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Abstract—The focusing of a spherical X-ray beam during the Bragg reflection from a bent crystal in the
Johann scheme is considered. It is demonstrated that, with an allowance for the spherical aberration of the
beam, the wave intensity in the focus is determined by the square modulus of Airy’s function. © 2001 MAIK
“Nauka/Interperiodica”.
 X-ray radiation focusing according to the Johann
scheme [1] is one of the most widely known and attrac-
tive methods of obtaining high-intensity beams. A spe-
cial feature in this scheme is that the reflecting planes
of a bent crystal at any point make the same angle with
plane harmonics of the incident spherical wave. If no
special measures for collimating the beam are taken,
the spherical aberration of the reflected (Bragg diffrac-
tion) rays may be very significant.

In this study, the Bragg focusing of a spherical
X-ray wave by a bent crystal in the Johann scheme is
considered (by analogy with the previous analysis [2])
within the framework of the geometric optics (see fig-
ure). It is assumed that the diffraction reflection has a

coherent elastic character, that is, k0 + h = kh and  =

 = k2. The reciprocal lattice vector h of the bent crys-
tal can be presented as h(hx, hy, hz) = h0 – —(h0u), where
h0 is the reciprocal lattice vector of the nonbent crystal,
h0 = 2ksinθ, θ is the Bragg angle, u(–xz/Rx, –yz/Ry ≈ 0,
x2/2Rx + y2/2Ry ≈ x2/2Rx).

Taking into account all terms proportional to x2 ,
where x is the coordinate of the point of incidence of
an arbitrary beam in the X axis, we obtain the follow-
ing expressions for the direction cosines of the
wavevector k0:
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where Ψ is the sloping angle of the reflecting planes rel-
ative to the crystal surface. Note that the radiation
focusing in the Johann scheme is one-dimensional
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(Ry @ Rx); that is, it takes place in the sagittal plane
Y = 0.

Considering the case of a symmetric diffraction
(Ψ = 0, ϕ0 = π/2 – θ), we obtain the following relation-
ship for an arbitrary distance L0 from the source of the
spherical wave to the crystal:

(2)

where ∆θ = |χhr|/sin2θ is the halfwidth of the Bragg
reflection and χhr is the X-ray polarizability. When L0 ≠
Rxsinθ, we may ignore the spherical aberration. Then,
rejecting the terms quadratic in x in relationship (2), we
obtain the effective size xeff of the region on the crystal
surface in which the partial ray does not spread outside
the boundaries of the total reflection region:

(3)

In the Johann scheme, when L0 = Rxsinθ, we obtain

(4)

Comparing Eqs. (3) and (4), we see that the Johann
scheme provides for a gain in the beam-gathering
power in comparison to the other schemes, reaching up

to 2–3 orders of magnitude since  ~ (∆θ)1/2.
However, an increase in the beam-gathering power is
accompanied by a growing spherical aberration of the
reflected rays. Estimates of the beam intensity drop at
the focal point, related to the spherical aberration in the
Johann scheme, and yield a factor of ~102 for the (220)
reflection of the CuKα radiation from a silicon crystal
bent with a radius of Rx ≅  1 m.

Applying the Huygens–Fresnel principle applied to
the X-ray diffraction and expanding the phase of the
spherical wave to terms on the order of ~x3, we obtain
an expression for the diffracted wave amplitude Eh(ξp)
at the focal point 
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is the Airy’s function and

The diffracted wave intensity In(ξp) = |Eh(ξp)|2 at the
focal point turns zero for tmin = –2.33811 (i.e., at the
Airy’s function zero). The Airy’s function Φ(t) exhibits
an oscillatory character for t < 0 and monotonically
decreases at t > 0. According to formula (5), an allow-
ance for the spherical aberration in the Johann scheme
leads to a mismatch of the geometric focus (ξp = 0) and
the point of maximum intensity of the focused wave.
The greatest peak of the Airy’s function (Φ = 0.9494) is
attained at tmax = –1.02. For the (220) reflection of the
CuKα radiation from a silicon crystal bent with a radius
of Rx ≅  1 m, the coordinate of the point of maximum

intensity of the focused wave is  = –0.1 µm. Taking
into account that Φ(–2.34) = –0.0024 and Φ(4.00) =
0.0016866, we obtain an estimate ∆ξ ≈ 0.6 µm of the
spatial width of the beam intensity maximum (for the
same parameters as above). The focus width at half
intensity is *0.1 µm. Calculation of the diffraction
broadening (with neglect of the spherical aberration) by
the formula ∆ξ = λRx/xeff (taken from [3, 4]) yields
∆ξ ≈ 1.5 × 10–2 µm. Note that an expression for the dif-
fracted wave intensity at the focus Ih ~ (sint/t)2 derived
in [3, 4] did not take into account the spherical aberra-
tion. Moreover, the phase of the incident spherical wave
was expressed in a parabolic approximation, and it was
assumed that the size xeff of the total reflection region on
the crystal surface is limited by a certain value above
which the effect of aberration on the focusing can be
ignored.

Thus, we have demonstrated that an increase in the
beam-gathering power achieved in the Johann scheme
is accompanied by the growth of spherical aberration of
the diffracted beam. The analytical expression derived
above for the intensity distribution at the focal point
differs from that derived previously within the frame-
work of the Bragg focusing and takes into account the
spherical aberration effect.
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Abstract—The problem of interaction of strong and weak discontinuities is solved in the general case for a
system of quasilinear hyperbolic equations with two independent variables. It is proved that the product of the
left eigenvector of the system by a derivative of the vector function in a strong discontinuity direction remains
constant during the interaction. Examples of using this fact in solving the problems of gasdynamics are pre-
sented. © 2001 MAIK “Nauka/Interperiodica”.
Let us consider a system of quasilinear hyperbolic
equations with two independent variables (x, t) that is
hyperbolic with respect to variable t in some simply
connected domain Ψ of variables (x, t, u) and can be
reduced to a normal form of

(1)

Here, u = u([N]) is the vector of unknown functions, N
is the index space of dimension |N| = n, and A = A[N, N]
and b = b[N] are the known matrix and vector depend-
ing on the vector u and the independent variables x
and t. Multiplying Eq. (1) on the left by the left eigen-
vector L(k) of the matrix A, we obtain a characteristic
system equivalent to Eq. (1):

(2)

Here, V = ∂u/∂t, U = ∂u/∂x, and λk is the eigenvalue of
the matrix A corresponding to L(k). Below, we assume
that the eigenvalues λ1, …, λn of the matrix A are real
and different at any point of the domain Ψ. This implies
that we restrict the consideration to a system of equa-
tions hyperbolic in the narrow sense [1].

Under certain boundary conditions, system (1) has
no continuously differentiable solutions u(x, t). In prac-
tice, this implies that the domain Ω of variables (x, t)
contains one or several lines of discontinuity of the
function u(x, t) (lines of strong discontinuity) or its
derivative (lines of weak discontinuity). Let us assume
that the domain under consideration contains a single
strong discontinuity line (see figure), the trajectory of
which is described by the equation x'(t) = D. In this
case, a solution to system (1) can be constructed by
dividing domain Ω into two subdomains Ω1 and Ω2

(separated by the strong discontinuity line) and writing
(in terms of the conservation laws [1] corresponding to

∂u
∂t
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L k( )V λ kL k( )U+ L k( )b, k 1 … n., ,= =
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Eq. (1)) the so-called dynamic compatibility condition
on the discontinuity line x(t):

which relates the left (u1 ∈  Ω1) and right (u2 ∈  Ω2) lim-
iting values of the solution on the strong discontinuity
line. It was demonstrated (see, e.g., [2]) that the solu-
tion constructed in this way satisfies the uniqueness
condition and the condition of continuous dependence
on the initial values, provided that the following ine-
qualities are valid on the strong discontinuity line x(t):

(3)

The number k for which conditions (3) are satisfied is
called the discontinuity index. For certainty, we will
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A schematic diagram illustrating the interaction of a strong
discontinuity with index 1 and a weak counterdiscontinuity
with index k.
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892 OMEL’CHENKO
assume below that the discontinuity index is k = 1. Con-
ditions (3) imply that n + 1 characteristics come into
any strong point discontinuity point with index 1
(including n characteristics lying in subdomain Ω1, cor-
responding to λk(u1(t), x(t), t) with k = 1, …, n, and a
single characteristic from Ω2 corresponding to
λ1(u2(t), x(t), t)), while n – 1 characteristics go out of
this point, which correspond to λk(u2(t), x(t), t) with k =
2, …, n.

Now, let us assume that domain Ω contains, in addi-
tion to the above strong discontinuity, a weak disconti-
nuity as well. The weak discontinuity line coincides
with one of the characteristics of system (2), which
implies that a number exists among k ∈  (1, …, n) such
that dx/dt = λk . By analogy with the case of a strong dis-
continuity, this line will be referred to as a weak discon-
tinuity line with index k.

If a weak discontinuity with index k at t = 0 belongs
to the subdomain Ω1 (the so-called counterdiscontinu-
ity with index k), this line contains a point of intersec-
tion (x1, t1) ∈  Ω with a strong discontinuity line (see fig-
ure) for any k = 1, …, n. As a result of this interaction,
there will appear n – 1 weak discontinuities with index
k (k = 2, …, n) in subdomain Ω2, which go out of the
(x1, t1) point and coincide in direction with the charac-
teristics corresponding to λk(u2(t), x(t), t) (k = 2, …, n).
In addition, the curvature of the strong discontinuity
line will exhibit a jumplike change. Let us introduce the
vectors V(n), U(n) and V(1), U(1) of derivatives behind the
strong discontinuity in the zones (n) and (1) in front of
and behind the interaction point, respectively (see figure),
and the vectors [V]w = V(n) – V(1) and [U]w = U(n) – U(1)

of the derivative discontinuity behind the strong dis-
continuity.

Lemma. In case when a strong discontinuity with
index 1 interacts with a weak counterdiscontinuity, the
vectors [V]w and [U]w of the derivative discontinuity
behind the strong discontinuity are orthogonal to an
eigenvector L(1) constructed for u = u2 from subdo-
main Ω2:

(4)

Proof. Let [V]k = V(k + 1) – V(k) and [U]k = U(k + 1) – U(k)

be the discontinuities of derivatives V and U on a weak
discontinuity with index k (k = 2, …, n) going out of the
interaction point. The difference between derivatives
V(n), U(n) and V(1), U(1) in the zones (n) and (1) in front
of and behind the interaction point, respectively, is
related to the magnitudes [V]k and [U]k of the derivative

L 1( ) V[ ] w 0, L 1( ) U[ ] w 0.= =
TE
discontinuities on the outgoing weak discontinuities by
the following obvious relationship:

(5)

It was proved in [1] that linear combinations of the
types L(m)V(k) and L(m)U(k) (m ≠ k) remain unchanged on
passing through a weak discontinuity with index k:

(6)

Multiplying Eqs. (5) on the left by L(1) and taking into
account Eq. (6), we obtain the required result (4).

Theorem. The product of a left eigenvector L(1) by
the derivative du2/dt of the vector function u2 with
respect to t in a strong discontinuity direction remains
constant during the interaction of the strong discontinu-
ity with a weak counterdiscontinuity, being equal to

(7)

Proof. Consider the discontinuity line x(t) of the
vector function u(x, t), described by the equation
dx/dt = D. Multiplying the second equation in (4) by D,
adding the two equations, and taking into account that
the sum ∂u/∂t + D∂u/∂x equals the derivative du/dt of
the vector function u with respect to t in the strong dis-
continuity direction, we obtain

This relationship indicates that the derivative of the
vector function u in the strong discontinuity direction,
multiplied on the left by L(1) does not change upon the
interaction of the strong discontinuity with an arbitrary
weak counterdiscontinuity:

(8)

Now we only have to determine the constant in the
right-hand part of this relationship. For this purpose, let
us consider a characteristic of the first family coming to
the interaction point and descried by the equation
dx/dt = λ1(u2(t), x(t), t) (see figure). Since this charac-
teristic is lying in the zone (n) corresponding to u = u(n),
the conditions on this characteristic are as follows:

(9)
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Subtracting (9) from (8), we obtain in the left-hand part

Therefore, C = L(1)b that solves the task.
Apparently, a particular variant of formula (7) was

originally obtained by Whitham [3, 4] based on an anal-
ysis of the results of Chester [5] and Chisnell [6, 7].
Chester [5] studied a problem concerning the decay of
a discontinuity in a channel with a jump in the cross
section area, considering the case when the jump is so
small that the formulas can be linearized. As a result of
this linearization, Chester obtained the following rela-
tionship between a small change in the relative velocity
M = D/a of a shock wave and a change in the tube cross
section area A:

(10)

where

Whitham [3] established that the same result can be
obtained by writing a condition for the characteristic of
the second family in the cocurrent flow behind the
shock wave,

and replacing p2, u2, a2 by their expressions through M
derived from conditions on the shock wave. For a shock
wave propagating in a resting gas with the parameters
p1, u1, a1, these conditions can be written as

Whitham called this approach the characteristic rule [3].
The results obtained above indicate that this rule fol-
lows immediately from a solution of the problem of
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interaction of a strong discontinuity with a weak coun-
terdiscontinuity.

Chisnell [6] suggested using formula (10) for
describing the trajectory of a shock wave propagating
in a resting gas in a channel of variable cross section. In
the Chisnell theory, a channel with a continuously vary-
ing cross section was approximated by a sequence of
cylindrical channels adjoining each other, and the tran-
sition of a shock wave from one cylindrical part to
another was described by formula (10). The Chisnell
theory ignores additional interaction of the secondary
waves reflected from the channel walls and overtaking
the primary shock wave. However, a comparison of the
approximate analytical solution based on formula (10)
with the exact numerical solution shows excellent coin-
cidence.

Based on relationship (7) derived above, which can
be called the generalized Chester–Whitham formula, it
is possible to use an analogous approach in solving a
broad class of problems involving the interaction of
strong discontinuities. For example, Eq. (7) can be used
in the stationary gasdynamics for solving the problems
related to the interaction of shock waves with the
Prandtl–Meyer isentropic waves [8] and shear bands [9];
in the stationary gasdynamics, this relationship can be
used for solving the problems related to the interference
of shock waves with the Riemann waves.
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Abstract—We studied the effect of a thermal treatment below the crystallization temperature on the dielectric
properties of amorphous lead titanate obtained by melt quenching and containing silicon impurity. Anomalies
in the permittivity and dielectric losses were observed at 200°C and at a temperature (463°C) corresponding to
the ferroelectric phase transition in the crystallized material. The magnitude and shape of these anomalies
depend on the thermal prehistory of a sample. The features in the dielectric properties are explained by the pres-
ence of a relict polar phase region interacting with the mobile charge carriers. © 2001 MAIK “Nauka/Interpe-
riodica”.
Crystalline lead titanate (PbTiO3) is a well-known
ferroelectric compound with a perovskite structure.
Possessing unique physical properties, this material has
been drawing the attention of researchers for a long
time, including both fundamental investigations and
numerous practical applications [1, 2]. While the phys-
ical properties of PbTiO3 single crystals and polycrys-
talline samples were thoroughly studied [1, 2], our
knowledge of the properties of this compound in the
amorphous state is not as exhaustive. At present, only a
limited number of publications are available that are
devoted to noncrystalline lead titanate. In this context,
our purpose was to study the dielectric properties of
amorphous PbTiO3 and determine the role of the ther-
mal prehistory of a sample.

The samples for investigation were prepared in the
form of plates cut to size ~3 × 3 × 0.2 mm from a melt-
spun material. To this end, a powder of synthesized lead
titanate was melted in a quartz ampule at a temperature
of 1300°C and quenched on a rapidly rotating copper
disk. An analysis of the chemical composition of the
quenched samples using an electron-probe microana-
lyzer of the JXA-840 type showed the presence of a sil-
icon impurity (about 6.85 at. %). The X-ray diffraction
measurements using graphite-monochromated CoKα
radiation confirmed the amorphous state of the base
material. The crystallization temperature determined
by DTA was Tcr ≈ 590°C.

The dielectric measurements were performed on the
PbTiO3 plates with platinum electrodes pressed against
the side surfaces. The samples were placed into a ther-
mostat controlling the temperature in a range from 20
to 662°C with an accuracy no worse than ±1°C. The
temperature variation of the real (ε') and imaginary (ε'')
parts of the complex permittivity was monitored using
a capacitive bridge (E7-12) operating at a frequency of
1 MHz and a probing field amplitude of ≈0.25 V/cm.
1063-7850/01/2711- $21.00 © 20894
All measurements were taken in a cyclic mode at a sam-
ple heating rate of ~2 K/min. A special feature of the
experiment was that every other cycle reached a greater
maximum heating temperature, at which the material
was annealed in air for ~8 h.

The results of the dielectric measurements are pre-
sented in Figs. 1 and 2. As one can see judging by the
ε'(T) and ε''(T) curves, the temperature range studied
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Fig. 1. The temperature variation of ε' in amorphous lead
titanate (1) in the initial state and after thermal annealing for
~8 h at T = 513 (2), 532 (3), 544 (4), 563 (5), 575 (5),
587 (6), 592°C (7). The inset shows the ε'(T) curve for a
crystalline lead titanate sample.
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can be subdivided into three regions showing a different
behavior of both real and imaginary components of the
complex permittivity.

In region I (20°C ≤ T ≤ 120°C), both the ε' and ε''
values show a relatively weak variation with increasing
temperature. Therefore, thermal annealing in this tem-
perature interval leads to an insignificant increase in the
permittivity and dielectric losses. In region II (120°C ≤
T ≤ 460°C), all ε' curves (except those obtained during
the first heating) exhibit a significant increase with the
temperature (Fig. 1). The rate of this growth also mark-
edly increases in each subsequent cycle of the thermal
treatment.

In the same region II, the curves of ε''(T) exhibit two
maxima (Fig. 2, curves 2–7). The position of the first
peak (~200°C) weakly depends on the thermal prehis-
tory, while both the position and shape of the second
(significantly asymmetric) peak occurring between 350
and 420°C significantly change in each cycle of mea-
surements. The thermal treatment at T < Tcr gives rise to
increase both anomalies in ε''. As a result, the high-tem-
perature peak shifts leftward and partly overlaps with
the low-temperature peak. At the same time, the right-
hand edge of the high-temperature peak appears as
“fixed” at a strictly determined temperature (~460°C),
where all the ε''(T) curves exhibit a sharp minimum.
Note that the ε'(T) curves also show jumplike anoma-
lies at this temperature.

In region III (T > 460°C), the rate of increase in ε'
with the temperature changes (Fig. 1) to become
approximately the same in all measuring cycles irre-
spective of the annealing temperature (provided that the
maximum temperature does not exceed Tcr).

Thus, we may assert that amorphous PbTiO3 is char-
acterized by a significant difference in behavior of ε'(T)
and ε''(T) at temperature above and below a certain
point T* coinciding with the temperature of the ferro-
electric phase transition (TC) in a crystalline material
(see the inset in Fig. 1). Apparently, this difference
reflects certain internal transformation of the object
studied. For this reason, the anomalies in the ε'(T) and
ε''(T) observed in the vicinity of T = T* are naturally
attributed to some local structural transitions in the
regions where a relict crystalline structure of PbTiO3
was retained. According to the data of small-angle
X-ray scattering (SAXS) and extended X-ray absorp-
tion fine structure (EXAFS) [3], such regions (with a
size of ~15 nm) actually exist in the amorphous lead
titanate obtained by quenching from the melt. Accord-
ing to [4], this approximately corresponds to a mini-
mum crystal grain size (~10 nm), for which a transition
to the polar phase still takes place below TC .

At the same time, the contribution of the polar phase
regions to the permittivity is quite small. This is evi-
denced by a relatively small ε' value (compared to that
in the crystalline sample) and by a significant differ-
ence in shape of the anomaly at T* observed for sam-
ples in the amorphous and crystalline states (compare,
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
e.g., curve 1 and the inset in Fig. 1). The amorphous
samples show a jumplike increase in ε' in the vicinity of
T *, which is especially clearly pronounced in the first
heating cycle. In contrast, the crystalline material
exhibits an ε' peak characteristic of the intrinsic ferro-
electric phase transition.

The special shape of the dielectric anomaly
observed in amorphous samples is probably related to a
phenomenon of the internal field switch-off caused by
vanishing of the spontaneous polarization in the crys-
tal-like regions at temperatures above T *. The jump in
ε' decreases after each heating cycle, which is naturally
attributed to enhanced screening of the polar regions by
mobile charge carriers. Indeed, the concentration of
charge carriers seems to increase as a result of anneal-
ing, as indicated by a considerable growth in the elec-
tric conductivity of PbTiO3 after thermal treatment [5].
Evidently, an increase in the concentration of mobile
charge carriers must lead to a “general” increase in both
permittivity and losses [6], and this actually takes place
(see Figs. 1 and 2).

As indicated above, the maximum rate of increase in
ε' is observed in region II. Remarkably, this steep
growth in ε' coincides with the maximum of ε'' near
200°C. An analogous maximum was previously
reported for single crystal lead titanate in [7], where it
was demonstrated that the peak appeared due to the
presence of weakly bound electrons localized on dou-
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Fig. 2. The temperature variation of ε'' in amorphous lead
titanate (1) in the initial state and after thermal annealing for
~5 h at T = 513 (2), 532 (3), 544 (4), 563 (5), 575 (5),
587 (6), 592°C (7).
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bly charged centers devastated on heating the sample
above ~200°C.

Apparently, a similar situation takes place in the
amorphous material as well. In this case, a significant
increase in the concentration of carriers must lead to
their accumulation near the polar regions and result in
the screening of these regions. The growth of the
dielectric losses and the leftward shift of the loss peak
after each heating cycle can be explained by the fact
that the interaction between the mobile carriers and the
polar regions gradually decreases with increasing
screening of the latter.

Thus, our experiments revealed a significant influ-
ence of the thermal prehistory on the dielectric proper-
ties of amorphous lead titanate. The analysis shows that
the anomalies observed in the temperature dependence
of the real and imaginary parts of the complex permit-
tivity are related to the presence of relict polar phase
regions in the initial material and the interaction of
these regions with mobile charge carriers.
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Abstract—The dynamic behavior of magnetic moments in a two-layer magnetically coupled film system was
studied in the region of ferromagnetic resonance with large amplitudes of the precession angle. The system
exhibits manifestations characteristic of the nonlinear phenomena, including (i) a shift in the resonance fre-
quency with increasing microwave field strength and (ii) the existence of dynamic bistability regions with
respect to the microwave frequency and the magnetizing field strength. © 2001 MAIK “Nauka/Interperiodica”.
Introduction. The interaction of a high-frequency
high-power radiation with magnetically ordered crys-
tals under ferromagnetic resonance (FMR) conditions
is accompanied by a number of effects related to a sharp
increase in the amplitude of oscillations of the magne-
tization [1–5]. These manifestations include bistability
and the related hysteresis behavior in the absorbed
power as a function of the magnetizing field strength
[6–9]. In recent years, increased attention of research-
ers has been attracted to the resonance properties of
multilayer systems comprising alternating layers of fer-
romagnetic and nonmagnetic metals. These systems,
exhibiting various types of magnetic ordering in the
component layers, show various types of the magnetic
behavior [10, 11].

We have studied the features of nonlinear FMR in a
magnetically coupled system comprising two layers of
a ferromagnetic metal separated by a thin nonmagnetic
spacer ensuring collinear orientation of the magnetic
moments. An analysis of the magnetic behavior of this
system revealed manifestations characteristic of the
nonlinear phenomena, including (i) a shift in the reso-
nance frequencies of the ferromagnetic layers with
increasing microwave field strength and (ii) the exist-
ence of bistability regions in the amplitude of magnetic
moment oscillations as a function of the microwave fre-
quency and the magnetizing field strength.

System description. Let us consider a system of
two magnetically coupled layers magnetized in the xy
plane. Each layer is characterized by a thickness di , a
magnetization Mi , a plane uniaxial anisotropy with a
constant Ki, and an easy axis coinciding with the y axis.
The external magnetizing field vector H is lying in the
film plane and oriented at an angle α relative to the y
axis. The alternating microwave magnetic field h(t) is
1063-7850/01/2711- $21.00 © 20897
linearly polarized in the film plane and is perpendicular
to the magnetizing field direction.

A solution to the dynamic Landau–Lifshits equation
for the magnetically coupled layer system in a linear
approximation leads to the following expression for the
high-frequency magnetic susceptibility:

(1)

Here, γ is the gyromagnetic ratio; Di = Ad12M1M2/di is a
parameter; d12 = d1d2(d1 + d2)–1 is the reduced layer
thickness; A is the magnetic coupling constant (depend-
ing in the general case on the spacer material, thickness,
and structure); ϕ0i is the equilibrium magnetization ori-
entation (for h = 0); and ∆i are the parameters given by
the formulas

(2)

where λi are the damping parameters, ω0i are the reso-
nance frequencies of the individual layers

(3)

and Hki = 2Ki/Mi are the anisotropic magnetic fields.

Using Eq. (1), we can determine the resonance fre-
quencies of the two-layer system studied. Ignoring the
damping (λi = 0), we obtain

χ d1χ1 d2χ2+( ) d2 d2+( ) 1– ,=

χ i 4πγ2Mi=

×
Mi∆3 i– α ϕ 0i–( )cos 4πγ2DiM3 i– α ϕ 03 i––( )cos–

∆1∆2 16π2γ4D1D2–
-------------------------------------------------------------------------------------------------------------------------.

∆i ω0i
2 ω2– 4πγ2Di– 4πiλ iω,+=

ω0i
2 4πMiγ

2 H α ϕ 0i–( )cos Hki 2ϕ0icos+[ ] ,=
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As can be seen from this formula, the resonance fre-
quencies of the two-layer system in the absence of
interaction between layers (A = 0), that is, normal fre-
quencies, coincide with the individual resonance fre-
quencies; for A ≠ 0, the resonance frequencies shift
from these values.

In particular, in the case when the individual reso-
nance frequencies of the two layers coincide (ω0i = ω0),
the resonance frequencies of the coupled layers are

 =  and  =  – 4πγ2AM1M2. This allows the
coupling constant to be determined if the difference of
resonance frequencies is known. Depending on the sign
of the coupling constant A, a shift of the resonance
frequency ω2 relative to ω0 can be either positive or
negative.

Results and analysis. The nonlinear effects become
significant for a microwave field amplitude close to the

threshold value hthr ≅  (∆ /4πMi)1/2, where ∆Hi is the
linear resonance linewidth for which the homogeneous
precession becomes unstable [3]. The features of the
magnetization precession with an allowance for the
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Fig. 1. The frequency dependence of the microwave mag-
netic susceptibility of a two-layer magnetically coupled
film system calculated for various microwave field ampli-
tudes h = 0.1, 0.3, 0.5, 0.7, and 0.9 Oe (curves 1–5, respec-
tively) at the same magnetizing field (H = 0) and the cou-
pling constant |A| = 5 × 10–3. The dashed curve corresponds
to a linearized solution.

χ

TEC
nonlinear effects will be considered based on a numer-
ical solution of the dynamic Landau–Lifshits equation.
To simplify the analysis, we will assume that A < 0
(which corresponds to the case of parallel magnetic
moments for the two layers in the equilibrium state at
H = 0) and that the magnetizing field is directed along
the easy axes (i.e., α = 0).

The calculation is performed for the values of
parameters close to the characteristics of real films of
the permalloy type: λ1 = λ2 = 5 × 107 s–1; magnetization
and anisotropic field in the first film, 4πM1 = 8 × 103 G
and Hk1 = 5 Oe, and those in the second film, 4πM2 =
1.1 × 104 G and Hk2 = 10 Oe, respectively; γ = 1.76 ×
107 (Oe s)–1; film thicknesses d1 = d2 = 0.1 µm. For
these parameters, the nonlinear effects become signifi-
cantly manifested for the microwave field amplitudes
h ~ 1 Oe.

Figure 1 shows the frequency dependence of the
high-frequency magnetic susceptibility (M1cos  +

M2cos )/h, where  are the amplitudes of the angles
of stationary magnetic moment oscillations determined
for various microwave field amplitudes h = 0.1, 0.3, 0.5,
0.7, and 0.9 Oe (curves 1–5, respectively) at the same
magnetizing field H = 0 and the coupling constant |A| =
5 × 10–3. The dashed curve corresponds to a linearized
solution constructed based on (4).

An analysis of the data presented in Fig. 1 shows
that the resonance frequencies tend to decrease relative
to the linearized solution even for a rather small micro-
wave field strength. As the microwave field strength
increases, the nonlinear effects grow: the frequency
shift of the resonance peaks becomes more significant
and the resonance curves exhibit an increasing asym-
metry, which eventually leads to the appearance of a
bistability interval. For equal microwave field
strengths, the bistability interval is greater for a smaller
energy of coupling between the magnetic moments of
layers. An increase in the microwave field strength is
also accompanied by a decrease in magnitude of the
resonance magnetic susceptibility.

For the state with a greater amplitude of the mag-
netic moment oscillations to be realized in a bistability
regime, it is necessary that the initial direction of the
magnetization vectors Mi would be close to the direc-
tion of the microwave field, that is, ϕ0 ≈ ±π/2. This con-
dition can be satisfied by using an additional magnetiz-
ing field directed along the x axis, which is switched off
upon application of the microwave field h at t = 0. The
realization of a dynamic state in the bistability regime

χ̃ ϕ̃1

ϕ̃2 ϕ̃ i
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is also affected by the initial phase of the microwave
field.

