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Abstract—We present the results of our comparative timing and spectral analysis of the high and low (off)
states in the X-ray pulsar Her X-1 based on data from the ART-P telescope onboard the Granat observatory.
A  statistically significant (several mCrab) persistent flux with a simple power-law spectrum was detected dur-
ing the low state. The spectral slope changed from observation to observation by almost a factor of 2. Pulsations
were detected only during the high state of the source, when its flux was a factor of ~25 larger than the low-
state flux. The spectral shape of Her X-1 in its high state was complex, with the parameters depending on pulse
phase. © 2000 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

The X-ray pulsar Her X-1 forms a low-mass binary
with the star HZ Her whose parameters are M1 = 2.0M(,
R1 = 3.9R(, a = 8.6R(, and i = 80°, where a is the sep-
aration between the binary components, and i is the
orbital inclination (Nagase 1989). Today, thirty years
after its discovery (Tananbaum et al. 1972), it remains
one of the most commonly observed X-ray sources.
The main reason for this attention is the existence of
three periodicities in the binary. Apart from a neutron-
star spin period of ~1.24 s and an orbital period
of  ~1.7  days, observations suggest the existence of a
35-day “on–off” cycle in the binary: the pulsar is in a
high-intensity state during ~12 days, while its flux dur-
ing the remaining ~23 days drops to a level of a few
percent of the on-state flux. In the middle between the
high states, the X-ray flux rises to ~1/3 of its peak value
(the low on state; Jones and Forman 1976) in ~5 days.
The 35-day cycle cannot be called periodic in the strict
sense of the word. Since the source is assumed by some
authors (Tananbaum et al. 1972; Crosa and Boynton
1980; Shakura et al. 1998) to be turned on near orbital
phases 0.2 and 0.7, the turn-on phase “floats” from one
35-day cycle to another. Having analyzed long-term
observations of Her X-1, Bochkarev et al. (1988) con-
cluded that the turn-on phase of the pulsar is also
related to changes in its period. Boynton et al. (1980),
Staubert et al. (1983), and Ögelman (1987) discussed
the various statistical models that accounted for the
observed variations in the source’s turn-on phase.

Despite a wealth of observational data, the nature of
the 35-day cycle is not yet completely understood. The
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most widely discussed models that account for this
behavior are as follows: a tilted or warped precessing
accretion disk that periodically eclipses the X-ray gen-
eration regions on the neutron-star surface (Katz 1973;
Boynton et al. 1980; Shakura et al. 1999) and free
neutron-star precession (Lamb et al. 1975; Trümper
et  al. 1986). However, based on EXOSAT satellite
data, Sheffer (1987) pointed out that such neutron-
star  precession could not take place in the system
Her X-1/HZ Her.

Here, we present the results of our timing and spec-
tral analysis of observational data from the ART-P tele-
scope onboard the Granat Orbiting Observatory at var-
ious phases of the orbital (φ17) and 35-day (ψ35) cycles
of the pulsar Her X-1.

OBSERVATIONS
The observations were performed in 1990–1991

with the ART-P telescope, which is one of the two main
instruments onboard the Granat orbiting astrophysical
observatory. The telescope consists of four coaxial,
completely independent modules; each module includes
a position-sensitive detector with a geometric area of
625 cm2 and a coded mask constructed on the basis of
URA sequences. The instrument maps a selected region
in the sky within a 3 4 × 3 6 field of view (FWZR)
with a nominal resolution of ~5 arcmin (the angular
size of the mask element). Because of the higher spatial
resolution (~1.25 arcmin) of the detector, the accuracy
of localizing discrete sources is several-fold higher.
The telescope is sensitive to photons in the energy
range 3–60 keV and has an energy resolution of ~22%
in the 5.9 keV iron line [see Sunyaev et al. (1990) for a
more detailed description of the telescope]. The obser-
vations were carried out in the “photon-by-photon”
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Fig. 1. ART-P 3–20 keV images of the sky region with Her
X-1 during its (a) high, (b) low, and (c) eclipse states. The 3,
4, 5, or more σ confidence regions of the source are indi-
cated by contours.

Her X-1

Her X-1
mode, in which, for each photon, its coordinates on the
detector, energy (1024 channels), and arrival time were
written into buffer memory. This mode allows both tim-
ing and spectral analyses of the emission from each X-
ray source within the ART-P field of view. The photon
arrival time is accurate to within 3.9 ms (1/256 of the
onboard second), and the ART-P dead time is 580 µs.
The spacecraft is stabilized to within ±30 arcmic. Its
wobbling within this range results in the flux from the
source being modulated with a characteristic time of
900–1100 s with the collimator transmission function.
When constructing the light curves, phase curves, and
spectra of the pulsar Her X-1, we applied corrections for
this effect.

Of the four individual observing sessions during
which the pulsar Her X-1 fell within the ART-P field of
view (on March 3 and 6, July 21, 1990, and on August 22,
1991), the source was detected in the high state only on
March 6, 1990; the remaining three sessions corre-
sponded to different phases of the low state. The obser-
vations on July 21, 1990, partly coincided in time with
an X-ray eclipse at φ17 . 0.93–0.07 (Bochkarev et al.
1988). It should be noted that, since the energy resolu-
tion of the ART-P module used for the observations on
August 22, 1991, was considerably lower, the data
obtained on this day were used only for imaging and for
a timing analysis.

As was already pointed out above, there is a spread
in the source’s turn-on times and, accordingly, in the
phase of the 35-day cycle determined by different
authors. Here, we used the dependence from Soong et al.
(1987).

RESULTS

Table 1 gives the dates and durations of our observa-
tions, the mean 3–20 keV photon fluxes measured dur-
ing the sessions, and the corresponding phases of the
orbital period and the 35-day cycle (the mean fluxes
from the source in its pre-eclipse and eclipse states are
given separately for the session of July 21, 1990).
Figure 1 shows the 3 0 × 3 0 X-ray sky maps with Her
X-1 obtained during two different observing sessions.
The image in Fig. 1a was obtained on March 6, 1990,
when the source was in its high state; Figs. 1b and 1c
present the sky maps on July 21, 1990, during the pre-
eclipse low and eclipse states. As discussed below, no
X-ray pulsations are observed during the low state. The
maps indicate that the detected emission does come
precisely from the pulsar Her X-1 rather than from any
accidental faint source within the field of view. The X-ray
flux variations attributable to eclipse ingress of the
source during this session are shown in Fig. 2 (the back-
ground count rate was subtracted). The eclipse onset
time is in good agreement with that suggested by the
binary’s known orbital parameters (Deeter et al. 1991).

.° .°
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TIMING ANALYSIS

X-ray pulsations were detected by the ART-P tele-
scope only on March 6, 1990, when Her X-1 was in its
high state. The period determined by the epoch-folding
technique after the photon arrival times were corrected
for the motion of the neutron star in the binary and for
the Earth’s and spacecraft motion was 1.23775454 ±
0.00000048 s (Lutovinov et al. 1994); the pulse fraction
in the 3–30 keV energy band, defined as P = (Imax –
Imin)/(Imax + Imin), where Imax and Imin are the count rates
at maximum and minimum of the pulse profile, was
.65.5%. Note that, in the 3–18 keV energy band,
P was essentially constant at a 67–68% level, and only
at higher energies did it decrease to ~58%. The upper
limits on the low-state pulse fraction during the March 3
and July 21 sessions were 2.9 and 18% (3σ), respec-
tively.

Figure 3 shows the pulsar phase light curves in four
energy bands (3–6, 6–12, 12–18, and 18–30 keV) aver-
aged over this entire observing session. The ratio of the
instantaneous flux to the flux averaged over the pulsa-
tion period is plotted along the vertical axis. The con-
structed pulse profile of Her X-1 has a shape typical of
the on state: a relatively broad (~0.5 of the period) dou-
ble-peaked pulse with a clear dominance of the first
peak and a sharp drop in intensity to a minimum after
the second peak. An analysis of the energy dependence
of the pulse profile indicates that the amplitude of the
second peak decreases with increasing energy, and it
virtually disappears in the hardest energy band. The
first peak becomes considerably narrower, the position
of the minimum remains unchanged, and the intensity
maximum displaces rightward by ~0.1 into the phase
range 0.70–0.75. This behavior of the phase curves is
shown more clearly in the lower panel of Fig. 3, which
presents the phase dependence of the pulsar hardness (the
ratio of the pulse profiles in the 18–30 and 6–12 keV
energy bands).

THE SPECTRA IN DIFFERENT STATES

When X-ray pulsars are investigated, the main spec-
tral model is a simple power law with a high-energy
cutoff (White et al. 1983). Depending on a specific
object, this model is generally modified by absorption
in the soft energy band and by emission lines. The spec-
tra of some pulsars exhibit cyclotron absorption lines
(Trümper et al. 1978; Mihara et al. 1995). Since the
cyclotron line in Her X-1 lies outside the ART-P oper-
ating range, the model that we used in our spectral anal-
ysis appears as follows:

(1)

I E( ) I10
E

10 keV
----------------- 

 
α–

σA– NH( )exp=

×
1 if   E Ec<,

E Ec–( )/E f–[ ] , if E Ec,≥exp
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where E is the photon energy in keV, I10 is the normal-
ization of the power-law component at 10 keV, α is the
photon spectral index, NH is the hydrogen column den-
sity, σA(E) is the interstellar absorption cross section
(Morrisson and McCammon 1983), Ec is the cutoff
energy, and Ef is the e-folding energy of an exponential
cutoff in the source’s spectrum.

A preliminary analysis (Lutovinov et al. 1997)
shows that the pulsar high-state spectrum is well
described by model 1, with the interstellar absorption
column density being NH & 4.5 ×1021 cm– 2. A more
detailed investigation reveals an additional emission
feature at energy ~7.6 keV. In order to take this feature
into account, we modified model 1 by adding a Gauss-
ian with a central energy EK and a total flux AK (model 2).
Since the line was assumed to be narrow, its width was
fixed at 0.1 keV, which is below the ART-P spectral res-
olution. Best-fit parameters for the spectrum are given
in Table 2 (all errors correspond to 1σ). The line equiv-
alent width is W . 280 eV. In order to test how signifi-
cant the decrease in χ2 was when passing from model 1
to model 2 (see Table 2), we estimated the probability
that this decrease in χ2 occurred by chance. Our probabil-
ity calculations based on ∆χ2 statistics yielded 3.4 × 10–5,
which is 4.2σ in standard deviations of the normal distri-
bution. Figure 4a shows the pulsar high-state spectrum.
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Fig. 2. The pulsar light curve including an eclipse during the
observations on July 21, 1990. The presumed eclipse onset
time is indicated by dashes.

Table 1.  ART-P observations of the pulsar Her X-1

Date Duration, s Flux, mCrab* φ17 ψ35

March 3, 1990 14620 6.3 ± 0.4 0.41–0.55 0.98

March 6, 1990 10920 150.4 ± 1.0 0.20–0.29 0.07

July 21, 1990 15250 6.5 ± 0.6 0.80–0.93 0.99

15760 0.8 ± 0.5 0.93–0.07 0.00

August 22, 1991 23000 10.9 ± 1.8 0.30–0.51 0.38

* In the 3–20 keV energy band.
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The pulse-height spectrum (in counts s–1 cm–2 keV–1) is
indicated by dots, and the solid line represents the cor-
responding model photon spectrum (in phot. s–1 cm–2

keV–1) with the feature at ~7.6 keV, whose contribution
is indicated separately by the dashed line. Deviations
(in σ) of the measured spectrum from the model spectra
convolved with the instrumental response matrix are
shown in Figs. 4b (without the feature) and 4c (with the
feature).

According to ART-P data, the low state of the pulsar
Her X-1 is characterized by an X-ray flux of several
percent  of  its  high-state  flux  and  by  the  absence  of

3–6 keV

6–12 keV

12–18 keV

18–30 keV

18–30/6–12

2

1

2

1

2

1

2

1

1.6

1.2

0.8

0 0.5 1.0 1.5 2.0
Pulse phase

H
ar

dn
es

s
R

el
at

iv
e 

in
te

ns
ity

Fig. 3. The pulse profiles of the pulsar Her X-1 in various
energy bands on March 6, 1990, during its high state. The
ratio of the instantaneous photon flux to the period-averaged
flux is along the vertical axis. The evolution of the source’s
hardness during one period is shown in the lower panel. The
errors correspond to one standard deviation.
X-ray pulsations. The source’s spectra measured on
March 3 and July 21, 1990, are shown in Figs. 5a and
5b, respectively. As in Fig. 4, the pulse-height spectra
and the corresponding model spectra are represented by
dots and solid lines, respectively. A visual difference
between the pulse-height spectra is attributable to a dif-
ference between the response matrices for the ART-P
modules used during these observations. Both spectra
are well described by a simple power law without evi-
dence of a cutoff in the hard energy band or of emission
lines. Best-fit spectral parameters are given in Table 3.
We see that the spectral slopes differ by a factor of ~2,
with the photon flux at 10 keV (and the total 3–20 keV
flux; see Table 1) being virtually the same.

Her X-1 is observed in its low state if the compact
source is hidden behind the outer edge of a warped (or
tilted to the orbital plane) accretion disk. The emission
greatly attenuated by absorption and scattering in cold
matter on the disk periphery or the emission scattered
in a hot corona above the disk reaches us. A number of
observational facts (Bochkarev 1989) point to the exist-
ence of such a corona in the binary. To a first approxi-
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Fig. 4. (a) The high-state spectrum of the pulsar Her X-1 as
constructed from the ART-P data obtained on March 6,
1990. The measured (pulse-height) spectrum is indicated by
dots, and the histogram represents its best fit by model 2 (see
Table 2). The model (photon) spectrum is represented by the
solid line. The dashed line indicates the contribution of the
emission line at 7.6 keV. Panels (b) and (c) show deviations
of the experimental data (in σ) from the best fits by models 1
and 2, respectively. The errors correspond to one standard
deviation.
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mation, the spectrum observed in this state must differ
from the initial one merely by a normalization (because
of scattering) and a stronger low-energy cutoff
(because of photoabsorption). Using the source’s high-
state spectrum as the original one in this model, we
attempted to fit the spectra measured during its low
state. The results in Table 3 (model 3) suggest that the
described pattern is completely confirmed by the
March 3 observations, but is in conflict (an appreciable

increase in  and no evidence of absorption) with the
July 21, 1990 observations. The source’s spectrum
proper most likely changed appreciably in the five
months elapsed between the observations. To some
extent, this conflict can be associated with an increase
in the fraction of the photons scattered in the hot corona
compared to those which arrived from the disk edge.
Unfortunately, the quality of the spectra measured dur-
ing the source’s low state does not allow this question
to be answered unequivocally.

PHASE-RESOLVED SPECTROSCOPY

The energy dependence of the pulsar pulse profile is
directly related to the evolution of its spectrum on a
scale of one pulsation period. In order to investigate this
relationship, we performed phase-resolved spectros-
copy of the source in the on state. The data of the March 6
session were folded with the pulsar period and divided
into eight bins (this number, which is a factor of 3
smaller than that used to construct the pulse profile in
Fig. 3, was chosen to improve the statistics). The arrival
time of each photon was corrected for the Doppler
effect caused by motion of the satellite and the Earth
around the Sun and by motion of the neutron star in the
binary. The total integration time for each of the eight
bins corrected for the dead time of the instrument was
~1060 s. An analysis indicates that, in general, all our
spectra are satisfactorily described by a simple power
law in the 3–20 keV energy band, although the photon
index varies greatly (by more than a factor of 2) on a
scale of one pulsation period (Fig. 6b). For clarity, Fig. 6a
shows the source’s pulse profile in the 3–20 keV energy
band. The pulsar spectrum near the maximum of the
main peak is seen to become considerably harder than
the measured spectrum at other phases. We obtained a
similar result when analyzing the source’s pulse profile
(see the lower panel in Fig. 3). Such a dependence was
previously noted by Pravdo et al. (1977b) when analyz-
ing OSO-8 satellite data.

A more detailed study of the phase-resolved spectra
indicates that many of them exhibit features which can-
not be described by a power law. Figure 7 shows devi-
ations of the measured spectra (in σ) from the best
power-law fit. In the subsequent analysis, we used
models representing various combinations of the com-
ponents of models 1 and 2. As in our analysis of the pul-
sar phase-averaged spectrum, we compared the fits by
these models with simple power-law fits using the ∆χ2

χN
2
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test. A model was considered acceptable if the proba-
bility that the improvement in χ2 for a more complex
model did not occur by chance exceeded 95%. Best-fit
parameters for the phase-resolved spectra are listed in
Table 4. For comparison, power-law fits to the spectra
are also given in this table. A comparison of the phase-
resolved spectra indicates that the line at ~7.6 keV in
the integrated spectrum appears to result from a super-
position of hydrogen- and helium-like iron emission
features at energies 6.7–6.9 keV in some spectra and of
absorption features beyond the K edge of strongly ion-
ized iron at 8.6–9.3 keV in other spectra.

Noteworthy is the detection of substantial absorp-
tion in spectra IV and V corresponding to the pulse rise,

Table 2.  Best-fit parameters for the high-state spectrum of Her X-1
as inferred from the observations on March 6, 1990

Parameter Model 1 Model 2

a 1.572 ± 0.015 1.540 ± 0.017

α 0.945 ± 0.020 0.918 ± 0.021

NH, 1022 cm–2 0.45 0.45

Ec, keV 21.7 ± 1.3 21.9 ± 1.3

Ef, keV 11.0 ± 3.2 10.2 ± 3.0

EK, keV … 7.58 ± 0.19

b … 5.5 ± 1.6

(N)c 1.49(29) 0.84(27)

a The flux at 10 keV (10–2 phot. cm–2 s–1 keV–1).
b The total line flux (10–3 phot. cm–2 s–1).
c The χ2 value normalized to the number of degrees of freedom N.

I10

AK

χN
2

Table 3.  Best-fit parameters for the low-state spectrum of Her X-1

Date Parameter Model 1 Model 3

March 3, 
1990

a 6.23 ± 0.43 7.94 ± 0.9

α 0.72 ± 0.15 0.945

Ec, keV … 21.7

Ef, keV … 11.0

NH, 1022 cm–2 0.45 10.9 ± 6.6

(N)b 0.59(11) 0.50(11)

July 21, 
1990

a 6.12 ± 0.57 6.45 ± 0.61

α 1.30 ± 0.21 0.945

Ec, keV … 21.7

Ef, keV … 11.0

NH, 1022 cm–2 0.45 ≤ 20(3σ)

(N)b 0.66(13) 0.87(13)

a The flux at 10 keV (10–4 phot. cm–2 s–1 keV–1) without absorption.
b The χ2 value normalized to the number N of degrees of freedom.

I10

χN
2

I10

χN
2



696 LUTOVINOV et al.
10–4

10–3

3 5 10 30 3 5 10 30
Energy, keV

Sp
ec

tr
um

 c
ou

nt
s,

 c
m

–
2  s

–
1  k

eV
–

1

March 3, 1990

φ17= 0.41– 0.55
ψ35 = 0.98

July 21, 1990 

φ17= 0.80– 0.93
ψ35 = 0.99

(a) (b)

Fig. 5. The low-state spectra of Her X-1 on (a) March 3 and (b) July 21, 1990 (outside eclipse). The histograms indicate the best
power-law fits, and the solid lines represent the model (photon) spectra. The errors correspond to one standard deviation.
suggesting the possible presence of fairly cold matter
on the line of sight at this time. The absorption has vir-
tually no effect on the shape of the source’s average
spectrum, most likely because the spectra measured
near the maximum of the pulse profile (VI and VII)
mainly contribute to it.

DISCUSSION

Bochkarev (1989) proposed a model of a hot (Tc .
2.5 × 106 K) corona above the outer (Rd * 1.7 ×1011 cm)
parts of the accretion disk to explain the flickering in
Her X-1 during X-ray dips. The gas density in the
corona is n ne . (5–7) × 1011 cm– 3, and its height above
the disk plane is H * 1011 cm. The scattering of emis-
sion from the compact source by coronal electrons can
account for the existence of an X-ray flux in the low
state. Indeed, the corona optical depth for Thomson
scattering along the disk is τT = 2HσTne . 0.1; thus, the
scattered flux must be Fs . τTF0Ω /4π . 0.02F0, where
F0 is the flux from the compact source, and Ω . 4π(1 –
µ) ~ 2π(H/R)2 is the solid angle at which the corona is
seen. In general, the ART-P data are consistent with this
pattern, although they suggest a stronger X-ray emis-
sion in the low state (with an intensity that is a factor of
~25 lower than that during the high state). The photons
multiply scattered in the cold and fairly dense matter at
the accretion-disk edge and, hence, having a spectrum
Table 4.  Best-fit parameters for the phase-resolved spectra of the pulsar Her X-1

Phase Modela , 10–3 b α Ec, keV Ef , keV NH, 1022 AK, 10–2 EK, keV (N)

I PL 8.51 ± 0.27 1.002 ± 0.069 1.22(24)

PL + HEC 11.55 ± 2.61 0.430 ± 0.380 7.8 ± 3.3 15.4 ± 6.5 0.81(22)

II PL 8.84 ± 0.27 0.957 ± 0.067 1.72(24)

III PL 8.20 ± 0.27 1.121 ± 0.070 1.35(24)

IV PL 9.82 ± 0.26 1.038 ± 0.063 2.05(23)

PL + ABS 11.53 ± 0.88 1.343 ± 0.151 10 ± 5 1.89(22)

V PL 22.99 ± 0.37 1.131 ± 0.035 1.59(24)

PL + ABS + GAU 23.94 ± 1.22 1.222 ± 0.090 4.3 ± 2.7 1.15 ± 0.48 7.37 ± 0.33 1.15(21)

VI PL 28.27 ± 0.42 0.830 ± 0.031 2.68(25)

PL + HEC 31.68 ± 0.61 0.670 ± 0.039 22.1 ± 1.9 8.1 ± 4.6 1.20(23)

VII PL 16.75 ± 0.33 1.048 ± 0.044 1.65(24)

VIII PL 10.35 ± 0.27 1.154 ± 0.060 1.01(24)
a PL for a power-law spectrum, HEC for a high-energy cutoff, ABS for absorption in the soft energy band, and GAU for a line with a Gaus-

sian profile.
b I10 is the measured flux at 10 keV (in phot. cm–2 s–1 keV–1).

I10 χN
2
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severely distorted by photoabsorption (compared to the
spectrum of the photons scattered in the hot corona)
may contribute to this emission. In this case, the optical
depth for scattering and absorption must be large to
account for the observed dramatic decline in flux. On
the other hand, the estimated low scattered photon flux
may be associated with uncertainty in the estimated
parameters of the corona.

Curiously enough, a positive flux was detected dur-
ing the ART-P observations of an X-ray eclipse of Her
X-1, though at a low confidence level. A similar result
was previously obtained during EXOSAT and GINGA
observations of this source (Parmar et al. 1985; Choi
et al. 1994). The X-ray flux during the eclipse dropped
at least by a factor of ~6 relative to the low-state flux.
This implies that the scattering region (corona) is not
completely obscured by the optical star, and its sizes
must be comparable to the star sizes, R1 . 3.9R( . 2.7 ×
1011 cm; i.e., they must exceed the assumed disk size Rd
and the corona height H. On the other hand, having esti-
mated the duration of the source’s eclipse ingress from
Fig. 2, ∆t & 4000 s, and knowing the relative orbital
velocity of the neutron and normal stars, K . 300 km s–1,
we obtain R ~ ∆tK . 1.2 ×1011 cm for the size of the
emitting region, in agreement with our estimates of Rd
and H.

During scattering in the corona, any information
about variability on a time scale shorter than H/c ~ 3 s,
where c is the speed of light, must be obscured. This
allows the absence of pulsations in the source’s low
state to be explained. Such an effect also takes place
during scattering at the disk edge; since the photons
scattered in geometrically distant parts of the disk edge
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Fig. 6. (a) The pulsar integrated 3–20 keV pulse profile
obtained during the observations on March 6, 1990. The
ratio of the instantaneous photon flux to the period-averaged
flux is along the vertical axis. The photon index measured in
this energy band is plotted against phase in panel (b). The
arrows mark the first (I) bin used for phase-resolved spec-
troscopy. The errors correspond to one standard deviation.
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are observed in this case, the delay in the photon arrival
of the same pulse can reach Rd/c ~ 6 s.

The emission line at ~7.6 keV detected by ART-P in
the pulsar spectrum appears to result from a superposi-
tion of emission and absorption features observed at
energies 6.4–9.3 keV in individual phase-resolved
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Fig. 7. The deviations of the experimental data (in σ) mea-
sured for the phase-resolved spectra of Her X-1 from their
best power-law fit in the 3–20 keV energy band.
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spectra. Pravdo et al. (1977a), who detected emission
features in the spectrum of Her X-1 at energies ~5.5 and
~7.3 keV using the OSO-8 satellite, suggested Doppler
shifts of the 6.4-keV fluorescence iron line as a possible
explanation of their origin. The unshifted 6.4-keV line
was observed from this source during many experi-
ments. The plasma flowing over the neutron-star mag-
netosphere may be responsible for the emission in this
line. In the case of ART-P, the emitting plasma must
have a high velocity, v ~ 0.15 c, to produce an observ-
able shift of the line center. The radius corresponding to
such a rotation velocity is R RK = v(P/2π) . 8.6 × 108 cm,
which is comparable to the size of the Alfven surface
RA . (2–7) × 108 cm (McCray and Lamb 1976; Pravdo
et al. 1977a). Using RK and taking the pulsar luminosity
to be .1.3 × 1037 erg s–1, in accordance with its obser-
vations in the high state and assuming the distance to be
d = 5 kpc, we estimate the surface magnetic-field
strength of the star to be B ~ 1.3 × 1013 G. This slightly
exceeds the values obtained from observations of
cyclotron lines in the pulsar spectrum, B . (3.5–5.3) ×
1012 G (Trümper et al. 1978; Dal Fiume et al. 1998).

The model described above was proposed by
McCray and Lamb (1976) to account for the soft X-ray
emission from Her X-1. The envelope thickness proves
to be at a maximum on the magnetic equator, gradually
decreasing toward higher latitudes and again becoming
large at the magnetic poles. By varying the ratios of the
angles between the star’s rotation axis, the magnetic-
dipole axis, and the observer’s direction, we can choose
a law of variation in the optical depth of the matter
through which the X-ray emission from hot spots at the
neutron-star poles passes that allows the observed
shape of the pulse profile to be described. The detected
variation in the source’s hardness can also be naturally
explained in terms of this model (Pravdo et al. 1977b).
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Abstract—The energy release Ls on the surface of a neutron star (NS) with a weak magnetic field and the
energy release Ld in the surrounding accretion disk depend on two independent parameters that determine its
state (for example, mass M and cyclic rotation frequency f) and is proportional to the accretion rate. We derive
simple approximation formulas illustrating the dependence of the efficiency of energy release in an extended
disk and in a boundary layer near the NS surface on the frequency and sense of rotation for various NS equations
of state. Such formulas are obtained for the quadrupole moment of a NS, for a gap between its surface and a
marginally stable orbit, for the rotation frequency in an equatorial Keplerian orbit and in the marginally stable
circular orbit, and for the rate of NS spinup via disk accretion. In the case of NS and disk counterrotation, the
energy release during accretion can reach 0.67 c2. The sense of NS rotation is a factor that strongly affects
the observed ratio of nuclear energy release during bursts to gravitational energy release between bursts in
X-ray bursters. The possible existence of binary systems with NS and disk counterrotation in the Galaxy is dis-
cussed. Based on the static criterion for stability, we present a method of constructing the dependence of grav-
itational mass M on Kerr rotation parameter j and on total baryon mass (rest mass) m for a rigidly rotating neu-
tron star. We show that all global NS characteristics can be expressed in terms of the function M(j, m) and its
derivatives. We determine parameters of the equatorial circular orbit and the marginally stable orbit by using
M(j, m) and an exact solution of the Einstein equations in a vacuum, which includes the following three param-
eters: gravitational mass M, angular momentum J, and quadrupole moment Φ2. Depending on Φ2, this solution
can also be interpreted as a solution that describes the field of either two Kerr black holes or two Kerr disks.
© 2000 MAIK “Nauka/Interperiodica”.

