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Abstract—The problem of the fast quenching of a discharge in tokamaks by injecting high-Z impurity pellets
is considered. Results are presented from experiments in the T-10 tokamak, in which a substantial decrease (up
to 70%) in the thermal plasmaenergy was observed. A one-dimensional transport codeis devel oped to describe
tokamak-discharge quenching. The code is used to simulate the experiments on quenching the T-10 discharge.
It is shown that the injection of ahigh-Z pellet into the T-10 plasma changes the transport coefficients as com-
pared to their steady-state values derived from the energy balance or scalings. © 2001 MAIK “ Nauka/ I nter pe-

riodica” .

1. INTRODUCTION

Fast removal of thermal and magnetic energy from
the plasma of a tokamak reactor is necessary under
emergency conditions and may also be required under
standard operating conditions. Among the emergency
conditions, first of all, we mention the major disruption
and instability related to the vertical displacement of
the plasma column as well as any other undesirable
processes requiring urgent termination (quenching) of
adischarge.

Even in modern facilities, during an uncontrollable
major disruption or vertical-displacement event, the
stored plasma energy may be released locally at the
divertor elements, which results in their destruction. In
addition, the conducting elements of theinstallation are
exposed to extreme mechanical loads due to currents
induced in them. Both of these factors reduce the reli-
ability and lifetime of the machine.

The problem of fast discharge quenching becomes
even more important for the ITER tokamak reactor, in
which the stored plasma energy is expected to attain
3 GJ[1]. This energy is high enough to evaporate sev-
eral kilograms of the wall material, which is unaccept-
able. Switching to the regime of fast discharge termina-
tion in response to an instability precursor may become
an efficient means for maintaining normal device oper-
ation. On the other hand, under standard operating sce-
narios, shortening the time required for quenching the
discharge decreases pauses in the device operation,
thereby increasing the mean power. That is why meth-
ods of fast discharge quenching have actively been
sought in recent years.

The simplest way of guenching a discharge is to
produce an intense source of radiation power lossin a
plasmain order for the plasma energy to be converted
into radiant energy and be dissipated uniformly on the
surface of the first wall. In this case, the loads on the

first wall of the device are expected not to exceed
allowable values [2]. As methods for delivering a radi-
ating material into a plasma, the injection of gas and
liquid jets or pellets are considered [1]. It was pointed
out that the main problems associated with plasma
cooling and increasing the plasma density are a major
disruption, the probability of which ishigh if the corre-
sponding density limit is exceeded [ 3], and the genera-
tion of abeam of runaway electrons[4]. Favorable con-
ditions for the generation of runaways are created due
to asubstantial growth in the toroidal electric field asa
consequence of both the decreasein the plasmatemper-
ature and the increase in the effective ion charge num-
ber. According to the current concept, the generation of
runawaysis associated with the avalanche effect, which
is related to the transition of thermal electrons to the
runaway regime after one close collision with arelativ-
istic runaway electron [4].

The influence of the nuclear charge number on the
plasma behavior during discharge quenching by differ-
ent materials is till unclear. Low-Z materias are
unlikely to cause an avalanche of runaway electrons.
However, to reach the required level of radiation power
loss, the amount of such materia introduced into the
plasmashould be hundreds of times larger than the den-
sity limit [3], in which case the probability that a dis-
ruption will occur before most of the energy isremoved
from the plasmaisevidently high. For high-Z materials,
such as krypton and xenon, the radiation power loss
ensuring the energy decay on time scales on the order
of tens of milliseconds may be achieved if the density
istwice as high as the density limit [2]. Such an excess
can hardly be dangerous. Thus, experiments in the
ASDEX Upgrade tokamak showed that exceeding the
density limit by afactor of 2 after theinjection of adeu-
terium pellet did not produce a disruption [5]. At the
same time, for high-Z impurities (Z > 6), a more effi-
cient generation of runaways is predicted [6]. In sum-
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mary, the use of high-Z impurities for quenching ITER
discharges depends on the efficiency of runaway gener-
ation and also on the development of methods for sup-
pressing it.

Experimental studies of discharge quenching by
injecting pellets with different nuclear charge numbers
were carried out in the ASDEX Upgrade, T-10, JET,
DIlI-D, and JT-60 tokamaks [5, 7-9]. The information
obtained on the plasma behavior is quite encouraging
for heavy materials. Thus, in the ASDEX Upgrade, the
discharge was quenched within 10-20 ms after the
injection of a neon pellet and no runaway generation
was observed [5]. In addition, it was pointed out that
both mechanical loads on the constructing elements
and the heat flux onto divertor plates were reduced sub-
stantialy in comparison with their level during a usual
disruption.

The generation of runaways observed in JT-60 was
efficiently suppressed by small, externally produced
helical perturbations of the magnetic field [9]. The
plasma energy completely decayed within 5-10 ms
after the injection of alarge Ne pellet.

The modeling of the processes accompanying fast
discharge quenching iscurrently initsinitial stage. The
only one-dimensional model, which isdescribed in [6],
fails to account for some important factors; in particu-
lar, it usesasimplified initial density distribution of the
injected impurity (it is assumed to be proportional to
the initial plasma density). Furthermore, the crossed
terms describing how the heat and particle fluxes affect
each other are omitted in the model. In our opinion,
such simplifications may substantially change the con-
clusions inferred from this model in [6]. The develop-
ment of an adequate model of discharge quenching and
itstesting using the available experimental database are
currently among the central problems to be solved.

This paper is devoted to experimental studies of dis-
charge quenching in the T-10 tokamak. In addition, our
aim isto develop a 1D-model alowing one to take into
account theinitial impurity distribution and related heat
and particle transport in order to describe the process of
tokamak discharge quenching using pellet injection. In
Section 2, we describe the experimental setup, the diag-
nostics used, and measurement techniques. Experimen-
tal results are presented and discussed in Section 3. The
numerical model, basic equations, and the initial and
boundary conditions are described in Section 4. In Sec-
tion 5, we present the main simulation results and com-
pare them with the experiment. In the Conclusion, the
main results are summarized and the directions of fur-
ther studies are outlined.

2. EXPERIMENTAL SETUP
AND MEASUREMENT TECHNIQUES

Experiments on discharge quenching were carried
out in the T-10 tokamak in the ohmic heating regime
with the following parameters: plasma current I, = 80—
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250 kA, loop voltage U, = 1.2V, toroidal magnetic field
B, = 25 T, limiter radius a, = 0.3 m, total radiation
power P, = 70 kW, central electron temperature T,(0) ~
1 keV, and line-averaged plasma density n, = (2.5
4.5) x 10 m=.

The scheme of the experiment on pellet injection in
the T-10 is described in detail in [11]. Impurities were
intruded into the plasma by injecting pelletsfrom top to
bottom toward the axis of the plasma column. KCl or Ti
pellets 0.3-0.6 mm in size were used. The injection
velocity was V,, = 30-150 m/s. The size, velocity, and
material of apellet determined theradial profile and the
power of the created radiation loss source. As arule,
pellets reached the middle of the minor radius a, and
the maximum amount of impurity material was depos-
ited into this region. It should be noted that, since KCI
isafragile material, pellets sometimes broke down into
severa small fragments in the course of their accelera-
tion. As a result, their penetration depth was reduced
and the time interval during which impurities were
injected into the plasma increased from ~1 ms (which
is typical for the ablation of a single-piece pellet) to
2-4 ms. The reason for this spread in timesisthat frag-
ments were accelerated in the gas flow to different
velocities depending on their size.

Together with an injector, a number of auxiliary
diagnostics were used in the experiments. A photo-
graphic camera installed on the outer side of the torus
at an angle of 11° to the equatoria plane alowed usto
trace the pellet trajectory. The exposure time (~15 ms)
substantially exceeded the ablation time (<4 ms). From
photographs, we could determine the pellet penetration
depth and the impurity distribution along the minor
radius. Examples of such photographs are presented in
Fig. 1. It is seen that, in shot no. 61812 (Fig. 1a), a
small single-piece pellet penetrates to a radius of
12 cm, whereas in shot no. 61905 (Fig. 1b), severa
fragments penetrating to 11 cm are evaporated.

A wide-angle photodetector installed in the injec-
tion port could measure visible radiation emitted from
an evaporating pellet. Asan example, Fig. 2 showsradi-
ation signals for single-piece (Fig. 2a) and broken
(Fig. 2b) pellets. Thisfigureillustrates the fact that, if a
pellet breaks down, the time interval during which an
impurity isintroduced into the plasmaincreases.

To monitor the penetration depth and velocity of a
pellet and to refer the signal I(r) to spatial coordinates,
we used an array of collimated photodetectors, which
was placed on the outside of the torus.

Pellets used in the experiment were small in size
(<0.7 mm) and in mass (<10~ g) and irregular in shape.
For this reason, it was impossible to directly measure
the amount of impurity injected into the plasmaand the
size of the injected pellet was estimated as follows.

From the known spatial profile of radiation of the
pellet cloud I(r), which was deduced from the wide-
angle photodetector signal I(t) or from photographs, we
2001
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calculated the increase in the line-averaged density,
assuming the linear relation between the pellet ablation
rate and radiation intensity:

N(r) = vi(r). (1)

Dependence (1) is confirmed experimentally for lith-
ium [12] and carbon [13] and agrees well with the
results of calculations using the code of [14].

The increase in the electron density after injection
was calculated neglecting the Shafranov shift and the
radial plasmadiffusion and assuming that perturbations
of the electron density gained poloidal and toroidal
symmetry in times much shorter than the radial-diffu-
sion time. We used the following formula[12]:

Nzimp(r)

Ang(r) = ———,
4TCRV 1

2

where R and V,, are the major radius and the pellet
velocity, respectively. The profile of the impurity
charge number Z,,(r) was calculated self-consistently
using the “average-ion” model [15] and the measured
electron temperature profile T.(r). The increase in the
density calculated from Eqg. (2) for various viewing
chords was compared with the experimental values
obtained using interferometer signals. The change in
the density was measured 2 ms after injection, when the
toroidal symmetry had already been established and the
diffusion expansion was till small. In this way, we
chose the proportionality factor y, which alowed us to
determine the impurity ablation rate. Its value was used
to calculate the effective diameter d, of a pellet assum-
ing that it is spherical in shape. The effective diameter
was calculated by the formula

Tapl 13
0 -
@mimpI Ndt[]
O 5 O
dp = b—1u , 3)
O TPimp [
O O
O O

where pj,, and m,,, are the mass density and the molec-
ular mass of the pellet material, respectively, and 1, is
the ablation time. For KCI, the mass density is pxq =
1.99 x 10° kg/m? and my, = 1.24 x 1072 kg.

A rapid drift of the evaporated material along the
major radius, which was predicted for ahydrogen pellet
in [16, 17] and recently observed in experiments [18,
19], should not strongly affect the results of our mea-
surements of the ablation rate. This assertion is based
on the geometric features of the experiment. The lines
of sight of the camera and wide-angle photodetector lie
at asmall angle to the major radius, whereas the pellets
move vertically from top to bottom toward the axis of
the plasma column. In addition, no significant drift of
the pellet cloud was observed in the experiments on the
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Fig. 1. Photographs of the trajectories of (a) a single-piece
pellet (shot no. 61812) and (b) fragmented pellet (shot
no. 61904).

injection of carbon pellets in the W7-AS stellarator
[13].

For analysis and simulations, we used the data from
the following main tokamak diagnostics: (i) A soft
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Fig. 2. Waveforms of the signals from the wide-angle pho-
todetector I(t) for shot nos. (a) 61812 and (b) 61904.
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Fig. 3. Time evolution of the main plasma parameters after
theinjection of aKCl pellet (shot no. 61905). The main evo-
lution stages are separated by vertical lines.

X-ray (SXR) amplitude analyzer [20] measured the
electron temperature profile before pellet injection. In
addition, afour-channel heterodyne receiver at the sec-
ond harmonic of the electron cyclotron frequency could
trace the time evolution of the electron temperature
profile T4, t) [21]; the absolute values of the tempera-
ture were normalized to the temperature profile mea-
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sured using the SXR diagnostics before pellet injection.
(i) An eight-chord microwave interferometer measured
the time evolution of the electron density profile ng(r, t)
[22]. (iii) The discharge current |, and the loop voltage
U, were monitored using standard electromagnetic
techniques. (iv) The MHD activity of the myn = 2/1
mode in the discharge was monitored using MHD
probes (MHD2 signals) [23].

3. EXPERIMENTAL RESULTS AND DISCUSSION

In experiments, pellets were injected in the steady-
state (current plateau) and ramp-down phases of the
discharge.

3.1. Injection of a KCI Pellet in the Seady-Sate Phase
of the Discharge

Figure 3 shows the time evolution of the n.,
T«(a. /2), U, and MHD2 signals for a typical shot
no. 61905; the pellet was injected in the steady-state
phase of the discharge. The pellet entered the plasma at
619 ms; this time is marked in the plots by vertica
lines. This discharge is characterized by the line-aver-

aged density n, =2.6 x 10" m and an effective pellet
size d, of about 390 um (the penetration depth is
b=10.5 cm).

The evolution of the plasma parameters in the
postinjection phase can be divided into several stages
(Fig. 3). Thefirst stage is determined by the processes
of evaporation and ionization of the pellet material. It
lasts for 1-4 ms, depending on the size, velocity, and
integrity of the pellet. In the case of a single-piece pel-
let (Figs. 1a, 2a), this stage lasts no longer than 1.5 ms;
otherwise (Figs. 1b, 2b), due to prolonged impurity
injection, this stage can last up to 4 ms. A discharge
with a long ablation and ionization stage is shown in
Fig. 3.

In this stage, new cold electrons are produced in the
plasma due to ionization of the impurity material, a
radiation source is formed, and the plasma parameters
gain poloidal and toroidal symmetry. The electron tem-
perature decreases insignificantly (by 50-100 eV),
whereas the electron density increases to values close
to the maximum value.

In the second stage, the thermal plasma energy is
converted into radiation emitted by the impurity
injected into the plasma column. This is accompanied
by radial diffusion of the impurity and an increase in
the loop voltage (to 3—10V) dueto the generation of the
induction field because of plasmacoaling. In this stage,
the electron temperature decreases markedly; the
decrease in the thermal plasma energy can attain 70%.
Asarule, this stage ends with a minor disruption, dur-
ing which the electron temperature drops abruptly and
the MHD activity increases. In the dischargeillustrated
inFig. 3, aminor disruption occurs at 637 ms; thistime
2001
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Fig. 4. Time evolution of the main plasma parameters after the injection of aTi pellet (shot no. 65052).

is marked in the plots by vertical lines. The second
stage lasts 5-30 msand is usually much longer than the
first stage. Sometimes, when small pellets are injected,
adisruption does not occur at all and the distinct grada-
tion between the second and third stagesis absent.

The third stage lasts from the first minor disruption
until the plasma parameters return to their steady-state
values. This stage begins with an abrupt drop in the
plasma temperature (2-5 ms after disruption, it
decreases to its minimum value) and a substantia
increase in the loop voltage to values above 30 V. It
should be noted that interferometry frequently fails
during this stage, which complicatesthe plasmadensity
diagnostics for this stage. The first minor disruption
may be followed by another minor disruption occurring
after 2030 ms or even several disruptions, which are
also accompanied by an increase in the MHD activity
and recovery of the temperature with a characteristic
transport time. The duration of the third stage varies
within awide range depending on the pellet size and the
number of minor disruptions. The main discharge
parameters n,, T,, and U, relax to new steady-state val-
ues close to those in the preinjection phase 3040 ms
after the last minor disruption. This is because the
impurity leaves the discharge during the characteristic
diffusion time. When aKCl pellet isinjected, the effec-
tiveion charge number Z,; of the plasmaincreases by a
factor of 2-3, which enhances the efficiency of ohmic
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plasma heating and affects the rate at which the temper-
ature relaxes to its steady-state value.

Thetotal plasma current during and after KCI pellet
injection varies only dlightly (<3%).

3.2. Injection of a Ti Pellet in the Seady-Sate Phase
of the Discharge

Experiments with Ti pellet injection were carried
outinregimeswith alow current I, = 80 kA and aline-
averaged plasma density of h, =2 x 10" m. In this
case, the decrease in the total plasma current attained
20% of its plateau value. This corresponded to a decay
of 50% of the magnetic energy of the plasma column.
However, in this case as well, the current amplitude
returned to its value before injection during 3040 ms.

An example of a discharge in which the magnetic
energy of the plasma column partially decays isillus-
trated in Fig. 4, which shows the evolution of the
plasma parameters in shot no. 65052. In this case, aTi
pellet ~400 um in size enters the plasma at 726 ms.
Note that the stage of the thermal-energy decay short-
ens significantly (to 2—3 ms) in this discharge and there
is a stage in which magnetic energy decays (Fig. 4,
stage 11"). Within thetimeinterval from 735 to 760 ms,
the feedback system cannot maintain the current con-
stant and the current drops, whereas the loop voltage
continues to grow. The saturation of the loop voltage
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Fig. 5. Time evolution of the main plasma parameters after the injection of a KCl pellet in the current ramp-down phase

(shot no. 62919).

signal at about 745 msis aresult of the overflow of an
ADC register in the data acquisition system. We aso
note that the current decreases significantly when the
plasma is cooled to a temperature on the order of 20—
30 eV, which could not be achieved in the case of KCI
pellet injection. The plasma temperature at which the
magnetic plasma energy decays varies only dightly
during the current quenching phase. In this case, the
magnetic component of the plasma energy is converted
into heat and, then, into radiation.

The MHD activity in this shot increases monotoni-
cally during the entire steady-state phase of the dis-
charge, reaches its maximum 5 ms after injection, and
then decreases sharply. The low MHD activity of the
plasma after injection is probably the reason why no
minor disruptions occur in this case. The discharge
recovery occurs simultaneously with the build-up of
sawtooth oscillations.

3.3. Injection of a KCl Pellet in the Current
Ramp-down Phase

The evolution of the main plasma parameters in the
case of pellet injection in the current ramp-down phase
is similar to the case of injection in the current plateau
phase. The main difference isthat, in the current ramp-
down phase, the plasma parameters after disruption are

not restored (Fig. 5, shot no. 62919) and the thermal
plasma energy decays almost completely in 30 ms.

With agiven set of the parameters of the controlling
program, the current in this discharge should fall to
zeroin atime of ~300 msat arate of 0.85 MA/s. Pellet
injection shortens this time substantially; in this case,
the current decays in atime of ~80 ms. From the loop
voltage signal U, in Fig. 5, itis seen that, inthis case as
well, the feedback system has no time to implement the
program of maintaining the current-fall rate constant.
As follows from the overflow of ADC registersin the
data acquisition system, the loop voltage grows rapidly,
while the current continues to fall.

3.4. Discussion of the Experimental Results

The table presents the main pellet parameters and
the plasma parameters for the shots with KCI injection.
These parameters will be used in further analysis. For
each shot, the line-averaged plasma density before
injection n, the penetration radius b, the effective pel-
let size d,, the maximum relative perturbation of the
total number of plasma electrons ANg,,,./Ne, the mea-
sured maximum relative decrease in the electron tem-
perature a the center of the plasma column
-AT,(0)/T,(0) and at the middle of the limiter radius
PLASMA PHYSICS REPORTS  Vol. 27

No. 3 2001



STUDY OF DISCHARGE QUENCHING IN THE T-10 TOKAMAK

187

Parameters of the plasma and KCl pelletsin the experiments on discharge quenching in the T-10 tokamak

| 107 | e | g | S | R | D
Steady-state phase of the discharge
61811 2.55 115 - - 0.2 0.25 -
61812 2.6 12 340 0.18(0.14) 0.25 0.45 35
61905 2.45 10.5 390 0.30(0.22) 0.45 0.55 13
61904 2.45 10 450 0.44(0.26) 0.55 0.7 6
61818 3.05 12 410 0.27 0.5 0.55 7
61819 3.05 11 - - 0.5 0.6 6
61817 3.05 6 590 0.78 0.85 09 2
61898 4.1 8 - - 0.2 0.3 15
61900 4.1 10.5 430 0.23 05 0.7 7
61897 41 8 430 0.23 0.5 0.7 4
61895 455 10.5 490 0.30 0.6 0.75 2
Current ramp-down phase

62920 245 16 - - 0.25 0.25 -
62919 2.45 8 - - 0.3 0.45 22

-AT.(3 /2)/Te(a, /2), and the time intervals between
the instant of injection and the first minor electron-tem-
perature disruption (thetotal duration of stages| and I1)
At are presented.

The maximum perturbation of the total number of
plasma electrons AN,,,../N. Was calculated from the
total impurity amount in the plasma, assuming that
impurity is completely ionized. Actually, at tempera-
tures of about 1 keV, the impurity is ionized only par-
tially (Fig. 6). For some shots, the actual relative
increase in the plasma density could not be determined
because of the unstable operation of the microwave
interferometer under conditions when the plasma den-
sity grew sharply. The measured values of the density
increase (in the shots for which these measurements
were successful) are given in the table in the same col-
umn (in brackets).

Note that At decreases as the plasma density in the
preinjection phase or the impurity amount increases. In
some shots with a small amount of the injected mate-
rial, the disruption did not occur at al (see, e.g., shot
no. 61811). This leads us to suggest that disruption
occurs due to exceeding the density limit [3].

We also note that there is little difference between
thevalue of the relative decreasein the electron temper-
ature in the plasma center and that in the middle of the
minor radius. In addition, this difference depends
weakly on the pellet penetration depth (shot nos. 61900
and 61897). This evidences that impurities penetrate
rapidly into the central plasmaregion.

It is seen from the table that, for a fixed relative
value of the plasma density perturbation AN,,,,,./N., the
discharge with a higher density is cooled more effi-
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ciently (compare, e.g., shot nos. 61905 and 61895).
Evidently, this is due to a greater amount of impurity
and higher radiation power per atom at a higher elec-
tron density.

The maximum pellet size was limited by the barrel
diameter of the pellet gun and was equal to ~600 pum.

Ar radiative cooling rate, eV cm’/s
105

1 0710 N I 1 1 1
Average charge number of Ar ions

151
10 -

5,

10°
T, eV

109 10! 102 10°® 104

Fig. 6. Temperature dependences of the radiative cooling
rate and the average charge number of argon ions calculated
by the average-ion model [15] for the typical parameters of
the T-10 plasma.
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Thissizelimited the number of injected impurity atoms
by alevel of 5 x 10'® (about 10% of the total number of
plasma ions). The size limitation is the main reason
why the plasma energy did not decay completely after
injection. Injection only produced a substantial pertur-
bation of the plasma parameters, which then usually
returned to their steady-state values.

However, in experiments with KCI pellets, the ther-
mal plasma energy decreased substantialy. Thus, in
shot no. 61817, the thermal energy decreased by 70%.
In experiments with the injection of titanium, which
has a higher emissivity, the magnetic energy could aso
decay in regimes with low densities and low currents.
As was mentioned above, in shot no. 65052, the
decrease in magnetic energy was about 50%. Hence,
we can expect that the plasmaenergy in T-10 will decay
completely if the amount of the injected impurity is
increased by afactor of 2-3.

As to the reason why minor disruptions occur after
the injection of a large amount of impurities, we may
suggest that these disruptions are initiated by the
growth of the nyn = 2/1 and nyn = 3/2 magnetic islands
with their subsequent reconnection [7]. Probably, this
growth is caused by the current redistribution provoked
by pellet injection.

4. NUMERICAL MODEL

To simulate the process of plasma cooling after pel-
let injection, we developed a numerical code based on
the following set of transport equations:

6n+ 10 azimp

at “rartT) = Mg @
animp 1—6 —
W*’ rﬁ(rrimp) =0, (5)
3onT 10 Srrjo_rfonT
2ot rar%[quZFT}D n or (6)

= n(Qoh_Qimp_Qbr)i

90E _ ¢ a8 OE

ot 4nr0rrar' )

The set of equations written in cylindrical coordi-
natesis solved with respect to the unknownsn = n(r, t),
Mirp = N1, D, T=T(r, 1), and E= E(r, 1), which describe
the profiles of the electron density, the density of
injected-impurity ions, the electron temperature, and
the toroidal electric field, respectively. Equations (4)
and (5) describe the balance of electrons and impurity
ions. It is assumed that the main source and sink on the
right-hand side of Eq. (4) are the ionization and recom-
bination of impurity ions. Here, Z;,, is the average
impurity-ion charge number. When cal culating the evo-
[ution of the plasma parameters, it is assumed that, at
each time, the quasineutrality condition N=nNp + ZpyyNip

TIMOKHIN et al.

is satisfied, where np is the deuterium-ion density pro-
file before pellet injection. Equation (6) describes the
electron energy balance. Itsright-hand side containsthe
main energy sinks Qp,, and Q;y, (the bremsstrahlung
power and the dominant-impurity radiation power) and
the ohmic heating source Q. Equation (7) isthe Max-
well equation for the toroidal electric field. Here, the
conductivity o is assumed to be equal to the Spitzer
conductivity and c stands for the speed of light in vac-
uum.

The electron and injected-impurity ion fluxes are
written in the following form:

on

r=-D3-+nv, N
anim
Fimp = =D=5, S MV
and the electron heat flux is
- 9T
q-= _Xar . 9)

The transport coefficients D and x were assumed to be
the same for electrons and impurity ions. They were
chosen based on the Alcator scaling D = a/n. The pro-
portionality factor a and the ratio D/y were the param-
eters of the problem.

The pinch velocity Vs was determined from the
measured electron density profile ng in the preinjection
phase and a given value of D4 using the formula

_ Dgong
Vs = o (10)
When calculating further evolution, the ratio Dg/V,
was assumed to be constant.

The main-impurity radiation power Q,,, and the
average charge number of impurity ions Z;,,, were cal-
culated by the coronal equilibrium model in the aver-
age-ion approximation [15]. When calculating Q,,, and
Zy, for KCI, we used Ar data, which areknownin more
detail. The reason for this is that, in the temperature
range of interest (100-1000 eV), the temperature
dependences of Q;,, and Z,, for average Ar ions are
closeto those for average KCl ions. Figure 6 showsthe
temperature dependences of the Ar radiation power and
the average charge number of argon ions calculated by
this model. The radiation power as a function of the
temperature is nonmonotonic and is maximum near
20 eV.

The boundary conditionsfor Egs. (4)—(7) were cho-
sen as follows. At the plasma column axis, the condi-

tion ai = 0 was set for al of the functions. At the
M= 0

outer plasma boundary, the temperature and the elec-

tron density were fixed (T(a, t) = const and n(a, t) =

const) and the ion density of the injected impurity was
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assumed to be zero: n(a, t) = 0 (the absorbent wall).
The electric field at the outer plasma boundary was a
superposition of the field produced by the inductor
according to the current-maintaining program and the
plasmainduction field. In this study, the boundary elec-
tric field was specified based on the experimentaly
measured |oop voltage:
E(a, t) = U (t)/21R. (11)
The initial conditions for Egs. (4)—7) were calcu-
lated using the profiles of the parametersn, niy,, T, and
E in the preinjection phase. For the electron tempera-
ture and density, we used the data from interferometry
and SXR diagnostics, respectively (Fig. 7). Then, and
E profiles before injection were assumed to be constant
over the minor radius (N, = 0). Thevalue of E wascal-
culated using Eg. (11) from the value of U, in the prein-

jection phase for a given regime. From the profile N (r)
derived from Eqg. (1), theinitial profile was determined:

N(r)

> : (12)
4TURV 1

nimp O(r) =

Assuming that the pressure was constant on a mag-
netic surface and the plasma parameters rapidly gained
poloidal and toroidal symmetry, we determined the ini-
tial temperature and density profiles. To do this, we
solved the following self-consistent set of equations:

Apg(r) = n(r)T(r) —no(r, To(r))To(r) = 0, (13)

no(rvTO(r)) = r](r)'i'rlimp O(r)zimp(r’TO(r))- (14)

Theinitial condition for the electric field E, wasfor-
mulated in a similar way, assuming the current profile
to be constant:

AJo(r) = o(r, T(N)E(r) —0o(r, To(N)Eo(r) = 0. (15)

In Egs. (13)—<15), the zero index stands for the initial
profiles and the profiles for the preinjection phase are
written without indices. The initial conditions for shot
no. 61812 and the steady-state profiles for this shot are
showninFig. 7.

Cdlculation of the initial values by the method
described above is correct if the total time required for
apellet to fly, evaporate, and ionize and for the plasma
parameters to gain poloidal and toroidal symmetry is
short compared to the time characteristic of further
plasma evolution. In our case, these times are equal to
1-4 and 20-30 ms, respectively. Therefore, we can use
the profiles obtained from Egs. (12)—15) asinitial con-
ditions for Egs. (4)—7). In general, when afairly large
amount of impurities is injected into the plasma, the
process of discharge quenching lasts for several milli-
seconds; inthis case, this approach is evidently inappli-
cable.

PLASMA PHYSICS REPORTS  Vol. 27

No. 3 2001

189
T, keV E,, V/cm
1.5 6
1.0 4+
0 g N
1 O 1 J
n,, 1013 cm=3 Zett
6 6~
4 41
2 2k
0 0.5 1.0 0 0.5 1.0
— Initia conditions rla
— Steady state

Fig. 7. The calculated profiles of the electron temperature
Te, toroidal electric field E,, electron density n,, and effec-

tive ion charge number Z ¢ in the steady-state phase of the

discharge (shot no. 61812) and the profiles of these quanti-
tiesafter pellet injection, which were used astheinitial con-
ditions for Egs. (4)—(7). Circles show the experimental val-
ues of the electron temperature measured by SXR diagnos-
tics before injection.

5. SSMULATION RESULTS

Shots for simulation were chosen taking into
account the maximum available experimental data on
both the evolution of the plasmaparametersand thedis-
tribution of the injected impurity along the minor
radius.

Figure 8 shows the results of simulations for shot
no. 61812. In this shot, a KCI pellet containing about
6.5 x 10'7 impurity atoms was injected into the plasma
at 670 ms. Theinjection timeis marked in the figure by
avertical line. In simulations, the transport coefficients
were assumed to be equal to their steady-state values
and it was assumed that D/x = 1. It is seen that, in this
case, the increase in the line-averaged electron density
as a function of time is described well by the model,
whereas the measured decrease in the electron temper-
ature in the central region of the plasma column is
much more pronounced than the calculated one. Simu-
lations even yield a weak increase in the electron tem-
perature in the central region, which isexplained by the
relatively slow penetration of the emitting impurity into
thisregion in comparison with the rearrangement of the
current profile when the current is displaced from the
cold plasma edge, where the injected impurity is
mainly concentrated, toward the central region.

Figure 8 demonstrates the best simulation run; we
failed to achieve a better agreement with the experi-
ment by varying the plasma parameters. The simulation
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Fig. 8. Time evolution of the electron temperature (on the left) and line-averaged electron density (on the right) after pellet injection
(shot no. 61812). Heavy lines show the experimentally measured evolution of the parameters, and light lines show the results of
calculations without taking into account the enhanced-transport effects for D/x = 1. The viewing chords are indicated in the plots.

The injection time is marked by light vertical lines.

parameters varied within the following ranges. a = (1-
5) x 10'7 (cm s)™ and D/x = 0.1-10. We aso took into
account a possible error in determining the factor y in
Eqg. (1), which givesthe total number of impurity atoms
brought with the pellet into the plasma (the effective
pellet size). Accordingly, y was varied within £10%
around itsvalue calculated from theincrease in the den-
sity dueto injection [see Eq. (2)].

A criterion for the agreement between calculation
and experiment was the minimum of the norm of the
variance between the calculated and experimental time
dependences of the plasma parameters:

i i 2
%ZI(XWC(D—X%(U) at (16)

B/
Here, xLXp (t) is the experimental evolution of the ith

parameter and xica,c(t) is the calculated evolution. Inte-

gration and averaging were carried out over the entire
time interval T in which calculations were compared
with experiment, and summation was performed over
all the parameters of interest.