Figure 2 shows the plots of the x-component ampli-

tudes of the magnetic moments  of the first
(curves 1–3) and second (curves 4–6) films in the
course of a steady-state precession versus the magnetiz-
ing field strength H. The cures were calculated for the
frequencies ω = ω01, the microwave field amplitude h =
1.5 Oe, and various coupling constants |A| = 1 × 10–3

(curves 1 and 4), 5 × 10–3 (curves 2 and 5), and 9 × 10−3

(curves 3 and 6). As the H value increases, the ampli-
tude of the magnetization oscillations in the film pos-
sessing the intrinsic resonance frequency equal to that
of the microwave field shows a smooth initial increase
followed by a sharp drop, which corresponds to the
onset of bistability. This is also manifested in an asym-
metry in the shape of the resonance curve relative to the
resonance frequency ωi , which is observed for suffi-
ciently large microwave field amplitudes h. For the sec-

ond film, the  versus H curves show a different
behavior. At a small value of the coupling constant |A|,
the amplitude of the magnetization oscillations slightly
decreases with the magnetizing field strength; for large

|A| values,  initially grows and then (past the
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Fig. 2. The plots of the high-frequency magnetization

 versus the magnetizing field strength H calculated

for the same microwave field amplitude h = 1.5 Oe and var-
ious coupling constants |A| = 1 × 10–3 (curves 1 and 4), 5 ×
10–3 (curves 2 and 5), and 9 × 10–3 (curves 3 and 6).
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bistability region) begins to decrease. In the region of

bistability, the two branches of the  versus H
curves intersect: there is a magnetizing field strength Hc

for which the two stationary dynamic states of the sys-
tem differ by the amplitude of magnetization oscilla-
tions only in the first film. However, this feature in the
bistability regime is absent for both very small and very
large values of the coupling constant.

The results of the above analysis showed that a sys-
tem of two magnetically coupled layers with a nonmag-
netic spacer providing for a ferromagnetic interaction
(A < 0) of the magnetic moments of component layers
features nonlinear effects leading to a shift in the pre-
cession frequency with increasing amplitude of the
microwave field and to the appearance of dynamic
bistability regions. A strong (severalfold) difference
between amplitudes of the magnetic moment preces-
sion virtually in the entire region of the dynamic bista-
bility makes this system extremely sensitive to a change
in the parameters of both high-frequency and static
field. This property can be used for creating various
microwave devices based on systems of the type
described above.
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Abstract—It is shown that the acoustic wind direction may change in an acoustically active gaseous medium.
© 2001 MAIK “Nauka/Interperiodica”.
As is known, high-power acoustic beams spreading
in a liquid or gaseous medium give rise to an aperiodic
motion of the medium called the acoustic wind. In the
general case, this flow is caused both by the viscous
losses of the acoustic wave momentum and by inertial
(nonlinear) losses [1–3]. Below, we will consider the
acoustic wind in a gas caused by the first mechanism.
This kind of flow is described by the equation

(1)

where P is the pressure, ρ is the density of the medium,
η is the shear viscosity coefficient, and F is the radia-
tion force (per unit mass) inducing the flow in the gas
with a velocity U. If an acoustic flow is caused by the
absorption of a plane wave with the amplitude V0 run-
ning along the x axis, the radiation force can be
expressed as [2]

(2)

where

is the acoustic decrement; ω is the wave frequency; us
is the velocity of sound; ξ is the second viscosity coef-
ficient (in the general case of arbitrary frequencies, this
is a complex quantity [4], Reξ being the real part of ξ);
χ is the thermal conductivity coefficient; and CV and CP

are the heat capacities at constant volume and pressure,
respectively.

In a thermodynamically nonequilibrium medium,
the second viscosity coefficient (specifically, Reξ) may
become negative [5]. Examples of the media where this
phenomenon can take place are offered by gases with
nonequilibrium excited internal states of molecules,
nonisothermal plasmas, chemically active gas mix-
tures, and some other media with volume heat evolution
sources. A medium obeying the condition Reξ + 4η/3 +

∂U
∂t
------- U∇( )U

η
ρ
---∆U–+ ∇ P

ρ
--------– F,+=

F αV0
2 2αx–( ),exp≈

α ω2

2us
3 ω( )ρ0

----------------------- Reξ ω( ) 4
3
---η χ 1

CV

------ 1
CP

------– 
 + +=
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χ  –  < 0 is acoustically active (α < 0). In such

a medium, according to Eqs. (1) and (2), the radiation
force and the acoustic wind directions must change to
opposite: a nonequilibrium medium with α < 0 gives
energy to the propagating acoustic wave and moves in
the opposite direction.

We will study this opposite motion in the case of an
Eckert flow. The velocity U0 of a stationary Eckert flow
in an acoustically active gas at the axis of a cylindrical
tube of large diameter (compared to the sound wave-
length) can be evaluated by analogy with the case of a
passive medium [1, 6]. According to the Poiseuille for-
mula,

(3)

where R is the radius of the acoustic beam (assumed to
be homogeneous in the cross section, with zero flow
velocity at the boundaries) and ∆P is the static pressure
difference between two cross sections spaced by the
distance x. For U0 ! us, the pressure difference ∆P is
simply a drop of the radiation pressure [1, 6], that is, a
change in the momentum transferred by the acoustic
wave to the medium per unit area and unit time. The
radiation pressure can be expressed through a differ-
ence of the time-average acoustic energy densities in
the cross sections with the coordinates 0 and x [6]:

(4)

Substituting Eq. (4) into (3) and assuming that
|α|x ! 1, we obtain

(5)

where I0 is the acoustic beam intensity at x = 0. In an
absorbing medium, relationship (5) coincides with the
well-known expression for the velocity of the Eckert
flow propagating in the direction of the acoustic wave
at the axis of a cylindrical tube with hard walls [1–3, 6].

1
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For an acoustically active medium with α < 0, relation-
ship (4) yields ∆P < 0, which implies that the static
pressure in the cross section x is greater than that in the
initial cross section. Since the radiation force and the
flow velocity are proportional to ∆P, the projections of
both quantities onto the direction of sound propagation
will be negative (in contrast to the case of an absorbing
medium).

An analogous phenomenon, previously observed in
piezoelectric semiconductors, is known as the acousto-
electric effect [6]. According to this effect, representing
the solid-state analog of an acoustic flow in gaseous and
liquid media, the acoustic wave propagating in a piezo-
electric solid excites an electron current Je ~ µαI0/us,
where µ is the mobility of electrons. For α > 0 (sound
absorption), the acoustic wave gives energy to electrons
and the current flows in the direction of sound propaga-
tion. For α < 0 (sound amplification), the energy and
momentum are transferred from electrons to the acous-
tic wave. As a result, the drift current decreases by Je

(this current component is opposite to the acoustic
wave).
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
Experimental observations of the opposite acoustic
flows in a thermodynamically nonequilibrium gas
might provide additional evidence for the acoustic
activity of such media.
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Abstract—A functional for the input impedance of electric vibrator is derived for the variation of the distribu-
tion of vibrator current. Using the approximation of sinusoidal current distribution, a simple approximate for-
mula for the input impedance of a symmetric electric vibrator is derived. The active and reactive components
of impedance are calculated versus the ratio of the length of vibrator arm to wavelength for three values of the
vibrator diameter. © 2001 MAIK “Nauka/Interperiodica”.
1. Formulation of the problem. Thin electric
vibrators find numerous applications as both individual
antennas and elements of complex antenna systems.
Usually, the input impedance of an electric vibrator is
determined from the voltage-to-current ratio at the
feeding point: Z = U/I0. The input impedance is an
important parameter determining the possibility of
matching the antenna input in a required frequency
band. The current I0 at the feeding point can be deter-
mined numerically by solving the Pocklington and Har-
rington integro-differential equations or the Hallen
integral equation [1–4]. However, a numerical solution
of these equations as the integral equations of the first
kind with Fredholm kernels leads to ill-conditioned
problems [5]. Therefore, it may be difficult to deter-
mine whether the solution obtained is close to a true
one and is adequate to the physical problem under
study.

A mathematically correct calculation for the charac-
teristics of an electric vibrator was performed in [6, 7]
with the help of singular integral equations [8, 9]. How-
ever, this method requires a rather complicated numer-
ical procedure for determining the distribution of vibra-
tor current. There is also a heuristic method of equiva-
lent circuits [2, 3], in which the vibrator is associated
with a section of an open-ended two-wire lossy trans-
mission line. However, this method has a limited
domain of applicability. Below, we derive a functional
for the input impedance of electric vibrator, which
allows us to obtain simple analytic formulas for the
impedance Z.

2. The input impedance functional. Let us con-
sider a thin wire of length 2l and radius a. The wire has
a gap at z ∈  [l0 – b, l0 + b] where it is connected to an
oscillator (Fig. 1). We will use the Pocklington integro-
differential equation for an unknown current I:

(1)k2 d2

dz2
-------+ 

  I z'( )e ikR–

R
---------- z'd

l–

l

∫ i4πk
Zc

-----------Eext,–=
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where

is the external electric field, R = , k = ω/c
is the wave number, and Zc is the characteristic imped-
ance of the medium surrounding the vibrator.

Rewrite the Pocklington equation (1) as follows:

(2)

where I'(z') = .

Deriving Eq. (2), we used the boundary conditions
for the current at the vibrator ends (I(l) = I(–l) = 0) and
the following evident equality:

Multiplying relationship (2) by I(z) and integrating
from –l to l, we obtain the equality

(3)

which, for narrow gaps (kb ! 1), transforms into a

Eext E0 z l0 b– l0 b+,[ ] ,∈
0 z l0 b– l0 b+,[ ] ,∉




=

z z'–( )2 a2+

k2 I z'( )e ikR–

R
---------- z'

d
dz
----- I' z'( )e ikR–

R
---------- z'd

l–

l

∫+d

l–

l

∫ i4πk
Zc

-----------Eext,–=

dI
dz'
------

d
dz
-----e ikR–

R
---------- d

dz'
------e ikR–

R
----------.–=

k2I z( )I z'( ) I' z( )I' z'( )–[ ] e ikR–

R
---------- z'd zd

l–

l

∫
l–

l

∫

=  
i4πkE0

Zc

------------------ I z( ) z,d

b–

b

∫–
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A FUNCTIONAL FOR THE INPUT IMPEDANCE OF THIN ELECTRIC VIBRATOR 903
functional for the vibrator input impedance:

(4)

where I0 is the current at the feeding point, z = l0, and
U = 2E0b.

It can readily be shown that, if the function I(z)
obeys condition (2) and, consequently, the Pocklington
equation (1), relationship (4) is a stationary functional
for the variation of function I(z).

3. Formula for the input impedance. Numerical
results. To simplify the subsequent analysis, let us con-
sider a symmetric vibrator fed at l0 = 0. For the trial
function, we will use a well-known approximate cur-
rent distribution over a symmetric vibrator [2, 3]:

(5)

Substituting formula (5) into functional (4) and
using a well-known formula [10]

(6)

(where J0(x) and (x) are the zero-order Bessel func-
tion of first kind and the zero-order Hankel function of
second kind, respectively), we can write the following
approximate formula for the input impedance:

(7)

where

(8)

Note that integrals (8) can readily be evaluated ana-
lytically. (Since the corresponding expressions are
rather cumbersome, we do not present them here.) As a
result, formula (7) for the input impedance contains
only one integral with respect to the parameter β, which
should be calculated numerically.

Z
U
I0
----=

=  
iZc

4πk
---------

k2I z( )I z'( ) I' z( )I' z'( )–[ ] e ikR–

R
---------- z'd zd

l–

l

∫
l–

l

∫
I0

2
--------------------------------------------------------------------------------------------,

I z( )
I0 k l z–( )sin

klsin
---------------------------------.=

e ikR–

R
----------

i–
2
---- e ih z z'–( )– J0 ia h2 k2––( )H0

2( )

∞–

∞

∫=

× ia h2 k2––( )dh

H0
2

Z
Zc–

8π
-------- K+ β( )K– β( )

∞–

∞

∫=

× J0 i β2 ka( )2––( )H0
2( ) i β2 ka( )2––( )dβ,

K± β( ) kl t–( )sin{
kl–

kl

∫=

+ t( ) kl t–( ) } e
i
l
a
---β±

dt.cossgn
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Figures 2a and 2b depict the active and reactive
components of the input impedance of a symmetric
vibrator versus the parameter l/λ for three values of the
wire diameter. The solid, dotted, and dashed lines in
Fig. 2b are the reactive components calculated for a/l =
1/100, 1/60, and 1/20, respectively. Note that active
components of the input impedance calculated for the
same a/l virtually coincide with each other. Therefore,
Fig. 2a presents only one plot (for a/l = 1/100). When
the parameter l/λ varies from 0 to 1, the input imped-
ance passes three resonance regions. The first (series)
resonance is located near l/λ = 0.25, the second (paral-
lel) resonance is located at l/λ slightly below 0.6, and
the third resonance is observed at l/λ ≈ 0.75. For
l/λ < 0.25, the reactive part of input impedance is neg-

z

l

l0

l0 + b

l0 – b
ρ

–l

2a

Fig. 1.
01



904 NEGANOV et al.
ative (capacitive). At 0.25 < l/λ < 0.55, it is positive
(inductive). At 0.55 < l/λ < 0.75, the reactive part of the
input impedance changes to negative (capacitive). At
l/λ > 0.75, it again becomes positive (inductive).

These curves qualitatively agree with those calcu-
lated by the method of equivalent circuits in [2],
according to which the vibrator was replaced with a
section of an open-ended two-wire lossy transmission
line.

Thus, stationary functional (4) allows us to derive
analytical formulas for the input impedance of a vibra-
tor. Functional (4) can also be used to derive the input

1000
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0

0.4 0.8 1.0

ReZ, Ω

(a)

(b)
1000

500

0

–500

l/λ
0.60.2

Fig. 2. 

ImZ, Ω
TE
impedance of a nonsymmetric vibrator. To do this, one
should only substitute into the functional an appropri-
ate expression for the current distribution. Note that, if
characteristics of a nonsymmetric vibrator are analyzed
by the method of equivalent circuits, it may be difficult
to choose an appropriate substituting equivalent circuit.
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Abstract—The self-consistent electric field acting in a plasma retards the most mobile charged particles, which
usually leads to a Boltzmann distribution of electrons. If negative ions cross the discharge volume several times
during their lifetime in the volume processes, these particles also obey the Boltzmann distribution. It is demon-
strated that this condition is usually satisfied when the characteristic time of electron attachment is small as com-
pared to the time of ambipolar diffusion of the negative ions (ion diffusion at an electron temperature). In the oppo-
site case, the profiles of electrons and negative ions are similar. © 2001 MAIK “Nauka/Interperiodica”.
In the late 1950s, Oskam [1] and Tompson [2] virtu-
ally simultaneously suggested simple relationships
between the concentrations and concentration gradients
of charged particles in a stationary electronegative gas
plasma. Oskam postulated that the concentration pro-
files of electrons and negative ions are similar [1],

(1)

while Tompson assumed that both ne and nn profiles are
described by the Boltzmann distribution [2]

(2)

Condition (2) leads to a relationship ne(x)/ne(0) =
nn(x)/nn(0)1/k that sharply depends on the temperature
ratio k = Te/T and coincides with the distribution (1) only
in the special case of Te = T. Since a discharge plasma is
usually characterized by k @ 1, relationship (2) describes
an almost flat profile with ne(x) ≈ ne0 ≈ const.

The boundaries of applicability of relationships (1)
and (2) were not strictly determined and various
researchers still deliberately prefer one or another (see,
e.g., [3–11]). For example, Lichtenberg et al. [5–7]
used condition (2) as the basic relationship in construct-
ing the concentration profiles and describing the simi-
larity laws in an electronegative plasma. Recently,
Franklin and Snell [11–13] argued in favor of the pro-
portionality condition (1), which was previously
employed in [8–10]. The very possibility of using the
Boltzmann equilibrium condition for the negative ions in
a collisionless plasma was sharply criticized in [11–13]
without any possibility for a compromise.

In the context of this renewed discussion (for detail,
see [11–13]), which dates back for more than half a
century, it was expedient to consider the problem more
thoroughly. The following analysis is based on the
approach developed previously [14, 15].

∇ ne/ne ∇ nn/nn, ne x( )/nn x( ) const,= =

Te∇ ne/ne T∇ nn/nn.=
1063-7850/01/2711- $21.00 © 0905
The problem formulation, which is virtually the same
in [5–15], employs the drift–diffusion equations and the
Boltzmann distribution for electrons E = –Te∇ ne/ne. In a
plane-parallel geometry (x = ±L), the initial system of
equations is as follows (dn/dx ≡ n'):

(3)

(4)

(5)

where Ka , Kd, and Kr are the electron attachment,
detachment, and ion–ion recombination constants,
respectively, which are considered as preset; Zi is the
ionization frequency representing an eigenvalue of the
boundary problem (3)–(5). Since the latter quantity is
unknown a priori, we believe that it is inexpedient to
pass in Eqs. (3)–(5) to dimensionless variables in terms
of this undetermined Zi value (see, e.g., [8–13]).

The boundary conditions to Eqs. (3) and (4) are as
follows [5–15]:

(6)

Since the flux of negative ions to the walls is absent,
the cross-section-average concentrations ( ) in Eq. (4)
obey the relationship [5–15]

(7)

The system of equations (3)–(5) was used with var-
ious simplifications in all papers cited above [5–15]. It
was established that a spatial distribution of charged
particles in the plasma is characterized by a sharply
inhomogeneous profile (Fig. 1). Almost all negative
ions are concentrated in the inner region of the ion–ion
plasma having the thickness x = x0 (values referred to

Dp np' knpne' /ne+( )'– Z ine K rnnnp,–=

Dn nn' knnne' /ne–( )'– Kane Kdnn– K rnnnp,–=

np nn ne,+=

nn np dnn/dx 0 at x L,±= = = =

dnn/dx dnp/dx 0 at x 0.= = =

n

Kane Kdnn K rnnnp.+=
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this region are indicated by subscript “0”). The outer
region, featuring the electron–ion plasma (indicated by
subscript “1”), contains electrons and positive ions,
while negative particles are virtually absent. Relation-
ships of the type of Eqs. (1) and (2) make sense only in
the former region “0.”

The structure of a solution to system (3)–(5) is most
simply determined from an overall equation derived
in [14]. Dividing Eqs. (3) and (4) by the corresponding
diffusion coefficients and adding the resulting expres-
sions, we obtain for k @ 1

(8)

This equation involves two characteristic spatial
scales le and ln such that

(9)

2nn''– /k ne''– ne/le
2 2nn/kln

2.–=

1/le
2 1/lion

2 1/la
2+=

=  Z i/Dap Ka/Dan+ τapZ i/L
2 τanKa+ /L2,=

10

5

0 0.5 1.0

n

e

x0

x/L

n/ne(0)

Fig. 1. The spatial distributions of charged particle concen-
trations calculated for k = 33, τanKa = 0.1 and Ka/Kd = 4.
Solid curves represent the exact solution of system (3)–(5),
dashed curves show the approximation by formulas (15)
and (16).
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Fig. 2. A relationship between the spatial distributions of
electron and negative ion concentrations calculated for k =
33, Ka/Kd = 4, and various values of the parameter τanKa
(indicated by figures at the curves). Dashed lines show the
limiting values 1 and 33 corresponding to relationships (1)
and (2), respectively.
TE
(10)

where Dan, ap = Dn, p(k + 1) and Dnp = 2DnDp/(Dn + Dp)
are the coefficients of the electron–ion and ion–ion
ambipolar diffusion and τj = L2/Dj are the correspond-
ing characteristic times.

The characteristic length le determines the maximum
possible thickness of the outer region “1.” In this region,
the concentration of negative ions is very small (nn(x) ≈ 0)
and, hence, ne(x) ≈ np(x), because these ions are collected
in the inner plasma region under the action of the ambi-
polar field. With neglect of the terms involving nn,

Eq. (8) for x ≥ x0 reduces to –  = ne/  to yield [14]

(11)

In the inner region, the distribution of particle con-
centrations significantly depends on the ratio of L and
ln, the latter representing the distance through which a
negative ion diffuses during its lifetime in the volume
processes (see [14, 15]). Since τapZi ≥ 1 (the equality
only reached for negligibly small electron attachment
and recombination times), we obtain the following esti-
mate using relationship (7):

(12)

Under strong attachment conditions (τanKa > 1) and
typical /  < k ≈ 100, the characteristic lengths obey
the condition ln < le < L. In this case, we may neglect (as
it was done in [8–10]) the terms related to the ion diffu-
sion in Eqs. (3)–(5) and take x0 ≈ le [14]. For the central
regions of the plasma value (x < le), Eq. (8) yields the
following local balance of the plasmachemical pro-

cesses involving the production and loss of ions: ne/  =

2nn/k . This leads to the condition (see [14])

(13)

When negative ions are lost as a result of detachment
(detachment regime, Kd @ npKr), a trivial consequence
of Eq. (13) is relationship (1). Figure 2 shows the
results of solving Eqs. (3)–(5) in this case (Kr = 0) for
various values of the parameters τanKa . As this parame-
ter increases in the range τanKa > 1, the concentration
ratio in the inner region asymptotically tends to that
given by distribution (1) (for τanKa > 10). For the recom-
bination regime (Kd < npKr), condition (12) leads to
the relationship (see [14]) ∇ ne/ne = ∇ nn/nn + ∇ np/np ≈
2∇ nn/nn. According to this (and in contrast with (1)),
ions exhibit a more flat distribution than electrons.

If the characteristic length ln is such that ln > L, the
diffusing ions are capable of crossing the entire dis-

1/ln
2 1/lnd

2 1/lnr
2+=

=  Kd/2Dn npK r/Dnp+ τnKd/L2 τnpK rnp/L2+ ,=

ne'' le
2

ne x( ) ne x0( ) 1 x–( )/le( )/ 1 x0–( )/le( ).sinsin=

ln
2/le

2 nn/kne( ) 1 1/ τanKa( )+( ).<

nn ne

le
2

ln
2

Z i/Dp Kat/Dn+( )ne

=  Kdtnn/Dn K rnn nn ne+( )/ 1/Dp 1/Dn+( ).+
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charge volume. To be confined in the inner region, the
negative ions must obey (like electrons) the Boltzmann
distribution (2). According to Eq. (12), the self-diffu-
sion of negative ions dominates (ld > L) only if the role
attachment is small in comparison to the ambipolar dif-
fusion of negative ions (τanKa < 1). As the parameter
τanKa decreases, relationship (2) is obeyed with increas-
ing precision in the inner plasma region (Fig. 2). Thus,
depending on the parameter τanKa (which is a quadratic
function of the gas pressure), both relationships (1) and
(2) can be realized in the system. The transition from
the Boltzmann distribution (2) corresponding to weak
attachment (τanKa < 1) at low gas pressures to the condi-
tion of proportionality (1) at higher pressures (τanKa > 1)
is clearly manifested in Fig. 2.

As noted above, the validity of relationship (2) for
k @ 1 implies a flat electron profile ne(x) ≈ ne0. Under
these conditions, both terms in the left-hand part of
Eq. (3) for np(x) are approximately equal and we obtain

–2 /k = Zine0. This relationship corresponds to a par-
abolic distribution of the ion concentration (see [14]
and in more detail [5–7]):

(14)

The unknown quantities x0 and Zi in Eqs. (13) and
(14) are most simply determined from the integral bal-
ance of concentrations given by relationship (7) for nn
and by the corresponding expression for np. Integrating
Eqs. (3) and (4) with respect to the coordinate and using
formulas (11) and (14), we obtain the following rela-
tionships for determining x0 and Zi:

(15)

(16)

The results of calculations using simple formulas (14)–
(16) agree well with the solution of system (3)–(5)
(Fig. 1). For rough estimates, we may restrict the anal-
ysis to first terms in the expansions of sine and tangent
in (15) and (16). Taking into account that, in the case of
relationship (2), Zi > Ka , and substituting nn0 from (14),
we arrive at the simple relationships

(17)

(18)

for the detachment regime and

(19)

nn''

nn x( ) nn0 1 x2/x0
2–( ), nn0 Z ix0

2/4Dp.= =

Kane0(x0 le L x0– )/le( )tan+

=  2Kdnn0x0/3 8K rx0nn0
2 /15,+

Z ine0(x0 le 1 x0– )/le( )tan+ 8K rx0nn0
2 /15–

=  Dapne0/ le 1 x0–( )/le( )sin( ).

Z i 2Dap/ L2 x0
2–( ),=

3Ka/ 2kKd( )

=  x0
3/ L2 x0

2–( ) L x0+( ) x0/L( )3 x0/L( )6+≈

15Ka/ 4k2K rne0( )

=  x0
5/ L2 x0

2
–( )

2
L x0+( ) x0/L( )5 x0/L( )10+≈
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for the recombination regime.

Since the ratios in the left-hand parts of relation-
ships (18) and (19) are usually small (below unity),
while the right-hand parts strongly depend on x0, the x0
values proper vary within a rather narrow interval of
0.5 ≤ x0 ≤ 0.8. Note that, with neglect of the ion diffu-
sion, the case of weak attachment (τanKa ! 1) for le ≈ L
corresponds to the formation of a narrow ion–ion
plasma column with x0 ≈ τanKaL ! L (see [9, 10]).

Thus, in the case of weak attachment (when the self-
diffusion of negative ions prevails over the bulk pro-
cesses), the Boltzmann distribution is realized for both
electrons and negative ions. In all cases of interest, this
situation takes place for a small role of attachment in
comparison to the ambipolar diffusion of negative ions.
In the opposite case of strong attachment, the concen-
tration balance in the inner plasma region is determined
by the volume processes and the concentrations of ions
and electrons obey similar distributions.
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Abstract—It is demonstrated that a growth in the coherence of oscillations in a closed chain of biased multivibra-
tors can be explained by the unidirectional cyclic coupling of the devices. There is an optimum value of the effec-
tive noise voltage for which the multivibrators are most coherent. © 2001 MAIK “Nauka/Interperiodica”.
The coherence of oscillations in a stochastic system
may exhibit an increase followed by decrease with
increasing noise level in the system [1]. Drawing con-
siderable attention of researchers, this nontrivial phe-
nomenon was studied both in isolated systems [1–3]
and in interacting neuron models [4–6]. In the case of
coupled systems, it is most interesting to study the
regimes of synchronized oscillations [5–6], since it is
assumed that this synchronization and the averaging of
statistically independent fluctuations of the individual
oscillators lead to an increase in the coherence of oscil-
lations in the entire ensemble [6–7]. Below, we demon-
strate that, alternatively, a growth in the coherence of
oscillations can be explained by unidirectional cyclic
coupling of elements in the system. Moreover, the sta-
tistical independence of fluctuations in the elements is
not a necessary condition.

Biased multivibrators are widely used devices capa-
ble of producing, similarly to neurons, an electric
response to external perturbations [8, 9]. It should be
noted that the excitation of both neurons [10] and multi-
vibrators takes place only when the perturbation exceeds
a certain threshold level. Thus, the biased multivibrators
are the electronic analogs of neurons and can be used in
modeling the stochastic dynamics of neuron chains [4].

Figure 1 shows a schematic diagram of a chain of
unidirectionally coupled multivibrators excited by
noise. A nonlinear current–voltage characteristic of
each element and the diode connection provides for a
predominantly unidirectional coupling of the chain ele-
ments. This mode of coupling is typical of neurons [10].
The multivibrators are excited by a wideband noise
voltage Un with a Gaussian distribution. The random
excitation of, for example, the first multivibrator leads
to discharge of capacitor C2 (belonging to the circuit of
the second multivibrator) through diode D1. Note that
the potential on the capacitor determines the excitation
threshold of the element. Therefore, the excitation of
one multivibrator increases the excitation threshold of
the subsequent element, thus reducing its activity. In
1063-7850/01/2711- $21.00 © 20908
turn, the spontaneous excitation of the third multivibra-
tor suppresses activity of the first element. In this case,
the second multivibrator occurs in the relaxation
regime, the duration of which is determined by the time
necessary to charge capacitor C1. After relaxation, the
biased multivibrator is ready to operate.

When a noise fluctuation exceeding the operation
threshold enters the second multivibrator, this device
operates, switching the third multivibrator into a sup-
pressed state and the first multivibrator into a relaxation
regime. Thus, the excitation wave passes from the first
to third multivibrator, then proceeds from the third to
second, and returns from the second to first. A time
interval during which the wave passes through this
chain consists of three components: τa , the time
required for transition into the excited state; τb , the time
of stay in the excited state; and τc , the relaxation time.

U0 + Un

R1 U1 U2 U3
R5 R9

R10R6R2

R3 R7 R11

R4 R8 R12

O1 O2 O3

D1 D2 D3

D6D5D4C1 C2 C3

+
–

+
–

+
–

Fig. 1. A schematic diagram of a chain of biased multivibra-
tors comprising integrated circuits O1–O3 (K140UD7),
diodes D1–D6 (D223A), capacitors C1–C3 (0.033 µF), and
resistors R1, R5, R9 (16 kΩ), R2, R6, R10 (75 kΩ), R3, R7,
R11 (1.1 kΩ), and R4, R8, R12 (30 kΩ). U0 is the bias volt-
age necessary to drive the multivibrators into a noise-
excited regime; U1–U3 are the output voltages.
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The τa value of a biased multivibrator is determined
by the excitation threshold ∆U and the noise intensity G;
for small G values, this dependence is described by an
Arrhenius relationship 〈τ a〉  ~ exp(∆U/G), where the
angle brackets indicate averaging. The time of stay in
the excited state τb (i.e., the multivibrator pulse dura-
tion) weakly depends on the noise level G; for small G
values, τb can be considered as determined only by the
capacitor recharge time proportional to RC. For an
autonomous biased multivibrator, the oscillation period
T is given by the sum of τa and τb. As long as the noise
intensity is small, the relative uncertainty of the T value is

where τb is assumed to be constant.