Key words: neutron stars, luminosity, disk accretion, X-ray bursters

Ṁ

INTRODUCTION

Observational Facts. Three independent observa-
tional facts have prompted us to revert to the problem
of disk accretion onto neutron stars (NSs) with weak
magnetic fields, which have virtually no effect on the
accretion dynamics.

(1) The discovery of an accreting X-ray pul-
sar/burster with rotation period p = 2.5 ms (cyclic fre-
quency f = 1/p = Ω/2π = 401 Hz) in a binary system
with an orbital period of 2 h, SAX J1808.4–3658
(Van der Klis et al. 2000; Chakrabarty and Morgan 1998;
Gilfanov et al. 1998).

(2) The detection of quasi-periodic oscillations in
X-ray bursters during X-ray bursts with frequencies of
~300–600 Hz from the RXTE satellite (Stromayer et al.
1998; Van der Klis et al. 2000). In the pattern of slow
(in seconds!) motion of the nuclear helium burning
front over the stellar surface, these flux oscillations can

* E-mail address for contacts: sibgat@mech.math.msu.su
1063-7737/00/2611- $20.00 © 20699
be naturally interpreted as evidence of rapid NS rotation
with the oscillation frequency of the X-ray flux. The rota-
tion frequencies of the X-ray bursters KS 1731–260,
Aql X-1, and 4U 1636–53 are 523.9, 548.9, and 581.8 Hz,
respectively (Van der Klis et al. 2000). The rotation peri-
ods of these neutron stars are close to 1.607 ms, the rota-
tion period of the millisecond radio pulsar B1957+20,
the  shortest one among those found to date (Thorsett
and Chacrabarty 1998). Recall that B1957+20 is a
member of a binary system with a 0.362-day period.

(3) The discovery of twenty millisecond radio pul-
sars in the globular cluster 47 Tuc. Most of these pul-
sars have periods from 2 to 8 ms and are members of
close low-mass binaries. The total number of millisec-
ond pulsars in 47 Tuc is estimated to be several hundred
(Camilo et al. 1999).

Measurements of the spindown rate for millisecond
pulsars attest to magnetic fields of 108–109 G. Neutron
stars with appreciable magnetic fields may manifest
themselves as millisecond radio pulsars; NSs with
weaker fields are simply unobservable at the current
000 MAIK “Nauka/Interperiodica”
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sensitivity level of radio telescopes, but nothing forbids
their existence.

Disk accretion onto a NS with a weak magnetic
field, H ≤ 108 G, proceeds in 80 low-mass binaries of
our Galaxy. Strong fields could affect the accretion
dynamics and could give rise to periodic X-ray pulsa-
tions, which is not observed in these systems.

Accretion Pattern. Accreting matter with a large
angular momentum spins up a neutron star (Pringle and
Rees 1972; Bisnovatyœ-Kogan and Komberg 1974;
Alpar et al. 1982; Lipunov and Postnov 1984) and
causes appreciable energy release in the accretion disk
in a boundary layer near the NS surface (Shakura and
Sunyaev 1988; Popham and Sunyaev 2000). Inogamov
and Sunyaev (1999) considered the formation of a layer
of accreting matter spreading over the surface of a neu-
tron star without a magnetic field. The surface radiation
was found to concentrate toward two bright rings equi-
distant from the stellar equator and the disk plane. The
distance of the bright rings from the equator depends on
the accretion rate alone.

In the course of accretion, the baryon and gravita-
tional masses of the NS grow, its rotation velocity and
moment of inertia change, a quadrupole component
appears in its mass distribution, and its external gravi-
tational field changes. For several standard equations of
state of matter, the NS equatorial radius proves to be
smaller than the equatorial radius of a marginally stable
orbit over a wide range of rotation frequencies. This
significantly affects the ratio of energy release in an
extended disk and the stellar surface. The X-ray spectra
of the accretion disk and the spread layer can differ
greatly, which opens up a possibility for experimentally
testing the theoretical results presented below.

Energy Release in the Disk and on the NS Surface.
Here, we calculate the total energy release during
accretion onto a rapidly rotating NS and determine the
ratio of disk luminosity Ld to luminosity Ls of the
spread layer on the stellar surface at a given accretion

rate . Multiplying the efficiency of energy release

egrav by  yields the sought-for luminosities. Clearly,
allowance for radiation-pressure forces and for the
detailed boundary-layer physics can slightly modify
the derived formulas (Marcovic and Lamb 2000;
Popham and Sunyaev 2000).

For the most important case of a NS with fixed grav-
itational mass M = 1.4M(, we present the results of our
calculations in Fig. 1. The calculations were performed
for a moderately hard equation of state (EOS FPS).
Below, we use the notation of Arnett and Bowers
(1977) for EOS A (Pandharipande 1971), L, and M;
EOS AU from Wiringa et al. (1988); and EOS FPS
from Lorenz et al. (1993). EOS FPS is a modern ver-
sion of the equation of state proposed by Friedman and
Pandharipande (1981).

Ṁ

Ṁ

The approximation formula (derived in section 5)
for the total NS luminosity as a function of cyclic rota-
tion frequency (see Fig. 1) is

(1)

Here, f varies in the range from –1 to +1 kHz, with pos-
itive and negative f corresponding to NS and accretion-
disk corotation and counterrotation, respectively. In
this paper, a large proportion of the results in graphical
form and in the form of approximation formulas are
given for a NS gravitational mass of 1 M( or for normal
sequences with a zero rest mass whose gravitational
mass is 1.4M( in the static limit for various equations
of state of the matter in the NS interior. Amazingly, the
measured mass M of an absolute majority of the milli-
second pulsars in binaries lies, with high reliability, in
a narrow range 1.35 ± 0.04M( (Thorsett and Chakra-
barty 1998). Note, however, that the mass of the X-ray
pulsar VELA X-1 is close to 1.8M(.

When observational data are interpreted, it is useful
to have an approximation formula (EOS FPS) for the
ratio of the NS surface and total luminosities,

(2)

We define the efficiency of energy release in the disk as
the binding energy of a particle in a Keplerian orbit at the
inner disk boundary. This orbit coincides with the mar-
ginally stable orbit or with the orbit at the NS equator.

For a NS of mass M = 1.8M( with EOS FPS, the cal-
culated total luminosity and Ld/Ls are shown in Fig. 2.
The corresponding approximation formulas are given
in section 5.

We see from Figs. 1 and 2 that the surface luminos-
ity Ls dominates over the disk luminosity for a slowly
rotating star and in the case of counterrotation. Note
that the effective energy release during accretion onto a

NS of gravitational mass M = 1.8M( reaches 0.62 c2

(at a cyclic frequency of NS rotation in the sense oppo-
site to disk rotation equal to 1.41 kHz). For a normal
sequence with a maximum mass losing stability in the
static limit, the total energy release even reaches

0.67 c2 (see Fig. 3). Note that the above values exceed

appreciably the disk energy release Ed = 0.422 c2 dur-
ing accretion onto a Kerr black hole with the largest
possible rotation parameter j = 1. Clearly, such a high
energy release is also associated with the loss of kinetic
energy of stellar rotation during accretion of matter
with an oppositely directed angular momentum.

The accretion-disk luminosity at f ≥ 600 Hz exceeds
the surface luminosity if the star rapidly rotates in the
same sense as does the disk. We see from Fig. 1 that

Ls ≈ Ld ≈ 0.064 c2 at f = 600 Hz.

Ls Ld+ 0.213 0.153 f 1 kHz⁄( )–(≈

+ 0.02 f 1 kHz⁄( ) )Ṁc2.

Ls Ls Ld+( )⁄ 0.737≈

– 0.312 f 1 kHz⁄( ) 0.19 f 1 kHz⁄( )2.–

Ṁ

Ṁ

Ṁ

Ṁ
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This tendency is seen from simple Newtonian for-
mulas (Kluzniak 1987; Kley 1991, Sibgatullin and Sun-
yaev 1998, below referred to as SS 98):

(1‡)

Here, R is the equatorial stellar radius, and fK =

/(2π) is the Keplerian rotation frequency at
the inner disk boundary. This formula is valid at low
angular velocities, when, to a first approximation, NS
oblateness can be disregarded. The exact formulas for
Ls and Ld when the disk lies in the NS equatorial plane
are (Sibgatullin and Sunyaev 2000; below referred to
as SS 00)

(1b)

Here, φ(r) is the gravitational potential in the disk plane
as a function of distance from the NS. In particular, it
follows from formula (1a) that, at  f = 0.5fK, the sur-
face energy release for counterrotation is a factor of 9
greater than that for NS and disk corotation!

In Fig. 4, we present similar results of our calcula-
tions for stars of fixed rest mass (total baryon mass) m
corresponding to M = 1.4M( in the static limit for the
NS EOS FPS. The difference between this figure and
Fig. 1 is not large, because the increase in gravitational
mass through rapid rotation is relatively small [but
appreciable; see formulas (18)].

For the fixed gravitational mass M = 1.4M(, we
derived a simple approximation formula for the gap
between the equator of a rotating star with radius R and
a marginally stable orbit for EOS FPS with radius R*:

(3)

Here, a considerable fraction of our results pre-
sented in graphical form or in the form of approxima-
tion formulas are given for a gravitational NS mass of
1.4M(. Amazingly, the measured masses M of most
millisecond pulsars in binary systems lie with high reli-
ability in a narrow range 1.35 ± 0.04M( (Thorsett and
Chakrabarty 1998).

Using the Static Criterion for Stability. Here, we
attempt to derive an approximation formula for the
dependence of NS gravitational mass M(j, m) on Kerr
rotation parameter j ≡ cJ/GM2 (where J is the NS angu-
lar momentum) and on its rest mass m.

We derive the function M(j, m) (which is given
below for two NS equations of state) by using the static
criterion for the loss of stability and data obtained using

Ls
1
2
---ṀGM R 1 f f K⁄–( )2⁄ ,=

Ld
1
2
---ṀGM R⁄ .=

GM R3⁄

Ls 2π2ṀR2 f K f–( )
2
, Ld Ṁ

1
2R
-------dφ r( )r2

dr
------------------

r R=

.= =

R* R–( ) 1 km⁄ 1.44≈

– 3.061 f 1 kHz⁄( ) 0.843 f 1 kHz⁄( )2+

0.6 f 1 kHz⁄( )3 0.22 f 1 kHz⁄( )4.–+
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the numerical code of Stergioulas (1998). Knowledge
of M(j, m) allowed us to derive formulas for the NS
angular velocity and equatorial radius as functions of j
and m.

Metric Properties of a Rotating Neutron Star.
Remarkably, the external field of a rapidly rotating NS
with a mass larger than the solar one can be satisfacto-
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Fig. 2. Total energy release on the NS surface and in the
accretion disk (solid line) and ratio of the disk and surface
energy releases (dashed line) versus NS rotation frequency
for the fixed gravitational mass M = 1.8M( (EOS FPS). The
NS is stable to gravitational collapse only in the presence of
rotation.

Fig. 1. Total energy release Ls + Ld on the NS surface and in
the accretion disk (solid line) and ratio of energy releases in
the disk Ld and on the surface Ls (dashed line) versus NS
rotation frequency f at the fixed gravitational mass M = 1.4M(
for the moderately hard EOS FPS. The asterisks in Figs. 1–4
correspond to the frequency f at which the NS radius is equal
to the radius of the marginally stable orbit. At f ≤ f*, there is
a gap between the accretion disk and the NS surface [see
formula (3)].
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rily described in terms of general relativity by introduc-
ing only one additional parameter compared to the Kerr
metric—quadrupole moment of the mass distribution
(SS 98). In sections 2 and 3, we discuss exact solutions
that take into account higher multipole moments for
low masses.

Analogous to M(j, m), we managed to construct
approximation dependences of the additional (to the
Kerr one) dimensionless quadrupole coefficient b for
the external gravitational field on j and m. Using these
approximations in an exact solution for the metric out-
side rigidly rotating NSs enabled us to analytically cal-
culate parameters of the marginally stable orbit in the
accretion disk, energy release in the disk and on the NS
surface, and the rate of NS spinup via disk accretion. In
order to relate the derived approximation dependences
to the observed NS parameters, we passed from the
Kerr parameter j to the observed parameter f (cyclic
rotation frequency) for 1.4M( stars in the final formu-
las. In section 1, we give approximation formulas for
the relationship of j to f and M.

The Content of the Paper. Below (in section 1), we
present a method for global construction of the NS
gravitational mass as a function of its Kerr rotation
parameter j and rest mass m. The static criterion for sta-
bility underlies the method. The results of our calcula-
tions using the numerical code of Stergioulas (1998)
are approximated by this method with a very small
error.

The NS angular velocity and its equatorial radius
are determined by using M(j, m). We propose a new for-
mula for the equatorial radius, which matches the exact
one at j = 0.
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Fig. 3. Total energy release on the NS surface and in the
accretion disk (solid line) and ratio of the disk and surface
energy releases (dashed line) versus NS rotation frequency
for the EOS FPS normal sequence with m = 2.1M(
(1.8M( in the static limit).
In section 2, we present a method of constructing
the quadrupole coefficient via M(j, m) using an exact
solution of the Einstein equations for the metric of the
external gravitational field.

The exact solutions that describe the external fields
of rigidly rotating stars with arbitrary multipole struc-
ture are discussed in section 3.

Global properties of the exact quadrupole solution
are described in section 4. We note that the correspond-
ing gravitational field in some region on the b, j plane
(where b is the quadrupole coefficient) including low
values of the quadrupole moment and the Kerr rotation
parameter behaves as the field of two rotating black
holes, with the NS pressure acting as an elastic support.
However, outside this region, the solution properties
outside the star are equivalent to the field of two super-
critical Kerr disks. By contrast to black holes (Hoense-
laers 1984), two Kerr disks can be in equilibrium in the
absence of supports (Zaripov et al. 1994; a graphic
post-Newtonian approach was developed by Zaripov
et al. 1995).

In section 4, we derive expressions for the energy,
angular momentum, radius, and angular velocity of
particles in the marginally stable orbit in the quadru-
pole solution. The above functions depend on j and b.
At b = 0 and j = 1, these expressions have numerical
solutions which were first found by Ruffini and
Wheeler (1970). At b = 0 and j < 1, the above expres-
sions approximate the corresponding formulas of
Bardeen et al. (1972) in the form of polynomials in j.

The energy, angular momentum, radius, and Keple-
rian angular velocity of particles at the stellar equator
depend markedly on the NS equation of state. In section 4,
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Fig. 4. Total energy release on the NS surface and in the
accretion disk (solid line) and ratio of the disk and surface
energy releases (dashed line) versus NS rotation frequency
for the EOS FPS normal sequence with m = 1.56M(
(1.4M( in the static limit). The asterisks correspond to the
rotation frequency at which R = R*.
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these functions are given as functions of j, m (and j, M) for
EOS FPS and as functions of j, m for EOS A.

The above set of functions proves to be enough to
calculate the dependences of energy release on the NS
surface and in the accretion disk (section 5) on j, m or
on j, M. In section 5, we provide approximation formu-
las for the total luminosity and the luminosity ratio of
the disk and the NS surface as functions of rotation fre-
quency at fixed gravitational masses M = 1.4 and 1.8M(

for EOS FPS. Similar approximation formulas are
given for the EOS A and EOS AU normal sequences
with M = 1.4M( in the static limit. In section 5, we also
discuss the NS spinup and provide approximation for-
mulas for the spinup rate in the case of EOS FPS for
fixed gravitational masses of 1.4 and 1.8 M(. For com-
parison, we give formulas for the dependence of lumi-
nosity and spinup parameter on the dimensionless rota-
tion frequency in the Newtonian theory.

Astrophysical applications and implications of our
results (particularly for the most interesting case of NS
and disk counterrotation) are discussed in section 6.

1. THE STATIC CRITERION FOR STABILITY 
AND THE FUNCTION M(j, m)

The static stability criterion for nonrotating isen-
tropic stars (planets) has been discussed in the literature
since the early 1950s (Ramsey 1950; Lighthill 1950;
Zel’dovich 1963; Dmitriev and Kholin 1963; Cala-
mai  1970). It was generalized to rotating configura-
tions by Bisnovatyi-Kogan and Blinnikov (1974) and
Hartle (1975).

Below, we follow Zel’dovich (1963) in its interpre-
tation. In what follows, M is the NS gravitational mass,
and m is the total mass of its constituent baryons (rest
mass). All masses are measured in solar masses, so
equalities of the type m = 1.16 and M = 1.4 imply that
m = 1.16M( and M = 1.4M(, respectively.

We choose central density ρ as one of the indepen-
dent arguments and angular momentum J as the second
argument. It can then be shown that the extremum of
gravitational mass M in central density at fixed angular
momentum coincides with the extremum of rest mass m
(Zel’dovich and Novikov 1971; Shapiro and Teukolsky
1985). At the extremum, a steady-state configuration
becomes unstable to the neutral mode of quasi-radial
oscillations. NS stable states can exist only at lower
masses.

Denote the extremum central density at fixed angu-
lar momentum by ρ* = ρ*(J). The functions M(ρ, J)
and m(ρ, J) near the extremum at fixed angular momen-
tum can then be expanded in Taylor series:

(4)
M ρ J,( ) M* a1 ρ ρ*–( )2+=

+ a2 ρ ρ*–( )3 a3 ρ ρ*–( )4 …,+ +
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(5)

The coefficients ai and bi (i = 1, 2, …) in formulas (4)
and (5) depend on J.

Equation (5) allows the central density ρ to be

expressed as a power series of :

Substituting this expression for ρ in (4) yields

(6)

In this formula, M*, m*, M0, M1, M2, … are some
functions of angular momentum J.

If, alternatively, the central density is expressed as a
series in half-integer powers of M – M* using (4) and
substituted in (5), then

(7)

Note the formal similarity between the expansions
(6), (7) and the expansions for the mass and radius near
the point of phase transition at the stellar center in non-
rotating stellar models with phase transitions in general
relativity (Seidov 1971; Lindblom 1998).

Determining the Gravitational and Rest Masses at
the Stability Boundary. The numerical code of Ster-
gioulas (1998) allows NS parameters to be computed
for a given equation of state by specifying a numerical
value of the central density and one of the parameters
M, m, Ω, J, ΩK. The functions M*(J) and m*(J) can be
determined as the maximum values of M(ρ, J) and m(ρ, J)
for any fixed J by using this numerical code.

It is convenient to use a dimensionless angular
momentum j ≡ cJ/GM2 (Kerr rotation parameter)
instead of the angular momentum J, because, apart
from the mass, the metric of the external field of a rig-
idly rotating neutron star is determined precisely by
this parameter. The functions M*(j) and m*(j) have the
meaning of dependences of the gravitational and rest
masses on Kerr parameter at the stability boundary.

We approximate M(j, m) and m(j, M) by the above
terms of the expansions (6) and (7) in finite ranges of
the parameters: |j| ≤ 0.7 and 1.1M( < m < 2.5M(. For
this approximation, the extremum property of the grav-
itational and rest masses at loss of stability is retained.
It is this property that is the main idea behind the static
criterion for stability.

m ρ J,( ) m* b1 ρ ρ*–( )2+=

+ b2 ρ ρ*–( )3 b3 ρ ρ*–( )4 …+ +

m* m–

ρ ρ* ρ0 m* m–( )0.5+=

+ ρ1 m* m–( ) ρ2 m* m–( )1.5 …+ +

M M*– M0 m* m–( )=

+ M1 m* m–( )1.5 M2 m* m–( )2 …+ +

m m*– m0 M* M–( )=

+ m1 M* M–( )1.5 m2 M* M–( )2 …+ +
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Determining the NS Angular Velocity and its
Moment of Inertia. In SS 00, we showed that

(8)

where |m denotes, as usual, differentiation at constant m.
Given the definition of j, we have from (8)

hence,

(9)

In what follows, a comma in the subscript denotes a
partial derivative with respect to the corresponding
argument. Using M(j, m), we can also determine the
moment of inertia

At the stability boundary m = m*(j), we have from (7)

(10)

Here, the prime denotes a derivative of the correspond-
ing function with respect to j.

Determining the Coefficients M0(j), M1(j), and
M2(j). The coefficients M0(j), M1(j), and M2(j) in for-
mula (6) are sought in the form of formal expansions in
even powers of j. We calculate the limiting values of
these function when j  0 by approximating the
dependence of gravitational mass on rest mass in the
static case:

(11)

Based on numerical data for Ω at the stability
boundary m = m∗ (j), we determine M0(j) from formula
(10) by using the derived functions M∗ (j) and m∗ (j).

In order to successively determine the remaining
coefficients M1(j) and M2(j) before the nonstatic terms
in (6), we introduce the coefficient µ1 – m, with M1(j)
(whose value at j = 0 is already known) being calcu-

Ω 2πf ∂Mc2

∂J
-------------

m

,= =

Ω 2πf ∂Mc2

∂J
-------------

m

= =

=  ∂M
∂j

--------
m

c3 GM2⁄ 2 j∂Mc2

∂J
-------------

m

M⁄ ,–

Ω c3

GM
---------M j, m M 2 jM j, m+( );⁄=

M j, m
∂M
∂j

--------
m

.≡

I Ω j, m( ) 1– c2 M JJ, m( ) 1–= =

=  
G
c
---- M2 2 jmM j, m+( ) Ω j, m⁄ .

Ω* j( )
c3

GM* j( )
-------------------=

×
M* j( )( )' M0 j( ) m* j( )( )'+

M* j( ) 2 j M* j( )( )' M0 j( ) m* j( )( )'+ +( )
---------------------------------------------------------------------------------------------.

Mst M* 0( ) M0 0( ) m* 0( ) m–( )+=

+ M1 0( ) m* 0( ) m–( )1.5 M2 0( ) m* 0( ) m–( )2…+
lated by using numerical data precisely at m = µ1. We
then have

(12)

Having numerical data for the right-hand part at dis-
crete j, we can easily find a sixth-degree polynomial
with the smallest rms deviation by points. In our calcu-
lations, we choose µ1 in such a way that Mst(µ1) is equal
to or differs only slightly from 1.4M(.

Having derived the expression for M1(j), we can
determine M2(j) by using a different normal sequence,
say, at m = µ2.

We construct the coefficient M2(j) as follows:

(13)

The Function M(j, m) for EOS A. We choose the fol-
lowing constants µ1 and µ2 for EOS A: µ1 = 1.5663 and
µ2 = 1.1663. The numerical data of Stergioulas’s code
for the dependences of critical masses on j can be
approximated as

(14)

Combining our results (10)–(14) for EOS A, we
finally obtain

(15)

Formula (15) describes the data of Stergioulas’s
(1998) numerical code to within the fourth decimal
place in mass (expressed in solar masses) and to within
the third decimal place in angular velocity Ω calculated
using (9) (and expressed in units of 104 rad s–1) in
the  following parameter ranges: –0.7 < j < 0.7 and
1.1 < m < 2.4.

The Function M(j, m) for EOS FPS. For EOS FPS,
which is harder than EOS A, our numerical searches for
the maximum gravitational and rest masses at fixed
angular momentum lead to the following dependences

M1 j( )

=  
M j µ1,( ) M0 j( ) m* j( ) µ1–( )– M2 0( ) m* j( ) µ1–( )2–

m* j( ) µ1–( )1.5
---------------------------------------------------------------------------------------------------------------------------.

M2 j( )

=  
M j µ2,( ) M0 j( ) m* j( ) µ2–( )– M1 j( ) m* j( ) µ2–( )1.5–

m* j( ) µ2–( )2
---------------------------------------------------------------------------------------------------------------------------.

M* j( ) 1.659 0.489 j2 0.273 j4 0.32 j6,+ + +=

m* j( ) 1.9495 0.5144 j2 0.335 j4 0.38 j6.+ + +=

M j m,( ) M* j( )≈

+ 0.6473– 0.019 j2– 0.182 j4– 0.23 j6+( )
× m* j( ) m–( )

+ 0.0808– 0.039 j2– 0.31 j4 0.34 j6–+( )

× m* j( ) m–( )1.5

+ 0.0457– 0.059 j2 0.222 j4– 0.28 j6+( )+(

× 1.5663 m–( ) ) m* j( ) m–( )2.
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of these masses on rotation parameter at the stability
boundary:

(16)

Approximating the data for the static case j = 0 yields

We determine M0(j), M1(j), and M2(j) by the above
procedure: for the rest masses of normal sequences, we
choose µ1 = 1.56 and µ2 = 1.16. Of course, the choice
of these values is rather arbitrary. The final formula
derived from (10)–(13) and (16) for the dependence of
gravitational mass on rotation parameter and rest mass
for EOS FPS is

(17)

+ 

Formula (17) for the gravitational mass, like the pre-
vious (15), approximates the numerical data of Cook
et al. (1994) and the results of Stergioulas’s (1998) code in
the argument ranges –0.7 < j < 0.7 and 1.1 < m < 2.5 with
an amazing accuracy: to within the fourth decimal
place in gravitational mass and to within the third dec-
imal place in angular velocity (expressed in units of
104 rad s–1).

The Function m(j, M) for EOS FPS. Similarly, we
can approximate m(j, M) by using numerical data for
the angular velocity, the baryon and gravitational
masses at the stability boundary, and for the fixed
M = 1.4M( and M = M(. For EOS FPS, we then obtain

+ 

M* j( ) 1.8016 0.572 j2 0.164 j4 0.54 j6;+ + +=

m* j( ) 2.104 0.619 j2 0.154 j4 0.71 j6.+ + +=

Mst 1.8016 0.6546 2.104 m–( )–=

– 0.0846 2.104 m–( )1.5 0.035 2.104 m–( )2…–

M j m,( ) M* j( )≈

+ 0.6538– 0.0295 j2– 0.242 j4– 0.49 j6+( )

× m* j( ) m–( )

+ 0.0846– 0.009 j2– 0.302 j4 0.52 j6–+( )

× m* j( ) m–( )1.5

0.035– 0.039 j2 0.188 j4– 0.32 j6+( )+(

× 1.56 m–( ) ) m* j( ) m–( )2.

m j M,( ) m* j( )≈

+ 1.528– 0.059 j2 0.45 j4 0.72 j6–+ +( )

× M* j( ) M–( )

+ 0.269 0.076 j2– 0.354 j4– 0.6 j6+( )

× M* j( ) M–( )1.5

0.004 0.121– j2 0.68 j4 1.05 j6–+( )+(

× 1.4 M–( ) ) M* j( ) M–( )2.
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The Dependence of Gravitational Mass and Dimen-
sionless Angular Momentum j on Angular Velocity for
1.4M( Normal Sequences in the Static Limit. At present,
the gravitational masses and angular velocities of neu-
tron stars are measured with a high accuracy (Thorsett
and Chakrabarty 1998). Here, we give, for reference,
approximations of M(f) and j(f) for various equations of
state for M =1.4M( normal sequences in the static limit
(here, the masses are in solar masses, and f = Ω/2π is
the cyclic rotation frequency):

EOS A: M ≈ 1.4 + 0.0075(f/1 kHz)2 + 0.0055(f/1 kHz)4,

j ≈ 0.274(f/1 kHz) + 0.14(f/1 kHz)2, m = 1.566;

EOS AU: M ≈ 1.4 + 0.01(f/1 kHz)2 + 0.006(f/1 kHz)4,

j ≈ 0.34(f/1 kHz) + 0.12(f/1 kHz)2, m = 1.578;

EOS FPS: M ≈ 1.4 + 0.01(f/1 kHz)2 + 0.0087(f/1 kHz)4,

j ≈ 0.338(f/1 kHz) + 0.19(f/1 kHz)2, m = 1.56;

EOS L: M ≈ 1.4 + 0.019(f/1 kHz)2 + 0.0345(f/1 kHz)4,

j ≈ 0.56(f/1 kHz) + 0.61(f/1 kHz)2, m = 1.52;

EOS M: M ≈ 1.4 + 0.0195(f/1 kHz)2 + 0.071(f/1 kHz)4,

j ≈ 0.55(f/1 kHz) + 1.04(f/1 kHz)2, m = 1.494. (18)

The right-hand parts approximate M(f) and j(f) in
the entire range 0 ≤ f < fK; they were constructed on the
basis of tables from Cook et al. (1994). These approxi-
mations are extended to negative f (counterrotation) by
using the evenness condition for M(f) and the oddness
condition for j(f) : j(–f)= –j(f).