Based on the analysis of simulation results, we can
conclude that the behavior of the electron temperature
measured in inner channels cannot be adequately

described assuming that the transport coefficients Dy,
Xs and Vs remain unchanged (i.e., equal to their values
in the preinjection phase) during plasmaevolution. The
character of the evolution shows that impurity injection
substantially increases the transport coefficients. The
increasein transport coefficients promotes the impurity
penetration into the central region of the plasma col-
umn, which results in a stronger plasma cooling in this
region and, as aconsequence, aweaker distortion of the
current profile. A similar effect, the so-called
“enhanced transport” (ET), was revealed in certain
existing devices and, at present, is under active study
(see, eg., [24, 29)).

To model the ET effect, the transport coefficients
and the pinch velocity were multiplied by the factor

1+ Fexp(-t/Btg). a7

As aresult, the transport coefficients increased by the
factor 1 + F, tending to their steady-state values in a
time Btg, where T¢ is the plasma energy confinement
time. For T-10 discharge regimes used in these experi-
ments, the time 1 attained about 100 ms and varied
only dightly from shot to shot. The parameters 3 and F
determining the duration and amplitude of the trans-
port-coefficient perturbations were chosen experimen-
tally and were the parameters of the problem. Thevalue
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Fig. 9. Time evolution of the electron temperature (on the left) and line-averaged electron density (on the right) after pellet injection
(shot no. 61812). Heavy lines show the experimentally measured evolution of the parameters, and light lines show the results of
calculations taking into account the enhanced-transport effects for D/x = 1/3. The transport coefficients and the pinch velocity are

multiplied by factor (17) with F =5 and = 1/10.

of B varied in the range 1/30-1/3, and the factor F var-
ied within the range 1-10.

Figure 9 shows the results of simulations with
alowancefor the ET effect for the same shot no. 61812.
The parameters characterizing transport-coefficient
perturbationsare 3 = /10 and F = 5; theratio D/x = 1/3
corresponds to the threefold decrease in the diffusion
coefficient D as compared to the simulations described
above. This somewhat compensates for the increase in
D duetothe ET effect at aconstant a. The other param-
eters are the same as in the simulations presented in
Fig. 8. It is seen that, with the ET effect incorporated
into it, the model satisfactorily describes the behavior
of the electron temperature measured in inner channels
and, as previously, describes well the behavior of the
electron temperature measured in outer channels and
the behavior of the plasma density measured by inter-
ferometry.

Figure 10 shows the results of calculations of the
response of the electron temperature to KCl pellet
injection in two other shots. In this case, the amount of
injected impurity is somewhat greater than that for the
shot considered above. In shot no. 61905, 1.0 x 10'8
impurity atomswere injected, whereasin shot no. 61904,
1.5 x 10'® atoms were injected. The pellet flew into the
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plasma at 619 msin both shots. In these shots, a minor
disruption (marked by the second thin vertical line in
the figure) occurred at 15 and 8 ms after injection,
respectively. Since disruption mechanisms are not
incorporated into the model, simulations can ade-
quately describe the evol ution of the plasmaparameters
only until adisruption.

From Fig. 10, it is seen that, as the amount of
injected impurity increases, the discrepancy between
the modeled and experimental behavior of the electron
temperature measured in inner channels becomes more
pronounced. Therefore, it may be suggested that the
changes in the transport coefficients depend on the
amount of the injected impurity. To verify this, we per-
formed simulations in which the changes in the trans-
port coefficientsincreased proportionally to the amount
of atoms injected into the discharge (F = 7.8 for shot
no. 61905 and F = 11.5 for shot no. 61904). Theresults
of simulations are illustrated in Fig. 11. It is seen that
the behavior of the electron temperature measured in
inner channels is described better in this case. Most
clearly, thisis seen in shot no. 61904.

The physical picture of the ET effect is still poorly
understood. One of the possible mechanisms for
enhanced transport may be related to an increase in
magnetic field fluctuations and, as a consequence, a
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Fig. 10. Time evolution of the electron temperature in shot nos. 61905 (on the left) and 61904 (on the right) after pellet injection.
The parameters and notation correspond to Fig. 9.
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Fig. 11. Time evolution of the electron temperature in shot nos. 61905 (on the left) and 61904 (on the right) after pellet injection.
The transport coefficients and the pinch velocity are multiplied by factor (17) with 3 = 1/10, F = 7.8 for shot no. 61905, and F = 11.5
for shot no. 61904.
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partial destruction of magnetic surfaces. This explana-
tion was proposed by Whyte et al. [26], who described
the experiments on the injection of massive Ne pellets
into the plasma of the D-111D tokamak. Neon pellets
penetrated to less than one-haf of the minor radius
(r/a~0.45). Nevertheless, even 1 mslater, a substantial
amount of theinjected impurity penetrated into the cen-
tral plasmaregion. Immediately after injection, signifi-
cant fluctuations of the toroidal magnetic field (dB/B ~
0.02) were observed. The estimates for the transport
coefficients made in [26] using a model alowing for
fluctuations of the magnetic filed [27] gave D ~
550 m?/s, which agreed well with the observed times of
impurity penetration into the central region of the
plasma column (~1 ms).

6. CONCLUSION

Experiments on discharge quenching by injecting
high-Z impurity pellets into the plasma have been car-
ried out in the T-10 tokamak. The pellets were injected
in both the current-plateau and ramp-down phases. The
evolution of the plasma parameters can be divided into
three main stages: the stage in which the pellet is evap-
orated and the distribution of the injected impurity
gains poloidal and toroida symmetry, the thermal-
energy decay stage, and the stage of minor disruptions
and relaxation of the plasma parametersto values close
to those before injection. In some cases, after the injec-
tion of Ti pellets, the magnetic-energy decay stage was
observed immediately after the thermal-energy decay
stage.

The experiments have shown that, with technically
attainable pellet sizes (less than 0.6 mm), the stored
plasma energy did not decay completely and pellets
only induced strong perturbations of the plasma param-
eters. Nevertheless, the relative decrease in the thermal
plasma energy attained 70% and, in some cases, the
energy of the poloidal magnetic field decreased by
50%. In this case, theinjection of ahigh-Z impurity did
not cause a major disruption. Pellet injection in the
ramp-down phase made it possible to substantially
accelerate the normal termination of the discharge (the
guenching time decreased several times).

A one-dimensional transport code was developed in
order to describe the response of the plasma parameters
to the injection of alarge amount of impurity. The code
was used to simulate the shots with pellet injection. It
isshown that the experiment (in particular, the behavior
of the electron temperature in the central region of the
plasma column) cannot be adequately described if
the transport coefficients in the steady-state phase of
the discharge are used to describe the evolution of the
plasma parameters after injection. Presumably, this is
due to the ET effect. The evolution of the plasma
parameters can be described rather well assuming that,
in atime on the order of 0.1 of the plasma energy con-
finement time, the transport coefficients increase 5-
10 times throughout the plasma column. It is shown
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that the changes in transport coefficientsincrease asthe
amount of impurity injected into the discharge
increases. One of the possible mechanisms for the
observed ET effect could be the destruction of mag-
netic surfaces due to injection [26].

In the future, we plan to develop a model that more
adequately (in comparison with the average-ion model)
describes plasmaradiation |oss and the effective charge
number of plasmaions. The effect of runaway electrons
should also be included in the model. Moreover, in
future experiments, it will be expedient to use an injec-
tor capable of injecting a greater amount of impurities.
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in a Tokamak with a Double Resistive Wall
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Abstract—A study is made of the problem of active stabilization of the resistive wall modesin atokamak with
two conducting walls between the plasma column and the stabilizing system. The problem is analyzed for a
steady-state configuration (without rotation) in the standard cylindrical approximation under the assumption
that the stabilizing system responds instantaneously to a magnetic field perturbation by generating an in-phase
signal with the required amplitude. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Itiswell known that, in order to achieve high values
of B (the ratio of the plasma pressure to the magnetic
field pressure) in long-term tokamak discharges, it is
necessary to solve the problem of the suppression of
resistive wall modes (RWMs). Experiments aimed at
studying the RWM instability in the DIII-D tokamak
[1-6] show that thisisindeed aserious problem. Thisis
also a challenge for the development of the ITER toka-
mak reactor [7].

The most simple and realistic suppression method is
active stabilization of the RWMs by external control-
ling magnetic fields capable of responding to a mag-
netic perturbation generated by the plasma (see [3-15]
and the literature cited therein). The active stabilization
system in DIII-D makes it possible to confine the
plasma in a quiescent state for a substantially longer
time and to achieve higher (3 values [3-6]. Both exper-
iments and favorable theoretical predictions stimulate
further effortsin this direction.

In the simplest analytic formulation of the RWM
stabilization problem, there are three elements deter-
mining the behavior of RWMs: a plasma, a conducting
wall (the only passive el ement), and stabilizing conduc-
tors[8, 10, 13]. However, real devices may have several
passive conducting elements. For example, in ITER, it
is proposed that there should be two resistive walls
(separated by afinite distance) between the plasmaand
the stabilizing system (one may also speak of a double
wall [7, p. 2593]). Our purpose here is to investigate
RWM stabilization in atokamak with adouble resistive
wall.

In Section 2, we formulate the problem and write
out the basic equations. In Section 3, we briefly
describe the standard cylindrical model employed in
our analysis. In Section 4, we derive a dispersion rela-
tion for a tokamak with a double resistive wall and
explain the physical meaning of the main parameter
characterizing the plasmain our problem. In Section 5,

we discuss the properties of the dispersion relation for
aRWM in the presence of two resistive walls but in the
absence of an external stabilizing magnetic field. In
Section 6, we examine active RWM stabilization. In the
Conclusion, we summarize the main results obtained.

Thiswork isanatural continuation of papers[8, 13],
which were aimed at studying the possibility of sup-
pressing RWMs in atokamak with a stabilizing system
placed either just near asingle conducting wall [8] or at
afinite distance from it [13]. Of course, the problem at
hand could be solved by precisely the same method as
in [8, 13], in which case, however, both the derivations
and the final results would be rather tangled. We apply
another approach alowing a simple and illustrative
description, even although we treated a problem that is
more complicated than in [8, 13].

2. FORMULATION OF THE PROBLEM
AND BASIC EQUATIONS

To solve the problem, we must calculate the per-
turbed magnetic field in three media: plasma, the vac-
uum region outside the plasma, and conducting metal
walls that separate the vacuum region into several sub-
regions.

The most complicated problem isthat of calculating
the field in the plasma, in which case it is necessary to
solve reduced MHD equations. The complexity of the
analytic problem forces one to treat only the simplest
cases, when the problem can be reduced to solving one
[8, 10, 13, 16-18] or severa [19] one-dimensional
equations.

It iswell known that, in cylindrical geometry, such
an equationis[17, 18, 20-22]

2 ~ N
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where Vo=V —2(2 - V), { = (rexp(imd —inl + yt),
the perturbed magnetic field B = V) x 2 isexpressed
in terms of the function V{ x 2, Z is the unit vector
aong the z-axis of a cylindrical coordinate system
(r, 8, z= RQ) with 21IR the circumference of an equiva
lent torus, yisthe perturbation growth rate, tisthetime,
F = (B,/r)[m-ng(r)], B;(r) is the equilibrium magnetic
field component, g is the safety factor, p is the plasma
density, j isthe z-component of the current density, and
the prime denotes the radial derivative. Here and in
other formulas, the magnetic constant (the vacuum
magnetic permeability) p, = 4 x 10”7 H/m is present,
because we are working in Sl units.

Even Eqg. (1), which is the smplest possible equa-
tion for the function {J, turns out to be fairly compli-
cated. For example, for a parabolic current profile, the
solution to this equation is expressed in terms of hyper-
geometric functions [19, 23]. That is why, the stability
of kink and tearing modes is often studied under the
assumption of a uniform current density (see, e.g., [8,
16-18, 21, 22)).

For redlistic current distributions, Eq. (1) must be
solved numerically. On the other hand, the problem of
RWM stabilization can be formulated in such a way
that the desired dispersion relation would contain only
one plasma parameter—the perturbation growth ratein
the absence of active stabilization [8, 13]. In thisformu-
lation (which will be clarified below), the main task is
to examine the behavior of the magnetic perturbation
outsidethe plasma, i.e., in vacuum regionswhereaall the
characteristics are known, the geometry is fixed, and
there is no need to calculate the force balance.

Outside the plasma, the magnetic perturbation is
described by the Maxwell equations

rot = —%—?, (2)
divB = 0, (3)
rotH = j 4)
and Ohm's law for each of the conducting walls,
| = oE. &)

Here, we use the standard notation: E and H are the
electric and magnetic fields, B = pp H is the mag-
netic induction, | is the magnetic permeability of
the medium, and o, is the electric conductivity of the
kth wall.

In tokamaks, the thicknesses of the vacuum cham-
ber and other conducting walls are small. Conse-
guently, in our problem, all of the metal objects can be
regarded as infinitely thin conducting shells. For a
current-carrying shell in vacuum, we have (see, eg.,
[24, 25])

HOK = nx (BOUt—Bm), (6)
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where K isthe surface current density, n isthe unit nor-
mal to the surface, B° is the magnitude of B at the
outer surface of the shell (on the side the unit normal n
is directed), and B™" is the magnitude of B at the inner
surface. In our case, we have K = jd,, where d, is the
wall thickness, which is assumed to be smaller than the
characteristic wall dimension, e.g., the minor radius r,
in the cylindrical model. Taking into account Ohm’s
law, we obtain from Eq. (6)

n x (Bout _ Bin)
E = 7
(s e )
where gy is the surface conductivity (for real conduc-
tors, o, = 0,d,) and the argument s, refers to the corre-
sponding surface. With alowance for Eq. (7), the pro-
jection of Eqg. (2) onto the normal n has the form

a _ ;:)ut _ BiTn

a Bn - VT UOO-S ’ (8)
whereB,=n-B,B,=B-n(n-B), V.=V -nn V),
and the subscripts n and T stand for the normal and tan-
gential components, respectively.

Along with Eqg. (8), we use the following conse-
guence of Eq. (3):

n V(B> - B! + div(B™ -B.") = 0, 9)

which isvalid at any surface. Note that, in general, the
operators [V,] in Eq. (8) and div in Eq. (9) are not the
same.

By definition, the magnetic fields B and B!" in
Eq. (8) are vacuum fields. Since the values of B, arethe
same on both sides of any surface, the norma compo-
nent B,, can also be regarded as a vacuum field compo-
nent. Hence, under the assumption that the shells are
infinitely thin, the problem of calculating the magnetic
perturbation outside the plasma reduces to a problem
for avacuum region, i.e., to the equations divB = 0 and
curlB with the additional conditions (8) at every con-
ducting shell. The perturbed magnetic fields obtained
for the vacuum and plasma regions should be matched
at the plasma—vacuum boundary. As aresult, we arrive
at the desired dispersion relation.

3. STANDARD CYLINDRICAL MODEL

In cylindrical geometry, the plasma column is
regarded as acircular cylinder, the conducting walls are
coaxia circular cylinders, and the perturbed magnetic
field is a helically symmetric field, which is described
in detail in the well-known paper by Morozov and
Solov’ev [26].

In vacuum, the magnetic field can be described in
terms of one scalar function (e.g., by the scalar poten-
tial). In the theory of MHD plasma stability, thisis usu-
PLASMA PHYSICS REPORTS  Vol. 27
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aly the radial component of the perturbed magnetic
field,

Br = B, (r)exp[i(mB—nl) +yt]. (10)
Recall that r, 6, and { = zZR are cylindrical coordinates
related to the symmetry axis, but we use the angular
coordinate { (which corresponds to the toroidal angle)
instead of the longitudina coordinate z. In analyzing
RWMs, magnetic perturbations with small toroidal and
poloidal wavenumbers, m and n, are of particular
importance. In this case, the exact expression for the
radial component of the perturbed magnetic field [26]
can be approximated by

B,(r) = c(r™ t+Dr ™), (11)
For each vacuum subregion, the constants C and D
should be found by matching the solutions at the corre-
sponding separating surfaces (see[13]).

The solutions should be matched with the help of
Eq. (8), which should be satisfied at every conducting
wall. At the surface of a circular cylinder, the equality
V. - B, = divB, holds, and we can use relationship (9)
to eliminate B; in Eq. (8), which thus becomes

a .
MoOs3:Bn = N V(B ~By). (12)

Substituting expression (10) into Eq. (12) yields

1 out
o= B (13)
Br in

where ¥, =yt d, and r, are the thickness and minor
radius of the kth wall, and T, = Y04 = HOi0dl IS the
resistive wall diffusion time.

Then, our approach reduces to finding the coeffi-
cientsC and D in expression (11) for each vacuum sub-
region. In principle, these coefficients can be cal cul ated
using a method analogous to that developed in [8, 13].
However, problems that are more complicated than
those in [8, 13] involve more lengthy algebra and yield
more complicated conditionsfor RWM stabilization. In
order to overcome difficulties in this approach and to
make the description simple and illustrative, we pro-
pose to operate with other constants accounting for the
particular contributions of individual sources to the
total magnetic field B,(r). A similar approach was
applied in [10], in which, however, the role of the main
parameters was played by the standard characteristics
of the electric circuits (such as currents, resistances,
and inductances). In contrast to [10], we will treat the
problem using a smaller number of main parameters
and alarger number of passive parameters. In speaking
of the magnetic field, we imply the individual helical
harmonic (10).
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The magnetic field produced by an infinitely thin
cylindrical shell of radiusr, can be specified as

K
B(r)

x™! for x<x, (inside the shell) (14)

kO
Dxlf " "t for x> X, (outside the shell),
where

XErlry, X =r.dry, (15)

r, isthe minor radius of the first conducting wall, and
B, isthevalue of B® at thiswall (x = 1).

Representation (14) is especially convenient for our
purposes because, according to Eq. (13), the jump in

B, (r) at the surfacer =r, is determined exclusively by
the magnetic self-field B (ry) = By * at this sur-
face:

(B0 = —2mBxy (16)
With this notation, Eq. (13) becomes
. Bxp *
- _ , 17
Ve = 2B ) an

where B,(ry) is the total magnetic field at the surface
r= I‘k.

The complete set of equations consists of k equa
tions (17) (k is the number of conducting walls), the
continuity condition for B,(r), and Eq. (1) for the func-
tion ) in the plasma. In order to calculate the compo-
nent B,(r) with allowance for jJumps (17) at all separat-
ing surfaces, it is sufficient to know the value of
rg'(r/y at the plasmaboundary (rather than the overall
behavior of the function (). In the plasma, the function
W(r) is determined by the equilibrium current profile
[seeEq. (1)]. Itisnatural to assume that, when the feed-
back system is turned on, the current profile does not
change; as aresult, we can treat different external con-
ditions keeping the function ry'/y at the plasma bound-
ary fixed. In this case, the quantity

Bl = ry—(m+1) (18)
Bf in
at the inner surface of the first conducting wall also
remains unchanged.

Here, the growth rate I is introduced in the same
manner as in [13]. Definition (18) means (see below)
that I, is the dimensionless growth rate of an RWM in
the presence of only one (the first) conducting wall and
inthe absence of external stabilizing fields. In our prob-
lem with two conducting walls, the introduced quantity
I, seemsto be somewhat artificial. However, below we
will seethat 'y is a useful parameter, regardless of the
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number of conducting walls. Keeping in mind that, in
our model, the growth rate ', plays a key role because
it is the only parameter characterizing the plasma, we
will also describe the methods for determining I, from
the experimentally measured quantities.

An important point hereis that ', remains constant
as the growth rate of the RWM changes under the
action of the external stabilizing field. This conclusion
can be supported not only by the above considerations
but also by the results of simulations of RWMsin actual
toroidal geometry [12, 14]: the plasma-produced per-
turbation was found to be almost insensitive to the con-
trolling signal from the feedback system.

4. DISPERSION RELATION
AND GROWTH RATE I,
Here, we derive the dispersion relation that relates
the growth rate of the RWM to the system parameters.
In the vacuum region just outside the first wall (X, <
X < X%,), we have

B, = (Bu+B)X " +BuX" (19
where the constants correspond to the magnetic fields
at the first wall (x = 1) at the initial instant t = 0: By, is
the amplitude of the magnetic field generated by the
plasma, B, isthe magnetic field of the currents induced
in the first wall, and B,,, is the amplitude of the mag-
netic field of the remaining external sources (the
remaining conducting walls and stabilizing system).
Expression (19) gives

rB,
B,

Bex

= —(m+1)+2mBz,

(20)

out
where
BZ = BpI + Bl + B@(t (21)

is the perturbation amplitude at the first wall. For the
first wall, Eq. (13), together with relationships (18) and
(20), yields

\A/lzr—B-L

out

B
= o+ 2m==

5 (22)

rlin
For the RWM to be exponentially damped at the rate
{1 < 0 [see representation (10)], it is necessary to sat-

isfy the condition

B . _To

Bs 2m
For RWMs, this stabilization condition is universal and
remains valid (in the cylindrical model) regardless of
the positions of the conducting walls and stabilizing
system.

Since condition (23) plays akey role in the problem
of RWM stabilization, we must redefine the parameter

(23)
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I, in an informal manner. The quantity ', can be
regarded as the growth rate for a single wall, because,
with no external magnetic field present (B,,, = 0), for-
mula(22) gives ¥, =T, We suggest that, in the absence

of active feedback, the RWM is unstable (al y, are
positive). Accordingly, we have ", > 0.

We must express I, in terms of the actual physical
guantities. To do this, it is necessary to use not only
Eq. (22) for thefirst wall but also Egs. (17) for al of the
remaining passive elements.

In this way, we multiply the equation for the second
conducting wall by 1,/1, to obtain

T . B,T,/15
Vo = V1= 2Mp g oary Y
Here, we introduced the quantities
U= (25)

which can bereferred to as the effective time of the sec-
ond wall (see below), and

2m

AT =
X2 _1

(26)

Also, we take into account the fact that, for the second
wall, the denominator in formula (17) can be expressed
through the amplitudes of the partial fields (14):

m-1

-m-1
+ Bext X2

Bi(r2) = (By+By)X,
= %" '[By + Beg(Xa" —1)].

Using relationship (22), we eliminate By in Eq. (24)
to arrive at

27)

A a N B T
Nfi-Ta)+ (-T)g=Ar= =0, (28
t

exi 2
where

M, = To—Al. (29)

Equation (28) can serveto determine y, only if wefind
away to determine theratio B,/B,,,.

In [8, 13], neither EQ. (28) nor a similar equation
appeared. In our problem, this equation arises from the
presence of the second wall. This equation will be dis-
cussed in more detail in the next section. Here, we men-
tion only one of its consequences.

Equation (28) makes it possible to express the for-
mally introduced quantity I, in terms of the experimen-
tally measured quantities:

~ V. Al
Mo =1+ = Va2 . (30)
Y1+ Al(14/15)(B,/Bey)
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The growth rate ¥, is a measurable quantity, and the

constants Al and 1,/15 are determined exclusively by

the parameters of the double wall and the poloidal

mode number m. For asystem with two conducting walls

and without active stabilization, we have B,/B,,, = 1, the

growth rate I, (30) being completely determined by
expression (30). Note also that, in this case,

*

1<0c1+ 2.

Y1 T

(1)

The lower limit is achieved at T, = 0, and the upper
limit is reached when the second wall approaches the
first wall.

Another method for determining I, experimentally
can be described as follows. In cylindrical geometry,
the equation divB = 0 for the heical perturbations
yields

B! +B, = —-m(1+3°)B. (32)

The model implies that the quantity & = nr/(mR) is
small in comparison with unity. According to Eg. (10),
the amplitude By of the poloidal component of the

magnetic perturbation is defined by the equality Bg =
Bg(r)exp(yt)sin(md — n). Hence, we obtain from
Eq. (18)

Mo = m—B—e(l +8°) —m.
B

Here, al of the quantities should be taken at the inner
surface of the first conducting wall. In the DIII-D toka-
mak, the magnetic detectors (sensors) are located pre-
cisely in thisregion [6]. For a different position of the
sensors, the field components B, and By in the growth
rate (33) are also easy to calculate from the measured
quantities.

Itisnecessary to know I, first of all, in order to use
condition (23) for RWM suppression. Below, we will
show that knowledge of even approximate values of I,
is quite sufficient for practical applications. The errors
in determining the growth rate I, can be compensated
for by increasing the amplification coefficient of the
feedback system.

(33)

5 RWM IN A TOKAMAK WITH TWO WALLS

Equation (28) contains two unknown parameters:
the growth rate ¥, and the ratio B,/B,,,. By definition,
B, is the amplitude of the magnetic field produced by

the current-carrying conductors that are located outside
of the first walls. In the case at hand, we have

Be« = B, + By, (34)

where B; is the amplitude of the field generated by the
feedback system at the first wall (x = 1) and B, is the
PLASMA PHYSICS REPORTS  Vol. 27
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amplitude of thefield of the currentsinduced in the sec-
ond wall.

For a tokamak with a double wall and without a
feedback system, we have B, = B,, in which case
Eqg. (28) reduces to the following quadratic equation

for y,:

Vi —9u(To—0AM) =AM (a—1) = 0,

where

(35)

a=1+1,/15. (36)

Before proceeding to solutions to Eq. (36) with arbi-
trary values of AI' and o, we consider three limiting
Cases.

In the absence of the second wall (1 =0, o = ),
Eq. (35) gives

Vi =T (37)

which corresponds to Eqg. (22) with B,,, = 0.
For a perfectly conducting (ideal) second wall
(15 = and a = 1), Eq. (35) yields

Vl = rool (38)

where the symbol o indicates that the second wall has
infinite conductivity. In Eg. (38), the quantity I,
defined by relationship (29) can be negative provided
that Al > I,. In this case, the RWM is completely sta-
bilized by the idea second wall, in the absence of
which the mode should grow at rate (37). According to
Eqg. (26), the quantity AI" depends only on the position
of the second wall relative to the first wall: the farther
the second wall is from the first wall, the smaller the
quantity Al'. Above acertain critical distance (whichis
determined by the equality Al =T';) from the first wall,
the second wall, even being perfectly conducting,
ceases to stabilize the RWM completely.

The closer the second wall is to the first wall, the
larger the quantity Al', which becomesinfiniteat x, = 1
(when the second wall coincides with the first wall). In
this limiting case, we obtain from Eq. (35)

T
o +1,

Y=yt =T (39)
This equality has a simple physical meaning: the two
walls act as one wall whose characteristic timeis equal
tothesum T, + T,.

The above distinctive features are clearly seen in
Figs. 1 and 2, which illustrate not only these three lim-
iting cases but also moreinteresting intermediate Situa-
tions.

Figure 1 shows the dependence of y, /I, on A/l

for several valuesof o = 1 +1,/T5 . We can see that the
second wall has a pronounced effect on the growth rate
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Fig. 1. Growth rate of an RWM vs. A'/T", for different val-
uesof o =1+T1)/T .
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Fig. 2. Growth rate of an RWM vs. T,/1, for different val-
ues of A/l

of the RWM when Al'/I",, is above a certain critical
value (of order unity) and a does not differ appreciably
from unity.

ASAlM/T, increases, the curves in Fig. 1 monotoni-
cally go down. For a given value of m, the quantity Al
is determined only by the position of the second wall
[see Eq. (26)]. Small values of A/l correspond to
large distances between the walls; as the second wall
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becomes closer to the first wall, A/, increases. We
can clearly see that, for any value of a, the growth rate
decreases (from itsinitial value I ;) most sharply in the
region Al'/T, < 1. Consequently, we can introduce the
conditional boundary A" =T", and speak of a near sec-
ond wall (if Al > ")) and adistant second wall (if Al <
Iy). These conditions for the second wall to be near or
distant relate the purely geometric parameter Al' to the
guantity I, which depends on the plasma-current and
plasma-density profiles, and thereby should be
regarded merely asrelative conditions. The second wall
may act as a near wall on the modes with small I, and
asadistant wall on the modeswith largeI',. Recall that
the parameter Al is highly sensitive to the poloidal
mode number m [see Eqg. (26)]; as aresult, in systems
with a fixed geometry, different mode numbers m cor-
respond to different values of Al'.

Anideal (o =1) second wall located closeto thefirst
wall can completely stabilize the RWM. However,
since the conductivity of both of the walls is actually
finite (a > 1), the second wall placed near the first wall
acts merely to reduce the growth rate. In the limit of
large values of Al'/T",, the growth rate is lower than that
in atokamak with no second wall by afactor of

a _TtT;

4
a—1 T, (40)

The reciprocal of the quantity (40) corresponds to the
horizontal asymptotes of the curvesin Fig. 1. Note that,
for Ar'/l", on the order of unity, all of the curves are
aready fairly close to their asymptotes, as Al'/l,
increases further (the second wall becomes closer to the
first wall), the growth rate remains essentialy
unchanged.

The RWM isnot only sensitive to the position of the
second wall but is also influenced by its effective time

1, [see relationship (40)]. Small values of 15 corre-
spond to large values of a at which the effect of the sec-
ond wall is insignificant, so that we can speak of a

“weak” wall. In contrast, the wall that reduces the
growth rate by afactor of more than two, which corre-

spondsto 15 > T,, can be called a“strong” wall. Note

that the effectivetime 15 = szgzm depends not only on

the characteristic time 1, but also on the location of the
second wall. The “srength” of the second wall
decreases abruptly with distance from the first wall.
From Fig. 1, we can see that, in the region of small
values of AI'/l",, (distant second wall), the growth rate
of the RWM decreases amost linearly as Al/fT,
increases. In this range of Al'/l",, the second resistive
wall affects the RWM essentially as an ideal wall (a
weak wall over a narrow interval of A/, values or a
strong wall over abroader interval). ASAIN/T", increases,
the resistivity of the second wall plays an increasingly
important role: in Fig. 1, all of the curves witha > 1
PLASMA PHYSICS REPORTS  Vol. 27
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deviate from the straight line 1 — Ar'/l",, which corre-
spondsto anideal wall. Intherange A/, > 1, the sec-
ond wall should always be treated as resistive, even for

very small values of 1,/15.

Of course, in the limit 1,/15 < 1, the first wall has
an insignificant impact on the RWM, in which case the
growth rate is governed primarily by the parameters of
thesecondwall. In Fig. 1, thissituation isillustrated by
the lowest curve (with a = 1.1).

Figure 2 shows the growth rate of the RWM as a
function of 1,/1; for different values of A/, (i.e., for
different locations of the second wall). We clearly see
that, for 1,/15 = 10, the growth rate is affected by the
second wall only dlightly, no matter where the wall is
placed. For t,/1; on the order of unity, the second wall
can reduce the growth rate by a factor of two. Finally,
for t,/15 <1, the growth rate ¥, = yt, can be lowered
substantially in comparison with I, especially when
the second wall is close to the first wall (AF/I, = 1).
However, recall that, in this case, such low growth rates

{1 indicate that the quantity 1/t, ceases to serve as an
appropriate scale for estimating the growth rate.

6. ACTIVE STABILIZATION OF RWM

The external stabilizing field B; enters the solution
to Eq. (28) through the parameter

(41)

—2 =1

Bex Bex

where definition (34) for thefield B.,, appliesto atoka-
mak with adoublewall. Using Eq. (22), we can express
B, interms of the measured field By, in which casefor-
mula (41) takes the form

E =1- 5 2m

Bext BZVl - .
Substituting this expression into the dispersion relation
(28) yields the following equation for V; :

(42)

— 4T o= QAT) —T,AT (a - 1)@[+ZmeD 0,(43)

which explicitly includes the stabilizing field B:.

In the previous section, we have analyzed a freedly
growing RWM (B; = 0). Now, our task is to determine
the range of B; in which the RWM can be suppressed.