For multivibrator entering into a closed chain, the
oscillation period increases to include the relaxation
time τc . Similar to the τb value, the relaxation time
(related to a capacitor recharge) is almost strictly deter-
mined for small G values. Thus, the mean relative
uncertainty of the oscillation period Tc is

R0 = T2〈 〉 T〈 〉 2– / T〈 〉  = τa
2〈 〉 τ a〈 〉 2– / τa〈 〉   +  τ b ( ) ,       

0.08

0.06

0.04

0.02

0

0.4

0.3

0.2

0.1

0 0.5 1.0 1.5 2.0 2.5
〈 Un〉 , V

∆f/f0

S, V2/Hz

S1
S2

(a)

(b)

Fig. 2. Output characteristics of biased multivibrators:
(a) power density spectra of (S1) a coupled multivibrator
and (S2) the same autonomous device (U0 = 0.21 V, 〈Un〉  =
0.3 V); (b) relative width ∆f/f0 of the spectral band versus
effective average noise voltage 〈Un〉  (U0 = 0.21 V, Un is a
Gaussian noise with an effective bandwidth of 50 kHz).
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which is smaller for a multivibrator in a chain than for the
same multivibrator not coupled to the adjacent elements.

This conclusion is confirmed by the experimental
data presented in Fig. 2a. As can be seen from the out-
put power spectra, the width of the main spectral band
is smaller for a multivibrator coupled to the analogous
devices than for the same device alone. Figure 2b
shows a plot of the relative width f/f0 of the spectral
band versus effective average noise voltage 〈

 

U

 

n

 

〉

 

. It is
seen that the curve is nonmonotonic: there is an opti-
mum value of the effective noise intensity at which the
band width is minimum, that is, when the oscillations
are most coherent.

This phenomenon can be explained as follows. As
long as the noise intensity is small, an increase in 

 

G

 

leads to a decrease in the stochastic period component
(

 

τ

 

a

 

) in the total oscillation period. As a result, the coher-
ence of oscillations in the system grows. However, at
very large 

 

G

 

 values, the coherence drops because of the
increasing stochastic character of the components 

 

τ

 

b

 

and 

 

τ

 

c

 

 that can no longer be considered as strictly deter-
mined. It should be noted that all multivibrators in the
experiment were identical and excited from a common
noise generator.
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Abstract—A hydrodynamic model is developed to describe the formation of periodic layered structures in het-
erogeneous condensed systems composed of immiscible components under the action of high-power laser
beams in the regime of channeled penetration. The model takes into account the motion of particles of the
immiscible components in vortex flows formed in the melt under the action of centrifugal forces. The conditions
favoring the development of a periodic concentration variations are established, and the corresponding spatial
scale is determined. © 2001 MAIK “Nauka/Interperiodica”.
Under certain conditions, the action of a high-power
laser radiation on heterogeneous materials (in particu-
lar, composites) leads to the separation of components
already in the liquid phase (melt), this state being fixed
in the form of structures featuring periodic concentra-
tion variations upon the melt crystallization after termi-
nation of the laser action [1]. Representing a kind of
structural defect, this separation may significantly
affect various physical properties of the laser-treated
heterogeneous material.

During the solidification of the melt appearing in a
target material as a result of deep penetration of a high-
power laser beam forming an immobile vapor–gas
channel (e.g., during a laser spot welding), the melt vol-
ume features intensive vortex flows. The liquid flow
velocities in these vortices may reach up to (0.5–10) ×
102 cm/s [2–5].

There are several factors that may account for the
development of flows in the melt, the main of which are
as follows:

(i) A capillary collapse of the vapor–gas channel
walls [4] leading to their “corrugation” accompanied by
the formation of a periodic structure of the field of non-
stationary flows in the melt volume (a characteristic
time of this process is ~10–4–10–3 s; the corresponding
spatial scale of the capillary collapse is on the order of
a vapor–gas channel radius r0 ~ (2–3) × 10–2 cm);

(ii) Capillary–evaporation and thermocapillary
instabilities of the vapor–gas channel walls [4, 6, 7]
resulting, in particular, in a screwlike shape of the chan-
nel surface; interaction of the axial vapor flow (ejected
from the channel) with the melt surface may give rise to
a three-dimensional flow in the melt volume with a
nonzero azimuthal velocity component [8].
1063-7850/01/2711- $21.00 © 20910
If microparticles (or microscopic droplets) of an
insoluble impurity with dimensions on the order of
10−3–10−2 cm are present in the material, periodic impu-
rity layers may also be fixed in the solidifying melt
formed around the mobile vapor–gas channel. This can
take place as a result of the centrifugal “recession” of
heavy impurities toward the periphery of vortices in the
melt or “gathering” of light impurities toward the vor-
tex centers.

The purposes of this study were (i) to elucidate a
mechanism of the liquid phase separation in heteroge-
neous materials based on immiscible components
under the action of deeply penetrating high-power laser
beams, (ii) to determine conditions favoring the peri-
odic layer structure formation, and (iii) to estimate the
spatial scale of these phenomena.

Let us consider a medium containing immiscible
components A and B, representing a matrix (e.g., of the
light component A) with dispersed microparticles (e.g.,
of the heavier component B), exposed to a high-power
laser beam. The microparticles may possess the shape
of microscopic droplets formed as a result of the clus-
ter formation in the melt, followed by the diffusion coa-
lescence of these clusters, so that the dimensions of
such microparticles may range from 10–4 to 10–2 cm [1].
An example is offered by Pb microparticles in a Fe
matrix [1]. Alternatively, the microparticles may repre-
sent solid species of the same dimensions composed of
a more refractory material than the matrix (e.g., W
in Fe).

If a melt containing the microparticles of an insolu-
ble impurity features vortex motions, the microparticles
will be entrained (accelerated), first along the current
lines (by the kinetic head of the flow of the main com-
ponent A) and then toward the periphery of the vortex
001 MAIK “Nauka/Interperiodica”
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(by the centrifugal force). A stationary radial (relative
to the vortex center) motion of the microparticles rela-
tive to the matrix A must be established within a suffi-

ciently short time t ≈ τs = ρp/9νρL (ρL and ρp are the
densities of liquid A and particles B, respectively; rp is
the microparticle size; and ν is the kinematic viscosity of
liquid A). The velocity of this motion is determined by
a balance between the centrifugal force and a viscous

hydrodynamic drag of the medium  ≈ (ρp –

ρL) /9ρLv rw, where vm is the azimuthal velocity
of vortex motion in liquid A, rw is the characteristic vor-
tex size, and v p is the radial component of a micro-
particle.

The maximum size of entrained particles is deter-
mined by a relationship between the dynamic pressure
of the matrix A moving relative to the droplet and the
Laplace pressure determined by the surface tension of
the impurity droplet occurring in the matrix. Since we
believe that microparticles of the component B are not
disintegrated under the action of the kinetic head

π (ρL /2) while moving relative to the liquid com-
ponent A, the particle size corresponds to the Weber

number We = ρL rp/σ < Wecr ≅  10 [9], where σ is the
microparticle surface tension. This implies that the
microparticle size cannot exceed rp = rp(cr) ≅

σWecr/ρL  ≅  2 × 10–1 cm (for σ ≅  4 × 102 dyn/cm (Pb),

ρL = 8 g/cm3 (Fe), ρp = 11 g/cm3 (Pb), ν = 3 × 10–3 cm2/s,
and vm = 50 cm/s).

In the regions of contact between two adjacent vor-
tices, the concentration of microparticles must increase,
which would result (after solidification of the melt) in
the appearance of layers enriched with the impurity
component B.

If the density of the impurity B microparticles is
smaller than that of the liquid component A (i.e.,
ρp < ρL), the lighter microparticles will float toward the
vortex center (in contrast to the heavier particles with
ρp > ρL, which would “sink” toward the vortex periphery).

The vortex motions in the melt are characteristic of
the capillary corrugation collapse in the channel (see
the figure). For this collapse, the corrugation wave-

length is Λ = 2π/km, where km ≅  (r0 )–1 is the maxi-
mum wavenumber of the perturbation. The time of the
collapse development (i.e., the time during which the
corrugation amplitude increases to reach ~r0) is τc ≅
(r0 )3/2(ρL/σL)1/2 [4], where σL is the surface tension
of the major melt component. The velocity of the melt
flowing toward the corrugation vertices in the course of

rp
2

v p
cm( )

rp
2v m

2

rp
2 v m

2

v m
2

v m
2

3

3
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collapse (as illustrated in the figure, this motion exhib-
its a vortex character) can be estimated as

(1)

For σL = 1.6 × 103 dyn/cm and r0 = 2 × 10–2 cm, we
obtain vm ~ 50 cm/s.

The time of melt solidification is

(2)

where  is the average temperature of the melt prior to
the onset of cooling (laser beam switch off) and rm is
the average radius of the melted zone. According
to [10], the latter value can be estimated as rm ≅

r0(h/r0 , where Tb and Tm are the boiling and
melting points of the major melt component and h is the
vapor–gas channel depth. For an Fe target (Tm ≅  1.8 ×
103 K, Tb ≅  3 × 103 K) with h ≅  0.5 cm, this yields rm ≅
4r0 ≅  0.8 × 10–1 cm.

The melt temperature varies in the radial direction
across the vapor–gas channel as

(3)

Averaging over a cylindrical layer gives for the ini-
tial melt temperature

(4)

Thus, the melt solidification time can be expressed as

v m r0/τc 0.5
σL

ρLr0
---------- 

 
1/2

.≈≅

τ f

T Tm–
Tm

---------------- 
  rm

2

χ
-----,≅

T

)
1 Tm/Tb–

T r( ) Tb
h/r( )ln
h/r0( )ln

--------------------.=

T Tb 1
rm/r0( )ln 1/2–

h/r0( )ln
------------------------------------– 0.7Tb.≅ ≅

d
4

b

a a

c

a

b

b b

c

a

c

2r0 2rm

5 6

1

2
3

A schematic diagram illustrating the geometry of a vapor–
gas channel formed by a high-power laser pulse: (1) laser
beam; (2) vapor–gas channel; (3) melt; (4) solid phase;
(5) melt flows; (6) corrugation.
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(5)

The condition for a periodic layer structure forma-
tion in the solidified insoluble impurity can be
expressed as

(6)

where r is the radius of a vortex flow in the melt in the
course of the capillary corrugation collapse. Substitut-
ing formulas (1) and (5) into (6), we reduce this condi-
tion to

For the parameters χ = 10–1 cm2/s and ν ≅
10−3 cm2/s, this implies that the particle size must
exceed rρ = 7 × 10–4 cm.

Therefore, for solidification of an “immobile” cylin-
drical melted layer in a collapsing corrugated vapor–
gas channel, we may expect that periodic insoluble
impurity layers would form along the channel. These
layers have the form of curved disks perpendicular to
the channel axis. If the impurity is heavy, the periodic
layers will be localized at the corrugation antinodes
(zones a and b in the figure); for a light impurity, the lay-
ers tend to localize at the corrugation nodes (zones c).
The spatial scale of the resulting periodic structure
coincides with the corrugation period: d = Λ. 

Thus, we formulated and analyzed a qualitative
model describing the formation of layered component
structures in a solidified melt zone formed in a hetero-
geneous target under the action of a high-power laser
pulse producing a deep fusion of the material. The
model explains the layer structure formation by the
phenomenon of centrifugal “recession” or “gathering”
of impurity microparticles (heavier or lighter than com-
pared to the main component, respectively) with dimen-
sions ~10–4–10–3 cm. The centrifugal effects are mani-
fested in the vortex flows with velocities ~(0.5–1) ×

τ f
8
3
---

r0
2

χ
----.≅

v pτ f r r0,≅≥

ρp/ρL 1–( ) σ/ρLr0( ) rp
2/νχ( ) 14.≥
TE
102 cm/s generated in the melt due to hydrodynamic
instabilities of a certain nature. In the case of an immo-
bile cylindrically symmetric melted layer surrounding
the laser-induced vapor–gas channel, the vortex flows
appear as a result of the capillary corrugation collapse
in the vapor–gas channel. After the laser pulse switch
off, the melt solidifies and the structure of periodic lay-
ers is formed along the channel. These layers have the
form of curved disks perpendicular to the channel axis.
The spatial scale of the resulting periodic structure is
d = 2 × 10–1 cm, in agreement with the experimental
data reported in [1].
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Abstract—The exact solution of a stationary problem of magnetohydrodynamics is obtained for an incom-
pressible cylindrical conductor possessing constant electric conductivity and shear viscosity. It is shown that a
global finite-dimensional attractor in this problem represents a stable focus and has a dimensionality of two.
The coherent spatial structures appear as two periodic systems of interacting hydrodynamic and current vorti-
ces. © 2001 MAIK “Nauka/Interperiodica”.
The determination and investigation of the station-
ary solutions of infinite-dimensional nonlinear
dynamic (e.g., hydrodynamic and magnetohydrody-
namic) systems, including proof that such solutions
represent global finite-dimensional attractors, is a task
of considerable theoretical and practical significance
[1–4]. Previously [5], we used an approximate substi-
tution in combination with the Galerkin method [6] to
obtain a nonstationary three-mode model. It was shown
(numerically and analytically) that this model,
employed as a nonlinear element connected parallel to
a load resistor in an electric circuit with a dc source,
possesses a stationary state. This state corresponds to a
global finite- dimensional attractor (with a dimension-
ality of three) of the initial infinite-dimensional nonlin-
ear dynamic system.

The purpose of this study was to determine an exact
substitution that would allow us prove that the obtained
stationary solution is a global finite-dimensional attrac-
tor for a system of magnetohydrodynamic (MHD)
equations (representing an infinite-dimensional dyna-
mic system). In addition, we studied the coherent spa-
tial (hydrodynamic and current) structures formed in
this system.

A stationary solution to the MHD problem will be
obtained in the case of a cylindrical liquid metal con-
ductor with a radius of r0 and a length of l @ r0 possess-
ing a constant density ρ, electric conductivity σ, and
shear viscosity η. The stationary MHD equations for
this system are as follows:

(1)— v⋅ 0;=
1063-7850/01/2711- $21.00 © 20913
(2)

(3)

(4)

Here, v is the velocity, B is the magnetic induction, P is
the pressure, ν = η/ρ is the kinematic viscosity, νm =
c2(4πσ)–1 is the magnetic viscosity, and c is the speed of
light. Equation (1) shows that v = — × A, where A is the
vector potential satisfying the Coulomb calibration
condition — · A = 0.

Assuming (with an allowance for the problem sym-
metry) that A = {0, A(r, z), 0}, B = {0, B(r, z), 0}, and

(5)

we can transform Eqs. (1)–(4) to

(6)

(7)

In these expressions,

∇ P
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--- v 2

2
------+ 

  v — v×( )×+–

+
1

4πρ
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is the Poisson bracket, i is the electric current in the
conductor, I0 is a characteristic value of the current, and

5 = (2πρνmν)–1 is the Rayleigh magnetic num-
ber [5, 7].

The boundary conditions for Eqs. (6) and (7) are as
follows:

(8)

(9)

To close the system of equations (6)–(7), we must
select a method for determining the electric current i.
Let us assume that the liquid metal conductor is con-
nected parallel to a load resistor RL at a constant voltage
of e (the initial resistance of the conductor Rp0 =

l(π σ)–1 obeys the condition RL @ Rp0). In this case,

Determining the characteristic current I0 from the con-
dition e = Rp0I0, we obtain

(10)

Taking this relationship into account, Eq. (6) can be
written as

(11)

With an allowance for the problem symmetry, we may
use the following substitution for A(r, z) satisfying the

∂ a b,{ } s
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boundary conditions (8):

(12)

where J1(x) is the Bessel function, g1 = 3.83171 is the
first zero of J1(x), k is the wavenumber, and X is the
amplitude.

A substitution for the magnetic induction h(r, z) will
be found in the form 

(13)

where the unknown functions f1(x) and f2(x) satisfy the
following boundary conditions:

(14)

Substituting expressions (12) and (13) into Eq. (11),
multiplying the resulting equation by sin(kz), and inte-
grating with respect to z from –l/2 to l/2, we obtain

(15)

where  = r . Equation (15) is identically valid at all

points on the conductor radius provided that f1( ) =
J1(g1 ). Also identically valid are the following bound-
ary conditions for f1( ): f1(0) = f1(1) = 0. As a result,
Eq. (15) acquires the form 

(16)

where p(k) = 55c(k)–1 is the control parameter,

is the Rayleigh critical number reaching a minimum at

k0r0 = g1/  (for the wavenumber k0 = 2π/k0 =

2 πr0/g1 = 2.32r0 [5, 8]), where 5c(k0r0) = 27 /4
(hereinafter we assume that k = k0). Relationship (16)
gives a condition for the derivative of the function
f2( ) ≡ f( ) at  = 1:

(17)

where p0 = p(k0).
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For the following, it is convenient to write expres-
sions (12) and (13) in the following form (for k0 =

g1( r0)–1):

(18)

(19)

Substituting these formulas into Eq. (7), we arrive at

(20)

Integrating this equation with respect to z, we obtain

from which it follows that

(21)

Here, the constant C can be determined by comparing (21)
at  = 1 to condition (17):

(22)

Integrating Eq. (21) and taking into account for-
mula (22), we obtain

(23)

Using the boundary condition for f( ) at  = 1
(see (14)), we obtain the first equation for the ampli-
tudes X and Y:

(24)

Multiplying Eq. (20) by cos(g1z/( r0)) and inte-
grating with respect to z, we obtain

2
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from which is follows that

(25)

Integrating this equation, we arrive at the relationship

For the nontrivial solutions of interest, this relation-
ship yields an expression for the amplitude X:

(26)

Solving Eq. (24), we obtain the expressions for Y:

(27)

In the general case, each of the two X values corre-

sponds to two Y values. For 1 ≤ p0 < 3 , the amplitude
Y is complex. In this interval of the control parameter
p0, the system is characterized by establishing of a cur-

rent vortex structure. In the region of p0 ≥ 3  (  =

p0(3 )–1 ≥ 1), the following amplitudes Y have a phys-
ical sense:

(28)

An analysis of this expression shows that the amplitude
Y sufficiently rapidly falls within the region of an
asymptotically weak dependence on the control parame-
ter. This is related to a sharp drop in the electric current—

 = i  = 1 – 0.54(1 – )—in the regions of

small but finite values of the critical parameter ε =  – 1.
Thus, we have obtained an exact stationary solution

to the system of Eqs. (1)–(4) with an infinite-dimen-

sional phase space (below  = z ):

(29)

(30)

The phase space of the solution (29), (30) has a dimen-
sionality of two. An analysis of the stability of this solu-
tion, based on the investigation of a system of two ordi-
nary linear differential equations for the perturbation
amplitudes X and Y showed that the stationary solu-
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Fig. 1. The spatial structure of hydrodynamic vortices in a

unit cell of the vortex lattice in the region – π  =
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Fig. 2. The spatial structure of current vortices in a unit cell

of the vortex lattice in the region –5π( g1)–1 = –3.48 ≤

z  ≤ 5π( g1)–1 = 3.48 for two values of the control

parameter:  = 1 (a) and 1.05 (b).

2

r0
1–

2

p

rr0
–1

zr0
–1

–1
TE
tion (29)–(30) corresponds to a global finite-dimen-
sional attractor representing a stable focus.

Using the stationary solution (29)–(30), we may
also study the coherent spatial hydrodynamic and cur-
rent structures. Since we are considering an incom-
pressible conducting liquid, the hydrodynamic spatial
structure represents a periodic vortex structure. This
hydrodynamic vortex structure is determined by the
relationship

(31)

Figure 1 shows a distribution of the relative vorticity

 = Ωv (νm )–1 in a unit cell of the vortex lattice

(– π  = –1.16 ≤  ≤ π  = 1.16) containing
two ring vortices of opposite signs.

The system of hydrodynamic vortices interacts with
another vortex structure representing a current vortex
lattice with the same period as that of the hydrodynamic
vortex. The vorticity vector of the current density is
determined by the expression Wj = c(4π)–1— × — × B.
For a given symmetry of the problem, this vector pos-
sesses a single azimuthal component:

(32)

Figure 2 show a distribution of the relative vorticity

Wj = 4π (cB0)–1 of the electric current density vector

in the region –5π( g1)–1 = –3.48 ≤  ≤ 5π( g1)–1 =
3.48 for two values of the control parameter:  = 1
(Fig. 2a) and 1.05 (Fig. 2b). The further increase in 
does not change the structure of current vortices
because the amplitude Y( ) rapidly attains the asymp-
totics.

Thus, we have determined and investigated an exact
stationary solution to a system of MHD equations for
an incompressible conducting liquid possessing con-
stant electric conductivity and shear viscosity. It is
shown that this solution, the phase space of which has
a dimensionality of two, corresponds to a global finite-
dimensional attractor representing a stable focus. The
coherent spatial structures represent two periodic sys-
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tems of interacting hydrodynamic and current vortices
with the same unit cell size of λ = 2.32r0.
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Abstract—The structure of fullerene C60 films modified by helium dc glow discharge plasma was studied using
Raman scattering spectroscopy. The vibrational spectra of the C60 films exhibit certain features depending on
the plasma treatment duration. The helium ion bombardment leads to the degradation of the fullerene structure
and the formation of an amorphous carbon phase. The coefficient of carbon sputtering by helium was estimated.
© 2001 MAIK “Nauka/Interperiodica”.
An important direction of research in the physics of
fullerenes is related to the modification of fullerene
materials by various external factors, including electro-
magnetic radiation in the visible and UV range [1–3],
high pressures [4–6], plasma treatment [7], and elec-
tron irradiation [8]. This is explained by interest in the
possibility of forming covalent bonds between
fullerene molecules. It is suggested that a material with
a structure comprising covalently bonded fullerene
units must combine the mechanical properties inherent
in individual fullerene molecules (extremely high
strength of the intramolecular bonds) and fullerites
(low friction coefficient). In this context, our purpose
was to study the effect of plasma treatment on the struc-
ture of fullerene films.

The experiments were performed with approxi-
mately 100-nm-thick fullerene films obtained by subli-
mation of a C60 powder from a tantalum effusion cell
and deposition onto unheated silicon substrates. The
substrates with fullerene films were mounted on a cath-
ode in a plasma treatment setup. The samples were
treated in a dc glow discharge plasma at a working gas
(helium) pressure of 10 Pa. The discharge voltage was
460 V; the corresponding discharge current density was
150 µA/cm2; the plasma treatment duration was varied
from 1 to 30 min.

The Raman scattering spectra were measured at
room temperature with the aid of a DFS-24 double-
beam monochromator. The spectra were excited by an
Ar+ laser operating at a wavelength of 488 nm. In order
to avoid excess heating of the fullerene films during the
optical measurements, the laser radiation was focused
by a cylindrical lens. The probing radiation power did
not exceed 100 mW. The Raman spectra were recorded
with the aid of a cooled photoelectron multiplier oper-
ating in the photon count mode.
1063-7850/01/2711- $21.00 © 0918
A typical Raman spectrum of the initial (untreated)
fullerene C60 film is represented by curve 1 in the fig-
ure. As is seen, the initial spectrum displays three lines
peaked at 1426, 1470, and 1578 cm–1, which can be
interpreted as the “intramolecular” modes with the
symmetry Hg , Ag , and Hg , respectively [9, 10]. Note a
significant asymmetry of the line at 1470 cm–1. The
low-frequency shoulder in this line is due to the super-
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5

1300 1400 1500 1600 1700

Raman scattering spectra of fullerene C60 films (1) before
and (2–5) after treatment in a helium dc glow discharge
plasma for various times (min): (2) 1; (3) 10; (4) 16; (5) 24.

cm–1
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position of close-lying weaker lines occurring in the
region of 1455–1460 cm–1. Unfortunately, there is no
commonly accepted opinion about the nature of
components of this Raman line. Some researchers
assign the line at 1459 cm–1 to a polymerized fullerene
fraction [1–3], although the physical nature of these
vibrations is not clear, since the “intermolecular” vibra-
tional modes must fall into a low-frequency region
(about 200 cm–1). However, one may suggest that a
decrease in the symmetry of some molecules involved
in the intermolecular bond formation may give rise to
additional lines in the Raman spectra. According to an
alternative assignment, the low-frequency shoulder of
the line at 1470 cm–1 reflects a contribution to the Raman
spectrum from the photoexcited C60 molecules [11].
The excited triplet state is antibonding, which must lead
to a decrease in the frequency of vibrations correspond-
ing to the fundamental Ag mode.

The plasma treatment of fullerene films for 1 min
virtually did not effect the positions and shapes of lines
in the Raman spectrum (see curve 2 in the figure). After
a 10-min treatment, a broad background band appears
in the spectrum in the region from 1300 to 1700 cm–1

(curve 3). Previously [4, 5], a similar broad structure-
less band was observed in the Raman spectra of super-
hard carbon samples obtained by treating a C60 powder
at high pressures and temperatures and in the spectra of
graphite irradiated with nitrogen or argon ions to high
doses [12] or treated at a hydrostatic pressure above
45 GPa [13]. Besides, a similar band was observed in
the Raman spectra of amorphous carbon films depos-
ited onto a substrate under the conditions of intensive
bombardment with nitrogen ions [14]. Thus, we may
conclude that the broad band at 1300–1700 cm–1

appearing after a 10-min plasma treatment is character-
istic of a strongly disordered carbon structure. The
appearance of this phase in our samples probably
reflects the initial stage of fullerene degradation and the
formation of an isotropic amorphous carbon structure.
An analysis of the shape of the peak at 1470 cm–1

showed that the asymmetry of this Raman line did not
significantly change after the plasma treatment.

As the plasma treatment duration is increased, the
broad background band disappears but a weak band
centered at 1560 cm–1 appears instead in the high-fre-
quency region (curves 4 and 5). The halfwidth and posi-
tion of the new band (~1560 cm–1) are close to the so-
called graphitic band (G-band) observed for amorphous
carbon films. This band is a manifestation of vibrations
of the E2g symmetry in graphitelike clusters [15]. Based
on these data, we may conclude that the plasma-treated
films contain two phases: fullerene and amorphous car-
bon. Since the ion energies are insufficient to penetrate
deep into the film (calculations by the TRIM-2000 pro-
gram give the average range of singly-charged helium
ions in the target under the conditions studied not to
exceed 10 nm), we may suggest that decomposition of
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
the fullerene molecules takes place in a subsurface
region of the film featuring the development and decay
of the atomic collision cascades.

After a 30-min exposure to the plasma, no Raman
scattering signal was detected from the samples. This is
explained by the fact that the film was completely
removed from substrate as a result of the ion sputtering.
A decrease in the film thickness during the plasma
treatment was confirmed by a change in the interfer-
ence color observed after every treatment stage. We
have estimated the sputtering coefficient for the
fullerene films bombarded by helium ions in the dc
glow discharge at a discharge voltage of 460 V. Deter-
mined with neglect of the material porosity (the model
of close-packed spheres), the sputtering coefficient
amounted to about 0.012 mol/ion or 0.72 atom/ion.
This estimate markedly exceeds the value
(0.15 atom/ion) determined for fullerenes bombarded
by neutral argon ions at an energy of 400–500 eV [16].
The ion sputtering is probably accompanied by the sub-
limation of fullerenes as a result of heating of the sub-
strate holder electrode.

When treated under the conditions studied, the
fullerene films are not only subject to the ion bombard-
ment but exposed to the UV radiation of the gas dis-
charge as well. In order to determine which of these
factors is responsible for the degradation of fullerenes,
we studied the Raman spectra of C60 films exposed to
the UV radiation from a quartz–mercury lamp of the
SVD-120A type with the most intense line correspond-
ing to a wavelength of 365 nm. To increase the intensity
of irradiation, the UV radiation was focused on a sam-
ple with the aid of a quartz lens. It was found that a 6-h
exposure under these conditions did not significantly
affect the Raman spectra of C60 films. This result gives
us ground to assert that the decomposition of fullerene
C60 molecules during the plasma treatment is mostly
related to the ion bombardment.

Thus, we have established that bombardment of a
fullerene film with helium ions at an energy of about
400 eV leads, besides the usual sputtering of the film,
to the decomposition of C60 molecules. This results in
the formation of a disordered amorphous carbon struc-
ture with a graphitelike short-range order.
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Abstract—A lidar equation for the Raman backscattering of light from molecules of some hydrocarbons was
numerically solved. The optimum value of the copper vapor laser wavelength for the probing of hydrocarbons
at a distance from 40 m to 4 km was determined. © 2001 MAIK “Nauka/Interperiodica”.
The laser probing of hydrocarbon molecules in the
gas phase is of interest for the atmospheric pollution
monitoring, technological gas control, and investiga-
tions in the optics of atmosphere [1]. Our previous
investigations [2–4] aimed at the assessment of the
potential of a Raman lidar for the pulsed laser probing
of hydrogen and iodine molecules in the atmosphere.
The results showed that the Raman lidar offers a prom-
ising means for the remote measurement of the concen-
trations of molecules in gas mixtures.

The purpose of this study was to numerically solve
the lidar equation for the vibrational spectrum of the
Raman backscattering from ethane, ethylene, and ethyl
mercaptan under diurnal sounding conditions. Based
on this modeling, we selected an optimum laser radia-
tion wavelength ensuring a maximum power of the
Raman scattering signal at the lidar detector. By com-
paring the results of calculation of the Raman scattering
power measured by the lidar to the solar background
radiation power, we estimated the minimum concentra-
tions of hydrocarbon molecules detectable under the
diurnal sounding conditions.

We have considered a lidar variant using the copper
vapor laser operating at a wavelength of 578.2, 510.6,
298.1, and 255.3 nm and a sum wavelength of 271.2 nm
at a peak power of up to 100 kW [5]. The hydrocarbons
probed were selected taking into account both their
structure (all molecules contain two carbon atoms) and
maximum permissible concentrations (MPCs) for the
atmospheric pollution monitoring [6]: ethane,
50 mg/m3 (1.0 × 1015 cm–3); ethylene, 3.0 mg/m3 (6.5 ×
1013 cm–3); ethyl mercaptan, 1.5 × 10–3 mg/m3 (3.5 ×
1015 cm–3).

