[3], while degeneracy is partially
removed in astrong field [4].

In the Hofstadter case mentioned above, the
Schrédinger equation in the strong coupling approxi-
mation leads to Harper equations

l'lJn+l + 2LlJnCOS(ZTl:nZ _¢) + Lpn—l = ELIJna (1)

where W, is the wave function at the nth site, ¢ = ap,/#
is the phase associated with the electron quasimomen-
tum, aisthelattice constant, and E isthe energy in units
of the jump integral to the nearest neighbors.

All possible self-energies of the Harper equations
lie in the range |E| < 4 and the parameter can be con-
fined to theregion 0 < |{| < 1. Infact, it is sufficient to
consider the range 0 < |{| < 1/2 since the Harper equa-
tionisinvariant to the substitution { — 1—¢. It should
also be noted that Egs. (1) permit the substitution

E—-E

The numerical method proposed by Hofstadter was
based on the fact that Harper equation (1) can be writ-
tenintheform

O o .0 O
O tneig = TnO ¥nog ()
Ow, O Oow,_,0
with the transition matrix
. O_ —d) 14
T, = DE 2cos(2mnC —¢) 1D. ©)
O 1 o

Transition matrices T, have determinants equal to unity.
In the case when ¢ = p/q, Egs. (2) are periodic in nwith

period g. Consequently, matrix A = [|?_, T, has

eigenvalues whose absolute value is smaller than unity.
Since detA = 1, this requirement is equivalent to the

condition Tr(A) = 2cos8, which leads to the entire
excitation spectrum.

It is interesting to note that the Hofstadter solution
could be modeled experimentally [5] using the analogy
between the equations describing the propagation of
microwaves through a scattering matrix and the Harper
equations for an electron. The passage of a microwave
through a (100) matrix of scattering elements inserted
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in a waveguide was studied in [5], where the bands
reproducing the Hof stadter butterfly were determined.

The experimental realization of abutterfly with typ-
ica lattice parameters of 0.1 nm requires magnetic
fields on the order of 10° T, which is beyond the techni-
cally accessible limit. The only way to solve this prob-
lemisto use artificial superstructures. The first indica
tions of magnetically split subbands are in fact con-
tained in [6-9].

The quantum Hall effect is studied on structures
consisting of atoms with an unfilled p shell. For this
reason, we will study a two-dimensional system of p,
and p, electrons in a square lattice or in a honeycomb
lattice. The selectronsin atriangular lattice or in ahon-
eycomb lattice are equally interesting since the proper-
ties of such electrons in the 2D case are equivalent to
the properties of p, electrons placed in the same lattices.

Theoretical investigations of the quantum Hall
effect have been confined so far to analysisof a2D sys-
tem of Landau levels taking into account a weak Cou-
lomb interaction in perturbation theory. The only
exceptionswere paper [9] and arecent publication [10].
In [9] agroup-theoretical analysisis carried out for the
electronic structure of a 2D electron gas in an externa
magnetic field, while the conditions for the emergence
of the fractional Hall effect are studied in [10] in the
framework of self-consistent perturbation theory. Sev-
eral seriesof fractional relations are derived in the con-
cluding part of this paper.

2. HARPER EQUATIONS
FOR THE p-ELECTRON SYSTEM

Let us consider equations for the creation operators
in the Heisenberg representation:

i a—A L WP ~ KT A
ih agt(t) = —[H,ak’r(t)] = ZHT'TI,San,S(t)- (4)

Here, & ,(t) istheannihilation operator for an electron

belonging to a cell with coordinate r and located in a
degenerate state with number k.

In the semiclassical approximation, 