It follows from the formulas for M(f) that the depen-
dence of gravitational mass on angular velocity for the
harder EOS L and M is stronger than that for the softer
equations of state. While matching in the static limit,
the gravitational masses of a NS with different equa-
tions of state differ at f = 600 Hz:

The difference in the equations of state leads to a
marked difference in the gravitational masses (for the
same mass in the static limit) for the same rotation
period. These differences exceed the accuracy of mea-
suring the gravitational masses of millisecond pulsars
in some binary systems (Thorsett and Chakrabarty
1998).

Determining the Equatorial Radius of a Neutron
Star. Another important formula relating the constant µ
(stellar chemical potential) to the derivative of the grav-
itational mass with respect to the rest mass at constant
angular momentum, follows from theorem 3 in SS 00.
Taking the value of µ at the equator, we obtain

(19)

(20)

MA 1.4034, MAU 1.4043, MFPS 1.4047,= = =

ML 1.4113, MM 1.4162.= =

µ M m, J M m, j 1 2 jM j, m+( )⁄= =

=  F 2ωf Ω̃– Rc2 GM⁄( )2Ω̃2
– ,

Rc2 GM⁄( )2
t F⁄ F2ω.–=
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Here, R is the NS geometric equatorial radius (the equa-

tor length divided by 2π), and  = ΩGM/c3 is its
dimensionless angular velocity. Below, we use a sta-
tionary, axially symmetric metric in Papapetru’s form
outside the star:

(21)

In the static limit, the stellar radius can be deter-
mined from formula (20) by using the Schwarzschild
metric

(22)

Remarkably, formula (22) for a rotating NS, if
M(j, m) is substituted in it and differentiated at constant j:

(23)

closely agrees with the numerical data for the stellar
equatorial radius from Cook et al. (1994) and with our
data obtained by using the numerical code of Stergiou-
las (1998) with an accuracy up to 1%.

The NS Equatorial Radius and the Gap between the
Marginally Stable Orbit and the Equator. Figure 5
shows plots of equatorial radius R (in units of GM/c2)
against rotation frequency f constructed using for-
mula (23) for fixed gravitational masses M = 1.2, 1.4,
1.6, and 1.8M( and for EOS FPS. In particular, the
approximation of R(f) at M =1.4M( has a fairly simple
form:

(24)

Ω̃

ds2 F dt–ωdφ( )2–=

+ F 1– ρ2dφ2 e2γ dρ2 dz2+( )+[ ] .

Rstc
2

GM
-----------

2

1 M m,
2–

------------------, M m,
dM
dm
--------.≡=

R
2GM c2⁄
1 M m,

2
j–

---------------------, M m, j

∂M
∂m
--------≡≈

R 1 km⁄ 11 1.78 f 1 kHz⁄( )4.+=

7
R

, G
M

/c
2

–1.0
f, kHz

–0.5 0 0.5 1.0

6

5

4
M = 1.8

M = 1.6

M = 1.4

M = 1.2

Fig. 5. Equatorial radius R versus NS rotation frequency for
fixed gravitational masses M = const (EOS FPS).
Figure 6 shows plots of radius R* of the marginally
stable orbit against f constructed using formula (47) for
the same M. In particular, the approximation of R*(f)at
M = 1.4M( by a fourth-degree polynomial in the range
–1 < f < 0.6 kHz is (EOS FPS)

(25)

In order to characterize the gap between the NS sur-
face and the marginally stable orbit, let us consider the
quantity R* – R. In Fig. 7, R* – R is plotted against
angular velocity for the same gravitational masses. The
approximation of this dependence for M = 1.4M( is

(26)

These formulas can be used in the range –1 < f <
0.6 kHz.

In order to compare the gaps between the marginally
stable orbit and the surface of a NS with different equa-
tions of state, we approximate the gap for M = 1.4M(

normal sequences for a NS with EOS A and EOS AU as
follows:

(27)

(28)

R* 1 km⁄ 12.44 3.061 f 1 kHz⁄( )–=

+ 0.843 f 1 kHz⁄( )2 0.6 f 1 kHz⁄( )3+

+ 1.56 f 1 kHz⁄( )4.

R* R–( ) 1 km⁄ 1.44≈

– 3.061 f 1 kHz⁄( ) 0.843 f 1 kHz⁄( )2+

0.6 f 1 kHz⁄( )3 0.22 f 1 kHz⁄( )4.–+

EOS A: R* R–( ) 1 km⁄ 3≈

– 2.44 f 1 kHz⁄ 0.2 f 1 kHz⁄( )2,–

EOS AU: R* R–( ) 1 km⁄ 2.086≈

– 2.81 f 1 kHz⁄ 0.23 f 1 kHz⁄( )2.–

7

R
*,

 G
M

/c
2

–1.0
f, kHz

–0.5 0 0.5 1.0
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5

9

M = 1.8

M = 1.6

M = 1.4

M = 1.2
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1.5
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Fig. 6. Radius R* of the marginally stable orbit versus NS
rotation frequency for fixed gravitational masses M = const
(EOS FPS).
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2. THE QUADRUPOLE MOMENT 
OF A RAPIDLY ROTATING NEUTRON STAR 

IN GENERAL RELATIVITY

In order to describe the oblateness effect and the
emergence of a quadrupole moment in the mass distri-
bution via rapid rotation, in SS 98 we proposed to use
an exact quadrupole solution, which contains an arbi-
trary parameter b compared to the Kerr metric. This
parameter, to within a factor, matches the NS inherent
quadrupole momentum: the total quadrupole moment
in the asymptotics at large distances Φ2 = G2M3/c4(b + j2)
includes the Kerr quadrupole moment. The parameter
Φ2 was determined by Ryan (1995, 1997) from the con-
siderations developed by Komatsu et al. (1989) and
Salgado et al. (1994).

The Metric of the Quadrupole Solution in the Equa-
torial Plane. The metric components in the equatorial
plane for this solution are (SS 98)

(29)

Here,

An exact quadrupole solution of the Einstein equa-
tions is contained as a special case in the exact five-
parameter solution found by Manko et al. (1994) by
specifying its properties on the symmetry axis using the
method of Sibgatullin (1984). Ernst (1994) showed that
this solution could also be obtained from Kramer–Neu-
gebauer’s (1980) solution for coaxially rotating black
holes by a special choice of the constants in the solu-
tion.

The solution under consideration for b < 0.25(1 – j2)
can be interpreted as a solution that describes the gravita-
tional field of two coaxially rotating black holes with the
same masses and angular momenta. For b > 0.25(1 – j2), it
describes the gravitational field of coaxially rotating
Kerr disks. In this case, the pressure clearly acts as elas-
tic supports. For the curve of transition from black
holes to Kerr disks to be found in the j, m plane, the
equation b(j, m) = 0.25(1 – j2) must be solved.

Why the Kerr Metric Cannot Be Used to Describe
the External Field of a Rapidly Rotating Neutron Star?
Let us consider the dependence of the NS quadrupole
moment on its angular velocity for various equations of
state, from the soft EOS A to the hard EOS L. We
express the quadrupole moment Φ2 = G2M3(b + j2)/c4

and the cyclic angular velocity in units of 1044 g cm2

and kHz, respectively. We fix the corresponding normal

F
A B–
A B+
--------------, ω M⁄ 2 jC

A B–
-------------,–= =

A r+ r–+( )2r+r– b,–≡
B r+ r–+( ) r+r– b– r+( ).≡

C r+ r–+( ) r–r+ r+( ) b,+≡

2r± 4r 1 j2– 1 j2– 4b–±( )
2

+ ,≡

r ρ2 M2.⁄≡
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sequences (by definition, with a constant rest mass) by
the condition that the NS gravitational mass is 1.4M( in
the static limit. Compare the total NS quadrupole moment
with the Kerr quadrupole moment QK = G2M3j2/c4 (deter-
mined by the NS mass and angular momentum). Let us
change to an observable variable, the rotation frequency
f. Parabolic approximations of the dependence of dimen-
sionless quadrupole coefficient b on Kerr parameter j are
given in Laarakkers and Poisson (1998); more accurate
approximations by fourth-degree polynomials in j were
derived in SS 98. Having reduced the data obtained with
the numeric code of Stergioulas (1998), we have

EOS A: Φ2/1044 g cm2 

≈ 0.33(f/1 kHz)2 + 0.306(f/1 kHz)4,

QK/1044 g cm2 ≈ 0.11(f/1 kHz)2 + 0.09(f/1 kHz)4;

EOS AU: Φ2/1044 g cm2 

≈ 0.64(f/1 kHz)2 + 0.43(f/1 kHz)4,

(30)

≈ 0.54(f/1 kHz)2 + 0.9(f/1 kHz)4,

QK/1044 g cm2 ≈ 0.13(f/1 kHz)2 + 0.22(f/1 kHz)4;

EOS L: Φ2/1044 g cm2 

≈ 4.8(f/1 kHz)2 + 6.5(f/1 kHz)4,

QK/1044 g cm2 ≈ 0.54(f/1 kHz)2 + 1.16(f/1 kHz)4.

Whereas the total quadrupole moment for the soft
EOS A is approximately a factor of 3 larger than the
Kerr component, for the hard EOS L, it exceeds the
Kerr component by almost a factor of 10!

Determining the Non-Kerr Quadrupole Moment of
a Rapidly Rotating NS Using M(j, m). The NS equato-

QK/1044 g cm2 ≈ 0.16(f/1 kHz)2 + 0.12(f/1 kHz)4;

EOS FPS: Φ2/1044 g cm2 

2.0

R
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0.5
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Fig. 7. Width R*–R of the gap between the marginally stable
orbit and the NS equator versus NS rotation frequency for
fixed gravitational masses M = const (EOS FPS).
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rial radius R is closely related to its quadrupole moment
Φ2 = G2M3j2(k + 1)/c4. The system of equations (19)
and (20) at given j and m in the metric (21) and (29) is
algebraic for the NS coordinate radius ρ and its quadru-
pole moment b, because, according to (9) and (23), the
functions Ω(j, m) and R(j, m) are expressed in terms of
M(j, m) and its partial derivatives. We emphasize that
M(j, m), R(j, m), b(j, m), and I(j, m) (moment of inertia)
are even functions of the Kerr parameter j, while the
angular velocity Ω is an odd function of j.

In the approximation of slow rotation, b ~ j2. Denote
b ≡ j2k. The quadrupole moment can be approximated
in finite ranges, |j | ≤ 0.67 and 1.1 < m < 2.5, as a func-
tion of j, m or as a function of j, M.

We derive an approximation formula for k(j, m) by a
method similar to that described above for constructing
M(j, m) and m(j, M): the function k is first approximated
by a sixth-degree polynomial at the stability boundary
in the segment |j | ≤ 0.67 in terms of the rms deviation
and then by eighth-degree polynomials in j at two fixed
values, say, m = 1.56 and 1.2358 (M = 1.4 and 1, respec-
tively) in the segment |j | ≤ 0.67.

The Quadrupole Moment as a Function of j, m or j,
M for EOS FPS. The resulting formula for k(j, m) is a
combination of four rms approximations and describes
b(j, m) to within the third decimal place.

For the quadrupole moment of an NS with EOS FPS
rotating arbitrarily fast (up to the Keplerian angular
velocity at the stellar equator), the following formula
holds:

(31)

Here, k*(j) denotes the function at the stability bound-
ary. It follows from our numerical data that k*(j) ≈
0.567 – 0.576|j | + 0.338j2 – 0.47j4 + 0.19j6; M*(j) and
m*(j) are given by (16).

Φ2 G2M3 j2 k 1+( ) c4,⁄=

k k* j( ) + 1.525 3.365 j2– 9.138 j4–(≈

+ 23.37 j6 28 j8– ) m* j( ) m–( )0.5 0.62 3.086+(+

× 0.188 3.447 j2– 4.83 j4 5.11 j6 19 j8–+ +( )

× 1.56 m–( ) ) m* j( ) m–( )

+ 3.97 m* j( ) m–( )2 k* j( )≈

+ 1.693 4.196 j2– 12.268 j4– 30.32 j6 37.2 j8–+( )

× M* j( ) M–( )0.5 1.713 2.5 0.348 6.515 j2–(+(+

+ 8.285 j4 9 j6 31 j8 ) 1.4 M–( )–+ ) M* j( ) M–( )

+ 5.453 M* j( ) M–( )2.
The Quadrupole Moment as a Function of j, m for
EOS A. For EOS A, the formula for the inherent qua-
drupole coefficient can be written as

(32)

Here, M*(j) and m*(j) are given by (14).
Results of Our Calculations. Figure 8 shows lines of

constant gravitational mass M(f, m) as functions of
rotation frequency f for m at 0.1 steps in the interval
(1.2, 2.5) for EOS FPS (recall that the masses are mea-
sured in M(). We used the parametric dependences M =
M(j, m) and Ω = Ω(j, m) [see formula (9) for Ω(j, m)] to
construct these curves. The dashed curve in Fig. 8 sep-
arates the NS states when it is within the marginally sta-
ble orbit from the NS states when this orbit is inside it.
Obviously, the equation of this curve is R(j, m) = R*(j, m).
The dots indicate the curves of stability loss according
to the static criterion. Their parametric equation is
M = M*(j) and f = f*(j).

The moment of inertia, the angular velocity, the
equatorial radius, and the quadrupole moment can be
inferred from the derived function M(j, m), which
determines the state of a two-parameter thermody-
namic system.

Figure 9 shows lines of constant dimensionless qua-
drupole coefficient b as functions of rotation frequency
f for rest masses at 0.1 steps in the interval (1.2, 2.5). In
this case, the dimensionless angular momentum j acts
as a parameter in the parametric specification of the
curve on the plane. Points a, … in Figs. 8 and 9 corre-
spond to the curve of transition from the external field
of two coaxially rotating black holes to the external
field of two coaxially rotating Kerr disks. The equation
of this curve is b(j, m) = 0.25(1 – j2).

3. THE EXTERNAL GRAVITATIONAL FIELDS 
OF RAPIDLY ROTATING NEUTRON STARS

The External Gravitational Fields of Sources with a
Finite Set of Multipole Moments. The external gravita-
tional fields of rapidly rotating neutron stars at large
angular velocities differ markedly from the Kerr field.
To describe these fields by the solution of the Einstein
equations with a finite set of multipole parameters, in
SS 98 we proposed to use axisymmetric steady-state

Φ2 G2M3 j2 k 1+( ) c4,⁄=

k 0.556 0.862 j 0.795 j2 0.611 j4–+–≈

+ 1.15 0.344 j 3.68 j3– 3.62 j4–+( )

× m* j( ) m– 1.196(+

+ 1.1075 7.7013 j– 3.574 j2+( )

× 1.5663 M0–( ) ) m* j( ) m–( )

+ 4.183 m* j( ) m–( )2.
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Fig. 8. Gravitational mass M versus NS rotation frequency for fixed rest masses (EOS FPS). The dashed line corresponds to the
parameters at which R = R*. Curves a correspond to a transition of the external field from the field of two Kerr black holes (inner
region) to the field of two Kerr disks (outer region). The maximum gravitational masses at which the stability is lost according to
the static criterion are also marked by dots (upper curve).

a

a

solutions specified on the symmetry axis by the follow-
ing Ernst potential:

(33)

Below, the ρ and z coordinates are measured in units
of length (GM/c2).

The corresponding solution is symmetric about the
equatorial plane if we additionally require that the coef-
ficients with even subscripts a2k be real (they are deter-
mined by the mass distribution and correspond to the
Newtonian multipole moments), and that the coeffi-
cients with odd subscripts a2k – 1 be purely imaginary
(they are determined by the angular-momentum distri-
bution in the NS and have no analog in the Newtonian
theory). For this definition of multipole moments, the
Kerr solution is a purely dipole one, and its higher mul-
tipoles are zero. General expressions for the metric
coefficients are given in SS 98 [formulas (23) and (24)].
Denote the roots of the denominator in the expression
for E on the symmetry axis by b1, b2, …, bn and the
roots of the equation e(z) + (z) = 0 by ±ξ1, ±ξ2, …, ±ξn

e z( ) E ρ 0=

zn zn 1– a jz
n j–

j 1=

n

∑+–

zn zn 1– a jz
n j–

j 1=

n

∑+ +

--------------------------------------------------.= =

ẽ
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(Sibgatullin 1984). Here, the tilde has the meaning of a
complex conjugate. If we use the identity

[here, V(a1, …, an) is an n × n alternant on elements
a1, …, an; and P(z) is an nth-degree polynomial whose
roots are b1, …, bn], then we can represent the solution
for the Ernst function differently. To describe it, we
denote

(34)

(35)

The solution for the Ernst function symmetric about
the equatorial plane and with the specified behavior on
the symmetry axis (28) then takes a fairly elegant form:

(36)

P ak( )det
1

ai b j–
-------------- 

 
k 1=

n

∏ V– a1 … an, ,( )V b1 … bn, ,( )=

γk a1
a3

ξk
2

----- …; σk
± 1 γk

2– iγk;+±≡+ +≡

rk
± ρ2 z ξk+−( )2+ ;≡

akl rl
+σl

+ξ l
k 1– ; bkl rl

–σl
– ξ l–( )k 1– ;≡≡

ckl ξ l
k 1– ; dkl ξ l–( )k 1– .≡≡

E
U W–
U W+
----------------; U det A, B

C, D 
 
 

,= =

W det A', B'

C', D' 
 
 

.=
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Fig. 9. Dimensionless quadrupole coefficient b versus rotation frequency f at fixed rest masses m (EOS FPS). Curves a correspond
to a transition of the external field from the field of two Kerr black holes to the field of two Kerr disks. The curves were constructed
at steps ∆m = 0.1.
The square n × n matrices A, B, C, D consist of akl,
bkl, ckl, dkl (k, l = 1, …, n), respectively [see Eq. (35)].
The rectangular (n – 1) × n matrices A', B' consist of akl,
bkl (k = 1, …, n – 1; l = 1, …, n), and the rectangular
(n + 1) × n matrices C ', D' consist of ckl, dkl (k = 1, …,
n + 1; l = 1, …, n).

Formally, the solution (36) appears as the result of
applying Backlund’s transformation to the solution E = 1
2n times. For the Ernst equation, it was found by Neu-
gebauer (1980) [see formula (7) from Kramer and Neu-
gebauer (1980)]. However, an attempt to directly deter-
mine the parameters of this solution from the data on
the axis leads to cumbersome calculations even for n = 2.
Ernst (1994) established a relation between Sibgatul-
lin’s method of constructing electrovac solutions with a
given rational behavior on the symmetry axes and Neu-
gebauer’s 2n parametric family of solutions for n = 2.
Manko and Ruiz (1998) were able to represent the solu-
tion of the Ernst equations corresponding to the Ernst
rational function on the symmetry axis with the asymptot-
ics E  1 when z  ∞ in a form that contained only
the roots ξk of the equation e(z) + (z) = 0 and that did not
contain the roots bk for arbitrary n > 2.

We hypothesized in SS 98 that the coefficients a2k – 1

for rigidly rotating stars, which are related to differen-
tial rotation, were zero for k > 1, with a1 ≡ j ≠ 0. This
coefficient is the ratio of the NS angular momentum to
its mass squared. Then, a substantial simplification of

ẽ

the solution (36) is that all constants  and 
[defined in (34)] turn out to be equal:

 

An Exact Solution of the Einstein Equations for a
Rotating Deformed Source and Numerical Data. The
available numerical data on the external gravitational
fields of rigidly rotating neutron stars [forward (Zf) and
backward (Zb) redshifts at the equator edges, which
allow the metric coefficients F and ω on the stellar
equator to be calculated; see Cook et al. (1994) for
numerical values of the radius of the marginally stable
orbit] suggest that these fields can be described by
some exact solution of the Einstein equations. The cor-
responding Ernst function on the symmetry axis is

(37)

which is obtained from the general case (33) at n = 2.
Recall that J = GM2j/c is the angular momentum, and
G2bM3/c4 is the quadrupole moment of the NS. Manko
et al. (1994, 2000) proposed to model the external
fields of neutron stars with strong magnetic fields by
special exact solutions of the system of Einstein–Max-
well equations.

In contrast to the multipole decompositions at large
radii (Shibata and Sasaki 1998; Laarakkers and Poisson

σk
+ σk

–

σk
+ 1 j2– ij, σk

–+ 1 j2–– ij,+= =

k 1 … n., ,=

e z( )
z2 – 1 ij+( )z b+

z2 1 – ij( )z b+ +
-----------------------------------------,=
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1998), which converge slowly at the stellar surface, the
quadrupole solution closely approximates numerical
data up to the stellar surface. The parameter b = b(j) of
this solution can be independently determined by sev-
eral methods: for example, by comparing either the
radius of the marginally stable orbit or the metric coef-
ficient F at the stellar surface, which is ((1 + Zf)(1 + Zb))–1

(recall that 1/  – 1 has the meaning of gravitational
redshift), with numerical data. The metric coefficients
F and ω in the solution corresponding to (37) on the
symmetry axis take the form (29) in the equatorial
plane.

Remarkably, b = b(j) determined from independent
comparisons with numerical data proved to be the same
for a given equation of state and at fixed rest mass.

The function R*(j)/M constructed from the Kerr
solution differs markedly from the realistic curves for
|j | > 0.15. Nevertheless, the realistic R*(j)c2/GM curves
and the Kerr curve have a tangency of the first order at
j = 0. This circumstance serves as a good illustration of
the remarkable observation by Hartle and Thorne
(1969) that the external gravitational field of a slowly
rotating star is described by the Kerr metric linearized
in rotation parameter.

Here, by contrast to SS 98, we approximated the
function b(j, m) in finite ranges of j and m [see formulas
(26) and (27)].

4. GLOBAL PROPERTIES 
OF THE EXACT QUADRUPOLE SOLUTION

Parameters of Equatorial Circular Orbits in an
Arbitrary Axisymmetric Stationary Field in a Vacuum.
The specific energy and angular momentum of particles
rotating in the equatorial plane in a Keplerian circular
orbit in an arbitrary axisymmetric stationary field in a
vacuum can be calculated using the formulas (SS 98)

(38)

Here, the dot denotes a derivative with respect to r ≡ ρ2.

For the angular velocity of a particle in a Keplerian
circular orbit, we can derive the formula

(39)

The radius of the marginally stable orbit can be
determined by using the condition of energy extremum
in circular orbits. In explicit form, it appears as

F

E
F

1 F2 p2 r⁄–
-------------------------------, l MGc 1– p ω+( )E,= =

p r λ– λ2 µ µ2r–++( ) n⁄ ,≡

λ Fω̇, µ Ḟ F, n F rḞ.–≡⁄≡≡

ΩK
c3

GM
--------- p

r F2⁄ ωp+( )
------------------------------.=
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(40)

For the particle energy and angular momentum in
the marginally stable orbit to be calculated as functions
of rotation parameter j, the root of the algebraic equa-
tion (40) must be substituted in (38).

Disk Luminosity and Parameters of Equatorial Cir-
cular Orbits in the Kerr Field. The external field of a
slowly rotating NS can be described by the Kerr solu-
tion linearized in angular momentum (Hartle and
Thorne 1969). The physical processes in the field of a
slowly rotating NS were considered by Kluzniak and
Wagoner (1985), Sunyaev and Shakura (1986), Ebi-
sawa et al. (1991), Biehle and Blanford (1993), and
Miller and Lamb (1996).

For the extreme Kerr solution (j = 1), the particle
energy and angular momentum in the marginally stable
orbit were calculated by Ruffini and Wheeler (1970) in
their pioneering study.

At 0 ≤ j ≤ 1, the particle energy and angular momen-
tum in circular orbits in the Kerr field (Bardeen et al.
1972) are related to the orbital radius and the rotation
parameter j by

(41)

Here, r is the Boyer–Lindquist radial coordinate in the
Kerr metric.

The expressions for j, E, and l corresponding to the
marginally stable orbit, where the x coordinate is
treated as a parameter, are

(42)

The parameter x varies in the intervals (1/9, 1/6) and
(1/6, 1) for disk and black-hole counterrotation and
corotation, respectively. The corresponding values of j
for the former interval are negative.

The disk energy release in the field of a black hole

is obviously c2(1 – E*). In order to express the
energy release as a function of the black-hole angular
velocity Ω, we use the formula [formula (12) in
Christodolou and Ruffini (1971); see also Misner et al.

r λµn λ̇n ṅλ–+( ) λ2 µ µ2r–+

– λ2 µ µ2–+( ) n rṅ–( )

– rn λλ̇ 0.5 µ̇ µ2–( ) rµµ̇–+( ) 0.=

E
1 2x– jx x+

1 3x– 2 jx x+
-----------------------------------------,=

l GM c
2 jx– 1 j2x2+( ) x⁄+

1 3x– 2 jx x+
------------------------------------------------------,⁄=

x GM rc2( )⁄ .≡

j*
4 x 3 2x––

3x
-----------------------------------, E* 1

2
3
---x– ,= =

cl* GM⁄ j*E*–
1

x 3
----------.=

Ṁ
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(1973), Sibgatullin (1984), Novikov and Frolov
(1986)]

Hence, it is easy to obtain

(43)

Therefore, the energy release Ld in the disk around a

Kerr black hole is a function of  = ΩMG/c3 specified
parametrically with x = GM/rc2 (r is the Boyer–
Lindquist coordinate radius of the marginally stable
orbit). Ld has the following well-known values: Ld =

0.0377 c2 at  = –0.5 (j = –1); Ld =0.0572 c2 at

 = 0 (j = 0); and Ld = 0.4226 c2 at  = 0.5 (j = 1).
Note that j = 1 corresponds to a rotation frequency f =
c3/(4πGM) ≈ 11.56 kHz for a black hole with M =
1.4M(. The Taylor expansion of the energy release in
the disk around a Kerr black hole in the interval –0.4 ≤

 ≤ 0.4 (–0.975 < j < 0.975) is

(44)

The function Ld( )/ c2 is not analytic at  = 0.5.
Its expansion in terms of fractional powers of the differ-

ence 0.5 –  is

(44‡)

The calculation using formula (44) at  = 0.4 (j ≈
0.975) yields 0.2185; this value differs from that calcu-
lated by using formula (44a) and from the exact value
by less than 0.0005. One should therefore use (44) for

| | < 0.4 and the expansion (44a) for 0.4 <  ≤ 1. In

the range –0.5 <  ≤ –0.4, the first two terms in the

Taylor expansion near  = –0.5(j = –1) can be used for
the Kerr-disk luminosity:

Note that if the NS radius is smaller than the radius
of the marginally stable orbit, then the energy release Ld
in the disk around the NS is approximately equal to Ld
in the disk around a black hole of the same mass and the
same angular momentum. Indeed, we see from formula
(45) for E* that the corrections to the Kerr expression
associated with powers of the quadrupole coefficient b
are small.

Comparison of the Functions j( ) for Black Holes
and Neutron Stars. As the NS mass increases to its

2Ω̃ j 1 1 j2++( ), Ω̃ ΩMG c3.⁄≡⁄=

j
4Ω̃

4Ω̃2
1+( )

------------------------.=

Ω̃

Ṁ Ω̃ Ṁ

Ω̃ Ṁ Ω̃

Ω̃

Ld Ṁc2 0.0572 0.128Ω̃ 0.349Ω̃2
+ +≈⁄

+ 0.532Ω̃3
0.52Ω̃4

0.417Ω̃5
0.65Ω̃6

.+ + +

Ω̃ Ṁ Ω̃

Ω̃

Ld Ṁc2 0.4226 1.155 0.5 Ω̃–( )2/3
–≈⁄

+1.443 0.5 Ω̃–( )4/3
0.77 0.5 Ω̃–( )5/3

– 0.5 0.5 Ω̃–( )2
.–

Ω̃

Ω̃ Ω̃
Ω̃

Ω̃

Ld Ṁc2 0.0377 0.024 Ω̃ 0.5+( )2
+≈⁄ .

Ω̃

maximum value, when the star collapses in the static
limit, the relationship between the dimensionless angu-
lar velocity of a NS with different equations of state and
the Kerr parameter approaches the above relationship
between these parameters for rotating black holes.
Moreover, the NS external field differs only slightly
from the gravitational field of a rotating black hole.