For B; = 0, Eq. (43) has two real roots with opposite
signs. The positive root corresponds to an unstable
RWM. The main properties of this solution to Eq. (43)
areillustrated in Figs. 1 and 2.
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For the RWM to be stabilized, Eq. (43) should have
two negative roots. Thisis possible only when

K/Ky>1, (44)
where
K 5—5, Ko = Lo (45)
Bs 2m’

The quantity K can be referred to as the gain factor of
the stabilizing system. The minus sign isintroduced in
the definition of K in order to operate with positive val-
ues of K and K,

Condition (44) determines whether the roots X, and
X, of EQ. (43) are both positive or negative. By virtue of
the relationship

X+ X, = y—0aAl, (46)

the sign of the rootsis governed by the multiplier of ¥,
in (43). The roots have the desired sign when

Mo— QAT <O. 47)

If conditions (44) and (47) are both satisfied, the roots of
Eqg. (43) are negative and Y, < 0, thereby indicating the
suppression of the RWM. In this case, the quantity K,
can be regarded as the minimum gain factor: for K < K,,,
we have ¥, > 0; as K increases, Y, decreases; and, at
K = K,, the growth rate of the RWM vanishes (Fig. 3).
For larger values of K, the growth rate is negative.

For the given parameters of the double wall, condi-
tion (47) imposes a lower limit on I, In the case with
no second wall (o — o or AI' —» o), this condition

always holds and the dispersion relation (43) reducesto
the relation

~ B
0, = F0+2m§—;,

(48)

which is shown by the upper line in Fig. 3 and corre-
sponds to Eq. (12) from [13]. As before, the RWM sta-
bilization condition is represented by inequality (44).
The stabilization conditions derived in [13] for atoka-
mak with a single resistive wall and written in terms of
other quantities are more complicated than condition
(44), which, nevertheless, covers the main result
obtained in [13].

For a tokamak with a double wall, condition (47)
can be satisfied only when the values of Al'/T", are suf-
ficiently large. Since the quantity Al is determined
exclusively by the location of the second wall [see
Eq. (26)], condition (47) reduces to the geometric lim-
itation

FolTy < X, (49)
where the critical value x,, isequal to
X" = 1+2mally = 1+ a/K,. (50)
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Fig. 3. Growth rate of an RWM vs. the amplification factor
of the stabilizing system for ') — aAl' < 0. The upper line
corresponds to a = o« (the case with no second wall). The
middle and lower lines correspond to a = 2 and 1.1, respec-
tively; Al /Ty = 2.
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Fig. 4. Growth rate of an RWM vs. the amplification factor
of the stabilizing system for 'y — aAl' > 0. The solid and

dashed curves are two branches of the solution to Eq. (43)
WithAl'/ly=0.4 and a = 1.5. Thedotted lineisthereal part

of ¥4 /T for K/Ky>1.2.

The smaller the value of a, the stronger the RWM is
suppressed by the second wall located close to the first

wall. In other respects, the dependence of ¥, on K is

gualitatively the same over the entire range of the
parameter a in Fig. 3.

If the distance from the second to the first wall is
larger than the critical distancein condition (49), thenwe
arrive at an inegquality opposite to that in formula (47):

Mo—QAl >0, (51)

PUSTOVITOV

in which case Eq. (43) has at least one positive root,
regardless of the value of K. Consequently, in this case
(and under the above assumptions that the field B; and
the perturbation generated by the plasma are inphase
and depend on time in essentially the same manner),
the external field B; always ceases to stabilize the
RWM.

Thisisanew result as compared to the case with one
wall, where the RWM can aways be stabilized by the
external field [see dispersion relation (48)]. Figure 4
showshow ¥, changeswith anincreasein K under con-
dition (51). For K < K, the growth rate decreases (but
never vanishes) as K increases. In the case K = K, in
which al of the curvesin Fig. 3 converge to the same
point ¥, = 0, the growth rate of the RWM remainsfinite
under condition (51):

Vo=V1(Kp) = My—aAr. (52)

For K > K, the growth rate continues to decrease as K
increases; simultaneoudly, a new branch appears (see
the lower dashed curve in Fig. 4) with a lower growth
rate increasing from zero to the value y; = y,/2 at
which the branches merge into one. The value of K at
the point at which the branches merge together can be
readily found from Eq. (43). A further increase in K
gives rise to the imaginary part of ¥,, in which case,

however, Rey,; = Y,/2 remains unchanged. In Fig. 4,
thisregion is marked by the dotted line.

The existence of two solutions in the range K > K|
allows us to speak of dow and fast RWMs. For I, >
0AlM, the fast and slow modes cannot be stabilized by
simply increasing B; so as to counterbal ance the pertur-
bation field. The fast mode exists in the entire range of
I, values, whereas the slow mode can exist only in the
range ', > aAl' and under the condition K > K,. The
slow mode differs qualitatively from the fast mode in
that its growth rate increases with K.

For K > K, the stabilizing system should respond to
the growing RWM so asto increase K. Raising the gain
factor above K, is not dangerous; in contrast, it is even
favorable for the complete stabilization of the fast
mode (Fig. 3) or its partial suppression (Fig. 4). How-
ever, for K > K, the process of stabilization of the fast
mode may be accompanied by destabilization of the
slow mode.

One can imagine the following situation. Let the
condition Iy < oAl beinitially satisfied, in which case
the mode is feedback-stabilized as is shown in Fig. 3.
If, during the evolution of the equilibrium plasma
parameters, I, increases to values sufficient to satisfy
the opposite condition 'y > oAl' , then the low modeis
excited and immediately begins to be amplified by the
stabilizing system, provided that it continues to operate
in the normal regime (see the lower curve over the
range K/K, > 1 in Fig. 4). A similar situation was
PLASMA PHYSICS REPORTS  Vol. 27
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observed in the DIII-D experiments [6] in which the
phase of the stable suppression of RWMs resulted in a
rapid growth of the slow mode, which led to a minor
disruption. According to [6], the DIlI-D feedback sys-
tems functioned as was necessary to stabilize the fast
mode, and the current in the stabilizing conductors rap-
idly increased to follow the fast growing magnetic per-
turbation, in which case, however, no stabilizing effect
on the RWMs was observed. Presumably, in those
experiments with active feedback stabilization, the
RWMsin DIII-D were aso destabilized by some other
(as yet unknown) mechanisms. Nevertheless, the fact
that analogous (and very undesirable) effects were
observed experimentally and revealed theoretically
indicates new difficulties in the problem of RWM sta-
bilization and necessitates further investigations in this
direction based on more sophisticated models.

Finaly, we estimate the field B; required for the sta-
bilization of RWMs in the model proposed here.

Expressions (17) and (22) for y, yield

B,+B
Mo = —2m———=,

B, (53)

so that we have

0o, By, B0

B; = -Bs B, ' By-

(54)

Here, Bs is the measured field; I, can be determined
from the experimentally measured growth rate [see
Figs. 1, 2, and relationship (30)], or from the measured
amplitudes of the magnetic field perturbation [see
expression (33)], or can be calculated if the current den-
sity profile is known; and the poloidal mode number m
is found by Fourier analysis of the measured field.
According to Eqg. (17), the stability threshold for
RWMs corresponds to B, = B, = 0, in which case for-
mula (54) makes it possible to determine the desired
field B;. Under the conditions prevailing in present-day
experiments [3-6], this field is about several gausses.
Recdll that B; is the amplitude of the first harmonic of
the controlling magnetic field at the first wall (r =r,).
For a given amplitude B;, the desired magnitude of the
current in the stabilizing windings increases propor-
tionally to x™-! asthe feedback system is displaced far-
ther from the first wall.

7. CONCLUSION

We have analyzed the situation with an unstable
RWM in the absence of an active stabilizing system.
Our primary goal was to derive the criterion for feed-
back suppression of this mode. The main difference
between our formulation of the problem and that used
in[8, 13] isthat we considered atokamak with adouble
wall, asisthe case in the ITER tokamak [7].
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We treated the problem using the standard cylindri-
cal model, without making any assumptions about the
current density profile in the plasma. We assumed that
the conducting walls are infinitely thin and that the sta-
bilizing system responds instantaneously to the
changes in the magnetic field perturbation to be sup-
pressed.

The criterion for feedback suppression of an RWM
isinequality (44); however, for a tokamak with a dou-
ble wall, its applicability range is limited. For a toka
mak with one wall, the growth rate of an RWM islin-
early related to the external stabilizing magnetic field
(48), so that, theoretically, any mode can be feedback-
stabilized. The situation with a tokamak with a double
wall is different: if the distance from the second to the
first wall is larger than a certain critical distance, then
the dispersion relation (43) is nonlinear and the modes
that start to grow at arate faster than a certain threshold
rate can never be stabilized. Also, anew branch of slow
modes appears that immediately begins to be amplified
by the feedback system operating in the normal regime,
inwhich the gain islarger than K, (Fig. 4).

Anincompl ete feedback stabilization of RWMsin a
tokamak with a double wall is a rather new problem
that has not been predicted theoretically. A similar phe-
nomenon, whose nature remains as yet unclear, has
been recently encountered in the DIII-D experiments
[6]. Hence, the problem of stabilizing RWMs turns out
to be more difficult than expected.
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TOKAMAKS

Radial Electric Field during Dynamic Processes
In a Tokamak and L—H Transitions
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Abstract—Expressions for the radial electric field in tokamaks are derived with allowance for an additional
contribution of the longitudinal electron viscosity (or the associated Ware drift). It is shown that, in transient
processes during which the toroidal electric field at the plasma edge increases, the additional electric field can
become rather strong. An increase in the shear of the poloidal plasma rotation can trigger the L—H transition.
That the experimentally observed transitions to an improved confinement mode can be ascribed to this effect is
illustrated by simulating discharges in the current ramp-up experiments in the Tuman-3M tokamak. © 2001

MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

Many tokamak experiments have demonstrated that
the buildup of transport barriers is associated with the
suppression of plasma turbulence by the shear of the
poloidal E x B drift [1]. That iswhy the problem of cal-
culating the radial electric field is very important for
understanding the mechanisms for the transition to an
improved confinement mode. I n the standard neoclassi-
cal theory, the radial electric field was calculated in
review [2]. In the simplest geometry of the circular
magnetic surfaces, the radial electric field has the form

Er(STAND) _ -_E[dlnn_'_(l_k)dlnTi

el dr dr }+BGU¢, M

where the numerical coefficient (the collisionality
parameter) k depends on the extent to which the
plasma is collision-determined (see Appendix), By is
the poloidal magnetic field, and G, is the mean toroi-
dal velocity. For magnetic surfaces of arbitrary geom-
etry, we have

—¢'STAND) - %[(mn)' +(1-Kk)(InT)T + DJiBBZ%v(Z)

where x isthe poloidal flux, | = R’BV{, C isthetoroidal
coordinate (|{| = R!), and

B = %%VZXV[IHIVZ.

This result was obtained from the condition that the
magnetic surface—averaged ion viscosity vanishes. The
electron viscosity was assumed to be lower than theion
viscosity by a factor of (my/m)"? and thus was
neglected. However, in the presence of atoroidal elec-

tric field, which can increase substantially during the
transient processes, the electron viscosity may aso
become important. In [3, 4], the electron viscosity (or
the associated Ware drift) was shown to strongly affect
the radial electric field profilein small facilities such as
the Tuman-3M tokamak.

Here, we derive a genera expression for the radial
electric field assuming an arbitrary collisionality
parameter and taking into account effects related to the
toroidal eectric field. To do this, we employ the general
approach that was developed by Rozhansky and Ten-
dler [5], in which the anomalous radial transport of the
toroidal momentum was taken into account. The same
result can also be obtained by using the standard neo-
classical approach [2]. Physicaly, the additional radial
electric field that is to be incorporated into Egs. (1) and
(2) stems from an increase in the longitudinal ion vis-
cosity, which, together with the Ware drift, causes the
radial plasma flow to become ambipolar. We show that
the additional radial electric field can play an important
role in both small tokamaks and large present-day
facilities.

The additional electric field may become especially
strong in unsteady processes (such as plasma current
ramp-up and ramp-down, adiabatic compression, and
pellet injection) during which the toroidal electric field
in tokamaks increases substantially. We describe the
resultsfrom simulations of the current ramp-up phase of
dischargesin the Tuman-3M tokamak. We demonstrate
that the plasma current ramp-up causes arapid increase
in the radial electric field near the last closed magnetic
surface and thus can trigger the L—H transition, in accor-
dance with the experimental observations [6].

1063-780X/01/2703-0205$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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2. RADIAL ELECTRIC FIELD

We use the balance equations for the momenta in
both the toroidal and longitudinal directions. Averaging
the balance equation for the momenta along the mag-
netic field and taking into account the equality B - VpC=
0, we obtain

(B OV O+ (B OV O = [F [BQ 3)

wherethe external forces and the forces associated with
inertia, longitudinal viscosity, and ion—neutral friction
are all symbolized by F. Presumably, the most impor-
tant of the internal forces is that related to the radid
transport of the toroidal momentum. The projection of
Eqg. (3) onto the toroidal direction has the form

~ _ |F[B,
qio= davein= {Speve). @

We can seethat the averaged radial current ]r isrelated
to the toroidal force F. The contribution of the toroidal
viscosity component is zero by virtue of the equality
V GiB
<L"|lel> = 0. Equations (2) and (3) give
ByBe

G- wzm@—rf—'—<F [B“’lvwb + B om;(5)
B0 X \Bbe ‘(B0
where T =T, = T§ .

In the standard neoclassical theory, the toroidal
force F is assumed to be zero (in the absence of neutral
beam injection), so that, according to Eq. (4), the total
radial current through a closed magnetic surface auto-
matically vanishes. In areal situation [5], Eg. (3) with
Eqg. (4) or (5) determines two quantities, namely, the
radial electric field (the poloidal rotation velocity) and
the mean velocity of the poloidal rotation. On the other
hand, provided that the density and temperature profiles
are not too steep, the contribution of the force F can be
neglected, in which case Eq. (5) implies that the radial
current is determined primarily by the longitudina vis-
cosity. Let us consider the contributions of the ion and
electron viscosities separately.

. . . . . ~(1)
Theion viscosity gives riseto the current j, = such
that

~(1)

§¥p= BV Oiem

B X ©

Substituting the longitudinal viscosity (2) into Eg. (6)
yields

G 0= 5,9~ ¢), )

ROZHANSKY et al.

where ¢'STAND) s defined by formula (1). For circular
magnetic surfaces, we have

0= ay(E -, ®)
where Er(STAND) is defined by formula (2),
B 1y B0
O = B H W, @DZ 9)
0 EBzﬁ IlDXI 0

and the expression for the viscosity coefficient |, is
taken from [2] (see aso the Appendix). For circular
magnetic surfaces, the transverse conductivity in the
banana regime has the form

b _ §«/<_9minVi

(wherev, istheion—on collision frequency), and, in the
plateau regime, it is equal to

or = 3EN/mT,

2 BBy

These expressions coincide with the corresponding
expressions presented in [4, 5] correct to a numerical

factor because of the different approximate formulas
for the longitudinal viscosity.

The electron viscosity is responsible for the current

(1)

]fz) , Which is proportional to the Ware flux I', and, in
the notation of Hirshman and Sigmar [2], has the form

~(2)

0. 0= 02vylO= en(r,|Vyl)

.3/ B (12)
_ en(ZUel—Ue2A1)3< B v EB> [E (B[2ml

MeVe B0 B0 X

Here, /\i3 is the familiar Spitzer coefficient, which
equals 0.55 for a plasma with Z = 1, and the viscosity
coefficients i, , are given intheAppendix. For circular
magnetic surfaces, the electron viscosity—induced cur-
rent in the bananaregimeis equal to

E
e 2.3em/§§:’. (13)

Theradial electric field correspondsto the condition for
the total electric current to vanish:

~(1) ~(2)

0, O+ 0, O= 0. (14)
When the forces F can be neglected, this equation is
completely equivalent to Eq. (3); this corresponds to
the standard neoclassical approach. In other words, the
PLASMA PHYSICS REPORTS  Vol. 27
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same radia electric field can be obtained from the con-
dition
(B [V O+ B [V 01 = O. (15)

When the electrons and ions are in the banana regime,
Eq. (14) or (15) gives

1.53e X'
myV; mv, B }2
so that, for circular magnetic surfaces, we have

1.53eE,By
mv;,

¢ = ¢ (16)

(STAND)

E = E' (17)

For small tokamaks in which the electrons are in the
banana regime and the ions are in the plateau regime
because the el ectron temperatureis substantially higher
than the ion temperature, the more general expression

' = _¢.(STAND)
c < By EB>
_en M —HeoN1) \B X Empg ¥
meVep*il dB w EBﬁ 2T[I
B 0

isvalid and, accordingly, the radial electric field in the
case of circular magnetic surfacesis equal to

J2T/m /e

Finally, the general expression applicable to al colli-
sionality regimes hasthe form

E,
2.3en./eE, (20)

(L+VvE e (L +vEP v )e™™>B,

E = ES_153 E (19)

@

- E(STAND)

where

aprax _ 01 * _ qRy;

V= ————.

2

3. MODELING OF THE L—H TRANSITION
IN THE CURRENT RAMP-UP EXPERIMENTS

We illustrate the role of the additional radial e ectric
field by modeling, as an example, L-H transitions in
the Tuman-3M tokamak. The simulations were carried
out with the BATRAC code, which is based on the fol-
lowing set of transport equations:

on 10 on _
5t~ ror | D@5 -V(@n| = s,
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é Ot —VTe||:|+ nT, V[hD
(22)
16 _
“ror [ } = Qe
0By 0 1 0
ot W[uoonrﬁ(rBe)]'

The heat source terms on the right-hand side of the sec-
ond equation account for the electron-ion heat
exchange and the Joul e heating of the electrons. (If nec-
essary, the basic set of equations can be supplemented
with additional heat sources.) Thelongitudinal neoclas-
sica conductivity is denoted by 0. The distinctive fea-
ture of the BATRAC code is that the transport coeffi-
cients (such as diffusivity and thermal diffusivity), as
well as the convective velocity, are functions of the
shear of the poloidal E x B drift,

_RE,

. (23)

d(Er/BeR)‘

In the BATRAC code, the radial electric field is calcu-
lated self-consistently from the equations presented in
the previous section. The contribution from the toroidal
velocity to the neoclassical eectric field is neglected
because of theintense anomalousradial transport of the
toroidal momentum in the Tuman-3M tokamak, which
operatesin the absence of neutral beam injection. Gen-
erally, Egs. (22) should be supplemented with the trans-
port equation for the toroidal momentum. Note that an
analogous set of equations was used by Staebler et al.
[7, 8] in order to model improved confinement of the
DIII-D plasma.

Figure 1 shows a representative dependence of the
normalizing diffusion coefficient on the shear of the
poloidal E x B drift. The diffusion coefficient has the
form D = D, f(r) with f(r) = 1.2 + 3.5(r/a)?, and the con-

Do, m?/s
1.0
0.8
0.6
0.4
0.2

2
w,, 10° s7!

Fig. 1. Normalizing diffusion coefficient vs. the shear of the
poloidal drift in crossed fields.
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Fig. 2. Total plasma current.
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Fig. 3. Loop voltage.
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Fig. 4. Profiles of the radial electric field at t = (1) 35.0,

(2) 35.5, (3) 37.0, (4) 40.0, and (5) 45.0 ms.

vectivevelocity isequal to V = —(D,/a)P(r) with yi(r) =
(r/a)*. Thethermal diffusivitieswere chosentobex, ;=
D. Theradial profiles of the transport coefficients were
adjusted to model the density and temperature profiles
in the L-mode. In simulations, we used the experimen-
tally measured particle source S.

In our previous studies[3, 4], we modeled anumber
of L—H transition scenarios. In particular, the density
and temperature profiles were chosen to satisfy mar-
ginal stability conditions. In other words, the shear w,
near the last closed magnetic surface was close to w;,
and the parameter w, was found to play an insignificant
role in the transition scenarios. Due to adlight increase
in the particle source intensity, the density gradient
became larger, the edge shear exceeded the critical
value w,, and the plasma started to evolve into an
improved confinement mode. First, near the last closed
magnetic surface, the density and temperature pertur-
bations began to grow, thereby suppressing edge trans-
port processes. Then, the edge transport barrier built up
and the density and temperature in the central plasma
region increased.

Here, we describe another L—H transition scenario.
Thetime evolutions of thetotal plasma current and loop
voltage areillustrated in Figs. 2 and 3, respectively. The
plasma current increases gradually over the first 35 ms;
during thistime, the discharge plasmaremainsin theL-
mode because the radial electric field (Fig. 4) isinsuffi-
ciently strong to suppress transport processes. Thereaf-
ter, the current starts to increase rapidly, thereby con-
siderably enhancing the toroidal electric field in the
edge plasma. According to expression (20), the addi-
tional radial electric field, which is proportional to E,,
also increases rapidly and, accordingly, the shear w,
exceedsthe critical value w,. Thetransport processesin
the peripheral region are suppressed, and the edge
transport barrier builds up. Figures 5 and 6 show repre-
sentative time evolutions of the diffusion coefficient
and plasma density, respectively. In the central region,
the plasma density increases primarily due to the
inward convection. The thermal-diffusivity and tem-
perature profiles are similar in shape to those shown in
Figs. 5 and 6.

After the current ramp-up, the poloidal magnetic
field diffuses toward the center of the plasma column
and the toroidal electric field at the plasma edge
decreases. Inside the transport barrier, the radial elec-
tric field remainsfairly strong because of the large con-

tribution of the neoclassical electric field, E°,

which is proportional to the density and temperature
gradients. For this reason, the discharge remainsin the
H-mode.

The computed parameters of the plasma column and
the time evolutions of the density and temperature pro-
files are in satisfactory agreement with the experimen-
tal data from Tuman-3M [6].

PLASMA PHYSICS REPORTS Vol. 27 No. 3 2001
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Fig. 5. Radial profiles of the diffusion coefficient at t = (1) 35.0, (2) 36.0, (3) 40.0, and (4) 45.0 ms.

4. DISCUSSION

Our simulations show that the additional radial elec-
tric field associated with the electron viscosity (or the
Ware drift) plays avery important rolein transient pro-
cesses during which the toroidal electric field at the
plasma edge increases. An increase in the shear of the
poloidal rotation can trigger the L—H transition. Analo-
gous phenomenamay also be caused by processes such
as plasma heating or cooling, pellet injection, and adi-
abatic compression, i.e., processes during which the
toroidal electric field increases. This effect isimportant
in plasmas with infrequent electron collisions, espe-

n, 1019 m=3
3.0

2.5

2.0

1.5

1.0

0.5

1 ]
0.20 0.25
Minor radius r, m

|
0 0.05 0.10 0.15

Fig. 6. Radia profiles of the plasma density at t = (1) 35.0,
(2) 36.0, (3) 37.0, (4) 38.0, (5) 39.0, (6) 40.0, and
(7) 45.0 ms.
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cially when the electrons are in the banana regime,
regardless of the collisionality regime of theions.
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APPENDIX

At present, there are a number of approximate for-
mulas describing the viscosity coefficients in different
collisionality regimes. As an example, we present the
expressions that refer to the simple case of a toroidal
plasma column consisting of electrons and singly
charged ions of one species (see reviews [2, 9]). The
electron viscosity coefficients have the form g, = K,
and U = K, — 5/2K,;; accordingly, the ion viscosity
coefficients are W, = (m/my) g (k= 1, 2). The coef-
ficients K,, and K,, are approximated as

Ky = 104gRnm,,/2T./m,
y { 1 051’y }
1+201,/vz +153v; 1+089vze™]
Ky = 1.2gRnm,./2T/m,
y { 1 0.46¢°v} }
1+ O.76Jv7§ +0.67vF 1+0.56v¢ e
where q is the safety factor.




210 ROZHANSKY et al.

In expressions (1) and (2) for the neoclassical field,
the numerical coefficient k is equal to k = _Hiz and
i1
takes on the values —1.69 in the Pfirsch-Schliter
regime, —0.5 in the plateau regime, and +1.17 in the
banana regime.
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Abstract—A particle-in-cell smulation isused to investigate ion accel eration by afemtosecond laser pulse prop-
agating in an underdense plasmadah. In plasmadabs with different thicknesses, theions are found to be accel er-
ated by different mechanisms. It is shown that, for laser pulse intensities in the range (5-10) x 10! W/cn?, the
ions are accelerated near the plasma—vacuum interface. © 2001 MAIK “ Nauka/Interperiodica” .

1. INTRODUCTION

In recent years, much attention has been devoted to
the acceleration of high-energy ions during the interac-
tion of high-intensity laser pulses with gaseous and
solid targets [1]. Increased interest in this problem
stems, first of al, from the creation of high-power
lasers capable of generating multiterawatt or even peta-
watt femtosecond pulses [2]. Experiments on the inter-
action of such high-intensity laser radiation with plas-
mas revealed that some of the ions can be accelerated
to several tens of megaelectronvolts [1, 3-6]. In exper-
iments with gaseous targets, the gasis rapidly ionized,
thereby providing conditions typical of the interaction
of laser radiation with an underdense plasma. In most
papers, ion acceleration in an underdense plasma is
attributed to the so-called “ Coulomb explosion,” which
is associated with a disruption of the plasma quasineu-
trality inside the self-focusing channel under the action
of the ponderomotive force of alaser pulse. The pon-
deromotive force expel sthe electrons from the channel,
thereby giving rise to the charge-separation electro-
static field, which accelerates the ions in the radia
direction. However, recent results from computer sim-
ulations [7-10] showed that the plasma becomes espe-
cially nonquasineutral in the interaction of alaser pulse
with a plasma dab of finite thickness: the ions are most
efficiently accelerated at the farther (with respect to the
propagation direction of the pulse) plasma—vacuum
interface at a time when the laser pulse leaves the
plasma dab. The accelerated ions were found to form a
dense thin filament, the longitudinal momentum of the
ions being much higher than their transverse momen-
tum. This problem requires further investigation
because the ion acceleration efficiency depends on
many parameters (such as the power, intensity, and
energy of the pulse; the plasma density; and the thick-
ness of the plasmaslab).

In this paper, we study the efficiency of ion acceler-
ation during the propagation of a femtosecond laser

pulsein an underdense plasma slab as a function of the
dab thickness. Obviousdly, in asufficiently thick plasma
slab, alaser pulse can loseits energy completely, so that
the ions will be accelerated to moderate energies. On
the other hand, in a very thin plasma slab, collective
effects are unimportant and ion accel eration by the pon-
deromotive force of alaser pulse will be governed by
the time of laser—plasmainteraction, which istoo short
in this case. Hence, the following questions naturally
arise: What is the dlab thickness at which the ions can
be accelerated most efficiently, and what is the maxi-
mum possible kinetic energy of the accelerated ions
and their maximum possible density? Below, we will
consider only one of these aspects—the maximum
achievable kinetic energy of theions.

The problem was investigated using particle-in-cell
(PIC) simulations based on the relativistic el ectromag-
netic code developed by Esirkepov et al. [7].

The paper is organized as follows. In Section 2, we
formulate the problem and briefly describe the simula-
tion model. In Section 3, we analyze atypical scenario
of the propagation of a high-power laser pulse through
an underdense plasma slab of finite thickness. In Sec-
tion 4, we discuss the mechanism for ion acceleration
as applied to our problem. In the Conclusion, we sum-
marize the main simulation results.

2. FORMULATION OF THE PROBLEM

We neglect both the ionization-related effects and
collisions between particles. This approach is correct
when applied to the interaction of a multiterawatt laser
pulse with an underdense plasma. The simulationswere
carried out with atwo-dimensional nhonparallel version
of the 2D3V-PIC electromagnetic relativistic code [7]
and with Intel Pentium |1 personal computers.

The plasma slab thickness was varied from 40 to
300\, where A is the laser wavelength. The entire com-
putation region comprised the plasmaslab region and a
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vacuum region of length 20\ behind the slab. The
accelerated ions were observed in the vacuum region.

Theincident laser pulse was assumed to originatein
the vacuum region to the left of the plasma slab and to
propagate from left to right. The calcul ations were per-
formed for a 40-um-long 12-um-wide laser pulse, the
laser wavelength and typical intensity being 1.00 um
and ~5 x 10" W/cm?, respectively. The laser pulse was
assumed to interact with a hydrogen plasma of density
102! cm3. The values of the dimensionless parameters
characterizing such laser—plasma interaction were as
follows: the amplitude of the electric field in the pulse
was a, = eE/(mywc) = 3-10, theratio of the pulse length
to the laser wavelength was I /A = 40, the ratio of the
pulse width to the laser wavelength was I;/A = 12, the
ratio of the Langmuir frequency to the laser frequency
Was G,/ = 0.45, the plasma density normalized to the
critical density was n/n, = 0.2025, and the ion-to-elec-
tron mass ratio was m/m, = 1840.

In order to save computational time, we simulated
ion acceleration during one pass of alaser pulse. After
a certain time t, all of the information obtained was
saved on hard disk. Then, we continued calculations,
assuming that the slab thickness correspondsto the dis-
tance the pulse had passed over the time t. We stopped
tracing the motion of the fastest ions after they passed
the distance 20A, which correspondsto the length of the
vacuum region, and then analyzed the parameters of the
accelerated ions in vacuum. Next, the stored informa-
tion was again read out from a hard disk and the simu-
lation was continued starting from the same time t, but
for athicker plasma slab.

In calculations, the spatial step was 0.125A. Since
the Maxwell equations were solved using an explicit
scheme, the time step was chosen to satisfy the Cou-
rant—Fredricks—Levi condition. The form factor of
guasi-particles was chosen to satisfy the second-order
smoothness condition, which substantially reduced the
noise level characteristic of the PIC method. The total
number of particles was about ~1.5 x 10°.

The results of computer simulations are illustrated
in Figs. 1-8. The time is normalized to the period of
laser radiation, and the spatial coordinates are
expressed in terms of theinitial laser wavelength.

3. PROPAGATION OF A HIGH-POWER LASER
PULSE IN AN UNDERDENSE PLASMA

Here, we describe the main stages of the evolution
of alaser pulse propagating in an underdense plasma.
The laser power used in our calculations is above the
threshold for relativistic self-focusing. Consequently,
at a certain time (approximately equal to t = 60) after
the pulse enters the plasma, its leading edge experi-
ences a relativistic self-focusing (Fig. 1a), so that the
pulse intensity becomes several times higher than the
maximum initial pulse intensity.

KUZNETSOV et al.

The onset of an instability caused by stimulated
Raman scattering [11] isaccompanied by the formation
of a sharp front with a width of about 3A in the pulse
envelope. As aresult, the pulse with such a sharp front
starts to efficiently generate a wake plasma wave [11,
12]. However, under the conditions adopted, the
excited wake wave breaks, so that its structureisirreg-
ular (this point was discussed in detail in [12]).

After the formation of the first focus, the pulse was
defocused. During the defocusing (at a time approxi-
mately equal to t = 100), the pul se experiences filamen-
tation: five distinct filaments with nearly the same radi-
ation intensities form, two of which subsequently
decay in the plasma. The position of filaments at the
time t = 210 is shown in Fig. 1b. In Fig. 1c, which
shows the pulse amplitude as a function of the coordi-
nate along the pulse axis at the time t = 210, one can
clearly see that the laser pulse has a specific triangular
shape with a sharp leading edge (the shock front on the
wave-packet envelope[11]). Such ashapeis peculiar to
the radiation in each of thefilaments, which leadsto the
generation of awake plasmawavein each of them. This
isclearly illustrated by Fig. 2, which shows (a) the dis-
tribution of the x-component of the electric field in the
(X, y) planeat t = 170 (Fig. 2a) and (b) the dependence
of the x-component of the electric field in the lower-
most filament (Fig. 2b). The breaking of awake plasma
wave isresponsible for the specific structure of the lon-
gitudinal electric field in the leading edge of the pulse
(see Fig. 2b). The amplitude of the electromagnetic
field in the pulse is large enough for the wake wave to
break aready during the first half-period of the wake
field. For this reason, the longitudinal electric field in
the leading edge of the pulse has the form of two oppo-
sitely charged layers moving with a velocity equa to
the pul se propagation velocity. Such adouble layer was
studied in [7, 13].