The frequencies of intrinsic CH stretching vibra-
tions of the molecules studied, taken from published
data for C2H6 [7], C2H4 [1], and C2H4SH [8], are pre-
sented in the table. For ethyl mercaptan, we selected the
CH stretching vibrations of CH3 groups (2917 cm–1) and
SH stretching vibrations (2751 cm–1), the latter charac-
terized by an intensity five times smaller than the
former [8]. Using these frequencies, we calculated the
wavelengths λR of the Raman scattering bands of the
1063-7850/01/2711- $21.00 © 0921
molecules studied for the selected laser wavelengths λ0
(see table).

The differential cross sections (dσ/dΩ) of the vibra-
tional Raman backscattering for the selected laser
wavelengths were determined (as descried in [3]) using
the values experimentally measured for the wavelength
λ0 = 337.1 nm of a nitrogen laser [1] (see table). The
cross section for ethane was estimated using the data
for methane and butane [1], while the cross section of
ethyl mercaptan was estimated using the Raman scat-
tering intensities reported in [8], with an allowance for
the data in [1].

The lidar equation for the Raman backscattering
was taken in the form derived previously [2], with the
values of parameters employed in [2, 3]. The numerical
calculations of the Raman scattering power were per-
formed for the same concentration of hydrocarbon mol-
ecules 1019 cm–3 and various sounding distances R =
0.1, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, and 6.0 km. Similarly to
what was done in [3], we determined the background
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Fig. 1. Plots of the detected signal power logarithm versus
probing distance for ethylene molecules at a concentration
of 1019 cm–3 for the Raman backscattering at various wave-
lengths of the copper vapor laser. The horizontal lines show
Pb , the minimum power levels detectable by a laser lidar
under the experimental conditions studied.
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Copper vapor laser radiation wavelengths (λ0), intrinsic frequencies of the CH and SH stretching vibrations (ν), raman scat-
tering wavelengths (R), and differential cross sections of the hydrocarbon molecules studied, and the relative spectral sensi-
tivity of the electron multiplier photocathodes ξ(λ), attenuation coefficients (k, k0), and the spectral intensity of solar radiation
Sb for various probing laser wavelengths

Ethane (C2H6) ν = 3070 cm–1

λ0, nm λR, nm (dσ/dΩ) × 1030, 
cm2/str k, km–1 ξp(λ) Sb, 106,

W/(m2 str nm) k0, km–1

578.2 697.3 5.4 0.15 0.16 5.2 0.16

510.6 601.3 8.9 0.16 0.53 15.3 0.17

289.1 316.1 86.8 0.38 0.35 7.23 0.53

271.2 294.8 112.1 0.53 0.29 0.05 0.70

255.3 276.1 142.7 0.58 0.15 0.03 1.91

337.1 374.3 47.0

Ethylene (C2H4) ν = 3020 cm–1

λ0, nm λR, nm (dσ/dΩ) × 1030, 
cm2/str k, km–1 ξp(λ) Sb, 106, W/(m2 str nm)

578.2 694.0 9.4 0.15 0.18 5.56

510.6 598.8 15.5 0.16 0.53 15.48

289.1 315.4 151.0 0.39 0.35 7.17

271.2 294.2 195.0 0.54 0.29 0.05

255.3 275.6 248.4 0.59 0.15 0.03

337.1 373.3 81.8

Ethyl mercaptan (C2H4SH) ν CH = 2931 cm–1

λ0, nm λR, nm (dσ/dΩ) × 1030, 
cm2/str k, km–1 ξp(λ) Sb, 106, W/(m2 str nm)

578.2 694.2 10.8 0.15 0.18 5.56

510.6 599.0 17.7 0.16 0.53 15.46

289.1 315.5 172.6 0.39 0.35 7.18

271.2 294.3 222.9 0.54 0.29 0.05

255.3 275.6 283.9 0.59 0.15 0.03

337.1 373.4 93.5

Ethyl mercaptan (C2H4SH) ν SH = 2570 cm–1

λ0, nm λR, nm (dσ/dΩ) × 1030, 
cm2/str k, km–1 ξp(λ) Sb, 106, W/(m2 str nm)

578.2 694.0 14.3 0.15 0.18 5.56

510.6 598.8 23.5 0.16 0.53 15.48

289.1 315.4 229.0 0.39 0.35 7.17

271.2 294.2 295.7 0.54 0.29 0.05

255.3 275.6 376.5 0.59 0.15 0.03

337.1 373.3 124.0
power at the detector Pb(λ, R) and the minimum
detected power Pm for the spectral intensity of solar
radiation Sb(λ) at various wavelength in the Raman
scattering spectra of the molecules studied (see table).
TE
Figure 1 presents the results of calculations for C2H4

molecules. For the comparison, the figure also gives the
levels of the minimum detectable power Pb calculated
for each lidar wavelength under the particular experi-
CHNICAL PHYSICS LETTERS      Vol. 27      No. 11      2001
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mental conditions [4]. The Raman backscattering
power exceeds the background level for a hydrocarbon
concentration of 1019 cm–3 in the entire range of sound-
ing distances only for a wavelength of 255 nm.

Figure 2 shows the results of calculations for all
molecules at a concentration of 1019 cm–3 probed at a
laser wavelength of 255 nm in the same sounding
range. An analysis of these data indicates that a maxi-
mum Raman backscattering power for all distances is
obtained at a probing wavelength of 255 nm for the CH
Raman band of ethyl mercaptan. A somewhat smaller
detected power is obtained for the SH band of ethyl
mercaptan and the CH band of ethane, and a still lower
value is observed for ethylene. For all molecules, the
detected power exceeds the background level (which is
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Fig. 2. Plots of the detected Raman backscattering power
logarithm versus probing distance for ethyl mercaptan (EM),
ethylene (El) and ethane (En) molecules at a concentration
of 1019 cm–3 probed at a wavelength of 255 nm. The hori-
zontal line shows Pb , the minimum power level detectable
by a laser lidar operating at the given wavelength under the
experimental conditions studied.
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
higher for the CH bands of ethyl mercaptan and ethane
than for the same band of ethylene). Using the data on
MPCs, we may estimate the maximum distances at
which the molecules studied can be detected by a laser
lidar at a concentration on the MPC level. The best
results are expected for ethane and ethylene probed at
289 and 271 nm (4 and 1.5 km, respectively), while
ethyl mercaptan probed at 271 nm can be detected at
distance of 40 m using the CH band and only at 30 m
using the SH band.

Thus, the optimum performance in the lidar system
studied is provided by a copper vapor laser operating at
a wavelength of 271.2 nm, which ensures the detection
of all three hydrocarbons at a concentration on the MPC
level.
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Abstract—The temperature dependence of the electric capacitance of an aluminum–dielectric–vanadium diox-
ide heterostructure was studied. The capacitance exhibits a jumplike change in the region of the metal–
semiconductor phase transition temperature. A qualitative model is suggested that relates a change in the capac-
itance to a jump in the conductivity of vanadium caused by the phase transition. © 2001 MAIK “Nauka/Inter-
periodica”.
Despite a large number of investigations devoted to
both theoretical [1–5] and applied [5] aspects of the
metal–semiconductor phase transition in vanadium
dioxide (VO2), the prospects of practical implementa-
tion of this phenomenon still attract the attention of
researchers. The main interest in the applied research
was related to a significant (∆n ~ 1, "ω = 1.17 eV)
reversible variation of the complex permittivity of
vanadium dioxide in a broad interval of the optical
spectrum, which led to the development of a reversible
holographic medium [6, 7] and a passive optical gate
for pulsed lasers [8, 9]. A much smaller number of
investigations were related to the jump in the electric
conductivity, which may reach (for the VO2 film struc-
tures) up to 103–104 in the order of magnitude.

The purpose of this study was to develop a new
capacitive element for optoelectronics, the capacitance
of which would change in response to the thermal or
optical action upon vanadium dioxide. The basic idea is
to use a VO2 film as the active plate of a capacitor, the
conductivity of which changes depending on the tem-
perature. This possibility opens up prospects for creat-
ing adjustable electronic circuits of a new type.

The samples were prepared on insulating substrates
representing standard 15-µm-thick mica plates (dielec-
tric permittivity 5–6) with an area of 4 cm2. Using the
method of thermal deposition in vacuum, one side of the
mica plate was coated with a ~2000-Å-thick layer of alu-
minum and the other, with a ~1000-Å-thick layer of
metallic vanadium. Then, the vanadium layer was oxi-
dized in air at 420°C, which resulted in the formation of
an oxide film with the composition close to VO2 [7].

The experimental procedure consisted in measuring
the standard temperature dependence of the VO2 film
conductivity. Simultaneously, we measured the temper-
ature dependence of the electric capacitance of the Al–
1063-7850/01/2711- $21.00 © 20924
mica–VO2 structure. The measurements were per-
formed at a frequency of 1 MHz using an indium elec-
trode with an area of 0.06 cm2 pressed against the cen-
ter of the VO2 film. 
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The results of the electrical measurements are pre-
sented in the figure. As can be seen from these experi-
mental data, the cyclic (heating–cooling) temperature
variation is accompanied both by the well-known pat-
tern of changes (hysteresis loop) in the resistance of
VO2 [5] and by an analogous behavior of the electric
capacitance. While the VO2 film resistance changes by
a factor of 20–30, the capacitance of the heterostructure
studied varies only 6–7 times. Note that the control
experiments with an analogous structure in which the
VO2 film was replaced by aluminum (i.e., with an Al–
mica–Al capacitor) showed no significant change in the
sample capacitance measured in the same temperature
interval. Thus, we may ascertain that it is a change in
the resistivity of VO2 that accounts for the observed
variation in capacitance of the Al–mica–VO2 structure.

In order to explain the phenomenon of capacitance
variation, we must take into account that the resistivity
of VO2 in both semiconductor (ρs ≈ 2–5 Ω cm) and
metallic (ρm ≈ 10–3 Ω cm) states is significantly greater
than the resistivity of typical “classical” metals. For this
reason, the VO2 film is both a capacitor plate and a
resistor. Therefore, the sample circuit can be represented
as an RC circuit with distributed parameters. The circuit
comprises a small initial capacitance C0 (Al–mica–In
electrode) connected to the distributed RC chain (Al–
mica–VO2 film). The harmonic electromagnetic oscil-
lations in this system are described by the equations of
telegraphy for a line with losses [10].

The sample is conveniently represented as a thin
disk with the indium electrode placed at the center of
the VO2 plate. For this two-dimensional distributed
chain with radial symmetry, solving the equations of
telegraphy reduces to the one-dimensional case.
Dependence of the voltage between capacitor plates U
on the distance r from the central electrode is described
by an exponent

(1)

where U0 is the voltage on the central electrode and γ is
the damping constant. In the case studied, the sample
inductance and the insulator loss currents can be taken
equal to zero. Under these assumptions, the damping
constant γ can be expressed as

(2)

where R and C are the chain resistance and capacitance
in the region from 0 to r, respectively, and ω is the fre-
quency of electromagnetic oscillations.

U U0  – γr[ ] ,exp=

γ RiωC( )1/2,=
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
As can be seen from relationships (1) and (2), a sig-
nificant resistance R (VO2 in the semiconducting state)
makes γ large and the electric field localized in the cen-
tral region near the capacitor axis. In this case, only a
small part of the VO2 film in the vicinity of the central
electrode is effective. For small R (VO2 in the metallic
state), γ sharply decreases and the region occupied by
the electric field grows. This is equivalent to an increase
in the effective area of the VO2 plate.

Thus, a jumplike change in the conductivity of VO2
related to the metal–semiconductor phase transition
leads to a sharp variation of the electric field distribu-
tion in the sample structure, which is equivalent to a
change in the effective capacitor plate area. In conclud-
ing, it should be noted that the conductivity of VO2 may
vary under the action of short laser pulses [5]. This
effect allows the structure studied to be considered as a
prototype of new light-controlled elements for opto-
electronic circuits.
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Abstract—It is established that a “metal–thin dielectric layer–diaphragm with aperture” system exhibits a res-
onance absorption in the IR spectral range. The effect is related to the interaction of the near field of the incident
radiation, distorted by the aperture, with the reflecting metal surface. This phenomenon can be used to create
adjustable IR filters. © 2001 MAIK “Nauka/Interperiodica”.
Previously [1], we described resonances in an iris–
short system in a waveguide, spaced by a distance
smaller than the wavelength of a radiation propagating
in the waveguide by two orders of magnitude. The res-
onances were explained by the fact that high-order
modes excited at the aperture obeyed the resonance
condition for such distances from the short. Thus, the
resonance were related to an interaction of the short
(reflector) with the near field characterizing a distortion
of the wave front incident on the iris aperture. Obvi-
ously, the effect of such interaction may be significant
for a sufficiently small distance between the short and
the iris with aperture, which was experimentally con-
firmed in the microwave range [1].

It was of interest to check for the possibility of anal-
ogous resonances being manifested at other frequen-
cies, in particular, in the IR range. Below, we report on
the results of such investigation. The experiments were
performed with a system comprising two layers of an
aluminum foil with a thickness of ≈0.5 µm, one of
which had a rectangular slitlike aperture with dimen-
sions 1 × 5000 µm. The metal films were separated by
a dielectric layer representing the natural oxide films on
the foil surfaces facing one another, with a total thick-
ness of ~200 Å [2]. In the shortwave IR region, this
spacing corresponds to ≈1/100 of the radiation wave-
length.

The measurements of absorption of the IR radiation
incident onto this structure were performed with the aid
of an IKS-22 spectrophotometer. As can be seen from
the results of these measurements presented in the fig-
ure, the resonance features actually take place in the
wavelength range from 2 to 15 µm. The maximum
1063-7850/01/2711- $21.00 © 20926
absorption was observed for the radiation with a wave-
length of about 8 µm (curve 1); additional absorption
peaks were located at 4.5 and 12 µm.

A specific feature of the resonances described previ-
ously [1] was a shortwave shift in the characteristic fre-
quencies with increasing distance between aperture and
short in the waveguide. In order to confirm the hypoth-
esis of analogy between the observed IR absorption res-
onances (see figure) and the phenomenon reported
in [1], we repeated the measurements with the alumi-
num foils preliminarily oxidized for 2 min in water
vapor so as to increase the dielectric (oxide) layer thick-
ness. As expected, we observed a shift of the absorption

21

14

7

2 4 6 8 10 12 14 µm

1
2

L, dB

Figure.
001 MAIK “Nauka/Interperiodica”



        

THE RESONANCE IR ABSORPTION 927

             
curve by a approximately 2 µm toward shorter wave-
lengths (curve 2).

Thus, we have established that a “metal–thin dielec-
tric layer–diaphragm with aperture” system with spe-
cially selected aperture dimensions and the dielectric
layer thickness may exhibits a resonance absorption in
the IR spectral range. The effect is related to the inter-
action of the near field of the incident radiation, dis-
torted by the aperture, with the reflecting metal surface.
This phenomenon can be used, for example, to create
adjustable IR filters.
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
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Abstract—The phase separation in oversaturated solid solutions Al–4.0 at.% Cu and Al–6.5 at.% Zn is accom-
panied by an acoustic emission (AE). The AE signals were detected in the stage of formation of the concentra-
tion inhomogeneities (Guinier–Preston zones) in the former alloy and in the early phase separation stage in the
latter. There are two possible mechanisms of the AE in the course of the phase separation: (i) dynamic energy
relaxation related to spontaneous motions of the interphase boundary or (ii) plastic relaxation of the elastic
energy related to the nucleation of misfit dislocations at the sites of coherency breakage. © 2001 MAIK
“Nauka/Interperiodica”.
Introduction. As is known, an alloy possessing an
excess (for a given temperature) concentration of one of
the components occurs in the nonequilibrium state with
an excess free energy and exhibits a tendency to sepa-
ration of such an oversaturated solid solution. A driving
force of this process is the decrease in the Gibbs free
energy of the system [1]. The model of nucleation dur-
ing the phase separation is based on the assumption that
the new and initial phases are separated by a phase
boundary (interface) leading to a local increase in the
free energy, while the appearance of some volume of
the new phase results in the overall decrease in the free
energy due to the transition to a more stable state.

The phase decomposition is accompanied by the
experimentally detected acoustic emission (AE), which
is evidence that a part of the free energy is dissipated in
this way. The purpose of this study was to elucidate
mechanisms of the acoustic energy dissipation.

Sample preparation. The AE accompanying the
phase separation of solid solutions was studied in alloys
of the two systems: Al–Cu (with 4.0 at. % Cu) and
Al−Zn (with 6.5 at. % Zn). The sample alloys were pre-
pared by melting chemically pure components in a pure
helium atmosphere in an electric-arc furnace.

This selection of alloys for the investigation was
related to the fact that the Al–4.0 at. % Cu alloy exhibits
the formation of disk-shaped concentration inhomoge-
neities (Guinier–Preston zones) in the early stage of
phase separation, while the Al–6.5 at. % Zn alloy in the
same stage shows spherical precipitates. Besides, the
phase separation of solid solutions is known to proceed
differently in the two systems—by nucleation and
growth in the Al–4.0 at. % Cu alloy and by spinodal
decay in the Al–6.5 at. % Zn alloy [1].

Oversaturation in the sold solutions was achieved by
quenching the alloys from the temperatures corre-
1063-7850/01/2711- $21.00 © 0928
sponding homogeneous states of the solid solution. The
Al–4.0 at. % Cu alloy was kept for 1 h at 570°C and
quenched in water; the Al–6.5 at. % Zn alloy was also
quenched in water but then stored in liquid nitrogen
because of a high instability of the oversaturated slid
solution.

AE measurements. The phase decomposition in the
oversaturated solid solutions was studied in the course
of continuous heating of the samples at a constant rate
(about 1 K/s). Simultaneously, the AE was measured by
a standard method described in [2].

Figure 1 gives fragments of the AE curves, repre-
senting variation of the signal intensity (count rate)
dN/dt during the process, and shows the temperature
variation with time. As can be seen, the AE from heated
samples of the Al–4.0 at. % Cu alloy is manifested in the
temperature interval from 30 to 250°C with a maximum
at 150°C, while the same process in the Al–6.5 at. % Zn
alloy is observed in the temperature interval from –50
to 100°C with a maximum at 70°C.

Analysis of results. The AE activation energy was
determined by assuming that the phase decomposition
of solid solutions can be described as the first-order
reaction, with the reaction rate proportional to the AE
intensity dN/dt. Thus, by comparing the AE intensity in
Fig. 1 to the process temperature, we can determine the
reaction rate constant k from the Arrhenius relationship
k = k0exp(–Q/KT), where Q is the activation energy,
K is the Boltzmann constant, and T is the absolute tem-
perature [2].

The results of analysis are presented in Fig. 2 and in
the table. As can be seen in Fig. 2, the experimental
points well fit to the straight line in the coordinates of
ln[dNi/dt/(N – Ni)] versus 103/T. Here, N is the total
count and Ni is the count by the time instant ti . The table
gives the AE activation energy and the correlation coef-
2001 MAIK “Nauka/Interperiodica”
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ficient. The correlation coefficient is close to unity and
the activation energies are close to the analogous pub-
lished data [3].

Discussion. The values of the activation energy
indicate that the AE production is related to a process
controlled by the diffusion of the corresponding alloy
components in the initial aging stage. The acoustic
effect accompanying the phase separation is evidence
of a specific cooperative process involved in the forma-
tion of inhomogeneous zones. Such a cooperative pro-
cess in the early aging stage can be spontaneous forma-
tion of the Guinier–Preston zones, followed by the
spontaneous growth of these zones. The acoustic
energy dissipation in this variant of the phase separa-
tion development is due to the dynamic energy relax-
ation related to spontaneous motions of the interphase
boundary [4].

Fig. 1. The character of the acoustic emission manifestation
during the phase separation of oversaturated solid solutions
(a) Al–4.0 at. % Cu and (b) Al–6.5 at. % Zn in the course of
annealing: (1) AE intensity (count rate) kinetics; (2) time
variation of the sample temperature.
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The nucleus–matrix interface is characterized by the
atomic matching, which can be coherent, semicoherent,
or completely incoherent. The shape of inhomogene-
ities (precipitates) can be needlelike, platelike, or
spherical. It is important to note that the edges of
needlelike and platelike precipitates are completely
incoherent, in which case a mismatch between the crys-
tal structures of precipitates and the matrix gives rise to
the deformation energy. Relaxation of the elastic
energy of deformation leads either to the formation of
misfit dislocations or to the motion of dislocations and
point defects. The latter case refers to the high-temper-
ature precipitation processes, while the former process

–3

–5

–7

–9

–11
2.0 2.5 3.0

103/T

(a)

ln[dNi/dti/(N – Ni)]

1

(b)

1

–3

–5

–7

–9

–11
2.5 3.0 3.5 4.0

103/T

Fig. 2. Determination of the effective activation energy of
the AE process accompanying the annealing of oversatu-
rated samples of (a) Al–4.0 at. % Cu and (b) Al–6.5 at. % Zn
alloys. Sold lines 1 show the linear approximation.

Activation energies the AE accompanying the phase separation
in oversaturated solid solutions Al–4.0 at. % Cu and
Al−6.5 at. % Zn

Alloy Temperature 
interval, °C

Activation 
energy,
kJ/ mol

Correlation
coefficient

Al–4.0 at. % Cu 30–150–250 54.9 ± 6.5 0.975

Al–6.5 at. % Zn (–50)–70–100 44.0 ± 8.4 0.936

Note: The second value in the temperature interval indicates the
position of maximum of the AE intensity.
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takes place at low temperatures. The plastic deforma-
tion (plastic relaxation of the elastic energy) was exper-
imentally observed in the stage of zone formation [1].

Conclusion. The analysis of the experimental
results suggests that the acoustic energy dissipation
during the phase separation in the oversaturated solid
solutions studied may proceed by two mechanisms:
(i) dynamic energy relaxation related to spontaneous
motions of the interphase boundary or (ii) plastic relax-
ation of the elastic energy related to the generation of
misfit dislocations as a result of coherency breakage at
the interphase boundary.
TEC
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Abstract—The temperature distribution in a growth cell and the temperature gradient in the melt zone during
the electric-field liquid phase epitaxy of silicon carbide based solid solutions (ytterbium–gallium, ytterbium–
aluminum) were calculated with an allowance for the growth cell geometry. The analysis was based on a solu-
tion of the stationary thermal conductivity equations in all five regions of the standard growth cell. The solution
was obtained taking into account the following factors: (i) Joule’s heating; (ii) Peltier’s heating (cooling) at the
electrode–source (substrate)–melt zone interfaces; (iii) contact heat liberated at the electrode–source (substrate)
interface; (iv) dissolution heat; and (v) crystallization heat. Expressions for the temperature gradient ∇ T in
the melt zone as a function of the current density and the dimensions of regions in the growth cell are obtained.
© 2001 MAIK “Nauka/Interperiodica”.
The maximum time for attaining a stationary tem-
perature distribution in the standard growth cell
described in [1] can be determined from the relation-
ship τT = l2/(π2a) and is typically about 0.25 s. Here, l is
the cell length; a = χ/(ρc) ~ 10–5 m2/s is the thermal dif-
fusivity coefficient; χ ~ 20 W/(m K) is the thermal con-
ductivity coefficient; ρ ~ 5 × 103 kg/m3 is the density;
and c ~ 400 J/(kg K) is the specific heat.

On the scale of a typical epitaxial layer growth time
(30–60 min), the stationary temperature distribution in
the growth cell can be considered as established instan-
taneously. Therefore, the temperature distribution in the
growth cell can be determined by solving the stationary
thermal conductivity equation in all five regions of
the cell:

(1)

where χi , ρi , and Ti are the thermal conductivity coeffi-
cient, resistivity, and temperature of the ith region,
respectively, and j is the electric current density in the
growth cell.

We have solved the system (1) for the following
boundary conditions:

T1 = Text , z = –(dl + de1); T1 = T2, z = –dl;

T2 = T3, z = 0; T3 = T4, z = dm;

T4 = T5, z = dm + ds; T5 = Text , z = dm + ds + de5;

χ i

d2Ti

dz2
---------- ρi j

2+ 0, i 1 2 3 4 5,, , , ,= =

χ1

dT1

dz
---------– χ2

dT2

dz
---------– Π21 j Rk1s j2 at z+ d l,–= =
1063-7850/01/2711- $21.00 © 0931
(2)

Here, Text is the external (ambient) temperature; s is the
electrode–source (substrate) contact area; Qc and Qm
are the crystallization and dissolution (melting) heats,
respectively; Rk1 and Rk5 are the contact resistances of
the interfaces between regions 1–2 and 4–5; de1, de5, dl,
dm, and ds are the thicknesses of electrodes, substrate,
melt, and source, respectively; and Πik = Πk – Πi are the
Peltier coefficients (positive, when Peltier’s heat is lib-
erated for the current passing through the interface
from kth to ith region). It should be emphasized that the
boundary conditions (2) refer to a standard growth cell
with the normal to the interfaces parallel to the Z axis.

The resulting temperature distribution in the ith
region of the growth cell can be presented in the follow-
ing form:

(3)

where ai and bi are the integration constants. We
obtained explicit expressions for ai and bi in all five

χ2

dT2

dz
--------- χ3

dT3

dz
---------– Π32 j Qc at z+ 0,= =

χ3

dT3

dz
--------- χ4

dT4

dz
---------– Π43 j Qm at z– dm,= =

χ4

dT4

dz
--------- χ5

dT5

dz
---------– Π54 j Rk5s j

2
at z+ dm ds.+= =

Ti z( ) 1
2
---

ρi

χ i

---- j2z2– aiz bi,+ +=
2001 MAIK “Nauka/Interperiodica”
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regions of the cell. The expressions are rather cumber-
some and we present here only the formulas for a3
and b3:

(4)

a3
1
χ3
-----

de1

χ1
------- Π21 Π32+( )–

d l

χ2
-----Π32–

ds

χ4
-----Π43+






=

+
de5

χ5
------- Π43 Π54+( )

 j
de1

χ1
-------

d l

χ2
-----+ 

  Qc–
ds

χ4
-----

de5

χ5
-------+ 

  Qm–

–
de1

χ1
-------Rk1

de5

χ5
-------Rk5– 

  s j2 1
2
---

ρ1

χ1
-----de1

2 1
2
---

ρ2

χ2
-----d l

2+
–

+
ρ2

χ1
-----de1d l

1
2
---

ρ3

χ3
-----dm

2–
ρ3

χ4
-----dmds–

ρ3

χ5
-----d5de5–

100

80

60

40

20

0
20 25 30 35 40 45 50

1
2
3

4

5

6

j, A/cm2 

∇ T  × 102, K/m

Fig. 1. Plots of temperature gradient ∇ T versus current den-
sity j (curve numbers correspond to cell numbers in the
table).
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Fig. 2. Plots of temperature gradient versus melt zone thick-
ness. 
TE
(5)

Variation of the temperature T3 and the temperature
gradient ∇ T3 in the melt zone of the growth cell are
given by the formulas

(6)

In order to elucidate the influence of various factors
on the temperature distribution and gradient ∇ T in the
cell, we performed a comparative analysis of the contri-
butions of various factors to expressions (6) based on
formulas (4) and (5). The analysis showed that both
Joule’s and the Peltier effect, as well as the contact heat,
may significantly influence the temperature and its gra-
dient in the system studied. The contributions of Qc and
Qm are lower by at least two orders of magnitude.
Indeed, the former three factors may lead to ∇ T3 ≈ (1–
10) × 102 K/m, whereas an allowance for the Qc and Qm
only gives ∇ T3 ≈ 1 K/m. However, the contributions
due to the former three factors also significantly vary
depending on the relative dimensions, the correspond-
ing Peltier coefficients, and resistivities of the growth
cell regions [2]. For example, the contact heat effect is

significant when Rk1  ≠ Rk5 , while Joule’s heat

contributes considerably provided that χ2 ≠ χ4, ρ1 ≠ ρ5,
ρ2 ≠ ρ4, and χ1 ≠ χ5.

We have numerically calculated the values of tem-
perature at the crystallization front Tk and the melting
front Tm, and the temperature gradient in the melt zone
for various relative dimensions of the growth cell
regions and different conductivity types of the substrate
and source (see table). The electrode thicknesses de1

and de5 varied from 1 × 10–3 to 8 × 10–4 m; the substrate
thickness dl , from 1 × 10–4 to 4 × 10–4 m; the melt thick-

–
1
2
---

ρ4

χ4
-----ds

2 ρ4

χ5
-----dsde5

1
2
---

ρ5

χ5
-----de5

2


 j2





––

×
de1

χ1
-------

d l

χ2
-----

dm

χ3
------

ds

χ4
-----

de5

χ5
-------+ + + +

1–

;

b3 Text a3

χ3

χ1
-----de1

χ3

χ2
-----d l+ 

 +=

+
de1

χ1
------- Π21 Π32+( )

d l

χ2
-----Π32+

+
de1

χ1
-------

d l

χ2
-----+ 

  Qc

de1

χ1
-------Rk1s j2+

+
1
2
---

ρ1

χ1
-----de1

2 1
2
---

ρ2

χ2
-----d l

2 ρ2

χ1
-----de1d l+ + 

  j2.

T3 z( ) 1
2
---

ρ3

χ3
----- j2z2– a3z b3,+ +=

∇ T3 z( )
ρ3

χ3
----- j2z– a3.+=

de1

χ1
-------

de5

χ5
-------
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ness dm, from 1 × 10–3 to 5 × 10–4 m; and the source
thickness ds, from 1 × 10–4 to 4 × 10–4 m. The electric
current density j varied within (10–40) × 104 A/m2. The
other parameters used in the calculation were as follows:
Text = 1273 K; χ1 = χ5 = 33.43 W/(m K), χ2 = χ4 =
21.3 W/(m K), χ3 = 65.02 W/(m K); Qc = Qm = 0; ρ1 =
ρ5 = 1.72 × 10–6 Ω m, ρ2 = ρ4 = 8 × 10–5 Ω m, ρ3 =
4.74 × 10–7 Ω m; Rk1 = Rk5 = 0.01 Ω .