Indeed, using tables from Cook et al. (1994), we can
construct approximations for the M = 1.4M( normal
sequences in the static limit in the range 0 < j < 0.6 [the

function j( ) is extended to negative  by using the

oddness condition j( ) = –j(– )]:

EOS A j ≈ 6.573  + 0.655(10 )
2
, m = 1.566;

EOS AU j ≈ 8.2  + 0.65(10 )
2
, m = 1.577;

EOS FPS j ≈ 8.035  + 0.91(10 )
2
, m = 1.56;

EOS L j ≈ 13.3  + 3.03(10 )
2
, m = 1.52.

Let us now consider the functions j(f) of maximum
masses stable only in the presence of rotation:

EOS A j ≈ 4.066  + 0.388(10 )
2
, m = 1.92;

0 ≤ 10  ≤ 0.84;

EOS AU j ≈ 4.095  + 0.14(10 )
2
, m = 2.638;

0 ≤ 10  ≤ 1.1;

EOS FPS j ≈ 4  + 0.445(10 )
2
, m = 2.1;

0 ≤ 10  ≤ 0.8;

EOS L j ≈ 4.33  + 0.34(10 )
2
, m = 3.23;

0 ≤ 10  ≤ 0.86.

It follows from the above formulas that, for the max-

imum possible masses, the functions j( ) of arbitrary
NS equations of state are closely approximated by the

dependence for Kerr black holes (43) at small : j ≈ 4 .

At the same time, j( ) for neutron stars with M =

1.4M( have j(  considerably exceed the Kerr values.
Parameters of the Marginally Stable Orbit in the

Equatorial Plane in the Field of a Rotating NS. The
external fields of rapidly rotating neutron stars differ
markedly from the Kerr field. This difference can be
described by introducing only one multipole moment,
namely, the quadrupole one (Laarakkers and Poisson
1998; SS 98) at stellar masses larger than M(. In gen-
eral, the external gravitational fields at M < M( in the
case of rapid rotation have all multipole components,
much like the external field of a Maclaurin spheroid at
a rotation velocity comparable in magnitude to the
Keplerian velocity on the stellar equator.

Ω̃ Ω̃
Ω̃ Ω̃

Ω̃ Ω̃

Ω̃ Ω̃

Ω̃ Ω̃

Ω̃ Ω̃

Ω̃ Ω̃

Ω̃

Ω̃ Ω̃

Ω̃

Ω̃ Ω̃

Ω̃

Ω̃ Ω̃

Ω̃

Ω̃

Ω̃ Ω̃
Ω̃

Ω̃
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In order to calculate the parameters of the margin-
ally stable orbit, let us consider four quadrupole coeffi-
cients: b = 0, 0.25, 0.5, and 0.75. For each of these val-
ues, we break up the j range –0.7 to +0.7 into 30 equal
parts and seek a minimum of the particle energy in cir-
cular orbits for each j [rather than seek the root of the
complex equation (40), as we did in SS 98]. Having
determined the corresponding radial coordinates, we
can calculate all the remaining parameters of the mar-
ginally stable orbit and construct an approximating
polynomial in j with the smallest rms deviation in the
interval (–0.7, 0.7) at fixed b. We then construct an
interpolation polynomial in b using Lagrange–Sil-
vester’s formula. Let us write out the functions (38) and
(39) derived in this way, which, however, have a mean-
ing only when the stellar radius is smaller than the
radius of the marginally stable orbit. In the formulas
given below, E* has the meaning of binding energy of
a particle of unit mass in the marginally stable orbit,
and Ω* is the angular velocity in this orbit:

(45)

(46)

(47)

E* minE≡ 0.943 0.031 j– 0.022 j2– 0.014 j3–=

– 0.01 j4 0.02 j5– 0.02 j6– b 0.008 0.017 j+(+

+ 0.024 j2 0.016 j3 0.013 j4+ +

+ 0.085 j5 0.1 j6+ ) b2 0.002– 0.01 j–(+

– 0.021 j2 0.005 j3– 0.002 j4–

– 0.14 j5 0.18 j6– ) b3 0.001 0.004 j 0.009 j2+ +(+

– 0.002 j3 0.004 j4– 0.08 j4 0.11 j6+ + );

cl* GM( )⁄ 3.464 0.943 j– 0.258 j2– 0.125 j3–=

– 0.074 j4 –  0.11 j 
5  – 0.09 j 

6 +

+ b 0.189 0.226 j 0.244 j2 0.178 j3 0.15 j4+ + + +(

+ 0.49 j5 0.51 j6+ ) b2 0.039– 0.108 j– 0.191 j2–(+

– 0.123 j3 0.123 j4– 0.85 j5– 0.96 j6– )

+ b3 0.009 0.036 j 0.078 j2 0.034 j3+ + +(

+ 0.036 j4 0.5 j5 0.59 j6+ + );

R*c2 GM⁄ 6 3.267 j– 0.278 j2– 0.112 j3–=

– 0.059 j4 0.07 j5– 0.05 j6– b 1.085 0.96 j+(+

+ 0.904 j2 0.723 j3 0.177 j4+ +

+ 0.63 j5 1.53 j6+ ) b2 0.25– 0.607 j–(+

– 1.134 j2 1.107 j3– 0.643 j4+

– 1.18 j5 4.89 j6– ) b3 0.059 0.223 j+(+
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(48)

 

These formulas are universal and valid for any NS
equation of state. If, alternatively, the dimensionless
quadrupole coefficient b = kj2 is expressed in terms of j
and m for a specific equation of state (respectively, j
and M), for example, by using formula (31), then we
obtain the above formulas as functions of j and m
(respectively, j and M). Formula (32) must be used for
EOS A.

We emphasize that, in contrast to the Taylor expan-
sions of Shibata and Sasaki (1998) for small j and b ~ j2,
formulas (45)–(48), which were derived from the exact
solution by the combination of least squares and inter-
polation in b (Silvester–Lagrange’s formula), describe
the behavior of the solution in finite ranges: b ≤ 0.75
and |j | ≤ 0.7. Note that the corrections associated with
the coefficient b (“non-Kerr behavior”) in formula (45)
for E* are small.

Radial and Azimuthal Velocities on the NS Surface
for the Particles Falling to the Stellar Equator from the
Marginally Stable Orbit. The radial and azimuthal
velocities of the particles that fell from the marginally
stable orbit on the stellar surface in a local frame which
is stationary relative to the orbits of Killing’s timelike
vector of the metric (21) are

Here, the asterisk denotes the corresponding parameter
in the marginally stable orbit. The approximations for
Vφ and Vr for a NS with fixed mass M = 1.4M( and
EOS A valid in the range –1.2 < f < 0.88 kHz are

+ 0.633 j2 0.604 j3 0.923 j4– 0.71 j5 3.94 j6+ + + );

ΩK
*GM c3⁄ 0.068 0.051 j 0.037 j2 0.025 j3+ + +=

+ 0.017 j4 0.03 j5 0.03 j6+ +

+ b 0.016– 0.035 j– 0.052 j2– 0.039 j3–(

– 0.033 j4 0.16 j5– 0.18 j6– )

+ b2 0.006 0.024 j+(

+ 0.053 j2 0.028 j3 0.014 j4 0.29 j5 0.37 j6+ + + + )

+ b3 0.002– 0.01 j– 0.025 j2– 0.007 j3–(

+ 0.008 j4 0.18 j5– 0.24 j6– ).

Vφ

c
------

f

r
------ p* ω* ω–+( ),=

Vr

c
----- 1

f 2

r
----- p* ω* ω–+( )2– 1

f *
2 p*

2

r*
-------------– 

  f
f *
------– .=

Vφ

c
------ 0.6 0.006 f 1 kHz⁄( ) 0.04 f 1 kHz⁄( )2,––≈

Vr

c
----- 0.062 0.057 f 1 kHz⁄( )– 0.015 f 1 kHz⁄( )2.–≈
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and those for EOS FPS valid in the range –1.0 < f <
0.6 kHz are

In SS 98, we gave formulas for Vφ and Vr in a frame
entrained by NS rotation. The corresponding approxi-
mations for M = 1.4M( for the azimuthal velocity are

The radial components of the 4-velocity do not
change when passing from one frame to the other.

The kinetic energy of radial particle motion pro-
duces energy release in a shock wave near the equator,
while the energy of azimuthal motion produces energy
release in the spread layer that concentrates around two
bright latitudinal rings (Inogamov and Sunyaev 1999).
Clearly, this difference can, in principle, allow the case
with a radius smaller than the radius of the marginally
stable orbit R < R* (three bright rings) to be experimen-
tally distinguished from the case with R > R* (two
bright rings).

Since the particles in the gap are assumed to have no
time to gather a high radial velocity for any reasonable f,
Vr ! Vφ. Expanding the fourth tetrad 4-velocity compo-
nent in a series yields

The flux of radial kinetic energy is therefore

The approximation of Lrad for a NS with the soft
EOS A, where this flux reaches a maximum, is

For the harder EOS FPS, the flux of radial energy is
considerably lower,

Vφ

c
------ 0.553 0.018 f 1 kHz⁄( ) 0.052 f 1 kHz⁄( )2,––≈

Vr

c
----- 0.03 0.044 f 1 kHz⁄( )– 0.03 f 1 kHz⁄( )2.–≈

EOS A:
Vφ

c
------ 0.6 0.035 f 1 kHz⁄( )–≈

– 0.042 f 1 kHz⁄( )2,

EOS FPS:
Vφ

c
------ 0.553 0.046 f 1 kHz⁄( )–≈

– 0.055 f 1 kHz⁄( )2.

1

1 Vr
2 c2 Vφ

2 c2⁄–⁄–
------------------------------------------------ 1

1 Vφ
2 c2⁄–

----------------------------
Vr

2 c2⁄

1 Vφ
2 c2⁄–( )3

----------------------------------.+≈

Lrad Ṁ
Vr

2 2⁄

1 Vφ
2 c2⁄–( )3

----------------------------------.≈

Lrad Ṁc2 0.0035 0.01 f 1 kHz⁄( )–≈⁄

+ 0.0025 f f 1 kHz⁄⁄( )2 0.005 f 1 kHz⁄( )3.+

Lrad Ṁc2 0.00026 0.003 f 1 kHz⁄( )–≈⁄

+ 0.0036 f 1 kHz⁄( )2 0.0035 f 1 kHz⁄( )3.+
The angular velocity of the particles falling from the
marginally stable Keplerian orbit along helical trajecto-
ries is at a maximum on the NS surface. As follows
from SS 98, the formula

holds for the particle angular velocity near the NS sur-
face fs = dφ/dt/2π.

The approximations for fs on the stellar surface and

for  in the marginally stable orbit as functions of the
NS rotation frequency are

We emphasize that fs =  when R = R*. The softer
is the equation of state and the higher is the NS angular
velocity when it counterrorates with the disk, the larger

is the difference fs – . Thus, fs specifies an additional
characteristic frequency in the problem considered by
Inogamov and Sunyaev (1999), which is appreciably
higher than the rotation frequency of the matter in the
bright latitudinal rings.

The NS Parameters at Which Its Equatorial Radius
Is Equal to the Radius of the Marginally Stable Circu-
lar Orbit. In order to determine the NS parameters at
which its equatorial radius is equal to the radius of the
marginally stable circular orbit in the equatorial plane,
we must solve the system of equations (19) and (20) in
which the radius of the marginally stable orbit must be
substituted for R. If we use formula (23) for the equato-
rial radius, which includes only one function M(j, m)
and its derivative with respect to m, then we obtain val-
ues that differ only slightly from those calculated using
(19) and (20), within the accuracy of our calculation. In
this case, however, we do not know the radial parameter
ρ to approximate the functions expressed in terms of
the metric coefficients.

Recall that the thermodynamic function M(j, m) of
its own corresponds to each equation of state [see
expressions (15) and (17) for this function in the case
of EOS A and EOS FPS].

f s

p* ω ω*–+

r F2 ω p* ω ω*–+( )+⁄
----------------------------------------------------------=

f K
*

EOS A f s 1 kHz⁄ 2.251 0.0236 f 1 kHz⁄( )–≈

– 0.28 f 1 kHz⁄( )2 0.062 f 1 kHz⁄( )3;+

f K
* 1 kHz⁄ 1.575 0.421 f 1 kHz⁄( )+≈

– 0.065 f 1 kHz⁄( )2 0.016 f 1 kHz⁄( )3;–

EOS FPS f s 1 kHz⁄ 1.891 0.07 f 1 kHz⁄( )–≈

– 0.224 f 1 kHz⁄( )2 0.194 f 1 kHz⁄( )3;+

f K
* 1 kHz⁄ 1.561 0.484 f 1 kHz⁄( )+≈

– 0.081 f 1 kHz⁄( )2 0.008 f 1 kHz⁄( )3.+

f K
*

f K
*
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We use formula (46) for the radius R* in which the
corresponding expressions [see formulas (31) and (32)
for EOS FPS and EOS A, respectively must be substi-
tuted for the quadrupole coefficient b = b(j, m). Thus,
for each fixed j, we sought the corresponding solutions
of the algebraic system (19) and (20) for m, r ≡ ρ2.
Using the Mathematica program, we can find a polyno-
mial with the smallest rms deviation from the con-
structed points in the (j, m) plane and obtain the m =

 curve that separates the equilibrium positions
when the NS lies within its marginally stable circular
orbit in the equatorial plane from the equilibrium posi-
tions with the NS lying outside this orbit.

The corresponding equations of the above curve in
the (j, m) plane are

(49)

for EOS A and

(50)

for EOS FPS.
For EOS FPS in the (j, M) plane, the equation of the

curve separating the states with the NS inside and out-
side R* is (see Fig. 8)

Parameters of Circular Orbits on the NS Equator at
R > R* for EOS A. Let us introduce the parameters

These parameters are zero at R = R* and unity at j =
–0.5. When dm changes from 0 to 0.5, the dm(j, m) =
const curves in the (j, m) plane fill the region D = {1.1 ≥
m ≥ 2.5} ∩ {R ≥ R*}. Accordingly, when dM changes
from 0 to 0.5, the dM(j, M) = const curves in the (j, M)
plane fill the region D = {1 ≥ M ≥ 2.1} ∩ {R ≥ R*}. We
therefore approximate the energy E, angular momen-
tum l [calculated using (38)], and particle angular
velocity fK in a circular orbit lying on the stellar equator
[calculated using (39)] in the region D by polynomials
in j and dm. For this purpose, we first approximate these
functions at dm = 0, 0.1, 0.2, and 0.3 by fourth-degree
polynomials, finding the corresponding radial coordi-
nates using Eq. (17), and then interpolate them in dm
(or  dM) using Silvester–Legendre’s formula. Again
using the Mathematica program, we obtain for EOS A

m̃ j( )

m̃ j( ) 1.228 0.675 j 0.159 j2– 0.104 j3+ +=

+ 2.077 j4 1.25 j5+

m̃ j( ) 1.355 0.797 j 0.093 j2–+=

– 0.343 j3 1.944 j4 2.86 j5+ +

M̃ j( ) 1.259 0.575 j 0.109 j2–+≈

– 0.163 j3 0.94 j4 3.2 j5.+ +

dm m̃ j( ) m–( ) m̃ j( ) 2 jm+( ),⁄≡

dM M̃ j( ) M–( ) M̃ j( ) 2 jM+( ).⁄≡

E 0.943 0.029 j– 0.019 j2 0.017 j3–+=

– 0.074 j4 dm 0.002 0.001 j– 0.031 j2 0.305 j3+ +(+
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(51)

(52)

(53)

Parameters of Circular Orbits on the NS Equator at
R > R* for EOS FPS. For EOS FPS, we derive the fol-
lowing approximation formulas for the parameters of
an equatorial Keplerian orbit using (38) and (39):

(54)

(55)

+ 0.416 j4 ) dm
2 0.097 0.398 j 0.072 j2+ +(+

– 1.46 j3 1.56 j4– ) dm
3 0.057– 0.537 j–(+

– 0.752 j2 1.712 j3 3.011 j4+ + ),

lc GM( )⁄ 3.463 0.909 j– 0.661 j2 0.41 j3–+=

– 1.373 j4 dm 0.028 0.076 j 1.18 j2+ +(+

+ 4.304 j3 3.95 j4+ ) dm
2 1.418 5.279 j+(+

+ 0.318 j2 15.653 j3– 13.44 j4– ) dm
3 0.855(+

– 3.047 j 14.241 j2 8.861 j3 35.58 j4+ +– ),

f K 1 ÍÉˆ⁄ 1.972 0.466 j 1.226 j2– 0.741 j3–+=

+ 2.746 j4 dm 1.183– 2.536 j– 4.738 j2+(+

– 0.986 j3 32.15 j4– )

+ dm
2 0.394 2.551 j 2.079 j2–+(

+ 22.97 j3 102.84 j4+ ) dm
3 0.993– 1.237 j–(+

+ 13.343 j2 34.48 j3– 169.05 j4– ).

E Ẽ j( ) dm 0.01 0.02 j– 0.294 j2– 0.196 j3+(+=

+ 1.586 j4 ) dm
2 0.026 0.537 j 2.775 j2+ +(+

– 1.21 j3 11.039 j4– ) dm
3 0.103 0.874 j– 7.258 j2–(+

+ 1.943 j3 27.516 j4+ ) Ẽ j( ) dM 0.002 0.026 j–(+≈

+ 0.043 j2 0.131 j3 0.373 j4+ + ) dM
2 0.105–(+

+ 0.748 j 1.184 j2– 0.916 j3 2.726 j4 )+ +

+ dM
3 –0.069 1.583 j– 5.382 j2 6.883 j3– 14.83 j4–+( ),

Ẽ j( ) 0.942 0.03 j– 0.039 j2 0.011 j3– 0.153 j4;–+≈

lc GM( )⁄ l̃ j( ) dm 0.049 0.147 j– 0.237 j2+(+=

+ 0.408 j3 4.79 j4+ ) dm
2 1.306 5.733 j 5.272 j2+ +(+

– 2.106 j3 3.207 j4– ) dm
3 0.743 3.434 j–(+

– 23.054 j2 11.233 j3– 32.45 j4+ ) l̃ j( )≈

+ dM 0.041 0.466 j–(

+ 2.926 j2 1.619 j3– 1.189 j4+ )
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Fig. 10. Particle rotation frequency in the marginally stable circular Keplerian orbit at R ≤ R* (solid lines) and particle rotation fre-
quency in an equatorial Keplerian orbit at R ≥ R*(dashed lines) versus NS rotation frequency for fixed rest masses m (EOS FPS).

The upper envelope specifies the frequency for R = R*; at m = const, the functions (f) monotonically increase for R < R*, while

the functions fK(f) monotonically decrease for R > R*.

f K
*

(56)

+ dM
2 1.604 12.501 j 42.641 j2–+(

+ 63.336 j3 41.062 j4+ ) dM
3 2.512 25.467 j–(+

+ 182.594 j2 284.35 j3– 202.93 j4– ),

l̃ j( ) 3.457 0.924 j– 0.895 j2 0.375 j3– 2.224 j4;–+≈

ΩKGM c3⁄ f̃ j( ) dm 0.083 0.184 j 0.013 j2–+(+=

– 0.087 j3 0.116 j4– ) dm
2 1.013– 2.31 j– 0.268 j2–(+

+ 1.116 j3 2.894 j4+ ) dm
3 1.794 4.686 j 3.981 j2+ +(+

– 2.428 j3 17.387 j4– )

≈ f̃ j( ) dM 0.097– 0.17 j–(+

+ 0.071 j2 1.156 j3 2.302 j4–– ) dM
2 0.136–(+

– 0.754 j 1.681 j2 11.715 j3 9.366 j4+ + + )

+ dM
3 0.614 3.075 j 5.577 j2– 32.591 j3– 13.9 j4–+( ),

f̃ j( ) 0.059 0.025 j 0.062 j2– 0.017 j3– 0.148 j4.+ +≈
Here, ΩK = 2πfK is the particle angular velocity in the
equatorial Keplerian orbit (in rad s–1).

The Maximum Rotation Frequency in Circular
Orbits at R < R* and R > R* . The marginally stable
orbits [see formula (48)] and the Keplerian orbits lying
on the NS surface [see formulas (53) and (56)] have the
largest frequency in Keplerian equatorial orbits around
the NS at R < R* and R > R*, respectively. We empha-
size that we deal with circular orbits; for the spiraling-
in particles in the gap between R* and R, the angular
velocities fs are higher than those in the marginally sta-
ble orbit (see above). In order to interpret the quasi-
periodic millisecond oscillations from LMXB objects,
it is useful to calculate the dependence of the largest
Keplerian frequency on the NS angular velocity; either
(48) or (53) and (56) must be used, depending on the
situation. In Fig. 10, maximum Keplerian frequency is
plotted against NS rotation frequency for EOS FPS for
fixed rest masses m at 0.1 steps. The NS angular veloc-
ity was calculated by using (9). The corresponding
curves are indicated by solid and dashed lines at R < R*
and R > R*, respectively. The curve for R = R* is also
indicated by a dashed line. When this curve is reached,
the maximum possible Keplerian frequencies are
obtained for a fixed rest mass. The dots indicate the
curve of stability loss according to the static criterion;
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
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it correspond to the M = M*(j) curve [m = m*(j)] [see
formulas (14) and (16)].

5. NS SPINUP VIA ACCRETION
AND ITS LUMINOSITY

Spinup in the Newtonian Theory. Let us first con-
sider the Newtonian pattern for an incompressible, self-
gravitating rotating mass of fluid whose equilibrium
figure is a MacLaurin spheroid.

The spheroid eccentricity e is defined as e =

. The Keplerian equatorial rotation fre-
quency can be determined by equating the gravity and
the centrifugal force:

(57)

The formula relating the angular frequency and the
eccentricity of a Maclaurin spheroid follows, in partic-
ular, from equilibrium conditions:

(58)

Denote the mass brought by the accreting particles
from the disk to the stellar equator per unit time, which
subsequently spreads over the star, changing its mass,
angular momentum, and total energy in an equilibrium

way, by . From the law of conservation of angular
momentum, we have

(59)

We derive the following evolutionary equation for
the eccentricity from formula (59) (see also Finn and
Shapiro 1991):

(60)

When the disk and the Maclaurin spheroid counter-
rotate, the sign in Eq. (53) before B(e) must be changed
to the opposite one.

Let us introduce a dimensionless parameter of angu-
lar acceleration q:

(61)

We substitute the right-hand part of (60) for de/dt.

1 c2 a2⁄–

f K Gρ 2π⁄ B e( );=

B e( )
1 e2–

e3
----------------- e

1 e2–

e2
-------------–arcsin .≡

f Gρg e( ) 2π⁄ ;=

g e( )
1 e2–

e3
----------------- 3 2e2–( ) e 3

1 e2–

e2
-------------.–arcsin≡

Ṁ

td
d

If Ṁa f K.=

de
dt
------

5 B e( )
2
3
--- g e( )– 

 

2 2e g e( ) 3 1 e2–( )( )
ed

d
g e( )+⁄ 

 
--------------------------------------------------------------------------------------Ṁ M.⁄=

qṀ M⁄ df
dt
----- 2π

Gρ
-------

d g e( )
de

-----------------de
dt
------.= =
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
The right-hand part of (61) can be expanded in a
Taylor series in e by using (58). Passing to a Taylor
expansion of q as a function of dimensionless angular

velocity  ≡ f  or the ratio of the NS rotation
frequency to the rotation frequency in an equatorial
Keplerian orbit, we obtain

 (61‡)

Note that formulas (61a) are also valid for negative
f (counterrotation). The parameter of NS angular accel-
eration is determined solely by its density and angular
velocity.

Spinup in General Relativity. In general relativity,
the dimensionless parameter of angular acceleration q
can be introduced as follows:

Using our results from SS 00, we can easily obtain
for q in general relativity

(62)

For slowly rotating stars (j < 0.1), the angular accel-
eration [as follows from (62)] is given by

(63)

At M = 1.4M(, q ≈ 9.55, 8.33, and 8.54 for EOS A,
EOS AU, and EOS FPS, respectively. We emphasize
that, here, we consider the instantaneous rate of change
in the rotation frequency of a NS with a given gravita-
tional mass and angular velocity rather than the evolu-
tion of NS parameters during accretion.

Below, we restrict ourselves to numerically con-
structed dependences for the EOS FPS alone.

The approximation formula for q in the case of NS
and disk corotation at M = 1.4M( is

(64)

This formula is valid for angular velocities from 100
to 800 Hz. In the case of accretion-disk and NS coun-
terrotation (when the NS spins down), the approxima-

f̃ 2π Gρ⁄

q 2.0412 5/3 f̃– 5.868 f̃
2

– 25/6 f̃
3

+≈

– 0.371 f̃
4

0.744 f̃
5

2.0412 1.3608
f
f K
------–≈+

– 3.9124
f
f K
------ 

  2

2.6085
f
f K
------ 

  3

+

+ 1.7911
f
f K
------ 

  4

1.1941
f
f K
------ 

  5

.–

df
dt
-----

c3

GM(

-------------Ṁ
M
-----q or

df 1 kHz⁄
dt

------------------------ 111.37
Ṁ
M
-----q.= =

q M(⁄ lc G( )⁄ 2 jMM m,–
M 2 jM j,+

----------------------------------------------=

×
M j,

M M 2 jM j,+( )
----------------------------------- 

  M j,

M M 2 jM j,+( )
----------------------------------- 

 
m,

M.+

q
M(M jj,

M2
------------------.≈

q 10.964 6.057 f 1 kHz⁄( )– 1.54 f 1 kHz⁄( )2.+≈
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tion formula for |q | in the same range of angular veloc-
ities is

(65)
q 10.565≈

– 2.4 f 1 kHz⁄( ) 4.34 f 1 kHz⁄( )2.–

d 
(l

og
f)

/d
t, 

M
/M

0.2
f, kHz
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Fig. 12. Comparison of the plots of angular acceleration q
versus NS rotation frequency for the fixed gravitational
mass M = 1.4M( in general relativity (EOS FPS) (heavy
line) and in the Newtonian theory (thin line) at matched
maximum angular velocities.

Fig. 11. Angular acceleration via disk accretion versus NS
rotation frequency at R ≤ R* (solid lines) and at R ≥ R*
(dashed lines) for fixed gravitational masses M(EOS FPS)
[see the approximation formulas (54)–(58) for q(f) at the
fixed gravitational masses M = 1.4M( and M = 1.8M(]. The
lower curves describes counterrotation (spindown). The
upper curves describe spinup when the NS and the disk
corotate.
For M = 1.8M(, an approximate formula for the
parameter of angular acceleration q is

(66)

in the case of corotation and

(67)

in the case of counterrotation. These formulas are valid
in the range of angular velocities from 150 to 1200 Hz.

Formulas (64)–(67) are slightly inaccurate for slow
rotation. In this case, formula (63) must be used. The
transition from corotation to counterrotation of the star
and the disk in the exact statement (61)–(63) is smooth.
In Fig. 11, 1 kHz q/f is plotted against f for fixed gravi-
tational masses M = 1.2, 1.4, 1.6, and 1.8M(. For com-

parison, Fig. 12 shows the (M/ )dlnf/dt dependences
in the Newtonian theory and in general relativity. The
density (~1014 g cm–3) was chosen in such a way that
the maximum possible angular velocities were equal in
both approaches.

Energy Release on the NS Surface During Disk
Accretion for Weak Magnetic Fields. In Figs. 3 and 4,
total energy release on the surface of a NS with EOS
FPS and in the accretion disk (solid line), as well as the
ratio of these energy releases (dashed line), are plotted
against NS angular velocity for normal sequences with
the fixed rest mass m = 1.56M( (M = 1.4M( in the
static limit) and m = 2.1M( (M = 1.8M( in the static
limit).

We derived formulas for the energy releases in SS 00:

(68)

(69)

Here, µ is the NS chemical potential, and Ω is its angu-
lar velocity (see SS 00). The quantities in the formulas
for the surface energy release are given by the follow-
ing formulas: (9) for Ω; (19) for µ; (45), (46) for E*, l*;
(51), (52) for EOS A; and (54), (55) for EOS FPS for E, l.
In the case of a nonrotating NS, the formulas for gravi-
tational energy release were derived by Sunyaev and
Shakura (1986).

The energy release reaches a maximum when the
disk and the neutron star counterrotate: for EOS FPS, it

is 0.414 c2 at f = –1.08 kHz for m = 1.56M( and

0.67 c2 at f = –1.49 kHz for m = 2.1M(.