Behind thelaser pulse, we can see different coherent
structures, in particular, relativistic solitons, which,
however, are unlikely to play an important role in ion
acceleration. In Fig. 1b, these solitons are seen asrela-
tively small, light and dark regions where the z-compo-
nent of the electric field is, respectively, positive and
negative. Solitons are regions in which the plasma den-
sity is depressed and the electromagnetic field with a
frequency lower than the Langmuir frequency of the
surrounding plasma is concentrated [10, 14, 15]. The
size of asoliton, which propagates with a nonrelativis-
tic velocity, is on the order of the collisionless skin
depth, c/w,.. The most distinctly seen solitons arethose
with the oscillating transverse component of the elec-
tric field and oscillating azimuthal component of the
magnetic field, i.e., Ssolitons [10, 15]. The solitons
form not only inside but also outside the channel, in
place of the filaments that have been damped after the
passage of the laser pulse. The formation of solitonsis
attributed to a decrease in the local carrier frequency of
the pulse (whose energy is expended on the excitation
of wake waves) down to the Langmuir frequency of the
2001
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Fig. 1. Evolution of the laser pulse inside the plasma: distribution of the z-component of the electric field in the (x, y) planeat t =
(a) 60 and (b) 210 and (c) dependence of the pulse amplitude on the coordinate along the pulse axisat t = 210 for as =50.

surrounding plasma. The mechanism for the formation
of solitons was considered in [10, 15].

Figure 3 shows that the laser radiation produces a
channel in which the plasma density is lower than the
density of the unperturbed surrounding plasma by a
factor of approximately 10. It can be seen that, at the
walls of the channel, the plasmais somewhat denser (its
density is roughly twice as high as that of the unper-
turbed plasma). The channel slowly expands.

Behind the pulse, magnetized plasma regions
appear that are as long as severa collisionless skin
depths and are situated along the symmetry axis of the

PLASMA PHYSICS REPORTS  Vol. 27

No. 3 2001

pulse. This axis approximately coincides with the null
line of the transverse magnetic field, which is thus pos-
itive on one side of the axis and negative on the other
side. The direction of the transverse magnetic field and
its magnitude correspond to the electric current carried
mainly by the plasma electrons. (The role of the ion
electric current in the magnetic field generation was
analyzed in [9].) This magnetic field is quasistatic and
exists over many plasma periods after the passage of
the laser pulse. An elementary mechanism for the gen-
eration of a quasistatic transverse magnetic field is
attributed to the devel opment of an electromagnetic fil-
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Fig. 2. () Distribution of the x-component of the electric field in the (x, y) plane at t = 170 and (b) dependence of the x-component

of the electric field in the lowermost filament for ag =10.

amentation instability like the Weibel instability, which
occursin aplasmawith an anisotropic electron temper-
ature [16-18]. Under the action of a laser pulse, the
electrons are accelerated in the longitudinal direction
due to the breaking of wake plasmawaves. The electric
current carried by the fast electrons is neutralized by
the return currents carried by slow plasma electrons.
This transversely homogeneous configuration is unsta-
ble against current filamentation; as aresult, astructure
arises that is captured well by our simulations and was
observed in numerical simulationsin [19]. In this struc-
ture, the electric current carried by the fast electronsis
localized at the channel axis, while the neutralizing
(return) current flows at the channel periphery.

Recall that, inside the channels that form in the
region where the laser pulse has passed through the
plasma and the three filaments are observed, there are
regions of elevated plasma density, i.e., the filaments
that are stretched along the symmetry axis of the pulse

(Fig. 3). The characteristic plasma density in the fila-
ments is on the order of the density of the unperturbed
surrounding plasmaand is much higher than the plasma
density inside the channel. The thickness of the fila-
ments is about several microns. Each filament is, as a
whole, electrically neutral. In contrast, the charge of the
channel walls is negative. In the initial stage of laser—
plasma interaction, the filaments are hardly seen. The
most pronounced filaments are those that appear at rel-
atively late stages of the pulse propagation, when the
carrier frequency of the laser pulse substantialy
decreases. According to [11], a decrease in the carrier
frequency is attributed to the loss of the laser pulse
energy in the adiabatic regime (in which the number of
photons in the pulse is conserved).

In the stage during which the decreasing carrier fre-
quency approaches the Langmuir frequency, the pulse—
plasma interaction (which is accompanied by the effi-
cient conversion of laser energy into plasmaenergy and
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 3. Channels produced in the plasma under the action of individual filaments of alaser pulsefor ag =50: (a) the electron density
distribution in the (x, y) plane at t = 280, (b) the channel in the ion component at t = 280, (c) the z-component of the magnetic field

at t = 280, and (d) theion density distribution at t = 340.
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Fig. 4. Dependence of the maximum kinetic energy E; of the
accelerated ions escaping from the plasma on the plasma

slab thickness L for ag =50.
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the energy of fast particles) becomes moreintense[13].
However, the ion acceleration in aplasmasgiab of finite
thickness is found to be most efficient after the pulse
reaches the plasma—vacuum interface [7, 9]. In this
stage, the accelerated electrons and ions escape from
the plasmajust after the pulse. The energy to which the
ions can be accelerated depends on the slab thickness,
the remaining parameters of the problem being fixed.
Figure 4 shows the maximum Kinetic energy E; of the
escaping accelerated ions as a function of the slab
thickness L. We can see that there exists arange of opti-
mum slab thicknesses for which the ion acceleration is
most efficient; in adlab of thickness L = 200A, the ions
can be accelerated to the highest energy E; =45 MéeV. In
the next section, we will discuss the relevant accelera-
tion mechanism.

Figures 5a, 5¢, and 5e present the energy spectrum
n(E;) of the accelerated ions, and Figs. 5b, 5d, and 5f
show their distribution over the directionsin which they

1000
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Fig. 5. (& ¢, €) Energy spectrum n(E;) and (b, d, f) distribution of the fast ions over directions into which they are accelerated in

plasma slabs with different thicknesses for as =50. In Figs. 5b, 5d, and 5f, the length of the arrows is proportional to the number

of particlesmultiplied by their momentum and the direction of the arrows corresponds to direction of the momentum vector. Figures 5a
and 5b refer to aslab with the thickness L = 50A; Fig. 5¢ and 5d, to L = 200A; and Fig. 5e and 5f, to L = 300A.
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Fig. 6. (a) Distribution of the z-component of the magnetic field at the time t = 400 and distributions of the electric charge density

at t = (b) 400 and (c) 530 for L = 300A and a> = 50,

are accelerated for different dab thicknesses. In
Figs. 5b, 5d, and 5f, the lengths of the arrows are pro-
portional to the number of ions accelerated in the angle
TY/100 and the direction of the arrows correspondsto the
direction of the ion momentum vector. Figures 6a and
6b refer to a slab with the thickness L = 50A; Figs. 6¢
and 6d, to L = 200A; and Figs. 6e and 6f, to L = 300A.
The energy spectraof the fast ions can be approximated
by thermal distributions with the effective temperatures
T, = 3.7 MeV (for L = 50A), T, = 8.7 MeV (for L =
200M), and T, = 3.3 MeV (for L = 3007).

Figures 5e and 5f correspond to a slab whose thick-
ness is sufficient for the pulse to lose its energy com-
pletely before it reaches the plasma—vacuum interface.
Nevertheless, the electrons accelerated inside the slab
escape from the plasma, thereby giving rise to the
charge separation electric field, which, in turn, acceler-
atesthe plasmaions. Thisregime correspondsto the sit-
uation with only one acceleration mechanism; specifi-

PLASMA PHYSICS REPORTS  Vol. 27

No. 3 2001

cally, the fast escaping electrons force theionsto leave
the plasma The damping of thelaser pulseisillustrated
in Fig. 6. Figure 6a shows the distribution of the z-com-
ponent of the magnetic field at the time t = 400, and
Figs. 6b and 6¢ display the distribution of the electric
charge density at the times t = 400 and 530, respec-
tively. We can see that the charges are separated in a
narrow region near the plasma boundary and that the
ions are accelerated over the entire periphery without
forming dense filaments. In this case, according to
Figs. 4 and 5e, the maximum ion energy is markedly
lower than that achieved in athinner plasma slab.

4. MECHANISM FOR ION ACCELERATION
BY A LASER PULSE

Here, we analyze the processes that occur when the
laser pulse passes through the plasma—vacuum inter-
face (when the ions are accelerated most efficiently).
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Fig. 7. Distribution of the electric charge density in the (x, y) plane for aﬁ =50 at thetimest = 250, 260, 280, and 300. The light
and dark regions correspond to the excessive positive and negative electric charges, respectively.

This situation refers to a plasma slab of thickness 200\
(i.e., 90 x 271IC/Wy,e). First, a cloud of accelerated elec-
trons escapes from the plasmainto vacuum. This cloud
forms inside the leading part of the pulse and its fila-
ments and rapidly expands. In the vacuum region near
the plasma boundary, the escaping electron cloud gen-
erates a strong magnetic field, whose polarity coincides
with that of the magnetic field inside the channel.
The characteristic size of the magnetized regions is
about 15A.

As the electron cloud expands, the magnetic field
changes rapidly in time, generating the induction elec-
tric field directed toward the vacuum region at the
periphery of the channels. In turn, the induction electric
field increases the momentum of the plasma electrons
in the direction opposite to the propagation direction of
the pulse. The plasma ions do not have sufficient time
to be displaced substantially. As aresult, at the exit of
the channel at the plasma boundary, large-scale posi-
tively charged plasma regions appear that occupy a
symmetric position with respect to the channel axis.
Figure 7 shows the distributions of the electric charge

density inthe (x, y) plane at the timest = 250, 260, 280,
and 300. The bright and dark regions correspond,
respectively, to excessive positive and negative electric
charges. The filamentary plasma at the channel axis
between these regions is as dense as the unperturbed
surrounding plasma and is aimost electrically neutral
by the time t = 280. Then, the electrons leave the axial
region, because the magnetized regions that appear at
the exit of the channel move a ong the plasmaboundary
away from the exit, in which case the induced electric
field forces the electrons (and, after a significant delay,
the ions) to return back into the plasma. The motion of
the magnetized regions can be regarded as the motion
of electron-fluid vortices in the direction perpendicul ar
to the electron density gradient. If the plasma slab is
limited in each direction, then this process will result in
a compression of the dab. In this stage, the ions that
form filaments and the ions at the boundaries of the
charged plasma regions experience Coulomb repulsive
forces. This process results in an anisotropic Coulomb
explosion of afilament region approximately 1A x 10A
in size. The resulting beam of the accelerated ions is
fairly narrow (1A thick) because of the collimating
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 8. Dependence of the maximum kinetic energy E; of the

accelerated ions on the amplitude of a laser pulse incident
on a plasma slab with the thickness L = 100A.

effect of both the charged regions and the magnetic
field generated by the electric current carried by thefast
ions[9].

Figure 8 shows the maximum kinetic energy of the
accelerated ionsasafunction of theamplitude of alaser
pulse incident on a plasma slab of thickness 100A. We
can see that, for pulse amplitudes from 1 to 7, the max-
imum Kkinetic energy of the ions escaping from the
channel increases linearly. For more intense pulses, the
maximum Kkinetic ion energy increases at a progres-
sively slower rate and saturates, because the magnetic
dipole inside the channel near the plasma boundary
does not have sufficient time to become intense enough
for the above mechanism to result in the required
charge separation. Consequently, the ion acceleration
efficiency is affected by at least two parameters. the
plasma slab thickness and the amplitude of the incident
radiation. The acceleration efficiency can be increased
by changing both of them. We can expect that, in the
plane of these two parameters, an optimum curve (or
even an optimum region) should exist over which the
maximum kinetic energy of the accelerated ions
increases with increasing the amplitude of the incident
radiation faster than according to alinear law.

5. CONCLUSION

We have shown that, in the model developed for the
interaction of a high-power laser pulse with a plasma
slab of finite thickness, the ions are accelerated at the
plasma—vacuum interface. The acceleration efficiency
isgoverned by the state of the channel and by the prop-
erties of radiation just before it reaches the plasma
boundary. The key factors that govern the final kinetic
energy of the accelerated ions are as follows.
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(i) The density and velacity of the electron cloud at
the leading edge of alaser pulse. The higher the density
of the beam electrons, the stronger the magnetic fields
in the magnetized regions produced by the beam and,
accordingly, the stronger the electric field that separates
the electron and ion components.

(ii) The density and charge of the ion filament. The
higher the ion density and the larger the charge inside
the filaments, the more powerful the Coulomb explo-
sion.

The energy spectrum of the fast ions can be
described by a thermal distribution with an effective
temperature that is a factor of approximately 4 lower
than the maximum achievable kinetic ion energy. A
beam of accelerated ions is characterized by a small
divergence, the longitudinal momentum of the ions
being approximately ten times higher than their trans-
verse momentum.

Hence, afundamentally important point here is that
theionsare accelerated most efficiently intheregimein
which anion filament is formed inside the channel and
the quasistatic magnetic field is generated at the
plasma—vacuum interface. When the ions are acceler-
ated by the only mechanism associated with an expan-
sion of the cloud of fast electrons in the direction per-
pendicular to the plasmaboundary, the efficiency of ion
acceleration is much lower.
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Abstract—Results are presented from studies of small-scale plasma density fluctuations in the FT-2 tokamak
by the method of far-forward CO,-laser collective scattering. The frequency and wavenumber spectra of fluc-
tuations are measured using parallel k analysis at various positions of the scattering volume in the plane of the
minor cross section of thetorus. The data obtained are interpreted using numerical simulations. In phenomeno-
logical models, plasma fluctuations are substituted by a superposition of two-dimensional noninteracting cells
with Gaussian profiles. A comparison of the cal culated and experimental spectrashowsthat plasmafluctuations
should be described based on the concept of strong microturbulence. The poloidal rotation velocity and the
characteristic scale length of the scattering fluctuations, as well as the radial position of the region where they
are located, are determined. The diffusion coefficient of the cells introduced in the model turns out to be close
to the thermal diffusivity determined from the electron energy balance in the ohmic phase of the discharge.

© 2001 MAIK * Nauka/Interperiodica” .

1. INTRODUCTION

According to theoretical predictions[1], anomalous
electron and ion energy transport in the confinement
region of atokamak can be related to the development
of small-scale drift plasma turbulence. This turbulence
was studied in many experimentsin tokamaks and stel-
larators. The data were largely obtained by using non-
intrusive diagnostics, such as collective scattering of
electromagnetic waves and reflectometry. The main
difficulty in determining the contribution of microtur-
bulence to anomalous transport is associated with the
fact that these diagnostics allow one to measure only
plasma density fluctuations. In addition, the data
obtained are difficult to interpret because of the poor
spatial resolution of these techniques. For the samerea-
son, the nature of the observed broadening of the fre-
guency spectra of scattered radiation is still unclear.
The broadening is attributed either to the turbulent
motion of scattering fluctuations [2, 3] or to the Dop-
pler effect due to the nonuniform rotation of fluctua-
tions in the scattering volume (see, e.g., [4]). Further-
more, the assumption that anomalous transport in the
confinement region is related to fluctuations has not yet
been confirmed quantitatively. Most studies were
reduced to the phenomenological comparison of varia-
tionsin thefluctuation level with variationsin the trans-
port coefficients calculated from the charged-particle
and energy balance. The only exception is a series of
investigations in the Tore Supra tokamak, in which the
turbulent diffusion coefficients were deduced directly
fromthe CO,-laser scattering spectrabased on acertain
adopted model [3].

In this paper, we present the results from studies of
electron density fluctuations in the FT-2 tokamak
plasma by the method of far-forward CO,-laser collec-
tive scattering. A specific feature of these experiments
is the use of paradlel k analysis together with plasma
probing along different vertical chords in the minor
cross section of the torus. The scattered radiation was
collected from the plasma region strongly extended
along the probing chord. In this case, the method of
modeling scattering fluctuations proved to be fruitful
for analyzing the data obtained. Previously, the model-
ing was used in the scattering experimentsin[4] and, to
some extent, in [3]. However, the authors of those
papers did not consider how the frequency spectra
depended on k and on the spatial position of the scatter-
ing volume; thisintroduced uncertainty in the choice of
the model for scattering fluctuations. A comparison of
the results of numerical simulations performed in this
paper with the experimental data indicates that the
broadening of the scattering spectra from ohmicaly
heated plasma in the FT-2 tokamak is turbulent in
nature. An analysis based on the simulation results
made it possible to determine the poloidal rotation
velocity and the degree of anisotropy of fluctuations, as
well astheradial position of the region where the fluc-
tuations are located. As one of the modeling parame-
ters, we determined the diffusion coefficient of two-
dimensional (2D) cells, whose superposition substi-
tuted for plasma density fluctuations. This diffusion
coefficient was compared with the anomalous thermal
diffusivity measured from the electron energy balance.
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2. METHOD FOR DIAGNOSING FLUCTUATIONS

To study the spectra of electron density fluctuations
in the plasma of the FT-2 tokamak (R = 55 cm, a =
8.cm), we used the method of CO,-laser collective
scattering. Thisdiagnosticsis described in detail in[5].
We used a CW CO, laser at the wavelength A; =
10.6 um. A probing laser beam passed along a vertical
chord of the minor cross section of the tokamak. The
scattered radiation was observed at asmall angle 6 with
respect to the probing beam; the wave vector k; of scat-
tering plasma fluctuations was oriented almost perpen-
dicularly to the laser beam. In the experiment, the vec-
tor k; was in the plane of the minor cross section. The
value of k; = 8217\, could vary within the range of 6.4—
40 cmr!, the instrument resolution being Ak, =5 cm-!.
A specific feature of the FT-2 diagnostic facility was
the use of four detectors, which allowed us to simulta-
neously measure the scattering from fluctuations with
four different scalelengthsin the wavenumber range up
to 17.5 cm™! during the entire discharge. We used the
homodyne technique for receiving the scattered radia-
tion. In this case, the output receiver signal I(t) can be
written in the form (see[6])

—ikgr

1(t) = CReJ’dSr[ESn(r,t)Ui(r)ULo(r)e 1. ()

Here, on(r, t) isthe electron density fluctuation, Cisthe
dimensional constant, U;(r) and U (r) are the distribu-
tions of the electric field amplitude of the incident and
reference laser beams in the plasma. The signa I(t)
describesthe time behavior of thereal part of the wave-
number Fourier spectrum determined within a spatial
“window” U;(r)U,o(r), which specifies the resol ution of
the method. In the FT-2 experiments, the length of the
scattering volume, strongly extended aong the probing
beam, was longer than the minor diameter 2a. Under
conditions when there was no spatial resolution along
the probing beam, it was important to use the scheme
allowing studies of different discharge regions. For this
purpose, the laser beam was successively directed
along vertical chords displaced from the discharge axis
by adistance X in the range from -5 to +6.5 cm, which
amost completely covered the minor cross section of
the torus. The spatial resolution in the plane perpendic-
ular to the probing direction was determined by the
probing beam diameter and was equal to 2 cm. The sig-
nals I(t) from four receivers were digitized at a rate of
4 MHz. Further, they were used to obtain the chord-
averaged spectral power density SF, k-, X)) as a func-
tion of the wavenumber (k-) and frequency F for vari-
ous positions of the scattering volume. Using specia
calibration methods (see [5]), we could represent these
spectra in the same relative units, which allowed us to
perform a qualitative comparative analysis of the data
obtained.
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3. EXPERIMENTAL RESULTS

Using the method of CO,-laser collective scatter-
ing, we studied plasma fluctuations for different dis-
charge scenarios in the FT-2 tokamak. The most com-
plete information on plasma density fluctuations was
obtained in the ohmic heating regime for the following
experimental parameters: l, = 27 kA, B,=2T, and
[h= 2.4 x 10'3 cm~. The measurements were carried
out for four positions of the probing chord: X = 0, +3,
+5, and +6.5 cm. Figure 1 shows the spectra S(F, k-, X)
obtained by averaging over a great number of samples
of the photodetector signal during the steady-state
phase of several discharges. In discharges with the
same signals of monitor diagnostics, statistically con-
sistent estimates of the spectra were obtained. The
reproducibility of discharge conditions was monitored
by microwave interferograms, soft X-ray detectors, and
signals from magnetic probes and loops.

The presented dependences reflect the main features
of the spectra, which showed up in different experimen-
tal series and were characteristic of the ohmicaly
heated plasmain the FT-2 tokamak. It is seen that all of
the frequency spectra are broad and lie in the range up
to 500-800 kHz, which corresponds to the range of
drift turbulent fluctuations [1]. Such spectraare typical
for many tokamak experiments. Figures 2 and 3 show
the spectra S(F, ko, X) integrated over the frequency F,
Skg, X). The spectra decrease sharply with increasing
k- (Fig. 2). For k5> 14 cmr!, they decrease according to
the power law S~ k>3, which issimilar to that observed
in the Tore Supra tokamak for the range k = 12—26 cm'!
[7]. Similar dependences of the intensity of different
components of the k; spectrum on X (Fig. 3) evidence
that fluctuations with different scale lengths are located
in nearly the same region along the minor radius. Note
that the spectra measured at symmetrical positions of
the probing chord (X = +5 cm) were similar in shape
and nearly equal in magnitude. This apparently indi-
cates the absence of a pronounced ballooning effect
during the development of the observed fluctuations.

At small scattering angles (k; = 8.5 cm™!), the fre-
guency spectrum demonstrates a pronounced shift,
which decreases as the probing chord is displaced
toward the periphery (Fig. 1). This shift is easily
explained by the Doppler shift Aw=Kk - V4 dueto scat-
tering from perturbations with the poloidal rotation
velocity Vg. As Xincreases and, thus, the angle between
k; and Vg increases, the spectral shift should decrease.
For praobing along the central chord (X = 0), when the
wave vector k of scattering fluctuations was oriented
in the poloidal direction, the frequency shift decreased
with increasing the scattering angle (Fig. 1). This kind
of behavior of the spectral shift allows us to conclude
that the poloidal velocity Vg decreases as the scale
length of fluctuations decreases. This dependence of
the frequency shift on k; was not observed in other
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 1. Measured (heavy lines) and calculated (light lines) wavenumber and frequency spectra of plasma density fluctuations for

different probing-chord positions.

tokamak experiments, in which, in contrast, the shift
increased with k; (see, e.g., [4, 8]).

Thedistinguishing feature of the spectraobservedin
the FT-2 tokamak is the weak dependence of the spec-
trum width on the wavenumber at high values of k;
(Fig. 1). If we assume that fluctuations with different
scale lengths move in the same manner, then the spec-
trum width dw should increase with k. For the Dop-
pler broadening mechanism, the spectrum width
should vary proportionally to k-: dw =k - &V. The
spread in the velocities 8V may be attributed to the tur-
bulent motion or the velocity shear in the scattering
volume. A stronger dependence on kj is expected
when the scale length of the measured fluctuations

PLASMA PHYSICS REPORTS  Vol. 27
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becomes longer than the correlation length L, of
plasma density perturbations, L, k; < 1 [3]. However,
acomparison of the spectrashowsthat, ask- increases,
the spectrum width increases more slowly than by the
linear law (on the chords X = +5 and +6.5 cm) and even
decreases (on the chords X = 0 and +3 cm for k>
19.5 cm!). Such a dependence on k; indicates that the
character of motion is different for fluctuations with
different scale lengths.

Therefore, the data from spectral measurements
show that, in the scattering volume extended along the
laser beam, fluctuations with different scale lengths
have different poloidal velocities and a different char-
acter of motion determining the spectrum broadening.
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4. SIMULATION OF PLASMA FLUCTUATIONS

To answer the question of how strongly the turbu-
lent motion and the radial nonuniformity of rotation
velocities inside the scattering volume influence the
spectrum broadening, a simulation was used to analyze
the experimental data. Consistent simulation of the
scattered spectrainvolves the use of acertain model for
plasma perturbations &n(r, t) and the computation of
the output receiver signals using formula (1). In our
phenomenological model, the plasma density fluctua-
tion dn(r, t) was substituted by a superposition of per-

turbations Zénj (X, y, t) in the form of “tubes’ (fila-
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ments) that were elongated in the toroidal direction and
had a Gaussian profile:

(x—r;(t)cos(8;(t)))
2

on;(x,y,t) = dn(t) exp{ 5

j

)

_(y—r,»(t)sn(ej(t)))z}

> .

or;

Here, x and y are Cartesian coordinates with the origin
in the center of the minor cross section of the torus (the
laser beam is directed along the y-axis), or; is the tube
radius, and r; (t) and §; (t) are the time-dependent radial
and poloidal coordinates of the tube in the plane of the
minor cross section of the torus. In the superposition,
the cells with negative and positive density perturba-
tions of form (2) were used so that [@n(x, y, t)(O= 0.
Numerical experiments showed that this superposition
can be successfully used to describe a wide class of
plasma density perturbations. This class includes axi-
ally symmetric harmonic oscillations with different
scale lengths in the radial and poloidal directions, as
well as completely chaotic fluctuations. The represen-
tation of fluctuations by a superposition of cells of form
(2) for numerical modeling offers advantages because
there is an analytical expression for the homodyne-
receiver signa | (t) [see (1)] in the case when radiation
is scattered by one tube [9]. Therefore, in view of the
linearity of expression (1), it is easy to find an analyti-
cal expression for the signal from scattering by the
superposition of perturbations of form (2): I(t) =

I;(t). The values of the signals I(t) were simulta-

neously computed for four different values of k; and
four probing chord positions. The computed spectra of
the signals were compared with the measured spectra.

The first approach to describing fluctuations was a
modification of the model proposed in [4]. Unlike in
[4], it was assumed that axially symmetric noninteract-
ing poloidal modes are excited on a finite number of
rational magnetic surfaces, which agreeswith the linear
theory of drift instability (see, e.g., [10]). In thismodel,
awide spectrum width can only be related to the radial
nonuniformity of poloidal rotation of these fluctuations
in the scattering volume. In this case, the derivation of
the model encounters difficulties because, on one hand,
perturbations with different scale lengths develop in
nearly the same region along the minor radius (Fig. 3),
and, on the other hand, these fluctuations should have
different mean rotation velocities. This required the
presence of the inversion point of the rotation velocity
inside the scattering volume, the velocity shear being
much higher than the actual shear in the ohmically
heated plasma. In addition, numerical experiments
revealed an unavoidable discrepancy between the cal-
culated and experimental spectra, which could be
understood even without entering into details of the
PLASMA PHYSICS REPORTS  Vol. 27
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model. The calculated spectra had spectral peaks that
were not observed in the experiments; these peakswere
present after multiple averaging even for a short mode
lifetime. This was because the model spectrum was
formed basically by the modes developing near sur-
faces with safety factor values q = 2, 3, and 4. More-
over, in order to reconstruct the experimentally
observed increase in the scattered spectra as the prob-
ing chord was displaced toward the periphery of the
discharge (Fig. 1), it was necessary to assume that the
modes were located in a very narrow radial region 20r
so that the anisotropy parameter was improbably high:
Ao/20r > 1 [here, Ay isthe poloidal wavelength and or
is the radius of perturbations of form (2), from which
the poloidal mode was formed]. Hence, within the
model in which the spectral broadening was deter-
mined primarily by the nonuniformity of poloidal
velocities of modes developing near rational surfaces,
even a qualitative agreement was not achieved between
the experimental and calculated data.

Another approach to describing plasma density per-
turbations suggests that the spectral broadening is gov-
erned by the turbulent motion of fluctuations. In the
model based on the assumption of strong turbulence,
plasma density fluctuations were substituted by a great
number (N > 1000) of noninteracting perturbations of
form (2), moving chaotically in the plane of the minor
cross section of the torus. The motion of tubes was
specified by the spatial displacement dA in an arbitrary
direction in the plane of the minor cross section of the
torus for the time interval At. Note that the representa
tion of plasma density fluctuations as a superposition of
noninteracting perturbations of form (2) does not imply
that the motion of individual cells can be traced in the

resultant distribution dn(x, y, t) = ) on; (X, y, t). This

approach only implies that we specity the density fluc-
tuations on(x, y, t) with a short correlation time and
short correlation length on the order of the tube size.
The first goal of numerical experiments within the
proposed model was to determine the dependences of
frequency-integrated spectra on the position of the
probing chord. The data of chord measurements
(Fig. 3) showed that the scattering fluctuationswith dif-
ferent scale lengths were located in nearly the same
region along the minor radius, r = 5-6 cm. Inthe model,
the distribution of fluctuationsin this region was speci-
fied phenomenologically by a Gaussian function B(r)
with a width L, > A and a maximum at the given
radius r,. As the tube chaotically approached the
boundary of the layer, its perturbation amplitude
decreased to the value at which the perturbation “died.”
For the total number of perturbations to be kept con-
stant, a new perturbation was “born” at this moment at
the radius r,. A satisfactory agreement of the depen-
denceswas obtained forr, =6 cmand L, =2 cm. Inthis
case, in addition to the choice of theradial region where
fluctuations were located, we had to specify a small
anisotropy of perturbations, which was characterized
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 4. Functionsused in the model of turbulent plasmaden-
sity fluctuations: (1) cell amplitude A, (2) angular rotation
frequency of perturbations Q, and (3) mean free path dA of

cellsfor thetime At = 6.25 x 1078 s; dr is the tube radius.

by the parameter Ag/dr = 1.3 (where /4 is the poloidal
perturbation length). The perturbations extended in the
poloidal direction were modeled by the sum of several
nearby cells. For better agreement with the observed k
spectra (Fig. 2), it was necessary to introduce different
cell sizes. In calculations, we used a statistically uni-
form distribution of the tubes over sizes (radii) or; their
amplitudes were described by a two-parameter func-
tion A(20r) close to Gaussian in shape (Fig. 4). Calcu-
lations performed using the free parameters oA, r,,, and
L, and different functions A(20r) have shown that the
model allows us to adequately describe the observed
chord dependences and k spectra. It was possible to
obtain agreement between the experimental and calcu-
lated data within an accuracy no worse than the mea
surement accuracy (<20%).

When simulating the frequency spectra, two experi-
mental facts should additionally be taken into consider-
ation—the shift of the spectrafor small values of k; and
the narrowing of spectra with increasing wavenumber
ko (Fig. 1). The Doppler shift of the spectra was pro-
vided by introducing the angular velocity Q(Vg = Qr, =
2.7 x 10° cm/s) for large-scale fluctuations with &r >
0.2 cm. In the given model, the narrowing of spectra
with increasing k5 implied that the step of chaotic
motion decreased as the perturbation size decreased.
The change in dA with increasing or was described by
a step function (Fig. 4). The fina refinement of the
model, which was introduced to describe the fact that
the spectrum intensity decreased as the frequency
increased, consisted in that dA was defined as arandom
value with a prescribed distribution.
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Fig. 6. Calculated radial distribution of density fluctuations
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Figure 1 shows one of the calculated spectra
obtained by appropriately choosing the parameters. Itis
seen that the chosen structure and kinetics of the tube
motion, which are characterized by the functions and
parameters shown in Fig. 4, correctly describe the vari-
ations in the spectral intensity within three orders of
magnitude. The calculated dependences of the widths
and shifts of the spectraon k; and X are also similar to
the experimental dependences. The calculated k spectra
for X = 0 are compared with the experimental data in
Fig. 2. Thisfigure also illustrates the results of calcula-
tions for intermediate values of k5 at which measure-
ments were not performed. A characteristic pattern of
the plasma density fluctuations is demonstrated in

Fig. 5, which shows the function Z on; (x, y, t) in the

given space window of the minor cross section of the
torus at afixed time.