The temperature gradient ∇ T and the temperature
difference ∆T = Tm – Tk depend significantly on the
Peltier coefficient Π = (Π43 + Π54) – (Π21 + Π32). The
maximum ∇ T value obtained in the calculation was
10100 K/m (for j = 50 × 104 A/m2 and Π = 3.2 V). The
corresponding temperature difference was 8.4 K. In
agreement with the above considerations, the main con-
tribution is due to the terms involving the Peltier coef-
ficients (in all cases, the ∇ T3 value increases in propor-
tion to the current density), while Joule’s heat increases
∇ T3 rather insignificantly (Fig. 1). The drop of ∇ T3
with the melt zone thickness is mostly explained by the
fact that an increase in the temperature difference ∆T =
Tm – Tk (due to the growth in Tm and drop in Tk) is much
smaller than the increase in dm. Note that the depen-
dence of ∇ T3 on dm is nonlinear (Fig. 2).

We have also studied the dependence of ∇ T on the
substrate, source, and electrode thicknesses. As the sub-
strate thickness grows, ∇ T may either increase or
decrease. This behavior is related to a decrease
(increase) in the temperature at the crystallization front
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
with increasing distance to the 1–2 region interface at
which Peltier’s heat is liberated (absorbed). By the
same token, ∇ T decreases (increases) when Peltier’s
heat is liberated (absorbed) at the 4–5 region interface.
Similar considerations explain the dependence of ∇ T
on de1 and de5 values.
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Translated by P. Pozdeev

The growth cell parameters (the Peltier coefficients and the sub-
strate and source conductivity types) used in the calculation

Cell no. Conductivity
type Π21, V Π32, V Π43, V Π54, V

1 n–n 0.6 –0.7 0.7 –0.6

2 n–p 0.6 –0.7 1.2 –1.0

3 p–p 1 –1.2 1.2 –1.0

4 n–n –0.6 –0.7 0.7 0.6

5 p–p –0.4 –1.2 1.2 0.4

6 n–n –0.4 –0.5 0.6 0.5
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Abstract—A charged drop oscillating in a compressible medium is capable of emitting acoustic waves.
According to calculations in the constant drop volume approximation linear in the oscillation amplitude, the
most intense acoustic emission corresponds to the dominant mode. An acoustic dipole emission related to the
excitation of a translational mode is only revealed by calculations in the second order of smallness with respect
to the oscillation amplitude, in the case when two adjacent modes are present in the spectrum of initial defor-
mations. © 2001 MAIK “Nauka/Interperiodica”.
1. Investigations of the interaction of acoustic waves
with liquid-drop systems frequently ignore the internal
degrees of freedom related to the capillary oscillations
of the drops. However, it is well known that the fre-
quencies of such capillary oscillations of the drops with
dimensions characteristic of some natural systems (fog,
cloud, rain) fall within the frequency range of sound
waves and longwave ultrasonic waves (see, e.g., [1–4]
and references therein). The presence of an electric
charge on the drops, deviation of the drop shape from
spherical, motion of the drops relative to the medium,
and an allowance for the drop viscosity lead to a shift of
the spectrum of capillary oscillations toward lower fre-
quencies [4–6], that is, to the region of acoustic waves
detected by human ear.

2. In this context, we will consider the problem of an
acoustic emission from an oscillating ideal incompress-
ible electrically conducting liquid drop with the radius R,
the density ρ1, the surface tension γ, and the charge Q.
The external medium is assumed to be ideally com-
pressible and characterized by the sound velocity V, the
permittivity ε, and the density ρ2. The system will be
described in a spherical coordinate system with the ori-
gin at the drop center. The wave motions in the drop and
the medium are assumed to possess a potential charac-
ter and are described by the velocity field potentials
ψ1(r, t) and ψ2(r, t), respectively.

Since the initial perturbation of the drop surface is
axisymmetric and small, we assume the drop shape to
also be axisymmetric in both initial and all subsequent
time instants. An equation describing the drop surface
in the dimensionless polar coordinates such that R = ρ =
σ = 1 with the origin at the drop center is

A system of equations describing evolution of the
drop surface includes the Laplace equation for the

r θ t,( ) 1 ξ θ t,( ), ξ  ! 1.+=
1063-7850/01/2711- $21.00 © 20934
velocity field potential ψ1(r, t), the wave equation for
the velocity field potential ψ2(r, t), and the Laplace
equation for the electrostatic potential Φ(r, t):

and the boundary conditions

To close the above system, we use the conditions of
conservation of the total charge Q and the drop volume
v  = 4π/3, as well as the condition of immobility of the
center of mass: 

∆ψ1 r t,( ) 0;
1

V2
------

∂2ψ2

∂t
2

----------- ∆ψ2– 0;= =

∆Φ r t,( ) 0=

r 0: ψ1 r t,( ) 0;

r ∞: ψ2 r t,( ) 0; Φ r t,( ) 0;

∂ψ2

∂r
--------- ikψ2+ o

1
r
--- 

  ; k ω/V ;= =

r 1 ξ θ t,( ): 
∂ξ
∂t
------+ ∂ψ

∂r
-------

1

r2
----∂ξ

∂θ
------∂ψ

∂θ
-------;–= =

∆p
∂ψ
∂t
-------

1
2
--- ∇ψ( )2–

1
8π
------ ∇Φ( )2+– divn;=

Φ r t,( ) Φs t( ).=

1
4π
------– n —Φ⋅( )ds

S

∫° Q,=

S r 1 ξ θ t,( ), 0 θ π, 0 φ 2π≤ ≤≤ ≤+=[ ] ;=

r2 rd( ) θsin θd φd

v

∫ 4
3
---π,=

v 0 r 1 ξ θ t,( ), 0 θ π, 0 φ 2π≤ ≤≤ ≤+≤ ≤[ ] ;=
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The initial conditions are set so as to specify a vir-
tual deformation of the equilibrium spherical drop, with
the zero initial velocities of all points of the drop sur-
face:

(1)

In the above relationships, Ξ is the set of numbers of the
initially excited modes; ∆p is the constant pressure
jump between inside and outside of the drop in the
equilibrium state; n is the unit vector of normal to the
drop surface; er is the radial unit vector of the spherical
coordinate system; Φs(t) is the potential (constant over
the drop surface); ε is the amplitude of the initial per-
turbation of the drop surface; Pj(µ) is the Legendre
polynomial of the jth order; and ξ0 and ξ1 are constants
determined from the conditions of the constant drop
volume and the center-of-mass immobility at the initial
time instant. To within the terms of the second order of
smallness in ε, the latter quantities are given by the for-
mulas

3. Solution of the above problem by standard meth-
ods in the approximation corresponding to first order of
smallness with respect to the amplitude of capillary
oscillations leads to the following dimensional disper-
sion equation:

where  is the spherical Hankel function of the sec-
ond kind (j ≥ 2) and k is the wavenumber.

er r3⋅ r θsind θd φd

v

∫ 0,=

v 0 r 1 ξ θ t,( ), 0 θ π, 0 φ 2π≤ ≤≤ ≤+≤ ≤[ ] .=

t 0: ξ0P0 µ( ) ξ1P1 µ( ) ε hiPi µ( );
i Ξ∈
∑+ +=

∂ξ θ( )
∂t

-------------- 0;=

α j

j Ξ∈
∑ 1; µ θ.cos= =

ξ0 ε2 h j

2 j 1+( )
-------------------

j Ξ∈
∑ O ε3( );+–≈

ξ1 ε2 9 jh j 1– h j

2 j 1–( ) 2 j 1+( )
---------------------------------------

j Ξ∈
∑– O ε3( ).+≈

ωj
2

j 1–( ) σ
R3
----- W j 2+( )–[ ]=

×
ρ2/ρ1( )h j

2( ) k jR( )
k jRh j 1–

2( ) k jR( ) j 1+( )h j
2( ) k jR( )–

------------------------------------------------------------------------------ 1
j
---–

1–

;

W
Q2

4πεσR3
-------------------,≡

h j
2( )
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The roots of this equation can readily be found by
numerical integration. The first two roots correspond to
capillary oscillations decaying as a result of the energy
losses for the acoustic wave emission. Upon determin-
ing the potential ψ2(r, t) of the velocity field in the
medium outside the drop, one may simply calculate the
acoustic emission intensity (note that the center of mass
of the oscillating drop is immobile). In the infinite set
of sound radiators represented by the drop, the main
contribution is related to the quadrupole emission of the
dominant mode (j = 2).

Consider a raindrop with R = 250 µm oscillating
upon excitation of the dominant intrinsic mode (j = 2)
with an amplitude of C2 = 0.1R (according to [7, 8], the
oscillation amplitude of raindrops can be quite large, up
to C2 ≈ R). For σ = 73 dyn/cm, ρ1 = 1 g/cm3, ω2 ≈ 5.3 ×
103 s–1, k2 ≈ 0.16 cm–1, k2R ≈ 4 × 10–3, ρ2 = 1.3 ×
10−3 g/cm3, V = 3.3 × 104 cm/s, and W = 1, the total
intensity of the acoustic emission from the drop at the
dominant oscillation mode is readily calculated using
the formula [9]

Assuming in this model consideration that a cubic
kilometer of the rainy space accommodates 3 × 1014 rain-
drops with R = 250 µm (one drop per ≈3 cm3), we
readily obtain an estimate of the total acoustic emission
intensity at the dominant oscillation mode of the rain-
drops contained in a space volume of 1 km3: 0.23 erg/s
at a frequency of ω2 ≈ 5.3 × 103 s–1. This yields a sound
level of ≈17 dB at the boundary of the emitting volume,
which corresponds to a loud human whisper.

4. A solution to the problem formulated in Section 2
in the approximation corresponding to second order of
smallness with respect to the amplitude of capillary
oscillations can be obtained by the standard methods of
the perturbation theory [10] (see, e.g., [11, 12]). This
solution shows that the condition of immobility of the
center of mass of the oscillating drop leads to excitation
of the translational mode (n = 1), provided that two
adjacent modes are present in the initial excitation
spectrum.

An expression for the time variation of the transla-
tional mode amplitude for an oscillating drop in which
the jth and (j + 1)th modes were initially excited is as
follows (see also the figure):

(2)

I ρ2V v 2ds∫°=

≈
4πρzVC2

2R2ω2

k2Rh1
2( ) k2R( ) 3h2

2( ) k2R( )–
2

-------------------------------------------------------------------- 7.6 10 16–  erg/s.×≈

M1
2( ) t( )

=  ε2R
9 jα j 1– α j

2 j 1–( ) 2 j 1+( )
--------------------------------------- ωjt( ) ωj 1– t( ).coscos–
01
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For a drop with the translational mode frequency ωj

and the radius comparable to (ν/ωj)1/2 (and such that
R(ωj/2ν)1/2 ! 1), an expression for the intensity of the
dipole acoustic emission in a compressible medium
with a kinematic viscosity ν is as follows [9]:

(3)

where U is the velocity amplitude for the points on the
drop surface. Using relationship (2), we may readily

Id

3πρ2ν
2R2ωj

2U2

2V3
-------------------------------------,=

0.002

0.001

0

–0.001

–0.002

10 20
t

M1
2( )

0.0006

0.0004

0.0002

0

–0.0002

–0.0004

–0.0006

1 2
t

(a)

(b)

Plots of the dimensionless amplitude  versus dimen-

sionless time t for the translational mode (n = 1) of an oscil-
lating drop. The initial deformation of the equilibrium
spherical drop shape is set in the form of (a) ε[P2(µ) +
P3(µ)]/2 and (b) ε[P10(µ) + P11(µ)]/2.

M1
2( )
TE
determine the U value. Substituting this quantity into
formula (3) for the same values of parameters as above
and assuming additionally that j = 2, ε = 0.1, ν =
0.15 cm2/s, and α2 = α3 = 0.5, we obtain an estimate of
the acoustic dipole emission intensity related to the
translational mode excitation: Id ≈ 1.1 × 10–14 erg/s. The
integral emission from a 1-km3 cloud would correspond
to a sound level of ≈28 dB, which corresponds to a
human speaking quietly. 

5. Thus, we may conclude that the intensity of the
acoustic dipole emission related to the translational
mode excitation (n = 1) in an oscillating charged drop
(manifested as a nonlinear effect in the second order of
smallness with respect to the amplitude of capillary
oscillations) is of the same order of magnitude as the
intensity of the quadrupole emission related to the dom-
inant mode excitation (n = 2) in the same drop in the
approximation linear with respect to the oscillation
amplitude.
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Abstract—We studied the acoustic emission (AE) from mechanically loaded iron samples with a porosity of
up to 30%. Dependence of the AE signal intensity (count rate) on the mechanical stress level was established
for the samples possessing various structures. The curve of an informative AE parameter exhibits a non-
monotonic variation with increasing porosity, showing an anomaly in the vicinity of the percolation threshold.
© 2001 MAIK “Nauka/Interperiodica”.
The use of structurally inhomogeneous materials in
a mechanically loaded state requires thorough investi-
gation of the plastic deformation and fracture of such
materials under the working conditions. The presence
of regions possessing sharply different properties and
interfaces between these regions leads to certain fea-
tures in the deformation behavior not encountered in
homogeneous solids [1, 2]. A promising method for the
study of deformation processes is offered by the acous-
tic emission (AE) [3, 4]. The purpose of this investiga-
tion was to establish the laws of AE from mechanically
loaded iron-based porous materials.

The influence of a porous structure on the AE of
inhomogeneous solids was studied using the samples
prepared from iron-based metal powder of the
PZhRV-2 grade. The sample structure was modified by
changing the material porosity P from 5 to 30% in the
course of pressing and sintering in vacuum (1450 K,
2.5 h). Variation of the sample porosity in this range
ensured the obtaining of different topological patterns
of the material structure, including the cases of isolated
and “infinite” pore clusters as well as the percolation
transition [5]. The structure of the initial powder and
sintered metal samples was studied by optical metal-
lography techniques using a Neophot-32 microscope.
The AE from samples in the course of plastic deforma-
tion and fracture was measured with the aid of an auto-
mated setup [6] allowing the samples to be tested by
tension at a fixed loading rate. An informative AE char-

acteristic was represented by the count rate  of the
AE oscillations.

The optimum testing regime was selected in a series
of preliminary experiments performed at various load-
ing rates. The experimental data were represented by

the plots of  versus elastic stress σ. Figure 1 shows
typical results obtained for three values of the stress
variation rate  = 0.9, 2.4, and 6.5 MPa/s, which dem-
onstrate a significant influence of the loading regime on

Ṅ

Ṅ

σ̇
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the acoustic emission from samples. At  = 0.9 MPa/s,
the AE curve reveals individual features of the material
structure, which are manifested by chaotic peaks super-

imposed on the general  versus σ curve. An increase
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Fig. 1. The plots of AE signal count rate versus stress for
iron samples with a porosity of 10% loaded at various rates.
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in the  value to 2.4 MPa/s reduced the random fluctu-
ations in the signal count rate. The measurements at

 = 6.5 MPa/s provided stable results averaged over a
large number of events. The latter value was selected
for testing porous samples.

Figure 2 shows the results of measuring the AE sig-

nal count rate  during the deformation of iron-based

samples with various porosities P. The  values are
plotted versus σ/σu, where σu is the experimental ulti-
mate tensile strength varying with the sample porosity:
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Fig. 2. The plots of AE signal count rate versus stress for

iron samples with various porosities (loaded at  =
6.5 MPa/s).

σ̇

TE
σu = 350 MPa (P = 0), 260 MPa (P = 5%), 240 MPa
(P = 10%), 170 MPa (P = 15%), 110 MPa (P = 20%),
and 90 MPa (P = 30%). The experimental results reflect
a significant effect of the porous structure on the acous-
tic emission. For the compact metal sample (P = 0), the

 versus σ curve is nonmonotonic, with a clearly pro-
nounced maximum in the region of stresses corre-
sponding to the yield point. Such curves are typical of
the compact plastic metals [3, 4].

An increase in the material porosity to P = 5% led to

a decrease in the  peak observed in the region of
small stresses due to the plastic deformation of compact
regions. In addition, the AE signal count rate exhibited
a sharp increase immediately before fracture. For P =

10%, the peak completely disappeared and the  value
monotonically increased with σ. This behavior of the
AE signal in the course of deformation is characteristic
of the brittle fracture of a material featuring intensive
cracking [4]. The passage to the brittle fracture is
related to the fact that isolated pores act as effective
local stress concentrators, whereby the fracture pro-
ceeds by the cracks propagating from one to another
pore [1, 7].

As the sample porosity increased further (P = 15%),

the  versus σ curve became nonmonotonic again,
acquiring a shape qualitatively similar to that observed
for P = 5%. However, the metallographic analysis
showed that the mechanism of deformation is different
from that operative in the case of low porosity. The for-
mation and development of the open pores at P ~ 10%
results in the early formation of microcracks at an insig-
nificant plastic deformation of grains. Thus, the first
peak can be interpreted as reflecting the formation of a
network of microscopic cracks. These cracks are
retarded at the boundaries of the porous space, which
hinders the main crack development.

Figure 2 illustrates the gradual transition to a mono-
tonic dependence of the AE signal count rate on the
stress level when the porosity increases to P = 20%.
This can be explained by that a high porosity results in
a significant “geometric” loss of strength caused by the
presence of large number of voids. Finally, at P = 30%,
the main crack is developed virtually without any plas-
tic deformation of the metal grains.

The results of our investigation elucidated the fea-
tures of acoustic emission from loaded porous metals
and revealed the influence of a porous structure on the
mechanism of plastic deformation and fracture of such
materials.

Ṅ

Ṅ

Ṅ

Ṅ
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Abstract—Whispering gallery modes induced in a partly shielded hemispherical dielectric resonator by
lumped radiation sources were experimentally studied for the symmetric and asymmetric arrangement of the
hemisphere relative to the cylindrical metal shield. The oscillation mode characteristics are presented for the
shielded hemispherical resonator and an analogous open dielectric resonator. The proposed resonator is a prom-
ising device for the creation of highly stable solid-state millimetric wave oscillators. © 2001 MAIK
“Nauka/Interperiodica”.
Open dielectric resonators featuring whispering gal-
lery (WG) oscillation modes possess unique properties
in the millimetric wave range, including high intrinsic Q
and relatively rare spectrum of induced oscillations [1].
These features make such resonators advantageous for
the oscillator systems of active instruments and devices
operating in the millimetric wave range [2].

However, devices based on the open dielectric reso-
nators possess certain disadvantages as well, the open
character being among these drawbacks. This feature
leads to uncontrolled electromagnetic coupling to other
elements of the system. Previously [3], we demon-
strated that shielding of the open dielectric sphere by a
metal cylinder with open ends allows the oscillating
electromagnetic field to be localized inside the reso-
nance system. For a certain relationship between
dimensions of the sphere and cylinder, this resonance
system allows excitation of the WG modes with the Q
values exceeding (due to the field localization near the
spherical surface of the dielectric) those attained with
an analogous open dielectric resonator. In order to use
such high-Q WG modes in practice (e.g., as the work-
ing modes of millimetric wave oscillators), it is neces-
sary to study stability of the characteristics of these sys-
tems with respect to inhomogeneities and disorders in
the resonator structure. For example, an asymmetry in
spacing between the hemisphere and shield appearing
during the fabrication and use of the shielded resonator
system is equivalent to a diode introducing an inhomo-
geneity in the resonator field.

Our purpose was to study the WG modes in a partly
shielded hemispherical dielectric resonator (SHDR)
excited by an open waveguide end or a diode module
via a coupling slot in the flat mirror. The analysis was
performed for the cases of symmetric and asymmetric
arrangement of the hemisphere relative to the shielding
cylinder.
1063-7850/01/2711- $21.00 © 20940
The system comprised a flat metal mirror 1 bearing
a dielectric (teflon) hemisphere 2 with a diameter of
39 mm and a cylindrical (semicircle base with a radius
of 42 mm) metal shield 3 with open ends (see the inset
in Fig. 1). The flat mirror contains an excitation ele-
ment 4 in the form of a coupling slot representing an
open end of a rectangular waveguide (narrowing along
the wide wall) or the output diaphragm of a 7.2 × 1 mm
diode module. The system design includes, in addition
to the Gunn diode proper, the necessary mount, adjust-
ment, and power supply elements. The experimental
prototype setup allowed the mutual arrangement of the
symmetry planes of the dielectric hemisphere and the
shielding meal cylinder to be gradually varied so as to
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Fig. 1. Plots of the (1) intrinsic Q0 and (2) resonance fre-
quency f versus relative air gap asymmetry δd/d for the WG
modes of TM oscillations in the SHDR. The inset shows a
schematic diagram of the SHDR studied (see the text for
explanations).
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make the air gap between resonator and shield asym-
metric.

Figure 1 shows plots of the intrinsic SHDR quality
factor Q0 (curve 1) and the resonance frequency f
(curve 2) versus relative displacement δd/d of the
dielectric hemisphere and the shield. The data refer to
the excitation of WG modes of the TM oscillations at a
frequency close to 34.55 GHz with a single field varia-
tion along the radial and azimuthal coordinate. The error
of determination of the Q0 values did not exceed 20%.

As can be seen from the data presented in Fig. 1, the
maximum intrinsic Q0 is attained for the WG modes
excited in the SHDR with a symmetrically arranged
dielectric hemisphere and metal cylinder. In this case,
the quality factor (Q0 ≈ 6 × 103) exceeds both the intrin-
sic quality factor for oscillations in the open hemispher-
ical dielectric resonator (at a frequency close to that in
Fig. 1, this amounts to 4.2 × 103) and the quality factor
related to the energy losses in the dielectric. For the
same SHDR with an asymmetric air gap, the Q0 value
decreases to become approximately equal to the value
for the open hemispherical dielectric resonator already
for δd/d ≈ 0.2. As the resonance system asymmetry
increases, the Q0 of the SHDR drops further to become
as low as 103 for δd/d ≈ 1.

These results are explained by the influence of the
metal shield on the WG modes excited in the dielectric
resonator. Violation of the SHDR symmetry by chang-
ing the shield position relative to the dielectric hemi-
sphere allows the resonance frequency of the WG
modes to be reduced to within approximately 100 MHz
(Fig. 1).

Figure 2 shows plots of the output power P and the
oscillation frequency change δf versus the Gunn diode
supply voltage U for SHDR with the symmetric and
asymmetric arrangement of the dielectric resonator and
metal shield. Curves 1 illustrate the behavior of a partly
shielded resonator with the symmetric air gap and
curves 2 refer to the case of an asymmetric resonance
system with δd/d ≈ 0.7. For comparison, curves 3 show
the results of investigation of the oscillation character-
istics of an analogous Gunn diode with the open dielec-
tric resonator. The data were obtained by measurements
performed near the SHDR resonance frequency of f ≈
38.6 GHz. The output diaphragm arrangement of the
diode module corresponded to a maximum oscillating
field intensity in both shielded and open resonator.

As can be seen from Fig. 2, the SHDR with the sym-
metric air gap is characterized by a maximum output
power and a minimum slope of the electronic frequency
tuning δf(U). These results agree with the Q0 data and
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
can be explained by lower energy losses in the reso-
nance system with the symmetric air gap as compared
to the case of an open dielectric resonator or the same
SHDR with asymmetric arrangement of the dielectric
hemisphere and metal cylinder.

It should be noted that a displacement of the shield
relative to the dielectric hemisphere did not lead to the
frequency trapping in the neighboring oscillation
bands. The working frequency gradually decreased
with increasing the asymmetry, similarly to the case of
measurement of the electrodynamic characteristics.

Thus, the results of our investigation demonstrated
the possibility of exciting high-Q WG modes in a sym-
metric SHDR. The WG modes do not disappear when
an asymmetry appears in the mutual arrangement of the
dielectric resonator element and the metal shield; the
WG frequency gradually decreases with increasing
asymmetry. For the WG modes excited in the resonator
described above, the output signal frequency and power
stability level exceeded that achieved with an analo-
gous open dielectric resonator.
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Abstract—The expediency of creating optical wavelet processors capable of treating complex (in particular,
noiselike) signals is justified. The results of treating phase-modulated signals with the aid of an optical wavelet
processors are presented, which confirm the possibility of a real-time registration of the signal inhomogeneity.
© 2001 MAIK “Nauka/Interperiodica”.
The optical data processing systems are character-
ized by high operation rates determined, in fact, by
dimensions of the input and output apertures and by the
longitudinal system size. At present, the most promis-
ing data processing systems combine a fast optical pro-
cessor, performing preliminary data treatment accord-
ing to a preset algorithm, and an electronic digital pro-
cessor accomplishing the following treatment stages.
The possibilities of such hybrid systems can be
increased, in particular, by developing and implement-
ing new algorithms of the preliminary data treatment
performed by the optical processor. 

A promising direction of such development is
related to using the optical processor for calculating a
wavelet transform of a studied signal, with the forma-
tion of the corresponding time–frequency distribution.
The wavelet transform provides for an effective analy-
sis of nonstationary signals by facilitating separation
and localization of the details and features of signals
and images and determination of the characteristic
scales of such details. In the analysis of wideband and
nonstationary signals, the wavelet transform allows the
features and inhomogeneities of such signals to be
localized with high precision. 

The wavelet transform consists in expanding a sig-
nal in a basis set formed from a localized function ψ(t)
by changing the scale with transfer [1]: 

(1)

The integral wavelet transform of a function f(t) is writ-
ten in the following form: 

(2)

where the asterisk denotes complex conjugate. There is
a considerable freedom in selecting a function generat-

ψα β, t( ) α 1/2– ψ t β–( )/α[ ] .=

Wψ f[ ] α β,( ) α 1/2– f t( )ψ* t β–( )/α[ ] td

∞–

+∞

∫=

=  f t( )ψα β,* t( ) t,d

∞–

+∞

∫
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ing the basis set of a wavelet transform (base wavelet).
This is an important advantage, since a wavelet can be
selected so as to facilitate the problem solution. 

There are many functions employed for the base
wavelet construction. One of these is the Morlet wave-
let representing the product of a harmonic function by
the Gauss function 

(3)

Here, ψ(t) and Ψ(ω) are the Morlet wavelet and its Fou-
rier image, respectively; i is the imaginary unity; and
ω0 is the frequency determining the number of oscilla-
tions of the harmonic function. The wavelet transform
can be considered as a correlation or a convolution of
the studied function (signal) with a set of analyzing wave-
lets (1). In optical systems, the wavelet transforms are cal-
culated using various optical correlator schemes [2]. 

Modern communication and remote sensing sys-
tems widely employ complex, in particular, noiselike
signals. The class of noiselike signals includes phase-
modulated signals in which the carrier frequency phase
is modulated according to a pseudorandom binary
sequence. One of the tasks encountered in the analysis
of such signals consists in creating a device capable of
separating the phase jumps in the signal studied in the
real time. 

Our study is aimed at determining possibilities of
the wavelet transform processing, establishing the
promising fields of application of the optical wavelet
processors, and formulating the concept of construction
of such processors. We conducted experiments for
assessing the possibility of separating the phase jump in
phase-modulated signals with the aid of a wavelet
transform. 

The experiments were performed using a multichan-
nel optical correlator with a spatial integration facility
(Fig. 1a). In this setup, the light beam from a He–Ne
laser (λ = 0.6328 µm) passing trough a beam expander
is incident onto a mask situated in the entrance plane 3

ψ t( ) t2/2–( ) iω0t( ),expexp=

Ψ ω( ) ω ω0–( )2/2–[ ] .exp=
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Fig. 1. Schematic diagrams of the optical wavelet processors used (a) in a model experiment and (b) for a real-time signal treatment.
System (a): (1) He–Ne laser; (2) beam-forming unit; (3) entrance plane; (L1) cylindrical lens; (4) wavelet filter plane (ξ, spatial
frequency; n, wavelet number); (L2, L3) lens system performing Fourier transform in the horizontal direction and imaging in the
vertical direction; (5) exit plane; (6) mask fragment. System (b): (1) pulsed laser; (2) beam-forming unit; (L4) focusing lens;
(3) acoustooptical modulator; (L1) spherical lens; (4) wavelet filter; (L2, L3) lens system performing Fourier transform in the hor-
izontal direction and imaging in the vertical direction; (5) CCD-array TV-camera; (6) photodetector; (7) lock-in device; (8) signal
source; (9) computer. 
containing a model of the studied signal. In our experi-
ments, the signal model was an amplitude mask with a
periodic bar lattice. The lattice period was 100 µm, with
a half-period phase jump in the middle. A cylindrical
lens L1 provided the Fourier transform in the horizontal
coordinate; mask 4 contained written Fourier images of
the base wavelet, representing the Morlet wavelet [3].
The mask was manufactured with the required (Gauss-
ian) transmission function approximated by a rectangu-
lar function [3]. A fragment of the mask is shown in the
bottom left corner of Fig 1a (for clarity, only five fre-
quency channels are depicted). A system of lenses L2
and L3 provided the Fourier transform in the horizontal
direction and imaging in the vertical direction. The
light field intensity distribution was registered at the
system exit plane 5 with the aid of a CCD-array (TV-
camera). The output signal from the camera was dis-
played on a monitor and fed to a computer for storage
and processing. 