Figures 1 and 2 show these quantities for the fixed
gravitational masses M = 1.4 and M = 1.8M(.

q 22.234 9.664 f 1 kHz⁄( )– 1.63 f 1 kHz⁄( )2–≈

q 20.27≈

– 2.96 f 1 kHz⁄( ) 2.59 f 1 kHz⁄( )2–

Ṁ

Ls Ṁc2 E Ωl c2 µ–⁄–( ),=

Ld Ṁc2 1 E–( ) at R R*;≥=

Ls Ṁc2 E* Ωl* c2 µ–⁄–( ),=

Ld Ṁc2 1 E*–( ) at R R*.≤=

Ṁ

Ṁ
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The maximum luminosity for the gravitational mass

M = 1.4M( is 0.408 c2 at f = –1.08 kHz. The approx-
imations for the total luminosity and the Ls/(Ls + Ld)
ratio at |f | ≤ 1 kHz for the gravitational mass M = 1.4 M(

are given by formulas (1) and (2) in the Introduction.
The maximum luminosity for M = 1.8M( is

0.62 c2 at f = –1.41 kHz. The approximation for the
total luminosity at | f | ≤ 1 kHz for M = 1.8M( is

(70)

If the f dependence of Ls/(Ls + Ld) is approximated
by a quadratic trinomial in the range –1 < f < 1 kHz at
M = 1.8M(, then we obtain

(71)

For comparison, we give approximations for egrav =
(Ls + Ld)/M(, the efficiency of gravitational energy
release on the surface of a NS with the soft EOS A and
the moderate EOS AU, as functions of rotation fre-
quency f for M = 1.4M( NS normal sequences in the
static limit:

(72)

(73)

(74)

(75)

The softer is the equation of state, the stronger is the
concentration of matter toward the stellar center, and
the larger is the gap between the marginally stable orbit
and the NS surface. Therefore, the energy release on the
surfaces of stars with a soft equation of state at the same
masses and angular velocities exceeds the energy
release on the surfaces of stars with a hard equation of
state.

As follows from (1), (70), (72), and (74), the total
energy release is a nearly linear function of the NS rota-
tion frequency over a wide range of its variation,

. This distinguishes the general-relativity

Ṁ

Ṁ

Ls Ld+

≈ 0.333 0.193 f 1 kHz⁄– 0.006 f 1 kHz⁄( )2+ Ṁc2.

Ls Ls Ld+( )⁄

≈ 0.83 0.17 f 1 kHz⁄ 0.1 f 1 kHz⁄( )2.––

EOS A: egrav c2⁄ 0.245=

– 0.152 f 1 kHz⁄ 0.02 f 1 kHz⁄( )2,+

Ls Ls Ld+( )⁄

=  0.765 0.242 f 1 kHz⁄ 0.108 f 1 kHz⁄( )2,––

f 1.3 kHz;<

EOS AU: egrav c2⁄ 0.225=

– 0.137 f 1 kHz⁄ 0.01 f 1 kHz⁄( )2,+

Ls Ls Ld+( )⁄

=  0.773 0.301 f 1 kHz⁄ 0.174 f 1 kHz⁄( )2,––

f 1 kHz.<

f 1 kHz<
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results from the Newtonian theory of disk accretion
onto Maclaurin spheroids (see below).

Estimating the Energy Release in the Newtonian
Theory. When a rotating NS is modeled by a Maclaurin
spheroid, the following formula holds for the total
energy release in the disk and on the NS surface (φe is
the gravitational potential at the equator):

(76)

The notation (57) and (58) is used in (76). Expand-
ing B(e) and g(e) in a Taylor series in powers of e and

expressing e in terms of f  ≡ f  and f/fK yield

(77)

The speed of light in (77) was introduced for conve-
nience of comparing the energy releases in the Newto-
nian theory and in general relativity.

For the ratio of the energy release on the surface of
a Maclaurin spheroid and the total energy release, we
have an exact formula:

. (78)

Note that, in contrast to general relativity, the New-
tonian theory underestimates the contribution of the
surface luminosity to the total luminosity for slow rota-
tion and counterrotation: compare formulas (77) with
(2), (71), (73), and (75).

6. NEUTRON-STAR 
AND DISK COUNTERROTATION

The approach developed here allows the energy
release during disk accretion to be calculated in the two
most important cases where the star and the disk matter
corotate and counterrotate. Unfortunately, the problem

Ls Ld+

ṀR2
-----------------

1
2
--- ΩK Ω–( )2 2
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R2
----- ΩK

2–+ 
 =

=  πGρ B g–( )2 ( )------------




+ 2
1 e2–( )3/2

e3
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.

f̃ 2π Gρ⁄
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  1/3–
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with an arbitrary angle between the disk and NS rota-
tion axes is much more complex.

As we see from the figures and the approximation
formulas (1), (2), (70)–(75), when the directions of the
rotation axes coincide, the surface energy release
decreases in importance compared to the static case,
while the disk energy release increases in importance.
An important thing is that the gap between the disk and
the NS disappears for rapid rotation in the same sense.
The total energy release is appreciably smaller (by a
factor of 1.55) than that for a nonrotating NS with the
external geometry described by the Schwarzschild
solution even at the observed rotation periods of burst-
ers (of the order of 600 Hz). The Ld/Ls ratio is equal to
unity at f = 600 Hz for EOS FPS and M = 1.4M(.

Generally, counterrotation is of great interest. In this
case, the total energy release during disk accretion

abruptly increases, reaching the record 0.49 c2 for an
1.4M( star in the case of the most rapid counterrota-
tion, and even reaches 0.67 c2 for the maximum-mass
normal sequence, which is unstable in the static limit
for a NS with the soft EOS A. Note that this energy
release exceeds appreciably the energy release of

0.422 c2 in the disk during accretion onto a Kerr
black hole with the maximum possible dimensionless
angular momentum j = 1. Interestingly, by contrast to a
Kerr black hole, the energy release during accretion
onto a NS is at a maximum in the case of counterrota-
tion. In section 5, we provide approximation formulas
for the other two equations of state as well, showing
that there is the same tendency for them. In general rel-
ativity, enhanced energy release is accompanied by a
faster angular deceleration of the NS than in the New-
tonian theory. As we see from Figs. 1–4 and the approx-
imation formulas (24)–(28), there is a gap between the
marginally stable orbit and the NS surface in the case of
counterrotation almost for all equations of state.

We do not consider the detailed physics of the
spread and boundary layers but discuss only the param-
eters of the marginally stable orbit disregarding other
forces acting on the accreting particles, for example,
light-pressure forces. Concurrently, the Ls/Ld ratio
abruptly increases for counterrotation: much more
energy is released on the NS surface than in the disk.
Formulas (2), (71), (73), and (75) give simple approxi-
mations of Ls/(Ls + Ld) for three characteristic NS equa-
tions of state as functions of stellar rotation frequency.

Nuclear and Gravitational Energy Release in X-ray
Bursters. The most important parameter of X-ray burst-
ers is the ratio of energy Enucl released during a rela-
tively short (5–20 s) X-ray burst (resulted from a
nuclear explosion in the matter accreted onto the NS
surface) to energy Egrav released via accretion in inter-
vals between two successive explosions T. This energy
release of the infalling matter is related to the release of
gravitational energy. Explosions recur as nuclear fuel is

Ṁ

Ṁ

Ṁ

accumulated and follow with a quasi-period from sev-
eral hours to several days. Clearly,

where enucl is the efficiency of nuclear energy release,
close to 1 MeV/nucleon ≈ 10–3c2, for helium burning
and its conversion into C12 and for the subsequent ther-
monuclear reactions up to the production of iron (Bild-

sten 2000). As we pointed out above, egrav = (Ls + Ld)/
is a strong function of the NS angular velocity and its
direction.

For a 1.4M( star, the energy release egrav during
accretion onto a NS is (depending on the equation of
state): (1) 0.245c2 for EOS A, 0.217c2 for EOS AU, and
0.213c2 for EOS FPS in the case of a slowly rotating
star; (2) 0.172c2 for EOS A, 0.145 c2 for EOS AU, and
0.128c2 for EOS FPS in the case of corotation with a
frequency of 600 Hz; and (3) 0.32c2 for EOS A, 0.311c2

for EOS AU, and 0.308c2 for EOS FPS in the case of
counterrotation with a frequency of 600 Hz.

It is thus clear that allowance for rotation can
account for the observed luminosity variations from
source to source within a factor of 2–2.5.

In this case, only egrav varies; we assume enucl to be
independent of the stellar rotation and ignore the differ-
ence in the spectra of the disk and the stellar surface.

This simple argument indicates that egrav/enucl is rel-
atively low for corotating objects. At the same time, the
considerably rarer cases of counterrotation must result
in abnormally high egrav/enucl; this cannot affect the
recurrence time of nuclear bursts, but appreciably
reduces their amplitude. It is reflected only in an
increase of the persistent flux between bursts. Such
cases are observed. One should pay particular attention
to such sources as objects in which the angle between
the NS and disk rotation axes exceeds appreciably π/2.

Observational Differences between Corotating and
Counterrotating Objects. The observational manifesta-
tions of accreting neutron stars must strongly depend
on whether the NS and the disk corotate or counterro-
tate even at observed rotation frequencies of ~600 Hz.
The most important difference is associated with the
presence of a fairly extended gap between the disk and
the NS when they counterrotate. This may give rise to
an appreciable energy release in the equatorial bound-
ary region, in addition to the two regions equidistant
from the equator predicted by the theory of matter
spread over the NS surface. At low accretion rates, a
hard spectrum originating in a strong shock wave, in
which the radial velocity is lost, can form in the equa-
torial region. Thus, the radial and azimuthal velocities
determine the energy release in the equatorial region

Enucl

Egrav
----------

Lburst td

tburst

∫

Lgrav td

ti

ti T+

∫
------------------------

enucl

egrav
---------,= =

Ṁ
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and in the bright equidistant belts (Inogamov and Sun-
yaev 1999), respectively. At all the observed NS rota-
tion frequencies, the energy release associated with the
radial velocity (though it reaches 10–15% of the azi-
muthal velocity in the equatorial region on the NS sur-
face) is incapable of significantly affecting the dynam-
ics of the infalling gas, because it cannot compensate
for the difference between the gravity and the centrifu-
gal force for the infalling particles near the NS surface.
The presence of a gap at low accretion rates allows us
to record photons from the lower NS hemisphere,
which is completely hidden by the disk from the
observer in the case of corotation where there is no gap.
However, the main thing is that the surface luminosity
greatly exceeds the luminosity in the accretion disk
when the Ls/Ld ratio reaches 5 or 6 for counterrotation
of an M = 1.4M( star with a frequency of 600 Hz. Note
that, when the star cororates and has a rotation fre-
quency of 600 Hz, the disk luminosity is approximately
the same as that of the entire NS surface. This case is
much closer to the case of accretion onto a black hole
(where there is no solid surface at all) than the case of
counterrotation.

Why Might We Expect the Existence of Accretion
Disks around Counterrotating Stars? In the standard
pattern of NS spinup by the accreting matter, all stars
must eventually corotate with the accretion disk. Nev-
ertheless, nature allows for the formation of counterro-
tating low-mass star and disk.

(1) Imagine a binary produced by an explosion of
the more massive component turning into a NS. The
kick during an asymmetric explosion, which is widely
discussed in the literature, must result not only in a high
velocity of the formed NS but also in its appreciable
rotation (Spruit and Phinney 1998). In this case, it is
doubtful that the sense of rotation resulting from the
kick coincides with the sense of rotation of the disk,
which is determined by the direction of the binary’s
orbital angular momentum. The circularization time of
a close binary’s orbit must be appreciably shorter than
the time of change in the NS rotation axis.

(2) Tens of millisecond pulsars are observed in rich
globular clusters, and there may be many hundreds of
binaries containing neutron stars with weak magnetic
fields. A change of the low-mass partner in such a
binary during a close encounter with a single star (see
McMillan and Hut 1996) can, in principle, give rise to
a binary with NS and disk counterrotation. The ejection
of such a binary from the globular cluster by tidal
forces when the cluster traverses the central part of the
Galaxy (or through the interaction of close pairs inside
the globular cluster) can give rise to binaries with NS
and disk counterrotation outside these clusters.

(3) If a rapidly rotating neutron star with a weak
magnetic field is born during gravitational collapse in a
massive binary, then accretion of the high-speed stellar
wind emitted by a massive, hot supergiant takes place.
Illarionov and Sunyaev (1974) pointed out that, in this
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case, an accretion disk can form around the NS, but the
sense of rotation of the disk can depend on density and
velocity fluctuations of the matter near the capture
radius. Clearly, the transition from states close to NS
and disk corotation to states with an appreciable angle
between the NS and disk rotation axes must be accom-
panied by a radical change in the effective energy
release and spectrum. If a counterrotating disk is
formed in this case, then surface nuclear explosions are
much more difficult to observe in such a binary because
of the low enucl/egrav ratio, which may hamper the
binary’s identification as an X-ray burster. Such a
binary may turn out to be similar in many ways to
4U 1700–37, from which no regular X-ray pulsations
are observed (there is no strong magnetic field) and
from which (although the X-ray emission is erratic) no
X-ray bursts of the first type (coupled with surface
nuclear explosions) have been observed so far.

DISCUSSION

Rapid rotation of accreting neutron stars is widely
discussed in the literature devoted to interpretation of
the nature of kilohertz quasi-periodic X-ray oscillations
from low-mass X-ray binaries (Van der Klis 2000;
Wijnands and Van der Klis 1997; Miller et al. 1998;
Stromayer et al. 1998; Titarchuk and Osherovich
1998). The kilohertz quasi-periodic oscillations were
discovered from the RXTE satellite.

For neutron stars rotating with periods of 300–600 Hz,
the NS rotation affects significantly its internal struc-
ture and external field. Hartle and Sharp (1967) (see
also Hartle 1978) developed a variational principle for
rotating barotropic stars.

Numerical calculation of a rapidly rotating star with
a polytropic equation of state, calculation of differential
rotation, and the case of piecewise constant polytropic
indices (as the asymptotics of the equations of state for
stellar matter at temperatures below the degeneracy
temperature; see Eriguchi and Mueller 1985) for large
angular velocities present series computational difficul-
ties even in the Newtonian approximation. These diffi-
culties have been overcome only relatively recently
(see Ostriker and Mark 1968; Tassoul 1978; Hachisu
1986). In general relativity, there are several numerical
algorithms (codes) for finding steady-state configura-
tions of rotating gas masses in their gravitational fields:
Butterworth–Ipser’s (1976) method, Friedman et al.'s
(1986) modification of this method, the KEH method
(Komatsu et al. 1989), Cook et al.’s (1994) modifica-
tion of this method (see also Stergioulas and Friedman
1995), and the BGSM code based on spectral methods
(Bonazzola et al. 1993; see Eriguchi et al. 1994 for a
comparison of different approaches; Nozawa et al.
1998). Friedman et al. (1986) first published calcula-
tions of steady-state configurations of rapidly rotating
neutron stars using realistic tabulated equations of
state. Previously, Butterworth and Ipser (1976) and
Bonazzola and Schneider (1974) used polytropic mod-
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els and an incompressible fluid model. Many important
physical parameters of the NS external field for 14 equa-
tions of state (including detailed tables of sequences with
a fixed rest mass for EOS A, AU, FPS, M, and L) are con-
tained in Cook et al. (1994). Based on the BGSM code,
Salgado et al. (1994) analyzed the global parameters of
neutron stars with different equations of state.

Datta et al. (1998) gave tables of NS parameters at
fixed NS angular velocity and central density for EOS
A, B, C, D, E, F, and the new equations of state BBB1,
BBB2, BPAL21, and BPAL32. Based on the KEH
method, Stergioulas (1998) developed a numerical
code for computing the global parameters of neutron
stars with many known equations of state. This code
computes the NS properties as functions of two param-
eters: one is the central density, and the other can be
either the rest mass or the gravitational mass, or the
angular momentum, or the angular velocity. We repeat-
edly used this code in our calculations, which allowed
us to construct the above approximation formulas.

As was already pointed out above, the gravitational
fields of rotating gas configurations are essentially non-
spherical at large angular velocities (Chandrasekhar
1986); all multipole components [as, for example, on
the surface of a Maclaurin spheroid; see formulas (76)–
(78)] contribute to the gravitational field near them.

Approximate and exact analytic solutions of the
Einstein equations in a vacuum which approximate the
numerical results obtained by the above authors are of
considerable interest in describing the physical pro-
cesses in strong external gravitational fields.

This problem was independently considered by sev-
eral authors in 1998. Based on the numerical results of
Cook et al. (1994), Laarakkers and Poisson (1998) ana-
lyzed the dependence of the quadrupole coefficient
[which emerges in the expansion of the metric potential
ν in the form of Bardeen and Wagoner (1971) at large
radii] on Kerr parameter j. Laarakkers and Poisson
(1998) pointed out that, in contrast to the nonrelativistic
case, this dependence can be approximated by a para-
bolic law for the equations of state they considered.

Shibata and Sasaki (1998) used Fodor et al.’s (1989)

asymptotic expansions of the function ξ = (1 –
E)/(1 + E) (here, E is the Ernst complex potential;
ρ and z are Weil’s canonic coordinates) in the equato-
rial plane and on the symmetry axis to determine the
radius of the marginally stable orbit and the particle
angular velocity in this orbit in the form of formal
expansions in powers of the dimensionless angular
momentum j. The coefficients of these expansions were
expressed in terms of Geroch–Hansen’s multipole
coefficients (see Hansen 1974), relative to which their
order by j was assumed.

The marginally stable orbit is of considerable
importance in interpreting the kilohertz QPOs detected
by the RXTE satellite. Therefore, based on the numer-
ical results of Cook et al. (1998), Miller et al. (1998)

ρ2 z2+
analyzed the dependences of the radius and angular
velocity in the marginally stable orbit, as well as the
equatorial radius, on the NS angular velocity for vari-
ous equations of state of neutron matter.

Independently, Thampan and Datta (1998) also
numerically analyzed the dependence of the Keplerian
angular velocity in the marginally stable orbit on the
NS angular velocity. When calculating the luminosity
from the equatorial boundary layer, these authors
assumed that the accreting particles radiated away all
the energy equal to the difference between the energy in
a Keplerian orbit and the energy of the particle corotating
with the star on its equator. This assumption differs radi-
cally from our treatment in SS 98, SS 00, and this paper.

When the inverse effect of the spreading matter is
considered on long time scales, the structural changes
in the neutron star caused by the changes in its mass
and angular momentum through their influx during
accretion must be take into account. In their calcula-
tions of NS spinup via disk accretion, Lipunov and Post-
nov (1984) and Kluzniak and Wagoner (1985) assumed
the moment of inertia to be equal to that of a nonrotating
star and the rotation velocities to be low enough.

Burderi et al. (1998) made an attempt to describe
the evolution of the NS angular velocity under the
effect of disk accretion by using the Kerr metric for the
NS external field. These authors also used approxima-
tion formulas for the gravitational mass of the type M =
m(1 – α/R), MR3 = const (here, m is the NS rest mass)
and extrapolated the formula of Ravenhall and Pethick
(1994) for the moment of inertia in the static case to the
case of rapid rotation; they postulated a relationship
between the equatorial radius and the angular velocity,
expressions for the maximum radius and the maximum
angular velocity, etc.

Our approach (SS 00 and this paper) assumes that
the luminosity from the stellar surface is considered on
the basis of the first law of thermodynamics by taking
into account changes in the NS total energy during
quasi-uniform changes in its parameters under the
effect of disk accretion. In the Newtonian problem, the
energy release is proportional to the square of the
Keplerian velocity on the NS equator relative to the
frame of reference corotating with the star. This idea
was generalized to the case of general relativity. In the
absence of a magnetic field and for a constant entropy,
the energy release takes place only in an extended disk
and on the surface of a cool star.

In order to accurately describe the external field of a
rotating neutron star, we proposed (SS 98) to use exact
solutions of the Einstein equations in a vacuum, for
which the Ernst complex potential on the symmetry
axis has a simple structure with arbitrary constants that
have the meaning of multipole coefficients. The exact
quadrupole solution accurately describes the external
fields of rapidly rotating neutron stars, and, by contrast
to asymptotic expansions in inverse powers of the
radius, is meaningful up to the stellar surface. Note that
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
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expanding our solution in inverse powers of the radius
in the equatorial plane yields a result that differs from
the result of Shibata and Sasaki (1998) by terms of the
order of j4, because their assumption about the order of
Geroch–Hansen’s multipole coefficient Q4 breaks
down in our exact solution. Note that in SS98 [see for-
mulas (11) and (12)], we calculated the radial and tangen-
tial velocities of accreting particles on the NS surface.

As the NS rest mass approaches the largest mass
which is stable only in the presence of rotation, the qua-
drupole coefficient decreases, and the NS external
gravitational field differs only slightly from the gravita-
tional field of a rotating black hole (Kerr solution).

CONCLUSION

The method developed here and based on the static
criterion for stability has allowed us to construct
approximation formulas for the NS mass and its qua-
drupole coefficient as functions of its rotation parame-
ter j and rest mass m. Using these functions and their
partial derivatives, we determined all the remaining
global NS characteristics: angular velocity, moment of
inertia, equatorial radius, external gravitational field,
parameters of the marginally stable orbit at R < R*, and
parameters of an equatorial Keplerian orbit at R > R*
as functions of j and m or as functions of j and M(. To
this end, we used the thermodynamic ideas developed
in SS 00. To describe the external field of a NS, we used
an exact solution of the Einstein equations with an
additional constant compared to the Kerr solution,
which has the meaning of quadrupole coefficient. In the
parameter plane, we found the curves that separate the
states with a NS inside and outside the marginally sta-
ble orbit, as well as the neutral curves of stability loss
according to the static criterion.

The inferred parameters enabled us to calculate
(i) the energy release in the disk and on the NS surface
in the presence and absence of a marginally stable orbit,
(ii) the tetrad velocity components and the particle
angular velocity on the NS surface on which they fell
from the marginally stable orbit, and (iii) the spinup
(spindown) rate as a function of the NS rest mass (or
gravitational mass) and rotation frequency. We pro-
vided the corresponding approximation formulas for
several equations of state at M = 1.4M(.

In the Newtonian formulation (when the stellar mat-
ter is modeled by an incompressible fluid), the surface
energy release and the spindown rate are given in the
form of Taylor expansions in terms of the dimension-
less rotation frequency for an arbitrary NS mass.

Using the property of the solution for the external
gravitational field to belong to the class of solutions for
two coaxially rotating black holes or Kerr disks, we
hypothesize that the NS stability to the “quadrupole”
oscillation mode is lost at the critical quadrupole
moment b = 0.25(1 – j2).
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
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Abstract—We introduce a catalogue of X-ray binaries. The full catalogue is available at http://astroa.phys-
ics.metu.edu.tr/XRBC/. The aim of this catalogue is to provide basic information about X-ray sources and their
counterparts. The catalog contains positions, information about distances and counterparts, spectral, photomet-
ric and timing properties of the X-ray sources in the X-ray and optical bands, as well as references. The list of
references, comments and the catalog as a whole will be periodically updated to include the most up-to-date
information about all X-ray binaries and guide users to the recent literature on individual sources. In some
cases, there is some doubt about the nature of an X-ray source, which has been noted. The sources are ordered
according to right ascension. Here, we present a guide to the organization of the full catalogue. The full cata-
logue is represented here with an excerpt containing two HMXBs and two LMXBs as examples. © 2000 MAIK
“Nauka/Interperiodica”.

Key words: catalogs, X-ray binaries, neutron stars, X-rays
INTRODUCTION

The discovery of the first point X-ray source Sco X-1
(Giacconi et al. 1963) outside the solar system was a
surprise, because the only previously known stellar X-ray
emission, that of the solar corona, did not lead to an
expectation of bright point X-ray sources. The general
properties of point X-ray sources in the Galaxy were
understood in terms of accretion onto compact objects
(Zel’dovich and Guseinov 1965; Shklovskii 1967;
Guseinov 1970) just before the first UHURU satellite
sky survey in 1971. The results of the UHURU sky sur-
vey (Forman et al. 1978) were followed by publications
from various rocket and satellite observations (Ariel V
sky survey, McHardy et al. 1981; Warwick et al. 1981;
MIT OSO-7, Markert et al. 1979; HEAO A-1 sky sur-
vey, Wood et al. 1984), and catalogs were compiled to
bring together data from different experiments
(Amnuel et al. 1979, 1982).

The first X-ray transient (nova) Cen X-2 was dis-
covered from a rocket (Harries 1967). The first X-ray
pulsar Cen X-3 was observed in 1971 (Giacconi et al.
1971; Schreier 1972). The first burster LMXB 1820-303
was discovered in 1976 (Grindlay et al. 1976); Cyg X-1
was discovered in 1965 and discussed as a black-hole

* E-mail address for contacts: huseyin@sci.akdeniz.edu.tr
1063-7737/00/2611- $20.00 © 0725
candidate in 1972. The first quasi-periodic oscillation
(QPO) behavior was also noted from Cyg X-1
(Frontera and Fuligni 1975). The classic QPO phenom-
enon from LMXBs was first discovered by Van der Klis
et al. (1985) from the source LMXB 1758-250.

The first comprehensive catalog of X-ray binaries
was presented by Van Paradijs (1995). Our catalog
includes, as X-ray binaries, the point X-ray sources
powered by accretion onto neutron stars and black
holes. The weak sources powered by stellar coronas,
Wolf-Rayet stars, and cataclysmic variables are not
included. Among those X-ray binaries presented in the
catalog, there are 78 HMXBs (35 and 5 of which are
pulsars and possible pulsars, respectively) and 138
LMXBs (only 9 of which are pulsars), 89 transient and
possible transient sources, and 25 possible black holes
(6 HMXBs+19 LMXBs). There are also 43 bursters (all
of which are Galactic LMXBs) and 21 QPOs. The
present catalog extends the work by Van Paradijs, tabu-
lates further information on the compact objects and
their companions, as discussed below, as well as
attempts to provide a more comprehensive guide to the
literature. Where different authors obtained different
values for system parameters, we have quoted all
parameter values together with the references to guide
the reader to the relevant literature for the derivation of
the parameters. We introduce the catalog with four
examples given in tabular form below.
2000 MAIK “Nauka/Interperiodica”
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Data for 2 HMXBs and 2 LMXBs

Table 1 (sample)

Name Location Type RA (2000) Dec (2000) RA (1950) Dec (1950)

0115+634 P, T 01n18m32s 63°44′24′′ 01n15m13 8  63°28′38′′
0115–737 SMC P 01 17 05 –73 26 35 01 15 45.6 –73 42 22

J0422+32 Q, R 04 21 42.7 32 54 27.1 04 18 29.9 32 47 24

0620–003 R 06 22 44.4 00 20 44.7 06 20 11.1 –00 19 11

.s

Table 2 (sample)

Name lII bII Porb, days Ppulse, s Prem kT, keV α Distance, kpc

0115+634 125.9 1.0 24.309 3.61451 * *

0115–737 300.4 –43.6 3.89239 0.717 * 0.18* 57

J0422+32 165.9 –11.9 0.212140 2 1.2*

0620–003 210 –6.5 0.325 * * ~1.6 1*

Table 3 (sample)

Name logNH, cm–2 AV, mag. LX, erg s–1 LX/L0 SpecT V, mag. B–V, mag.