As might be expected for a multiparameter simula-
tion, such an agreement between the experimental and
calculated spectra might be obtained with a somewhat
different set of parameters. However, an important cir-
cumstance is that, with any set of model parameters
used, we stably obtained the following mean parame-
ters of turbulent perturbations. Scattering perturbations
with a radial-inhomogeneity scale length of L, =2 cm
were always located near r, = 6 cm. The characteristic
radial perturbation distribution shown in Fig. 6 was
similar to that determined previously by the reflectom-
etry technique under similar ohmic discharge condi-
tions [11]. The poloidal rotation velocity of the large-
scale fluctuations was always at a level typica of the
ohmic phase of the dischargein the FT-2 tokamak [12].
The characteristic cell size2ér = 0.2 cm (Fig. 4), which
determined theradial correlation length of the resulting
fluctuations, varied only dlightly. This size corre-
sponded to the expected scale length of the drift insta-
bility or/ps = 4 (where pgisthe Larmor ion radius at the
electron temperature) [1]. The diffusion coefficient Dy
of the tubes, which was defined as the average (over al
the cells) ratio of half the square of the cell displace-
ment for a sufficiently long time to this time, aso
remained unchanged. It is worth noting that this value
(D= 1.6 m?/s) was close to the value of thermal diffu-
sivity determined in the FT-2 tokamak from the elec-
tron energy balance for theradial region from5to 7 cm
[13].

5. CONCLUSION

The studies of density fluctuations of the chmically
heated plasma in the FT-2 tokamak by the method of
CO,-laser scattering have provided a great body of
information, including the dependences of the scatter-
ing spectra on both the wavenumber and the probing-
chord position. The measured frequency spectra, even
without special treatment, show that scattering fluctua-
tions develop in nearly the same radial region, close to

PLASMA PHYSICS REPORTS Vol. 27 No. 3 2001
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the periphery of the tokamak. The kinetics of density
perturbations is apparently different for different scale
lengths. In particular, the mean poloidal rotation veloc-
ity of fluctuationsis different. The simulation of small-
scae plasma density fluctuations, which was per-
formed using the experimental data, made it possible to
adequately describe the frequency spectra observed. It
was demonstrated that the motion of scattering fluctua-
tions is chaotic and should be described using the
model of developed turbulence. Unfortunately, the
information obtained on the observed fluctuations
(such asthevelocity of their propagation in the poloidal
direction, the radial position of the region where they
are located, the absence of the ballooning effect, the
characteristic scale length of fluctuations, and the
degree of their anisotropy) does not allow us to unam-
biguoudy identify the kind of instability whose
strongly nonlinear stage is observed in the experiments.
The diffusion coefficient of noninteracting weakly
anisotropic cells, which were introduced in the model,
turned out to be close to the thermal diffusivity mea-
sured in the FT-2 tokamak. This agreement allows usto
suggest that the motion of such perturbations corre-
sponds to the motion of test particles. If such an agree-
ment is confirmed by calculating the trgjectories of test
particles using the known model distribution of fluctu-
ations, then the approach proposed here will deserve
consideration as one of the possible ways of estimating
the turbulent transport coefficient from the scattering
spectra.
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Abstract—Time-resolved measurements of quartz erosion are carried out to determine the density of the
energy flux incident onto the sample surface. These data are needed to create a reliable code describing the
interaction of athermonuclear plasmawith a solid surface. Experiments were performed in the 2MK-200 facil-
ity under the program of modeling heat loads on divertor plates during disruptionsin tokamaks. A 10-mm-thick
plate of fused quartz was exposed to a high-temperature deuterium-plasma stream with the temperature T; + T, <
1 keV, density (5-10) x 105 cm3, B = 0.25, energy density up to 200 Jcm?, and power density ~10 MW/cm?2.
It is shown that the quartz erosion begins aimost immediately after the stream reaches the surface. The eroded
material shields the quartz surface from further destruction. Under the given experimental conditions, the inte-
gral shielding factor (the ratio of the stream energy to the energy reaching the surface) was rather high (about
seventeen). As aresult, at a stream energy density of ~150 Jcm?, the total erosion depth was about 0.75 m
over 35 s. Based on the measured time dependence of the erosion depth and the reference data on the thermal
conductivity of the fused quartz, the power density incident onto the quartz sample was numerically calcul ated.

© 2001 MAIK “ Nauka/lnterperiodica” .

1. INTRODUCTION

Since plasma sources capable of producing plas-
mas with parameters close to those of future tokamak
reactorsare still lacking, it isimpossibleto perform an
experimental study of the stability of divertor plates
against heat loads arising during disruptions. These
loads are so high that, in spite of the shielding effect
[1], the destruction of the plates can become one of the
key factors limiting the reactor lifetime. Conse-
guently, until the first ITER experiments, the extrapo-
lation of results on the erosion of divertor platesto the
range of thermonuclear parameters will be based on
numerical simulations, which demands a high degree
of reliability.

The absence of reliable data on the line emission of
multiply charged ions and the constants needed to cal-
culate the populations of the energy levels of theseions,
inevitable simplifications adopted when modeling radi-
ative transfer in order to avoid overly laborious compu-
tations, an insufficient understanding of the mecha-
nisms governing the destruction of a solid surface at a
high-power heat |load, etc., lead to a situation in which
the results of numerica simulations depend signifi-
cantly on computer resources and the code used [2—4].
This situation cannot be regarded as being normal;
hence, thereisaneed for reliable experimental datathat
would be a basis for numerical simulations and would
make it possible to create an adequate model of the

interaction of a high-temperature plasma with a solid
surface. Among these data, the value of the energy that
is transferred through the shielding layer and reaches
the surface of the material under study and the erosion
depth of this material as a function of time are of great
importance.

In this paper, we present the results of time-
resolved measurements of the erosion of fused quartz
in experiments on the modeling of heat loads arising
during disruptions. The experiments were carried out
inthe 2MK-200 facility. The choice of quartz, whichis
not regarded as a divertor-plate material, is motivated
by both the opportunity to employ avery simple mea-
surement scheme and the well-known characteristics
of this material. In addition, the very high viscosity of
fused quartz, even at the evaporation temperature, pre-
vents the melted quartz from splashing under the
action of plasma pressure; hence, common evaporation
is a single mechanism for surface destruction. In this
case, from the measured erosion depth, taking into
account the energy removed from the sample surface
due to heat conduction, we can determine the energy
incident on the surface as afunction of time. Since this
quantity israther difficult to measure directly, the pro-
posed indirect method may provide reliable data that
can be used to verify the reliability of a particular
numerical code.

1063-780X/01/2703-0228%$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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2. EXPERIMENTAL DEVICE
AND MEASUREMENT TECHNIQUE

Real-time measurements of quartz erosion were car-
ried out in the 2MK-200 facility. The design and
parameters of this device were described in detail in
[5]; for thisreason, we present here only the main char-
acteristics needed to understand the conditions of the
erosion experiment.

The 2MK-200 facility is along cusp magnetic con-
finement system (Fig. 1) consisting of a 1.5-m-long
central solenoid with two cusps at its ends (the cusp is
amagnetic system consisting of two magnetic mirrors
with oppositely directed magnetic fields and two addi-
tional coils between them, which create a radially
diverging magnetic field with a given radial depen-
dence of the magnetic field strength).

The system is filled with a deuterium plasma pro-
duced by two pulsed plasma guns installed at its ends.
The plasma streams generated by the guns are injected
through the cusps into the central solenoid, collide in
the central region, and then thermalize. As aresult, the
solenoid (the diameter of its vacuum chamber is 14 cm)
is filled with a deuterium plasma with the following
parameters: T, = 300 eV, T; = 700 eV, and n, = (5-10) x
1015 cm3; the total plasma energy attains 50 kJ. The
magnetic field is forced out by the plasma toward the
metal wall of the vacuum chamber. The characteristic
time of plasma confinement in the system (~20 ps) is
determined by the radial escape of the plasma through
the cusp magnetic dlits. The dlit width, which depends
on the skin depth and, according to [6], is on the order
of the ion Larmor radius, determines the thickness of
the plasma stream escaping from the confinement sys-
tem (Fig. 1). The radial magnetic field is maximum
(2.5T) at aradius of 18 cm. In thisregion, the plasma-
stream thickness is minimal and the power density
attains 10 MW/cm?; for this reason, a quartz sample
was positioned there. The arrangement of the samplein
the cusp is shown in the inset of Fig. 1.

The sample was shaped as a rectangular parallel epi-
ped 45 x 35 x 10 mm in size. The sample was oriented
so that its 45 x 35-mm working surface was perpendic-
ular to the cusp magnetic field and its 35-mm edges
were paralel to the system axis. Thus, all measure-
ments were carried out with a plasma stream incident
normally onto the sample surface. Due to the interac-
tion of the plasmawith the sample, agroove parallel to
the long edge of the sample appeared onitssurface. The
groove depth was measured at the same cross sectionin
the central region of the sample. The orientation of the
reference axes is a'so shown in Fig. 1; the planez=0
corresponds to the center of the plasma stream.

Metal screens 5 (1-mm-thick copper plates) par-
tially covered the working surface of the sample; the
covered regions were not exposed to the plasma. These
regions were needed to carry out absolute measure-
ments of the total groove depth with a profilometer.
Thus, the exposed areawas 45 x 18 mm?.
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Fig. 1. Schematic of the cusp magnetic confinement system
and the arrangement of the samplein the cusp: (1, 4) plasma
streams generated by plasma guns, (2) plasma confined in
the system, (3) skin-layer plasma escaping from the system
through the magnetic slit of the cusp, (5) protecting screens,
and (6) sample.

The quartz erosion depth was measured using opti-
cal interferometry. The erosion depth was determined
from the shift of fringes produced by interference of the
light reflected from the sample face exposed to the
plasma action and that reflected from the opposite (ref-
erence) face of the sample. A change in the sample
thickness (Ad) and the corresponding fringe shift (AN)
are related by the well-known relationship Ad =

0.5ANA/A/n° — sin2¢ , where A is the light wavelength,
nisthe refractive index of the sasmple material, and ¢ is
the angle of incidence of light on the sample surface. To
trace the time history of the erosion process, the inter-
ference pattern was recorded with the help of a high-
speed streak camera (HSSC).

Figure 2 presents the schematic of the interferome-
ter measurements, which includes a gas laser (1),
mechanical shutter (2), prism (3), two diaphragms
4, 9), lenses (5, 8, 10), sample (6), set of filters (11),
and HSSC (/2). An LG-106 argon laser operating in
continuous made generated a number of modes with
wavelengths from 0.48 to 0.52 um. The total radiation
power was 1 W. The most intensive radiation mode
(A =0.5145 pm) was separated out with the help of
prism 3 and diaphragm 4 and directed onto sample 6
through cylindrical lens 5, which dlightly broadened
the laser beam. The beam cross section at the sample
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Fig. 2. Experimental layout for time-resolved measure-
ments of quartz erosion: (/) gas laser, (2) mechanical shut-
ter, (3) prism, (4, 9) diaphragms, (5) cylindrical lens,
(6) sample, (7) plasma, (8, 10) spherical lenses, (11) set of
filters, and (12) HSSC.

RN RN RN

Fig. 3. Orientation of fringesand the HSSC dlit: () entrance
dlit, (2) laser beam, (3) fringes, (4) sample, and (5) plasma.

was approximately rectangular (2 x 0.5 cm?) in shape.
Theangle of incidence of the laser beam onto the quartz
sample was about 2°. The interference pattern was pro-
duced by interacting light waves reflected from the
opposite sample faces.

Spherical lenses § and /0 formed an intermediate
image of the interference pattern on the HSSC entrance
dlit, which cut out anarrow streak from the whole inter-
ferogram. The orientation of the HSSC dlit and fringes
isshown in Fig. 3. The fraction of the interference pat-
tern that was cut out by the HSSC dlit was a narrow,
approximately 1-mm-wide streak on the reference face
of the quartz plate.

The HSSC was focused on the sample reference
face, which alowed us to minimize the measurement
error caused by the bending of the sample under the
action of the plasma pressure.

Mechanical shutter 2 used in the scheme was open
only for 600 us, which excluded the possibility of
repeated exposures of the film by laser radiation during
subseguent revolutions of the HSSC mirror.

The time resolution of the scheme (~0.4 us) was
determined by the width of the dlit image on the film
and by the speed with which it moved (1.5 km/s) during
the rotation of the mirror.

3. RESULTS AND DISCUSSION

Thetotal energy incident onto the sample was mea-
sured with the help of a calorimeter (a75-mm-high and
25-mm-diameter copper cup with a 1-mm-thick wall
and a thermocouple attached to it), which was posi-
tioned in the same cusp and at the same distance from
the system axis as the sample. With the help of this cal-
orimeter, it was found that the average energy density
in the plasma stream in the site of the quartz sample
was equal to 150 Jcm?.

Below, it is assumed that the zero time corresponds
to the instant when the plasma reaches the sample sur-
face. This instant was determined using a magnetic
probe located near the sample. The zero time in the
interferogram was determined with the help of a spark
discharge, whose light was recorded by the HSSC and
made a mark on the film. The corresponding voltage
signa was recorded by the same oscillograph as the
magnetic probe signal. Taking into account the time
resolution of the recording system and the uncertainty
in identifying the start of the magnetic probe signal, we
estimated the accuracy of determining the zerotimein
the interferogram to be no worse than £1 ps.

A typical interferogram of the erasion process for
the plasma-stream parameters characteristic of the
MK-200 device is shown in Fig. 4. Note that the inter-
ference pattern was clearly observed for nearly 50 us
(erosion ended by 35 us), amost disappeared, and then
appeared again after nearly 70 ps with the previous
contrast. The reason why the interference pattern disap-
pears is not clear. Nevertheless, after each shot, the
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Fig. 4. Typical interferogram of the process of quartz erosion.

interference pattern was restored; this means that the
surface facing the plasma does not contain breaks,
abrupt changes, or cavitiesthat are typical, e.g., for the
surface of atungsten sample.

The oscillations of fringes, which are seen in the
interferogram, are caused by elastic mechanical vibra-
tions of the sample. These vibrations are excited by the
plasma pressure. Measurements carried out with piezo-
electric pressure gauges showed that, under the stan-
dard operating conditions of the MK-200 device, the
plasma pressure in the cusp dlit at a radius of 18 cm
attained 0.6-0.7 MPafor a pulse duration of 15-20 ps;
the corresponding oscillogram is shown in Fig. 5. Note
that an epoxy-compound layer deposited on the gauge
surface facing the plasmain order to shield it from the
plasma potential worsened the gauge frequency charac-
teristic. This manifested itself in the broadening of
steep leading edges of the pressure pulses of up to
15us

Under the action of the plasma pressure, both the
thickness of the sample and its refractive index vary,
thus producing variations in the optical path of the
beam entering the sample through the reference plane
and reflected from the working surface, which resultsin
afringe shift.

This shift is easy to estimate following the results of
[7], in which this effect was used to create an optical
pressure gauge. It can be shown that the variation in the
optical path of the beam passed through the sample and
reflected from the working surface is given by the sim-
plerelationship AL = 2n,d,(1 — &)P/E, where n, isthe
refractive index for the sample material under normal
conditions, d, is the initial sample thickness, P is the
pressure on the sample surface, E is'Young's modulus
for the sample material, & is a humerical factor (§ =
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(1 =2v)(1 + N5 —2/n%)/6), and v is the Poisson coef-

ficient for the sample material. In deriving thisrelation-
ship, we took into account that the material refractive

index depends on the relative deformation %E ash=

nogl — E%EE and used Hooke's law g—g = P/E. Thus,
for a1-cm-thick quartz sasmple (n, = 1.46, E = 73 GPa,
and & = 0.278) at the pressure P = 0.6 MPa, the change
in the optical path isequal to AL = 0.2 um, which cor-
responds to a shift of nearly 0.4 fringe for green light
(A= 05145 pm). The time of sound propagation
through the sample and back is 3.8 ps; consequently, if
apulsed load is applied to the plate, the oscillations of
fringes with a period of ~4 pus and amplitude up to 0.4
fringe should be observed in the interferogram.
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Fig. 5. Typical waveform of the stream plasma pressure at
the site of the quartz sample.
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Fig. 6. Time dependence of the erosion depth for several
points on the sample surface lying at different distances
from the center of the plasma stream (z = 0).

Such a fringe shift is easy to detect, and, hence,
mechanical vibrations should also appear in the curves
illustrating the time behavior of erosion; i.e., these
curves should not be smooth. This is clearly seen in
Fig. 6, which shows the results of processing one of the
interferograms for severa points on the sample surface
lying at different distances from the center of the
plasmastream (z = 0). Theinterferogram was manually
processed with a measuring microscope.

It is seen from Fig. 6 that substantial erosion begins
nearly 2-3 ps after the plasma reaches the sample sur-
face. For the following 10-15 s, the erosion rate
remains almost constant. The erosion rate is maximum
at the center of the stream and decreases at the stream
edges. This is natural because the energy density is
nonuniform across the plasma stream; it is maximum at
the center of the stream and is amost zero at z =
+10 mm.

By the time t = 20 s, the erosion process on the
slope of the groove on the side of the confinement sys-
tem (z < 0) terminates almost completely. This is
explained by the fact that, as was mentioned above, the
plasma confinement time in the system is equal to
~20 uys. This means that, by this time, the energy flow
from the magnetic confinement system almost termi-
nates. At the same time, the plasma continues to flow
from the accelerator so that the erosion process
becomes asymmetric.

The data obtained are quite sufficient to determine
the density of the energy flux incident onto the sample
surface (aswas mentioned above, thisdensity cannot be
measured directly). If we could neglect heat conduction
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Fig. 7. Results of numerical calculations of the interaction
of the plasma stream with the quartz sample. (a) The tem-
perature profile across the samplefor fiveinstants: t = (1) 1,
(2) 2, (3) 8, (4) 16, and (5) 35 ps; (b) the time dependence
of (1) the power and (2) the energy density incident on the
sample surface, (3) the energy expended on heating of the
sample by heat conduction, and (4) the energy expended on
the evaporation of the sample material; and (c) (1) the exper-
imental (for z=0) and (2) calculated (for the power density
described by curve 1 in Fig. 7b) time dependences of the
erosion depth.

in quartz, the problem would be easy to solve. The
usual differentiation of the erosion depth with respect
to time and the subsequent multiplication by the quartz
mass density and specific sublimation energy could
give the power density on the sample surface as afunc-
tion of time. Unfortunately, although the quartz thermal
conductivity is low, neglecting it may introduce large
errors. This is illustrated by Fig. 7, which shows the
results of one-dimensional numerical calculations.

In calculations, it was assumed that the shielding
layer isaready formed and the energy incident onto the
sample is expended on both evaporation of the surface
layers and heating of the sample by heat conduction.
PLASMA PHYSICS REPORTS  Vol. 27
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The incident power density was chosen such that the
time dependence of the calculated erosion depth coin-
cided with the experimental one. The necessary values
of the thermal properties of quartz glass were taken
from[8, 9].

Figure 7a shows the temperature profiles across the
sample for five instants. As is seen, by t = 35 s, heat
has already propagated fairly deep into the sample.
This means that a considerable fraction of the energy
incident onto the surface is transferred into the internal
energy of the surface layers. Note that thisratioisvalid
only for the specific temperature dependence of the
quartz-glass thermal conductivity taken from [10] and
extrapolated to high temperatures.

The quantitative energy characteristics of the pro-
cess are illustrated in Fig. 7b, which shows the time
dependences of the power density (1) and the energy
density (2) incident onto the sample surface (the energy
density is the time integral of the power density), the
energy transferred into the sample by heat conduction
(3), and the energy expended on the evaporation of the
sample material (4). For the chosen time dependence of
the incident power density, by t = 35 us, when the ero-
sion terminates almost completely, the total energy
density incident onto the sample surface is nearly
7.7 Jem?. Inthis case, most of this energy (~4.2 Jcm?)
is expended on heating the sample by heat conduction
and only about 3.5 Jcm? is expended on erosion.

Note that the time behavior of erosion is sengitive to
the time dependence of the power density incident onto
the sample surface. A rather good agreement between the
calculated and experimental time dependences of the
erosion depth (Fig. 7¢) is obtained assuming that the
incident power density behaves as is shown in Fig. 7b
(curve I). The shape of this curve resembles the wave-
form of the stream plasma pressure (Fig. 5) (with
regard to the comment concerning the time resolution
of the piezoelectric gauge), which is reasonable
because the stream power density is proportional to the
product of the plasma pressure and stream velocity. Itis
obviousthat the actual time behavior of the power den-
sity incident onto the sample surface may be somewhat
different from that given in Fig. 7b; however, this dif-
ferenceisrelated to insignificant details and can hardly
change the entire picture of the process.

As was mentioned above, the calculations did not
include the energy passing through the sample in the
form of radiation (quartz of the KV type is transparent
to radiation in the wavelength range 0.2—2.2 um). To
solve the problem more correctly, this energy should be
taken into consideration, and, thus, we carried out the
relevant measurements. We used a standard IKT solid
calorimeter for measurements of the time-integrated
energy and a FEU-84 photomultiplier for time-resolved
measurements. It was found that about 1.5 Jcn? passes
through the quartz plate and most of this energy passes
att> 35 us, i.e., the correction to the power density is
relatively small. Nevertheless, with al of the compo-
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Fig. 8. Profile of the sample surface measured with the pro-
filometer after 35 shots (solid line). Circles show the results
of processing the corresponding interferogram.

nents of the energy flux taken into consideration, the
energy reaching the surface is about 9 Jcm?, which
comprises only 6% of the total energy of the incident
plasma stream (150 Jcm?). It is unlikely that taking
into account the energy of the radiation absorbed in the
sample volume will change this value significantly.
Hence, the mean value of the power density reaching
the solid surface is on the order of 260 kW/cm?. The
same value should be obtained in numerical calcula-
tionsif the model adequately describes energy transfer
across the shielding layer and destruction of the quartz
surface.

After 35 shots, the sample was removed from the
system. Figure 8 shows the resultant profile of the sam-
ple surface measured with a profilometer. The figure
also shows the results of processing the interferogram
obtained after the 35th shot. In this case, the HSSC was
replaced with aZenit-3M camera. The agreement of the
results within the measurement accuracy confirms the
reliability of the technique used for real-time erosion
measurements.

4. CONCLUSIONS

Based on the results obtained, we can draw the fol-
lowing conclusions:

(i) When a hot-plasma stream acts on a solid sur-
face, only asmall fraction of the plasmaenergy reaches
the sample surface. For quartz under our experimental
conditions, the total shielding factor (the ratio of the
plasma stream energy to the energy reaching the sam-
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ple surface) is estimated to be about 16-17. The shield-
ing layer appearsasaresult of the erosion of the sample
material. Significant erosion of quartz begins 2-3 us
after the plasmaimpacts the surface. It is apparent that,
for other materials, this value will be somewhat differ-
ent at the same power density of the plasma stream.
However, this circumstance is of minor importance,
because, for time scales characteristic of disruptionsin
tokamaks (0.1-1 ms), the shielding layer can be
regarded as arising instantaneously.

(i) If the thermal properties of the surface material
(the specific heat, the thermal conductivity, the evapo-
ration temperature, and the specific evaporation or sub-
limation energy) are known, the experimental data on
the time dependence of the erosion depth, together with
the numerical solution of the heat-conduction problem,
make it possible to determine (with a high degree of
accuracy) the fraction of energy reaching the sample
surface as afunction of time.

(iii) For amean power density reaching the sample
surface of 260 kW/cm?, the erosion rate of the fused
quartz is about 0.02 pm/ps.

(iv) Interferometry is areliable method for measur-
ing the erosion of transparent materials exposed to ahot
plasma. The only limitation is that it is impossible to
distinguish the fringe shift due to mechanical vibrations
of the sample from that caused by erosion. If the shift
due to erosion is dominant, the measurements do not
encounter serious difficulties.
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Abstract—A fundamentally new approach is proposed for describing Z-pinches when the pinch current isgov-
erned to alarge extent by strong charge separation, which givesriseto aradial e ectric field in the nongquasineu-
tral core of the pinch. In the central pinch region with a characteristic radius of about r, ~ ,/Jy/en.c, part of
the total pinch current J, < J, is carried by the drifting electrons and the remaining current is carried by ions
moving at the velocity v;, ~ c(2eZ)/mic?) in the peripheral region with aradial size of €/ Inthe nonquasineu-
tral core of a Z-pinch, the radial ion “temperature” is on the order of ZeJy/c. The time during which the non-
quasineutral region existsis limited by Coulomb collisions between the ions oscillating in the radial direction

and the electrons. Since the magnetic field is not frozen in the ions, no sausage instability can occur in the non-
quasineutral core of the Z-pinch. In the equilibrium state under discussion, the ratio of the radial charge-sepa-

ration electric field E to the atomic field E, may be aslarge as Ey/E, ~ 1372(a0cope/c) I/ pe, Where g, isthe

Bohr radius. © 2001 MAIK “ Nauka/Interperiodica” .

1. In recent years, ways of optimizing emission
from the axial regions of Z-pinches have been studied
experimentally in many laboratories around the world
[1]. However, a clear theoretical understanding of the
structure of Z-pinches [2, 3] has not yet been ascer-
tained and a simple explanation for the onset of qua-
sisteady structures observed in some experimentson Z-
pinchesis still lacking. Z-pinches are often regarded as
unsteady plasma formations in which the magnetic
field compresses the plasma until the balance between
the compression force and the kinetic plasma pressure
isreached. In this case, the problem of the steady equi-
librium state of a Z-pinch is analogous to the problem
treated by Benford and Book [4] of the current flowing
in a plasma. It is well known that a plasma current
whose density is independent of the radius is limited
because the electrons are captured by their own mag-
netic field By into Larmor orbits of radius r, ~
MCV,/(€By), SO that, for r ~ r, the characteristic lim-
iting current isJ ~ m?v,/e. The existence of alimiting
current was predicted as early as 1939 by Alfven [5].
Further investigations showed that the problems arising
from the limiting current can be eliminated by using
beams with a specia (hollow) structure [6]. However,
in the theory developed by Hammer and Rostoker [6]
for steady equilibrium states of Z-pinches, an important
roleis played by the spatia scale ¢/w,. (Where w. isthe
electron Langmuir frequency), which fails to serve as
the characteristic scale of an equilibrium state provided

that the magnetic field is sufficiently strong (Bg >

4Tmmc?). In addition, this theory treatsions merely as
an immobile neutralizing background for the resulting
hollow structure. For these reasons, it is of interest to

seek more realistic equilibrium states of Z-pinch plas-
mas in which the electrons and ions are both mobile.

Below, we will show that it is possible to construct
an equilibrium in which the current J is substantially
higher than the Alfvén electron current J,, = mgc’/e.
With this circumstance in mind, we consider the cur-
rentsin the range

Jpe €I < Jy, D

where J,; = mc?®/Ze, m,and m are the masses of an elec-
tron and ion, and —e and Ze are their charges. In
describing Z-pinches with currents in range (1), the
electron inertia can be neglected and the electrons can
be treated in the drift approximation, whiletheion iner-
tia should necessarily be taken into account.

It should be noted that the electrons can be treated
in the drift approximation only at a certain distance
from the axis, whereas, near the axis, the electron iner-
tiais important. If the charge separation is strong and
the electron drift velocity is on the order of the speed of
light, v, ~ ¢, then, inthe axial region of radiusr ~ r .=
m.C%/(eBy), the current should be on the order of the
Alfvén electron current J,.. Since we are interested in
the current range (1), we can exclude from consider-
ation the region of the electron drift motion, where the
currents are comparatively low.

An analysis of alarge amount of the measured data
[1] provides experimental evidence for the presence of
acharacteristic radial scale on the order of several tens
of microns in Z-pinches with currents of about 1 MA
and the central plasmadensity n.~ 10%° cm™. Sincethis
radial scale has been observed in Z-pinches under very
different experimental conditions, one might expect

1063-780X/01/2703-0235$21.00 © 2001 MAIK “Nauka/ Interperiodica’



236

that it would be revealed by a simple physical analysis.
It is well known that, in the presence of a strong mag-
netic field, the electron drift motion gives rise to the
Hall electric field; as an example, we can mention ion
diodes with magnetized electrons [7, 8] and electron
vortices that may develop in laser plasmas [9, 10]. In
these structures with magnetized electrons, the screen-
ing of the electric (and magnetic) field plays an impor-
tant role. When the electron and ion densities differ
appreciably from one another, the Debye screening
radiusry can be estimated from Poisson’s equation [see

Eq. (9) below]: ré ~ ®/(41Een, ), where @ isthe electro-
static potential. Since, in a strong magnetic field, the
electrostatic potential has a Hall nature and is equal to
& ~ B?/(41en,), the Debye screening radius is on the
order of the magnetic Debye radius rg: rp ~ rg =
B/(41ten,). In the specific case of aZ-pinch with the azi-
muthal magnetic field By = 2J/rc, the magnetic Debye

radius rg hasthe formrg ~ ,/J/(21en.c) .

When the charge separation is strong and E; ~ B,
the current in the nonguasineutral plasmaregionis car-
ried by the electrons drifting with the velocity v, ~ c,
in which case the magnetic Debye radius rg becomes
rg ~ ro, Where r is the characteristic electron-current
radius. Consequently, in the case at hand, the electron-
current radius is on the order of the Debye screening
radius, rp ~ r,. Clearly, this result reflects the fact that
the charge-separation electric field is nonzero only in
the region where the electron drift current flows. The
above expression r, ~ rg with J, ~ 1 MA and n, ~
10%° cm3 givesr, ~ 10 um. Below, we will see that the
current J, can be expressed in terms of the total current
inaZ-pinch [see formula (29)].

Since the ions moving in the nonquasineutral core
of the Z-pinch are unmagnetized, they can be confined
inthe axial region only by an electric force driven by an
excessive negative charge at the axis. In equilibrium,
the ions confined in such amanner can be characterized
by an oscillatory radial temperature. In the central non-
quasineutral region, the current is carried by the drift-
ing electrons. At the pinch periphery, where the electric
field is weak, the current can be carried by both elec-
trons (due to Coulomb collisionsin alongitudinal elec-
tric field) and ions, in which case the longitudinal ion
velocity is determined from the conservation law for
the generalized momentum,

Ze
PzEmiViz+?AZl (2)

where the z-component A, of the vector potential satis-
fiesthe condition A,(r =0) = 0.

The characteristic radius R of the periphera region
of the Z-pinch is governed by the collisionlession skin
depth: R ~ c/wy, > r,. Hence, the proposed Z-pinch
model involves two spatial scales; the ratio of the
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scales, ro/R~ ,/J/J, << 1, isdetermined by the param-
eter J/J, < 1.

In the nonquasineutral core, the transverse ion
energy €, is determined by the Hall potentiad & ~

Bg /8Ten, and the longitudinal energy €, can be esti-
mated from the conservation law (2). As a result, we
obtain e-/g; ~ C/(rowy; ) > 1, which indicates that, in
the core of the pinch, the transverse ion energy is high,
so that the ions oscillate predominantly in the radia
direction. The oscillatory ion energy is determined by
the Hall electric field driven by the current J, flowing in
the region of radiusr,:

£, 0Zed 0ZBZ/81n, OZel,/c. 3)

For the current J, ~ 1 MA, the oscillatory ion energy is
about severa tens of MeV. The energy transfer from
oscillating ions to electrons via Coulomb collisions
restricts the lifetime of the nonquasineutral core of the
Z-pinch; in the energy range under consideration, the
ions are decel erated primarily by the electrons. Accord-
ing to [11], for ion energies of about 10 MeV and elec-
tron densities of about n, ~ 10%° cm3, the energy is

transferred on atime scale of about 107 s. Thisisatime
scale on which the nonquasineutral core is completely
distorted.

Concluding this section, we emphasi ze that the pro-
posed approach is aimed at studying the equilibrium
states of Z-pincheswith currentsin range (1). Note that,
for protons, J,; =34 MA.