The experimental procedure consisted in recording
the light field intensity distribution in the exit plane of
the optical system depending on the phase jump posi-
tion in the input signal (in the entrance aperture). We
have also studied the intensity distribution depending
on the lattice period; a change in the spatial frequency
was achieved by rotating the mask (modeling the input
signal) about the vertical axis. The experimental results
are presented in Fig. 2, which shows dependence of the
intensity distribution on the phase jump position in the
aperture (Fig. 2a) and on the spatial frequency of the
input signal (Fig. 2b). 
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
The most interesting task was the real-time signal
processing. For the real-time operation, the experimen-
tal setup was modified as follows (Fig. 1b). The data
input was provided by a lead molybdate based acous-
tooptical modulator. Past the beam expander, the light
beam was focused on the acoustooptical modulator
with a cylindrical lens L4; cylindrical lens L1 was
replaced by a spherical one to compensate for the beam
divergence in the vertical plane caused by lens L4. In
addition, since the real-time wavelet transform record-
ing requires fast-response detector system [3], the sys-
tem was equipped with a pulsed laser (λ = 0.531 µm)
and computer-controlled lock-in device ensuring syn-
chronization of the laser and signal source. The lock-in
device introduced a preset delay between the signal
front and the laser pulse, which allowed the results to be
registered using the same camera with a CCD-array.
The signal represented a sequence of two radio pulses
with a carrier frequency of 38.5 MHz, a duration of
3.3 µs, and a phase difference of π. 

The real-time experimental procedure consisted in
recording the light field intensity distribution in the exit
plane of the optical system depending on the time delay
between the signal front and the laser pulse front. In
addition, we studied the output signal in the case of
simultaneous action of a pulsed phase-modulated sig-
nal and a continuous harmonic signal. The results are
presented in Figs. 2c and 2d in the form of time–fre-
quency distributions of the phase-modulated signal
detected without interference and with a harmonic
01
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Fig. 2. Output signals of the wavelet processor in (a, b) a model experiment and (c, d) a real-time signal treatment: (a) horizontal
axis indicates the phase jump coordinate x; (b) “experimental” spatial frequency ξe corresponding to the channel number versus
“theoretical” spatial frequency ξt corresponding to the mask rotation angle (both normalized to the spatial frequency ξ0 of the mask);
(c, d) horizontal axis indicates the delay time t measured from signal front, vertical axis shows the central wavelet frequency f in
the corresponding channel. 
interference, respectively. As can be seen from Fig. 2d,
the phase jump can be registered even in the presence
of an intense harmonic interference signal with a close
frequency. 

Thus, we have studied the possibility of using an
optical wavelet processor for analysis of the structure of
noiselike signals. For the first time, a real-time optical
wavelet processor was implemented using a pulsed
laser synchronized with the studied signal. Based on
the results of these experiments, we conclude that opti-
cal wavelet processors are promising systems for the
real-time treatment of complex signals. The possibili-
TE
ties of the wavelet processor can be markedly increased
using a variety of the base wavelets. 
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Abstract—The events of the birth and annihilation of optical vortices in topologically neutral nonparaxial com-
bined mode beams (topological dipoles) were studied. It is shown that there exists an extended domain of
parameters of the elementary beams, for which the optical vortices of the dipole annihilate near the focal plane,
thus restoring a wave field free of the wavefront dislocations. © 2001 MAIK “Nauka/Interperiodica”.
The eigenmodes of an optical fiber represent the
wavefields carrying optical vortices [1]. Even when a
mode beam exciting the optical fiber is neutral (i.e.,
such that the sum of topological charges of the field is
zero), very small perturbations of the fiber lead to the
conversion of the principal mode energy into fields con-
taining optical vortices in the bound state. The light
emitted from a multimode fiber also carries a large
number of bound vortices. As a result, the radiation
exhibits a sharply irregular intensity distribution, which
is called the speckle structure [2]. 

The vortex composition of the light beam emitted
from a fiber significantly varies with distance from the
exit edge. This is most clearly pronounced in a wave
field radiated from a multimode fiber, observed near the
focal plane of an output microobjective. Under certain
conditions, the optical vortices disappear near the focal
plane to appear again in the far radiation zone. The
effect of the sudden disappearance and appearance of
the phase singularities (dislocation reactions) of the ini-
tially smooth light field is characteristic of the non-
paraxial laser beams observed near the focal caustic [3].
These dislocation reactions are manifested by the birth
and annihilation of the anomalous Airy rings. 

The purpose of this study was to describe the birth
and annihilation of optical vortices in topologically
neutral nonparaxial combined mode beam carrying two
purely screw dislocations with topological charges of
equal magnitude but opposite sign. Such singular states
are termed the topological dipoles [4]. 

An analysis of the behavior of a nonparaxial topo-
logical dipole proceeds from the known shape of the
wavefunction of the high-order mode beams satisfying
the Helmholtz wave equation. In the first part of this
study we showed that the wavefunction of a mode beam
(reduced in the limiting case to the Laguerre–Gauss
paraxial beams) can be composed of several elementary
Legendre–Bessel beams. However, in the paraxial
asymptotics (kz0 @ 1), this Ψ-function will match the
1063-7850/01/2711- $21.00 © 20945
wavefunction of the corresponding paraxial beam
either near the focal plane (kz ! 1) or far from this
plane (kz @ kz0) rather than on the whole optical axis. 

Let us construct a new wavefunction of the com-
bined mode nonparaxial beam: 

(1)

where 

is the combined Legendre–Bessel beam matched near
the focal plane (kz ! 1) with the Laguerre–Gauss beam

;  = cosϕj1(kR) is the Legendre–Bessel

beam with m = l = 1 matched on the whole optical axis

with the paraxial beam ;  = j0(kR) is the prin-
cipal Legendre–Bessel beam with m = l = 0 matched on
the whole optical axis with the fundamental Gauss

beam ; jm(kR) are the mth order spherical Bessel

functions of the first kind; and R =  is
the complex radius of the beam. 

In terms of expression (1), it is rather difficult to pro-
vide for a rigorous analysis of the vortex trajectories.
For this reason, the distributions of intensity, amplitude,
and phase of the wave will be constructed using the
exact form of Eq. (1), while the vortex trajectories in
the form of parametric curves will be determined using
approximate Bessel functions jm(kR) ≈ (i)mj0(kR) with

R ≈ z + iz0 +  and r2 = x2 + y2 [5]. This

approximation is valid with a high accuracy even for
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relatively small values of kz0 ≥ 10 and  < 1. The most

frequently encountered situations can be divided into
two types, whereby the coefficient B in Eq. (1) is real or
imaginary. Let us consider these cases separately in
more detail. 

1. The case of real B. Equating to zero the real and
imaginary parts of Eq. (1) and subtracting the second
equation from the first one, we obtain 

(2)

where 

r
z0
----

X G–( )2 Y2 FZ2+ + 3F G2,+=

4F 1 Z2+( ) DX 2 1 Z2+( ) 52
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Fig. 1. Parametric curves of a (1) paraxial and (2) nonparax-
ial topological dipole for (a) real and (b) imaginary coeffi-
cient B. 

Y

TE
In the paraxial approximation (kz0 @ 1) for  = 0,
we obtain 

(3)

The paraxial Gauss beams are strictly determined
only near the optical axis (i.e., for r ! z0). In this case,
we may ignore the term 52 ! 1 in the square brackets
of Eq. (2). In addition, we can take into account that the
wavefunctions of the paraxial and nonparaxial dipoles
are equivalent only near the focal plane. Equation (1)
describes a second-order surface, while the surface
given by Eq. (2) significantly differs from a plane
(especially in the vicinity of the origin). Nevertheless,
for large values of the Rayleigh length (kz0 @ 1) or far
from the focal plane (kz @ 1), expression (2) is approx-
imated by an equation of the plane 2F + DX = 0. Near
the origin, this surface exhibits a dome-shaped convex-
ity in the positive (for G < 0) or negative (for G > 0)
direction of the z axis. It is this convexity that deter-
mines the main distinctions in behavior of the paraxial
and nonparaxial dipoles. 

In order to analyze the behavior of the wave system

on the parametric plane ( , ), we will use a paraxial
transition to kz0 @ 1. With an allowance for approxima-
tion (3), exact expressions (2) acquire the following form: 

(4)

The topological dipole evolution is most conve-

niently described on the parametric plane ( , ).
Here, the vortex trajectory in the parametric form can
be written as 

(5)

The characteristic curves on the parametric plane are

d2( , ) = 0 and  = 1. In Fig. 1a, curve 2 corre-
sponds to the domain of variation of the dipole param-
eters corresponding to Eqs. (4). By the same token,
curves 1 refer to the paraxial case not considered here.
Obviously, the parametric curves show a discrepancy

X
x
z0
----, Y

y
z0
----, Z

z
z0
----.= = =

Z̃
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only for small values of the parameters | |, | | ∝  1; as
the absolute values of the parameters increase, the
results asymptotically coincide. Figure 2 shows a char-
acteristic intensity distribution in the nonparaxial beam
carrying a topological dipole in the case of a real quan-
tity B. The vortex trajectories for various values of the

parameters  and  were obtained by numerical com-
puter analysis of the exact expressions for the corre-
sponding surfaces. 

F̃ G̃

F̃ G̃
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2. The case of imaginary B. Repeating the general
steps of the above analysis, we obtain analogous equa-
tions for the nonparaxial trajectories in this case: 

(6)

The parametric curve 2 in Fig. 1b agrees rather well
with the analogous curve 1 representing events in

52
3FZ2 2GXZ+ + F,=

4FZ 1 Z2+( ) GX 2 1 Z2+( ) 52
–[ ]+ 0.=
01
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accordance with the parabolic wave equation. Although
the curves for paraxial beams exhibit a good coinci-
dence, there are significant discrepancies in the course
of events in the nonparaxial beam. 

Indeed, almost the whole parametric plane features
a coincidence of the paraxial and nonparaxial behavior
of the topological dipole with an imaginary coefficient B
(Figs. 2e and 2f). At first glance, each cross section of
the mode beam contains only two singular points corre-
sponding to the dipole vortices. However, for relatively
small values of F < 1, but with G > 10, the vortex tra-
jectories possess four branches, two of which intersect
the focal plane (Fig. 2e). Therefore, some of the beam
cross sections contain four singular points. As the
parameter F increases at a constant G, the four branches
merge to form a single closed trajectory with an
involved shape (Fig. 2f). Now, if the parameter F
increases for a G value corresponding to the working
point occurring inside the region II, the initial trajec-
tory smoothly transforms into a quasi-elliptical. If the
F value is fixed and G increases, the trajectories trans-
form into quasi-hyperbolic vortex trajectories intersect-
ing the focal plane. Thus, two vortices are born near the
focal plane at Z < 0. These vortices propagate in the
negative direction of the optical axis, exhibit reflection
from the allowed zone boundary, intersect the focal
plane, and eventually (after reflections from the oppo-
TE
site boundaries of the allowed zone) annihilate near the
focal plane. 

In concluding, it should be noted that a topologically
neutral combined mode beam not carrying free optical

vortices always has a large domain of parameters  and

, for which a light field free of the bound vortex states
exists in the vicinity of the focal plane Z = 0. Apparently,
we may expect that, provided a unit optical vortex
exists in the initial radiation and a topological dipole
appears in the beam as a result of perturbation, the
dipole vortices would annihilate in the vicinity of the
focal crossover so as to restore the initial wave field. 
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Abstract—The stability of a current-carrying rectangular liquid metal conductor with respect to small longitu-
dinal surface perturbations was theoretically studied. It is shown that the instability increment tends to zero in
both short- and longwave limits and, hence, passes through a maximum at a finite wavenumber. The character-
istic times of instability development are estimated. © 2001 MAIK “Nauka/Interperiodica”.
As is known [1, 2], the surface of a liquid metal con-
ductor carrying electric current is unstable, predomi-
nantly featuring the development of shortwave pertur-
bations. Our previous investigations [3–5] also showed
that the action of Lorentz forces may lead to the con-
vective magnetohydrodynamic instability development
under certain conditions in conductors possessing a
fixed boundary. In this case, perturbations with a wave-
length on the order of a minimum characteristic size of
the system will predominantly develop. The question as
to how the possible nucleation of convective structures
can influence the behavior of a conducting liquid with
a free surface naturally arises. In this context, the pur-
pose of our study was to analyze the dynamics of the
boundary of a current-carrying liquid for a geometry
where this influence can be significant and, in particu-
lar, to reveal mechanisms responsible for the develop-
ment of large-scale surface instabilities.

Consider a liquid-metal conductor with a rectangu-
lar 2b × 2a cross section (a ! b) and sides a and b cor-
responding to the x and y coordinate axes, respectively.
Let a constant electric current to flow in the direction of
the conductor symmetry axis z (see figure). The liquid
metal is assumed to be incompressible and possessing
a constant conductivity σ. The magnetic hydrodynamic
equations of this system are as follows:

(1)

(2)

(3)

where v = {v x, v y, v z}, H = {Hx, Hy, Hz}, and P are the
velocity, magnetic field strength, and pressure, respec-
tively; ρ is the density; νm = c2(4πσ)–1 is the magnetic

∂tv v ∇⋅( )v+

=  ρ 1– ∇ P– 4πρ( ) 1– ∇ H×( ) H×( ),+

∂tH v ∇⋅( )H+ H ∇⋅( )v νm∇ 2H,+=

∇ v⋅ 0, ∇ H⋅ 0,= =
1063-7850/01/2711- $21.00 © 20949
viscosity; and c is the speed of light. Let us represent
the magnetic field and pressure as

where H0 and P0 are unperturbed (i.e., corresponding to
the condition v = 0) distributions of the magnetic field
strength and pressure, respectively, and h and p are
small perturbations. The H0 value is determined by the
Biot–Savart law [6],

where j = {0, 0, I/(4ab)} is the current density (assumed
to be homogeneously distributed), I is the total electric
current through the conductor, r⊥  is the projection of
the radius vector onto the conductor cross section
({x, y} plane), and dS is the area element in this cross
section. According to Eq. (1), in combination with the
condition of constant pressure on the liquid surface, the
function P0(x, y) is uniquely determined by the unper-
turbed distribution H0.

Assuming that the symmetry relative to the y = 0
plane is retained during the instability development
(see [7]) and using relationships (1)–(3) in a linear

H H0 h, P+ P0 p,+= =

H0 x y,( ) 2c 1– r 2– j r⊥×[ ] S,d

s

∫=

Û a
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b b
z

x

1

H
j

A schematic diagram illustrating the geometry of a rectan-
gular liquid metal conductor (2a ! 2b ! l); curves with
arrows represent the magnetic field lines.
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approximation with respect to the perturbations v, p,
and h, we obtain

(4)

(5)

(6)

where relationships (4) and (5) are obtained by apply-
ing “rot” and “div” operations, respectively, to Eq. (1).
The boundary conditions for this system of equations
are as follows:

(7)

(8)

where ±η(z, t) are small perturbations of the conductor
surfaces x = ±a in the cross section by the plane y = 0.

Now, we will employ the presence of a small param-
eter a /b in the problem. In the main order of expansion
with respect to a/b, the unperturbed magnetic field and
pressure at the conductor symmetry plane y = 0 are as
follows:

(9)

Taking into account that the motion of liquid near the
plane y = 0 can be considered as virtually two-dimen-
sional (the characteristic scale of variation in y is much
greater than the corresponding scales in the x and z
axes), we introduce the current function ψ(x, z, t) such
that ∂zψ = –v x|y = 0 and ∂xψ = v z|y = 0 . In addition, we
introduce the functions h(x, z, t) = hy|y = 0 and
4π (x, z, t) = (4πp + H0yhy)y = 0 . Let us also neglect
dependence of the magnetic field perturbation h on the
variable y and omit the derivative ∂yhx in Eqs. (5) and
(8) (this derivative cannot be self-consistently deter-
mined from system (4)–(9)). Note that this is the only
assumption adopted not following from the problem
symmetry considerations. Upon converting equations
into a dimensionless form with the aid of substitutions

we exclude the spatial coordinate y and reduce
Eqs. (4)–(6) to the following system of equations (in
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TE
the main order of expansion with respect to a/b):

(10)

(11)

(12)

where ∆⊥  =  +  is the two-dimensional Laplace
operator. The boundary conditions (7) and (8) at x = ±α
acquire the form

(13)

where the quantity α = [(I2a3)/(2ρ b3c2)]1/4 plays the
role of an external control parameter. Equations (10)–
(13) form a closed system describing the instability
development in a current-carrying liquid-metal conduc-
tor in the vicinity of the symmetry plane y = 0.

Let us turn to the linear analysis of instability of the
liquid surface. For this purpose, the functions , h, ψ,
and η are conveniently presented in the following form:

where k is the wavenumber and δ is the instability
increment. Below, we assume δ to be real, which
implies that the consideration is restricted to aperiodic
surface instabilities. Substituting these expressions into
Eqs. (10)–(13), we obtain a system of ordinary linear
equations

with the boundary conditions at x = ±α

Solving these equations, we find a relationship between
the quantities δ and k (i.e., a dispersion relationship for
the surface waves),

(14)

where s1, 2 = (δ/2 + k2 ± )1/2 and

∂t∆⊥ ψ ∂zh,=

∆⊥ p̃ ∂xh,–=

∂th ∆⊥ h– ∂zψ,=

∂x
2 ∂z

2

p̃ = 0, h = η , ∂tη+−  = ∂zψ,+−

∂t
2η η 2∂x p̃,+−=

νm
2

p̃

p̃ x z t, ,( ) p' x( )eikz δt+ c.c.,+=

h x z t, ,( ) h' x( )eikz δt+ c.c.,+=

ψ x z t, ,( ) ψ' x( )eikz δt+ c.c.,+=

η z t,( ) η'eikz δt+ c.c.,+=

dx
2ψ' k2ψ'– ikδ 1– h',=

dx
2
p' k2 p'– dxh',–=

dx
2h' k2 δ+( )h'– ikψ'–=

p' 0, h' η', ψ'+− iη'k 1– δ,±= = =

dx p' η' 1 δ2–( )/2.±=

2k kα( ) A j s jα( )coth
j 1=

2

∑tanh 1 δ2,–=

δ2/4 k2/δ+
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The complexity of the transcendental equation (14)
hinders investigation of the general case, but we may
find an explicit expression for the increment as a func-
tion of the wavenumber in the long- and shortwave
approximations. Expanding Eq. (14) in powers of k or
k–1, respectively, we obtain in these limits, to within the
terms of a higher order of smallness,

(15)

(16)

Here, we assumed δ ≥ 0; that is, we considered the
unstable branch of the dispersion relationship. As can
be seen from Eqs. (15) and (16), the instability incre-
ment δ tends to zero for both k  0 and k  ∞.
From this, we infer that δ is a nonmonotonic function
of k and, hence, the increment acquires a maximum
value δmax (determined by the problem parameter α) at
a certain finite wavenumber k.

Let us estimate the δmax(α) value. A rough estimate
from above can be obtained from the intersection of
asymptotes (15) and (16). The increments corresponding
to these expressions coincide at k = 2–3/8(π/α)3/2 and,
hence,

In order to estimate the δmax value from below, we
may compare the instability increments for the free-
boundary problem under consideration and the fixed-
boundary problem obtained from Eqs. (10)–(13) by
putting η = 0. In the latter case, we may assume that
h' ~ ψ' ~ sin(πx/α). Substituting these relationships into
Eqs. (10) and (12), we obtain the following algebraic
characteristic equation:

(17)

For a positive root of this equation, determining the
instability dynamics, the main-order asymptotics in the
longwave limit coincides with (15) and in the short-
wave limit, is represented by δ  k–2. This result
implies that the maximum instability increments of the
fixed-boundary problem, as well as that of Eq. (14),
corresponds to a certain finite wavenumber k. Note that
the increment for k  ∞ in this problem decays more
rapidly than the increment (16) in the free-boundary
problem. The same conclusion follows from a compar-
ison of the higher orders of expansion in the power of k
for the two increments in the limit of k  0. From
this, we may infer that, at any fixed k, the instability
increment in the free-boundary problem under consid-
eration is greater than that in the fixed-boundary prob-
lem. In other words, the possibility of deformation of
the liquid surface accelerates the development of per-

A1

s1 s2
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2 k2–( ) s2

2 s1
2–( )

----------------------------------------, A2

s2 s1
2 k2–( )
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2 k2–( ) s2

2 s1
2–( )

----------------------------------------.–= =

δ α/π( )4k2, k 0,=
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turbations. Therefore, the instability increment corre-
sponding to (14) can be estimated from below as

where δ0 is the maximum increment for Eq. (17). The
δ0 values and the wavenumbers k0 for the most rapid
spatial harmonics can be determined by jointly solving
Eq. (17) with the condition ∂kδ = 0. In particular,

which implies that a characteristic scale of the convec-
tive excitation structure for small values of the control
parameter (α ~ I1/2) is comparable to the conducting
layer thickness a, while for large values of α, the small-
scale spatial modes are most rapid. This conclusion is
applicable to the case of a current-carrying liquid with
the free boundary considered in our problem.

Thus, an analysis of stability of a rectangular liquid
metal conductor showed that there exists a mechanism
of development of the large-scale surface instability
related to a convective magnetohydrodynamic instabil-
ity of the current-carrying medium. Note that, in the
case of a cylindrical conductor (in description of the
stratification development in the initial stage of an elec-
tric explosion), it is necessary to take into account the
surface tension in order to eliminate a divergence of the
dispersion relationship in the shortwave limit [1, 2].
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Abstract—It was found that high-temperature superconductor (HTSC) based composites of the 1–2–3
(YBCO) + dielectric and YBCO + normal metal types exhibit large magnetoresistances in weak magnetic fields
in a broad temperature range. This behavior is qualitatively explained using the concept of the irreversibility
line in HTSCs and the mechanism of thermal fluctuations in the network of weak bonds of the Josephson type
realized in HTSC composites. The HTSC-based composites exhibit a much higher sensitivity (as compared to
that in the usual HTSC ceramics) to weak magnetic fields (below 300 Oe) at liquid-nitrogen temperatures,
which is important for practical applications. © 2001 MAIK “Nauka/Interperiodica”.
The resistivity ρ of polycrystalline high-tempera-
ture superconductors (HTSCs) at temperatures below
the superconducting transition temperature Tc is highly
sensitive to weak magnetic fields [1, 2]. This sensitivity
is explained by dependence of the resistive state of such
HTSCs on the state of grain boundaries representing
weak bonds of the Josephson type [1–3] known to be
very sensitive to external magnetic fields [4]. However,
the temperature interval in which the HTSC ceramics
exhibit a large magnetoresistance in weak magnetic
fields is very narrow, typically amounting to several
degrees (e.g., 85–90 K for the yttrium ceramics and
90−100 K for the bismuth ceramics [2]). This circum-
stance probably accounts for the fact that the above
magnetoresistance effect in HTSC ceramics is insuffi-
ciently studied from the standpoint of practical applica-
tions. At the same time, extensively studied are the
related materials such as the HTSC-based composites
(see, e.g., [5–12]). These materials exhibit interesting
transport [5, 6, 10, 12] and magnetic [9] properties.
Below, we report on the results of our investigation of
the magnetoresistance effect in weak magnetic fields in
bulk composites of the HTSC + normal metal and
HTSC + dielectric types. 

The samples of composites were synthesized as fol-
lows. The 1–2–3 HTSC composition Y3/4Lu1/4Ba2Cu3O7
(referred to below as YBCO) was prepared using a stan-
dard technology.1 In the YBCO + dielectric composites,

1 We selected the yttrium ceramics with lutetium because this base
composition was employed for the preparation of HTSC- based
composites in [10–12]. The character of the experimental data is
generally the same for pure YBa2Cu3O7 based composites.
1063-7850/01/2711- $21.00 © 20952
the dielectric component was CuO of a special purity
grade [13]. BaPbO3 oxide obtained by solid-state syn-
thesis from BaO2 and PbO was used as the normal
metal [14]. The mixtures of powdered components
taken in stoichiometric proportions were thoroughly
mixed in an agate mortar and pressed into tablets. The
tablets were annealed according to the following sched-
ule: 5min at 930°C and 6 h at 400°C for the composites
with BaPbO3; 2 min at 910°C and 3 h at 350°C for the
composites with CuO. After the final annealing stage at
350–400°C, the samples were cooled down to room
temperature with the furnace (for detail, see [10, 11]). 

The X-ray diffraction investigation of HTSC-based
composites showed only the reflections due to phases
of the initial components, which was evidence of the
absence of chemical interactions between these compo-
nents. The electron-microscopic observation of HTSC-
normal metal composites showed that an average size
of the YBCO grains in this material was ~1.5 µm. The
transport properties (resistivity below Tc , critical cur-
rent, current–voltage characteristics) of the composites
were reported in detail elsewhere [10–12]. The experi-
mental data on the effect of a magnetic field on the
resistivity of these materials are presented for the first
time. 

The ρ(T) curves were measured using a standard
four-point-probe method in the sample heating mode,
with a magnetic field H applied perpendicularly to the
current direction. The samples were cooled in the Earth
magnetic field. Figures 1 and 2 show the ρ(T) curves of
the composites measured at a constant value of the
probing transport current (indicated in the legends to
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Temperature dependences of the resistivity ρ of a 85 vol % YBCO + 15 vol % BaPbO3 composite measured at various values

of the applied magnetic field strength H = 0 (1), 38 (2), 79 (3), and 270 Oe (4) using a probing current density of 50 mA/cm2. The
inset gives the plot of ρ versus H at T = 77 K. 
figures) and variable magnetic field. The jump in ρ at
T = 93.5 K corresponds to a transition to the supercon-
ducting state in HTSC grains. This temperature coin-
cides with Tc of the composites and the initial YBCO
determined from the results of magnetic measurements.
The relative magnitude of the resistivity jump depends
neither on the transport current (as established in [10, 11])
nor on the applied magnetic field (see Figs. 1, 2) and
varies only with the bulk ratio of the components. The
transition of a composite sample into the state with
“zero” resistance (measured with an accuracy of
~10−6 Ω cm) is manifested by an extended ρ(T) branch
(“tail”). Such behavior of ρ(T) reflects the influence of
the grain boundaries, the role of which in the composite
is played by the non-HTSC component. This branch of
the ρ(T) curve of the composite exhibits a strong
dependence on the transport current [10, 11] and the
magnetic field strength. 

The insets to Figs. 1 and 2 show the plots of ρ(H)
measured at T = 77 K. Below the magnetic field strength
of H ≈ 40 Oe, the initial (forward) and reverse branches
of the ρ(H) dependence coincide. For H > 40 Oe, the
reverse branch of ρ(H) is lying below the initial curve.
When the external field strength is decreased down to
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
H ≈ 0 (the Earth’s magnetic field was not shielded), the
resistance is greater than that before switching the field
on (these data are not depicted in the figures). Such a
behavior of the ρ(H) is related to the effect of vortex
pinning in the HTSC grains. The results of a detailed
investigation of ρ(H) at various temperatures will be
reported separately. Here, we would like only to
emphasize that ρ is highly sensitive to relatively weak
magnetic fields (below ~300 Oe) at 77 K. As the H
value is increased further, the ρ(H) value at 77 K grows
rather weakly, as can be seen from the plots of ρ(H)
measured at H = 1, 10, and 60 kOe for the sample of
70 vol % YBCO + 30 vol % CuO (Fig. 2). Note that the
resistivity transition in HTSC grains also exhibits
smearing when the field increases to H ~ 10–60 kOe
(Fig. 2), the magnitude of this effect in the composite at
~10 K for H = 60 kOe being comparable to that in
YBCO single crystals [15]. 

Using the concept of the irreversibility line in
HTSCs and the mechanism of thermally activated
phase slippage [16] in the Josephson junction, Tin-
kham [15] theoretically derived an expression for the
resistivity transition width as a function of the applied
magnetic field strength: ∆Tc(R = 0) = CH2/3 and indi-
cated that this result is applicable both to HTSC single
01
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Fig. 2. Temperature dependences of the resistivity ρ of a 70 vol % YBCO + 30 vol % CuO composite measured at various values
of the applied magnetic field strength H = 0 (1), 38 Oe (2), 79 Oe (3), 183 Oe (4), 1 kOe (5), 10 kOe (6), 60 kOe (7) using a probing
current density of 50 mA/cm2 and H = 60 kOe (8) using a probing current density of 0.5 A/cm2. The inset gives the plot of ρ versus
H at T = 77 K. 
crystals and to a network of weak contacts of the
Josephson type realized in polycrystalline HTSCs.
However, the constant factor C in the latter case must be
greater than that for the single crystal, which implies
that the magnetoresistance effect will be manifested in
weak magnetic fields. 

Figure 3 shows the plots of ∆Tc = Tc(H, R = 0) –
Tc(H = 0, R = 0) versus H2/3. As can be seen, the exper-
imental points fit well to the straight lines constructed
in the coordinates of the Tinkham relationship for the
field strengths below H ~ 300 Oe. The temperatures of
zero resistance at H = 1, 10, or 60 kOe do not obey this
relationship: the experimental curves of R(H) and
R(T, H) differ from those calculated by the model pro-
posed in [15]. This can be related to the fact that this
mechanism is applicable only in the case of low resis-
tivity and small field strengths. In our composites, it is
probably necessary to take into account the distribution
of grain boundaries with respect to thickness. It must be
noted that the ρ(T ) curves for HTSC + CuO compo-
sites [10] at various values of the transport current were
successfully described within the framework of a
mechanism [16] based on the thermoactivated phase slip
in the Josephson junction. The behavior of the ρ(T, H)
TE
function in a range of both weak and strong magnetic
fields will be considered in a special publication. 