0115+634 22.08 >5 * 1.7 OBe 14.8* 1.61*

0115–737 <21.60 0.1 6.0 × 1038 * B0 Ib 13.3 –0.14

J0422+32 <21.7* 1.2* 2.7 × 1037 * M2 V 22.24* 0.15*

0620–003 21.2* 1.2 1.0 × 1038* 200 K4–K7 V 18.3 1.4

Table 4 (sample)

Name U–B, mag. E(B–V), mag. MX, M( Mopt, M( fX(M), M( fopt(M), M( eopt

0115+634 0.3 1.7 >20* 5 0.34

0115–737 –0.98 ~0.1* 1.17* 15.2* 10.8 <10–5*

J0422+32 –0.5 0.2* >3* 0.39* 3.1* 0.9

0620–003 –0.8 0.35* 5.17 * 2.9

Table 5 (sample)

Name KX, km s–1 Kopt, km s–1 γ, km s–1 a1 sini, light-s a2 sini, light-s i, deg

0115+634 133.7 365 140

0115–737 299.5 * 180 53.46* 70*

J0422+32 41.6 380* ≤45*

0620–003 43* 442* –28 0.311 2.03 90*
THE CATALOG

This paper aims at providing a guide in print to the
long and comprehensive full catalog of X-ray binaries at
the Web site http://astroa.physics.metu. edu.tr/XRBC/.
Below, we present the data and references of HMXBs
0115+634, 0115-737 and LMXBs J0422+32, 0620-003
as examples. The full catalog on the Web will be updated
periodically.
The full catalog mainly consists of two parts, hmxb
and lmxb, each of which has four files:

(1) The main catalog is composed of hmxb_cat and
lmxb_cat. The most recent and/or the most reliable data
are given in these files.

(2) All of the cross catalog names of the sources and
the names of the optical counterparts are given in
hmxb_nam and lmxb_nam.
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
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(3) The intensity values (in units of µJy, erg cm–1 s–2,
and mCrab), energy bands, dates of observations,
names of satellites for these observations, and the ref-
erences of all these data are given in hmxb_obs and
lmxb_obs.

Table 6 (sample)

Name
Names

of optical 
counterparts

Other names of sources

0115+634 V635 Cas 2E 0115.1+6328
H 0115+634, 1H 0115+635
3U 0115+63, 4U 0115+63
1XRS 01152+634
PSR B0115+63.4

0115–737 Sk 160 SMC X-1
2A 0116–737, 3A 0115–737
1E 0115.5–7342, 2E 0115.8–7342
H 0115–737
3U 0115–73, 4U 0115–73
1XRS 01157–737
SK 160, WW 63

J0422+32 V518 Per GRO J0422+32
Nova Persei 1992

0620–003 V616 Mon A 0620–00
N Mon 1917, 1975
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
(4) All of the data other than the most recent and/or
the most reliable ones are presented in hmxb_rem and
lmxb_rem. The values given in intervals are also pre-
sented in these two files (e.g., a distance value of 4–5 kpc
of a source is given in hmxb_rem or lmxb_rem (not in
hmxb_cat or lmxb_cat) even if it is the most recent
and/or the most reliable distance value of that source).

The columns in the main catalog (hmxb_cat and
lmxb_cat) present: (1) numbers of the sources according
to right ascension (RA), (2) names, (3) locations, (4) types
(H—black hole, B—burster, P—pulsar, T—transient, R—
recurrent tr., Q—QPO), (5) right ascension RA (2000),
(6)  declination (dec) (2000), (7) RA (1950), (8) dec
(1950), (9) Galactic longitude (lII), (10) Galactic lati-
tude (bII), (11) orbital period (Porb), (12) pulse period
(Ppulse), (13) remarks on period values (Prem) (shown with
asterisks), (14) X-ray temperature kT, (15) spectral index
(α), (16) distance, (17) logarithm of neutral hydrogen col-
umn density ( ), (18) optical absorption (AV),
(19) X-ray luminosity (LX), (20) X-ray to optical luminos-
ity (LX/L0), (21) spectral type (SpecT), (22) V (stellar
magnitude), (23) B–V (stellar magnitude), (24) U–B
(stellar magnitude), (25) E(B–V) (stellar magnitude),
(26) mass of the compact object (MX), (27) mass of the

NHlog
Table 7 (sample)

Name References Dates Satellites Energy bands, keV

0115+634 1994IAUC.5990....1S Jan., 1971 Uhuru 2–6
1994IAUC.5999....2W May 15, 1994 BATSE 20–40
1997MNRAS.284..859N May 18, 1994 BATSE 20–50

May 28, 1994 BATSE 20–50
May 30, 1994 BATSE 20–50

Intensity, µJy Intensity, erg cm–2 s–1 Intensity, mCrab
120

45
65
75

180
0115–737 1977ApJ..217...543P 1971–73 Uhuru 2–6

60
J0422+32 1995ApJ...441..786C Aug. 8, 1992 GRO 20–300

1992IAUC.5580....1P GRO 2–11
1993A&A...280L...1S ROSAT 0.1–2.4
1995ApJ...461..351C 1994 BATSE 2–11

@3
9.3 × 10–9

0.3
9.3 × 10–9

0620–003 1975Nat..257...656E Aug. 14, 1975 ArielV 2–18
Jan. 7, 1976 S3 2–6
Feb. 1976 ArielV 2–6
Mar. 1976 ArielV 2–6

83500 ~25
300

1500
<70
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Table 8 (sample)

Name References Other Data Values of Other Data

0115+634 1978Nat..273...367C Ppulse 3.61 s
1979Nat..282...240W P/P 5.9 × 10–11 s
1983ApJ..270...711W Distance 4.4, 3.5, 4, 3 kpc
1991ApJ..375L...49N Distance 5–7 kpc
1992ApJ..389...657T LX 8 × 1036 erg s–1

1989A&A..217...115V LX (0.7–3) × 1037 erg s–1

1978ApJ..223L...71J Mopt 35 M(

1981ApJ..247...222H Spec. Type O–Be

V 14 5–16 3, 15 5

B–V 1 4

0115–737 1986A&A..154....77T Energy 2.17 keV
1984ApJ..283...546W LX/Lopt 1.2–8
1983ApJ..266...814M MX 1.6 M(

1981A&A...97...134B Mopt 16 M(

1995A&A..303...497V eopt <0.0007, 0
1993MNRAS.261...337R Kopt 19, 23 km s–1

1981A&A..101...184B Kopt 23–27.5 km s–1

1984ApJ..283...249H a1sini 53.5 light-s
1982A&A..106...339V i 67°

1983ApJ..266...814M E(B–V) 0 03

J0422+32 1993A&A...273L..11P Porb 0 2157, 0.211, 0.216

1995A&A..297...103C Distance ~2, >1, 2.4, ≤2.2 kpc
1993A&A..288L...1S LX/Lopt 44, ~500
1995PASJ..47...31K LX/Lopt 4–75
1993A&A..276L...37C LX 6.7 × 1036, 1.5 × 1038, 8 × 1036

1995ApJ..455...614F logNH 21.23

1995ApJ..446L...59O AV 1 25
1996A&A..312...105C MX >2.4, 3.57, 4–6, 2.9–6.2 M(

1995ApJ..441...779V Mopt <0.5 M(

1997ApJ..476L...23V Kopt ~340, 300–400 km s–1

1992PASJ..44L...15F i 41°–43°, <59°, 48°
1992ApJ..399L..145R Spec. Type M0 V

1995MNRAS.276L.35C V 13–20 7, 12 6, 22 4

1996MNRAS.282.191D B–V 0 3, 0 38

1995ApJ..442...786C E(B–V) 0 3, 0 4

0620–003 1995ApJ..442...358M Porb 0 323
1974A&SS..29...331A Distance 0.9–1.1, 0.6–1.4, 0.87 kpc
1977ApJ..212...203K Energy 1.5–3.0 keV
1986ApJ..308...110V LX 1038, 1.6 × 1038, 6 × 1030 erg s–1

1977ApJ..212...209K logNH 21.59
1994MNRAS.268.763S MX 6, ~10, 2.7–3.2, 3.19–3.82 M(

1988ApJ..334...336D Mopt 0.6, 0.36, 0.5–0.8 M(

1977ApJ...217..181O KX 43 km s–1

1983ApJ...266L..27M Kopt 457 km s–1

1994MNRAS.271L.10S i 57°
1990ApJ..359L...47H Spec. Type K3, K5V, K4–K5V

V 12–18m

B–V 0 2

E(B–V) 0 4

.m .m .m

.m

.m

.d

.m

.m .m .m

.m .m

.m .m

.d

.m

.m
ASTRONOMY LETTERS      Vol. 26      No. 11      2000



A PRELIMINARY VERSION OF A CATALOG OF HIGH- AND LOW-MASS X-RAY BINARIES 729
optical companion (Mopt), (28) mass function from X-
ray observations (fX), (29) mass function from optical
observations (fopt), (30) eccentricity of the orbit from
optical observations (eopt), (31) semi-amplitude veloc-
ity of the compact object (KX), (32) semi-amplitude
velocity of the optical companion (Kopt), (33) center-of-
mass velocity (γ), (34) semi-major axis multiplied by
inclination (a1sini), (35) (a2sini), and (36) inclination
(i). An asterisk (*) shows that there are remarks on the
related data.
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Oscillation Structure of Gamma-Ray Bursts 
and Their Possible Origin

S. S. Gershteœn
Institute of High-Energy Physics, Protvino, Moscow oblast, 142284 Russia

Received May 16, 2000

Abstract—It is hypothesized that thermonuclear burning of the matter from the envelope of a massive compact
star accreting onto a hot neutron star produced by spherically symmetric collapse of a stellar iron core can pro-
ceed in oscillation mode (much as is the case during thermal explosions of carbon–oxygen cores in lower mass
stars). Local density oscillations near the neutron-star surface can generate shock waves; in these shocks, the elec-
tron–positron plasma is stratified from the remaining matter, and shells of an expanding relativistic fireball with
an oscillation time scale in cosmological gamma-ray bursts (GRBs) of ~10–2 s are formed. It is pointed out that
the GRB progenitors can be nonrotating massive Wolf–Rayet (WR) stars whose collapse, according to observa-
tional data, can proceed without any substantial envelope ejection. © 2000 MAIK “Nauka/Interperiodica”.

Key words: gamma-ray bursts, supernovae, Wolf–Rayet stars
INTRODUCTION: THE FIREBALL MODEL

The observed gamma-ray bursts (GRBs) are a
highly interesting and as yet unsolved phenomenon
[see the reviews by Piran (1999), Postnov (1999), Blin-
nikov (1999), Luchkov et al. (1996) and references
therein]. Optical identifications of GRBs with the host
galaxies have proved that at least some of them origi-
nate in galaxies at redshifts Z ≥ 1; i.e., they are cosmo-
logical in origin. This is consistent with the completely
isotropic sky distribution of GRBs and with the statisti-
cal distribution of their number in intensity. Optical
identifications of GRBs have made it possible to deter-
mine their distances and to establish that an enormous
energy of 1052–1054 erg is released in the gamma-ray
(30–500 keV) band during them. Many of the observed
GRB parameters can be explained in terms of the fire-
ball model (Cavallo and Rees 1978; Goodman 1986;
Paczynski 1986), an ultrarelativistically expanding
cloud of electron–positron plasma. Ultrarelativistic
expansion velocities (which naturally arise in an elec-
tron–positron plasma) (Goodman 1986) allow the prob-
lem of compactness of the GRB source to be solved
(Goodman 1986; Paczynski 1986; Krolik and Pier
1991) and the nonthermal GRB spectrum to be recon-
ciled with the short time scale of GRB variability
(δt ~ 10 ms)1. Based on the fireball model, researchers

1 In this case, it is crucially important that a constraint on the num-
ber of baryons contained in a lepton–photon plasma, which must
be small enough (Paczynski 1990; Shemi and Piran 1990), is the
condition for its ultrarelativistic expansion.

* E-mail address for contacts: gershtein@mx.ihep.su
1063-7737/00/2611- $20.00 © 20730
also managed to predict the observable effects of long-
term optical GRB afterglows produced by the interac-
tion of a relativistically expanding fireball with the
interstellar medium (Meszaros and Rees 1997) and the
effect of an early afterglow, which overlaps in time with
a long-duration GRB (Sari and Piran 1999a, 1999b;
Sari 1997). Thus, the relativistic fireball model with a
small number of baryons allows the observed GRB
parameters to be reconciled and the accompanying phe-
nomena to be explained. At the same time, the follow-
ing questions are yet to be solved:

(1) The fireball formation mechanism.
(2) The great energy in the fireball.
(3) The presence of many (~102–103) gamma-ray

pulsations on a time scale δt ≈ 10 ms in some GRBs. In
our view, the latter can serve as the key to unraveling
the mystery of GRBs. Here, we draw attention to the
fact that γ-ray oscillations can naturally arise during
hydrodynamic collapse of some compact massive non-
rotating stars at the final stage of their evolution.

POSSIBLE OSCILLATION BURNING 
OF THERMONUCLEAR FUEL 

DURING HYDRODYNAMIC COLLAPSE

The formation of a fairly large iron core during the
evolution of massive stars with M ≥ 10M( is known to
be responsible for their hydrodynamic collapse. In this
case, having exhausted the source of thermonuclear
energy, the stellar core begins to contract and heat up.
However, the resulting increase in pressure cannot stop
the contraction, because the thermal energy is spent on
the endothermic decay reaction of iron nuclei and, sub-
sequently, on core neutronization. As a result, the core
000 MAIK “Nauka/Interperiodica”
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contraction gives way to a catastrophic hydrodynamic
collapse, which ends with the formation of a hot neu-
tron star (Hoyle 1946). According to Fowler and Hoyle
(1965, 1967), accretion of the nuclear fuel remained in
the stellar envelope onto a hot neutron star causes its
explosion and ejection, which shows up as a supernova
explosion. However, self-consistent hydrodynamic cal-
culations did not confirm this hypothesis. It turned out
that consistent allowance for neutrino radiation leads to
a delay in collapse, which ceases only when the core
matter becomes opaque to neutrino radiation. As a
result of this delay, the accreting nuclear fuel burns in a
deep gravitational potential, and, hence, the thermonu-
clear energy being released is not enough for the enve-
lope to be ejected (Arnett 1966, 1967; Ivanova et al.
1970) [see, e.g., the review by Imshennik and Nady-
ozhin (1982) and references therein]. The shock wave,
that emerges when collapse slows down, ejects only a
minor fraction of the envelope with energy ~1049 erg
(Nadyozhin 1977a, 1977b, 1978), which is two orders
of magnitude lower than the characteristic energy of a
supernova explosion, 1051 erg. This phenomenon was
therefore called “silent” or quiet collapse. Subsequent
attempts to account for the supernova explosions dur-
ing spherically symmetric collapse of massive stars did
not produce the desirable result (Burrows 1987; Arnett
1987). At present, most experts incline to the idea that
the observed explosions of supernovae with massive
progenitors are associated, in one way or another, with
the rotation effects of a collapsing star: magnetic pres-
sure on the envelope, Rayleigh–Taylor instability, or a
neutron-star breakup into two components [see, e.g.,
the reviews by Imshennik and Nadyozhin (1988, 1989)
and references therein; Imshennik and Nadyozhin
(1992)]. However, one should take into account the fact
that the burning of thermonuclear fuel as it accretes
onto a hot neutron star can proceed in oscillation mode.
This effect is well known and shows up at the final evo-
lutionary stage of low-mass stars, 3M( ≤ M ≤ 10M(. An
oxygen–carbon core with a degenerate electron gas is
formed in such stars during their evolution. In this case,
instability results from a thermal explosion in a degen-
erate stellar core, when its mass reaches a value close to
the Chandrasekhar limit (Arnett 1969). The oscillation
burning of thermonuclear fuel is physically quite
understandable in this case if we take into account the
relatively low calorie content of this fuel with carbon–
oxygen and the like composition. The energy being
released during a thermal explosion causes the degen-
eracy to be removed and the thermal pressure to
increase, resulting in expansion of the star. The expan-
sion causes the stellar temperature to decrease. This
leads to subsequent contraction of the star and to an
enhancement of the thermonuclear burning, which, in
turn, results in its subsequent expansion and so on. The
aforesaid is illustrated by Fig. 1, where the results of
calculations are shown (Ivanova et al. 1977a, 1977b,
1977c; Chechetkin et al. 1977). The detected oscilla-
tions were not only preserved but were also enhanced
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
when convection was taken into account, resulting in
the so-called delayed detonation with an explosion
energy of ~1051 erg (the paper by V.S. Imshennik at the
workshop in memory of S.I. Syrovatskii on March 2,
2000).

Such oscillations may also arise in layers of the ther-
monuclear fuel accreting onto a hot neutron star. In
contrast to the case considered above, they can only be
local, developing in the layers adjacent to the surface of
a hot neutron star. The period of these oscillations can
be estimated from dimension considerations:

(1)

where GN is the gravitational constant, and  is the
matter density near the neutron star. According to our
calculations (see Fig. 2),  ~ 1011 g cm–3. Thus, the
oscillation period is

(2)

which intriguingly matches the oscillation period of the
gamma-ray flux from some GRBs2. Density and tem-
perature oscillations near the surface of a hot neutron
star must generate diverging shock waves in the sur-
rounding envelope (with the density falling off with
increasing radius) which are repeated with the oscilla-
tion frequency (see also the Appendix).

POSSIBLE STRATIFICATION
OF ELECTRON–POSITRON PLASMA

The most important effect to be taken into account
when considering the passage of shock waves through
a stellar envelope is the possible stratification of elec-
tron–positron plasma, which takes place without affect-
ing the electrical neutrality of ordinary matter (the
nuclei and the electrons compensating for their electric
charge). Such stratification is possible under light pres-
sure in a propagating shock wave, because the Edding-
ton limit for an electron–positron plasma is a factor of
3600 smaller than that for ordinary matter with nuclei
A . 2Z. Therefore, when an electron–positron plasma
emerges on the stellar surface, it contains baryons with
a relatively low density (just right to reconcile the fire-
ball model with observational data). Note also that an
equilibrium electron–positron plasma can arise in a rar-
efied stellar atmosphere at relatively low temperatures,
because under these conditions at kT ! mec2,

2 It should be noted that conditions for the generation of oscilla-
tions are also created in hot neutron stars produced by collapse of
an iron core (Zentsova and Nadyozhin 1975). However, their fre-
quency is at least two orders of magnitude higher.
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whereas in a dense medium, the positron density is pro-

portional to exp –  (see, e.g., Zel’dovich and

Novikov 1971). The fact that fairly high temperatures
(kT ≥ mec2) develop near the center of a collapsing star
is confirmed by the existence of explosive nucleosyn-
thesis of 56Ni nuclei to produce 56Co, as suggested by
observations of SN 1987 (Imshennik and Nadyozhin
1988, 1989; Woosley 1988). According to the calcula-
tions by Nadyozhin (1977a, 1977b, 1978), kT . 5.6 MeV
near the neutrinosphere.

When a cloud of electron–positron plasma emerges
from the stellar atmosphere, its expansion inevitably
becomes ultrarelativistic (see, e.g., Goodman 1986).
This is known to cause variations in the pulse of
gamma-ray radiation received by a distant observer:

(4)
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Fig. 1. Central density and temperature versus time during a
carbon flash. The pulsation mode of carbon burning, which
gives way to a complete expansion of the stellar core
(Chechetkin et al. 1977; Imshennik and Nadyozhin 1982,
1983), is clearly seen.
where R is the cloud radius, and Γ = (1 – v2/c2)–1/2 is the
Lorentz factor corresponding to the expansion velocity v.
Clearly, gamma-ray oscillations are observed if

(5)

Otherwise (δt @ τ), gamma-ray oscillations are
obscured for a distant observer. This could be the rea-
son why no oscillations are seen in some GRBs. The
stratification of an electron–positron plasma from ordi-
nary matter must cause each oscillation near the neu-
tron star to generate shock waves in the form of two
shells expanding at different velocities. In this case, the
electron–positron shell emitted in the succeeding oscil-
lation can catch up with the shell containing baryons
emitted in the preceding oscillation. Thus, the internal
shock waves can interact inside the fireball itself
(Narayan and Paczynski 1992; Paczynski and Xu 1994;
Rees and Meszaros 1994; Sari and Piran 1999a, 1999b).

The ultrarelativistic pattern of fireball expansion
(Γ ~ 102) leads us to conclude that, at the observed δt ~
10–2 s, the fireball sizes can be large enough (and,
accordingly, the plasma density can be low enough) for
the fireball to be considered as a “thin” source. This
allows the nonthermal (power-law) GRB spectrum to
be explained. The internal shock waves producing the
fireball can also generate high-energy particles by the
standard acceleration mechanism. This can account for
the observation of high-energy (up to 18 GeV) gamma-
ray photons in some GRBs.

POSSIBLE GRB PROGENITORS

The above scenario for the emergence of oscilla-
tions in GRBs restricts the class of objects that could be
the GRB progenitors.
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Fig. 2. The density and temperature distributions over a hot
neutron star (the dashed line represents the degeneracy den-
sity). The position of the neutrino photosphere is marked by
an asterisk, and the neutron core boundaries are represented
by a filled circle (Nadyozhin 1978).
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First, these must be sufficiently massive stars with
M > (15–20)M(. The quiescent evolutionary stage of
such stars must end in times of the order of several Myr
or less. A sufficiently large stellar mass is also required
to account for the GRB energy.

Second, these must be nonrotating (or slowly rotat-
ing) stars. Rapidly rotating stars must apparently
explode through effects related to their rotation as ordi-
nary Type II supernovae with the ejection of a fairly
massive envelope (Imshennik 1992).

Third, these must be compact stars without an
extended hydrogen and, possibly, partially helium
envelope, which is capable of preventing the outward
emergence of electron–positron plasma because of
positron annihilation.

Wolf–Rayet (WR) stars—the most massive com-
pact stars that have lost virtually all their hydrogen and
partially helium envelope during their evolution—sat-
isfy all these requirements. It may be in connection
with the loss of much of their envelope that they also
lost their angular momentum. In any case, rotation is
observed only in 15% of the WR stars (Harries et al.
1998). A.M. Cherepashchuk [see Cherepashchuk
(1996, 1998) and references therein] established that
the decrease in the mass of WR stars during their sub-
sequent evolution (which takes place due to stellar
wind) could be disregarded. This allows the masses of
WR stars and their CO cores to be compared with the
masses of relativistic objects (neutron stars and black
holes), whose progenitors are WR stars. Based on mea-
surements of the masses of X-ray sources in binary sys-
tems, A.M. Cherepashchuk reached a crucially impor-
tant conclusion that the mass distribution of X-ray
sources is distinctly bimodal. There is a gap in mass
between neutron stars (pulsars) whose masses lie in a
narrow range (1–2)M( with a mean mass of (1.35 ±
0.15)M( and black-hole candidates whose masses are
distributed over the range (5–15)M( with a mean mass
of (8–10)M(. The bimodal mass distribution and the
existence of a gap provide evidence for different origins
of these objects. As for the massive black-hole candi-
dates, the correlation noted by Cherepashchuk (1996,
1998) between their masses and the masses of WR
stars, which lie in the range (5–55)M( and whose CO
cores have a mean mass of (8–12)M(, close to the mean
mass of observable black-hole candidates, seems of
considerable importance in elucidating their origin.
Thus, there is reason to believe that at least some of the
WR stars collapse into massive objects through “silent”
collapse without any substantial ejection of their enve-
lope. This is true primarily for the evolutionally most
advanced WC stars with envelopes rich in carbon
nuclei (produced by thermonuclear helium burning)
whose mean mass is 13.4M(. The data by Cherepash-
chuk (1996, 1998) are a strong argument for the
hypothesis put forward by Conti (1982, 1998) back in
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1982 that WR stars most commonly disappear as a
whimper rather than as an explosion3. 

The compact structure of WR stars suggests that the
shells of electron–positron plasma produced by stratifi-
cation in shock waves can go outside the star, and even
a minor fraction of the large gravitational energy
released during the collapse of a massive star can
account for the GRB energy.

GRB ENERGY

In order to determine the GRB energy requires a
self-consistent hydrodynamic calculation of silent col-
lapse of massive stars with allowance for the possible
stratification of e+e– plasma from the remaining matter.
However, we can attempt to estimate the possible GRB
energy from physical (though not very reliable) consid-
erations. If a gravitational energy e ≈ 5 × 1053 erg is
released in the form of neutrino radiation during col-
lapse into a hot neutron star of mass M = 1.5M(, then
one might expect a gravitational energy ~e . 1056 erg to
be released at M = (15–20)M( (when no envelope ejec-
tion occurs)4. Therefore, to ensure a GRB energy of
~1053 erg, it will suffice that ~0.1% of the gravitational
energy being released be spent on the ejection of e+e–

plasma. Such an estimate can also be obtained by using
calculations of hydrodynamic collapse of an iron–oxy-
gen stellar core (Nadyozhin 1977a, 1977b, 1978) with
certain boldness. Although the shock wave emerging in
this process is damped through neutrino radiation and
its power is not enough to account for the supernova
explosion, the energy of the ejected envelope can still
be ~1049 erg. For the inferred envelope expansion
velocity v ~ 1.5 × 103 km s–1, the mass of the ejected
envelope is ∆M . 0.44 M(. If such a mass were ejected
in the form of e+e– plasma, then an energy of 8 × 1053 erg
would be released during its subsequent annihilation.
Of course, the above comparison is not entirely justi-
fied, but it gives an idea of the possible magnitude of
the effect. The bulk of the GRB energy in the mecha-
nism under consideration is thus gravitational in origin.
The heating of a collapsing star gives rise to a dense and
hot e+e– plasma, while the energy being released during
the oscillating burning of thermonuclear fuel is spent
on the generation of shock waves, which drive the e+e–

plasma out of the star.

The possible pumping of energy into the diverging
e+e– plasma through the neutrinos and antineutrinos
emitted during collapse (because during their scattering
by electrons and positrons, they can transfer much of
their energy to the latter) should also be taken into
account. The gamma-ray spectra of GRBs require a
special consideration. It may well be that the absence of

3 Some WR stars may be Ib supernova progenitors (I am grateful to
V.S. Imshennik for this remark.) Rotating WR stars could also be
such objects.

4 Note that a hot neutron star can be stable up to a mass MNS ≈ 70M(
(Bisnovatyœ-Kogan 1968).
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the 511-keV line from e+e– annihilation at rest is asso-
ciated with ultrarelativistic fireball expansion.

DISCUSSION

Observational data (Cherepashchuk 1996, 1998)
strongly suggest that massive, compact, nonrotating
(Harries et al. 1998) Wolf–Rayet stars undergo relativ-
istic collapse without any substantial ejection of their
envelopes. This suggestion is consistent with the fact
that, in our hydrodynamic calculations of spherically
symmetric collapse of massive stars, we have failed to
obtain the envelope ejection that is enough to account
for supernova explosions. The gravitational energy
released during relativistic collapse of such objects can
be 1055–1056 erg.

Here, we hypothesize that the thermonuclear fuel
accreting onto a hot neutron star burns in oscillation
mode, generating shock waves that drive the e+e–

plasma out of the star (if it is stratified). This hypothesis
qualitatively accounts for the emergence of a relativis-
tic fireball with a low content of baryons and the oscil-
lations observed in GRBs (the oscillation period is
quantitatively explained in order of magnitude). The
GRB duration (~20 s) is in agreement with the time it
takes for the outer envelope to accrete onto a neutron
star and with its cooling time. The fact that WR stars
can be the GRB progenitors is supported by observa-
tional data provided by Paczynski (1998), in particular,
by evidence that GRBs originate in regions of intense
star formation.

According to our hypothesis, the collapse of a WR
star and the ejection of e+e– plasma are spherically sym-
metric. Spherical symmetry of GRBs is suggested by
the successful description of optical afterglows on long
(of the order of 200 days) time scales (Wijers et al.
1977). (Though there is evidence that jets can appear in
some GRBs.)
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APPENDIX
The detonation of thermonuclear fuel during hydro-

dynamic collapse, which produces local oscillations,
could begin before its accretion onto a hot neutron star.
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In this case, the oscillation period can be roughly esti-
mated as

where ∆R is the oscillation amplitude, and g is the
free-fall acceleration on the inner mass M(R*) corre-
sponding to the detonation radius R*. Assuming
the calorie content of the thermonuclear fuel to be q .
1 MeV/nucleon .10–3mNc2 and ∆R ! R*, we have

hence, we obtain an estimate for τ

At τ . 10–2 s, ∆R is

∆R . 1.5 × 106 cm,

and the radius at which the detonation takes place is

It stands to reason that testing our hypothesis
requires a consistent calculation of hydrodynamic col-
lapse.