2. In this section, we consider the basic idea under-
lying the proposed Z-pinch model. At first glance, it
appears that the dynamics of Z-pinches can be modeled
from the very beginning of the electric breakdown in a
gas filling the interelectrode gap, but doing so is unre-
aistic in view of the complexity of the processes
involved. That is why the pinch dynamics is usually
modeled starting from a certain stage of the electric
breakdown. Here, we propose to model the continuous
evolution of an electric discharge in the interelectrode
gap by distinguishing between two successive evolu-
tionary stages, i.e., to develop a two-stage model of a
Z-pinch. The pinch starts to form simultaneously with
the beginning of gasionization and current build-up in
the interelectrode gap, in which case the magnetic field
generation should be described with allowance for the
finite plasma conductivity (or particle inertia) [12].
After this stage has come to an end, the magnetic field
continues to increase and becomes strong enough to
satisfy inequalities (1), which indicates the full devel-
opment of the Z-pinch. Below, we will assume that the
final equilibrium state of the pinch isindependent of the
initial longitudinal electric field and is governed exclu-
sively by electron and ion motions in the azimuthal
magnetic field, which is generated in the plasma as the
PLASMA PHYSICS REPORTS  Vol. 27
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current builds up, and in theradial electric field, which,
inturn, is determined by the particle motion.

At this point, it is expedient to draw an analogy
between the devel opment of a Z-pinch and ion acceler-
ation in agasirradiated by a short high-intensity laser
pulse[13]. Sarkisov et al. [13] showed that, in aplasma
produced by the interaction of alaser pulse with a gas,
high-energy ion flows are generated as a result of ion
acceleration by the ponderomotive force of an electro-
magnetic wave. However, in [10], a different mecha
nism for ion acceleration was proposed. As an electro-
magnetic wave propagates in a plasma, the Weibel
instability givesriseto aquasistatic magnetic field [14],
which resultsin the formation of electron vortices[15],
so that theions are accelerated by the Hall electric field
of anonquasineutral vortex. Consequently, the ions not
only are accelerated directly by the electromagnetic
wave but also acquire energy viaadifferent mechanism
associated with the evol ution to anew equilibrium state
inwhich the electric and magnetic fields differ radically
from the initial fields. The analogy between a Z-pinch
and a laser plasma can be extended further: in a laser
plasma, theions can be accel erated to megael ectronvolt
energies [16]; the universal nature of the Hall potential
in a strong magnetic field makes it inevitable that such
ionswould also appear in Z-pinches.

In both Z-pinches and vortex structures, the ion
motion on spatial scales of about the magnetic Debye
radius is unmagnetized. In vortex structures with the
magnetic field B,, which decreases away from the vor-
tex axis, the ions fly apart in the radial direction
because E, > 0. In contrast, in Z-pinches with the mag-
netic field By, vanishing at the pinch axis, the electric
force can confineionsin the axial region because E, <0,
which corresponds to an excessive negative charge at
the axis.

Hence, we have drawn an analogy between the
sequence of processes occurring in a laser-produced
plasma and those in the Z-pinch under consideration.
The successive processes in a plasmairradiated with a
laser pulse are as follows:. the ions are accelerated by
the ponderomotive force of the pulse, the electron vor-
ticeswith aquasistatic magnetic field are generated due
to the Weibel instability, and the ions in the vortices
expand in the radial direction under the action of the
Hall electric field. Analogous processes that occur in a
Z-pinch after applying the voltage pulse to the elec-
trodes are as follows: the ions are accelerated by the
longitudinal electric field, the magnetic field penetrates
into the plasma (this processes should be described
with allowance for the finite plasma conductivity), and
theions oscillatein theradial direction under the action
of the charge-separation electric field.

In both cases, it isthe initia eectric field that gives
rise to a strong quasistatic magnetic field, which, in
turn, generates the Hall electric field in another direc-
tion. The charge-separation electric field produced dur-
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ing these processes is substantially stronger than the
initial inductive electric field.

3. Based on the above analysis, we will systemati-
cally describe the proposed model of the evolution of a
Z-pinch. In accordance with inequalities (1), we con-
sider the pinch structure assuming that the maximum
radius R of the pinch is much larger than the collision-
less electron skin depth, R > c/wy,, but is on the order
of the collisionlession skin depth, R ~ ¢/w,;, where w,
is the ion Langmuir frequency. The pinch length L is
assumed to be much larger than the characteristic pinch
radius, L > R. Under this assumption, the equilibrium
state of the pinch can be treated in the one-dimensional
approximation and the dependence on z can be
neglected. In other words, we ignore the effect of the
electrodes on the pinch equilibrium. This indicates that
the onset of thelongitudinal electricfield E, can only be
described with allowance for unsteady processes.

Since the electron inertia is neglected, the equation
of electron motion

dp.
dt

reduces to the drift equation

= —eE — [V, x B] @)

0= E+]E'[ve><B]. @)

In this case, the simplest representation of the distri-
bution function of the electrons in a magnetic field By
for [E| < [B]is

fo = Nt o= cg B e + c5B(rVVe). (5)

where the electric field isE = -V ®. In the steady state
under consideration, we assume that the longitudinal
electric field E, vanishes and consider only the radial
electric field E,. Note that the equation for electron
motion along the magnetic field reduces to the conser-
vation law for the azimuthal electron momentum. In
writing the electron distribution function in form (5),
we neglected the electron pressure in the Z-pinch.

Recall that, in the central nonquasineutral core, the
ions oscillatein the radial direction and simultaneously
move along the pinch axis. In this case, theion distribu-
tion function can be chosen in the form

2
_ Ze ny;
fi = FodHmv,, + —C—AZBBD——Z— + Zed —eogﬁ(rvie()é)
Fo = const,
where 8(s) is the delta function and the distribution
function itself depends on the integrals of motion P, =
myvi, + (Ze/C)A,, € = mVv3/2 + Zed, and Mg = rmvig.
In expression (6), the constant in the delta function

for the ion momentum was chosen to satisfy the condi-
tion v, (0) = 0, provided that the gauge is A0) = 0.
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Distribution functions (5) and (6) should be supple-
mented with the Maxwell equationsfor the electromag-
netic fields

curl B = ‘-‘1‘9(va e)+1%'tE 7
10B _
oot curl E. ()
We also use Poisson’s equation
divE = 4me(Zn,—n,) ©)

because, in our approach, the charge separation plays
an important role.

The charges and currents that enter Egs. (7)—9) can
be determined by integrating distribution functions (5)
and (6). The electron density obtained by integrating
function (5) isequal to N, = Ngry/(yr). The correspond-
ing expression for the ion density n; aso contains the
factor 1/r and has a square root singul arity at the radius
at which the radial ion velocity vanishes [see formula
(21) below]. The factor 1/r in the expression for the ion
density reflects the fact that each oscillating ion with a
zero azimuthal momentum passes through the pinch
axis.

That the expression for the electron density contains
the same factor is more difficult to explain, especialy
when there is no longitudina electric field E, and,
accordingly, the electrons in a steady state experience
no drift motion in the radial direction. Let us consider
in more detail the electron motion along the magnetic
field during buildup of the current. In cylindrical geom-
etry, the projection of Eq. (4) onto the magnetic field
direction has the form

0 0
a(rVVee) + Ver_r(ryvee) = 0. (10)

Inthe case at hand, it is convenient to rewrite theinduc-
tion equation (8) as

e - 1A, OA,

27 cot’ or'’
which enables us to express the radial electron drift
velocity v, = —(E,/Bg) only in terms of the vector
potential A,. Substituting the drift velocity v, found in
such away into Eg. (10), we obtain

OMOA, 0A aM

B = — (11)

(12)

where M = ryvg. Consequently, during buildup of the
current, the time-dependent azimuthal electron
momentum is expressed in terms of a certain function
M(A,) that depends only on the vector potential. If we
have M(A) =0 at theinitial time, then thisidentity will
hold throughout the pinch evolution, in particular,
throughout the resulting equilibrium stage. The above
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analysis explains why formula (5) contains the factor
O(ryVeg)-

From inequalities (1), we have v;, < cand v, ~ C.
Applying Egs. (7) and (9) to an equilibrium Z-pinch,
we can obtain the foll owing time-independent (0/0t =0)
equations for the electric (E;) and magnetic (By) fields
such that 0/0z= 0:

E, 4nZ e n;
rBg) = —4men,— ————A,, (13)
rar( 9) eBe micz z
rar(rE) = —4rne(n,—Zn;). (14)

Note that below we will consider an equilibrium
Z-pinch structurefor small values of R, at which the neu-
tron-producing accel eration mechanism comesinto play

17].

4. Let usderive an expression for the spatial scaler,
assuming that, in the nonquasineutral core of the
Z-pinch, the electric current is carried by the electrons
drifting in crossed electric and magnetic fields. Elimi-
nating E, in Egs. (13) and (14) yields

4TrZen

19 i (4T[e) e
=—(rBy) + A=
rors 7 e

I(n —Zn))rdr. (15)

If the characteristic radiusr, of the nonguasi neutral

region satisfiesthe condition réwﬁi /c? < 1,thenwecan
neglect the second term on the left-hand side of
Eg. (15) and introduce the current function J(r) =
crBg/2 to obtain

FIGAR

arVar (Zneneocro) 0
where Zn, will be defined below in formula (21). Inte-
grating Eg. (16) twicewith respect tor, wefind therela-
tionship between the characteristic radius r, and the
current J, flowing in the region of radiusr:

ro 0

< clwy;, (17)

NeoC
inwhich caseinequalities (1) allow usto neglect theion
current in the pinch core in comparison with the elec-
tron current.

We diminate the electron density in Egs. (13) and
(14) and introduce the potentid ®* = & +

ZeAf /(2mc?). As a result, we arrive at the following

equation, which describes the equilibrium state of the
pinch and, in the presence of ions, is analogous to the
equilibrium equation for atransmission line [18]:

20Pp*

r’(B5—E7) = 8T[ZeJ’nr —dr. (18)
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Since dd*/dr > 0, this equation gives |Bg| > |E,| [see
Ea. (9)].

Inserting the Hall estimate for ®* into the equilib-
rium equation (18), we can easily seethat the character-
istic radiusr,, of the central region coincideswith radius
(17).

If we multiply the conserved ion energy €, by the
ion distribution function f; and integrate the resulting
expression over velocities, we can obtain the following
relationship between the temperature T(r) =

(1/ry) d’ vim vfr/z, associated with the radial ion
oscillations, and the potential ®*:
T, =¢g,— Zed*. (19)

This indicates that, in the absence of macroscopic
ion motion along theradial coordinater, the force asso-
ciated with the radial ion pressure gradient is balanced
by the electric and magnetic forces.

In this case, according to Eq. (18), theintegral Ben-
nett condition at the boundary of the nonguasineutral
region in an electricaly neutral Z-pinch such that

rE |, = O contains the ion (rather than electron) pres-

sure (see [19]). Of course, this result stems from the
fact that, in the basic equations, the electron inertia is
neglected. Below, we will show that this conclusion is
valid in view of the moderate values of the relativistic
factor,y< 1.5.

In order to gain a better insight into the resulting
equilibrium state of the Z-pinch, we consider the ion
motion in prescribed electromagnetic fields. We start
with the equation of ion motion

dv, Ze
mid—t' = ZeE + ?[vi x B].
The ions move in the electric and magnetic fields,
which are themselves affected by the charged particles
and currents in the pinch. The equilibrium ion density
can be obtained by integrating distribution function (6):

r €
Zni = neOTO)\ So—ﬁ’

where A isdetermined from the global charge neutrality
condition.

For further analysis, it isimportant that the ion den-
Sity increases with r; this corresponds to the negatively
charged core of the pinch.

A distinguishing feature of the electron and ion dis-
tribution functions chosen aboveisthat the electron and
ion densities both divergeasr —» 0. Clearly, the above
formulas are valid everywhere except for the immedi-
ate vicinity of the pinch axis, r ~ r . < r,. We empha-
sizethat thisfeatureis not a specific feature of the prob-
lem under discussion: anonquasineutral coreinevitably
appearsin Z-pinches with essentially arbitrary electron
and ion distributions, in which case the ion energy ¢,

(20)

2D
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associated with a strong electric field should enter our
formulas. The distribution functions were chosen in
forms (5) and (6) in order to simplify the equations of
particle motion (4) and (20) along the magnetic field
and thus to obtain an explicit solution to the resulting
general equations for the equilibrium state under study.
An important point here is that we are confident of the
noncontradictory formulation of the problem, because
we removed from consideration the axial region with
currents of about J ~ Jj.

In the problem as formulated (i.e., without consid-
eration of theimmediate vicinity of the pinch axis), the
electric and magnetic fields can no longer vanish as
r — 0. The relationship By = 2J/cr implies that the
azimuthal magnetic field can be nonzero, By # 0 as
J— 0 and r — 0. Analogoudly, in the immediate
vicinity of the pinch axis, the radial electric field can
also be nonzero even when the charge Q per unit length
issmal: E, =2Q/f asQ — 0 andr — 0. Such asit-
uation can be attributed to the existence of an electron
beam at the pinch axis. In Section 5, we will show that
the magnetic field 2J,/(cr,) in the nonquasineutral core
ison the order of the magnetic field 2J,./(cr o) Onaspa:
tial scale of about the electron Larmor radius. That this
is the case can be readily verified by substituting esti-
mate (17) for the characteristic radius r, into the
expression for the magnetic field in the core. Although
the magnetic fields are of the same order of magnitude,
the currents on these spatial scales differ markedly

(Jo > Jne), because, by virtue of the inequality Bg >

4tnmc?, the spatial scale r, = mc?/(eBy) is much
shorter than the magnetic Debye radiusrg.

5. In order to convince ourselves that the above
assumptions can lead to an exact noncontradictory for-
mulation of the problem, we assume for the moment
that the current flows only in the nongquasineutral core
of the Z-pinch and that the remaining pinch region is
free of currents. In other words, we neglect the current
carried by the ions at the pinch periphery. Keeping in
mind that, in the central region of radiusr < r, the
radial ion velocity v;, is substantially higher than the
longitudinal ion velocity v;,,

Viey [dai s g
Vi, J

we aso assume that the ions in the nonquasineutral
core are affected only by the electric force.

In the complete set of equations (13) and (14), we
take into account only electron currents and pass over
to the dimensionless quantities. As a result, we obtain
the following equations describing the nonquasineutral
core:

(22)

dodd_1 A, Ze®

1
@_1 A , 23
ol "y Ay 0T e @9
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0

Fig. 1. Radia profiles of the dimensionless potential ¢,
dimensionless current function i, and electron relativistic
factor y in the nonquasineutral core of a Z-pinch.

di’ _ 1 dp . _ J/2zel
dp - Vpdp’ I = Cso ’ (24)
2 _ 2 2 _ 80
y - 21 r'O - _—2———!
1+ ,/1-8(di/dp) ATZeng  (25)
r = ryp.

Equation (24) implies that, if the current flows aong
the pinch axis, then the radial electric field E, and the
azimuthal magnetic field By are both nonzero. In the
approach based on this set of equations, the boundary
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conditions for Eqg. (23) are asfollows:
6(0) =0, ¢'(0) = A1,
d(Po) = 1, ¢'(po) = O.

The “extra’ boundary conditions make it possible to
determine the parameters A < 1 and p,. An important
point here is that the boundary conditions contain the
constant A, which is the only parameter that accounts
for the currents and charges at the pinch axis.

Equations (23)—(25) were derived under the
assumption that the radial velocity of the ions vanishes
at the boundary of the nonquasineutral region. In other
words, in the total potential ®*, we neglect the mag-
netic part, which is as smal as J/J, < 1. The related
numerical resultsareillustrated in Fig. 1, the parameter
values calculated from the extra boundary conditions
being A = 0.3 and p, = 3.179. Our calculationsyield y <
1.5, so that we are justified in neglecting electron iner-
tia. From Fig. 1, one can also seethat the el ectric poten-
tial isanearly linear function. This reflects the fact that
the electric field is constant in the region between the
two “capacitor plates’ arising during pinch evolution,
at both of which the charge density has singularities
(Fig. 2).

The calculated final equilibrium state is sensitive to
the shape of the ion distribution function: taking into
account ions with different energies can reduce the
fraction of the highest energy ions.

With alowance for the ion current, the equilibrium
state turns out to be more complicated in structure than
expected from Egs. (23)—«25). The energy of the ions
oscillating in the radia direction is conserved:

drf _ 2 2Zed [ZeAf
CotD = " m OmcD”

where v,, istheradial ion velocity at the axis.

If we turn to the condition J, <€ J, in order to
neglect the magnetic force in the central region, then,

with allowance for the relationship rg/tg = viz0 =
2¢,/m;, we can obtain from Egs. (25) and (27) the equa-
tion for radia ion oscillations on the characteristic time

scale ty = 1/(wy+/2), where w = 4TZeng/m. This
oscillatory ion motion is consistent with Egs. (23)—
(25), which result in a singularity in the ion density at
the boundary of the nonquasineutral region. However,
if we take into account the effect of the magnetic force
on theions, we can see that, asthe radial velocity of the
ions decreases, they turn backward and their energy
decreases from g, at the pinch axis to the value
€0do/da <€ & a the boundary of the nonquasineutral
region, outside of which the magnetic field turns the
ions backward on a spatia scale of about ¢/, . In this
case, theion density has a square root singularity at the
pinch periphery rather than at the surface with aradius
of about ~r,,.

(26)

(27)
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Outside of the nonquasineutral core of the Z-pinch,
theradia profile of the current is described by Eqg. (13)
in which the electron current should be neglected:

19 0A, _ 4nZe2neO)\r_0 g,
ror or ~ g rig—Zed* ™

Note that, in this equation, we can take the total poten-
tial ®* to be independent of the variations of the elec-
trostatic potential ® at the pinch periphery.

We integrate Eq. (28) multiplied by r?0A,/dr over r
and ignore small terms on the order of ~,/J/J, < 1to
obtain the relationship between the currents J and J,,:

(28)

P
Ngol
-3 = 4n>\—e-§—°czje_oj'dr./so—2e¢*. (29)
5]

Here, r, isthe radius of the surface at which the strong
electric field of the nonquasineutral core vanishes and
r, istheradius of the surface at which the magnetic field
of the Z-pinch turns the ions backward.

The radius r, ~ r, is determined by the current J,,
and the radius r, ~ R can be found from Eq. (28) only
in terms of J, and J, because, in theregionr, <r <r,,
the potential isconstant. Recall that, intheregionr >r,,
the expression under the square root on the right-hand
side of Eq. (29) contains terms on the order of
(ZeA,)*/(mc?) ~ €,J,/Jn < €,, because the potential ®
decelerates the ions in the nonguasineutral core of the
Z-pinch. Consequently, using the approximate equality

Jo/dn ~ T5 /R, we can estimate the right-hand side of

Eq. (29) as 41NNy /2) réczeO ~ Jf). Hence, Eg. (29)
relates the current J, to the total current J in the
Z-pinch; moreover, the estimates yield J, ~ J.

From the definition of r,, we can estimate the maxi-
mum ion energy at the axis as €, ~ ZeJ,/c. For the cur-
rent J,~ 1 MA, we obtain an energy of about 30 MeV.
In [17], the maximum transverse ion energy measured
at acurrent J~ 0.7 MA was found to be about 7 MeV.
A comparison of our result with this experimental find-
ing shows that the current only partially flows in the
central nonguasineutral region of the Z-pinch.

Since J, < J, part of the total current should be car-
ried by theions and, possibly, electrons (the ohmic cur-
rent) in the peripheral region of the Z-pinch; moreover,
at the periphery, the ion current dominates over the

electron current under the condition 41to< Tw; , Where
o isthe electric conductivity and T is the characteristic
current rise time. This indicates that, for n, ~ 10 cm™3
and T ~ 1078 s, the electron (ohmic) current at the pinch
periphery becomes significant only when the electron
temperature is about T, ~ 103 eV or higher. Physically,
the above condition means that, if the electron conduc-
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r(Zn; — n,)/rong

Fig. 2. Normalized electric charge density in the non-
quasineutral core of aZ-pinchvs. p =r/ry.

tivity is sufficiently high, then the magnetic field of the
peripheral current-carrying layer does not penetrate
into the plasma from the periphery to the radius about
C/wy,; during the characteristic risetime of the pulse (T <

Tyin = 4100/ wf,i ), so that the Z-pinch cannot evolve into

the equilibrium state described above. Hence, we can
conclude that the equilibrium state under discussion
can only be achieved when the plasma density in the
Z-pinch is sufficiently high.

6. In this paper, we have analyzed the equilibrium
states of Z-pinches with currentsin range (1). The dis-
tinguishing feature of the overall equilibrium pattern of
the pinch currentsisthat it is characterized by two spa-

tial scales. The internal spatial scaler, ~ ./J /en.c is
governed by the current J, of the electrons that drift
with a velocity approximately equal to the speed of
light. In addition to the current J,, which is carried by
the electrons in the nonquasineutral core, there is the
current J—J,, which is carried by the ions moving with
the characteristic velocity v, ~ c(ZeJymc®) in the
peripheral region with the characteristic radius R ~
C/wy;. Inthe nonquasineutral core, the magnetic field is
not frozen in the ions. As a result, the core is stable
against sausage modes [20]. The ions oscillating in the
radial direction (the total oscillatory ion energy being
€, ~ ZeJ,/c) are confined in the Z-pinch precisely by the
electric field of the nonquasineutral core. The central
region of the Z-pinch acts as akind of “capacitor” that
storesthe energy of theion oscillations and el ectromag-
netic energy. The pinch structure analyzed here has
much in common with the vacuum electrodynamic
structures discussed in the review by Trubnikov [21].
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However, those structures are essentialy unsteady,
with the electric field directed along the z-axis. In con-
trast to [21], we assume that there are no vacuum
regions in the pinch. That is why our results are inter-
mediate between the results described by Trubnikov
[21] and those obtained by Vikhrev [22] on the basis of
aquasineutral approach.

In conclusion, let us make two remarks. The maxi-
mum radius of the equilibrium configuration under dis-
cussionisR ~ ¢/w,;. According to [23], when R < ¢/wy;,
the instability should be described by a two-fluid
approach and the stability criterion may differ signifi-
cantly from that derived using a one-fluid approach
[20], which assumesthat R> c/wy, . Inthe intermediate
case R ~ c/wy;, the question of stability remains open
and requires further investigation. However, even if the
sausage modes are unstable in the peripheral region,
they can never grow in the central region with aradius
of about r,, so that we may speak of the stabilizing role
of the nonquasineutral core.

We again wish to stress that Coulomb collisions
have a major impact on the evolution of the resulting
equilibrium state. For the current J, ~ 1 MA, the ion
energy is €, ~ 30 MeV, in which case the ions should
heat the electrons. According to [11], the ion—electron
energy transfer time characteristic of Z-pinches with
the electron density ny, ~ 10 cm= is about 1077 s.

Finaly, estimates show that the ratio of the charge-
separation electric field E, to the atomic field isEy/E,, ~

137%(agW,/c) I/ I pe, Where ay, is the Bohr radius. It

follows from here that, for J~ 1 MA and n, ~ 10%° cm3,
the electric field in the nongquasineutral core of a
Z-pinch is comparable in magnitude to the atomic field.
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Abstract—A study is made of the effect of the radial plasma profile on the spectra and fields of the surface
wavesin aplasmawaveguide. It is shown that the surface wave islocalized in the region where the plasma per-
mittivity vanishes. In waveguides with smoother radial plasma profiles, the region where the surface wave can
exist is narrower and may even disappear. © 2001 MAIK “ Nauka/Interperiodica” .

Waves that are localized near the boundary of a
medium and whose field decreases abruptly (exponen-
tialy) at least in one direction away from the boundary
are usually called surface waves. There are many types
of surface waves in a plasma. The simplest surface
waves are excited in a homogeneous unmagnetized
plasmacylinder with asharp boundary r =r, < R, where
r,istheradiusof the plasmacylinder and Ristheradius
of the metal wall (the waveguide radius), which may in
principle beinfinite; for r <r,, the Langmuir frequency
Wy, is assumed to be constant. The main properties of
surface waves in such asystem are asfollows[1, 2].

(i) As the longitudinal (along the plasma cylinder)
wavenumber k, increasesfrom zero to infinity, the wave
frequency w increases monotonically from zero to

W/ 2.

(i) At the sharp boundary of the plasma cylinder,
the wave electric field E, is maximum and has a discon-
tinuous radial derivative; on both sides of the plasma
surfacer, the wave electric field decreases abruptly.

It is of interest to investigate the properties of a sur-
face wave in a plasma cylinder with a smeared-out
boundary and, in general, the effect of theradial plasma
profile on the wave structure. This problem takes on
special importance because surface waves are being
actively studied experimentally in real devices operat-
ing with plasmas with smeared-out boundaries.® In our
investigations, we consider as an example an unmagne-
tized plasma column in ametal waveguide.

In the absence of an external magnetic field, the
plasma is isotropic, so that the waveguide eigenmode
splitsinto an E-wave (awave with B, = 0) and aB-wave
(awavewith E, = 0). Here, we are interested only in E-
waves and, for simplicity, restrict ourselves to consid-
ering axisymmetric waveguides. The field components

1 Applications of surface waves in plasma microwave electronics
are described, e.g., in [3].

of the E-waves satisfy the Maxwell equations

) , dE, .
k,By = EsEr, 'szr—d—rZ = |EB¢,
oo (1)
rdr(rB¢) = CeEZ.

Here, (r, ¢, 2) arecylindrical coordinates; E,, E,, and B,
are the only nonzero components of the electromag-
netic field; and

=1- @

(02
is the plasma permittivity. Since the Langmuir fre-
quency wy, depends generally on the radius, the plasma
permittivity is also a function of the radial coordinate,
W, = Wy(r), € = &(I).

For a homogeneous plasma cylinder with a sharp
boundary, we have w, = const in the plasmaregion (r <
r,) and w, = 0inthe vacuum region (r, < r <R). Inthis
case, Egs. (1) are solved separately for r <r,and r, <
r < R and the solutions are matched at the plasma
boundary r = r, with allowance for the continuity of the
tangential field components E, and B,. Taking into
account the fact that the component E, vanishesatr =R
and all of the field components are finite at r = 0, we
arrive at a dispersion relation that accounts for the
above properties of the simplest surface waves. How-
ever, this approach is inapplicable for describing an
inhomogeneous plasma cylinder.

We eliminate the components E, and By, in Egs. (1)
to obtain one equation for E,:

dE EKd(S/K) . 1ndE, _
dr? 0 Tdar iddr -KE, = 0, )

€ )

where k2 = kZ — ew?/c? and € is a function of r. Equa-
tion (3), which is valid over the entire plasma region

1063-780X/01/2703-0243%$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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0<r <R, is supplemented with the boundary condi-
tions

dE, !
dr

the first of which is equivalent to the condition for the
component B, to vanish at the waveguide axis.

Since, for arbitrary w and k,, the solution to Eq. (3)
cannot simultaneously satisfy both of the boundary
conditions (4), we propose the following method for
solving the eigenvalue problem described by Eqg. (3)
with boundary conditions (4). First, we fix a certain
value of k,. Then, for r > 0, we solve the Cauchy prob-
lem for Eqg. (3) supplemented with the boundary condi-
tions

0) =0, E(r=R) =0, “4)

dd—lfz(r =0) =0, E,r=0) = const. %)
Since Eg. (3) isalinear homogeneous equation and the
boundary conditions (4) are uniform, the value of the
constant in conditions (5) is unimportant. When solving
the Cauchy problem, the frequency wis adjusted to sat-
isfy the second boundary condition in (4). The fre-
guency adjusted in such a manner is the desired eigen-
frequency w(k,), and the corresponding solution to
Eq. (3) isthe desired eigenfunction.

Note that Eqg. (3) has a singularity at a surface of
radius r at which w = wy(r). The existence of surface
waves stems precisely from this singularity: in the case
at hand, the surface wave manifestsitself as oscillations
of resonant electrons in a plasma layer around the sur-
face of radiusr. We emphasize that thisis not the reso-
nance of anindividual electron with the wave (or wave—
particle resonance). In fact, the wave—particle reso-
nanceis described by the poles of the plasma permittiv-
ity. However, the plasma permittivity (2) contains no
poles except for the trivial one a w = 0. Consequently,
we will not speak of wave damping by resonant elec-
trons. The relationship w = w,(r) refersto the collective
resonance described by the zero of the plasma permit-
tivity (2). At the surface of radiusr at which the collec-
tive resonance condition is satisfied, the component E,
is continuous but has a discontinuous radial derivative,
the component B, is continuous and has a continuous
radial derivative, and the component E, is disconti-
nUous.

In thevicinity of the surface of radiusr at which the
plasma permittivity (2) vanishes, the qualitative behav-
ior of the field componentsisfairly easy to investigate.
Near this surface (which, however, should not coincide
with the waveguide axis), we can retain only the lead-
ing-order termsin Eq. (3):

1du _
U dr

_1de
edr’

_dE,
T

(6)
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Integrating this equation yields

dE, _ C _._ (1)
dar  g(r) T[w-wy(n]’
_ kdE, K w(r)
Er = _IK_2W~_IC—[(A)—(OP(I')]’ (7)
_wdE, Kk wy(r)
B¢ _ISCTZW =—C kZC y

where Cis an arbitrary constant. The last two relation-
ships in (7) were derived using Egs. (1). Note that
Egs. (7) do not apply to aplasmawith asharp boundary
and with discontinuities in cy(r).

Let r* be the radius of the surface at which the col-
lective resonance condition w= wy(r) holds. Then, near
the resonance surface of radius r* (which is, of course,
frequency-dependent), the first equation in (7) gives

o(r*)
=r*)=_C—-2-2 P
E(r=r*)= p( 5

where N is a constant, which cannot be found exclu-
sively from Egs. (7). We can see that, near the reso-
nance surface, the component E,, although continuous,
diverges logarithmically. However, this divergence can
be avoided by introducing dissipation (the finite colli-
sion frequency or finite temperature), in which case the
components E, and B, as well as the field energy, aso
become finite. Solving the exact equation (3) numeri-
cally yields a nondivergent component E,, which, how-
ever, increases substantially when approaching the res-
onance surface r*.

Now, we consider the results of numerically solving
Eq. (3) with boundary conditions (4). In this series of
simulations, we fixed the waveguide radius, R =2 cm,
and varied the plasma profile. The resultsillustrated in
Fig. 1 refer to the well-known case of an almost homo-
geneous plasma cylinder with a sharp boundary and are
presented merely for completeness. Figure la shows
the radial profile of the Langmuir frequency wy(r). The
sharp plasma boundary isat r =r, = 1 cm. Inside the
plasma(r <rp), the Langmuir frequency is constant and
is equa to oopmax =5 x 10" rad/s. The regionr > r,
is free of plasma_ Figure 1b displays the dlsperson
curves w(k,) calculated by solving Eq. (3) with bound-
ary conditions (4) for the profiles w,(r) in Fig. 1a. For
completeness, we also plotted the dispersion curves of
high-frequency spatial electromagnetic waves, which
lie above the solid line w = k,c. The dispersion curve of
the low-frequency surface wave, in which we are inter-
ested here, is below the line w = k. This dispersion

Injr —r*| + N, (8)

21n fact, our calculations were performed for a plasma cylinder
whose boundary was smeared over anarrow (0.1-cm-thick) radial
interval.
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Fig. 1. Plasmawith a sharp boundary: (a) radial profile of the Langmuir frequency; (b) dispersion curves; and (c, d) field structures
of the surface wave calculated, respectively, for points / and 2 on the dispersion curve in plot (b).
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curve, which originates at the point (k,= 0, w = 0) and

approachesthe level w= wpmax/ﬁ =3.46 x 10'° rad/s
as k, — oo, can, of course, be obtained not only by
solving Eqg. (3) with boundary conditions (4) but also
by applying the traditional method used with dispersion
relations, i.e., by matching the solutions to the field
equationat r =r, [1, 2]. Note that, according to the cor-
responding dispersion relation, the phase velocity of
the surface wave is maximum in the long-wavelength
range (k, — 0), the maximum being equal to

= ¢ |8 = anRER)
=C 1—_:—6, 0 = Mnrplo()\)’ )

where |, , are the modified Bessel functions and A =
Whmaxl p/CiStheratio of theradius of the plasmacylinder
to the penetration depth of the electromagnetic field
into the plasma.