Thus, the YBCO + CuO and YBCO + BaPbO3 bulk
composites exhibit a greater magnetoresistance effect
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Fig. 3. The plots of ∆Tc = Tc(H, R = 0) – Tc(H = 0, R = 0)

versus H2/3 for various HTSC composites: (squares)
85 vol % YBCO + 15 vol % BaPbO3; (triangles)
85 vol % YBCO + 15 vol % CuO; (circles) 70 vol % YBCO +
30 vol % CuO. 
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than HTSC ceramics in weak magnetic fields (below
300 Oe) at liquid nitrogen temperature. This behavior is
of interest for practical applications. 
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Abstract—The formation of a voltage–luminance characteristic of zinc sulfide based electroluminescent thin-
film emitters was studied by measuring the instantaneous brightness and current kinetics in an active regime
together with the mean field kinetics in the phosphor layer, the charge dependence of the instantaneous bright-
ness, and the current–voltage characteristics. The appearance of a saturation region on the voltage–luminance
characteristic is explained in terms of a decrease in the effective phosphor layer and a change in the mechanism
of charge carrier scattering. © 2001 MAIK “Nauka/Interperiodica”.
One of the main features of electroluminescent thin-
film (ELTF) emitters is the presence of a saturation por-
tion on their voltage–luminance diagrams presenting
the average (apparent) brightness as a function of the
amplitude of an alternating-sign excitation voltage [1].
This behavior can be explained by (i) saturation of the
voltage across that part of the device structure where
excitation of the electroluminescence takes place, (ii)
devastation of the source of electrons injected into a
string field region of the phosphor, and (iii) increase in
the fraction of nonradiative transitions in the phosphor
probably accompanied by a decrease in the quantum
yield and the luminous efficiency [1]. 

The purpose of this work was to study the factors
determining the ELTF brightness saturation with
increasing excitation voltage by measuring the instan-
taneous kinetics of luminance L and current Ip passing
through the phosphor layer in an active regime together
with variation of the mean field Fp in the phosphor
layer, the charge dependence of the instantaneous
brightness, and the current–voltage and some other
characteristics. 

The experiments were performed on ELTF emitters
with an MISIM type structure, where M layers repre-
sent a lower transparent 0.2-µm-thick SnO2-based elec-
trode deposited onto a glass substrate and the upper
nontransparent thin-film Al electrode with a thickness
of 0.15 µm and a diameter of 1.5 mm, S is the 0.48-µm-
thick electroluminescent ZnS:Mn (0.5 wt %) layer,
and I are the 0.17-µm-thick insulating ZrO2–Y2O3

(13 wt %) layers. The ZnS:Mn phosphor layer was
obtained by thermal evaporation in a quasi-closed vol-
ume in vacuum and deposition onto a substrate heated
to 250°C, followed by the annealing for 1 h at 250°C.
The upper nontransparent metal electrode was also
obtained by thermal deposition in vacuum, and thin
1063-7850/01/2711- $21.00 © 20956
insulating layers were prepared using the electron-
beam deposition technique. 

We have experimentally measured the time varia-
tion of the instantaneous luminance L and current Ie of
ELTF emitters excited with alternating-sign voltage
pulses of a triangular shape V(t). The excitation signal
was supplied from a G6-34 generator equipped with an
additional shaping amplifier and controlled by a G5-89
master generator. The maximum pulse amplitude was
Vm = 160 V at a nonlinearity coefficient not exceeding
2%. A single excitation cycle represented a train of two-
period triangular pulses with a repetition rate of f =
10 Hz. In the first half-period, either positive or nega-
tive excitation half-wave can be applied to the upper
electrode, which is referred to as the +Al and –Al
regimes, respectively. The time interval between single
excitation cycles was 1 s. The Ie value was measured in
a 10 kΩ resistor connected in series with the ELTF
emitter structure (the voltage drop on this resistor did
not exceed 1 V). The instantaneous luminance was
measured with a photoelectron multiplier tube of the
FEU-84-3 type. 

The patterns of excitation voltage V(t), ELTF emit-
ter current Ie(t) and instantaneous luminance L(t) were
recorded with the aid of a two-channel storage oscillo-
graph of the S9-16 type linked via an interface to a per-
sonal computer. The system ensured the measurement
and storage of 2048 experimental points at a preset dis-
cretization period in each channel and 256 levels of the
amplitude quantization. The data were mathematically
processed and graphically displayed using the applica-
tion program packages MAPLE V (Release 4, Version
4.00b) and GRAPHER (Version 1.06, 2-D Graphing
System). 

The time variation of the mean field Fp(t), the cur-
rent Ip(t), and the charge transferred through the phos-
phor layer Qp(t) during the ELTF operation were mea-
001 MAIK “Nauka/Interperiodica”
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sured as described elsewhere [2] for the insulator layer
capacitance Ci = 730 pF and the phosphor layer capac-
itance Cp = 275 pF determined with the aid of an E7-14
immitance meter for the known ELTF emitter geome-
try. The average luminance was calculated by the Talbot
law for a pulsed radiation source 

(1)

where T = 1/f is the excitation voltage period. 
The total body of experimental data obtained as

described above allowed us to consider the formation of
the voltage–luminance characteristic in detail and
determine the factors responsible for the average
brightness Le saturation with increasing excitation volt-
age amplitude Vm . The families of various characteris-
tics illustrating a variation of the electroluminescence
kinetics with increasing Vm are presented in Fig. 1. As
can be seen from these data, one (“fast”) region of the
L(t) buildup [2, 3] to the upper point 1 is observed for
the excitation voltage amplitude up to Vm = 120–125 V
(Fig. 1a), under which conditions the Ip(t) and Qp(t)
curves also exhibit a single region of fast increase
(Figs. 1b, 1g). All these buildup kinetics are described
by exponents with the same time constant and the L(Ip)
plot is close to linear (Fig. 1d). Here, the character of
the mean field variation kinetics Fp(t) in the phosphor
layer (Fig. 1c) closely follows the law of the excitation
voltage variation V(t) = Vmt/tm . This fast region corre-
sponds to a weak hysteresis of the current–voltage
characteristic Ip(Fp) of the phosphor layer (Fig. 1e) and
to a sharp increase in the average luminance Le on the
voltage–luminance characteristic close to  ~ Vm

(Fig. 1h). 
When Vm is increased by 5–10 V, the second

(“slow”) region of increase appears on the Ip(t) curve in
which the rate of the current buildup changes sign. The
analogous region appears on the L(t), L(Ip), and L(Qp)
curves as well. The Fp(t) plot more significantly devi-
ates from linear. The current–voltage characteristic
Ip(Fp) of the phosphor layer exhibits a more pro-
nounced hysteresis, which is explained by the recharge
of deep donor and acceptor centers and the correspond-
ing change of the space-charge fields of these centers in
the near-anode and near-cathode regions of the phos-
phor layer [2, 4]. The voltage–luminance characteristic
exhibits a transition to the saturation behavior. With
further increase in Vm , the “slow” buildup regions are
completely manifested in the L(t) and L(Ip) curves. The
Fp(t) curve strongly deviates from linear. The current–
voltage characteristic Ip(Fp) of the phosphor layer mea-
sured at a given frequency f shows the appearance of an
S-shaped region and exhibits a considerable hysteresis.
The voltage–luminance characteristic Le(t) reaches sat-
uration (Fig. 1h, curve VIII). Here, the point 1' corre-

Le
2
T
--- L t( ) t,d

0

T /2

∫=

Lelog
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sponds to the onset of a significantly weaker variation
of L(t), Ip(t), and Fp(t) for Vm = 160 V; point 1" corre-
sponds to the onset of formation of the S-shaped region
on the current–voltage characteristic; and point 2 corre-
sponds to V(tm) = Vm (Fig. 1f). 

The +Al regime is characterized by higher L values
and somewhat different L(t) shape as compared to the
−Al regime (see Fig. 1a), while the Ip(t) shapes in the
two regimes are close, in agreement with [2, 3].
Accordingly, the L(Ip), L(Qp), and L(Fp) curves (see
Figs. 1d, 1e, and 1g), as well as the voltage–luminance
characteristic Le(t) (see Fig. 1h, curve VIII) for the +Al
variant, are lying above those for the –Al regime. The
total voltage–luminance characteristic over the entire
excitation period V(t), obtained by averaging the curves
for the two partial regimes +Al and –Al, occupies an
intermediate position (Fig. 1h, curve IX). 

It should be noted that the shape of L(Ip) in the
region between points 1 and 2 significantly depends on
the excitation voltage frequency and the application
regime (+Al versus –Al). As the frequency increases,
both sublinear and superlinear portions may appear,
which are related to a change in the relationship
between the rates of variation of the luminance L(t) and
current Ip(t) in this region and is explained by modifica-
tion of the current–voltage characteristic of the phos-
phor layer. 

The shapes of the L(t), Ip(t), L(Fp), Ip(Fp), L(Qp), and
L(Ip) curves suggest that the main reason for the appear-
ance of the saturation region on the voltage–luminance
characteristic is a change in the charge carrier transfer
through the phosphor layer. This change is caused by
modification of the electric field distribution in this
layer, which results in a decrease in the rate of growth
(or even in the absolute value) of the luminance L with
increasing current Ip or charge Qp (see Figs. 1d and 1g).
This is indicative, on the one hand, of a decrease in the
number N1(t) of emission centers excited by one elec-
tron passing through the phosphor layer [1], since the
luminance L(t) is related to N1(t) and the concentration
of excited emission centers N*(t) by the formula [1, 3] 

(2)

where A is a constant, τ* is the emission center lifetime
in the excited sate, Pr  is the probability of radiative
relaxation of the emission center, 

(3)

dp(t) is the effective thickness of the phosphor layer in
which the impact ionization of the emission centers
takes place, σ is the impact ionization cross-section,
and N is the concentration of the emission centers. 

The decrease in N1(t) is probably explained by a
decrease in dp(t) related to the recharge of deep donor
centers formed by the zinc vacancies VZn at the anode,

L t( )
AN1 t( )N* t( )Pr

τ*
--------------------------------------,=

N1 t( ) dp t( )σN ,=
01
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Fig. 1. The formation of a voltage–luminance characteristic of a zinc-based ELTF emitter illustrated by the (a) L(t), (b) Ip(t),
(c) Fp(t), (d) L(Ip), (e) L(Fp), (f) Ip(Fp), (g) L(Qp) and (h) Le(Vm) curves (Vm , regime): (I) = 120 V, –Al; (II) 125 V, –Al; (III) 140 V,
−Al; (IV) 150 V, –Al; (V) 125 V, –Al; (VI) 160 V, +Al; (VII) Le(Vm), –Al; (VIII) Le(Vm), +Al; (IX) Le averaged over the period V(t). 
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which is accompanied by a decrease in the field
strength near the anode and the mean field strength Fp

in the phosphor layer [2, 5, 6] and by the appearance of
an S-shaped portion in the current–voltage characteris-
tic (Fig. 1f). As a result, the energy of the free electrons
at the anode may become insufficient to excite the Mn2+

emission centers. 

On the other hand, the concentration of the excited
emission centers N*(t) is proportional to the probability
of excitation per unit time α(t). This probability is
determined in the general case by the expression 

(4)

where n(t) and v (t) is the concentration and velocity of
the free electrons accelerated to the energy of excitation
of the emission centers. In the region between points 1
and 2 (see Fig. 1), the system features processes related
to the ionization of deep centers. This is accompanied
by scattering of the charge carriers (and dissipation of
their energy) on these centers, leading to a decrease
in the n(t) and v (t ) values and, hence, in the probabil-
ity α(t ). 

α t( ) σn t( )v t( ),=
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
On the whole, the appearance of the saturation
region on the voltage–luminance characteristics of
ELTF emitters can be related to both mechanisms con-
sidered above, since the underlying processes are inter-
related. 
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Abstract—The results of numerical experiments reveal and illustrate the scaling properties manifested under
the noise action at a bicritical point situated at the chaos boundary in a system of two unidirectionally coupled
subsystems featuring the period doubling. © 2001 MAIK “Nauka/Interperiodica”.
In recent years, the attention of researchers has been
drawn to problems related to the synchronization of
systems with complex dynamics. Many situations of
this type are of interest from both the theoretical stand-
point and in applications involving hidden communica-
tion systems, control of chaos, and various phenomena
in biological objects [1]. 

Let us turn to one of the interesting situations
involving two partial systems capable of passing to chaos
via a cascade of period-doubling bifurcations. We will
assume that one partial system acts upon the other, while
the reverse action is absent. In this case, a special type of
complex dynamics, called bicritical [2], may take place
at the chaos threshold. According to this, a bicritical
point exists on the plane of control parameters that
belongs to the chaos boundary in both subsystems. The
vicinity of this point exhibits a universal behavior char-
acterized by several features established based on the
renormalization group analysis [3–5]. Such a bicritical
behavior was found by numerical calculations for non-
autonomous oscillators [6] and the Chua schemes with
unidirectional (one-way) coupling [7] and was experi-
mentally observed for a system of two nonautonomous
nonlinear oscillatory circuits [2, 8]. In real systems, the
phenomena of complex dynamics always take place on
the noise background. Therefore, the study of the effect
of noise on the bicritical behavior is a task of impor-
tance. 

Below, we will establish the properties of self-simi-
larity (scaling) for the systems with bicritical dynamics
in the presence of noise. This study can be considered as
a generalization of the results of Crutchfield et al. [9],
which cover the effect of noise on the transition to
chaos according to Feigenbaum in systems featuring
period doubling, to the case of bicritical behavior. 

The simplest model exhibiting bicritical behavior is
offered by a system of two logistic maps with unidirec-
1063-7850/01/2711- $21.00 © 0960
tional coupling [3–5, 10]: 

(1)

Here, x and y are the dynamic variables of two sub-
systems with the control parameters λ and A, respec-
tively; B is the system coupling parameter; γ and ε are
the noise amplitudes in the two systems; and ηn and ζn

are random sequences. According to Kim [5], the bicrit-
ical point of system (1) with B = 0.45 in the absence of
noise has the coordinates λC = 1.4011552 and AC =
1.0900943. The renormalization group analysis indi-
cates that the vicinity of this point possesses a self-sim-
ilar structure (scaling) with the scaling constants δF =
4.669201 and δB = 2.392724. In the presence of noise,
the degree of its action upon the fractal structure in the
plane of parameters and in the phase space must obvi-
ously increase at higher resolution levels, which will
result in violation of the self-similarity. Crutchfield
et al. [9] demonstrated that, in the case of a Feigen-
baum cascade of the period-doubling bifurcations, the
observation of each next doubling level would require
the noise level to be reduced by a factor of µF =
6.619036… Let us consider the question as to the factor
µB by which the level of noise introduced to the second
subsystem has to be reduced in order to observe the new
level of the fractal structure associated with the bicriti-
cal behavior. 

Let us rewrite in a generalized form the equations
for the systems with unidirectional coupling so as to
take into account the noise added only to the second
subsystem: 

(2)

In particular, for model (1), G(x) = 1 – λx2, U(x) = 1,
F(x, y) = 1 – Ay2 – Bx2, and V(x, y) = 1. The stochastic

xn 1+ 1 λ xn
2

– γnn,+=

yn 1+ 1 Ayn
2– Bxn

2– εξn.+=

xn 1+  = G xn( ), yn 1+  = F xn yn,( ) εV xn yn,( )ηn.+
2001 MAIK “Nauka/Interperiodica”
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map (2) describes the evolution of the system during
one step of discrete time. Applying this operation twice,
we obtain the two-step map. Assuming that the noise
parameter is small (ε < 1), we may neglect the terms
higher than the first order in ε. Substituting variables
x  x/α and y  y/β, we eventually obtain 

(3)

+ 

Assuming now that elements of the random
sequence ηn are independent (white noise), we may
redefine the random process acting upon the system so
as to rewrite Eqs. (3) in a form analogous to Eq. (2): 

(4)

Then, we can multiply repeat the above procedure to
obtain a sequence of the functional relationships:

(5)

where the subscript “y” indicates the derivative of F
with respect to the second argument. 

At the bicritical point, selecting the renormalization
constants equal to α = –2.502907… and β =
−1.505318… makes the functions Gk(x) and Fk(x, y)
converging to the limits g(x) and f(x, y) satisfying the
following equations [3, 4]: 

(6)

The first equation coincides with the known Feigen-
baum–Cvitanovic equation [11]. The results obtained
by numerically solving the second equation in (6) were
reported elsewhere [3, 4]. 

The function playing the role of the random pertur-
bation amplitude for k  ∞ behaves asymptotically

as Vk(x, y) ≅ , where Θ =  is the maxi-

xn 2+ αG G xn/α( )( ),=

yn 2+ βF G xn/α( ) F xn/α yn/β,( ),( )=

+ βε Fy' G xn/α( ) F xn/α yn/β,( ),( )V xn/α yn/β,( )ηn[

V G xn/α( ) F xn/α yn/β,( ),( )ηn 1+ ] .

xn 2+ G1 xn( ),=

yn 2+ F1 xn yn,( ) εV1 xn yn,( )+ ηn.=

Gk 1+ αGk Gk x/α( )( ),=

Fk 1+ x y,( ) βFk Gk x/α( ) Fk x/α y/β,( ),( ) ,=

Vk 1+ x y,( )

=  β Fk y,' Gk x/α( ) Fk x/α y/β,( ),( )Vk x/α y/β,( )( )2[

+ Vk Gk x/α( ) Fk x/α y/β,( ),( )( )2 ]1/2
,

g x( ) αg g x/α( )( ),=

f x y,( ) βf g x/α( ) f x/α y/β,( ),( ).=

ΘkΨ x y,( ) µB
2
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mum eigenvalue and Ψ is the corresponding eigenfunc-
tion for the linear functional equation 

(7)

Using known data for the functions g and f [11, 4],
we can realize the functional transformation in the
right-hand part of Eq. (7) in the form of a computer pro-
gram. The unknown function Ψ(x, y) is represented by
a table of values in the sites of a rectangular lattice on
the square –1 ≤ x ≤ 1, –1 ≤ y ≤ 1 with a fourth-order
polynomial interpolation between the lattice sites. Set-
ting arbitrary initial conditions for Ψ(x, y), we multiply
repeat the functional transformation and normalize the
resulting function to unity at the origin, Ψ0(x, y) =
Ψ(x, y)/Ψ(0, 0). The procedure has to be repeated until
the Ψ(0, 0) value converges (prior to normalization) to
a certain limit. As a result of these calculations, we
determined the desired constant µB = 2.713708… 

Now, let us consider the results of computer calcu-
lations. Figure 1 shows a chart of the Lyapunov expo-
nent for the second subsystem on the plane of control
parameters (λ, A). The Lyapunov exponent value is
coded by the grey color gradation, light and black
regions corresponding to the periodic regimes and
chaos, respectively. The noise amplitudes are γ = 0 and
ε = 0.005. The fragments presented in the bottom and
top rows are magnified by a factor of δF = 4.669201 and
δB = 2.392724 relative to the bicritical point λC =
1.4011552 and AC = 1.0900943. The top row illustrates
scaling in the case when the noise amplitude is recalcu-
lated using a factor of µB = 2.713708… The bottom row
demonstrates the absence of similarity for the small-
scale structure on the plane of parameters in a situation
when the noise amplitude remains the same on the pas-
sage from one pattern to another. 

Owing to the universality associated with the renor-
malization group approach, the properties of scaling
with respect to the noise are dependent essentially nei-
ther on the distribution law nor on the correlation pro-
perties of the acting noise (cf. [12]). Although the
illustrations of Fig. 1 were calculated for the simplest
binary noise, similar results are obtained upon setting
other distribution laws (at least for a limited noise
amplitude). 

Figure 2 illustrates scaling in the phase space. The
initial pattern shows a phase portrait of the attractor of
system (2) with γ = 0 and ε = 0.0015. In the two magni-
fied attractor fragments, the x scale was recalculated
with a constant factor of αF = –2.502907 (determined
by Feigenbaum for the standard period doubling [11])
and the y scale, with a constant factor of β = –1.505318
[3, 4]. The noise amplitude was recalculated on the pas-
sage from one pattern to another with a factor of µB =
2.713708. As can be seen, the scaling is provided with
a sufficiently high precision. 

ΘΨ x y,( ) = β2 f y' g x/α( ) f x/α y/β,( ),( )( )2Ψ x/α y/β,( )[
+ Ψ g x/α( ) f x/α y/β,( ),( ) ] .
01
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Fig. 1. The pattern of Lyapunov chart and its fragments scaled with and without noise reduction. 
The above illustrations correspond to the case when
no noise is introduced into the first subsystem. How-
ever, it follows from the renormalization group analysis
and is confirmed by the results of computer calculations
that the established scaling properties are valid for the
noise present in both subsystems. In this case, the
observation of each next level of the fractal structure
requires the noise amplitude in the first subsystem to be
reduced by the Crutchfield factor µF and in the second
TE
subsystem, by the factor µB . By virtue of the universal-
ity principle, the scaling properties with respect to
noise in real systems exhibiting bicritical behavior will
be the same as in the model system described by
Eqs. (1). 
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Abstract—Epitaxial InAs1 – xSbx layers with the Sb content 0 ≤ x ≤ 0.18 were grown by metalorganic vapor
phase epitaxy (MOVPE) on p-GaSb and n-InAs substrates. The photoluminescence (PL) spectra of the hetero-
structures were measured at T = 77 K. The experimental PL data were used to study variation of the bandgap
as a function of the InAsSb solid solution composition. The energy difference between the GaSb valence band
top and the InAs0.82Sb0.18 conduction band bottom was calculated. It was established that GaSb/InAs1 – xSbx
with 0 ≤ x ≤ 0.18 represents a broken-gap heterojunction of type II. © 2001 MAIK “Nauka/Interperiodica”.
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In recent years, special properties of the broken-
gap heterojunction of type II based on InAs and GaSb
solid solutions have been widely used in various opto-
electronic devices. In particular, the phenomenon of
interfacial electroluminescence was employed in tun-
neling-injection light-emitting diodes (LEDs) and
lasers [1]. The luminescent, photoelectric, and magne-
totransport properties of the lattice matched system
InxGa1 – xAsySb1 – y/GaSb obtained by liquid phase epi-
taxy (LPE) are studied in sufficient detail [2, 3]. Recently,
Voronina et al. [4] studied the magnetotransport in the lat-
tice matched system InxGa1 – xAsySb1 – y/GaSb with vari-
ous In content in the solid solution (x = 0.85–0.95)
grown by LPE.

The system InAs1 – xSbx/GaSb is also of interest,
representing the heterojunction of type II with a band-
gap that can be either broken or staggered, depending
on the Sb content in the solid solution. In the case of a
broken-gap p–n junction, the system is always charac-
terized by an ohmic behavior (due to a strong flow of
carriers across the heteroboundary under applied exter-
nal bias), while the directly biased staggered junction is
1063-7850/01/2711- $21.00 © 20964
rectifying with recombination on both sides of the het-
erojunction [2]. However, the system InAs1 – xSbx/GaSb
is still insufficiently studied, especially in the case of
heterostructures obtained by metalorganic vapor phase
epitaxy (MOVPE) technique. The purpose of our study
was to determine the type of the p–n junction formed in
the MOVPE p-GaSb–n-InAs1 – xSbx system with a Sb
content in the solid solution within 0 ≤ x ≤ 0.18. 

We have studied the epitaxial InAsSb layers grown
by MOVPE in a horizontal reactor of the AIXTRON 200
type. The p-GaSb substrates were doped with Ge to a
level of ~3 × 1018 cm–3. Before the epitaxial growth
stage, the substrates were rinsed in acetone and etched in
a chromium oxide–based etching solution. The sources
of indium, antimony, and arsenic were trimethylindium
(TMIn, +16°C), tertiary butylarsine (TBAsH2, +5°C),
and triethylantimonide (TESb, +16°C). The growth was
conducted in an atmosphere of hydrogen flowing at a
total rate of 4 l/min and a reactor pressure of 150 Torr.
The flow rates and the growth temperatures for each
sample are presented in the table. Several InAsSb layers
were obtained on InAs substrates (n ~ 2 × 1016 cm–3) in
InSb/InAs1 – xSbx MOVPE layer growth conditions and PL peak parameters 

Sample no. Growth tem-
perature, °C

H2 flow rate (cm3/min) through Sb content, %
(solid phase) hνm, meV ∆hν1/2, meV

TMIn TESb TBAsH2

859 500 292 113 25 18 325 47

860 600 292 113 25 4.2 390 35

861 600 292 180 23 7.1 351 33

862 600 292 248 21 9 345 33
001 MAIK “Nauka/Interperiodica”
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Fig. 1. The plot of PL peak (T = 77 K) position versus Sb content (x) in the InAs1 – xSbx solid solutions. Inset 1 shows the PL spectra
of samples Nos. 859 and 860 (see table). Inset 2 shows a schematic energy band diagram of the GaSb/InAs0.82Sb0.18 system before
bringing the two semiconductors in contact. 
an epitaxial growth system operating at atmospheric
pressure. The growth conditions for these samples will
be reported in a special publication. 

The elemental composition of the InAsSb solid
solution was determined using a Camebax electron-
probe microanalyzer (Cameca, France). Using the val-
ues of lattice constants for the binary compounds GaSb
(6.0959 Å), InAs (6.0584 Å), and InSb (6.4794 Å) [5],
we calculated the composition of a solid solution lattice
matched with the GaSb substrate: Sb ~ 9%. 

The epitaxial heterostructures were characterized by
photoluminescence (PL) spectra measured at 77 K with
a GaAs diode laser (λ = 0.8 µm) operating in a pulsed
mode at a pulse power of P = 10 W, pulse duration τ =
5 µs, and repetition frequency 500 Hz. The current–
voltage (I–V) characteristics were studied using mesa
diode samples with a diameter of 300 µm prepared by
a standard photolithographic method. An areal ohmic
contact was created on the n-InAsSb layer side. The
point contact on the substrate side had a diameter of
100 µm. The ohmic contacts were obtained by deposit-
ing gold with tellurium (on the n-type layer) or gold
with zinc (on the p-type layer). 

Now, let us consider the experimental results. Fig-
ure 1 shows a plot of the PL peak energy position hνm
versus Sb content x in the InAsSb solid solution; inset 1
shows the PL spectra of samples 859 (x = 18%) and 860
(x = 4.2%) measured at 77 K. For samples 861 and 862
(characterized by a minimum lattice mismatch with the
GaSb substrate), the PL linewidth at half maximum
(hν1/2) was 33 meV. As the mismatch increases, the PL
linewidth grows (see table). 
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
Assuming that PL is due to the direct transitions
between conduction and valence bands, the bandgap
width Eg of a nondegenerate solid solution can be cal-
culated by the formula

(1)

For T = 77 K, Eg ≅  hν and, hence, approximating the
plot of hνm versus x by a quadratic polynomial and
using the temperature coefficient of Eg in InAs
∆Eg/∆T = 2.8 × 10–4 eV/K, we obtain the following
expression for the room-temperature bandgap of the
InAs1 – xSbx solid solution (x = 0–0.18):

(2)

This expression is in good agreement with the model
proposed by Adachi [5] for calculating the bandgaps of
solid solutions. In particular, the room-temperature
bandgap of the InAs1 – xSbx solid solution is calculated
in this model by the formula

(3)

where EgInSb = 0.18 eV and EgInAs = 0.36 eV are the
bandgaps in InSb and InAs, respectively, and C =
0.58 eV is the empirical bowing parameter. In order to
determine the heterojunction type (alignment), it is neces-
sary to calculate the energy band diagram of the system.
Consider a schematic diagram of the GaSb/InAs0.82Sb0.18
system before bringing the two semiconductors in con-
tact (Fig. 1, inset 2). The energy difference between the
conduction band bottoms ∆Ec at the boundary is calcu-
lated using the electron affinity values of the semicon-
ductors: ∆Ec = χ1 – χ2. For GaSb at T = 300 K, χ =

Eg hν 1/2kT .–=

Eg  eV [ ] 0.36 0.77 x – 1.72 x 
2 .+=

EgInAsSb xEgInSb 1 x–( )EgInAs Cx x 1–( ),++=

                                         
01
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Fig. 2. The current–voltage characteristics of mesa diodes based on the p-GaSb/n-InAsSb heterostructure measured at T = 77 and
300 K. Inset 1 shows a schematic energy band diagram of the p-GaSb–n-InAsSb broken-gap heterojunction in the state of thermo-
dynamic equilibrium. Inset 2 shows a plot of the energy difference ∆ = f(x).

∆ 
=

 f(
x)

, m
eV

x

                
4.06 eV [6]. The electron affinity of an InAs1 – xSbx

solid solution can be calculated by the formula

(4)

where χInSb = 4.6 eV and χInAs = 4.9 eV are the electron
affinities of InSb and InAs, respectively, at T = 300 K
[6]. For an InAsSb solid solution containing 18% Sb,
the electron affinity calculated by this formula is χ =
4.84 eV and the corresponding energy difference is

(5)

Since the bandgap of GaSb (EgGaSb = 0.72 eV [5]) is
smaller than the ∆Ec value, the energy difference
between the GaSb valence band top and the
InAs0.82Sb0.18 conduction band bottom is

(6)

This result indicates that the given system represents a
broken-gap heterojunction of type II. 

Figure 2 shows the current–voltage characteristics
of a p-GaSb/n-InAs0.82Sb0.18 heterostructure diode. As
can be seen, the plot is linear both at room temperature
and at T = 77 K. This behavior is indicative of an ohmic
character of the contact between the two semiconduc-
tors GaSb/InAs1 – xSbx for 0 ≤ x ≤ 0.18. If the hetero-
junction were staggered, the diode current–voltage
characteristic would be different. The absence of non-
linearities on the ohmic characteristic of the p–n struc-
ture at small bias voltages at temperatures as low as
77 K is evidence of a low density of states at the hetero-
junction. The energy band diagram of the broken-gap
p-GaSb–n-InAs1 – xSbx heterojunction in the state of
thermodynamic equilibrium is depicted in inset 1 on
Fig. 2; inset 2 shows the plot of ∆ = f(x).