Translated by V. Astakhov
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Abstract—The plasma mechanism of radio emission in the coronas of late-type stars is shown to be consider-
ably more efficient than that in the solar corona because of the high plasma temperature in their magnetic
arches. This is attributable to an increase in the length of plasma-wave conversion into electromagnetic waves
and a decrease in the optical depth of collisional wave absorption. Magnetic-arch filamentation results in a
decrease in the intensity of the fundamental-tone radio emission and in the relative dominance of the second-
harmonic radio emission. The efficiency of the fundamental-tone radio emission increases with plasma density
in a coronal arch. The plasma mechanism accounts for the high brightness temperature of the flare radio emis-
sion from stars (≥1014 K). © 2000 MAIK “Nauka/Interperiodica”.

Key words: stars—variable and peculiar stars; Sun 
INTRODUCTION

UV Cet flare red dwarfs and close RS CVn- and
Algol-type binaries, which consist mainly of subgiants,
giants, or dwarfs, belong to the late-type radio stars. It
is customary to divide stellar radio emission into quies-
cent and flaring one. By contrast to the solar radio emis-
sion, the quiescent stellar radio emission is nonthermal
in nature (the brightness temperatures reach 109 K) and
is most likely associated with the gyrosynchrotron
emission of energetic electrons in the magnetic fields of
stellar coronas. Sporadic (flaring) radio emission with
high brightness temperatures Tb ~ 1010–1016 K is pro-
duced by masing mechanisms in stellar coronas. Two of
the masing mechanisms are usually discussed: an elec-
tron cyclotron maser (ECM) and a plasma mechanism.
ECM emission arises if the electron distribution func-
tion in magnetoactive plasma is unstable to the genera-
tion of ordinary and extraordinary electromagnetic
waves near the low electron-gyrofrequency harmonics
(Melrose 1994; Fleishman and Mel’nikov 1998). An
electron cyclotron maser is realized in stellar coronas
with relatively strong magnetic fields, at ωp/ωc < 1, and
becomes inefficient at ωp/ωc > 1 (Sharma and Vlahos
1984). Here, ωp and ωc are the plasma frequency and
the electron gyrofrequency, respectively. In addition,
there is a problem with the escape of ECM radio emis-
sion from the corona. The point is that an ECM gener-
ates mostly extraordinary waves. However, as was

* E-mail address for contacts: lioka@gao.spb.ru
1063-7737/00/2611- $20.00 © 20736
shown by Stepanov et al. (1995), it is an extraordinary
wave that is mainly absorbed in hot stellar coronas.

The coherent plasma mechanism includes two
stages: the generation of Langmuir turbulence and the
subsequent conversion of plasma waves into electro-
magnetic ones. Observations of late-type stars suggest
that, in several cases, especially in events with a fine
structure, the plasma mechanism of radio emission
takes place (Bastian et al. 1990; Abada-Simon et al.
1994; White and Franciosini 1995; Stepanov et al.
1995). In some measure, sporadic stellar radio emission
is similar to solar type II, III, and V meter bursts and to
type IV decimeter bursts. Such stellar radio emission is
characterized by high (≥1010 K) brightness tempera-
tures, a high (up to 100%) degree of polarization (occa-
sionally in the form of an ordinary wave), a frequency
drift, and rapid variability. The plasma mechanism of
generation of such bursts on the Sun is universally rec-
ognized. Despite the phenomenological similarity
between the parameters of flaring radio emission, the
results of calculations of wave transformation for the
solar corona cannot be directly applied to stellar coro-
nas. While studying the efficiency of coherent mecha-
nisms under typical conditions of the coronas of the
Sun and flare dMe stars, Abada-Simon et al. (1994b)
pointed out that the efficiency of the plasma mechanism
(the ratio of the radio flux density to the fast-electron
density) in the coronas of red dwarfs is higher than that
in the solar corona by several orders of magnitude. At
the same time, they noted that the high efficiency could
be related to peculiarities of the plasma-wave conver-
sion into electromagnetic waves. The main feature of
stellar radio emission is that the temperature in the
000 MAIK “Nauka/Interperiodica”
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coronas of late-type stars is higher (T ≥ 107 K) than that
in the solar corona (Ottmann 1993). As we show below,
this significantly increases the length of the resonant
nonlinear interaction between plasma and electromag-
netic waves and makes the plasma mechanism very
efficient in stellar coronas.

It is widely believed (Dulk 1985; Melrose 1987;
Skinner 1991) that the fundamental-tone plasma radio
emission and the second harmonic can be observed in
the solar and stellar coronas only at frequencies
≤300 MHz and ≤1 GHz, respectively. This constraint is
based on the formula of Dulk (1985) for the optical
depth of collisional absorption of the fundamental-tone
emission with frequency f

(1)

The absorption for the second-harmonic plasma
emission is a factor of 16 smaller. Indeed, τcoll ≈ 1 at f =
300 MHz for T = 106 K and the source’s size L = 109 cm.
However, as follows from (1), free-free absorption in
hot stellar coronas, for example, at temperature T = 5 ×
107 K is substantial only for a frequency f > 5 GHz.

The second feature is that red dwarfs and close bina-
ries exhibit a considerably higher surface activity then
does the Sun. The surface activity of a star is propor-
tional to its rotational velocity, which is higher than that
of the Sun (Katsova 1999). The surface activity of a star
is characterized by the relative area of the photosphere
occupied by spots. On the Sun, this parameter is less
than 0.4% of the visible photospheric area in the years
of solar maximum. It is considerably higher for late-
type stars. It was found from photometric observations
that the spot area accounts for up to 11–13% of the stel-
lar surface for DK Leo, AD Leo, and GT Peg (Alekseev
1998), up to 42% for V775 Her, and up to 68% for the
spectroscopic binary V833 Tau (Alekseev and Bondar’
1998). According to spectroscopic observations in the
705.5 and 886.0 nm TiO lines, spots cover 55 ± 5% of
the stellar visible hemisphere in an RS CVn II Peg type
binary (O’Neal et al. 1998). The magnetic arches con-
necting spots of different polarities are the main struc-
tural element of coronas and an active source of radio
emission. Magnetic arches form active regions in the
solar corona. In close binaries and on red dwarfs, they
essentially form the magnetic structure of the entire
corona. In this case, cool arches with a plasma temper-
ature T ~ 106 K alternate with hot (T ~ 107–108 K)
arches (White 1996). The interaction between arches
results in plasma heating and in particle acceleration
(Sakai and de Jager 1996). Thus, late-type stars with
numerous coronal magnetic arches must be powerful
sources of radio emission.

Coronal arches (loops) are magnetic traps for ener-
getic particles, which form an anisotropic velocity dis-
tribution of the “loss-cone” type, resulting in plasma-
wave instability. We consider the following coherent
plasma mechanism of radio emission. We assume the
plasma-wave spectrum to be specified and restrict our-

τcoll 1.5 10
17–

T
3/2–

f
2
L.×=
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selves to the case of a dense plasma (  @ ),
because the role of the magnetic field reduces to a redis-
tribution of the emission energy over the spectrum,
while we are interested in the total stellar radio flux.
Stepanov et al. (1999) considered a moderate magnetic

field (1 < /  ≤ 5) for the second-harmonic plasma
emission.

THE TRANSFORMATION OF PLASMA WAVES 
INTO ELECTROMAGNETIC ONES
The Fundamental-Tone Radio Emission 

The fundamental-tone radio emission (ω ≈ ωp)
arises during Rayleigh scattering of plasma waves by
background plasma particles. The energy conservation
law for scattering is

(2)

where ωt and kt, ωl and kl are the frequencies and wave
vectors of the electromagnetic and plasma waves,
respectively; and v is the velocity of the scattering par-
ticles.

At  @ , the high-frequency electromagnetic
waves are described by the dispersion relation

(3)

while the dispersion relation for the plasma waves is

(4)

From the dispersion relations (3) and (4) and the
energy conservation law (2), we determine the region
of a nonlinear wave interaction:

(5)

where LN is the nonuniformity scale length of the parti-
cle density of a source in a coronal magnetic arch of the
star, LN = N/|∇ N|; and vT and v are the velocities of the
background plasma particles and energetic particles,
respectively,

(6)

Here, T1 is the kinetic energy of the fast particles, and
kmax and kmin are the maximum and minimum wave
numbers of the generated plasma waves.

The transfer equation for the brightness temperature
of radio emission appears as follows:

(7)

where a is the emission coefficient, µc is the coefficient
of absorption through collisions, and µnl is the coeffi-
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cient of absorption through nonlinear interactions. The
solution to the transfer equation (7) is

(8)

where L is given by formula (5). The coefficients for the
fundamental-tone radio emission are (Zaitsev and
Stepanov 1983)

(9)

(10)
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Fig. 1. Brightness temperature Tb versus plasma turbulence

level w for the radio emission from AD Leo (T = 107 K, T1 =

3 × 108 K) in the case where the first harmonic of the elec-
tron plasma frequency is observed at f = 1.415 GHz. The
solid, dashed, and dotted lines correspond to LN = 3 × 109,

109, and 108 cm, respectively.

Fig. 2. Same as Fig. 1 in the case where the second harmonic
of the electron plasma frequency is observed at  f = 1.415 GHz.
(11)

where vg ≈ vTck/ωp is the group velocity of the elec-
tromagnetic waves, w = W/NT is the relative level of

plasma turbulence, W = dk is the energy density of

the plasma waves, and νei is the frequency of electron–
ion collisions

(12)

The equality of the absorption coefficients, µc1 = |µnl1|,
corresponds to w = w1, where

(13)

Collisional and nonlinear processes mostly contrib-
ute to the emission at w < w1 and w > w1, respectively.

The Second-Harmonic Radio Emission 

The radio emission at twice the plasma frequency is
generated by Raman scattering of plasma waves. The
energy and momentum conservation laws appear as fol-
lows:

(14)

where ω1 and k1, ω2 and k2 are the frequencies and
wave vectors of the interacting longitudinal plasma
waves (the subscript l is omitted for simplicity).

In this case, the emission and absorption coefficients
are (Zheleznyakov 1997)

(15)

(16)

(17)

where ∆ = (  – ) is the phase volume of the

plasma waves.

RESULTS OF THE CALCULATIONS

In Figs. 1–6, brightness temperature Tb is plotted
against plasma turbulence level w. Figures 1–4 show
the plasma radio emission from the red dwarf AD Leo
for typical observing frequencies: f = 1.415 GHz (Figs. 1
and 2) and f = 4.856 GHz (Figs. 3 and 4). Figures 1, 3
and 2, 4 refer to the cases where the observing fre-
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quency correspond to the fundamental tone and the sec-
ond harmonic, respectively. In our calculations, we
used the following plasma parameters: T = 107 K, T1 =
3 × 108 K (the fast-electron energy is 30 keV), kmax =
ωp/5vT, and kmin = ωp/c.

The filamentation of stellar coronal structures (a
decrease in LN) reduces the conversion efficiency at the
fundamental tone and results in a relative dominance of
the second-harmonic radio emission. The fundamental-
tone radio emission dominates only at a comparatively
high level of plasma waves (depending on plasma
parameters, w ≈ 10–5–10–3). At a plasma turbulence
level w < 10–5–10–3, the second-harmonic radio emis-
sion dominates, reaching Tb ≈ 6 × 1013–7 × 1015 K at
w ≈ 10–5, whereas the brightness temperature of the
fundamental-tone emission is Tb ≈ 4 × 109–5 × 1011 K.
The values of w starting from which the fundamental-
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Fig. 3. Same as Fig. 1 in the case where the first harmonic
of the electron plasma frequency is observed at  f = 4.856 GHz.
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Fig. 5. Brightness temperature Tb versus plasma turbulence
level w for the radio emission from a close binary. The fol-
lowing plasma parameters were used: T = 3 × 107 K, LN = 3 ×
1010 cm, and T1 = 3 × 108 K. The solid and dashed lines cor-
respond to the electron densities in the source N = 109 and
5 × 109 cm–3, respectively.
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tone emission exponentially grows (maser effect) lies
in the range ω ≈ 3 × 10–6–2 × 10–5, depending on the
plasma parameters under consideration (Figs. 1–4).

Figure 5 shows the radio emission from close bina-
ries. Van den Oord (1988) point out that a source of
intense radio emission may exist between the binary
components. Ipatov and Stepanov (1997) proposed a
model of an interstellar flare based on the energy
release in a prominence located between two stars.
Prominence oscillations can cause periodic flares and
the corresponding variations in radio emission. X-ray
observations suggest the existence of a high-tempera-
ture (T ~ 3 × 107 K) plasma with a relatively low density
(N ~ 3 × 109 cm–3) confined in a trapping magnetic-field
configuration (magnetic arches in the corona of one of
the components or the fields connecting the binary
components). Such a configuration is comparable in
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Fig. 4. Same as Fig. 1 in the case where the second harmonic
of the electron plasma frequency is observed at  f = 4.856 GHz.
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Fig. 6. Brightness temperature Tb versus plasma turbulence
level w for the solar radio emission (T = 106 K, T1 =3 × 108 K)
at f = 1 GHz. The solid and dashed lines correspond to LN =
5 × 108 and 108 cm, respectively.
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size to the entire binary system (Walter et al. 1983;
White et al. 1990). In our calculations, we assumed that
LN = 3 × 1010 cm, which corresponds to the sizes of
characteristic structures in close binaries, and that T1 =
3 × 108 K. We see from Fig. 5 that an increase in the
particle density causes a rise in the fundamental-tone
radio emission and a reduction in the second-harmonic
emission at a given w.

Figure 6 presents the case of the solar corona where
the fundamental-tone radio emission corresponds to the
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Fig. 7. Brightness temperature (solid lines) and plasma tur-
bulence level w (dotted lines) at the points of intersection of
the fundamental-tone and second-harmonic curves, Tb1(w) =

Tb2(w), for various LN and N at T = 107 K and T1 = 3 × 108 K.

The lines of constant w are shown at 100.5 intervals.

Fig. 8. Same as Fig. 7 for various LN and T at N = 3 ×
1011 cm–3 and T1 = 6 × 108 K. The maximum level is w =

3 × 10–4 K.
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frequency f = 1 GHz (T = 106 K, T1 = 3 × 108 K). Com-
paring Fig. 6 with Fig. 1, we see that the brightness
temperatures of the second-harmonic radio emission
for the Sun at a given w are much lower than those for
red dwarfs. At LN = 108 cm and w ~ 10–5, the brightness
temperatures of the fundamental-tone and second-har-
monic radio emissions for AD Leo are Tb1 ≈ 1010 K and
Tb2 ≈ 1013 K, whereas the corresponding values for the
Sun are Tb1 ≈ 5 × 109 K and Tb2 ≈ 3 × 1010 K. This is
because the temperature of the solar corona is lower,
which causes a decrease in the length of nonlinear inter-
actions L and an increase in the width of the plasma-
wave spectrum ∆ [see formulas (5), (15), and (17)].

The brightness temperature and plasma turbulence
level at the point of intersection of the fundamental-
tone and second-harmonic curves are plotted against
plasma parameters in Figs. 7–9. The Tb1(w) = Tb2(w)
lines are shown in Fig. 7 as a plot of nonuniformity
scale length LN versus particle density N, in Fig. 8 as a
plot of LN versus background plasma temperature T,
and in Fig. 9 as a plot of LN versus fast-particle energy
T1. We see from Fig. 7 that an increase in the plasma
density causes the radio-emission brightness tempera-
ture at the point of intersection to decrease, in agree-
ment with the results for close binaries (Fig. 5). It is evi-
dent from Fig. 8 that an increase in the plasma temper-
ature causes the brightness temperature at the point of
intersection where Tb1(w) = Tb2(w) to increase. Figure 9
indicates that the brightness temperature at the point of
intersection depends markedly on the energy of fast
particles at LN < 3 × 109 cm. At LN > 3 × 109 cm, which
correspond, for example, to the scale lengths of nonuni-
formities in close binaries, a change in the particle
energy does not result in such considerable changes in
the radio flux.
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Fig. 9. Same as Fig. 7 for various LN and T1 at N = 3 ×
1011 cm–3 and T1 = 107 K. The lines of constant w and Tb

are shown at 100.5 intervals.
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DISCUSSION 
AND CONCLUSIONS

The difference between the coronal parameters of
late-type stars and the Sun necessitates a special con-
sideration of the plasma mechanism of radio emission
from stellar coronas. Their main distinctive feature is
that the temperature of the stellar coronal plasma is
higher than that of the solar one. Note that, since the
emission at T ≤ 107 K cannot escape from the central
part of an arch because of strong collisional absorption,
only an outer arch layer of thickness L radiates effec-
tively. As follows from formula (5), a rise in tempera-
ture causes an increase in the size of the region where
plasma waves are transformed into electromagnetic
waves and, consequently, a rise in the brightness tem-
perature of the radio emission. This is the answer to the
question (see Abada-Simon et al. 1994b) of why the
plasma mechanism of radio emission is more efficient
in stellar coronas than it is in the solar corona. More-
over, a high temperature of stellar coronas causes a
reduction in the phase volume of plasma waves ∆
and, consequently, a rise in the brightness tempera-
ture of the second-harmonic radio emission [Eqs. (15)
and (17)].

The flux of weakly polarized radio emission is

(18)

where A is the source area, and d is the distance to the
star. Taking, according to Fig. 3, the brightness temper-
ature to be Tb ≈ 1014 K near the point of intersection of

the two curves at LN =  = 3 × 109 cm, we find for
AD Leo (d = 4.85 pc ≈ 1.55 × 1019 cm) that Ff ≈ 3 Jy at
f = 4.85 GHz. Such fluxes are observed during intense
flares on red dwarfs. For a close binary, for example,

AR Lac (Tb = 1014 K, A =  = 9 × 1020 cm2, d = 50 pc =
1.5 × 1020 cm, f = 1 GHz), from (18) we obtain Ff ≈
120 mJy, which also agrees with the observed radio
fluxes from close binaries.

The filamentation of coronal arches is revealed by
optical and X-ray observations of the Sun. We see from
Figs. 1–7 that filamentation results in a reduction in the
level of the fundamental-tone radio emission and in a
relative dominance of the radio emission at the plasma-
frequency second harmonic. At w < 10–5–10–3 (depend-
ing on LN), the second harmonic mainly contributes to
the radio emission. For AD Leo at a turbulence level
w ~ 10–5, the brightness temperature of the second-har-
monic radio emission is Tb ~ 1014–1015 K (Figs. 1–4),
whereas the corresponding value for the fundamental
tone is Tb ~ 109–1011 K. Note that w is bounded above

by the level of thermal fluctuations wfl = . In
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the range of plasma parameters in arches under study,
wfl ≈ 8 × 10–10–2 × 10–9. At w > 10–5–10–3, the funda-
mental-tone radio emission is more intense than the
second-harmonic emission due to the maser effect.

Intense (Tb > 1010 K) and short-lived (<0.1 s) spike
bursts are generally explained by instability of electro-
magnetic waves. Our calculations indicate that the two-
step plasma mechanism of emission can also explain
spike bursts because of its high efficiency at small
source sizes.

Thus, hot stellar coronas create more favorable (than
the solar corona) conditions for the generation of radio
emission with frequencies 1–5 GHz by the plasma mech-
anism through an increase in the length of wave conver-
sion and a reduction in collisional damping.
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An Axisymmetric Magnetohydrodynamic Model
for the Interaction of the Solar Wind 
with the Local Interstellar Medium
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Abstract—We numerically analyze a magnetohydrodynamic, steady-state model for the interaction of a spher-
ically symmetric solar wind with a three-component local interstellar medium (LISM), which is composed of
plasma, hydrogen atoms, and a magnetic field. The magnetic field is assumed to be parallel to the velocity in
the LISM. In this case, the model is axisymmetric. We study the effects of magnetic field on the plasma-flow
geometry and on the distribution of hydrogen-atom parameters. In particular, we show that the presence of
hydrogen atoms does not affect the qualitative change in the shape of the bow shock, the heliopause, and the
solar-wind shock with increasing strength of the interstellar magnetic field. The presence of a magnetic field in
the LISM can strongly affect the parameters of the energetic hydrogen atoms originated in the solar wind,
although its effect on the “hydrogen wall” observed with the GHRS instrument onboard the HST spacecraft
(Linsky and Wood 1996) is marginal. © 2000 MAIK “Nauka/Interperiodica”.

Key words: Solar system, heliosphere, heliopause, shock waves, interstellar medium, solar wind, interstellar
magnetic field, hydrogen atoms
1. INTRODUCTION

At present, the kinetic gas-dynamical model pro-
posed by Baranov et al. (1991) and developed by Bara-
nov and Malama (1993, 1995, 1996) is widely used in
studying the interaction of the solar wind (SW) with the
local interstellar medium (LISM). In this model, the
interaction between the SW and LISM plasma compo-
nents was considered on the basis of Euler’s equations
with the “source terms” describing the effect of hydro-
gen atoms in terms of their ionization via charge
exchange with protons, photoionization, and electron
impact ionization followed by the “capture” of newly
formed protons by plasma. Since the mean free path of
hydrogen atoms for these processes is comparable to
the scale size of the problem, for example, to the size of
the heliopause separating the LISM plasma from the
SW plasma, it is improper to describe the motion of
hydrogen atoms in terms of the equations of continuum
mechanics. Therefore, to determine the “source terms,”
Baranov and Malama (1993) calculated the trajectories
of hydrogen atoms by the Monte Carlo method with the
trajectory “splitting” proposed by Malama (1991) and
used the method of global iterations proposed by Bara-

* E-mail address for contacts: baranov@ipmnet.ru
1063-7737/00/2611- $20.00 © 20743
nov et al. (1991) to solve the self-consistent problem.
A proper allowance for the LISM hydrogen atoms in
the model is of particular importance, because one of
the most efficient experimental methods for studying
interstellar gas parameters is currently the method
based on an analysis of scattered and absorbed radia-
tion in the Lα hydrogen line.

The model was further improved by taking into
account the effects of new physical phenomena found
experimentally. Thus, for example, Myasnikov et al.
(2000a, 2000b) considered a self-consistent model of
the SW–LISM interaction that allowed for Galactic
cosmic rays. However, an adequate magnetohydrody-
namic (MHD) model that allows for the interstellar and
interplanetary magnetic fields has not yet been con-
structed, although numerous attempts have been made
to construct such a model. For example, Linde et al.
(1998) calculated a three-dimensional MHD model but
took into account the resonant charge exchange by
using an improper hydrodynamic model for hydrogen
atoms proposed by Baranov et al. (1981) and severely
criticized by Baranov and Malama (1993). Myasnikov
and Barsky (1997) and Barsky (1999) considered the
kinematic approximation, in which gas-dynamical
model parameters are used to calculate the magnetic
field, but MHD effects in the gas-dynamical flow are
disregarded. There are also many papers devoted to axi-
000 MAIK “Nauka/Interperiodica”
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symmetric (see, e.g., Fujimoto and Matsuda 1991;
Baranov and Zaitsev 1995; Myasnikov 1997; Pogore-
lov and Semenov 1997) and three-dimensional
(Pogorelov and Matsuda 1998) numerical MHD mod-
els ignoring the presence of hydrogen atoms in the
LISM. Since the effect of LISM hydrogen atoms is sig-
nificant, such papers are of purely theoretical interest
and cannot form a basis for interpreting experimental
results. Studying the effect of interstellar magnetic field
on the penetration of hydrogen atoms from the LISM
into the SW seems to be of crucial importance in inter-
preting measurements of hydrogen-atom parameters
from spacecraft such as Ulysses, HST, SOHO, etc.
(Izmodenov et al. 1999; Kirola et al. 1998; Lallement
1996; Gruntman 1993 and 1997). In particular, such an
interpretation makes it possible to determine indirectly
the plasma flow geometry, which seems of particular
importance in view of the fact that its in-situ plasma
measurements from the Voyager spacecraft are prob-
lematic in the near future, since, according to estimates,
this spacecraft can leave the supersonic SW region only
in several years.

The effect of interstellar magnetic field on the model
is difficult to study theoretically primarily because its
magnitude and direction in the LISM are virtually
unknown. They can vary widely in models. Here, we
present the first MHD model of the SW–LISM interac-
tion, in which the interstellar magnetic field is taken
into account within the framework of MHD equations
with “source terms,” and in which the trajectories of
hydrogen atoms are calculated by the Monte Carlo
method, as was done by Baranov et al. (1991) and
Baranov and Malama (1993, 1995, 1996). For simplic-
ity, we consider an axisymmetric model, in which the
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Fig. 1. The general pattern of flow produced by SW interac-
tion with the LiSM. Here, r and z are the cylindrical coordi-
nates; R is the heliocentric distance; θ is the polar angle;
BS and TS are the bow and terminal shocks, respectively;
HP is the heliophase; TD is the tangential discontinuity;
RS is the reflected shock; and MD is the Mach disk.
magnetic vector is assumed to be parallel to the inter-
stellar-plasma velocity vector, and the SW is assumed
to be spherically symmetric.

2. STATEMENT OF THE PROBLEM 
AND THE METHOD OF SOLUTION

Let us consider the interaction of a spherically sym-
metric solar wind with a uniform, translational flow of
interstellar medium composed of plasma (electrons and
protons), neutral hydrogen atoms, and magnetic field
with the magnetic vector B parallel to the bulk velocity
vector v. For a supersonic incoming flow, the emerging
axisymmetric current is characterized by three surfaces
of strong discontinuity (Fig. 1): a tangential discontinu-
ity or heliopause (HP) separating the SW plasma from
the LISM plasma, a bow shock (BS) through which the
supersonic flow of interstellar plasma around the helio-
pause passes; and a terminal shock (TS) through which
the SW decelerates. The plasma flow is assumed to be
described in terms of steady-state MHD equations,
which take the following form in cylindrical coordi-
nates:

(1)

where

∂D
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∂r
-------+ H Q,+=
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ρv z

p ρv z
2 Br
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v z E p
B

2

8π
------+ + 

  Bz

4π
------v B⋅–

0

v zBr v rBz–

,=

G

ρv r

ρv zv r

BrBz

4π
-----------–

p ρv r
2 Bz

2
Br

2
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8π
------------------+ +

v r E p
B

2

8π
------+ + 

  Br

4π
------v B⋅–

v rBz v zBr–

0

,=
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Here, ρ, v, and p are the mass density, mean velocity,
and pressure of the plasma, respectively; γ is the ratio
of specific heat capacities; E is the internal energy; and
B is the magnetic vector. The functions Q1, Q2, and Q3
on the right-hand sides of the equations of continuity,
motion, and energy, respectively, represent the “source
terms,” which are related to the main process of reso-
nant charge exchange between hydrogen atoms and
protons (we also take into account the photoionization
of hydrogen atoms and their electron impact ioniza-
tion). Since these functions depend both on the plasma
parameters and on the parameters of hydrogen atoms, it
is necessary to add equations describing the motion of
the neutral component. As was pointed out above, the
neutral component cannot be described in terms of the
continuum equations. Therefore, for the system of
equations to be closed, the Boltzmann equation for the
distribution function fH of hydrogen atoms must be
added [as was shown by Baranov et al. (1998), this
function differs markedly from the local Maxwell func-
tion]:

(2)

where wH and wp are the hydrogen-atom and proton
velocities, respectively; r is the particle radius vector;
fp is the proton distribution function (assumed to be the
local Maxwell one); F is the sum of the forces of solar

attraction and radiative repulsion;  is the cross sec-
tion for charge exchange between hydrogen atoms and
protons; β is the sum of the rates of photoionization βi

and electron impact ionization βim; and mH is the hydro-
gen atomic mass.

H 1
r
---–
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ρv rv z
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0
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2
/8π.+ += =
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F
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---------------------------+

=  f H r wH,( ) wH wp– σex
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* wp– σex
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× f H r wH*,( )dwH* β f H r wH,( ),–

σex
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The “source terms” can be written as

(3)

In order to solve the system of equations (1)–(3), it
is necessary to specify boundary conditions for the plasma
velocity V, its temperature (or the Mach number M), and
proton (electron) number density np in the Earth’s orbit
and in the incoming undisturbed LISM flow. As the
boundary conditions for fH in the undisturbed LISM,
we take the Maxwell distribution with a given density
nH, ∞ and with the temperature and velocity equal to the
plasma ones.