Figures 1c and 1dillustrate the field structures of the
surface wave (the radial profiles of the components
ELr) and By(r) in arbitrary units) that were calculated,
respectively, for points / (w= 10" rad/s) and 2 (w=2 x
10'° rad/s) on the low-frequency dispersion curve in
Fig. 1b. The structures are seen to be typical of surface
waves. At the sharp boundary r = r, of the plasma cyl-
inder, the radial derivative of the component E, is dis-
continuous and the component B IS maximum, so that
the surface wave may be said to be localized near the
plasma boundary. Note that the higher the frequency w
(and, accordingly, the larger the wavenumber k), the
narrower the localization region of the surface wave
near the boundary r = r,,. In the range of large wave-
numbers k,, the field decreases away from the sharp
boundary according to the law

w

Z| max

E,= exp(—k,r—r ). (10)

Let us refine the notion of the localization region or
localization boundary of the surface wave. We define
the localization boundary as the surface r* = r*(w) at
which the plasma permittivity (2) vanishes. In Fig. 1a,
points / and 2 mark the localization regions of the sur-
face waves corresponding to points 7 and 2 on the dis-
persion curve in Fig. 1b. Since, for a plasma with a
sharp boundary, the radius r* is frequency-indepen-
dent, the localization region seemsto be defined some-
what incorrectly. However, below we will show that,
for aplasmawith a smeared boundary, this definitionis
physically meaningful. On the other hand, the situation
with aplasmawith asharp boundary isnot so simple as
it appears at first glance. Thus, not al of the points on
the profile wy(r) correspond to the surface at which the
surface wave can be localized, although, for any fre-
quency w from zero to w, ., there exists a surface of
radius r at which the plasma permittivity (2) vanishes.

In fact, in the frequency range copmax/ﬁ < 0 < Wy maxs

KUZELEV et al.

surface waves never exist, although the resonance con-
dition € = 0 can definitely hold in this range.

Now, we consider a plasma column with a smeared
boundary. The related results are illustrated in Fig. 2.
Figure 2a shows the radia profile of the Langmuir fre-
quency wy(r), which is maximum at the waveguide
axis, the maximum again being equal to Wy,,x =5
10'° rad/s. Figure 2b presents the dispersion curves
obtained for this Langmuir frequency profile by numer-
ically solving Eq. (3) with boundary conditions (4).We
can seethat the dispersion curve for the surface waveis
qualitatively the same but the maximum (at k, — 0)
phase velocity is almost one order of magnitude lower
than that for a plasma column with a sharp boundary
[seeformulas (9) and Fig. 1b]. The limiting (at k, — 0)
frequency is also almost one order of magnitude lower

than W/ ~/2.

Figures2c and 2d illustrate the fiel d structures of the
surface wave that were calculated, respectively, for
points / (w= 10" rad/s) and 2 (w =2 x 10'° rad/s) on
the dispersion curve in Fig. 2b. Theradial profile of the
component E, is seen to coincide qualitatively with that
in the case of a plasma column with a sharp boundary
(see Figs. 1c, 1d), while the component B, is a consid-
erably smoother function of the radius.

In the case of a plasma column with a smeared
boundary, the notion of the localization region of the
surface wave acquires a physical meaning. From
Figs. 2a and 2d, we can see that the component E, is
maximum and its radial derivative is discontinuous at
the surface of radius r at which w = w,(r) holds. In
Fig. 2a, the corresponding localization boundary of the
surface wave is marked by point 2. Point / in Fig. 2a
corresponds to an analogous localization boundary.
Hence, the localization boundary of the surface waveis
the resonance surfacer = r* at which the plasma permit-
tivity (2) vanishes. In our problem, the eigenfrequency
w(k,) is a monotonically increasing function. There-
fore, asthe wavenumber k, increasesfrom zero to infin-
ity, thelocalization boundary of the surfacewaveisdis-
placed from itsinitial position very near the waveguide
wall toward the surface corresponding to point 3 in
Fig. 2a

Figure 3 refers to a situation that differs qualita-
tively from what we have analyzed above. Figure 3a
shows the radia profile of the function w,(r) that is
nonzero at r = R, which indicates that the plasmaisin
contact with the waveguide wall. Let @, ,,;, = W,(R) <
0.1w,(0) be the minimum Langmuir frequency of the
plasma in the waveguide. In the frequency range w <
Wy mins NO SUrface waves can exist because the resonance
condition € = 0 aways fails to hold. Figure 3b displays
the dispersion curves corresponding to the profile of w,
in Fig. 3a. We can see that the dispersion curve of the
surface wave no longer extends into the region of small
k, and w values but goes over to a new branch of the
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 2. Plasma with a smeared boundary in the case when the Langmuir frequency wy, vanishes at the waveguide wall, wy(R) = O:
(a) radial profile of the Langmuir frequency; (b) dispersion curves; and (c, d) field structures of the surface wave calculated, respec-
tively, for points 7 and 2 on the dispersion curve in plot (b).
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curves, and (c, d) field structures of the surface wave cal culated, respectively, for points / and 2 on the dispersion curvein plot (b).
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low-frequency surface wave. Hence, in this situation,
the surface wave cannot exist in the long-wavelength
range and splits into two modes described by two
branches, specifically, the high-frequency branch,
which corresponds to the dispersion curve anayzed
above, and a new, low-frequency branch. By analogy
with the above figures, Figs. 3c and 3d illustrate the
field structures of the high-frequency surface wave that
were calculated, respectively, for points 7/ and 2 on the
dispersion curvein Fig. 3b; the corresponding localiza-
tion boundaries are marked by points / and 2 on the
Langmuir frequency profile in Fig. 3a. At large wave-
numbers k,, the low-frequency branch approaches the
level w= w,,;,, so that the corresponding surface mode
is localized very near the waveguide wall. In order to
investigate this surface wave, it is more convenient to
turn to the caseillustrated in Fig. 4.

Figure 4a shows the radial profile of the Langmuir
frequency w,(n); at the wall of the waveguide, its mini-
mum value w,;, isfar larger than in the previous case,
Womin = Wp(R) > 0.1 Accordingly, in the (k,, w)
plane, the region where the surface waves cannot exist
is larger. The upper (high-frequency) branch is seen to
lie below that in Fig. 3b, and the lower (low-frequency)
branch is markedly displaced upward. The wavenum-
ber k, at which the upper branch goes over to the lower
branch is larger than that in Fig. 3b. Ask, —= oo, the
upper branch approaches a limiting frequency that is

lower than wpmax/ﬁ . The higher the minimum Lang-
muir frequency w,.i,, the lower the limiting frequency.
In the same limit (k, — o), the lower branch
approaches the level @y, AS Gy, iNCreases, the
upper and lower branches come together and the point
at which the upper branch goes over to the lower branch
is displaced rightward, as is indicated by the arrow in
Fig. 4b. When w,;, becomes equal to wy, .., No surface
waves can be excited, as is the case with a waveguide
filled entirely with a homogeneous plasma.

Figures4c and 4d illustrate the field structures of the
surface wave under consideration that are calculated,
respectively, for points 7 (w= 10! rad/s) and 2 (w=2 x

KUZELEV et al.

10'°rad/s) on the dispersion curvein Fig. 4b. Figures4c
and 4d refer to the lower and upper branches of the sur-
face wave. We can see that the radia profiles of the
components E, and B, do not change qualitatively in
comparison with those analyzed above. As before, the
surface modes are localized at the resonance surfaces
r = r*, The low-frequency surface mode is localized
closer to the waveguide wall, and the localization
boundary of the high-frequency surface mode is closer
to the waveguide axis. Ask, —» o, we haver* — R,
whereas, for the high-frequency surface mode, the

radius r * decreases to a certain minimum radius r};,

In
moreover, the higher the frequency r;,, , the larger the
radius wy,i,- AS the wavenumber k, decreases, the dif-
ference between the frequencies of the surface modes
decreases and their localization regions come together
and merge into oneregion at acertain minimumKk,. Ina
waveguide with the second (inner) boundary of the
plasma column or in the presence of an external mag-
netic field, the structure of surface waves is far more
complicated. Thisissue will be addressed in a separate
paper.
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Abstract—A study is made of the characteristic features of the effect of plasma nonlinearity in a slow-wave
structure on microwave generation by an electron beam and on electron beam energy losses. Theoretical results
on the plasmadensity variation, the amplitude of the excited microwaves, and the vel ocity distribution function
of the beam electrons are compared with the experimental data. It is shown that the self-consistency between
the decreasing plasmadensity gradient and the spatial variation of the amplitude of an amplified wavein aslow-
wave structure leadsto asignificant (severalfold) increasein the efficiency with which the el ectron beam energy
is converted into microwave energy in short pulses. The predictions of the theoretical model developed to
describe the non-steady-state beam—plasma interaction agree well with the experimental data. © 2001 MAIK

“Nauka/Interperiodica” .

1. INTRODUCTION

In[1-4], it was shown that oscillators and amplifiers
with plasma-filled slow-wave (hybrid) structures based
on the Cherenkov mechanism for microwave genera-
tion have certain advantages over similar vacuum
devices. The presence of plasmain the transport chan-
nel increases the coupling between an electron beam
and a synchronous wave, thereby raising the efficiency
with which microwaves are generated (or amplified)
[5-12]). More recent investigations[13-15] have shown
that filling the transport channel with a plasma has
other important consequences. As the power of the
excited microwave increases, the nonlinear properties
of the plasma come into play and may significantly
influence the parameters of the beam—plasma instabil-
ity. According to [13—15], the plasmanonlinearity man-
ifestsitsalf, first of all, in the dependence of the plasma
density on the wave amplitude and, accordingly, in the
nonlinear dispersion of the excited microwave. Since
the beam—plasma instability, being resonant in nature,
is very sensitive to variations of the phase velocity of
the excited wave, the plasma-related nonlinear disper-
sion of the wave may strongly affect the development
of the beam—plasma instability. In particular, the effi-
ciency with which the beam energy is converted into
the energy of the beam-driven microwave depends
strongly on the shape of the density profile of the
plasmain which the wave propagates.

This paper, which isacontinuation of papers([2, 13—
15], presents the results of our experimental and theo-
retical investigations of the characteristic features of
electron beam energy losses caused by the plasma non-
linearity in a slow-wave structure. We show that a self-
consistent variation of the plasma density leads to a

prolonged synchronization between the beam and the
beam-driven wave, thereby increasing the efficiency
with which the beam electron energy is converted into
microwave energy to an anomalously high level. This
important theoretical conclusion is confirmed experi-
mentally.

2. EXPERIMENTAL DEVICE AND DIAGNOSTIC
TECHNIQUES

In order to measure the energy spectraof an electron
beam after its interaction with the eigenmodes of a
hybrid waveguide and to determine the energy
expended on producing plasma in the transport chan-
nel, we modified the device used in our previous exper-
iments [5, 14] so asto ensure both electric and thermal
insulation of the slow-wave structure, solenoid, and
current collector. A schematic of the experimenta
deviceisgivenin Fig. 1.

An electron gun (/) with a cathode made of lantha-
num hexaboride produces 5- to 10-mm-diameter elec-
tron beamswith an energy of up to 35 keV and acurrent
of 1-10 A. After passing through the entrance and exit
chambers (3), the slow-wave structure (5) (a sequence
of inductively coupled resonators), and solenoidal coils
(4), the beam reaches the current collector (6). A colli-
mator, which extracts a fraction of the beam electrons
in order to determine the energy distribution function
by means of an electrostatic energy analyzer (7), is
placed at the end of the current collector. The fraction
of the electron current that isto be analyzed isamplified
by avacuum photomultiplier.

The plasma in the transport channel of the slow-
wave structure was produced viaionization of a gas by
the beam electrons and the excited microwave oscilla-

1063-780X/01/2703-0251$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Fig. 1. Schematic of the experimental device: (1) electron gun, (2) electron-gun chamber, (3) entrance and exit chambers, (4) sole-
noid, (5) slow-wave structure, (6) current collector, (7) el ectrostatic energy analyzer, (8) movable Langmuir probes, (9—11) calorim-

eters, and (12) gas-puffing unit.

tions. In experiments, the plasma density varied from
10° to 10'2 cm. The plasma density and beam velocity
were chosen so as to excite microwaves with a normal
dispersion. The gas pressure in the transport channel of
the slow-wave structure was varied from 5 x 10 to
107 torr. The magnetic field was 1.8 kG.

Low-frequency plasmadensity waves were detected
by single and double electrostatic probes (8) placed in
chambers (3) near the entrance and exit ends of the
slow-wave structure. Measurements at different depths
in the plasma were provided by moving the probes in
theradial direction. Oscillations recorded by the probes
were amplified by broadband amplifiers with a low
input resistance.

High-frequency oscillations from the entrance and
exit ends of the waveguide were recorded with the help
of a high-speed oscillograph, calibrated detectors, and
spectrum analyzers. Calorimeters (9) for measuring the
microwave power were linked to all of the waveguide
sections of the slow-wave structures.

The energy fluxes to the slow-wave structure of the
waveguide and to the current collector were measured
by calorimeters (10) and (/7). The released heat was
measured to within an error of 2%. All of the signals
were converted to digital form by an analog-to-digital
converter and then were stored in a computer memory
for further processing.

3. ENERGY DISTRIBUTION FUNCTION
OF AN ELECTRON BEAM

The coupling between the amplitude of the wave
propagating in a plasma and the plasma density stems
from such factors as the microwave ponderomotive
force, which expels the plasma from the region where

the wave fidd is strong, and a microwave discharge,
which additionally increases the plasma density. The
experimental data presented below indicate that, in the
hybrid, plasma-filled slow-wave structure under inves-
tigation, the nonlinear nature of the plasmais primarily
governed by the action of the microwave ponderomo-
tive force. Therefore, we will restrict ourselves to the
plasma nonlinearity stemming just from this factor and
analyze qualitatively how it affects the dynamics of the
beam-plasma instability. A detailed theoretical analy-
sisispresented in [13].

Since the wave amplitude increases toward the exit
end of the dow-wave structure, the plasma is pushed
toward its entrance end. The phase velocity of the
amplified microwave in the sow-wave structure
decreases as the plasma density decreases. The micro-
wave ponderomotive force acts to form a decreasing
gradient in the plasma density, thereby maintaining a
prolonged synchronization between the electron beam
and the beam-driven microwave, because, as the beam
losesits energy, the phase vel ocity of the excited micro-
wave decreases with the beam vel ocity. Prolonged syn-
chronization makesit possible to generate more intense
microwaves [14-16]. Calculations show that, in this
case, the microwave amplitude may be larger than that
in a sow-wave structure filled with a homogeneous
plasmaby afactor of 2 or 2.5.

The important conclusion of the theory [13] is that
the beam—plasma instability may evolve into a self-
modulation regime, because the microwave pondero-
motive force gives rise to ion acoustic waves that prop-
agate in the direction opposite to the propagation direc-
tion of the beam, thereby ensuring low-frequency dis-
tributed feedback. As a result, the system under
consideration starts to function as a generator of low-
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 2. Deviation of the plasmadensity n, fromiitsinitial value, calculated as afunction of timet at the entrance (upper curve) and
exit (lower curve) ends of a hybrid structure for different values of the reflection coefficient for an ion acoustic wave: g = (a) 0.0,

(b) 0.2, (c) 0.4, and (d) 0.6.

frequency plasma waves, which, in turn, change the
phase velocity of the amplified wave and thus influence
the dynamics of the beam—plasma instability. This
effect manifests itself, in particular, in the modulation
of the output signal.

The self-consistent model developedin[13] in order
to describe the beam—plasmainstability with allowance
for plasma density variations in the excited microwave
fields makes it possible to follow the time evolutions of
the output signal amplitude and plasma density.
Clearly, both the plasma density variations and micro-
wave field strength depend strongly on the reflection
coefficient q of the ends of the plasma column for ion
acoustic waves. Figure 2 shows waveforms of the
plasma density calculated at the entrance and exit ends
of the slow-wave structure for different values of the
reflection coefficient.

Figure 3 shows the related waveforms, which were
obtained experimentally. A good correlation between
the theoretical and experimental waveforms (Figs. 2b,
3a) alows us to conclude that the excitation of ion
acoustic waves by the microwave ponderomotive force
governs the dynamics of the plasma density variations
in a slow-wave structure.

Although the plasma in a slow-wave structure is
produced by a beam—plasma discharge (this is evi-
denced by a high plasma density, on the order of
~10'"" cm3), the key factor governing the plasma inho-

PLASMA PHYSICS REPORTS  Vol. 27
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mogeneity is the microwave ponderomotive force. This
conclusion is supported by the fact that, in a slow-wave
structure, the plasmaevolvesinto astate with adecreas-
ing density gradient. In the case of excitation of high-
power microwaves, the degree of gasionization is low
(less than 10%), so that the resulting plasma contains a
large number of neutral molecules and atoms. The fre-
guency of the excited microwave oscillations (2.4—
4.0 GHz) is lower than the electron cyclotron fre-
guency. We can expect that, under these conditions, the
plasma density either will be constant along a hybrid
waveguide or will increase toward the exit end of the
waveguide, as does the microwave field amplitude.
However, our experiments showed that the situation is
the opposite: the plasma density decreasesin theregion
where the microwave field is the strongest. This indi-
cates that, when the amplitude of the forward micro-
wave becomes maximum, the additional gasionization
does not play a governing role. If the plasma inhomo-
geneity were caused by additional ionization in a
microwave field, the plasma density would be expected
to increase in the propagation direction of the beam,
because the generated microwave is the most intense at
the exit end of the structure.

That the theoretical modd is quite realistic is also
confirmed by the good agreement between the calcu-
lated and measured cross-correlation functions of the
signals from the Langmuir probes that are located on
both sides of the slow-wave structure (see Fig. 4).
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cessing the experimental data.

Because of the self-consistent plasma-density varia-
tion, the properties of the energy distribution function
of the beam electrons differ from those characteristic of
a beam instability in a homogeneous plasma. Self-syn-
chronization between the beam velocity and the phase
velocity of the excited microwave gives rise to a dense
electron bunch in the region of the decelerating phase
of the microwavefield, in which case the energy lost by
the bunch electrons is anomalously high. On the out-
side of the region of the decelerating phase, the energy
of the beam electrons remains essentially unchanged,
because they are not trapped by the slowed wave and do
not exchange energy with the microwave field. Figure 5
shows the velocity distribution functions of the beam
electrons calculated numerically at different times. In
this and other figures, the dimensionless velocity v,
which is defined asthe relative deviation of the electron
beam vel ocity from its value at the entrance to the slow-
wave structure, is normalized to the dimensionless
growth rate of the beam—plasma instability.

The experimental and theoretical energy distribu-
tion functions of the beam electrons, averaged over

low-frequency oscillations, are shown in Figs. 6a and
6b, respectively.

Experimental profiles /-4 in Fig. 6a illustrate how
the distribution function of the beam electrons changes
as the working gas pressure (or, equivalently, the
plasma density) in a slow-wave structure increases.
Profile 2 corresponds to a regime with a quasi-periodic
low-frequency (on atime scal e of about tens of pis) self-
modulation of both the plasma density (see Fig. 3a) and
the amplitude of the output microwave signal. The
occurrence of a broad and relatively low peak (instead
of a large narrow peak) in the averaged distribution
function of the decel erated beam electronsis explained
by thefact that, astime el apses, this peak gets displaced
along the energy axis, which leads to the smearing of
the decelerated electrons over abroad energy interval.

It is interesting to note that the autophasing of the
excited wave resultsin the formation of two bunchesin
the phase plane of the beam electrons. The beam’s
phase planes at the time of the most intense microwave
generation in a plasmawith a constant density and in a
plasma with a self-consistent density variation are
PLASMA PHYSICS REPORTS  Vol. 27
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Fig. 7. Distribution of the beam electrons over velocities and over the phase of the excited microwave in the cases of (a) a beam
instability in a homogeneous plasma and (b) a self-consistent variation of the plasma density (the zero on the velocity axis corre-

sponds to the initial beam velocity).

shownin Figs. 7aand 7b, respectively. We can see that,
in aplasmawith a self-consistent density variation, the
beam electrons lose a much greater amount of energy.
We can also see the formation of a second bunch with a
small energy spread, the bunch energy being nearly
equal to the initial beam energy (see the right narrow
peak in the instantaneous profiles of the distribution
functionsin Fig. 7a). That the position and width of the
second bunch change only dightly explains the appear-
ance of alarge peak in the experimentally obtained and
theoretically calculated averaged distribution functions
in anarrow interval around the initial beam energy.

As the plasma density increases further, it becomes
strongly modulated (the relative modulation depth can
amount to 100%); this process is accompanied by the
modulation of the amplitude of the microwave signal
on atime scale of about 1 us and shorter. The charac-
teristic time scale of the low-frequency self-modulation
is determined by the time required for an ion acoustic
wave to propagate along the slow-wave structure and,
in experiments, was observed to be about 20 ps. Fig-
ure 3b showsthe typical signals from Langmuir probes
during the onset of spike-mode microwave generation.
The distribution functions in the initial stage of spike-
mode generation are illustrated by instantaneous pro-
files3 and 4 in Fig. 6a. Without going into mathemati-
cal detail, note that, according to amore thorough anal -
ysis of the theoreticall model of the excitation of ion
acoustic waves, the time scale on which the plasma
density and microwave signal amplitude become self-
modulated decreases with increasing plasma density,
but it still remains substantially longer than the time
scale characteristic of spike-mode microwave genera-
tion.

Hence, the excitation of ion acoustic waves by the
microwave ponderomotive force can serve as the main
mechanism for the observed plasma nonlinearity only
when the plasma density (and/or the beam current) is

not too high. Presumably, the spike-mode microwave
generation stems from other nonlinear effects, whose
natureis still unclear.

An important consequence of the self-consistent
variation of both the plasma density and the amplitude
of the beam-driven microwave field is that, under con-
ditions of a prolonged synchronization between the
beam and the beam-driven wave, the electron beam
energy losses are anomalously large. Thisconclusionis
confirmed by Fig. 5, which shows instantaneous pro-
files of the velocity distribution function of the beam
electrons. The dimensionless electron velocity is
expressed in units of v = (dv/v,)/(dk/k,), where dv isthe
deviation of the velocity of the beam electrons from
their initial velocity v,, ok is the growth rate of the
beam—plasma instability, and k, is the wavenumber of
the excited microwave. In a homogeneous plasma, the
beam electrons are decelerated to velocities that are
lower than the initial beam velocity by at most a factor
of 1.5 to 2 (Fig. 7a). Under conditions of prolonged
synchronization between the decelerated beam elec-
trons and the beam-driven wave in an inhomogeneous
plasma with a self-consistent density variation caused
by the microwave ponderomotive force, the beam elec-
trons are decelerated to markedly lower velocities
(lower than the initial beam velocity by afactor of 3 to
4, see Fig. 7b), in which case the conditions for the
onset of the beam-plasma instability are far more
favorable.

4. BALANCE BETWEEN THE CHANNELS
OF ELECTRON BEAM ENERGY LOSSES

Electric and therma insulation of the elements of
our experimental device made it possible to determine
the channels of electron beam energy losses. Under the
conditions of steady-state microwave generation (i.e.,
before a transition to the low-frequency self-modula-
PLASMA PHYSICS REPORTS  Vol. 27
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tion regime), essentiadly all of the energy lost by the
beam electronsis expended on the excitation of micro-
waves and only asmall fraction (about several percent)
of the beam energy is spent on producing the plasma.
After the microwave ponderomotive force-induced
transition to the low-frequency self-modulation regime,
the balance between these channels of electron beam
energy losses remains the same.

In the initial stage of spike-mode generation, the
bal ance between the channels of electron beam energy
losses changes drastically because of the generation of
the plasma current to the wall of the slow-wave struc-
ture and an increase in the heat released in it. Since the
measured ion and electron temperatures amount to 10—
20 eV and 100 eV, respectively, and the guiding mag-
netic field is fairly strong (1.8 kG), we can conclude
that the plasma current to the wall of the structure is
generated by the high-energy beam electrons scattered
in the transverse direction. This conclusion is con-
firmed by the fact that thetotal current to thewall of the
structure and to the collector is equal to the current of
the beam produced by an electron gun.

K nowing the magnitude of the current to the wall of
the structure and the energy released init, we were able
to determine the mean energy of the particles that reach
the wall. Under different experimental conditions, this
energy amounted from 50 to 70% of the initial electron
beam energy.

In our experiments, the microwave radiation power
corresponding to the onset of both the spike-mode gen-
eration and the plasma current to the wall of the slow-
wave structure depended on the beam diameter. When
the diameters of the beam and transport channel were
close to one another (10 and 12 mm, respectively), the
spike-mode generation was observed to occur a a
microwave power of 20 kW and the plasma current to
the wall of the structure was 30% of the initial beam
current. When the beam diameter was half as much, the
beam current being the same, the microwave power
scattered in the slow-wave structure was much lower:
for the same power of the generated microwaves, it was
comparable in magnitude to the energy lost in the skin
layers of the resonators. The microwave power level at
which the electrons started to be gected onto the wall
of the dow-wave structure and the amplitude of a
microwave signal became strongly modulated was
higher than 40 kW.

5. DISCUSSION OF THE RESULTS

The assumptionsthat underlie our theoretical model
and concern such effects as the excitation of ion acous-
tic waves by the ponderomotive force of a microwave
amplified by a beam and the inverse action of plasma
density perturbations propagating in the system on the
development of the beam—plasmainstability have been
mostly confirmed by the experimental observations. As
the microwave power increases, the nonlinear nature of
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the plasma in a hybrid slow-wave structure manifests
itself precisely in these effects.

Under conditions of self-consistency between the
decreasing plasma density gradient and the spatial vari-
ation of the amplitude of an amplified wave in a dow-
wave structure, the efficiency with which the electron
beam energy is converted into microwave energy issig-
nificantly (several times) higher. This effect arisesin a
plasma with a sufficiently high density and becomes
more pronounced as the plasma density (and/or the
beam current) increases. As the beam—plasma interac-
tion efficiency increases, the steady-state microwave
generation becomes unstable, giving rise to a strong
low-frequency self-modulation of the output signal
amplitude. With increasing plasmadensity and/or beam
current, the peak microwave power continues to grow,
but the mean microwave power either increases at a
much slower rate or even starts to decrease. Our theo-
retical model predicts a strong coupling between the
unsteady nature of the beam—plasmainteraction and the
anomalously high interaction efficiency. If the steady-
state plasma density (and/or the beam current) is above
a certain critica level, the plasma density gradient
caused by the microwave ponderomotive force
becomes too large, thereby restricting the efficiency
with which the microwaves are generated by the beam.
In the non-steady-state regime, the density perturba-
tions repeatedly escape from the interaction region, so
that conditions favorable for maintaining synchronism
between the wave and the beam aong the entire slow-
wave structure are restored periodically. When this hap-
pens, the efficiency with which the microwaves are
generated becomes anomalously high, such that it is
never observed in systems with alongitudinally homo-
geneous plasma. Since the properties of the dlow-wave
structure are restored every time the density perturba-
tions escape from the interaction region, the low-fre-
guency variations in the interaction efficiency may be
regarded as a relaxation process.

The results of our experimental and theoretical
investigations allow us to conclude that, although, at
first glance, the idea of increasing the mean microwave
power by suppressing the low-frequency instability
seems to be attractive, doing so may lead to the oppo-
site result—the power of the generated microwaves
may become lower.

A further increase in the beam current (and/or the
neutral gas pressure) gives rise to other processes, for
which an unambiguous explanation is still lacking. By
this, we mean the processes that occur on much shorter
time scales and result in atransition to the spike-mode
regime of theinteraction between an electron beam and
a plasma-filled waveguide structure, in which case the
output signal is observed as an irregular sequence of
short (about 1 pis or shorter) microwave pulses. During
spike-mode generation, some of the electrons are
gjected onto the wall of the slow-wave structure. This
effect indicates that the transverse motion of the beam



258

electrons may play an important role in the onset of
spike-mode generation. However, it still remains
unclear whether the transverse motion of the beam par-
ticlesisacause or a consequence of the onset of spike-
mode generation. A detailed investigation of the mech-
anism for spike-mode microwave generation, which is
also observed in other plasma-filled waveguide systems
(e.g., in magnetized plasma waveguides), is the subject
of our further study.
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Abstract—The classical methods of mathematical physics are applied to construct an integral solution to the
Chapman—-Cowling—Davydov equation, which is derived from the kinetic Boltzmann equation with acollision
term in the Lorentzian-gas approximation. For a particular initial distribution, the solution is obtained in an
explicit form in terms of aWhittaker function. It is shown that, on long (macroscopic) time scales, the evolving
distribution function with an arbitrary initial shape approaches a Maxwellian distribution. This result agrees
with the accepted views regarding the overall temporal evolution of an arbitrary unsteady isolated system.
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1. INTRODUCTION

Since the formulation of the Boltzmann equation
(see[1]), the problem of solving it has been the subject
of significant research efforts and continues to be one
of the fundamental issues in molecular kinetic theory
[2]. Exact analytic solutions to the Boltzmann equation
have been obtained only for specific forms of the colli-
sionintegral, whichisvery involved in the general case.

The first attempts to solve the Boltzmann equation
exactly and to apply the solutions obtained to analyze
particular physical systems were made in [3-5]. The
next class of exact solutionswas constructed for aMax-
wellian gas, which consists of monatomic particles
such that the attractive forces between them are
described by the short-range pair potential function
U(r)=oa/r*. Inthisparticular case, it is somewhat easier
to perform cal culations involving the collision integral,
because the scattering cross section isinversely propor-
tiona to the absolute value of the relative molecular
velocities.

In 1975, Bobylev [6, 7] and, independently, Krook
and Wu [8] constructed an exact self-similar solution to
the nonlinear Boltzmann equation for a Maxwellian
gas. An explicit solution was obtained for a spatialy
homogeneous gas by using the integral Fourier trans-
formation with respect to velocities and then by apply-
ing the method of separation of variables. This
approach has come to be widely used and has stimu-
lated further investigationsfor exact solutionsto kinetic
equations. Significant resultsin this areawere obtained
by Ernst [9]; in particular, he published areview paper
on exact solutions to the Boltzmann equation [10].

The Bobylev—Krook—Wu method serves asthe basis
for solving numerous generalized problems (see, e.g.,
[6,11-17]). At the sametime, more specific approaches
to solving various particular problems are presently
being devel oped [18-20].

In this paper, we develop an approach based on the
simplest kinetic theory of collisional interactions in a
Lorentzian gas or in asystem of particles stochastically
scattered like billiard balls, assuming that the effective
cross section of the potential elastic scattering is inde-
pendent of energy.

2. FORMULATION OF THE MODEL PROBLEM

It seems expedient to study various Kinetic phenom-
ena using simple theoretical models that can be gener-
alized to more complicated systems in which the parti-
cle dynamics should be described in terms of the theory
of stochastic processes. The model of a Lorentzian gas
with scattering point particles of infinite mass incorpo-
rates only pair interactions between structureless
microparticles under the condition that, in each colli-
sion event, the particle velocity changes only slightly.
This model applies to a weakly ionized, isotropic low-
density plasma in which the collisions between parti-
cles are infrequent and the particle energy is low in
comparison with the electromagnetic field energy.
Analogous models can also be used to describe other
kinetic phenomena, e.g., particle scattering in amixture
of two gases that differ greatly in both density and
molecular mass, as well as some kinetic processes in
reacting gases and dilute solutions.