χInAsSb xχInSb 1 x–( )χInAs,+=

∆Ec χGaSb χInAs0.82Sb0.18
– 0.78 eV.–= =

∆ ∆Ec EgGaSb+ 0.06 eV.–= =
TEC
                        

Thus, we have grown by MOVPE and characterized
by PL measurements at T = 77 K the InAs1 – xSbx layers
with the Sb content 0 ≤ x ≤ 0.18 on p-GaSb and n-InSb
substrates. Using the experimental PL data, the Eg value
was studied as a function of the composition of the
InAsSb solid solution. The energy difference ∆
between the GaSb valence band top and the
InAs0.82Sb0.18 conduction band bottom was calculated
for x = 0.18. The ohmic character of the experimental
current–voltage characteristics confirms the results of
the calculation and shows direct evidence of the type II
alignment of this broken-gap heterojunction.
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Abstract—The effect of residual gases on the lifetime of a virtual cathode (VC) was studied. Dependence of
the output pulse energy of a high-power vircator on the vacuum conditions was studied. It is demonstrated that
a rough vacuum of 5 × 10–4 Torr achieved with a mechanical pump is sufficient for a vircator operation without
significant loss of the output radiation energy. The experimental data agree with a model of the mechanism of
VC degradation as a result of the gas ionization. © 2001 MAIK “Nauka/Interperiodica”.
At present, microwave generators with virtual cath-
odes (VCs)—vircators—are among the most popular
devices employed in superhigh-power relativistic
microwave electronics. The principle of the vircator
operation consists in creating a VC drifting in a vacuum
tube, the oscillations of which account for the micro-
wave generation. A review of the vircator physics and
technology can be found in [1]. 

As a rule, the vacuum cavities of a vircator are evac-
uated to a pressure from 10–4 to 10–5 Torr, which is usu-
ally achieved with the aid of a two-stage pumping sys-
tem. The first-stage mechanical pump reduces the pres-
sure to a level of 10–3 Torr, and then an oil-diffusion
pump decreases the residual gas pressure to a preset
level. Apparently, an important technical question as to
what residual pressure is actually necessary for vircator
operation in the optimum regime to be solved for each
particular oscillator type. 

The purpose of this experimental study was to deter-
mine the influence of vacuum conditions in the working
volume of a high-power vircator on the output radiation
characteristics. 

Before passing to the description of our experi-
ments, let us consider some known facts that might
allow us to predict the results. According to the previ-
ously developed theory [2], injection of an overthresh-
old electron beam into the drift tube of a vircator con-
taining residual gases at a low pressure leads to the for-
mation of a VC, near which an intense gas ionization
takes place (in the vicinity of the VC, the electron
velocity is small and their density is many times that at
the injection plane). Saturated with the gas ions, the VC
exhibits charge neutralization and shifts in the direction
of transit electrons. The gas ionization continuing in the
new position maintains the VC drift. Thus, the VC per-
forms directed motion and a part of the residual gas
ions can be trapped in an acceleration regime. When the
1063-7850/01/2711- $21.00 © 20967
moving VC with trapped ions reaches the opposite end
of the drift tube (collector), the microwave generation
process ceases. 

Thus, the microwave generation period of the virca-
tor is determined by the VC lifetime, which depends on
the gas ionization rate and the VC pathlength to collec-
tor. If the VC lifetime exceeds the vircator high-voltage
power supply pulse duration, the gas ionization process
must not affect the output radiation characteristics of
the microwave oscillator. 

Volosov and Chirikov [3] studied a vircator with a
nonrelativistic electron beam and showed that the VC
lifetime τ can be described by a simple formula 

(1)

where p is the gas pressure, I is the injected beam cur-
rent, Ilim is the limiting (threshold) current for a given
drift tube geometry, and α is a constant depending on
the gas composition (e.g., for air α ~ 2 × 10–10 Torr).
Malyshev and Rybas [4] specified the above relation-
ship by taking into account nonuniformity of the charge
neutralization process along the drift tube, which
decreased the τ value by a factor of about 1.5. It should
be noted that the results obtained in [3, 4] provided the
scientific background for using the finite VC lifetime τ
as a probe for ultrahigh vacuum. The τ value can be
measured by determining the time instant of the transit
current jump or the microwave radiation ceasing. For
example, Lloyd [5] proposed a gas pressure sensor for
a range from p = 5 × 10–5 to 4 × 10–9 Torr based on an
electron beam with VC and determined the α values for
hydrogen, nitrogen, and argon. 

Now, let us consider the influence of the residual gas
pressure on the microwave generation characteristics of
a high-power relativistic vircator. The vircator studied

τ α
p
--- 1

I lim

I
-------– 

  ,=
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Fig. 1. A schematic diagram of the vircator system based on an iron-free induction linac: (1) linac vacuum chamber; (2) vircator
cathode; (3) high-voltage electrode of the inductor unit; (4) deionized water; (5) gas-filled controlled discharge gap; (6) anode grid;
(7) vircator anode; (8) virtual cathode (VC); (9) output horn antenna; (10) output window; (11) matching waveguide; (12) input
window of the microwave calorimeter (MWC). 
in our experiments was based on an iron-free linear
induction electron accelerator (linac) implementing
radial water-filled KORVET lines (previously
employed as an injector of the LIU-10 plant [6]). A
schematic diagram of the linac–vircator system is pre-
sented in Fig. 1. The vircator contained coaxial cathode
(inner) and anode (outer) electrodes. The cathode sys-
tem comprised a cathode holder, representing a thin-
wall (0.2 mm thick) stainless-steel tube, and a steel sub-
strate welded on the side facing anode. The substrate
held graphite cylindrical elements (20 mm in diameter,
40 mm long) fastened with screws, which served as
emitters. The substrate could accommodate 8, 10, or 12
closely spaced emitter elements forming the cathode
assembly with an outer diameter of 72, 92, or 112 mm,
respectively. 

The anode electrode comprised a hollow cylinder
with a diameter of 160 mm and a length of 380 mm. A
metal ring inserted inside the cylinder carried a grid
anode (made of a 0.3-mm nichrome wire and attached
by electric welding) with 3-mm square cells. The ring
with the grid anode could be moved along the vircator
axis so as to change the cathode–anode spacing of the
vircator. In a given setup design, this interelectrode
spacing could be varied from 8 to 13 mm. The anode
electrode terminated with a cone-shaped horn antenna
with an opening angle of 10°. The output organic-glass
window, separating the vacuum vircator chamber from
the external air space, had a diameter of 700 mm. The
amplitude of the voltage developed in the vircator diode
at a maximum inductor unit charging was 1 MV. The
diode current amplitude at this voltage reached 35 kA
TE
for a pulse duration of 40 ns. According to estimates,
this is about two times the limiting beam current in the
anode region behind the grid (15–20 kA). By varying
the cathode–anode (grid) spacing, cathode diameter,
and cathode holder length, the vircator geometry was
optimized so as to generate a maximum output power
reaching 520 MW (as measured by the hot-carrier
semiconductor detectors [7]) at a wavelength of ~3 cm. 

The output radiation pulse energy was measured
with a microwave calorimeter (MWC) designed and
constructed at the Institute of Applied Physics of the
Russian Academy of Sciences. The MWC comprises a
vacuum-tight cylindrical case with flanges, an input
waveguide, energy-absorbing section, thermal decou-
pling (insulation) unit, and lid. The energy-absorbing
section pressed between the input waveguide and ther-
mal insulator represents a polyethylene disk with
mount holes keeping 236 thermocouple units each
comprising an absorbing element and a thermal trans-
ducer. The output voltage of the serially connected ther-
mocouple units is fed via an SR75 connector to a
Hewlett-Packard Model 34790A microvoltmeter. The
MWC is intended for measuring the microwave radia-
tion energy of a single pulse or pulse trains in super-
large-sized waveguide lines. The measurable energy
interval extends from 0.1 to 100 J in a frequency range
from 6 to 11 GHz. The MWC has a sensitivity of
34 ± 3 µV/J at a voltage standing-wave ratio (SWR) not
exceeding 1.65 and a response time of 55–60 s. The
output horn antenna of the vircator was matched to the
MWC input window of different diameter by a
1.4-m-long truncated-cone waveguide made of a
CHNICAL PHYSICS LETTERS      Vol. 27      No. 11      2001
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1-mm-thick sheet metal. The MWC input window
diameter is 550 mm. 

The total microwave radiation pulse energy of the
vircator operating at a maximum output power was
~2  J. Dependence of the output microwave pulse
energy on the residual gas pressure in the vircator vol-
ume was measured as follows. When the pumping stage
was switched off, the air was allowed to leak inside the
vircator volume to a certain residual pressure moni-
tored with an ionization gauge of the PMI-10 type and
a thermocouple gauge of the VIT-3 type. Several virca-
tor pulses generated at this pressure were measured
with the MWC and the results were averaged. The
results of these measurements are presented in Fig. 2.
As can be seen from these data, the energy of the output
microwave pulses virtually does not change for a resid-
ual air pressure in the vircator chamber not exceeding
5 × 10−4 Torr. From this, we may conclude that no oil-
diffusion pump is necessary for the experimental virca-
tor operation and a vacuum level provided by the
roughing (mechanical) pump stage is sufficient. This
circumstance significantly reduces the experimental
time consumption. However, it must be noted that our

W, J

2.0

1.5

1.0

0.5

0.0

1E–5 1E–4 1E–3 p, Torr

Fig. 2. A plot of the output microwave radiation pulse
energy W versus residual air pressure p in the vircator
chamber. 
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
conclusion may be inapplicable to vircators operating
at a longer current pulse duration. 

Another important circumstance to be pointed out is
that increasing the pressure in the vircator volume may
give rise to ion oscillations at a frequency on the order
of a few tens of megahertz [8], which may influence the
output radiation characteristics of long-pulse vircators.
In our case, with the vircator pulse duration being sig-
nificantly shorter than the possible ion oscillation
period, this effect can be ignored. In addition, estimates
obtained using formula (1) for a pressure of 5 ×
10−4 Torr indicate that the VC lifetime is about ~40 ns
and becomes shorter than the current pulse duration
(40 ns) at a greater pressure. These estimates agree with
the model notions of the mechanism of VC degradation
as a result of the residual gas ionization. 
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Abstract—It was found that the phase transitions in porous titanium–nickel alloys are characterized by an
extended temperature interval of heat release (on cooling) and heat absorption (on heating). The total heat
released and absorbed in porous titanium–nickel alloys markedly exceeds that in the analogous cast alloys. The
maximum exothermal and endothermal effects are manifested in the alloys with fine pores. The extended tem-
perature interval and increased amount of released and absorbed heat during the phase transitions in porous
TiNi alloys, as compared to the analogous cast alloys, is determined by the degree of porosity, the character of
inhomogeneity of the porous alloy structure, and the width of the martensite transformation interval. © 2001
MAIK “Nauka/Interperiodica”.
The wide use of biocompatible titanium–nickel
alloys in medicine requires a wide and thorough inves-
tigation of the mechanical properties and structure
characteristics of these materials. Previously [1, 2], we
reported that the porous titanium–nickel alloys are
characterized by a broad hysteresis and extended tem-
perature intervals of the phase transitions. Possessing
high elastic properties, these porous alloys behave
much like permeable tissues of the organism [3] and are
capable of functioning under real living organism con-
ditions. In addition, a porous titanium–nickel alloy is an
effective thermostat that changes its internal energy in
response to the external temperature variation, thus
maintaining the system temperature. In the region of
phase transitions, the permeable porous titanium–
nickel alloys behave as a highly inertial system, exhib-
iting delayed reaction to sharp external temperature
changes and showing stable properties in a broad tem-
perature interval. 

This study aimed at establishing the qualitative and
quantitative characteristics of the heat release and
absorption processes accompanying the martensite
transformation in porous and nonporous titanium–
nickel alloys. 

The experiments were performed on the samples of
cast and porous titanium–nickel alloys with a diameter
of 6 mm and a height of 12 mm. The porous samples
with an average pore size from 110 to 355 µm and the
relative porosity varied from 26 to 72% were prepared
by self-propagating high-temperature synthesis (SHS)
as described elsewhere [4, 5]. The process of heat
release and absorption in both cast and porous samples
was studied differential thermal analysis (DTA). The
DTA measurement procedure involves automated mon-
itoring of the sample temperature and a temperature
1063-7850/01/2711- $21.00 © 20970
difference between the sample and standard. The stan-
dard must exhibit no phase transitions in the tempera-
ture interval studied and possess a heat capacity close
to that of the sample. The sample structure was studied
by X-ray diffraction on a DRON-3 diffractometer
equipped with low- (KRN-190) and high-temperature
(GPTV-1500) chambers. The temperature dependence
of the sample resistivity was measured by a standard
four-point-probe potentiometric technique. 

It was experimentally established that the phase
transitions in porous titanium–nickel alloys are charac-
terized by an extended temperature interval of heat
release (on cooling) and heat absorption (on heating).
The total heat released and absorbed in a porous tita-
nium–nickel alloy markedly exceeds that in the analo-
gous cast alloy (Fig. 1). The maximum exothermal and
endothermal effects are manifested in the samples with
fine pores. These results are in agreement with features
of the martensite transformation previously studied in
porous titanium–nickel alloys, which showed evidence
for a significantly extended temperature interval of the
phase transitions. The presence of a broad temperature
interval corresponding to the martensite transformation
is also manifested in the temperature dependence of
resistivity, which are strongly “smeared” for the porous
samples (Fig. 2). The X-ray diffraction study of the
phase composition and the calculation of a change in
the volume fraction of the B19' martensite phase indi-
cated that the martensite transformation in porous tita-
nium–nickel alloys takes place in a brad temperature
interval and is not completed, since only about 60% of
the high-temperature B2 phase transforms into the low-
temperature B19' martensite phase. 

The X-ray diffraction measurements performed at
various temperatures on our porous titanium–nickel
001 MAIK “Nauka/Interperiodica”
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alloys (which are close in composition to the TN-10
cast alloy) [6], as well as the results obtained by elec-
tron microscopy, metallography, and electron-probe
microanalysis, showed the presence of B2 phase at low
temperatures. There is a broad temperature interval of
coexistence of the B2 + B19' two-phase mixture con-
taining Ti2Ni, TiNi3, and Ti4Ni2O(N,H,C) components.
The content of Ti2Ni amounted to approximately 5–8%
at all temperatures. The electron-microscopic examina-
tion of “massive” porous alloy domains also confirmed
the presence of Ti2Ni in the form of large spherical
inclusions (with an average size of ~300 µm) and fine
dispersed particles (~20 µm). The regions between
pores contained needlelike crystalline precipitates of
the B19' martensite phase. 

The temperatures of phase transitions in titanium–
nickel alloys are highly sensitive to the alloy composi-
tion. A change in the content of components in the
homogeneity region shifts the phase transition onset
temperatures by several tens of degrees [1]. It should be
noted that preparation of the porous titanium–nickel
alloy samples is affected by features of the SHS
method. In particular, it is very difficult to provide for
the conditions under which the fusion of Ti and Ni par-
ticles during the SHS process would lead to the forma-
tion of homogeneous (uniformly distributed) TiNi com-
position over the whole sample. The particles of TiNi3

and Ti4Ni2O(N,H,C) precipitates incorporated in the
alloy structure lead to increased local stresses and plas-
tic deformations both in the martensite crystals and in
the B2 matrix phase (including the regions between
pores). These precipitates also significantly affect the
motion of interphase boundaries and shift the tempera-
ture interval of the martensite transformation. 

Another important influence is related to the size
factor, since the martensite transformation proceeds
differently in thin regions between pores and in massive
porous alloy domains. These reasons (inhomogeneous
TiNi concentration distribution over a sample and the
size factor) account for the phase transitions in various
parts of the pore alloy structure proceeding at different
temperatures. As a result, the hysteresis loop of the
martensite transformation extends in the temperature
axis, thus expanding the temperature intervals of the
phase transitions as well as the shape memory effect
and superelasticity manifestations. This is reflected by
increasing temperature intervals of the heat release and
absorption during these phase transitions. The degree
of heating of a porous material may be several times
that of an analogous cast TiNi alloy. The increasing
degree of heating of the porous titanium–nickel alloys
in comparison to the cast material is probably due to the
fact that the regions between pores are in contact with a
thermoinsulating medium (air) filling the pores and the
rate of heat transfer from one pore wall to another is
limited. In the cast alloys, the formation of differently
oriented martensite plates results in an averaging of the
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      20
heat release. Moreover, a part of such plates transforms
into the high-temperature B2' phase as a result of the
local heat supply. This increases the heat dissipation
and reduces the overall level of heat release in the cast
alloy sample. 

Thus, the extended temperature interval of the phase
transitions and increased level of the heat release and
absorption during these transitions in porous titanium–
nickel alloys in comparison to the analogous cast alloys
is determined by the degree of porosity, the character of
inhomogeneity of the porous alloy structure, and the
width of the martensite transformation interval. This
behavior of the porous TiNi alloys influences manifes-
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tations of the shape memory effect in a broad tempera-
ture range and significantly affects the properties of
articles and structures made of such porous alloys. 
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Abstract—Epitaxial layers of (GaAs)1 – x(ZnSe)x solid solutions were grown from a tin-based solution melt
confined between GaAs substrates. The solid solution layers were characterized with respect to composition,
homogeneity, and some physical characteristics. © 2001 MAIK “Nauka/Interperiodica”.
The rapid development of the micro- and optoelec-
tronics stimulates the synthesis of new materials in the
form of solid solutions, including those based on the
AIIIBV and AIIBVI compounds, the bandgap width and
lattice constants of which may vary within certain lim-
its. This possibility is important for increasing the range
of useful electrical and photoelectrical characteristics,
especially in the case of devices involving heterojunc-
tions, where the maximum film–substrate lattice
matching is of key significance.

A promising group of materials offering this possi-
bility are the GaAs–ZnSe solid solutions characterized
by a continuous mutual solubility of the components in
both solid and liquid state [1]. While the lattice param-
eters of GaAs (5.65 Å) and ZnSe (5.653 Å), as well as
their thermal expansion coefficients, are very close,
their bandgap widths differ rather significantly
(EgGaAs = 1.45 eV versus EgZnSe = 2.67 eV), which
makes these solid solutions promising materials for
optoelectronics.

Shevchenko et al. [2] studied the growth of
(GaAs)x(ZnSe)1 – x solid solutions on ZnSe substrates
from a gallium-based (Ga–As–Zn–Se) solution melt
cooled at a rate of 5–7 K/min in a temperature range
from 950 to 850°C. The thicknesses of epitaxial
(GaAs)1 – x(ZnSe)x layers were 20–25 µm, while the
bandgap width ranged within 1.41–2.0 eV. This was
indicative of the formation of a transition layer from
ZnSe to GaAs but did not provide unambiguous evi-
dence for the existence of a true (GaAs)1 – x(ZnSe)x

solid solution with 0 < x < 1.

The main condition for a solid solution crystalliza-
tion in the system studied is a high oversaturation with
respect to three components in the crystallization front.
This condition is met in the temperature interval from
850–860 to 750–760°C, selected based on the phase
diagram of the Pb–GaAs—ZnSe system. The solution
melt composition corresponding to this temperature
1063-7850/01/2711- $21.00 © 0973
interval ensures the necessary oversaturation with
respect to three components. If the process starts at a
temperature of 870°C and terminates at 770°C, the melt
will be oversaturated with respect to ZnSe and the epi-
taxy will begin at a large content of this component in
the growing layer. Under these conditions, the layer
structure will be imperfect because the content of ZnSe
does not gradually vary with thickness so as to provide
for a smooth matching between GaAs and ZnSe lat-
tices. As a result, a large number of misfit dislocations
is formed at the heterojunction and a part of these dis-
locations grow into the epitaxial layers. If the crystalli-
zation starts at 840°C and terminates at 740°C, the solu-
tion melt is unsaturated and the growth will be preceded
by etching of the substrate. In this case, the growth
starts inhomogeneously, in the form of islands. We per-
formed special preliminary investigation aimed at find-
ing the conditions favoring the growth of crystallo-
graphically perfect epitaxial layers of the solid solution.

Here, we report on the possibility of a low-tempera-
ture epitaxial process leading to the growth of the
(GaAs)1 – x(ZnSe)x solid solution on GaAs substrates
from a limited volume of a lead-based three-component
(Zn–GaAs–Se) solution melt under conditions of
forced cooling in the temperature range from 870 to
730°C. We obtained epitaxial layers with a thickness of
15–20 µm on (100)-oriented GaAs substrates with a
diameter of 20 mm. Investigation of the scanning
images obtained using the characteristic X-ray radia-
tion of the (GaAs)1 – x(ZnSe)x solid solution confirmed
homogeneity of the sample surface and showed the
presence of Ga, As, Zn, and Se in the sample composi-
tion. An analysis of the sample surface with the aid of a
Cameca microanalyzer showed the following elemental
composition of the (GaAs)1 – x(ZnSe)x epitaxial layer
(at. %): Ga, 47.5; As, 45.5; Se, 3.6; Zn, 3.4.

The crystal perfection of the epitaxial layers of
(GaAs)1 – x(ZnSe)x grown as described above was stud-
ied by X-ray diffraction on a DRON-UM1 diffractome-
2001 MAIK “Nauka/Interperiodica”
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ter. These measurements were performed using spe-
cially grown thin (4–5 µm thick) epitaxial layers. The
results of these measurements showed that, because of
close values of the lattice parameters of GaAs and
ZnSe, the X-ray diffraction peaks in the diffractograms
are also very much alike. The absence of other peaks is
evidence of a single-crystal structure of the epitaxial
layers. An analysis of the results obtained for various
samples showed that the crystal perfection of the epi-
taxial layers depends on the substrate arrangement in
the growth apparatus. The epitaxial layers grown on the
lower substrates are more perfect than those obtained
on the upper substrates (when the gap between sub-
strates increases to h > 0.7 mm). This is probably
related to convective flows in the solution melt, which
appear in the gravitational field due to a difference
between the densities of solvent and solid solution.

In addition, we determined some electrical proper-
ties of the epitaxial layers, including resistivity, con-
ductivity type, the Hall mobility, and the charge carrier
concentration. At 77 K, n = 1.72 × 1019 cm–3; RH =
TE
3.63 × 102 cm3/K; ρ = 2.04 × 10–2 Ω cm; µH =
1780 cm2/(V s). At 300 K, n = 7.64 × 1019 cm–3; RH =
8.18 × 10–2 cm3/K; ρ = 0.292 × 10–3 Ω cm; µH =
27.9 cm2/(V s). The epitaxial films studied exhibit elec-
tron conductivity. 

Thus, using the proposed method, it is possible to
obtain relatively cheap variband epitaxial layers of a
(GaAs)1 − x(ZnSe)x solid solution. Until now, such lay-
ers with variable bandgap width were not grown from
lead-based solution melts. These (GaAs)1 – x(ZnSe)x

heterostructures can be used in semiconductor devices.
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Abstract—We studied 4-p-decyloxybenzoic acid 4'-p-hexyloxyphenyl ester liquid crystals of the smectic C
(smC) type in which a wavelike instability is induced by an external electric field in the vicinity of the
smC−smA phase transition. The smectic layers in a liquid-crystal sample placed in a sandwich type cell were
parallel to the cell plates and the director was oriented at an angle θ to the layer normal. The second-order
smC−smA phase transition exhibits a critical character. A wavelike instability in the form of a band structure
was observed in both alternating and constant electric fields. The band structure period depends on the electric
field strength. © 2001 MAIK “Nauka/Interperiodica”.
Smectic liquid crystals comprise a set of parallel
layers freely moving relative to each other. Molecules
in the layers can be oriented parallel to each other, mak-
ing an arbitrary angle θ with the layer plane. Depending
on the orientation of molecules, the liquid crystals are
called smectic A (smA) for θ = 0 or smectic C (smC)
for θ ≠ 0.

To our knowledge, the problem of a wavelike insta-
bility development in liquid crystals of the smA type
was originally theoretically studied by Rapini [1] and
later analyzed by Barratt and Duffy [2]. In smC* liquid
crystals, the wavelike instability developed under the
action of tensile stresses was considered by Jakli et al.
[3]. Estimates of the instability threshold showed that
this phenomenon is difficult to observe even in rather
thick samples (d = 10–2 m). For this reason, no experi-
mental observations of the wavelike instability in exter-
nal fields have been reported so far. For an external

magnetic field, the threshold field strength  =
2πK1/χaλd is determined by the magnetic permeability

anisotropy χa and the parameter λ = (K1/C33 . In smA
samples, the latter parameter is on the order of the layer
thickness (C33 ~ 104 erg/cm3 and K1 ≈ 10–6 erg/cm are
the elastic moduli). To reduce the wavelike instability
threshold, it is necessary to increase λ and χa or the liq-
uid crystal layer thickness d, which is hardly possible in
a real experiment.

Application of an external magnetic field to smA liq-
uid crystals usually leads to another transition (the Parodi
effect) related to the formation of a dislocation structure
upon a change in the orientation of molecules [2]. Prob-
ably, an electric analog of this effect was described
in [4]. Pikin [6] pointed out that analogous instabilities
in the external fields can take place in smC as well, but

Hc
2

)
1
2
---–
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no reliable experimental evidence of such behavior is
available. However, liquid crystals of the smC type
apparently allow the parameter λ to attain sufficiently
large values in the vicinity of the smC–smA phase tran-
sition, provided that the system exhibits a critical
behavior. Under these conditions, the phase transition
must be formally analogous to the phase transition in
liquid helium [5].

Let us estimate the value of λ in the vicinity of the
smC–smA phase transition. With an allowance of the
small elastic deformation, the thermodynamic potential
of a smC liquid crystal is [5, 6]

(1)

where θ is the angle of molecular orientation in the
smectic layer and U is the layer displacement. In the
equilibrium state, this yields

(2)

where C  C1[TCA – T]γ – 2β and a  a1[TCA – T]γ

(β ≈ 0.35; γ ≈ 1.3) for the critical behavior of the sys-

tem. Taking into account that  = , we obtain

 =  – A(TCA – T)–γ + 2β ≥ 0, where A = 2qC–1; thus,

  0 for T  TCA and, hence, λ  ∞.

Based on these considerations, we aimed at studying
a wavelike instability induced by an external electric
field in smC liquid crystals in the vicinity of the
smC−smA second-order phase transition. The instabil-
ity development was experimentally studied in a cell of
the sandwich type with a liquid crystal confined
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between glass plates coated from both sides with con-
ducting tin dioxide (SnO2) films. The smC liquid crys-
tal placed between the plates was oriented so that the
smectic layers were parallel to the cell plates. The
director C was oriented at an angle θ to the vertical OZ
axis (normal to the smectic layer).

The experiments were performed with 4-p-decyl-
oxybenzoic acid 4'-p-hexyloxyphenyl ester (DOBA-
HOPE) liquid crystals of the smC type characterized by
the smC–smA phase transition temperature TCA =
62°C. According to Eq. (2), the angle of orientation θ of
the director C gradually decreases on approaching the
phase transition point. Since the birefringence is ∆n =
n|| – n⊥  ≈ θ2, the temperature dependence presented in
Fig. 1 shows that the smC–smA transition in DOBA-
HOPE is a second-order phase transition possessing a
critical character with γ ≈ 1.3.

30

20

10

0
20 40 60 80 200 350

U, V

∆T, °C (×10–2)

∆n (×10–2)
h, µm

10 µm
20 µm

0

Fig. 1. Wavelike instability in smC liquid crystals: (1, 2) plots
of the domain width h versus applied voltage U (for the liq-
uid crystal layer thickness 10 and 20 µm, respectively);
(3) birefringence n versus temperature difference T.

Fig. 2. The pattern of a wavelike instability in an smC liquid
crystal, showing the formation of domains.

1

2

3

TE
The wavelike instabilities having the form of a band
structure with the wavevector parallel to the horizontal
axis OX were observed in smC liquid crystals (DOBA-
HOPE) exposed to both alternating and constant elec-
tric fields (Fig. 2). The band structure period varied
with the field strength. An analysis of this dependence
revealed a rather complicated pattern comprising three
parts. In the fields having a small strength, the band
period is independent (to within 10%) of the field and
coincides with the liquid crystal thickness. As the field
strength exceeds a certain critical level, the band period
begins to decrease, passes through a minimum hc , and
then sharply grows with the field strength (Fig. 1). 

The observed variation of the band structure period
with the field strength can be qualitatively explained as
follows. Let an electric field be applied perpendicularly
to layers of an smC liquid crystal possessing a negative
dielectric anisotropy εa . The field-induced reorientation
of molecules leads to deformation of the layers and the
formation of a modulated band structure [1]. In contrast
to the case of an smA liquid crystal, the elastic energies
of the modulated smC liquid crystal regions on the right
and left sides of the domain axis are different (Fig. 1).
At large deformations, molecules on the right side are
oriented perpendicularly to the field; domains with this
homogeneous orientation grow with increasing field
strength. This corresponds to an increase in the band
structure period at high voltages.

Let us evaluate dependence of the wavevector on the
applied field strength. The free energy of an smC liquid
crystal exposed to an external electric field can be
expressed as [1]

(3)

Using this expression, we obtain a relationship between
the wavevector and the field strength:

According to this, a threshold for the wavelike structure
formation corresponds to the critical field strength

For q ≈ q0 = 2π/d. In the vicinity of the smC–smA phase

transition,   0 and, hence, Ec acquires realistic
values. This conclusion agrees with the experimental
data presented in Fig. 1, where the wavevector near the
threshold is q0 ≈ 2π/d and the threshold voltage varies

with the liquid crystal thickness as Uc ≈ .
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Thus, we have observed and studied a wavelike
instability in smC liquid crystals. Apparently, the possi-
bility of observing this phenomenon in liquid crystals
of the DOBAHOPE type is related to the fact that the
elastic modulus C33 of this medium decreases in the
vicinity of the smC–smA phase transition, which leads
to a decrease in the threshold voltage. This is consistent
with the absence of a wavelike instability in smC liquid
crystals of some alkoxybenzoic acids, where the
smC−smA phase transformation is close to the first-
order transition [4]. It should be noted that the wavelike
instability observed in smC liquid crystals differs from
that predicted for smA: at large deformations, an smC
system features a homogeneous state, in contrast to a
defect structure formed in smA [2].
TECHNICAL PHYSICS LETTERS      Vol. 27      No. 11      200
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