In solving the formulated gas-kinetic problem, we
used the method of global iterations proposed by Bara-
nov et al. (1991) and implemented by Baranov and
Malama (1993, 1995, 1996). In the first iteration, the
distributions of MHD parameters in the interaction
region are calculated by the relaxation method by solv-
ing unsteady-state analogs of Eqs. (1) with zero source
terms (3). Since the applied numerical technique
(Myasnikov 1997) makes it possible to roughly distin-
guish the main MHD discontinuities obtained during
the first iteration, the flow parameters can be directly
used to solve Eq. (2) by the Monte Carlo method with
trajectory splitting (Malama 1991). The calculated
source terms (3) are used to solve Eqs. (1) in the next
iteration. The iteration process terminates when the dis-
tributions of the plasma, hydrogen-atom, and magnetic-
field parameters cease to depend markedly on the itera-
tion number.

3. RESULTS OF CALCULATIONS
AND THEIR ANALYSIS

In order to solve the stated problem, we fix the den-
sity of interstellar hydrogen atoms, 0.2 cm–3 (Gloekler
et al. 1997), and take the parameters of the undisturbed
SW and LISM plasma to be

Q1 βnH nH = f HdwH∫( ),=

Q2 nH βwH f HdwH∫=

+ nH σex
HP wH wp– f H f pdwHdwp,∫∫

Q3 nH β
wH

2

2
------- f HdwH∫=

+ nH σex
HPwH

2
wp

2
–
2

------------------- f H f pdwHdwp.∫∫

VE 450 km/s, np E, ρE/mH 7 cm
3–
,= = =

ME VE/ 2kTE/mH 10,= =

V∞ 25 km/s, np ∞, ρ∞/mH 0.07 cm
3–
,= = =

M∞ V∞/ 2kT∞/mH 2.= =
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Here, the subscripts E and ∞ refer to the Earth’s
orbit and the undisturbed LISM, respectively; T is the
temperature, and k is the Boltzmann constant. We also
fixed the adiabatic index γ = 5/3 and the ratio of the
forces of radiation pressure and solar gravitation µ = 0.75.
The effect of the interstellar magnetic field was taken
into account by varying the Alfvén Mach number
MA, ∞ = V∞ /B∞ over the range ∞ ≤ MA, ∞ ≤ 0.9.

3.1. Effects of Magnetic Field on the Flow Geometry

Figure 2 shows the positions of the shocks (BS and
TS) and the tangential discontinuity (HP) at various
Alfvén Mach numbers in the undisturbed LISM. It is
easy to see that the bow shock straightens out with
decreasing Alfvén Mach number (increasing magnetic-
field strength in the LISM). It approaches the Sun near
the symmetry axis, but recedes from it on the flanks. By
contrast, the nose of the heliopause recedes from the
Sun due to the tension of magnetic field lines, while the
heliopause in its wings approaches the Sun under mag-
netic pressure [the effect of heliopause stretching was
obtained by Baranov and Krasnobaev (1971) in the
Newtonian approximation of a thin layer]. The pattern
of change in the bow shock and in the heliopause
causes the region of the most effective “filtration” of
interstellar hydrogen atoms (the region between BS and
HP), where the primary hydrogen atoms are lost most
intensely due to their charge exchange with interstellar
protons, to decrease along the symmetry axis approxi-
mately by 50 AU, i.e., by almost 30% (see Fig. 2), as the

4πρ∞
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Fig. 2. Positions of the bow shock, the heliopause, and the
terminal shock for various Alfvén–Mach numbers.

–300 –100 100 300
magnetic field increases from zero to B∞ = 3.5 × 10–6 G
(MA, ∞ = 0.9).

The fact that the heliopause approaches the Sun on
the flanks, in turn, results in a decrease in the detach-
ment of the terminal shock at θ = π. Since the detach-
ment of the terminal shock at θ = 0 is independent of
the magnetic-field strength (in the absence of hydrogen
atoms, this fact can be easily obtained analytically by
using the Bernoulli integral and relationships at the
shocks), the terminal shock tends to become spherical
in shape with increasing magnetic field. Thus, the pat-
tern of change in the flow geometry with increasing
magnetic field at nH, ∞ ≠ 0 qualitatively agrees with the
results of Baranov and Zaitsev (1995) and Myasnikov
(1997).

Studies of the effects of magnetic field on the struc-
ture of the region of interaction between the SW and the
LISM indicate that, in the absence of physical effects
related to hydrogen atoms, an increase in the magnetic
field results in the destruction of the complex flow
structure in the tail region associated with the formation
of a Mach disk (MD) and a triple point or a point of
intersection of the Mach disk, the tangential disconti-
nuity (TD), and the reflected shock (RS) (see Fig. 1).
Resonant charge exchange produces the same effect, as
was shown by Baranov and Malama (1993). Thus, the
effects of both neutral hydrogen atoms and the inter-
stellar magnetic field lead to the flow in the region
between the terminal shock and the heliopause being
subsonic in all calculations.

The reduction in the influence of magnetic field on
the structure of the region of interaction between the
SW and the LISM plasma with increasing nH, ∞ is an
important but predictable effect (Myasnikov and Bar-
sky 1997). In particular, at nH, ∞ = 0.2 cm–3 and MA, ∞ =
0.9, there is a bow shock in the flow whose detachment
on the symmetry axis differs only slightly from the case
with nH, ∞ = 0.2 cm–3 and MA, ∞ = ∞ (Fig. 2). At the same
time, the calculations performed at nH, ∞ = 0 and
MA, ∞ = 0.9 (Myasnikov 1997) indicate that the solution
falls within the ellipticity region of Eqs. (1), which
results in the disappearance of the bow shock. Baranov
and Zaitsev (1995) predicted the possibility of such an
effect.

3.2. Effects of Magnetic Field 
on the Characteristics of Hydrogen Atoms 

Resonant charge exchange of interstellar hydrogen
atoms gives rise several kinds of hydrogen atoms with
different characteristics, depending on the region of
their production. The high-energy hydrogen atoms pro-
duced by charge exchange of SW protons before and
after their passage through the terminal shock belong to
kinds 1 and 2, respectively. Clearly, kind-1 hydrogen
atoms must have a high mean radial velocity compara-
ble to the supersonic SW velocity, while kind-2 hydro-
gen atoms must have a high thermal velocity deter-
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mined by the SW proton temperature behind the termi-
nal shock. The secondary hydrogen atoms produced by
charge exchange of LISM atoms with inherent protons
belong to kind 3, while the primary LISM atoms that
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Fig. 3. The density distribution of energetic hydrogen atoms
produced behind the terminal shock (kind 2) for θ = 0, π/2,
and π (a, b, c, respectively).
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underwent no charge exchange belong to kind-4. Kind-3
and 4 atoms have the LISM particle energy and are
detected at a wavelength of 1216 Å in absorption lines
from the nearest stars (Linsky and Wood 1996) and by
analyzing scattered solar radiation (Bertaux and Blam-
ont 1971; Thomas and Krassa 1971; Kirola et al. 1998;
Lallement 1996). As for the hydrogen atoms with the
SW particle energy (kinds 1 and 2), their flows can be
measured from a distance of 1 AU by direct methods
based on the technique proposed by Gruntman (1993,
1997).

Our calculations indicate that the density distribu-
tion of kind-1 hydrogen atoms is virtually unchanged at
all polar angles 0 ≤ θ ≤ π and over the entire assumed
range of MA, ∞. In particular, for MA, ∞ = ∞, these results
closely agree with those obtained by Baranov et al.
(1998). The magnetic field has the strongest effect on
the density distribution of kind-2 hydrogen atoms pre-
sented in Fig. 3 for θ = 0 (in the “leeward” direction),
θ  = π/2 (perpendicular to the leeward direction), and
θ = π (in the tail region). The physical causes of an
almost a factor of 1.5 rise in the density of kind-2
hydrogen atoms as the interstellar magnetic field
increases from zero to 3.5 × 10–6 G differ in different
regions. In the leeward direction, the rise can be caused
by an increase in the thickness of the region between
HP and TS responsible for the production of kind-2
hydrogen atoms. In the tail region, the increase in the
number of kind-2 hydrogen atoms is facilitated by an
increase in the number of thermalized SW protons
behind the terminal shock with growing magnetic field
as it approaches the Sun (see Figs. 2 and 4).
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Fig. 4. The proton density distribution for θ = π at various
Alfvén–Mach numbers.
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The effect of an increase in the number of kind-2
hydrogen atoms with growing interstellar magnetic
field can be useful in their direct detection, because the
efficiency of the method proposed by Gruntman (1993,
1997) is determined by the sensitivity of the instru-
ments measuring the fluxes of these particles.

The nonmonotic behavior of the density of kind-3
hydrogen atoms was first theoretically predicted by
Baranov et al. (1991). In the literature, this effect was
called a hydrogen wall. The formation of a hydrogen
wall is physically related to the production of second-
ary hydrogen atoms (kind 3) via charge exchange of
primary (kind 4) atoms with almost stagnated protons
near the heliopause (that is why the maximum of the
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Fig. 5. The density distribution of hydrogen atoms produced
in the LiSM (kind 3) at θ = 0 (a) and θ = π/2 (b) for various
Alfvén–Mach numbers.
hydrogen wall is located in the immediate vicinity of
the heliopause). Interpretation of the experimental data
on the absorption of Lα emission from αCen obtained
with the GHRS instrument onboard the HST spacecraft
led Linsky and Wood (1996) to conclude that the theo-
retically predicted hydrogen wall was discovered
experimentally. This conclusion was based on the fact
that the absorption spectra obtained could be explained
only by introducing a hydrogen wall. Therefore, it
seems to be important to study the dependence of the
position and height of the hydrogen wall on various
physical factors, in particular, on the interstellar mag-
netic field.

We see from Fig. 5 that the interstellar magnetic
field parallel to the LISM velocity vector changes the
hydrogen-wall parameters only slightly. In particular,
the hydrogen-wall height decreases approximately by
10% as the magnetic field changes from zero to 3.5 ×
10–6 G; this wall recedes from the Sun together with the
heliopause. The decrease in the height of the hydrogen
wall is slightly larger in the direction perpendicular to
the symmetry axis, as we see from Fig. 5b. The decrease
in the hydrogen-wall height near the symmetry axis
with increasing magnetic field is clearly attributable to
a decrease in the filter thickness in this region. The
same effect in the perpendicular direction can be
explained by a decrease in the density of LISM protons
in the bow-shock wings (oblique shock) compared to
the direct shock near the symmetry axis. In both cases,
the number of secondary hydrogen atoms responsible
for the nonmonotic behavior of the density of hydrogen
atoms decreases. In our view, a marginal effect of the
magnetic field on the position and height of the hydro-
gen wall cannot change its interpretation on the basis of
analysis of absorption spectra in the Lα line (Linsky
and Wood 1996). An interpretation of the observed
HST absorption spectrum in this line along a line of
sight passing through the heliospheric tail (toward Sir-
ius) shows (Izmodenov et al. 1999) that the spectrum
can be explained by taking into account absorption by
kind-2 hydrogen atoms, because there is no hydrogen
wall in the tail region.

4. CONCLUSION

(1) We have numerically constructed a steady-state
MHD model for the SW interaction with a partially ion-
ized, magnetized LISM for the first time. In this model,
we use the kinetic gas-dynamical approach proposed
by Baranov and Malama (1993), in which the plasma is
described by MHD equations, while the hydrogen-
atom parameters are determined by the Monte Carlo
method with trajectory splitting proposed by Malama
(1991). The magnetic vector is assumed to be parallel
to the plasma velocity vector, which makes it possible
to consider the problem in terms of axial symmetry.

(2) We have shown that the pattern of change in the
flow geometry (the shape of the shocks and tangential
discontinuity) with increasing interstellar magnetic
ASTRONOMY LETTERS      Vol. 26      No. 11      2000
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field qualitatively agrees with that calculated by Bara-
nov and Zaitsev (1995) in the absence of neutral atoms
and in the range of polar angles 0 ≤ θ ≤ π/2. Our calcu-
lation of the flow at 0 ≤ θ ≤ π by the numerical method
proposed by Myasnikov (1997) indicates that the mag-
netic field, as well as neutral atoms (Baranov and
Malama 1993), destroys the complex flow pattern to
form a triple point and a Mach disk. The terminal shock
becomes oval, approaching a sphere with increasing
magnetic field, while the flow between the heliopause
and the terminal shock becomes subsonic.

(3) The magnetic field has a fairly strong effect on
the energetic hydrogen atoms produced by charge
exchange of LISM hydrogen atoms with thermalized
SW protons behind the terminal shock (kind-2). An
almost a factor of 1.5 increase in the density of these
atoms with increasing magnetic field can relax the
requirement on the sensitivity of instruments for their
detection (Gruntman 1993, 1997).

(4) A marginal (about 10%) change in the parame-
ters of the hydrogen wall theoretically discovered by
Baranov et al. (1991) near the heliopause cannot affect
the conclusions reached by Linsky and Wood (1996)
that this wall was experimentally discovered with the
GHRS instrument onboard the HST spacecraft.
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in a High-Temperature Turbulent Sheet
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Abstract—We present a simple model of high-temperature (T ≥ 108 K) turbulent current sheets forming in
magnetic-reconnection regions on the Sun. The model is based on an empirical formula by de Kluiver et al.
(1991) for turbulent plasma conductivity and is apparently valid over a wide range of physical conditions.
A comparison of the new results with known test calculations suggests agreement between the theoretical and
empirical approaches to calculating the anomalous conductivity in turbulent plasma. The energy release in cur-
rent sheets is powerful enough for flares, coronal transients, and coronal mass ejections to be interpreted.
© 2000 MAIK “Nauka/Interperiodica”.
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INTRODUCTION

Models of reconnection in the solar atmosphere can
be separated into two groups: global and local ones
(Kosugi and Somov 1998). The global models, station-
ary or nonstationary, two- or three-dimensional,
describe active regions or even complexes of activity on
the Sun in a particular approximation (Gorbachev and
Somov 1990; Demoulin et al. 1993; Bagala et al. 1995;
Longcope and Silva 1998; Pevtsov and Longcope
1998; Podgorny and Podgorny 1998; Moon et al. 1999;
Somov et al. 1999). The main advantage of the global
models is a direct comparison between the results of
computations and the observed large-scale pattern of
the phenomenon. For example, the so-called “topolog-
ical model” of a solar flare (Gorbachev and Somov
1989, 1990; Somov 1992) (i) shows that the flare
energy is released during reconnection on the separator
which has a definite location in the corona relative to
sunspots, and (ii) allows us to determine the shape of
X-ray coronal loops and the shape of flare ribbons in
the chromosphere where these ribbons are best seen in
the çα line.

Despite this indisputable advantage, the global
models generally have purely illustrative value. Low
space resolution of the computational grid does not
allow one to compute the reconnection region: a thin
current sheet (Sweet 1958; Parker 1963; Syrovatskiœ
1962, 1966) or Petschek’s system of shock waves
(Petschek 1964). The true plasma transport coefficients
are inevitably replaced by some effective (to be more
precise, fictitious) conductivity, heat conduction, and

* E-mail address for contacts: avo@sai.msu.ru 
1063-7737/00/2611- $20.00 © 20750
viscosity. Thus, the global models are not internally
self-consistent.

By contrast, the local models are intended to study
the actual physics of magnetic reconnection with mini-
mal allowance for external factors. The models directly
describing a current sheet (Sweet 1958; Parker 1963;
Syrovatskiœ 1966; Imshennik and Syrovatskii, 1967)
belong to this group. The simplest local models con-
sider the reconnection region as a whole without allow-
ance for its internal structure. The obvious advantage in
simplicity and clarity allows more attention to be given
to a detailed description of the physical processes in the
reconnection region.

The model we propose belongs to this group. In gen-
eral, it is similar to the “single-temperature model” of a
high-temperature turbulent current sheet (HTCS) [see
subsection 3.1 in Somov et al. (1987); see subsection 3.3.1
in the book by Somov (1992) for more details]. Two fun-
damental peculiarities constitute an exception.

First, the anomalous plasma conductivity σ in the
new model is determined by an empirical low with a
wide range of applicability (de Kluiver et al. 1991):

(1)

Here, σcl = σ0T3/2 is the classical plasma conductivity,
σ0 = 1.44 × 108/lnΛ, lnΛ = ln[9.44 × 106T/n1/2] is the
Coulomb logarithm, and Dreicer’s critical field is

(2)

Relation (1) is valid in the range of electric fields
10–2 ≤ E/Ecr ≤ 105; the conductivity ratio σ/σcl varies
from 10 to 10–6.

σ
σcl
------ 0.1

Ecr

E
------.≈

Ecr 2.13 10
12– n

T
--- Λ  CGSE units( ).ln×=
000 MAIK “Nauka/Interperiodica”
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Equations (1) and (2) yield

(3)

Thus, instead of complex theoretical calculations of
the anomalous conductivity in various plasma-turbu-
lence regimes, as was done in the test model (Somov
1992), we take the empirical simple formula (3).

Second, in the new model, we pose the question as
to the heat flux from the HTCS more accurately.

1. THE PROBLEM 
OF CURRENT-SHEET PARAMETERS

In a reconnecting current sheet (see the figure),
magnetic field lines flow in together with plasma at a
low velocity v along the y direction, reconnect, and
subsequently outflow at a high velocity V along the x
direction. Let a and b be the half-thickness and half-
width of the sheet, n and T be the plasma number den-
sity and temperature inside it. The plasma number den-
sity n0 and temperature T0 outside the sheet, the mag-
netic-field gradient h0 in the vicinity of the zero line, the
electric-field strength E0, and the relative transverse
component ξ ≡ By/B0, where B0 is the magnetic field
outside the sheet, are assumed to be known. A more
self-consistent formulation of the problem of a thin
reconnecting sheet is possible, but it is more complex
from a mathematical point of view [see subsection
3.4.3 in the book by Somov (1992)].

Consider a thin (a ! b), nonneutral (a/b ! ξ) cur-
rent sheet with a low transverse magnetic field (ξ ! 1)
in the strong-field approximation [see Somov (1994);
see more general formulations of the reconnection
problem ibidem]. We assume the electron temperature
to exceed significantly the ion one in the HTCS:

Te @ Ti, T ≡ Te. (4)

As in the test model, we rewrite the laws of mass
and momentum conservation, Ohm’s law, and the law
of energy conservation as order-of-magnitude relations
containing only the main terms:

(5)

(6)

(7)

(8)

(9)

where c is the speed of light, kB is the Boltzmann con-
stant, and M is the ion mass. In Eq. (5), v = cE0/B0 is the
plasma drift velocity into the sheet; the effective scale
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size of plasma outflow from the sheet is determined by
ξb. As follows from Eqs. (6) and (7), the outflow veloc-
ity is

(10)

The field near the sheet can be estimated as follows
(Syrovatskiœ 1974):

(11)

The energy equation (9) includes the magnetic
enthalpy flux into the sheet

(12)

which matches the Joule heating of the current sheet
(j2/σ)ab under conditions of the anomalous conductiv-
ity (3).

The thermal enthalpy flux from the sheet along
magnetic field lines is

(13)

where we took into account the fact that ni = ne ≡ n and
Ti ! Te ≡ T.

The kinetic energy flux of the plasma outflowing
from the sheet is

(14)

because the ion mass M exceeds significantly the elec-
tron mass m.

The heat flux along magnetic field lines can be rep-
resented as (Somov 1994; Somov et al. 1987)
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where θ = Te/Ti, and
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A schematic representation of the reconnecting current
sheet.
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(16)

The upper and lower expressions in Eq. (16)
describe the saturated and anomalous heat fluxes,
respectively.

Equation (9) does not include the thermal enthalpy
flux into the sheet

(17)

because T0 ! T, and the kinetic energy flux of the
plasma inflowing into the sheet

(18)

because v2 ! V2 in the strong-field approximation. The
magnetic enthalpy flux from the sheet

(19)

is also negligible, because  ! . Moreover, as was
shown in the test model, the following factors do not
contribute to the energy balance of the HTCS under the
solar-corona conditions: the energy exchange between
electrons and ions through Coulomb collisions, the heat
flux across the magnetic field, and the energy losses by
radiation.

Recall that the heat flux in the test model was con-
sidered as the saturated one, which takes place at 1 ≤
θ ≤ 8.1; this satisfies inequality (4) only approximately.
We will leave the same flux in Section 2

(20)

in order to clearly demonstrate the effect of the new for-
mula (3) for calculating the turbulent conductivity

(21)

In section (3), we take the anomalous heat flux cor-
responding to θ @ 1. Thus, closer agreement will be
reached between the initial assumptions and the speci-
fied functions; in addition, the question as to the sensi-
tivity of the HTCS model to the heat flux will be solved.

f θ( )

=   

1
4
--- M

m
----- 

 
1/2

, if 1 θ 8.1≤ ≤

1 3
θ
---+ 

 
1/2

M
m
----- 

 
1/2

θ3/2
1 3

θ
---+ 

 
1/2

1

θ1/2
--------–+

× 2 θ 3+( )
5

--------------------– , if θ 1 or θ 8.1.><exp

%th
in

5n0kBT0( )vb ! %th
out

,=

K
in 1

2
---Mn0v

2 1
2
---mn0v

2
+ 

  vb ! K
out

,=

%mag
out By

2

4π
------Vξb ! %mag

in
,=

By
2

B0
2

C||
n kBT( )3/2

4m
1/2

-----------------------ξb,=

σ σ1
T

1/2
n

E0
------------ Ò

1–( ), where σ1 2.98 10
5–
.×= =
2. HTCS WITH TURBULENT CONDUCTIVITY

First, let us determine the unknown quantities a, b,
n, and V from Eqs. (5)–(8) by considering the sheet
temperature T as an unknown parameter. We obtain the
following algebraic formulas:

(22)

(23)

(24)

(25)

We now derive the sheet temperature as a function
of n0, h0, E0, and ξ from Eq. (9). For this purpose, we
rewrite Eq. (9) as

(26)

Transform the terms on the right-hand side:

(27)

(28)

Substituting (27) and (28) in Eq. (26) yields

(29)

Hence, using Eq. (24), we obtain the temperature
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Thus, formulas (29), (30), (22), (23), and (25) deter-
mine the current-sheet characteristics n, T, a, b, and V
via the external parameters n0, E0, h0, and the dimen-
sionless parameter ξ. Apart from the above HTCS
parameters, we also calculated the power released in
the current sheet per unit sheet length (perpendicular to
the figure plane):

(31)

For comparison, Tables 1 and 2 give estimates of the
HTCS parameters, respectively, in the well-studied test
model and in the new model, i.e., with the new empiri-
cal formula for the anomalous turbulent-plasma con-
ductivity inside the sheet. The input data in Table 2 are,
of course, the same as those in Table 1.

As we see from the tables, the previous and new
results differ marginally. There are discrepancies only
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Table 1.  Test model for a HTCS

1 2 3 4

Input parameters:

   n0, cm–3 1010 1010 1010 1010

   E0, CGSE units 3.3 × 10–4 1.3 × 10–3 2.3 × 10–3 2.3 × 10–2

   h0, G/cm 1.8 × 10–6 1.2 × 10–7 4.8 × 10–7 1.5 × 10–7

   ξ 10–3 10–2 10–3 10–2

Computed quantities:

   T, ä 1.0 × 107 4.0 × 106 7.0 × 107 7.0 × 107

   n, cm–3 5.5 × 1010 5.5 × 1010 5.5 × 1010 5.5 × 1010

   a, cm 98 39 60 20

   b, cm 2.4 × 107 2.3 × 108 2.4 × 108 7.7 × 108

   V, cm/s 4.1 × 107 2.5 × 107 1.1 × 108 1.1 × 108

   σ, s–1 3.2 × 1012 1.3 × 1012 2.0 × 1012 6.3 × 1011

   E0/Ecr 1.4 × 103 2.3 × 103  6.3 × 104 6.3 × 105

   C||, erg/(cm s) 5.8 × 1014 1.3 × 1016 1.0 × 1017 3.1 × 1018

   P/l, erg/(cm s) 3.4 × 1015 7.9 × 1016 6.1 × 1017 2.0 × 1019
in the estimates of the conductivity and, as a conse-
quence, of the sheet thickness; they do not exceed a fac-
tor of 5. This suggests agreement between the two dif-
ferent approaches to calculating the anomalous plasma
conductivity: the theoretical one used in test models
(Somov 1992) and the empirical one described by de
Kluiver et al. (1991).

Note that, in the fourth case, E0/Ecr proves to be out-
side the interval on which relation (1) is defined. Nev-
ertheless, good agreement between the test and new
results apparently points to the possibility of extending
the validity range of this formula.

3. HTCS WITH ANOMALOUS
HEAT CONDUCTION

Now, let the plasma conductivity be given by for-
mula (21) and the heat flux by

(32)

i.e., we took into account the fact that f(θ) = 1 at θ @ 1
[see Eqs. (15) and (16)]. In this case, Eq. (9) takes the
form

(33)

The system of equations (5)–(8) and (33) is solved
in the same way as previously. First, a, b, n, and V are
determined from Eqs. (5)–(8), with the temperature T
being considered as a parameter. Then, T is expressed
in terms of n0, E0, h0, and ξ using Eq. (33). To this end,
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we rewrite the terms on the right-hand side of this equa-
tion as

(34)

and

(35)

From Eq. (33), we now obtain the ratio

(36)

Hence, using Eq. (24), we determine the current-
sheet temperature

(37)

Thus, in the new HTCS model with anomalous heat
flux, the quantities describing the current sheet (n, T, a,
b, and V) are given by formulas (36), (37), (22), (23),
and (25). Their estimates obtained for the same input
data as those in Table 1 are listed in Table 3.

A comparison of Tables 2 and 3 shows that replac-
ing the saturated heat flux by the anomalous one causes
C|| to decrease by a factor of 2 or 3, which changes the
result only slightly. The sheet becomes hotter and more
rarefied, and its thickness and width slightly increase.
The factor of changes does not exceed 4. Consequently,
the choice of heat flux (saturated or anomalous) is not
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Table 2.  New model for a HTCS with saturated heat flux

Set of input parameters (see Table 1) 1 2 3 4

Computed quantities:

T, ä 1.0 × 107 4.0 × 106 7.0 × 107 7.0 × 107

n, cm–3 5.5 × 1010 5.5 × 1010 5.5 × 1010 5.5 × 1010

a, cm 20 20 20 20

b, cm 2.4 × 107 2.3 × 108 2.4 × 108 7.7 × 108

V, cm/s 4.1 × 107 2.5 × 107 1.1 × 108 1.1 × 108

σ, s–1 1.6 × 1013 2.5 × 1012 6.0 × 1012 6.0 × 1011

E0/Ecr 1.4 × 103 2.3 × 103 6.3 × 104 6.3 × 105

C||, erg/(cm s) 5.8 × 1014 1.3 × 1016 1.0 × 1017 3.1 × 1018

P/l, erg/(cm s) 3.4 × 1015 7.9 × 1016 6.1 × 1017 2.0 × 1019

Table 3.  New model for a HTCS with anomalous heat conduction

Set of input parameters (see Table 1) 1 2 3 4

Computed quantities:

T, ä 4.3 × 107 1.7 × 107 3.0 × 108 3.0 × 108

n, cm–3 2.1 × 1010 2.1 × 1010 2.1 × 1010 2.1 × 1010

a, cm 32 32 32 32

b, cm 3.1 × 107 2.9 × 108 3.1 × 108 9.8 × 108

V, cm/s 8.4 × 107 5.3 × 107 2.2 × 108 2.2 × 108

σ, s–1 1.2 × 1013 2.0 × 1012 4.7 × 1012 4.7 × 1011

E0/Ecr 1.5 × 104 2.4 × 104 6.5 × 105 6.5 × 106

C||, erg/(cm s) 2.3 × 1014 5.4 × 1015 4.2 × 1016 1.3 × 1018

P/l, erg/(cm s) 5.5 × 1015 1.3 × 1017 1.0 × 1018 3.2 × 1019
critical in a rough comparison of the local models for a
reconnecting current sheet. However, the choice of heat
transport regime in a “superhot” (T > 30–40 MK)
plasma may prove to be of importance in interpreting
the hard X-ray flux from solar flares (see, e.g., Somov
and Kosugi, 1997; Somov et al. 1998).

In conclusion, note that the power of energy
release per unit length in the current sheet, depending
on conditions, varies over a wide range: from ~1015 to
~1019 erg cm–1 s–1; i.e., we obtain the power up to
1029 erg s–1 for a HTCS with a characteristic length of
~1010 cm, which is enough to account for flares, coro-
nal transients, and coronal mass ejections (Somov
1992).
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