The most general way to describe the time evolution
of the distribution function is to turn to the nonlinear
kinetic Boltzmann equation (see[21], p. 25)
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where the subscriptsa and b refer to the quantities char-
acterizing colliding particles of the same or different
Species.

Let us make a number of simplifying assumptions.

If there are no external forces (F = 0) or externa
fields (E =0, B = 0) and if the spatial distribution of the
particles in an unbounded plasma is uniform, then the
time-dependent distribution function is described by
the following Boltzmann equation with a collision
term:

2= jdpvabdoab{f fi-fufed. @

In any redistic model, Egs. (1) and (2) are
extremely difficult to integrate exactly. For this reason,
the problems of kinetic theory are most often treated
with a perturbation technique, based on the lineariza-
tion of the initial equation by seeking the desired solu-
tion in the form of a power series in a characteristic
small parameter (small correction). The correctness of
the final solution is directly related to the assumptions
regarding the range of applicability of quasilinear the-
ory to a description of unsteady processes.

In studying conduction electronsin metals, Hendrik
Antoon Lorentz [22] applied the method of expanding
the distribution function in a series in spherical har-
monics. This classical approach implies that the distri-
bution function satisfying Eg. (2) is expanded in a
seriesin Legendre polynomials (see, e.g., [23], p. 61):

f(v,x,€) = f f
(v, X:€) = fo(v)+ fo(v)cosx 3)

+ f,(v)sinxcose + ... .

Here, f, isthe symmetric (isotropic) part of the distribu-
tion function and its asymmetric part is described by
the expansion coefficients f, and f, (such that f,/f, < 1)
of the higher harmonics of the angular variables—the
polar (x) and azimuthal (€) angles in spherical coordi-
nates. Centrosymmetric quasi-equilibrium media,
which have no preferential directions, can be described
by scalar solutions. Morse et al. [24] were the first to
apply this approach to an electron gasin aplasma.

More recently, Chapman and Cowling (see [25],
p. 418) and, independently, Davydov [26] applied the
method of substituting expansion (3) into Eg. (2) and
derived (in two different ways) the following parabolic
differential equation for the symmetric part f, of the
electron distribution function:

af, 1 9 dmﬁafo

3t yzovOwml ov

mv
wfa @
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wheremand M (such that m < M) are the masses of the
colliding particles and | is the mean free path. The
approach to deriving Eq. (4) is, to alarge extent, analo-
gous to that used in the theory of diffusion and Brown-
ian motion in order to derive the Fokker—Planck equa
tion from the integral Smoluchowski—Chapman-Kol-
mogorov eguation.

Using the assumption that the electron—atom colli-
sion frequency is independent of the electron velocity,
Sever’yanov [27] constructed an electron velocity dis-
tribution function satisfying Eq. (4). The distribution
function that will be constructed below in solving the
same equation differs greatly from the solution
obtained by Sever'yanov. Note that my interest in the
problem under consideration was stimulated, in partic-
ular, by Sever'yanov’'s doctora dissertation [27] and
that the mathematical approach to constructing the
desired solution is similar to that used in [27].

3. SOLUTION OF THE KINETIC EQUATION

Let us assume that the distribution function of an
ensemble of particles evolves according to a law that
makes it possible to predict its future history from the
state at an arbitrary instant of time. We also assume that
the law of evolution isdetermined by theinitial state of
the ensemble and not by its history.

We start by rescaling the original variables (v, t). To
do this, we define the energy space of the solutions by
passing over to the dimensionless time

T = Zmzt,

ot tOR, (5)

and to the normalized energy

2
mv

& = Eﬁ, EDR\O, too, (6)

such that the spectrum of the velocities of the thermal
particle motion corresponds to the finite energies.

Then, the basic kinetic equation (4) for the symmet-
ric part of the distribution function can be rewritten in
dimensionless form:

9fo _ 0% 2 0
= = zaeg +Ef o @

The above change of variables can be regarded as a
nonlinear transformation or as the introduction of a
homogeneous coordinate system.

Since we can choose an arbitrary initial time 1 =1,
wewill seek the solution to Eq. (7) in the class of func-
tions that have the form

fo(& 1) = exp(={)u(&, 1), ®)
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and satisfy the normalization condition

J' fo(&, T)dE = 1. (9a)

Because of the causal dependence between (&, T,)
and fy(&,, T,), the distribution function is continuous
and differentiable and can be parameterized by time. In
particular, in class(8), Eq. (7) admitsasolution that sat-
isfies the limiting condition

‘I‘lm fo(§, 1) = 0.
Equations (7)—(9) constitute an internally closed set of
equations that can be used in principle to describe the
kinetics of the distribution function with a prescribed
initial shape.

Substituting function (8) into Eq. (7) yields

(9b)

Ju

— = §— - 1
- & +(2-0)F (10)
Then, the exact solution of Eg. (10) can be reduced to
the solution of an eigenval ue problem using the method
of expansion in a Fourier series. The solution is sought

in the factored form
u(€, 1) = ®(&)9(1). (11)

As aresult of this factorization (the separation of time
and space variables), Eq. (10) splits into the following
two ordinary homogeneous differential equations for
the functions ¢ and ®:

do -
StV =0, (12)

EQ"+(2-8)® +vd = 0. (13)

Here and below, the prime denotes the operator of dif-
ferentiation with respect to &.

To within a constant, Eq. (12) immediately yields a
trivial result:

¢ = exp(-v1), (14)

where v is an independent real parameter such that
v =0.

Equation (13) has an infinite number of discrete
eigenvaluesv. Equation (13) with integer valuesof v is
well known (see [28]); its analytic particular solutions
are generalized Laguerre polynomials:

®,(8) = LI(8) = exp(§) -2 —( exp(=)E"*%). (15)

In the specific case at hand, we havea =1

We represent an arbitrary function that is defined on
the interval (0, o) and satisfies certain conditions (see
[28]) as a converging series of Laguerre polynomials
and seek the desired solution (the symmetric part of the
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time-dependent distribution function) on an infinite
timeinterval in the form of a Fourier series

fo(& 1) = § Coexp(=E-vT)Ly(8).  (16)
v=0

We express the Fourier coefficients C, through the
symmetric part of the distribution function,

fo(8,0) = $ Coexp(R)Ly(8) = f(8),  (17)
v=0

which is assumed to be specified at the initia time
T = 0. From the orthogonality relationsfor the Laguerre
polynomials with different v, weighted by exp(—§)&¢,
on theinterval (0O, +) (see[28]), we obtain

0 (=)

_[f(n)nLvl(n)dn = Cvj'exp(—n)n[Lvl(n)]zdn- (18)
0 0

Taking into account the relationship

00

[ep(mn‘ILy()dn = fvra+l)

V! - (19

where I isthe gammafunction, we find the coefficient
of the vth term in the expansion of the symmetric part
of the disturbing function:

00

_ 1 1
Cv = 37/ fmnLy(n)dn. (20)
0

For a continuous function, we can change the order
of summation and integration, in which case expression
(20) permits us to rewrite the assumed solution (16) as

fo(€,7) = J’exp(—E)f(r])r]dr]
° 2

x 3 (v+ 1) exp(-vD Ly ()Ly(8).

In expression (21), the infinite sum of the weighted
products of Laguerre polynomials with different v can
be taken with the help of the integral representation of
Laguerre polynomials [28]:

LI(E) = Sexp(®)E
°° (22)
x It“*“’qu(sz_t)exp(—t)dt,

0
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where J,(2) isan ath-order Bessel function. Expression
(21) with representation (22) can be reduced to

2 ((v/2) Jur)™™
exp(€ +n)(En) " (2ly) Z TR+ DIV

(23)

00 00

x [fexp(-u- v)J1(24/&u)J;(2/nu)dudy,
00

where we have used the notation
y/2 = exp(-t/2).

The series in formula (23) is a representation of the

Bessel function I,(y./uv ) of the imaginary argument
29].

The double integral in formula (23) can be taken
with the help of the representation [28]
I,(2) = exp(iTv/2)J,[zexp(—iTU2)] (24)

and the standard integral (see formula (6.615) in [29])

IeXp(—G K)JV(ZB'\/E)JV(ZV'\/R)GK
0 (25)

- (1/0()I\,(2[3y/a)expg_[32+y 0

where Rev > —1. Asaresult, we arrive at the following
integral form of the general solution to the time-depen-
dent Boltzmann equation for the symmetric part of the
distribution function:

fol€,¥) = By E(4-v)
fy/En 20

f d o._ny Y~ eNQd

x'([ (n)/n neXPD4_y2Ellm4_y2[r

Solution (26) can be rewritten in aform similar to that
frequently used in papers dealing with steady solutions:

DnVZD—UZ 1
P02 BTl ey

ep| 5 2kT(l &) }If(n)fdn o7

2 —1/2
0 e
xeXpD ﬂl r% |: ’\/ﬁ[QkT 1_e_Ti|.
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In the particular case of an initial symmetric Max-
wellian distribution function f(n), expression (26) gives
an exact solution to the Boltzmann kinetic equation:

fo(Y)
_ 4y’ Y g @
- exp[—E }M_l %4 e

8— y2
2(4-y°)
where M, (2) is a Whittaker function. Solution (28)
was derived in the usual way with the help of astandard
integral (seeformula (6.643.2) in [29]).

A distinctive feature of our approach to transform-
ing the basic kinetic equation (4) is that it was nondi-
mensionalized by introducing variables (5) and (6).
A similar approach was used, e.g., by Sever'yanov [27],
who introduced dimensionless time (5), and by Stiller
(see [30], p. 96), who introduced dimensionless
energy (6).

4. OVERALL EVOLUTION OF AN ARBITRARY
INITIAL DISTRIBUTION FUNCTION
AND ASYMPTOTIC INVARIANCE PRINCIPLE
FOLLOWING FROM THE BEHAVIOR
OF THE SOLUTION AT INFINITY

It iswell known that the Boltzmann equation is an
averaged eguation describing the deterministic evolu-
tion of a one-particle distribution function [31].

We assume that the energy transfer processes can
perturb the distribution function and that an ensemble
of dynamically interacting particles can relax to an
equilibrium (most probable) state on arbitrarily long
time scales. The relaxation of a particle ensemble to a
steady state as a consequence of the law of large num-
bers was analyzed by Stankevich (see [1], p. 117). In
order to examine the relaxation process in more detail,
we determine the established equilibrium solution of
the parameterized equation (26). To do this, we calcu-
late the exact upper limit on solution (26) at t — .
Resolving the indeterminateness and using the repre-
sentation of the Bessel function of the imaginary argu-
ment by a series (see [28]), we obtain the following
explicit expression for the steady-state distribution
function:

[

limfo(&,y) = eXD(—E)If(n)ndn-
y-0 0

We can see that, on the time interval (0, +), an
unsteady isotropic particle velocity distribution relaxes
toafina (att — o or, equivalently, y — 0) equilib-
rium Maxwellian distribution; moreover, the asymp-
totic solution (the established distribution function) is
independent of the shape of theinitial distribution func-
tion f(n).

On the whole, the local properties of a Lorentzian
gas and analogous particle systems remain unchanged,
and a particle ensemble whose evolution is described
PLASMA PHYSICS REPORTS  Vol. 27
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by akinetic model that admits an exact solution relaxes
to an asymptotically stable state of external equilibrium
and remainsin this state for an arbitrary long time. The
uniqueness of the scenario of the natural evolution of a
physical system consisting of a statistically large num-
ber of particles is in agreement with the principles of
thermodynamics, which imply that any closed (iso-
lated) system relaxes spontaneoudly to a stable steady
state, which is not spontaneously disordered and is
regarded as being equilibrium.

This result is not an obvious consequence of the
choice of the model of a physical system. Thus, for a
mixture of two gases, one of which isaLorentzian gas,
an equilibrium solution that is independent of the spa-
tial coordinates and timeis an arbitrary isotropic distri-
bution function (see[21], p. 324).

5. CONCLUSION

In conclusion, let us make two remarks about the
justification and application of the distribution function
that we obtained in solving the kinetic equation.

(i) Theexact limits of applicability of unsteady solu-
tions describing the local equilibrium kinetics of parti-
cles in weakly nonequilibrium (i.e., dightly non-Max-
wellian) systems can be established using a rigorous
nonequilibrium Kinetic theory that is based on the
investigation of kinetic equations describing the time
evolution of the distribution functions.

(ii) In order for the unsteady processes occurring on
time scales shorter than the time of relaxation to an
equilibrium Maxwellian distribution to be adequately
described using, e.g., the energy balance equation and
the real values of transport coefficients, it is necessary
to take into account the unsteady character of the parti-
cle distribution function.
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Electromagnetic Oscillations near the Critical Surface
in a Magnetized Plasma

A.V. Timofeev
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Abstract—It is shown that, in a plasma whose density varies across the magnetic field lines, electromagnetic
oscillations that are localized near the critical surface can exist. Such oscillations can be excited spontaneously
in anonequilibrium plasma of closed magnetic confinement systems. © 2001 MAIK “ Nauka/Interperiodica” .

1. We consider electromagnetic oscillations in a
plane slab of a cold magnetized plasma, assuming that
the magnetic field is uniform and the plasma density
varies across the magnetic fields lines. The well-known
dispersion relation characterizing oscillations in a cold
plasma can be represented as

D = Nieg+ NA(Nj(en +g) — 260 — €0+ €))
+g(Nj—&,)(Nj—£)) = 0,
2

- —P e =(,+Ee)2,g=1-

ey

where g, = 1

2
w . .
— | Wy isthe electron plasma frequency, and w, isthe
w

electron cyclotron frequency. The oscillation frequency
w is assumed to be high enough to neglect the ion con-
tribution to the plasma permittivity.

In order to qualitatively understand the behavior of
the profile Né , 1.e., the dependence of Né on the
plasma density q = m‘;;e /¥, it is sufficient to note that
the quantity NZ (q) vanishes at g, = (1 — Nj)(1 £ Q)
and q, = 1 and tends to infinity at gs= 1 — Qs (where
Q.= w,/w) and that two roots of biquadratic equation (1)

2 2
coincideat g, = 1 + QEENz”thE .
I

We will be interested in oscillations with w < w,
(Q¢> 1), in which case we have N, > 1. Inside the

plasma slab, there is a transparency region (Né > 0)

between the critical density surface q = q, and the sur-
face at which the condition g = g_holds. For N, < N =

Q
5 s 1’ the latter surface lies ahead of the critical sur-
-

face (q < 1), and, for N> N, it lies behind the critical

surface. The electromagnetic oscillations may become
locked in the transparency region.

Under the conditions w= w,. and Nﬁ =g, thetrans-

parency region contracts into the surface at which we
have

_ _ (O’ |2 0
Wpe = Wpec = 2_00e DWFD + 1_15- 2

For oscillations whose frequency differs from w, =

, the transparency region has a finite thickness,
which can be found from the expression for the trans-
verse refractive index. For dw < wy,, we have

2 2
Np=—g (N —€)A,
2
Nj—&. W=
> .

We approximate the dependence q(x) by the linear
function dg/dx = 1/L to obtain

where A=

2 2, 2WeT 1]
~ — + —— E —
Ny Ny | 2w 20 X0

|60~1 we(zwe - (‘oc)
W (*)c(we - wc)
transparency region for oscillations with N, = 0. (We
work in a Cartesian coordinate system with the x- and
z-axes directed along the density gradient and magnetic
field, respectively, the coordinates being nondimen-
sionalized by multiplying by the factor w,/c.)

is the thickness of the

where Ax =L

The frequency spectrum of the natural oscillationsis
determined in a standard way from the “quantization”
condition

fNde = 2(n+1/2)T

1063-780X/01/2703-0265$21.00 © 2001 MAIK “Nauka/ Interperiodica’
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Fig. 1. Ray trgectories in a plane plasma slab: (a) Ny =
2.1614 and N, = (1) 0 and (2) -0.769; (b) N}, = 1.0596 and
Ny = (1) 0 and (2) -0.377.

Asaresult, we obtain

200, We— 0, /200 2n + 1D
= +
wW=wt @, 20—, %\l . (3

One boundary surface of the transparency region is
the critical surface, and the other boundary surface lies
either in the higher density plasma region [for oscilla-
tions with w < w,, which correspond to the upper sign
in formula (3)] or in the lower density plasma region
[for oscillations with w > w, which correspond to the
lower sign in formula (3)].

The polarization of the oscillations under discussion
is rather peculiar and is conveniently characterized by
the longitudinal component E; of the electric field and

its circular components E, = (E, + iE )/«/é one of
which rotates in the same direction as the electrons and
the other, in the same direction as the ions. These
electric-field components satisfy the relationships

TIMOFEEV

N,
E. = B—

e, —N & -

(N, £ N/ /2.

Assume that N, = 0. At the quasiclassical turning
points, the x-component of the refractive index van-
ishes; this indicates that the oscillations propagate
along the magnetic field lines. One of the turning points
isacritical point at which the condition w,. = w (g;=0)
holds and the oscillations transform into electron Lang-
muir waves with longitudinal polarization. At the other

turning point, the conditione_= N|2I issatisfied and the
oscillations are circularly polarized, with the electric
vector rotating in the same direction as the electrons.
For N, # 0, the electric-field components E, and E; are
nonzero in the region between the turning points as
well asin the entire transparency region.

2. The conclusion that the oscillations can be local-
ized near the critical surfaceis confirmed by numerical
calculations of the ray trajectories.

The ray trgjectories satisfy the following standard
equations of the geometrical-optics (GO) approxi-
mation:

N
and E” = EO——-‘]'L_

5 where N, =
N

dr _ 0D/oN
dt 0D/ow’
dN _ 9D/or
dt  0D/dw’

In the steady-state case (when we are interested only in
the shape of the ray trajectories), it is convenient to
parameterize the ray trajectories in terms of the time
variable 1 related to the time t by dt/dt = (OD(r(t),
N(t))/0w)™!, in which case the equations of the GO
approximation become

dr _ 0D
dt ON’
dN _ 9D
dt or’

Figure 1 shows representative ray trajectories of
oscillations with w = w,/2 in a plane plasma slab
(dg/dx = 1). In accordance with the above analysis, the
transparency region is seen to lie ahead of the critical
surface if N < Ny and behind the critica surface if

Note that, at the critical surface, the ray trajectories
are cusp-shaped. The other boundary of the transpar-
ency region is a conventional caustic surface. These
characteristic features of the ray trgectories can be
readily explained as follows.
PLASMA PHYSICS REPORTS  Vol. 27
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We represent the dependence N,(x, N)) in the form

_ [29ex Ny f w xJ*
Nx~|: ) LDD\IHCD _1_(1)e|_|:|i| . (4)

In the xz plane, the ray trajectories are described by the
equation
dx _ 0w/dN, _ 0D/ON, _ _@Nxm—l 5)
dz  dw/dN, aD/ON,  LoN,O -

Formulas (4) and (5) yield the following equation for
ray trajectoriesin the vicinity of the critical surface:

dX__ a;

2
1 o
where a, = [9-)—(5”——
T 020 Npw.—w

equation is a semicubical parabola:

. The solution to this

£x = Say(2-2). ™

Equation (6) and solution (7) imply that, near the criti-
cal surface, the ray trgjectories are parallel to the den-
sity gradient Vn, and, therefore, are perpendicular to
the magnetic field lines. Thisfeatureis attributed to the
potential nature of oscillations at the critical surface. In
fact, itiswell known that the group vel ocity of potential
oscillationsis perpendicular to their wave vector, which
is paralel to the magnetic field near the critical surface
(see, eg., [1]).

Ray trajectories with cusps at the critical surface
were also obtained in [2] when studying a plasma in
which the density gradient makesasmall anglewith the
magnetic field. The cusp shape is also peculiar to both
the ray trgjectories of potential oscillations near the
plasma resonance surface [1] and the ray trajectories of
the perturbations of an inhomogeneous gas flow near
the boundary between the regions of supersonic and
subsonic flow velocities [3]. (In the latter case, the
cusps occur on the so-called hodograph plane.)

Near the other boundary surface of the transparency
region (X = Ax), we have

dx
5 = 20x=x)", 8)
where a, = 1 & From Eqg. (8), we
? N”c(ZAX)]JZ(‘Oe_w ,
obtain

£(0x-x)" = 2(z-2,). ©)
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Fig. 2. Propagation of oscillations behind thecritical surface
(9> 1) in atokamak plasma: (a) the projection of aray tra-
jectory onto the vertical cross section of the torus (the mag-
netic axis intersects the plane of the figure at the origin of
the coordinate system) and (b) the quantities N, (curve 1)
and Ny (curve 2) as functions of the poloidal angle along
the trajectory.

The parabolic dependence x(z) corresponds to a con-
ventional caustic surface.

Formulas (6)—9) refer to the case N> Ny, inwhich
Ax > 0, so that x > 0 inside the transparency region. For
N, < N, the pattern of ray tragjectories can be obtained
by means of amirror image reflection about the critical
surface.

3. The idealized model of a plane plasma dab in a
uniform magnetic field described above roughly
reflects a characteristic feature of plasmas in magnetic
confinement systems, namely, the constancy of the
plasma density at the magnetic surfaces. For this rea-
son, it is natural to expect that, being appropriately
modified, the results of our analysis will be valid for
el ectromagnetic oscillations in such plasmas. In partic-
ular, the frequency spectrum of the natural oscillations
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Fig. 3. Thesame asin Fig. 2, but for oscillations propagat-
ing ahead of the critical surface (q < 1).

with N, = Ny should be approximately described by
formula (3).

The existence of the transparency region near the
critical surface in closed magnetic confinement sys-
tems is demonstrated by the calculations of ray trajec-
tories in atokamak plasma. Let us consider a confine-
ment system that is symmetric in the toroidal angle ¢
and assume that the cross sections of the magnetic sur-
faces are concentric circles. Calculations were carried
out for the following characteristic parameter values:

W= w/2, g(r) = 3exp(—(r/L)?), and Ry/L = 6./5, the
safety factor being rB,/R,Bg = 3.

In toroidal systems, the magnetic field is non-one-
dimensional, B = (0, By, By), and its strength depends
on the poloidal angle, B = B, = By(1 — r/Rycos6). For
thisreason, the quantities N and N, also depend on the
poloidal angle ©; moreover, the first quantity N, =
Ny(1 — r/Rycos0)/R, is maximum at the inner circum-
ference of the torus, while the second quantity N, =

Fig. 4. The same as in Figs. 2 and 3, but for oscillations
propagating behind the critical surface (q > 1) and for N,

much larger than Njic.

(We/(We— w)) 2 ismaximum at the outer circumference.
Consequently, if N, and N, differ only slightly, then the
oscillationswith N, < N, should propagate ahead of the
critical surface (w, < w) and, accordingly, can be
localized on the outer side of the torus, while the oscil-
lations with N, > N, should propagate behind the criti-
cal surface (w,. > w) and, accordingly, can be localized
on the inner side of the torus (Figs. 2, 3). On the other
hand, if N, and N differ markedly from one another,
then the oscillations propagate over the full length of
the torus along the toroidal axis (Fig. 4).

In magnetic confinement systems, the plasma is
often nonequilibrium. Tokamak plasmas may contain
beams of runaway electrons, which may even acquire
relativistic energy. The anisotropy of the electron
velocity distribution function in a confined plasma is
associated with ECR heating.

A characteristic feature of plasmas with charged-
particle beams is the excitation of potential oscillations
propagating parallel to the beam. Near the critical sur-
PLASMA PHYSICS REPORTS  Vol. 27
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face, the oscillations under study are also potential. REFERENCES

Note that such oscillations can grow viathe Cherenkov . L

mechanism because their longitudinal refractive index 1 él' D. F;'_"'y? a”dEa/- bl' A'f ego“l_".’{ o 'I'“gth'grr.ek?ul‘i’.‘cy
islarger than unity. In aplasmawith an anisotropic dis- Gﬁ}rﬁlggglgg'zsj y A. G. Litvak (Inst. Prikl. Az,
tribution function, oscillations propagating obliquely to ' T

the magnetic field, aswell ascircularly polarized oscil- 2. A. V. Timofeev, Fiz. Plazmy 26, 874 (2000) [Plasma
|ations propagating along the magnetic field, are unsta- Phys. Rep. 26, 820 (2000)].

ble. Our analysis shows that these propertiesare pecu- 3, L. D. Landau and E. M. Lifshitz, Fluid Mechanics
liar to oscillations propagating in regions far from the (Nauka, Moscow, 1986; Pergamon, New York, 1987).

critical surface. Hence, we can expect the oscillations
under discussion to be excited spontaneously in toroi-
dal confinement systems. Trandated by O.E. Khadin
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Al’bert Abubakirovich Galeev
(In Honor of His 60th Birthday)

On October 19, 2000, we celebrated the 60th birth-
day of Academician Al’bert Abubakirovich Galeev, a
member of our Editorial Board, an eminent theoretical
physicist, and Director of the Institute for Space
Research of the Russian Academy of Sciences.

A.A. Galeev was born in the city of Ufain 1940.
After completing school with agold medal, he entered
the Moscow Power Engineering Institute, from which
he transferred to the Physics Department at Novosi-
birsk State University on theinitiative of R.Z. Sagdeev.
After graduating in 1963, he worked at the Institute of
Nuclear Physics, which was founded by G.I. Budker.
By 1964, he had already defended his candidate’s dis-
sertation and, in less than four years, he defended his
doctoral dissertation. In 1970, he moved to Moscow,
where he worked first at the Institute of High Tempera-
tures of the Academy of Sciences of the USSR and,
since 1973, at the Institute for Space Research, where
he was head of the Department of Solar—Terrestrial
Physics. In 1988, he was el ected director of the Institute
by his colleagues. In 1992, A.A. Galeev was €elected a
member of the Russian Academy of Sciences.

The development of A.A. Galeev as a scientist pro-
ceeded under the guidance of academicians G.I. Bud-
ker and R.Z. Sagdeev. His first paper, which was writ-
ten together with V.N. Oraevskii, was published in 1962
while he was a student of Novosibirsk State University.

During his work at the Institute of Nuclear Physics,
A.A. Galeev together with V.I. Karpman developed a
theory of the weak interaction of plasma waves, which
became one of the building blocks of the theory of
weak plasmaturbulence. Thisimportant contribution to
scientific research was highly evaluated. In 1967,
A.A. Galeev, being a young scientist, was awarded the
Lenin Komsomoal Prize for a series of paperson plasma
turbulence. Together with R.Z. Sagdeev, he devel oped
the neoclassical theory of transport processes in toka-
maks. For this work, which today has become classic,
he and several other scientists were awarded the 1984
Lenin Prize in science and engineering. Together with
V.N. Oraevskii and R.Z. Sagdeev, he contributed
greatly to the solution of the prablem of the universal
instability of a nonuniform plasma and, together with
S.S. Moiseev and R.Z. Sagdeev, to the solution of the
problem of anomalous plasma diffusion.

A large number of investigations on space plasma
physicswere carried out by A.A. Galeev at the Institute
for Space Research. Together with his students and col-
leagues, he developed a model of the interaction of
solar wind with comets; in particular, ahybrid model of
solar wind loading by comet ions revealed the impor-
tant role of charge exchange processes in the comet
coma. They devel oped aconsistent theory of theioniza-
tion of ararefied gas by a magnetized plasma flowing
with a velocity exceeding the critical value (Alfvén
phenomenon) and studied the dynamics of magnetic
reconnection in planetary magnetospheres. Galeev's
research on the tearing instability, carried out in collab-
oration with L.M. Zelenyi, led to the discovery of
explosive reconnection (magnetic burst), accompanied
by the generation of fast ionswith energies of up to sev-
eral MeV. This theoretical prediction was then verified
by processing the data from numerous space experi-
ments and has been of fundamental importance in the
planning of the Interball space project. The acceleration
of the fast solar wind from coronal holes by Alfvén
waves was aso investigated. Together with
R.Z. Sagdeev, V.D. Shapiro, and V.I. Shevchenko, he
developed the theory of strong Langmuir turbulence
and el ectromagnetic wave generation during the relax-
ation of charged-particle beams in a plasma. He also
studied the dynamics of beam—plasmadischarge during
the injection of electron beamsfrom space vehiclesinto
the ionosphere.

A.A. Galeev made an important contribution to
plasma astrophysics. Lynden-Bell (1969) and Galeev
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(1979) were thefirst to understand that magnetic bursts
may occur in accretion disks. Later, Galeev, Rosner,
and Vaiana showed that the coronas of the accretion
disks of black holes contain magnetoplasma loops,
which are heated to high temperatures due to magnetic
reconnection, as is the case in solar coronal loops. In
particular, magnetoplasma loops formed in high-lumi-
nosity accretion disks experience Compton cooling,
whereas Compton scattering of soft X radiation from
the accretion disk results in bursts of hard X radiation
observed in experiments. In order to interpret the
observed generation of ultrarelativistic electrons, an
ion—electron mechanism for charged-particle accelera-
tion was proposed. It was shown that the ions reflected
from the front of a collisionless shock wave can excite
lower hybrid waves, which, in turn, can acceerate
suprathermal electrons along the magnetic field lines
up to ultrahigh energies.

It is worth noting that the theoretical investigations
by A.A. Galeev are closely related to space experi-
ments. He took part in a series of international space
projects. In particular, he was the deputy research man-
ager of the Vega project; the research manager of the
Prognoz-8, Intershock, Interball, and Mars-96 projects;
and a participant in the Phobos project. The theoretical
investigations by A.A. Galeev laid the basis for two
internationa projects performed onboard the Prognoz-8
and Prognoz-10-Intershock spacecrafts, which were
specialy designed to study shock waves receding from
the Earth. The results of these experiments yielded new
insights into the physical processes occurring in shock
fronts at high Mach numbers and the mechanisms for
charged-particle acceleration.

The great contributions of Academician A.A. Ga
leev to scientific research have been widely recognized:
he is a member of the Max Planck Society, European
Academy of Sciences, International Academy of Astro-
nautics, and Tsiolkovsky Academy of Cosmonautics.
In 1993, he was awarded a doctor honoris causa of the
University of Paris. In 1996, he won the von Karman
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Prize of the International Academy of Astronautics,
and, in 1997, he received the Alexander von Humbol dt
Prize. For his participation in theVenus—Halley’s comet
project, he was awarded the Order of the Red Banner of
Labor. A.A. Galeev is a member of the Bureau of the
Department of General Physics and Astronomy of the
Russian Academy of Sciences, amember of the Expert
Committee of the Max Planck Institute for Extraterres-
trial Physics, and a member of the Editorial Board of
Foace Science Review. He is aso the chairman of the
section “The Solar System’s Planets and Small Bodies”
of the Space Committee of the Russian Academy of
Sciences.

Since 1964, A.A. Galeev has been teaching contin-
uoudly, first, at Novosibirsk State University and, then,
at the Moscow Institute for Physics and Technology. He
has formed his own school in space plasma physics,
and among his students are doctors and candidates of
science. Being a member of the Editorial Board of
Plasma Physics Reports, he has helped greatly to
enhance the prestige of the journal.

As a head of the Ingtitute for Space Research,
A.A. Galeev is currently working on new projects, in
particular, the Phobos-Grunt, Interball-3, Resonance,
and Roy projects.

The colleagues and friends of Al’bert Abubakiro-
vich heartily congratulate him on his birthday and wish
him robust health, many happy days, and further suc-
cess in scientific, pedagogical, and administrative
activities.

V.M. Balebanov, A.A. Boyarchuk, N.S. Erokhin,
V.E. Zakharov, L.M. Zelenyr, V.. Karas,
B.Coppi, E.P. Kruglyakov, R A.Kovrazhkin,
E.A. Kuznetsov, A.G. Litvak, J.G. Lominadze,
G.A. Mesyats, A.B. Mikhailovskiz, E.V. Mishin,
S.S Moiseev, V.N. Oraevskii, O.A. Pokhotelov,
R.Z. Sagdeev, K.N. Stepanov, R.A. Syunyaeyv,
Ya.B. Fainberg, and A.M. Fridman
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